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ABSTRACT 

 

Plastic theories of limit analyses are effective tools to estimate the true collapse load of a structure 

since the load carrying capacity is not underestimated as in case of the elastic analysis. This 

research aims to implement the plastic theories for the evaluation of capacity of Steel Twin-Tub 

Girder (STTG) bridges since a declassification of these bridges from their current fracture critical 

status will prevent the transportation authority from allocating funds on unwarranted maintenance 

and inspections. In this research, the limit theories are studied to understand the application of 

plastic analysis to bridge structures by validation of results from yield line analysis using 

experimental data. Further analysis is conducted to postulate a mechanism to analyze the bridge 

under specified traffic loads. The analysis guidelines are formulated to incorporate the theories as 

per the geometrical, loading and boundary conditions of the three major groups of bridges being 

analyzed: simply supported single-span bridges, exterior spans of two-span and three-span bridges 

and interior spans of three-span bridges. These guidelines are implemented for all the 15 bridges 

selected using the recommendations of the Texas Department of Transportation. The applications 

and ramifications of the results are discussed and the concluding remarks are drawn to assess 

whether the bridge remains as fracture critical or further advanced investigation is needed for a 

conclusive declassification. 
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CHAPTER I  

INTRODUCTION  

1.1. Background 

The plastic theory for slabs is becoming an increasingly popular choice for analysis and design 

due to the ease of these methods once the designer has gained experience in the behavior of 

collapse. The designs submitted using these methods of the upper bound and lower bound theories 

are quite economical in terms of the time and monetary resources consumed. These solutions can 

provide a quick method to check the load carrying capacity of slabs and therefore assess whether 

a structure can sustain the design load.  

Although the plastic method such as the yield line theory has been used for the analysis 

and design of bridges, there is still a huge untapped potential of this method yet to be utilized, 

particularly on a large scale. Recently, Steel Twin Tub Girder (STTG) bridges are noted to be an 

architecturally pleasing solution when a large span bridge of a tighter radius is required. However, 

the current norms of classification of bridges in the industry have grouped STTG bridges as a class 

of bridges susceptible to sudden collapse in the event of a single member failure. Therefore, the 

Federal Highway Administration (FHWA) stipulates that these bridges undergo strict and intense 

biannual inspection. While such rigorous practice for prevention of failure is necessary, STTG 

bridges may not be vulnerable to the extent to which they are feared to be. The Texas Department 

of Transportation (TxDOT) may be investing an enormous proportion of funds on examination 

and subsequent traffic control measures that are probably not required due to the inherent capacity 

of the bridge that would make the system redundant and avoid failure even if one of the members 

of such a system fail.  
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In order to check whether the STTG bridges are truly in the requirement of the hands-on 

inspection, analyses studies shall be conducted to estimate the design capacity of the bridge 

system. Since there are a large number of STTG bridges in Texas, it is essential that the methods 

developed to analyze these bridges are convenient for use, in terms of time and technology. The 

yield line method of the plastic analyses can serve as a “litmus test” to indicate if further advanced 

studies using computational resources are required to be undertaken for a particular bridge or if 

the bridge should continue to have its status of requiring elaborate inspections.  

The development of yield line solutions for bridges can lead to expedited analysis and 

design for bridges. It can also aid in verifying the results of the advanced computer-generated 

programs for structural analyses and for nonlinear finite element analyses. Since the plastic 

methods are based on actual crack patterns formed when the collapse occurs at ultimate load, the 

mechanism postulated shall attempt to simulate the exact conditions taking place. Thus, this 

independent check of the capacity has several benefits. The results of this analyses can lead to the 

formulation of certain standard specifications for the bridges in terms of the span length, radius of 

curvature, width, and the boundary conditions in order to ensure that the system shall possess 

sufficient internal capacity. 

1.2. Significance 

The STTG bridges serve to be an aesthetic solution to bridge problems with long spans and tight 

radii. However, the current classification of these bridges as fracture critical has caused TxDOT 

to invest huge sums of money —approximately $2 million — on the hands-on inspections and 

maintenance procedures (inclusive of the traffic controlling costs) prescribed by National Bridge 

Inspection Standards (NBIS) once in two years. These inspections are elaborate and require the 
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allocation of large amounts of resources of time, skills and money. Since the aftermath of the Silver 

Point bridge collapse tragedy, all the STTG bridges are supposed to be examined regularly as per 

the aforementioned policy based on the present classification of fracture critical systems. However, 

the STTG bridges may be removed from this status of fracture critical if the bridges are proven to 

safely have a load carrying capacity higher than the load that it is likely to undergo throughout its 

lifetime.  

 An informed decision can only be made if there is sufficient data that shows that the STTG 

bridges have the redundancy to bear the service loading. TxDOT has launched a research study to 

investigate the capacity of selected STTG bridges. The research project, TxDOT 0-6937, proposed 

to evaluate 15 selected STTG bridges from the National Bridge Inventory (NBI) by three mutually 

independent methods (Hurlebaus et al. 2018). The nonlinear finite element analysis, the grillage 

method, and the plastic methods are utilized to find the load carrying capacity of the bridge and 

the results are compared to assess if all the three methods consistently suggest that declassification 

from fracture critical status is advisable. The three methods are of varying computational effort, 

time and accuracy, and an agreement between all the three methods may lead to the use of the 

more convenient method to be favored over the more tedious methods to ease the bridge engineers 

if and when they evaluate the other STTG bridges by following the guidelines of the project.  

 This research is a part of the third methodology undertaken in the TxDOT 0-6937 research 

project. The plastic theories are implemented to develop a procedure that evaluates the load 

carrying capacity of the bridges resulting in a range formed by the lower bound (strip method) and 

the upper bound (yield line theory). This method is a manual technique of computation that can 

reduce the two methods to simple formulae and can be expedited using any spreadsheet program, 
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once the mechanism for a typical STTG bridge is established. Moreover, this band of upper bound 

and the lower bound solution can serve as a quick check for the two other methods that are carried 

out in advanced finite element and structural analyses programs. Since the plastic theories are 

completely diverse in nature of the analysis method, it gives a different perspective of solving the 

problem and a consistency between the methods proves to be a thorough check of the three 

methods. Once the initial failure mechanism is established and validated, the formula generated 

from this method can serve as a very helpful tool to analyze the similar STTG bridges. The 

procedure is simple and can be easily repeated to bridges of similar geometry and loading 

conditions with appropriate modifications that will be explained in detail in this thesis. Although 

the upper bound and lower bound plastic methods are a popular choice for slab designing these 

days, there is still a need for the evaluation of the potential of these methods for the bridge industry 

on a large scale.  

1.3. Objective  

The objective of this research is to investigate the application of plastic theories for the analysis of 

STTG bridges by deriving suitable admissible mechanism that can accurately predict the failure 

load. The upper bound and lower bound methods are used to assess the load carrying capacity of 

the bridges. The experimental test bridge of the TxDOT 9-5498 project shall be analyzed to derive 

a suitable mechanism and validate with the experimental results. The capacity shall be analyzed 

under standard American Association of State Highway and Transportation Officials (AASHTO 

2017) loading for the 15 preselected bridges from all the STTG bridges in Texas based on key 

parameters such as the span length, radius of curvature and the continuity or support conditions. 

The results of these evaluations shall present the upper bound and lower bound range of the 
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overstrength capacity of the bridges that will indicate that either the bridge may be investigated 

further using more advanced computational analysis or may continue to remain fracture critical.  

1.4. Outline of Thesis 

This thesis consists of 8 major chapters that constitute the research procedures and outcomes of 

the application of the plastic theory to the analysis of STTG bridges. It starts with the introductory 

Chapter I which also serves as the overall roadmap for the proposed work. Chapter II outlines the 

previous work conducted on the subject that is cited on the open literature. It concludes with the 

research questions arising from the present body of knowledge. Chapter III describes the 

verification of the plastic methods of analysis applied to experimental Steel Twin-Tub Girder 

(STTG) bridge. Chapter IV proposes a general theory to develop a solution that is applicable to 

HL-93 loading for selected 15 STTG bridges. The solutions thus developed are explained in a 

detailed manner and are provided with supplementary analysis guidelines and examples for the 

application of the theories to two selected bridges in Chapter V. Chapter VI documents the 

application of the methodology explained in the previous chapter to the 15 selected bridges in 

brief. This chapter also highlights the ramifications and further application of these methods. 

Chapter VII discusses the results of the research with the results in comparison with the other 

methods of analysis such as the Finite Element Method and the Grillage Analysis. The 

recommendations that are formulated as a consequence of this comparison are also documented in 

this chapter. The final Chapter VIII gives the concluding remarks on the research conducted.  
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CHAPTER II  

LITERATURE REVIEW AND PREVIOUS WORK  

2.1. Chapter Summary  

The primary objective of this research is the applicability of the outcomes and developments of 

plastic analysis on a sample of STTG bridges. Therefore, this first task of the research ensures the 

comprehensive understanding of the general issues that are needed to be addressed and whether or 

not the methodology can be implemented according to the prevalent norms and practices. 

The next stage of this research process is to review all the existing work on the plastic 

theories. The previous applications of these theories are studied and reviewed. This task will help 

in the collection and assimilation of the existing knowledge, technical know-how and case studies 

which will enable in the development of an astute understanding of the plastic theories and the 

fracture critical bridge case-studies. An in-depth knowledge of the current problems and conditions 

will help in the necessary acquaintance of the application of plastic methods to bridges which 

constitutes the final task of the literature review. Since this task deals with acquiring information 

needed for addressing the problems, it has a continuing nature, it means that although the task is 

scheduled for the initial phase of the project, it will be conducted throughout the course of the 

project to gather vital information. 

2.2. Introduction 

The chapter deals with the literature available on the plastic upper bound and lower bound theories, 

the application of these theories on bridges and on the fracture critical bridges obtained through 

sources ranging from research papers, textbooks, and material available for commercial and 

academic use through electronic media. The relevant works are presented in a sequential order to 
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establish the existing information from various resources, describing the different theories, 

advancements and modifications and the differing opinions currently existing regarding the topics 

central to this research. The chapter concludes with the technical needs for further research that 

have emerged from this research. 

2.3. Fracture Critical Members 

The present NBIS of the Federal Highway Administration (FHWA) defines fracture critical 

members (FCM) as “a steel member in tension, or with a tension element, whose failure would 

probably cause a portion of or the entire bridge to collapse,” (Lwin 2012). These fracture critical 

members are, therefore, significant for the inspection of bridges to avoid failure. In the past there 

have been tragic occurrences of the collapse of bridges with FCMs. There was a massive loss of 

life and property recorded in the aftermath of such collapses that were caused due to negligent 

maintenance and inspections. Two of such cases are discussed in this section (Herald-Dispatch 

December 15, 1967; Hogarty July 17, 1983). The sudden collapse of the Silver Bridge across the 

Ohio River in 1967 claimed 46 lives, injured 9 people, and 84% vehicles fell off the bridge as per 

the National Transportation Safety Board (NTSB) data. NTSB (1970) reported a cleavage fracture 

located in the north suspension chain (at the Ohio end of the bridge) in the eye of the eyebar 330. 

It was also stated that one of the possible reasons for the collapse was the stress and fatigue caused 

due to corrosion that was not anticipated for the material used the under conditions to which the 

bridge was exposed. This disastrous event led to the reforms of the NBIS policy under the Federal 

Aid Highway Act (Barker and Puckett 1987). According to this policy change, a regular hands-on 

inspection is required every 2 years for bridges cataloged over 600,000 bridges of the National 

Bridge Inventory (NBI) with spans longer than 6.1 m.   
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The Mianus River Bridge collapse in Greenwich, Connecticut in 1983 caused 3 deaths and 

3 critical injuries according to NTSB (1984) data. The Mianus River Bridge, crossing over the 

Mianus River in the Cos Cob section of Greenwich Connecticut, is an example of the need for 

better maintenance methodology and stipulations. This incident highlighted the rampant 

negligence that was prevailing despite the shocking calamity of the Silver Bridge collapse. The 

National Transportation Safety Board investigated the collapse and concluded that two pin and 

hangar assemblies that secured the deck in place on the exterior part of the bridge had failed, 

leading to the collapse. It was pointed out that there existed sheer negligence toward channeling 

adequate funds for the inspection of bridges since the State had assigned 12 engineers to work in 

pairs to inspect around 3,425 bridges, at the time of the accident as reported by the State 

Transportation Department Chief Engineer, Robert W. Gubala to New York Times (Schmalz June 

24, 1984). As a consequence of which the lateral hanger displacement of the pin and hanger 

suspension assembly in the southeastern end of the bridge was caused due to stresses from 

corrosion that led to the collapse.  

The new reforms insist on the intense inspection and maintenance that incurs huge 

expenditure. The current standards impose that the same elaborate and expensive measures be 

implemented for all the STTG bridges in the NBI. Recent studies have shown that some of the 

bridges classified as FCM may not, truly, be so due to their structural redundancy. This implies 

that the structure may possess more strength than what is expected from an elastic assessment. 

FCMs of bridges are characterized by the non-redundancy of the system. Load and Resistance 

Factor Design (LRFD) defines redundancy as “the quality of a bridge that enables it to perform 

its design function in a damaged state” and redundant member as “a member whose failure does 
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not cause failure of the bridge,” (Lwin 2012) in an FHWA memorandum in 2012. These 

redundancies may be divided into three types: load path redundancy, structural redundancy, and 

internal member redundancy. There is a concern that some of the bridges may be wrongly 

classified as FCM since the redundancy of the bridge system has not been evaluated. This 

conservative classification may be depleting the funds due to the expensive bridge examinations 

of the systems which are not as much at risk of failure as an FCM system would be.  

TxDOT funded a research project 9-5498 to evaluate if STTG bridges are truly fracture 

critical. One of the methods of evaluation undertaken was the yield line theory method. Barnard 

et al. (2010) tested a decommissioned typical fracture critical STTG bridge under sand loading to 

analyze the capacity of the bridge. The shear studs were evaluated by Mouras et al. (2008) to assess 

all the possible load-path redundancy that was associated with the bridge system. The results of 

the yield line analysis were then compared with the experimental method. The sand load that was 

experimentally observed to cause the collapse of the bridge system was 1618 kN while that 

calculated through yield line analysis was 1254 kN, which is less than the actual load by 22.5%. 

This difference could possibly be since the loading of the yield line analysis was modeled as point 

load of an equivalent HS-20 truck and not exactly as the sand loading (uniformly distributed load) 

applied during the experiment (Barnard et al. 2010). There is a need for evaluating the accuracy of 

the yield line theory by conducting the analysis under the influence of a loading that can be 

modeled as close to the actual experimental sand loading as possible. It is to be noted that the sand 

loading may not have been as uniformly distributed as a water load stored in a temporary tank. 

Although the exact capacity of the bridge was not calculated using the yield line mechanism 

proposed by (Barnard et al. 2010), it showed that yield line theory possessed the quality of a 
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possible tool to analyze bridges with further modifications. This paves way for further research to 

develop more accurate yield line mechanism that can incorporate all the components such as the 

twin-tub girders and shear studs to simulate the redundancy of the system.  

2.4. Plastic Analysis Methods  

Plastic methods are known to be effective in estimating the true capacity of a structural system 

(Park 1968). While elastic methods remain to be a simple approach to deal with structural design 

and analysis, the underlying prediction of stress being proportionate to strain (Hooke’s Law) 

makes this method conservative. When yielding of material at a certain load occurs, the property 

of redistribution of the load is not captured by the elastic methods (Milošević et al. 2010). Thus, 

the evaluation of such structures using plastic method is advised. When a gradually increasing load 

is applied to a structure, a point of plastic failure is reached such that the deflections go on 

increasing plastically at a constant load. Determination of the critical load for a perfectly elasto-

plastic member is the key aspect of limit analysis (Drucker et al. 1952; Park 1968).  

2.4.1. Limit Theorems in Plastic Analysis 

The limit analysis is based on the theorems of plastic failure of an idealized elasto-plastic member. 

Gvozdev (1938) first formulated the theorems that form the basis of limit analyses. The theorems 

are discussed in this section. 

Upper Bound or Kinematic Theorem:  

This theorem considers the formation of a failure mechanism occurring due to the plastic hinges 

that make the member kinematically unstable (Neal 1977). The limit load is found by equating the 

work done by the external actions with the work absorbed during the hinge formation, for the 

critical among all possible failure mechanisms. The upper bound theorem states that the limit load 
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thus found based on the assumed failure mechanism will be greater than or equal to the actual 

failure load when the internal actions are in equilibrium.  

Lower Bound or Static Theorem: 

This theorem considers the body to be in static equilibrium. Drucker et al. (1952) explained that a 

large distribution of moments, which is assumed to be in equilibrium due to a given externally 

applied load, is a “statically admissible distribution.” The lower bound theorem states that an 

external load that ensures that the system has a stable and statically admissible distribution of 

internal actions, will be less than or equal to the limit load, such that the actions are within the 

range of limit values and are in equilibrium.  

Uniqueness or Singularity Theorem: 

This theorem is formulated from the upper and lower bound theorems. It states that there exists 

only one load calculated from the assumed failure mechanism that ensures a stable and statically 

admissible distribution of the internal actions, wherein the internal actions are in equilibrium and 

are within the range of limit values (Nielsen and Hoang 2016). 

2.4.2. Beams and Frames 

While the elastic methods based on the Euler-Bernoulli and Timoshenko beam modes are quite 

popular for solving the problems of beams and frames, the additional capacity or the reserve 

capacity due to the redistribution of the load is better calculated using the plastic limit load of these 

structures. The collapse mechanism or the plastic hinge formation is the basis of this analysis. A 

statically determinate beam fails on the formation of one hinge while statically indeterminate beam 

fails after the formation of 2 or more hinges depending on the boundary conditions. The hinge 

formation occurs when the entire cross-section of the beam reaches yield stress. Once a mechanism 
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is formed in a structure, it will not be able to resist any load. The aforementioned theorems of limit 

analyses are applied to find the reserve capacity of beam and frame elements. Horne (1971) and 

Neal (1977) have explained the examples of these applications.  

2.4.3.  Slabs 

The limit analysis of the yield line and strip methods have traditionally been applied to reinforced 

concrete slabs provided the ductility of the member is maintained by conservatively defining the 

material properties of concrete and with a cautious design of the reinforcement so as to ensure that 

the yielding of the steel reinforcement is the governing criterion of failure of the slab (Meyboom 

2002).The upper bound and the lower bound theorems are applied to the rigid-plastic slab members 

for the plastic analysis. The two subsequent sections of the chapter give a brief introduction of the 

background and a review of the previous work done in the origin and evolution of the two theories. 

Prager and Hodge (1951) paved the way for the use of limit analysis of slab based on the classical 

plastic theories for plates. It is proposed that the ultimate collapse load of slabs falls in the range 

of the upper bound and lower bound solutions. Both of these methods are explained in detail by 

(Park and Gamble 2000). These methods shall be discussed in detail in the remainder of this 

chapter.  

Upper Bound Limit Analysis Theory for Slabs 

The upper bound theory is based on the yield line theory. Ingerslev (1923) proposed that limit 

analysis method of yield line theory can be used to study reinforced concrete slabs. Johansen 

(1962) contributed towards the advancement and expansion of its scope as an upper bound 

solution. The method essentially predicts the ultimate load capacity of the slab system through 

various collapse mechanisms that are postulated such that the boundary conditions are satisfied 
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(Johansen 1962; Johansen 1972). Park and Gamble (2000) stated that, “The moments at the plastic 

hinge lines are the ultimate moments of resistance of the sections, and the ultimate load is 

determined using the principle of virtual work or the equations of equilibrium.” The solution can 

either be exact or upper bound.  

 It is to be noted that the slab regions between yield lines (plastic hinge lines) are not 

considered so that the ultimate moments of resistance of the sections are not exceeded by the 

moments in the intermediate areas. If the collapse mechanism is inadmissible, however, an 

exceedance of the ultimate moment capacities may occur in those regions. It is therefore necessary 

that all the possible collapse mechanisms are assessed thoroughly. Most of the correct collapse 

mechanisms for standard cases are known to the designers due to the experimental evidence of 

crack formations along the yield lines defined by (Park and Gamble 2000) as, “the lines of intense 

cracking across which the tension steel has yielded.” Various proven results that can be found in 

the literature of yield line also serve as an adequate guide for most of the typical failure analyses 

and design of reinforced concrete slabs.  

 Initially, the yield line theory assumes that collapse occurs in the flexure alone, with ample 

shear resistance to avoid failure due to shear mode. Hognestad (1953) first summarized the 

literature on yield line theory that was originally in Danish in 1953. The works done by Wood 

(1961), Jones (1962), Shukla (1973), Wood and Jones (1967), Kemp (1965), European Concrete 

Committee (ECC 1962; ECC 1972) and the Dutch Committee for Concrete Research (DCCR 

1962; DCCR 1963), (Park et al. 1975), and Park and Gamble (2000) throw light on the 

mathematical background and design applications of the yield line theory for slabs. Park and 

Gamble (2000) explain the conditions for the application of this upper bound method to analyze 
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uniformly reinforced slabs for each constant area of steel reinforcement of unit wide sections 

across the slab. The reinforcement may, however, differ in two directions and at the top and bottom 

levels of the slab, with a constant ultimate moment of resistance per unit width, along a linear path 

in the plane of the slab. There are more complicated solutions to deal with the problem of non-

uniform distribution of reinforcement.  

 Ductility in slab sections is essential for the plastic rotation at critical sections when the 

slab undergoes plastic hinging. Bending moment redistribution occurs for the development of the 

collapse mechanism. It is explained in Park and Gamble (2000) that the formation of collapse 

mechanism occurs at ultimate load. As reinforced concrete slab undergoes progressive loading 

until failure takes place, the elastic distribution of bending moment is followed by a plastic 

redistribution after cracking of concrete due to a decreasing flexural rigidity that takes place at 

cracked sections. The moment tends to be constant at the ultimate moment of resistance when the 

tension steel yields (at the section where the bending moment reaches peak values) on further 

loading. As the loading increases, the yield lines spread from the location of the yield origin (that 

is at the maximum bending moment section derived using the elastic theory). The yield line pattern 

is formed by the network of yield lines dividing the slab into segments that form the collapse 

mechanism. The type of loading, the boundary conditions and the reinforcement arrangement 

influence this pattern. The slab cannot be loaded after it forms a mechanism.  

 Certain properties are suggested by Park and Gamble (2000) for postulating the yield line 

patterns which state that the yield lines are linear since these serve as the axes of rotation for the 

segments of the collapse mechanisms formed after the plastic hinge formation occurs. The axes of 

rotation intersect the location of supports (columns) and the fixed edges of the slab also serve as 
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yield lines. It is also stated that the yield lines are supposed to pass through points where the axes 

of rotation of adjoining slab segments intersect. However, Quintas (2003) has conducted research 

to further to examine curved yield lines and the comparison of these results with the straight yield 

line analysis. He has also discussed additional equilibrium conditions that were not considered in 

the classical yield line method. He revisited the “normal moment method” and “skew moment 

method” and investigated these methods. The analysis can be carried out in 2 ways, namely the 

principle of virtual work and the equations of equilibrium:  

a) Principle of virtual work: This method assumes the slab segments to be rigid plates that 

undergo deformation under collapse mechanism. These segments are under equilibrium in terms 

of the applied load as well as the internal actions of flexure, torsion, and shears along the yield 

lines. A deformation δ is assumed at a convenient point of maximum deflection. The other 

deformations throughout the slab are expressed as fractions of δ. The internal actions are equated 

to the externally applied ultimate load to analyze the slab and are represented by the following 

equation  

 ∑ 𝑊𝑢∆= ∑ 𝑚𝑢𝑛𝜃𝑛𝑙𝜃 (2.1) 

where 𝑊𝑢 = externally applied load on each segment; ∆ = downward deflection of the centroid of 

segments, respectively; 𝑚𝑢𝑛 = ultimate moment resistance per unit width; 𝑙𝜃  = the length of the 

yield line under consideration; and 𝜃𝑛 = the relative rotation between the 2 segments along the 

yield line under consideration. 

b) Equations of Equilibrium: In this method, every segment of the slab that is formed as a 

result of the yield line pattern occurring due to the collapse mechanism is analyzed individually 
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under the influence of the flexural and torsional moments and shear forces as well as the applied 

loading. These equations are formed by considering moments about the appropriate axes. The 

unknown dimensions needed to compute the ultimate load are computed by solving the set of 

simultaneous equations generated by considering the equilibrium condition. This method is 

considered to be simpler than the virtual work method since it eliminates the need for calculus or 

of complex algebraic rearrangement. However, the shear forces and the torque actions that are 

neglected in the virtual work method since the summation over the whole system balances and 

nullifies the effects of these entities (for a small deflection of the yield line system), can no longer 

be ignored because individual segments are considered.  

The torsional moments are found using Johansen’s yield line criterion and the shear actions 

are found using Johansen’s theorem for computation of shear forces at yield lines. Jones (1962) 

explained the method to find the nodal forces between 2 yield lines, which is an extension of 

Johansen’s method (Johansen 1962; Johansen 1972). There are, however, limitations on the cases 

where this method of computation of nodal forces is not allowed (Jones 1965; Kemp 1965; Kemp 

et al. 1965; Morley 1965; Nielsen 1965; Wood 1965; Wood and Jones 1967). For such restricted 

cases, the nodal forces can be found by comparing the virtual work method solution with the 

equation of equilibrium method since it is recently perceived that the two methods are alternate 

representations of one another (Wood and Jones 1967). Kemp (1962), Kemp et al. (1965) and 

Morley (1988) have also explained that nodal forces are equivalent to the total twisting moments 

acting along the yield lines and not are equivalent to the shear forces, especially in case of isotropic 

slabs. 
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The aforementioned upper bound theory has been experimentally validated. Johansen 

(1962) proved the relevance of the theory by comparing the theoretical results with the 

experimental data acquired from the tests conducted by German Reinforced Concrete Board 

(GRCB) at Stuttgart Materials Testing Establishment (Bach et al. 1911-1925). The experiments 

conducted by Sawczuk and Jaeger (1963) at the Technical University of Berlin show promising 

results due to the good agreement between experimental and theoretical results. Jaeger stated that 

serious cracking may occur at service load conditions if the arrangement of the reinforcement bar 

varies largely from the arrangement obtained via elastic theories. Promising results have also been 

achieved by the experiments conducted at the TNO Institute of Building Materials and Structures 

in Holland reported by the Dutch Committee for Concrete Research (DCCR 1963) and those 

conducted by Taylor et al. (1966) in University of Manchester. Kennedy and Goodchild (2004) 

have explained in detail about the yield line theory, its importance, feasibility and various real-

time applications of this upper bound solution as an economic method of design. Reinforced 

concrete slabs are known to behave plastically, as opposed to the misconception that such slabs 

exhibit elastic behavior. Yield line theory deals with the limit state without explicitly addressing 

the serviceability aspects such as deflection (Kennedy and Goodchild 2004).  

It is, however, possible to derive a formula for the deflections using the yielding moment 

capacity. Kennedy and Goodchild (2004) have explained in detail about the usage and principles 

of yield line theory, as a complementary material for experienced engineers as well as an initiation 

for those who are new to this design practice. At the design level, yield line theory results in quite 

economic  results.  In  the  “Practical Yield Line Design,”  a  comparison  is  drawn  between  the  
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quantity scheduling and estimation of the reinforcement bars obtained via an elastic design and the 

yield line design. For a given case study of yield line theory application at Cardington, yield line 

method showed a design requirement of 14.5 tons of reinforcement while elastic design predicted 

16.9 tons (Kennedy and Goodchild 2004). The study also advocates the diversity in the usage of 

yield line design for addressing a wide variety of problems ranging from flat slabs (of different 

shapes and support conditions), bridges (with a combined slab beam action) to foundations. 

Kennedy and Goodchild (2004) have prescribed some rules for the formation of the yield line 

patterns: (i) The plates divided by the yield lines rotate about the lines of support and about the 

axes passing alongside any piers or columns; yield lines are linear and should terminate at slab 

boundary; and yield lines tend to move toward the simple supports and tend to move away from 

continuous supports.  

The upper bound theories based on kinematics may be correct or unsafe, whereas the strip 

and lower bound solutions based on the static methods may by conservative or correct. The study 

explained in the “Practical Yield Line Design” by (Kennedy and Goodchild 2004) dispels the 

misconceptions against yield line theory as not being a good choice of design by allowing for 

adequate safety factors to account for the predicted likelihood of the overestimation of the capacity. 

The content of the study also explains the yield line theory in detail, mentioning the collapse 

mechanism formation through supporting worked out examples. The affine transformation for 

orthotropic reinforcement in slabs based on the Affinity Theorem (Park and Gamble 2000) is also 

explained in this report by Kennedy and Goodchild (2004).  

 This section presents the application of yield line theory in refurbishment that was also 

highlighted in the report by Kennedy and Goodchild (2004). The document shows the application 
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of yield line theory for designing slab and foundation of works such as One Washington Gardens 

(London W9) and 43-47 St. John’s Wood Road (London NW8). The yield line theory was used to 

analyze the load capacity of the refurbished structure of the Onslow House (Saffron Hill, London 

EC1). The Nokia Headquarters (Stanhope Road, Camberley) is an example of yield line theory for 

designing the reinforcement at support location by using local failure patterns. The East India Dock 

Redevelopment is a case study showing how the simplicity of Yield Line Design solutions can 

expedite the construction because of repetition in reinforcement bar pattern. The yield line theory 

proved to be a handy solution to the challenges posed by the construction of 66 Buckingham Gate 

(London SW1). The elimination of downstands from the thin solid concrete slab because of the 

yield design was convenient for the architectural compliance of the standards set by Planning 

Authorities on building heights. Prefabricated reinforcement mats accelerated the construction in 

the rather confined site. The simple reinforcement design solution obtained through yield line 

analysis was implemented using the Bamtec systems for rapid construction of 80 Oxford Road 

(High Wycombe) commercial complex. 

Lindsay (2004) and Lindsay et al. (2004) conducted research to evaluate whether precast 

concrete building frames with precast concrete hollow-core floor slabs developed in New Zealand 

are sufficient in terms of seating support details under earthquake loading. Figure 2.1 presents a 

folded plate mechanism that was observed from the crack patterns developed in an infill slab 

around the central column of a building frame. In her thesis of related work, Lindsay (2004) 

explained how yield line theory was employed to find the extent to which the moment capacity of 

this mechanism contributes to the capacity of hinges of the central column. 
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Lindsay’s (2004) results were a part of a forensic analysis of full-scale experimental 

observations. The evaluation of the moment contribution of the folded plate mechanism thus 

observed from the crack pattern is conducted using the principle of virtual work done by equating 

of internal and external work done. The calculation was based on the angle of crack of the observed 

pattern. The moment interaction diagram indicates that the moment originated at the lower part of 

the tension quadrant of that diagram. Soon after the yield of the super-assemblage, the mechanism 

changed from being predominantly flexural to a tensile membrane phenomenon because of the 

tension introduced in floor system due to a “bowstring effect.” There was a loss in the moment 

capacity at the interface and a reduction in the base shear capacity was observed. It was observed 

that as the vanishing of the moment capacity of along the yield line H,I,J,K,L,M takes place as 

shown in Figure 2.1 (b), the folded plate mechanism contribution at the central column drops to 

approximately 1% of the overall resistance and was thus ignored in the analysis of overstrength. 

However, this mechanism has shown how the crack patterns will develop in slabs subjected to 

such concentrated loading. The researchers also assumed an equivalent cantilever action as shown 

in Figure 2.1 (d) to utilize Hillerborg’s strip method to analyze the problem using plastic theories.  

Lower Bound Limit Analysis Theory for Slabs 

The lower bound theory is based on the work by Hillerborg (1956). Some of the key aspects of the 

lower bound theory are discussed as follows. The moment distribution is found for the plate when 

all points in the plate satisfy the equilibrium conditions; No point on the plate exceeds the yield 

line criterion that defines the strength of the elements in the plate; and the solution is in compliance 

with the boundary conditions. 
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(a) Folded plate mechanism evident due to crack patterns in the infill region. 

 
(b) Enlargement of folded plate mechanism, with yield lines: ---=negative; ⸻=positive 

 
(c) Displacement incompatibility between frame and hollow-core units 

 
(d) Simplified post-failure assessment of infill slab by Hillerborg’s strip method 

Source: Lindsay (2004)  

Figure 2.1. Folded Plate Theory for Infill Slab Capacity  
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The plate is assumed to be rigid and perfectly plastic. Hillerborg (1956) referred to the 

lower bound method as the “equilibrium theory,” and suggested that the basis of the design 

method is, “If a distribution of moments can be found which satisfies the plate equilibrium 

equation and boundary conditions for a given external load, and if the plate is at every point able 

to carry these moments, then the given external load will represent a lower limit of the carrying 

capacity of the plate,” (Park and Gamble 2000). This load gives a conservative estimate of the 

capacity of the slab. Wood (1961) revealed that elastic theory moment distribution generates 

satisfactory minimization solutions in terms of steel economy and serviceability requisites. This is 

because uniform steel stress with no locally sharp increase in values is observed at service load. 

However, moment redistribution precedes the reaching of the ultimate load if elastic moment 

distribution based on a complex stiffness distribution in slabs following concrete cracking at 

intensely stressed areas is not selected.  

 The strength of a slab element is defined by the yield criterion when a moment field is 

applied in it (Park and Gamble 2000). The yield criterion relates the ultimate moments (internal 

capacity) per unit width of the slab (𝑚𝑢𝑥 and 𝑚𝑢𝑥 = ultimate internal resistance in the 𝑥-, 𝑦- 

directions, respectively) to the applied moments due to the external load at yielding of the element 

(𝑚𝑥, 𝑚𝑦, 𝑚𝑥𝑦 and 𝑚𝑦𝑥 = bending moments in the 𝑥- and 𝑦- directions, respectively, and the 

torsional moment acting on the face of element in 𝑥-, 𝑦- directions, respectively.) Johansen’s yield 

line criterion assumes that the reinforcement bars in the 𝑥- and 𝑦- directions attain yield strength 

when these cross the yield line (Johansen 1962). The yield line is defined in Park and Gamble 

(2000) as “a line in the plane of the slab about which plastic rotation occurs, and across which 

the reinforcing bars are yielding.” The experimental results by Jain and Kennedy (1974), Lenkei 
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(1967), Lenschow and Sozen (1967) and Cardenas and Sozen (1973) proved that Johansen’s yield 

line criterion can satisfactorily be used where planar forces in slabs are absent (Johansen 1962). 

 Hillerborg (1956) suggested a simplified approach to the lower bound method to design 

slabs by the elimination of the use of the torsional moments for the derivation of the design 

moments. The name of this strip method originates from the so-called consideration of the slab as 

a system of perpendicular strips that can be solved using the statics for the strips under equilibrium 

(Hillerborg 1956; Hillerborg 1960; Park and Gamble 2000). He also developed the “advanced 

strip method” for dealing with slabs of more complex shapes and support conditions (Hillerborg 

1964). A detailed usage of the strip method can be found in the works of Crawford (1964),  

Hillerborg (1956), translated by Blakey, Kemp (1962), Wood (1961), Armer (1968) and Shukla 

(1973). 

2.5.  Application of Plastic Theory to Bridge Systems 

Yield line theory and its application for the analysis of bridges to predict the overstrength capacity 

and its usage as a design tool is evaluated by Middleton (1997), Middleton (2008), Mander et al. 

(2010), Pirayeh Gar et al. (2014), Jiang (2015) and Barnard et al. (2010). These shall be reviewed 

later in detail in this and the following sections.  

 Middleton (2008) has stated that there is an indiscriminate allocation of large sums of funds 

on the maintenance and repairs of bridges based on a highly generalized assumption that all the 

bridges are equally at risk of failure. He reminded that many bridges have survived successfully 

despite their predicted failure by elastic analysis methods because elastic methods fail to consider 

that the overall structural system may still continue to function despite the failure of an individual 

member. In light of the gross economic loss occurring due to “unwanted remedial” maintenance 
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measures and unnecessary load traffic restriction, Middleton (2008) advocates the use of ultimate 

strength as the primary criterion to judge whether the structure is likely to fail or not. He advocates 

that elastic philosophy is practicable in design due to the relatively lower cost incurred due to 

conservatism. However, same is not true when it comes to the analysis of the load carrying 

capacity. The expenditure estimated for the allocation of the maintenance of short-span concrete 

bridge decks reported by the Highways Agency in England, forces engineers to evaluate the choice 

of elastic analyses (PB December 2003). Additionally, Haque (1997) mentioned that the 

supervision of a complex bridge system is a challenging task; one involving intense inspections 

and data management. One of the pivotal aspects of rehabilitation or repair measures is the 

identification of the bridges and/or their elements that need attention, and this may only be 

accomplished by a proper understanding of the structural behavior. Thus, the maintenance of 

bridge systems puts extreme pressure on the administrative transportation authorities.  

 Middleton (2008) pointed out the effects of redistribution of stresses under ultimate 

conditions that takes place for slabs with sufficient ductility. Thus, linear elastic methods may not 

be a suitable choice for the analysis of these bridges to capture the nonlinear behavior when the 

slab is in the post-elastic stage. For slabs that are critical in ductile failure mechanism, the collapse 

criterion may be given precedence over the serviceability criterion that is applicable for flexural 

failures. Among the prevalent methods of limit analyses, Middleton (2008) favored yield line for 

practical use over the Nonlinear Finite Element programs due to the higher cost and complexity of 

the latter. He suggested that since yield line analysis is prescribed in most of the standard building 

codes globally, it should be promoted at an industry level and not just be limited to research and 

academic level. Some of the reasons for the reluctance of the use of yield line theory on a practical 
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basis are stated as follows: (i) since the method uses hand-calculations, it can be considered tedious 

for complicated loading, geometry, and support conditions to iterate the various possible 

mechanism in the process of postulating the critical mechanisms; (ii) the method is viewed with 

apprehension since it is an upper bound solution, which is why lower bound theories are suggested 

to be further investigated as a check; (iii) the assumption of ductility must hold for the analysis to 

be applied.  

The concerns can be dealt with if adequate care is taken. For example, the method can be 

used confidently when the ductility of the members is ensured by sufficient shear reinforcement. 

For the prevention of shear failure, an elastic shear analysis is recommended. Moreover, most 

bridge decks are safe in shear action. There is experimental evidence, as discussed in the earlier 

section, that yield line predicts fairly safe capacities since additional reserve strength is reflected 

from the slab performance, that can be explained by the “compressive membrane or arching 

action” and marginally due to the strain hardening effects of steel reinforcement. Lastly, the 

process of postulating the mechanisms can be undertaken using the existing experimental crack 

patterns available and by expediting the analyses and geometric calculations in a spreadsheet 

program for faster iterations and minimization analysis to generate critical collapse mechanism. 

Middleton (2008) developed a program named Concrete Bridge Assessment Program (COBRAS) 

(Thoft-Christensen et al. 1997) to analyze short-span bridges incorporating yield line theory at 

Department of Engineering at Cambridge University for a project funded by the Highways 

Agency. This research showed that there is still a need for the yield line investigation of longer-

span bridges.  
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 Mander et al. (2010) investigated the load-carrying capacity for full-depth precast concrete 

of overhang panels in bridge decks. The authors derived a modification to the yield line theory to 

account for the flexural and shear combination that is observed to govern the strength of the 

system. This was carried out by allowing for the mild steel reinforcement to yield. Experimental 

tests were conducted to corroborate the results of the yield line analysis under the application of 

load on the edge of the seam. The specimens of the bridge deck used were 4.9 m x 5.5 m and 

200 mm thick for the full-depth region. The partial depth transverse panel-to-panel seam was 

studied in detail to postulate the modified mixed-shear yield line mechanism. It was observed that 

partial shear failure occurred along the seam line in the partial depth region of 100 mm. and not in 

the full-depth panel-to-panel seam of 200 mm. The experimental results show that loading the edge 

of the seam causes a flexural failure of the loaded panel and a shear failure of the seam. The 

theoretical failure load analyses, both the classical yield line and modified yield line, were 

conducted and compared with experimental test data for several load cases. The experimental load 

to theoretical load ratios showed that the results of the modified analytical models that were 

enhanced to simulate the behavior more accurately were closer to the experimental failure loads 

(within 1-6% of the observed results), with the exception of the conventional panel that proved to 

be weak for some unidentified reason. 

 Pirayeh Gar et al. (2014) examined bridge deck slabs with Fiber Reinforced Polymer (FRP) 

bars to assess whether or not yield line theory can be applied to find the load carrying capacity, 

due to lack of discernable plateau of the moment-curvature response of such FRP sections of 

concrete (prestressed and reinforced). This problem was tackled by assuming an equivalent plastic 

moment capacity (elasto-plastic behavior) for the FRP sections so as to apply yield line theory to 
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deck slabs of such bridges. The analytical results were experimentally validated by the results from 

a full-scale testing of precast panels that were reinforced and prestressed using Aramid Fiber 

Reinforced Polymer (AFRP). The tests were conducted under various combinations of wheel and 

axle positioning for a 200 mm. thick bridge deck slab of cross-sectional dimensions 5.5 m x 4.9 m. 

The load capacities calculated from yield line theory showed that the results were accurate within 

3% of the experimental results. The authors recommended that the transfer length and the 

development length in case of prestressing and reinforcing bars, respectively, should be properly 

accounted for, so as to avoid overestimation of the internal work done (and the consequent load 

carrying capacity), in case of cantilever or overhang bridge systems. 

 Jiang (2015) postulated and implemented critical yield line mechanisms for several load 

cases for two realistic and novel spread slab-beam bridge prototypes with spans of length greater 

than 13.7 m, namely the Riverside Bridge and the US 69 bridge of the TxDOT project 0-6722. The 

overstrength factors of the cases were found for the selected bridges using yield line theory and 

strip method (modeled through equivalent grillage analysis). The limiting behavior of the slab-on-

beam bridge deck system is evaluated for different collapse mechanisms such as weak slab-strong 

beam and strong slab-weak beam mechanisms. The failure modes of slab flexure, slab shear, 

compound shear-flexure slab mechanisms, beam only failure and mixed beam-slab failures are 

explained in detail (Jiang 2015). The results from the two methods were observed to agree, except 

for the slight differences that can be explained by the different assumptions associated with the 2 

methods. It is observed that this research exhibited the immense scope for further development of 

mixed slab-beam solutions, particularly for bridge systems. 
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2.6. Technical Needs  

Although efforts have been made to use yield line theory for analyzing the bridge systems by 

Middleton (2008), Jiang (2015) and Barnard et al. (2010), there still exists the need to develop this 

methodology further to account for the load carrying capacity of the bridges and for their 

subsequent design. This research aims to explore the true potential of the plastic theories to assess 

the maximum load carrying capacity of the bridge system. It is an independently convenient 

method (once the mechanism is correctly postulated for a typical class of bridge system) and the 

upper bound and lower bound theories offer a range of the load carrying capacity that can readily 

serve as a check for the computational methods such as the nonlinear finite element analysis and 

the grillage methods.  

This research aims to evaluate the application of the plastic theories by analyzing STTG 

bridges whose outer tub-girder is assumed to be fractured along its depth for the assessment of the 

veracity of the classification of STTG bridges as fracture critical since colossal expenditure occurs 

due to the elaborate inspections. If these bridges have an internal redundancy in the system, these 

may not be fracture critical, and thus, should be declassified from the category of bridges that are 

mandated to undergo biannual inspections and maintenance. If these bridges are found to have a 

load carrying capacity greater than the expected applied load when the outer girder is fully 

fractured, these bridges can be stated to have sufficient redundancy for their declassification. Such 

a declassification can prevent depletion of funds on unnecessary maintenance procedures, ensuring 

the proper allocation of funds of the transportation departments. 

Based on this literature review, the following questions arise: 
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Q1. Is it possible to develop the upper bound and lower bound solutions for the bridges? 

Q2. Is it possible to derive a beam-slab mechanism to adequately simulate the structural behavior 

of the bridge? 

Q3. Can the shear studs that connect the girder and the deck slab be incorporated in the failure 

mechanism?  

Q4. How can the tensile failure of the studs be mathematically expressed using the principle of 

virtual work? 

Q5. How can the combination of the deck-slab, girder and stud failure be modeled?  

Q6. How does the mechanism vary from a uniform sand loading to point loading due to wheels?  

Q7. How much does the catenary effect and the strain hardening effect impact the results?  

Q8. How may the upper bound and lower bound methods be modified according to the geometry 

of different bridges and the varying boundary conditions?  

Q9. Can the bridges be subjected to a more advanced investigation to evaluate the 

declassification or should they remain classified as fracture critical? 

Q10. Can recommendations be made for limiting the span length, widths or radii of curvature of 

the bridges to favor declassification. 
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CHAPTER III  

VERIFICATION OF PLASTIC METHODS APPLIED TO STEEL TWIN-TUB GIRDER 

BRIDGE STRUCTURE 

3.1. Chapter Summary 

The previous work conducted to incorporate the limit analyses to bridges has not been able to 

present a definitive solution to the problem of failure analysis of bridges. Moreover, there is very 

limited research conducted on a large-scale implementation of the yield line method for bridges of 

longer spans. The existing analysis done in the past to implement the yield line method for finding 

the collapse load of a decommissioned Steel Twin-Tub Girder (STTG) bridge with a fracture 

critical condition imposed by fracturing the web and the bottom flange of the outermost girder 

showed the potential of this method to successfully predict the actual collapse load. It is, therefore, 

an essential step in the application of plastic limit methods for the analysis of such bridges to 

postulate a mechanism that captures the problem accurately. The actual experimental loading 

conditions are modeled and modifications are implemented in the mechanism to establish the 

flexural and shear failure likely to cause a collapse in the case under consideration. The analytical 

result generated from the postulated mechanism is under 1.4% error from the experimentally 

obtained results. 

3.2. Introduction 

The primary goal of yield line analysis is to validate the results from the static load test conducted 

experimentally during a previous TxDOT research project (Barnard et al. 2010). The full-scale 

testing of a typical STTG bridge was conducted as part of TxDOT Research Project 9-5498, and 

the experimental static ultimate load capacity of the bridge was reported. To develop a grasp over 
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the plastic theories and their application to bridge decks, it is imperative to check the analysis using 

the existing experimental data. Therefore, a test bridge from the TxDOT 9-5498 project is analyzed 

under the experimental loading conditions since this bridge span is a quintessential STTG single-

span simply-supported bridge. Several analyses are conducted to postulate the mechanism that 

gives the critical mechanism for the test loading conditions.  

In the present task, the yield line analysis of the same bridge was undertaken to validate 

the failure mechanism with the experimental results. The failure mechanism of the bridge is studied 

in detail to analyze the load path when the exterior girder is fractured along the depth of its webs 

and its bottom flange. The problem is evaluated in the light of various conditions, such as reduction 

in capacity due to the fracture of the outer girder, the contribution of the stud failure on the overall 

load carrying capacity, the capacity of the deck slab, and the impact of the external loads applied. 

The TxDOT 9-5498 research project evaluated the yield line theory under an equivalent truck load. 

However, the experiment was conducted using sand load and was perhaps not simulated accurately 

due to a simplified point loading used in yield line analysis and the calculated load was 22.5% 

lower than the actual load. The current research (TxDOT 0-6937) postulates yield theory for the 

exact loading conditions as the experimental test using shape functions to account for the 

complexity arising due to schematic uniform loading as shown in Figure 3.1 

 The deflections under the uniform loading of sand is a three-dimensional computation that 

can be solved using shape functions. The shape function used to find the deflection at any point 

P(x,y) is given by 
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(a) Deflection of deck slab under uniformly distributed loading (schematic). 

 

 

(b) Linear triangular elements formed between the yield lines. 

 

 

(c) Zoomed in view to demonstrate the shape function used for deflections. 

 

Figure 3.1. Computation of Deflection of the Slab under Uniformly Distributed Loading  



 

 

33 

 

 

𝛿(𝑥,𝑦) = [

1 𝐴𝑥 𝐴𝑦

1 𝐵𝑥 𝐵𝑦

1 𝐶𝑥 𝐶𝑦

] (3.1) 

where P(x,y) = any arbitrary point on the deck slab; 𝛿(𝑥,𝑦) = deflection of the slab at point P(x,y), 

under the influence of sand loading; 𝐴𝑥, 𝐵𝑥 and 𝐶𝑥 are the 𝑥-coordinates of the points A, B, and C, 

respectively; and 𝐴𝑦, 𝐵𝑦 and 𝐶𝑦 are the 𝑦-coordinates of the points A, B, and C,  respectively. The 

shear studs were not accounted for in the yield line solution in the TxDOT 9-5498 analysis. A 

modification is proposed in the current research that accounts for the internal capacity of the shear 

studs indicating a higher collapse load than that obtained from an analysis that does not include 

the enhanced capacity due to the shear studs. It should also be noted that the current research 

utilized the measured strength of the deck as stated in (Barnard et al. 2010) in the computations. 

The strengths of the steel are as specified by the design drawing of the test bridge (Neuman 2009). 

The result of this yield line analysis is 2.75% lower than the loads reported by the testing agency 

that can be attributed to the catenary action of the slab (Pirayeh Gar et al. 2014). The analysis 

procedures and results are discussed in the following sections. 

3.3. Yield Line Theory 

The governing equation for the yield line analysis establishes the overstrength factor as follows  

 Ω𝐸𝑊𝐷 = 𝐼𝑊𝐷 (3.2) 

where 𝐸𝑊𝐷 = external work done by the factored loads based on 1.25DL + 1.75(LL + IM); 

𝐼𝑊𝐷 = internal work done on the yield lines in the deck, work done by plastic moments in the 

steel tub flanges (of the fractured girder), and work done by the pullout of shear studs between the 



 

 

34 

 

tub flanges and reinforced concrete deck slab; and Ω is an overstrength factor necessary to give 

equivalence with 𝐼𝑊𝐷.  

3.3.1. Internal Work Done 

The internal work done due to the deck, flanges of the fractured girder, exterior guardrail, and the 

studs can be computed as follows: 

𝐼𝑊𝐷 =  ∑ 𝑚𝑥𝛳𝑥𝑦 + ∑ 𝑚𝑦𝛳𝑦𝑥 +  ∑ 𝑊stud𝛿stud  (3.3) 

where ∑ 𝑚𝑥𝛳𝑥𝑦 = the summation of the internal work done due to the moment capacity of the 

deck in the longitudinal direction, the internal work done due to the guardrail, and the internal 

work done due to the fractured girder; ∑ 𝑚𝑦𝛳𝑦𝑥 = the internal work done due to the moment 

capacity of the deck in the transverse direction; ∑ 𝑊stud𝛿stud = the internal work done due to the 

studs; 𝑚𝑥 and 𝑚𝑦 = the longitudinal and the transverse moment capacity, respectively; 

𝛳𝑥 and 𝛳𝑦 = the angular deflection of the plane segments of the deck slab along the longitudinal 

and transverse directions, respectively; 𝑦 and 𝑥 = the distances along which the moment capacities 

act in the longitudinal and transverse directions, respectively; 𝑊stud = the internal work done by 

the group of studs connecting the deck slab and the twin tub girders; and 𝛿stud = the deflection of 

the center of gravity of that length along which the girder flanges are assumed to separate from the 

deck slab according to the geometry of the mechanism selected. 

3.3.2. External Work Done 

The loading that was applied in the experimental study of the bridge at the Ferguson Structural 

Engineering Laboratory, University of Texas at Austin, has been recreated in terms of distributed 

loads. The girders forming the boundary enclosure for the sand are termed as “sand bin,” and the 
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applied sand load increasingly added until failure of the bridge takes place has been modeled as 

accurately as possible from the data available. The applied sand load is known to exert a load of 

1615 kN from the experimental results. The external work done due to the self-weight of each 

component, such as the deck slab, the fractured girder, and guardrail has been computed. The work 

done due to the sand bin girders and the sand has been computed using the following expression. 

𝐸𝑊𝐷 = ∑ 𝑤d𝐴d𝛿d + ∑ 𝑤load𝐴load𝛿load  (3.4) 

in which ∑ 𝑤d𝐴d𝛿d = the total external work done due to the self-weight of the bridge components 

and ∑ 𝑤load𝐴load𝛿load = the total external work done due to the externally applied load of the sand 

bin girders and the sand; where 𝑤d = the self-weight of the structure components expressed as an 

area load; 𝐴d = the area of the respective components whose self-weight is 𝑤d; 𝛿d = the deflection 

of the center of gravity of the region whose area is 𝐴d; 𝑤load = the external load applied due to the 

sand bin girders and the sand, expressed as an area load; 𝐴load = the area of the applied load; and 

𝛿load = deflection of the center of gravity of the region whose area is 𝐴load. 

Equations (3.3) and (3.4) are obtained in terms of the deflection (𝛿) that occurs at the 

location of maximum sagging. The principle of virtual work facilitates the computation of the load 

of sand needed to be added to reach the collapse of the bridge by equating Equations (3.3) and 

(3.4).  

3.4. Validation of Yield Line Analysis with Experimental Results 

This section gives a detailed analysis of the experimentally tested STTG bridge, which formerly 

was a single-lane, high-occupancy-vehicle (HOV) flyover exit-ramp of the interchange between 

IH 10 and Loop 610 in Houston, Texas as shown in Figure 3.2. The yield line analysis was 

validated using the experimental results from the TxDOT Research Project 9-5498. 
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(a) Experimental test bridge of TxDOT 9-5498 Project 

 

(b) Applied sand loading for full-scale testing of TxDOT 9-5498 Project 

Source:(Neuman 2009) 

Figure 3.2. Experimental Test Bridge  
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3.4.1. Bridge Specifications and Details 

This section describes the properties of the experimental test bridge under consideration used for 

the validation of the plastic limit analysis. Prior to the testing, this span was part of a single-lane, 

HOV flyover exit-ramp of the interchange between IH 10 and Loop 610 in Houston, Texas.  

Material Properties 

The deck slab was uniformly reinforced in each direction. The average cylindrical compressive 

strength of concrete in the deck slab was 6.70 MPa, and that in the exterior guardrail was also 

6.70 MPa. The reinforcement in the longitudinal direction of the deck slab was provided with 

13 mm diameter bars at 229 mm. on-center spacing with a nominal yield strength of 413.70 MPa 

at the top and 16 mm diameter bars at 152 mm on-center spacing with a nominal yield strength of 

468.80 MPa at the bottom. The reinforcement in the transverse direction of the deck slab was 

provided with 16 mm diameter bars at 152 mm. on-center spacing with a nominal yield strength 

of 468.80 MPa at top and bottom. The nominal yield strength of the steel twin tub girders was 

344.74 MPa. The modulus of elasticity of the steel is taken as 199945 MPa (Neuman 2009). 

Bridge Properties 

The bridge deck was 36.6 m long, 7.1 m wide, and 203 mm thick. Figure 3.3(a), (b), and (c) present 

the dimensions of the steel tub girder, the shear stud connection detail, and the guardrails, 

respectively. The web of the girder was 1448 mm deep and 13 mm thick. The flanges were 305 mm 

wide and 16 mm thick, spaced at 1.8 m on-center. The bottom flange steel plate was 1194 mm 

wide and 19 mm thick. A 76 mm haunch was provided between the reinforced concrete deck, and 

the deck was flanked by T501 guardrails on both sides longitudinally (Neuman 2009).  
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(a) Dimensions of steel tub girder  

 

(b) Shear stud connection detail 

 
(c) Cross-section showing T501 guardrails 

 

(all dimensions are in mm) 

 

Figure 3.3. Bridge Properties. 
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Member Capacity 

The internal work done computations are based upon the moment capacities of the various member 

components engaged in the failure mechanism of the bridge, such as the transverse and 

longitudinal deck-slab sections of unit foot width, the guardrail, and the flanges. These capacities 

are obtained using the standard U.S. code-based ultimate strength (Mn), using the yield strengths 

of steel and the characteristic strength of concrete as specified. These computations do not consider 

the effects of strain hardening. The flexural capacity of the railing was calculated by considering 

it as a regular doubly reinforced beam. The moment capacity of the flanges at the fractured section 

at mid-span was computed such that the compressive strength due to deck slab was not double 

counted. 

The positive longitudinal moment capacity of the deck slab was 𝑚𝑥  =72 kN-m/m; the 

negative longitudinal moment capacity per unit width of the deck slab was 𝑚𝑥
′

 =48 kN-m/m; the 

positive transverse moment capacity per unit width of the deck slab was 𝑚𝑦  =111 kN-m/m; and 

the negative transverse moment capacity per unit width of the deck slab was 𝑚𝑦
′

 =88 kN-m/m. The 

moment capacity of the flanges of the fractured girder was 𝑀𝑓= 68 kN-m, and the moment capacity 

due to the T501 guardrail was 𝑀𝑟𝑎𝑖𝑙= 55 kN-m. The pullout capacity of the shear studs was found 

to be 71 kN following the methods specified in ACI-318 (2017) and modified as per the 

recommendations from the experimental research conducted by Sutton (2007) and Mouras et al. 

(2008). 

3.4.2. General Overview of Collapse Mechanism 

An upper-bound yield line or plastic analysis solution may lead to a sufficient and economical 

treatment to address the reserve strength of bridges. A general treatise of plastic and yield line 
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methods may be found in (Park and Gamble 2000) . Plastic methods aim to identify the inherent 

reserve capacity of the structure that will be higher than the strength calculated from an elastic 

analysis. Elastic analysis is only able to identify the loads necessary to achieve first yield, whereas 

plastic methods provide the limit load that leads to a collapse mechanism. This rigid-plastic 

solution utilizes the equations of equilibrium or the virtual work equations; the former method is 

generally used for lower-bound strip methods, whereas the latter is used for upper-bound solutions. 

The assumed virtual deflection eventually gets eliminated from the solution equations, thereby 

producing a single equation in terms of the collapse load. This solution provides the mechanism 

by which yield lines and plastic hinges form and significant plastic deformation occurs. Such a 

plastic analysis approach provides a rapid procedure in contrast with computational solutions like 

the FEM solutions since plastic methods are essentially hand-calculation methods. The success of 

the upper-bound plastic solutions, however, rests largely on identifying the correct yield line 

pattern forming the collapse mechanism. 

3.4.3. Potential Collapse Mechanisms for the Experimental Bridge 

Various yield line collapse mechanisms may be postulated, and the collapse load is determined 

using either a virtual work or an equilibrium analysis. The correct mechanism provides the 

minimum collapse load. The most admissible mechanism is identified from the various 

possibilities such that the boundary conditions of the bridge and the deck slab are suitably modeled. 

The loading of the bridge influences the formation of the yield line pattern. The concrete beams 

that form a rectangular bin at the mid-span along the outer edge of the bridge are formed to pour 

the sand in the critical region above the fractured girder. The barrier dimensions impact the crack 

formation and the governing mechanism due to the added stiffness from the concrete girders. 
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Consider the experimental twin tub bridge span tested at the University of Texas (Barnard 

et al. 2010; Neuman 2009). Figure 3.4 illustrates the possible failure mechanisms that may occur 

due to the sand loading described in Neuman (2009) when the bending of the deck slab is on the 

longitudinal axis passing through the girder of the sand bin positioned at the nonfractured girder’s 

interior flange. The different variables assigned for the dimensions of the bridge are needed for the 

computation of the load. The transverse dimensions are represented with 𝑏𝑒, 𝑏𝑔, 𝑏𝑠, 𝑏𝑟, and 𝑏𝑦
′ . 

The variables 𝑏𝑒, 𝑏𝑔, and 𝑏𝑠 represent the width of the edge from the outer flange of the fractured 

girder, the overall width of each twin tub girder, and the spacing between interior flanges of the 

outer and inner girders, respectively; 𝑏𝑟  = width assumed for the railing, and 𝑏𝑦
′  = the transverse 

distance from the outer edge of the bridge at which the horizontal yield line lies. The longitudinal 

dimensions are represented with 𝑋𝑥, a𝑒, a𝑠 and a𝑏. 𝑋𝑥, a𝑒, a𝑠 and a𝑏 denote the distance of the 

point of intersection of the negative inclined yield line and the axis along the outer edge of the 

bridge from the mid-span, the length of half-span, the length of half of the negative horizontal 

yield line, and the length of half of the sand bin, respectively (Neuman 2009). 

Solutions are presented for the variations of collapsed loads with the yield line geometry 

for different mechanisms and compared in Figure 3.5 (a). The graph shows the variation of the 

ultimate collapse load as the dimension of half of the horizontal negative yield line, a𝑠, varies from 

0 m to 18.3 m. Figure 3.4 (a) (Yield Line Mechanism [YLM] 1) gives the overall minimum solution. 

However, it is eliminated as inadmissible because the girder is required to twist significantly, and 

this twist cannot be achieved unless the girder yields plastically. Figure 3.4 (b) (YLM 2) assumes 

the girder is seated at the center of the tub. This feature was not strictly the case in the tests, so it 

is eliminated. 
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(a) YLM-1, Negative YL through interior flange of OG, Ultimate Collapse Load = 1036 kN 

 
(b) YLM-2, Negative YL through mid-width of OG, Ultimate Collapse Load = 1320 kN 

 
(c) YLM-3, Negative YL through exterior flange of OG, Ultimate Collapse Load = 1570 kN 

 
(d) YLM-4, Negative YL through edge of OG, Ultimate Collapse Load = 1780 kN 

 

Note: YLM = yield line mechanism; YL = yield lines; OG = outside girder. 

The colors distinguish different locations through which diagonal negative YL pass:  

Green: passing through interior flange of OG; Blue: passing through mid-width of OG;  

Red: passing through exterior flange of OG; Purple: passing through mid-width of OG. 

 

Figure 3.4. Different Probable Yield Line Mechanisms to study the model that best 

represents Collapse Mechanism taking place in experimental sand loading test. 
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(a) Mechanisms 1 to 4, to be read in conjunction with Figure 3.4. 

 
(b) Mechanism 3 showing the different solutions given in Figure 3.6 

 

Figure 3.5. Minimization Curves of Ultimate Static Load Generated for Sand Load on 

TxDOT Research Project 9-5498. 
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Figure 3.4 (c) (YLM3) assumes the fractured girder is seated over its entire width. 

Displacement compatibility along the length of the girder is violated, requiring some of the shear 

studs to pull out. Indeed, this was the case in the reported tests, and accordingly this work has been 

incorporated into the analysis. 

Similarly, YLM 4, shown in Figure 3.4 (d), requires stud pullout, but it should be noted that 

none of the YLM 4 solutions in Figure 3.5(a) are critical, which leaves mechanism YLM3 as the 

remaining viable mechanism. Among the various mechanisms, the case where the negative yield 

line passes through the exterior flange of the fractured outside girder is found to be the minimum. 

For this critical case, two of the values of a𝑠 were short-listed such that the solutions resulting from 

these values encompass all possible mechanisms. Figure 3.5(b) illustrates the critical mechanism, 

with the loading for key a𝑠 values indicated by red circles and pictorially represented in Figure 3.6 

Figure 3.6 (a) and (b) illustrate two of the key mechanisms that form the extremities of the 

possible a𝑠 values for YLM3. The parts (c) and (d) illustrate an intermediate case for a𝑠 and a 

limiting case of 𝑋𝑥, which denotes the distance from mid-span to the location where diagonal 

negative yield lines intersect the point where the elevations meet at the zero-deflection datum. It 

is essential to carefully judge the admissibility of each mechanism in accordance with the boundary 

conditions and with the rules governing deformation compatibility. Several admissible collapse 

mechanisms were postulated in the given research. Since this is an upper-bound solution, the 

veracity of the critical collapse load must be thoroughly checked. Solution (b) shown in 

Figure 3.5(b), where a𝑠 = 6.1 m, which is the half-length of the stiff barrier at the back of the sand 

heap, was adopted because it constrained the mechanism shown in Figure 3.6 (b). 
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(a) Limiting case with as = 0 m 

 
(b) Sand Bin constraint on as 

 

(c) Intermediate case encompassing all admissible values of as 

 
(d) Limiting case with as running along the span length 

 

Figure 3.6. Probable Mechanisms Postulated. 
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3.4.4. Ultimate Collapse Load  

Figure 3.7 illustrates the yield line mechanism chosen for the sand loading. The negative yield 

lines follow a trapezoidal shape due to spreading of the sand load over the deck slab. This pattern 

is corroborated well by the crack lines observed during the experimental testing for TxDOT 

Research Project 9-5498. The loading was recreated for the manual analysis of the experimental 

bridge using yield line theory. The sand loading was modeled to capture the effects on deck slab 

as accurately as possible by accounting for the geometry in which the sand was accumulated 

around and inside the concrete girders forming the periphery. The load primarily affects the mid-

span since it was concentrated within the sand bin area. To account for this sagging behavior, the 

positive yield lines (represented by the wiggly lines), form a V-shape at the mid-span region. The 

minimization trials conducted as mentioned in Section 3.4.3. resulted in the optimal mechanism in 

which the diagonal negative yield lines passes through the outer flange of the fractured outside 

girder before it terminates at the point where the elevations meet at the zero- deflection datum, 

located at a certain distance 𝑋𝑥 on either side of the mid-span. The ultimate collapse load 

computation consists of the internal and external work done calculations. The internal work done 

due to the slab (that has been divided into segments), the rail along the outer edge of the bridge, 

and the fractured outside girder are tabulated in Table 3.1. The internal work done due to the studs 

can be computed based on the assumption that the work is done due to the separation of the deck 

slab along the two flanges of the outside fractured girder following a constant angular deflection, 

, that can be expressed in terms of the deflection, δ. 

 =  
𝛿

𝑋𝑥

 (3.5) 
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(a) Plan view of the bridge with the postulated yield line mechanism  

under experimental sand loading 

 

 

 
 

(b)Profile with angular deflections and assumed separation of the  

deck and flanges of outside girder (OG) 

 

 
 

Figure 3.7. Critical Mechanism with the Inclined Negative Yield Lines passing through 

Exterior Flange of the Outside Girder at the Supports. 
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Table 3.1. Internal Work Done Due to Deck Slab, Fractured Outside Girder, and Rail. 

Segment 

Angular 

Deflection Internal Work Done 

𝜭𝒙 𝜭𝒚 (𝒎𝒙)(𝜭𝒙)(𝒚) (𝒎𝒚)(𝜭𝒚)(𝒙) 

OABCD, 

OA'B'C'D' 

𝛿

𝑋𝑥
 

𝛿

𝑏𝑦
′

−
𝑎𝑠

𝑏𝑦
′ (𝑋𝑥)

𝛿 
2{

(𝑚𝑥
′ ) (

𝛿

𝑋𝑥
) (𝑏𝑦

′ − 𝑏𝑒)

+(𝑚𝑥) (
𝛿

𝑋𝑥
 ) (𝑏𝑦

′ )
 } 2{

(𝑚𝑦
′ ) (

𝛿

𝑏𝑦
′ −

𝑎𝑠

𝑏𝑦
′ 𝑋𝑥

𝛿 ) (𝑎𝑒 − 𝑎𝑠) 

+ (𝑚𝑦) (
𝑎𝑠

𝑏𝑦
′ 𝑋𝑥

𝛿 ) (𝑎𝑠)
} 

DOE, 

D'OE 
0 

𝛿

𝑏𝑦
′  0 2 {(𝑚𝑦

′ ) (
𝛿

𝑏𝑦
′ ) (𝑎𝑠) } 

Rail 
𝛿

𝑋𝑥
 0 2 𝑀𝑟

𝛿

𝑋𝑥
 0 

Girder 
𝛿

𝑋𝑥
 0 2𝑀𝑓

𝛿

𝑋𝑥
 0 

Total Internal Work Done 

2{
(𝑚𝑥

′ ) (
𝛿

𝑋𝑥
) (𝑏𝑦

′ − 𝑏𝑒)

+(𝑚𝑥) (
𝛿

𝑋𝑥
 ) (𝑏𝑦

′ )
 }+ 

2 (
𝛿

𝑋𝑥
) (𝑀𝑟 + 𝑀𝑓) 

2{
(𝑚𝑦

′ ) (
𝛿

𝑏𝑦
′ −

𝑎𝑠

𝑏𝑦
′ 𝑋𝑥

𝛿 ) (𝑎𝑒 − 𝑎𝑠) 

+ (𝑚𝑦) (
𝑎𝑠

𝑏𝑦
′ 𝑋𝑥

𝛿 ) (𝑎𝑠)
}+ 

2 {(𝑚𝑦
′ ) (

𝛿

𝑏𝑦
′ ) (𝑎𝑠) } 
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The design concrete breakout strength of the stud group 𝑁𝑐𝑏𝑔 is computed to be 71 kN. 

The length of separation of the deck along the interior and exterior flanges of the outside fractured 

girder are denoted by 𝑙 and 𝑙′, respectively. The average separation between the deck slab and the 

interior and exterior flanges of the outside fractured girder are represented as 𝛿𝑙 and 𝛿𝑙′, given by 

the following equations.  

𝛿𝑙 = 0.5
𝑙

2
  (3.6) 

𝛿𝑙′ = 0.5
𝑙′

2
  (3.7) 

The stud spacing is denoted by 𝑠𝑠𝑡𝑢𝑑and is considered in meters. The internal work done 

due to studs is given as 

𝐼𝑊𝐷𝑠𝑡𝑢𝑑 = 𝑁𝑐𝑏𝑔𝑠𝑠𝑡𝑢𝑑(𝛿𝑙𝑙 + 𝛿𝑙′  𝑙′) (3.8) 

The external virtual work done by the deck slab, the girder, the guardrail, the girders 

forming the concrete bin girders, and the applied sand load can be expressed as 

𝐸𝑊𝐷 = 𝑤𝑑𝐴𝑑𝛿𝑑 + 𝑊𝑔𝛿𝑔 + 𝑊𝑟𝛿𝑟 + 𝑊𝑐𝑏𝑔𝛿𝑐𝑏𝑔 + 𝑤𝑠𝐴𝑠𝛿𝑠 (3.9) 
 

where 𝑤𝑑 = weight of deck slab per unit area; 𝑊𝑔 = weight force of the fractured outside girder; 

𝑊𝑟 = weight force of the outer rail; 𝑊𝑐𝑏𝑔 = weight force of the concrete bin girders; 𝑤𝑠 = weight 

of sand load per unit area; 𝐴𝑑 = area of the deck slab that undergoes deflection for the assumed 

yield line mechanism; 𝐴𝑠 = area of the region in which the sand is poured; 𝛿𝑑 = deflection of the 

center of gravity of the area 𝐴𝑑; 𝛿𝑔 = deflection of the center of gravity of the fractured outside 

girder; 𝛿𝑟 = deflection of the center of gravity of the outer rail; 𝛿𝑐𝑏𝑔 = deflection of the center of 

gravity of the concrete bin girders; and 𝛿𝑠 = deflection of the center of gravity of the area 𝐴𝑠.  
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The sand load, 𝑤𝑠, is the unknown that can be solved by equating the internal work done 

and the external work done. Using the critical mechanism from the minimization curves and 

applying the concepts discussed in Section 3.4, the ultimate collapse load is computed to be 

1570 kN. This compares well with the experimental collapse load of 1615 kN. It is to be noted that 

the experimental value reported includes the total weight of the sand poured. However, for this 

analysis, the entire sand does not contribute to the work done in causing virtual deflection because 

some of the sand that is spilled out of the deflecting region of the deck slab does no work for the 

assumed yield line mechanism. 

Deducting that volume of the sand load from the reported collapse load, the failure load is 

calculated as 1592 kN. The analytical yield line result of 𝑊𝑦𝑖𝑒𝑙𝑑 = 1570 kN is quite close to the 

revised experimental outcome of 𝑊𝑦𝑖𝑒𝑙𝑑 = 1570 kN. The overall concept of the plastic yield line 

mechanism analysis is thus considered validated. The yield solution is expected to be an upper-

bound solution, as suggested by (Park and Gamble 2000). However, the exception to this solution 

is that when deflections are extremely large and tensile, membrane forces may arise from a 

catenary action. For such action, the rigid-plastic theory adopted herein breaks down (Pirayeh Gar 

et al. 2014).  

3.5. Chapter Findings 

The problem of failure load analysis under uniform sand loading as per the TxDOT 9-5498 project 

was analyzed using the yield line analysis. Critical mechanism was finalized after the evaluation 

of the problem with all possible mechanisms. The load carrying capacity was computed after 

simulating the loading conditions according to the experimental details and it was necessary to 

modify the classical yield line theory to represent the capacity due to flexural strength of the deck 
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and beam combination and the tensile (pull-out) strength of the shear studs connecting the deck 

and beam. The shortcomings of the previously attempted yield line analysis to recreate the test 

problem were addressed by this modification of representing the internal work done due to studs 

as a tensile contribution in addition to the flexural contribution by the deck slab and the girder. 

The experimentally tested results show that a load of 1592 kN was applied in the form of sand load 

to cause the collapse of the bridge, although the value of collapse load mentioned in the report was 

1615 kN. It is to be noted that the value reported is inclusive of the entire volume of sand that was 

added to the deck. However, the load that actually participated in the work done to cause failure 

was calculated to be 44 kN short of the reported load. Therefore, it was concluded that the 

postulated mechanism captures the failure mechanism with reasonable accuracy and yield line 

theory may be a viable tool for the assessment of such bridges. 
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CHAPTER IV  

PLASTIC ANALYSIS THEORY TO IDENTIFY RESERVE CAPACITY AFTER ONE 

GIRDER HAS FRACTURED 

4.1. Chapter Summary  

There is a need for the development of the yield line limit analysis method to solve the problem of 

analyzing Steel Twin-Tub Girder (STTG) bridges under the standard American Association of 

State Highway and Transportation Officials (AASHTO) loading. The complexity of the bridge 

geometry is to be assessed in accordance with the behavior of structural elements under the given 

loading. The upper bound and lower bound theories are developed to establish a general solution 

for capturing the failure mechanism. The upper bound method is formulated for the critical path 

flanked by the girders, that undergoes a combination of flexural and torsional bending. Virtual 

work equations are used to generate expressions for reserve capacity for several possible 

admissible mechanisms. The minimization of all these solutions is conducted to generate the 

critical solution for the strip of the bridge under consideration. The solutions are further extended 

and applied to the full bridge, after accounting for the curvature of the spans. The spans of different 

boundary conditions are treated individually in detail to develop case-wise expressions of reserve 

capacity. These expressions will aid in the preliminary assessment of the reclassification of such 

bridges from their fracture critical status. The ease and nature of this computation makes this 

method very economic and, therefore, has the potential to save the transportation authority from 

spending millions of dollars in unwarranted inspections. The findings are concluded by comparing 

the deflection contours of the yield line analysis with the Finite Element Method (FEM) generated 

deflection maps. 



 

 

53 

 

4.2. Introduction 

This section presents the theory behind postulated collapse mechanism for HL-93 load case using 

the method of virtual work. A derivation is given for a critical folded plate yield-line mechanism 

that is representative of expected limit behavior in a certain class of bridge deck systems. General 

equations are then derived for the overstrength factor of fracture critical bridges. The establishment 

of the yield line theory with the equivalent torsional mechanism is challenging and is accompanied 

by a supplementary strip method solution to obtain a range of upper bound and lower bound 

solutions. These solutions are necessary to give an estimate of the reserve capacity of the bridges 

under the extreme case of outer girder completely fractured. The derivation of the two solutions 

helps in quantifying the underlying differences in the contribution to inherent strength and stability 

of a redundant system for the methods. The solutions are modified to account for the curvature of 

the bridges. 

 The establishment of the solution aims to equip bridge engineers with a simple yet effective 

tool to initiate the process of reclassification of bridges as fracture critical. The solutions give a 

range of expected values within which the overstrength factor will lie and will also indicate 

whether or not a more advanced analysis such as FEM or Grillage analysis is needed to be 

undertaken.  

4.3. Virtual Work Equations 

Bridge decks supported by fracture critical girders are analyzed by yield-line theory using the 

equations of virtual work. In the upper-bound method of plastic collapse mechanism analysis, any 

kinematically admissible mechanism may be postulated. The mechanism with the lowest collapse 

load is then the theoretically correct mechanism. 
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Figure 4.1 presents a folded plate mechanism (Lindsay et al. 2004) with 𝑁 yield lines 

zigzagging between the unfractured and fractured girders, where 𝑁 is an unknown number of 

diagonal yield lines but determined by a load minimization procedure. The degree of an equivalent 

distributed load that may be placed over the fractured girder, 𝑊𝑒, and its magnitude is found via a 

virtual work analysis. Consider a folded plate mechanism supported on three sides, with the fourth 

side supported by a torsionally restrained beam with a central hinge, as shown in Figure 4.1(a). 

Note that negative (hogging) yield lines are dashed, while wiggly solid yield lines are positive 

(sagging) moments. The long edge with double hatching is fully fixed (clamped against rotation) 

while the ends are simply supported (free to rotate). The figure also shows the transverse angular 

deflections along the D-D, E-E, and F-F profiles. 

Figure 4.1(b) depicts the side elevation illustrating the deflection profiles along Sections 

A-A, B-B, and C-C. Figure 4.1(c) and (d) show the geometry of the folded plate mechanisms with 

deflections, from which the internal work done is derived by considering the half-span of a bridge, 

as shown. Displacing the fractured girder downward by unit displacement (δ = 1) at mid-span, the 

external work done is given by  

𝐸𝑊𝐷 = 𝑊𝑒𝐿𝑥

𝛿

2
= 0.5𝑊𝑒𝐿𝑥 (4.1) 

The internal work done is computed for the cases obtained by incrementing the number of 

diagonal yield lines in multiples of four, and a pattern emerges that is used for expressing the 

internal work done in terms of 𝑁. The internal work done is thus expressed as 

𝐼𝑊𝐷 =  ∑(𝑚𝑥
′ + 𝑚𝑥)(𝛳𝑥)(𝑦) +  ∑(𝑚𝑦

′ + 𝑚𝑦)(𝛳𝑦)(𝑥) (4.2) 
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(a) 

 

(b) 

(c) 

(d) 

Figure 4.1. Folded Plate Mechanism for N diagonal yield lines showing (a) Plan View 

and Side Elevation with deflection profiles along D-D, E-E, and F-F; (b) 

Side Elevation with deflection profile along Sections A-A, B-B, and C-C; 

(c) Plan View focusing on half bridge with N Diagonal yield lines and Side 

elevation with transverse angular deflection; and (d) Side View with 

deflection profiles with longitudinal deflections along Profile C-C. 
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The deflection profile C-C shows a linear variation from zero at the supports to δ at the 

fracture location (mid-span). The angle of rotation in the longitudinal direction is a constant given 

by the slope of the section along C-C. Observing the section profile B-B, the section plateaux out 

between the alternate triangular segments formed between the zigzag yield lines. Therefore, the 

internal work done due to the longitudinal reinforcement for each of the triangular segment under 

consideration for half the span length is considered. Since the rotation takes place alternately, the 

summation is carried out 𝑁/4 times for the half span of the bridge. 

1

2
𝐼𝑊𝐷𝑥 =

𝑁

4
(𝑚𝑥

′ + 𝑚𝑥) (
2𝛿

𝐿𝑥
) (𝑠) (4.3) 

Twice the summation of the term in Equation (4.3) simplifies to the following expression 

for internal work done due to longitudinal reinforcement for the entire span as 

𝐼𝑊𝐷𝑥 = (𝑚𝑥
′ + 𝑚𝑥) (

𝛿

𝐿𝑥
) (𝑠𝑁) (4.4) 

The rotation of the slab in the transverse direction is not constant since it depends on the deflection 

of the slab along the C-C section, which linearly varies. Figure 4.1(c) and (d) show the deflection 

at every 1/ 𝑁 th segment, where each segment’s length is 𝐿𝑥/ 𝑁. It is observed that the deflection 

of the ith segment is the ith multiple of 2𝛿/ 𝑁, which implies a maximum deflection at the mid-span 

when i = 𝑁/2. The angle of rotation in the transverse direction is the ratio of the ith deflection to 

the spacing, 𝑠. At section F-F, the rotation takes place once by the negative diagonal yield line and 

is calculated to be (1 × 2𝛿)/ 𝑠𝑁 over a distance of 𝐿𝑥/ 𝑁. Along section E-E, the horizontal 

negative yield line rotates the slab by (6 × 2𝛿)/𝑠𝑁 over a distance of 2𝐿𝑥/ 𝑁. The negative 

diagonal yield line causes a rotation of (7 × 2𝛿)/𝑠𝑁 over a distance of 𝐿𝑥/ 𝑁. The horizontal 



 

 

57 

 

positive yield line plateaux the slab from a rotation of (7 × 2𝛿)/𝑠𝑁 over a distance of 2𝐿𝑥/ 𝑁. 

Similar rotations take place for each section passing through the negative diagonal yield lines. 

Similarly, positive rotations pass through the sections with positive diagonal yield lines. An 

exception is the triangle shown at D-D. Since this analysis solves the problem using symmetry, 

care must be taken that the horizontal negative yield line rotates the slab in a similar way, with a 

rotation of (0.5𝑁 × 2𝛿)/ 𝑠𝑁, but for a distance of 𝐿𝑥/ 𝑁.  

The internal work done is calculated along all the yield lines, and it is observed from the 

terms of the expression that the deflections form an arithmetic progression (AP) from 1 to 𝑁/2 

terms. Using the result of the sum of first “n” natural numbers of an AP, n(n+1)/2 and substituting 

in terms of the problem parameters, the expression of the internal work done due to transverse 

reinforcement for each of the triangular segment under consideration for half the span length is 

given by  

                               ∑ 𝐼𝑊𝐷𝑦.𝑖 = ∑(𝑚𝑦
′ + 𝑚𝑦) (

𝑖. 2𝛿

𝑠𝑁
) (

𝐿𝑥

𝑁
)

𝑁/2

𝑖=1

  (4.5) 

 Twice the summation then provides the internal work done due to the transverse 

reinforcement of deck-slab for the entire span as follows  

         𝐼𝑊𝐷𝑦 = (
𝑚𝑦

′ + 𝑚𝑦

2𝑠
) (

0.5𝑁 + 1

0.5𝑁
) 𝛿𝐿𝑥 (4.6) 

Substituting Equations (4.4) and (4.6) in Equation (4.2), the total internal work done due to the 

folded plate mechanism is given as the summation of 𝐼𝑊𝐷𝑥 and 𝐼𝑊𝐷𝑦, thus expressed as 

            𝐼𝑊𝐷 = [(
𝑚𝑦

′ + 𝑚𝑦

2𝑠
) (1 +

2

𝑁
) 𝐿𝑥 + (

𝑚𝑥
′ + 𝑚𝑥

𝐿𝑥
) 𝑠𝑁] 𝛿 (4.7) 
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where 𝑚𝑦
′  and 𝑚𝑦 are the negative and positive moment capacities per unit width in the 𝑦-

direction, respectively, and 𝑚𝑥
′ , and 𝑚𝑥 are the negative and positive moment capacities per unit 

width in the 𝑥-direction, respectively; 𝑁 = the number of diagonal yield lines in the area under 

consideration; 𝐿𝑥 = the length of the span of the bridge; and 𝑠 = the width of the area of the slab 

along which the mechanism under consideration is applied.  

Equating the external and internal work, 𝐸𝑊𝐷 = 𝐼𝑊𝐷, gives an expression for finding 𝑁, 

the derivation of which is shown in the following equations 

       𝑊𝑒𝐿𝑥

𝛿

2
=  [(𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥

2𝑠
) + (𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥

𝑠𝑁
) + (𝑚𝑥

′ + 𝑚𝑥) (
𝑠𝑁

𝐿𝑥
)] 𝛿 (4.8) 

from which the equivalent collapse load on the girder can be determined as follows:  

𝑊𝑒 =
2

𝐿𝑥
[(𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥

2𝑠
) + (𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥

𝑠𝑁
) + (𝑚𝑥

′ + 𝑚𝑥) (
𝑠𝑁

𝐿𝑥
)] 𝛿. (4.9) 

The line load 𝑊𝑒, will have a minimum value when 
𝑑𝑊𝑒

𝑑𝑁
= 0, as follows: 

𝑑𝑊𝑒

𝑑𝑁
= −(𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥

𝑠𝑁2
) +  (𝑚𝑥

′ + 𝑚𝑥) (
𝑠

𝐿𝑥
)  = 0 (4.10) 

 

(𝑚𝑦
′ + 𝑚𝑦)

(𝑚𝑥
′ + 𝑚𝑥)

= (
𝑠2𝑁2

𝐿𝑥
2 ) (4.11) 

Upon solving, the minimum value of 𝑁 is obtained such that 

𝑁 =  
𝐿𝑥

𝑠
√

𝑚′𝑦 + 𝑚𝑦

𝑚′𝑥 + 𝑚𝑥
 (4.12) 

Back-substituting 𝑁 into Equation (4.9) gives the equivalent collapse line load as shown  
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𝑊𝑒 𝑚𝑖𝑛 =  
4

𝐿𝑥

√(𝑚𝑥
′ + 𝑚𝑥)(𝑚𝑦

′ + 𝑚𝑦) +  
(𝑚𝑦

′ + 𝑚𝑦)

𝑠
 (4.13) 

It is also of interest to note the geometry of yield lines. From Figure 4.1(a), the angle θ may 

be found using trigonometry. 

tan θ =  
𝑠𝑁

𝐿𝑥
= √

𝑚′𝑦 + 𝑚𝑦

𝑚′𝑥 + 𝑚𝑥
 (4.14) 

where θ is the angle of the diagonal yield lines with the horizontal. Therefore, Equation (4.13) may 

be further simplified to give alternate forms for expression for 𝑊𝑒 𝑚𝑖𝑛. 

𝑊𝑒 𝑚𝑖𝑛 =  
(𝑚𝑦

′ + 𝑚𝑦)

𝑠
+ 4 (

𝑚𝑥
′ + 𝑚𝑥

𝐿𝑥
) tan θ (4.15a) 

or  

𝑊𝑒 𝑚𝑖𝑛 =  
(𝑚𝑦

′ + 𝑚𝑦)

𝑠
[1 +

4𝑠

𝐿𝑥
cot θ] (4.15b) 

Note that for isotropic reinforcement, 𝑚𝑥 = 𝑚𝑦 and 𝑚′𝑥 = 𝑚𝑦
′ , θ = 45

◦
. A similar result to 

Equation (4.14) is given in Park and Gamble (2000) based on the Affinity Theorem for orthotropic 

plates.  

The aforementioned theory was applied to the test bridge from TxDOT Research Project 

9-5498 and the minimum equivalent lane load was computed. Figure 4.2 presents a graph plotting 

the minimization of the distributed load, 𝑊𝑒, with respect to the number of diagonal yield lines, 𝑁. 

Consider an area load of 𝑤 acting on the trapezoidal region of the slab shown in Figure 

4.1. The virtual work done by the load will be the product of the load, the area on which it acts, 

and the virtual deflections of the center of gravity of that area. 
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Figure 4.2. Variation of Distributed Load with Number of Diagonal Yield Lines. 

 

 

 

From Figure 4.1(a), it can be observed that the diagonal yield lines divide the slab into 

triangular segments that undergo deflection. The virtual deflections of the triangular segments 

alternate as follows. Considering half the span, as shown in Figure 4.1(c), and starting from the 

supports, the centroidal deflection is the ith multiple of 4/3𝑁, where i = 1, 3, 5, … (0.5 𝑁-1)—in 

other words, a set of odd integers from 1 to (0.5 𝑁-1); and it is the jth multiple of 2/3𝑁, where j = 2, 

4, 6, … (0.5 𝑁-2), or a set of odd integers from 2 to (0.5 𝑁-2). This encompasses the centroidal 

deflections of all the triangular segments from the support till the mid-span except the half triangle 

at section D-D. The areas of all these segments are 𝑁𝑠/𝐿𝑥. As seen in the case of the internal work 

done, an exception is the triangle at section D-D, with an area of 𝑁𝑠/2𝐿𝑥 and a centroidal 

deflection of 1/3. A pattern emerges from several computations of the external work done by 

incrementing the number of diagonal yield lines in multiples of 4, similar to that observed from 

the calculations of the internal work. The alternate centroidal deflections from the supports to the 

mid-span form two series of arithmetic progression, one of first 𝑁/4 odd numbers, from 1 to 
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(0.5 𝑁-1), and the other of first (.25𝑁-1) even numbers, from 2 to (0.5 𝑁-2). The sum of each series 

is obtained using the expression for the sum of first n terms of an AP, 0.5n (𝑎1 +  𝑎𝑛), where 

𝑎1and 𝑎𝑛 are the first and nth terms of the AP, respectively. 

The summation of the product of the areas of each segment for half the span with their 

respective centroidal deflections is given as 𝑠𝐿/12 for the odd numbered segments, (𝑁-4) 𝑠𝐿𝑥/24𝑁 

for the even numbered segments, and 𝑠𝐿/6 𝑁 for the triangle at D-D section. For the full span, the 

summation of the product of slab segment and the centroidal deflection is 𝑠𝐿𝑥/4. The external 

work done due to area load 𝑤 is given by 𝐸𝑊𝐷𝑡𝑟𝑎𝑝𝑒𝑧𝑖𝑢𝑚. 

𝐸𝑊𝐷𝑡𝑟𝑎𝑝𝑒𝑧𝑖𝑢𝑚= 𝑤𝑠𝐿𝑥/4 (4.16) 

4.3.1. Upper-Bound Solution 

From the yield line solution from Equation (4.8), the total load on the girder can be set as 𝑊𝑇 =

𝐿𝑥𝑊𝑒. Then, equating external and internal work done (with 𝛿 = 1) yields the following  

0.5𝑊𝑇 =  [(𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) + (𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥

𝑠𝑁
) + (𝑚𝑥

′ + 𝑚𝑥) (
𝑠𝑁

𝐿𝑥
)] (4.17) 

where 𝑊𝑇 = total ultimate load at the bridge participating in the collapse mechanism.  

The internal work done may be rewritten by substituting Equation (4.12) in Equation (4.7) 

and further simplified using Equation (4.14). For the next step, put in the 𝐼𝑊𝐷 = 𝐸𝑊𝐷 format 

using Equation (4.15a) as shown  

𝛺0.5𝑊𝑇 = 𝛺0.5𝑊𝑒𝐿𝑥 =  2(𝑚𝑥
′ + 𝑚𝑥) tan 𝜃 +  (𝑚𝑦

′ + 𝑚𝑦)
𝐿𝑥

2𝑠
 (4.18) 

𝛺0.5𝑊𝑇 = (𝑚𝑦
′ + 𝑚𝑦)

𝐿𝑥

2𝑠
[1 + 2 (

2𝑠

𝐿𝑥
) (

𝑚′𝑥 + 𝑚𝑥

𝑚′𝑦 + 𝑚𝑦
) tan θ] (4.19) 

 

Define angle α, as shown in Figure 4.1(a), such that 
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𝑠

𝐿𝑥/2
= tan α  (4.20) 

Then, by using Equation (4.14), Equation (4.19) may be recast as  

𝛺0.5𝑊𝑇 = (𝑚𝑦
′ + 𝑚𝑦) cot α [1 + 2

tan α

tan θ
] (4.21) 

Thus, the system upper-bound overstrength factor is given as follows 

𝛺𝑈𝑝𝑝𝑒𝑟 =
𝐼𝑊𝐷

𝐸𝑊𝐷 
=

(𝑚𝑦
′ + 𝑚𝑦)[cot α + 2 cot θ]

0.5𝑊𝑇
 (4.22a) 

or  

𝛺𝑈𝑝𝑝𝑒𝑟 =
(𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥
2𝑠) [1 + 2

tan α
tan θ

]

0.5𝑊𝑇
 (4.22b) 

4.3.2. Lower-Bound Solution 

The governing moment equation that satisfies the equilibrium of a 2D plate type structure is given 

by: 

𝜕2𝑚𝑥

𝜕𝑥2
+ 2

𝜕2𝑚𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑚𝑦

𝜕𝑦2
= −𝑤 (4.23) 

where 𝑚𝑥, 𝑚𝑦 = the bending moments per unit width in the 𝑥- and 𝑦- directions, respectively; 

𝑚𝑥𝑦= 𝑚𝑦𝑥 = torsional moments per unit width acting on the faces of the infinitesimal slab element 

of dimensions 𝑑𝑥 and 𝑑𝑦 in the 𝑥- and 𝑦- directions, respectively, if the complementary shear 

stresses are equal in magnitude, but directionally opposite in nature.  

 A (conservative) lower bound solution is to ignore the torsional resistance 𝑚𝑥𝑦 and 𝑚𝑦𝑥 

of cracked concrete as this resistance becomes very small the more concrete behaves in a highly 

cracked fashion. Thus, Equation (4.23) may be simply recast as  
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𝜕2𝑚𝑥

𝜕𝑥2
+

𝜕2𝑚𝑦

𝜕𝑦2
= 𝑞𝑥 + 𝑞𝑦 = 𝑤 (4.24) 

where 𝑞𝑥 =
𝜕

2
𝑚𝑥

𝜕𝑥2  is the load carried by strips oriented in the 𝑥-direction and 𝑞𝑦 =
𝜕

2
𝑚𝑦

𝜕𝑦2  

represents the load carried in the 𝑦-direction. This forms the basis of the strip method.  

 A stringent limit analysis considers a moment distribution that leads to the highest (most 

accurate) ultimate load. Elastic theory moments, unlike the plastic theory moment distributions, 

are unique (meaning only one distribution exists) since these are proportional to the curvatures at 

the slab section. A lower-bound solution may also be formed using a strip method (Park and 

Gamble 2000).  

Figure 4.3 illustrates the lower-bound solution via strips in equilibrium in the 𝑥- and 𝑦-

directions, respectively, where 𝑊𝑥 and 𝑊𝑦 are the uniformly distributed loads on the longitudinal 

and transverse strips, respectively. 

Consider the 𝑊𝑦 strips (assuming 𝐿𝑥 = 𝑠): 

(𝑚𝑦
′ + 𝑚𝑦) = 2𝑊𝑦

𝐿𝑥

4
= 2𝑊𝑦

2𝑠

4
= 𝑊𝑦𝑠 (4.25) 

 

∴ 𝑊𝑦 =
(𝑚𝑦

′ + 𝑚𝑦)

𝑠
 (4.26) 

Distributed load by 𝑊𝑥 strips:  

(𝑚′𝑥 + 𝑚𝑥) =  
𝑊𝑥

𝑠

𝐿𝑥
2

8
 Thus,  𝑊𝑥 =

8𝑠

𝐿𝑥
2  (𝑚′𝑥 + 𝑚𝑥)  (4.27) 

 

𝑊𝑒 = 𝑊𝑥 + 𝑊𝑦 =
8𝑠

𝐿𝑥
2

(𝑚′𝑥 + 𝑚𝑥) +
(𝑚𝑦

′ + 𝑚𝑦)

𝑠
 (4.28) 

 

𝛺0.5𝑊𝑇 = 𝛺0.5𝑊𝑒𝐿𝑥 = (𝑚𝑦
′ + 𝑚𝑦)

𝐿𝑥

2𝑠
+  

4𝑠

𝐿𝑥

(𝑚′𝑥 + 𝑚𝑥) (4.29) 
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but, 
𝑠

𝐿𝑥/2
= tan 𝛼, therefore by inversion it is substituted into Equation (4.29): 

𝛺0.5𝑊𝑇 = (𝑚𝑦
′ + 𝑚𝑦) cot α +  2(𝑚′𝑥 + 𝑚𝑥) tan α (4.30) 

𝛺0.5𝑊𝑇 = (𝑚𝑦
′ + 𝑚𝑦) [cot α +  2 (

𝑚′𝑥 + 𝑚𝑥

𝑚′𝑦 + 𝑚𝑦
) tan α] (4.31) 

𝛺0.5𝑊𝑇 = (𝑚𝑦
′ + 𝑚𝑦)[cot α +  2 cot2θ tan α] (4.32) 

Solving gives the lower-bound overstrength factor as follows  

𝛺𝐿𝑜𝑤𝑒𝑟 =
(𝑚𝑦

′ + 𝑚𝑦)[cot α +  2 cot2θ tan α]

0.5𝑊𝑇
 

  (4.33a) 

 

or 

𝛺𝐿𝑜𝑤𝑒𝑟 =
(𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥
2𝑠

) [1 + 2
 tan2α
 tan2θ

]

0.5𝑊𝑇
 

(4.33b) 

 

 

 
 

4.3.3. Generalized Plastic Solution 

By harmonizing the upper- and lower-bound solutions, a general solution covering the two distinct 

approaches is as follows  

𝛺 =
(𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥
2𝑠) 𝑘𝑏𝑜𝑢𝑛𝑑

0.5𝑊𝑇
 (4.34) 

 

in which 

𝑘𝑏𝑜𝑢𝑛𝑑
𝑢𝑝𝑝𝑒𝑟

= [1 + 2
tan α

tan θ
] = 1 +

4𝑠

𝐿𝑥

√(
𝑚′𝑥 + 𝑚𝑥

𝑚′𝑦 + 𝑚𝑦

) (4.35) 

 

and 

𝑘𝑏𝑜𝑢𝑛𝑑
𝑙𝑜𝑤𝑒𝑟 = [1 + 2

 tan2α

 tan2θ
] = 1 +

8𝑠2

𝐿𝑥
2 (

𝑚′𝑥 + 𝑚𝑥

𝑚′𝑦 + 𝑚𝑦

) (4.36) 
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(a) Basic illustration of Strip Method for slabs with varying boundary conditions. 

 

 

 
(b) Plan view of interior slab with a central fracture on the edge beam. 

 

 

 
(b) Side elevation of the mechanism. 

 
 

Figure 4.3. Strip Equivalent Mechanism. 
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4.3.4. Accounting for the Effect of the Horizontal Curve of a Bridge 

Figure 4.4 presents a schematic representation of a generic curved bridge in plan view. Since the 

bridges are curved in reality, with a centerline radius of curvature 𝑅℄, arched at an angle 𝜔, with 

a centerline length, 𝐿𝑥, and breadth, 𝐵, the length of the innermost edge progressively increases as 

a function of 𝑅℄ and 𝜔.  

 

 

 

 
Figure 4.4. Layout of a Generic Curved Bridge in Plan. 

 

 

 

Since the internal work done is primarily contributed by the trapezoidal band that is 

equidistant from the centerline of the bridge at a distance of 𝑠/2, the increase and decrease of the 

arc lengths of this folded plate mechanism are compensated. Therefore, the span length 𝐿𝑥 used 

for the internal work done calculations for the trapezoidal region refers to the length of the 

centerline of the bridge span. However, since the outer region primarily contributes toward the 

external work done for the yield line mechanism under consideration and the internal work done 

by the region beyond the trapezoidal band, the span length used in those computations refers to 

the length of the outer region of the curved bridge. 
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𝐿𝑥
∗ = (𝑅℄  +  0.25𝐵)𝜔 (4.37) 

 

𝜔 =
𝐿𝑥

𝑅℄ 
 (4.38) 

𝐿𝑥
∗ = (1 +  

𝐵

4𝑅℄ 
) 𝐿𝑥 

(4.39) 

4.4. Overstrength Capacity for Factored Applied Loads for Single-Span Bridge 

The HL-93 loading consists of HS-20 trucks having 36 kN, 142 kN, and 142 kN axle loads spaced 

4.3 m apart along the bridge span and placed centrally such that the load is concentrated above the 

fracture. These concentrated point loads are the resultant load of each of the 1.8 m wide axles. 

Additionally, a congested traffic load is applied as a uniformly distributed load of 9.33 kN/m 

spread across a width of 3 m. Each lane consists of a congested lane load and the truck, and each 

lane is specified to have an equivalent width of 3.7 m according to AASHTO (2017) specifications. 

Figure 4.5 presents a generic bridge loaded with two HL-93 vehicular load models. 

Figure 4.6 presents the implementation of the yield line mechanism postulated for the HL-

93 loading on a typical single-span bridge. The internal work done due to the trapezoidal region 

can be obtained from Equation (4.34). Assuming a unit virtual deflection and further simplifying 

gives  

𝐼𝑊𝐷 = (𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑 (4.40) 

The internal work done due to the rectangular part of the deck slab and the fractured outside 

girder is due to the hinge formation at the mid-span that causes a rotation of 4/𝐿𝑥 by the positive 

longitudinal reinforcement 𝑚𝑥 along a width 𝑏 as shown  
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𝐼𝑊𝐷 = 4𝑚𝑥 (
𝑏

𝐿𝑥
∗

) (4.41) 

rearranging more specifically, in terms of the moment at the central hinge region, is represented 

as 

𝐼𝑊𝐷 =
4

𝐿𝑥
∗

(𝑚𝑥𝑏) (4.42) 

This constitutes the total internal work done for the assumed yield line mechanism when 

the outside girder is fully fractured. The external work done is due to the virtual work done by the 

deck slab, the girder and the guardrail, and the HL-93 loading. The external work done due to the 

live load (HL-93) is considered due to the lane load that is increased by 75 percent to account for 

live load allowance and due to the wheel loads of the trucks that are increased by 75 percent to 

account for the live load factor, and it is increased by 33 percent to account for the impact factor 

as specified by AASHTO (2017). 

For the sake of convenience, an approximation is implemented wherein the lane load is 

considered spread across the deck, similar to the self-weight per unit area. This measurement is 

achieved by applying the lane load for a width of the HL-93 lane of 3.7 m. Thus, the distributed 

lane load is 𝑤𝑙 of 2.55 kN/m2 and considered to act with the area load of reinforced concrete deck 

slab, 𝑤𝑐. The equivalent combined area load is denoted by 𝑤𝑢. This assumption is justified because 

the lane load is considered to act over an area beyond the actual loaded area. In accordance with 

the LRFD loads, (AASHTO (2017), the dead loads are increased by 25 percent. 

The external work done due to an area load 𝑤𝑢 is derived using Equation (4.16): 

𝐸𝑊𝐷 𝑤𝑢
= 𝑤𝑢𝐿𝑥

∗ (
𝑏

2
+

𝑠

4
) (4.43) 
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Figure 4.5. HL-93 Load Position for Two-Lane Loaded Case. 

 

 

 

 
(a) Single-Span Support Conditions 

 
(b) Layout of a Typical Single Span with Yield Line Mechanism  

 

Figure 4.6. Critical Yield Line Mechanism for a Fractured Single-Span (9-5498). 
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The external work done due to the combined weight of the fractured outside girder and the 

outer guardrail, 𝑊𝑥, is given by  

𝐸𝑊𝐷𝑊𝑥
=

𝑊𝑥𝐿𝑥
∗

2
 (4.44) 

The deflections under each wheel load are computed using similar triangles and are 

multiplied with the factored loads of each wheel to obtain the external virtual work done by the 

HS-20 truck. 

𝐸𝑊𝐷𝐻𝑆20 = (168 −
2613

𝐿𝑥
∗

) (4.45) 

For a wider bridge, the second lane of trucks may participate (in part) in the collapse 

mechanism. The axle loads are therefore required to be increased proportionally to their deflection 

with respect to the truck position over the fractured girder. Thus, the lane load requires 

modification through the scalar 𝐾𝑙𝑎𝑛𝑒. For one line of truck wheels participating, the factor is given 

by  

𝐾𝑙𝑎𝑛𝑒 = 1 + 0.5 
𝑦

𝑠
 (4.46) 

in which 𝑦 = distance measured from the intact (unfractured) girder to the line of wheels. 

The following expression is used if both lines of wheels are participating in the mechanism: 

𝐾𝑙𝑎𝑛𝑒 = 1 +
𝑦

𝑠
 ; 𝐾𝑙𝑎𝑛𝑒 ≤ 2 (4.47) 

where 𝑦 = distance to the centerline of the truck. Thus, the total external work done is given by  

𝐸𝑊𝐷 = 𝑤𝑢𝐿𝑥
∗ (0.5𝑏 + 0.25𝑠) + 0.5𝑊𝑥𝐿𝑥

∗ + (168 −
2613

𝐿𝑥
∗

) 𝐾𝑙𝑎𝑛𝑒 (4.48) 

and may be contracted to the following  
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𝐸𝑊𝐷 = 0.5𝑊𝑇 (4.49) 

where 𝑊𝑇 = total ultimate load at the bridge participating in the collapse mechanism, represented 

by  

𝑊𝑇 = 𝑤𝑢𝐿𝑥
∗ (𝑏 + 0.5𝑠) + 𝑊𝑥𝐿𝑥

∗ + (336 −
5226

𝐿𝑥
∗

) 𝐾𝑙𝑎𝑛𝑒 (4.50) 

Solving for the overstrength factor 𝛺 = 𝐼𝑊𝐷/𝐸𝑊𝐷 for the simply supported span is given 

by  

𝛺 =
(𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥
2𝑠

) 𝑘𝑏𝑜𝑢𝑛𝑑 + (𝑚𝑥𝑏) (
4
𝐿𝑥

∗)

0.5𝑊𝑇
 

(4.51) 

where 𝑚′𝑦 and 𝑚𝑦 are the negative and positive moment capacities per unit width in the 𝑦-

direction, respectively, and 𝑚′𝑥, and 𝑚𝑥 are the negative and positive moment capacities per unit 

width in the 𝑥-direction, respectively; 𝐿𝑥 = the centerline length of the span of the bridge;  𝐿𝑥
∗  = the 

length of the outer region of the bridge, factored for curvature; 𝑠 = the width of the area of the slab 

along which the mechanism under consideration is applied; 𝑏 = the transverse distance of the 

interior flange of the fractured girder from the outer edge of the bridge; 𝑤𝑢 = the area load 

consisting of self-weight of the reinforced concrete deck slab and the applied lane load; and 𝑊𝑥 = 

the line load consisting of the self-weight of the fractured tub girder and the guardrail. 

When implemented for the bridge of TxDOT Research Project 9-5498, the upper-bound 

and lower-bound overstrength factors are found—using Equation (4.51)—to be 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.46 and 

𝛺𝐿𝑜𝑤𝑒𝑟 = 1.28. Note that in the bridge is narrow and can only accommodate a single HS-20 truck 

load alone. 
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4.5. Analysis for Spans with Plastic End Moments  

Consider now the general case for spans that possess a measure of fixity at their ends due to the 

presence of continuity via the adjacent spans, as shown in Figure 4.7 (a). 

Equating the factored external work done to the internal work done as shown  

Ω 0.5𝑊𝑇 = 0.5𝑀𝑝1
− 𝜃 + 0.5𝑀𝑝2

− 𝜃 (4.52) 

Ω 0.5𝑊𝑇 = (0.5𝑀𝑝1
− + 0.5𝑀𝑝2

− ) (
2

𝐿𝑥
∗

) (4.53) 

Thus, the overstrength factor for the intact case is given by  

Ω =
(0.5𝑀𝑝1

− + 0.5𝑀𝑝2
− ) (

2
𝐿𝑥

∗ )

0.5𝑊𝑇
 

(4.54) 

where 0.5𝑀𝑝1
−  and 0.5𝑀𝑝2

−  are the plastic moment capacities of the composite deck participating 

in the overall plastic mechanism (0.5 is used since the outside girder alone takes part in the critical 

mechanism). 

This result may now be incorporated into the overall solution for the fractured girder case. 

Thus, the overall effective weight, 𝑊𝐸𝑇 , used in the plastic analysis is given by  

𝑊𝐸𝑇 = 𝑤𝑢𝐿𝑥
∗(𝑏 + 0.5𝑠) + 𝑊𝑥𝐿𝑥

∗
+ (336 −

5226

𝐿𝑥
∗ ) 𝐾𝑙𝑎𝑛𝑒 (4.55)  

Adding the effect of end moments, the overall collapse overstrength capacity is given by  

𝛺 =
(𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑 + (

4𝑚𝑥𝑏
𝐿𝑥

∗ ) + (0.5𝑀𝑝1
− + 0.5𝑀𝑝2

− ) (
2

𝐿𝑥
∗ )

0.5𝑊𝐸𝑇
 

(4.56) 

For the end-spans in multi-span bridges as well as two-span continuous bridges, either 

0.5𝑀𝑝1
−  or 0.5𝑀𝑝2 is set to zero at the outermost abutments, as shown in Figure 4.8.  
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(a) Continuous Bridge Span with End Moments 

 

(b) Layout of a Typical Interior Span with Yield Line Mechanism 

Figure 4.7. Collapse Load Analysis of Interior Span of Continuous Bridges. 
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(a) End-Span of Bridge 

 

(b) Layout of a Typical Interior Span with Yield Line Mechanism 

Figure 4.8. Collapse Load Analysis of End-Spans of Continuous Bridges. 
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The overstrength factor of the system due to the moment, 0.5𝑀𝑝
− , at the continuous interior 

support is given as  

Ω =
(0.5𝑀𝑝

−) (
1

( − 1)𝐿𝑥
∗ )

0.5𝑊𝑇
 

(4.57) 

where 0.5𝑀𝑝
−  = the plastic moment capacities of the composite deck participating in the overall 

plastic mechanism at the supports, and  = fraction of span length from the simply supported end 

of the span at which the steel twin tub girder is fractured. The overall effective weight, 𝑊𝐸𝑇, used 

in the plastic analysis, is given as 

𝑊𝐸𝑇 = 𝑤𝑢𝐿𝑥
∗(𝑏 + 0.5𝑠) + 𝑊𝑥𝐿𝑥

∗ + (336 −
523

𝐿𝑥
∗ −

2091

(1 − )𝐿𝑥
∗) 𝐾𝑙𝑎𝑛𝑒 (4.58) 

The critical case in which the external work done, 0.5𝑊𝐸𝑇, is set to be the maximum by 

positioning the 36 kN load at the side of the fracture that is nearer to the simply supported end of 

the span is considered in Equation (4.58).  

This result may now be incorporated into the overall solution for the fractured girder case.  

𝛺 =

(𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑 + (

𝑚𝑥𝑏

( − 2)𝐿𝑥

) + (
0.5𝑀𝑝

−

(1 − )𝐿𝑥
)

0.5𝑊𝐸𝑇
 

(4.59) 

4.6. Location of Maximum Positive Moment for Collapse Analysis of Fractured Girder 

The location of the maximum positive moment within the end-span region of multi-span 

continuous bridge structures depends on several factors: 

 The stiffness (length) of the adjoining span or spans. 

 The relative positive to negative moment capacities, as designed and constructed.  

 The relative proportion of distributed loads to point loads.  
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To illustrate the significance of the above, consider the following scenarios depicted in Figure 4.9 

where the location of the maximum positive moment is expressed as a fraction of the span 

length, . 

Figure 4.9(a) and (b) respectively show the extreme cases for a multi-span bridge with full 

fixity (where 𝑀𝐹=𝑤𝐿2/8) and for a two-span structure with partial fixity where only one span is 

fully loaded. For an elastic design, moment capacities are proportionately tuned to the elastic 

bending moment diagram. Thus, for Figure 4.9(a) and (b),  = 0.375 (full fixity) and  = 0.4375 

(partial fixity), respectively. Figure 4.9(c) and (d) present the location of the maximum positive 

moment under the moving concentrated load with full fixity (where 𝑀𝐹= (𝜆 − 𝜆3)𝑃𝐿/2) and 

partial fixity for a two-span structure. The maximum positive moment occurs where  = 0.366 (full 

fixity) and  = 0.5536 (partial fixity). For plastic analysis and design, in both the cases of 

Figure 4.9(a) and (b),  = 0.414 if the beam has the same positive and negative moment capacity 

as shown in Figure 4.9(e). Figure 4.9(f) indicates that the maximum moment occurs at the location 

where the concentrated load acts. 

The critical location in the end spans in continuous bridges will be at that location where 

fracture critical (welded joint) details exist closest to the maximum positive moment region. 

Because this may vary from structure to structure, for simplicity it may be assumed to be in the 

vicinity of  = 0.40. Such high moments are assumed to be capable of initiating fracture at that 

location. Therefore, for consistency, in this study the location of fractures in the end-spans of multi-

span continuous bridges shall be taken herein as  = 0.40.  
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 (a) Elastic Design Propped Cantilever  (b) Elastic Design of Two Spans 
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 (c) Maximum Positive Moment Location 

under Moving Concentrated Load 

 (d) Two Span with Moving Load Case 
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 hinge 

 
 (e) Uniformly Distributed Load  (f) Concentrated Moving Load 

Figure 4.9. Different Scenarios Used to Determine the Location of Maximum Positive 

Moment for Collapse Analysis. 
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To check the veracity of this assumption, the overstrength factors of the fifteen pre-selected 

bridges were calculated using the exact  value found in the following formula.  

where 𝜇 represents the ratio of the negative and positive bending moment (=𝑀𝑝
−/𝑀𝑝

+) of the 

composite bridge section at support and at mid-span, respectively. These “exact” values of  range 

from 0.37 to 0.42 for the different bridges under consideration and presented in Table 4.1. The 

overstrength factors have also been calculated by setting  = 0.4 and  = 0.5. To assess the 

significance of the differences in overstrength factors, ratios, 𝑅 have been formed using the 

following expression. 

Results are shown for these ratios plotted as a cumulative distribution in Figure 4.10. A 

lognormal distribution has also been fitted to the data points for the two cases where  = 0.4 and 

 = 0.5. The median values of the distributions show that when  = 0.4, there is only a very slight 

bias of 0.73 percent, whereas the bias (error) increases markedly to 11 percent when  = 0.5. This 

simply means that  = 0.5 is not the most appropriate or adverse location to assume the existence 

of a girder fracture in end-span positive moment regions. It is therefore evident that in lieu of a 

more precise minimization analysis, one can confidently adopt  = 0.4 as being an appropriate 

location to assume fractures in end-spans of the continuous bridges. Using  = 0.4 means that any 

error introduced into the Ω factor will be less than 3 percent. 

 

 =  
√𝜇 + 1 − 1

𝜇
 

(4.60) 

𝑅 =
Ω()

Ω(𝑒𝑥𝑎𝑐𝑡)
 (4.61) 
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Table 4.1. Comparison of Overstrength Factors for Exterior Spans, Ω. 

ID 
Lx 

 (m) 
exact

B  

(m) 

Ω 

exact 

Ω at 

  

Ω at 

 

B4S1 40 0.39 8.5 1.79 1.80 1.98 

B4S2 39 0.39 8.5 1.83 1.85 2.03 

B5S1 43 0.41 9.1 1.41 1.40 1.53 

B5S2 43 0.41 9.1 1.40 1.39 1.52 

B6S1 43 0.40 11.6 1.63 1.62 1.81 

B6S2 43 0.40 11.6 1.63 1.62 1.81 

B7S1 67 0.40 8.5 1.45 1.45 1.57 

B7S2 58 0.37 8.5 1.64 1.69 1.86 

B8S1 81 0.41 8.5 1.35 1.34 1.44 

B8S2 90 0.42 8.5 1.26 1.25 1.33 

B9S1 43 0.41 8.5 1.57 1.56 1.71 

B9S3 38 0.41 8.5 1.69 1.68 1.86 

B10S1 45 0.39 9.1 1.96 1.98 2.23 

B10S3 58 0.37 9.1 1.62 1.67 1.85 

B11S1 68 0.37 8.5 1.71 1.75 1.97 

B11S3 72 0.37 8.5 1.61 1.65 1.85 

B12S1 43 0.38 8.5 1.73 1.75 1.91 

B12S3 44 0.38 8.5 1.69 1.71 1.87 

B13S1 46 0.37 9.1 1.38 1.41 1.57 

B13S3 46 0.37 9.1 1.37 1.40 1.55 

B14S1 46 0.40 8.5 1.63 1.63 1.77 

B14S3 46 0.40 8.5 1.63 1.63 1.77 

B15S1 61 0.39 8.5 1.69 1.70 1.85 

B15S3 61 0.39 8.5 1.69 1.69 1.85 
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Figure 4.10. Cumulative Distribution for  = 0.4 and  = 0.5. 
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4.7. Chapter Findings 

The limit analysis was conducted to assess the application of the plastic methods to STTG bridges. 

The upper bound and lower bound theories were established to formulate expressions to calculate 

the reserve capacity of bridges when it is assumed that the outer girder is fully fractured. The 

critical mechanism was postulated by considering several admissible mechanisms for the given 

loading, after undertaking minimization study to attain the optimal number of diagonal yield lines 

that should be formed in the yield pattern taking place in the patch of the bridge lying between the 

two girders. This region of the slab faced flexural and torsional bending as a result of the HL-93 

loading. The curvature of the bridges was incorporated in the solution by a suitable modification. 

The formulae for computing the overstrength capacity of each span were formulated so as to 

encompass the various possibilities arising from the boundary conditions and geometry of the 

bridges such that the theory may be easily applied to any bridge belonging to this class of bridges.  

Figure 4.11 illustrates the comparison of the deflection contours generated from the yield 

line mechanism with the deflection mapping obtained from the FEM results (Hurlebaus et al. 

2018). The details of the FEM analysis of all the bridges discussed in this research may be found 

in technical report of TxDOT 0-6937 project. The comparison displays a good agreement between 

the two independently conducted analyses. It is noteworthy that the FEM results are highly 

sophisticated and result from a complex computational program such as ABAQUS (2014). Thus, 

this comparison was essentially a reasonable validation of the postulated mechanism. 
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(a). Deflection contours plotted by mapping the deflections 

of the postulated yield line mechanism 

 

 

 

(b). Deflection contours generated by the FEM analysis in ABAQUS.  

Source TxDOT 0-6937 (Hurlebaus et al. 2018) 

 

 

Figure 4.11. Comparison of Deflection Contours of Yield Line Analysis and FEM Results 
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CHAPTER V  

APPLICATION TO SELECTED TYPES OF BRIDGES 

5.1. Chapter Summary 

The upper bound and lower bound theories are derived with the help of the postulated yield line 

mechanism. These theories are evaluated in detail with a purely computational focus so as to 

develop a step-by-step procedure for calculating the overstrength capacity of Steel Twin-Tub 

Girder (STTG) bridges under the influence of standard American Association of State Highway 

and Transportation Officials (AASHTO) HL-93 loading. The application of the theories is briefly 

described to develop a general equation that can be used for different boundary conditions, thus, 

essentially merging the three cases into a universal solution with modification factors incorporated 

within a single equation. The suite of 15 selected STTG bridges include three distinct kinds of 

spans based on their boundary conditions. This chapter provides detailed analysis guidelines for 

spans of each kind through the following examples.  

 Single-span bridges: Bridge 2 is used as an example that has no support fixity. 

 Two-span or greater continuous bridges: Both exterior spans of Bridge 11, with one fixity 

over the interior support, and one interior span of Bridge 10, with fixity over both the 

interior supports, are provided as examples. 

5.2.  Introduction 

As described in Park and Gamble (2000), the overstrength factor is calculated using virtual work 

analysis by equating the factored external work to the internal work when a maximum deflection 

of unity takes place:  
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𝛺𝐸𝑊𝐷𝑈 = 𝐼𝑊𝐷𝑁 (5.1) 

in which 𝐼𝑊𝐷𝑁 = internal work done based on nominal material properties; 𝐸𝑊𝐷𝑈 = external 

work done by factored ultimate design load; and 𝛺=overstrength factor. 

The external work done is calculated as follows: 

𝐸𝑊𝐷𝑈 = 𝑊𝐸𝑇𝐿𝑥
∗

𝛿

2
= 0.5𝑊𝐸𝑇𝐿𝑥

∗  (5.2) 

in which 𝑊𝐸𝑇 = the total load that effectively participates in the collapse mechanism; 

𝛿 = 1 = virtual displacement; and 𝐿𝑥
∗
 = the span length under consideration measured on the 

centerline (CL) of the collapse mechanism, such that:  

𝐿𝑥
∗ = (1 +  

𝐵

4𝑅℄ 
) 𝐿𝑥 (5.3) 

where 𝐿𝑥 = CL of the bridge (midway between the twin tubs); 𝐵 = the width of the bridge; and 

𝑅℄ = the radius of curvature measured along the CL of the bridge deck for a straight bridge 𝐿𝑥
∗

 = 𝐿𝑥.  

5.3. Unifying Plastic Solutions Developed for Three Different Cases 

In order to derive a general solution that encompasses all the different boundary conditions 

and geometric parameters, a combined equation with suitable modifiers is developed based on the 

principle of virtual work done.  

For AASHTO HL93 truck and lane loads, this results in:  

𝑊𝐸𝑇 = 𝑤𝑢𝐿𝑥
∗(𝑏 + 0.5𝑠) + 𝑊𝑥𝐿𝑥

∗ + (1494 −
709

𝐿𝑥
∗ −

2835

(1 − )𝐿𝑥
∗) 𝐾𝑙𝑎𝑛𝑒 (5.4) 

where 𝑠 = the width of the area of the slab along which the mechanism under consideration is 

applied; 𝑏 = the transverse distance of the interior flange of the fractured girder from the outer 

edge of the bridge; 𝑤𝑢 = the area load consisting of self-weight of the reinforced concrete deck 
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slab and the applied lane load (kN/m2); 𝑊𝑥 = the line load consisting of the self-weight of the 

fractured tub girder and the guardrail (kN/m); and  = the critical location factor for the hinge to 

occur, normally at the location of maximum moments. For simply supported spans and the interior 

spans of three- or more-span continuous bridges,  = 0.5, whereas for two-span bridges or the end 

span for three- or more-span bridges,  = 0.4.  

Thus, for simply supported spans and for interior spans ( =0.5): 

𝑊𝑇 = 𝑤𝑢𝐿𝑥
∗(𝑏 + 0.5𝑠) + 𝑊𝑥𝐿𝑥

∗ + (1494 −
7086

𝐿𝑥
∗ ) 𝐾𝑙𝑎𝑛𝑒 (5.5) 

For the end spans of continuous bridges (2 spans or greater, where  = 0.4). 

𝑊𝑇 = 𝑤𝑢𝐿𝑥
∗(𝑏 + 0.5𝑠) + 𝑊𝑥𝐿𝑥

∗ + (1494 −
6498

𝐿𝑥
∗ ) 𝐾𝑙𝑎𝑛𝑒 (5.6) 

For a wider bridge, the second lane of trucks may participate (in part) in the collapse 

mechanism, as depicted in Figure 5.1. 

The axle loads are required to be increased proportionally to their deflection with respect 

to the truck position over the fractured girder. Thus, the lane load requires modification through 

the scalar 𝐾𝑙𝑎𝑛𝑒. For one line of truck wheels participating:  

𝐾𝑙𝑎𝑛𝑒 = 1 + 0.5 
𝑦

𝑠
 (5.7) 

in which 𝑦 = distance measured from the intact (unfractured) girder to the line of wheels. If both 

lines of wheels are participating in the mechanism, then: 

𝐾𝑙𝑎𝑛𝑒 = 1 +
𝑦

𝑠
 ;                                    𝐾𝑙𝑎𝑛𝑒 ≤ 2 (5.8) 

where 𝑦 = distance to the CL of the truck.  
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Figure 5.1. Layout of typical interior span with yield line mechanism. 

 

 

 

The internal work done is calculated as follows: 

𝐼𝑊𝐷𝑁 = (𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑 + (

𝑚𝑥𝑏

(1 − )𝐿𝑥
∗ ) + (

0.5𝑀𝑝1
−

(1 − )𝐿𝑥
∗ ) + (

0.5𝑀𝑝2
−

(1 − )𝐿𝑥
∗ ) (5.9) 

where 𝑚′𝑦 and 𝑚𝑦 are the negative and positive moment capacities per unit width in the 

y direction, respectively, and 𝑚′𝑥, and 𝑚𝑥 are the negative and positive moment capacities per unit 

width in the x direction, respectively (units k-in./in. = k-ft/ft, or kN m/m or N-mm/mm); 𝑀𝑝1
−  and 

𝑀𝑝2
−  are the plastic moment capacities of the composite deck and the intact girders at the ends of 

the span in consideration (0.5 is used since the outside girder alone takes part in the critical 

mechanism); and  = the critical location factor for the hinge to occur, normally at the location of 

maximum moments, as defined above.  

Note that for simply supported spans, there is no end fixity; therefore, 𝑀𝑝1
−  and 𝑀𝑝2

−  are set 

to zero, whereas exterior spans of the two-span and of the three-span bridges have one fixity at the 

end support; therefore, one of the 𝑀𝑝1
−  and 𝑀𝑝2

−  are set to zero for that case, and interior spans have 

fixity at both the ends, implying that both 𝑀𝑝1
−  and 𝑀𝑝2

−  are non-zero.  

For simply supported spans and the interior spans of three-or-more-span continuous 

bridges ( = 0.5):  
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𝐼𝑊𝐷𝑆𝑖𝑚𝑝𝑙𝑒 𝑆𝑝𝑎𝑛𝑠 = (𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑 +

4

𝐿𝑥
∗ (𝑚𝑥𝑏) (5.10) 

𝐼𝑊𝐷𝐼𝑛𝑡.𝑆𝑝𝑎𝑛𝑠 = (𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑 + (

4𝑚𝑥𝑏

𝐿𝑥
∗ ) + (0.5𝑀𝑝1

− + 0.5𝑀𝑝2
− ) (

2

𝐿𝑥
∗ ) 

(5.11) 

For two-span bridges or the end-span for three- or more-span bridges ( = 0.4):  

𝐼𝑊𝐷𝐸𝑥𝑡.𝑆𝑝𝑎𝑛𝑠 = (𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑 + (

25𝑚𝑥𝑏

6𝐿𝑥
) + (

25𝑀𝑝1
−

12𝐿𝑥
∗ ) 

(5.12) 

The term 𝑘𝑏𝑜𝑢𝑛𝑑 represents the modifier term representing the upper and lower-bound solutions, 

as follows: 

𝑘𝑏𝑜𝑢𝑛𝑑
𝑢𝑝𝑝𝑒𝑟

= [1 + 2
tan α

tan θ
] = 1 +

4𝑠

𝐿𝑥
√(

𝑚′𝑥 + 𝑚𝑥

𝑚′𝑦 + 𝑚𝑦
) (5.13) 

and: 

𝑘𝑏𝑜𝑢𝑛𝑑
𝑙𝑜𝑤𝑒𝑟 = [1 + 2

 tan2α

 tan2θ
] = 1 +

8𝑠2

𝐿𝑥
2 (

𝑚′𝑥 + 𝑚𝑥

𝑚′𝑦 + 𝑚𝑦
) (5.14) 

where:  

tan α =   
𝑠

𝐿𝑥/2
  (5.15) 

and: 

tan θ =  
𝑠𝑁

𝐿𝑥
= √

𝑚′𝑦 + 𝑚𝑦

𝑚′𝑥 + 𝑚𝑥
 (5.16) 

The overstrength factors are computed using Equation (5.1). 

𝛺𝑌𝑖𝑒𝑙𝑑 𝐿𝑖𝑛𝑒 =
𝐼𝑊𝐷𝑁

𝐸𝑊𝐷𝑈
=

(𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥
2𝑠) 𝑘𝑏𝑜𝑢𝑛𝑑 + (

𝑚𝑥𝑏
(1 − )𝐿𝑥

∗ ) + (
𝑀𝑝1

− + 𝑀𝑝2
−

2𝐿𝑥
∗ (1 − )

)

0.5𝑊𝐸𝑇
 

(5.17) 
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For simply supported spans: 

𝛺𝑆𝑖𝑚𝑝𝑙𝑦 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 =

(𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥
2𝑠) 𝑘𝑏𝑜𝑢𝑛𝑑 +

4
𝐿𝑥

∗ (𝑚𝑥𝑏)

0.5𝑊𝐸𝑇
 

(5.18) 

For interior spans: 

𝛺𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 =
(𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥
2𝑠

) 𝑘𝑏𝑜𝑢𝑛𝑑 + (
4𝑚𝑥𝑏

𝐿𝑥
∗ ) + (0.5𝑀𝑝1

− + 0.5𝑀𝑝2
− ) (

2
𝐿𝑥

∗ )

0.5𝑊𝐸𝑇
 

(5.19) 

For exterior spans: 

𝛺𝐸𝑥𝑡𝑒𝑟𝑖𝑜𝑟 =
(𝑚𝑦

′ + 𝑚𝑦) (
𝐿𝑥
2𝑠) 𝑘𝑏𝑜𝑢𝑛𝑑 + (

25𝑚𝑥𝑏
6𝐿𝑥

) + (
25𝑀𝑝1

−

12𝐿𝑥
∗ )

0.5𝑊𝐸𝑇
 

(5.20) 

The longitudinal and transverse moment (positive and negative) capacities of the deck slab 

and the positive capacities of the composite intact section are computed based on the standard 

U.S. code procedure using the specified compressive strength of concrete and specified or as-built 

if known) yield strength of reinforcing steel in the deck and the guardrail and of the structural steel 

of the twin tub girders. The negative capacities of the composite intact section are computed using 

plastic analysis of sections via the equal area method, assuming that the concrete has cracked 

completely and does not contribute to tension. Since the fractured outside girder alone takes part 

in the postulated critical mechanism, the negative moment capacity of half the section is used for 

the computation of the overstrength factor of the exterior spans.  

The tabulations in the examples in sections that follow are presented such that the input 

values to be used depend on bridge geometry, the material properties of the deck and the guardrail, 

the reinforcement, and the structural steel. They are indicated by yellow highlighting of the 

corresponding row number, with the value itself in boldface. Similarly, the values that need to be 
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solved for to ensure equilibrium and the corresponding equilibrium checks are indicated by blue 

highlighting of the corresponding row number, with the value itself in boldface.  

The other rows can be automated by feeding the formulae presented in the column named 

FORMULA/DEFINITION/EQUATION, which also mentions the conditions for which each 

formula is applicable. Since Bridge 2 does not have support fixity at all, the moment calculations 

for the positive and negative composite deck and the intact girders are irrelevant for this bridge, 

and are therefore not included in this section. The results are presented in boldface. It is to be noted 

that the step-wise calculations are presented in the format of “engineering computation sheets” 

for ease of understanding and presentation. 

5.4. Yield Line Analysis Example of Bridge 2 

This section presents the stepwise procedure of the yield line analysis conducted to establish the 

upper-bound and lower-bound solution range for the overstrength factor that is in conjunction with 

the theory of plastic analysis in Section 5.3. Figure 5.2 presents the dimensional details of the 

simply supported span of Bridge 2. The moment capacities (longitudinal and transverse) of the 

deck slab are calculated using the standard US code-based procedure following the Whitney’s 

stress block approach. The capacities are calculated for one meter wide cross-section of the bridge. 

The geometric parameters namely B = the total width (breadth) of the deck slab, 

t = thickness and b = the width of each cross-section are noted from the structural plans. The 

various material properties of concrete and steel are obtained through the bridge plans and the 

reports associated with the respective bridges. These properties include 𝑓𝑐
′ = the 

specified compressive strength of concrete, εcu  = the maximum strain at the extreme concrete 

compression   fiber   (computed  as  per  Section  22.2.2   of   ACI-318   (2017)   which   states  the 



 

 

90 

 

 
Figure 5.2. Schematic Diagram of Bridge 2 (R℄ = 582 m, Lx = 35 m). 

 

 

 

“assumptions for concrete.”), 𝑓𝑦   = the yield strength of steel of the reinforcement bars, E = the 

Young’s modulus of steel and εy = the yield strain that is the ratio of yield strength and Young’s 

modulus of steel in the reinforcement. 𝛽1 = the factor relating depth of equivalent rectangular 

compressive stress block to depth of neutral axis which is computed using Table 22.2.2.4.3 of ACI-

318 (2017). The formula applicable for the strength of concrete used in this study is as follows  

𝛽1 = 0.85 − 0.05(𝑓𝑐
′ –  28) (5.21) 

where 𝑓𝑐
′  is in MPa.  

The details of the reinforcement such as #bar = the number of bars per one meter wide 

section (for the longitudinal capacities) or s = the on-center spacing (for the transverse capacities), 

db = the diameters of the bars, 𝐴𝑠 the corresponding areas of steel, cc = the clear cover (from the 

bridge drawings) and d and d’ = the subsequently computed effective depths of the tensile and 

compressive zones respectively, are recorded. εtop and εbot = the net tensile strain in the extreme 

tension reinforcement at the top and bottom of the section respectively, are determined from a 

linear distribution (ACI-318 2017).  
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The section of concrete is considered to be divided into compressive and tensile zones by 

a neutral axis that is located at a depth c from the top fiber. The compressive force due to concrete 

(with a negative sign) is found using the formula  

𝐶𝑐 = 0.85𝑓𝑐
′b𝛽1c = 0.85𝑓𝑐

′b𝑎 (5.22) 

where 𝑎 =  𝛽1c 

If the reinforcement steel is in compression, the compressive force due to compression steel 

is denoted by a negative sign, as follows  

𝑇𝑡𝑜𝑝/𝑏𝑜𝑡𝑡𝑜𝑚 = −(𝐴𝑠𝑓𝑠 − 0.85𝑓𝑐
′𝐴𝑠)  (5.23) 

The tensile force due to the steel reinforcement is given by  

𝑇𝑡𝑜𝑝/𝑏𝑜𝑡𝑡𝑜𝑚 = 𝐴𝑠𝑓𝑠 (5.24) 

To ensure that the computation of the forces considers whether or not the steel has yielded, the 

following formula is used for the strength of steel at the extreme fiber of reinforcement 

𝑓𝑠 =
𝐸𝜀𝑡𝑜𝑝/𝑏𝑜𝑡𝑡𝑜𝑚

{1 + |
𝐸𝜀𝑡𝑜𝑝/𝑏𝑜𝑡𝑡𝑜𝑚

𝑓𝑦
|

20

}

0.05 
(5.25) 

The depth of neutral axis, 𝑐 (indicated by blue highlighting) is obtained by equating the 

tensile and compressive forces. The moment capacities are found by taking moments of forces 

about the neutral axis.  

The computation of the overstrength factor is based on the procedure explained in the 

Section 5.3. The data necessary for the calculations such as the geometric details, the moment 

capacities, the volume of girder and area of cross-section of rail are listed as input values indicated 

by yellow highlighting. The parameters needed to solve the equations in Section 5.3 are computed 
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using the formulae and allowance factors for dead load, live load and the weight of the stiffeners. 

The parameters and their corresponding formulae and values are tabulated in a sequential order 

and can be regenerated using any spreadsheet program.  

 The following series of engineering computations tabulate the entire procedure of finding 

out the reserve capacity of Bridge 2 such that the same method may be replicated for other simply 

supported spans with similar characteristics. The computations are styled in the format that may 

be easy to follow and to regenerate the steps in a spreadsheet format such that the analytical check 

may be conducted very quickly by changing the data according to bridge specifications.  

 Care should be taken such that the data is input in the appropriate units so that all the 

computations are consistent. It should also be noted the results reported in the following tables are 

for the full span-length. The results of internal work done reported in the tables of Chapter 7 belong 

to the upper bound solution data. More examples of such analysis guidelines may be found in the 

guidelines of TxDOT 0-6937 project (Hurlebaus et al. 2018). 

 The following engineering computation sheets 5-1a to d enclose the yield line analysis 

summary for Bridge 2. 
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Sheet 5-1 

a  

MOMENT CAPACITY OF DECK SLAB 

(BRIDGE 2) 

       1  

           4 

    Description Parameter Data     

D
E

C
K

 

S
E

C
T

IO
N

 

1 Total Width B mm 8051.8     

2 Thickness t mm 203.2     

3 Section width b mm 1000     

C
O

N
C

R
E

T
E

 

M
A

T
E

R
IA

L
 

4 
Characteristic Compressive 

Strength 
        

5   f'c  Mpa 28     

6 Strain β1 0.85     

R
E

B
A

R
 

M
A

T
E

R
IA

L
 

7 Yield Strength εcu 0.003     

8 Young's Modulus         

9 Strain fy  MPa 414     

    Moment Computations Longitudinal Transverse 

  10    𝑚𝑥
′  𝑚𝑥 𝑚𝑦

′  𝑚𝑦 

  11    Top Bottom Top Bottom 

R
E

IN
F

O
R

C
IN

G
 B

A
R

 D
E

T
A

IL
 

12 Bar No.   5 5 5 5 

13 Diameter of Bar db mm 15.875 15.875 15.875 15.875 

14 Area of Bar AΦ mm2 197.93 197.93 197.93 197.93 

15 Spacing s mm - - 127 127 

16 No. of Bars #bar 38 32 - - 

17 Area of Steel As mm2 934 787 1559 1559 

18 Clear Cover cc mm 50.8 31.75 50.8 31.75 

19 Effective depth (tension) d mm 128.5875 147.6375 144.4625 163.5125 

20 Effective depth (comp.) d' mm 55.5625 74.6125 39.6875 58.7375 

21 Depth of NA c mm 34.19 35.72 36.48 45.72 
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   Sheet 5-1 

b  

MOMENT CAPACITY OF DECK SLAB  

(BRIDGE 2) 

      2  

           4 

    Moment Computations Longitudinal Transverse 

  22    𝑚𝑥
′  𝑚𝑥 𝑚𝑦

′  𝑚𝑦 

  23    Top Bottom Top Bottom 

S
T

R
A

IN
 

24   ε top 0.008282 0.003266 0.008880 0.000854 

25   ε bot 0.001875 0.009398 0.000264 0.007730 

  26 β1c a mm 29.06 30.37 31.01 38.86 

F
O

R
C

E
S

 

27 Compression-Concrete Cc N -681324.36 -711847.42 -726908.63 -910964.82 

28 
Tension / Compression-

Steel 

T top N 386431.46 386431.46 644730.38 266234.44 

29 T bot N 294892.90 325415.97 82178.25 644730.38 

30 Equilibrium Check T-C N 0.00 0.00 0.00 0.00 

R
E

S
U

L
T

S
 

31 Moment 

M N-mm 56174222 66068202 85130609 103359338 

Mn kN-m 56 66 85 103 

                

   Remarks:  Top 

Yielded 

Top 

Yielded 

Top 

Yielded 

Top Not 

Yielded 

     

Bottom 

Not 

Yielded 

Bottom 

Yielded 

Bottom 

Not 

Yielded 

Bottom 

Yielded 

          

     Both steel 

in 

Tension 

Both steel 

in 

Tension 

Both steel 

in 

Tension 

Both steel 

in 

Tension 
        

Note: The moment capacities are calculated for 1-meter section. 
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Sheet 5-1 

c  

COMPUTATION OF OVERSTRENGTH FACTOR  

SINGLE SPAN CASE (BRIDGE 2)                 

     3    

        4                         

  Parameter Formula/Definition/Equation Data 
G

E
O

M
E

T
R

Y
 

1 Lx  Span length (center line) 35.05 m 

2 RCL Radius of center line  582.168 m 

3 B  Width 8.1 m 

4 Lx*
  Outer region length  𝐿𝑥

∗ = (1 +
𝐵

4𝑅𝐶𝐿

) 𝐿𝑥 35.17 m 

5 s  Inter-Girder Spacing 1.9 m 

6 b  Width of Girder + Edge  3 m 

7 t  Deck Thickness 203 mm 

IN
T

E
R

N
A

L
 W

O
R

K
 D

O
N

E
, 
IW

D
 

8 mx  Longitudinal Positive Moment per m 67 kN-m/m 

9 m'x  Longitudinal Negative Moment per m 57 kN-m/m 

10 my  Transverse Positive Moment per m 104 kN-m/m 

11 m'y  Transverse Negative Moment per m 86 kN-m/m 

12 tan θ tan θ = √
𝑚𝑦

′  + 𝑚𝑦

𝑚𝑥 
′ + 𝑚𝑥

  1.24  (ϴ=50.8˚) 

13 tan α tan α =
2𝑠

𝐿𝑥

  0.11 (ϴ=6.0˚) 

14 𝑘𝑏𝑜𝑢𝑛𝑑
𝑢𝑝𝑝𝑒𝑟

 [1 + 2
tan α

tan 𝜃
] = 1 +

4𝑠

𝐿𝑥

√
𝑚𝑥

′  + 𝑚𝑥

𝑚𝑦
′  + 𝑚𝑦

    1.17   

15 𝑘𝑏𝑜𝑢𝑛𝑑
𝑙𝑜𝑤𝑒𝑟  [1 + 2

tan2 α

tan2 𝜃
] = 1 +

8𝑠2

𝐿𝑥
2 √

𝑚𝑥
′  + 𝑚𝑥

𝑚𝑦
′  + 𝑚𝑦

  1.01   

16 IWDupper  (𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑

𝑢𝑝𝑝𝑒𝑟
+

4𝑚𝑥𝑏

𝐿𝑥
  2126 kN-m*1 

17 IWDlower (𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑

𝑙𝑜𝑤𝑒𝑟 +
4𝑚𝑥𝑏

𝐿𝑥
  1846 kN-m*1 

Note: *1: A unit deflection (δ=1) is considered, therefore, the external work unit is in kN-m. 
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Sheet 5-1 

d  

COMPUTATION OF OVERSTRENGTH FACTOR  

SINGLE SPAN CASE (BRIDGE 2)         

    4      

       4                    
 Parameter Formula/Definition/Equation Data 

E
X

T
E

R
N

A
L

 W
O

R
K

 D
O

N
E

, 
E

W
D

 

18 DL Dead Load Factor 1.25   

19 LL Live Load Factor 1.75   

20 SAF Stiffener Allowance Factor 1.15   

21 γc   Unit weight of reinforced concrete  23.56 kN/m3 

22 wu  
Area load due to reinforced concrete + 

lane load       𝑫𝑳𝜸𝒄
𝒕

𝟏𝟎𝟎𝟎
+ 𝑳𝑳 ∙ 𝟐. 𝟓𝟓 10.45 kN/m2 

23 γs   Unit weight of steel  76.97 kN/m3 

24 Vg  Volume of Girder 4 m3 

25 Ar  Area of Rail Cross-Section SSTR 0.26 m2 

26 Vr  Volume of Rail = LxAr 9 m3 

27 Wx  1.25 (1.15𝑉𝑔𝛾
𝑠

 +  𝑉𝑟𝛾
𝑐
)/𝐿

𝑥
 20.67 kN/m 

28 y (Lane 2) 
(𝑏 + 𝑠 − 4.6) for (b+s)<6.4 
(𝑏 + 𝑠 − 5.5) for (b+s)>6.4 

0.38 m 

29 Klane 
1 + 0.5

𝑦

𝑠
 for (b+s)<6.4; 1 +

𝑦

𝑠
 for 

(b+s)>6.4 
1.10   

30 EWDHS-20  (747 −
3543

𝐿𝑥
) 𝐾𝐿𝑎𝑛𝑒  713 kN/m 

31 WET  𝑤𝑢𝐿𝑥(𝑏 + 0.5𝑠) + 𝑊𝑥𝐿𝑥 + 2𝐸𝑊𝐷𝐻𝑆20  3634 kN-m 

32 EWD    0.5 WET  1817 kN-m*1 

R
E

S
U

L
T

S
 

33 Ωupper IWDupper/EWD 1.17   

34 Ωlower IWDlower/EWD 1.02   

Note: *1: A unit deflection (δ=1) is considered, therefore, the external work unit is in kN-m. 
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5.5. Yield Line Analysis Example of Bridge 11 

Figure 5.3 shows the schematic diagram of all the spans of Bridge 11. This section presents the 

stepwise procedure to establish the upper-bound and lower-bound solution range for the 

overstrength factor for Bridge 11, that is in conjunction with the theory of plastic analysis in 

Section 5.3. The moment capacities of the deck slab and the overstrength factors are computed in 

the same way as described in Section 5.4. Bridge 11 is a three-span bridge which is why the two 

exterior spans have one continuous support. It should be noted that in addition to the two typical 

exterior spans with one support fixity, this bridge consists of one interior span with fixity at both 

the supports.  

The moment capacities of the intact section at the continuous support are computed as the 

positive and negative moment of the intact section using the similar procedure as that followed for 

calculating the moment capacities of the deck slab alone (explained in Section 5.4). The difference 

being the additional elements of the girder cross-section that contribute to the flexural strength. 

The intact cross-section of the bridge, including the girders, at the continuous supports is 

considered. The geometric parameters namely B = the total width (breadth) of the deck slab, 

t = thickness and h = thickness of haunch are noted from the structural plans. The various material 

properties of concrete and steel are obtained from the bridge plans and the reports associated with 

the respective bridges. These properties include 𝑓𝑐
′ = the specified compressive strength of 

concrete, εcu  = the maximum strain at the extreme concrete compression fiber (computed as per 

Section 22.2.2 of ACI-318 (2017) which states the “assumptions for concrete.”), 𝑓𝑦   = the yield 

strength of steel of the reinforcement bars,  𝐹𝑦
′ = the  yield strength of the steel of S TTG,  E  =  the 
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(a) Bridge 11, Span 1 (Lx = 68 m) 

 

 

 

 (b) Bridge 11, Span 2 (Lx = 112 m) 

 

 

 

(c) Bridge 11, Span 3 (Lx = 72.m) 

 

Figure 5.3. Schematic Diagrams of Bridge 11 (R℄ = 250 m). 
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Young’s modulus of steel of and  𝜀𝑦 and  𝜀𝑠 = the yield strain that is the ratio of yield strength and 

Young’s modulus of steel, of the reinforcement and the SSTG, respectively. There are additional 

number of bars provided for extra strength at the supports that are denoted by “bent.” The details 

of the reinforcement such as # top bars = the number of top bars, # top bars bent = the number of top 

bars at bent, # bottom bars = the number of bottom bars, db top tra = the diameters of the transverse top 

bars, db bot tra = the diameters of the transverse bottom bars, db top long = the diameters of the 

longitudinal top bars, db top long’ = the diameters of the longitudinal top bars at bent, db bot long = the 

diameters of the longitudinal bottom bars and the clear cover for each type of bar are recorded with 

suitable subscript to cc. The STTG dimensions such as 𝐷𝑔 = depth of girder (overall), 𝑏𝑡𝑓 = top 

flange width, 𝑡𝑡𝑓 = top flange thickness, 𝑏𝑤 = web width, 𝑡𝑤 = web thickness, 𝑏𝑏𝑓 = bottom flange 

width and 𝑡𝑏𝑓 = bottom flange thickness are also tabulated.  

The composite area neutral axis is found by using 𝑛 which denotes the ratio of yield 

strength of steel of reinforcement and that of the STTG to express the area computations in terms 

of an effective area. The positive moment capacity is found by the similar procedure for computing 

the compressive and tensile forces as explained in Section 5.4 whereas the negative moment 

capacity is found by using the equal area method of plastic analysis where the areas of compression 

and tension zones are calculated. The neutral axis for the positive moment capacity is obtained by 

equating the compressive and the tensile forces while the plastic neutral axis for the negative 

moment capacity is calculated by equating the areas in compression and tension. The depth of 

compression zones from the top is denoted by 𝑐 and is indicated by blue highlighting. 𝑦 = the 

portion of the width of web in compression and 𝑦′ = the portion of the width of web in tension. 



 

 

100 

 

The depths of the compressive and tensile forces from the neutral axis are computed for the positive 

moment capacity while the depths of the center of gravity of compressive and the tensile areas 

from the plastic neutral axis are calculated for the negative moment capacity. The neutral axis and 

the plastic neutral axis may lie either in the web or in the top flanges and those sections are denoted 

by the subscripts 1 and 2 for the top-half and the bottom-half of the element of girder on either 

side of the neutral axes, respectively.  

For the positive moment capacity, the net tensile strain in the extreme steel components of 

the section respectively, are determined from a linear distribution (ACI-318 2017). The 

compressive and tensile forces are computed in the similar method explained in Section 5.4. The 

compressive forces and areas are denoted by a negative sign while the tensile forces and areas are 

denoted by positive sign. The concrete is assumed to be completely cracked for the negative 

moment capacity and is not considered for the tensile area. The positive moment capacity is 

obtained by taking the moments about the neutral axis and negative moment capacity is calculated 

by taking moments about the plastic neutral axis. The yield line mechanism engages only the outer 

half of the bridge cross-section. Therefore, only half of the intact moment capacities are used. The 

positive intact moment capacity is used for obtaining the exact location of fracture in the end spans 

that is needed to develop the value of the fraction of the span length from the exterior support at 

which the girder is fractured, . The λ is set to 0.4 as a result of a detailed analysis explained in the 

TxDOT (0-6937) report on Fracture Critical Steel Twin Tub Girder Bridges. The negative intact 

moment capacity is used for the internal work done at the interior supports. The engineering 

computation sheets 5-2a to n enclose the detailed analysis results of Bridge 11.
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Sheet 5-2 
a 

MOMENT CAPACITY OF DECK SLAB  

(BRIDGE 11) 

     1 

             14 

   Description Parameter Data  

D
E

C
K

 

S
E

C
T

IO
N

 1 Total Width B mm 8051.8  

2 Thickness t mm 203.2  

3 Section width b mm 1000  

C
O

N
C

R
E

T
E

 

M
A

T
E

R
IA

L
 

4 
Characteristic 

Compressive Strength 
f'

c  Mpa 28  

5   β1 0.85  

6 Strain εcu 0.003  

R
E

B
A

R
 

M
A

T
E

R
IA

L
 

7 Yield Strength fy  MPa 414  

8 Young's Modulus E Mpa 199948  

9 strain εy 0.002070  

   Moment Computations Longitudinal Transverse 

  10   

  

m'x mx m'y my 

  11 Top Bottom Top Bottom 

R
E

IN
F

O
R

C
IN

G
 B

A
R

 D
E

T
A

IL
 

12 Bar No.   5 5 5 5 

13 Diameter of Bar db mm 15.875 15.875 15.875 15.875 

14 Area of Bar AΦ mm2 197.93 197.93 197.93 197.93 

15 Spacing s mm - - 127 127 

16 No. of Bars #bar 38 32 - - 

17 Area of Steel As mm2 934 787 1559 1559 

18 Clear Cover cc mm 50.8 31.75 50.8 31.75 

19 Effective depth (tension) d mm 128.5875 147.6375 144.4625 163.5125 

20 Effective depth (comp.) d' mm 55.5625 74.6125 39.6875 58.7375 

21 Depth of NA c mm 34.19 35.72 36.48 45.72 
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Sheet 5-2 
b 

MOMENT CAPACITY OF DECK SLAB  

(BRIDGE 11) 

     2 

             14 

  Moment Computations Longitudinal   Transverse 

 22   m'x mx m'y my 

 23   Top Bottom Top Bottom 

S
T

R
A

IN
 

24   ε top 0.008282 0.003266 0.008880 0.000854 

25   ε bot 0.001875 0.009398 0.000264 0.007730 

  26 β1c a mm 29.06 30.37 31.01 38.86 

F
O

R
C

E
S

 

27 
Compression-

Concrete 
Cc N 

-

681324.36 
-711847.42 -726908.63 -910964.82 

28 Tension / 

Compression-

Steel 

T top N 386431.46 386431.46 644730.38 266234.44 

29 T bot N 294892.90 325415.97 82178.25 644730.38 

30 
Equilibrium 

Check 
T-C N 0.00 0.00 0.00 0.00 

R
E

S
U

L
T

S
 

31 Moment 
M N-mm 56174222 66068202 85130609 103359338 

Mn kN-m 56 66 85 103 

        

 
                              Remarks: 

 

Top 

Yielded 

Top 

Yielded 
Top Yielded 

Top Not 

Yielded 

Bottom 

Not 

Yielded 

Bottom 

Yielded 

Bottom Not 

Yielded 

Bottom 

Yielded 

    

    

Both steel 

in 

Tension 

Both steel 

in Tension 

Both steel 

in Tension 

Both steel in 

Tension 

Note: The moment capacities are calculated for 1-meter section. 
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Sheet 5-2 
c 

POSITIVE AND NEGATIVE MOMENT OF INTACT SECTION 

(BRIDGE 11, SPAN 1&3) 

    3  

          14 

      Moment 

    Description Positive  Negative  

D
E

C
K

 

S
E

C
T

IO
N

 

1 Total width B mm 4330.7 B mm 4330.7 

2 Thickness t mm 203.2 t mm 203.2 

3 Haunch thickness h mm 101.6 h mm 101.6 

C
O

N
C

R
E

T
E

 

M
A

T
E

R
IA

L
 

4 
Characteristic  

Compressive Strength  
f'

c Mpa 27.579     

5   β1 0.85     

6  Strain  ε cu 0.003     

R
E

IN
F

O
R

C
IN

G
 B

A
R

 D
E

T
A

IL
S

 

7 Yield Strength  fy Mpa 414 fy Mpa 414 

8 Strain Rebar ε y  0.002070     

9 No of Bars at Top # top bars 14.5 # top bars 14.5 

10 No of Bars at Top Bent     # top bars bent 14 

11 No of Bars at Bottom # bot bars 18.5 # bot bars 18.5 

12 Clear Cover Top cctop mm 50.8 cctop mm 50.8 

13 Clear Cover Bottom ccbot mm 31.75 ccbot  mm 31.75 

14 Transverse Top Diameter db top tra mm 15.875 db top tra mm 15.875 

15 Transverse Bottom Diameter db bot tra mm 15.875 db bot tra mm 15.875 

16 Longitudinal Top Diameter db top long mm 15.875 db top long mm 15.875 

17 Longitudinal Top Diameter at Bents     db top long' mm 15.875 

18 Longitudinal Bottom Diameter db bot long mm 15.875 db bot long mm 15.875 

19 Effective Depth Top dtop mm 74.61 dtop mm 74.61 

20      dtop bent mm 74.61 

21 Effective Depth Bottom dbot mm 147.64 dbot mm 147.64 

22 Area of Steel for #4 Bars A#4 mm2 126.677 A#4 mm2 126.677 

23 Area of Steel for #5 Bars A#5 mm2 197.933 A#5 mm2 197.933 

S
T

R
U

C
T

U
R

A
L

 

S
T

E
E

L
 

24 Yield Strength  F'y Mpa 345 F'y Mpa 345 

25 Strain ε s 0.00172     

26 Young's Modulus E Mpa 199948     

27 fy/F'y n 1.2 n 1.2 

28 Effective Area of Steel for #4 Bars  A#4. eff  mm2 152  A#4. eff  mm2 152 

29 Effective Area of Steel for #5 Bars  A#5. eff mm2 238  A#5. eff  mm2 238 
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Sheet 5-2 
d 

POSITIVE AND NEGATIVE MOMENT OF INTACT SECTION 

(BRIDGE 11, SPAN 1&3) 

   4  

       14 

      Moment 

    Description Positive  Negative  

G
IR

D
E

R
 D

E
T

A
IL

S
 

30 Girder Depth Dg mm 2641.60 Dg mm 2743.2 

31 Top Flange Width  btf  mm 457.2 btf  mm 762 

32 Top Flange Thickness ttf  mm 25.4 ttf  mm 76.2 

33 Web Width  bw  mm 2590.8 bw  mm 2590.8 

34 Web Thickness tw  mm 73.025 tw  mm 73.0 

35 Bottom Flange Width  bbf  mm 1676.4 bbf  mm 1676.4 

36 Bottom Thickness tbf  mm 25.4 tbf  mm 76.2 

D
E

P
T

H
S

 37 Compression Zone c mm 1534.74 c mm 1365.82 

38 bw in Comp. y mm 1204.54 y mm 1289.62 

39 bw in Tension y' mm 1386.26 y' mm 1301.18 

D
IS

T
A

N
C

E
S

 

40 

Distances of Compressive Forces 

and Tensile Forces from 

Neutral Axis/ 

Distances of Areas in Tension 

and Compression from PNA 

 d Cconc mm 882.48  d Arebar top  mm 1607.57 

41 d Crebar top mm 1460.13  d Arebar top bent  mm 1607.57 

42 d Crebar bottom mm 1387.10 d Arebar bot  mm 1534.55 

43 d Ctf 1 mm 1217.24 d Atf   mm 1339.28 

44 d Cw  1 mm 602.27 d Aw 1   mm 650.59 

45 d Tw  2 mm 693.13 d Aw 2   mm 644.81 

46 d Tbf mm 1398.96 d Abf  mm 1327.72 

S
T

R
A

IN
 

47   ε Crebar top  0.00285     

48   ε Crebar bottom 0.00271     

49   ε Ctf  0.00238     

50   ε Cw 1 0.00118     

51   ε Tw 2 0.00135     

52   ε Tbf 0.00273     
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Sheet 5-2 
e 

POSITIVE AND NEGATIVE MOMENT OF INTACT SECTION 

(BRIDGE 11, SPAN 1&3) 

   5  

       14 

      Moment 

    Description Positive  Negative  

F
O

R
C

E
/A

R
E

A
 

53 

Compression FC / Tension AT 
Tension FT/ Compression AC 

0.85f'
cβBT N -17534712 As top  mm 2204 

54 
    

As top bent  mm 
3325 

55 As topFy   N -860165 As bottom  mm 4394 

56 As bottomFy   N -1714769 Atf   mm 116129 

57 2btf1yF'y   N -8006799 Aw 1  mm 190038 

58 

Tension FT/ 

Compression AC 

2btf2y'F'y   N -41411157.15     

59 2bwtwF'y   N 54848471 Aw 2  mm -188349 

60 bbftbfF'y   N 14679131 Abf  mm -127742 

C
H

E
C

K
 61 

Equilibrium of Forces/Areas 

FC  N -69527603 AT mm 316090 

62 FT  N 69527603 AC mm -316090 

63 FC + FT  N 0 AT- AC  mm 0 

M
O

M
E

N
T

 

64  (Half Section) 0.5 Mp+    kN-m 112348 0.5 Mp-    kN-m 203043 

65 (Full Section) Mp+  kN-m 224696 Mp-   kN-m 406086 
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Sheet 5-2 
f 

POSITIVE AND NEGATIVE MOMENT OF INTACT SECTION 

(BRIDGE 11, SPAN 2) 

    6  

          14 

      Moment 

    Description Positive  Negative  

D
E

C
K

 

S
E

C
T

IO
N

 

1 Total width B mm 4330.7 B mm 4330.7 

2 Thickness t mm 203.2 t mm 203.2 

3 Haunch thickness h mm 101.6 h mm 101.6 

C
O

N
C

R
E

T
E

 

M
A

T
E

R
IA

L
 

4 
Characteristic  

Compressive Strength  
f'

c Mpa 28     

5   β1 0.85     

6  Strain  ε cu 0.003     

R
E

IN
F

O
R

C
IN

G
 B

A
R

 D
E

T
A

IL
S

 

7 Yield Strength  fy Mpa 414 fy Mpa 
414 

 
8 Strain Rebar ε y  0.002070     

9 No of Bars at Top # top bars 14.5 # top bars 14.5 

10 No of Bars at Top Bent     # top bars bent 14 

11 No of Bars at Bottom # bot bars 18.5 # bot bars 18.5 

12 Clear Cover Top cctop mm 50.8 cctop mm 50.8 

13 Clear Cover Bottom ccbot mm 31.75 ccbot  mm 31.75 

14 Transverse Top Diameter db top tra mm 15.875 db top tra mm 15.875 

15 Transverse Bottom Diameter db bot tra mm 15.875 db bot tra mm 15.875 

16 Longitudinal Top Diameter db top long mm 15.875 db top long mm 15.875 

17 Longitudinal Top Diameter at Bents     db top long' mm 15.875 

18 Longitudinal Bottom Diameter db bot long mm 15.875 db bot long mm 15.875 

19 Effective Depth Top dtop mm 74.61 dtop mm 74.61 

20      dtop bent mm 74.61 

21 Effective Depth Bottom dbot mm 147.64 dbot mm 147.64 

22 Area of Steel for #4 Bars A#4 mm2 126.677 A#4 mm2 126.677 

23 Area of Steel for #5 Bars A#5 mm2 197.933 A#5 mm2 197.933 

S
T

R
U

C
T

U
R

A
L

 

S
T

E
E

L
 

24 Yield Strength  F'y Mpa 345 F'y Mpa 345 

25 Strain ε s 0.00172     

26 Young's Modulus E Mpa 199948     

27 fy/F'y n 1.2 n 1.2 

28 Effective Area of Steel for #4 Bars  A#4. eff  mm2 152  A#4. eff  mm2 152 

29 Effective Area of Steel for #5 Bars  A#5. eff mm2 238  A#5. eff  mm2 238 
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Sheet 5-2 
g 

POSITIVE AND NEGATIVE MOMENT OF INTACT SECTION 

(BRIDGE 11, SPAN 2) 

   7  

       14 

      Moment 

    Description Positive  Negative  

G
IR

D
E

R
 D

E
T

A
IL

S
 

30 Girder Depth Dg mm 2686.05 Dg mm 2743.2 

31 Top Flange Width  btf  mm 457.2 btf  mm 762 

32 Top Flange Thickness ttf  mm 57.15 ttf  mm 76.2 

33 Web Width  bw  mm 2590.8 bw  mm 2590.8 

34 Web Thickness tw  mm 73.025 tw  mm 73.0 

35 Bottom Flange Width  bbf  mm 1676.4 bbf  mm 1676.4 

36 Bottom Thickness tbf  mm 38.1 tbf  mm 76.2 

D
E

P
T

H
S

 37 Compression Zone c mm 1547.54 c mm 1365.82 

38 bw in Comp. y mm 1185.59 y mm 1289.62 

39 bw in Tension y' mm 1405.21 y' mm 1301.18 

D
IS

T
A

N
C

E
S

 

40 

Distances of Compressive Forces 

and Tensile Forces from 

Neutral Axis/ 

Distances of Areas in Tension 

and Compression from PNA 

 d Cconc mm 889.83  d Arebar top  mm 1607.57 

41 d Crebar top mm 1472.92  d Arebar top bent  mm 1607.57 

42 d Crebar bottom mm 1399.90 d Arebar bot  mm 1534.55 

43 d Ctf 1 mm 1214.16 d Atf   mm 1339.28 

44 d Cw  1 mm 592.79 d Aw 1   mm 650.59 

45 d Tw  2 mm 702.61 d Aw 2   mm 644.81 

46 d Tbf mm 1424.26 d Abf  mm 1327.72 

S
T

R
A

IN
 

47   ε Crebar top  0.00286     

48   ε Crebar bottom 0.00271     

49   ε Ctf  0.00235     

50   ε Cw 1 0.00115     

51   ε Tw 2 0.00136     

52   ε Tbf 0.00276     
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Sheet 5-2 
h 

POSITIVE AND NEGATIVE MOMENT OF INTACT SECTION 

(BRIDGE 11, SPAN 2) 

   8  

       14 

      Moment 

    Description Positive  Negative  

F
O

R
C

E
/A

R
E

A
 

53 

Compression FC / Tension AT 
Tension FT/ Compression AC 

0.85f'
cβBT N -17534712 As top  mm 2204 

54 
    

As top bent  mm 
3325 

55 As topFy   N -860165 As bottom  mm 4394 

56 As bottomFy   N -1714769 Atf   mm 116129 

57 2btf1yF'y   N -18015298 Aw 1  mm 190038 

58 

Tension FT/ 

Compression AC 

2btf2y'F'y   N -39786411.21     

59 2bwtwF'y   N 55892658 Aw 2  mm -188349 

60 bbftbfF'y   N 22018697 Abf  mm -127742 

C
H

E
C

K
 61 

Equilibrium of Forces/Areas 

FC  N -77911355 AT mm 316090 

62 FT  N 77911355 AC mm -316090 

63 FC + FT  N 0 AT- AC  mm 0 

M
O

M
E

N
T

 

64  (Half Section) 0.5 Mp+    kN-m 135360 0.5 Mp-    kN-m 203043 

65 (Full Section) Mp+  kN-m 270720 Mp-   kN-m 406086 
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Sheet 5-2 
i 

COMPUTATION OF OVERSTRENGTH FACTOR 

EXTERIOR: 3-SPAN CASE (BRIDGE 11, SPAN 1)        

    9       

        14                     

  Parameter Formula/Definition/Equation Data 

G
E

O
M

E
T

R
Y

 

1 Lx  Span Length 67.97 m 

2 RCL Radius of center line  250 m 

3 B  Width 9 m 

4 Lx*
  Outer region length     𝐿𝑥

∗ = (1 +
𝐵

4𝑅𝐶𝐿

) 𝐿𝑥 68.56 m 

5 s  Inter Girder Spacing 2.1 m 

6 b  Width of Girder + Edge  3.3 m 

7 t  Deck Thickness 203.20 mm 

IN
T

E
R

N
A

L
 W

O
R

K
 D

O
N

E
, 
IW

D
 

8 mx  Longitudinal Positive Moment per meter 64 kN-m/m 

9 m'x Longitudinal Negative Moment per meter 47 kN-m/m 

10 my  Transverse Positive Moment per meter 91 kN-m/m 

11 m'y Transverse Negative Moment per meter 74 kN-m/m 

12 0.5Mp
-  Negative Moment at Support 203043  kN-m 

13 λ 
Fraction of Length from the exterior  

support at which girder is fractured 
0.40   

14 tan ϴ tan θ = √
𝑚𝑦

′  + 𝑚𝑦

𝑚𝑥
′  + 𝑚𝑥

     1.22  (ϴ=52.5˚) 

15 tan α tan 𝛼 =
2𝑠

𝐿𝑥
  0.06 (ϴ=5.9˚) 

16 
 

[1 + 2
tan α

tan 𝜃
] = 1 +

4𝑠

𝐿𝑥
√

𝑚𝑥
′  + 𝑚𝑥

𝑚𝑦
′  + 𝑚𝑦

  1.10   

17 
 

[1 + 2
tan2 α

tan2 𝜃
] = 1 +

8𝑠2

𝐿𝑥
2 √

𝑚𝑥
′  + 𝑚𝑥

𝑚𝑦
′  + 𝑚𝑦

  1.01   

18 IWDupper  (𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑

𝑢𝑝𝑝𝑒𝑟
+

𝑚𝑥𝑏

𝐿𝑥(λ−λ2)
+

0.5𝑀𝑝
−

(1−λ)𝐿𝑥

  7852 kN-m*1 

19 IWDlower (𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑

𝑙𝑜𝑤𝑒𝑟 +
𝑚𝑥𝑏

𝐿𝑥(λ−λ2)
+

0.5𝑀𝑝
−

(1−λ)𝐿𝑥

  7595 kN-m*1 

Note: *1: A unit deflection (δ = 1) is considered; therefore, the unit of internal work is in kN-m. 

 

𝑘𝑏𝑜𝑢𝑛𝑑
𝑢𝑝𝑝𝑒𝑟

 

𝑘𝑏𝑜𝑢𝑛𝑑
𝑙𝑜𝑤𝑒𝑟  
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Sheet 5-2 

j 

COMPUTATION OF OVERSTRENGTH FACTOR 

EXTERIOR: 3-SPAN CASE (BRIDGE 11, SPAN 1)              

    10           

        14            
 Parameter Formula/Definition/Equation Data 

E
X

T
E

R
N

A
L

 W
O

R
K

 D
O

N
E

, 
E

W
D

 

20 DL Dead Load Factor 1.25   

21 LL Live Load Factor 1.75   

22 SAF Stiffener Allowance Factor 1   

23 γc  Unit weight of reinforced concrete  23.56 kN/m3 

24 wu  
Area load due to reinforced concrete + 

lane load     𝐷𝐿𝛾𝑐
𝑡

100
+ 𝐿𝐿 ∙ 2.55 

10.454 kN/m2 

25 γs  Unit weight of steel  76.97 kN/m3 

26 Vg  Volume of Girder 33 m3 

27 Ar  
Area of Rail Cross-Section (SSTR) 0.26 m2 

28 Vr  Volume of Rail = LxAr 18 m3 

29 Wx  1.25 (1.15𝑉𝑔𝛾𝑠 + 𝑉𝑟𝛾𝑐)/𝐿𝑥 61.41 kN/m 

30 y (Lane 2) 
(𝑏 + 𝑠 − 4.6) for (b+s)<6.4 
(𝑏 + 𝑠 − 5.5) for (b+s)>6.4 

0.83 m 

31 Klane 
1 + 0.5

𝑦

𝑠
 for (b+s)<6.4; 1 +

𝑦

𝑠
 for 

(b+s)>6.4 
1.19   

32 EWDHS-20  (747 −
480

𝜆𝐿𝑥
−

1921

(1−𝜆)𝐿𝑥
) 𝐾𝐿𝑎𝑛𝑒  835 kN-m 

33 WET  𝑤𝑢𝐿𝑥(𝑏 + 0.5𝑠) + 𝑊𝑥𝐿𝑥 + 2𝐸𝑊𝐷𝐻𝑆20  8985 kN-m 

34 EWD    0.5 WET  4493 kN-m*1 

R
E

S
U

L
T

S
 

35 Ωupper IWDupper/EWD 1.75   

36 Ωlower IWDlower/EWD 1.69   

Note: *1: A unit deflection (δ = 1) is considered; therefore, the unit of internal work is in kN-m. 
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Sheet 5-2 
k 

COMPUTATION OF OVERSTRENGTH FACTOR 

INTERIOR: 3-SPAN CASE (BRIDGE 11, SPAN 2)            

  11    

        14                    

  Parameters Formula/Definition/Equation Data 
G

E
O

M
E

T
R

Y
 

1 Lx  Span Length 111.56 m 

2 RCL Radius of center line  250 m 

3 B  Width 9 m 

4 Lx*
  Outer region length     𝐿𝑥

∗ = (1 +
𝐵

4𝑅𝐶𝐿

) 𝐿𝑥 112.52 m 

5 s  Inter Girder Spacing 2.1 m 

6 b  Width of Girder + Edge  3 m 

7 t  deck thickness 203 mm 

IN
T

E
R

N
A

L
 W

O
R

K
 D

O
N

E
, 
IW

D
 

8 mx  Longitudinal Positive Moment per meter 64 kN-m/m 

9 m'x Longitudinal Negative Moment per meter 47 kN-m/m 

10 my  Transverse Positive Moment per meter 91 kN-m/m 

11 m'y Transverse Negative Moment per meter 74 kN-m/m 

12 0.5Mp1
-  Negative Moment at Support 1 203043 kN-m 

13 0.5Mp2
- Negative Moment at Support 2 203043 kN-m 

14 tan ϴ tan θ = √
𝑚𝑦

′  + 𝑚𝑦

𝑚𝑥
′  + 𝑚𝑥

  1.22  (ϴ=52.5˚) 

15 tan α tan 𝛼 =
2𝑠

𝐿𝑥
  0.04 (ϴ=3.3˚) 

16 

 

[1 + 2
tan α

tan 𝜃
] = 1 +

4𝑠

𝐿𝑥
√

𝑚𝑥
′  + 𝑚𝑥

𝑚𝑦
′  + 𝑚𝑦

  1.06   

17 

 

[1 + 2
tan2 α

tan2 𝜃
] = 1 +

8𝑠2

𝐿𝑥
2 √

𝑚𝑥
′  + 𝑚𝑥

𝑚𝑦
′  + 𝑚𝑦

  1.00   

18 IWDupper  (𝑚𝑦
′

+ 𝑚𝑦) (
𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑

𝑢𝑝𝑝𝑒𝑟
+

4𝑚𝑥𝑏

𝐿𝑥

+ (0.5𝑀𝑝1
−

+ 0.5𝑀𝑝2
− )

2

𝐿𝑥

  11817 kN-m*1 

19 IWDlower (𝑚𝑦
′

+ 𝑚𝑦) (
𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑

𝑙𝑜𝑤𝑒𝑟
+

4𝑚𝑥𝑏

𝐿𝑥

+ (0.5𝑀𝑝1
−

+ 0.5𝑀𝑝2
− )

2

𝐿𝑥

  11554 kN-m*1 

Note: *1: A unit deflection (δ = 1) is considered; therefore, the unit of internal work is in kN-m. 

 

   
 

   

𝑘𝑏𝑜𝑢𝑛𝑑
𝑢𝑝𝑝𝑒𝑟

 

𝑘𝑏𝑜𝑢𝑛𝑑
𝑙𝑜𝑤𝑒𝑟  
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Sheet 5-2 
l 

COMPUTATION OF OVERSTRENGTH FACTOR 

INTERIOR: 3-SPAN CASE (BRIDGE 11, SPAN 2)              

   12    

         14                
 Parameter Formula/Definition/Equation Data 

E
X

T
E

R
N

A
L

 W
O

R
K

 D
O

N
E

, 
E

W
D

 

20 DL Dead Load Factor 1.25   

21 LL Live Load Factor 1.75   

22 SAF Stiffener Allowance Factor 1.15   

23 γc  Unit weight of reinforced concrete  23.56 kN/m3 

24 wu  

Area load due to reinforced concrete + 

lane load        𝐷𝐿𝛾𝑐
𝑡

100
+ 𝐿𝐿 ∙ 2.55 10.45 kN/m2 

25 γs  Unit weight of steel  76.97 kN/m3 

26 Vg  Volume of Girder 57 m3 

27 Ar  
Area of Rail Cross-Section (T4(S)) 0.26 m2 

28 Vr  Volume of Rail = LxAr 29 m3 

29 Wx  1.25 (1.15𝑉𝑔𝛾𝑠 + 𝑉𝑟𝛾𝑐)/𝐿𝑥 63.93 kN/m 

30 y (Lane 2) 
(𝑏 + 𝑠 − 4.6) for (b+s)<6.4 
(𝑏 + 𝑠 − 5.5) for (b+s)>6.4 

0.83 m 

31 Klane 
1 + 0.5

𝑦

𝑠
 for (b+s)<6.4; 1 +

𝑦

𝑠
 for 

(b+s)>6.4 
1.19   

32 EWDHS-20  (747 −
3535

𝐿𝑥
) 𝐾𝐿𝑎𝑛𝑒  854 kN-m 

33 WET  𝑤𝑢𝐿𝑥(𝑏 + 0.5𝑠) + 𝑊𝑥𝐿𝑥 + 2𝐸𝑊𝐷𝐻𝑆20  13997 kN-m 

34 EWD    0.5 WET  6999 kN-m*1 

R
E

S
U

L
T

S
 

35 Ωupper IWDupper/EWD 1.69   

36 Ωlower IWDlower/EWD 1.65   

Note: *1: A unit deflection (δ = 1) is considered; therefore, the unit of external work is in kN-m. 
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Sheet 5-2 
m 

COMPUTATION OF OVERSTRENGTH FACTOR 

EXTERIOR: 3-SPAN CASE (BRIDGE 11, SPAN 3)         

  13        

         14                

  Parameters Formula/Definition/Equation Data 

G
E

O
M

E
T

R
Y

 

1 Lx  Span Length 71.63 m 

2 RCL Radius of center line  250 m 

3 B  Width 9 m 

4 Lx*
  Outer region length    𝐿𝑥

∗ = (1 +
𝐵

4𝑅𝐶𝐿

) 𝐿𝑥 72.25 m 

5 s  Inter Girder Spacing 2.1 m 

6 b  Width of Girder + Edge  3.3 m 

7 t  Deck Thickness 203.20 mm 

IN
T

E
R

N
A

L
 W

O
R

K
 D

O
N

E
, 
IW

D
 

8 mx  Longitudinal Positive Moment per meter 64 kN-m/m 

9 m'x Longitudinal Negative Moment per meter 47 kN-m/m 

10 my  Transverse Positive Moment per meter 91 kN-m/m 

11 m'y Transverse Negative Moment per meter 74 kN-m/m 

12 Mp
-  Negative Moment at Support 203043  kN-m 

13 λ 
Fraction of Length from the exterior  

support at which girder is fractured 
0.40   

14 tan ϴ tan θ = √
𝑚𝑦

′  + 𝑚𝑦

𝑚𝑥
′  + 𝑚𝑥

  1.22  (ϴ=52.5˚) 

15 tan α tan 𝛼 =
2𝑠

𝐿𝑥
  0.06 (ϴ=5.9˚) 

16 𝑘𝑏𝑜𝑢𝑛𝑑
𝑢𝑝𝑝𝑒𝑟

  [1 + 2
tan α

tan 𝜃
] = 1 +

4𝑠

𝐿𝑥
√

𝑚𝑥
′  + 𝑚𝑥

𝑚𝑦
′  + 𝑚𝑦

   1.10   

17 𝑘𝑏𝑜𝑢𝑛𝑑
𝑙𝑜𝑤𝑒𝑟   [1 + 2

tan2 α

tan2 𝜃
] = 1 +

8𝑠2

𝐿𝑥
2 √

𝑚𝑥
′  + 𝑚𝑥

𝑚𝑦
′  + 𝑚𝑦

  1.00   

18 IWDupper  (𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑

𝑢𝑝𝑝𝑒𝑟
+

𝑚𝑥𝑏

𝐿𝑥(λ−λ2)
+

0.5𝑀𝑝
−

(1−λ)𝐿𝑥

  7741 kN-m*1 

19 IWDlower (𝑚𝑦
′ + 𝑚𝑦) (

𝐿𝑥

2𝑠
) 𝑘𝑏𝑜𝑢𝑛𝑑

𝑙𝑜𝑤𝑒𝑟 +
𝑚𝑥𝑏

𝐿𝑥(λ−λ2)
+

0.5𝑀𝑝
−

(1−λ)𝐿𝑥

  7483 kN-m*1 

Note: *1: A unit deflection (δ = 1) is considered; therefore, the unit of external work is in kN-m. 
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Sheet 5-2 
n 

COMPUTATION OF OVERSTRENGTH FACTOR 

EXTERIOR: 3-SPAN CASE (BRIDGE 11, SPAN 3)               

   14        

          14              

 Parameter Formula/Definition/Equation Data 

E
X

T
E

R
N

A
L

 W
O

R
K

 D
O

N
E

, 
E

W
D

 

20 DL Dead Load Factor 1.25   

21 LL Live Load Factor 1.75   

22 SAF Stiffener Allowance Factor 1   

23 γc  Unit weight of reinforced concrete  23.56 kN/m3 

24 wu  
Area load due to reinforced concrete + 

lane load        𝐷𝐿𝛾𝑐
𝑡

100
+ 𝐿𝐿 ∙ 2.55 

10.454 kN/m2 

25 γs  Unit weight of steel  76.97 kN/m3 

26 Vg  Volume of Girder 35 m3 

27 Ar  
Area of Rail Cross-Section (T4(S)) 0.26 m2 

28 Vr  Volume of Rail = LxAr 18 m3 

29 Wx  1.25 (1.15𝑉𝑔𝛾𝑠 + 𝑉𝑟𝛾𝑐)/𝐿𝑥 61.83 kN/m 

30 y (Lane 2) 
(𝑏 + 𝑠 − 4.6) for (b+s)<6.4 
(𝑏 + 𝑠 − 5.5) for (b+s)>6.4 

0.83 m 

31 Klane 
1 + 0.5

𝑦

𝑠
 for (b+s)<6.4; 1 +

𝑦

𝑠
 for 

(b+s)>6.4 
1.19   

32 EWDHS-20  (747 −
480

𝜆𝐿𝑥
−

1921

(1−𝜆)𝐿𝑥
) 𝐾𝐿𝑎𝑛𝑒   838 kN-m 

33 WET  𝑤𝑢𝐿𝑥(𝑏 + 0.5𝑠) + 𝑊𝑥𝐿𝑥 + 2𝐸𝑊𝐷𝐻𝑆20  9415 kN-m 

34 EWD    0.5 WET  4708 kN-m*1 

R
E

S
U

L
T

S
 

35 Ωupper IWDupper/EWD 1.64   

36 Ωlower IWDlower/EWD 1.59   

Note: *1: A unit deflection (δ = 1) is considered; therefore, the unit of external work is in kN-m. 
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5.6. Results for Overstrength Factors of Bridges with Intact Girder 

A similar analysis was conducted for the same spans of the bridges discussed in this section such 

that the outer girder is intact. As expected, the analysis of the problem with the assumption that 

the outer girder is not fractured resulted in overstrength factors higher than that of the case of 

fractured outer girder. The intact girder analysis showed that the bridge has a much higher reserve 

capacity and this analysis was conducted for sake of completeness. The intact girder overstrength 

factors for Bridge 2 are 𝛺𝑈𝑝𝑝𝑒𝑟 = 3.96 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 3.80. These values are higher than the 

overstrength factors of the corresponding fractured girder case by 238% and 274% respectively. 

The intact girder overstrength for Bridge 11, Span 1 are 𝛺𝑈𝑝𝑝𝑒𝑟 = 3.26 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 3.21. The 

overstrength factors are 87% and 90% higher than the corresponding fractured case, respectively. 

Similarly, the results of the intact and fractured outer girder cases are summarized in Table 5.1. 

These results are validated against the FEM analysis conducted for the TxDOT project 0-6937 

(Hurlebaus et al. 2018). 

 

 

 

Table 5.1. Summary of Overstrength Factors for Single-Span Bridges (Intact and 

Fractured conditions). 

  Ωupper Ωlower 
UB % 

Increase 

LB % 

Increase 

B2S1 
Intact 3.96 3.80 

238 274 
Fractured 1.17 1.02 

B11S1 
Intact 3.26 3.21 

87 90 
Fractured 1.75 1.69 

B11S2 
Intact 2.37 2.34 

41 42 
Fractured 1.69 1.65 

B11S3 
Intact 2.96 2.91 

80 83 
Fractured 1.64 1.59 

Note: Intact and Fractured designate the state of the outer girder of bridge. 

          The increase or decrease percent is between the intact and fractured cases. 

 



 

116 

5.7. Chapter Findings 

A unified general expression was derived that may be used for any of the spans selected from the 

suite of 15 bridges. The two bridges selected for establishing the postulated mechanism and the 

theories for deriving the overstrength capacity of the bridges encompass all the probable boundary 

conditions present for each of the spans under consideration. Bridges 2 and 11 together comprise 

of one single-span, simply supported bridge, two exterior spans of the three-span bridge, with one 

end free and the other end fixed, and one interior span of the three-span bridge with both ends 

fixed. Therefore, all the various combinations of spans belonging to the suite of 15 bridges were 

captured in this chapter. Though each of the three distinct spans differ in boundary conditions, the 

general formula may be employed for the assessment of bridges using limit method by simply 

following the step wise analysis procedure explained in the following sections. These guidelines 

serve as an aid for bridge engineers to replicate this analysis for any STTG bridge that have the 

essential features of the bridges focused in this study.   

Since the limit analyses are a simple and independent check for the reserve capacity of the 

STTG bridges, this analysis will expedite the process of reclassification of bridges. If the reserve 

capacity is found to be lower than the required capacity after fracture, the need to undertake the 

more complicated FEM analysis may be dispensed with.  

 

 

 

 

 



 

117 

CHAPTER VI  

FURTHER APPLICATIONS AND RAMIFICATIONS 

6.1. Chapter Summary 

The limit analysis solutions are applied to assess the viability of these methods for the purpose of 

reclassification of the Steel Twin-Tub Girder bridges from their present fracture critical 

designation. A suite of 15 preselected bridges are analyzed using the solutions that are developed 

and the results are discussed to bring out the influencing factors for the failure analysis of these 

bridges. Each span is evaluated based on the boundary condition, the geometrical parameters such 

as the span length, the inter-girder spacing, the breadth and the radius of curvature. The discussions 

of the results of each span is conducted and the recommendations based on these methods 

regarding the redundancy of the bridges and the consequent potential declassification from fracture 

critical nature are presented. 

6.2. Introduction 

This section discusses the yield line analysis conducted for the 15 pre-selected bridges. The 

mechanism that was formulated for the HL-93 loading case with the folded plate mechanism, 

implemented for the calculation of the overstrength factors of the bridges. The expressions for the 

overstrength factor derived in Chapter 4, modified according to the boundary conditions of the 

bridges, namely the simply supported, the pinned-fixed and the fixed-fixed condition, and for the 

trucks accommodated on the deck under HL-93 loading, are used to obtain the results reported in 

this section. 

The details of geometry, boundary conditions and loading are discussed for each bridge. 

The results of each span are listed out and the equations used to calculate the upper bound and 

lower bound solutions are discussed in detail in this chapter. This analysis shall give an overview 
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of the reserve capacity of the 15 bridges selected for the purpose of reclassification study from 

their existing fracture critical status. A pattern of redundancy based on the boundary conditions, 

geometry and loading of each span emerges from the discussions. The behavioral pattern that are 

observed from this analysis may help in the development of recommendations for a potential 

reclassification from the fracture critical status.    

6.2.1. Bridge 1—NBI #12-102-3256-01-403 

The yield line analysis for the first of the bridges is illustrated in Figure 6.1. This is a single-span 

bridge of 67.1 m span length and 9.8 m width. The upper-bound and lower-bound overstrength 

factors calculated using an appropriate factor explained in Equation (4.46) to modify 

Equation (4.51) to account for the addition of the external work done due to inner wheels of the 

second truck are 𝛺𝑈𝑝𝑝𝑒𝑟 = 0.62 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 0.57 for this bridge. In fact, all the STTG bridges 

selected for this section are wide enough to accommodate two lanes of HL-93 loading, unlike the 

bridge of TxDOT Research Project 9-5498. 

6.2.2. Bridge 2—NBI #12-102-0271-17-530 

This is a single-span bridge of 35.1 m span length and 8.1 m width. The upper-bound and lower-

bound overstrength factors calculated using Equation (4.51) are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.17 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.02 

for this bridge. Since the span of this bridge is much less than that of Bridge 1, the overstrength 

factor is higher. It is to be noted that the dimensions of this bridge are comparable to that of the 

test bridge, and consequently, so is the overstrength factor. 

6.2.3. Bridge 3—NBI #12-102-0508-01-294 

This is a single-span bridge of 70.1 m span length and 11.8 m width. The upper-bound and lower-

bound overstrength factors calculated using an appropriate factor explained in Equation (4.47) to 

modify Equation (4.50) to account for the addition of the external work done due to both the lines  
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Figure 6.1. Plan, cross-section, and side elevation with HL-93 loading for single-span 

bridges. 

 

 

 

of wheels of the second truck are 𝛺𝑈𝑝𝑝𝑒𝑟 = 0.51 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 0.44 for this bridge. Equation (4.47) 

is applied because the bridge is so wide that the outer wheels also cause a small amount of 

deflection and, therefore, external work. Since the span length of this bridge is very high, the 

overstrength factor is low. Table 6.1 summarizes the input values and the results for the 

overstrength factors of the test bridge of TxDOT Research Project 9-5498 and single-span STTG 

bridges using the equations mentioned in Section 4.4.  

6.2.4. Bridge 4—NBI #12-102-0271-07-637 

Bridge 4 is a two-span bridge with an exterior critical span that is 40.2 m long and 8.7 m wide, and 

it has the upper-bound and lower-bound overstrength factors of 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.80 and 𝛺𝐿𝑜𝑤𝑒𝑟=1.67. 

The 39 m span is not critical since the upper-bound and lower-bound overstrength factors are 

𝛺𝑈𝑝𝑝𝑒𝑟 = 1.85 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.71. Equation (4.46) was used to modify Equation (4.58). The fixed-

end moment causes negative yield line to occur vertically along the width 𝑏 at the interior 

continuous support. There will also be additional hinge formation due to the negative moment of 

the steel tub girder. Both effects are accounted for by the plastic moment capacity of the composite 

deck at support, 𝑀𝑝
−.  
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Table 6.1. Summary of Overstrength Factors for Single-Span Bridges. 

ID 
Lx  

m 
R 

m 
B 

m 
Lx

* 

m 
s 

m 
b 

m 
t 

mm 
mx 

kN 
m'x  

kN 
my  

kN 
m'y  

kN 
wu 

kN/m2 

Wx 

kN/m 

IWD 

kN-m 

EWD 

kN-m 

Ω 

UB 

Ω 

LB 

9-5498 37 396 7 37 1.8 2.7 203 71 49 111 89 10.53 13.71 2318 1588 1.46 1.28 

B1 67 175 10 68 2.9 3.5 203 44 22 120 93 10.53 50.19 2691 4359 0.62 0.57 

B2 35 582 8 35 1.9 3.1 203 67 58 102 85 10.53 20.72 2126 1819 1.17 1.02 

B3 70 673 12 70 3.8 4.0 229 80 67 120 102 11.01 36.48 2415 4737 0.51 0.44 
Note: UB and LB denote upper-bound and lower-bound overstrength factors, respectively. 

 

 

 

6.2.5. Bridge 5—NBI #14-227-0-0015-13-452 

This is a two-span bridge whose exterior span is 4 m long and 0.9 m wide. The upper-bound and 

lower-bound overstrength factors are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.40 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.28 for this span. The other 

exterior span of 42.5 m span length has critical upper-bound and lower-bound overstrength factors 

of 𝛺𝑈𝑝𝑝𝑒𝑟  = 1.39 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.28. The calculations use the same procedure as that of Bridge 4. 

6.2.6. Bridge 6—NBI #12-102-0271-07-575 

This is a two-span bridge whose exterior critical spans are both 42.7 m long and 11.7 m wide. The 

upper-bound and lower-bound overstrength factors are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.62 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.52. 

Equation (4.58) is modified using the appropriate factor mentioned in Equation (4.47) to account 

for the external work done due to the second truck since the bridge is so wide that the outer wheels 

of the second truck also cause a small amount of deflection and, consequently, external work. This 

modification factor is similar to that used for computing the overstrength factor of Bridge 3. 

6.2.7. Bridge 7—NBI #12-102-0177-07-394 

This is a two-span bridge whose exterior critical span is 66.8 m long and 8.7 m wide. The upper-

bound and lower-bound overstrength factors calculated using Equation (4.59) and Equation (4.46) 

are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.45 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.37 for this span. The upper-bound and lower-bound overstrength 

factors calculated using the same equation for the 57.9 m span are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.69 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.59. 
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6.2.8. Bridge 8—NBI #12-102-0271-06-661 

This is an 8.7 m wide two-span bridge whose exterior critical span is 89.9 m long. The upper-

bound and lower-bound overstrength factors calculated using Equation (4.59) are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.25 

and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.18 for this span. The upper-bound and lower-bound overstrength factors calculated 

using Equation (4.59) for the 80.8 m span are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.34 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.27. The modification 

factor of Equation (4.46) was used.  

6.2.9. Bridge 9—NBI #12-102-0177-07-394 

This three-span bridge has a width of 8.7 m and an exterior critical span 42.7 m long. The upper-

bound and lower-bound overstrength factors are calculated to be 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.56 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.44 

for the exterior critical span and calculated to be 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.68 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.56 for the other 

exterior span of 38.4 m. Equation (4.59) and Equation (4.55) were used by modifying with the 

factor explained in Equation (4.46) to find the overstrength factor of the interior span. The fixed-

end moments cause negative yield line to occur vertically along a width of 𝑏 at the two continuous 

supports of the interior span. There will also be additional hinge formation due to the negative 

moment of the steel tub girder. Both of these are accounted for by the plastic moment capacities 

of the composite deck, 𝑀𝑝1
−  and 𝑀𝑝2

− , at the continuous supports at the left and right ends of the 

interior span, respectively. For Bridge 9, the interior continuous span, clamped on both ends, is 

46 m long and 8.7 m wide. The upper-bound and lower-bound overstrength factors are 𝛺𝑈𝑝𝑝𝑒𝑟 = 

2.34 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 2.24.  

6.2.10. Bridge 10—NBI # 14-227-0-0015-13-450 

This three-span bridge is 9.1 m wide and the exterior critical span is 57.9 m long, and the other 

exterior span is 45.1 m long. The upper-bound and lower-bound overstrength factors calculated 

using Equation (4.59) are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.67 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.59 for the exterior critical span and 𝛺𝑈𝑝𝑝𝑒𝑟 
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= 1.98 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.88 for the other exterior span. The interior span of length 80.8 m and width 

9.1 m has upper-bound and lower-bound overstrength factors of 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.90 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.84 

that were calculated using Equation (4.56). 

6.2.11. Bridge 11—NBI #12-102-0271-07-593 

This three-span bridge is 8.7 m wide; the critical exterior span is 71.6 m long and the other exterior 

span is 68 m long. The upper-bound and lower-bound overstrength factors calculated using 

Equation (4.59) are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.65 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.59 for the exterior critical span and 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.75 

and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.69 for the other exterior span. The interior span, 112 m long and 9.1 m wide, has 

upper-bound and lower-bound overstrength factors of 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.69 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.66 that were 

calculated using Equation (4.56).  

6.2.12. Bridge 12—NBI # 12-102-0271-07-639 

This three-span bridge is 8.5 m wide, the critical exterior span is 44.2 m long, and the other exterior 

span is 42.7 m long. The upper-bound and lower-bound overstrength factors calculated using 

Equation (4.59) are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.71 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.60 for the exterior critical span and 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.75 

and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.63 for the other exterior span. The interior span, 54.9 m long and 8.5 m wide, has 

upper-bound and lower-bound overstrength factors of 𝛺𝑈𝑝𝑝𝑒𝑟 = 2.20 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 2.10 that were 

calculated using Equation (4.56). 

6.2.13. Bridge 13—NBI #14-227-0-0015-13-452 

This three-span bridge has a width of 9.1 m. Both exterior spans are 46.2 m long, but with differing 

girder dimensions. The upper-bound and lower-bound overstrength factors calculated using 

Equation (4.59) are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.40 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.30 for the exterior critical span and 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.41 

and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.32 for the other exterior span. The 57.9 m long, 9.1 m wide interior span has upper-
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bound and lower-bound overstrength factors of 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.89 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.80 that were 

calculated using Equation (4.56). 

6.2.14. Bridge 14—NBI #18-057-0-0009-11-460 

This three-span bridge has a width of 8.5 m; both the exterior spans are 45.7 m long. The upper-

bound and lower-bound overstrength factors calculated using Equation (4.59) are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.63 

and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.52 for both. The 57.9 m long, 8.5 m wide interior span has upper-bound and lower-

bound overstrength factors of 𝛺𝑈𝑝𝑝𝑒𝑟 = 2.07 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.98 that were calculated using 

Equation (4.56). 

6.2.15. Bridge 15—NBI #12-102-0271-06-689 

This three-span bridge has a width of 8.5 m, and both exterior spans are 61 m long, but with 

differing girder dimensions. The upper-bound and lower-bound overstrength factors calculated 

using Equation (4.59) are 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.69 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.59 for the exterior critical span and 𝛺𝑈𝑝𝑝𝑒𝑟 

= 1.70 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.60 for the other exterior span. The 89.9 m long, 8.5 m wide interior span has 

upper-bound and lower-bound overstrength factors of 𝛺𝑈𝑝𝑝𝑒𝑟 = 1.86 and 𝛺𝐿𝑜𝑤𝑒𝑟 = 1.78 that were 

calculated using Equation (4.59). It is to be noted that Bridges 9–15 use the modification factor 

defined in Equation (4.46) for both exterior and interior spans to account for the external work 

done by the HS-20 truck load of the second lane.  

Table 6.2 and Table 6.3 summarize (similar to the Table 6.1) the input values and the results 

for the bridges to obtain the overstrength factors of the exterior and interior spans of the STTG 

bridges using the equations mentioned in Section 4.5. 
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Table 6.2. Summary of Overstrength Factors for Exterior Spans. 

ID 
Lx 

m 
R 

m 

B 

m 
Lx

* 

m 

s  

m 
b 

m 
t 

mm 
mx  

kN 
m'x  

kN 

my  

kN 
m'y  

kN 
0.5Mp

- 
 

kN-m 
wu  

kN/m2 
Wx  

kN/m 
IWD  

kN-m 
EWD  

kN-m 
Ω 

UB 

Ω 

LB 

B4S1 40 59 9 42 2.4 3.2 229 62 58 111 93 46595 11.01 21.01 3999 2220 1.80 1.67 

B4S2 39 59 9 41 2.4 3.2 229 62 58 111 93 46595 11.01 20.72 4003 2166 1.85 1.71 

B5S1 43 137 9 43 3.0 3.1 203 53 40 102 85 35866 10.53 13.86 3038 2180 1.40 1.28 

B5S2 43 137 9 43 3.0 3.1 203 53 40 102 85 35866 10.53 14.44 3038 2184 1.39 1.28 

B6S1 43 250 12 43 3.0 4.4 203 67 58 129 107 71483 10.53 25.39 4835 2985 1.62 1.52 

B6S2 43 250 12 43 3.0 4.4 203 67 58 129 107 71483 10.53 25.39 4835 2985 1.62 1.52 

B7S1 67 233 9 67 2.1 3.2 203 67 49 89 76 81505 10.53 26.99 4715 3261 1.45 1.37 

B7S2 58 233 9 58 2.1 3.2 203 67 49 89 76 81505 10.53 22.32 4706 2793 1.69 1.59 

B8S1 81 269 9 81 2.4 3.0 203 67 53 102 85 94475 10.53 29.47 5236 3897 1.34 1.27 

B8S2 90 269 9 91 2.4 3.0 203 67 53 102 85 94475 10.53 31.08 5378 4319 1.25 1.18 

B9S1 43 233 9 43 2.1 3.2 203 67 49 89 76 40374 10.53 19.26 3394 2180 1.56 1.44 

B9S3 38 233 9 39 2.1 3.2 203 67 49 89 76 40374 10.53 19.40 3416 2037 1.68 1.56 

B10S1 45 218 9 46 2.4 3.4 203 53 40 93 76 79147 10.53 20.72 4760 2406 1.98 1.88 

B10S3 58 218 9 59 2.4 3.4 203 53 40 93 76 87602 10.53 21.30 4813 2882 1.67 1.59 

B11S1 68 250 9 69 2.1 3.3 203 62 49 93 76 203043 10.53 61.42 7852 4493 1.75 1.69 

B11S3 72 250 9 72 2.1 3.3 203 62 49 93 76 203043 10.53 61.86 7741 4706 1.64 1.59 

B12S1 43 69 9 44 2.4 3.2 229 58 44 111 93 48114 11.01 21.45 4035 2309 1.75 1.63 

B12S3 44 69 9 46 2.4 3.2 229 58 44 111 93 48114 11.01 21.01 4039 2358 1.71 1.60 

B13S1 46 137 9 47 2.7 3.1 203 53 40 93 76 48644 10.53 16.49 3332 2358 1.41 1.32 

B13S3 46 137 9 47 2.7 3.1 203 53 40 93 76 48644 10.53 17.65 3332 2384 1.40 1.30 

B14S1 46 308 9 46 2.1 3.3 203 62 44 93 76 42776 10.53 20.43 3732 2291 1.63 1.52 

B14S3 46 308 9 46 2.1 3.3 203 62 44 93 76 42776 10.53 20.43 3732 2291 1.63 1.52 

B15S1 61 247 9 62 2.4 3.1 203 71 62 111 93 82970 10.53 26.70 5178 3047 1.70 1.60 

B15S3 61 247 9 62 2.4 3.1 203 71 62 111 93 82970 10.53 26.99 5178 3056 1.69 1.59 

Note: UB and LB denote upper-bound and lower-bound overstrength factors, respectively. 

 

Table 6.3. Summary of Overstrength Factors for Interior Spans. 

ID 
Lx 

m 
R 

m 

B 

m 

Lx
* 

m 

s 

m 

b 

m 

t 

mm 
mx 

kN 
m'x 

kN 
my 

kN 
m'y 

kN 
0.5Mp1

-
 

kN-m 
0.5Mp2

- 

kN-m 
wu 

kN/m2 
Wx 

kN/m 
IWD 

kN-m 
EWD 

kN-m 
Ω 

UB 

Ω 

LB 

B9S2 46 233 9 47 2.3 3.2 203 67 49 89 76 40374 40374 10.53 19.99 5418 2313 2.34 2.24 

B10S2 81 218 9 82 2.3 3.4 203 53 40 93 76 79147 87602 10.53 23.49 7206 3785 1.90 1.84 

B11S2 112 250 9 112 2.1 3.3 203 62 49 93 76 203891 203043 10.53 64.34 11817 6999 1.69 1.65 

B12S2 55 69 9 57 2.3 3.2 229 58 44 111 93 48114 48114 11.01 23.49 6156 2798 2.20 2.10 

B13S2 58 137 9 59 2.8 3.1 203 53 40 93 76 48644 48644 10.53 17.65 5249 2780 1.89 1.80 

B14S2 58 308 9 58 2.0 3.3 203 62 44 93 76 42776 42776 10.53 21.16 5623 2718 2.07 1.98 

B15S2 90 247 9 91 2.4 3.1 203 71 62 111 93 82970 82970 10.53 28.74 7807 4199 1.86 1.78 

Note: UB and LB denote upper-bound and lower-bound overstrength factors, respectively. 
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6.3. Ramifications 

In this chapter, yield line theory was applied to twin tub girder bridges with one tub completely 

fractured. The yield line theory that was developed was implemented by using both upper- and 

lower-bound approaches for the class of curved twin tub bridges investigated herein. The results 

of the 15 bridges investigated were tabulated for each span type: (a) simply supported, (b) both 

ends continuous; and (c) one end continuous plus the abutment simply supported (free).  

Some of the conclusions drawn from the results of yield line analysis are as follows: 

 The analysis of the bridges under the HL-93 loads results in a mechanism that makes use of 

torsional folded-plate action. This mechanism ensures the estimation of critical capacity after 

several trials.  

 The overall analysis is conservative because the guardrail is disengaged in this analysis. This 

assumption is reasonable since the guardrail is not constructed as a uniformly continuous entity 

due to the presence of expansion joints. Moreover, crushing of the guardrail under compression 

is reported to have taken place during the failure of the test bridge, as mentioned by Barnard 

et al. (2010). Therefore, it is reasonable to not count on any strength from the guardrail since 

it may lead to an incorrectly higher estimate of the strength of the bridge. 

 The simple-span bridges with the span lengths of 35.1 m and 36.6 m have upper-bound 

overstrength factors of 1.17 and 1.46, respectively, while those with the span lengths of 67.1 m 

and 70.1 m have upper-bound overstrength factors of 0.62 to 0.51, respectively. The exterior 

spans have upper-bound overstrength factors ranging from 1.25 to 1.98 depending on the 
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length of the span and the variation of the girder geometry along the span. The interior spans 

have overstrength factors ranging from 1.69 to 2.34 depending on the length of the span. 

 The redundancy owing to the continuity at supports contributes to a greater strength, as 

evidenced by the higher overstrength factors of the exterior and interior spans when compared 

to those of the simply supported single spans. The general order is that the interior spans have 

the most load bearing capacity, the exterior spans have the next highest load bearing capacity, 

and the single-span bridges are weakest in comparison, especially when the length and width 

are large, as seen in the case of Bridges 1 and 3. 

 The width of the bridge, however, is observed to not have as substantial an impact as that of 

the length of the span and boundary conditions in the case of yield line analysis. This 

phenomenon is because the external work done due to the second truck considered for the 

computation of the overstrength factor of the wider bridges does not change the overall 

outcome significantly since the deflections under the second HS-20 truck are of smaller 

magnitude.  

 From the results of the analysis, it may be recommended that the single-spans of the simply 

supported bridges are most susceptible to failure due to the lack of continuity at supports. 

Therefore, such bridges should continue to remain fracture critical if the span length exceeds 

65 m. The width and radius of curvature must also be suitably monitored when these bridges 

are being considered for a reclassification.  

 The interior spans of bridges beyond the span length of 80 m may be recommended to undergo 

a thorough investigation by more advanced methods since the span length may lead to a failure 
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in case of a fracture. The interior spans less than 80 m long display high redundancy and are 

likely have a high overstrength factor by all the methods of analyses. 

 Exterior spans of STTG bridges are observed to show fairly high redundancy for span lengths 

of up to 45 m. The lengths between 45 m to 60 display a slightly lower redundancy compared 

to ones below the 45 m range. Those spans beyond 60 m length must be assessed with caution 

during the reclassification investigation since the overstrength factors for such lengths are 

observed to be the least among the spans of this group. 

Table 6.4 summarizes the overstrength factors for the test bridge of TxDOT Research 

Project 9-5498 and the 15 preselected STTG bridges with the overstrength factors of the critical 

spans presented in boldface. 
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Table 6.4. Overstrength Factors for 15 Selected STTG Bridges. 

Bridge 

ID 

Radius of 

curvature, R 

m 

Width, B 

m 

Span, Lx 

m 

 

Overstrength Factor  

Ωyield Line  

9-5498 396 7.0 36.6 1.46 1.28 

1 175 9.8 67.1 0.62 0.57 

2 582 7.9 35.1 1.17 1.02 

3 673 11.9 70.1 0.51 0.44 

4-S1 
59 

8.5 40.2 1.80 1.67 

4-S2 8.5 39.0 1.85 1.71 

5-S1 
137 

9.1 42.7 1.40 1.28 

5-S2 9.1 42.7 1.39 1.28 

6-S1 
250 

11.6 42.7 1.62 1.52 

6-S2 11.6 42.7 1.62 1.52 

7-S1 
233 

8.5 66.8 1.45 1.37 

7-S2 8.5 57.9 1.69 1.59 

8-S1 
250 

8.5 80.8 1.34 1.27 

8-S2 8.5 89.9 1.25 1.18 

9-S1 

233 

8.5 42.7 1.56 1.44 

9-S2 8.5 46.0 2.34 2.24 

9-S3 8.5 38.4 1.68 1.56 

10-S1 

218 

9.1 45.1 1.98 1.88 

10-S2 9.1 80.8 1.90 1.84 

10-S3 9.1 57.9 1.67 1.59 

11-S1 

250 

8.5 68.0 1.75 1.69 

11-S2 8.5 111.6 1.69 1.65 

11-S3 8.5 71.6 1.64 1.59 

12-S1 

69 

8.5 42.7 1.75 1.63 

12-S2 8.5 54.9 2.20 2.10 

12-S3 8.5 44.2 1.71 1.60 

13-S1 

137 

9.1 46.0 1.41 1.32 

13-S2 9.1 57.9 1.89 1.80 

13-S3 9.1 46.0 1.40 1.30 

14-S1 

308 

8.5 45.7 1.63 1.52 

14-S2 8.5 57.9 2.07 1.98 

14-S3 8.5 45.7 1.63 1.52 

15-S1 

247 

8.5 61.0 1.70 1.60 

15-S2 8.5 89.9 1.86 1.78 

15-S3 8.5 61.0 1.69 1.59 

Note: The boldface type value for Ω is the critical (lowest Ω) case for the bridge concerned. 
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CHAPTER VII  

DISCUSSION AND SIGNIFICANCE OF RESULTS WITH RECOMMENDATIONS 

7.1. Chapter Summary 

The results of the plastic analysis are compared with the results reported by the Finite Element 

Method (FEM) and the Grillage analysis that were conducted to evaluate the internal redundancy 

of fracture critical Steel Twin-Tub Girder (STTG) bridges. The three methods serve as an 

independent check for assessing whether or not an STTG bridge span may be declassified from its 

fracture critical status. The analysis is conducted for the suite of 15 typical STTG bridges selected 

from the inventory of the Texas Department of Transportation (TxDOT) in order to help bridge 

engineers to implement the recommendations and findings of this research in the evaluation 

regimes of other such bridge spans. The comparison also illustrates how each of the three methods 

predict the overstrength of the bridge spans based on the underlying assumptions.  

7.2. Introduction 

The evaluation of fracture critical nature of STTG bridges is proposed to be evaluated by three 

mutually independent methodologies as part of the TxDOT 0-6937 project, (Hurlebaus et al. 2018). 

In order to establish reasonable confirmation that the evaluation is sufficiently rigorous, each 

method is significant since a consistency of results of these independent solutions is essential to 

validate the decision-making process. The 15 bridges that are considered for this analysis consist 

of three different kinds of spans with different support conditions that encompass the various 

possibilities for bridge spans. The results of comparison of all the methods are discussed using 

load-deflection curves for the FEM and the grillage methods, and the plastic solutions are 

represented as a band flanked by the upper-bound yield line solution on the top and the lower-
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bound strip method solution at the bottom. The implication of the results is discussed in the 

following sections. 

7.3. Comparison of Results of Plastic Methods with FEM and Grillage Analysis  

The different kinds of bridges, simply supported single span bridges, the interior spans of three 

span bridges and the exterior spans of both the two- and three span bridges, are compared using 

graphical representation. The FEM and Grillage Analysis results are represented in the form of 

load-displacement curves and the overstrength factor at the defined practical displacement limits 

are indicated by the diamond markers. The FEM results are represented by a blue curve, while the 

grillage results are represented in purple. The plastic solution is indicated as a yellow band, with 

red upper bounded solution and a green lower bounded solution. The three categories of bridge 

spans have the corresponding overstrength results tabulated in increasing order of their span 

lengths. In the event of the outer girder undergoing a premature fracture at the critical location, the 

load will be borne by the moment capacity of transverse yielding of deck slab and by the folded 

plate mechanism (longitudinal redundancy) existing between the two tub girders. Additional 

moment capacity will be contributed by the girder at the continuous supports of the two-span and 

three-span bridges. 

7.3.1. Single-Span Simply Supported Bridges 

Due to the least redundancy of these bridges, with a degree of indeterminacy of zero, these spans 

exhibit the least overstrength compared to those multi-span bridges continuous over their supports. 

Figure 7.1 presents the comparison of overstrength results generated by FEM, grillage analysis 

and plastic methods for a typical single-span bridge. All methods indicate that sufficient 

overstrength capacity (Ω > 1) exists even after fracture of the outer girder in case of Bridge 2 with 

a span length of 35 m. 
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However, for longer spans, the overstrength capacity is insufficient to sustain the bridge 

after collapse. Therefore, there must be a limit set for the single-span bridges, beyond which these 

spans are to remain fracture-critical. The FEM results for the experimentally tested span show that 

the bridge should remain fracture critical despite the other methods suggesting sufficient 

overstrength. This disparity may be attributed to the higher accuracy of FEM to capture the three-

dimensional behavior. 

Moreover, this is a single-lane bridge, which may have been overloaded by the loading 

assumptions used in these analyses. Table 7.1 summarized the results of all the single-span bridges, 

listed in an increasing order of the span length. It may be concluded that the single-span bridges 

must be dealt with caution owing to the lack of sufficient redundancy. If short-span bridges are to 

be considered for declassification, an advanced FEM analysis must be conducted to check the 

veracity of the results.  

7.3.2. Interior Spans of Bridges Continuous over Both Supports 

The interior spans of three-span bridges possess the highest redundancy due to the degree of 

indeterminacy of 2. Three plastic hinges are formed in this collapse mechanism: two over piers 

and one at the critical location of maximum positive moment (at midspan, similar to single-span 

bridges). The moment capacity that contributes to the overstrength capacity of the interior spans 

of bridges comprises of similar factors as that of their simply-supported counterparts, with the 

exception of the additional redundancy provided by the transverse hinges and the moment capacity 

at the supports over the bearing seats. 

 The results of overstrength capacity computed using FEM, grillage and plastic analyses are 

compared.  It  is  observed  that  sufficient  capacity (Ω > 1) is assured  by  all  the  three  methods.  
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(i) Load displacement          (ii) Deck rotations 

Source: Hurlebaus et al. (2018) 

Figure 7.1. Comparison of the Results for Bridge 2, L = 35 m 

 

 

Table 7.1. Comparison of Overstrength Factors for Simply Supported Single- Spans. 

              Yield Line   

ID Span R (m) L (m) B (m) S (m) FEM 
Upper 

Bound 

Lower 

Bound 
Grillage 

2 1 582.17 35.05 7.92 1.86 1.65 1.17 1.02 1.11 

0 1 396.24 36.58 7.01 1.83 0.86 1.46 1.28 1.07 

1 1 174.65 67.06 9.75 2.90 0.82 0.62 0.57 0.21 

3 1 672.69 70.10 11.89 3.84 0.85 0.51 0.44 0.16 
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Figure 7.2 presents the comparison results of a typical interior span of a three span bridge, Bridge 

9. The lower grillage results may be due to the fact that torsional capacity is not considered for the 

grillage members, making the analysis computationally lower bound. The FEM analysis is 

observed to generate results higher than that of the upper bound plastic method. This may be due 

to the catenary action of the slab that is not accounted for by the plastic theories (Pirayeh Gar et 

al. 2014). This makes the results of the plastic analysis more conservative. 

 Table 7.2 presents all the comparison overstrength results of the interior spans for the three 

methods in a similar fashion of ordering as in the previous section. The shorter of the medium-

length interior spans of Bridges 9 and 12 exhibit a sufficient load carrying capacity with a 

consistently high overstrength (Ω > 2) reported by all three methods. The longer of the medium-

length interior spans of Bridges 13 and 14 show a moderate capacity (1.4<Ω < 2). Though the 

overstrength capacity of the longest interior spans among the bridges under consideration show 

sufficient design capacity (Ω > 1), it must be noted that the longer spans must be analyzed 

thoroughly since there is some risk associated with such spans as shown for Bridges 10, 15 and 

11. Bridges 11 and 15 show the least overstrength in comparison with the other interior spans. 

Thus, there is a correlation between the strength and the span length that should be considered for 

the development of declassification recommendations. 

7.3.3. Exterior Spans of Multi-span Continuous Bridges 

The end spans of continuous bridges have one support condition and the other free to rotate at the 

abutment. One degree of indeterminacy exists for this class of bridge spans. Two plastic hinges, 

one at the critical location of maximum bending moment and the other over interior pier of the 

bridge. The brittle fracture of the outer girder is assumed to be at 40% of span length measured 

from the exterior pier as discussed in  Section 4.6. The deck slab contributes  to a transverse yield  
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(i) Load displacement          (ii) Deck rotations 

Source: Hurlebaus et al. (2018) 

Figure 7.2. Comparison of the Results for Bridge 9, Span 2, L = 46 m 

 

Table 7.2. Comparison of Overstrength Factors for Interior Spans. 

              Yield Line   

ID Span R (m) L (m) B (m) S (m) FEM 
Upper 

Bound 

Lower 

Bound 
Grillage 

9 2 233 46 8.53 2.13 2.45 2.34 2.24 2.1 

12 2 69 55 8.53 2.32 1.8 2.2 2.1 1.56 

13 2 137 58 9.14 2.83 1.4 1.89 1.8 1.35 

14 2 308 58 8.53 1.98 1.8 2.07 1.98 1.35 

10 2 218 81 9.14 2.35 1.45 1.9 1.84 1.25 

15 2 247 90 8.53 2.44 1.4 1.86 1.78 1.25 

11 2 250 112 8.53 2.13 1.2 1.69 1.66 1 
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moment capacity at the critical location. The girder provides additional redundancy at the interior 

continuous support. The longitudinal redundancy attributed to the folded plate mechanism is 

similar to that observed in the single spans and the interior spans. 

 Figure 7.3 presents a typical exterior span of Bridge 4 with the comparison between the 

three methods represented graphically. The consistency between FEM and plastic analysis evident 

from this graph is also reflected in the results of most of the spans in this category. Therefore, the 

two methods may be shortlisted for further evaluation of the fracture critical nature of these bridge 

spans. Exterior spans of less than 50 m such as both the exterior spans of Bridges 9, 4, 12, 6 and 

14, and the first span of Bridge 10, have a sufficiently high overstrength capacity (1.5 < Ω < 2.0). 

These results are fairly consistent for all three methods with certain degree of disparity arising due 

to the difference in the underlying assumptions of these methods. Both spans of Bridges 5 and 13, 

however, are the outliers of this group of spans since the overstrength (1.0 ≤ Ω < 1.5) of these spans 

is less than the others belonging to this range of span lengths. This reduction in capacity may be 

attributed to the tighter radii of curvature (137 m) of these two bridges.  

Bridges of span length between 50 m to 80 m, such as both the exterior spans of Bridges 

7, 15, and 11 and the second span of Bridge 10 are computed to have moderate overstrength (1.0 

≤ Ω < 1.5), consistently for most of the spans with all the three methods. The longest of the exterior 

spans of span length beyond 80 m, such as both exterior spans of Bridge 8 may not be declassified 

since the overstrength is shown to be insufficient (Ω<1) when the results of all the three methods 

are studied in conjunction.  



 

136 

 
 

(i) Load displacement           (ii) Deck rotations 

(Hurlebaus et al. 2018) 

Figure 7.3 Comparison of the Results for Bridge 4, Span 1, L = 40 m 
 

Table 7.3. Comparison of Overstrength Factors for Exterior Spans. 

             Yield Line   

ID Span R (m) L (m) B (m) S (m) FEM 
Upper 

Bound 

Lower 

Bound 
Grillage 

9 3 233 38 8.53 2.26 1.8 1.68 1.56 1.53 

4 2 59 39 8.53 2.32 1.73 1.85 1.71 1.32 

4 1 59 40 8.53 2.32 1.65 1.8 1.67 1.3 

12 1 69 43 8.53 2.32 1.6 1.75 1.63 1.2 

9 1 233 43 8.53 2.26 1.7 1.56 1.44 1.35 

6 1 250 43 11.58 2.99 1.8 1.62 1.52 1.43 

6 2 250 43 11.58 2.99 1.8 1.62 1.52 1.43 

5 1 137 43 9.14 2.96 1.2 1.4 1.28 1.1 

5 2 137 43 9.14 2.96 1.2 1.39 1.28 1.1 

12 3 69 44 8.53 2.32 1.6 1.71 1.6 1.15 

10 1 218 45 9.14 2.35 1.7 1.98 1.88 1.71 

13 1 137 46 9.14 2.83 1 1.41 1.32 1.1 

13 3 137 46 9.14 2.83 1 1.4 1.3 1.1 

14 1 308 46 8.53 1.98 1.65 1.63 1.52 1.25 

14 3 308 46 8.53 1.98 1.65 1.63 1.52 1.25 

7 2 233 58 8.53 2.26 1.45 1.69 1.59 1.25 

10 3 218 58 9.14 2.35 1.45 1.67 1.59 1.25 

15 1 247 61 8.53 2.44 1.7 1.7 1.6 1.4 

15 3 247 61 8.53 2.44 1.7 1.69 1.59 1.4 

7 1 233 67 8.53 2.26 1.2 1.45 1.37 0.94 

11 1 250 68 8.53 2.13 1.6 1.75 1.69 1.35 

11 3 250 72 8.53 2.13 1.6 1.65 1.59 1.3 

8 1 269 81 8.53 2.56 0.99 1.34 1.27 0.83 

8 2 269 90 8.53 2.56 0.88 1.25 1.18 0.6 
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7.4.  Significance 

Figure 7.4 presents a vivid trend emerging from the results that shows that there exists a 

relationship between the overstrength capacity of the spans and the corresponding centerline length 

of the outer girder. For the purpose of developing an overstrength factor that is normalized by the 

span length, the following relation is derived based on the results of the analysis. The plot shows 

the results of the analytical overstrength factors of each kind of spans represented as discrete data 

points and the normalized overstrength is plotted as a black continuous curve using the following 

expression, while the dashed line shows a lower-bound envelope of the results 

𝜔 = 
𝑐(𝜂 + 1)

𝐿𝑥
∗

 (7.1) 

in which  = a factor if safety, 𝑐 = a length constant (m, ft); 𝐿𝑥
∗  = centerline length of the outer 

girder; and 𝜂 = number of redundant hinges, where 𝜂 = 0, 1, and 2 for simply supported, fixed-

free, and fixed-fixed end conditions respectively. Based on the mean values of overstrength factor, 

an overall median value of 𝑐 = 41 is considered for plotting the curve of 𝜔 versus 𝐿𝑥
∗  to study the 

trend of the analytical overstrength results in the following graphs in Figure 7.4.  

 Figure 7.4 (d) shows the cumulative distribution plotted for the ratios of the analytical 

results (𝛺𝑈𝐵) to the overall median ( = 1) results (𝜔) for all the bridge spans considered. The 

dispersion of the plot is found to be 0.23. Therefore, this statistical analysis confirms that the 

overstrength of the bridge is greatly influenced by the span length of the bridge and the internal 

redundancy of the bridges. Thus, one may conclude that it is reasonable to develop the 

recommendations for the potential reclassification on the basis of the span lengths and the degree 

of redundancy of each span within a bridge.  
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(a) Overstrength Trend for Simply Supported Bridges  

 
(b) Overstrength Trend for Exterior Spans of Multi-span 

Bridges 

 

  

(c) Overstrength Trend for Interior Spans of Three-span 

Bridges 

(d) Dispersion of results 

Figure 7.4. Relation between Span Length and Overstrength. 
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7.5. Recommendations 

For a final confirmation about the veracity of the reclassification, it is recommended to test using 

more advanced and computational methods such as Grillage Analysis in SAP2000 and FEM 

Analysis in software programs. It may be concluded that one method alone is not sufficient to 

determine the declassification of bridges. However, each method may form a stage in the 

sequential process of determining the redundancy of STTG bridges. Figure 7.5 presents the 

analysis schema of redundancy evaluation of STTG bridges using a flow chart representation. 

In general, based on the pattern that emerges from the results of the analysis of the 

overstrength factors, it can be suggested that single-span bridges less than 37 m span length may 

be subjected to further investigation for potential reclassification. The exterior spans of the two-

span and three-span bridges shall continue to possess the “fracture critical” status for span lengths 

greater than 61 m. The interior spans of the three-span bridges of span length longer than 107 m 

are also recommended to be treated as fracture critical. These recommended critical span lengths 

are represented as 𝐿𝑐𝑟 in the plots of Figure 7.4 

Generally, it is also observed that as a bridge become wider, its susceptibility to failure and 

collapse also increases. Additionally, it is observed that the radius of curvature impacts the 

capacity of the bridge marginally. The tighter the radii, the less stable the bridge may be. The 

future work in this area may focus on the automation of the plastic analysis into a software that 

can ensure quicker and thorough optimal study. Sensitivity study may be conducted to check the 

various parameters involved in the research that influence the outcomes of the overstrength factor.  



 

140 

 

Source: (Hurlebaus et al. 2018) 

Figure 7.5. Flowchart for Analysis Procedure of STTG Bridges. 
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CHAPTER VII  

SUMMARY AND CONCLUSIONS  

8.1. Summary 

The limit analyses methods were evaluated in detail by reviewing the previous work conducted for 

the evaluation of failure analysis. The methods were assessed and developed for the application of 

these analytical techniques to compute the reserve capacity of the fracture critical Steel Twin-Tub 

Girder (STTG) bridges. The assessment of this class of bridges was initiated by implementing the 

yield line theory to solve an experimentally conducted collapse. The experimentally tested bridge 

of the TxDOT 9-5498 project was analyzed by simulating the test loading. The experimental sand 

loading was used to postulate the critical yield line mechanism after a series of rigorous 

minimization analyses using several possible admissible mechanisms were conducted. The result 

obtained from the critical mechanism was validated by the experimental results and this accurate 

collapse analysis using yield line theory confirmed that plastic methods may serve as a viable 

solution to analyze the longer span bridges effectively. Earlier studies had not truly captured the 

collapse behavior of the longer span bridges accurately. This analysis was modified to account for 

all the components of the composite STTG bridge section such as the deck slab, the outer girder 

with the web and bottom flange fractured and the shear studs connecting the deck slab to the 

girders.  

The validation of the theoretical yield line analysis with the experimental results was 

followed by the second phase of the research that was the analysis of 15 STTG bridges under 

standard traffic loading (HL-93) for the purpose of evaluation of their fracture critical status. The 

critical mechanism was postulated for the given loading to model the combined flexural and 

torsional bending of the deck slab. The minimization analysis was conducted to determine the 
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critical mechanism and an equivalent strip method solution was generated by neglecting torsion. 

The two solutions of upper bound (yield line method) and lower bound (strip method) were 

developed to obtain a range of overstrength capacity for each span. The analysis guidelines were 

drafted to sequentially explain the procedure of carrying out the analysis technique thus derived. 

These guidelines were developed for one span of each kind to encompass all the various cases of 

spans that are included among the 15 selected bridges. The procedure was then implemented to 

the remaining spans and the results of each bridge were discussed and the concluding remarks 

were mentioned based on the observation of the results.  

8.2. Conclusions 

1. This thesis has shown that plastic analysis is an expeditious way to ascertain the reserve 

capacity of Twin-Tub girder bridges when one of the girders has prematurely fractured. 

2. The modification of the conventional yield line theory to account for the combined beam-

slab action of the STTG girder bridge captures the flexural capacity of both the deck slabs 

and the girders.  

3. The extra capacity imparted by the internal work done due to the tensile failure of the shear 

studs can also be modeled and mathematically incorporated as an equivalent internal work 

done by the studs in resisting the pull-out of studs at failure.  

4. The true redundancy of the experimental STTG bridge that was not accounted for in the 

yield line analysis reported in the TxDOT 0-6937 project has been effectively reflected in 

the results obtained from the postulated mechanism that combines the structural 

components of the bridge such as the fractured girder, the deck slab and the shear studs 

that were pulled out. 
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5. The critical mechanism postulated to predict the capacity of the test bridge with the 

simulated sand load achieved validation from the experimental result of the load capacity 

of the said bridge. The collapse load calculated using the yield line analysis was 1570 kN, 

while the experiment conducted during TxDOT Research Project 9-5498 gave a load of 

1592 kN. The yield line result is 1.40% lower than the reported collapse load. The analysis 

modified the yield line theory to account for the stud failure. 

6.  Moreover, the failure load analysis using the yield line theory modeled the sand load as 

wheel load (point load) in Barnard et al. (2010) instead of the uniformly distributed load. 

This equivalence of the two different types of loading is to be discouraged since the crack 

patterns essential to the yield line solution vary with the manner in which the loads are 

being applied. It is also evident that the results of the proposed mechanism, developed by 

modelling the sand loading to closely simulate the actual test conditions, are accurate since 

the veracity of the results are validated using the experimental results with an error of less 

than 2%. This underestimation is attributed to the catenary action and the strain hardening 

effects of the slab structure.  

7. The mechanism developed for the sand loading is not the most optimal solution for the HL-

93 loading. This was observed because the sand load was uniformly distributed while the 

HL-93 loading is a combination of concentrated load and continuous load. This impacts 

the geometry of the collapse mechanism, and consequently the internal and external work 

done by these loads. The point loading resulted in a more fanned mechanism typical for 

such loading in slabs. Therefore, a new mechanism is to be postulated. 

8. The presence of the remaining part of the fractured girder affects the kinematics of the 

beam forcing a folded plate mechanism to take a zig-zag formation that is shown in this 
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thesis. This additional torsional effect, in combination with the flexural effects, are 

incorporated in a mechanism postulated for the HL-93 loading. The postulated mechanism 

is generalized to obtain a solution that can be used to analyze the STTG bridges with 

differing boundary conditions. The solution is further modified to account for the width 

and curvature of the bridge that influence the extent of the external work done by the second 

lane of HL-93 loading. 

9. It can be observed that there are several spans that are proven to show sufficient redundancy 

(indicated by overstrength factor greater than unity) that can initiate a process of 

reclassification of such bridges. Recommendations are made for a this reclassification 

process based on a comparative study of the plastic methods with the other computational 

methods such as FEM and grillage analysis. 
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