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ABSTRACT

Software that provides automated teaching assistance and instantaneous feedback for

students has revolutionized the modern classroom. In addition to helping instructors man-

age large classes, the interactive experience can also benefit students. For instance, several

existing systems incorporate recognition of student’s hand-drawn solutions to problems.

In these cases, the instructor sketches the solution to the problem and the student’s sketches

are expected to match this template. While this framework provides immediate feedback

to students, it is still a constraint on instructors’ time; additionally, it can be difficult to

test conceptual understanding through only a small number of problems. There remains a

strong need to generate questions automatically based on templates drawn by instructors

so as to promote greater customization and variation in problems for students.

The focus of our research is to develop a novel method that can automatically generate

new valid problems from a given reference problem. We have chosen linear spring-based

truss systems as our domain. Another outcome of our research is to develop a method for

recognizing a spring network sketched naturally by the user with commonly used symbols.

We also generate different types of questions and boundary conditions from the recognized

and auto-generated truss structures using the finite element method (FEM) in a novel way.

Our system has been integrated with Mechanix, a tool developed at Texas A&M Uni-

versity which supports free body diagrams (FBDs) and the creative design of truss struc-

tures. Mechanix supports engineering learning by providing intelligent and immediate

feedback on hand-drawn sketches, and it has already been actively deployed in a number

of university classrooms. We build a problem generator on top of Mechanix to leverage

its capabilities for instantaneous, personalized feedback while enabling more thorough

testing of student abilities and providing them a limitless pool of practice problems.
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1. INTRODUCTION

In the current economic situation it is hard for a college or university to maintain a

preferable teacher-to-student ratio in large Science, Technology, Engineering, and Math

(STEM) classrooms. State expenditures have increased significantly for enrollment in

colleges of science and engineering; concurrently, tenure-track faculty have declined. A

record from Colorado State University shows that the average Computer Engineering un-

dergraduate teacher-to-student ratio worsened from 1:4.6 to 1:5.9 since 19951. In 2014,

the Education Commission of the States released measurements of teacher-to-student ra-

tios in several jurisdictions, which shows even lower ratios2. Notably, the minimum ratio

is 1:15 in New Mexico and New York, and the maximum is 1:30 in South Carolina, with

several other states providing ratios that include teaching assistants with values ranging

from 1:10 to 1:15.

Nizamettin and Bekir [2] studied the correlation between number of students to teach-

ers and student achievement in Turkish high schools. They found a negative correlation of

-0.561, supporting the conclusion that student achievement rates drop as there are fewer

instructors available. They suggested hiring more teachers as the most direct solution to

the problem. Unfortunately, this can be expensive, and it runs counter to the goal of mini-

mizing budget expenditures.

Another option to diminish the impact of high student-to-teacher ratios on student

achievement is to reduce the instructor workload. Lowering teachers’ workload can enable

mastery of goals and objectives in a class because they will have more time to interact

1http://www.engr.colostate.edu/dean/admin/files/04C_sutdent_faculty_
ratios.pdf

2http://ecs.force.com/mbdata/mbquestRT?rep=Kq1411
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with students[3, 4, 5]. For this reason, higher education has seen a continual growth in the

adoption of educational technology [6, 7, 8]. Such tools allow instructors to handle larger

classes as well as provide distance and online learning options [9, 10, 11].

The focus of our research is to use educational software to help reduce teacher work-

load and simultaneously help students to actively learn class materials, thereby increasing

motivation and interest, promoting critical thinking skills, and stimulating independent

learning. Research has shown that one technique that can improve learning and engage-

ment in STEM courses is “deliberate practice.” This technique involves introducing a

concept but devoting a majority of time to interactive practice through problems and chal-

lenges during class time, a period termed “thinking scientifically” [12]. Our solution is

built on top of Mechanix, an educational tool which tests students’ knowledge of truss

and free body diagram problems through interactive sketching. This framework supports

“deliberate practice” teaching, and our system uses automatic, individualized generation

of problems to encourage student learning.

Another critical aspect of our research is to enlarge the scope of usability of Mechanix

so as to support institutions in their undergraduate/graduate programs in Math, Mechani-

cal, Aerospace, or Civil Engineering Departments. To fulfill this goal, we have considered

the situation that a teacher is covering the implementation of direct stiffness method of

Finite Element Method (FEM) to a spring-based truss system in a STEM classroom. We

want to provide an interface where students and their instructors can draw any truss sys-

tems, and Mechanix recognizes the spring-based truss system and generates different types

of questions and boundary conditions for this system.
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1.1 Existing Systems

Most of the popular Course Management Systems (CMS) have very limited support

for automatic question generation. Blackboard3 and WebCT4 are some popular CMS, and

they only support test banks and question editors. Respondus5 provides a question editor

to make matching questions.

Some projects have explored auto-problem generation using natural language process-

ing (NLP), such as generation of single or multiple problems from text-based prompts

[13]. AlgoTutor provides a system that aids instructors in creating question templates and

in generating equivalent questions for an online tutoring system [14]. AlgoTutor uses a

GUI for creating question templates, and the system creates equivalent multiple-choice

questions for Computer Science I (CS-I) and Computer Science II (CS-II) level courses.

For STEM classes, there are some tools which can support tutors in creating questions.

PhysicsBook is one important learning interface which uses sketch-based interaction [15].

This program enables users to solve physics problems and then animates any diagram used

in solving the problem and provides feedback on the correctness. McGraw-HillConnect is

a web-based digital teaching and learning environment6. It provides interactive tools for

instructors and students to work on assignments with built-in assessment. WinTruss allows

students to draw trusses using a set of pallet tools and it solves for forces in the members

and shows truss deformation under a load. It is a non-sketch-based recognition system

for solving truss diagrams [16]. SketchIT is an another tool which can read a sketch of a

mechanical device and produce multiple families of designs from a single sketch [17].

Most of these tools still require instructors to provide solutions for all generated prob-

lems; this runs counter to our goal of reducing instructor workload. Furthermore, no such

3www.blackboard.com
4www.webct.com
5www.respondus.com
6http://connect.mheducation.com

3
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solution could be found specifically in our domain, a tool supporting auto-generation of

truss-based questions with the capability of creating new truss structures. Therefore, there

is a significant need for new technologies which assist instructors to create question tem-

plates for truss structures with minimal effort, from which new questions can be generated

and automatically solved. Motivated by this, we explore how an instructor can create a

structural problem template (with a combination of springs and beams) and generate new

problems by using this template.

To achieve our first goal to create an initial template, we ask instructors to draw their

structure as they do in the classroom and assign initial information for the structure. To get

a structure and its initial information, we use the recognition system Mechanix. We add

another truss recognition model in Mechanix that can recognize spring-beam based truss

structures. Regarding the second goal to generate questions from initial structural prob-

lems, we have implemented several algorithms in Mechanix that use certain constraints

and methods of structural optimization processes.

1.2 Background of Mechanix

Mechanix is educational software developed by the Sketch Recognition Lab at Texas

A&M University that provides a novel interface where students and instructors can in-

teract. It can recognize, correct, and provide real-time feedback for a student’s hand-

drawn truss diagram that is checked against a sketch which was drawn by an instructor

[18, 19, 20, 21]. It includes two modes for users, one for the instructors and another for

the students. Both modes provide an interface where users can draw diagrams and insert

meta-data related to the defined system.

Mechanix relies on geometric recognition to achieve an accurate results [22]. Geo-

metric recognition has been explored and researched in various distinct domains. This

recognition system uses a bottom-up approach and after preprocessing, a lower level rec-
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ognizer can identify primitive shapes such as line segments, circles, arcs, polylines, trian-

gles, spirals, helices, and field dots. On top of primitive recognition there is a high-level

recognizer that uses a set of constraints to determine if the basic shapes and relationships

between them can generate a complex shape. Mechanix relies on Paleo (also called Pa-

leoSketch) which is a powerful low-level recognizer and has a reported accuracy of more

than 98% [23].

Our study enlarges the scope of usability of Mechanix to support institutions in their

undergraduate/graduate studies for STEM classes. We want to provide an interface where

students and their instructors can draw any truss structure that can be a combination of

springs and beams, requiring the development of spring-based truss recognition algorithms

and inclusion of algorithms for generating different types of questions and boundary con-

ditions for such system.

1.3 Research Goals

Our research is directed towards the following outcomes:

1. Reduce teaching load for instructors by implementing problem generation in educa-

tional software used in STEM classrooms

2. Development of a method to recognize and generate stable structures of intercon-

nected beams/springs of arbitrary complexity from simple templates

3. Generation of new problems automatically to help create a large database of ques-

tions that can be used as individualized problems for students or problem banks

across classes or schools

4. Finally, develop a solver to solve the equilibrium equations taking into consideration

the geometric linearity associated with large deformations of the spring-based truss

network.

5



2. BACKGROUND AND METHODOLOGY

In our study, we use some predefined techniques and methods that have already been

used for different purposes. We improve these methods and develop new approaches that

can serve our purpose through Mechanix. In this chapter, we provide an overview of our

research.

Figure 2.1: Full process of dynamic question generation.

2.1 Spring-Based Sketch Recognizer

In the current version of Mechanix, it can recognize only certain types of linear truss

systems, and there is no scope for instructors to introduce spring systems or related prob-

lems using Mechanix. It fails to recognize certain linear structure based on a spring (or a

combination of a spring and beam). Thus, there is a need to improve the current version

of Mechanix.

For example, in an undergraduate mechanics class or in an introductory finite element

to analyze truss class in a Civil Engineering Department, an instructor wants to introduce

6



spring problems. The instructor wants to discuss the problem shown in Figure 2.2. On the

basis of this problem, the instructor would like to explore similar questions with different

boundary conditions and put them in homeworks or quizzes to enhance the learning pro-

cess. Sometimes, it is difficult to do such elaborate discussions on related problems within

the time limit of a class. Also if students feel they needs to practice more to ensure a clear

understanding of the topic, they may be unable to due to lack of resources. Often class

textbooks do not cover all material in depth, and because of lack of practice questions, a

set of students in the class are not able to learn the materials taught. They tend to lose their

confidence and skill to solve problems on the topic. Research shows that this is one of

the reasons why students sometimes lose interest in a particular course [24]. Our current

research focuses on this issue in a mechanics class and tries to improve the current form

of Mechanix software to facilitate the learning process by generating more questions on a

particular topic taught in class.

Figure 2.2: Example introductory problem that an instructor may wish to use as the basis
for homework or test questions.

We collected a problem from University of Memphis 1. We tried to create the problem

in Figure 2.2 using the current version of Mechanix, and it failed to recognize the spring

structure. Figure 2.3 shows this result in Mechanix.

To address this limitation in Mechanix, we develop another recognizer which we call

a spring network recognizer that is able to identify any truss system that contains springs,

1www.ce.memphis.edu/7117/notes/presentations/chapter_02.pdf
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beams, and loads drawn intuitively using the symbols found in most mechanics textbooks.

We use the same bottom-up technique used in Mechanix for linear truss body diagrams

[25], probabilistically combining stroke interpretations provided by the low-level geomet-

ric recognizer to build a composite view of the entire sketch. The spring recognizer up-

dates its interpretation of the sketch every time the user draws or erases components on

the screen.

Figure 2.3: The sample spring-based truss problem is not recognized by the current
Mechanix.

This new recognition process involves:

1. Recognizing low-level shapes using Paleo - these include line, helix, jagged line,

circle [26, 27].

2. Grouping shapes together into appropriate elements (for example, spring, beam,

load, support etc.) as well as associating labels with each element. This step involves

some heuristics in determining whether the user means to draw several separate

elements or a single element since the drawing is allowed to be completely freestyle.

8



3. Attempting to build a meaningful spring based truss system using the above ele-

ments based on physical constraints. For example, a meaningful diagram would

have either end of a spring attached to another element and not left dangling. We

also need to validate constraints on clamped versus free nodes. This step may again

result in backtracking by going to Step 2, in case we picked the wrong interpretation.

We discuss our new recognizer in Chapter 3.

Figure 2.4 shows an example where our new recognizer is able to classify the problem

from Figure 2.2.

Figure 2.4: The spring-based truss from our previous example is now recognized by the
upgraded system.

Let us consider the spring-based truss in 2D as shown in Figure 2.5. We collected this

problem from the lecture note of Introduction to the Finite Element Method, conducted by

Dr. J. Dean, Department of Material Science & Metallurgy, University of Cambridge 2. If

we create the same module through our recognizer, it is able to identify it correctly as seen

in Figure 2.6a. The full system is shown in Figure 2.6b.
2www.ccg.msm.cam.ac.uk/images/FEMOR_Lecture_1.pdf
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Figure 2.5: A spring-based truss system which contains five springs.

(a) Mechanix is now able to recog-
nize the truss in Figure 4.6

(b) Instructor can create a model
like Figure 4.6 through Mechanix.

Figure 2.6: Examples of spring-based truss systems recognized by Mechanix.

10



During this study, we only consider those structures which are made completely based

on springs, though our recognizer is able to distinguish between a spring and beam. It can

compute all properties of a beam automatically. Since our main focus is to generate ques-

tions from base templates, we do not build a solver which can solve a force-displacement

balancing equation for spring- or beam-based truss systems within a limited time frame.

Our system can easily implement beams once we have a solver for it. Since all new algo-

rithms in this new system support both springs and beams we must discuss certain features

which are created only for beams. All of these features are used in our system during

problem formulation and generation.

2.2 Analyze Information

After recognizing spring-based truss systems, our program analyzes resources which

are related to the given structure like the nodal information, boundary conditions, and the

stiffness of the members of the truss. To get this information from the given structure,

Mechanix already has a recognition system and input panel for retrieving values of 2D

forces, length of beams, stiffness, etc. We focus on certain problems where the boundary

conditions are related to force, displacements of the nodes, and stiffness of the truss ele-

ments of the given structure. To get this meta-data for nodes, we add a dynamic input panel

where users (teachers/TAs) can provide information about nodes (coordinates, forces, and

displacements). Instructors can provide initial boundary conditions through this panel.

The resource analyzing process first compiles information what user provides and

checks if it can make a stable structure. If it finds that the given information is not enough

to make the structure stable, then it allocates more reliable information and adds more

constraints to the given structure. It also informs the user if it fails to build a stable struc-

ture. We add these constraints by following the recommendations found in Hultman’s

well-known approach [1]. To add more constraints to the given problem our system con-
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siders that the given structure is made of steel and adds minimum weight according to

Eurocode 3 (EC 3) [28, 29]. To distribute minimum weight and generate stiffness, it com-

putes the weight of the structure, bulking stability, the number of free elements, yield

strength, compression force, cross-sectional area, effective cross-sectional area, instability

resistance, and so on. Depending on the boundary conditions, this recognition system has

the ability to identify whether the system is valid (a stable structure) or not. This system

always provides a stable structure when it creates questions for students learning.

In Chapter 4 we discuss in detail how our system analyzes information to build a

structural problem. We use most of the constraints in Chapter 4 for both springs and

beams. In this section, we only focus on those constraints which are used in our system,

but we do not have to show their importance since we are not using beams now. The

following constraint, derived from Hultman’s work [1], is implemented into the structure

through resource analysis:

Cross-section classifications: Different cross-sections have different local buckling

resistance, depending on the inner width-to-thickness ratio. In this work, square, hot fin-

ished hollow profiles are used, and in that case, the different cross-sectional classes are

calculated as (with c and t as in Figure 2.7):

Class 1 if c
t
≤ 33ε

Class 2 if c
t
≤ 38ε

Class 3 if c
t
≤ 42ε

andClass 4 if it fails to satisfy the limit for Class 3

where ε is equal to
√

235
fx

with yield strength fy in
N

mm2
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Figure 2.7: Designation of a square hollow profile [1].

2.3 Mathematical Modeling and Computation

To check whether the given system with initial boundary conditions is valid (stable)

or not, the system creates a module which computes the stiffness matrix K of the given

system after analyzing element resources. Here we follow the same numerical procedure

which all textbooks suggested [30]. It immediately notifies the user if the given boundary

conditions (nodal coordinate, force, and displacement) are valid for creating a unique so-

lution of this problem or not. By comparing the rank of force and the augmented matrix

created by stiffness and force, it informs the user that the given boundary condition has

many solutions or no solution.

Our system has an ability to balance the stiffness of each member (Chapter 4.4.2.1)

so that it produces a non-singular stiffness matrix, unless if a user added stiffness for a

member that is many times greater than other user-provided stiffness values (we use a

threshold of 109). Therefore the uniqueness of the equation {U} = [K]−1 {F} depends

on boundary conditions. The system allows those boundary conditions for which {U} =

[K]−1 {F} has a unique solution, and it helps users to add proper boundary conditions
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for a given structure. For example, it can remove unnecessary nodal forces from the force

displacement panel and consider proper nodal forces (Constraints 6). It gives continuous

feedback during this process until proper boundary conditions are defined; then Mechanix

runs the solver on the above equation in order to formulate the different types of questions

based on the original structure.

We consider the momentum balance equation (see Equation 2.1) and solve it by using

FEM. We fit this model in our system using nodal information and stiffness of the elements

as input for the solver. It also generates a problem set S = {U, F,M} where

U ∈ {ui, vi}, F ∈ {fxi, fyi}

andM ∈ {ki : kj is the stiffness of the truss element j}

for i = 1, ..., n; j = 1, ..,m

The moment balance equation:

∇⃗.σ + b⃗ = 0 (2.1)

or in a simplified form:

∂σij

∂xj

+ b⃗ = 0 (2.2)

Once the system formulates K and finds that the above equation has a unique solution,

then it finds out the solution for U . We used the solver for FEM implemented in Jama

Matrix3.

2.4 Question Generation

To generate questions from an initial structure, we have created a simulation which

considers all possible aspects about how an instructor can create different questions on the

3https://math.nist.gov/javanumerics/jama/
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basis of a given template. In this research, we have limited the scope of question generation

to an undergraduate mechanics or mathematics class where a teacher introduces the Finite

Element Method (FEM) using spring-based truss structure. This system has five different

methods to generate new questions from a given sample, and it considers how to improve

a question by adding difficulty levels, although this feature is not currently activated. In

Chapter 5 we discuss all of our new algorithms in Mechanix in detail.

2.4.1 Change Boundary Conditions and Stiffness

In this case, the structure remains the same, meaning the given sketch, the number of

truss elements, and the nodes will stay the same as in the initial problem. However, this

method will change one of the vectors between displacement, force, and stiffness in a way

so that the equation will have a solution. Therefore, it will create a new solution set, and the

system will be able to ask a few specific questions from this new solution set. Depending

on the computation level this new problem will be assigned a difficulty level dependent on

each newly created question. Since the structure remains the same, the system initially sets

the same difficulty level as the base level problem for this newly formed problem set P . It

will compute a new difficulty level for each question of P while solving the Equation 2.1.

This process first selects one parameter randomly from displacement, force, and stiffness

and then uses a specific method to change values of this vector so that Equation 2.1 has an

exact solution. We follow the same idea when we add constraints for the initial problem;

details for each vector are discussed below.

2.4.1.1 Displacements at the nodes

This method randomly selects a node from n nodes. Initially, it randomly considers a

node where displacement is unknown for students in the initial reference problem. After

selecting the node it can change the displacement value in x-direction or y-direction or

both, as well as validating the movement. In Chapter 5.1.1, we discuss how we add a new
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displacement at the selected node.

After changing the value it rechecks the existence of the solution for Equation 2.1. Our

research shows that the failure of this method to create a stable structure has probability

zero since the stiffness matrix remains same, and it is non-singular (from the initial prob-

lem). Now we have a new displacement vector. Therefore, an instructor can generate a

significant number of questions by changing the value of the displacement vector from

F = KU where K is given non-singular stiffness matrix,

F is a set of force vectors and U is set of the displacement vector.

2.4.1.2 Stiffness of the truss members

The system would prefer to create a new equation for the given truss with the same

number of nodes and truss elements, making the task of adjusting stiffness non-trivial. In

general, in an introductory mechanics classroom a teacher wants to formulate all truss

problems which are stable. Therefore, we create all truss structures which have non-

singular stiffness matrices. We follow the same technique to assign a stiffness along with a

truss element which we describe in Chapter 4.4.2.1. In this method, we first check if there

is any missing stiffness from the given truss elements input from the instructor. If it finds

any element for which the instructor did not define stiffness, then it assigns a stiffness by

the method described in Chapter 4.4.2.1 to that element. It makes sure that the structure

has a non-singular stiffness matrix.

2.4.2 Create Different Truss Topology

In Chapter 5.2 we describe how our system can create different truss structures from

a base template. It achieves this by adding new members to structures or removing mem-

bers and nodes from structures. It is able to generate a new template through this process.

Adding a member increases computational work for students, thereby increasing the diffi-

culty level. Conversely, removing members and nodes reduces the difficulty level.
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3. SPRING-BASED TRUSS SYSTEM RECOGNIZER

To introduce spring-based truss system in Mechanix we define three new data struc-

tures. We first discuss their properties and a few important methods which are used in our

recognizer to a generate question model. We use all the pre-existing data structures that

were used in Mechanix, for example, Point, Shape, CoincidentConstraint, Constrainable-

Line, ConstrainablePoint, ConstrainableShape, BoundingBox, and so on [22, 31].

3.1 Important Data Structures

Mechanix has a few important data structures to recognize a spring-based truss sys-

tem. They also play an important role in designing the truss for generating problems. We

currently use a solver that can solve a force-displacement equilibrium equation through

stiffness just for a linear truss whose members are all springs. Although our new recog-

nizer can distinguish between completely spring-based truss or a combination of spring-

and beam-based structure. A design method is introduced to assign different properties to

a member of the truss. This method can assign different properties to a spring and beam.

Since we don’t have the solver ready for the structure which has both a spring and beam,

we only concentrate on spring-based structures.

3.1.1 Spring Node

SpringNodes refers to the vertices of an undirected graph (spring system) whose

edges are a spring truss. It is the discrete position of a graph and an edge (spring and/or

beam) of a graph that is connected between two spring nodes.

The properties of SpringNode are the following

1. List < Shape > shapes : stores all shapes that are connected at this SpringNode.

2. Point p : stores the intersection point where all edges of the graph are connected
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after beautification.

3. String label : stores the label of the node.

4. Double[][] ProblemCoord: stores the value of the user entered coordinates.

3.1.2 Edges of the Graph

SNode is referred to as an edge of the undirected graph (spring system). An SNode

is connected between two SpringNodes by a Shape. The shape of an edge i.e vertex can

be a helix, line, closed shape, or circle. The important properties of the SNode are listed

below, and the constructors are show in Algorithm 1:

1. Shape vertex : stores the the shape of the edges (Helix, line or closed shape).

2. List < SNode > edges : list of SNodes which are connected to any of the

endpoints.

3. Point firstPoint, secondPoint : stores the endpoints of the edge.

4. boolean firstPointConnected : boolean indicates if firstPoint is connected with

any other SNode then firstPointConnected = true .

5. boolean lastPointConnected : boolean indiciates if secondPoint is connected

with any other SNode then lastPointConnected = true.

edges is used to store all other Snodes which have one common endpoint, either

firstPoint or secondPoint. During creating a spring system, our recognizer updates

the edges by adding all connected edges of the graph which share the same endpoint.

Mechanix considers an Snode as a member of a spring-based truss system if the vertex is

either helix or line. In Figure 3.1, AB, AC, AD, AE, BF, BG are SNodes. A and B are

firstPoint and secondPoint. vertex of AB is a line Shape. A and B will be the a point
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Algorithm 1 SNode

1: procedure SNode(v)
2: vertex← v
3: edges← new ArrayList < SNode > ()
4: firstPoint← ∅
5: endPoint← ∅
6: firstPointConnected = false
7: lasstPointConnected = false

Algorithm 2 SNode

1: procedure SNode(v, first, end)
2: vertex← v
3: edges← new ArrayList < SNode > ()
4: firstPoint = first
5: endPoint = end
6: firstPointConnected = false
7: lasstPointConnected = false

of SpringNode in SpringSystem. Now edge of AB contains AC, AD, AE, BF, BG.

firstPointConnected and lastPointConnected are true since firstPoint and

secondPoint are connected with other SNode.

Figure 3.1: Example of SNode data structure
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3.1.3 Spring System

SpringSystem is an undirected connected graph which is created by a set of shapes

S. S contains clamped support, Circle, Closed Shape, Helix, and Line. The vertices of this

graph are SpringNode and edges are SNode. A helix shape can be visually represented

as a spring, and a line can be a beam. A small closed shape with area 7000 or less is

identified as a load of the spring-based truss system. Two components of this graph are

connected if an endpoint of a spring or beam touches 1) another endpoint of a spring or

beam, 2) any connected point of a clamp support, or 3) a point of the closed shape/circle.

A SpringSystem is considered as complete if it satisfies the following constraints:

1. Every spring/beam should be connected at both endpoints.

2. At least one clamped support should be present in the graph.

3. At least one load should be present in the graph.

4. Nodes are labeled with capital letters.

Our recognizer cannot create two SpringNodes at the same geometric location. It

satisfies one of our constraint of designing a valid structure, i.e, two nodes should have

two different coordinates1.

A spring system has the following properties, and the parameterized constructor sup-

porting a Shape of a clamped support is given in Algorithm 3.

1. String Label = "springNetwork",

2. List < SNode > graph : list of all edges,

3. Double Constraint_Confidence = .55,
1Note: “spring system" henceforth directly refers to the SpringSystem data structure.
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4. List < SpringNode > nodes : stores all vertices.

5. List < Point > clampedNodePoints : list of all endpoints of the shapes which

have other endpoint as pointsOnClampedSupport.

6. List < Point > pointsOnClampedSupport : list of all points which are con-

sidered as a connection of the clamp support and a SNode; this is also a point of a

SpringNode.

7. List < Point > loadedPoints : list of all points where user added load shapes.

This is also a point of a SpringNode.

Algorithm 3 SpringSystem

1: procedure SpringSystem(ClampedSupport)
2: super()
3: graph← new ArrayList < SpringNode > ()
4: nodes← new ArrayList < SpringNode > ()
5: clampedNodePoints← new ArrayList < Point > ()
6: pointsOnClampedSupport← newArrayList < Point > ()
7: loadedPoints← new ArrayList < Point > ()
8: SNode snode← new SNode(clamp)
9: snode.firstPointConnected← true

10: snode.lastPointConnected← true
11: add(snode)

To check whether a newly added Shape is a component of a graph, we define a new

method named as addAsSrpingComponent. This method is called once a spring system

has been created and the graph of this spring system has at least one clamped support. We

use this method in the spring system Recognizer. We use some confidence values to verify

if two points coincide or two shapes intersect that are already in Mechanix. Hammond and
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Johnston developed the mechanisms to find out the confidence value based on LADDER

[31, 22, 32]. To build a spring system we reuse the following thresholds in our research.

Coincident Constraint— To verify if two points are in same location we find out con-

straint value by using solve method of CoincidentConstraint. The default thresh-

old of coincident constraint is 0.15. Here we refer CC() and CC(x) as construc-

tors of CoincidentConstraint where x ∈ R and CC(p, q) represents the “solve

method” to get the confidence value where p, q are two points.

Intersection Constraint— To verify if two shapes intersect we find out the confidence

value by using “solve methods” of IntersectsConstaint class. The default thresh-

old is the distance for how close things have to be before they intersect. It is 0.1 for

intersection constraint. Here we refer IC(P,Q), IC(p,Q) which represents the

“solve methods” to get the confidence values where P , Q are two shapes and p is a

point.

We also reuse Constrainable Point & Constrainable Line from Mechanix (Hammond and

Davis [22]). At this juncture, CSShapeName represents the constrainable Shape of a shape

and CSShapeName is the constructor. CLLine is the constructor where Line is a shape. We

also use the following variables in our algorithms

1. Piece denotes current shape which needs to verify.

2. ShapeNamepx denotes a Point of a shape at location x. Example: Piecepf denotes

the first point of Piece and Piecepl denotes the last point of Piece.

3. Edgj denotes jth edge (shape) in graph of the current spring system.

4. nearness1, nearness2 and intersectionConfidence are used to store confidence val-

ues,
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5. SNodeShapeName denotes the SNode of a Shape, named by ShapeName.

6. MakeNode(P,Q, x) is the same getOrSetSpringNode method to create a

SpringNode where P ,Q are shapes and x is a point.

The new spring network recognizer calls addAsSrpingComponent method to check

if the newly added shape is an edge of the graph of current SpringSystem. It operates

according to the following steps:

1. Step 1:

It first verifies the shape label of Piece.

2. Step 2: (Case 1)

If shape label of Piece is either line or helix. recognizer then follows steps 2.1 to

Step 2.3.

(a) Step 2: Next it runs the following steps for each Edgj of the graph of the

current SpringSystem. j = 1,..,m, m = number of SNodes are in graph.

(b) Step 2.1: It first checks if Piece = Edgj then goes for next Edgj+1, otherwise

follows next steps.

(c) Step 2.2: If shape label of Edgj is either line or helix it then follows steps

2.2.1 to step 2.2.6.

i. Step 2.2.1: It first verifies if any endpoints of piece is coincident with first

point or last point of the Edgj . It Identifies the endpoint of piece which is

connected with which endpoint of Edgj . It can be either the first point or

the last point of piece which is connected with the first point or last point

of Edgj . If they do it then follows Step 2.2.2 to Step 2.2.4.

ii. Step 2.2.2: Creates a new SNodes with piece and itś firstPoint &

secondPoint. Say SNodePiece.
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iii. Step 2.2.3: Updates the graph of the spring system and edges of both

SNodePiece and Edgj .

iv. Step 2.2.4: Update that points of piece and Edgj by

firstPointConnected = true and/or lastPointConnected = true.

Creates a new SpringNode.

v. Step 2.2.5: If step 2.2.1 fails it then checks if piece and vertex of Edgj ,

say S, intersect. If they intersect it then creates a new SNodePiece. Up-

dates the graph of the spring system and edges of both SNodePiece and

Edgj . It then follows next steps

vi. Step 2.2.6: it checks if any endpoints of piece intersects or lies at a point

of S. If they do not, it then checks if any endpoint of S intersects or

lies on piece. It updates the boolean values of SNodePiece and Edgj

(i.e., firstPointConnected & lastPointConnected) according to the

outcomes and creates a new SpringNode.

vii. Step 2.2.7: Continue for next Edgj+1.

(d) Step 2.3: If shape of Edgj is a clamped support it then follows steps 2.3.1 to

Step 2.3.3.

i. Step 2.3.1: It finds out the base line of the clamped support.

ii. Step 2.3.2: Next it checks if either one endpoint of piece intersects the

base line. If one endpoint of piece intersects the base line, it then cre-

ates SNodePiece. It updates the graph of the spring system and edges

of both SNodePiece and Edgj . According to the outcomes, it updates

the clampedNodePoints and pointsOnClampedSupport by adding the

right points of the Piece respectively. It also updates

firstPointConnected or lastPointConnected of SNodePiece depend-
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ing on outcomes.

iii. Step 2.3.3: Continue for next Edgj+1.

3. Step 3: (Case 2)

If shape label of Piece is either a closed shape or a circle it then follows the follow-

ing step

(a) Step 3.1: It checks if any endpoint of Edgj lies on the Piece. If any end-

point lies on Piece it then create a new SNode by using only Piece, up-

date the properties of new SNode by firstPointConnected = true and

lastPointConnected = true . Updates the Edgj and loadedPoints.

Algorithm 4 is a detailed overview of the addAsSpringComponent method. This is

our new spring system recognizer. Once the above method returns a non-empty SNode

the spring recognizer (Section 3.2) is able to check if the graph is connected or not.

Sketching Constraint: This new recognizer helps a user to reduce the scope of drawing

a faulty structure. A user can not draw two members (shapes) which intersect each

other without creating a node. Spring system recognizer creates a spring node at

the intersecting point when the user draws two shapes which intersect each other. It

helps to satisfy one of our modeling constraint 5. Though the user can add a truss

member (shape) which intersects another member without having a node by using

“Add a new member” of our question generation model. This model checks if the

system can add a member between two nodes which still guarantees the stability of

the structure. In this case, two members (shapes) can intersect and our recognizer

does not consider the point of intersection as a node.
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(a) Recognizer created a spring
node during drawing (b) System added two members

without node

Figure 3.2: In image 3.2a System assigned a SpringNode at the intersection point during
drawing.In image 3.2b system added a intersecting member without have a SpringNode.

3.2 Spring System Recognizer

Mechanix already has a high-level recognizer to recognize a free-body diagram and

liner truss system. The inner workings of Mechanix and the artificial intelligence behind-

the-scenes have been documented in detail in Field et al. [33] and Kebodeaux et al. [34]

and most completely in Valentine et al. [19, 35]. The research on sketch recognition de-

pends on gesture recognition [36, 37], vision-based recognition [38, 39, 40], and geometric

recognition [41, 22, 42, 43, 44, 45, 46, 47, 48]. We develop another new recognizer to rec-

ognize any spring- and beam- based structure based on PaleoSketch [23] and a geometric

recognition approach that is closely related to LADDER [22, 49, 50, 51]. We use the same

bottom-up technique used in Mechanix [25] for linear truss body diagrams [52]. When the

user selects “instructor spring mode”, the system calls the Paleosketch recognizer. Paleo

is a low-level recognition and beautification system developed by Hammond and Paulson

[23, 53, 54, 55] that can recognize eight primitive shapes as well as combinations of these

primitives with recognition rates of 98.56%. An upper-level has been created by merging
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primitive shapes drawn with multiple strokes.

The spring network recognizer implemented here is a higher-level geometric shape cre-

ated by a combination of lower-level of primitives meeting certain geometric constraints.

We use four primitive shapes and one complex shape in our new recognizer. In this rec-

ognizer, we do not store any history of previous shapes. We use the same brute force

algorithm to check whether all shapes added by the user satisfy our predefined conditions.

We divide our recognizer into four categories (Paleo level, spring system level, Spring

Network level, and truss/non-truss member level). We model the diagram drawn by the

user visually as a spring system. Once we have recognized the diagram as a valid and

complete spring system in a visual sense, we transform this visual model into a physical

representation that we refer to as a Spring Network.

3.2.1 Algorithm

The first part of our recognizer forms a valid spring system. As discussed above, a

spring system is a connected graph which is created by a set of shapes S. S contains

clamp supports, helices, lines, circles, and closed shapes. A helix shape can visually

represent a spring and a line shape can be a beam. Once the spring network recognizer

runs, it first initiates the Paleo recognizer. When the user releases the mouse it sends the

users drawn stroke or set of strokes which are currently in the working panel to the Paleo

Recognizer. Once Paleo finishes recognizing primitive shape/shapes and labels the shape’s

name Mechanix then send them to our high-level recognizer to builds a spring system.

The spring system is considered as complete if it satisfies the following constraints:

1. At least 1 clamped support should be present.

2. At least 1 load should be present.

3. Every spring/beam should be connected at both endpoints.
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4. Nodes are labeled with a letter. Currently, we give only 26 options (A to Z) for

labeling, but it can be extended for any number of nodes.

The mechanism of spring system recognizer is as follows:

Input: List of shapes

Output: Spring system graph which is complete as per our constraints.

1. Send users sketch (stroke or strokes) to Paleo recognizer to recognize low-level

primitive shapes including clamp support. Paleo uses geometric techniques to clas-

sify strokes into shapes and labels shapes with their geometric names.

2. Remove all terminal shapes from the sketch. The terminal shapes are the node,

tick mark, closed shape, circle, axis, and measurement.

3. Send the sketch to our high-level recognizer, named as recognizeSpringNetwork.

4. Next in recognizeSpringNetwork, copy all shapes in a list, named pieces.

5. Check all shapes one by one from pieces if it contains any shape as spring system

or any node. If it has a spring system then add all shapes from this spring system to

pieces and remove the current shape of the spring system from the list. If the current

shape is a node then remove it from pieces.

6. Next check if pieces has at least one clamp support or not. If it does not have a

clamped support then return the control to the user to continue drawing. Otherwise,

create a spring system with clamped support (only) and remove it from pieces.

7. Check each shape from the remaining elements of pieces if it can be an edge or a

load of the spring system by using addAsSrpingComponent method. In each case

where addAsSrpingComponent method returns a SNode which is already added

to the current spring system then remove that shape from pieces.
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8. Continue step 8 until pieces is empty.

9. Once pieces is empty then check the newly formed spring system is connected (and

complete) or not. We use isConnected method to check if we have a connected

graph or not.

10. If we have a connected graph with at least two nodes, one edge and one clamp sup-

port then create a DirectStiffnessQuestion by using newly found spring system.

11. Next create a Shape S and label it as “SpringNetwork”.

12. Next add each vertex (which is a shape) of SNode from the graph of the newly

found SpringSystem to S and explode them with user drawn sketch.

13. Add S to users sketch.

14. Label each SpringNode of the newly found SpringSystem as “node” and update

the Point of the node.

15. Re-validate label and update the shape label.

16. Repaint GUI and update color of the sketch.

In each step, when the above algorithm creates a shape of the spring node, it im-

mediately updates the force-displacement input panel for that respective node where an

instructor can enter the coordinate, force, and displacement value for the node. Once the

system recognizes a spring network system which is connected, it then creates a question

to use the direct stiffness method to solve it. In our next chapter, we discuss how the sys-

tem is able to extract information from a newly created spring system network and create

a direct stiffness question for students.
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We use another new method in DirectStiffnessQuestion to create a SpringSystem.

We name it as toSketch(). Our system builds another new version of graph and a differ-

ent set of nodes during new question generation. The toSketch() method adds Shapes

from these newly modified graph and nodes to a Sketch. We use this Sketch to create

a new version of SpringSystem to form a new DirectStiffnessQuestion by using a

method, named as getSpringSystemFromSketch (Sketch sketch). This method works

as the same way as above algorithm for Spring network. The only difference is that we do

not need to use brute force algorithm here.
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4. RESOURCE ANALYSIS AND PROBLEM FORMULATION

We consider the scenario when an instructor wants to teach how to solve problems

using the Finite Element Method (FEM). He/she usually follows a few steps orderly in a

classroom. An instructor gives a detailed lecture about the topic concerned (in this case it

is direct stiffness method) with one or few examples. To provide an example, first, he/she

draws a picture of a spring based truss (since we consider this type of problem in this

research for our recognizer ) and labels the nodes. Once labeling is finished then he/she

adds conditions/properties for this truss to formulate the problem. After formulating the

problem visually for students, he/she shows how to distribute the conditions along nodes

and members of the truss and then works on solving the problem using the direct stiffness

method. Our system works in a similar way. After recognizing a spring system network,

Mechanix works to build a question that is solvable using direct stiffness method from

FEM. Once an instructor draws a spring system on panel Mechanix asks the user to label

all the nodes. After all the nodes are labeled it then asks the user to enter initial valid

boundary conditions on each node through the input panel. A user can add stiffness of

the members. Once the system has a spring network which is a spring based truss and its

proper initial boundary conditions then it generates new questions and their solutions.

The system informs the user about the validity of the current problem once the instruc-

tor finishes his/her part by drawing a structure and entering boundary conditions. Before

verifying the validity of the given problem, Mechanix needs to identify the information

about nodes and members based on boundary conditions and member properties if they

exist. After recognizing the spring network it first creates a base level question and up-

dates information for this question when the user finishes labeling the nodes and allocating

boundary conditions. To construct a base level problem we create two data structures. One
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is for the question which is named as DirectStiffnessQuestion and second is for an in-

dividual member of the spring based truss which is named as SpringNetworkMember.

If the system finds valid boundary conditions for user given structure then it updates

the DirectStiffnessQuestion, which is basically modeling the base problem. It updates

all properties of DirectStiffnessQuestion and SpringNetworkMember so that our

solver can solve the problem equation 4.4a. A resource allocation model is important here

during this problem formulation time. Here we consider resource as structural properties

which need to know when constraints need to be improved to make a stable structure

[56, 57, 58, 59] . All properties may not be available from a user. The system needs the

ability to generate resources for members of the truss.

We first discuss SpringNetworkMember and DirectStiffnessQuestion and then

we explain how resource allocation works to model a base problem to create a stable

structure.

4.1 Identify the Members of a Spring Based Truss

After the spring network recognizer recognizes a connected graph, it creates a base

level question. Since we use the brute force algorithm in spring network recognizer,

it updates this base question every time when a user adds another new stroke to the

current spring network. During creating a base question an algorithm runs to identify

members of this spring based truss network. Mechanix has another new data structure,

SpringNetworkMember, for storing information about the member of a spring based

truss. We will discuss about SpringNetworkMember in Section 4.3. It is important to

identify all truss members and their material properties in the network and add member

list to the questions. Mechanix has a new algorithm that can recognize a truss member

which is a shape (line/helix) and connected between two spring nodes. A user creates a

truss member in different ways through our system. Our new algorithm recognizes this
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new member and updates the member list of DirectStiffnessQuestion. The algorithm

works according to how a user adds shapes to a spring network in working panel. An in-

structor can add three or four shapes in the following ways to create one or multiple truss

members. This algorithm creates truss members according to the userś drawing pattern-

1. A user can draw three consecutive shapes, say Shape1, Shape2, and Shape3. They

can be of any combination of lines and helices. Consider each endpoint of Shape2

connected to one endpoint B of Shape1 and one endpoint C of Shape3 so that Shape2

is connected between two spring nodes B and C. Our system considers Shape2 as a

truss member [Figure 4.1].

2. A user first draws Shape1 with two endpoints X and Y. Consider X and Y are

SpringNodes. Now user adds another Shape2 whose one endpoint intersects a

point of Shape1 other than X and Y. This system creates a SpringNode at this in-

tersecting point, say A. Now again user draws another Shape3 in the same way, one

endpoint of Shape3 intersects a point of Shape1 except X, A & Y. The system then

the system creates another SpringNode, say B, on Shape1. Therefore the system

divides Shape1 by three parts XA, AB, BY respectively. The system considers each

of them as SpringNetworkMember e.i. a truss member [Figure 4.3].

3. It can be possible that one endpoint of Shape1 is connected to another shape ex-

cept for a clamp support or closed shape (i.e., load). Therefore we have a spring

node at this point. If another endpoint of Shape1 intersects a closed shape, then

Shape1 has only one SpringNode. If the user adds Shape2 and Shape3 in previous

ways1, then this algorithm creates only two members, in Figure 4.2, XA, XB are

SpringNetworkMember.
1All shapes should be added in a way such that spring network recognizer can create a connected graph.
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Figure 4.1: Shape 2 is a member which is connected between A and B

Figure 4.2: Shape 2 and Shape 3 touch Shape 1 at SpringNodes B and C. XB, BC are
two trusses members.

Figure 4.3: Shape 2 and Shape 3 touch Shape 1 at SpringNodes B and C. XB, BC and
BY are three trusses members.
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4.2 Direct Stiffness Question

We use a new data structure to define a question and use it for direct stiffness method.

We name it as DirectStiffnessQuestion. The initial reference is created when the sys-

tem finds a spring network. If a user continues to change the sketch after recognizing first

spring network, then the system updates this question. The system does not run any nu-

merical method for this question until the user tries to generate a new question. To stop

unnecessary computation there is a validation rule that prevents the user to run any ques-

tion generation method until all coordinate values of the nodes are entered. The user cannot

request to generate a question from his/her sketch until all the nodes are labeled and the

coordinate values entered for each node. If the user does not provide the value for stiffness

of a truss member then we consider that member is built by steel material. Few important

properties of direct stiffness questions are springMembers, springSystem, solution,

elementNodesV ectors, constantCrossSectionalwidth, constantElementThickness,

constantMomentOfInertia, steelElasticity, constantY ieldStrength,

crossSectionalClassification, StrureWeight, density, alpha. The springMembers

is a list of SpringNetworkMember and it is used to store all truss members in the truss

body. The springSystem is an object of SpringSystem data structure. It is important to

attach the SpringSystem with this question since we need to save a copy of the original

SpringSystem. The same process can create multiple modified versions of the original

SpringSystem during generation of new questions. Therefore we need to keep the origi-

nal version. A newly generated question has its own version of SpringSystem. It reduces

the runtime to find out original SpringSystem. Therefore the user can create multiple

questions by a single action. solution is an object of a new data structure, named as

SpringNetworkSolution. solution is used to store all information about question’s so-

lution. elementNodesV ectors is used to store information about the connection between

35



nodes. We use this array list for computation purpose. Initially, these are empty until the

user is ready to generate a question. The setUpDispacementAndForce method is used

to assign displacements, forces, and coordinates at each node. We will discuss about other

important properties of DirectStiffnessQuestion in resource allocation section.

The constructor of DirectStiffnessQuestion is following

function DIRECTSTIFFNESSQUESTION( )
checkNodesAlongMembers(springSystem);
setUpDispacementAndForce(springSystem);
Initialize other fields..

4.3 Spring Network Member

To store truss member properties of a spring based truss system Mechanix uses another

new data structure, named as SpringNetworkMember. Each object of

SpringNetworkMember has all important properties that we need to create a question

for spring based truss and its solution. The important fields/properties are for nodal in-

formation (node labels, SpringNodes), the stiffness of the member, cross-sectional area,

length of the member, thickness, the moment of inertia, elastic module, yield strength,

cross-sectional classification, inner width.

4.4 Resource Allocation and Modeling

After recognizing a spring network and initiating an object of the

DirectStiffnessQuestion, the resource allocation part comes to model the initial ques-

tion. Our system analyzes resources which are related to the given structure like the nodal

information, boundary conditions and the stiffness of the members of the truss. To get

meta-data for the given structure Mechanix already has a recognition system and input
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panel to get values of 2D forces, length of the beam etc. We focus on certain problems

where the boundary conditions are related to coordinates, force, and displacements at the

nodes and stiffness of the truss elements of the given structure. To get these meta-data for

nodes and stiffness for a member there is a need where a user can add this information.

Our system in Mechanix has an input panel, named as the Force-Displacement panel

where users (instructors/TAs) can enter information about nodes (coordinates, forces, and

displacements). Once our recognizer recognizes a spring node it immediately updates

this force displacement panel. The recognizer then creates a spring system when a user

adds a clamped support in working panel. It creates a SpringNode when a user draws

two connected shapes (any combinations of helix and line) after a clamp support. During

creating a SpringNode, it adds three JTextAreas for this node. These JTextAreas are for

getting input on coordinate, force and displacement for this node respectively. Figure 4.4,

shows that the input panel has three text areas since working panel has only one node. In

Figure 4.5, once an user adds another connected truss element, recognizer creates second

node. The force-displacement panel gets updated for this new node. If User labels the

node, it immediately adds the labeling to the corresponding force-displacement panel of

this node. It helps a user to identify the input areas for a specific node.

After recognizing spring networks, Mechanix immediately asks the user to label the

nodes and enter the nodal information. In our research, we expect user should enter valid

information for initially drawn truss structure which user wants to use to generate prob-

lems. Here we refer to a valid problem which has a unique solution. To get a unique solu-

tion from the given boundary conditions (coordinates, forces, displacements) on the initial

user drawn structure, the stiffness of the members plays an important part. Mechanix can

get stiffness information from the user or it can generate stiffness values for its members

so that the initial problem should have a valid structure. It’s a new feature that we have

added to Mechanix.
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Figure 4.4: Force displacement panel has only three text area for coordinate, force and
displacement of the node which is in working panel

Figure 4.5: Force displacement panel has now two input panel for each node in working
panel.
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Mechanix can now generate stiffness for members of a truss to guarantee a unique

solution for force displacement balancing equation. We will discuss in this chapter about

how system modules and allocates the stiffness information. Stiffness information can

come from user or system generates itself. We also discuss how to generate a solution

for the given problem. If the system has a valid problem then it is ready for the user to

generate new questions by using this initial template. First, we will discuss how to check if

the user entered information is valid and generate a solution for the given problem. Next,

we will discuss how to generate stiffness for each member which are not defined by the

user so that it can generate a valid problem.

4.4.1 Apply Steel Properties

To define steel qualities, element thickness, cross-sectional widths, the moment of in-

ertia Mechanix introduces a resource package in this research according to Eurocode 3

(or EC3) [29] and proposed a model by Max Hultman [1, 60, 28] (see appendix). Dur-

ing finding stiffness of a truss element this system allocates steel material properties for a

problem. It assigns steel quality first to the truss element Elei since the yield strength of

the steel depends on steel quality. Five different steel qualities are used, namely S 235, S

275, S 355, S 420 and S 460. The numbers represent the yield strength2, fy in N/mm2.

If the yield strength exceeds any of the numbers mentioned above, plastic deformation or

even fractures will occur in the truss. An object of DirectStiffnessQuestion is cre-

ated during recognition process and it assigns values of constantElementThickness,

constantMomentOfInertia, constantCrossSectionalwidth. This process chooses a

steel quality randomly from the given set in the resource package. Then it assigns element

thickness, the moment of inertia, inner width by EC3 from resource package.

Below, we show how we set thickness, cross-sectional width and moment of inertia for all

elements followed by [1] in DirectStiffnessQuestion -
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1. constantElementThicknessElei =

1e− 3 ∗ thickness[newRandom().nextInt(thickness.length)]]

2. constantCrossSectionalwidthElei = 1e− 3 ∗ crossSectionalWidth[

newRandom().nextInt(crossSectionalWidth.length)]

3. constantMomentOfInertiaElei = 1e− 8 ∗momentOfInertia[newRandom()

.nextInt(momentOfInertia.length)]

Next it calculates the cross-sectional area of Elei by

Elei CrossSectionArea = Elei crossSectionalWidth2 − Elei Thickness
2

Then it finally assigns the stiffness for this element Elei

Elek =
SteelElasticity ∗Elei CrossSectionArea

Length of Elei

We consider the steel density is 7850 unit and steel elasticity is 210.

In the next sections, we will see how these properties are extracted from a known or

unknown stiffness of a truss member. Later we can see how these properties have been

used for different purposes in adding constraints to form a structural problem.

4.4.2 Designing Structure by Adding Constraints

Before going to discuss truss topology optimization we go back to our original research

problem. One of our research problems is to generate questions for students and reduce

teacher’s/TA’s working load to conduct a large class. This research will help to create

a large question database for structural problems. The aspect to verify student’s answer

for auto-generated questions by Mechanix is not included in this research. Our aim is to

provide a solution of the auto-generated question so that Mechanix can compare solution

with student’s solution in future. On basis of comparison, Mechanix will be able to correct

student’s solution. And it will also provide a few more problems to students with the same

or different difficulty level. This interaction process with Mechanix and students can help

students to improve their knowledge not only on the subject but also helps to increase
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the ability to solve problems and the ability to understand the structure formations. Since

we are working on a platform where student and teacher interaction is very important,

therefore we assign some constraints and features that can help Mechanix later in this

area. One of the most important section is solution checking and provide a real-time

feedback for students by using validation rules. It will also focus on student’s failures

and strengths. We consider a situation where student’s solution does not match with the

solution of an auto-generated problem, Mechanix will be able to provide a similar type

of problem with same difficulty level or it can provide a problem with added difficulty

compared to the previous problem if a student gets the corrected solution. In both cases,

we need to match the student’s solution with the auto-generated problem. One guaranteed

way to match a student’s solution with that of an auto-generated question is to generate

a problem which has a unique solution. If a problem has many solutions then it requires

extra computations to verify a student’s answer. In this research, we focus on problems

with a unique solution. To reduce the extra computation, we ask teachers/TAs to enter

valid boundary conditions for their drawn structure which have a unique solution. This

Mechanix has some validation rules to assist a teacher/TA during defining initial problems.

It helps them to know if their initial problem has many solutions or no solution. To reduce

computation load, the system can not run any numerical operation until users request to

generate a question from an initial problem. The validation rules come during the process

of generating a problem. Therefore before formulating initial problem user needs to make

sure that the given problem has a unique solution. Later we see that we use this uniqueness

as a constraint in problem formulation.

Now we consider a scenario where the user forgets to add stiffness to some members

or all truss members knowingly or unknowingly. In that case, the system needs to assign

stiffness to these truss members from its end, otherwise, the system will not compute the

stiffness matrix of the given truss by using direct stiffness method. If such a case arrives the
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computational load can be really high and we do not allow this situation. Our system helps

users to formulate their problem without knowing about stiffness. Stiffness assignment

needs to analyze material properties and boundary conditions. A general numerical solver

can fail to find a solution from a non-singular stiffness matrix. Since the system needs

a unique solution from the initial problem, therefore it needs an appropriate approach to

assign stiffness to a member of a truss. In the next section, we see how we assign stiffness.

4.4.2.1 Stiffness Allocation

In this section, we discuss how stiffness value of a truss member depends on other

members and how current Mechanix solve the issue related to stiffness assignment. Con-

sider the problem equation from Henri P. Gavin’s study2:

[K]d = p (4.1a)

where [K] is the stiffness matrix, p and d are the set of forces and displacements applied at

a set of coordinates on a structure. The structural stiffness matrix of a truss with a single

member can be presented as

[K] =

K11 K12

K21 K22


let

d =

d1
d2


2http://people.duke.edu/~hpgavin/cee421/matrix.pdf
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and

p =

p1
p2


The stiffness matrix represents a set of two equations with two unknowns, d1 and d2.

K11d1 +K12d2 = p1 (4.2a)

K21d1 +K22d2 = p2 (4.2b)

The equations (5.2a) & (5.2b) can be represented as

d2 = −(K11/K12)d1 + (1/K12)p1 (4.3a)

d2 = (K21/K22)d1 + (1/K22)p2 (4.3b)

These two lines are parallel if (K11/K12) = (K21/K22) and there is no unique solution for

{d} = [K]−1 {p}. Now consider the problem where we have three springs

Figure 4.6: Sample illustration of spring stiffness.

The stiffness matrix of this problem is
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[K] =

K + k −K

−K K + k


Now if K >>> k then the stiffness matrix is close to

[K] =

 K −K

−K K


This implies that det([K]) is close to zero and depends on the specified precision of the

computation. Thus the problem can have many solutions. To assign a stiffness to a truss

member where stiffness is missing, needs a comparison with other stiffness where they are

present in the structure.

This study considers an objective function of sizing optimization for adding a con-

straint to design a truss problem. In size optimization, a design variable x, represents a

structural thickness such as a distributed thickness or a cross-sectional area of a truss. The

optimization problem is finding an optimal cross-sectional area that can minimize a phys-

ical quantity, while the equilibrium constraint has to be fulfilled. In our case, the objective

function is to minimize the weight of the structure. [1, 61].

In this research we only consider few constraints to design the truss structure which has

been used for three optimization processes as given by Max Hulmet.

In the following ways, we assign stiffness to a structure-

1. Consider that all member stiffness values are unknown initially. In this case, the

system assigns constantElementThickness, constantMomentOfInertia and

constantCrossSectionalwidth of DirectStiffnessQuestion to member

Thickness, memberMomentOfInertia and memberInnerWidth of each mem-

ber of the truss respectively. It then calculates the cross-sectional area and stiffness
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of each member. In this process, the system adds the same material properties to

all members of the truss according to EC3. It chooses available properties from ap-

pendix A. Therefore all stiffness values belong within a range defined by EC3.

If maxStiffness > p ∗ minStiffness then p always less than 1000, where

maxStiffness and minStiffness are maximum and minimum stiffness values

of the truss respectively. Therefore system produces a non-singular stiffness matrix

for this given structure if a user provides a valid boundary condition.

2. If a user provides stiffness values for multiple members and at least one member’s

stiffness is known. It then first compares between maximum stiffness and minimum

stiffness from known stiffness values in following ways

(a) It finds out maximum (maxStiffness) and minimum (minStiffness) stiff-

ness from known S = s1, s2, ...., sm where si are know stiffness values, i =

1, ..,m

(b) If maxStiffness > 999999 ∗minStiffness then it asks user to balance the

stiffness properly.

(c) If maxStiffness < 999999 ∗minStiffness then it sets a constant for com-

parison Stiff and Stiff = minStiffness.

If maxStiffness = minStiffness it then sets Stiff = maxStiffness.

(d) It calculates stiffness stiffi for each unknown members as 1, i = 1, .., n−m

where n in the number of members in given structure.

(e) If Stiff > stiffi and Stiff > 999999 ∗ stiffi it then replace stiffi by

Stiff and updates member properties by using 3.

(f) If Stiff > 0 and stiffi > 999999 ∗ Stiff it then replace stiffi by Stiff

and updates member properties by using 3.
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(g) Otherwise update member stiffness is stiffi

This process guarantees that stiffness matrix of the structure is non-singular and

therefore it has an unique solution.

3. If all stiffness values are known then system calculates crossSectionArea,

memberThickness of each member by using

constantElementThickness, constantMomentOfInertia

and constantCrossSectionalwidth of DirectStiffnessQuestion.

Since the system uses same constantElementThickness, constantMomentOf

Inertia and constantCrossSectionalwidth of DirectStiffnessQuestion for every mem-

bers therefore it makes sure that structure is made by same material properties. Also all

cases guarantee an unique solution of equation {d} = [K]−1 {p}. Therefore there is no

failure case for our solver. This approach to allocating stiffness not only guarantees a

unique solution for the base level problem but it also guarantees the uniqueness for a new

problem which is auto-generated by Mechanix.

4.4.2.2 Add Other Constraints

We model our system to support another structure which is built by a combination of

springs and beams. To create a spring & beam based structure which has a unique solution

for equation {d} = [K]−1 {p}, it is important to add a few more constraints to our model.

Mechanix can generate this type of structural problems by integrating these constraints and

our new algorithms for question generation in this study. To support this model Mechanix

just needs to add another solver which can solve the above equation for a spring & beam

based structure. We work on this in future.

The main purpose of our study is to generate different structural problems for students.

In the next chapter, we will see how we generate new truss questions from a base structural
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problem. They are achieved by changing displacement and stiffness vectors, adding a new

member in truss topology or removing existing members and nodes from current topology.

In every case, there is a risk to generate a singular stiffness matrix. If this case arrives, the

system then fails to complete the process of question generation and it needs to start a

new process to form a problem which has a non-singular stiffness matrix. The system

can fail multiple times to generate a single valid problem. To reduce this risk, we add

some constraints to our module. We have already discussed the optimal cross-sectional

area to create stiffness and light weighted truss in the previous section. In this section, we

use a few more constraints which are important for the shape and topology optimization

problem. Again, here we are not completely optimizing a structure. Therefore we do not

need to run any optimization process. Formulating an optimization problem by adding

constraints, we try to ensure that the newly created problem should have a unique solution

for force displacement equilibrium equation through stiffness.

First, we see how to formulate our optimization problem with an objective function

f , design variables x and the state variables y as described in [62] where f could be

minimized or maximized. A typical objective function can be the stiffness or a volume

of the structure [61]. The design variables x describes the design of the structure, it may

represent the geometry. The state variables y represents the structural response which for

example can be recognized as stress, strain or displacement.The state variable x depends

on the design variable y(x). The objective function is subjected to the design and state

variable constraints to steer the optimization to a sought solution.
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minimize
x

f(x, y(x))

subject to


design constraint on x

state constraint on y(x)

equilibrium constraint

A state function g(y) that represents the state variables can be introduced, for example,

a displacement in a certain direction. This state function can be incorporated as a constraint

to the optimization task, where it is usually formulated such that g(y) ≤ 0. Consider the

case where g(y) is represented by a displacement vector g(u(x)) in a discrete finite element

problem. To establish the state function, this requires that nodal displacement are solved

for

u(x) = K(x)−1f(x) (4.4a)

The optimization formulation in equation (4.4.2.2) is called simultaneous formulation in

comparison. Equation (4.4a) is usually solved by evaluating derivatives of f and g with

respect to x. In this context, x will represent a geometrical feature. Based on what geo-

metrical feature that is parameterized, the structural optimization problem can be classified

into size, shape and topology [61]. A multi-objective optimization can be done with re-

spect to multiple different objective functions [1, 63, 64, 65, 66, 67]. We use topology

optimization to find the best inner connectivity of the members. In question generation,

we will describe how we use to search two nodes to add a member using the same method-

ology of topology optimization.

We add the same important constraints in our model as defined by Max Hultman [1]:

1. Fabricational: To have a practical application of the structure, a feasible truss must
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consist of elements of available dimensions. We use same square hollow profile

which is taken from Budapest University of Technology and Economics [68]. A hot

finished profile with a square hollow section has been created by letting hot steel

material pass through rolls that gives the bar its intended shape and dimensions.

Afterwards it is left to cool down, and depending on the element thickness, the

different parts might cool down at a different rate, creating built in stresses in the

element. We applied bulking resistance on the every truss elements by satisfying the

following conditions-

NEd

Nb,Rd
< 1.0

where NEd is the design value of the compression force, Nb,Rd is the design buckling

resistance of the compression member.

Nb,Rd should be taken as :

Nb,Rd =
χAfy
γM1

for Class 1, 2, 3 cross− sections

Nb,Rd =
χAefffy

γM1
for Class 4 cross− sections

where χ is reduction factor for the relevant buckling mode, A is the cross-sectional

area, Aeff is the effective cross-sectional area,

γM1 is a partial factor for instability resistance (the recommendation is γM1 = 1.0

for buildings and fy is the yield strength in N
mm2 ).

2. Basic Nodes: In this system, a user provides the coordinates of all basic nodes (i.e.

nodes where there is either a support, a load and a joint of two truss members) in

2D. The given structure and auto-generated structures must have the basic nodes to

be feasible. In recognition model, a basic node is SpringNode.

3. Nodal Displacements: The displacement is bounded within a limit [1], and the limit

depends on the span width of the structure, e.g. δmax = L
300

. In general the maximum

deflection is chosen from [ L
500

, L
300

]. During generating a new problem we choose
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the maximum deflection from the interval [0, Lx

250
] for horizon moves and [0, Ly

250
] for

vertical moves, where Lx and Ly are the x-directional and y-directional maximum

span. In section 5.1.1, we describe how we use a modified version of this limit to

generate different problems.

4. Constructability: Satisfying deflection and the element stresses which are within

limits given in EC3 are not a necessary condition of a given or a generated truss

to be feasible. The resource has to be given some additional constructability con-

straints. This is taken into consideration by not allowing two or more elements to

have both their nodes in common and two nodes cannot exist in the very same place.

Furthermore, to avoid having infinite elements stuck in any of the nodes, elements

are not allowed to start and end up in the very same node. A violation of any of

these constraints will result in a penalty.

5. Number of Truss Elements: The number of truss elements in a truss system are

dependent on the number of nodes in the structure. The number of elements, m is

given by the relation

m = 2n− 3, where n is the number of nodes.

The number of free elements, nevt in the structure are chosen from the interval

0 ≤ nevt ≤
(
n
2

)
−m, where n is the number of nodes. To increase the probability of

generating a feasible solution and reduce the computational complexity for students

(undergraduate) we minimize the number of free elements. The resource alloca-

tion process follows the proposed guideline of Max Hultman [1] and the proposed

number of free elements correspond to about one-tenth of
(
n
2

)
−m.

6. Number of Allowed Loads We follow following ruler-

n = sn+ ln

n = number of nodes in structure, sn = number of nodes for support, ln = number
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of nodes where user applies loads.

System has a validation rule to assist user to remove unnecessary loads from force-

displacement input panel. if it finds n < (sn + ln) and ln > sn it removes some

extra loads (fx, fy) from some spring nodes except those nodes which are connected

to the shapes for clamp supports and loads.

Number of nodes Number of free elements

6 1

7 1

8 2

9 2

10 3

11 4

12 5

13 6

14 7

15 8

16 9

17 10

18 12

19 14

20 15

Table 4.1: The proposed number of free elements
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5. QUESTION GENERATION

In this chapter, we discuss all important methods which are used to generate ques-

tions and different structures from a base level structural problem. We consider the base

level structure as our problem template. We can generate new problems by changing the

boundary conditions, changing stiffness, adding a new truss member, and removing truss

members and nodes from the given structural problem. We already discussed assigning

stiffness in Section 4.4.2.1. We discuss the remaining methods here and provide some

examples of the implementation in Mechanix.

5.1 Generate New Question by Adding New Boundary Conditions and Stiffness

The boundary conditions (force and displacement) play a major role on question gen-

eration and depend on the given stiffness of the truss members. By changing boundary

conditions and stiffness, we can create several different questions on the same structure.

In Chapter 4 we discussed why Mechanix has a stable structure during question generation

by adding some constraints on the base problem. Instructors can create a set of questions

related to local and global displacements, reaction forces, and stiffness matrices by using

our new question generation module. Each question should have a unique solution that

can be compared with a student’s answer. In this section, we discuss the important steps

to generate questions by changing displacement and stiffness.

Mechanix can create an infinite number of valid questions from a given problem tem-

plate by using our methods. The system does not need to store all the problems. The

instructor only needs to store those questions when he/she wants to change the structure,

but not boundary conditions and stiffness. Therefore, Mechanix can create distinct real-

time problems for students in a manner that saves space on the database and server. It lets

a single question be extrapolated into a large number of additional questions without the
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instructor having to make a question for every one, saving the instructor a lot of time.

5.1.1 Create New Question by Changing Displacement

We discuss important constraints on displacement in Section 1; here we modify that

constraint by lowering the limit of the displacement. Our new method first identifies the

structural composition. Let us assume all nodes of this structure are parallel to x-axis or

y-axis. The new question generation method can easily find if they are parallel to any

of the axes and then change the user’s provided nodal displacement by choosing a value

δx ∈ [0, Lx

250
] to change x-displacement or δy ∈ [0, Ly

250
] to change y-displacement. It can

change both x and y displacements if other coordinates of the nodes do not lie either on

the x-axis or y-axis in a structure which is parallel to any axis. In this case, we add another

new limit on displacement: the new maximum displacement is δmax = L
500

where L is the

maximum span of x or y depends on which coordinates are constant in the structure. If

the structure is not parallel to any axis, then it updates both displacements by choosing

δx ∈ [0, Ly

250
] and δy ∈ [0, Lx

250
].

The specific cases the system considers when changing nodal displacement are listed

below.

1. The structure is parallel to x-axis, and y-coordinates are zero in every node. In this

case, the system considers it as one-dimensional problem. Therefore the displace-

ments are towards x direction. A maximum displacement δx towards x-direction is

chosen from δx ∈ [0, Lx

250
]. System can substitute given nodal displacement value by

δx.

2. The structure is parallel to x-axis and y-coordinates are not zero in every node. Since

this is a two-dimensional problem, the problem can have displacements towards x-

direction or y-direction or both directions. In this case, The maximum displacements

are chosen in the following ways:
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(a) δx ∈ [0, Lx

250
] only for x-directional displacement change by δx

(b) δy ∈ [0, Lx

500
] only for y-directional change by δy

(c) δx ∈ [0, Lx

250
] and δy ∈ [0, Lx

500
] for both directional displacement change by

(δx, δy)

3. The structure is parallel to y-axis and x-coordinates are zero in every node. In

this case, the system considers it as a one-dimensional problem. Therefore the dis-

placements should be towards y direction. A maximum displacement y towards

y-direction is chosen from δy ∈ [0, Ly

250
]. System substitutes a given displacement

value by δy.

4. The structure is parallel to y-axis and x-coordinates are not zero in every node. Since

this is a two-dimensional problem, the problem can have displacements towards x-

direction or y-direction or both directions. In this case, The maximum displacements

are chosen in the following ways:

(a) δx ∈ [0, Ly

500
] only for x-directional displacement change by δx

(b) δy ∈ [0, Ly

250
] only for y-directional change by δy

(c) δx ∈ [0, Ly

500
] and δy ∈ [0, Ly

250
] for both directional displacement change by

(δx, δy)

5. The structure is not either parallel to x-axis nor y-axis. Therefore the problem can

have displacements towards x-direction or y-direction or both directions. In this

case, The maximum displacements are chosen in the following ways:

(a) δx ∈ [0, Ly

250
] only for x-directional displacement change by δx

(b) δy ∈ [0, Lx

250
] only for y-directional change by δy
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(c) δx ∈ [0, Ly

250
] and y ∈ [0, Lx

250
] for both directional displacement change by

(δx, δy)

The main steps to generate a new question by updating a given nodal displacement

condition are as follows:

1. Clone the current question to a new a DirectStiffnessQuestion, named

as newQuestion.

2. Determine the SpringNode where the instructor entered a displacement condition,

changeIndex = position of this SpringNode in spring system.

3. Determine if the structure is parallel to x-axis, y-axis, or not parallel to any axes

from nodal coordinates.

4. Depends on returning value of step 2, evaluate the new nodal displacement condition

by using the previously-mentioned cases in 5.1.1.

(a) If the structure is parallel to x-axis

i. If case 1 is true and returns only δx then update

displacementBoundaryCondInfo of newQuestion

by new double[](double)(NodeLabel), 1, δx)

ii. If case 2a is true and returns only δx then update

displacementBoundaryCondInfo of newQuestion

by new double[](double)(NodeLabel), 1, δx)

iii. If case 2b is true and returns only δy then update

displacementBoundaryCondInfo of newQuestion

by new double[](double)(NodeLabel), 2, δy)
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iv. If case 2c is true and returns only (δx, δy) then update

displacementBoundaryCondInfo of newQuestion

by new double[](double)(NodeLabel), 1, δx)

and double[](double)(NodeLabel), 2, δy)

(b) If the structure is parallel to y-axis

i. If case 3 is true and returns only δy then update

displacementBoundaryCondInfo of

newQuestion by new double[](double)(NodeLabel), 1, δx)

ii. If case 4a is true and returns only δx then repeat 4(a)ii

iii. If case 4b is true and returns only δy then repeat 4(a)iii

iv. If case 4c is true and returns only (δx, δy) then repeat 4(a)iv

(c) If case 5 is true

i. If case 5a is true and returns only δx then repeat 4(a)ii

ii. If case 5b is true and returns only δy then repeat 4(a)iii

iii. If case 5c is true and returns only (δx, δy) then repeat 4(a)iv

5. Update the attribute of the Point p of SpringNode for “displacements”.

(a) If previous step 4 updates only displacementBoundaryCondInfo of

newQuestion for x-direction, it then updates the attribute for x-directional

displacement and leaves old y-directional displacement as is, e.g., displace-

ment = (δx, old_value).

(b) If step 4 updates only displacementBoundaryCondInfo of newQuestion

for y-direction, it then updates the attribute for y-directional displacement and

leaves old x-directional displacement as is, e.g., displacement = (old_value,

δy).
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(c) If step 4 updates displacementBoundaryCondInfo of newQuestion for

both x and y directions, it then updates the attribute for x-directional and y-

directional displacements, e.g., displacement = (δx, δy).

6. Find out a node where nodal displacement information is empty or unknown. Set

question of newQuestion by asking displacement info at this node.

7. If 6 fails to find a node where displacement information is empty or unknown then

set a question for any arbitrary node.

8. Run solver to set the answer for this new question.

We consider the difficulty level of this newly-generated question to be the same as the base

problem, although the difficulty setting is not currently active or tested.

5.1.2 Create New Question by Changing Stiffness

We apply the same methodology to creating a new question by changing the stiff-

ness vector as we discussed in Chapter 4.4.2.1. Here the system does not change the

given boundary conditions on displacement and force; it just reallocates stiffness to all

those members where stiffness was not assigned by the instructor. Assigning stiffness to

a member depends on the stiffness of other members. Since the system has already bal-

anced the stiffness vector s during the initial problem formation, any Stiffi /∈ s satisfies

Stiffi > 999999 ∗ Stiffj where i ̸= j

1. Select a member k where the user did not define stiffness in initial problem template.

Otherwise, select a member k randomly.

2. Change the cross-sectional area of member k and calculate the new stiffness Stiffk

for member k.
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3. If newly generated Stiffk is less than 999999 times of minStiffness of s then

choose a random value from [minStiffness
1000

,maxStiffness] if maxStiffness ̸=

minStiffness in s. Otherwise, use Stiffk.

4. If maxStiffness = minStiffness and Stiffk > 999999 ∗maxStiffness then

pick a random stiffness from [maxStiffness
1000

], maxStiffness
500

].

The difficulty level of this newly generated question is the same as the initial question.

5.2 Generate New Question by Changing the Structure

In this section, we see how Mechanix is able to create a different structure from the

initial template using a growth strategy. In this strategy, the system grows the ground

structure method to add a member in the current truss topology [69], and we develop a

new algorithm to reduce the truss topology by using the same concept as the ground struc-

ture method. Since in both cases, it creates two different structures, these new problems

need to be saved in a database or file server to reuse them as a base template. The system

uses the same constraints in both methods that it develops during forming the base struc-

ture; therefore, newly-generated problems through these methods always have a unique

solution.

5.2.1 Add a New Truss Member and Generate New Structural Problem

Researchers use different kind of optimization methods to reduce or add a member in

truss topology [70, 71, 72, 73, 74, 1]. In this section, we modify the given truss topol-

ogy by removing nodes, members, or adding a new truss member. Through this process,

the system is able to generate a different base template, which can be used again by the

instructor to create a wholly-different set of questions.
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5.2.2 Add New Truss Element Between Two Nodes

We already optimized the volume of the problem by reducing cross-sectional areas of

each member if a user did not provide cross-sectional info for each of its members through

stiffness. We apply the growth strategies of T. Hagisita & M. Ohsaki for adding a member

[69]. The ground structure method [75, 76] can find the optimal solutions, however it is a

tedious process to prepare the densest truss with a bar for every pair of nodes [72, 77, 78].

Because the initial truss system must have valid boundary conditions, the given problem

always has a solution, and we know the displacements of each node. To implement Growth

Strategy Method 1 of T. Hagisita & M. Ohsaki, the system needs to calculate the absolute

value of the potential strain of each candidate member and scale by unit volume. This

method adds the most-strained member to the new graph to create a question.

Find k ∈ candidatebars, which maximize
1

lk
|ηk| (5.1a)

ηk =
uij

Tdij
||xi − xj| |

, (5.1b)

where uij = uj − ui and dij =
xj−xi

||xi−xj||

Now

(K +Kk)δuk = Kku, (5.2a)

Kk =
Ek

L2
k

bkb
T
k , (5.2b)

where K ∈ Rn×n is the global stiffness matrix, u is the nodal displacement vector before

adding new candidate member k. Ek, lk are Young’s modulus [79] and length of the

member k. −Kkδuk is the internal force after adding new candidate member k, and it
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generates displacements δuk. If we assign Ek = 1, the right hand side is equivalent to the

potential strain multiplied by cross-sectional area ak = 1
lk

. Therefore, Growth Strategy

Method 1 does not need an additional structural analysis since it does not directly evaluate

the nodal displacements of the new truss structure after adding this new member. It only

needs to evaluate the internal force from u without calculating δuk.

As we mention in Section 5, the number of free elements can be chosen from interval

0 ≤ nevt ≤
(
n
2

)
− m and the maximum number of elements of the structure is

(
n
2

)
. In

this method, the system first checks if the number of nodes is more than 12 and if the

existing elements have already reached to the maximum number. If so, then it stops to add

a member and exits the method. If the maximum number is not reached, then it checks

how many free elements can be added in this structure according to Table 4.4.2.2.

Before adding a free truss member, the system also checks if there exists an element

between two nodes to avoid overlapping. Given the possibility to add x number of free

elements, it adds only one element between two nodes using the previously-described

Growth Strategy Method 1, where no truss element exists. If a system has fewer than 12

nodes, then it does not count the free elements. Else, in the case of 12 or more nodes,

the system classifies this problem as “difficult," one which would require extensive time to

solve without the aid of software tools like MATLAB 1 for computation. Therefore, adding

another member increases the difficulty level for students. The system assigns a stiffness

to its new members by picking a random value from [minStiffness,maxStiffness], or

only maxStiffness if maxStiffness = minStiffness. It also updates other material

properties of this new member which is basically a SpringNetworkMember. Once it

updates the spring system of the new question, it then attaches the solution of the new

problem along with this new question.

The important steps to add a new member in a given truss system are following:

1https://www.mathworks.com/products/matlab.html
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1. Find out the possible candidate members.

2. Find out the most strained bar among candidate bars.

3. Get a new stiffness for this new member.

4. Create a new spring member. To create a new shape use generateHelix method.

5. Update member list and generate new SpringSystem by using

addJointBetweenSpringNodes method.

6. Increase difficulty level by 1.

7. Set solution.

Our approach adds a few methods in Mechanix that help our system to do the following

important steps while adding a member:

1. generateHelix: We add this method to create a new, beautified helix shape between

our candidate nodes where the system chooses to add an additional member by using

Growth Strategy Method 1.

2. AddJointBetweenTwoNodes: This method helps to add a new SNode to the graph

of the spring system by a newly-created beautified helix. It also updates the relative

nodes.

Adding a member increases the complexity thereby increases the difficulty level of the

problem. For now, we add only one free element to increase the difficulty level, although in

future development, it is possible to scale difficulty increasingly by adding more members.
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5.2.3 Reduce Structure Method

The final method for question generation is based on removing free elements (zero-

force members) from the base structure [1, 74, 80]. We add another new algorithm that

can identify free elements and remove the connected nodes between zero-force members

from the structure. Thus, if a system is able to remove a zero-member and a node, then we

will yield a different truss topology. This helps not only to change the given structure but

also create a new problem template which can be used for generation of other questions.

Technically, we are not removing all zero-member elements from the structure. This

approach can help to form a base template which is not trivial, like one parallel to the

x or y axes (depending on the base template). Even by removing a single zero-member,

instructors can employ reduction of truss members with the growth strategy discussed in

the previous section to easily create many templates for problem types.

We use the following two rules to identify zero-force members from base-level prob-

lems:

1. If the current node connects with only two members and the angle between them is

not 180 degrees, then both members are zero-force members. Remove both member,

and remove the current node.

2. If the current node connects with only three members and two of them are collinear,

then the third one is a zero-force member. Remove this third member from member

list, and keep the node.

The important steps in our algorithm are listed below.

1. Select each node which is not connected with support and no force applied.

2. If node is a joint of two members and it satisfies Rule 1, then add the node to

deleteNodes and both members to deleteShapes.
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3. If node is a joint of three members and it satisfies Rule 2, then add the non-collinear

member to deleteShapes.

4. Create a new SpringSystem by using reducedSketchByZeroElements method.

5. Create new DirectStiffnessQuestion by using the newly created SpringSystem.

6. Set new difficulty level (new difficulty = old difficulty - number of deleted Nodes -

number of deleted Shapes).

7. Set answer.

We create a new method, named as reducedSketchByZeroElements, which helps

to rebuild a SpringSystem for this new problem. This method removes all zero elements

and nodes from the base template’s SpringSystem. It also updates the current graph and

nodes.

In the next chapter, we will show a few results about our system-generated problems

from a base template.
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6. EVALUATION

In this chapter, we discuss both the direct results of testing and running our updated

version of Mechanix as well as feedback from a small user study. We have conducted

a survey with faculty, teaching assistants, and postdoctoral researchers from multiple de-

partments and different universities. Much of our evaluation is based on these results,

including success and failure rates.

6.1 Evaluating Problem Generation

First, the instructor needs to create a base problem by using the spring network recog-

nizer. Mechanix provides four options to create new problems and different base template.

In the following subsections, we show how our users created different structural problems

using our new features.

6.1.1 Steps to Create Base Template

1. Draw a Spring-Based Structure in Mechanix: A user can draw a truss structure

in the creative working panel of Mechanix to make a spring-based problem. The

structure must have a clamp support, at least one truss member (line or helix), and a

load (closed shape or circle). To draw a load, the user needs to add a closed shape to

the graph of the structure so that total area of the bounding box of the closed shape

is less than 7000.0 (empirically selected). All shapes need to create an undirected

connected graph to design a structure. Below, we add few examples where our

system recognized all these shapes as a spring-based truss structure. We have three

different spring-based structures in Figures 6.1, 6.2a, and 6.2b. We show a few more

structure during generating new templates.
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Figure 6.1: User 1 created a base structure without stiffness.
Mechanix successfully recognized the structure

(a) User 1 drew a problem with
three springs and assigned stiff-
ness for all members

(b) User 2 drew a problem with
four springs and assigned stiffness
for one member

Figure 6.2: User 1 and User 2 drew two different structures and
Mechanix successfully recognized them.
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2. Add Boundary Conditions for Drawn Structure in Mechanix: An instructor can

add boundary conditions in Mechanix through the force displacement panel. The

coordinate is a mandatory field; without providing coordinate values for each node,

Mechanix cannot create a base template. On the other hand, stiffness is optional

because Mechanix can allocate stiffness as per Chapter 4.4.2.1. In Figures 6.3 and

6.4, we show how User 1 and User 2 added their boundary conditions through the

force displacement panel.

3. Add Stiffness for Members: Users can assign a stiffness value of a member by just

labeling the shape of the member. They can also assign stiffness to all members of

the structure or few of them.

Figure 6.3: User 1 added stiffness for all members and provided
boundary conditions for problem 6.2a
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Figure 6.4: User 2 added stiffness for member BD and provided
boundary conditions for problem 6.2b

(a) Maximum Stiffness
(b) Minimum Stiffness

(c) Calculated stiffness

Figure 6.5: In 6.5a, the maximum stiffness is 2.0E9 for BC; in
6.5b, it is 1.0E7 for BC; in 6.5c, the values are AB≈ 2.499, BC
≈ 2.499, CD ≈ 2.499 to create a minimum weighted structure.
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4. Check Base Template for Creating an Initial Question: We do not run our com-

putational model until the user asks to generate a problem. Therefore, to check the

initial information (coordinate, force, displacement, and stiffness) if users can cre-

ate a base template, the user needs to select the “Create Stiffness" operation from

Question Generation layout. Mechanix immediately creates an initial question from

the base structure and boundary information if valid. Otherwise, it informs the user

what prevented creation of a base template.

Figure 6.6: User 1 created a base template by asking stiffness
related question from given problem in Figure 6.3. Mechanix
provided the correct answer.

Figure 6.6 shows the generated problem from Figure 6.3. Figure 6.7 is the problem

generated from User 2’s sketch in Figure 6.4. For this problem, Mechanix created

the following base question and successfully generated a base template.

Computer Generated Question: Find out the global stiffness matrix of the given structure.

Where the stiffness of AB is 1.0665260467938322, CB is 1.0665260467938322,

BD is 1000.0, DE is 1.5082955999999998. The given displacement conditions are

Ux = 0.0, Uy = 0.0 at node A, Ux = 0.0, Uy = 0.0 at node C, Ux = 0.0, Uy = 0.0

at node B, Ux = 0.0 at node D, Ux = 0.0 at node E; and the given load conditions are

Fx = 0.0,
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Fy = 1000.0 at node E. The coordinates of the nodes are A(2.0,5.0),

C(4.0,5.0), B(3.0,4.0), D(3.0,3.0), E(3.0,2.0).

It assigned stiffness for AB, CB and DE. Mechanix also provided the correct answer

for this problem.

Figure 6.7: User 2 created a base template by asking stiffness
related question from given problem in Figure 6.4

6.2 Steps and Examples to Generate New Problems from Base Template

In this section, we show how users generated problems successfully from previous

base problems. A user can create problems from a base template by changing boundary

conditions, stiffness, or creating a different base template.

1. Create Problem by Changing Displacements: User 2 generated a second problem

from Figure 6.7 by using this method.

Computer Generated Problem: Find out the global displacment at node D.

Where the stiffness of AB is 1.0665260467938322, CB is 1.0665260467938322,

BD is 1000.0, DE is 1.5082955999999998. The given displacement conditions are

Ux = 0.0, Uy = 0.0 at node A, Ux = 0.0, Uy = 0.0 at node C, Ux = 0.0, Uy = 0.0

at node B, Ux = 0.0 at node D, Ux = 0.0, Uy = 4.058375213788885E-4 at node E;
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and the given load conditions are Fx = 0.0, Fy = 1000.0 at node E. The coordinates

of the nodes are A(2.0,5.0), C(4.0,5.0), B(3.0,4.0), D(3.0,3.0), E(3.0,2.0).

In the previous problem, Ux was 0 and Uy was undefined. Through this method, the

new problem has changed the boundary condition at node E. The new displacement

condition at node E is Ux = 0 and Uy = 4.058375213788885E − 4.

Figure 6.8: User 2 created a new problem by changing dis-
placements from the given problem Figure 6.4

2. Remove Members and Nodes from Base Template: In Figure 6.9, an instructor

drew an arbitrary structure with springs (both helix and line representations) and

added boundary conditions through the force displacement panel. Our system suc-

cessfully created the base problem and the following initial problem:
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Figure 6.9: User 7 created an arbitrary base structure without
stiffness.

Computer Generated Problem: Find out the global stiffness matrix of the given structure.

Where the stiffness of BC is 2.8322613405564954, DF is 4.0054224,

DE is 2.8322613405564954, DG is 2.8322613405564954, FH is 3.582558706000141,

FE is 4.0054224, BA is 4.0054224, BD is 4.0054224, GH is 3.582558706000141,

DC is 4.0054224, FG is 4.0054224. The given displacement conditions are

Ux = 0.0, Uy = 0.0 at node B, Ux = 0.0, Uy = 0.0 at node A, Ux = 0.0 at node G,

Ux = 3.0 at node H; and the given load conditions are Fx = 0.0,

Fy = 200.0 at node H. The coordinates of the nodes are B(3.0,4.0), D(3.0,3.0),

F(3.0,2.0), E(2.0,2.0), A(2.0,4.0), G(4.0,2.0), H(3.5,1.0), C(2.0,3.0).

In the next example, depicted in Figure 6.10, Mechanix successfully removed a

few zero force members and their corresponding nodes and it created a new base

problem template for the instructor with the following question:

Computer Generated Problem: Calculate the force and displacement at each of the internal

nodes Where the stiffness of BC is 2.2162224000000017, BE is 1.5671058876575263, CF

is 1.9822495758630934, AD is 2.2162224000000017, AB is 2.2162224000000017, EF is

1.9822495758630934, CE is 2.2162224000000017. The given displacement conditions are

Ux = 0.0, Uy = 0.0 at node A, Ux = 0.0, Uy = 0.0 at node D, Ux = 0.0 at node E, Ux =

3.0 at node F; and the given load conditions are Fx = 0.0, Fy = 200.0 at node F. The

coordinates of the nodes are A(3.0,4.0), B(3.0,3.0), C(3.0,2.0), D(2.0,4.0),

E(4.0,2.0), F(3.5,1.0).
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Figure 6.10: User 7 successfully created a new base template
and problem by using our reduce method.

For both problems 6.9 and 6.10 system successfully created their correct answers.

3. Add a New Member to a Base Template: User 2 had created several questions

from the last question (refer to Figure 6.4), and subsequently, User 2 added a mem-

ber to the base template (refer to Figure 6.11). Mechanix successfully added new

member EC and assigned a proper stiffness of 738.8560544987274 units as well as

finding the solution.
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Figure 6.11: User 2 successfully created a new base template
and problem by using our add method.

Figure 6.12: User 7 successfully created a new base template
and problem by using reloading problem 6.10. Since the user
asked to change the stiffness, it created a new problem 6.12

In Figure 6.12, User 7 reloaded the previous template and changed the stiffness,

which created a new problem.

Computer Generated Problem: Find out the global stiffness matrix of the given structure.

Where the stiffness of AD is 0.9118955999999993, AB is 0.9118955999999993, BC is

0.9118955999999993, CF is 0.8156242199931821, BE is 0.6448075624941749, FE is

0.8156242199931821, CE is 0.9118955999999993. The given displacement conditions are

Ux = 0.0, Uy = 0.0 at node A, Ux = 0.0, Uy = 0.0 at node D, Ux = 3.0 at node F, Ux =

0.0 at node E; and the given load conditions are Fx = 0.0, Fy = 200.0 at node F. The

coordinates of the nodes are A(3.0,4.0), D(2.0,4.0), B(3.0,3.0), C(3.0,2.0),

F(3.5,1.0), E(4.0,2.0).

Next, the user modified Figure 6.12 by using the “Add a member” method, which

successfully created another new problem shown in Figure 6.13.

Computer Generated Problem: Calculate the force and displacement at each of the internal

nodes Where the stiffness of AD is 0.9118955999999993, AB is 0.9118955999999993, BC

is 0.9118955999999993, CF is 0.8156242199931821, BE is 0.6448075624941749,
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FE is 0.8156242199931821, CE is 0.9118955999999993, BD is 0.6843093817196116.

The given displacement conditions are Ux = 0.0, Uy = 0.0 at node A,

Ux = 0.0, Uy = 0.0 at node D, Ux = 3.0 at node F, Ux = 0.0 at node E; and

the given load conditions are Fx = 0.0, Fy = 200.0 at node F. The coordinates

of the nodes are A(3.0,4.0), D(2.0,4.0), B(3.0,3.0), C(3.0,2.0),

F(3.5,1.0), E(4.0,2.0).

Figure 6.13: User 7 successfully created a new base template
and problem using our reduce method.

Mechanix can create an infinite set of different problems from each of the problems

shown in Figures 6.9, 6.10, and 6.13 by using change displacement and stiffness

methods.

6.3 User study

We conducted a user study consisting of eleven participants made up of faculty and

teaching assistants of courses that might make use of this software. The participants are

from five different departments (Aerospace Engineering, Mechanical Engineering, Civil

Engineering, Physics, and Mathematics). We chose these five departments since structural

analysis and FEM are in their course curricula. We provided the participants with an

introduction of Mechanix and its new feature for spring-based problem generation. Since

all participants have a teaching background with mechanics or FEM, we did not have to

provide any sample problems to the participants.
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During this survey process, we asked the users to create a base level problem and gen-

erate new structural problems through Mechanix. Some users found spring-based ques-

tions to use online, and other users created questions from their own experience. Once

Mechanix successfully generated questions, we asked them to solve those problems and

check the correctness of the auto-generated answers. In most cases, the users checked only

one or two answers for each set of auto-generated questions created from the base question.

This is because answering each new question can be a time-consuming process (sometimes

taking up to an hour depending on the problem complexity). After finishing these three

steps (creating the base level problem template, generating questions, and checking solu-

tions) we asked them to fill out a survey form. We divided our survey into two categories,

quantitative and qualitative focused around evaluating the validity and value of the system.

Participants spent an average of four hours each evaluating the software.

6.3.1 Quantitative Analysis

In our quantitative analysis, we asked the following questions:

1. Please rate the ease of creating a question.

2. Please rate the ease of solving the question.

3. How likely would you be to use this solution for giving students practice?

4. Would students benefit?

5. Did the auto-generated problem and solution appear correct?

For each question, users would rate their response on a Likert scale of one to five.

Participants gave a very good rating to the validity of the auto-generated questions and

their solutions, with a mean of 1.09 +/- 0.301 where 1 meant perfect solution. Note that

because we did not ask the participants to solve every problem, the question focused on
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the apparent correctness of the problem. Given rounding accuracy of the early system, the

appearance confused a couple users, but in every case where the participants solved the

problem, they verified correct answers.

Figure 6.14: Mean participant ratings of individual aspects of
question generation through Mechanix. Each of these questions
required participants to respond using a 5-point Likert scale,
with 1 being most positive and 5 being most negative.

Despite the small sample size imposed by the difficulty of obtaining faculty partici-

pants, the system received high scores in terms of ease and usability. The outcome of the

ease of creating a question was matched with our expected result since we used Mechanix’s

original user interface which is not as user-friendly as development versions. We are ex-

pecting the system to receive better evaluations when the development version integrates

the problem generation features. Overall, every participant agreed they would use this new

feature for generating truss-based questions and students would definitely benefit from this

application, supporting the value of such a tool. Figure 6.14 shows the average ratings from

the participants.
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Figure 6.15: Proportion test (P-value): if proportion of 1 > 0.5
or not H: P (1) = 0.5 vs Halt : P (1) > 0.5

We also performed a proportional-test, p-test, in order to determine the level of agree-

ment among participants. The results show no statistically significant differences in the

users’ opinions, as none of the values were above the 0.5 threshold, although the question

of student benefit did have more variance than the other ratings. Figure 6.15 shows the

p-test scores. A key point is that everyone highly agreed that they would use the tool and

that it was correct.

6.3.2 Qualitative Discussion

Additionally, we asked several qualitative, free-form questions. These included whether

or not the participant had used educational teaching tools in the classroom previously, what

their experience with the problem generator was like, and would they use this tool in their

classroom?

From their answers to whether or not they had used educational software in the class-
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room before, we divided users into two populations: those who had and those who had

not. We performed a standard unpaired, two-tail t-test between these populations. These

results, shown in Figure 6.16, demonstrate that there was no statistically significant differ-

ence between the two populations. This supports the argument that the software is both

easy to use and likely to be adopted as it was equally approachable for users of different

backgrounds.

Figure 6.16: T-test: participants ratings between who have used
technology in classroom Vs Who have not used technology in
classroom during question generation through Mechanix. Each
of these questions required participants to respond using a 5-
point Likert scale, where 1 was the most positive answer and 5
was the most negative answer.

From discussion with our participants, they mostly stated that the experience was easier

than other tools they had used. Several expressed surprise at how well the system generated

new problems, which was not something they had seen in any software tool for their field

before. We did receive excellent feedback from multiple users requesting support for new
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problem types and extended domains.
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7. FUTURE WORK

7.1 Create Realistic Practical Problems from Truss Structures

We are developing this system to create a realistic figure by using user given structural

template. For example, if user given template has following structure as in Figure 7.1, then

system can create a lizard from it. All clamped supports represent the legs and the section

where the node is connected to the load represents the head of the lizard. Now if system

has itś medial axis then by increasing the medial axis towards opposite direction of head

and adding another node there, we can create a tail of the lizard. If we consider the load as

an insect which has weight, we can create a base level realistic problem where student can

solve the problem by using direct stiffness method. By bending the longest medial axis we

can change the lizardś body within the same structural configuration by moving all nodes

which are connected to clamp supports. We can then model another different shape of a

lizard and create a different problem set.

]

Figure 7.1: User given structure with 6 nodes and one load.
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7.2 Add a New Nodes and Extend the Structure

There are several ways we can fit a new node in current truss topology. As we men-

tioned in previous example we use medial axis to create a realistic problem, therefore we

introduce the following ways to extend the given structure by adding new nodes-

1. Create a set with the points of medial axis of the given structure.

2. Find out the set of points, say L which belong to the straight line or curve which has

maximum length (longest path) or maximum diagonal length of the bounding box

of the curve, say lmax.

3. Create a set L1 of approximated points of the straight line or curve using least square

method. Add points until it has a minimum length δm between one of the end point

of medial points of L and the last added approximated point (δm is equal to minimum

length of the truss members).

4. Join this point with nearest two nodes by springs or beams.

5. Assign a stiffness for these two new members so that the new system has a non-

singular stiffness matrix.

7.3 Improve the Spring Network Recognizer

During survey, we understood that there are several scopes to improve our recognizer.

1. Adding circle or a closed shape can be optional to create a spring & beam based

structure.

2. There is a need to provide a recognizer which can identify one dimensional problem.

Current system is able to identify one dimensional problem. During the survey, we

saw that the instructor needs to put extra effort to provide boundary conditions (force
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and displacement) for one dimensional problem through our force-displacement

panel. He/she needs to provide additional information on x or y directional dis-

placement and force respectively.

7.4 Support Template Selection from Auto-Generated Questions

We already mentioned that the system can create infinite number of questions from

a base template by changing boundary conditions (stiffness, forces and displacements).

Once instructor uses “add a member” method or “Reduce the structure” method system

changes the topology of the current structure. Therefore these two methods create a new

template. Two instructors can create two same topological structures during question gen-

eration. Storing these two structures as considered as base templates is wasting of space

and time. Therefore we need to introduce a learning method in Mechanix that can identify

the best fit of the newly created topology from already stored structural topology. If it finds

a best fit of the newly formed truss topology it then ignores this new template to consider

it as an another new template. Otherwise it needs to save the new one. Similarly if it

finds a best fit topology in database/file server for user drawn structure, it then immedi-

ately update the boundary conditions. If it generates a boundary conditions automatically

for an instructor’s drawn structure it then reduces instructor’s workload to create an initial

problem.
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8. CONCLUSION

In this research, we were able to develop a system with the potential to aid instructors

and teaching assistants to reduce their workload when managing large STEM courses.

We have implemented new features in the Mechanix educational software that enable it to

recognize spring-based truss systems and automatically generate new questions that can be

individualized for each student to further learning outcomes and support concept mastery

through practice.

We present two main contributions. First, we develop a recognition system that recog-

nizes a spring- and beam- based truss structure and create a base level problem template

by analyzing user-given boundary conditions. We develop a new algorithm that helps to

balance the stiffness of the members of truss structure (known or unknown) so that the

base template has a unique solution for force-displacement balancing equations through

stiffness.

Secondly, to generate structural problems automatically from the newly created base

template, we develop different algorithms to change boundary conditions, stiffness, add

new members in current structures, and remove members and nodes from current truss

topology in Mechanix. Through changing boundary conditions and stiffness, instructors

can create an infinite number of the same type of problem with the same difficulty level. By

adding members or removing members and nodes, instructors can recreate different base

problem templates. Every generated problem has a unique solution that can be compared

with student’s answers in the future.

We also plan to improve our system by modeling realistic problems for students from

a base template, as described in Section 7.1. This approach will improve students’ knowl-

edge and understanding to apply learning concepts and outcomes to real-world problems.
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Additionally, we will work to compare the newly created truss topology with a best-fit

of existing truss topologies through Mechanix to select a base template for storing proce-

dures. This will help reduce storing redundant base templates in the database of the file

server.

In closing, we believe that educational software is an important part of classrooms

of the future. In the midst of ongoing cost concerns, paired with the increasing value of

education, we see a continual shift towards larger classes with fewer instructors. By in-

corporating educational software into the classroom capable of recognizing natural user

interactions, such as hand-drawn spring-based truss systems, students will be able to gain

benefits from teaching tools despite limited availability of teachers. Furthermore, soft-

ware that can automatically generate new problems for limitless practice and individual

assessment will become indispensable as tools for instructors because they will not only

reduce the workload of managing large classes, but they will also support enhanced student

achievements.
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APPENDIX A

IMPORTANT METHODS OF RECOGNITION SYSTEM

A.1 Spring Recognition Algorithms

A.1.1 SpringSystem’s addAsSpringComponent Method

Algorithm 4 Check if Piece can be a SNode, if yes, then return SNode and update
current spring system, else return null
Require: A shape Piece

1: if Piece = Line OR Piece = Helix then
2: SNodePiece ← ∅
3: pfirst← CP (Piecef , P iece) AND plast← CP (Piecel, P iece)
4: for all Edgj in Spring System do
5: if Edgj = Line OR Edgj = Helix then
6: if Piece = Edgj then
7: continue
8: CPointEdgj1 ← CP (Edgjf , Edgj)
9: nearness1 ← CC(CPointEdgj1 , pfirst) AND nearness2 ←

CC(CPointEdgj1, plast)
10: if nearness1 > nearness2 AND nearness1 >

CONSTRAINT_CONFIDENCE then
11: Create SNodePiece and add it to the graph of current spring system
12: SNodePiece.firstPointConnected = true
13: Add Edgj to the edge of SNodePiece

14: Add SNodePiece to the edge of Edgj
15: Edgj,firstPointConnected = true
16: MakeNode(Edgj, P iece, point of CPointEdgj1)
17: Continue for next Edgj+1

18: if nearness2 > nearness1 AND nearness2 >
CONSTRAINT_CONFIDENCE then

19: Create SNodePiece and add it to the graph of current spring system
20: SNodePiece.lastPointConnected = true
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21: Add Edgj to the edge of SNodePiece

22: Add SNodePiece to the edge of Edgj
23: Edgj,firstPointConnected = true
24: MakeNode(Edgj, P iece, point of CPointEdgj1)
25: Continue for next Edgj+1

26: CPointEdgj2 ← CP (Edgjl, Edgj)
27: nearness1 ← CC(CPointEdgj2 , pfirst) AND nearness2 ←

CC(CPointEdgj2, plast)
28: if nearness1 > nearness2 AND nearness1 >

CONSTRAINT_CONFIDENCE then
29: Repeat steps 11 to 14
30: Edgj,lastPointConnected = true
31: MakeNode(Edgj, P iece, point of CPointEdgj2)
32: Continue for next Edgj+1

33: if nearness2 > nearness1 AND nearness2 >
CONSTRAINT_CONFIDENCE then

34: Repeat steps 19 to 22
35: Edgj,lastPointConnected = true
36: MakeNode(Edgj, P iece, point of CPointEdgj2)
37: Continue for next Edgj+1

38: intersectionConfidence← IC(CSPiece, CSEdgej)
39: if intersectionConfidence > CONSTRAINT_CONFIDENCE

then
40: Create SNodePiece and add it to the graph of current spring system
41: Add Edgj to the edge of SNodePiece
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42: CC ← CC(0.30), nearness1← CC(pfirst, CPointEdgj1)
43: CC ← CC(0.30), nearness2← CC(pfirst, CPointEdgj2)
44: if nearness1 > nearness2 AND nearness1 >

CONSTRAINT_CONFIDENCE then
45: SNodePiece,firstPointConnected = true
46: Edgj,firstPointConnected = true
47: MakeNode(Edgj, P iece, point of CPointEdgj1)
48: Continue for next Edgj+1

49: if nearness2 > nearness1 AND nearness2 >
CONSTRAINT_CONFIDENCE then

50: SNodePiece,firstPointConnected = true
51: Edgj,lastPointConnected = true
52: MakeNode(Edgj, P iece, point of CPointEdgj2)
53: Continue for next Edgj+1

54: IC(); nearness1← IC(pfirst, CSEdgej)
55: IC(); nearness2← IC(plast, CSEdgej)
56: if nearness1 > nearness2 AND nearness1 >

CONSTRAINT_CONFIDENCE then
57: SNodePiece,firstPointConnected = true
58: MakeNode(Edgj, P iece, point of pfirst)
59: Continue for next Edgj+1

60: if nearness2 > nearness2 AND nearness2 >
CONSTRAINT_CONFIDENCE then

61: SNodePiece,firstPointConnected = true
62: MakeNode(Edgj, P iece, point of plast)
63: Continue for next Edgj+1
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64: Point pieceEdgeIntersection =
LI(pfirst, plast, CPointEdgj1 , CPointEdgj2)

65: if pieceEdgeIntersection ̸= ∅ then
MakeNode(Edgj, P iece, pieceEdgeIntersection)

66: Continue for next Edgj+1

67: if Edgj = Clamped Support then
68: Shapebase ← ∅
69: Shapebase = longest shape of Edgj
70: CLShapebase = CL(Shapebase)
71: IC(), nearness1 = IC(pfirst, CLShapebase)
72: IC(), nearness2 = IC(plast, CLShapebase)
73: if nearness1 > nearness2 AND nearness1 >

CONSTRAINT_CONFIDENCE then
74: Create SNodePiece and add it to the graph of current spring system
75: SNodePiece.firstPointConnected = true
76: Add Edgj to the edge of SNodePiece

77: Add SNodePiece to the edge of Edgj
78: Update clampedNodePoints by adding point of pfirst
79: Update pointsOnClampedSupport by adding point of plast
80: Continue for next Edgj+1

81: if nearness2 > nearness1 AND nearness2 >
CONSTRAINT_CONFIDENCE then

82: Repeat 74 to 77
83: Update clampedNodePoints by adding point of plast
84: Update pointsOnClampedSupport by adding point of pfirst
85: Continue for next Edgj+1

86: if Piece = Circle OR Piece = ClosedShape then
87: if Piece = ClosedShape then
88: BoundingBox box← Piece.getBoundingBox()
89: currentArea← box.width ∗ box.height
90: if currentArea ≤ AREA_THRESHOLD then
91: CSPiece ← CS(Piece)
92: for all Edgj in Spring System do
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93: if Piece = Edgj then
94: continue
95: CPointEdgj1 ← CP (first point of Edgj, Edgj)
96: IC(); nearness1 = IC(CPointEdgj1 , CSPiece)
97: CPointEdgj2CP (last point of Edgj, Edgj)
98: IC(); nearness2 = IC(CPointEdgj2 , CSPiece)
99: if nearness1 > nearness2 AND nearness1 >

CONSTRAINT_CONFIDENCE then
100: Create SNodePiece and add it to the graph of current spring system
101: SNodePiece.firstPointConnected = true
102: SNodePiece.lastPointConnected = true
103: Add SNodePiece to the edge of Edgj
104: Edgj,firstPointConnected = true
105: Add last point of Edgj to loadedPoints
106: Continue for next Edgj+1

107: if nearness2 > nearness1 AND nearness2 >
CONSTRAINT_CONFIDENCE then

108: Create SNodePiece and add it to the graph of current spring system
109: SNodePiece.firstPointConnected = true
110: SNodePiece.lastPointConnected = true
111: Add SNodePiece to the edge of Edgj
112: Edgj,lastPointConnected = true
113: Add first point of Edgj to loadedPoints
114: Continue for next Edgj+1
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115: if Piece = Circle then
116: CSPiece ← CS(Piece)
117: for all Edgj in Spring System do
118: if Piece = Edgj then
119: continue
120: CPointEdgj1 ← CP (first point of Edgj, Edgj)
121: IC(); nearness1 = IC(CPointEdgj1 , CSPiece)
122: CPointEdgj2CP (last point of Edgj, Edgj)
123: IC(); nearness2 = IC(CPointEdgj2 , CSPiece)
124: if nearness1 > nearness2 AND nearness1 >

CONSTRAINT_CONFIDENCE then
125: Create SNodePiece and add it to the graph of current spring system
126: SNodePiece.firstPointConnected = true
127: SNodePiece.lastPointConnected = true
128: Add SNodePiece to the edge of Edgj
129: Edgj,firstPointConnected = true
130: Add last point of Edgj to loadedPoints
131: Continue for next Edgj+1

132: if nearness2 > nearness1 AND nearness2 >
CONSTRAINT_CONFIDENCE then

133: Create SNodePiece and add it to the graph of current spring system
134: SNodePiece.firstPointConnected = true
135: SNodePiece.lastPointConnected = true
136: Add SNodePiece to the edge of Edgj
137: Edgj,lastPointConnected = true
138: Add first point of Edgj to loadedPoints
139: Continue for next Edgj+1

140: Return SNodePiece
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A.1.2 recognizeSpringNetwork

Algorithm 5 recognizeSpringNetwork method
Require: Sketch sketch

1: pieces← sketch.getShapes()
2: for all i← 0, pieces.size()− 1 do
3: if SpringSystem.Label.equals((pieces.get(i).getInterpretation().label))

then
4: ss← pieces.get(i)
5: for all each s in ss.getShapes() do
6: pieces.add(s)

7: pieces.remove(i)

8: if NODELABEL.equals(pieces.get(i).getInterpretation().label) then
9: pieces.remove(i)

10: start← −1
11: for all i← 0, pieces.size()− 1 do
12: if pieces.get(i).getInterpretation().label.equals(newClampedSupport()

.getLabel()) then
13: start← i
14: if start = −1 then
15: return
16: support← pieces.get(start)
17: pieces.remove(start)
18: springSystem← newSpringSystem(support)
19: while pieces.isEmpty() = false do
20: done← true
21: for all i← 0, pieces.size()− 1 do
22: snode← springSystem.checkAddComponent1(pieces.get(i))
23: if snode ̸= ∅ then
24: pieces.remove(i)
25: done← false
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26: if done then
27: break
28: if springSystem.isConnected() && springSystem.hasError = false then
29: if springSystem.nodes.size() ≥ 2 then
30: AssingNodeLableIfNot(springSystem, sketch)
31: newSpringSystem← springSystem
32: directStiffnessQuestion← newDirectStiffnessQuestion(

springSystem)
33: else
34: if springSystem.hasError = false then
35: CivilSketchGUI.mworkspacePanel.getFeedbackPanel()

.displayResponse(”A spring based truss must have two nodes.
P lease create at least one member with two nodes before adding load. Y ou can
continue adding sketch on current structure.”)

36: else if springSystem.hasError then
37: CivilSketchGUI.mworkspacePanel.getFeedbackPanel()

.displayResponse(”Please remove the current close shape and draw a smaller
rectangle/closedshape/circle for load.”)

38: ss← newShape()
39: ss.addInterpretation(newInterpretation(SpringSystem.Label, 1.0));
40: snodes← springSystem.graph
41: for all snode : snodes do
42: ss.add(snode.vertex)
43: explode(snode.vertex, sketch)

44: sketch.add(ss)
45: for all i← 0, springSystem.nodes.size()− 1 do
46: springNode← springSystem.nodes.get(i)
47: dot← newShape()
48: s← newStroke()
49: s.addPoint(springNode.p)
50: dot.add(s)
51: dot.setLabel(NODELABEL)
52: dot.setAttribute(”radius”, ”” + edu.tamu.civilSketch.recognition

.stupid.Node.maxRadius)
53: ShapeLabelManager.setShapeLabelText(dot, ””)
54: p← newjava.awt.Point()
55: p.x← (int)springNode.p.getBoundingBox().getCenterX()
56: p.y ← (int)springNode.p.getBoundingBox().getCenterY ()
57: ShapeLabelManager.setShapeLabelLocation(dot, p)
58: sketch.add(dot)
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Algorithm 6 isConnected method
1: isComplete← true
2: supportConn← newboolean[graph.size()]
3: Arrays.fill(supportConn, false)
4: que is an array list of integers
5: explored is a HashSet of integers
6: que.add(0)
7: while que.isEmpty() = false do
8: index← que.poll()
9: snode← graph.get(index)

10: for all i← 0, snode.edges.size()− 1 do
11: ind← snode.edges.get(i).index
12: if graph.get(ind).firstPointConnected && graph.get(ind)

.lastPointConnected then
13: supportConn[ind]← true

14: if explored.contains(ind) = false then
15: que.add(ind)
16: explored.add(ind)

17: st is Stack of integers
18: loadConn← newboolean[graph.size()]
19: Arrays.fill(loadConn, false)
20: for all i← 0, supportConn.length− 1 do
21: if supportConn[i] = false then
22: isComplete← false
23: break
24: if loadConn[i] = false then
25: st.clear()
26: explored.clear()
27: snode← graph.get(i)
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28: st.add(snode.index)
29: explored.add(snode.index)
30: while st.isEmpty() = false do
31: index← st.peek()
32: if graph.get(index).vertex.getInterpretation().label.equals(”circle”)
|| graph.get(index).vertex.getInterpretation().label.equalsIgnoreCase(
ClosedShape.CLOSEDSHAPELABEL) then

33: loadConn[graph.get(index).index]← true
34: while st.isEmpty() = false do
35: loadConn[st.pop()]← true

36: break
37: done← true
38: for all j ← 0, graph.get(index).edges.size()− 1 do
39: sn1← graph.get(index).edges.get(j)
40: if loadConn[sn1.index] = true then
41: while st.isEmpty() = false do
42: loadConn[st.pop()]← true

43: break
44: else
45: if explored.contains(sn1.index) = false then
46: done← false
47: st.add(sn1.index)
48: explored.add(sn1.index)
49: break
50: if done && st.isEmpty() = false then
51: st.pop()

52: if loadConn[i] = false then
53: isComplete← false
54: break
55: return isComplete
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APPENDIX B

IMPORTANT METHODS OF QUESTION GENERATION

B.1 Material Resources

We used same material resources according to Eurocode 3 and [1]
// Fabricational dimensions (in SI units):

//Element thickness:

thickness[] = {2.5, 3.0, 3.2, 4.0, 4.9, 5.0, 2.5, 3.0, 3.2, 4.0, 4.9, 5.0, 6.0, 6.3, 3.0, 3.2, 4.0, 4.9, 5.0, 6.0, 6.3, 8.0, 3.0, 3.2, 3.6, 4.0, 4.9,

5.0, 6.0, 6.3, 7.1, 8.0, 3.2, 3.6, 4.0, 4.9, 5.0, 6.0, 6.3, 7.1, 8.0, 3.2, 3.6, 4.0, 4.9, 5.0, 5.6, 6.0, 6.3, 7.1, 8.0, 3.6, 4.0, 4.9, 5.0, 5.6, 6.0, 6.3,

7.1, 8.0, 3.6, 4.0, 4.9, 5.0, 5.6, 6.0, 6.3, 7.1, 8.0, 10.0, 4.0, 4.9, 5.0, 5.6, 6.0, 6.3, 7.1, 8.0, 8.8, 10.0, 12.0, 12.5, 4.9, 5.0, 5.6, 6.0, 6.3,

7.1, 8.0, 8.8, 10.0, 12.0, 12.5, 4.9, 5.0, 5.6, 6.0, 6.3, 7.1, 8.0, 8.8, 10.0, 12.0, 12.5, 16.0, 5.0, 5.6, 6.0, 6.3, 7.1, 8.0, 8.8, 10.0, 12.0, 12.5,

14.2, 16.0, 5.0, 5.6, 6.0, 6.3, 7.1, 8.0, 8.8, 10.0, 12.0, 12.5, 14.2, 16.0, 5.0, 5.6, 6.0, 6.3, 7.1, 8.0, 8.8, 10.0, 12.0, 12.5, 14.2, 16.0, 5.0,

5.6, 6.0, 6.3, 7.1, 8.0, 8.8, 10.0, 12.0, 12.5, 14.2, 16.0, 6.0, 6.3, 7.1, 8.0, 8.8, 10.0, 12.0, 12.5, 14.2, 16.0, 6.0, 6.3, 7.1, 8.0, 8.8, 10.0,

12.0, 12.5, 14.2, 16.0, 8.0, 8.8, 10.0, 12.0, 12.5, 14.2, 16.0, 8.0, 8.8, 10.0, 12.0, 12.5, 14.2, 16.0, 20.0, 19.0, 22.0, 25.0, 22.0, 25.0, 12.0,

16.0, 19.0, 22.0, 25.0, 28.0, 32.0, 12.0, 16.0, 19.0, 22.0, 25.0, 28.0, 32.0, 36.0, 16.0, 19.0, 22.0, 25.0, 28.0, 32.0, 36.0, 40.0, 25.0, 28.0,

32.0, 36.0, 40.0, 25.0, 28.0, 32.0, 36.0, 40.0};

Cross-sectional width:

crossSectionalWidth[] = {40, 40, 40, 40, 40, 40, 50, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, 70, 70, 70, 70, 70, 70, 70,

70, 70, 70, 76.2, 76.2, 76.2, 76.2, 76.2, 76.2, 76.2, 76.2, 76.2, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 90, 90, 90, 90, 90, 90, 90, 90, 90,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 140, 140, 140, 140, 140,

140, 140, 140, 140, 140, 140, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 150, 160, 160, 160, 160, 160, 160, 160, 160, 160,

160, 160, 160, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 180, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200,

250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 250, 260, 260, 260, 260, 260, 260, 260, 260, 260, 260, 300, 300, 300, 300, 300,

300, 300, 300, 300, 300, 350, 350, 350, 350, 350, 350, 350, 400, 400, 400, 400, 400, 400, 400, 400, 350, 350, 350, 400, 400, 450, 450,

450, 450, 450, 450, 450, 500, 500, 500, 500, 500, 500, 500, 500, 550, 550, 550, 550, 550, 550, 550, 550, 600, 600, 600, 600, 600, 700,

700, 700, 700, 700};

Moment of inertia:

momentOfInertia[] = {8.54, 9.78, 10.20, 11.80, 13.20, 13.40, 17.50, 20.20, 21.20, 25.00, 28.50, 28.90, 32.00, 32.80, 36.20, 38.20,

45.40, 52.50, 53.30, 59.90, 61.60, 69.70, 59.00, 62.30, 68.60, 74.70, 87.20, 88.50, 101.00, 104.00, 112.00, 120.00, 81.50, 89.90, 98.00,

115.00, 117.00, 133.00, 138.00, 149.00, 160.00, 95.00, 105.00, 114.00, 135.00, 137.00, 149.00, 156.00, 162.00, 176.00, 189.00, 152.00,

166.00, 196.00, 200.00, 218.00, 230.00, 238.00, 260.00, 281.00, 212.00, 232.00, 275.00, 279.00, 306.00, 323.00, 336.00, 367.00,

400.00, 462.00, 410.00, 489.00, 498.00, 547.00, 579.00, 603.00, 663.00, 726.00, 779.00, 852.00, 958.00, 982.00, 793.00, 807.00,

891.00, 944.00, 984.00, 1086.00, 1195.00, 1287.00, 1416.00, 1609.00, 1653.00, 984.00, 1002.00, 1106.00, 1174.00, 1223.00, 1352.00,

1491.00, 1608.00, 1773.00, 2023.00, 2080.00, 2430.00, 1225.00, 1353.00, 1437.00, 1499.00, 1659.00, 1831.00, 1978.00, 2186.00,

2502.00, 2576.00, 2809.00, 3028.00, 1765.00, 1954.00, 2077.00, 2168.00, 2404.00, 2661.00, 2880.00, 3193.00, 3677.00, 3790.00,
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4154.00, 4504.00, 2445.00, 2710.00, 2883.00, 3011.00, 3345.00, 3709.00, 4021.00, 4471.00, 5171.00, 5336.00, 5872.00, 6394.00,

4861.00, 5399.00, 5752.00, 6014.00, 6701.00, 7455.00, 8107.00, 9055.00, 10556.00, 10915.00, 12094.00, 13267.00, 6491.00, 6788.00,

7567.00, 8423.00, 9164.00, 10242.00, 11954.00, 12365.00, 13714.00, 15061.00, 10080.00, 10547.00, 11775.00, 13128.00, 14305.00,

16026.00, 18777.00, 19442.00, 21637.00, 23850.00, 21129.00, 23055.00, 25884.00, 30435.00, 31541.00, 35211.00, 38942.00, 31857.00,

34798.00, 39128.00, 46130.00, 47839.00, 53526.00, 59344.00, 71535.00, 43360.00, 48360.00, 52890.00, 74710.00, 82150.00, 65430.00,

84070.00, 97060.00, 109200.00, 120600.00, 131200.00, 144100.00, 90750.00, 117100.00, 135500.00, 153000.00, 169400.00, 184900.00,

204000.00, 221500.00, 157700.00, 183000.00, 207100.00, 230000.00, 251600.00, 278600.00, 303500.00, 326500.00, 303400.00,

332700.00, 369400.00, 403700.00, 435500.00, 494100.00, 543500.00, 606200.00, 665400.00, 721200.00};

Steel qualities, fv= The yield strength of steel, numbers represent the yield strength2, fy in N
mm2 . If the yield strength is exceeded

in any of the members, plastic deformation or even fractures will occur in the truss.

steelqualities[] = {235, 275, 355, 420, 460}

getThickness(){

return 1e-3*thickness[new Random().nextInt(thickness.length)]

}

getCrossSectionalWidth(){

return 1e-3*crossSectionalWidth[new Random().nextInt(crossSectionalWidth.length)]

}

getMomentOfInertia(){

return 1e-8*momentOfInertia[new Random().nextInt(momentOfInertia.length)]

}

getSteelqualities(){

return steelqualities[new Random().nextInt(steelqualities.length)]

}
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B.2 Question Generation

B.2.1 Change displacement

Algorithm 7 Create new DirectStiffnessQuestion by changing displacements condi-
tions
Require: Current DirectStiffnessQuestion q

1: newQuestion← q.Clone()
2: givenDisplacements, displacementsForQuestion are array lists of integers
3: SpringNodenode1← ∅
4: for all i← 0, n− 1 do
5: if q.displacement_given[i] ̸= true then
6: givenDisplacements.add(i)
7: else
8: displacementsForQuestion.add(i)

9: boolean xPrallel← CheckIfParallelToXAxix(q.coordinatesInfo)
10: boolean yPrallel← CheckIfParallelToY Axix(q.coordinatesInfo)
11: Randomr ← new Random();
12: Integer changeIndex← givenDisplacements

.get(r.nextInt(givenDisplacements.size()− 1))
13: node1← q.springSystem1.nodes.get(changeIndex)
14: intlabel← SpringNetworkMember.getLabelAsInt(node1.label)
15: int[] intArray ← 1, 2, 3
16: intselect← intArray[new Random().nextInt(intArray.length)]
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17: if xPrallel && q.coordinatesInfo[0][1] = 0.0 then
18: for all i← 0, newQuestion.displacementBoundaryCondInfo.size()− 1 do
19: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =

1 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label
then

20: newQuestion.displacementBoundaryCondInfo.remove(i)
21: break
22: else if xPrallel then
23: if elect = 1 then
24: for all i ← 0, newQuestion.displacementBoundaryCondInfo.size() − 1

do
25: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =

1 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label then
26: newQuestion.displacementBoundaryCondInfo.remove(i)
27: break
28: if select = 2 then
29: for all i ← 0, newQuestion.displacementBoundaryCondInfo.size() − 1

do
30: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =

2 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label then
31: newQuestion.displacementBoundaryCondInfo.remove(i)
32: break
33: if select = 3 then
34: for all i ← 0, newQuestion.displacementBoundaryCondInfo.size() − 1

do
35: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =

1 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label then
36: newQuestion.displacementBoundaryCondInfo.remove(i)

37: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =
2 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label then

38: newQuestion.displacementBoundaryCondInfo.remove(i)

39: if yPrallel && q.coordinatesInfo[0][0] = 0.0 then
40: for all i← 0, newQuestion.displacementBoundaryCondInfo.size()− 1 do
41: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =

2 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label
then

42: newQuestion.displacementBoundaryCondInfo.remove(i)
43: break
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44: else if yPrallel then
45: if select = 1 then
46: for all i ← 0, newQuestion.displacementBoundaryCondInfo.size() − 1

do
47: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =

1 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label) then
48: newQuestion.displacementBoundaryCondInfo.remove(i)
49: break
50: if elect = 2 then
51: for all i ← 0, newQuestion.displacementBoundaryCondInfo.size() − 1

do
52: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =

2 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label then
53: newQuestion.displacementBoundaryCondInfo.remove(i)
54: break
55: if elect = 3 then
56: for all i ← 0, newQuestion.displacementBoundaryCondInfo.size() − 1

do
57: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =

1 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label then
58: newQuestion.displacementBoundaryCondInfo.remove(i)

59: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] ==
2 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label then

60: newQuestion.displacementBoundaryCondInfo.remove(i)

61: else
62: if select = 1 then
63: for all i ← 0, newQuestion.displacementBoundaryCondInfo.size() − 1

do
64: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =

1 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label then
65: newQuestion.displacementBoundaryCondInfo.remove(i)
66: break
67: if elect = 2 then
68: for all i ← 0, newQuestion.displacementBoundaryCondInfo.size() − 1

do
69: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =

2 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label then
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70: newQuestion.displacementBoundaryCondInfo.remove(i)
71: break
72: if elect = 3 then
73: for all i ← 0, newQuestion.displacementBoundaryCondInfo.size() − 1

do
74: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =

1 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label then
75: newQuestion.displacementBoundaryCondInfo.remove(i)

76: if newQuestion.displacementBoundaryCondInfo.get(i)[0][1] =
2 && newQuestion.displacementBoundaryCondInfo.get(i)[0][0] = label then

77: newQuestion.displacementBoundaryCondInfo.remove(i)

78: int i← 0
79: if xPrallel then
80: if q.coordinatesInfo[0][1] = 0 then
81: newXDisplacement← generateRandomDouble(0,

q.xProblemSpan/250
82: adddisp1← {label, 1, newXDisplacement}
83: newQuestion.displacementBoundaryCondInfo.add(adddisp1)
84: position← 1
85: else
86: if select = 1 then
87: newXDisplacement← generateRandomDouble(0,

q.xProblemSpan/250)
88: adddisp1← {label, 1, newXDisplacement}
89: newQuestion.displacementBoundaryCondInfo.add(adddisp1)
90: position← 1
91: else if select = 2 then
92: newY Displacement← generateRandomDouble(0,

q.xProblemSpan/500)
93: adddisp1← {label, 2, newY Displacement}
94: newQuestion.displacementBoundaryCondInfo.add(adddisp1)
95: position← 2
96: else
97: newXDisplacement← generateRandomDouble(0,

q.xProblemSpan/250)
98: adddisp1← {label, 1, newXDisplacement}
99: newQuestion.displacementBoundaryCondInfo.add(adddisp1)
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100: newY Displacement← generateRandomDouble(0,
q.xProblemSpan/500)

101: adddisp2← {label, 2, newY Displacement}
102: newQuestion.displacementBoundaryCondInfo.add(adddisp2)
103: position← 3

104: else if yPrallel then
105: if q.coordinatesInfo[0][0] = 0 then
106: newY Displacement← generateRandomDouble(0,

q.yProblemSpan/250)
107: adddisp1← {(double)(label), 2, newY Displacement}
108: newQuestion.displacementBoundaryCondInfo.add(adddisp1)
109: position← 2
110: else
111: if select = 1 then
112: newXDisplacement← generateRandomDouble(0,

q.yProblemSpan/500)
113: adddisp1← {label, 1, newXDisplacement}
114: newQuestion.displacementBoundaryCondInfo.add(adddisp1)
115: position← 1
116: else if select = 2 then
117: newY Displacement = generateRandomDouble(0,

q.yProblemSpan/250)
118: adddisp1← {label, 2, newY Displacement}
119: newQuestion.displacementBoundaryCondInfo.add(adddisp1)
120: position← 2
121: else
122: newXDisplacement = generateRandomDouble(0,

q.yProblemSpan/500)
123: adddisp1← {label, 1, newXDisplacement}
124: newQuestion.displacementBoundaryCondInfo.add(adddisp1)
125: newY Displacement← generateRandomDouble(0,

q.yProblemSpan/250)
126: adddisp2← {label, 2, newY Displacement}
127: newQuestion.displacementBoundaryCondInfo.add(adddisp2)
128: position← 3
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129: else
130: if select = 1 then
131: newXDisplacement← generateRandomDouble(0,

q.yProblemSpan/250)
132: adddisp1← {label, 1, newXDisplacement}
133: newQuestion.displacementBoundaryCondInfo.add(adddisp1)
134: position← 1
135: else if select = 2 then
136: newY Displacement← generateRandomDouble(0,

q.xProblemSpan/250)
137: adddisp1← {label, 2, newY Displacement}
138: newQuestion.displacementBoundaryCondInfo.add(adddisp1)
139: position← 2
140: else
141: newXDisplacement← generateRandomDouble(0,

q.yProblemSpan/250)
142: adddisp1← {label, 1, newXDisplacement}
143: ewQuestion.displacementBoundaryCondInfo.add(adddisp1)
144: newY Displacement← generateRandomDouble(0,

q.xProblemSpan/250)
145: adddisp2← {label, 2, newY Displacement}
146: newQuestion.displacementBoundaryCondInfo.add(adddisp2)
147: position← 3

148: lines is an array of strings.
149: lines← GetDisplacementStringAtNode(changeIndex)
150: if position = 1 then
151: SetDisplacementAttributeAtNode(changeIndex, newXDisplacement,

lines[1])
152: else if position = 2 then
153: SetDisplacementAttributeAtNode(changeIndex, lines[0],

newY Displacement)
154: else
155: SetDisplacementAttributeAtNode(changeIndex, newXDisplacement,

newY Displacement)

156: node2← ∅
157: changeIndex2← −1
158: if displacementsForQuestion = ∅ && givenDisplacements ̸= ∅ then
159: unknown← UnknownDisplacement(q.unknowndisplacementInfo)
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160: if unknown ̸= ∅ then
161: k ← unknown[0][0]
162: node2← setNodeLabelByString(k)
163: DefineStiffnessInfo(newQuestion)
164: givenCondtions← DefineQuestionInfo(newQuestion, true)
165: SetQuestionText(newQuestion, givenCondtions, node2)
166: else
167: changeIndex2← givenDisplacements.get(r

.nextInt(givenDisplacements.size()))

168: else if displacementsForQuestion ̸= ∅ then
169: unknown← UnknownDisplacement(q.unknowndisplacementInfo)
170: if unknown ̸= ∅ then
171: k ← unknown[0][0]
172: node2← setNodeLabelByString(k)
173: DefineStiffnessInfo(newQuestion)
174: givenCondtions← DefineQuestionInfo(newQuestion, true)
175: SetQuestionText(newQuestion, givenCondtions, node2)
176: else
177: changeIndex2← displacementsForQuestion.get(r

.nextInt(displacementsForQuestion.size()))

178: if changeIndex2 ̸= −1 then
179: for all j ← 0, newQuestion.displacementBoundaryCondInfo.size() do
180: if newQuestion.springSystem1.nodes.get(changeIndex2).p =

newQuestion.springMembers.get(j).firstNode) then
181: node2← newQuestion.springMembers.get(j).firstNodeLabel
182: break
183: if newQuestion.springSystem1.nodes.get(changeIndex2).p =

newQuestion.springMembers.get(j).secondNode then
184: node2← newQuestion.springMembers.get(j).secondNodeLabel
185: break
186: DefineStiffnessInfo(newQuestion)
187: givenCondtions← DefineQuestionInfo(newQuestion, true)
188: SetQuestionText(newQuestion, givenCondtions, node2)

189: SetSolution(newQuestion)
190: Return newQuestion
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B.2.2 Reduce Method

Algorithm 8 Create new DirectStiffnessQuestion by removing zero force elements
Require: Current DirectStiffnessQuestion q

1: newQuestion← ∅
2: DirectStiffnessQuestion newQuestion← q.Clone()
3: deleteShapes is an array list of Shape
4: deleteNodes is an array list of SpringNode
5: for all j ← 0, newQuestion.springSystem1.nodes.size()− 1 do
6: nodeadded← false
7: breaking ← false
8: for all i← 0,

newQuestion.springSystem1.pointsOnClampedSupport.size()− 1 do
9: if newQuestion.springSystem1.nodes.get(j).p =

newQuestion.springSystem1.pointsOnClampedSupport.get(i) then
10: breaking ← true
11: break
12: if breaking = true then
13: continue
14: else if newQuestion.springSystem1.nodes.get(j).shapes.size() = 1 then
15: deleteShapes.add(newQuestion.springSystem1.nodes.get(j)

.shapes.get(0))
16: deleteNodes.add(newQuestion.springSystem1.nodes.get(j))
17: nodeadded← true
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18: else if newQuestion.springSystem1.nodes.get(j).p.getAttribute(”force”) =
∅ OR newQuestion.springSystem1.nodes.get(j).p
.getAttribute(”force”).equals(””) then

19: if newQuestion.springSystem1.nodes.get(j).shapes.size() = 2 then
20: coordinateList is an array list to store coordinates
21: coordinateList.add(newQuestion.springSystem1.nodes.get(j)

.P roblemCoord)
22: for all k ← 0, newQuestion.springMembers.size()− 1 do
23: if newQuestion.springMembers.get(k).F irstNode.label =

newQuestion.springSystem1.nodes.get(j).label then
24: coordinateList.add(newQuestion.springMembers.get(k)

.SecondNode.ProblemCoord)
25: else if newQuestion.springMembers.get(k).SecondNode.label =

newQuestion.springSystem1.nodes.get(j).label then
26: coordinateList.add(newQuestion.springMembers.get(k)

.F irstNode.ProblemCoord)

27: if coordinateList.size() ≥ 3&& coordinateList ̸= ∅ then
28: if CheckIfThreePointsCollinear(coordinateList) = false then
29: for all k ← 0, 1 do
30: exist← false
31: if deleteShapes.size() > 0 then
32: for all m← deleteShapes.size()− 1 do
33: if deleteShapes.get(m).getId().equals(newQuestion

.springSystem1.nodes.get(j).shapes.get(k).getID()) then
34: exist← true
35: break
36: else
37: deleteShapes.add(newQuestion.springSystem1

.nodes.get(j).shapes.get(k))
38: deleteNodes.add(newQuestion.springSystem1.

nodes.get(j))
39: exist← true
40: nodeadded← true
41: if exist = false then
42: deleteShapes.add(newQuestion.springSystem1

.nodes.get(j).shapes.get(k))
43: if nodeadded = false then
44: deleteNodes.add(newQuestion.springSystem1

.nodes.get(j))
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45: nodeadded← true
46: else if newQuestion.springSystem1.nodes.get(j).shapes.size() = 3 then
47: coordinateList is an array list to store coordinate
48: memberList is an array list of SpringNetworkMember
49: coordinateList.add(newQuestion.springSystem1.nodes.get(j)

.P roblemCoord)
50: m← 1
51: for all k ← 0, newQuestion.springMembers.size()− 1 do
52: if newQuestion.springMembers.get(k).F irstNode.label =

newQuestion.springSystem1.nodes.get(j).label then
53: coordinateList.add(newQuestion.springMembers.get(k)

.SecondNode.ProblemCoord)
54: memberList.add(newQuestion.springMembers.get(k))
55: m← m+ 1
56: else if newQuestion.springMembers.get(k).SecondNode.label =

newQuestion.springSystem1.nodes.get(j).label then
57: coordinateList.add(newQuestion.springMembers.get(k)

.F irstNode.ProblemCoord)
58: memberList.add(newQuestion.springMembers.get(k))
59: m← m+ 1

60: if coordinateList.size() = 4 then
61: coordinateListis an array list to store coordinates
62: deletdThird← false
63: testCoordinateList.add(coordinateList.get(0))
64: if CheckIfThreePointsCollinear(testCoordinateList) then
65: secondTestCoordinateList2 is an array list
66: secondTestCoordinateList2.add(testCoordinateList.get(0))
67: secondTestCoordinateList2.add(testCoordinateList.get(1))
68: secondTestCoordinateList2.add(coordinateList.get(3))
69: if CheckIfThreePointsCollinear

(secondTestCoordinateList2) = false then
70: exist← false
71: if deleteShapes.size() > 0 then
72: for all t← 0, deleteShapes.size()− 1 do
73: if deleteShapes.get(t).getId() =

memberList.get(2).joint.getID() then
74: exist← true
75: break
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76: else
77: deleteShapes.add(memberList.get(2).joint)
78: deletdThird← true
79: exist← true
80: if exist = false then
81: deleteShapes.add(memberList.get(2).joint)
82: deletdThird← true
83: else
84: secondTestCoordinateList2 is an array list
85: secondTestCoordinateList2.add(testCoordinateList.get(0))
86: secondTestCoordinateList2.add(testCoordinateList.get(1))
87: secondTestCoordinateList2.add(coordinateList.get(3))
88: if CheckIfThreePointsCollinear(

secondTestCoordinateList2) then
89: exist← false
90: if deleteShapes.size() > 0 then
91: for all t← 0, deleteShapes.size()− 1 do
92: if deleteShapes.get(t).getId() =

memberList.get(1).joint.getID() then
93: exist← true
94: break
95: else
96: eleteShapes.add(memberList.get(1).joint)
97: deletdThird← true
98: exist← true
99: if exist = false then
100: deleteShapes.add(memberList.get(1).joint)
101: deletdThird← true
102: if deletdThird = false then
103: testCoordinateList.clear()
104: testCoordinateList.add(coordinateList.get(0))
105: estCoordinateList.add(coordinateList.get(2))
106: testCoordinateList.add(coordinateList.get(3))
107: if CheckIfThreePointsCollinear(testCoordinateList) then
108: thirdTestCoordinateList is an array list
109: thirdTestCoordinateList.add(coordinateList.get(0))
110: thirdTestCoordinateList.add(coordinateList.get(1))
111: thirdTestCoordinateList.add(coordinateList.get(3))
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112: if CheckIfThreePointsCollinear(
thirdTestCoordinateList) = false then

113: exist← false
114: if deleteShapes.size() > 0 then
115: for all t← 0, deleteShapes.size()− 1 do
116: if deleteShapes.get(t).getId().equals(

memberList.get(0).joint.getID()) then
117: exist← true
118: break
119: else
120: deleteShapes.add(memberList.get(0).joint)
121: exist← true
122: nodeadded← true
123: if exist = false then
124: deleteShapes.add(memberList.get(0).joint)
125: if nodeadded = false then
126: nodeadded = true
127: else
128: continue
129: else
130: continue
131: if deleteShapes.size() = 0 then
132: return∅
133: springSystem← reducedSketchByZeroElements1(newQuestion,

deleteShapes, deleteNodes)
134: finalQuestion← new DirectStiffnessQuestion(springSystem)
135: finalQuestion.AssignConstraints()
136: if finalQuestion.elementsNodesV ectors = ∅ then
137: finalQuestion.setUpDispacementAndForce(finalQuestion

.springSystem1)

138: SetSolution(finalQuestion)
139: givenCondtions← DefineQuestionInfo(finalQuestion, true)
140: finalQuestion.text = SetQuestionText(finalQuestion, givenCondtions)
141: return finalQuestion
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Algorithm 9 Create new SpringSystem by removing nodes and truss elements
Require: Current DirectStiffnessQuestion question, ArrayList < Shape >

deleteShapes, ArrayList < SpringNode > deleteNodes
1: sketch← new Sketch()
2: newSpringSystem← ∅
3: SNodesList is an array list to store SNode
4: SpringNodeList is an array list of SpringNode
5: for all i← 0, question.springSystem1.graph.size()− 1 do
6: delete← false
7: for all j ← 0, deleteShapes.size()− 1 do
8: if question.springSystem1.graph.get(i).getV ertex()

.getId() = deleteShapes.get(j).getId() then
9: delete← true

10: break
11: if delete = false then
12: SNodesList.add(question.springSystem1.graph.get(i))

13: nodeCount← 1
14: copyDeleteNodes← new ArrayList <> (deleteNodes)
15: for all i = 0, question.springSystem1.nodes.size()− 1 do
16: springNode← ∅
17: deleted← false
18: delete← 0
19: for all j ← 0, copyDeleteNodes.size()− 1 do
20: if question.springSystem1.nodes.get(i).p.equals(

copyDeleteNodes.get(j).p) then
21: deleted← true
22: delete← j

23: if deleted then
24: copyDeleteNodes.remove(delete)
25: else
26: springNode← question.springSystem1.nodes.get(i)
27: SpringNodeList.add(question.springSystem1.nodes.get(i))

28: for all i← 0, SNodesList.size()− 1 do
29: if SNodesList.get(i).vertex.getInterpretation().label.equals(

new ClampedSupport().getLabel()) then
30: newSpringSystem← new SpringSystem(SNodesList.get(i).vertex)
31: SNodesList.remove(i)
32: break
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33: if newSpringSystem ̸= ∅ then
34: for all i← 0, SNodesList.size()− 1 do
35: newSpringSystem.graph.add(SNodesList.get(i))

36: for all i← 0, SpringNodeList.size()− 1 do
37: newSpringSystem.nodes.add(SpringNodeList.get(i))

38: newSpringSystem.clampedNodePoints← question.springSystem1
.clampedNodePoints

39: newSpringSystem.pointsOnClampedSupport← question.springSystem1
.pointsOnClampedSupport

40: newSpringSystem.loadedPoints← question.springSystem1.loadedPoints
41: if newSpringSystem.isConnected() then
42: System.out.println(”@SRL : WE FOUND A SPRING

NETWORK HERE, KEEP CONTINUE”)

43: AssignNewNodeLabel(newSpringSystem)
44: returnnewSpringSystem
45: else
46: return ∅
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B.2.3 Add new member

Algorithm 10 Create DirectStiffnessQuestion by adding new member to the current
structure
Require: Current DirectStiffnessQuestion q

1: newQuestion← ∅
2: n← q.getNbrOfNodes()
3: x← check(n, q.springMembers.size() + 1)
4: if x = false then
5: CivilSketchGUI.mworkspacePanel.getFeedbackPanel()

.displayResponse(”Structurehasmaximumnumberofmembers.”,
FeedbackPanel.INCORRECT )

6: newQuestion← q.clone1()
7: newQuestion.elementsNodesV ectors← new int[q.getNbrOfMembers()+1][2]
8: for all i← 0, q.elementsNodesV ectors.length− 1 do
9: newQuestion.elementsNodesV ectors[i][0]← q.elementsNodesV ectors[i][0]

10: newQuestion.elementsNodesV ectors[i][1]← q.elementsNodesV ectors[i][1]

11: for all i← 0, n− 1 do
12: for all j ← 0, n do
13: if j ̸= i then
14: exists← false
15: for all k ← 0, q.elementsNodesV ectors.length− 1 do
16: if (q.elementsNodesV ectors[k][0] = i +

1&& q.elementsNodesV ectors[k][1] = j+1) ||(q.elementsNodesV ectors[k][1] =
i+ 1 && q.elementsNodesV ectors[k][0] = j + 1) then
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17: exists← true
18: break
19: if exists = false then
20: newQuestion.elementsNodesV ectors[q.getNbrOfMembers()][0] =

i+ 1
21: newQuestion.elementsNodesV ectors[q.getNbrOfMembers()][1] =

j + 1

22: stiffness← getNewStiffness(newQuestion.springMembers)
23: candidatePoints← GetCandidateNodes(q)
24: springNetworkMember ← ∅
25: if candidatePoints ̸= ∅ && candidatePoints.length = 2 then
26: first← candidatePoints[0]
27: last← candidatePoints[1]
28: springNetworkMember ← SpringNetworkMember
29: createNewMember(first, last, stiffness)
30: else
31: first← newQuestion.findNodePoint(newQuestion.

elementsNodesV ectors[q.getNbrOfMembers()][0])
32: last← newQuestion.findNodePoint(newQuestion

.elementsNodesV ectors[q.getNbrOfMembers()][1])
33: springNetworkMember = SpringNetworkMember

.createNewMember(first, last, stiffness)

34: springNetworkMember.firstNodeLabel ← springNetworkMember
.setNodeLabelByStringStartFromOne(newQuestion.elementsNodesV ectors
[q.getNbrOfMembers()][0])

35: springNetworkMember.secondNodeLabel ← springNetworkMember
.setNodeLabelByStringStartFromOne(newQuestion.elementsNodesV ectors
[q.getNbrOfMembers()][1])

36: springNetworkMember.areNodesLabeled← true
37: newQuestion.difficulty ← SetDifficulty(q.difficulty)
38: newQuestion.springMembers.add(springNetworkMember)
39: newQuestion.springSystem1.addJointBetweenSpringNodes(

springNetworkMember.joint, springNetworkMember.firstNodeLabel,
springNetworkMember.secondNodeLabel)

40: newQuestion.AssignConstraints(newQuestion)
41: SetSolution(newQuestion)
42: givenCondtions← DefineQuestionInfo(newQuestion, true)
43: newQuestion.text = SetQuestionText(newQuestion, givenCondtions)
44: return newQuestion
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Algorithm 11 Get candidate members from DirectStiffnessQuestion

Require: DirectStiffnessQuestion q
1: n← q.springSystem1.nodes.size()
2: x← (n ∗ (n− 1))/2
3: notConnected1← new int[x− n][2]
4: notConnected is an array
5: for all i← 1, q.springSystem1.nodes.size() do
6: for all j ← i+ 1, q.springSystem1.nodes.size() do
7: if i ̸= j then
8: exists← false
9: for all k ← 0, q.elementsNodesV ectors.length− 1 do

10: if (q.elementsNodesV ectors[k][0] = i &&
q.elementsNodesV ectors[k][1] = j) || (q.elementsNodesV ectors[k][1] =
i&& q.elementsNodesV ectors[k][0] = j) then

11: exists← true
12: break
13: if exists = false then
14: not = new int[][]new int[]i, j
15: notConnected.add(not)

16: p← 0
17: number ← 0
18: potentialStrain← 0
19: if notConnected.isEmpty() = false then
20: U1x← 0
21: U1y ← 0
22: U2x← 0
23: U2y ← 0
24: X1← 0
25: Y 1← 0
26: X2← 0
27: Y 2← 0
28: while p < notConnected.size() do
29: joint← notConnected.get(p)
30: for all i← 0,

q.solution.newGlobalDisplacementInfoAnswerPanel.size()− 1 do
31: disp← Arrays.copyOf(q.solution

.newGlobalDisplacementInfoAnswerPanel.get(i), 1)
32: if joint[0][0] = (int)disp[0][0] then
33: U1x← disp[0][1]
34: U1y ← disp[0][2]

122



35: else if joint[0][1] = (int)disp[0][0] then
36: U2x← disp[0][1]
37: U2y ← disp[0][2]

38: for all i← 0, q.springSystem1.nodes.size()− 1 do
39: a← setNodeLabelByString((int)joint[0][0])
40: a1← q.springSystem1.nodes.get(i).label
41: b← setNodeLabelByString((int)joint[0][1])
42: if a.toString().equals(a1.toString()) then
43: X1← q.springSystem1.nodes.get(i).P roblemCoord[0][0]
44: Y 1← q.springSystem1.nodes.get(i).P roblemCoord[0][1]
45: else if b.toString().equals(a1.toString()) then
46: X2← q.springSystem1.nodes.get(i).P roblemCoord[0][0]
47: Y 2← q.springSystem1.nodes.get(i).P roblemCoord[0][1]

48: currentPotentialStrain = calculatePotentialStrain(U1x, U1y, U2x,
U2y,X1, Y 1, X2, Y 2)

49: if currentPotentialStrain > potentialStrain then
50: potentialStrain← currentPotentialStrain
51: number ← p

52: p← p+ 1

53: else
54: return ∅
55: connectiom← notConnected.get(number)
56: newmemberpoints← new SpringNode[2]
57: newmemberpoints[0]← new SpringNode()
58: newmemberpoints[1]← new SpringNode()
59: for all i← 0, q.springSystem1.nodes.size()− 1 do
60: if q.springSystem1.nodes.get(i).label.equals(setNodeLabelByString(

(int)connectiom[0][0])) then
61: newmemberpoints[0]← q.springSystem1.nodes.get(i)
62: else if q.springSystem1.nodes.get(i).label.equals(setNodeLabelByString(

(int)connectiom[0][1])) then
63: newmemberpoints[1]← q.springSystem1.nodes.get(i)

64: if newmemberpoints[0].p.x = newmemberpoints[1].p.x &&
newmemberpoints[0].p.y = newmemberpoints[1].p.y &&
newmemberpoints[0].p.x = 0 && newmemberpoints[0].p.y = 0 then

65: return ∅
66: else
67: return newmemberpoints

123



Algorithm 12 createNewMember method to create a SpringNetworkMember

Require: SpringNode start, SpringNode end,Double stiffness
1: springNetworkMember ← new SpringNetworkMember()
2: spring ← generateHelix(start.p, end.p)
3: springNetworkMember.joint← spring
4: springNetworkMember.firstNode← start.p
5: springNetworkMember.F irstNode← start
6: springNetworkMember.firstNodeLabel ← start.label
7: springNetworkMember.secondNode← end.p
8: springNetworkMember.SecondNode← end
9: springNetworkMember.secondNodeLabel ← end.label

10: springNetworkMember.memberStiffness← stiffness
11: return springNetworkMember
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Algorithm 13 generateHelix method to create a helix shape
Require: Point first, Point last

1: m_beautified← new Shape()
2: m_beautified.setLabel(HelixF it.HELIX)
3: m_beautified.setAttribute(IsAConstants.PRIMITIV E,

IsAConstants.PRIMITIV E)
4: m_shape← new GeneralPath()
5: m_startX ← first.getX()
6: m_startY ← first.getY ()
7: m_endX ← last.getX()
8: m_endY ← last.getY ()
9: m_revolutions← 3

10: ((GeneralPath)m_shape).moveTo((float)m_startX, (float)m_startY )
11: theta← 0
12: x, y, t← 0
13: c_startX ← m_startX, c_startY ← m_startY, c_endX ←

m_endX, c_endY ← m_endY
14: m_avgRadius← 1
15: while Point2D.distance(c_startX, c_startY, m_startX, m_startY ) <

m_avgRadius && m_endX ̸= m_startX &&m_endY ̸= m_startY do
16: t = t+ 0.001
17: c_startX ← m_startX + (m_endX −m_startX) ∗ t
18: c_startY ← m_startY + (m_endY −m_startY ) ∗ t
19: t← 1
20: while Point2D.distance(c_endX, c_endY, m_endX, m_endY ) <

m_avgRadius &&m_endX ̸= m_startX&&m_endY ̸= m_startY do
21: t← t− 0.001
22: c_endX ← m_startX + (m_endX −m_startX) ∗ t
23: c_endY ← m_startY + (m_endY −m_startY ) ∗ t
24: t← 0
25: startAngle = Math.atan2(m_startY − c_startY, m_startX − c_startX)
26: while Math.abs(theta) < ((m_revolutions+ 0.5) ∗Math.PI ∗ 2.0) do
27: t←Math.abs(theta)/((m_revolutions+ 0.5) ∗Math.PI ∗ 2.0)
28: x← c_startX + (c_endX − c_startX) ∗ t
29: y ← c_startY + (c_endY − c_startY ) ∗ t
30: ((GeneralPath) m_shape).lineTo((float) (m_avgRadius ∗

(Math.cos(theta+startAngle))+x), (float) (m_avgRadius∗(Math.sin(theta+
startAngle)) + y))

31: theta = theta+ 0.1
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32: (GeneralPath)m_shape).lineTo((float)m_endX, (float)m_endY )
33: strokeList is an array list of Stroke
34: stroke← new Stroke()
35: pathIterator = new FlatteningPathIterator(

m_shape.getPathIterator(new AffineTransform()), 1)
36: while pathIterator.isDone() = false do
37: coords← new float[6]
38: pathIterator.currentSegment(coords)
39: stroke.addPoint(new Point(coords[0], coords[1]))
40: pathIterator.next()

41: strokeList.add(stroke)
42: mbeautified.setStrokes(strokeList)
43: if m_beautified instanceof IBeautifiable then
44: ((IBeautifiable)m_beautified).setBeautifiedShape(m_shape)
45: return m_beautified
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