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ABSTRACT

To meet the ever-growing network traffic demand, the underlying communication networks

need to be open and programmable. The Software Defined Networking (SDN) paradigm separates

the traditional data plane and network control plane, providing the ability to design, develop and

manage the communication networks in an efficient and scalable manner. SDN enables a high

degree of network programmability by providing high-level abstractions of the network devices

and interfaces to manipulate them. SDN has attracted significant attention in the research com-

munity that produced a large body of work on programmable data plane and control frameworks.

However, the existing studies mainly focus on the wireline networks, while wireless networks have

received only limited attention.

Wireless traffic has significantly increased during the last couple of decades. Expansion of

wireless communication networks is setback by limited usable spectrum, varying channel con-

ditions, and signal fading. Envisioning to support re-configuration of wireless communication

networks, fast dynamic reconfiguration of radio devices, and robust network programmability is

necessitated. While network programmability is motivated by the SDN paradigm, Software De-

fined Radio provides a platform to perform various signal processing functions in software rather

than hardware. However, to the best of our knowledge, there does not exist a framework to dynam-

ically program wireless devices across all levels of the protocol stack.

Accordingly, in this project, we build the foundations of a fully programmable SDN-enabled

framework that can achieve this goal. The proposed framework leverages the existing SDN ap-

proaches for programmable data planes as well as the Software-Defined Radio paradigm. In partic-

ular, we propose several key extensions to the SDN packet processing pipeline that enable different

per-flow behaviors at the physical layer. The contributions of this thesis include: (i) a set of dif-

ferent physical layer profiles are presented as abstractions to the SDN application developer which

is used to set different Physical layer parameters for different traffic flow type; (ii) extensions of

SDN protocols (such as OpenFlow) to provide an abstraction for various physical layer profiles;
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(iii) a proof-of-concept implementation and a set of use cases that demonstrate the benefits of our

approach. We also perform an extensive experimental study to evaluate the performance gains that

can be achieved by using fully programmable wireless devices.
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1. INTRODUCTION

Software defined networking (SDN) paradigm has received significant attention from the re-

search community and industry. SDN has emerged as a new and exciting tool for building flexible

and efficient communication networks. The main principle of the SDN paradigm is decoupling of

the control plane from the data plane. This decoupling enables the network operators to manage

network resources in a highly adaptive way by re-configuring the network devices in the network

on demand. In particular, the SDN concept provides an abstraction of the data plane and an Ap-

plication Programming Interface (API) for SDN applications to interact with these abstractions.

SDN applications are presented with the ability to run custom algorithms to control the data flows

with a centralized view of the entire network. Network operators can develop SDN applications to

implement their desired algorithms on the network elements.

Although SDN concepts for wired networks have been widely studied and researched, applying

SDN principles for wireless networks has received significantly less attention from researchers and

practitioners. Indeed, OpenFlow, currently most popular SDN southbound API, does not provide

wireless abstraction. With the ever increasing demand of wireless traffic, scarcity of wireless spec-

trum, and constantly emerging new wireless protocols, there is a need to develop SDN approaches

for wireless networks that would allow standardized on-demand reconfiguration of wireless de-

vices and enable a high degree of programmability at the physical layer.

Software defined radio technology enables flexibility, cost efficiency and power to modify and

reconfigure the radio devices. It provides the ability to design and implement almost all of physical

layer operating functions, such as filters, amplifiers, modulators/demodulators, encoders/decoders,

local oscillators, etc., through a modifiable software. This enables high flexibility in employing

a general purpose radio hardware, connected to an RF front end, to implement different wireless

services and protocols (e.g., GSM, Bluetooth, LTE, WiFi) with little or no additional hardware.

While the SDR paradigm has revolutionized the digital signal processing in individual radios, to

the best of our knowledge, it does not provide a defined method, with layers of abstractions, to

1



program a network of radios in an adaptive way.

Our aim is to provide a cross-layer architecture that has the ability to configure a broad range

of network and physical layer parameters for different flows and modify these parameters in re-

sponse to changing network conditions in a principled manner. Our dynamically programmable

framework enables the network operator to:

1. ensure that the available spectrum is utilized efficiently by modifying the behavior of the

network and/or physical layer parameters in response to congestion, user demands, and spec-

trum availability;

2. prioritize flows by differentiating between different data flows and provide preferential treat-

ment of flows with stringent Quality of Experience (QoE) constraints and by selecting ap-

propriate physical layer parameters e.g., selecting highly reliable coding scheme or higher

transmit power for high-priority flows;

3. gain logically-centralized knowledge about the status of network links and elements and use

this knowledge for optimizing network behavior;

4. implement desired network policies and algorithms through cross-layer control.

In this thesis we build the foundations of a fully programmable SDN-enabled framework for

wireless networks. Our framework leverages both the recently developed SDN protocols (Open-

Flow) [1] and the software defined radios (SDR) paradigm. OpenFlow is one of the most principled

SDN frameworks that gained remarkable traction from the networking industry. Our framework

extends the SDR functionality in a significant way that will allow the control plane to manipulate

the important parameters at the physical layer and to fully integrate the radios into the broader

SDN framework.

Our framework leverages the previous work, Crossflow Architecture presented in [18] which

was the first attempt to define wireless abstractions for SDN applications. The main limitation of

the Crossflow approach is lack of ability to support different per-packet behaviors. In contrast, our
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architecture enables the network operator to handle packets of various applications, i.e., real-time

data packets or HTTP packets in a different way, prioritize the desired packet flows, and to meet

application-specific QoE requirements for a broad range of applications.

One of the main limitations of the existing SDN protocols, such as OpenFlow, is that they do

not include abstractions for physical-layer components (such as modulators, coders, and transmit-

ters). Accordingly, we define such abstractions as part of our framework and extend the OpenFlow

protocol to provide a mechanism for the controller and the application developer to manipulate

these abstractions.

To validate the approach, we implemented the architecture by extending the OpenFlow data

plane pipeline to support wireless abstraction. We refer to our architecture as CrossFlow-Plus.

Our approach provides a deep interaction between the different layers of the OSI model making

it a true cross-layer architecture. Data plane of CPqD software switch is modified to support our

architectural requirements. One is the main components of our architecture is the GNU radio

framework that provides an open source digital signal processing platform for software defined

radios. Several signal processing flows are designed using GNU Radio domain to implement

and validate our architecture. GNU Radio interacts with the Software defined radios using UHD

drivers to transmit and receive wireless data. A proof-of-concept SDN application, illustrating the

per-packet behavior support, is designed and implemented using an open source SDN Controller,

Ryu [2].

Our contributions can be summarized as follows:

• Designed a true cross layer architecture integrating SDN and SDR concepts;

• Implemented extensions to the Openflow data plane pipeline to handle wireless packets and

connect to the software defined radios;

• Designed different signal processing flows on GNU Radio to handle and forward packets

from the SDN data plane pipeline;

• Created an SDN Application depicting the per-packet behavior of our architecture.
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2. BACKGROUND

2.1 Software Defined Networking

SDN paradigm can be defined as abstractions of basic data plane primitives (such as flow tables,

queues, ports, and meters) and provide the interface that will allow the control plane to manipulate

this abstraction. This interface is referred to as the Southbound API. Examples of such API include

OpenFlow, Netconf, and Cisco OpFlex. The southbound API connects the individual switches with

the controller. The key element of the control plane is a controller or, for distributed control plane,

a set of controllers. The controller uses a south-bound API like OpenFlow protocol to dynamically

add, delete or modify the flow table entries to perform certain packet processing actions. More

generally, the south-bound API allows the controller to interact with data plane primitives, which

includes receiving information about their capabilities, changing their configurations, obtaining

statistics, and receiving call back information about the events, etc. The control plane enables

development of the network applications that work with an abstracted view of the network to

implement the policies and algorithms defined by the operator. SDN applications interact with

the SDN controller via a north-bound interface. The high level scheme of the SDN framework is

provided in Figure 2.1.

2.2 OpenFlow

OpenFlow protocol [1] is a southbound API which is designed to communicate with the Open-

Flow switch using an SDN Controller. It provides an TCP/TLS connection to the controller making

the connection secure between the switch and the controller. OpenFlow protocol provides a sep-

aration of the control plane from the data plane and a medium to interact between them using

flow table entries. These flow table entries are composed of a number of packet details to match

on, and provide actions on the packet depending on the matches. It can forward, add, modify or

drop the packet depending on the actions in the flow table entry. OpenFlow protocol provides a

communication medium to the controller to be able to add, delete, modify or forward the packets
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Figure 2.1: SDN Framework

according to the logical abstraction. OpenFlow switch agent is incorporated in SDN switches to

process information received from the controller and update flow table entries. This provides the

SDN controller with abstractions, hiding the underlying lower layer details. We use these SDN

abstractions to change the physical layer parameters of wireless packets as well. We extend the

SDN switch to be able to handle wireless packets using software defined radios and provide these

extensions as abstractions to the SDN applications.

2.3 Software Defined Radios

SDR architecture can be viewed in terms of hardware and software. The radio consists of

analog to digital converter/ digital to analog converter. These converters mark the boundary of

software blocks to hardware blocks in a software defined radio. The hardware components are

used to process the analog signals, while digital signals are processed in software. The ADC/DAC

separates analog signal and digital signal processing from one another. This is separation is named
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Figure 2.2: OpenFlow protocol [Reprinted from flowgrammable [5]]

as digital access point. All radio functions after the digital access point in the architecture are

processed through software.

Software defined radios support a wide band of frequencies and dedicate the signal processing

of digital data to the software blocks as shown in Figure 2.3. These blocks are put together to form

a flow graph that provides digital data to the RF front end of the radio with the help of specific

drivers. These drivers also convert the received analog signals into readable digitized form for the

software (GNU Radio) domain to further process the received signals.

2.4 GNU Radio Framework

GNU Radio [3] is a free and open-source software development framework that provides signal

processing support for software defined radios. The blocks provided by GNU Radio help perform

distinct signal processing functions. These blocks are used to implement any radio functionality on

the SDRs. However, the framework does not have the ability to provide the application developer
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Figure 2.3: Architecture of a Software Defined Radio

with access to choose different blocks and control the network of SDRs. In this thesis, we provide

the ability to expose this re-configurability of radios to the network operator and design the selec-

tion of blocks to effectively optimize the spectrum usage. It aids to meet different performance

requirements for different types of packet flows.
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3. RELATED WORK

The interest in software defined wireless networks and the integration of SDN and SDR con-

cepts has attracted a large body of research over the last decade. An early work proposing a cross-

layer architecture with integrated SDN and SDR is seen in Openroads [20]. Openroads presents

an architecture that provides a support for program control in WiFi and WiMAX networks. It al-

lows the network operator to design control algorithms for network slicing in cellular networks.

An architecture similar to our proposed architecture is presented in Ætherflow [19] that provides a

set of wireless abstraction for WiFi networks. However, these architectures are confined to WiFi

networks. Also, proposed work in Programming Abstractions for Software-Defined Wireless Net-

works [17] provides a Python-based Software Development Kit to implement the proposed similar

SDN abstractions for wireless network. However, these proposed abstractions are limited to WiFi

networks whereas our work provides protocol-independent wireless abstractions.

OpenRadio [6] presents an cross-layer architecture for a programmable wireless data plane.

The architecture provides flexibility to modify PHY and MAC layer. However, this flexibility

is not extended to the Network or transportation layer. Similarly, in [7], programmable wireless

data plane has been proposed. It provides modular blocks and focuses on processing signals.

However, it does not provide a logical platform for network operator to vary PHY and MAC layer

characteristics per flow type. In contrast, our work provides programmable access to design of

signal processing on GNU Radio for USRPs which facilitates unlimited flexibility of PHY layer

characteristics.

Integration of SDR and SDN for 5G [9], discusses the benefits on providing wireless abstrac-

tions for SDN application developers. It highlights the need for a cross-layer controller. However,

it does not provides a working model of the proposed architecture. In our work, we build a working

model of the architecture using SDN switches and SDR radios.

RCube [10] proposes a cross-layer architecture that provides a structured methodology to im-

plement complex decision-making algorithm in modular and protocol independent manner. The
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design is structured into decision, control, data and register plane. However, for different protocol,

the network operator has to provide a module for packet abstraction and protocol implementation

in the register plane. In our work, data plane pipeline of software defined network switch is embed-

ded with protocol-independent packet abstractions. This pipeline does not require extra pipeline

to be added for every varying protocol. Instead, flow rules are added to provide logical actions for

different packet/protocol type.

CrossFlow [18] proposes an cross-layer architecture that implements integration of SDN and

SDR paradigm to provide a platform for network operators to use wireless abstractions for recon-

figuration of radios and network switches. However this architecture does not support per-packet

behaviour for wireless abstractions that are defined in this work.

Architecture presented in softRan, [12] deals with centralized control of radio devices in a

wireless network. It provides a logical abstraction to vary the transmit power and spectrum re-

source allocation for radio devices based on optimization algorithms. However, it does not provide

ability to vary modulation schemes based on the network. Also, it focuses mainly on LTE net-

work whereas, our work provides a mechanism for centralized control while making the exposed

interfaces protocol independent.

Work in [13] describes a Software Defined Physical layer architecture which presents an in-

tegration of SDN and SDR paradigm. However, this architecture is specific to LTE Networks.

Architecture presented in [14] provides a blueprint for LTE self-organizing networks (SONs) us-

ing SDN and SDR principles. These papers provide distinct solutions for various scenarios but do

not provide a generic framework for handling various protocols and various traffic flow type in a

principled manner. This is addressed in this thesis.
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4. DATA PLANE EXTENSIONS

In TinyNBI [8], SDN abstractions model is derived from openFlow specifications [1]. Data

plane elements are listed in [1], and the relationship between these elements in shown in Figure

4.1.

Figure 4.1: UML diagram of OpenFlow data model depicting the relationship amongst elements
Reprinted from flowgrammable [5]

In the TinyNBI model, a generalized SDN abstraction model [8], each component exposes four

types of interfaces: capabilities, configuration, statistics and events, as shown in Figure 4.2.

1. The capabilities interface allows the controller to receive information about the set of oper-

ations supported by the device. It is a read-only interface.
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2. The configuration interface includes functions for all the configurable parameters that can be

modified during switch operation.

3. The statistics interface provides the controller with average operational information such as

average packet rate, drop rate, and more.

4. The events interface enables the controller to be notified through call-back calls when certain

pre-specified conditions occur.

Figure 4.2: Abstraction Interface

The first step in enabling programmability is to define specific abstractions as described in Figure

4.2 and interfaces for the physical layer implemented by the software-defined radios. The previ-

ous work in this direction, CrossFlow [18], has defined a set of abstractions for the data plane,

along with the interface to manipulate them. However, CrossFlow [18] did not provide the system

with the ability to use different physical layer profiles for different packets. Accordingly, in this
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work, we propose a new architecture that allows to define several physical layer profiles and to use

appropriate profiles for packets that belong to different flows.

The proposed architecture enables coordination between various layers of the protocol stack

and enables the network layer characteristics to define the physical layer parameters when the

packet has been transmitted. This architecture provides for a deeper interconnection of and inter-

dependency between different OSI layers, making our design a true cross-layer architecture.

SDN switches execute the data plane pipeline that provide modules for packet header extrac-

tion and a structured manner to manipulate packet content and forwarding. However, the present

pipeline model is only able to process wired packets. Hence, our architecture uses and extends the

data plane pipeline to enable processing of wireless packets.

Figure 4.3: Data plane Pipeline

Figure 4.3 illustrates the steps involved in data plane pipeline of an SDN switch. The packets

are processed in the following order: (i) the packet arrives at the network element, (ii) the headers

are extracted to provide information about the packet, (iii) the appropriate flow table is found, (iv)

the packet is matched against the flow entries. The flow entries determine the next course of the

packet as they can (v) modify, delete or forward packets to different ports. Our work involves

defining multiple virtual radio ports to which the wireless packets are forwarded using flow table

entries.
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4.1 Virtual Radio Ports in SDN switches

The virtual radio ports in SDN switches expose radio abstractions to the SDN control plane.

They provide a mediation layer between the SDN switch and the SDR signal processing blocks.

Once the data packet flows through the data plane pipeline, the packet is forwarded to an appro-

priate virtual port. The wireless data packets exiting the data plane pipeline are received by the

virtual ports, formatted in order to pass through the SDR signal processing blocks and forwarded

to the appropriate SDR signal processing thread. Note that a connection to the SDR domain from

the SDN switch is provided by the implementation of virtual ports without changing the structural

pipeline flow of the data plane. It is important to ensure minimum changes are made to the data

processing pipeline to maintain its compatibility with the existing SDN pipelines employed by the

wireline networks. The SDN control layer is provided with radio abstractions while the underlying

physical layer complexity is effectively hidden by the instances of virtual radio ports. For example,

in the UML diagram of OpenFlow data model is introduced with an added element, modulators,

which connects to the virtual wireless port as shown in Figure 4.4.

Figure 4.4: UML diagram for data plane model with modulators as introduced extensions
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Also, the virtual port may be provided with events generated by different components of the

physical layer signal processing pipeline, such as low signal-to-noise (SNR) ratio, low signal

strength, etc.

4.2 Profiles in SDR domain

At the SDR domain, profiles are introduced for different radio parameters. For example, a set

of profiles could be (i) high data rate (QPSK) with low transmit power (5 dB antenna gain) and (ii)

low data rate (BPSK) with high power (15 dB antenna gain). Intuitively, profiles define different

physical layer parameters and schemes that can be used for transmitting the packet. For exam-

ple, the first profile can be used for low priority interactive data type in a congested environment,

whereas the second profile can be used for highly error-sensitive data traffic type. Each profile

has an independent signal processing flow in the SDR domain. These profiles, or multiple signal

processing flows are implemented in our design to facilitate faster switching between radio pa-

rameters. In contrast, CrossFlow architecture supports only one profile, limiting its flexibility and

treats all types of traffic packets, belonging to different flows, in the same way. Different profiles

are mapped to the virtual ports on the SDN domain in our architecture. The wireless data packets

are matched and forwarded to the appropriate virtual radio port on the SDN switch by the flow

table pipeline and then is sent to the corresponding signal processing module in the Software De-

fined Radio domain. This enables the SDN application to define different behaviors for different

types of packets.
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5. IMPLEMENTATION

Figure 5.1: Radio Setup transmitting and receiving different traffic

For implementation and validation purposes, Universal Software Radio Peripheral (USRP)

N210 embedded SDR from Ettus Research is used. The N210 provides a Zynq 7020 All Pro-

grammable SoC, which combines a dual ARM Cortex-A9 processor and FPGA on the same device.

USRPs connect to a host computer (PC) through a high-speed link, 1 Gbps ethernet connection,

that is used by the host-based software (GNU Radio) to control the USRP hardware which trans-

mit/receive data over the air medium. GNU Radio [3], a project written in C++, provides a platform

for signal processing in software and uses UHD drivers to connect to the USRP hardware. The dif-

ferent signal processing flows or profiles in the radio is written using GNU Radio software as well

as the mediation layer, to SDN switch is supported by this software. For the switch agent in the

SDN model, an existing implementation of SDN switch, CPqD switch is used. It is an open-source

software that is modified to support virtual radio ports in our work. Ryu software [2], an open-

15



source SDN controller platform provides us with the Northbound API to write SDN applications

on it. Various Southbound API protocols for managing network devices, such as OpenFlow, Net-

conf, OF-config, etc. is also supported by Ryu software. An SDN application for Ryu controller

is written to illustrate the per-packet behavior on our architecture. The CPqD software switch im-

plementation is modified to incorporate virtual radio ports. The required mediation layer between

SDN switch and SDR domain is provided by these virtual ports.

Figure 5.2: CrossFlow-Plus Architecture

Data packets are forwarded by the switch to the data socket present on the GNU Radio. Note,

each virtual port is connected to a different data socket, providing the SDN application the ability

to switch radio parameters, in our case, modulation schemes, as shown in Figure 5.2.

The major blocks used in implementing varying modulation signal processing pipeline are as

follows:

• Data socket block connects various virtual ports in the CPqD switch to GNU Radio flow

graphs over a TCP connection. An inter-process communication pipe is used to transfer data
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packets to different PHY layer parameters, according to the SDN application rules.

• Packet encoder adds a block of access code as a simple MAC layer header, for packet re-

trieval from a string of bits.

• Signal processing for data packets occur after the packet is received from the switch and

appended with an access code. The packets are tagged before they are converted to a stream

of bits to mark the start of the packet. The tagged bits of data are then modulated with a

specific modulation scheme.

• Tagged Stream Multiplexing custom block is used to select the flow that sends data to the RF

sink. If there is presence of data in two flows with differently modulated bits, the multiplexer

buffers one flow while outputs the other that use the RF resources to transmit packets over

air.

• UHD Sink block provides the USRP with digital data that is to be transmitted and sets the

center frequency and gain values of transmission.

The receiver architecture is very similar to the transmitter. The virtual ports pick up the packets

coming from the radio and forward it according to the SDN application rules.

The major blocks used in receiving and constructing packets from signals are as follows:

• UHD source translates the radio signal into digital signals and provides it as input to the

following signal processing blocks. It is set to the same center frequency as the transmit

center frequency.

• These bits are now sent to different signal processing pipelines. All these signal processing

pipelines have varying type of demodulation blocks. Once the signal is demodulated, it is

passed on to the packet decoder block.

• Packet decoder block matches the received and demodulated bit sequence to the access code

sequence that was appended as a header to the transmitted packets, marks the start of the

packet and removes this header before passing it to the next block.
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• Data socket transfers the data packet to the OpenFlow switch, which then flows through the

data plane pipeline to reach its destination.
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6. TRAFFIC MODEL DESCRIPTIONS AND THEIR QoEs

Two different type of network services, VoIP and Web browsing, are discussed in detail along

with its user-oriented Quality of Experience(QoE). QoE according to [15] may be defined as "over-

all acceptability of an application or service perceived subjectively by the end-user". The rela-

tionship between network oriented Quality of service (QoS) and Quality of experience (QoE) is

illustrated in [11]. The traffic model and QoE for VoIP and web-browsing services are discussed

below.

6.1 Web Browsing (HTTP) Traffic

HTTP protocol is foundation of data communication for World Wide Web traffic. It commonly

has a bursty profile due to its interactive nature, where the HTTP traffic pattern is as shown in

Figure A.1.

Figure 6.1: Web traffic

HTTP traffic is asymmetric, bi-directional. It has large, fixed-size block data frames sent from

a HTTP server to a HTTP client, and HTTP request packets and TCP ACK responses received

from the HTTP client to a HTTP server. However, only block of data frames from HTTP server to

HTTP client is considered in our proof-of-concept HTTP application protocol.
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The web session consisted of three steps, reflecting a typical search-for-information situation

involving (a) requesting a search page; (b) typing and submitting a query; and (c) retrieving the

results. According to [11], QoE is inversely exponential to session time. In our experiments, we

consider page download or results retrieval time only. However, retrieval time contributes to the

session time and hence, deduce QoE to be inversely exponential to retrieval time too.

t ∝ T where t is page retrieval time and T is the session time

According to [11],

QoE(T ) = 1.390 + 4.298exp(−0.347T ) (6.1)

where T is the session time

We assume,

QoE( t) = 1.390 + 4.298exp(−0.347t) (6.2)

where t is the page download or retrieval time

to evaluate QoE for http page download. We compare file download traffic to be similar to

HTTP page download traffic model. Hence, we use equation 6.1 to evaluate QoE for file download

traffic in our experiments.

6.2 Voice-over-IP (VoIP) Traffic

Voice over IP traffic is a best effort traffic without any QoS guarantees. We consider 6 Kbps

data rate in our experiments. The Data rate of VoIP traffic is typically between 6 Kbps to 12.4

Kbps. It is symmetric, bi-directional between source and sink. Evidently, VoIP user will always be

in silent state or active talking state.

For VoIP traffic, QoE is considered to be inversely exponential to packet loss rate. The quan-

tification of the QoE is done using the Perceptual Evaluation of Speech Quality (PESQ) method

described in ITU-T P.862[16]. The equation 6.3, depicts the relationship of QoE and packet loss

ratio for VoIP traffic. According to [11], the QoE for VoIP traffic can be expressed as,
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Figure 6.2: VoIP traffic

QoE(L) = 1.065 + 3.010exp(−4.473L) (6.3)

where L is the packet loss rate
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7. VALIDATION

To demonstrate that CrossFlow-PLUS architecture can dynamically reconfigure radio param-

eters, a simple wireless Qualify of Experience (QoE) application is designed and implemented.

This application chooses appropriate modulation schemes, a radio abstraction, for different types

of traffic flows. Our setup involves a source, that transmits file download packets and low data rate

packets similar to real-time packets over UDP to sinks, as shown in Figure 6.1.

Figure 7.1: Setup for Per-packet Behavior SDN Application

The source and sinks for different data traffic are virtual hosts defined in the PC that runs the

CPqD switch [4] and SDN controller. They are connected to the software switch. This virtual

network is defined, using LINUX commands, to validate our Architectural design.

The USRP N210 device is used to transmit and receive the different traffic packets. It is con-

nected to the CPqD ofsoftswitch running on the PC through the GNU Radio. The GNU Radio

software runs on the same PC as well. The transmitter and receiver is set 1.5 meters apart. The

sender radio transmits with 20dB antenna gain whereas the receiver is set to 30dB. The sender

begins to transmit at 900 MHz carrier frequency with 30 KHz bandwidth. file download packets

are 60 bytes long and 500 packets are transmitted for a single page download. VoIP packets are
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transmitted with an interval of 60 ms. File download packets are transmitted with 60 Kbps whereas

VoIP packets are transmitted at 30 Kbps.

Defined radio abstractions are used by SDN application to select high data rate modulation

scheme for file download packets, whereas high reliable modulation scheme for VoIP traffic. The

characteristics of different traffic types and their QoE values are explained in detail in Appendix

[6]. As a result, the QoE of all traffic flows combined is improved. The radio abstractions used by

the SDN application is provided by CrossFlow-PLUS architecture to optimize usage of wireless

network resources and match the QoE requirements for different traffic flows. Without the SDN

application policies and rules, all the file download packets and VoIP packets have the same radio

parameters, for example, same modulation scheme. Also, previous work, Crossflow Architecture

does not support per-packet behaviour. That is, equal number of packet-drops and data rates is

experienced by all flows. This provides good QoE for one type of flow but the other type of traffic

flow suffers.

When SDN application is implemented, (i) it matches the traffic type of the data packet to the

SDN application rules, (ii) chooses high-reliable transmission profile for VoIP packets and high-

speed transmission profile for file download packets, and (iii) forwards the packet to appropriate

signal processing flows in SDR. As a result, the number of packets dropped in VoIP connection is

lesser, since, the application chooses a more reliable connection for it. Also, the data rate of file

download connection is higher, making it more suitable for faster reception and lesser spectrum

usage. Hence, the end-to-end delay of both the flows is minimized. The use of virtual ports reduces

the switching time, making it less expensive even in highly changing network environments.

The different averaged QoE values for different cases is tabulated in 7.1

Traffic Type Only QPSK Mod Only BPSK Mod SDN Solution
File Download 2.420196 1.755435 2.41629
VoIP 1.520267 2.27272 2.30109

Table 7.1: QoE Values for different Traffic Type.
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Figure 7.2: Performance evaluation for different applications

Figure 7.2 (a) depicts that the QoE value for file download is high, however QoE for VoIP

is low, when both traffics are transmitted using QPSK Modulation. QPSK Modulation provides

higher data rate compared to BPSK for the same bandwidth value, however it suffers a higher bit

error rate. Due to the characteristics of QPSK Modulation, explained in detail Appendix [A], it

is able to transmit the file download packets at a faster rate and get a better QoE value but VoIP

packets suffer high packet loss rate and hence the QoE value is affected.

Also, 7.2 (b) illustrates that the QoE value for VoIP traffic is high, however QoE for file down-

load is low, when both traffics are transmitted using BPSK Modulation. BPSK Modulation has

lower data rates compared to QPSK for the same bandwidth value, however it is highly reliable

with low data loss rate. Due to the characteristics of BPSK Modulation, explained in detail Ap-

pendix [A], it is able to transmit VoIP packets with less packet loss rate and hence, high QoE

value, whereas the file download packets suffer a low QoE value due to the delayed reception of

data packets.

Using the SDN solution, we select appropriate modulation schemes for appropriate traffic
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flows. Figure 7.2 (c) depicts that selection of QPSK modulation for file download packets and

BPSK modulation for VoIP packets, gives a better QoE value for both which averages out to

2.41629 and 2.30109 respectively.
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8. SUMMARY AND CONCLUSIONS

In this paper a SDN framework, CrossFlow-PLUS was presented. This framework is designed

to enable wireless abstractions for SDN application developers. It is a protocol independent ar-

chitecture and provides programmability and flexibility of wireless networks to application devel-

opers for design and implementation of algorithms to render better user experience. It provides

the ability to vary different lower layer parameters using network and transport layer parameters.

Hence, it porvides an ability to vary PHY layer parameters for different types of traffic flows.

CrossFlow-PLUS provides these abstractions by exposing virtual wireless ports to the SDN appli-

cation developer but effectively hiding the underlying complex radio RF implementation. These

abstractions are validated by running experiments with two traffic flow types and selecting appro-

priate modulation schemes for different traffic flows.

This validates that our design is able to influence physical layer parameters by matching net-

work and transport layer characteristics and can be used to implement and test any algorithm

designed with such requirements.

8.1 Challenges

There are multiple demodulation blocks demodulating the received signals with different mod-

ulation schemes, although only one block demodulates and retrieves the correct packet for the

signals. Since, the receiver is unaware of the modulation scheme used for the packet, it demodu-

lates on all available flows. This consumes large CPU resources, multiple times more than needed.

Hence, the number of signal processing flows and the schemes to select from, is limited by the

receiver′s CPU.

8.2 Further Study

The uses of multiple demodulating blocks can be avoided by implementing training sequence

before transmission of data packets and enabling only one demodulating flow graph that receives

the correct training sequence. This would require the controller to transmit training sequences
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before transmission of data. The receiver decodes the control packets and selects on the correct

demodulating flow.
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of service, 2008.

[16] ITU-T Recommendation. Perceptual evaluation of speech quality (pesq): An objective

method for end-to-end speech quality assessment of narrow-band telephone networks and

speech codecs. Rec. ITU-T P. 862, 2001.

[17] Roberto Riggio, Mahesh K Marina, Julius Schulz-Zander, Slawomir Kuklinski, Tinku

Rasheed, et al. Programming abstractions for software-defined wireless networks. IEEE

Trans. Network and Service Management, 12(2):146–162, 2015.

[18] Prithviraj Shome, Muxi Yan, Sayedjalil Modares Najafabad, Nicholas Mastronarde, and Alex

Sprintson. Crossflow: A cross-layer architecture for sdr using sdn principles. In Network

29



Function Virtualization and Software Defined Network (NFV-SDN), 2015 IEEE Conference

on, pages 37–39. IEEE, 2015.

[19] Muxi Yan, Jasson Casey, Prithviraj Shome, Alex Sprintson, and Andrew Sutton. Aetherflow:

Principled wireless support in sdn. arXiv preprint arXiv:1509.04745, 2015.

[20] Kok-Kiong Yap, Masayoshi Kobayashi, Rob Sherwood, Te-Yuan Huang, Michael Chan,

Nikhil Handigol, and Nick McKeown. Openroads: Empowering research in mobile net-

works. ACM SIGCOMM Computer Communication Review, 40(1):125–126, 2010.

30



APPENDIX A

MODULATION SCHEMES

There are multiple ways modulating the periodic signals to represent digital binary data. Phase,

frequency and amplitude are major parameters of signals that is varied to represent binary data. We

use phase modulation in our experiment and will discuss it briefly.

A.1 Phase Shift Keying

The phase of the carrier is varied to denote the digital symbols. Different types are PSK mod-

ulations scheme are defined according to the number of bits per symbol the carrier signals carry.

We mainly consider PSK modulation techniques in our work. Some benefits of PSK modula-

tion techniques are:

• Phase shift keying is more resilient to additive white gaussian noise than amplitude shift

keying. The bit error rate for ASK is greater than PSK. PSK modulated signals do not carry

information in the amplitude, whereas ASK do and the noise affects the amplitude of the

signal which corrupts the ASK modulated data more than the PSK modulated data.

• For the same capacity and bit error rate, Phase shift keying has a smaller bandwidth than

frequency shift keying schemes.

• In PSK, information of the transmitted signal is stored in phase variations which is more

resilient to noise compared to amplitude or frequency variations.

A.1.1 Binary Phase Shift Keying

Binary phase shift Keying carries one bit per symbol. Two waveforms carrying 0 and 1 bit have

same frequency and amplitude but are separated by 180 degrees making it antipodal in nature. The

error rate for BPSK is the lowest compared to all the other PSK. This can be accounted for the

maximum distance between the constellation point for 0 and constellation point of 1. This reduces

the error in prediction when the received constellation points are skewed.
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Figure A.1: Constellation plot for BPSK

Figure A.1 illustrates the constellation points for BPSK modulated data.

A.1.2 Quadrature Phase Shift Keying

Figure A.2: Constellation plot for QPSK

Figure A.2 depicts the constellation points for QPSK modulated data.
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Quadrature phase shift Keying carries two bits per symbol. The phase difference is 90 degrees

for four different symbols. Data is modulated in quadrature and in-phase carriers. These two

carriers do not interfere with each other due to the 90 degree offset at the receiver end. QPSK

have a higher data rate, almost twice that of BPSK as each symbol transmit two bits. However, the

reliability is not as high as BPSK.
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