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 ABSTRACT 

 

In this dissertation, we used a population genomics approach to improve the 

management of two insect cotton (Gossypium hirsutum L.) pests, the boll weevil, 

Anthonomus grandis Boheman (Coleoptera: Curculionidae), and the cotton fleahopper, 

Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae). Despite the success of the 

United States (US) Boll Weevil Eradication Program, the boll weevil remains a threat to 

cotton production in the southern US, and is arguably the most important cotton pest in 

Central and South America. The cotton fleahopper is a secondary pest of cotton whose 

impact in the US has increased in the wake of improved management for other cotton 

pest species. Management efforts for both species are complicated by a lack of detailed 

knowledge of population genetic structure, and what little research there is has not taken 

advantage of high-throughput sequencing technology. Here, we used double digest 

restriction site-associated DNA sequencing (ddRADseq) to resolve the population 

genomic structure of the boll weevil in the southern US, northern Mexico, and 

Argentina, and of the cotton fleahopper in the Brazos Valley of Texas. 

Our boll weevil research supported a two-form hypothesis of geographic variants 

of boll weevil in North America wherein there is a western and eastern form, and 

suggested that the two variants occur due to geographic isolation rather than host plant 

association. Boll weevil collections from South America in Argentina were more closely 

related to the eastern North American boll weevil lineage, but with levels of genetic 

divergence consistent with isolation-by-distance. We also used a population genomics 
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approach to identify probable source populations for weevils re-infesting previously 

eradicated areas in the US. 

Our work on the cotton fleahopper revealed high gene flow among populations 

collected from different host plants in the Brazos Valley. We identified one instance of 

yearly turnover of local genotypes and one instance of monthly turnover in cotton, 

indicating that population genomic structure may be labile to time. Our results also 

identified a probable natural refuge that promotes year-end gene flow between genotypes 

associated with cotton and those associated with alternative hosts. 
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1. INTRODUCTION  

 

1.1. A Brief History of the Boll Weevil 

The boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), is arguably 

the most important pest of the commercially cultivated varieties of its host, Gossypium 

hirsutum L. (Malvales: Malvaceae), commonly known as upland cotton. The boll weevil 

is well known as one of the worst pests in United States (US) agricultural history (Lange 

et al., 2009). During the worst periods of infestation in the US, boll weevil damage 

accounted for over $200 million in losses per year to the cotton industry, and 

suppression costs totaled an additional $75 million annually (Cross, 1973). The severe 

economic impact of this pest led to the implementation of the widely successful Boll 

Weevil Eradication Program, a collaborative effort of the US Department of Agriculture, 

cotton producers, and academic researchers, which resulted in the near total eradication 

of A. grandis from the US cotton belt. However, this species does remain a severe pest in 

much of the New World, particularly in Central and South America, and it nonetheless 

still poses a threat to the domestic cotton industry. Here, we detail the basic biology and 

ecology of A. grandis and then discuss historical and current approaches to management. 

1.1.1. Biology and Ecology 

During the cotton-growing season, boll weevil females tend to lay their eggs in 

moderately sized cotton squares (3-6 mm diameter), though they will also attack larger 

squares and bolls (Ramalho and Wanderley, 1996). Females eat into the square or boll 

and deposit eggs into the cavity that is formed. Under normal conditions, eggs may hatch 
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as quickly as 2-3 days after oviposition, and first instar larvae begin feeding 

immediately. It takes roughly one week for the larvae to progress through three stadia, 

feeding in the natal square or boll for the duration. The larvae then pupate for 3-4 days 

and emerge from the square or boll a few days later. Total development time can range 

from 12-90 days depending on the temperature of the surrounding environment and the 

population in question (Cross, 1973; Ramalho and Wanderley, 1996). Adult life span has 

been reported to be around 40 days. In a normal year, there may be as many as 5-6 

generations in a single cotton season. Between cotton seasons, some populations of adult 

weevils enter a facultative diapause and overwinter (Cross, 1973). The mode of diapause 

also differs between boll weevil variants. For the southeastern boll weevil, the primary 

pest variant of the species in the US, adults can hibernate in forest litter. However, other 

variants may diapause as unfed adults in larval cells in bolls. Emergence from diapause 

is triggered by early summer rains. 

There are at least three morphological variants of boll weevil that have been 

historically described in North America (Warner, 1966; Burke, 1968; Fye, 1968a; Cross, 

1973; Burke et al., 1986). The southeastern boll weevil, A. g. grandis, is the variant that 

was a pest throughout the southeastern United States, and it still occurs in northeastern 

Mexico, Hispaniola, northern Colombia, Venezuela, and Brazil. Though the southeastern 

variant is known primarily as a pest of cotton, it may also occur on plants of the genera 

Cienfuegosia and Hibiscus when G. hirsutum is not available (Cross et al., 1975). The 

Thurberia weevil, A. g. thuberiae, is a variant occurring in southern Arizona and 

northwestern Mexico that has been traditionally regarded as a host-associated variant  
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Figure 1. Figure adapted from Cross (1973) illustrating the historical distributions 
of the three morphological variants of the boll weevil in North America. Cross-
hatching in northeastern Mexico indicates range overlap of the southeastern and 
Mexican boll weevil variants. 
 
 
 
utilizing Arizona wild cotton, Gossypium thurberi Todaro, but it will opportunistically 

utilize G. hirsutum as a host. The Thurberia weevil is described as having an extremely 

restricted geographic range (Fig. 1), in correlation with the distribution of its host. The 

Mexican boll weevil, which has no formal subspecies designation and is sometimes 

referred to as an intermediate form, is found throughout Mexico, Central America, and 

Cuba (Fig. 1). Though A. g. grandis and A. g. thurberiae are widely regarded as distinct 

subspecies, a number of studies have shown that the morphological characteristics that 

define the groups are labile to rearing condition (Warner, 1966; Fye, 1968a; Burke et al., 

1986). This has led to some confusion in the literature and necessitated that population 
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genetic studies are carried out in order to determine if there are genetic differences 

between the two variants. Furthermore, none of these studies adequately included the 

Mexican boll weevil variant in their analyses. 

The common ancestor of the modern variants of boll weevil likely originated in 

Meso-America in what is now Mexico and other parts of Central America. This ancestral 

anthonomine was probably associated with malvaceous plants in the genus Hampea. 

This hypothesis has been extensively reviewed in Burke et al. (1986). The rise of these 

variants can be attributed to range expansions of the ancestral boll weevil mediated by 

host plant shifts. A northwestern expansion of the ancestral boll weevil range was likely 

facilitated by air currents strong enough to facilitate long dispersal, and likely gave rise 

to the Thurberia weevil variant (Fye, 1968b; Burke et al., 1986). A similar northeastern 

expansion of the ancestral boll weevil’s range into northern Mexico likely gave rise to 

the clade that is now considered to be the southeastern boll weevil (Burke et al., 1986). 

The southeastern boll weevil was first reported in the United States in Texas in 1894, 

and the invasion was likely enabled by increased cotton production in southern Texas 

and northern Mexico in the 1860s (Howard, 1894; Burke et al., 1986). Once established 

in the US cotton belt, it rapidly spread throughout the area up until it reached the 

Atlantic coast. Establishment of the southeastern boll weevil in the West Indies and in 

South America (in Venezuela) is likely due to accidental introductions in the early 1900s 

and 1940s, respectively (Whitcomb and Britton, 1953; Burke et al., 1986). The range of 

the boll weevil in South America then expanded into Colombia in the 1950s and to 

Brazil in the 1980s (Marin, 1981; Sobrinho and Lukefahr, 1983). Though the boll 
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weevils in South America are considered to be morphologically similar to the 

southeastern boll weevil, only a single genetic study to date has yet attempted to 

determine the origins of these weevils using molecular methods (Scataglini et al., 2006). 

1.1.2. Impact on US Agriculture and the Boll Weevil Eradication Program 

The introduction of A. g. grandis to Texas in 1894 marked the beginning of a long and 

costly war. Lange et al. (2009) refer to the boll weevil as America’s most celebrated 

pest, and some attribute the diversification of the economy of the American South to the 

invasion of the boll weevil. However, despite the fact that the cotton industry in the US 

was expanding during the late 1800s and early 1900s, the establishment of the pest in the 

US cotton belt devastated local economies. Cotton yields were reduced across the board 

by about 50 percent, and boll weevil damage has accounted for over $200 million in 

losses per year to the cotton industry (Cross, 1973; Lange et al., 2009). Suppression 

costs have totaled an additional $75 million annually, and the total cost to US cotton 

producers is estimated at more than $15 billion (Cross, 1973; National Cotton Council, 

2010). Yield loss occurs because squares and bolls that have been oviposited in tend to 

abscise and fall to the ground, ultimately reducing the amount of lint that the plant 

produces. (Ramalho and Wanderley, 1996). 

Due to the large impact on US agriculture in the 1900s, there was a great need for 

effective methods of suppression of boll weevil populations infesting cotton. When the 

pest was still a relatively new invader to the US, chemical control was the primary 

approach to suppression. Methyl parathion was a popular chemical insecticide used by 

cotton growers, but it was most effective in supplementation with other chemicals, 
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particularly DDT, and likely had detrimental effects on beneficial insects as well as pests 

(McGarr and Chapman, 1966; McGarr and Wolfenbarger, 1969; McGarr and 

Wolfenbarger, 1970). Other pesticides showed varying levels of effectiveness, and often 

had to be specifically tweaked towards boll weevil suppression (Cross, 1973). Research 

showed that at least one insecticide, aldicarb, was effective against emerging 

overwintered weevils, granting effective early season control (Coppedge et al., 1969). 

Finally, as the weevil developed resistance to these numerous pesticides, it became clear 

that other methods of control would need to be implemented in order to successfully 

control populations of the boll weevil (Eden, 1968; Cross, 1973). 

One of the primary concerns with the continued use of broad-spectrum 

insecticides for boll weevil control was the non-target impact on beneficial insects such 

as pollinators and the natural enemies of the boll weevil. In the 1920s and 1930s, natural 

enemies were one of the primary components of biological control upon which farmers 

relied; however, this was only somewhat effective (Lincoln, 1969; Cross, 1973). There 

are at least 42 known species of arthropods that attack the boll weevil; however, none of 

these provide complete suppression of local populations at natural levels, though 

releases of parasitoids have been employed with limited success (Cross and McGovern, 

1969; Cross et al., 1969a; Cross and Chesnut, 1971). Ironically the best source of 

biological control has come from the invasion of another pest species; the red imported 

fire ant, Solenopsis invicta Buren, has been shown to significantly suppress weevil 

populations in some areas (Sterling, 1978). 
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In lieu of widespread pesticide use and marginally effective biological controls, 

the cotton community was forced to develop alternative methods of control that exploit 

the biology and ecology of A. grandis in order to suppress its populations. One of the 

primary ways US growers attempt to thwart boll weevil persistence in between seasons 

is through mechanical destruction of cotton stalks at the end of the growing season 

(Cross, 1973). This drastically reduces the overwintering habitat for weevils, and is 

particularly effective in areas where there is not a high availability of alternative hosts. 

During the growing season, collection and destruction of infected bolls and squares can 

significantly reduce the number of weevils without further impacting yield, and a variety 

of methods have been developed to carry this out (Burt et al., 1968; Mistric and 

Covington, 1968; Parencia, 1968; Burt et al., 1969). Another commonly used strategy 

has been the diapause method (Cross, 1973). The diapause method is actually a 

combination of chemical control and cultural practices that involves precise timing of 

pesticide application (usually methyl parathion prior to 1950s, usually malathion more 

recently) in order to reduce the number of reproductive weevils that will produce the 

overwintering generation. The timing of this application varies from region to region 

depending on when weevils in that area tend to enter diapause. This practice is 

supplemented by early plant destruction in order to reduce the weevils’ food source. The 

diapause method has been extremely successful in suppression of boll weevil 

populations in many areas (Lloyd et al., 1966; Lloyd et al., 1967; Bottrell and Almand, 

1968; Fye et al., 1968; Rummel and Adkisson, 1971; Lloyd et al., 1972). 
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In the 1960s, using specialized traps for the capture of boll weevil began for the 

purposes of monitoring and control. Though not an effective measure of control on their 

own, baited traps were extremely effective for monitoring populations of boll weevil 

(Cross and Hardee, 1968; Cross et al., 1969b). Early trapping efforts used live male 

weevils as bait, but isolation of the boll weevil pheromone, grandlure, eventually made it 

more practical to use the pheromone as the trapping bait (Tumlinson et al., 1969; Hardee 

et al., 1971). Though the design of the traps has changed over the years, pheromone-

baited traps remain one of the most important staples of the US monitoring strategy for 

A. grandis (Cross, 1973). 

Despite the numerous developments of different control strategies over the years, 

the boll weevil remained a significant US agricultural pest throughout much of the 

1900s, and total eradication of the pest was a desirable goal. In 1958, the National 

Cotton Council officially recognized the economic impact of the boll weevil and began 

working with Congress to develop an eradication plan (National Cotton Council, 2010). 

The Boll Weevil Eradiation Program was an effort designed to coordinate management 

efforts using combinations of the previously described management tools in order to 

eradicate the boll weevil from the entirety of the US cotton belt. The Eradication 

Program is widely regarded as one of the earliest and most successful implementations 

of an integrated pest management (IPM) approach. The main components of the 

approach are use of pheromone-baited traps for monitoring and detection, cultural 

practices to reduce boll weevil habitat, and timely, minimal use of malathion (an 

organophosphate insecticide to which the weevil has not developed resistance). In 1978, 
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USDA-APHIS launched the first phase of the program in Virginia and North Carolina. 

The program later expanded into the rest of cotton belt, reaching as far west as 

California. As of 2009, eradication of the boll weevil was completed in the US, except 

for a small persistent region in south Texas. 

Despite the success of the Eradication Program, the boll weevil remains a 

significant threat to domestic cotton production due to continuing infestations along the 

US-Mexico border. This situation can be attributed to control discrepancies across the 

border, insecurity and safety issues that affect management, and the fact that this area is 

a part of the species’ natural range. This continued insecurity has led to at least one 

recent re-infestation of domestic cotton in an area where eradication had previously been 

successful (Texas Boll Weevil Eradication Foundation, 2018). This re-infestation has 

required large-scale, area-wide spraying of malathion, cost over $5 million over 3 years 

to treat. Though that outbreak was restricted to central Texas, such events are of broader 

concern at the national level because Texas is the single largest corridor of entry for 

potential re-infestations of US cotton by populations of boll weevil migrating or 

otherwise being moved from Mexico. This highlights the current need for preventative 

management along the US-Mexico border. Currently, pheromone-baited traps and strict 

regulations on cotton growers are employed to prevent re-infestations of areas where the 

boll weevil has been eradicated. In cases where weevils are detected in traps, malathion 

is used to suppress emerging populations. This approach has been mostly successful at 

maintaining eradication. In Central and South America, where the weevil is still a major 
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concern, implementation of an IPM approach similar to the Eradication Program is 

underway (Ramalho and Wanderley, 1996).  

1.1.3. Population Genomics to Improve Boll Weevil Eradication in the US 

If the ultimate goal of the Eradication Program is to fully eradicate the weevil from the 

US, then the movement patterns of Mexican and Texas populations will need to be fully 

resolved. Control of the boll weevil in border areas is complicated by the existence of 

the aforementioned morphologically similar variants and a lack of knowledge about the 

movement of populations between eradicated areas and those where there are still 

infestations. Understanding the movement of populations is critical to management 

because inappropriately applied control strategies can create source-sink dynamics that 

nullify the effects of local suppression (Hanski and Gilpin, 1991; Harrison, 1991; Zaller 

et al., 2008; Sword et al., 2010; Carrière et al., 2012). In this dissertation, we 

demonstrate the application of a population genomics approach to enable the inference 

of movement of boll weevils across the species’ range. Furthermore, we also genetically 

identify source populations of re-infestations of previously eradicated areas.  

1.2. Population Genomics for Insect Resistance Management in Cotton Fleahopper 

Another pest of cotton in North America is the cotton fleahopper, Pseudatomoscelis 

seriatus (Reuter) (Hemiptera: Miridae). Prior to the eradication of the boll weevil and 

the development of Bacillus thuringiensis (Bt) toxin approaches to management for 

lepidopteran pests, the cotton fleahopper was generally regarded to be a secondary pest 

of commercial cotton. However, since the boll weevil is nearly eradicated and Bt 

transgenic cotton varieties have become widespread, P. seriatus has been identified as an 
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important target for management because the species attacks cotton squares early in the 

growing season, which causes abscission of the squares and subsequently leads to yield 

losses (Ewing, 1929; Powell, 1979). In 2017, Monsanto Company developed a new Bt 

transgenic cotton cultivar that is resilient to a variety of mirid species including P. 

seriatus (Bachman et al., 2017). Since previous research has described a pattern of host-

associated genetic differentiation (HAD) in the cotton fleahopper, there is concern from 

an insect resistance management (IRM) perspective that there could be a cotton-

associated host-race (Barman et al., 2012; Antwi et al., 2015). That would have 

important implications for management, particularly with regards to the evolution of 

resistance to the transgenic control over time (Georghiou and Taylor, 1977; Guse et al., 

2002; Onstad et al., 2002). If there are cotton-associated genotypes that do not exchange 

gene flow with genotypes associated with other host plants, then the cotton-associated 

genotypes could, in principle, quickly develop resistance to the transgenic cotton (Gould, 

1998; Caprio, 2001). This necessitates the use of non-toxic refuge plants to maintain 

insect susceptibility. A refuge strategy has been applied to maintaining insect 

susceptibility to Bt transgenic crops (Caprio, 2001; Caprio et al., 2004; Carrière et al., 

2004). In the case of the cotton fleahopper, there may be a natural refuge in wild host 

plants that occur near cotton-growing areas. However, if there is not, a refuge strategy 

will need to be deliberately deployed as part of an IRM plan to maintain insect 

susceptibility. In this dissertation, we apply a population genomics approach to 

determine if there is a natural refuge for cotton fleahopper that acts as a site of admixture 

for populations feeding on cotton and those feeding on non-toxic wild host plants. 
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2. POPULATION GENOMIC DIVERSITY OF THE BOLL WEEVIL, ANTHONOMUS 

GRANDIS BOHEMAN (COLEOPTERA: CURCULIONIDAE), AND ITS VARIANTS 

IN THE UNITED STATES, NORTHERN MEXICO, AND ARGENTINA 

 

2.1. Introduction 

Anthonomus grandis Boheman (Coleoptera: Curculionidae), commonly known as the 

boll weevil, is a major pest of commercially cultivated upland cotton, Gossypium 

hirsutum L. (Malvaceae), across the Americas. Despite the success of the United States 

Boll Weevil Eradication Program, the boll weevil remains a continued threat to cotton 

production in the southern United States (US), and is arguably the most important cotton 

pest in Central and South America. Management of this species can be complicated by 

the existence of morphologically similar variants (Warner, 1966; Burke, 1968; Fye, 

1968a; Burke et al., 1986) that can confound identification efforts. It is also important 

for management and eradication programs to understand broad-scale patterns of gene 

flow because inappropriately applied control strategies can create source-sink dynamics 

that nullify the effects of local suppression (Hanski and Gilpin, 1991; Harrison, 1991; 

Zaller et al., 2008; Sword et al., 2010; Carrière et al., 2012). Studies of population 

genetics can provide solutions to some of these management problems by enabling more 

reliable diagnoses of boll weevil variants and by identifying which populations act as 

sources for re-infestations of areas where eradication has been successful. Population 

genetic markers have been shown to be effective for determining the sources of re-

infestations (Kim et al., 2006; Kim et al., 2008), and haplotype analysis of the 
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cytochrome c oxidase subunit I gene (COI) is currently utilized by the US Department of 

Agriculture to diagnose pest and non-pest boll weevil variants collected in pheromone-

baited monitoring traps (Barr et al., 2013). While a number of studies have investigated 

the population genetic structure of the boll weevil in North America (Bartlett, 1981; 

Roehrdanz, 2001; Kim and Sappington, 2004; Kim and Sappington, 2006; Barr et al., 

2013; Alvarado et al., 2017) or South America (Scataglini et al., 2000; Martins et al., 

2007), only one has investigated the genetic relationship of populations on the broader 

geographic scale of both continents (Scataglini et al., 2006). No study to date has taken 

advantage of high throughput sequencing (HTS) technology to generate a powerful 

genome-wide multilocus dataset that can provide substantially more resolution than 

classic population genetic markers.  

It is generally accepted that the most recent common ancestor of the boll weevil 

and its closely related variants originated in southern Mexico and Central America and 

diverged from the sister species, Anthonomus hunteri Burke and Cate, during the 

Pliocene (Burke et al., 1986; Alvarado et al., 2017). The original host plant for this 

weevil species was probably Hampea Schltdl. spp. (Malvaceae), and the weevil 

underwent at least one host shift to endemic Gossypium L. species, and later shifted to 

G. hirsutum after its cultivation began in the Americas (Howard, 1894; Burke et al., 

1986). In the late 1800s, the boll weevil greatly expanded its geographic range 

northward through Mexico and eventually across the entire cotton growing region of the 

southern US where it became an infamous agricultural foe (Burke et al., 1986; Lange et 

al., 2009). Classic descriptions of boll weevil variants since this range expansion have 
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generally referred to three forms: the southeastern boll weevil (A. g. grandis), the 

Thurberia weevil (A. g. thurberiae), which has traditionally been regarded as associated 

with Arizona wild cotton, Gossypium thurberi Todaro (Malvaceae), and the Mexican 

boll weevil, an intermediate form with no formal subspecies designation (Warner, 1966; 

Cross et al., 1975; Burke et al., 1986). However, subspecies status has been 

inconsistently applied to these variants, and recent research has suggested that the 

genetic lineage designated as A. g. thurberiae may be divergent due to the vicariant 

effect of the Sierra Madre Occidental mountain range, rather than host plant association 

(Kuester et al., 2012; Alvarado et al., 2017). These studies have opposed the three-form 

hypothesis altogether, instead suggesting a two-form hypothesis wherein the Thurberia 

weevil is treated as the western form and other weevils are treated as the eastern form. 

A second boll weevil range expansion has more recently occurred in South America. 

Similar to the boll weevil advance throughout North America over the past 150 years, 

the range expansion in South America has been attributed to the expanding cultivation of 

commercial cotton. The boll weevil was first recorded in Venezuela in 1949, Colombia 

in 1951, Brazil in 1983, Paraguay in 1991, Argentina in 1993, and Bolivia in 1997 

(Scataglini et al., 2006). By 2016, the boll weevil had spread as far south as the 

Argentine province of Santiago del Estero and as far west as the province of Salta. 

Scataglini et al. (2006) found that the introduction of boll weevil to South America was 

associated with a range expansion of the southeastern form.  

In this study, we used double digest restriction site-associated DNA sequencing 

(ddRADseq, Peterson et al., 2012) to generate a population genomic dataset of single 
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nucleotide polymorphism (SNP) markers as a means to better understand spatial and 

temporal patterns of variation in boll weevil genetic population structure. We sampled 

boll weevil populations on a broad geographic scale and generated a SNP dataset with 

thousands of loci to better resolve the population genetic structure of the species. Using 

this dataset, we formally test the two-form and three-form hypotheses using a 

phylogeographic approach and identify geographic populations within those lineages. 

We hypothesized that there are two major geographic lineages of boll weevil but that 

there is also significant sub-structure within those lineages. Finally, we discuss the 

implications of our findings for boll weevil management in northern Mexico and the 

southern US. 

2.2. Materials and Methods 

2.2.1. Specimen Sampling 

A total of 292 weevil specimens were collected and processed from Arizona and cotton-

producing areas of south Texas, Mexico, and Argentina (Table 2.1, Fig. 2). Weevil 

specimens were mainly collected using boll weevil pheromone-baited traps (Cross and 

Hardee, 1968; Cross et al., 1969b; Tumlinson et al., 1969; Hardee et al., 1971), whereas 

those from Arizona were collected directly from Arizona wild cotton (G. thurberi) using 

a beat bucket technique. Insects from all localities were collected alive as adults and 

preserved in 95-100% ethanol. Other than during shipping or transportation, all 

specimens were stored at -80°C until they were prepared for DNA isolation. Since at any 

one collection locality there may be multiple pheromone-baited traps, for those 

collections, the midpoint GPS coordinates were determined from the GPS coordinates of  
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Table 2.1. Collection information and within-population genetic summary statistics 
for all boll weevil collections in the study. Locality is used to denote different 
collections from the same state and year. N is the number of individuals analyzed 
from each collection. 1-Qintra is the average genetic diversity within individuals and 
1-Qinter is the average genetic diversity among individuals within a collection. FIS is 
the inbreeding coefficient. 

Date Country State/Prov. Locality Latitude Longitude N 1-Qintra 1-Qinter FIS 
22-Sep-14 Mexico Sonora  - 27.4209 -109.9758 5 0.2006 0.1682 -0.1929 
22-Sep-14 Mexico Chihuahua  - 28.3431 -105.572 4 0.1252 0.0909 -0.3763 
23-Sep-14 Mexico Durango  - 26.1229 -103.4147 5 0.1411 0.112 -0.2602 
12-Sep-14 Mexico Tamaulipas  - 25.8247 -98.0672 16 0.1408 0.1311 -0.0741 

Aug/Sep-14 USA Texas  - 26.0713 -97.4655 18 0.1402 0.1309 -0.0712 
28-Aug-16 USA Arizona Mt. Lemmon 32.3262 -110.7004 12 0.1662 0.14 -0.1875 
29-Aug-16 USA Arizona Sahuarita 31.9633 -110.8075 12 0.162 0.1377 -0.1766 
29-Aug-16 USA Arizona Highway 83 31.947 -110.664 12 0.1532 0.1337 -0.1459 
29-Aug-16 USA Arizona Agua Caliente 31.6845 -110.9585 12 0.1748 0.1454 -0.2021 
30-Aug-16 USA Arizona Bisbee (West) 31.4877 -109.9873 12 0.1521 0.1337 -0.138 
30-Aug-16 USA Arizona Bisbee (East) 31.4421 -109.8268 12 0.1481 0.1295 -0.1438 
Jul/Aug-16 Mexico Tamaulipas - 25.8283 -98.0561 34 0.1511 0.1414 -0.069 
Jul/Aug-16 USA Texas  - 26.1594 -97.8234 30 0.1309 0.1083 -0.2084 
Aug/Sep-17 Mexico Sonora  - 27.3086 -109.9939 30 0.1848 0.1646 -0.1232 
7-Aug-17 Mexico Coahuila  - 25.8134 -102.991 30 0.131 0.111 -0.1805 
Jun/Jul-17 Argentina Chaco Gral. Pinedo -27.2533 -61.4942 12 0.1084 0.077 -0.4085 
Jun/Jul-17 Argentina Chaco Saenz Peña -26.8553 -60.4378 8 0.1012 0.072 -0.4053 
Jun/Jul-17 Argentina Salta  - -25.4256 -63.8483 8 0.1009 0.0695 -0.4507 
Jun/Jul-17 Argentina S. del Estero  - -29.2397 -62.9083 8 0.1029 0.0758 -0.3576 
Jun/Jul-17 Argentina Formosa  - -24.6978 -59.4717 12 0.1059 0.0739 -0.4325 

 

 

 
Figure 2. Geographic distribution of sampled populations (black dots) in North 
America (A) and Argentina (B). In A, the red bar shows the approximate location 
of the Sierra Madre Occidental mountain range and the blue bar shows the 
approximate location of the Sierra Madre Oriental mountain range. 
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traps using the geographic midpoint calculator available from www.geomidpoint.com 

using the center of gravity method. 

Weevils were first collected in 2014 in northern Mexico from the cotton-

producing states of Sonora, Chihuahua, Durango, and Tamaulipas, as well as the Lower 

Rio Grande Valley (LRGV) cotton production area in Texas, just north of Tamaulipas 

along the US-Mexico border (Fig. 2A). In 2016, the LRGV and Tamaulipas localities 

were resampled in Texas and northern Mexico, respectively. Weevil specimens were 

also collected in 2016 from six localities in southeastern Arizona. In 2017, the Sonora 

locality was resampled, but weevils from Coahuila, Mexico were obtained instead of 

resampling the Durango and Chihuahua localities due to variation in weevil presence 

from year to year. The Coahuila and Durango sampling localities were only 54.58 km 

apart and in close proximity to Torreon, a city near the border of the two states. 

Specimens from Argentina were also collected in 2017 from pheromone traps 

established in the four cotton-producing provinces of Chaco, Salta, Santiago del Estero, 

and Formosa (Fig. 2B).  

2.2.2. DNA Isolation, Library Preparation, and Sequencing 

The Gentra Puregene Cell and Tissue Kit (Qiagen, Hilden, Germany) was used to isolate 

genomic DNA from whole weevil specimens. Individuals collected in 2014 were 

processed and sequenced in 2015 and individuals collect in 2016 and 2017 were 

processed and sequenced in 2017. DNA was isolated from individuals in both years 

using the same protocol (Appendix A), but with a slight modification in that 2015, 

specimens were mechanically disrupted prior to tissue lysing using dissecting scissors, 
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whereas in 2017, specimens were mechanically disrupted by freezing in liquid nitrogen 

and crushed with disposable pestles. Isolated DNA from all 292 specimens was verified 

for high molecular weight via electrophoresis on a 1.5% agarose gel. 

Genomic DNA isolated from weevils was delivered to the Texas A&M AgriLife 

Genomics and Bioinformatics Service (TxGen) for purification, library preparation and 

sequencing. DNA was purified using the Agencourt AMPure XP purification system 

(Beckman Coulter, Brea, CA, USA) prior to library preparation. Double digest 

restriction site-associated DNA sequencing (ddRADseq) library preparation was nearly 

identical in 2015 and 2017, but 2015 libraries were prepared for a HiSeq 2500 (Illumina, 

San Diego, CA, USA), and 2017 libraries were prepared for a NovaSeq (Illumina, San 

Diego, CA, USA). To prepare the ddRADseq libraries, purified genomic DNA was 

digested using the NlaIII and HindIII restriction enzymes, and the resulting digested 

DNA was selected for fragment sizes ranging from 250 to 500 base pairs (bp) using a 

Pippin Prep (Sage Science, Beverly, MA, USA). Size-selected fragments were then 

ligated with standard Illumina adapters, multiplexing indexes, and sequencing primers, 

albeit with a single notable exception; the R1 reads (forward reads; those sequenced in 

the 5’ direction) were ligated with a custom sequencing primer that contained the 5’ 

restriction site remnant. 2015 libraries were sequenced on a HiSeq 2500 using 125x125 

sequencing cycles, and 2017 libraries were sequenced on a NovaSeq using 150x150 

sequencing cycles. 
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2.2.3. Raw Sequence Processing and SNP Calling 

TxGen provided 1.422779 TB of demultiplexed raw reads and FastQC version 0.11.3 

(Andrews, 2010) reports for each specimen to the authors. Potential bacterial 

contamination was filtered using Kraken version 1.1 (Wood and Salzberg, 2014) to 

match sequences to the non-redundant bacterial database hosted by the National Center 

for Biotechnology Information (NCBI). Homologous SNP loci were identified using the 

software pipeline dDocent version 2.5.5 (Puritz et al., 2014a; Puritz et al., 2014b) on the 

entire dataset of 2015 and 2017 sequences. dDocent was run using default parameters, 

except for that after initial trimming, dDocent was paused, and Trimmomatic version 

0.38 (Bolger et al., 2014) was used to further trim sequences to a uniform length of 90 

bp. dDocent was then restarted using the 90 bp sequences as the input and a percent 

clustering similarity parameter of 90%. VCFtools version 0.1.15 (Danecek et al., 2011) 

was used to filter the dDocent output in variant call format (vcf). SNP loci that were not 

present in 100% of individuals were also removed in order to create a SNP dataset with 

0% missing data. All file conversions needed for downstream analyses were carried out 

using PGDSpider version 2.1.1.3 (Lischer and Excoffier, 2012). 

2.2.4. Population Genetic Analyses 

RStudio version 1.1.456 (R Core Team, 2018) and some associated packages were used 

to generate population genetic summary statistics for each previously described 

collection. R/vcfR version 1.8.0 (Knaus and Grünwald, 2017) was used to read the 

filtered vcf file and prepare objects for use with other packages. R/adegenet version 

2.1.1 (Jombart, 2008; Jombart and Ahmed, 2011) was used to create a biallelic genlight 
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object that was used carry out many of the downstream analyses. First, to verify that any 

observed population genetic structure was not due to sequencing batch effects, we 

carried out an analysis of molecular variance (AMOVA, Excoffier et al., 1992) using the 

year of sequencing as a hierarchical subdivision of the data above collection. The 

AMOVA was carried out using R/poppr version 2.8.1 (Kamvar et al., 2014; Kamvar et 

al., 2015). Significance testing was carried out using Monte Carlo resampling 

permutation with R/ade4 version 1.7-13 (Dray and Dufour, 2007; Bougeard and Dray, 

2018). 

R/genepop version 1.0.5 (Raymond and Rousset, 1998; Rousset, 2008) was used 

to estimate gene flow between pairs of collections by calculating pairwise FST values 

(Weir and Cockerham, 1984) for all pairs of collections in the study. We also calculated 

the global FST for the entire dataset. Pairwise exact conditional contingency-table tests 

for genotypic differentiation (dememorization = 1000, batches = 10, iterations = 500) 

were also implemented to determine if genetic differences between collections were 

statistically significant. R/adegenet was used to carry out a principal components 

analysis (PCA) using the biallelic genlight object, and R/ggplot2 version 3.0.0 

(Wickham, 2016) was used to visualize the spatial clustering of individual genotypes by 

plotting principal component 2 as a function of principal component 1. 

The software fastSTRUCTURE version 1.0 (Raj et al., 2014) was used to 

calculate each sampled individual’s probability of assignment to one or more 

predetermined genotypic groups (K). PLINK version 1.07 (Purcell et al., 2007) was used 

to convert the vcf file into a format that was suitable for input into fastSTRUCTURE. 
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The browser-based program StructureSelector (Li and Liu, 2018) was then used to 

evaluate the fastSTRUCTURE outputs by initially testing K values from 1 to 30 to 

choose the optimal K value for our dataset. Optimal K values were determined using 

both a maximum marginal likelihood approach and the Puechmaille (2016) method of K 

selection, which accounts for unevenness in sampling distribution. For the Puechmaille 

(2016) method, we tested mean membership coefficient thresholds of 0.5, 0.6, 0.7, and 

0.8, as recommended by the author. CLUMPAK (Kopelman et al., 2015), which is 

integrated into StructureSelector, was used to visualize individual assignment 

probabilities.  

We also calculated within-population genetic diversity and the inbreeding 

coefficient (FIS) for each collection using R/genepop. We measured within-population 

genetic diversity by calculating the average genotypic diversity within individuals (1-

Qintra) and among individuals within a collection (1-Qinter) based on allele identify. Weir 

& Cockerham (1984) FIS was measured at each locus and then averaged across 

individuals for each collection. 

2.2.5. Mantel Test for Isolation by Distance 

To test if any observed population genetic structure was consistent with the isolation by 

distance (IBD) model (Wright, 1943; Rousset, 1997), we used option 6 and sub-option 9 

of the web implementation of Genepop version 4.2 (Raymond and Rousset, 1998; 

Rousset, 2008) to run the Isolde program. Isolde investigated the correlation between a 

semi-matrix of pairwise genetic distances and a semi-matrix of pairwise geographic 

distances for all pairs of collections in our dataset using a Mantel test. For the genetic 



 

 

 

22 

distance semi-matrix, we used the values of FST calculated by R/genepop adjusted to 

FST/(1-FST). Geographic distance was calculated as natural logarithm of the straight-line 

distance (in kilometers) between pairs of GPS coordinates. The adjusted values of FST 

and straight-line distance were extracted from the Isolde output and plotted in Microsoft 

Excel to calculate the slope and intercept of the linear regression and calculate the R2 

value. 

2.2.6. Phylogenetic Reconstruction 

We accessed the software RAxML version 8.2.10 (Stamatkis, 2014) via the CIPRES 

Science Gateway version 3.1 (Miller et al., 2010) to conduct the phylogenetic 

reconstruction. Four phylogenetic trees were generated using the GTR+γ and GTR+γ+I 

models of nucleotide evolution and both models were tested with and without correcting 

for ascertainment bias (Leaché et al., 2015). The tree with the highest maximum log 

likelihood score was selected as the best possible reconstruction. Since we did not 

sequence any appropriate outgroup, we midpoint-rooted the best tree by inferring a most 

recent common ancestor along the longest branch of the unrooted tree. 

2.3. Results 

Our dDocent run identified 170,993 homologous SNP loci, which were subsequently 

filtered to 7,177 loci that were of sufficiently high quality in 100% of individuals for the 

292 weevils described here. R/adegenet identified 524 loci with more than two alleles, so 

analyses conducted using the genlight object (AMOVA, PCA) were carried out using a 

subset of 6,653 biallelic loci. In general, we found that there was a high degree of 

genetic diversity across the geographic distribution of boll weevil. Among-population 
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Table 2.2. Analysis of molecular variance (AMOVA) and Monte Carlo permutation 
test results. D. F. is the degrees of freedom. % variation is the percentage of the 
variation in the data explained by the corresponding hierarchical level. 

 AMOVA results Components of covariance MC perm. 

 D. F. Sum sq. Mean sq. Sigma % variation P-value 

Between sequencing year 1 48713.72 48713.7165 14.26773 0.7314032 0.52 

Between collections within seq. year 12 271694.08 22641.1732 1203.85897 61.7131488 0.01 

Within collections 278 203664.65 732.6066 732.60664 37.555448 0.01 

Total 291 524072.44 1800.9362 1950.73334 100  
 

 
measures of genetic diversity indicated that the sampled populations were strongly 

divergent, yet within-population measures of genetic diversity did not indicate that the 

populations were genetically isolated. The hierarchical AMOVA revealed that within- 

population and among-population variation together explained nearly 100% of the 

observed variation in the dataset (Table 2.2). The year in which a particular collection 

was sequenced was found to be non-significant with regards any observed population 

genetic structure, providing evidence against a possible sequencing batch effect. 

2.3.1. Population Genetic Analyses 

Among-population measures of genetic diversity indicated that the sampled collections 

were genetically distinct and highly structured. The global FST for the entire dataset was 

high, as were most of the pairwise comparisons (Table 2.3). Pairs of collections with low 

pairwise FST values (<0.05) were found to be not significantly different by the exact 

conditional contingency-table test, and were considered to be indistinguishable from one 

another. The majority of these comparisons were among Argentine collections and 

among Arizona collections, but the comparison of the 2014 Texas collection and the 

2014 Tamaulipas collection was also found to be non-significant. Genetic distance was  
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Table 2.3. Semi-matrices of pairwise comparisons of linear geographic distance (km, above the diagonal) and genetic distance (FST, below the diagonal). 
Superscripts on the values in the FST semi-matrix indicate the results of the exact conditional contingency table tests of population differentiation (NS indicates 
P>0.05 (not significant); all other pairwise comparisons are found to be statistically significant). Bold values of FST are those that are comparisons of the same 
geographic location, but in different years. 

Global FST 
0.3858 

2014 2016 2017 

Mex TX, USA Arizona, USA Mexico TX, USA Mexico Argentina 

Son. Chi. Dur. Tam. LRGV Mt. L. Sah. H. 83 A. Cal. B. (W) B. (E) Tam. LRGV Son. Coa. C. (GP) C. (SP) Salta S. del E. For. 
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Sonora  - 444.78 667.06 1196.52 1250.73 549.9 511.43 507.65 483.52 452.21 447.37 1197.53 1213.87 12.61 716.88 7984.8 8027.09 7675.75 8048.82 7928.97 

Chihua. 0.3718  - 326.23 793.8 840.3 661.94 644.38 632.56 637.83 550.67 535.61 794.68 803.34 449.76 380 7765.56 7801.03 7459.02 7845.84 7688.04 

Durango 0.3383 0.1561  - 535.54 594.05 987.19 968.1 956.63 959.54 874.82 860.07 536.62 558.1 666.55 54.58 7439.32 7474.84 7132.8 7519.92 7362.31 

Tamau. 0.2935 0.1942 0.1541  - 66.12 1423.15 1414.2 1401.22 1414.09 1321.41 1305.48 1.18 44.48 1197.1 492.82 7082.45 7110.51 6780.09 7180.21 6982.71 

TX, USA LRGV 0.2937 0.1915 0.1528 0.0103NS  - 1459.16 1451.78 1438.64 1452.96 1359.62 1343.63 64.94 37.05 1251.7 553.2 7069.33 7096.15 6767.8 7169.83 6965.81 

20
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A
ri

zo
na

, U
SA

 

Mt. Lem. 0.2274 0.4959 0.4752 0.4439 0.4429  - 41.59 42.3 75.39 115 128.33 1423.86 1423.6 562.07 1041.38 8424.51 8460.99 8117.46 8501.69 8349.47 

Sahuarita 0.2392 0.5181 0.4984 0.4686 0.4674 0.0213NS  - 13.66 34.13 93.89 109.39 1414.94 1415.94 523.51 1022.49 8402.51 8439.61 8095.21 8478.29 8329.46 

Hwy. 83 0.253 0.5293 0.509 0.4784 0.4771 0.023NS 0.0003NS  - 40.33 81.89 97.09 1401.95 1402.83 519.81 1010.98 8391.8 8428.75 8084.55 8467.92 8318.29 

Agua Cal. 0.2187 0.4779 0.4573 0.4286 0.4279 0.0023NS 0.0253NS 0.026NS  - 94.56 110.56 1414.84 1416.91 495.44 1014.05 8390.23 8427.88 8082.7 8464.72 8318.96 

Bis. (West) 0.25 0.521 0.5021 0.4701 0.4678 0.0383NS 0.036NS 0.031NS 0.041NS  - 16.04 1322.15 1323.66 464.7 929.15 8310.63 8347.4 8003.46 8387.25 8236.65 

Bis. (East) 0.2651 0.5345 0.5141 0.4799 0.478 0.0456NS 0.04NS 0.0332NS 0.0473NS 0.0026NS  - 1306.23 1307.68 459.91 914.37 8296.46 8333.1 7989.35 8373.4 8222.09 

Mexico Tamau. 0.3335 0.232 0.2028 0.1009 0.095 0.4426 0.4676 0.4761 0.4276 0.4661 0.4752  - 43.55 1198.12 493.92 7082.12 7110.16 6779.77 7179.92 6982.31 

TX, USA LRGV 0.423 0.399 0.3742 0.2607 0.2557 0.5099 0.5298 0.5372 0.4941 0.5292 0.5379 0.1964  - 1214.88 517.91 7098.18 7125.44 6796.34 7197.68 6995.97 

20
17

 

Mexico 
Sonora 0.0872 0.4007 0.3834 0.3762 0.376 0.1423 0.1413 0.1501 0.1405 0.1567 0.1736 0.3896 0.4329  - 715.95 7977.15 8019.61 7668.05 8040.76 7921.9 

Coahuila 0.4232 0.254 0.1454 0.3073 0.3028 0.5084 0.5287 0.5357 0.4949 0.5279 0.5379 0.2697 0.3936 0.4157  - 7385.72 7421.05 7079.28 7466.79 7308.19 

A
rg

en
tin

a 

Chaco (GP) 0.4794 0.5135 0.4754 0.3312 0.3245 0.523 0.548 0.5568 0.5084 0.5308 0.5415 0.2618 0.3849 0.4403 0.4462  - 113.59 310.36 260.71 348.72 

Chaco (SP) 0.471 0.5249 0.4769 0.3234 0.3169 0.5207 0.546 0.5555 0.5047 0.531 0.5432 0.2553 0.3845 0.4362 0.4443 0.0156NS  - 375.71 359.25 258.67 

Salta 0.4774 0.5362 0.4872 0.3359 0.3289 0.5218 0.5464 0.5558 0.5056 0.5314 0.5435 0.2667 0.3952 0.4358 0.4484 0.0393NS 0.0289NS  - 434.15 448.18 

S. del E. 0.4596 0.5152 0.4701 0.3239 0.3175 0.5083 0.5341 0.5434 0.4929 0.518 0.5305 0.2578 0.3834 0.428 0.4431 0.0138NS 0.0027NS 0.0174NS  - 609.05 
  

Formosa 0.4913 0.5293 0.4896 0.3438 0.3376 0.5298 0.5551 0.5641 0.5153 0.5373 0.548 0.272 0.3972 0.4465 0.4542 0.0274NS 0.0424NS 0.0682 0.0419NS  - 
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Figure 3. Genetic distance (values of FST from Table 2.3 adjusted to FST/(1-FST)) 
plotted as a function of geographic distance (linear values from Table 2.3 adjusted 
by a natural log transformation). Inset shows the formula for the regression line 
and the adjusted R2 value. 
 
 

significantly correlated with geographic distance, and the adjusted R2 value indicated 

that an assumption of IBD explained 47.15% of the variation in the dataset (Fig. 3). 

Despite the majority large pairwise values of FST, both the PCA and the population 

assignment probability test identified groups of collections that were more closely 

related to one another than they were to other collections (Figs. 4, 5). Though these tests 

did not agree exactly, both results were roughly consistent with what would be expected 

under an IBD model. Principal components 1 and 2 together explained 44.97% of the 

observed variation in the dataset (Fig. 4). The population assignment probability test was 

optimized at K=6 under a maximum likelihood model and at K=13 using the 

Puechmaille (2016) method (Fig. 5). The observed patterns of genotypic assignment at 

K=6 and K=13 are similar, except that the 2016 Tamaulipas collection was assigned to 

the same genotypic group as other collections when K=6, but assigned to a unique 

genotypic group when K=13. In both analyses, the Argentine weevil collections 

clustered tightly with each other and were distinct as a group from all other sampled  
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Figure 4. Principal component 2 (PC 2) plotted as a function of principal 
component PC 1. Eigenvalues (EV) indicate the proportion of the observed 
variation that is explained by the corresponding PC. PC 1 and PC 2 together 
explain 44.97% of the total variance. Black bar indicates separation of clusters 
associated with eastern and western lineages along PC 1 axis. 
 
 
 
weevil collections. Arizona weevil collections clustered together in the PCA, but the 

Bisbee collections clustered separately from the more western collections. Two non-

overlapping clusters representing the 2014 and 2016 Sonora collections were much more 

similar to the Arizona weevils than they were to other collections. Individuals associated  
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Figure 5. Results of the population assignment probability test visualized as 
distruct plots by CLUMPAK via StructureSelector. Bar plots are shown for two 
optimal values of K; using a maximum likelihood framework (6) and using the 
Puechmaille (2016) method (13). Each bar represents a single individual and each 
color represents 1 of K genotypic groups. The proportion of an individual’s bar 
that is a certain color represents the probability that that individual belongs to that 
genotypic group. 
 
 

with both Sonora collections were assigned to the same unique genotypic group with 

high probability, but 2016 samples displayed a low probability of assignment to thesame 

genotypic group as the Arizona weevils, whereas some 2014 samples displayed a low 

probability of assignment to a different genotypic group. All central Mexico collections 

(Chihuahua and Durango in 2014 and Coahuila in 2017) clustered together in the PCA. 

In the assignment test, the Coahuila collection was assigned to its own genotypic group 

and the Chihuahua and Durango collections had a moderate probability of assignment to 

that same group. However, the Chihuahua and Durango collections also had a moderate 

probability of assignment to another genotypic group to which the 2014 LRGV (Texas 

and Tamaulipas) samples were assigned. The results of the PCA and population 

assignment probability test were in least agreement with regards to the 2016 Texas 
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collection; in the assignment test, individuals were predominantly assigned to a unique 

genotypic group, but those same individuals clustered closely with the 2014 Texas and 

Tamaulipas collections and the 2016 Tamaulipas collection in the PCA. 

Within-population genetic summary statistics varied greatly across space and time, but 

all collections exhibited a signal of outcrossing (Table 2.1). Population average values of 

genetic diversity (1-Qintra and 1-Qinter) were greatest in Sonoran collections and lowest in 

Argentine boll weevil collections. The inbreeding coefficient (FIS) was negative for all 

collections, indicating heterozygote excess. FIS was most negative in Argentine 

collections, and closest to zero in Texas and Tamaulipas collections. Geographic 

localities sampled in multiple years (Texas, Tamaulipas, Durango/Coahuila, and Sonora)  

did not necessarily maintain similar values of genetic diversity or FIS across the time 

period between sampling dates. The Texas collections, in particular, yielded greatly 

different values of FIS when comparing 2014 to 2016. 

2.3.2. Phylogenetic Reconstruction 

Of the four tested models, the tree with the highest log likelihood was constructed using 

the GTR+γ+I model and there was no ascertainment bias found in the data. The unrooted 

RAxML tree showed a topology with two major clades separated by a long branch (Fig. 

6). One clade, hereafter referred to as the western lineage, consisted of the Arizona and 

Sonora weevils (all collections) and the other, the eastern lineage, consisted of all other 

collections. The tree was midpoint rooted along the long branch separating the two 

lineages. Both lineages were strongly supported with bootstrap support values of 100. 

Other major clades with strong bootstrap support were the monophyletic Arizona group, 
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Figure 6. Midpoint-rooted RAxML phylogenetic reconstruction of all 292 sampled 
weevils. Asterisks indicate nodes with ≥95% bootstrap support. Highlighted groups 
are monophyletic groups (though some are nested within other groups) that have 
strong bootstrap support and that correspond with one or more collections in the 
study. Inset (top left) shows the unrooted tree with red arrow indicating the long 
branch upon which the tree was midpoint-rooted. Western (W) and eastern (E) 
lineages are denoted on both the unrooted and midpoint-rooted tree. 
 
 

which was nested within the western lineage, and the monophyletic central Mexico 

group, which was found to be sister to a weakly supported group consisting of all other 

individuals in the eastern lineage. The Argentine weevils and the 2016 Texas weevils 

each formed monophyletic groups with strong support that were sister to each other and 

nested within the eastern lineage. Most other clades did not show strong bootstrap 

support, and even within the strongly supported groups, individual relationships did not 

show strong support. 
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2.4. Discussion 

This study was the first investigation of boll weevil population genetic structure using a 

population genomic approach that sampled thousands of informative SNP markers from 

across the species’ entire genome. It was also only the second population genetic study 

to include boll weevils from collections in both North and South America. Overall, our 

results indicated that boll weevil populations were genetically diverse and highly 

structured on a broad geographic scale. While the observed values of FST (Table 2.3) 

would be considered quite high for some systems, such numbers are consistent with 

previous measurements made for boll weevil populations, with values as high as 0.5 

being recovered from a variety of different traditional population genetic markers 

(Scataglini et al., 2000; Kim and Sappington, 2006; Alvarado et al., 2017). Nonetheless, 

the high FST values calculated here indicating genetic divergence were seemingly 

contradictory to the negative values of FIS (Table 2.1), which indicated outcrossing 

populations. Some of this discrepancy could be explained by the geography of our 

population sampling; though the observed genetic structuring was generally consistent 

with an IBD model (Fig. 3), there were large geographic gaps (Fig. 2), which may have 

been genetic populations that were intermediate to pairs of populations we studied but 

were not sampled. In addition to missing populations of weevils associated with 

commercial cotton, another explanation may be that the observed geographic structure 

exists and that our sampling scheme excluded boll weevil populations associated with 

wild cotton or non-cotton hosts. In addition to other species of Gossypium, boll weevil 

has been documented in association with other Malvaceae including Hampea spp., 
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Cienfuegosia spp., and Thespia populnea (Cross, 1973; Cross et al., 1975; Burke et al., 

1986). Since our samples were mostly obtained from areas of commercial cotton 

production, we may have neglected populations associated with these alternative hosts 

that may exchange gene flow with cotton-associated populations of boll weevil, allowing 

for the observed geographic structure but creating a signal of outcrossing within the 

sampled populations due to incomplete sampling. 

2.4.1. Phylogeography and Implications for Taxonomy 

Our results supported the two-form hypothesis of boll weevil variants, and we support 

the taxonomic status of the eastern (A. g. grandis) and western (A. g. thurberiae) forms 

of boll weevil in North America as distinct genetic subspecies. This conclusion is 

supported by the PCA and phylogenetic reconstruction. Principal component 1 (PC 1), 

which explained nearly 35% of the observed variation in the dataset, clearly separated 

individuals into eastern and western clusters (Fig. 4). Though there was some variation 

along the PC 1 axis between the western clusters consisting of Sonora and Arizona 

collections, there was a much larger gap between those clusters and the individuals 

associated with the eastern clusters. Nearly all of the variation between eastern clusters 

occurred along the PC 2 axis. The phylogenetic reconstruction provided more strong 

support for the existence of two distinct genetic lineages (Fig. 6). The longest branch of 

the unrooted tree separated the Sonora and Arizona collections from all other collections, 

and when midpoint-rooted along that long branch, there was strong bootstrap support for 

both the eastern and western lineages, which were reciprocally monophyletic. 
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Though A. g. thurberiae has historically been regarded as a host-associated variant, our 

study adds to the growing body of evidence that A. g. thurberiae is more likely to be a 

geographic variant. We recovered a close genetic relationship between western boll 

weevil populations collected from commercial cotton in Sonora and populations 

collected from wild cotton in Arizona. Though there was some significant genetic 

differentiation between these groups, the observed difference could be attributed to IBD 

(Fig. 3). Other recent studies have also recovered this same relationship and shown that 

the subspecies currently recognized as A. g. thurberiae can be found in association with 

other Gossypium species besides G. hirsutum (Kim and Sappington, 2006; Kuester et al., 

2012; Alvarado et al., 2017). Additionally, weevils collected from G. hirsutum that have 

been morphologically identified as A. g. grandis have been genetically identified as A. g. 

thurberiae, and morphological characteristics are notoriously unreliable for variant 

assignment in this species (Roehrdanz, 2001; Barr et al., 2013). Our data supported the 

hypothesis that the two major boll weevil lineages are more likely to be the product of 

geographic isolation rather than the product of any host-associated differentiation. Thus, 

in our support for the two-form hypothesis, we stress that the two subspecies be regarded 

as geographic variants of boll weevil that are independent of host plant associations.  

We found significant geographic substructure within the eastern boll weevil lineage (A. 

g. grandis). In particular, collections from north-central Mexico (Chihuahua, Durango, 

and Coahuila) that clustered together in the PCA and formed a strongly supported 

monophyletic group nested within the eastern lineage should be given a closer look. The 

Sierra Madre Occidental mountain range has been previously described as a likely 
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geographic barrier to gene flow that gave rise to the western and eastern boll weevil 

variants (Kuester et al., 2012; Alvarado et al., 2017). Here, we suggest that the Sierra 

Madre Oriental mountain range may also act as a geographic barrier that inhibits gene 

flow between boll weevil populations in central Mexico and the other eastern 

populations (Fig. 2A). The collections from central Mexico were found to be sister to all 

other collections within the eastern lineage, but the genetic distance between them is not 

as great as the distance between the western and eastern boll weevil, so it would be 

premature to suggest elevation of this group as a third subspecies. The reduced relative 

genetic distances suggest that the isolating effect of the Sierra Madre Oriental 

topography may not be as strong as it is for the Occidental range in the west, but it may 

also suggest that the divergence is simply more recent. Nonetheless, we support the 

subspecies status of the eastern boll weevil as A. g. grandis with the caveat that the 

central Mexico boll weevil may represent an incipient divergence. 

 Consistent with Scataglini et al. (2006), we found that Argentine boll weevils 

were more closely related to the eastern boll weevil lineage in North America as 

opposed to the western boll weevil. Low genetic diversity within and among the 

Argentine populations suggests a likely historical bottleneck, consistent with a single 

introduction, but high genetic distances and the large gap in our geographic sampling 

between Mexico and Argentina made it impossible to ascertain the source of the 

introduction. In terms of genetic distance, the Argentine populations were as distant 

from the eastern boll weevil as the eastern boll weevil was from the western variant in 

North America (Table 2.3). Since we did not have representative sampling between 
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Mexico and Argentina, it was impossible to ascertain whether intermediate genotypes 

existed between the eastern boll weevil in North America and the Argentine boll weevil. 

Importantly, the genetic isolation observed between the eastern variant in North America 

and the Argentine weevils sampled here was consistent with what is expected from IBD 

under the assumption that introgressing populations exist between them in Central 

America and northern South America. More extensive geographic sampling of boll 

weevil populations across the species’ distribution will be critical to fully understanding 

the biology and genomic impact of the range expansion. 

 We identified temporal changes in genetic variation between populations 

collected from the same geographic location in multiple years. Though such an 

observation could be attributed to a possible sequencing batch effect, we believe that 

there was sufficient evidence to rule out this confounding factor. First, we specifically 

tested the year of sequencing as a source of genetic variation, and it was found to be not 

significant (Table 2.2). Second, if year effects were due to sequencing error, then we 

would expect to have seen an even distribution of error across the dataset; we did not. In 

central Mexico, where collections were made in 2014 and 2017, we saw no effect of 

time in the PCA, and the individuals formed a monophyletic group in the phylogenetic 

reconstruction. On the opposite end of the spectrum, in Sonora, which was also sampled 

in 2014 and 2017, we saw complete separation of PCA clusters. Genetic changes 

between sampling years were also observed in Texas and Tamaulipas between 2014 and 

2016. These changes were particularly intriguing, because though the genetic distances 

between collections were relatively small, individuals were assigned with high 
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probability to completely different cluster in the population assignment test (Fig. 5). 

Similar temporal changes in genetic variation have been previously documented on a 

similar time scale in boll weevil populations in parts of Texas and Mexico using 

microsatellites (Choi et al., 2011), so changes in populations are not entirely unexpected 

over time. As management and eradication programs reduce populations in commercial 

fields, there is a possibility that the weevil populations undergo strong bottlenecks or 

complete local extirpation. In case of the later, individuals developing on wild or 

volunteer plants may eventually recolonize commercial fields thereby creating a founder 

effect. 

2.4.2. Considerations for Management in the US and Mexico 

Our results provided strong evidence supporting the two-form hypothesis of boll weevil 

variants wherein there exist two geographic subspecies: A. g. thurberiae in the west and 

A. g. grandis in the east. It will be critical to management and eradication in the US and 

Mexico to consider the biology of these variants when applying control measures. A 

primary concern for boll weevil management west of the Sierra Madre Occidental 

mountain range in Mexico and the western US should be to recognize that populations of 

boll weevil associated with wild hosts, namely G. thurberi, can likely act as a source for 

re-infestations of commercial cotton. Management and ongoing eradication efforts 

involving populations of the eastern boll weevil must acknowledge the contiguousness 

of boll weevil populations along the US-Mexico border, and that effective management 

will require a coordinated international effort to successfully combat the pest. Perhaps 

most critical for managers in both regions is to recognize the rapid rate of evolution 
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observed in populations of the boll weevil. Our results along with those of Choi et al. 

(2011) have demonstrated that rapid turnover of local genotypes can occur within a few 

years. Management efforts themselves are likely contributing to bottleneck and founder 

effects that help explain these turnovers, but allele frequency changes due to gene flow 

from populations that have not yet been sampled cannot be ruled out. It is thus essential 

that populations associated with wild hosts, volunteer cotton, and commercial cotton are 

monitored routinely and genetically characterized by standardized methods so that 

managers can better coordinate efforts and prepare against possible re-infestation events.
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3. POPULATION GENOMICS TO IDENTIFY GENETIC VARIANTS AND 

DETERMINE PROBABLE SOURCE POPULATIONS FOR BOLL WEEVILS 

ANTHONOMUS GRANDIS BOHEMAN (COLEOPTERA: CURCULIONIDAE) 

FOUND IN PREVIOUSLY ERADICATED AREAS IN THE UNITED STATES 

 

3.1. Introduction 

The boll weevil (Anthonomus grandis Boheman, Coleoptera: Curculionidae) is a major 

pest of commercially cultivated upland cotton, Gossypium hirsutum L. (Malvaceae) in 

North and South America. It is known as one of the most devastating pests in United 

States (US) agricultural history (Cross, 1973; Lange et al., 2009). The US Boll Weevil 

Eradication Program has been widely successful, eliminating the boll weevil from the 

near entirety of the US cotton belt, but the threat of re-infestations to areas where 

eradication has been completed remains (National Cotton Council, 2010). The 

southeastern boll weevil variant (A. g. grandis) is a persistent problem for growers in the 

Lower Rio Grande Valley (LRGV) region of Texas (TX) along the US-Mexico border 

where eradication efforts are ongoing (Texas Boll Weevil Eradication Foundation, 

2018). In the western US, the Thurberia weevil (A. g. thurberiae), has historically been 

regarded as a host plant-associated variant that utilizes Arizona wild cotton, Gossypium 

thurberi Todaro (Malvaceae). However, mounting evidence suggests that A. g. 

thurberiae is a geographic lineage rather than a host-associated lineage, and populations 

of the subspecies may serve as sources for re-infestations of commercial cotton in the 
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southwestern US and northwestern Mexico (Kuseter et al., 2012; Alvarado et al., 2017, 

Raszick et al., in prep.) 

Recognizing source-sink dynamics can be critical to insect management, and 

especially eradication efforts. If possible, identification and proactive control of source 

populations should help prevent the establishment of, and therefore need to control, sink 

populations. On the other hand, failure to recognize source-sink dynamics can result in 

the re-infestation of previously controlled areas that repeatedly require reactive control 

(Hanski and Gilpin, 1991; Harrison, 1991; Zaller et al., 2008; Sword et al., 2010; 

Carrière et al., 2012). The risk of re-infestation and the value of being able to identify 

potential source populations for ongoing boll weevil eradication efforts in the US are 

highlighted by two recent case studies. In 2015, boll weevils were recovered from 

pheromone-baited cone traps maintained by the Texas Boll Weevil Eradication 

Foundation in Uvalde, TX, roughly 100 km from the US-Mexico border. The so-called 

Winter Garden production zone had been weevil free for three years prior to 2015, but 

by 2016, the re-infestation had spread to nearby Batesville, TX, and a total of 15,714 

weevils were captured in the Winter Garden growing area that year (Texas Boll Weevil 

Eradication Foundation, 2018). In 2017 and 2018 (as of completion of this study), 1,292 

and 6 weevils were captured respectively (Texas Boll Weevil Eradication Foundation, 

2018). Though the area appears to be trending back towards eradication, managing the 

outbreak was a four-year effort that cost an estimated $5 million. Considering the high 

risk and economic impact of boll weevil re-infestation events, it is critical to 

management that diagnostic assays of trapped boll weevils be able to accurately 
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diagnose trapped specimens as belonging to one of the two geographic A. grandis 

subspecies, A. g. grandis and the A. g. thurberiae, and ideally determine a likely source 

population. Current methods of boll weevil variant diagnosis include calculating the 

morphometric ratio of the anterior profemora, and a mitochondrial DNA haplotype assay 

based on the cytochrome c oxidase subunit I gene (COI) gene, both of which are 

currently utilized by the US Department of Agriculture for taxonomic determination 

(Warner, 1966; Burke et al., 1986; Barr et al., 2013). However, both of these methods of 

variant assignment have limitations. The morphometric assay is limited by the 

occurrence of intermediate profemora ratios that could indicate either variant. The COI 

haplotype assay is generally effective for assigning individuals to one of the two 

geographic lineages, but at least one haplotype, denoted as AN4, is recovered from both 

A. g. grandis and the A. g. thurberiae, making it impossible to ascertain the source 

lineage of individuals with that haplotype. 

Raszick et al. (in prep.) recently described two major geographic lineages of boll 

weevil in North America using a dataset of single nucleotide polymorphisms (SNPs) 

generated by double digest restriction site-associated DNA sequencing (ddRADseq, 

Peterson et al., 2012). That study revealed that, based on 7,177 SNPs, there was a 

western lineage that could be considered as analogous to the A. g. thurberiae subspecies 

and an eastern lineage that could be considered as analogous to the A. g. grandis 

subspecies. Importantly, individuals assigned to the A. g. thurberiae subspecies were 

collected from both G. hirsutum and from G. thurberi, suggesting that both commercial 

cotton and wild host plants could support populations that contribute to re-infestations, 
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consistent with other recent research (Kuester et al., 2012; Alvarado et al., 2017). In this 

study, we applied the Raszick et al. (in prep.) methodology to 56 weevils collected from 

the Winter Garden re-infestation and to 24 weevils collected from cotton fields in 

previously eradicated Hidalgo County, New Mexico. For all 80 specimens, we generated 

SNP data homologous to the 7,177 loci used to delineate boll weevil populations across 

its range by Raszick et al. (in prep). We then compared the genotypes of the 56 Winter 

Garden weevils to those of the 292 weevils used in the Raszick et al. (in prep) study in 

order to determine the likely source population for the re-infestation, and we used the 24 

Hidalgo Co., NM weevils to evaluate the performance of the SNP genotyping as a 

taxonomic diagnostic assay relative to the morphometric and COI assays. 

3.2. Materials and Methods 

3.2.1. Specimen Sampling 

We sequenced a total of 56 adult boll weevil specimens from the Winter Garden, TX re-

infestation and 24 from Hidalgo Co., NM (Table 3.1). All samples were collected from 

cotton production areas using pheromone-baited cone traps that are typical for 

monitoring for boll weevils in eradicated areas of the US (Cross and Hardee, 1968; 

Cross et al., 1969b; Tumlinson et al., 1969; Hardee et al., 1971). Live specimens were 

transferred from the traps into vials with 95-100% molecular grade ethanol (EtOH) and 

transported to the laboratory where they were stored at -80°C until they were prepared 

for DNA isolation. The Winter Garden, TX re-infestation was sampled in 2016 and 

2017, and Hidalgo Co., NM was sampled in 2017. Since most individual cone traps 

contained only one or a few specimens, boll weevils from traps in close proximity were  
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Table 3.1. Collection information and basic genetic summary statistics. Dashes 
indicate missing information. GPS coordinates for Uvalde collections are midpoints 
calculated from individual trap GPS coordinates. N was the actual number of 
individuals genotyped and Ne was the effective population size as estimated by 
NeEstimator. ∞ symbol indicates an estimate of Ne that is not significantly different 
from an infinitely large population. 1-Q values are average multilocus genetic 
diversity calculated within individuals within a collection (intra) and among 
individuals within a collection (inter). FIS is the inbreeding coefficient. 

City/Co. State Latitude Longitude Date Collected Year N Ne 1-Qintra 1-Qinter FIS 
Batesville TX - - - 2016 30 91.2 0.1283 0.1056 -0.2147 

Uvalde TX 29.180169 -99.60665 Sep 19 - Sep 28 2016 16 11.1 0.1533 0.1382 -0.1095 
Uvalde TX 29.107374 -99.646694 Apr 4 - May 15 2017 10 ∞ 0.1358 0.1107 -0.2267 

Hidalgo Co. NM - - Sep 22 - Oct 13 2017 24 103.9 0.1629 0.139 -0.172 

 
 

pooled, and GPS coordinates reported here are the geographic midpoints as calculated 

from the GPS coordinates of the individual traps. 

3.2.2. DNA Isolation, Library Preparation, and Sequencing for SNP Genotype 

Assay 

Specimens from Hidalgo Co., NM had a leg removed for the Barr et al. (2013) COI 

haplotype assay prior to the DNA isolation for the SNP genotype assay. To isolate high 

molecular weight DNA for the SNP assay, all specimens were mechanically disrupted by 

crushing in liquid nitrogen with disposable pestles. Isolated DNA was extracted from the 

crushed specimens using the Qiagen Gentra Puregene Cell and Tissue Kit using a 

modified version of the manufacturer protocol (Appendix A). The molecular weight of 

isolated DNA was tested by electrophoresis on a 1.5% agarose gel. We considered 

electrophoresis bands of fragment length greater than 10,000 base pairs (bp) to be of 

sufficiently high molecular weight. Further purification, library preparation, and 

sequencing were carried out at Texas A&M AgriLife Genomics and Bioinformatics 
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Service (TxGen). The Agencourt AMPure XP purification system was used to further 

purify isolated DNA prior to double digest restriction site-associated DNA sequencing 

(ddRADseq) library preparation. Libraries were prepared using the NlaIII and HindIII 

restriction enzymes and selecting for fragment sizes ranging 250-500 bp, consistent with 

the methods of Raszick et al. (in prep). Size-selected fragments were then ligated with 

standard Illumina adapters, multiplexing indexes, and sequencing primers, except for a 

proprietary R1 primer that contained the 5’ restriction site remnant. Finally, libraries 

were sequenced on an Illumina NovaSeq using 150x150 sequencing cycles. 

3.2.3. Raw Sequence Processing and Integration with Existing SNP Dataset 

TxGen provided demultiplexed raw reads and FastQC version 0.11.3 reports for each 

specimen to the authors (Andrews, 2010). FastQC reports were manually reviewed by 

the authors to ensure that sequences were of significantly high quality to move forward 

with further analyses. To filter out any potential bacterial contamination, we used 

Kraken version 1.1 to match sequences to the non-redundant bacterial database hosted 

by the National Center for Biotechnology Information (NCBI) and remove them (Wood 

and Salzberg, 2014). SNP-calling was carried out using dDocent version 2.5.5 (Puritz et 

al., 2014a; Puritz et al., 2014b). The dataset of 80 individuals was combined with the 

previously described dataset of 292 individuals from Raszick et al. (in prep.), and 

dDocent was run on all 372 individuals to ensure homology of the SNP loci. dDocent 

was run using a percent clustering similarity of 90% and other parameters as defaults, 

except that the pipeline was paused after initial trimming, and Trimmomatic version 0.38 

was used to further trim sequences to a uniform length of 90 bp (Bolger et al., 2014). 
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dDocent was then restarted and allowed to finish normally. VCFtools version 0.1.15 was 

used to filter the dDocent output following the tutorial in the dDocent user guide except 

that in addition to the tutorial filters, SNP loci that were not present in 100% of 

individuals were removed (Danecek et al., 2011). 

3.2.4. Population Genetic Analyses 

All necessary file conversions for population genetics analyses were carried out using 

PGDSpider version 2.1.1.3 (Lischer and Excoffier, 2012). We used a variety of packages 

in RStudio version 1.1.456 to generate population genetic summary statistics for each 

collection and determine their relationships to the populations described in Raszick et al. 

(in prep.) and to each other (R Core Team, 2018). R/vcfR version 1.8.0 was used to read 

the filtered vcf file and prepare objects for use with other packages (Knaus and 

Grünwald, 2017). R/genepop version 1.0.5 was used to calculate genetic diversity based 

on allele identity and the inbreeding coefficient (FIS) for each collection (Raymond and 

Rousset, 1995; Rousset, 2008). Genotypic diversity was measured as a multilocus 

average within individuals (1-Qintra) and among individuals within each collection (1-

Qinter). We used NeEstimator version 2.1 to estimate the effective population size (Ne) 

for each of the collections using a lower rare allele frequency limit of 0.02 (Do et al., 

2014). 

To estimate gene flow between our collections and the Raszick et al. (in prep.) 

populations, we calculated pairwise values of Weir and Cockerham (1984) FST using 

R/genepop. The global FST of the data was also calculated. To test the significance of 

any observed genetic differentiation, we conducted pairwise exact conditional 
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contingency-table tests in R/genepop (dememorization = 1000, batches = 10, iterations = 

500). We also carried out a principal components analysis (PCA) in R/adegenet version 

2.1.1 in order to visualize clustering of our individuals with clusters of individuals from 

the genetic populations delineated in the Raszick et al. (2018) study (Jombart, 2008; 

Jombart and Ahmed, 2011). Since R/adegenet can only carry out a PCA with a biallelic 

dataset, 524 loci with more than two alleles were removed for this analysis. 

We used the software fastSTRUCTURE version 1.0 to carry out a population 

assignment probability test wherein we calculated each individual’s probability of 

assignment to one or more predetermined genotypic groups (1≤K≤30, Raj et al., 2014). 

The vcf file was formatted for fastStructure input using PLINK version 1.07 (Purcell et 

al., 2007). To choose the optimal value of K, we accessed the web browser-based 

program StructureSelector and implemented the Puechmaille (2016) method of K 

selection, which accounts for an uneven distribution of samples across populations (Li 

and Liu, 2018). As recommended by the original publication, we tested mean 

membership coefficient thresholds of 0.5, 0.6, 0.7, and 0.8. StructureSelector was also 

used to run the integrated version of CLUMPAK and generate a visual plot of individual 

population assignments (Kopelman et al., 2015). 

3.2.5. Comparison of Assays for Variant Diagnoses using Hidalgo Co., NM 

Individuals 

For the 24 individuals collected from Hidalgo Co., NM, we applied the COI haplotype 

assay described in Barr et al. (2013) in addition to the Raszick et al. (in prep.) SNP 

genotype assay. We also carried out morphological measurements to calculate the 
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morphometric ratios of the profemora. To briefly summarize the COI assay method, 

DNA was isolated from the aforementioned removed legs using the DNeasy Blood and 

Tissue Kit, and a roughly 700 bp fragment of the COI gene was amplified using 

polymerase chain reaction (PCR). See Barr et al. (2013) for PCR primers and 

thermocycling conditions. Amplification products were purified with ExoSAP-IT 

(Thermo Fisher, Waltham, MA, USA) before sequencing. Bi-directional sequencing of 

PCR products was performed using 3’BigDye-labeled dideoxynucleotide triphosphates 

(v 3.1 dye terminators, Applied Biosystems, Foster City, CA, USA) and run on an ABI 

3730XL DNA Analyzer with the ABI Data Collection Program (v 2.0) at Functional 

Biosciences, Madison, WI. Individuals were each assigned to one of 31 different COI 

haplotypes. Measurements of profemora ratios were made following Burke (1968). If 

ratios ranged 3.0-3.4, the weevils were designated as A. g. thurberiae, and if ratios 

ranged 3.6-4.0, the weevils were designated as A. g. grandis. Ratios outside of these 

ranges were considered an inconclusive identification. These leg ratios have previously 

been found to correctly distinguish variants for 89.4% identifications (Barr et al., 2013). 

Putative taxonomic assignments were made based on the results of each assay and 

compared to assignments made using the SNP assay. 

3.3. Results 

3.3.1. Population Genetic Analyses 

For all 80 specimens analyzed, we successfully recovered SNP data homologous to the 

7,177 loci that were used to describe the boll weevil populations in Raszick et al. (in 

prep.). Multilocus genetic diversity levels within and among each of the four collections  
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Table 3.2. Pairwise and global FST values. Argentine, eastern, central Mexico, and 
Western populations are groupings of populations inferred from Raszick et al. 
(2018) and the re-infestation collections are those labeled with a collection year. 

Argentine -        
Eastern 0.2649 -    Global FST 

0.3593 

 
Central Mexico 0.4464 0.2165 -    

Western 0.4514 0.3787 0.4124 -   
Batesville, TX (2016) 0.425 0.1969 0.3522 0.4133 -    

Uvalde, TX (2016) 0.3622 0.135 0.3012 0.3384 0.0951 -   
Uvalde, TX (2017) 0.4237 0.1157 0.3144 0.4176 0.1307 0.0798 -  

Hidalgo Co., NM (2017) 0.5325 0.4179 0.4835 0.0283 0.4951 0.4007 0.4909 - 

 Argen. Eastern Cen. Mex. Western Bat. (16) Uva. (16) Uva. (17) Hid. (17) 

 
 

made for this study were similar to those obtained in the original Raszick et al. (in prep.) 

study, and we calculated negative FIS values for all four collections, indicating 

heterozygote excess (Table 3.1). Estimates of effective population size ranged from 11.1 

to 103.9, except for the estimate from the 2017 Uvalde, TX collection, which was not 

significantly different from an infinitely large population. Despite the signal of 

heterozygote excess, we nonetheless recovered high pairwise values of FST (Table 3.2). 

Additionally, the exact conditional contingency-table tests indicated that all pairwise 

comparisons were significantly different. The global FST for the dataset was 0.3593. The 

lowest pairwise values of FST were calculated when comparing the Hidalgo Co., NM 

collection to the western boll weevil lineage, when comparing the 2016 Batesville, TX 

collection to the 2016 Uvalde, TX collection, and when comparing the 2016 Uvalde, TX 

collection to the 2017 Uvalde, TX collection. 

 The PCA tightly clustered individuals from our collections with individuals 

described by Raszick et al. (in prep.) (Fig. 7). All individuals from the three Winter 

Garden collections clustered tightly together with each other and with the Raszick et al.  
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Figure 7. Results of principal components analysis presented as principal 
component 2 (PC 2) plotted as a function of principal component 1 (PC 1). 
Eigenvalues (EV) indicate the percent variation explained by the respective PCs. 
The Texas and Tamaulipas and Arizona groups are from Raszick et al. (in prep.)  
 
 

(in prep.) individuals representing the eastern boll weevil lineage from the LGRV along 

the Texas-Mexico border. The Hidalgo Co., NM individuals clustered with individuals 

from the western boll weevil lineage, specifically those collected from Arizona wild 

cotton. 

 For the population assignment probability test (Fig. 8), the Puechmaille (2016) 

method of K selection determined that the optimal value was K=13 for our dataset.  
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Figure 8. CLUMPAK output of population assignment probability test when K=13. 
Vertical bars are individuals and the different colors represent the different 
genotypic groups. The proportion of each individuals’ bar that is a certain color 
indicates that individuals’ probability of assignment to that genotypic group. 
 
 

Individuals from Hidalgo Co., NM were assigned to the same genotypic group as the 

western boll weevil lineage with high probability. Individuals from the Winter Garden 

re-infestation were mostly assigned to their own genotypic group, though two 

individuals from the 2016 Uvalde, TX collection were assigned with high probability to 

the eastern boll weevil lineage associated with the LRGV and Tamaulipas. 

3.3.2. Variant Assignments from Assays for Variant Diagnoses Using Hidalgo Co., 

NM Individuals 

Both the morphometric and COI haplotype assays returned some inconclusive variant 

assignments, and the methods did not necessarily agree (Table 3.3). The morphometric 

assay yielded some diagnoses for both geographic variants whereas the COI assay 

yielded some diagnoses for a single variant. Specifically, 12 individuals yielded the 

ambiguous AN4 haplotype, and the remaining 12 other individuals yielded 7 different 

haplotypes, all associated with A. g. thurberiae. As described above, the SNP genotype 

assay unambiguously clustered all 24 individuals from Hidalgo Co., NM with the  
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Table 3.3. Assignment of 24 Hidalgo Co., NM weevils to the A. g. grandis (BW) or 
A. g. thurberiae (TW) taxonomic group based on the Barr et al. (2013) 
mitochondrial haplotype assay. 

Collection Information Mitochondrial Assay Morphometric Assay 
Specimen Collection Date COI Haplotype Assignment Profemoral Ratio Assignment 

1NM-07-03 Sep 22-24, 2017 AN8 TW 3.22 TW 
1NM-07-17 October 3, 2017 AN17 TW 3.28 TW 
1NM-02-03 October 3, 2017 AN20 TW 3.77 BW 
1NM-02-04 October 3, 2017 AN2 TW 3.79 BW 
2NM-1- F1 October 6, 2017 AN3 TW 3.12 TW 
2NM-1- H1 October 6, 2017 AN20 TW 3.35 TW 
2NM-1- H2 October 6, 2017 AN2 TW 3.71 BW 
2NM-1- A6 October 6, 2017 AN4 Inconclusive 3.54 Inconclusive 
2NM-1- C6 October 6, 2017 AN4 Inconclusive 3.14 TW 
2NM-1- F11 October 6, 2017 AN4 Inconclusive 3.58 Inconclusive 
2NM-1- C12 October 6, 2017 AN4 Inconclusive 3.56 Inconclusive 
2NM-1- E12 October 6, 2017 AN4 Inconclusive 3.32 TW 
2NM-2- F3 October 6, 2017 AN17 TW 3.80 BW 

NM-171113-04 October 26, 2017 AN15 TW 3.38 TW 
NM-171122-04 October 13, 2017 AN24 TW 3.40 TW 
NM-171122-30 October 13, 2017 AN2 TW 3.39 TW 
NM-171122-19 October 13, 2017 AN4 Inconclusive 3.49 Inconclusive 
NM-171122-21 October 13, 2017 AN4 Inconclusive 3.37 TW 
NM-171122-34 October 13, 2017 AN4 Inconclusive 3.39 TW 
NM-171122-35 October 13, 2017 AN4 Inconclusive 3.57 Inconclusive 
NM-171122-36 October 13, 2017 AN2 TW 3.84 BW 
NM-171122-56 October 13, 2017 AN4 Inconclusive 3.50 Inconclusive 
NM-171122-65 October 13, 2017 AN4 Inconclusive 3.39 TW 
NM-171122-72 October 13, 2017 AN4 Inconclusive 3.26 TW 

 
 

western boll weevil lineage in the PCA, and those individuals were also assigned to the 

same genotypic group as the western boll weevil in the population assignment 

probability test. 

3.4. Discussion 

3.4.1. Probable Source Population for Winter Garden Re-infestation 

Our results showed that the recent re-infestation of the previously eradicated Winter 

Garden production area of Texas could be attributed to movement of A. g. grandis 

individuals from some area along the US-Mexico border in south Texas. Low pairwise 
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values of FST (Table 3.2) and tight clustering in the PCA (Fig. 7) clearly indicated that 

the 2016 and 2017 Uvalde, TX and 2016 Batesville, TX collections were all part of the 

same re-infestation population and that that population was very likely to have 

originated from the Texas LRGV or northern Tamaulipas. Yet, contradictorily, in the 

population assignment probability test, all three Uvalde, TX re-infestation collections 

were strongly assigned to their own genotypic group, distinct from all other groups (Fig. 

8). Two key exceptions here were two individuals in the 2016 Uvalde, TX collection that 

were assigned to the 2016 Tamaulipas population with high probability. These two 

individuals, combined with the small Ne for the 2016 Uvalde, TX collection, together 

suggest that there may have been a founder effect that could explain the observed 

pattern. However, if this was the case, we would expect to see a positive FIS for the 2017 

Uvalde, TX collection, indicating inbreeding, but that was not observed. Furthermore, 

individuals from the 2017 Uvalde, TX collection had a higher probability of assignment 

to the eastern boll weevil lineage than did individuals from the 2016 Uvalde, TX 

collection, except for the two previously mentioned individuals. It should be noted that 

our sample size in 2017 was small, which may have led to unreliable estimates of Ne, 

genetic diversity, and FIS. Thus, it remains unclear if the Winter Garden, TX re-

infestation population underwent a population bottleneck due to a founder effect. 

Nonetheless, we can confidently assign the source population for this re-infestation as 

the LRGV and Tamaulipas population, based on the relatively low observed FST values 

and tight clustering in the PCA. However, we should note that the details of the 

demographic history of boll weevil in the Winter Garden area could not be fully 
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elucidated using this dataset. Furthermore, our results could not rule out the possibility 

of multiple introductions since the 2017 population seems to be more closely related to 

the LRGV and Tamaulipas than the 2016 population. 

3.4.2. Performance of Assays for Variant Diagnoses Using Hidalgo Co., NM 

Individuals 

We were able to confidently assign Hidalgo Co., NM individuals to the western boll 

weevil variant, and the SNP genotype assay outperformed both other assays for 

individual variant assignment. All Hidalgo Co., NM individuals exhibited SNP 

genotypes that matched closely with A. g. thuberiae populations sampled from Arizona 

wild cotton and were assigned to the same genotypic group as all individuals assigned to 

the western boll weevil lineage by Raszick et al. (in prep). The pairwise comparison of 

the western boll weevil lineage to the Hidalgo Co., NM individuals also displayed the 

lowest FST value in the dataset. Taken all together, these results clearly indicated that the 

Hidalgo Co., NM individuals are of a large contiguous population of weevils in the 

Arizona-Sonora border area. 

Of the 24 sampled individuals from the Hidalgo Co., NM re-infestation, the COI 

haplotype assay provided an unambiguous assignment of 12 individuals to the A. g. 

thurberiae taxonomic group. The other 50% of individuals exhibited the AN4 genotype, 

which is known to be found in both A. g. grandis and A. g. thurberiae. The 

morphometric assay performed arguably worse; though there were fewer ambiguous 

assignments, 5 individuals were unambiguously and incorrectly assigned to the A. g. 

grandis taxonomic group. The SNP genotype assay, on the other hand, was able to 



 

 

 

52 

successfully assign 100% of individuals to the A. g. thurberiae western boll weevil 

lineage as inferred by Raszick et al. (in prep) and was even able to cluster them with the 

Arizona populations as opposed to the southern Sonora population described in that 

same study (Fig. 7, Fig. 8). Thus, the SNP genotype assay performed better in that it was 

able to assign 100% of individuals to a subspecies whereas the COI and morphometric 

assays were only able to correctly assign roughly 50% of the sampled individuals. 

Furthermore, the SNP genotype assay was able to assign individuals to a specific 

geographic population within the broader taxonomic group. 
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4. MONTHLY AND YEARLY TURNOVER OF GENOTYPES IN LOCAL 

POPULATIONS OF THE COTTON FLEAHOPPER, PSEUDATOMOSCELIS 

SERIATUS (REUTER) (HEMIPTERA: MIRIDAE) 

 

4.1. Introduction 

The cotton fleahopper, Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae), feeds 

on over 100 known host plants across its range, and can be a pest of commercially 

cultivated upland cotton, Gossypium hirsutum L. (Malvales: Malvceae) (Reinhard, 1926; 

Reinhard, 1929; Hixson, 1941; Ring et al., 1993; Esquivel and Esquivel, 2009). Nymph 

and adult stages of P. seriatus attack small developing cotton pre-floral buds, referred to 

as squares, causing their abscission and yield losses (Ewing, 1929; Powell, 1979). 

Though there have been numerous studies that have investigated host plant use and 

dispersal in this species, only three have investigated genetic variation within and among 

populations. Barman et al. (2012) and Antwi et al. (2015) provided limited evidence of 

host-associated genetic differentiation (HAD) in some populations, but a full 

understanding of host plant use and genetic differentiation in P. seriatus has been 

elusive. In particular, it remains unclear if a genetically differentiated host-race that is 

associated with cultivated cotton exists. Resolution of this uncertainty is essential for 

integrated pest management (IPM) because pest population dynamics, movement, and 

gene flow, play critical roles in the evolution of resistance to pesticides and transgenic 

crops (Georghiou and Taylor, 1977; Guse et al., 2002; Onstad et al., 2002). 
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Understanding gene flow between potentially divergent populations with 

different host plant associations is critical for IPM because new control methods, such as 

transgenic crop varietals, continue to be developed which rely on a refuge strategy to 

delay evolution of insect resistance (Gould, 1998; Tabashnik et al., 2004; Miehls, 2008; 

Tabashnik, 2008; Tabashnik et al., 2008). In the case of P. seriatus, a new transgenic 

cotton cultivar has been developed that is resistant to Lygus spp. plant bugs and may be 

resilient to other mirids such as P. seriatus (Bachman et al., 2017). If genotypes of P. 

seriatus that are associated with cotton exist and do not exchange gene flow with 

genotypes associated with other host plants, then the cotton-associated genotypes could 

potentially develop resistance to the transgenic cotton, as would be expected with any 

new transgenic or plant systemic control (Gould, 1998; Caprio, 2001). Thus, it is 

essential to understand if a natural refuge exists wherein populations exposed to the 

control can exchange gene flow with populations that are associated with alternative 

wild host plant species and are therefore not subjected to selection for resistance. Of 

particular interest is the role of woolly croton, Croton spp. (Malpighiales: 

Euphorbiaceae), as an overwintering host plant and possible site of admixture for 

populations of P. seriatus that are potentially associated with other host plants earlier in 

the season. Since commercial cotton is only available as a host plant during part of the 

year, populations of P. seriatus found on cotton must both shift from alternative host 

plants onto cotton at the beginning of the growing season and back to alternative hosts at 

the end of the growing season. It is currently unknown whether these host shifts are 

associated with gene flow between cotton-associated populations and populations 
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associated with other host plants. Since woolly croton is the primary overwintering host 

plant for P. seriatus in areas where it occurs, we hypothesized that woolly croton serves 

as a year-end site of admixture between populations coming from different host plants, 

including cultivated cotton (Hixson, 1941; Holtzer and Sterling, 1980). 

We used a high-throughput sequencing (HTS) technique called double digest 

restriction site-associated DNA sequencing (ddRADseq) to generate a large dataset of 

single nucleotide polymorphism (SNP) markers in order to resolve the population 

genomic structure of P. seriatus in the Brazos Valley, Texas, a geographic location in 

which HAD has not been observed (Peterson et al., 2012). Previous studies have 

primarily utilized amplified fragment length polymorphism (AFLP) methods to examine 

genetic variation in populations of P. seriatus. Such markers, while informative, are now 

readily outperformed by newer methods that take advantage of HTS technology. SNP 

datasets derived from ddRADseq can be an order of magnitude or more larger than 

AFLP datasets, and are thus more sensitive to very recent or very low levels of genetic 

divergence. We tested whether SNP-based population genomics could detect a signal of 

HAD that had not been possible to detect using AFLP markers, particularly with respect 

to P. seriatus populations reproducing on cultivated cotton. We assessed the monthly 

and yearly turnover of P. seriatus genotypes collected from commercially cultivated 

upland cotton and from nearby wild host plants. Both Barman et al. (2012) and Antwi et 

al. (2015) sampled their respective study locations only once per season. This method 

failed to consider the impact of variation in host plant phenology, resulting in a potential 

temporal bias. Though both studies acknowledged that host plant phenology likely plays 
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a large role in determining local genotypic observations, neither was designed to parse 

the effects of time on genotypic distributions in P. seriatus populations. These studies 

also genotyped field-collected adults rather than juveniles, and therefore could not 

disentangle potentially confounding effects of adult movement from other populations 

and host plants versus local reproduction on specific hosts. For our study, we 

intentionally sampled juveniles resulting from local reproduction at the same geographic 

locations multiple times over the course of two years in order to investigate the 

genotypic turnover at those sites. 

4.2. Materials and Methods 

4.2.1. Sample Acquisition 

We sampled a total of 561 P. seriatus individuals across 2015 (N=200) and 2016 

(N=361). Although we collected all developmental stages, we aimed to utilize only 

nymphs for our study in order to ensure that individuals originated from the samples. In 

some cases, we were unable to obtain a suitable number of nymphs, so adults were 

included. Individuals associated with cultivated cotton were collected from a focal 

cotton field located seven miles west of College Station, TX, in 2015, and a second 

nearby field was added in 2016 to extend our sampling (Table 4.1). In 2015, the focal 

cotton field was divided into 12 sections in a grid-like manner, and on each sampling 

date, every section was sampled with a 38 cm diameter sweep net (20 sweeps per 

section; total of 240 sweeps on each sample date). Sweep net contents collected from 

each section were transferred into separate Ziploc bags (30 x 30 cm), and the bags were 

placed in a cooler equipped with ice packs. Upon return to the laboratory, bags were  
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Table 4.1. Locality information for all sampled populations used in this study. N is 
the number of individuals successfully sequenced from each locality. Senesced 
croton populations refer to those individuals which were reared from eggs collected 
from croton stems. Cultivated cotton and wild host populations were collected 
using sweep nets. N (Juveniles) may refer to eggs or nymphs depending on if the 
population is from senesced croton or from cultivated cotton or wild hosts. 

Population Latitude Longitude Date Collected N (Juveniles) N (Adults) N (Total) 

Senesced Croton 1 
30° 33' 30.72" N 96° 24' 28.31" W 1-Feb-2015 33 0 33 
30° 33' 32.52" N 96° 24' 27.42" W 23-Feb-2016 27 0 27 

Senesced Croton 2 
30° 23' 53.69" N 96° 21' 20.40" W 1-Feb-2015 32 0 32 

30° 24' 7.64" N 96° 21' 16.21" W 23-Feb-2016 30 0 30 

Senesced Croton 3 
30° 33' 50.70" N 96° 30' 40.98" W 1-Feb-2015 33 0 33 

30° 33' 51.58" N 96° 30' 40.41" W 23-Feb-2016 30 0 30 

Senesced Croton 5 
30° 40' 46.91" N 96° 25' 35.74" W 2-Feb-2015 31 0 31 

30° 40' 48.38" N 96° 25' 35.13" W 23-Feb-2016 30 0 30 

Senesced Croton 9 
30° 46' 42.60" N 96° 42' 32.60" W 2-Feb-2015 30 0 30 

30° 46' 43.14" N 96° 42' 32.25" W 23-Feb-2016 31 0 31 

Cultivated Cotton 1 

30° 36' 38.38" N 96° 29' 42.80" W 23-Jun-2015 19 0 19 

30° 36' 37.66" N 96° 29' 43.29" W 14-Jul-2015 9 0 9 

30° 36' 38.13" N 96° 29' 43.32" W 10-Aug-2015 13 0 13 

30° 36' 38.98" N 96° 29' 39.18" W 28-Jun-2016 3 23 26 

Cultivated Cotton 2 30° 36' 10.65" N 96° 30' 15.76" W 28-Jun-2016 4 22 26 

Wild Host 1 
30° 33' 45.87" N 96° 30' 55.82" W 28-Jun-2016 6 22 28 

30° 33' 44.58" N 96° 30' 57.09" W 9-Aug-2016 16 10 26 

Wild Host 3 
30° 36' 43.10" N 96° 29' 34.21" W 28-Jun-2016 5 20 25 

30° 37' 26.95" N 96° 29' 31.99" W 9-Aug-2016 21 4 25 

Wild Host 4 

30° 38' 26.54" N 96° 27' 24.52" W 29-Jun-2016 25 3 28 

30° 38' 21.08" N 96° 27' 20.55" W 26-Jul-2016 10 14 24 

30° 38' 25.80" N 96° 27' 21.61" W 9-Aug-2016 2 3 5 

 
 
 
placed into a freezer in order to euthanize captured insects and stored for no more than 

two days. Next, P. seriatus individuals were separated from by-catch, and larger nymphs 

(>3rd instar) from each bag on each sampling date were transferred into vials containing 

100% ethanol (EtOH). The vials were then stored at -80°C until DNA isolation. In 2016, 

instead of dividing the field into 12 sections, 20 sweep samples were each taken from 
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five internal (>30 m from field edge) and five external sites (<10 m from field edge) of 

each field for a total of 200 sweeps per field. On each sampling date, samples were 

collected from each side of the field (doubled up on one side) for a total of 10 sweep 

sites in each cotton field. Sweep net samples were handled and processed in the same 

manner as in 2015. 

Overwintering P. seriatus individuals associated with senesced woolly croton 

were sampled from five localities within a 20-mile radius of the original focal cotton 

field. All five localities were sampled in both years of the study. To ensure locality 

fidelity for the senesced croton populations, the host plant itself was collected in 

February (during the overwintering period) and late-instar juvenile insects were reared 

from the overwintering eggs found on the plant. Croton stems from each locality were 

contained in separate burlap sacks and stored in a walk-in-cooler (5.5±1°C) until they 

were exposed to conditions to terminate diapause as described in Breene et al. (1989). 

Hatched nymphs from each locality were housed separately in plastic containers (~750 

mL) equipped with 80 mesh organza-lined lids. Nymphs were provided green beans 

(Phaseolus spp.) replaced every other day and reared at 29±1°C with a 14:10 (L:D) h 

photoperiod. Additionally, shredded paper was added to each container to serve as 

resting sites for nymphs and to minimize movement of green beans. Cages were 

monitored daily for fourth and fifth instars, which were removed with an aspirator and 

euthanized directly in 100% EtOH. Nymph samples were then stored at -80°C until 

DNA isolation. 
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P. seriatus individuals utilizing alternative wild host plants were sampled in the 

second year of the study. Three localities near the cultivated cotton fields were sampled 

in June, July, and August 2016. Sweep net samples were collected from 5 sites within 

each wild host locality (10 sweeps per site; total of 50 sweeps per wild host locality). 

Sweep net samples were then processed in the same manner as those collected from 

cultivated cotton. All individuals were euthanized directly into 80-100% molecular lab 

grade EtOH and then stored at -80°C until preparation for DNA isolation. Individuals 

collected in June (representing “early summer”) were included from all three sites. At 

wild host localities 1 and 3, individuals collected in August were used to represent “late 

summer” genotypes, while wild host locality 4 includes individuals from July and 

August due to low population density in August. In addition to insect collection, the 

most dominant plant species at each wild host locality were recorded (up to five species). 

All vegetation recordings were made during the sampling events for those localities in 

June, July, and August, 2016. 

4.2.2. DNA Isolation, Library Preparation, and Sequencing 

We used the Qiagen Gentra Puregene Cell and Tissue Kit to isolate genomic DNA from 

P. seriatus individuals with a modified protocol (Supplementary Information). DNA 

isolation was carried out in two batches; batch 1 contained the 200 individuals collected 

in 2015, and batch 2 contained the 361 individuals collected in 2016. DNA was isolated 

from individuals in both batches using nearly the same protocol, but 2015 samples were 

mechanically disrupted prior to tissue lysing using dissecting scissors whereas 2016 

samples were mechanically disrupted by freezing in liquid nitrogen and crushed with 
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disposable pestles. Isolated DNA from all 561 individuals was verified for high 

molecular weight via electrophoresis on a 1.5% agarose gel. DNA sample preparation 

and sequencing were carried out at the Texas A&M AgriLife Genomics and 

Bioinformatics Service (TxGen). Isolated DNA was further purified using the Agencourt 

AMPure XP purification system prior to library preparation. To prepare the double 

digest restriction site-associated DNA sequencing (ddRADseq) libraries, purified 

genomic DNA was digested using the restriction enzymes PstI and MluCI and the 

resulting digested DNA was selected for fragment sizes ranging 250-500 base pairs (bp). 

Size-selected fragments were then ligated with standard Illumina adapters, multiplexing 

indexes, and sequencing primers, albeit with a single notable exception - the R1 reads 

(forward reads; those sequenced in the 5’ direction) were ligated with a custom 

sequencing primer that contained the 5’ enzyme remnant. The batch of 2015 libraries 

was sequenced on an Illumina HiSeq 2500 using 125x125 sequencing cycles. The batch 

of 2016 libraries was sequenced on an Illumina HiSeq 4000 using 150x150 sequencing 

cycles. Raw sequences generated by TxGen were demultiplexed prior to delivery to the 

authors and FastQC version 0.11.3 reports were provided by TxGen for each sample, 

and the authors subjectively reviewed those reports in order to ensure that the dataset 

was of suitable quality for use in a bioinformatics pipeline (Andrews, 2010). Raw reads 

were then filtered using Kraken version 1.1 to remove any potential bacterial 

contamination (Wood and Salzberg, 2014). Sequences with any match to the non-

redundant bacterial database hosted by the National Center for Biotechnology 

Information (NCBI) were removed. Genomic loci containing SNPs were then identified 
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using the SNP-calling pipeline dDocent version 2.5.5 (Puritz et al., 2014a; Puritz et al., 

2014b). dDocent was run using default parameters and procedures as described in the 

user manual, except as noted hereafter. dDocent was paused after trimming, and 

Trimmomatic version 0.38 was used to further trim sequences to a uniform length of 90 

bp (Bolger et al., 2014). dDocent was then restarted and allowed to run using a percent 

clustering similarity of 90%. VCFtools version 0.1.15 was then used to filter the 

dDocent output in variant call format (vcf) in accordance with the tutorial in the dDocent 

user guide; however, we also filtered out loci that were not present in 100% of 

individuals in order to guarantee a dataset with no missing data (Danecek et al., 2011). 

The final filtered SNP dataset was used for all downstream analyses. Any necessary file 

conversions were carried out using PGDSpider version 2.1.1.3 (Lischer and Excoffier, 

2012). 

4.2.3. Population Genetic Analyses 

The open-source software RStudio version 1.1.442 and its associated packages were 

used to carry out conventional population genetic analyses (R Core Team, 2018). R/vcfR 

version 1.7.0 was used to read the filtered vcf file and prepare objects for use with other 

packages (Knaus and Grünwald, 2017). R/adegenet version 2.1.1 was used to calculate 

the expected and observed heterozygosity (HE and HO) at each locus and to plot HO as a 

function of HE (Jombart, 2008; Jombart and Ahmed, 2011). R/genepop version 1.0.5 was 

used to calculate genetic diversity based on allele identity and the inbreeding coefficient 

(FIS) for each population (Rousset, 2008). We calculated both the average diversity 

within individuals and the average diversity among individuals within a population. 
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R/genepop was also used to estimate gene flow by calculating pairwise FST values for all 

pairs of populations in the study. R/adegenet was used to carry out and plot the results of 

a principal components analysis (PCA) in order to visualize the spatial clustering of 

individual genotypes based on principal components 1 and 2. Since R/adegenet can only 

carry out a PCA using biallelic loci, SNP loci with more than two alleles were removed 

from the dataset. The software fastSTRUCTURE version 1.0 was used to calculate the 

probability of individual assignment to one or more predetermined genotypic groups 

(hereafter referred to as the “population assignment probability test”) where K is the 

number of genotypic groups and 1≤K≤22 (Raj et al., 2014). PLINK version 1.07 was 

used to convert the vcf file into a format that was suitable for input into 

fastSTRUCTURE (Purcell et al., 2007). The browser-based program StructureSelector 

was used to evaluate the fastSTRUCTURE outputs and to choose the optimal value of K 

for our dataset, and CLUMPAK was used to visualize individual population assignments 

relative to other individuals (Kopelman et al., 2015; Li and Liu, 2018). For the 

Puechmaille (2016) component of StructureSelector, we tested mean membership 

coefficient thresholds of 0.5, 0.6, 0.7, and 0.8. 

4.3. Results 

4.3.1. Host Plant Diversity at Wild Host Localities in 2016 

The dominant plant species present at the Wild Host 1 locality were woolly croton and 

horsemint (Monarda spp.) on June 28. On that same day, Wild Host 3 was dominated by 

woolly croton and silverleaf nightshade (Solanum elaeagnifolium Cavanilles). Wild Host 

4 had a mix of woolly croton, horsemint, and silverleaf nightshade on June 29 and a mix 
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of horsemint and woolly croton on July 26. On August 9, only woolly croton was 

abundant enough to be considered dominant at all three localities. 

4.3.2. Genetic Variation Within and Among Populations 

1.611 TB of raw sequence data was generated by ddRADseq. FastQC reports were 

consistent with what would be expected from a normal Illumina run, and thus considered 

to be of sufficiently high quality for further downstream analysis. dDocent identified 

694,072 SNP loci, most of which were subsequently filtered, resulting in a final SNP 

dataset consisting of 12,653 loci with 0% missing data. This dataset was used in all of 

the analyses except in cases where non-binary loci were removed to create a subset for  

 
 

 
Figure 9. Observed heterozygosity plotted as a function of expected heterozygosity. 
Both axes range from 0 to 1, the theoretical minimum and maximum for 
heterozygosity. Drawn line indicates a theoretical 1-to-1 relationship wherein 
observed heterozygosity matches expected heterozygosity. Points above and to the 
left of the line indicate loci that have an observed heterozygosity that exceeds the 
expected. 
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Table 4.2. Population genetic summary statistics for every sampled locality. 1-Qintra 
and 1-Qinter are measures based on heterozygosity. 1-Qintra is the average genetic 
diversity within individuals and 1-Qinter is the average genetic diversity among 
individuals within a population. FIS is the inbreeding coefficient. Populations 
labeled as “Croton” refer to the individuals collected as eggs from senesced croton. 

  

 1-Qintra 1-Qinter FIS 

20
15

 Fe
br

ua
ry

 

Croton 1 0.0576 0.0526 -0.0942 

Croton 2 0.0588 0.0531 -0.1071 

Croton 3 0.0637 0.0582 -0.094 

Croton 5 0.0652 0.06 -0.0856 

Croton 9 0.0773 0.067 -0.155 

Jn
 

Cotton 1 0.0893 0.0758 -0.1777 

Jl
 

Cotton 1 0.0846 0.0752 -0.124 

A
u Cotton 1 0.0607 0.0547 -0.1099 

20
16

 

Fe
br

ua
ry

 

Croton 1 0.0601 0.0557 -0.0798 

Croton 2 0.0621 0.0576 -0.0771 

Croton 3 0.0592 0.0553 -0.0711 

Croton 5 0.061 0.0566 -0.0792 

Croton 9 0.0606 0.0564 -0.0748 

E
ar

ly
 S

um
m

er
 Cotton 1 0.0717 0.0629 -0.1413 

Cotton 2 0.0725 0.0659 -0.1413 

Wild Host 1 0.0703 0.0638 -0.1017 

Wild Host 3 0.0699 0.0629 -0.1118 

Wild Host 4 0.0702 0.0614 -0.143 

L
at

e 
Su

m
m

er
 Wild Host 1 0.0677 0.0618 -0.0958 

Wild Host 3 0.0715 0.0643 -0.1112 

Wild Host 4 0.069 0.0609 -0.1316 

 
 

some analyses. For the majority of loci, HO exceeded HE (Fig. 9). The inbreeding 

coefficient (FIS) was negative for all sampled populations (Table 4.2). 

The global FST for our dataset was 0.0131. Pairwise values of FST ranged from -

0.0008 to 0.0446 (Table 4.3). Higher pairwise values were generally observed when 

comparing 2015 populations to 2016 populations, and the highest values of FST (>0.03) 

were observed when comparing the focal cotton field June 2015 population to any other 
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Table 4.3. Pairwise FST values for all pairs of populations sampled. Populations labeled as “croton” are those sampled from senesced croton during the 
overwintering period. 

20
15

 Fe
br

ua
ry

 

Croton 1 -                     

Croton 2 0.0063 -                    

Croton 3 0.0037 0.0099 -                   

Croton 5 0.0099 0.0139 0.0021 -                  
Croton 9 0.0268 0.0299 0.024 0.0045 -                 

Ju
n Cotton 1 0.0342 0.0376 0.0393 0.043 0.0446 -        

Global FST = 0.0131 
   

Ju
l 

Cotton 1 0.027 0.0303 0.0116 0.0233 0.0248 0.0366 -          

A
ug

 

Cotton 1 0.0044 0.0176 0.0053 0.0133 0.0152 0.0429 0.0249 -         

20
16

 

Fe
br

ua
ry

 

Croton 1 0.0095 0.0134 0.0089 0.0108 0.0265 0.0445 0.0241 0.0146 -             

Croton 2 0.0091 0.0134 0.0084 0.0104 0.0254 0.0413 0.0229 0.0145 0.0009 -            
Croton 3 0.0082 0.0127 0.0082 0.0101 0.026 0.0443 0.0246 0.0134 0.0026 0.001 -           
Croton 5 0.0089 0.0133 0.0085 0.0104 0.0262 0.043 0.0233 0.0133 0.0013 0.0004 0.0002 -          
Croton 9 0.0103 0.0144 0.0102 0.0116 0.0273 0.0446 0.0248 0.0152 0.0049 0.0063 0.0032 0.0045 -         

E
ar

ly
 S

um
m

er
 

Cotton 1 0.017 0.0196 0.014 0.0147 0.0256 0.0403 0.0224 0.0183 0.0103 0.0122 0.0124 0.0107 0.013 -        

Cotton 2 0.0122 0.0154 0.0103 0.0113 0.0231 0.0369 0.017 0.0139 0.0054 0.004 0.0038 0.004 0.0083 0.0059 -       

Wild Host 1 0.0105 0.0139 0.0086 0.0044 0.0031 0.0358 0.017 0.0124 0.0044 0.0057 0.0043 0.0044 0.0031 0.0054 0.003 -      
Wild Host 3 0.0109 0.0146 0.0085 0.0042 0.0026 0.0374 0.0173 0.013 0.0046 0.0059 0.0048 0.0042 0.0026 0.0048 0.0029 -0.0002 -     
Wild Host 4 0.0184 0.0212 0.0156 0.0123 0.0151 0.0423 0.0245 0.0207 0.0128 0.0138 0.0144 0.0123 0.0151 0.0013 0.0098 0.0085 0.0078 -    

L
at

e 
Su

m
m

er
 

Wild Host 1 0.0103 0.0137 0.0082 0.0043 0.0012 0.0386 0.018 0.0127 0.0039 0.0057 0.0044 0.0043 0.0012 0.0071 0.004 -0.0005 -0.0008 0.0088 -   
Wild Host 3 0.0114 0.0144 0.009 0.0052 0.0035 0.0367 0.0165 0.0134 0.0053 0.0065 0.0061 0.0052 0.0035 0.002 0.0037 0.0016 0 0.0039 0.0008 -  

Wild Host 4 0.0148 0.0181 0.0127 0.0088 0.0114 0.0409 0.0229 0.0168 0.0095 0.011 0.0102 0.0088 0.0114 0.0003 0.0074 0.0063 0.0049 0.0008 0.0068 0.0018 - 

   Croton 1 Croton 2 Croton 3 Croton 5 Croton 9 Cotton 1 Cotton 1 Cotton 1 Croton 1 Croton 2 Croton 3 Croton 5 Croton 9 Cotton 1 Cotton 2 WH 1 WH 3 WH 4 WH 1 WH 3 WH 4 

   February June July August February Early Summer Late Summer 

   2015 2016 
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Figure 10. Results of principal components analysis presented as principal 
component 2 (PC 2) plotted as a function of principal component 1 (PC 1). 
Eigenvalues (EV) indicate percent variation explained by each respective PC. 
 
 
 
population. For our principal components analysis, the first 14 principal components 

were determined to have the greatest eigenvalues before reaching an asymptote, so the 

PCA was conducted using only those first 14 PCs. A coordinate plot of principal 

components 1 and 2 revealed the presence of three distinct clusters of populations, yet 

some individuals in different clusters are spatially closer to one another than either is to 

other members of their clusters (Fig. 10). In general, all 2016 samples clustered together 
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and all 2015 samples clustered together except for the June 2015 focal cotton field 

population, which formed the third cluster. 

The software fastSTRUCTURE was used to calculate the probability of 

individual assignment to one or more genotypic groups, where K is the number of 

groups. StructureSelector results indicated that the most likely actual value of K is 1 or 

3. The marginal likelihood of the model is maximized at K=1, while K=3 is predicted 

using the Puechmaille (2016) method. The result of K=3 was consistent across all four 

tested mean membership coefficient thresholds. The CLUMPAK plot of population 

assignment probabilities at K=3 revealed the dominance of two probable genotypic 

groups (Fig. 11). One such group is prominent in the June 2015 focal cotton field 

population and occurs more frequently in 2015 whereas the second genotypic group is 

more prevalent in 2016. Both genotypes; however, are represented in both years of the 

study. 

4.4. Discussion 

Our results, overall, show that there is generally high gene flow between populations of 

P. seriatus infesting cultivated cotton and those associated with other host plants in the 

Brazos Valley of TX. Pairwise and global measures of FST were all below 0.05 (Table 

4.3), which by Wright’s (1951) original interpretation of the statistic indicates little to no 

differentiation. This conclusion is further supported by the observed negative values of 

within-population FIS (Table 4.2) that are indicative of heterozygote excess, a pattern 

that is expected in outcrossing populations with high gene flow (Tapio et al., 2003). This 

outcome is not entirely surprising because our populations were sampled from a 
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Figure 11. CLUMPAK plot of fastStructure results when the given number of 
genotypic groups is 3. Each color represents 1 of those three groups. Each vertical 
bar represents a single individual from the designated population, and the 
proportion of the bar that is one of the three colors represents the percent 
probability (from 0 to 1) of that individual’s assignment to that genotypic group. 
 
 
 
relatively small geographic area. Further, this finding is consistent with the conclusion 

drawn by Barman et al. (2012) that there is no signal of HAD present in these 

populations. 

SNP datasets are very sensitive by virtue of the number of markers, enabling 

identification of some very slight population-level genetic differentiation. We identified 

three distinct genotypic groups that are differentiable despite the high gene flow detected 

between those groups. Previous studies that have examined population genetic structure 

in P. seriatus have largely focused on broad-scale genotypic distributions or genetic host 

plant associations, but our data suggests that there may be an important temporal 

component that contributes to the population genetic structure (Barman et al., 2012; 

Barman et al., 2013; Antwi et al., 2015). Our study is unique in that we sampled the 

same geographic locations multiple times over the course of two years, enabling 

detection of changes in local genotypes over time. We observed population sub-structure 
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that seemed to be more strongly influenced by time (year and monthly) than by any 

association with a particular host plant. Specifically, we observed that individuals 

collected in 2015 were genetically distinct from those collected in 2016. Furthermore, 

the individuals collected from commercially cultivated cotton at one sampling time in 

June of 2015 were genetically distinct from all other sampled populations. These three 

differentiated groups are clearly visible in our PCA plot (Fig. 10). Though there were a 

few non-conforming individuals, these groups were strongly supported by the non-

overlapping 95% confidence ellipses associated with their respective point clusters.  

The population assignment probability test (Fig. 11) provides evidence for the existence 

of the same three genotypic groups, but arguably enables better visualization of how the 

groups are related. The most obvious differences were across years between 2015 and 

2016. Although within each year, there is an assigned genotypic group that is present in 

both years, there is also one assigned genotypic group that is only associated with 2015. 

This unique genotypic group is composed of the individuals from commercial cotton in 

June of 2015, consistent with the PCA plot showing similar differentiation (Fig. 10). 

Interestingly, there are a few individuals sampled from senesced woolly croton 

populations (at least one individual from all populations except Croton 9) that were also 

assigned to this genotypic group. This helps to explain the overlap of the “non-

conforming” individuals in the PCA and also provides further evidence that HAD is not 

occurring in the Brazos Valley because there are other individuals from woolly croton 

that were assigned to other genotypic groups. The other genotypic group to which 2015 

samples were commonly assigned is represented in all croton populations and is the 
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dominant genotypic group in July and August 2015. This shows that there can be 

genotypic turnover even within a single growing season wherein the P. seriatus 

individuals present in a cotton field in the late summer may not necessarily be related to 

those present earlier in the season. Additionally, in the July 2016 data we first see an 

individual with greater than 50% percent probability of being assigned to the third 

genotypic group. This individual signals the beginning of the observed yearly turnover 

wherein a third genotypic group becomes present in all sampled host plant species by the 

end of the year. In 2016, the monthly turnover in cotton described from 2015 could not 

be observed because we were only able to obtain adequate sample size from both cotton 

fields at a single sampling time in June. However, our 2016 data allowed us to observe a 

pattern consistent with the movement of genotypic groups associated with cotton in July 

and August 2015 onto the overwintering host, woolly croton, detected in the February 

2016 samples, and then back onto cotton in the early summer of 2016. Finally, our 

sampling in the Wild Host localities also allowed us to observe the persistence of P. 

seriatus genotypes on live woolly croton throughout the year and the movement of other 

genotypes back into live woolly croton after other host plants had begun to senesce or 

become otherwise less attractive. 

 Taken all together, our dataset indicates one instance of monthly turnover of 

local genotypes in cotton and one instance of yearly turnover. Though neither of these 

transitions is absolute (all three genotypic groups are represented in some manner in both 

years of the study, and one group is well-represented in both years), our results suggest 

that the time at which insect sampling occurs can have a profound effect on the detection 
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of genetic population structuring in populations of P. seriatus. However, the genotypic 

population structure is not maintained over time. Variation in overwintering emergence 

and host plant phenology seem likely to contribute to the temporal dynamics of 

population genetic structure observed here. Different genotypic groups may represent 

different cohorts that vary in emergence times from overwintering due to local 

environmental variation, resulting in those individuals colonizing cotton and other hosts 

at different times. Host plant phenology has been linked to variation in CFH colonization 

of plants from year to year, and is likely to play a major role in determining which 

genotypic groups are observed at a particular location at a particular time (Almand et al., 

1976). Plant phenology may also explain the slight differentiation observed, similar to 

what has been documented in Rhagoletis flies, wherein differences in plant phenology 

have driven host-associated pre-mating isolation (Feder et al., 1988; Filchak et al., 

2000). Alternatively, new genotypic groups may arrive in a certain location as result of a 

migration event. P. seriatus has been documented as having a dispersal range of at least 

20 miles, and individuals may be able to travel even farther by taking advantage of 

prevailing wind currents (Gaines and Ewing, 1938). So, new genotypes may appear in 

local populations as a result of such movement. In either case, the effects of 

differentiation due to differences in host plant phenology and the introduction of new 

genotypes due to migration seem to be strongly counteracted by the homogenizing 

effects of gene flow. 

Despite the observed genotypic turnover within and among years, our dataset 

nevertheless provides support for woolly croton as a year-end site of population 
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admixture, at least in areas where it occurs. Though there are differences in which 

genotypic groups are present from 2015 to 2016, in both years, any genotypic group 

associated with cotton is also found in association with woolly croton and vice versa. 

Furthermore, gene flow is considered to be very high between all sampled populations 

(Table 4.3), so we conclude that there was no apparent differentiation between cotton 

and woolly croton populations of P. seriatus in either year of the study. On a broader 

geographic scale, we cannot extrapolate to what occurs in areas where woolly croton 

does not occur. Barman et al. (2012) and Antwi et al. (2015) have demonstrated that 

there is a geographic pattern of HAD in P. seriatus wherein HAD is observed in areas 

where woolly croton does not occur, but is not observed in areas where it is present. Our 

study also supports the lack of HAD when woolly croton is present, but further 

investigations into patterns of genetic differentiation are still required in areas where 

woolly croton is absent. 
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5. CONCLUSIONS 

 

The population genomics approach utilized in this dissertation was successfully applied 

at broad and fine geographic scales and to two very different cotton pest species. On a 

broad scale, we used SNP genotyping to resolve the phylogeography of the boll weevil 

across two continents and assign probable source populations of boll weevils occurring 

in previously eradicated areas of the US. On a small scale, we used the same 

methodology to resolve the local population genomic structure of the cotton fleahopper 

within a roughly 60 km area. Together, these applications demonstrated the flexibility of 

our approach to answer evolutionary questions and address pest management issues for a 

variety of systems. We also showed the power of SNP markers to both determine 

taxonomic identity and assign individuals to a likely population of origin even when 

other markers may be unable to fully do so.  

5.1. Applications to Boll Weevil Management and Eradication 

Our boll weevil phylogeography research has major implications for boll weevil 

management in North America. We revealed that populations occurring along the US-

Mexico border are likely contiguous across international boundaries, particularly near 

the Gulf Coast. This necessitates international cooperation in order to fully address 

infestations occurring in that area. We also provided evidence for the two-form 

hypothesis of boll weevil variation over the three-form hypothesis such that there are 

two geographic subspecies of boll weevil, A. g. grandis in the east and A. g. thurberiae 

in the west. However, our research suggests that the western subspecies may not be a 
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truly host-associated variant as has been described in prior literature. This is an 

important consideration for managers in the west because they will now need to consider 

populations occurring on wild host plants as potential sources of infestations of 

commercial cotton. 

 In Argentina, we found limited evidence of a recent population bottleneck or 

founder effect, consistent with what would be expected after a recent range expansion. 

However, we also found that populations across the country are exchanging gene flow. 

This could be due to natural movement of weevils, which would imply that successful 

management would need to address the cotton growing regions of the country as a 

whole. Alternatively, weevils can be moved around by human activity. So, if human 

activity is contributing to gene flow between weevil populations in this country, that will 

need to be addressed in order to maintain successful local management. 

Human movement of weevils also remains a problem for the US Eradication 

Program. Re-infestations of previously eradicated areas are hypothesized to have 

occurred due to human activity. Our source determination can help target problematic 

areas and prevent further re-infestations from those areas. The primary limitation to our 

SNP genotype assay, as implemented here, is that it takes significantly longer to 

complete (1-4 months) than the currently utilized diagnostic assays (less than 1 week). 

Thus, future work leading to the development of a rapid diagnostic SNP assay based on 

the research presented here will help capitalize on the power of the SNP markers without 

sacrificing the speed of diagnosis. To fully realize the power of a SNP approach to 



 

 

 

75 

phylogeography or diagnostics, future research should also focus on further collection of 

weevils from other geographic areas and host plants. 

5.2. Applications to Insect Resistance Management for Cotton Fleahopper 

With respect to developing an IRM strategy for the new transgenic control of P. seriatus, 

our research provides support for the natural refuge status of woolly croton as an 

overwintering host that promotes gene flow between P. seriatus genotypes associated 

with cotton and those associated with other host plants. Our results showed that while 

there were multiple genotypes recovered from cotton, all of those genotypes were also 

recovered from woolly croton populations. Additionally, we also detected a temporal 

turnover of local genotypes such that a given genotypic group of P. seriatus associated 

with cotton would not be expected to be exposed to control measures in cotton on a 

chronic basis. A critical caveat to consider is variation in the availability of woolly 

croton across the broader range of P. seriatus when making management decisions 

involving natural refuges. In areas where woolly croton does not occur, further work 

should be conducted to identify the alternative overwintering host plants that may act 

similarly to woolly croton as a site of year-end admixture. Beyond that, for future studies 

investigating population genomic structure in species with complex host associations, 

our results highlight the need to implement a temporal sampling scheme that accounts 

for potential turnover of local genotypes on yearly or even a monthly basis to avoid 

potentially confounding effects of spurious genetic structuring that is not maintained 

over time. 
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APPENDIX A 

PROTOCOL FOR ISOLATION OF HIGH MOLECULAR WEIGHT DNA FROM 

BOLL WEEVIL AND COTTON FLEAHOPPER 

 

For some numbers in the following protocol, there is a larger number followed by a 
smaller number in parentheses. The larger number is for the isolation of DNA from boll 
weevil, and the smaller number was used for the cotton fleahopper version of the 
protocol. 
 
Equipment and Reagents not provided with Puregene Kit 
 

1. 1.5 ml microcentrifuge tubes 
2. 3 200 mL beakers with 2% bleach, ethanol, and pure water 
3. Sterilized plastic pestles 
4. Incubation block 
5. Foam cooler 
6. Liquid nitrogen 
7. Pipets and pipet tips 
8. Cold 100% isopropanol 
9. Cold 70% ethanol 
10. Microcentrifuge 
11. Crushed ice 
12. Glycogen Solution 

 
Sample Preparation – Day 1 
 

1. Preheat an incubation block to 55°C. 
2. Sterilize plastic pestles and soft forceps using 1 minute soaks in 2% bleach, 

ethanol, and pure water. 
3. Briefly blot excess ethanol from specimens on clean absorbent paper. 
4. Add 1 whole specimen each to a labeled 1.5 ml microcentrifuge tube. 
5. Freeze the micro centrifuge tubes in liquid nitrogen until bubbling subsides. 
6. Homogenize each tissue using a sterilized plastic pestle.  

a. Add 600(100) ul of Cell Lysis Solution to each tube and remove the 
pestle, taking care to leave all tissue in the tube. 

7. Add 1.5 ul of Puregene Proteinase K to each tube. 
8. Mix by inverting 25 times. 
9. Centrifuge for 5 seconds at 16,000 x g. 
10. Incubate at 55°C for overnight or until tissue has completely lysed. 
11. Invert tube periodically during incubation. 
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a. If tissue is not completely lysed after overnight digestion, add 1.5 ul of 
Proteinase K and incubate for another 3 hours. 
 

DNA Extraction – Day 2 
 

1. Preheat incubation block to 37°C. It is better to use a second heating block if 
possible, as a cold block will heat to 37°C much more quickly than a block at 
55°C will take to cool down. 

2. Add 3.0(1.0) ul of RNase A solution to the sample. 
3. Mix by inverting 25 times. 
4. Incubate for 30 minutes at 37°C. 

a. During this incubation, grind a full tray of ice and put it into the foam 
cooler for upcoming sample incubation. 

5. Incubate on ice for 1 minute to quickly cool the sample. 
6. Add 200(33) ul of Protein Precipitation Solution 
7. Mix thoroughly by shaking vigorously for 20 seconds. 
8. Centrifuge for 3 minutes at 16,000 x g. 
9. Incubate for 5 minutes on ice. 

a. During this incubation, pipet 100 ul of isopropanol into a clean 1.5 ml 
microcentrifuge tube. 

10. Centrifuge for 3 minutes at 16,000 x g. 
11. You will see a protein pellet that has formed at the bottom of the sample. 

Without disturbing this pellet, carefully pour the supernatant from the sample 
into the fresh tube with the 600 ul of isopropanol. 

12. Add 1.0(0.5) ul of Glycogen Solution to the sample. 
13. Mix by inverting gently 50 times. 
14. Centrifuge for 5 minutes at 16,000 x g. 
15. The DNA may now be visible as a small white or nearly clear pellet at the 

bottom of the tube. Carefully pour off the supernatant, and drain the tube 
completely by inverting on a clean piece of absorbent paper, taking care that the 
pellet remains in the tube. 

16. Let tube air dry for 5 minutes. 
17. Add 600(100) ul of cold 70% ethanol to the sample. 
18. Invert several times gently to wash the DNA pellet.  
19. Centrifuge for 3 minutes at 16,000 x g. 
20. Again, carefully pour off the supernatant, and drain the tube completely by 

inverting on a clean piece of absorbent paper, taking care that the pellet remains 
in the tube. 

21. Allow tube to air dry for 20 minutes or dry using a vacu-fuge (10 minutes at 
30°C). 

a. During this step, preheat an incubation block to 65°C. 
22. Add 50(27) ul of DNA Hydration Solution. 
23. Shake the sample vigorously for 5 seconds to mix.  
24. Centrifuge for 15 seconds at 16,000 x g. 
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25. Incubate at 65°C for 1 hour. 
26. Place on orbital shaker and shake gently overnight at room temperature. Ensure 

cap is tightly closed to avoid leakage. 
 

Quality Control – Day 3 
 

1. Use a spectrophotometer to obtain concentration and purity estimates. 
2. Run sample on an electrophoresis gel to determine relative integrity of DNA. 


