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ABSTRACT 

 

This study aims to compile data on the locomotor behavior of the red-shanked douc 

langur (Pygathrix nemaeus). This dissertation focused on establishing the historical 

context for primate locomotion studies and provides a brief introduction to the odd-nosed 

monkeys, of which Pygathrix is a member. Furthermore, this dissertation contributes 

locomotor and some anatomical data relating to the arm-swinging capabilities of the red-

shanked douc langur.  

Landmark data was used to identify elements of scapular shape to infer locomotor 

behaviors. I used shape data on the scapula of the douc langurs to identify if the three 

species of Pygathrix share a similar scapula shape. There was no statistically significant 

difference in scapular shape between the three species, thereby lending some support that 

all are likely moving in similar ways. I also used landmark data to compare Pygathrix (all 

three species) to quadrupeds and brachiators and found Pygathrix to be significantly 

different from both. Landmark data was also used to calculate the straight-line distance 

between the distal most portion of the acromion process and the center most point of the 

glenoid fossa to see if this distance could predict locomotor behaviors. For species that 

routinely use their arms for locomotor purposes (i.e. brachiators, quadrupeds, and arm-

swingers) there was a significant difference in distance between the groups. When 

incorporating bipedal individuals, there was less of a significant effect.  

In addition I looked at behavior data from the Son Tra Nature Reserve in Da Nang 

City, Vietnam to identify elements of wild locomotion. I looked at body size 
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characteristics to determine if heavier individuals were arm-swinging more or less than 

lighter individuals. This study showed that in fact, the lightest individuals (juveniles) used 

arm-swinging the most, followed by sub-adults, adult females, adult females carrying 

babies, and then adult males. Finally, I identified environmental variables and how those 

variables correlate with the red shanked douc’s locomotion. The results of this study 

indicated that doucs prefer to arm-swing in old-growth forest, in the main canopy, and on 

horizontal and medium sized substrates. 
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW 

1.1. Introduction to Primate Locomotion 

Primate locomotion is often divided into discrete categories, despite most scholars 

agreeing that locomotor behavior often lies along a spectrum. With this in mind, locomotor 

designations do provide a framework to organize the existing literature and provide a 

scheme from which future research can be built (Napier and Napier 1967). In general, 

there are four major locomotor categories: [1] leaping, [2] quadrupedalism, [3] 

brachiation, and [4] bipedalism; which are sometimes further broken down into sub 

categories (e.g., arboreal quadrupedalism, terrestrial quadrupedalism, etc.) (e.g. Fleagle 

2013; Napier and Napier 1967). These locomotor classifications create a way for 

deductive science to be used on the existing and forthcoming data (Rose 1973).  

The goal of this classification scheme is to eliminate sources of confusion where 

different sets of characteristics were used to define similar terms (Rose 1973). Prior to the 

1960s, most anthropoid primates were categorized into three main groups: quadrupeds, 

brachiators, and semibrachiators (Ashton and Oxnard 1963).  Ashton and Oxnard (1964b) 

noted that these categories did not encompass all of the locomotor variability observed in 

the wild and from this tried to develop a more robust classification scheme. They did note, 

however, that the major groups (brachiators, semibrachiators, and quadrupeds) would be 

retained based on function of the forelimb alone, despite the spectrum of observed 

locomotion. 



2 

The term semibrachiation was put forth to replace the phrase ‘occasional 

brachiation’ (Napier and Davis 1959) that was used to describe intermittent overhead 

brachiation that was proposed for the extinct Miocene hominoid Proconsul. Later works 

(Napier 1961; Napier 1963) also used this term, and it was popularized in the seminal 

work by Napier and Napier (1967). Old World semibrachiation is defined as “during 

leaping the arms reach out ahead of the body to grasp a handhold or to check momentum. 

Hand over hand progression is seldom seen. Quadrupedalism is common” (Napier and 

Napier 1967:388). The semibrachiator designation largely fell out of use after it became 

clear that many colobines, and in particular African colobines, rarely, if ever, used 

brachiation (e.g. Hunt et al. 1996a; Mittermeier and Fleagle 1976; Ripley 1975; Rose 

1973). 

1.2. Introduction to Odd-Nosed Monkeys 

The subfamily Colobinae is a diverse group of primates found throughout Africa 

and Asia that typically move through an arboreal environment quadrupedally and they 

also engage in a great deal of leaping (Davies and Oates 1994). Colobinae is split into two 

geographically isolated tribes, Colobini (African) and Presbytini (Asian) (Fleagle 2013). 

Presbytini (genera Semnopithecus, Presbytis, Trachypithecus, Simias, Nasalis, 

Rhinopithecus, and Pygathrix) encompasses a clade known as the odd-nosed monkeys. 

The odd-nosed monkeys consist of four genera (Nasalis, Pygathrix, Rhinopithecus, and 

Simias) that are found in Southeast Asia (Su and Jablonski 2008). These primates have 

little overlap in their geographic ranges, and are united by a genetic, evolutionary history 

and each taxa have distinct nasal morphologies (Liedigk et al. 2012). The nasal 
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morphology of each genus in the clade is quite distinctive, though some are more similar 

than others.  The proboscis monkey (Nasalis larvatus) is the most sexually dimorphic 

colobine—males are twice the size of females on average (Fleagle 2013).  The males are 

characterized by an extremely large proboscis, while the females have a much shorter 

upturned nose (Fleagle 2013).  The female proboscis monkey nose is very similar to their 

sister taxa, Simias concolor, which also have a short upturned nose (Tilson 1977).  The 

douc langurs (Pygathrix spp.) and the snub-nosed monkeys (Rhinopithecus spp.) have 

extremely reduced, upturned noses, but the snub-nosed monkeys have arguably the 

shortest noses (Fleagle 2013). 

The odd-nosed monkeys are estimated to have split from other Presbytini members 

around 7.28 – 6.90 Ma (Liedigk et al. 2012; Sterner et al. 2006).  Rhinopithecus spp. is the 

first member of the clade to have split from the other odd-nosed monkeys (mtDNA = 7.28 

Ma, nucDNA = 6.77 Ma) (Liedigk et al. 2012).  Pygathrix is estimated to have diverged  

between 6.63 Ma (mtDNA) and 5.99 Ma (nucDNA) from Nasalis and Simias, which then 

split from each other approximately between 1.92 Ma (mtDNA) and 1.12Ma (nucDNA) 

(Liedigk et al. 2012).  The genus Pygathrix consists of three species, the red-shanked douc 

langur (Pygathrix nemaeus), the grey-shanked douc langur (Pygathrix cinerea), and the 

black-shanked douc langur (Pygathrix nigripes). Of the douc langurs, the black-shanked 

douc is the most basal taxon based on molecular data (Roos and Nadler 2001). Pygathrix 

cinerea and P. nemaeus split from P. nigripes between 2.5 Ma (mtDNA) and 1.58 Ma 

(nucDNA) (Liedigk et al. 2012). Subsequently, P. nemaeus and P. cinerea split around 

0.66 Ma (nucDNA) (Liedigk et al. 2012). 
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Nasalis larvatus is found in riverine and coastal forests of Borneo (Fleagle 2013). 

At least one study notes the use of brachiation, as well as leaping, walking, and climbing 

in a captive setting (Hollihn 1973).  Nasalis is known to exhibit quadrupedalism, climbing, 

and leaping (Falk and Byram 2000).  While little information has been published regarding 

their use of arm-swinging behaviors, they are known to swim across rivers as an anti-

predator strategy (Yeager 1991).   

The genus Rhinopithecus contains five species distributed throughout east and 

south Asia (Fleagle 2013). Rhinopithecus bieti (Yunnan snub-nosed monkey) is known to 

use climbing extensively in arboreal settings and in one study (Isler and Grüter 2006) the 

author suggests the forelimb morphology of R. bieti to be a reflection of climbing rather 

than arm-swinging.  An additional study of R. bieti found the locomotion of adults to 

consist primarily of walking, climbing, and jumping (Wu 1993). Bleisch et al. (1993) 

noted R. brelichi use brachiation occasionally for up to three ‘steps’ at a time. Similarly, 

adult males of Rhinopithecus avunculus (the Tonkin snub-nosed monkey) were observed 

using arm-swinging behaviors infrequently (5.23% of the time) (Le Khac Quyet 2014).   

Simias is exceptionally under-represented in the locomotor literature to the point 

that no study has focused exclusively on the locomotion of Simias concolor.  For example, 

Falk and Byram (2000), describe Simias simply as a quadruped. Similarly, in Tilson 

(1977) thorough investigation of the pig-tailed langur’s social organization, he describes 

them as merely having an arboreal lifestyle similar to Patas monkeys (Erythrocebus 

patas), while also noting that leaping is not commonly used.  
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Pygathrix was placed into the locomotor category of Old World semibrachiator 

because of their Colobinae status, given that their locomotion was unknown in the wild 

(Napier and Napier 1967). Wild-based studies on the douc langurs are largely dominated 

by feeding ecology and conservation studies (e.g. Dinh Thi Phuong Anh et al. 2010; Ha 

Thang Long 2007; Hoang Minh Duc et al. 2009; Phiapalath 2009; Rawson 2009; Timmins 

and Duckworth 1999; Ulibarri 2013) and few have investigated their locomotion. The 

locomotion of Pygathrix has been extensively studied at the Endangered Primate Rescue 

Center (hereafter, EPRC) (Byron and Covert 2004; Granatosky 2015; Workman and 

Covert 2005; Wright et al. 2008). The EPRC houses numerous colobines in enclosures 

which allows for comparative study of Southeast Asian colobine locomotion.  

Field studies on doucs have rarely focused on locomotion. Some initial 

observations on the population of red-shanked douc langurs living on Son Tra mountain 

in Da Nang, Vietnam noted that “large males, when disturbed, would brachiate back and 

forth in full view” (Van Peenen et al. 1971:134-135). This observation is in contrast to 

subsequent studies that only briefly noted that douc langurs travel quadrupedally in the 

trees, in single file groups, along establish paths (Lippold 1998). Rawson (2009) 

completed a study on the socioecology of the black-shanked douc langur and found 

suspensory behavior to be used 10% of the time by males, and 3.7% of the time by females 

during locomotion. 

1.3. Organization of Dissertation 

 To fully understand the discrepancies in the captive and (limited) wild studies of 

the locomotor behavior in the doucs, this dissertation will attempt to answer the following 
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questions: first, despite the differences in frequencies of arm-swinging in the Pygathrix 

genus, do the doucs have a scapular shape that is consistent across the genus? Second, 

does the scapula of the doucs resemble that of other quadrupeds or brachiators? Third, is 

it possible to predict locomotion based on the distance the acromion process projects past 

the glenoid fossa? Fourth, do the doucs arm-swing in the wild with frequencies consistent 

with their captive behavior and is this influenced by body size? Fifth, are there 

environmental variables that influence arm-swinging behaviors among the douc langurs? 

In the subsequent chapters we attempt to answer these questions.  
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CHAPTER II

INTRAGENERIC SHAPE VARIATION OF THE DOUC LANGUR (PYGATHRIX 

SPP.) SCAPULA* 

2.1. Introduction 

The douc langurs (genus Pygathrix) are Asian colobines (tribe Presbytini) that 

make up one of the four genera of the ‘odd-nosed monkeys’ (Fleagle 2013; Groves 2001). 

Relative to other colobines, these primate genera (Rhinopithecus, Simias, Nasalis, and 

Pygathrix spp.) are united by a distinct nasal morphology, a high intermembral index 

(90+), and sometimes a larger body size (Table 1) (Fleagle 2013; Groves 2001).  It is 

estimated that the odd-nosed clade split from other Presbytini members approximately 6.9 

Ma followed by Pygathrix, which diverged from the other odd-nosed taxa approximately 

6.63 Ma (Liedigk et al. 2012; Sterner et al. 2006).  Today there are three species of douc 

langurs, Pygathrix cinerea (grey-shanked douc), Pygathrix nemaeus (red-shanked douc), 

and Pygathix nigripes (black-shanked douc) (Roos and Nadler 2001).   

Douc langurs are smaller than Rhinopithecus and Nasalis and are slightly larger 

than Simias (Table 1) (Delson et al. 2000; Smith and Jungers 1997).  Like most other 

colobines, douc langurs exhibit a largely folivorous diet, multi-chambered stomachs, 

relatively long tails, high molar shearing crests, and reduced thumbs (Fleagle 2013). As is 

* Reprinted with permission from “Intrageneric Shape Variation of the Douc Langur
(Pygathrix spp.) Scapula” by Bailey KE, and Pampush JD, 2015, Vietnamese Journal of 
Primatology, 2, 25-32, Copyright [2015] Endangered Primate Rescue Center. 
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suggested by their common names, the red, gray, and black-shanked douc langurs are 

phenotypically distinguished by the coloration of their hind-limbs. The douc langurs 

inhabit evergreen and semi-evergreen forests throughout Southeast Asia with little overlap 

in their geographic ranges (Lippold and Vu Ngoc Thanh 2016).  Pygathrix nigripes is 

found in southern Vietnam and eastern Cambodia, P. cinerea is found in the central 

highlands of Vietnam, and P. nemaeus is found in northern Cambodia, east-central Laos, 

and north-central Vietnam (Rawson et al. 2008; Vu Ngoc Thanh et al. 2008a; Vu Ngoc 

Thanh et al. 2008b). 

Table 1. Weights of Asian colobines. Averages taken from Delson et al. (2000), 

Fleagle (2013), and Smith and Jungers (1997). 

Species Male (kg) Female (kg) 

Semnopithecus schistaceus 23.587 14.829 

Nasalis larvatus 21.3 10.53 

Semnopithecus ajax 19.959 12.701 

Rhinopithecus roxellana 18.16 11.95 

Rhinopithecus bieti 17.96 10.94 

Semnopithecus hector 17.237 13.154 
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Table 1 Continued 

Species Male (kg) Female (kg) 

Semnopithecus entellus 17.018 11.516 

Semnopithecus priam 16.783 8.845 

Rhinopithecus avunculus 16.5 8.13 

Rhinopithecus brelichi 14.5 NA 

Pygathrix cinerea 11.55 8.45 

Pygathrix nigripes 11.03 8.35 

Pygathrix nemaeus 10.93 8.22 

Trachypithecus ebenus 10.3 NA 

Simias concolor 9.16 6.84 

Trachypithecus delacouri 9 7.7 

Trachypithecus poliocephalus 8.75 7.35 

Trachypithecus hatinhensis 7.5 7.2 

Trachypithecus francoisi 7.48 7.14 

Trachypithecus crepusculus 6.9 6.4 

Presbytis thomasi 6.775 6.74 

Presbytis femoralis 6.26 6.19 

Presbytis hosei 6.18 5.599 

Presbytis potenzani 6.153 6.42 

Presbytis frontata 5.682 5.67 
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Table 1 Continued 

Species Male (kg) Female (kg) 

Presbytis rubicunda 5.682 6.137 

The taxonomy of the genus Pygathrix has recently been in flux. Prior to 2001 the 

regional diversity in douc langurs was often regarded as intra-specific variation and a 

number of researchers classified all as members of the species Pygathrix nemaeus (Nadler 

1997). Pygathrix nemaeus was first described by Linnaeus in 1771. Milne-Edwards (1871) 

later designated the black-shanked douc as the species Semnopithecus nigripes. Finally, 

the grey-shanked douc was named by Nadler [1997] as Pygathrix nemaeus cinerea. In 

2001, Mitochondrial DNA findings supported the reorganization of Pygathrix into the 

currently recognized set of three species, elevating the subspecies into species (Groves 

2001; Roos and Nadler 2001).  The undisputed findings of Roos and Nadler (2001) is one 

of the bases for the current three species phylogeny.  Pygathrix nigiripes is estimated to 

have diverged 1.69 – 1.31 Ma (from other Pygathrix spp.) followed by P. cinerea and P. 

nemaeus at 0.66 Ma (Liedigk et al. 2012).  Additionally, Roos and Nadler [2001] noted 

phylogenetic structure in the genus, finding P. nigripes to be the most basal taxon 

(molecularly) and P. nemaeus and P. cinerea to be sister taxa.   

In addition to the taxonomy, the locomotor classification of the douc langurs has 

also been under recent revision.  Historical literature placed the douc langurs into the 
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‘semibrachiator’ locomotor category but indicated Pygathrix seldom exhibited arm-

swinging behaviors (Napier and Davis 1959; Napier and Napier 1967). The term 

semibrachiator was initially put forth on the basis of musculoskeletal studies of some 

colobines (e.g. Presbytis, Rhinopithecus, Nasalis, Colobus) (Ashton and Oxnard 1963; 

Ashton and Oxnard 1964a; Ashton and Oxnard 1964b). In addition to the musculoskeletal 

studies, it was observed that these colobines would leap then use their forelimbs to grasp 

handholds or check momentum (Napier 1963). In their classic work, Napier and Napier 

(1967) included Pygathrix in the category “Old World Semibrachiator” (Table 2).  A study 

of Rhinopithecus bieti (sister taxa to Pygathrix) found R. bieti to use climbing extensively 

and the authors suggested that the forelimb morphology of Rhinopithecus is actually a 

reflection of climbing rather than arm-swinging (Isler and Grüter 2006).  Another study 

found R. bieti to use semibrachiation only on rare occasions (Wu 1993).  Additional work 

on Rhinopithecus avunculus found these monkeys to use arm-swinging behaviors in low 

frequencies, about 5.23% of the time (Le Khac Quyet 2014).   
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Table 2. Old World semibrachiators classification adapted from Napier and Napier 

(1967). 

Category Sub-type Genera 

Quadrupedalism Slow climbing type Arctocebus, Loris, Nyticebus, 

Perodicticus 

Branch running and 

walking type 

Aotus, Cacajao, Callicebus, 

Callimico, Callithrix, Cebuella, 

Cebus, Cercopithecus, Cheirogaleus, 

Chiropotes, Lemur, Leontideus, 

Phaner, Pithecia, Sanguinus, 

Saimiri, Tupaia 

Ground running and 

walking type 

Macaca, Mandrillus, Papio, 

Theropithecus, Erythrocebus 

New World semi-

brachiation type 

Alouatta, Ateles, Brachyteles, 

Lagothrix 

Old World semi-

brachiation type 

Colobus*, Nasalis, Presbytis, 

Pygathrix, Rhinopithecus, Simias 

Brachiation True brachiation Hylobates, Symphalangus, 

Nomascus 

Modified brachiation Gorilla, Pan, Pongo 
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Unlike the other odd-nosed colobines, the red-shanked douc and the grey-shanked 

douc have been regularly observed engaging in brachiation and forelimb suspension in 

captivity at the Endangered Primate Rescue Center (EPRC) in Cuc Phuong National Park 

in Northern Vietnam (Byron and Covert 2004; Workman and Covert 2005; Wright et al. 

2008).  Byron and Covert (2004) found suspensory behavior to make up 46% of all the 

red-shanked douc langurs’ locomotor bouts within the EPRC.  Similarly, Wright et al. 

(2008) found suspensory behavior to encompass nearly half of the douc langurs locomotor 

repertoire and found a gradient in the frequency of suspensory behaviors between two 

species of doucs (P. nemaeus, 46%; P. cinerea, 56%).  The suspensory locomotor behavior 

expressed by Pygathrix in the EPRC has also been recently observed in wild groups of 

black-shanked doucs (Rawson 2009; Tran Van Bang et al. 2011). Some wild postural data 

of red-shanked doucs has also reported the use of suspensory and brachiation behaviors 

(Ulibarri 2013).  The infrequently observed semi-brachiation behavior in their sister taxa 

combined with information about the age of the clade suggests a relatively recent 

locomotory shift to the semi-brachiator status in Pygathrix. 

The scapula is an important component to forelimb use and therefore its 

morphology is dramatically influenced by locomotor behavior, including brachiation and 

presumably semi-brachiation (Ashton and Oxnard 1964a; Green 2013; Larson 1993). 

Scapular skeletal markers indicative of brachiating behaviors include a well-developed 

scapular spine, a cranially oriented and relatively shallow glenoid fossa, and narrow supra- 

and infraspinous fossae (Ashton and Oxnard 1964a; Larson 1993; Michilsens et al. 2009).  
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Ashton and Oxnard (1964a) speculate that the scapular features of a semibrachiator should 

fall in an intermediary position between true brachiators and quadrupeds.  A previous 

study recorded scapular indices of the odd-nosed monkeys and found this grade to exhibit 

a morphology similar to the great apes and the atelines—groups thought to be adapted (at 

least in part) to brachiation (Su and Jablonski 2008). Though in the last 15 years there 

have been a handful of behavioral studies supporting the semibrachiator category, few 

morphological studies have been conducted (Byron and Covert 2004; Covert et al. 2004). 

This study is an investigation into the scapular shape diversity within the genus 

Pygathrix. Though Wright et al. (2008) found differences in suspensory behavior between 

P. nemaeus  and P. cinerea, the relatively small nature of the behavioral differences 

suggests they are unlikely to have an effect on scapular form. We hypothesize that the 

genus Pygathrix shares a common gross scapular morphology, presumably one consistent 

with observed locomotor behaviors despite minor variations in semi-brachiation 

frequencies [Wright et al. 2008].  Given the uniform scapular shape, and the observations 

by Rawson (2009), it is likely P. nigripes is likely at least occasionally arm-swinging, 

which is an important inference given P. nigripes’ basal status within the genus. Here we 

present preliminary data on the gross scapular shape of the douc langurs.   

2.2. Methods 

To assess the scapular shape within the genus Pygathrix a Microscribe G2X 

(Immersion Technologies San Jose, California) was used to record landmark data on 35 

specimens (Table 3). Following Young (2008) 17 landmarks were recorded at bony 

junctions on the scapula (Figure 1, Table 4). These landmarks are ideal because they are 
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easily identifiable on all primate taxa and also assess the gross components of the scapula 

by marking all major boney intersections, protuberances, and depressions. Given the 

variable locomotor behavior of juvenile primates, and the underdeveloped nature of 

juvenile morphology, only adult specimens where used in this study (Young 2006). 

Specimens were measured at the EPRC, the Dalat Museum (Dalat, Vietnam), the Southern 

Institute of Ecology (Ho Chi Minh City, Vietnam), and the Muséum National d’Histoire 

Naturelle (Paris, France). Specimens were required to be mostly complete, with at least 

15 landmarks present.  Two P. nigripes specimens were broken in minor places and 

required imputation.  Imputation estimates where missing landmarks from the incomplete 

specimen would be based on a reference point from a complete specimen. The first 

specimen that was broken required imputation for landmarks four and eight. The second 

broken specimen required imputation for landmark number four. All data analyses were 

conducted using the geomorph package in R (Adams and Otárola-Castillo 2013).  

Landmark data were Procrustes-transformed prior to conducting principal components 

analyses (PCA).  A Procrustes ANOVA and a Pairwise Group ANOVA were further 

preformed to quantitatively assess the differences among Pygathrix spp. scapulae.   



16 

Table 3. Species counts. 
Species N Location/ Person Who Provided Specimens: 

Pygathrix cinerea 14 Ha Thang Long = 2 

Endangered Primate Rescue Center = 12 

Pygathrix nemaeus 18 Muséum National d’Histoire Naturelle = 2 

Endangered Primate Rescue Center = 16 

Pygathrix nigripes 3 Dalat Museum = 1 

Southern Institute of Ecology = 2 
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Figure 1. Landmarks used following the methods of (Young 2008). 
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Table 4. Landmarks used following the methods of Young (2008). 

Landmarks 

1 Inferior most point of the suprascapular notch 

2 Superior most point of the superior angle 

3 Central most point of vertebral border and scapular spine intersection 

4 Inferior most point of inferior angle 

5 Superlatero corner of the teres major attachment site 

6 Maximum curvature of the infraglenoid tubercle 

7 Maximum curvature of the spinoglenoid notch 

8 Medial extent of trapezius attachment on scapular spine 

9 Most inferior extent of glenoid fossa 

10 Most lateral extent of glenoid fossa 

11 Most medial extent of glenoid fossa 

12 Most superior extent of glenoid fossa 

13 Central maximum curvature of glenoid fossa 

14 Medial most portion of the coracoid prominence 

15 Superior-lateral tip of the coracoid process 

16 Inferior-lateral tip of the coracoid process 

17 Distal-most point of the acromion process. 
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2.3. Results 

The Procrustes ANOVA showed no significant difference (P = 0.354) between the 

three species (Table 5).  Power decreases the more landmarks are considered and it is 

difficult to consider more than three landmarks because landmarks are multi-dimensional 

(Rohlf 2000). Results of the pairwise group ANOVA also showed no statistically 

significant difference between the taxa (P =0.344) (Table 6). Principal Component (PC) 

one accounts for approximately 27% of the variation, PC two accounts for 15% of the 

variation observed in the scapula, and the first five PC scores account for approximately 

68% of the overall variation (Table 7).  The PCA generally shows an intermingled 

distribution of the species (Figure 2). Pygathrix nigripes has positive PC scores on the 

first and second axis and are therefore confined to the upper-right quadrant of the graph 

whereas P. nemaeus and P. cinerea are evenly distributed across PC one and two.   

Table 5. Results Procrustes ANOVA 

DF SS r2 F p 

14 0.0151 0.0628 0.0958 0.354 
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Table 6. Results Pairwise Group ANOVA 

DF SS r2 F p 

14 0.0151 0.0628 0.0958 0.344 

Table 7. PCA Results 

PC1 PC2 PC3 PC4 PC5 

SD 0.0437 0.0327 0.0295 0.0241 0.0209 

Proportion of 

Variance 

0.2713 0.1523 0.1232 0.0825 0.0621 

Cumulative 

Proportion 

0.2713 0.4236 0.5468 0.6294 0.6916 
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Figure 2. Principle Component Analysis of scapular shape diversity of Pygathrix spp. 
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2.4. Discussion 

The results presented here provide tentative support for the hypothesis that there 

is no significant variability in scapular shape of the douc langurs. Due to the rarity of these 

primates, specimen availability is limited, particularly for P. nigripes. For this reason, 

some caution is required when interpreting these results.  However, considering the overall 

distribution of the three taxa within the principal components analyses, as well as the 

results of the ANOVAs, the three taxa appear to share a similar scapular morphology. Due 

to these similarities, coupled with the work of Rawson (2009), we confirm that the 

locomotor behavior of the black-shanked douc is also that of a semibrachiator.   

The douc species have virtually no overlap in their range. The grey-shanked douc 

is primarily found at higher elevations in the Central Highlands of Vietnam where the 

environment and vegetation is appreciably different (Vu Ngoc Thanh et al. 2008a).  The 

forest in Kon Ka Kinh National Park (in the central highlands) is a lowland moist 

subtropical forest (Ha Thang Long et al. 2011). Grey-shanked doucs in Gai Lai Province, 

Vietnam are known to spend 60% of feeding time in trees that are 15 – 19.9 meters in 

height (Ha Thang Long 2010). In the Son Tra Nature Reserve, which hosts a population 

of red-shanked doucs, trees tend to be shorter (9.34 ± 3.52 meters) (Ulibarri 2013) whereas 

the mean height of sleeping trees for the black-shanked douc langur in the Mondulkiri 

Province, Cambodia was 20.83 ± 3.06 meters (Rawson 2009).  The density of vegetation, 

tree height, and changes in elevation in these differing areas might require modifications 

to typical locomotor behaviors. Additionally, despite the gradient in observed frequencies 



 

23 

 

 

of suspensory behaviors documented by Wright et al. (2008), there was no noticeable 

difference in scapular shape between the red and grey-shanked douc langurs.   

Increased body size is suggested to increase the proclivity towards below-branch 

locomotion versus above-branch locomotion (Napier and Napier 1967; Young 2003).  

Arboreal colobines also tend to be significantly larger than their arboreal cercopithecine 

cousins (Fleagle 2013), none of which are grouped into Napier and Napier’s [1967] ‘Old 

World Semi-brachiation’ category (Table 2), whereas Napier and Napier (1967) classified 

all of the odd-nosed monkeys as semibrachiators.  However, each of the odd-nosed 

monkey species tends to move through their environment in different ways.  Nasalis has 

been observed swimming in the mangrove swamps of Indonesia in addition to the trees 

and Rhinopithecus bieti is largely terrestrial and is often found slow climbing to maneuver 

through the trees (Isler and Grüter 2006; Yeager 1991). Conversely, R. avunculus rarely 

comes to the ground (Le Khac Quyet 2014). We speculate that the increased body size in 

odd-nosed monkeys is a contributing factor to the varying locomotors patterns observed 

in this clade, and especially the use of brachiation and slow-climbing types of locomotion 

when arboreal.  

2.5. Conclusion 

This morphological study shows no significant variation between the scapulae of 

the three Pygathrix species.  The douc langurs are a particularly understudied group of 

Old World monkey (Byron and Covert 2004).  The studies that have been conducted on 

their locomotor behavior have predominantly been in a captive environment (e.g. Byron 

and Covert 2004; Covert et al. 2004; Workman and Covert 2005; Wright et al. 2008).  
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Notwithstanding the oscillating changes in taxonomy and locomotor classifications, a 

long-term study of the douc langur locomotor repertoire should be considered for future 

studies to further identify frequencies of arm-swinging and suspensory behaviors in their 

natural habitat.  Other morphological studies of the humerus and clavicle would be 

especially useful, in conjunction with field studies to identify shape variability within the 

genus that is related to their locomotor patterns. This study also warrants an investigation 

of the scapular shape of semibrachiators and of the muscular morphology.  It is possible 

semibrachiators, specifically Pygathrix, have a unique scapular morphology reflective of 

their intermediate locomotor category.   
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CHAPTER III

FUNCTIONAL MORPHOLOGY OF THE DOUC LANGUR (PYGATHRIX SPP.) 

SCAPULA* 

3.1. Introduction 

Colobine monkeys are generally recognized to be arboreal quadrupeds with most 

exhibiting leaping behaviors to some extent (e.g. Fleagle 1978; Gebo and Chapman 1995; 

McGraw 1998b; Rose 1973). Suspensory locomotion (i.e., below branch arm-swinging 

and hanging) is atypical for this group (e.g. Davies and Oates 1994; Fleagle 2013) but has 

been intermittently observed in captive douc langurs (Pygathrix), first in zoos (Hollihn 

1973) and, more recently, at the Endangered Primate Rescue Center (EPRC) in Cuc 

Phuong National Park, Vietnam, where high frequencies of forelimb suspension and arm-

swinging have been reported (Figure 3) (Byron and Covert 2004; Wright et al. 2008). 

Douc langurs are capable of suspensory postures similar to those of gibbons (Nomascus 

leucogenys), but these postures are better described as arm-swinging, rather than true 

brachiation due to the slower moving suspensory, less fluid behavior exhibited by the 

doucs (Wright et al. 2008). Outside of the captive setting, information about douc langur 

locomotion, especially arm-swinging frequency data, is more limited. However, one study 

(Rawson 2009) has documented arm-swinging in nearly 10% of all travel bouts across all 

* Reprinted with permission from “Functional Morphology of the Douc Langur
(Pygathrix spp.) Scapula” by Bailey KE, Lad SE, and Pampush JD, 2017, American 
Journal of Primatology, 79, 1-9, Copyright [2017] by John Wiley and Sons. 
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age and sex classes in wild black-shanked doucs (Pygathrix nigripes), a higher frequency 

than documented for other free-ranging colobines (Fleagle 1977; McGraw 1998b; 

Morbeck 1977; Rose 1978). While this is less frequent than what is reported for captive 

douc langurs, it is likely safe to infer that arm-swinging is not simply an artifact of 

captivity. 
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Figure 3. Amount of suspensory behavior versus other locomotor patterns observed 

in Pygathrix nemaeus (21 hours of observation), P. cinerea (20 hours of observation), 

Nomascus leucogenys (70 hours), and Trachypithecus delacouri (70 hours of 

observation) at the EPRC (Byron and Covert 2004; Wright et al. 2008). 

Scapula shape differs between quadrupedal and brachiating primates and these 

differences lie along a spectrum; that is, there are no distinct differences between the 

groups (Roberts 1974). However, there are observable general trends in scapular form for 

each locomotor group. Typical quadrupeds have more laterally situated scapulae while 
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brachiators and suspensory primates have more dorsally placed scapulae as a result of the 

broader thorax found in most hominoids (Gebo 1996). The broad thorax sets the scapulae 

further apart and allows greater shoulder mobility (Gebo 1996). The glenoid fossa of 

brachiators is wider and more cranially oriented (Larson 1993), which has been proposed 

to be an adaptation for distributing strain more evenly across the glenohumeral joints 

(particularly during unimanual arm-hanging) (Hunt 1991). The orientation of the 

glenohumeral joint is relatively static during ontogeny and has thus been suggested to be 

more developmentally constrained (Green 2013). The acromion process, which articulates 

with the clavicle, typically projects further past the glenoid fossa in brachiators relative to 

arboreal quadrupeds (Larson 1993). Concomitantly, brachiator clavicles are more often 

elongated (Ashton and Oxnard 1964a; Jenkins et al. 1978). In suspensory primates, the 

acromioclavicular joint is more robust to better transfer weight from between the 

glenohumeral joint and the manubrium (via the clavicle) (Hunt 1991). The deltoid muscle, 

which attaches to and overlays the clavicle, acromion process, and humerus (Moore et al. 

2002) is a shoulder rotator, abductor, flexor, and extensor (Myatt et al. 2012). This muscle 

is an important component of the brachiating anatomy because it envelops and stabilizes 

the glenohumeral joint, and is the primary shoulder abductor (a motion critical to 

brachiation) (Ashton et al. 1965; Jungers and Stern 1981). In addition to the deltoid, four 

other scapular muscles are critical for shoulder stabilization: infraspinatus, supraspinatus, 

teres minor, and subscapularis (the rotator cuff muscles) (Dvir and Berme 1978). These 

muscles are also involved in movement of the shoulder joint (Roberts 1973). The 

supraspinatus muscle attaches on the supraspinous fossa of the scapula and inserts on the 
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middle facet of the greater tubercle of the humerus. The supraspinatus assists the deltoid 

in arm abduction (Moore et al. 2002; Myatt et al. 2012). The origin of the supraspinatus 

muscle in the supraspinous fossa is quite broad in brachiators while it is comparatively 

long and narrow in quadrupeds (Ashton and Oxnard 1963). Because the deltoid and 

supraspinatus muscles contribute directly to the ability to brachiate, their attachment sites 

are typically more robust given the extensive use of those muscles. The other three rotator 

cuff muscles (infraspinatus, subscapularis, and teres minor) show no considerable 

differences between brachiators and quadrupeds (Ashton and Oxnard 1963).   

Overall, the brachiator scapula is taller from the most superior to inferior points 

and more narrow across the scapular spine (Larson 1993). This narrower scapula is 

thought to maximize the range of rotation of the shoulder joint, thus bringing the glenoid 

fossa closer to a position over the center of gravity during arm-hanging. In this position, 

the glenoid is aligned with the spinal column so that the two elements are in the same line 

of action. This functions to decrease bending of the spinal column, reduce shear stress on 

the structure between the glenoid and spine, and more evenly distribute compressive stress 

on the rib cage by presenting a straighter profile of the torso (Hunt 1991). By contrast, a 

quadruped scapula is more laterally placed, shorter in overall height, and wider across the 

scapular spine. This positioning and shape function to limit the mobility of the shoulder 

joint and provide more stability (Larson 1993). The brachiator scapula is also generally 

more robust in terms of overall size and muscle attachment sites. This robusticity 

corresponds to the physiological cross-sectional area of the muscles of the brachiator 

forelimb. Greater cross-sectional area increases the maximum available force of a muscle, 
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which is especially important in the brachiator forelimb muscles (Anapol and Gray 2003; 

Fleagle 1976; Wright et al. 2008). One of the ways gibbons have adapted an efficient 

brachiating pattern is by distributing forelimb muscle mass at the proximal ends of the 

limb, keeping the majority of that muscle’s mass centered near the trunk (Michilsens et al. 

2009). 

Observations of the douc langurs arm-swinging at the EPRC (e.g. Byron and 

Covert 2004) invites speculation that their scapular morphology reflects this derived—

relative to other colobines—locomotor behavior. Given the differences in scapular 

anatomy between brachiators and quadrupeds, we predict that the douc langur scapula 

possesses features analogous to obligate brachiators (such as gibbons). Previous studies 

have used indices to measure scapular form but capture only a portion of the overall shape. 

For example, Su and Jablonski (2008) found that odd-nosed monkeys (Pygathrix, Simias, 

Nasalis, Rhinopithecus) have derived scapular morphology more similar to that of extant 

apes and Covert et al. (2004) found douc langurs to have a longer vertebral border of the 

scapula compared to the Delacour langur (Trachypithecus delacouri). Here we present a 

more comprehensive analysis of overall scapular form. We specifically aim to measure 

douc langur scapular morphology relative to other cercopithecoid quadrupeds and to 

hylobatid brachiators, and to assess their similarities and differences. Should the results 

indicate that Pygathrix scapular morphology is more similar to quadrupeds, this would 

suggest that the arm-swinging behaviors of the douc langurs are more facultative in nature 

and their scapular morphology is reflective of more habitual, quadrupedal locomotor 

behaviors. A more similar morphology to true brachiators (i.e., hylobatids) would suggest 
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selective pressures have acted on the douc langur scapula to accommodate suspensory and 

locomotor activities. 

3.2. Methods 

This research adhered to the American Society of Primatologists Principles for the 

Ethical Treatment of Non-Human Primates. Seventeen landmarks (Table 8, Figure 4) were 

collected following the methods of Young (2006; 2008) from scapulae of 100 adult 

individuals from 15 different species of catarrhines (Table 9) using a Microscribe G2X 

from Immersion Technologies (San Jose, California). The three collections that were 

visisted for data collection were chosen based on where I could get the largest 

representative sample for each of the three locomotor groups; cercopithecids at Ohio State, 

Hylobatids at Muséum National d’Histoire Naturelle, and Pygathrix at the EPRC. All 

landmarks were recorded from the dorsal view to avoid potential errors arising from 

repositioning the specimens during data collection. Juveniles were excluded due to 

ontogenetic difference in their skeletal morphology (Young 2006). Specimens showing 

disease, which deformed the scapulae, or significant amounts of post-mortem damage 

obscuring collection of three or more landmarks, were also excluded from the analyses. 

Only one scapula, either left or right, was sampled from each specimen. Most of the 

specimens measured were from the wild but the Pygathrix sample included both wild and 

captive individuals.  
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Table 8. Landmarks used following the methods of Young (2006; 2008) and Bailey 

and Pampush (2015). 

Landmarks 

1 Inferior most point of the suprascapular notch 

2 Superior most point of the superior angle 

3 Central most point of vertebral border and scapular spine intersection 

4 Inferior most point of inferior angle 

5 Superlatero corner of the teres major attachment site 

6 Maximum curvature of the infraglenoid tubercle 

7 Maximum curvature of the spinoglenoid notch 

8 Medial extent of trapezius attachment on scapular spine 

9 Most inferior extent of glenoid fossa 

10 Most lateral extent of glenoid fossa 

11 Most medial extent of glenoid fossa 

12 Most superior extent of glenoid fossa 

13 Central maximum curvature of glenoid fossa 

14 Medial most portion of the coracoid prominence 

15 Superior-lateral tip of the coracoid process 

16 Inferior-lateral tip of the coracoid process 

17 Distal-most point of the acromion process. 
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Figure 4. Locations of scapula landmarks measured following the methods of Young 

(2006; 2008). Figure from Bailey and Pampush (2015). 
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Table 9. Specimens used in this study. These specimens were sampled 

opportunistically. 

Taxa Common Name N Locomotor 

Classification 

(Fleagle 2013; 

Napier and 

Napier 1967) 

Location and number of 

specimens collected at each 

location 

Pygathrix 

cinerea 

Grey-shanked 

douc 

14 Unknown Kon Ka Kinh Primate 

Conservation Program  

= 2 

Endangered Primate 

Rescue Center = 12 

Pygathrix 

nemaeus 

Red-shanked 

douc 

18 Unknown Muséum National 

d’Histoire Naturelle = 2 

Endangered Primate 

Rescue Center = 16 

Pygathrix 

nigripes 

Black-shanked 

douc 

3 Unknown Dalat Museum = 1 

Southern Institute of 

Ecology = 2 
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Table 9 Continued 

Taxa Common Name N Locomotor 

Classification 

(Fleagle 2013; 

Napier and 

Napier 1967) 

Location and number of 

specimens collected at each 

location 

Piliocolobus 

badius 

Western red 

colobus 

35 Quadruped WS McGraw Primate 

Skeletal Collection, Ohio 

State University 

= 35 

Cercopithecus 

diana 

Diana monkey 6 Quadruped WS McGraw Primate 

Skeletal Collection, Ohio 

State University 

= 6 

Cercopithecus 

cambelli 

Campbell’s 

monkey 

3 Quadruped WS McGraw Primate 

Skeletal Collection, Ohio 

State University 

= 3 

Cercopithecus 

petaurista 

Lesser spot-

nosed guenon 

3 Quadruped WS McGraw Primate 

Skeletal Collection, Ohio 

State University 

= 3 
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Table 9 Continued 

Taxa Common Name N Locomotor 

Classification 

(Fleagle 2013; 

Napier and 

Napier 1967) 

Location and number of 

specimens collected at each 

location 

Trachypithecus 

germainii 

Indochinese 

lutung 

1 Quadruped Southern Institute of 

Ecology = 1 

Hylobates spp. Gibbon 4 Brachiator Muséum National 

d’Histoire Naturelle = 4 

Hylobates lar White-handed 

gibbon 

2 Brachiator Muséum National 

d’Histoire Naturelle = 2 

Hylobates 

moloch 

Silvery gibbon 1 Brachiator Muséum National 

d’Histoire Naturelle = 1 

Hylobates 

pileatus 

Pileated gibbon 1 Brachiator Muséum National 

d’Histoire Naturelle = 1 

Nomascus 

gabriellae 

Yellow-cheeked 

gibbon 

1 Brachiator Muséum National 

d’Histoire Naturelle = 1 

Nomascus 

concolor 

Black-crested 

gibbon 

1 Brachiator Muséum National 

d’Histoire Naturelle = 1 
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Table 9 Continued 

Taxa Common Name N Locomotor 

Classification 

(Fleagle 2013; 

Napier and 

Napier 1967) 

Location and number of 

specimens collected at each 

location 

Nomascus 

leucogenys 

Northern white-

cheeked gibbon 

7 Brachiator Muséum National 

d’Histoire Naturelle = 7 

For the purposes of this study the three douc langur species, Pygathrix nemaeus, 

Pygathrix nigripes, and Pygathrix cinerea, were grouped into a single entry (Pygathrix) 

and assigned to the ‘unknown’ locomotor category. This reflects our agnostic position 

regarding their status as brachiators or quadrupeds. Previous work has found no significant 

difference in scapular shape between the three species of douc langurs, or between wild 

and captive specimens (Bailey and Pampush 2015), suggesting their condensation into a 

single group is appropriate for these analyses. The other cercopithecoids in the sample 

include Piliocolobus badius, Cercopithecus diana, Cercopithecus campbelli, 

Cercopithecus petaurista, and Trachypithecus germainii. These taxa were assigned to the 

‘quadrupedal’ locomotor category, consistent with previous research (e.g. Fleagle 2013; 

Napier and Napier 1967). The hylobatids (Hylobates spp. and Nomascus spp.) were 
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assigned to the ‘brachiator’ locomotor category also based on the literature (e.g. Fleagle 

2013; Napier and Napier 1967).  

All analyses were completed using the R package geomorph (Adams et al. 2004; 

R Core Team 2013). The sample includes specimens from both the left and right sides, 

therefore mirroring was required. A Procrustes analysis was used to uniformly scale and 

align the point clouds, which allowed for sexes to be pooled together (as scapular size is 

accounted for with the Procrustes transform). Seven specimens (two P. nigripes specimens 

and five P. badius specimens) missing three or fewer landmarks were imputated (i.e., the 

missing landmarks were statistically reconstructed based on species averages and the other 

landmarks of the particular individual). A Principal Component Analysis was performed 

to examine variance in scapular shape and Procrustes ANOVAs were conducted to test for 

shape differences among the scapulae. A pairwise analysis was conducted to compare the 

means for the three locomotor groups to determine which groups (if any) were 

significantly different from each other. To be sure phylogeny was not having an outsized 

effect on the measure of scapular shape, a phylogenetically controlled Procrustes ANOVA 

was performed. Performing such an analysis required two additional sets of data. First, a 

phylogenetic tree was downloaded from 10kTrees (Arnold et al. 2010). Second, a set of 

mean coordinates was produced for each taxon, this was done using the ‘mean shape’ tool 

contained within geomorph. 

3.3. Results 

The three locomotor classifications grouped into distinct morphological clusters in 

the Principal Component Analysis (Figure 5). Results of the PCA are presented in Table 
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10 and Figure 5. The wireframes in Figure 5 illustrate the scapula shape of each of the 

three locomotor categories. The quadrupeds (other cercopithecids) clustered negatively on 

the first axis and distributed positively and negatively across the second axis (but mainly 

positively). The brachiators (hylobatids) are clustered positively on the first axis and are 

predominantly positive on the second axis. Pygathrix falls between the cercopithecids and 

the hylobatids with a positive-negative spread on the first axis and a largely negative 

distribution across the second axis. PC1 accounts for 39.66% of the observed variation 

and PC2 accounts for 20.12% of the variation (59.78% cumulatively). PC1 discriminates 

all three locomotor groups with the greatest variation while PC2 contains more overlap. 

Positive PC1 scores are characterized by a more inferiorly placed scapular spine along the 

vertebral border, a relatively longer acromion process (and by extension, scapular spine), 

and a superiorly oriented glenoid fossa. Pygathrix shares a superiorly placed scapular 

spine along the vertebral border with the cercopithecids and a long acromion process and 

scapular spine with the hylobatids. The more acute angle between the coracoid 

prominence and the superior and inferior tips of coracoid process also links Pygathrix to 

other cercopithecids on PC1. This angle on the hylobatids is not nearly as acute. While 

Pygathrix is more similar to the cercopithecids on PC1, they are separated on PC2. 

Negative PC2 scores are characterized by a more medially placed superior angle thereby 

shortening the superior border and lengthening the superior aspect of the vertebral border. 

Additionally, the lower PC2 scores are distinguished by a mediolaterally compressed and 

craniocaudally elongated scapular body. 
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Figure 5. Principal Components Analysis and wireframes of scapula shape. 

Quadrupeds fall negatively on PC1 and have a positive – negative spread across PC2. 

Pygathrix has a positive – negative distribution across PC1 and a primarily negative 

distribution across PC1 and a primarily negative distribution across PC2. 

Brachiators are primarily clustering positively on PC1 and mostly positive on PC2. 



41 

Wireframes represent the respective scapular shape for each of the three locomotor 

categories. 

Table 10. PCA results. 

PC1 PC2 PC3 PC4 PC5 

SD 0.07954 0.05666 0.04191 0.02692 0.02296 

Proportion of 

Variance 

0.3966 0.20123 0.11012 0.04544 0.03304 

Cumulative 

Proportion 

0.3966 0.59784 0.70796 0.7534 0.78644 

An ANOVA comparing scapula shape for all locomotor types indicated significant 

differences among the groups (P <0.01) (Table 11). Further, pairwise analysis showed 

Pygathrix scapular morphology to be significantly different from both quadrupeds (P 

<0.01) as well as brachiators (P <0.01) (Tables 12, 13). Results of the phylogenetically 

controlled Procrustes ANOVA also showed a significant difference (P=0.008) (Table 14). 
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Table 11. ANOVA Comparing Scapular Shape for All Locomotor Patterns. 

df SS MS 𝜂" F P Value 

Locomotion 2 0.79749 0.39874 0.50497 49.475 <0.001 

Residuals 97 0.78177 0.00806 

Total 99 1.57926 0.01595 

Table 12. Pairwise Analysis Comparing Distance Between Quadrupeds and 

Pygathrix. 

df SS MS 𝜂" F P Value 

Locomotion 2 0.27007 0.135033 0.30866 17.859 <0.001 

Residuals 80 0.60490 0.007561 

Total 82 0.87496 0.010670 
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Table 13. Pairwise Analysis Comparing Distance Between Brachiators and 

Pygathrix. 

df SS MS 𝜂" F P Value 

Locomotion 2 0.38798 0.193989 0.48313 22.9 <0.001 

Residuals 49 0.41508 0.008471 

Total 51 0.80306 0.015746 

Table 14. Phylogenetically controlled Procrustes ANOVA. 

df SS MS 𝜂" Z P Value 

Locomotion 2 0.0017 0.0008 0.001 3.665 0.008 

Residuals 12 1.7132 0.1428 

Total 14 1.7159 

3.4. Discussion 

The results presented here show that the scapular morphology of Pygathrix is 

distinct from that of both quadrupedal cercopithecids and brachiating hylobatids. The 

morphology of the douc langur scapula is intermediate between typical brachiators and 

quadrupeds and may indicate the distinct locomotor repertoire of this genus. On PC1 
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Pygathrix is similar to other cercopithecids with its long vertebral border but the laterally 

projecting acromion process, long scapular spine, and more cranially oriented glenoid 

fossa resemble the hylobatids. On PC2 Pygathrix is distinct from both the other 

cercopithecids and the hylobatids with its mediolaterally compressed scapula and more 

medially located superior angle. 

The difference in η2 values between the phylogenetically controlled and non-

phylogenetically controlled procrustes ANOVAs prompted an unplanned test for 

phylogenetic signal. This was performed in geomorph using the function ‘physignal’. This 

returned a Blomberg’s K value of 0.0073 (Table 15), which is very small yet significantly 

different from zero. So, while there is some effect of shared descent on the distribution of 

these data, the effect is rather small and is unlikely to be the cause of the η2 differences. 

Rather, the difference in η2 values is likely the product of digesting the point cloud data 

into species means to perform the phylogenetically corrected analysis. This data 

aggregation dramatically lowered the number of data points and limited the power of the 

analysis. 

Table 15. Results of the assessment of phylogenetic signal. 

Blomberg’s K p-value Permutations 

0.0073 0.02 1000 
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Upon casual observation, the Pygathrix scapulae resembles that of Piliocolobus 

badius (Figure 6). However, upon closer inspection there are several characteristics that 

set them apart. The acromion process is more robust and projects further laterally in 

Pygathrix than the other cercopithecids, in addition to a more robust scapular spine. The 

relationship of the acromioclavicular joint to arm elevation is an obvious explanation for 

the more robust acromion found in brachiators (Hunt 1991). A major difference between 

the hylobatids and the colobines is the teres major attachment site (the boney portion 

between the teres major fossa and inferior angle). In the colobines, the teres major 

attachment site projects further laterally compared to the hylobatids (personal 

observation). In P. badius, this has been proposed to be a result of adduction of the 

forelimb after superior retrieval of food during foraging (Dunham et al. 2016). Pygathrix 

has a teres major attachment site that is similar to P. badius but it appears to be not quite 

as large. The superior angle of the superior border is distributed more medially in the douc 

langurs compared to both the hylobatids and cercopithecids. A plausible explanation for 

this is the abundant use of the supraspinatus muscle, which attaches along the superior 

aspect of the supraspinatus fossa (superior border). The supraspinatus is critical for 

stabilization in the glenohumeral joint in both brachiators and quadrupeds, and for the 

elevation of the arm in brachiators (Potau et al. 2011). The glenoid fossa is less cranially 

oriented in Pygathrix than in the hylobatids. These differences are to be expected given 

how muscle insertions and skeletal morphology of the shoulder girdle of arm-swinging 
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colobines are described as intermediate between quadrupeds and true brachiators (Ashton 

and Oxnard 1964a).  

Figure 6. Scapula of Pilocolobus badius (left), Pygathrix nemaeus (center), Nomascus 

leucogenys (right). These three species are the largest representative of their 

respective locomotor groups in terms of sample size. 

Another factor related to below-branch locomotion is body size. A general trend 

observed within and between primate clades is that as body size increases, the frequency 

of below-branch locomotion also increases, presumably because it is easier for large-

bodied primates to hang below a branch than to balance on top of it (Cartmill 1985a; 

Fleagle and Mittermeier 1980b; Napier 1967b; Napier and Napier 1967; Ward 2007). 
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Among the colobines, Pygathrix lies towards the larger end of the body mass spectrum 

(Delson et al. 2000; Smith and Jungers 1997).  Colobines that rarely engage in arm-

swinging, such as P. badius and Trachypithecus francoisi, (McGraw 1998a; Zhou et al. 

2013) weigh less than the more suspensory Pygathrix nemaeus. A parallel trend appears 

in New World monkeys as well (Fleagle and Mittermeier 1980b). Two groups of large-

bodied New World monkeys Ateles spp. (spider monkey) and Lagothrix spp. (woolly 

monkey) are well known for their suspensory behaviors (Napier and Napier 1967; Smith 

and Jungers 1997), with suspensory locomotion comprising 23.3% and 11.7% of travel 

time, respectively (Cant 1986; Defler 2000). However, having a larger body size does not 

necessarily imply an increased use of suspensory behaviors. For example, Alouatta spp. 

infrequently uses suspensory behaviors and weighs between 6 - 7 kg. (with the exception 

of the Alouatta pigra at 11.4 kg.) which is comparable to Ateles spp. (between 7 – 9.6 kg) 

(Fleagle 2013). Smaller New orld monkeys, such as Saimiri boliviensis use suspensory 

postures <1% of the time (Arms et al. 2002). The brachiation frequencies of Ateles and 

Lagothrix are less than the arm-swinging frequencies reported for Pygathrix. Furthermore, 

another Vietnamese odd-nosed monkey, Rhinopithecus avunculus (the Tonkin snub-nosed 

monkey), arm-swings 5.23% of the time (Le Khac Quyet 2014) and weighs in around 16 

kg. (males) (Rowe and Myers 2016). Semnopithecus entellus is a species of langur from 

Asia that are also heavier (~ 16 – 19 kg.) a virtually never use brachiation or arm-swinging 

behaviors (Rowe and Myers 2016).  

The suspensory locomotion used by the atelines differs from that of Old World 

brachiators by use of a prehensile tail in the former. Use of the prehensile tail results in a 
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more pronograde suspension in the Atelines, compared to the more orthograde suspension 

observed in Pygathrix and the hylobatids (Hunt et al. 1996b). Despite this difference, the 

scapular morphology of Ateles and Lagothrix resembles that of the hylobatids (Kagaya 

2007); Ateles has a wide glenoid fossa while both Ateles and Lagotrhix have a wide 

supraspinatus fossa (Campbell 1937), which is consistent with typical brachiator 

morphology (Ashton and Oxnard 1963). Overall, the scapula morphology of Lagothrix is 

described as intermediate between that of Ateles and Alouatta, with Ateles being the most 

similar to the hylobatids and Alouatta representing a more typical quadruped (Gebo 1996). 

Further, both Ateles and Lagothrix have a cranially oriented glenoid fossa (Gebo 1996) a 

feature they share with Pygathrix and the hylobatids. Features shared by these taxa may 

be helpful for identifying suspensory behaviors in the fossil record. If such features appear 

in concordance with body size increases during hominoid evolution, particularly in the 

hylobatid evolution, this could be a useful line of evidence illuminating the below-branch 

locomotion in this clade.  

This study lays the foundation for future research. A wild-based study focusing 

exclusively on locomotion and positional behaviors is the next logical step in identifying 

factors influencing arm-swinging frequency in douc langurs’ natural habitat. Coupled with 

the present scapular morphology investigation, a locomotor study could explain why arm-

swinging is observed in this genus at frequencies unique among colobines. It would be 

beneficial to incorporate more odd-nosed taxa into morphological studies to draw 

comparisons to the douc langurs. Furthermore, red and black-shanked douc langurs are 

classified as Endangered and grey-shanked douc langurs are classified as Critically 
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Endangered by the International Union for Conservation of Nature (IUCN) (Rawson et al. 

2008; Vu Ngoc Thanh et al. 2008a; Vu Ngoc Thanh et al. 2008b). Behavioral and 

ecological data are imperative for ensuring their future conservation.
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CHAPTER IV

THE RELATIONSHIP BETWEEN THE GLENOID FOSSA AND THE ACRIOMION 

PROCESS IN PRIMATES 

4.1. Introduction 

Generally primates are classified into four broad locomotor categories: 

quadrupeds, brachiators, leapers, and bipeds (Napier and Napier 1985). Although 

behavioral locomotor designations can be imprecise, these locomotor categories offer a 

structure for developing and organizing future research (Napier and Napier 1967). 

Quadrupeds and brachiators rely more heavily on their forelimb for locomotion (in 

contrast to leapers and bipeds which rely more on the hindlimb) (Ashton and Oxnard 

1964b). Each of these broad designations have subcategories to acknowledge that primates 

move in a variety of ways. For example, Pygathrix spp. were historically placed under the 

broad quadrupedal category (Napier and Napier 1985; Napier and Napier 1967) but are 

known to exhibit high proportions of arm-swinging behavior in captivity (Byron and 

Covert 2004; Hollihn 1973; Wright et al. 2008), in addition to quadrupedalism and 

leaping.  

Anatomical studies of the primate forelimb are frequently used to explain 

locomotor behavior in both extinct and extant primates (e.g. Ashton and Oxnard 1964a; 

Dunham et al. 2016; Green and Alemseged 2012). The scapula has a suite of traits that 

together can generally predict an animal’s locomotor capabilities. For example, 

suspensory/brachiating primates have a more dorsally placed scapula (Gebo 1996) and a 
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more cranially oriented glenoid fossa (Larson 1993). Conversely, quadrupedal primates 

have a more laterally placed and wider scapula (across the scapular spine) (Larson 1993). 

Bipedal primates have a dorsally placed scapula and a laterally oriented glenoid fossa 

(Figure 7) (Ashton and Oxnard 1964a). In addition to the scapula, the clavicle is known 

to be longer in suspensory primates and shorter in primates that do not exhibit high 

proportions of overhead-arm behavior (Ashton and Oxnard 1964a; Jenkins et al. 1978). 

This lengthening is particularly evident in brachiators because the traditional thoracic 

shape of hominoids is ‘flattened’ dorsoventrally (Chan 1997; Kagaya et al. 2008), which 

places their scapula further dorsally and thereby elongates both the clavicle and acromion 

process to allow them meet along the coronal plane (Jenkins et al. 1978; Voisin 2006).  

Figure 7. Scapula representations of the four locomotor categories. L-R Piliocolobus 

badius, Pygathrix cinerea, Nomascus leucogenys, and Homo sapiens. Figure adapted 

from Bailey and Pampush (2015). 
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The acromion process is recognized to be more robust in the hominoids, which is 

correlated with a more robust deltoid muscle (Ciochon and Corruccini 1977). The deltoid 

muscle originates on the acromion process and the clavicle and works to stabilize the 

glenohumeral joint, which is especially important in a brachiating anatomy such as seen 

in gibbons (Ashton et al. 1965; Jungers and Stern 1981). The lateral projection of the 

coracoid and acromion processes and the shape of the glenoid fossa have been noted to 

discriminate the hominoids from other anthropoids because only the hominoids have a 

coraco-acromial ligament (Ciochon and Corruccini 1977). Additionally, the trapezius 

muscle also attaches on the acromion process and assists to rotate the scapula on the 

thoracic wall (Moore et al. 2002). Given the origins and attachments of the aforementioned 

muscles, I speculate that the acromion process of brachiators is likely more robust than in 

primates that do not require extensive overhead arm-use.  

The goal of this article is to determine if locomotor patterns in primates are 

identifiable based on specific limited morphological features. Previously, most studies 

have focused on general scapular shape (e.g. Melillo 2016; Oxnard 1969; Young 2008), 

the bar-glenoid angle (e.g. Green and Alemseged 2012; Stern and Susman 1983) or 

scapular indices (e.g. Ashton et al. 1965; Covert et al. 2004; Su and Jablonski 2008) as a 

reflection of locomotor capabilities. Given the central role the acromion process plays in 

arm-use, we attempt here to discern locomotor designations, particularly in forelimb 
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dependent primates, based on the straight-line distance the acromion process projects past 

the glenoid fossa. Based on previously reported proportions of overhead-arm use, I  expect 

brachiators to have the greatest acromion process projection, followed by arm-swingers, 

quadrupeds, then bipeds. Gibbons use brachiation approximately 74 - 80%  of the time 

during travel (Andrews and Groves 1976; Gittins 1983), captive douc langurs use arm-

swinging approximately 50% of the time during travel (Byron and Covert 2004; Wright 

et al. 2008), and the western red colobus (Piliocolobus badius—the largest representative 

of cercopithecids in this study) only arm-swing 2.9% and use quadrupedal behaviors 54.8 

% of the time during travel (McGraw 1998b). 

4.1.1. Methods 

We assigned the locomotor categories for all specimens based on existing 

literature. The representative quadrupeds include Piliocolobus badius (McGraw 1998b), 

Cercopithecus diana (McGraw 1998b), Cercopithecus campbelli (McGraw 1998b), 

Cercopithecus petaurista (Fleagle 2013), and Trachypithecus germainii (Fleagle 2013). 

The brachiators are represented by Hylobates spp., Hylobates lar, Hylobates moloch, 

Hylobates pileatus, Nomascus gabriellae, Nomascus concolor, and Nomascus leucogenys 

(Fleagle 2013). Pygathrix spp. was included in a separate category (arm swingers), given 

more recent studies demonstrating their arm-swinging behavior in captivity (Byron and 

Covert 2004; Wright et al. 2008) and given that their scapula is significantly different in 

shape from both quadrupeds and brachiators (Bailey et al. 2017). All three species of 

Pygathrix are able to be pooled together because their scapula are not significantly 



54 

different in shape (Bailey and Pampush 2015). In this study, bipeds are represented by 

Homo sapiens.   

Using a Microscribe (Immersion Technologies, San Jose, CA.), 17 landmarks 

(Figure 8) (Young 2006, 2008) were collected on the scapula of: brachiators (n = 18), 

quadrupeds (n = 48), arm-swingers (Pygathrix) (n = 35), and bipeds (n = 13). All scapulae 

were sampled from adult specimens from museum, rescue center, university, and 

conservation agency collections (Table 16). All landmarks were recorded from the dorsal 

view to avoid observer error. Landmark data is ideal for this particular study because 

through the analysis, size differences related to sex are controlled by a Generalized 

Procrustes Analysis (Zelditch et al. 2012). The landmark data was imported via a 

Microsoft Excel file and analyzed in the R package geomorph (Adams and Otárola-

Castillo 2013). Specimens were chosen on the requirement of having at least 15 landmarks 

present (i.e. not broken or fragmented in more than two places). Missing landmarks were 

estimated and imputed for seven specimens (two arm-swingers, five quadrupeds). 

Imputation estimates where missing landmarks from the incomplete specimen would be 

based on a reference point from a complete specimen. A Procrustes Analysis was used to 

uniformly scale the data to control for sex and side and place the scapulae into the same 

morphospace. Landmarks 13 (the center-most point of the glenoid fossa) and 17 (the 

distal-most tip of the acromion process) were then isolated and the straight-line distance 

between these two points was calculated for all individuals. None of the chosen specimens 

were missing landmarks 13 and 17 and therefore imputation was not required for the 

critical landmarks. An analysis of variance (ANOVA) was performed to test if there was 
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a difference between all four locomotor categories, the broad locomotor categories 

(bipeds, brachiators, and quadrupeds), and the forelimb dependent locomotor categories 

(brachiators, quadrupeds, and arm-swingers). A Tukey’s Honest Significant Difference 

(HSD) test was used to test if the means were significantly different from one another, 

first with all four locomotor categories, second with the three broad locomotor categories, 

and third with the forelimb dependent primates. The benefit of using a Tukey’s HSD test 

is that it automatically adjusts the p-value for multiple comparisons.  



56 

Figure 8. Landmarks used. Figure from Bailey and Pampush (2015). 



57 

Table 16. Specimens used in this study were sampled opportunistically. Table 

reprinted from Bailey and Pampush (2015). 

Taxa Common Name N Locomotor 

Classification 

(Fleagle 2013; 

Napier and 

Napier 1967) 

Location and number of 

specimens collected at each 

location 

Pygathrix 

cinerea 

Grey-shanked 

douc 

14 Unknown Kon Ka Kinh Primate 

Conservation Program  

= 2 

Endangered Primate 

Rescue Center = 12 

Pygathrix 

nemaeus 

Red-shanked 

douc 

18 Unknown Muséum National 

d’Histoire Naturelle = 2 

Endangered Primate 

Rescue Center = 16 

Pygathrix 

nigripes 

Black-shanked 

douc 

3 Unknown Dalat Museum = 1 

Southern Institute of 

Ecology = 2 
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Table 16 Continued 

Taxa Common Name N Locomotor 

Classification 

(Fleagle 2013; 

Napier and 

Napier 1967) 

Location and number of 

specimens collected at each 

location 

Piliocolobus 

badius 

Western red 

colobus 

35 Quadruped WS McGraw Primate 

Skeletal Collection, Ohio 

State University 

= 35 

Cercopithecus 

diana 

Diana monkey 6 Quadruped WS McGraw Primate 

Skeletal Collection, Ohio 

State University 

= 6 

Cercopithecus 

cambelli 

Campbell’s 

monkey 

3 Quadruped WS McGraw Primate 

Skeletal Collection, Ohio 

State University 

= 3 

Cercopithecus 

petaurista 

Lesser spot-

nosed guenon 

3 Quadruped WS McGraw Primate 

Skeletal Collection, Ohio 

State University 

= 3 
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Table 16 Continued 

Taxa Common Name N Locomotor 

Classification 

(Fleagle 2013; 

Napier and 

Napier 1967) 

Location and number of 

specimens collected at each 

location 

Trachypithecus 

germainii 

Indochinese 

lutung 

1 Quadruped Southern Institute of 

Ecology = 1 

Hylobates spp. Gibbon 4 Brachiator Muséum National 

d’Histoire Naturelle = 4 

Hylobates lar White-handed 

gibbon 

2 Brachiator Muséum National 

d’Histoire Naturelle = 2 

Hylobates 

moloch 

Silvery gibbon 1 Brachiator Muséum National 

d’Histoire Naturelle = 1 

Hylobates 

pileatus 

Pileated gibbon 1 Brachiator Muséum National 

d’Histoire Naturelle = 1 

Nomascus 

gabriellae 

Yellow-cheeked 

gibbon 

1 Brachiator Muséum National 

d’Histoire Naturelle = 1 

Nomascus 

concolor 

Black-crested 

gibbon 

1 Brachiator Muséum National 

d’Histoire Naturelle = 1 
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Table 16 Continued  

Taxa Common Name N Locomotor 

Classification 

(Fleagle 2013; 

Napier and 

Napier 1967) 

Location and number of 

specimens collected at each 

location 

Nomascus 

leucogenys 

Northern white-

cheeked gibbon 

7 Brachiator Muséum National 

d’Histoire Naturelle = 7 

Homo sapiens Humans 13 Biped Department of 

Anthropology Teaching 

Collection, Texas A&M 

University 
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4.2. Results 

There was a significant effect of locomotor category on the relative distance 

between the glenoid fossa and the acromion process (ANOVA: α=0.05, F(3, 111)=72.87, 

p<0.01) (Table 17). This effect still remains after excluding bipeds to compare forelimb 

dependent locomotor categories (F(2,98)=59.17, p<0.01).  This effect also remains after 

excluding the arm-swinger category in order to focus on broader categories 

(F(2,77)=76.05, p<0.01).  A post-hoc Tukey’s showed a significant difference between 

brachiators and bipeds (p<0.01), quadrupeds and bipeds (p<0.01), arm-swingers and 

bipeds (p<0.01), and quadrupeds and bipeds (p=0.03) (Table 18, Figure 9). There is no 

significant difference between arm-swingers and brachiators (p=0.85) or arm-swingers 

and quadrupeds (p=0.08) (Table 18). When comparing the broad locomotor categories 

(bipeds, brachiators, and quadrupeds), the ANOVA shows a significant difference 

(p<0.01) (Table 19, Figure 10). The result of the Tukey’s HSD shows a significant 

difference between brachiators and bipeds (p<0.01), quadrupeds and bipeds (p<0.01), and 

the difference between quadrupeds and brachiators is approaching significance (p=0.06) 

(Table 20). Next, when comparing the forelimb dependent primates (i.e. primates that are 

required to use the forelimb for locomotion), the ANOVA shows a significant difference 

(p<0.01) (Table 21, Figure 11). The Tukey’s HSD shows a significant difference between 

all comparisons (quadrupeds and brachiators, p<0.01; arm-swingers and brachiators, 

p=0.01; arm-swingers and quadrupeds p<0.01) (Table 22). 
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Table 17. Results of the ANOVA between all locomotor categories. 

DF Sum of 

Squares 

Mean 

Square 

F Value P Value 

Locomotion 3 0.4138 0.13792 72.87 p < 0.01 

Residuals 111 0.2101 0.00189 

Table 18. Results of Tukey’s HSD between all locomotor categories. 

Locomotor Category Comparisons p – value 

Brachiators – Bipeds p < 0.01 

Quadrupeds – Bipeds p < 0.01 

Arm-Swingers – Bipeds p < 0.01 

Quadrupeds – Brachiators p = 0.03 

Arm-Swingers – Brachiators p = 0.85 

Arm-Swingers – Quadrupeds p = 0.08 
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Figure 9. Boxplot of all four locomotor categories. 
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Table 19. Results of the ANOVA between bipeds, brachiators, and quadrupeds. 

DF Sum of 

Squares 

Mean 

Square 

F Value P Value 

Locomotion 2 0.4037 0.20187 76.05 p < 0.01 

Residuals 77 0.2044 0.00265 

Figure 10. Boxplot of broad locomotor categories excluding arm-swingers 

(Pygathrix). 
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Table 20. Results of Tukey’s HSD between bipeds, brachiators, and quadrupeds. 

Locomotion p – value 

Brachiators – Bipeds p < 0.01 

Quadrupeds – Bipeds p < 0.01 

Quadrupeds – Brachiators p = 0.06 

Table 21. Results of the ANOVA between brachiators, quadrupeds, and arm-

swingers. 

DF Sum of 

Squares 

Mean 

Square 

F Value P Value 

Locomotion 2 0.01896 0.00948 59.17 p < 0.01 

Residuals 98 0.01570 0.00016 
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Figure 11. Boxplot of locomotor categories for forelimb dependent primates. 

Table 22. Results of Tukey’s HSD between brachiators, quadrupeds, and arm-

swingers. 

Locomotion p-value 

Quadrupeds – Brachiators p < 0.01 

Arm-Swingers – Brachiators p = 0.01 

Arm-Swingers – Quadrupeds p < 0.01 
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4.3. Discussion 

The results presented here indicate that the distance between the glenoid fossa and 

acromion process may be used to interpret locomotor categories that rely more 

predominantly on forelimb use (brachiators, quadrupeds, arm-swingers). More nuanced 

categories (e.g. arboreal quadruped, terrestrial quadruped, quadrumanual) may not be as 

reliably interpreted when comparing all locomotor categories. Additionally, despite bipeds 

not using their arms for locomotor purposes, bipeds had the greatest acromion process 

projection, even after size correction. Considering this lack of arm use, these results are 

only biologically significant for those primates that routinely use below-branch 

locomotion. The range of variation in the distance between the acromion process and the 

glenoid fossa in bipeds is likely influenced by the fact that locomotion isn’t constraining 

these morphological features. 

The acromion process projection differences exhibited among the forelimb 

dependent primates are reasonably explained by the amount of overhead arm-use these 

primates employ. For example, Hylobates brachiates the most, Pygathrix in contrast arm-

swings approximately 50% of the time (in captivity) (Byron and Covert 2004; Wright et 

al. 2008), and Piliocolobus badius only arm-swings 2.9% of the time (McGraw 1998b). 

These differences predict the robusticity of the acromion process projection for two major 

reasons. First, the clavicle provides leverage and attachment sites for the muscles of the 
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shoulder to increase shoulder mobility (Squyres and DeLeon 2015). Second, the deltoid 

muscle contributes to the efficiency of arm elevation and stabilizes the joint (Ashton et al. 

1965). The deltoid overlays the clavicle, acromion process, and humerus (Jungers and 

Stern 1981; Larson 1993) and is larger and more developed in obligate brachiators (Ashton 

and Oxnard 1963). 

The information in this study may be useful when reconstructing behavior in the 

primate fossil record and has relevance for understanding the locomotion of past primates, 

particularly for those that were probably forelimb dependent. For example, the fossil 

Australopithecus afarensis has been the subject of numerous debates in terms of its 

locomotion. Reconstructing the locomotion of A. afarensis is difficult because its scapula 

shares features with both bipeds and suspensory primates (Stern and Susman 1983). Stern 

and Susman (1983) specifically identified the cranially oriented glenoid fossa (using the 

bar-glenoid angle) to be indicative of habitual overhead-arm use. However, a later study 

incorporated other angles (e.g. axillary-vertebral, glenoid-spinal, bar-glenoid, glenoid-

axillary, and spinal-axillary angle) and found A. afarensis to group with bipeds (Haile-

Selassie et al. 2010). Furthermore, Melillo (2016) described the scapula of A. afarensis to 

be more indicative of bipedalism and that it was unclear if the remaining primitive 

morphological features enhanced overhead-arm used. By including glenoid-acromion 

process projection into future primate scapular studies in extinct species, the field may be 

able to refine current methods for determining locomotor patterns, especially when fossils 

are frequently fragmented. Future research should include immature scapulae to determine 
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if ontogenetic differences in locomotor patterns are also discernable from the glenoid-

acromion process projection. 
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CHAPTER V

ARM-SWINGING OF THE RED-SHANKED DOUC LANGUR (PYGATHRIX 

NEMAEUS): IMPLICATIONS OF BODY SIZE 

5.1. Introduction 

Colobines are well known for being primarily arborealists, with leaping and 

quadrupedalism being common locomotor behaviors (e.g. Davies and Oates 1994). While 

below-branch locomotion is routinely observed in the hominoids and the atelines, it was 

thought to be extremely rare among colobines until it was recently observed in captive 

douc langurs (genus Pygathrix) (Byron and Covert 2004; Fleagle 2013; Napier and Napier 

1967). Pygathrix consists of three species: Pygathrix cinerea (the grey-shanked douc), 

Pygathrix nigripes (the black-shanked douc), and Pygathrix nemaeus (the red-shanked 

douc), and little has been published about the ecological behavior including their 

positional behavior.  

In two studies the red and grey-shanked doucs have been observed using below-

branch locomotion (suspensory and arm-swinging) in about 50% of all locomotor bouts 

in captivity at the Endangered Primate Rescue Center (EPRC) (Byron and Covert 2004; 

Wright et al. 2008). In another study at the EPRC, adult red-shanked doucs used 

suspensory locomotion 21.8% of the time and young doucs used suspensory locomotion 

25.4% of the time (Workman and Covert 2005). Pygathrix was first observed arm-

swinging in zoos (Hollihn 1973) prior to the research conducted at the EPRC (Byron and 

Covert 2004; Workman and Covert 2005; Wright et al. 2008). The EPRC houses 
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numerous colobines (including non-Pygathrix species) in enclosures that are structurally 

similar (Byron and Covert 2004; Workman and Covert 2005) thus reducing the likelihood 

that locomotor differences between Pygathrix and other colobines  at the EPRC are related 

to the captive environment. Byron and Covert (2004) observed that P. nemaeus employed 

suspensory locomotion 46% of the time in all locomotor bouts at the EPRC. This 

proportion is in contrast to two other colobines, Delacour’s langur (Trachypithecus 

delacouri) and the Hatinh langur (Trachypithecus laotum hatinhensis) which only used 

non-suspensory locomotion. Workman and Covert (2005) further expanded the study to 

include the ontogeny of locomotion of the red-shanked douc, Delacour’s langur, and 

Hatinh langur at the EPRC. They found both adult and young red-shanked douc langurs 

to exhibit more suspensory locomotion (~ 22%) than the Hatinh langurs (~2%) and the 

Delacour’s langurs (<1%). Wright et al. (2008) examined the suspensory behavior and 

kinematic profile of the red and grey-shanked doucs to compare to the behavior of the 

northern white-cheeked gibbon (Nomascus leucogenys) at the EPRC.  They found that the 

red-shanked douc uses suspensory locomotion 46% of the time and grey-shanked doucs 

use suspensory locomotion 56% of the time. Their results showed that kinematically, the 

doucs are capable of moving in similar ways to the gibbons, although at a much slower 

pace. Similarly, Granatosky (2015) found the red-shanked douc to have similar kinetic 

patterns to Hylobates (gibbons) (albeit with some slight differences) and described their 

arm-swinging at the EPRC as a pendulum. Because of these results, we hereafter designate 

the locomotor behavior of the doucs as arm-swinging to differentiate from the typical 

brachiation observed in gibbons.  
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In conjunction with the behavioral observations at the EPRC, there have been five 

skeletal studies conducted on Pygathrix to identify patterns in the relationship between 

locomotor behavior and morphology. First, Covert et al. (2004) examined the scapular 

indices of the doucs and found they retain a longer vertebral border compared to other 

colobines, which is more consistent with hominoid morphology. Additionally, they found 

the doucs have a high brachial index (radius length/humerus index), also consistent with 

the hominoids. The odd-nosed monkey clade (of which Pygathrix is a member) also shares 

a similar skeletal shape of the shoulder girdle and forelimb. Second, Su and Jablonski 

(2008) investigated skeletal components of the odd nosed monkeys and found all four 

genera share similar scapular indices, relative olecranon length, intermembral index, 

clavicular length, and humeral length. They also remarked that the scapular indices of the 

odd-nosed monkeys were similar to that of extant apes and differed from other Old-World 

monkeys. Third, since the EPRC studies did not include the black-shanked douc, Bailey 

and Pampush (2015) conducted a study including this species in an attempt to identify if 

the all douc langurs retain a similar scapular shape. Results showed that there was no 

significant difference in scapular shape between the three species of Pygathrix, thereby 

providing some evidence that all species likely share similar locomotor patterns. Fourth, 

Bailey et al. (2017) compared the scapula of the douc langurs to two other groups of 

primates; quadrupeds (other cercopithecids) and true brachiators (the hylobatids) and 

found that Pygathrix had an intermediary scapular shape between brachiators and 

quadrupeds. Fifth, Byron et al. (2017) found the doucs to have a brachial index, crural 

index, and scapular shape to be comparable to gibbons, while the intermembral index was 
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more intermediate. All of the aforementioned results suggest that Pygathrix is exhibiting 

some arm-swinging behaviors in the wild. 

Despite the extensive captive locomotor studies and numerous morphological 

investigations, there has yet to be a study focusing exclusively on locomotion in the wild 

for any of the three species of Pygathrix. Previous work from the wild has primarily 

focused on the socioecology, feeding ecology, and activity budgets of the doucs (e.g. Dinh 

Thi Phuong Anh et al. 2010; Ha Thang Long 2007; Ha Thang Long 2009; Ha Thang Long 

et al. 2010; Hoang Minh Duc et al. 2009; Phiapalath 2009; Rawson 2009; Ulibarri 2013). 

Rawson (2009), however, completed a study on the socioecology of the black-shanked 

douc langur and reported suspensory behavior to comprise 10% of males’, and 3.7% of 

females’ locomotor repertoire. 

Notwithstanding the anatomical evidence and captive data indicating Pygathrix is 

arm-swinging in the wild, it remains unclear why the doucs are arm-swinging when most 

other colobines do not. Among colobines, Pygathrix lies at the larger end of the body size 

spectrum, but when considering just Presbytini, Pygathrix is mid-sized (Figure 12) 

(Delson et al. 2000; Le Khac Quyet 2014; Smith and Jungers 1997). It has been long 

established that an increased body size among primates lends itself to below-branch 

locomotion (e.g. Cant 1992; Cartmill 1985b; Fleagle and Mittermeier 1980a; Napier 

1967a; Napier and Napier 1985; Ward 2002). An increased body size facilitates below-

branch locomotion (i.e. suspensory, brachiation, arm-swinging) through elongated arms 

(Cartmill and Milton 1977) and lowering the center of gravity to avoid overbalancing and 

compensatory movements that are required above the branch (Grand 1972; Napier and 
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Napier 1985). Wright et al. (2008) suggested that a combination of an increased body size 

and diet might have selected for suspensory adaptations in doucs and snub-nosed 

monkeys. In an effort to tease apart this suggestion, we aim to identify if body size is 

influencing the frequency of brachiation in the red-shanked douc langur in the wild. We 

speculate that an increased body size could be the primary mechanism influencing this 

derived locomotor behavior (relative to other colobines) but given that even larger Asian 

colobines engage in low levels of arm-swinging it is questionable. This conjecture is 

testable by comparing body sizes via age and sex classes within the species P. nemaeus. 

Given the differences in percentage of suspensory behavior observed between the sexes 

of the black-shanked doucs (Rawson 2009), we predict males will arm-swing the most, 

followed by adult females with a baby on their belly, adult females without a baby, 

subadults of any sex, and infants of any sex, respectively. We specifically aim to find out 

at what frequency P. nemaeus is arm-swinging in the wild, and to what extent is body size 

influencing these frequencies. 
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Figure 12. Plot of Presbytini body weights (Delson et al. 2000; Fleagle 2013; Le Khac 

Quyet 2014; Smith and Jungers 1997). 
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5.2. Methods 

Data were collected in the Son Tra Nature Reserve between November 4th, 2016 

and March 13th, 2017 most days, Monday through Friday (approximately 90 contact hours 

between those dates). The coastal region of Vietnam where Son Tra is located is subject 

to two primary seasons; the monsoon (wet) season and the dry season (Van Peenen et al. 

1971). The November – March timeframe straddled the two seasons thereby ruling out 

seasonality biases. Son Tra Nature Reserve was established in 1992 initially with 4,439 

ha (Sourcebook, 2004) but has since been reduced to 2,670 ha after a portion was 

reallocated for development (Lippold and Thanh 2008; Sourcebook 2004; Vietnam 

Conservation Fund 2009). It is adjacent to Da Nang, Vietnam’s third largest city.  

Throughout the reserve there is a road that circumnavigates the coast and intersects 

through the middle of the mountain creating fragmented forest patches. The doucs 

observed in this study were already habituated because Vietnamese photographers come 

up the mountain almost every day to photograph the monkeys. Because the red-shanked 

doucs feed on morning glory (Ipomoea eberhardtii) that grows extensively along the road, 

most data was collected from the vantage point of the road. This view also allowed for 

greater visibility across the forest canopy, which was essential since the doucs were being 

filmed.  

A Canon Vixia handheld camera or a Canon 70D DSLR with a 250mm lens were 

used to gather footage of the doucs. To maximize the number of observations across the 

maximum number of individuals, anytime a group or individual moved out of sight or 

were no longer in visible range, a new group was located and filmed. After completing 
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data collection in Da Nang, the videos were viewed by one researcher and data were 

recorded in Excel. Data were continuously recorded for all visible individuals in each 

video clip for all age and sex classes. The following information was recorded for each 

bout of behavior: video clip number, individual ID, age, sex, baby on belly, and locomotor 

behavior (Table 23). Locomotor behaviors were chosen based on broad categories (Hunt 

et al. 1996a) to offer more comparability between studies. Discrete body size estimates 

were assigned based on literature from both wild caught and zoo specimens (Table 24) 

(Delson et al. 2000; Smith and Jungers 1997). Body size was estimated for juveniles by 

taking the midpoint between average neonate weight and weight at weaning (Lee et al. 

1991). Body size was estimated for subadults by taking the midpoint between weight at 

weaning and average female adult weight (Lee et al. 1991; Smith and Jungers 1997). Body 

size for adult females with a baby was estimated by adding average adult female body 

weight to neonate weight (Lee et al. 1991; Smith and Jungers 1997). Age classes were 

identified following the descriptions of Ulibarri (2013). 

It was not possible to learn each individual so a unique ID was assigned to each monkey 

visible in the clip until the individual moved out of sight or the clip ended. To account for 

ID as a random effect, a generalized linear mixed model with a logit link function was 

used to analyze the data in the R packages tidyr (Wickham and Henry 2017), readxl 

(Wickham 2015), lme4 (Bates et al. 2015), and glmm (Knudson 2018). All lines of data 

containing an ‘unknown’ for the following categories were removed from the analysis: 

baby on belly, age, and sex. These lines of data were removed because the analysis was 

dependent on knowing those categories. To account for any autocorrelation that might 
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arise from continuous data collection, two variations of the data were examined as the unit 

of analysis: first, every locomotor stride and second, only the initial locomotor stride for 

each locomotor bout (defined as a series of consecutive strides until the locomotion bout 

stopped). For both types of locomotor data (all strides/initial strides), we conducted the 

GLMM analyses using both a discrete body-size predictor variable as well as a continuous 

body-size estimate predictor variable based on the published average masses described 

above. Using discrete body size estimates considers that weight differences between each 

of the groups (i.e. adult males, adult females with babies, adult females, subadults, and 

juveniles). The continuous data analysis acknowledges that the body size lies along a 

spectrum. Additionally, we calculated the predicted portion of arm-swinging behavior for 

both datatypes and identified the proportions of locomotor behaviors used for all age and 

sex classes.  



79 

Table 23. Ethogram of locomotor behaviors (Hunt et al. 1996). 

Arm-Swing	 Hand	over	hand	progression,	propelling	 the	 trunk	

forward	

Quadrupedal	

run/walk	

Four	limb	sequence	walk/	run	across	substrate	

Leap	 Four	limbs	leave	substrate	for	a	period	of	time	while	

traveling	using	significant	muscle	propulsion	

Climb	 Hand	over	hand,	 foot	over	 foot	diagonal	 sequence	

propulsion,	usually	going	up	

Drop	 Release	from	a	support	by	falling	down	to	another	

support;	uses	little	muscle	propulsion	

Other	 Other	locomotor	behaviors	
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Table 24. Body size estimates. 

Discrete Categories Estimated Body Size 

Adult male 11 kg. 

Adult female with infant on belly 9.62 kg. 

Adult female without infant 8.44 kg. 

Subadult (all sexes) 5.16 kg. 

Juveniles (all sexes) 1.18 kg. 

5.3. Results 

The red-shanked douc arm-swings approximately 18% of the time it is traveling in 

the wild (Table 25). Frequency of arm-swing behavior steadily increases as body size 

decreases (Table 26). In both variants of the data, juveniles arm-swing more than adult 

males (Tables 27, 28) for discrete categories. When considering all locomotor strides in 

the continuous GLMM analysis, as body size decreases, there is significant increase in 

arm-swinging likelihood (Table 29). When considering initial strides, while the directions 

are identical, the effect loses significance (Table 30). The predicted likelihood each 

discrete category will use arm-swinging for both all and initial locomotor strides are 

shown in Figures 13 and 14.  

In total, 673 locomotor bouts were analyzed for all age and sex classes (Table 31, 

32, 33). The ‘other’ locomotor category has a relatively high count because of behaviors 
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that ultimately reposition the individual on the branch prior to or after a series of locomotor 

strides such as a bridge, scoot, or hop—for term definitions see Hunt et al. (1996a). In an 

effort to be somewhat consistent with existing literature (e.g. Dunham 2015; McGraw 

1998b) and for comparability between studies, locomotor categories were kept broad. 
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Table 25. Frequencies of locomotor behaviors for all age and sex classes. 

Quadrupedal Leap Arm-Swing Climb Drop Other 

35.66 % 18.57% 18.13% 14.41% 7.58% 5.65% 
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Table 26. Frequencies of locomotor behaviors for each of the discrete body size 

categories. 

Quadrupedal Leap Arm-

Swing 

Climb Drop Other 

Adult Male 45.11% 17.93% 9.78% 12.50% 10.32% 4.35% 

Adult 

female 

with infant 

34.48% 15.52% 15.52% 22.41% 10.34% 1.72% 

Adult 

female 

without 

infant 

33.09% 16.18% 17.65% 17.28% 6.62% 9.19% 

Subadult 

(all sexes) 

30.00% 23.33% 21.67% 16.67% 5.00% 3.33% 

Juveniles 

(all sexes) 

29.29% 25.25% 34.34% 4.04% 5.05% 2.02% 
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Table 27. Generalized linear mixed model analysis of all locomotor strides for 

discrete categories. 

Estimate Standard Error Z Value P Value 

Adult Males 

(Intercept) 

-2.85 0.46 -6.23 p < 0.001 

Adult Females 

Carrying Infant 

0.96 0.75 1.29 p = 0.20 

Adult Females 

without Infant 

0.80 0.52 1.54 p = 0.12 

Subadult (All 

Sexes) 

1.17 0.73 1.60 p = 0.11 

Juveniles (All 

Sexes) 

1.99 0.77 2.58 p = 0.01 
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Table 28. Generalized linear mixed model analysis of initial locomotor strides for 

discrete categories. 

Estimate Standard Error Z Value P Value 

Adult Males 

(Intercept) 

-1.99 0.28 -7.24 p < 0.001 

Adult Females 

Carrying Infant 

0.53 0.53 0.99 p = 0.32 

Adult Females 

without Infant 

0.50 0.34 1.48 p = 0.14 

Subadult (All 

Sexes) 

0.61 0.48 1.26 p = 0.21 

Juveniles (All 

Sexes) 

0.96 0.40 2.39 p = 0.02 

Table 29. Generalized linear mixed model analysis of all locomotor strides using body 

mass estimates as continuous variables. 

Estimate Standard Error Z Value P Value 

Intercept -0.55 0.62 -0.87 p = 0.38 

Body Size -0.19 0.08 -2.56 p = 0.01 
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Table 30. Generalized linear mixed model analysis of initial locomotor strides using 

estimated body masses as continuous data. 

Estimate Standard Error Z Value P Value 

Intercept -0.53 0.75 -0.71 p = 0.475 

Body Size -0.11 0.09 -1.46 p = 0.144 

Table 31. Total counts of locomotor strides for each discrete body size category. 

Adult male Adult female Adult female 

with baby 

Adult female 

without baby 

Juvenile 

184 58 272 60 99 

Table 32. Total counts of locomotor bouts for each locomotor type for all age and sex 

classes. 

Quadrupedal Leap Arm-swing Climb Drop Other 

240 125 122 97 51 38 
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Table 33. Total counts of each locomotor behavior for each of the body size 

categories. 

Adult 

Male 

Adult 

female 

with baby 

Adult 

female 

without 

baby 

subadult juvenile total 

Arm-

swing 

18 9 48 13 34 122 

Quadruped 83 20 90 18 29 240 

Leap 33 9 44 14 25 125 

Climb 23 13 47 10 4 97 

Drop 19 6 18 3 5 51 

Other 8 1 25 2 2 38 

Total 184 58 272 60 99 673 
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Figure 13. Predicted percentage of arm-swinging behavior for all locomotor bouts. 

Figure 14. Predicted percentage of arm-swinging behavior for initial locomotor 

bouts. 
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5.4. Discussion 

The results show that overall, P. nemaeus exhibits higher proportions of arm-

swinging than most other colobines, but it is not likely a function of an increased body 

size because arm-swinging in most frequently used in smaller bodied individuals, i.e. 

juveniles. These results are consistent with previous work at the EPRC that show that 

young doucs perform suspensory behavior more than adults. It is important to note, 

however, that in most cercopithecids, juveniles exhibit higher diversity of all locomotor 

categories, including more frequent suspensory behaviors (Workman and Covert 2005). 

Similarly, Dunham (2015) found black and white colobus (Colobus angolensis palliatus) 

juveniles to have a more diverse locomotor repertoire than adults, including juveniles 

using bimanual suspension—unlike the adults.  This variance can be explained because 

juveniles have more flexible joints, are not inhibited by a larger body size, and are fully 

able to exploit all areas of their environment (Dunbar and Badam 1998). While it is not 

entirely surprising that juveniles use a higher proportion of arm-swinging behavior, it is 

surprising that a relative abundance of arm-swinging persists into adulthood unlike so 

many other colobines. 

One potential explanation of arm-swinging in adult red-shanked doucs is that this 

behavior continues because of postural and environmental variables. Wright et al. (2008) 

proposed that because gibbons and doucs are moving in similar ways, there are probably 
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similar environmental constraints for the two taxa. One benefit of suspensory postures 

includes making terminal, flexible substrates more accessible (Avis 1962; Grand 1972). 

Furthermore, accessing food from below the branch increases the available feeding sphere 

(Grand 1972). One study focusing on the feeding posture and scapular morphology 

identified a few aspects of the scapula of some colobines, Piliocolobus badius and Colobus 

polykomos, to be indicative of greater arm abduction and elevation, particularly when 

compared to cercopithecines (Dunham et al. 2016). This forelimb abduction manifests 

primarily through a superior retrieval of food when foraging. If Pygathrix is using below-

branch locomotion as a method of accessing terminal branches, a feeding posture study is 

warranted. In this study, arm-swinging appeared to be preferred on medium size branches 

in the main canopy of primary forest. In secondary forest, the vegetation is quite dense, 

making any type of quick movement difficult.  

At present, there are no studies looking at the ontogenetic locomotor differences 

in the hylobatids; it would be interesting to see if the results are comparable and if the 

juveniles are arm-swinging more than the adults. Given the similarities in the kinetics and 

kinematics between doucs and gibbons, perhaps the juvenile gibbons arm-swing more than 

adults (which arm-swing approximately 74 - 80% of the time during travel bouts) 

(Andrews and Groves 1976; Gittins 1983). Future research is necessary to determine why 

arm-swinging behavior is persisting into the adulthood of Pygathrix. Furthermore, the 

current Endangered (Vu Ngoc Thanh et al. 2008b) status of P. nemaeus emphasizes the 

importance of understanding how this species interacts with its environment to safeguard 

the preservation of this taxon. 
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CHAPTER VI

ARM-SWINGING AND HABITAT USE OF THE RED-SHANKED DOUC LANGUR 

(PYGATHRIX NEMAEUS) IN THE SON TRA NATURE RESERVE, VIETNAM 

6.1. Introduction 

In the last forty years, a few seminal papers have investigated the relationship 

between primate locomotion and habitat structure (e.g. Fleagle and Mittermeier 1980a; 

Gebo and Chapman 1995; McGraw 1998c). These studies have largely attempted to 

understand which locomotor behaviors correspond with certain forest variables and often 

incorporate morphological factors, such as body size, into the analysis. In particular, the 

evolution of below-branch-locomotion (also called suspensory locomotion) is often 

explained from field studies as an adaptation to support an increased body size in an 

arboreal environment (e.g. Cant 1992; Fleagle and Mittermeier 1980a; Napier and Napier 

1967). Furthermore, below-branch locomotion increases the feeding sphere by making 

smaller, unstable, terminal substrates more accessible (Grand 1972). While it is difficult 

to tease apart environmental variables and morphology, it is important to do so to eliminate 

any confounding factors.  

One group of monkeys that have undergone extensive investigation into their 

locomotor behavior and habitat use are the colobines. Colobinae represents a group of 

folivorous monkeys found in Africa and Asia (Davies and Oates 1994; Fleagle 2013) and 

are well known for their arboreal habitat exploitation. In general, colobines are typically 

considered to be arboreal quadrupeds that engage in a great deal of leaping with few 
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exceptions (e.g. McGraw 1998b; Mittermeier and Fleagle 1976; Zhu et al. 2015). 

However, one group of colobines, the douc langurs (Pygathrix spp.), deviates from others. 

The red-shanked douc (P. nemaeus) has been observed engaging in high proportions (46% 

of travel time) of suspensory behavior in captivity at the Endangered Primate Rescue 

Center (hereafter, EPRC) (Byron and Covert 2004). This proportion is distinct from other 

colobines, for example the western red colobus (Piliocolobus badius), that only uses 

suspensory locomotion 2.9% of the time (McGraw 1998b). 

The arm-swinging of Pygathrix is remarkably similar to that of the hylobatids 

(gibbons). Kinematically, the doucs and gibbons move in similar ways, differing in that 

gibbons use quicker, more continuous arm-swinging bouts (Wright et al. 2008). 

Kinetically, doucs and gibbons also move in a similar way by using a pendulum motion 

to propel the trunk forward, but with doucs using larger side to side movements 

(Granatosky 2015). Gibbons are typically designated as obligate brachiators (Bertram 

2004) and to denote these subtle differences, we use arm-swinging to describe Pygathrix’s 

bimanual locomotor behavior rather than brachiation. In addition, the New World atelines 

are known for their suspensory locomotor behavior, however, they typically assist any 

arm-swinging with their prehensile tail (Napier and Napier 1967). 

Byron and Covert (2004) compared the red-shanked douc and two other species of 

Asian colobines, Delacour’s langur (Trachypithecus delacouri) and the Hatinh langur 

(Trachypithecus laotum hatinhensis) and found the red-shanked douc to use suspensory 

locomotion whereas the other two used none. All three species are housed in similar 

enclosures which reasonably rules out considering this behavior a captive anomaly. Later, 
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an additional study incorporated the grey-shanked douc and found they also arm-swing at 

comparable proportions (56% of the time) (Wright et al. 2008). One study wild-based on 

the socioecology of the black shanked douc also collected data on their locomotion and 

found that they arm-swing 9.7% of the time (Rawson 2009).   

It remains unclear why Pygathrix nemaeus incorporates such high proportions of 

arm-swinging behavior into their locomotor repertoire. After comparing the suspensory 

behavior of doucs and gibbons, Wright et al. (2008:1476) concluded, “The findings from 

our kinematic analyses, combined with previous morphometric analyses, suggest that 

there may be important habitat constraints that impose similar performance for different 

morphologies of doucs and gibbons.” This inference projects that the arm-swinging of 

doucs and the brachiation of gibbons is likely occurring on (at least some of the following) 

similar substrate sizes, substrate angles, forest strata, and forest type. The agile gibbon 

(Hylobates agilis) has previously been observed using brachiation 74% of the time and 

more frequently on medium-sized substrates (branches), followed by larger substrates 

(boughs), and then smaller substrates (twigs) (Gittins 1983). However, another hylobatid, 

the siamang (Symphalangus syndactylus), which is nearly twice the size of other gibbons 

(Fleagle 2013) has been observed using brachiation 51% of the time (while traveling) and 

more frequently on boughs, followed by branches, then twigs (Fleagle 1976).  

Given the resemblance in movement between the gibbons and the doucs, we 

speculate that one of the reasons doucs are arm-swinging is because of similarities of 

habitat use. Here, we attempt to identify patterns of habitat use corresponding to arm-

swinging of the red-shanked douc. We specifically try to answer the following research 
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question: to what extent does habitat use influence arm-swinging behavior of Pygathrix 

nemaeus? Are these behaviors similar to what has previously been reported with gibbons? 

Or those of the siamang? Following the suggestion of Wright et al. (2008) we predict arm-

swinging will occur significantly more on horizontal substrates, in the main canopy, on 

medium sized substrates, and in old-growth forest, similar to that of gibbons.  

6.2. Methods 

Son Tra Nature Reserve is confined to a peninsula abutting Da Nang, Vietnam. 

The forest in Son Tra is made up of primary [old-growth] moist evergreen forest 

(approximately 400 ha), dry secondary [new-growth] forest (approximately 2,611 ha, and 

grassland (Sourcebook 2004; Van Peenen et al. 1971). The trees have an average height 

of 9.34 (± 3.52) meters (Ulibarri 2013). Mount Son Tra is the highest peak within the 

reserve with an elevation of 696 m. The coastal region of Vietnam where Son Tra Nature 

Reserve is located, is subject to two primary seasons; the monsoon (wet) season and the 

dry season (Van Peenen et al. 1971). Data were collected between November 4th, 2016 

and March 13th, 2017, which spans both seasons and avoids seasonality biases. 

Red-shanked doucs are the only colobine on the peninsula and are accustomed to 

humans. There is a road that circles the peninsula and crosses the top of the peak that 

photographers use to photograph the monkeys on a daily basis. The doucs are often found 

close to the road because they feed extensively on a species of morning glory (Ipomoea 

eberhardtii). Because they are often found along the road, this vantage point was used for 

data collection. Data were collected by filming the doucs with a Canon Vixia handheld 

camera or a Canon 70D DSLR with a 250mm lens. Approximately 90 hours of footage 
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was recorded. Filming along the road offered both benefits and limitations. A benefit is 

that the road typically provided a vantage point that allowed us to see a greater distance 

over the forest and follow the doucs with the lens from further away. One limitation is that 

there may be some potential edge effects that bias the data, but given the exceptionally 

fragmented reserve, this issue is largely unavoidable. This bias would be the doucs 

changing their locomotor behavior as a result of the discontinuous canopy. Furthermore, 

it was not possible to see the doucs from below the closed canopy on the forest floor. 

Entering the forest was problematic because most of the forest is growing on steep rocky 

terrain that would likely require safety gear to traverse. 

It was not possible to distinguish groups or individuals’ day to day so filming 

began once a group was found and filming stopped once all individuals moved out of sight 

or were no longer visible. After a group left visible range a new group was located and 

filming was resumed. After completing footage collection in Da Nang, data was then 

extracted and coded into Microsoft Excel. The following information was recorded for 

each behavioral observation: clip number, individual ID (for that clip), locomotion (Table 

34), and environmental data (Table 35). Substrate sizes were always estimated in relation 

to douc hand size and a reference scale was kept offscreen for comparative purposes.  

Forest type was determined by relative tree height and relative density of the vegetation. 
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Table 34. Ethogram of locomotor behaviors (Hunt et al. 1996a). 

Arm-Swing Hand over hand progression, propelling the trunk forward 

Quadrupedal run/walk Four limb sequence walk/ run across substrate 

Leap Four limbs leave substrate for a period of time while 

traveling using significant muscle propulsion 

Climb Hand over hand, foot over foot diagonal sequence 

propulsion, usually going up 

Drop Release from a support by falling down to another support; 

uses little muscle propulsion 

Other Other locomotor behaviors 
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Table 35. Environmental data (Fleagle 1976; McGraw 1998b; McGraw 1998c). 

Substrate angle Horizontal 

Oblique 

Vertical 

Substrate Bough – large supports about 10 cm + in diameter 

Branch – medium sized, between 2 – 10cm in diameter 

Twig(s) – less than 2cm in diameter 

Forest Type Old Growth 

New Growth 

Forest Strata Ground 

Shrubs and saplings – small easily bendable trees 

Main canopy 

Top of canopy – emergent layer 

All data analyses were completed using the R packages tidyr (Wickham and Henry 

2017), readxl (Wickham 2015), lme4 (Bates et al. 2015), and glmm (Knudson 2018). Data 

were continuously extracted from all footage because of the variability of clip length. To 

control for any autocorrelation that might arise from a continuous sampling method, the 

data were analyzed in two permutations. First, the data were analyzed using all locomotor 

strides. Second, the data were analyzed by sampling out only the initial stride of each 
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locomotor bout. Clip number and individual ID were combined to create a unique 

identifier for each line of behavior. This unique ID became a random effect which required 

the data (both variants) to be analyzed via Generalized Linear Mixed Model (GLMM) for 

all environmental variables. We also identified the proportion of time spent arm-swinging 

on each of the categories of environmental factors. Prior to commencing the data analysis, 

lines of data were removed if an environmental variable was observed fewer than 10 times. 

The following lines of data were removed: forest floor, shrubs and saplings, and any out-

of-sight or unknown substrate size or substrate angle.  

6.3. Results 

 Vertical supports are significantly less likely to be used for arm-swinging than 

horizontal supports and oblique supports are slightly more likely to be used (but not 

significantly more so) than horizontal supports for both initial and all strides (Tables 36, 

37). Twigs are significantly less likely to be used for arm-swinging for initial and all 

locomotor strides, while branches are only significantly more likely to be used in all strides 

(Tables 38, 39). Arm-swinging is significantly less likely to occur on the top of canopy 

(Tables 40, 41) for all and initial strides. Finally, arm-swinging is significantly less likely 

to occur in new-growth forest for all strides (Table 42) but not for initial strides (Table 

43). Arm-swinging occurred most frequently in old growth forests (Table 44), in the main 

canopy (Table 45), on horizontal and oblique substrates (Table 46), and on branch and 

twig-sized substrates (Table 47). When evaluating these results with a Bonferroni adjusted 

p-value (0.0125), only forest strata remains significant after adjusting the p-value for the 

Bonferroni correction. 
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Table 36. Generalized linear mixed model analysis of substrate angle and arm-

swinging for all strides. 

Estimate Standard Error Z Value P Value 

Horizontal 

(Intercept) 

-1.85 0.37 -5.06 p > 0.001 

Oblique 0.40 0.36 1.10 p = 0.27 

Vertical -3.15 1.10 -2.85 p = 0.004 



Table 37. Generalized linear mixed model analysis of substrate angle and arm-

swinging for initial strides. 

Estimate Standard Error Z Value P Value 

Horizontal 

(Intercept) 

-1.07 0.20 -5.23 p > 0.001 

Oblique 0.18 0.29 0.63 p = 0.532 

Vertical -2.45 1.03 -2.37 p = 0.018 

Table 38. Generalized linear mixed model analysis of substrate size and arm-

swinging for all strides. 

Estimate Standard Error Z Value P Value 

Bough 

(Intercept) 

-2.96 0.70 -4.25 p > 0.001 

Branch 1.45 0.69 2.12 p = 0.034 

Twig 0.53 0.77 0.70 p = 0.487 
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Table 39. Generalized linear mixed model analysis of substrate size and arm-

swinging for initial strides. 

Estimate Standard Error Z Value P Value 

Bough 

(Intercept) 

-1.78 0.51 -3.52 p > 0.001 

Branch 0.80 0.53 1.50 p = 0.133 

Twig 0.35 0.58 0.61 p = 0.544 

Table 40. Generalized linear mixed model analysis of forest strata and arm-swinging 

for all strides. 

Estimate Standard Error Z Value P Value 

Main Canopy 

(Intercept) 

-1.55 0.30 -5.14 p > 0.001 

Top of Canopy -1.93 0.66 -2.94 p = 0.003 
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Table 41. Generalized linear mixed model analysis of forest strata and arm-swinging 

for initial strides. 

 Estimate Standard Error Z Value P Value 

Main Canopy 

(Intercept) 

-0.96 0.16 -6.17 p > 0.001 

Top of Canopy -1.37 0.50 -2.77 p = 0.006 

 

 

 

Table 42. Generalized linear mixed model analysis of forest type and arm-swinging 

for all strides. 

 Estimate Standard Error Z Value P Value 

Old Growth 

(Intercept) 

-1.50 0.35 -4.26 p > 0.001 

New Growth -1.03 0.53 -1.97 p = 0.049 
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Table 43. Generalized linear mixed model analysis of forest type and arm-swinging 

for initial strides. 

Estimate Standard Error Z Value P Value 

Old Growth 

(Intercept) 

-1.03 0.19 -5.37 p > 0.001 

New Growth -0.36 0.31 -1.16 p = 0.246 

Table 44. Proportion of arm-swinging in forest type. 

Old Growth New Growth 

61% (n=75) 39% (n=48) 

Table 45. Proportion of arm-swinging in the forest strata. 

Main Canopy Top of Canopy 

96% (n=118) 4% (n=5) 
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Table 46. Proportion of arm-swinging on different substrate angles. 

Horizontal Oblique Vertical 

62% (n=76) 37% (n=46) 1% (n=1) 

Table 47. Proportion of arm-swinging on different substrate sizes. 

Bough Branch Twig 

4% (n=5) 63% (n=78) 33% (n=40) 

6.4. Discussion 

By all accounts the red-shanked douc is using arm-swinging in the expected 

categories of forest strata, forest type, substrate size, and substrate angle. Both variants of 

the data are depicting similar stories, despite losing some significance for initial strides on 

branches. Because of the overall consistency between the models for the two variants of 

data, we tentatively surmise that autocorrelation is not an effect of the overall analysis.  

More often than not, arm-swinging takes place in old growth forest and in the main 

canopy. Typically, old growth forests are the standard habitat for colobines and new 

growth is a largely a result of anthropogenic influences (Davies and Oates 1994). What is 

interesting about these results is that the doucs are still clearly capable of arm-swinging in 
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new growth forest. The tops of canopies, or the emergent layer, leaves the doucs 

(particularly juveniles) exposed to potential arboreal predators (Fam and Nijman 2011) 

which could dissuade the doucs from traveling in that layer. Substrate angle follows an 

expected norm with vertical substrates being virtually nonexistent supports for arm-

swinging. The most common substrate sizes used by the doucs for arm-swinging are 

branches, followed by twigs then boughs.  

In captivity at the EPRC the doucs are housed in enclosures that are constructed of 

bamboo poles that are approximately 2 – 8 cm in diameter (Wright et al. 2008). Substrates 

that are branch sized (2 – 10 cm in diameter) were the most common support size for arm-

swinging in the wild, which could help explain why the proportions of arm-swinging are 

so high in captivity. Similar data on substrate size has also been collected on hylobatids 

and spider monkeys. Gittins (1983) identified the agile gibbon to brachiate 32% of the 

time on boughs, 51% on branches, and 17% of the time on twigs.  Fleagle (1976) recorded 

that during travel, the siamang brachiated most frequently on boughs (57%), followed by 

branches (41%), then twigs (2%). Locomotion during travel is differentiated from foraging 

as travel that occurs over greater distances, to and from feeding sites, and between major 

food sources. Locomotion during foraging was more similar to that of the agile gibbon 

with branches being the most common (50%), followed by boughs (42%), then twigs (8%) 

(Fleagle 1976). 

Fleagle and Mittermeier (1980a) report that 38.6% of the locomotor bouts of Ateles 

paniscus paniscus were arm-swinging and about 70% of this type of locomotion took 

place on branches, and about 30% on twigs, with virtually none on boughs. In the present 
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study, branches were also the most common substrate used for the doucs (63%), but the 

doucs differ from the gibbons in that they then use twigs more frequently (33%) which is 

more consistent with the behavior of the spider monkey. Spider monkeys often accompany 

their suspensory behavior with the use of their prehensile tail (though not always), which 

aids in distributing their weight across a wider surface (Fleagle and Mittermeier 1980a). 

These results are consistent with what Mittermeier (1978) previously reported for Ateles 

paniscus in that suspensory locomotion was most common on branches, twigs, then 

boughs. Presbytis potenziani (the Mentawai langur) only uses arm-swinging about 1% of 

the time (4/388 counts) and only on large boughs (Fuentes 1996) despite the Mentawai 

langur being much more closely related to the doucs (both are in the Colobinae subfamily, 

whereas Ateles is in a different infraorder) than the spider monkey.  

Another colobine, Rhinopithecus avunculus (the Tonkin snub-nosed monkey), 

arm-swings 5.23% in the wild and does so most frequently on branches (77.78%), twigs 

(13.33%), boughs (6.67%), then tree trunks (2.22%) (Le Khac Quyet 2014). These 

proportions follow a similar pattern to the red-shanked douc albeit the Tonkin snub nosed 

monkey arm-swings much less frequently. Both R. avunculus and P. nemaeus are found 

in Vietnam though they have non-overlapping geographic ranges (Rowe and Myers 2016). 

All of the aforementioned primates (the agile gibbon, siamang, the spider monkey, 

the Tonkin snub-nosed monkey, and the douc) live in different geographical locations 

(Rowe and Myers 2016) thus putting limitations on broad conclusions. However, perhaps 

some of the same selective pressures that have acted on the spider monkey to adopt arm-

swinging behaviors might have also acted on the doucs considering the similarities in 
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substrate use. Overall the doucs appear to be using arm-swinging in expected, secure ways 

in this environment in terms of forest strata, substrate angle, and forest type. The subtle 

differences in arm-swinging and brachiation as previously described (Granatosky 2015; 

Wright et al. 2008) might explain the differences in substrate size preference.  

The three species of Pygathrix have virtually no overlap in their geographical 

ranges (Rowe and Myers 2016) thus implying there is at least some variation between 

each of their habitats. Despite that difference in range, all three species of Pygathrix have 

similarly shaped scapula (Bailey and Pampush 2015) (which is integral to below branch 

locomotion) and are thus all likely moving in similar ways in their respective 

environments. Furthermore, the information presented here can contribute to the 

conservation of the Endangered red-shanked douc (Vu Ngoc Thanh et al. 2008b) by 

providing agencies with information essential to their survival in a given environment.
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CHAPTER VII

CONCLUSION 

The goal of this dissertation research was to provide insight into the general 

question why arm-swing?  All three species of douc langur have a similarly shaped 

scapula. This information suggest that they may be using their shoulder in similar ways. 

Within the primates samples, the douc langur scapula generally falls intermediary in shape 

between quadrupedal cercopithecids and brachiating apes. Doucs share features with both 

groups, which may explain why they consistently use both forms of locomotion in their 

repertoire. This dissertation also shows some support that it is possible to predict 

locomotor capabilities based on the distance the acromion process projects past the glenoid 

fossa in primates that use their forelimbs for locomotion. 

This dissertation also presented the first study to focus exclusively on douc 

locomotion in the wild. Results show that the arm-swinging behavior is in fact occurring 

in the wild but it is likely not a function of increased body size; rather arm-swinging is 

more prevalent among the younger/ smaller individuals. In general, most juvenile primates 

have greater variation in their locomotor repertoire (including suspensory behavior) 

because of their flexible joints and small body size (Dunbar and Badam 1998). 

Furthermore, this research identified arm-swinging with corresponding habitat variables. 

The red-shanked doucs prefer old growth forest, in the main canopy, and branch-sized, 

horizontal substrates when arm-swinging. 



 109 

At this time, there is only one zoo in the United States that houses the douc langurs. 

This is primarily because their diet is difficult to replicate and there is so little existing 

information on this primate. Locomotor studies are critical for zoo programs because they 

inform habitat and enclosure design. Proper habitat structures ensure that these primates 

are living in conditions as similar as possible to their natural environment, which in turn 

reduces environmental stressors. Furthermore, zoos are one of the best tools for public 

education in the United States, especially in regards to exotic wildlife.  

It is an unfortunate reality that large swaths of habitat can rarely be protected to 

fully conserve a species or genus.  However, understanding how an animal moves in a 

relatively undisturbed environment for general travel and food acquisition is pivotal to 

ensure the most essential parts of their habitat is protected.  These primates are subject to 

an ever-changing environment as a result of deforestation, increased agriculture 

production, mining, and hunting; all of which are a direct result of human influence.  The 

more deforestation occurs, the more arboreal primates have to adapt their locomotor 

patterns.  This project helped identify how these monkeys use their habitat. The red-

shanked douc langur is currently classified as Endangered by the International Union for 

the Conservation of Nature (IUCN) (Vu Ngoc Thanh et al. 2008b). The sister taxa, P. 

cinerea is classified as Critically Endangered and P. nigripes is classified as Endangered 

(Rawson et al. 2008; Vu Ngoc Thanh et al. 2008a).  Given the close-relatedness of these 

species, the information gathered from this project can hopefully be used in future 

conservation action plans for the genus.  
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