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ABSTRACT 

 

Well test analysis is a critical tool for evaluation of well and reservoir performance. 

It is intrinsically an inversion methodology for reservoir parameter estimation and is 

closely related to the drainage volume evolution around the wellbore. Pressure transient 

analysis provides insight into our geometric understanding of the reservoir shape and 

volume, which helps us obtain a volume-averaged estimation of reservoir parameters from 

the interpretation of the flow regime in the porous media. Though straightforward, the 

conventional well test methodology can only help us interpret the flow mechanism in an 

analytic approach with simplified (homogeneous) models. When detailed reservoir 

information is required, numerical simulation needs to be employed to obtain grid-cell 

based reservoir parameters from integration of the well pressure or rate data. 

To this end, we propose a semi-analytic methodology for simulation of fluid flow 

in the subsurface and interpretation of the grid-cell based reservoir parameters. It relies 

upon an asymptotic expansion to the pressure diffusivity equation based on the “diffusive 

time of flight” (DTOF) calculation, which transforms the three-dimensional diffusivity 

equation into a reduced one-dimensional formulation. The DTOF (τ) can be calculated 

from solving the Eikonal equation using the fast marching method (FMM).  

In this dissertation, we first discuss the formulation of the drainage volume using 

the DTOF and prove its relationship with the well test derivative. Different orders of 

drainage volume discretization schemes in the near-well region are analyzed and 

combined into a hybrid version, which includes an analytic formulation at the well cell 



 

iii 

 

 

and ensures sufficiently accurate transient pressure behavior at early times of simulation. 

Similarly, a hybrid version of cumulative pore volume discretization is used for the DTOF-

based transient flow simulation and proves to be able to generate stable and consistent 

solutions in general heterogeneous porous media. 

The second part of this dissertation focuses on exposition of an inverse modeling 

methodology that can be used to estimate grid-cell based reservoir parameters by 

integrating pressure transient data into the geologic model. The well test derivative is 

inversely related to the drainage volume and is treated as the well observation. Its analytic 

sensitivity coefficients with respect to reservoir parameters are formulated and included 

into a penalized objective function for inversion. This inversion technique leads to a 

computational speed orders of magnitude faster than conventional sensitivity-based 

inverse modeling approaches that would require numerical perturbations. 

Finally, we propose a FMM that can be used for reservoir models with faulted 

corner point grids (CPG). The local Eikonal solution is formulated in a quadratic equation 

for the DTOF, the coefficients of which are formulated explicitly. This new FMM for CPG 

applies for general anisotropic heterogeneous media and is easy to implement on triangular 

and tetrahedral meshes, which constitute the unit CPG. Complex geometric features 

including the faults and pinch-outs are taken into account when the new FMM is designed. 
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NOMENCLATURE 

 

k   = Permeability, md 

KX   = Average permeability in the x-direction, md 

KY  = Average permeability in the y-direction, md 

KZ  = Average permeability in the z-direction, md 

   = Porosity 

  = Average porosity 

   = Viscosity, cp 

tc   = Total compressibility, psi-1 

D   = Hydraulic diffusivity, ft2/hr 

oB   = Oil formation volume factor, res bbl/STB  

LX   = Reservoir length in the x-direction, ft 

LY   = Reservoir length in the y-direction, ft 

LZ   = Reservoir length in the z-direction, ft 

h   = Reservoir thickness, ft 

DX   = Cell length in the x-direction, ft 

DY   = Cell length in the y-direction, ft 

DZ   = Cell length in the z-direction, ft 

DX   = Average cell length in the x-direction, ft 

DY   = Average cell length in the y-direction, ft 
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DZ   = Average cell length in the z-direction, ft 

NX   = Number of cells in the x-direction 

NY   = Number of cells in the y-direction 

NZ   = Number of cells in the z-direction 

r   = Distance, ft 

   = Diffusive time of flight, hr0.5 

p   = Pressure drop, psi 

wfp   = Well test derivative, psi 

wq   = Well flow rate, res bbl/day 

t   = Time, hr 

PV   = Pore volume, ft3 

 V t    = Drainage volume, ft3 

 pV    = Cumulative pore volume, ft3 

 w     = Derivative of cumulative pore volume with respect to  , ft3/hr0.5 

J   = Objective function, psi 

VDP = Dykstra-Parsons coefficient 
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1. INTRODUCTION 

 

Pressure transient analysis (PTA) has long been recognized as a powerful tool for 

interpretation of transient pressure behavior in the subsurface and it has provided the basis 

for reservoir parameter estimation using well test data (Lee, 1982; Lee et al., 2003). The 

pressure variation with time recorded at the production or injection well is a function of 

the well configuration and reservoir properties. Well test interpretation usually focuses on 

pressure response under the transient flow condition that will be felt first in the near-well 

region. The pressure response will be averaged to an increasing extent as the drainage 

volume keeps expanding, until the finite boundary effect can be observed at later times 

from the well pressure profile. 

Well test analysis provides a dynamic description of the reservoir system as 

opposed to that provided by the static geologic data. Its objective is to solve an inverse 

problem by indirect measurements from the well response. From interpretation of the well 

pressure curve, we can determine the wellbore storage and skin factor of the well (Agarwal 

et al., 1970; Wattenbarger and Ramey, 1970; Ramey, 1970; Cinco-Ley and Samaniego V, 

1977; Gringarten et al., 1979; Chu et al., 1980; Ikoku and Ramey, 1980; Miller, 1980; 

Tongpenyai and Raghavan, 1981; Joseph and Koederitz, 1985; Blasingame et al., 1989; 

Chu and Reynolds, 1994), calculate the average permeability of the reservoir being 

investigated (Miller et al., 1950; Ehlig-Economides and Joseph, 1987; Feitosa et al., 1994; 

Thompson and Reynolds, 1997), and characterize its heterogeneity as well as complex 

geologic features (Kazemi et al., 1969; Yaxley, 1987; Abbaszadeh and Cinco-Ley, 1995). 
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However, in all these instances, relatively homogeneous reservoir descriptions are 

assumed. When more detailed characterization of reservoir heterogeneity is needed, a 

robust forward model has to be established first and a numerical inversion technique is 

required. 

Accurate description of drainage volume propagation around the active production 

well is crucial for understanding of the transient pressure propagation in the petroleum 

reservoir. Drainage volume characterization frequently relies upon the definition of 

“radius of investigation” (ROI) in homogeneous media (Johnson, 1988; Daungkaew et al., 

2000; Kuchuk, 2009), within which the “bulk-average” reservoir permeability can be 

estimated from a well test inversion. By means of numerical simulation methods (e.g. 

finite difference methods, finite volume methods and finite element methods), the concept 

of ROI can be extended to “depth of investigation” (DOI) for heterogeneous media (Datta-

Gupta et al., 2011). With the help of the fast marching method (FMM) (Sethian, 1996), 

calculation of the drainage volume can be realized quickly and its visualization becomes 

straightforward under general reservoir conditions (Xie et al., 2015a; Zhang et al., 2016). 

Inverse methods for reservoir parameter estimation during history matching may 

rely on establishing a robust forward model and then determining an objective function to 

be minimized (Oliver et al., 1996). Many minimization schemes have been devised and 

used to efficiently calibrate grid-cell reservoir properties by integrating dynamic well test 

data into the numerical reservoir model, which can be classified into two general 

categories: derivative-free methods and derivative-related methods. The derivative-free 

methods such as simulated annealing (Ouenes et al., 1993; Deutsch and Journel, 1994; 
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Datta-Gupta et al., 1995) or genetic algorithms (Sen et al., 1995; Romero et al., 2000) 

usually require multiple flow simulations and can become computationally expensive for 

large-scale field applications. In contrast, the derivative-related approach is a gradient-

based optimization method, which usually entails calculation of the sensitivity coefficients 

of the observational data to the reservoir parameters (Chu et al., 1995a, b; Oliver et al., 

1996; Oliver, 1996; Reynolds et al., 1996; Oliver et al., 1997; Reynolds et al., 1999; Oliver 

et al., 2001; Rodrigues, 2005, 2006).  

As alternatives to classic numerical algorithms used for dynamic reservoir 

simulation, the streamline method (Datta-Gupta et al., 2007) and the FMM have 

demonstrated the capability to significantly enhance the computational efficiency, which 

is especially important for inverse modeling where the gradient-based optimization is 

involved and formulation of the analytic sensitivity coefficients are required. Integrating 

pressure transient data into reservoir models and calibrating reservoir parameters using 

the streamline method proves to be successful and provides a convenient means to 

formulate the sensitivity coefficient in one single dimension (Vasco et al., 2000; Kulkarni 

et al., 2001; He et al., 2006). In the current study, we replace the streamline method with 

a new gradient-based inversion scheme devised and implemented for the integration of 

well test data into reservoir models. The forward model will be designed with the help of 

the FMM and a semi-analytic asymptotic pressure approximation, which have great 

advantages over conventional simulation methods in terms of computational efficiency. 

Complex grid-cell geometries need to be included into the geologic model design 

when the structure of the reservoir model can no longer be characterized sufficiently well 
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by orthogonal-grid based discretization. They are especially important for designing 

unconventional reservoir models, where detailed analysis of fluid flow around the 

hydraulic and natural fractures is often required (Kou et al., 2018a, b). Because of their 

flexibility in adapting irregular geologic features (e.g. stratigraphic thickness variation, 

faults and pinch-outs), corner point grids (CPG) are widely used in reservoir simulation 

(Ponting, 1989). Application of the FMM needs to meet the causality requirement, which 

can be easily satisfied within the orthogonal grid system. But in reservoir models with 

complex grid geometries, especially those with anisotropic media, the causality condition 

is often violated. In this case, the local solver within the FMM needs to be carefully 

designed so that the causality condition can be reasonably enforced. 

Given the general background for pressure transient analysis as well as the forward 

and inverse modeling associated with it, we outline the major research topics included in 

this dissertation. First, we improve the modeling of early-time (near-well) analytic well 

test response through improved numerical modeling of the “diffusive time of flight” 

(DTOF) and the drainage volume. Based on the DTOF that can be calculated by means of 

the FMM, we then integrate dynamic well test data into 3D reservoir models using a 

sensitivity-based inversion. After that, the numerical methodology for the FMM 

development is extended to complex faulted corner point grids for 3D full field reservoir 

modeling applications. 
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1.1 Eikonal Equation, Fast Marching Method and Asymptotic Pressure 

Approximation 

Estimation of reservoir parameters from interpretation of the well test data relies 

upon a good understanding of pressure propagation in a diffusion process in the subsurface 

porous media. In most cases, the fluid flow in the reservoir media can be adequately 

described by parabolic partial differential equations, the solution of which can be 

calculated using numerical methods (e.g. finite element method, finite volume method, 

finite difference method, etc.). But numerical methods cannot capture the geometric nature 

of pressure propagation within the heterogeneous media. In addition, although the solution 

accuracy can be improved by increasing the model resolution, the computational cost will 

increase. This is especially true for inverse modeling schemes that depend upon 

sensitivity-based minimization of the objective function, which might make the 

computational cost prohibitive when the model size is large, as with 3D geologic models. 

To enhance the computational efficiency, many approximation approaches are 

taken to simplify the forward model. Considerable amounts of work had been done to 

relate the diffusion equation to a wave equation (Pierce, 1986; Philip, 1989; Oliver, 1994). 

In these efforts made, the concept of “arrival time” is used for matching of wave 

amplitude, by means of which reservoir parameters can be estimated. Despite the 

substantial difference between solutions to the diffusion equation and the wave equation, 

the measured pressure data can be transformed into a wave signal. In the wave domain, 

the pressure “front” signal propagates at a “velocity” equal to the square root of the 

diffusivity and the time-like variable has a unit of (time)½ (Oliver, 1994). This related 
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body of work provides important insights into pressure transient analysis by means of a 

wave transform. 

The asymptotic expansion technique has been widely used in electromagnetic or 

elastic wave propagation (Lambare et al., 1992; Jin et al., 1992; Sevink and Herman, 1996; 

White, 2005; Silin et al., 2006; Silin and Goloshubin, 2010). Many of its concepts 

associated with propagating fronts provide useful information for reservoir simulation. By 

taking the high frequency asymptotic expansion of the diffusivity equation using the 

Fourier transform, the concept of “diffusive time of flight” (DTOF) can be used to describe 

fluid flow in porous media (Virieux et al., 1994; Vasco et al., 2000; Kulkarni et al., 2001; 

Vasco et al., 2008). Corresponding to observations from Oliver (1994) about the time-like 

variable, the DTOF (τ) has a unit of (time)1/2 and is closely related with the propagating 

pressure transient. The DTOF can be calculated by solving the Eikonal equation (which 

contains the diffusivity information in terms of the reservoir permeability and porosity) 

using the method of characteristics (Vasco et al., 2000; Vasco et al., 2008). In the method 

of characteristics, the DTOF solutions are calculated along particular trajectories that can 

be developed through either a ray tracing technique or a post-processing of the output from 

a numerical reservoir simulator (Vasco and Finsterle, 2004; Vasco et al., 2004; Vasco, 

2004; Vasco et al., 2008). This characteristic trajectory can be approximated by the 

convective streamline trajectory (Datta-Gupta and King, 1995) along which the analytic 

sensitivity coefficients can be formulated and included into the objective function to 

calibrate reservoir parameters by integrating pressure transient data into the reservoir 

model (Kulkarni et al., 2001; He et al., 2004; Cheng et al., 2005; He et al., 2006). 
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Based upon the Eikonal equation used for DTOF calculation, the source function 

for infinite and smoothly varying heterogeneous media can be calculated and a new 

asymptotic solution to the infinite-acting flow (IAF) is generated (King et al., 2016). 

Instead of tracking the streamline trajectory, the DTOF is calculated directly from solving 

the Eikonal equation using the fast marching method (FMM). The DTOF can be treated 

as a spatial coordinate that transforms the three-dimensional diffusivity equation into an 

equivalent one-dimensional form (Xie et al., 2015a, b; King et al., 2016; Zhang et al., 

2016; Wang et al., 2017). In the newly derived asymptotic pressure approximation to the 

diffusivity equation, the pressure front is governed by the Eikonal equation, which defines 

the relationship between the DTOF and reservoir properties (Datta-Gupta et al., 2007). 

This approximation is a semi-analytic solution to the diffusivity equation and it relies upon 

an assumption that the pressure gradient is aligned with the DTOF gradient in reservoir 

media with smoothly varying heterogeneity (King et al., 2016). The methodology we 

propose relates the Eikonal equation with the drainage volume by means of the DTOF, 

which governs the propagation of a pressure front in the reservoir. The discretized form 

of these equations provides the foundation for both fast forward modeling (Nunna et al., 

2015; Li, 2016; Nunna, 2017; Nunna and King, 2017; Nunna et al., 2018) and for 

sensitivity-based inverse problems in reservoir characterization (Li and King, 2016), 

especially for applications in pressure transient analysis (PTA) of conventional reservoirs 

and in rate transient analysis (RTA) of unconventional reservoirs (Xue et al., 2016; Iino, 

2018; Wang et al., 2018; Xue et al., 2018). We will show that the solution to the Eikonal 

equation and the calculation of the drainage volume needs to be studied in more detail. 
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We develop and analyze discretization schemes of these equations, with an emphasis on 

the near-well region which dominates the accuracy of the solution. 

The fast marching method (FMM) is a numerical method designed for solving the 

Eikonal equation in general heterogeneous and anisotropic media. It is well suited to 

keeping track of the propagating fronts in a wide variety of settings, including 

computational geometry, fluid mechanics, computer vision, etc. (Sethian, 1999). Like 

Dijkstra’s algorithm, which can be used for finding the shortest paths between nodes in a 

graph, the FMM is a construction involving expanding wave fronts based on Huygen’s 

principle. It was initially designed on a rectangular orthogonal mesh system in O(N log N) 

steps, where N is the total number of grid points. The scheme relies upon an upwind finite 

difference approximation to the gradient of the unknown variable and is required to meet 

a causality condition (Sethian and Vladimirsky, 2000). The local solver within the FMM 

can be constructed based on either Fermat’s principle or an Eulerian discretization. 

Drainage volume is frequently used to describe the portion of reservoir volume 

under depletion by a production well in the oil and gas industry. Accurate and efficient 

characterization of the drainage volume is fundamental to understanding pressure 

propagation in porous media and optimizing well-placement for reservoir development. 

The concept of radius of investigation (ROI) is closely related to drainage volume 

evolution in homogeneous media and is routinely used to perform well test analysis. Most 

definitions of ROI are related to the propagation of a pressure disturbance or detectable 

pressure or rate changes in the subsurface (Datta-Gupta et al., 2011). Lee (1982) defines 

the ROI and as the “peak” pressure disturbance for an impulse source or sink in 



 

9 

 

 

homogeneous porous media. Such a definition can be readily generalized into the depth 

of investigation (DOI) for a flowing well within the heterogeneous reservoir model (Datta-

Gupta et al., 2011). DTOFs calculated from the FMM allow us to formulate the DOI for 

well production within general heterogeneous reservoir media using the semi-analytic 

asymptotic solution to the pressure diffusivity equation. With the use of the numerical 

solution of the Eikonal equation, the drainage volume concept can be extended to 

heterogeneous and bounded reservoir systems. The asymptotic pressure approximation 

relies significantly on an accurate characterization of the drainage volume, which is 

closely related to the well test derivative formulated for pressure transient analysis. 

To obtain adequate accuracy for the purpose of well test interpretation, a mixed 

discretization scheme for the drainage volume that combines analytic, first-order, and 

zeroth-order volumetric elements was devised. The novel semi-analytic methodology we 

propose for PTA and RTA drainage volume calculations serves as a bridge between 

analytic approaches that require many simplified assumptions and conventional numerical 

simulations that are usually computationally expensive when the reservoir model 

parameter has excessive degrees of freedom. The hybrid version of the drainage volume 

discretization is consistent with the DTOF-based transient flow simulation, which is 

greatly impacted by the inter-cell transmissibility formulation between the “τ-intervals”, 

especially by the transmissibility construction in the near-well region. Implementation of 

the semi-analytic approach in pressure transient analysis relies upon an understanding of 

the forward model discretization we prepared for inversion. 
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1.2 Integration of Pressure Transient Data into Reservoir Models Using the Fast 

Marching Method 

History matching reservoir models and adjusting model parameters with pressure 

transient data remains an important research topic. Well test data has been recognized as 

an effective tool that can be used to describe pressure propagation in the subsurface porous 

media. It is often related to the concepts of radius of investigation (ROI) when a radial or 

infinite-acting flow occurs and the transient pressure response within the reservoir is 

visible from the well pressure profile. From the diagnostic plot of the well pressure and 

production data that interprets transient pressure behavior evolving away from the well, 

we can easily estimate the bulk-average reservoir permeability. In this research, the well 

test derivative profile is related to the drainage volume evolution as a function of time and 

treated as the forward model for inversion. Grid-cell properties within the entire reservoir 

model will be re-adjusted by reconciliation of the dynamic pressure transient data 

observed from the production well with a static pre-existing geostatistical data. 

Integration of dynamic pressure transient data into reservoir models can be realized 

using a least-square based optimization scheme (Paige and Saunders, 1982), in which the 

objective function constructed from the forward model can be matched with the observed 

well pressure data by means of an iterative minimization procedure. Minimization of the 

objective function can be achieved through a sensitivity-based method, which requires 

calculation of partial derivatives of well test data with respect to reservoir parameters. 

Numerically, sensitivity coefficients can be obtained by evaluating changes in well 

pressure due to a small perturbation of reservoir parameters. However, this approach will 
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become computationally infeasible as the model size increases and forward simulations 

are required for every grid cell. Calculation of the sensitivity coefficients of the objective 

function with respect to reservoir parameters in an analytic approach is required, which is 

also one of the major results of this dissertation. Similar to the streamline technique used 

in inverse modeling (Kulkarni et al., 2001; Datta-Gupta et al., 2001; Cheng et al., 2005; 

He et al., 2006; Datta-Gupta et al., 2007), we propose a new methodology for calculation 

of the analytic sensitivity coefficients that can be realized by one single forward simulation 

using the fast marching method (FMM). 

The drainage volume may be directly related to well test derivative data, which 

serves as the actual objective function used in inversion to calibrate reservoir model 

parameters. A penalized objective function containing the a priori information generated 

from geostatistical data and the roughness constraints can be minimized in an iterative 

approach during history matching. The sensitivity coefficients of the objective function 

with respect to reservoir properties can be derived analytically and incorporated into the 

objective function to optimize the inversion. The analytic sensitivity coefficients of the 

DTOF with respect to reservoir parameters can be generated simultaneously with DTOFs 

calculated from the FMM algorithm. Our asymptotic pressure approximation provides a 

formulation of the drainage volume in terms of the DTOF and time. Using the chain rule, 

sensitivity of the drainage volume as well as the well test derivative can be conveniently 

formulated by means of DTOF sensitivity calculated via the FMM. The major advantage 

of formulating analytic sensitivity coefficients using the FMM is its great computational 

efficiency while inversion is conducted. 
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1.3 Extension of the Fast Marching Method to Faulted Corner Point Grids 

The asymptotic pressure approximation we propose relies heavily upon an accurate 

calculation of the “diffusive time of flight” (DTOF) that can be obtained by solving the 

Eikonal equation. The Eikonal equation, which contains the diffusivity information (e.g. 

permeability, porosity, rock compressibility and fluid viscosity) of the reservoir model, is 

a reduced form of the general static Hamilton–Jacobi partial differential equation (PDE) 

when the speed function depends only upon the location in space (which actually becomes 

the square root of the diffusivity). The key to solving the Eikonal equation is to select the 

correct viscosity solution by monotone finite difference methods (Crandall and Lions, 

1983, 1984). 

The fast sweeping method (FSM) and fast marching method (FMM) are the most 

commonly used numerical algorithms to solve the Eikonal equation. The FSM was first 

introduced and implemented for solving the Eikonal equation on rectangular meshes in 

Cartesian coordinates (Zhao, 2004). It was later extended to unstructured triangular 

meshes that can help generate more accurate solutions because of the better directional 

resolution (Qian et al., 2007). The FSM has a complexity of order O(N) for N grid points 

and its numerical implementation relies upon the Gauss-Seidel sweeping algorithm, in 

which all unknown values will be initialized and require a number of iterations until they 

converge to the solutions of the discretized system (Zhao et al., 2000; Zhao, 2004; Zhang 

et al., 2006; Qian et al., 2007; Luo and Qian, 2012; Luo et al., 2014). In contrast, instead 

of using an iterative algorithm to solve for unknowns, the FMM will update the solution 

following causality in a sequential way. Similar to Dijkstra’s method, the FMM 
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systematically updates the solution for the time of flight value in an orderly one-pass 

fashion to find the shortest path on weighted graph of edges and nodes (Sethian, 1996). In 

the FMM, an upwind finite difference approximation and a heapsort algorithm are needed, 

which lend itself to a complexity of order O(N log N) for N grid points (Sethian and 

Vladimirsky, 2000). If the same local Eikonal solver is implemented, the ultimate DTOF 

solutions generated from both the FSM and the FMM will also be the same. 

In general heterogeneous and anisotropic media, DTOF calculation requires a 

stable local Eikonal solver that can be implemented within a numerical algorithm. 

However, there is some difference between pressure propagation in isotropic and 

anisotropic media when the Eikonal equation is used to describe the propagating pressure 

front in a diffusion process. In the isotropic media, the characteristic vector has the same 

direction as the (negative) DTOF gradient. The causality condition is always satisfied and 

the DTOF gradient can be used as a reliable indicator of fluid flow. This is not the case 

for anisotropic media, in which the characteristic direction will not coincide with the 

DTOF gradient direction in general. Without taking into account this essential difference, 

erroneous solutions may be generated by simply extending the numerical algorithm used 

to solve the Eikonal equation in isotropic media to DTOF calculation in anisotropic media. 

The local solver can be constructed based on either Fermat’s principle (Sun and Fomel, 

1998; Sethian, 1999; Lelievre et al., 2011) or an Eulerian discretization (Sethian and 

Vladimirsky, 2000; Qian et al., 2007), with the former having a straightforward geometric 

interpretation and the latter easier for numerical implementations. 
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The local Eikonal solver developed by Qian et al. (2007) in the FSM demonstrated 

a general formulation of DTOF calculation based upon known values within a 2D 

triangular or a 3D tetrahedral element. This formulation provides useful information for 

updating DTOF values along the characteristic direction based on an Eulerian 

discretization. When DTOF is updated within anisotropic media, causality can be correctly 

enforced when it is violated by either reducing the 3D tetrahedral element into the 2D 

triangular element or even by reducing the 2D tetrahedral element into the 1D Eikonal 

solution. The causality enforcement often requires calculation of the wave propagation 

speed from a given ray direction, which cannot be easily obtained using an explicit formula 

and hence must rely on an iterative algorithm to solve a two-point boundary-value problem 

(Press et al., 1988; Qian and Symes, 2001).  

We modified the local solver within the FSM formulated by Qian et al. (2007) and 

re-formulated the characteristic direction that is constrained by the data support with 

known DTOF values. This new local Eikonal solver is causal and easier to implement, 

eliminating the need for group speed calculation with an iterative procedure. Our 

motivation is to incorporate the new local solver into a FMM algorithm that can be used 

to solve the anisotropic Eikonal equation in a reservoir model discretized into a corner 

point grid (CPG) system.  

 

1.4 Research Objectives and Dissertation Contributions 

The motive of this research is to establish a robust numerical method for simulating 

transient flow in the subsurface and to integrate pressure transient data into reservoir 
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models using the fast marching method (FMM) in structured and faulted corner point grid 

geometries. Starting from theoretical development, the research emphases are placed on 

numerical analysis of the forward mathematical model, design of an efficient inverse 

modeling scheme and extension of the framework to 3D complex reservoir models, which 

compose the three major sections of this dissertation. 

Section 2 provides the background and motivation for this research. Based upon 

the asymptotic theory of electromagnetic wave propagation, we first developed the 

asymptotic pressure approximation to the classic diffusivity equation that governs fluid 

flow in porous media (King et al., 2016; Wang et al., 2017). This new semi-analytic 

approach replaces the empirical geometric pressure approximation studied earlier (Xie et 

al., 2015a) and greatly simplified the calculation of transient flow by using the concept of 

“diffusive time of flight” (DTOF). The DTOF can be treated as a spatial coordinate that 

transforms the three-dimensional diffusivity equation into an equivalent one-dimensional 

formulation. In this new forward model formulation, the drainage volume can be 

expressed as a function of the DTOF and time, which is directly related to the pressure 

transient represented by the well test derivative. Thus, it provides us with a geometric 

understanding of the pressure front propagation in general heterogeneous media.  

In Section 3, we focus our research attention on establishing a robust forward 

model based on the DTOF (τ), which can be obtained from solving the Eikonal equation 

using the FMM. One vertical well with constant production rate is placed at the center of 

the reservoir and its drainage volume is discretized by evaluating a “  w  ” term, which 

is defined as the derivative of the cumulative pore volume with respect to the DTOF. By 
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computing  w   on each individual grid cell of the reservoir model, we devised a hybrid 

version of the drainage volume that can better represent pressure transients in the near-

well region. This hybrid drainage volume along with the hybrid  w   function prove to 

be consistent with the transient solution to the DTOF-based pressure diffusivity equation. 

In Section 4, we performed inversions of reservoir parameters by integrating 

pressure transient data into reservoir models using the FMM on the basis of the forward 

model established in the previous section. The well test derivative is shown to be inversely 

proportional to the drainage volume of the production well and was used as the objective 

function for history matching of the reservoir model with well pressure data. Its sensitivity 

coefficients with respect to reservoir parameters are formulated analytically from the 

functional derivative of the Eikonal equation, which is numerically realized by tracking 

the characteristic trajectory within the FMM and evaluating reservoir properties within a 

particular τ-interval. This makes the computational speed orders of magnitude faster than 

conventional numerical simulations. Sensitivity of the drainage volume with respect to 

reservoir permeability follows the characteristic trajectory because the characteristic 

information is implicitly formulated in the Eikonal solver (Li and King, 2016). With an 

additional constraint to honor the prior model, our inverse modeling approach will adjust 

the reservoir model to obtain an average permeability as a function of DTOF (τ) distance 

from the well within the drainage volume (Oliver, 1990, 1992). Our new inversion 

methodology relies upon only one single production well and it provides a fast and 

efficient approach to modify reservoir permeability both within and beyond the depth of 

investigation (DOI). 
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In Section 5, which is the last major section of this dissertation, we developed a 

three-dimensional anisotropic FMM for corner point grids (CPG) with complex 

geometries by solving the diagonal-tensor anisotropic Eikonal equation. The diffusivity 

tensor is formulated in terms of the permeability tensor and tangent vectors of the CPG. 

A local solution to the Eikonal equation based on an Eulerian discretization was 

formulated and proved to be consistent with Fermat’s principle. The unknown DTOF 

variable is referenced to a displacement vector measured from the location of the unknown 

DTOF variable to be solved. The characteristic vector is formulated by the diffusivity 

tensor and the DTOF gradient evaluated at the unknown DTOF variable. The causality 

condition is constrained by known data support. General one-dimensional, two-

dimensional and three-dimensional local solvers in three-dimensional space for 

anisotropic media are designed to simulate pressure front propagation in porous media. 

Discretization of the Eikonal equation for iso-parametric corner point cell geometry with 

the directional permeability tensor is investigated and extended to include non-neighbor 

connections (NNC) that are used to represent faulted grids. The new CPG FMM we 

propose will not only capture complex geologic structures of the reservoir, it can also 

better represent pressure communications across faulted grids as well as grids with gaps 

and pinch-outs. 

This dissertation is concluded by Section 6, in which research contributions from 

Section 2 to Section 5 are summarized and recommendations for future research are 

provided. 
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2. ASYMPTOTIC APPROXIMATION TO THE PRESSURE DIFFUSIVITY 

EQUATION USING THE FAST MARCHING METHOD 

 

Three-dimensional diffusivity equation has been extensively used by both the 

hydrogeologists and reservoir engineers to characterize pressure propagation when fluids 

(groundwater, oil and gas) flow in the subsurface porous media. The well pressure and 

production/injection rate history can be recorded and used for pressure transient analysis 

(PTA) and rate transient analysis (RTA), which provide us with convenient tools to 

understand flow regimes in the subsurface. From the fixed well-rate diagnostic curve as a 

function of time, volume-averaged reservoir properties can be readily estimated. 

The diffusivity equation is a parabolic partial differential equation. It can be solved 

numerically using the finite difference, finite volume, or the finite element method with 

initial reservoir pressure conditions assigned as well as boundary conditions defined at the 

production or injection wells. However, the computational cost of conventional reservoir 

simulation increases significantly as the model size grows. Though its computational 

speed could be improved either by upscaling of the geologic models or using parallel 

computing, conventional numerical simulation fails to provide geometric understanding 

of the pressure front propagation. On the other hand, analytic methods for evaluating 

reservoir properties from interpreting well test data usually require many simplified 

assumptions and cannot calibrate grid-cell parameters within the numerical model based 

on a priori static information. Moreover, the computational cost for inverse modeling 

usually becomes expensive as the number of degrees of freedom of the reservoir 
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parameters become large. In this sense, the limitation for PTA or RTA is the lack of an 

approach for integration of two different fields of analysis: well testing and numerical flow 

simulation. 

We propose a novel semi-analytic approach for calculating reservoir pressure 

based on the “diffusive time of flight” (DTOF), which can be obtained by solving the 

Eikonal equation via the fast marching method (FMM) in general heterogeneous media. 

This semi-analytic formulation is an asymptotic expansion to the pressure diffusivity 

equation and relies significantly upon the drainage volume characterization. It takes full 

advantage of the fast computational speed of the FMM and can help us evaluate temporal 

evolution of the drainage volume from the production well for high-resolution geologic 

models, with a computational efficiency orders of magnitude greater than conventional 

numerical simulations. Our proposed approach is especially suited for sensitivity-based 

inversion and provides a novel method of integrating well test data into prior static 3D 

geologic models. 

 

2.1 Introduction 

Characterization of transient pressure behavior in the subsurface porous media is 

crucial for prediction of reservoir performance and optimization of well placement. For 

reservoir under-going primary production or injection, the governing partial differential 

equation commonly used to describe fluid flow in heterogeneous media is the diffusivity 

equation. It relates pressure drop and flow rates by Darcy’s law and provides the 
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theoretical basis for both well performance evaluation and integration of well pressure or 

production data for reservoir parameter estimation. 

Most pressure transient analysis (PTA) and rate transient analysis (RTA) rely upon 

analytic solutions to the diffusivity equation (Lee, 1982; Horne, 1995; Bourdet, 2002; Lee 

et al., 2003). Though simplified assumptions are used, these analytic solutions provide 

efficient tools for us to estimate reservoir properties. In contrast, numerical methods used 

for solving the diffusivity equation often lack the capability to help one gain a quick insight 

into the reservoir parameters as those analytic approaches. This is especially difficult when 

the reservoir model size increases and large numbers of reservoir parameters need to be 

adjusted by integration of pressure transient data or rate transient data (Chu et al., 1995a; 

Oliver et al., 1996; Reynolds et al., 1996; Oliver et al., 1997; Reynolds et al., 1999; Li et 

al., 2010). 

To strike a balance between the over-simplicity of the analytic solution and the 

potentially high computational cost of the numerical solution, we have devised an 

asymptotic formulation of the pressure diffusivity equation. The focus of study in this 

section will be on development of the semi-analytic formulation and its discretization on 

a rectangular grid system. Previous studies have used cell-center based DTOFs calculated 

from the FMM in forward modeling and inversion, but did not provide sufficient analysis 

of the accuracy of DTOFs calculated and their potential impact on the drainage volume 

solution (Xie et al., 2015a, b; Zhang et al., 2016). By validating with analytic solutions for 

the 1D linear flow model, the 2D radial flow model and the 3D full field model, we 
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demonstrate that detailed characterization of drainage volume both within the near-well 

region and farther away is required to achieve more accurate semi-analytic solutions. 

 

2.2 Methodology: Forward Model Solutions and Properties 

In this section, we review the derivation of the asymptotic limit of the pressure 

diffusivity equation and demonstrate its relationship with the “diffusive time of flight” 

(DTOF), which can be obtained by solving the Eikonal equation numerically using the 

fast marching method (FMM). The asymptotic pressure approximation will provide the 

semi-analytic forward model used for rapid solutions and which will provide the 

foundation for our pressure transient inversion. 

 

2.2.1 The Eikonal Equation and the Asymptotic Pressure Approximation 

The diffusivity equation that is commonly used to describe transient pressure 

behavior in heterogeneous porous media is: 

  
 

 
,

, 0t

p x t
x c u x t

t
 


 


  (2.1) 

where x  stands for the physical coordinate in the 3D space; t  stands for the flowing time; 

p  is the reservoir pressure;   denotes reservoir porosity;   and tc  are viscosity and 

compressibility, respectively; u  is the Darcy’s velocity. Source and sink terms can be 

treated as boundary conditions of the differential equation (Eq.(2.1)). The diffusivity 

equation takes advantage of the Darcy’s law, which relates the Darcy’s velocity with the 

reservoir permeability and pressure gradient.  
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      
1

, ,u x t x p x t


  k   (2.2) 

Here  xk  represents the permeability tensor that applies to the general situation when 

the porous media is anisotropic in space. 

By applying a Fourier transform to Eq.(2.2), we can obtain the diffusivity equation 

in the frequency domain: 

           , , 0tx c i p x x p x       k   (2.3) 

Using concepts from diffusive electromagnetic imaging, the transient pressure response 

can be represented in the frequency domain (Virieux et al., 1994):  

      

 0

,
i x k

k
k

A x
p x e

i







 






   (2.4) 

where  x  in the exponential term of the asymptotic solution is the “diffusive time of 

flight” (DTOF), which has a unit of square root of time. The quantity  kA x  refers to the 

pressure amplitude at the k-th order. After substituting the asymptotic series into the 

diffusivity equation and taking the high frequency limit, we can derive the Eikonal 

equation for the DTOF (τ). 

         tx x x x c      k   (2.5) 

or 

       1Dx x x       (2.6) 

where  D x  is a symmetric tensor for the hydraulic diffusivity, which is defined as 
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  
 

 
D

t

x
x

x c 


k
   (2.7) 

The wellbore is usually defined as the source point, with the DTOF value assigned to zero. 

For homogeneous media, it is easy to solve the Eikonal equation analytically; for 

heterogeneous media, we can use the FMM (Sethian, 1999) to solve for the DTOF. In 

homogeneous and isotropic media, the DTOF can be calculated as the analytic solution to 

the Eikonal equation, which is related to the distance r  from the source well. 

 Dr    (2.8) 

We assume that the pressure gradient is aligned with the DTOF gradient, which allows us 

to use the DTOF as a spatial coordinate (King et al., 2016; Wang et al., 2017). The 3D 

diffusivity equation can be transformed into a 1D form that combines the pressure and the 

flux term. 

 
   

   

 , , ,1
t

p

p t q t q t
c

t V w

  

  

  
 

  
  (2.9) 

where q  represents the flux across a “τ-contour” and  pV   is defined as the cumulative 

pore volume from the well to the “τ-contour”. The shape of pV  is cylindrical in 

homogeneous media and becomes irregular in heterogeneous media (Figure 2.1). 
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(a) Homogeneous Media (b) Heterogeneous Media 

Figure 2.1 Cumulative pore volume as a function of the DTOF 
 

 

Based on the cumulative pore volume ( pV ) variation as a function of the DTOF, 

we define the variable  w   in Eq.(2.9) as its derivative with respect to the DTOF. 

  
 pdV

w
d





   (2.10) 

This  w   variable plays a significant role in drainage volume discretization, which we 

will discuss later in more detail.  

 

2.2.2 Properties of the Fixed Rate Drawdown: Analytic Solution 

For fluid flow in a reservoir that has a single well with constant production rate, 

the solution to the diffusivity equation can be formulated by an asymptotic pressure 

approximation: 

 
   

2 41 tw
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c e
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  (2.11) 
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where wq  represents the constant well production or injection rate;  V t  is the drainage 

volume that is expressed as a function of time. The quantity (
2 4 ) represents a 

characteristic time of the propagating pressure front. Instead of solving for the amplitude 

quantities in Eq.(2.4), we can close our equations with constraints in time. Following the 

discussion of the Matthews-Brons-Hazebroek (MBH) method for estimation of average 

pressure in the drainage volume (Matthews et al., 1954), we extended the pseudo-steady 

state (PSS) definition of MBH to fixed rate transient well test interpretation (King et al., 

2016; Wang et al., 2017).  

Drainage volume as a function of time is related to its form as a function of the 

DTOF by the following formula (King et al., 2016): 

      
2 24 4

0 0

t t

pV t dV e d w e 

 

  
 

 

 

        (2.12) 

Eq.(2.12) is the basis of the subsequent drainage volume discretization. This asymptotic 

pressure approximation can be justified for a “sufficiently smooth”  w   distribution 

(King et al., 2016; Wang et al., 2017). Since the well is treated as the single source of the 

entire reservoir model, if the DTOF to the well is defined as zero (Eq.(2.11)), the well test 

derivative can then be derived: 

 
   ln

wf wf w
wf

t

p p q t
p t

t t c V t

  
    

  
  (2.13) 

In such a way, the well test derivative is inversely proportional to the drainage volume. 

The well test derivative is important in the identification of flow geometries (Wong et al., 

1986; Tiab and Puthigai, 1988; Bourdet et al., 1989; Tiab, 1994). This new well test 
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derivative formulation (Eq.(2.13)) not only provides a direct semi-analytic calculation of 

the well test derivative without solving for the pressure itself, it also forms the basis for 

calculation of pressure and flux as well as our subsequent inverse modeling. 

 

2.2.3 Fast Marching Method 

The fast marching method (FMM) is designed to solve the Eikonal equation 

(Eq.(2.5)) numerically in a fast and efficient way. The central idea behind the FMM is to 

systematically construct the  x  solution using only upwind values. The key to 

constructing the fast marching algorithm is that the information propagates in “one way”. 

That is, the solution of  x  can be built in an orderly sequential fashion from smaller to 

larger values along the characteristic(s) passing through the point x  (Sethian, 1996). 

In general, the progress of the FMM relies on three sets of data points: an Upwind 

Side that stores the Accepted values, a Narrow Band that stores the Trial values, and a 

Downwind Side that stores the Far values (Sethian, 1999). 

The numerical update procedure for unknowns of the Eikonal equation using the 

FMM is as follows (Sethian and Vladimirsky, 2000): First, label points in the initial 

conditions as Accepted. Then, label all adjacent points (one grid point away) as Trial and 

compute values at those points by the local Eikonal solution that will be discussed later. 

Finally, label the remaining grid points as Far. Then the loop is:  

a) Begin loop: Let A be the Trial point with the smallest   value. 

b) Add the point A to Accepted and remove it from Trial. 
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c) Label as Trial all neighbors of A that are not Accepted. If the neighbor is in 

Far, remove it from that set and add it to the set Trial. 

d) Re-compute the   values of all neighbors of Trial by the local Eikonal 

solution. 

e) Return to top of loop. 

The key to successful implementation of the FMM relies on a fast way to find the 

minimum   value among the Neighbor nodes. Like Dijkstra’s method, an efficient 

implementation of the algorithm can be built by using a heapsort technique. Given N nodes 

to be calculated in the entire modeling domain, the computational efficiency of the FMM 

is O(N log N) (Sethian and Vladimirsky, 2000). 

 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 2.2 Illustration of the FMM within a 2D Cartesian grid system (Xie et al., 2015a) 
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This fast marching procedure can be illustrated on a 2D, 5-Stencil Cartesian grid 

system (Figure 2.2). We start from an Accepted point in black, which has an initial value 

of   assigned (usually zero), and treat it as the initial position of propagating front (a). Its 

adjacent neighbor node points A, B, C, and D are then labeled as Trial (b). Once the   

values of A, B, C, and D are updated, the point with the minimum solution (suppose it is 

point A) is labeled as Accepted (c). Its adjacent neighbors E, G and F are added into the 

set Trial (d). The same procedure can be applied to the next Accepted point (suppose it is 

D) until all points in the domain are Accepted (e and f) (Zhang et al., 2013; Xie et al., 

2015a, b). 

Updating the   value of a particular location in space relies upon a local Eikonal 

solution, which requires a certain way of grid discretization and approximation of the 

 x  gradient. Suppose we have a 2D rectangular grid system with uniform mesh size of 

x  and y  in x  and y  directions, respectively. The media are isotropic and diffusivity 

D  is a scalar. We begin to discretize the Eikonal equation on the Cartesian grid and 

replace the gradient by the first-order approximation (Sethian, 1996):  

    
1

max , ,0 max , ,0x x y y

ij ij ij ij

D

D D D D   


         (2.14) 

Here we have used the standard finite difference operator D  for notation in the coordinate 

direction ( x  direction) as 

 , 1, 1, ,
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x x
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where ,i j  represents the value of   on a grid at the point  ,i j  with grid spacing x . 

The forward and backward operators yD  and yD  in the other coordinate direction ( y  

direction) are similar. In Eq.(2.14),   values at unknown points are treated as infinity and 

the “max” function is used to conform to the “upwind” criteria. This finite difference 

approximation is numerically consistent and stable, which will make sure that a correct 

viscosity solution is selected (Sethian and Vladimirsky, 2000). 

We illustrate the DTOF calculation on a 2D Cartesian grid system (Figure 2.2e). 

Suppose a grid point G (hollow circle) with an unknown DTOF has two adjacent grid 

points (A and D). The pressure front is coming from the two adjacent points A and D with 

known DTOF values as A  and D , respectively. From Eq.(2.14) and Eq.(2.15), the 

DTOF value of the grid point G to be updated can be calculated as 
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    
  (2.16) 

This discretization leads to a quadratic function of  , which can be easily extended to 3D 

space with three known   values and solved in an efficient way. For a specific grid point, 

we can calculate its   value from its four quadrants (2D) or eight octants (3D) and take 

the minimum solution obtained. 

One of the key properties of the FMM used for solving the Eikonal equation is the 

causality relationship, which means that the solution at each grid point depends only on 

the smallest adjacent values. This causality relationship guarantees that the solution can 

be built in an ordered “upwind” direction.  
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Suppose part of the solutions to the Eikonal equation is known at some time, which 

can be treated as Accepted points. For those points that are not yet Accepted but have 

Accepted neighbors, we compute a Trial solution to the quadratic equation (Eq.(2.16)) 

using the known values for   at Accepted neighbor nodes and using values of infinity at 

all other neighbor nodes not Accepted. (Sethian et al., 2000). In implementation, it often 

requires a reduction of the local Eikonal solution. When updating the   value of a specific 

location in 3D space, a 3D local solver will reduce to a 2D local solver if one adjacent 

neighbor has a   value of infinity and will even reduce further to a 1D local solver if two 

adjacent neighbors have   values of infinity. 

 

2.2.4 Drainage Volume Discretization 

From the asymptotic pressure approximation, drainage volume evolution around 

the production or injection well as a function of time can be calculated analytically using 

the integral form (Eq.(2.12)). However, the “diffusive time of flight” (DTOF) has to be 

calculated numerically via the fast marching method (FMM) for reservoir models with 

heterogeneous media. Thus, the drainage volume formulated in terms of the DTOF and 

time needs to be discretized. 

Suppose we have a reservoir model consisting of n  grid cells in total, the DTOF 

to centers of all those grid cells are calculated from the FMM and can be denoted as 
cell

j  

(j = 1, 2, …, n). If the pore volume of each grid cell is denoted as jPV , the drainage volume 

can be evaluated first on each individual grid cell and then be summed. 
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This is a piecewise constant form of the drainage volume discretization, which has been 

implemented in previous work (Xie et al., 2015a, b; Fujita et al., 2016; Zhang et al., 2016) 

and is a lowest order approximation whose accuracy has not previously been analyzed. 

We will validate this piecewise constant form of drainage volume formulation with the 

analytic solution in 1D, 2D, and 3D flow models and evaluate the potential impact of its 

accuracy on the forward model construction used for inversion. 

 

2.2.5 Numerical Solutions to the Diffusivity Equation 

We have developed the asymptotic pressure approximation, which relies upon an 

assumption that the pressure contour and the “τ-contour” are identical. In homogeneous 

and isotropic media, the DTOF can be calculated as the analytic Eikonal solution. This 

makes the flowing direction of the flux exactly aligned with the DTOF (τ) gradient for the 

infinite-acting radial flow (IARF). In this case, we can use the asymptotic pressure 

approximation as the analytic solution to the diffusivity equation and describe transient 

pressure behavior in homogeneous reservoir models. 

In a homogeneous reservoir model that is drained by a fully perforated well, if the 

pressure gradient is small, the diffusivity equation can then be written in a linearized 

version as 

 
1 tcp p

r
r r r k t

   
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where r  is the radial distance from the well. A similar formulation based upon the DTOF 

(τ) coordinate provides the basis for transforming the diffusivity equation into a one-

dimensional coordinate system in terms of the DTOF. By multiplying the  w   variable 

defined above with the pressure gradient in the one-dimensional DTOF (τ) coordinate, we 

can approximate the flux across a “τ-contour” as: 

    
 ,

, t

p t
q t c w


 







  (2.19) 

This new flux approximation is similar to Darcy’s law and  w   plays a role similar to 

that of transmissibility. It enables us to draw an analogy between homogeneous and 

heterogeneous porous media for the diffusivity equation. Substituting Eq.(2.19) into 

Eq.(2.9), we can derive the one-dimensional diffusivity equation represented in terms of 

distance (τ) from the well. 
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 
1 p p

w
w t


  

   
 

   
  (2.20) 

In such a way, all the spatial heterogeneity of the reservoir model parameters (e.g. 

permeability and porosity) vanish from the formulation; they only appear through the 

function  w  , which can be calculated using the DTOF from solving the Eikonal 

equation (King et al., 2016; Wang et al., 2017). 
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(a) Permeability (b) Analytic DTOF 

Figure 2.3 “τ-contours” generated from a homogeneous reservoir model for the 2D IARF 

 

 

 

 

 

(a) (b) 

Figure 2.4 Illustration of the IARF within τ-intervals used for discretization of the DTOF-

based one-dimensional diffusivity equation 

 

 

Suppose we have a vertical well placed at the center of a square-shaped 2D 

homogeneous reservoir model with an equal length and width ( LX LY ) (Figure 2.3). 

Grid-cell based DTOFs can be calculated from the analytic Eikonal solution, which can 
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help discretize the one-dimensional diffusivity equation (Eq.(2.20)) into a limited number 

of τ-intervals (Figure 2.4). Based upon these radial τ-intervals, we can evaluate inter-cell 

fluid communication through transmissibility and well index (WI) constructions.  

Since the reservoir is homogeneous, the cumulative pore volume, pV , can be 

written in an analytic form as 

   2

pV r r h    (2.21) 

where r  is the distance from the well;   and h  are porosity and thickness of the 

reservoir model. The DTOF can be calculated using the analytic solution to the Eikonal 

equation, which is related to the distance r  from the source well (Eq.(2.8)). Eq.(2.8) 

indicates that the DTOF at the center of the vertical well is zero. Thus, the analytic  w   

function becomes 

  
2p p

t

dV dV dr kh
w

d dr d c


 

  
       (2.22) 

This linear form of  w   can be conveniently applied to the radial well cell, which starts 

from w  to 0  (Figure 2.4a). Here w  corresponds to the DTOF to the effective wellbore 

radius, wr ; 0  corresponds to the DTOF to any distance, 0r , that defines the upper limit of 

the analytic cumulative pore volume (Eq.(2.23)).  

 
0

0,w
w

D D

r r
 

 
    (2.23) 

If  0 , 2r Min LX LY , then 0  can be defined as 
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  (2.24) 

The linear form of  w   function (Eq.(2.22)) will hold until the pressure front reaches the 

outer boundary of the reservoir model. Beyond this upper limit, though the cumulative 

pore volume will still increase, its DTOF derivative will decrease significantly (Figure 

2.4b). This analysis of the linear-form  w   function as well as the applicability of its 

upper limit is important to our later discussion about improvement of drainage volume 

discretization.  

Suppose the reservoir model is defined by a total number of N τ-intervals, with a 

cell index range of (0, 1,..., N-1). The first τ-interval defines the radial well cell, which has 

a lower and upper DTOF limits of w  and 0 , respectively. The pore volume of the radial 

well cell we defined can be calculated as 

  
 2 2

02 2

,0 0

w

p w

t

kh
V r r h

c

  
 




     (2.25) 

If the production or injection well has a constant flow rate of wq , under pseudo-steady 

state (PSS) conditions, the flux within the radial well cell can be represented as 

    
0

,0

w

p

q
q w d

V



 

  


     (2.26) 

Combining Eq.(2.19), Eq.(2.22) and Eq.(2.25) with Eq.(2.26), we can calculate the 

pressure drop across the radial well cell as 
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Since the  w   function within Eq.(2.27) is linear, we can derive the well index (WI) as 
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  (2.28) 

We define the DTOF to the radial well cell center as c , though there is no need to 

explicitly calculate its position. In such a way, we can define the half-cell transmissibility 

from c  to 0  as 0T , which can be derived following the same procedure when the PSS 

pressure profile within the radial well cell is applied. 
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  (2.29) 

Thus, we have the following relationship between the well index and the half-cell 

transmissibility within the radial well cell, which can be used to depict the steady state 

pressure drop across it. 
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Starting from the second to the last τ-interval (which is radial in homogeneous media), we 

assume that the  w   function across each one of them is constant. That is 

  1,..., 1i
i

i

PV
w i N


  


  (2.31) 
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where iPV  and i  represent the pore volume and DTOF difference across the i-th τ-

interval (i = 1 ,…, N-1). From Eq.(2.31), we can define the half-cell transmissibility 

beyond the first radial well cell as 

 
 

2

1
( 1,..., 1)

2 2

ii

i t i t i

i N
T c w c PV

 
      (2.32) 

After discretization of the one-dimensional diffusivity equation (Eq.(2.20)) using 

the DTOF, Eq.(2.28), Eq.(2.29) and Eq.(2.32) can be used for inter-cell transmissibility 

construction by means of the harmonic average of the half-cell transmissibilities between 

two adjacent τ-intervals. When the boundary condition at the well is defined and an 

appropriate initial reservoir pressure is assigned to the reservoir model, the pressure or 

flux profile at the well can be conveniently solved in a numerical approach. 

 

2.3 Validation 

From above derivation of the asymptotic pressure approximation, it is evident that 

drainage volume calculation plays a significant role in pressure transient analysis. Both 

the drainage volume and the cumulative pore volume constructions rely on an accurate 

calculation of the “diffusive time of flight” (DTOF). In this section, we will analyze the 

piecewise constant form of drainage volume discretization using DTOFs calculated from 

the analytic Eikonal solution and validate it with analytic drainage volume solutions for 

both 1D linear flow and 2D infinite-acting radial flow (IARF) models. We will also 

validate the asymptotic pressure approximation for the 2D IARF model using analytic 
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DTOF solutions. In the end, we test the block-centered FMM on the 3D Brugge full field 

reservoir model and discuss its potential impact on the forward model construction. 

 

2.3.1 A 1D Linear Flow Model 

The analytic solution of drainage volume as a function of time for 1D transient 

linear flow in the homogeneous media can be formulated as  

   DV t A t    (2.33) 

where A  is the uniform cross-sectional area of the 1D flow model.  

For drainage volume discretization using the “diffusive time of flight” (DTOF), 

we start from a 1D linear flow model. Suppose the 1D reservoir model has a total length 

of 5,000ft and consists of n uniform grid cells (DX = (5,000/n) ft, DY = DZ = 1ft). The 

formation porous media are homogeneous and have a uniform permeability value of 20md 

and a uniform porosity value of 0.1, with a total compressibility of 1.0E-5 psi-1. The 

formation volume factor is 1 res bbl/STB and the viscosity of fluid within the reservoir is 

1cp (Table 2.1).  
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Table 2.1 Input parameters for the 1D homogeneous linear flow model 

 

LX   5,000 ft  k   20 md 

LY   10 ft     0.1  

LZ   10 ft     1 cp 

wq   10 res bbl/day  tc   1.0E-5 psi-1 

oB   1 res bbl/STB     

(
225835.12 /D ft hr  ,  

0.5in hr  ) 

 

 

 

Figure 2.5 Discretization of the 1D linear flow model 

 

 

 

A plane-source well with a constant production rate of 10 res bbl/day is placed at 

the left face of the first grid cell, which ensures that the fluid flows from right to left. 

DTOFs to cell centers and cell faces can be calculated precisely using the 1D Eikonal 

solver (Figure 2.5). 
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Since we have already formulated both the analytic solution and the numerical 

solution to the drainage volume as a function of time, we can easily estimate the accuracy 

of the numerical solution by means of the root-mean-square error (RMSE), which can be 

defined as 

 
  

    
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
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


  

(2.34) 

where tN  is the total number of time data used for drainage volume calculation;  j cal
V t  

and  j ref
V t  are the calculated and reference (analytic in this case) drainage volume at the 

time jt .  

After comparing the numerical solution with the analytic solution to the drainage 

volume for the 1D linear flow, we can find that the RMSE generated from the piecewise 

constant form of drainage volume discretization (Eq.(2.17)) decreases fast as the number 

of cells increases (Figure 2.6a). The numerical drainage volume generates accurate results 

at later times of flow as long as the number of grid cells is large enough. However, the 

discrepancy between the numerical solution and the analytic solution at very early times 

of flow is quite large if the piecewise constant form of  V t  discretization is adopted, 

especially when the number of grid cells is small (Figure 2.6b).  
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(a) RMSE 

 

(b) Convergence 

Figure 2.6 Convergence and RMSE of the drainage volume under different discretization 

schemes for the 1D linear flow model based on analytic DTOF solutions 
 

 

The disagreement between the analytic and numerical solutions indicates that the 

piecewise constant form of the drainage volume discretization fails to capture the linear 

flow feature, which varies linearly as a function of square root of time and is not possible 

to be interpreted by the non-square-root solution. At a later time, dependent upon the 

resolution of the reservoir model, the piecewise constant form of the drainage volume 
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converges to the analytic solution. By taking a root-mean-square error analysis, we find 

that the difference between numerical and analytic solutions becomes negligible only 

when the number of grid cells becomes large (Figure 2.6b), implying that it cannot be used 

to accurately model near-well depletion. 

 

2.3.2 A 2D Radial Flow Model 

Following the same procedure as taken for the 1D linear flow, we provide a 

convergence analysis of the drainage volume evolution with time for the 2D infinite-acting 

radial flow (IARF) model. The analytic form of drainage volume expressed as a function 

of time for 2D IARF in homogeneous media can be formulated as: 

   4 DV t ht    (2.35) 

where h  represents the uniform reservoir thickness. This provides us the reference model 

to validate drainage volume discretization based on the DTOF. 

Suppose that we have a 2D square-shaped reservoir model with homogeneous 

permeability and porosity as well as a uniform thickness. One vertical well with a constant 

production rate is located at the center of the reservoir domain (Figure 2.3). All other 

reservoir parameters are listed in Table 2.2. The reservoir has an equal length and width 

of 10,000ft and a uniform thickness of 10ft. It consists of a total number of n  square cells 

(e.g. DX = DY = 476.1905ft when NX = NY = 21).  
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Table 2.2 Input parameters for the 2D homogeneous IARF model 

 

DX   476.19 ft  k   20 md 

DY   476.19 ft      0.1  

DZ   10 ft     1 cp 

NX   21   tc   1.0E-5 psi-1 

NY   21   oB   1  

NZ   1   wq   100  

Well (11, 11)      

(
225835.12 /D ft hr  ,  

0.5in hr  ) 

 

DTOFs to the center of the reservoir grid cells can be easily calculated using the 

analytic Eikonal solution (Eq.(2.8)). Thus, we can construct the piecewise constant form 

of drainage volume based on these analytic DTOFs using Eq.(2.17). 

By increasing the resolution of the 2D reservoir model, it can be observed that the 

discretized drainage volume constructed from the DTOFs converges well to the analytic 

solution at later times of simulation. However, it is not the same situation for early times; 

there exists an obvious discrepancy between the discretized  V t  and the analytic 

formulation, especially when the grid size is large. This convergence analysis once again 

demonstrates that a higher-order  V t  discretization is needed for more accurate 

characterization of transient pressure behavior in the near-well region (Figure 2.7). 
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Figure 2.7 Convergence of the drainage volume under the piecewise constant discretization 

scheme for the 2D radial flow model based on analytic DTOF solutions 
 

 

To validate our asymptotic pressure approximation, we calculate the pressure 

drop distribution using the ECLIPSE simulator on a 51x51 grid system and investigate 

their relationship with the DTOF (τ) values calculated from the analytic Eikonal solution.  

 

 

Figure 2.8 Pressure drop (from ECLIPSE) as a distance “τ” from the vertical well for the 

IARF in a 2D homogeneous reservoir model 
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                 (a) 6hrs                 (b) 24hrs 

  

               (c) 100hrs                 (d) 240hrs 

Figure 2.9 Pressure drop derivative (from ECLIPSE) vs. Exp(-τ2/4t) for the IARF in a 2D 

homogeneous reservoir model 

 

 

The reservoir pressure drop has a maximum value at the wellbore and decrease as 

a function of distance “τ” from the production well (Figure 2.8). Meanwhile, the derivative 

of pressure drop with respect to time (the pressure drop derivative) has a strong linear 

relationship with the exponential term in Eq.(2.11), indicating that the flow is under the 

infinite-acting transient state (Figure 2.9). This is mainly because the pressure contour is 

exactly aligned with the “τ-contour” for the infinite-acting radial flow (IARF) in 
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homogeneous media. However, this assumption needs to be validated in heterogeneous 

media before establishing a robust forward model and conducting inverse modeling.  

 

2.3.3 A 3D Full Field Model 

In this section, we test the current FMM method on the Cartesian coordinate 

system for a 3D full field model. A block-centered discretization scheme is adopted to 

solve the Eikonal equation for general heterogeneous and anisotropic porous media 

(Figure 2.10). 

 

 

Figure 2.10 Illustration of 2D corner point grid iso-parametric mapping and discretization 

(Zhang et al., 2013) 

 

For discretization of Eq.(2.5), we assume that the 2D corner point grid (CPG) can 

be transformed into the rectangular orthogonal grid with an equivalent pore volume 

(Figure 2.10). Thus, implementing the FMM based on Eq.(2.14) leads to the following 

discretization: 
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Here Is  and Js  are the average “slowness” between adjacent grid cells (Zhang et 

al., 2013), which are inverse to the pressure propagation speed in the reference grid. This 

discretization scheme can be easily extended to 3D models and will lead to a 

straightforward FMM calculation for the DTOF. 

We implemented this block-centered FMM on a 3D Brugge full field model. Both 

the permeability and porosity are heterogeneous. The permeability within each grid cell is 

anisotropic. One vertical well located at (70, 23) penetrates the entire reservoir model. The 

input parameters for DTOF calculation using the FMM are listed in Table 2.3. 

 

Table 2.3 Input parameters for DTOF calculation from the block-centered FMM for the 3D 

Brugge full field reservoir model 

 

NX   139  DX   412.1 ft     1 cp  KX  476.9 md 

NY   48  DY  405.3 ft  tc   1.0E-5 psi-1  KY  475.7 md 

NZ   9  DZ  22 ft      KZ  34.2 md 

Well (70, 23)             0.18  

 

 

Based on the permeability and porosity distribution, the 3D nine-layer 

heterogeneous Brugge field can be classified into four groups. The first group contains the 

top and second layers, which has an average permeability in I, J, K directions and porosity 

of 599.8md, 597.3md, 43.2md, and 0.17, respectively. The second group contains Layer 

3 to Layer 5, with an average permeability in I, J, K directions and porosity of 82.6md, 
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82.4md, 5.3md, and 0.15, respectively. The third group contains Layer 6 to Layer 8, with 

an average permeability in I, J, K directions and porosity of 941.1md, 939.4md, 68.0md, 

and 0.23, respectively. The last group contains only the bottom layer, with an average 

permeability in I, J, K directions and porosity of 16.7md, 16.6md, 1.1md, and 0.15, 

respectively. 

Though the permeability and porosity values within the four groups are 

significantly different, which make the average diffusivity values in the first and third 

groups much higher than those in the second and last groups, DTOFs generated from the 

FMM across different layers are generally uniformly distributed (Figure 2.11). This is 

mainly due to the pressure propagation in the vertical direction. On the other hand, the 

DTOF values are generally higher in regions where the permeability is distinctively lower 

than its surrounding areas (e.g. the low permeability areas in Layer 2 and Layer 9. 

The original CPGs within the Brugge model are transformed into 3D orthogonal 

grids, each one of which has a specific length, width and thickness. In such a way, the 

original fault features within the Brugge model are ignored. Therefore, the DTOF 

distribution from the block-centered FMM calculation is smooth, without any abrupt 

changes of DTOF values across the original fault cells. In this 3D full field model, we can 

see up to an order of magnitude variation in the DTOFs calculated from the FMM 

corresponding to two orders of magnitude variation in permeability. (Figure 2.11). This is 

consistent with the analytic Eikonal solution, in which the DTOF value relies upon the 

square root of the diffusivity (Eq.(2.8)). 
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 (a) KX 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 

 
         

 (b) KY 

 
         

 (c) KZ 

 
         

 (d) PORO 

 
         

 (e) DTOF 

 
         

          

Figure 2.11 DTOFs calculated by the block-centered FMM from the 3D Brugge full field 

reservoir model with heterogeneous and anisotropic media 
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2.4 Discussion 

The asymptotic pressure approximation is derived from the high frequency limit 

of the diffusivity equation after Fourier transform. It relies upon an accurate calculation 

of the “diffusive time of flight” (DTOF), which can be calculated either analytically in 

homogeneous media or numerically in heterogeneous media by solving the Eikonal 

equation. The validity of the asymptotic pressure approximation has been demonstrated 

by the 2D infinite-acting radial flow (IARF) model with homogeneous reservoir media 

(Figure 2.3), where the DTOFs are calculated analytically. This methodology needs to be 

further validated in general heterogeneous and anisotropic media.  

Studies of drainage volume evolution with time for the 1D linear flow model and 

the 2D IARF model reveals that the near-well region requires more detailed discretization 

by means of the DTOF (τ) calculated from the FMM (Figure 2.7). The DTOF-based one-

dimensional pressure diffusivity equation can be discretized into a limited number of “τ-

intervals”, based upon which the inter-cell transmissibility can be constructed in terms of 

the “  w  ” function, which is defined as the derivative of the cumulative pore volume 

with respect to the DTOF. Construction of an accurate and stable  w   function is pivotal 

when the diffusivity equation is solved using the inter-cell transmissibility formulated in 

terms of the DTOF. This is especially important for simulation of the transient flow in 

heterogeneous media, within which the  w   function construction from cumulative pore 

volume will be discussed in more detail in the next section. 
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Implementation of the block-centered FMM on orthogonal grids for 3D reservoir 

models with heterogeneity is straightforward. However, the accuracy of DTOFs calculated 

is open to discussion. This is important because our forward model for pressure transient 

calculation relies upon a sufficiently accurate drainage volume construction. Different 

discretization schemes of the Eikonal equation need to be compared and investigated, so 

that the DTOF-based drainage volume can better represent the pressure transient. 

Meanwhile, the causality condition needs to be ensured when the Eikonal equation is 

solved using the FMM in heterogeneous and anisotropic media. This relies upon an 

accurate and stable local Eikonal solver within the FMM, which becomes particularly 

important when it is implemented within the faulted corner point grid (CPG) system.  

 

2.5 Section Summary 

In this section, we derived the asymptotic pressure approximation to the diffusivity 

equation by introducing the concept of “diffusive time of flight” (DTOF), which 

transforms the 3D diffusivity equation into a reduced 1D formulation. The DTOF serves 

as a bridging tool devised to guide subsurface pressure propagation in the 3D space 

through a fast and efficient 1D conduit-a semi-analytic formulation of transient pressure 

variation as a function of time based on drainage volume characterization.  

The results presented provides insights into accurate and efficient discretization 

schemes for the drainage volume evolution as a function of both the DTOF (τ) and time. 

Some conclusions can be drawn as follows: 
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1) Drainage volume formulated from the asymptotic pressure approximation can 

be discretized using the DTOF and validated with its analytic solution. Both 

the 1D linear flow and 2D infinite-acting radial flow (IARF) generated from 

analytic DTOF solutions demonstrate that higher orders of drainage volume 

discretization schemes are required, especially at the near-well region. 

2) Under transient state, the derivative of pressure drop with respect to time for 

the 2D IARF shows to be linearly related with the exponential term in the 

asymptotic pressure approximation. This validates our assumption that the 

pressure gradient is aligned with the DTOF gradient, which needs to be further 

tested in heterogeneous reservoir model.  

3) New discretization schemes for the Eikonal solution need to be designed, 

which should be consistent with the drainage volume discretization. The 

DTOFs calculated from the FMM should be able to generate sufficiently 

accurate drainage volume solutions.  

4) The block-center based discretization for DTOF calculation is easy to 

implement within the FMM. But the accuracy of the calculated DTOFs for 

drainage volume construction needs to be investigated in more detail. 

Meanwhile, the DTOFs generated from the block-centered FMM cannot 

capture faulted features of reservoir models with complex grid geometries. 

This issue is expected to be resolved by designing new local Eikonal solvers 

that can be implemented within the FMM for the faulted corner point grid 

(CPG) system with the causality condition ensured. 
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3. DRAINAGE VOLUME CHARACTERIZATION AND TRANSIENT FLOW 

SIMULATION IN POROUS MEDIA USING THE FAST MARCHING METHOD 

 

This section presents the improved pressure transient formulation from the 

asymptotic pressure approximation and the transient flow simulation in general 

heterogeneous media using the “diffusive time of flight” (DTOF). The near-well drainage 

volume is characterized on the basis of the DTOF (τ) that is obtained from solving the 

Eikonal equation using the fast marching method (FMM). The numerical solution to the 

DTOF-based one-dimensional diffusivity equation is developed by constructing the inter-

cell transmissibility from a more accurate formulation of the cumulative pore volume as 

well as its DTOF derivative. Multiple discretization schemes for calculating the DTOF 

and drainage volume have been investigated and compared with the corresponding 

analytic solution for the 2D infinite-acting radial flow (IARF). The accuracy of the 

numerical pressure transient solution is found to be dominated by the drainage volume 

discretization in the near-well region, but also impacted by the discretization of the 

Eikonal equation. 

We study in more detail the “  w  ” term, which is defined as the DTOF derivative 

of the cumulative pore volume within a “τ-contour” and relate it to the drainage volume 

discretization. An efficient way of generating  w   distribution within the full range of 

DTOF for the entire reservoir model is devised by evaluating its value on each orthogonal 

grid cell. Mixed-forms of drainage volume that combine an analytic solution with first-

order or zeroth-order volumetric elements are developed and their accuracy are tested by 
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means of the well test derivative. Based on the  w   constructed, the well pressure and 

flux are calculated as a function of the DTOF from discretization of the equivalent one-

dimensional diffusivity equation and verified at the well. 

 

3.1 Introduction 

Pressure transient tests are extensively used in petroleum engineering to determine 

reservoir permeability and porosity, skin factor of the production well as well as the flow 

regime in the subsurface. Nearly all reservoir limit tests, which are commonly used for 

obtaining well drainage pore volume, rely on the fact that pressure eventually reaches 

pseudo-steady state for a closed drainage system with constant drawdown rate at the well 

(Jones, 1957, 1962; Jones, 1963; Earlougher, 1971). A more popular pressure transient 

test for evaluating reservoir properties is the pressure buildup test (Miller et al., 1950; 

Horner, 1951). Using the Horner method, the well drainage pore volume and the effective 

porosity can be estimated by analysis of pressure buildup data (Denson et al., 1976). Most 

of these studies of the vertical well performance for transient and pseudo-steady state flow 

are based on either analytical or analog methods, which applies to idealized reservoir 

models. 

By detecting the maximum pressure change for a given location in space, the 

concept of radius of investigation (ROI) and depth of investigation (DOI) can be defined 

for pressure propagation from an impulse source in homogeneous and heterogeneous 

reservoir media, respectively (Lee, 1982; Datta-Gupta et al., 2011). Using such 

definitions, the drainage volume variation as a function of time for the infinite-acting flow 
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can be easily visualized with the help of a numerical simulator (Datta-Gupta et al., 2011). 

However, the numerical method for DOI calculation and drainage volume characterization 

is usually computationally-expensive and cannot provide a geometric description of the 

pressure front propagation in the subsurface.  

Though not widely practiced in the oil and gas industry, the use of Green’s function 

for reservoir simulation provides novel insights into transient flow behavior in the 

subsurface media. Gringarten et al. (1973) applied instantaneous source functions and 

Green’s functions to solve unsteady-flow problems in reservoir models, where the 

methodology of constructing solutions to complex problems through superposition of 

simpler solutions were demonstrated. Meanwhile, they provided a comprehensive list of 

Green’s functions and possible source solutions for a wide variety of reservoir geometries 

and boundary conditions. Since then, mathematical models describing transient pressure 

response of fractured wells (Gringarten and Ramey, 1974; Gringarten et al., 1974) and 

naturally fractured reservoirs with arbitrary fracture connectivity (Wijesinghe and 

Culham, 1984; Wijesinghe, 1985; Wijesinghe and Kececioglu, 1986) are developed by 

formulating the Green’s functions. Although these applications of the Green’s functions 

are limited to isotropic media, they deepens our understanding of the geometric features 

of the reservoir model from well test analysis. 

The asymptotic pressure approximation to the diffusivity equation is actually a 

variation from the Green’s function, but it can be conveniently used to address pressure 

transient and rate transient problems in heterogeneous reservoir models. In the 

methodology we proposed, the Eikonal equation is related with the drainage volume 
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formulation by means of the “diffusive time of flight” (DTOF), which governs the 

propagation of pressure front in the reservoir for an impulse source. The discretized form 

of these equations provides the foundation for both fast numerical simulations and for 

sensitivity-based inverse problems in reservoir characterization, especially for 

applications in pressure transient analysis (PTA) of conventional reservoirs and in rate 

transient analysis (RTA) of unconventional reservoirs. The solution to the Eikonal 

equation and the calculation of the drainage volume are obtained by applying the fast 

marching method (FMM). We develop and analyze discretization schemes of these 

equations, with an emphasis on the near-well region which dominates the accuracy of the 

solutions. 

 

3.2 Methodology: Forward Model Discretization 

The “diffusive time of flight” (DTOF) calculated from the fast marching method 

(FMM) allows us to generalize the concept of the depth of investigation (DOI) to 

reservoirs with heterogeneous media and complex well geometries. To obtain adequate 

accuracy for the purpose of well test interpretation, a mixed discretization scheme that 

uses a combination of analytic, first-order, and zeroth-order volumetric elements is 

devised. The novel semi-analytic methodology we propose for calculating pressure and 

rate transient drainage volume calculations serves as a bridge between analytic approaches 

that require many simplified assumptions and conventional numerical simulation 

techniques that are usually computationally expensive. 
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Similar to the mixed structure of drainage volume, a hybrid version of the DTOF 

derivative of the cumulative pore volume,  w  , is included into the one-dimensional 

form of the diffusivity equation and the solution at the wellbore is calibrated with the 

conventional reservoir simulator. The implementation of this method relies upon an 

understanding of the properties of the solutions to discretized forms of the source function, 

which is the subject of the current study. Consistency between the transient drainage 

volume solution and the pressure solution from the one-dimensional diffusivity equation 

using the FMM is achieved. The simplicity and computational efficiency of our proposed 

approach provide us with a better geometric understanding of pressure transient flow 

behavior in the subsurface, making it a promising candidate for high resolution reservoir 

characterization. 

 

3.2.1 Discretization of the Eikonal Equation 

The main feature of asymptotic expansion to the diffusivity equation is application 

of the quantity  x , which is defined as the “diffusive time of flight” (DTOF). It has a 

unit of (time)1/2 and controls the phase of propagation of the pressure front. The advantage 

of using the DTOF to simulate reservoir flow is reducing the three-dimensional diffusivity 

equation to an equivalent one-dimensional form. In heterogeneous and anisotropic porous 

media, DTOFs can be calculated by solving the Eikonal equation using the fast marching 

method (FMM).  
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         tx x x x c      k   (3.1) 

or 

       1Dx x x       (3.2) 

where  D x  is the diffusivity tensor evaluated at location x . 

  
 

 
D

t

x
x

x c 


k
   (3.3) 

The Eikonal equation shows that the pressure front propagates in the subsurface 

with a velocity given by the square root of diffusivity. It is solved numerically subject to 

the boundary condition of a zero DTOF value at the well. To get more accurate DTOF 

solutions, we will discuss in more detail about the FMM design as well as the local Eikonal 

solver it contains. 

 

 

Figure 3.1 Illustration of 2D rectangular grid cell and its potential locations for DTOF 

evaluation 

 

 

Suppose we have a 2D reservoir model that consists of rectangular grid cells. For 

each orthogonal grid cell, the DTOF can be evaluated at the cell center, cell vertex and 
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edge center (Figure 3.1). Each node can have connections with neighboring nodes in the 

X (or I) direction, Y (or J) direction and XY (or IJ) direction.  

 

 

   

(a) C5 discretization (b) V5 discretization (c) V9 discretization 

 
 

(d) C5V9 discretization (e) CVE9 discretization 

Figure 3.2 Illustration of discretization schemes for the Eikonal equation on 2D reservoir 

models that consist of uniform rectangular grid cells 

 

 

For the 2D DTOF calculation, we mainly investigate five discretization schemes 

for the Eikonal equation (Figure 3.2).  

 In the first scheme, only cell centers are calculated and the cell-center node has 

direct connections with only cell-center nodes of its adjacent neighbor cells in 

the X (or I) and Y (or J) directions. This scheme is named as the 2D C5 

discretization (Figure 3.2a).  
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 In the second scheme, only DTOFs to cell vertices are calculated and the cell-

vertex node has direct connections with only cell-vertex nodes of its adjacent 

neighbor cells in the X (or I) and Y (or J) directions. This scheme is named as 

the 2D V5 discretization (Figure 3.2b). 

 In the third scheme,  only DTOFs to cell vertices are calculated and the cell-

vertex node has direct connections with only cell-vertex nodes of its adjacent 

neighbor cells in the X (or I), Y (or J) directions and XY (or IJ) directions. This 

scheme is named as the 2D V9 discretization (Figure 3.2c). 

 In the fourth scheme, DTOFs to both cell vertices and cell centers are 

calculated. The cell-vertex node not only has direct connections with cell-

vertex nodes of its adjacent neighbor cells in the X (or I) and Y (or J) directions, 

it also has direct connections with cell-center nodes of its diagonal neighbor 

cells in the XY (or IJ) direction. The cell-center node has only direct 

connections with the four vertex nodes of the cell itself. This scheme is named 

as the 2D C5V9 discretization (Figure 3.2d). 

 In the fifth scheme, DTOFs to cell centers, cell vertices and edge centers are 

calculated. The nodes at all these locations have direct connections with nodes 

located at cell centers, cell vertices and edge centers of adjacent and diagonal 

neighbor cells as well as the cell itself. This scheme is named as the 2D CVE9 

discretization (Figure 3.2e). Such a scheme provides the most complex node 

connections among the five discretizations to be investigated and thus is 
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expected to help generate the most accurate local DTOF solutions using the 

FMM for general heterogeneous media.  

 

Table 3.1 Discretization schemes for the 2D Eikonal equation 

 

Discretization 

Scheme (2D) 

Nodes 

Per Cell 

Equations 

Per Cell 
Description 

C5 1 4 
1 Center node per cell 

5-point discretization 

V5 1 4 
1 Vertex node per cell (shared) 

5-point discretization 

V9 1 8 
1 Vertex node per cell (shared) 

9-point discretization 

CVE9 4 4x8 

1 Center node per cell 

1 Vertex node per cell (shared) 

2 Edge nodes per cell (shared) 

9-point discretization for each unknown 

C5V9 2 4+8 

1 Center node per cell 

1 Vertex node per cell (shared) 

Center 5-point discretization 

Vertex 9-point discretization 

 

 

Table 3.1 lists the computational information about the unknown DTOF variable 

for each of the five discretization schemes of the Eikonal equation (Figure 3.2), which 

includes the number of nodes per cell and the number of quadratic equations it required to 

solve for the unknown nodal DTOFs. We implemented the five discretization schemes for 

the Eikonal equation within the FMM algorithm and tested them on 2D homogeneous and 

heterogeneous reservoir models that consist of uniform square cells. 
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For all the five discretization schemes demonstrated above (Figure 3.2, Table 3.1), 

one basic rule underlying the DTOF calculation is that all pressure fronts have a constant 

speed of propagation within each element (with either a rectangular or triangular shape). 

In reservoir models discretized by all the five schemes, a vertical well is located at the 

reservoir center so that the DTOF information will propagate from the wellbore regions 

with lower DTOF values towards regions farther away with higher DTOF values. 

At given locations in space, DTOFs are updated in such a way that they only 

depend upon points with smaller DTOF values. These discretization schemes for the 

Eikonal equation were analyzed and implemented either using the fast marching method 

(FMM) (Sethian, 1996; Sun and Fomel, 1998; Sethian, 1999; Sethian and Vladimirsky, 

2000; Rawlinson and Sambridge, 2004, 2005; Konukoglu et al., 2007; Lelievre et al., 2011) 

or the fast sweeping method (FSM) (Zhao, 2004; Zhang et al., 2006; Qian et al., 2007; 

Luo and Qian, 2012; Luo et al., 2014). 

 

 

Table 3.2 Input parameters for the 2D reservoir model 

 

LX   10,000 ft     0.1  

LY   10,000 ft     1 cp 

h   10 ft  tc   1.0E-05 psi-1 

NX   199   oB   1 res bbl/STB 

NX   199   Well (100, 100)  
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                 (a) 

    Heterogeneous KX 

        VPD = 0.5573 

                 (b) 

       DTOFs within 

   homogeneous media 

                 (c) 

       DTOFs within 

  heterogeneous media 

Figure 3.3 Permeability and DTOFs calculated from the CVE9 FMM within a 199x199 

square grid system 

 

 

By applying the 2D CVE9 FMM to solve the Eikonal equation for a homogeneous 

reservoir and a heterogeneous reservoir (Figure 3.3a) (both with a grid resolution of 

199x199 and with a vertical well located at (100,100)), we calculated the DTOFs for the 

reservoir model with input parameters listed in Table 3.2. DTOFs are radially distributed 

in homogeneous media (Figure 3.3b). In contrast, the DTOF distribution has a more 

irregular shape in the heterogeneous media (Figure 3.3c). In both cases, DTOF values are 

smallest at the central source region (the DTOF to the well is assigned as zero) and become 

increasingly large to the outer boundary of the reservoir domain. DTOF solutions for both 

the homogeneous and heterogeneous models can capture the pressure front propagating in 

the porous media (Figure 3.3b and c). 

For both the homogeneous media and the heterogeneous media, we study the 

accuracy of the numerical DTOF solutions calculated from 2D FMMs under the five 

discretization schemes mentioned above. In the homogeneous reservoir model, the 

reference DTOF solution is analytic. In the sufficiently smooth heterogeneous reservoir 
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model (Figure 3.3a), which has a permeability field with a Dykstra-Parsons coefficient 

(VDP) of 0.5573, the reference DTOF solution is calculated from the 2D CVE9 FMM 

(Figure 3.3c). Within the entire modeling region of both the homogeneous and 

heterogeneous model which are decomposed into a 199 x 199 grid system, we select a 

central subdomain consisting of a 5x5 grid system to investigate the DTOF accuracy in 

the near-well region. The well is located at (100, 100) and (3, 3) within the entire reservoir 

domain and the near-well subdomain, respectively. 

 

  

          (a) Homogeneous (5x5)           (b) Homogeneous (199x199) 

  

         (c) Heterogeneous (5x5)            (d) Heterogeneous (199x199) 

Figure 3.4 DTOFs calculated from FMMs under different discretization schemes within the 

near-well (5x5) and entire (199x199) 2D square reservoir domain 
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Figure 3.4 shows the scatter plots between DTOFs generated under different 

discretization schemes for the Eikonal equation and those generated from the reference 

FMM for both the homogeneous (Figure 3.4a and b) and heterogeneous models (Figure 

3.4c and d). Particularly in the near-well region, the cell-vertex DTOFs generated from 

the 2D C5V9 FMM overlap all the DTOFs generated from the 2D V9 FMM and are closest 

to the reference model (Figure 3.4a and c). Based on DTOFs generated from the different 

FMMs, we can calculate the corresponding relative computational error in terms of the 

root-mean-square error (RMSE) for each discretization. 

Suppose that the total number of DTOF data to be calculated using the FMM is 

N . Then we can define the RMSE of the calculated DTOFs as  

 
 

 
2

, ,

1

N

cal j ref j

j

calRMSE
N





 









  

(3.4) 

where ,cal j  and ,ref j  represent the numerical DTOF calculated from the FMM and 

reference DTOF (analytic in the homogeneous reservoir model) at a node with index 

 1,2, ,j j N   within the 2D coordinate system. If we only consider the 2D 

homogeneous square reservoir model with an equal number cells in the x and y directions 

(NX = NY = 101, 201, 401, 801, 1601), we can easily conduct a convergence rate analysis 

of the DTOF values calculated from the five different FMMs (Figure 3.5).  
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Figure 3.5 Convergence rate analysis of DTOFs generated from different discretization 

schemes of the Eikonal equation within a 2D homogeneous square reservoir model 

 

 

In Figure 3.5, we can easily find that the C5 and V5 discretization schemes of the 

Eikonal equation generate the most inaccurate DTOF solutions and the truncation errors 

they introduced are quite close. The V9 and C5V9 discretization schemes can significantly 

improve the numerical solutions to the Eikonal equation and their computational accuracy 

are also very similar. This explains why the V5 scheme is overlapping the C5 scheme and 

the C5V9 scheme is overlapping the V9 scheme in Figure 3.5. The CVE9 FMM generates 

the most accurate DTOF solution with the least truncation errors since it involves the most 

computational costs compared with the other four schemes. 

This result is also listed in Table 3.3, where the correlation coefficients between 

the numerical solutions of the Eikonal equation and the corresponding analytic solution 

are also demonstrated. In particular, the convergence rates we estimated from the RMSE 

calculation for each of the five FMMs is approximately 0.8, which is not quite close to 1. 
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This is different from the convergence rate generated from the numerical solutions to the 

Eikonal equation in triangular elements using the fast sweeping method (FMM) by Qian 

et al. (2007), where a first order convergence rate can be obtained using the L1 error 

estimation by means of a so called “wrapping technique”. The reason for this convergence 

rate discrepancy in numerical calculation of the Eikonal solution is worthy of further 

investigation in the future research work. 

 

 

Table 3.3 Numerical errors and convergence rate of DTOFs calculated from FMMs in the 

2D homogeneous reservoir model (KX = 15.5272md) 

 

Discretization  

Schemes (2D) 

Correlation Coefficients RMSE (hr0.5) Convergence Rate 

(Confidence Interval) (5x5) (199x199) (5x5) (199x199) 

C5 1.119862 1.011107 0.2123 0.7776 
0.7885  

(0.7616, 0.8153) 

V5 1.100708 1.011598 0.1983 0.7971 
0.7914  

(0.7642, 0.8185) 

V9 1.035780 1.003036 0.0862 0.2320 
0.8170  

(0.7978, 0.8361) 

C5V9 1.039944 1.003045 0.0964 0.2322 
0.8175  

(0.7989, 0.8362) 

CVE9 1.015687 1.001427 0.0340 0.1100 
0.8027  

(0.7784, 0.8270) 
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We also compared the numerical solutions generated from the C5, V5, V9 and 

C5V9 FMMs with the DTOFs calculated from the CVE9 FMM in the 2D heterogeneous 

reservoir model (Figure 3.3a). The correlation coefficient and RMSE between them are 

generalized in Table 3.4. Discretization analysis of the DTOF calculation within the 

heterogeneous media also shows that Eikonal solutions from the V9 and C5V9 FMMs 

have similar convergence rates and almost the same accuracy. But the C5V9 FMM 

requires less computational cost compared to the V9 FMM (Figure 3.2).  

 

 

Table 3.4 Numerical errors of DTOFs calculated from FMMs in the 2D heterogeneous 

reservoir model (Average KX = 15.5272md, VDP = 0.5573) 

 

Discretization  

Schemes (2D) 

Correlation Coefficients RMSE (hr0.5) 

(5x5) (199x199) (5x5) (199x199) 

C5 1.106959 1.011930 0.1443 0.7954 

V5 1.075322 1.009768 0.1204 0.6924 

V9 1.015790 1.001509 0.0303 0.1054 

C5V9 1.021544 1.001486 0.0497 0.1045 
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              (a) 

Permeability in Layer 1 

(Average KX = 74.33md) 

    (VDP = 0.9191) 

              (b) 

DTOFs in Layer 1 

     Well (40, 90) 

 

               (c) 

DTOFs in Layer 1 

     Well (24, 134) 

 

   

             (d) 

Permeability in Layer 72 

(Average KX = 475.90md) 

   (VDP = 0.9982) 

               (e) 

DTOFs in Layer 72 

    (Well (33, 103) 

 

              (f) 

DTOFs in Layer 72 

   Well (42, 100) 

 

Figure 3.6 DTOFs calculated from the 2D CVE9 FMM for the permeability fields of the 1st 

layer and 72nd layer within the SPE10 model (60x220 rectangular grid systems; grid cell 

aspect ratio = 2:1) 
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Following the same procedure above, we test the four FMMs (C5, V5, V9 and 

C5V9) against the CVE9 FMM in much more heterogeneous reservoir media. The 

permeability fields of the 1st layer (Figure 3.6a) and 72nd layer (Figure 3.6d) within the 

SPE10 model (with VDPs of 0.9191 and 0.9982, respectively) are taken as examples to 

test the computational accuracy of the four candidate FMMs.  

 

 

Table 3.5 Input parameters for the 2D reservoir fields within the SPE10 model 

 

LX  1,200 ft     0.1  

LY   2,200 ft     1 cp 

h   2 ft  tc   1.0E-05 psi-1 

NX  60   oB   1 res bbl/STB 

NY  220      

 

 

 

Table 3.6 Well locations in the 1st layer and the 72nd layer of the SPE10 model as well as the 

maximum DTOF values calculated from the 2D CVE9 FMM 

 

Reservoir Layers Well-cell Permeability (md) Maximum DTOF Value (hr0.5) 

Layer 1 
 Well (40, 90) Well (25, 134) Well (40, 90) Well (25, 134) 

993.06 7.71 51.27 57.50 

Layer 72 
Well (33, 103) Well (42, 100) Well (33, 103) Well (42, 100) 

3430.85 3.40 43.83 45.16 
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Reservoir porosity, viscosity, compressibility and the formation volume factor are 

assumed to be uniform as listed in Table 3.5. In each layer, the well is placed at two 

different cells of the 2D reservoir model, with a higher and lower permeability values, 

respectively (Table 3.6). The distributions of the DTOF values calculated from the CVE9 

FMM are different due to different well locations (Figure 3.6b, c, e and f). 

 

 

  

       (a) Layer 1, Well (40, 90)         (b) Layer 1, Well (25, 134) 

  

         (c) Layer 72, Well (33, 103)           (d) Layer 72, Well (42, 100) 

Figure 3.7 DTOFs calculated from the FMM under different discretization schemes for the 

2D reservoir fields (60x220) within the SPE10 model 
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In Figure 3.7, we also make the scatter plots between the DTOFs calculated from 

the candidate discretization schemes against that calculated from the reference scheme 

(CVE9) of the Eikonal equation for the 2D SPE10 models. It should be noted that the 

DTOF calculated from the C5 FMM deviates significantly from the reference solution 

compared with the other three FMMs.  

 

 

Table 3.7 Numerical errors of DTOFs calculated using FMMs from the permeability field of 

the 1st layer within the SPE10 model (VDP = 0.9191) 

 

Discretization 

Schemes (2D) 

Correlation Coefficients RMSE (hr0.5) 

Well (40, 90) Well (25, 134) Well (40, 90) Well (25, 134) 

C5 1.115987 1.114111 1.5035 1.7425 

V5 1.011137 1.014595 0.2351 0.2991 

V9 0.999081 1.002075 0.0452 0.0695 

C5V9 0.998585 1.002143 0.1412 0.1534 

 

 

Table 3.8 Numerical errors of DTOFs calculated using FMMs from the permeability field of 

the 72nd layer within the SPE10 model (VDP = 0.9982) 

 

Discretization 

Schemes (2D) 

Correlation Coefficients RMSE (hr0.5) 

Well (33, 103) Well (42, 100) Well (33, 103) Well (42, 100) 

C5 1.181338 1.209014 2.0368 2.5230 

V5 1.024296 1.025083 0.3267 0.3501 

V9 1.001788 1.002830 0.0450 0.0532 

C5V9 1.000336 1.001442 0.1603 0.1613 
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By comparing the RMSE of the DTOF values generated from the C5, V5, V9 and 

C5V9 FMMs against the CVE9 reference FMM for the 2D SPE models, we can see that 

the C5 and V5 FMM solutions are least accurate, especially the former scheme (which has 

a RMSE significantly greater than the other three schemes) (Table 3.7 and Table 3.8). This 

is consistent with previous results generated from homogeneous and relatively smooth 

heterogeneous models. DTOFs generated from the V9 and C5V9 FMMs have almost the 

same correlation coefficients with DTOFs calculated from the reference scheme (CVE9 

FMM).  

 

 

  

       (a) High-permeability region         (b) Low-permeability region 

Figure 3.8 Correlations between maximum grid-cell DTOFs calculated from the 2D V9 and 

C5V9 FMMs within the 72nd layer in the SPE10 model (VDP = 0.9982) with a vertical well 

located at Cell (33, 103) 
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Figure 3.8 shows the scatter plots of maximum grid-cell DTOFs calculated from 

the C5V9 FMM against the V9 FMM in high-permeability cells (Figure 3.8a) and low-

permeability cells (Figure 3.8b) within the 72nd layer of the SPE10 model, respectively. 

There are a total number of 13,200 cells within the 2D SPE10 model. The low-

permeability cells are defined as the 4,400 cells with the lowest permeability values, which 

have a minimum, maximum and mean permeability values of 8.69E-4md, 0.36md and 

0.12md, respectively. The remaining 8,800 cells are defined as the high-permeability cells 

with a minimum, maximum and mean permeability values of 0.36md, 20,000md and 

713.80md, respectively. The vertical well is located at the high-permeability cell (33, 103). 

Although the V9 FMM has some advantages over the C5V9 FMM in terms of the 

DTOF accuracy within the entire highly heterogeneous reservoir model (Table 3.7 and 

Table 3.8), it performs less well compared with the C5V9 FMM within the low-

permeability cells (Figure 3.8b). In cells with higher permeability values, the maximum 

DTOF values evaluated on every grid cell calculated from the V9 FMM (at the cell vertex) 

has a strong linear relationship with those calculated from the C5V9 FMM (either at the 

cell vertex or cell center) (Figure 3.8a). However, this linear relationship become worse if 

the maximum grid-cell DTOFs are calculated within those cells with lower permeability 

values. Especially in grid cells that are far away from the well and have much smaller 

permeability values compared with the high-permeability cells close to the well, the 

maximum grid-cell DTOFs evaluated from the C5V9 FMM can be distinctly higher than 

the V9 FMM (Figure 3.8b). 
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Figure 3.9 DTOFs evaluated at the four vertices and the center of Cell (21, 188) within the 

72nd layer in the SPE10 model with a vertical well located at Cell (33, 103) using the 2D C5V9 

FMM 

 

 

This deviation of maximum grid-cell DTOF values calculated using the C5V9 

FMM from those calculated using the V9 FMM is mainly due to the an additional degree 

of freedom of the DTOF introduced at the cell center by the C5V9 FMM. Figure 3.9 shows 

the DTOFs evaluated at the vertices and center of Cell (21, 188) within the 72nd layer in 

the SPE10 model. Using the C5V9 FMM to solve the Eikonal equation, the DTOF to the 

center of Cell (21, 188), which has a very low permeability value of 8.69E-4md, is greater 

than the DTOFs to its four vertices. This indicates that the pressure front will finally enter 

into the low-permeability Cell (21, 188) after it passes the four vertices. On the contrary, 

the pressure front will circumvent this low-permeability cell if the DTOFs are only 

evaluated at the cell vertices using the V9 discretization, which may not reflect the real 

circumstances of fluid flow in low-permeability cells within the reservoir model. 
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From Figure 3.8 and Figure 3.9, it is evident that an additional degree of freedom 

of DTOF evaluated at the cell center is significant for accurate characterization of pressure 

front propagation in heterogeneous reservoir models that have low-permeability cells. 

These results show that the C5V9 FMM is the best candidate for DTOF calculation 

compared with the C5, V5 and V9 FMMs. It can not only help generate sufficiently 

accurate Eikonal solutions without much computational cost (Table 3.3, Table 3.4, Table 

3.7 and Table 3.8) but can also more realistically capture pressure front propagation in 

general heterogeneous media (Figure 3.9). 

From above analysis of DTOF calculation using different discretization schemes 

for the Eikonal equation, we can obtain following observations both for the porous media 

with smoothly varying heterogeneity (Figure 3.3) and the porous media with high 

heterogeneity (Figure 3.6): 

 The C5 and V5 discretization schemes designed for the Eikonal equation 

generates the DTOF solutions with the greatest errors, with the latter slightly 

more accurate than the former (Figure 3.4 and Figure 3.7). 

 DTOFs generated from the V9, C5V9 and CVE9 discretization schemes for 

the Eikonal equation have comparable magnitudes of accuracy (Table 3.3, 

Table 3.4, Table 3.7 and Table 3.8). 

 For the 2D reservoir model that has a large grid-cell resolution, the C5V9 

discretization scheme should be mostly recommended for solving the Eikonal 

equation using the FMM. It can generate a sufficiently accurate DTOF solution 
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among the five discretization schemes we suggested for DTOF calculation 

without introducing much additional computational cost. 

 The 2D C5V9 discretization scheme for the FMM ensures an additional degree 

of freedom of DTOF value at the cell center, which connects DTOFs evaluated 

at the four cell vertices and proves to be suited for describing pressure 

propagation in highly heterogeneous reservoir models (Figure 3.8 and Figure 

3.9). 

 

3.2.2 Discretization of the Drainage Volume 

From the asymptotic pressure approximation, it is evident that characterization of 

the drainage volume evolution as a function of time relies largely on both the calculation 

of the DTOF and the differential of the cumulative pore volume. 

      
2 24 4

0 0

t t

pV t dV e d w e   
 

         (3.5) 

Sufficient attention needs to be paid to the  w   term that is defined as the DTOF 

derivative of the cumulative pore volume  pV   within a specific “τ-contour”. We have 

demonstrated in Section 2 that a higher-order  w   formulation is required to generate 

more accurate drainage volume as well as pressure transient solutions at early times of 

simulation, when the pressure front propagates mainly in the near-well region. 
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As mentioned in Section 2, we can use the analytic Eikonal solver to calculate the 

DTOF in reservoir models with homogeneous and isotropic media when a vertical well is 

located at the center of the reservoir domain and the radial flow occurs. 

 , w
w

D D

rr
 

 
    (3.6) 

Here r  represents the radial distance from the well and wr  represents the effective 

wellbore radius; w  represents the DTOF to the wr  location. Then, the analytic cumulative 

pore volume can be formulated in terms of the DTOF as 

      2 2 2 2

p w D wV r r h h            (3.7) 

where D ,  , and h  are the uniform diffusivity, porosity and thickness of the 

homogeneous reservoir model, respectively. This  pV   function can be non-negative 

only when w  . The corresponding analytic DTOF derivative of the cumulative pore 

volume can then be formulated as 

   2 Dw h      (3.8) 

Analytic formulation of the cumulative pore volume using the DTOF is the key to ensuring 

accurate analysis of the pressure transient behavior near the well, especially within the 

well cell. 
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(a) Hybrid discretization  

within the well cell 
            (b) Vp(τ) within the well cell 

 

 
 

(c) DTOF (τ) calculation  

beyond the well cell 
             (d) Vp(τ) beyond the well cell 

Figure 3.10 Hybrid cumulative pore volume as a function of the DTOF within the 

rectangular cells (with an aspect ratio of 2:1) for the 2D radial flow 

 

 

Suppose there is a rectangular grid cell in a 2D reservoir model with a uniform 

thickness of h  and a vertical well with an effective wellbore radius of wr  is located at the 

grid-cell center. From the wellbore radius to the nearest boundary of the rectangular well 

cell, it is easy to construct an inscribed annular cell, which has an inner radius equal to wr  
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and an outer radius equal to one half of the width of the rectangular cell (the shorter length 

of the rectangular well cell), 0r . 

 0 0 0

1
min( , )

2
r x y     (3.9) 

where 0x  and 0y  represent the lengths of the rectangular well cell in the x  and y  

directions, respectively. Using Eq.(3.6), the DTOF to the outer radius of the annular cell 

as well as the vertex of the rectangular well cell can be calculated as 0  and 1 , 

respectively (Figure 3.10a). 

 

2 2

0 00
0 1

,0 ,0

,
2D D

x yr
 

 

 
    (3.10) 

where ,0D  is the diffusivity of the well cell. Then, the pore volume of the annular cell 

within the well cell can be calculated using Eq.(3.7) As 

  2 2

0 ,0 0 0D wPV h       (3.11) 

where ,0D  and 0  are the diffusivity and porosity of the well cell, respectively. This 

annular cell can be defined as the Element 0 well cell (which is represented as the red-

colored region in Figure 3.10a). The remaining region beyond the Element 0 well cell 

within the rectangular well cell can be defined as the Element 1 well cell (which is 

represented as the yellow-colored region in Figure 3.10a), which has a pore volume that 

can be calculated as 

  2 2

1 0 0 ,0 0 0D wPV x y h        
    (3.12) 
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In general 3D reservoir models, if we use  , ,i j k  to represent the grid-cell index, 

the grid-cell pore volume can be represented as ijkPV . We can also represent the DTOF 

to the center of each grid cell as 
cell

ijk . Meanwhile, the minimum and maximum DTOF (τ) 

values for each grid cell (which can be evaluated at the cell center, cell vertex, cell face 

center, or cell edge center) can be represented as 
min

ijk  and 
max

ijk , respectively. The grid-cell 

based 
cell

ijk , 
min

ijk , and 
max

ijk  can be conveniently calculated using the fast marching method 

(FMM). If we only evaluate the DTOF to the center of each grid cell, a piecewise constant 

form of cumulative pore volume function can be constructed as 

    cell

p ijk ijk

ijk

V PV H       (3.13) 

If we evaluate both the minimum and maximum DTOF values for each grid cell, we can 

generate a piecewise constant  w   function on each grid cell  , ,i j k  as 

   max min

ijk

ijk
ijk ijk

PV
w 

 



  (3.14) 

Then, we are able to generate a piecewise linear form of the cumulative pore volume 

function as 

  
min

max min
1, ,0

ijk

p ijk

ijk ijk ijk

V PV Max Min
 


 

  
        
   (3.15) 

If a vertical well perforates a certain number of N orthogonal well cells, we can generate 

a hybrid version of the cumulative pore volume function in a complete form as 
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        


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  (3.16) 

Here, 0,ijkPV  and 1,ijkPV  represent the pore volume of the Element 0 and Element 1 well 

cells with index  , ,i j k  where the vertical well perforates, respectively; ijkPV  represents 

the orthogonal non-well cells with index  , ,i j k . Eq.(3.16) is a combination of Eq.(3.7) 

and Eq.(3.15), which indicates that this hybrid version of cumulative pore volume function 

utilizes the analytic solution within the Element 0 well cell and the piecewise linear 

solution beyond it. 

The accuracy of the analytic (Eq.(3.7)), piecewise constant (Eq.(3.13)), piecewise 

linear (Eq.(3.15)), and hybrid (Eq.(3.16)) forms of cumulative pore volume construction 

can be compared and analyzed in the near-well region in the homogeneous reservoir model.  

We first compare the different formulations of  pV   within the rectangular well 

cell (with an aspect ratio of 2:1) with its analytic solution. It is easy to find that the 

piecewise constant form of  pV   construction generates the most inaccurate solution 

when 1  . Though being able to significantly improve the  pV   construction within 

the well cell, the piecewise linear solution is still insufficiently accurate within the Element 

0 well cell. By applying the hybrid construction of the  pV   function, the cumulative 
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pore volume can match exactly with the analytic solution within the Element 0 well cell 

(Figure 3.10b). This precise solution to the cumulative pore volume within the Element 0 

well cell is important for later pressure transient formulation as well as the one-

dimensional diffusivity equation solution using the DTOF. 

Then, we extend the hybrid formulation of the cumulative pore volume (Eq.(3.16)) 

to a larger near-well region (5x5 grids with a uniform aspect ratio of 2:1) and investigate 

the  pV   function within an upper limit of the DTOF, e , which signifies that the 

pressure front reaches the outer boundary of the region (Figure 3.10c).  

 
 5 min ,

2
e

D

x y




  
   (3.17) 

Here x  and y  represent the lengths of the uniform rectangular grid cell in the x  and y  

directions, respectively. We use the 2D CVE9 FMM to solve the Eikonal equation and 

calculate the DTOF. The hybrid  pV   solution can then be obtained based on the w  and 

0  values as well as those 
cell

ijk  values less than e . By comparing with the analytic 

solution, we find that the hybrid cumulative pore volume construction can help generate a 

sufficiently accurate  pV   solution both within (Figure 3.10b) and beyond the 

rectangular well cell in the near-well region (Figure 3.10d).  

Though the hybrid version of the cumulative pore volume proves to be able to 

significantly improve the solution accuracy in the near-well region, we still need to 

investigate the potential impact of the FMM-based DTOF calculation on the  pV   

function, especially in regions farther away from the wellbore. Since DTOF values within 
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the well cell (at the wellbore, cell center, cell vertex, or edge center) can be calculated 

analytically (Eq.(3.6)), the hybrid  pV   construction (Eq.(3.16)) can be applied to all the 

five discretization schemes listed above (Figure 3.2). However, only cell-center DTOF 

values can be obtained for grid cells beyond the well cell if the 2D C5 discretization 

scheme is used for solving the Eikonal equation (Figure 3.2). So, we can modify Eq.(3.16) 

and apply the cell-center DTOF values for those non-well cells and formulate the hybrid 

cumulative pore volume function in a reduced form. 

 

 

 

2 2

0, 2 2

0,

0,

1,

1, 0,

1,

1, ,0

w
ijk

ijk w

p

Perforated
ijk

ijk
ijk

ijk ijk

cell

ijk ijk

ijk

PV Min

V

PV Max Min

PV H

 

 


 

 

 

  
     

  
   

           
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  (3.18) 

In this new formulation, the Element 0 and Element 1 well cells still rely on the minimum 

and maximum DTOF values evaluated on them to construct the cumulative pore volume; 

only cell-center DTOF values are calculated for the remaining orthogonal non-well cells.  

We use Eq.(3.18) for subsequent reduced hybrid  pV   construction based on all 

the five discretization schemes (C5, V5, V9, C5V9 and CVE9) for the Eikonal equation. 

For the 2D V5 and V9 FMMs, we evaluate the cell-center DTOF values (
cell

ijk ) by taking 

the arithmetic average of the four vertex DTOF values of the cell. The 0,ijk  values for all 

the five discretization schemes can be calculated analytically (Eq.(3.6)) within the well 

cell. 
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             (a) LGR on well cell and its four  

adjacent cells within the C5V9 FMM 

(b) Hybrid cumulative pore volume  

within the C5V9 (LGR) FMM 

Figure 3.11 Extension of the C5V9 FMM by LGR on 2D uniform rectangular grid cells and 

the corresponding hybrid cumulative pore volume construction 

 

 

Since the 2D C5V9 FMM shows to be able to generate DTOF values with almost 

the same accuracy compared with the 2D V9 FMM but with less computational cost 

required, we extend the investigation on the C5V9 discretization scheme for the Eikonal 

equation by applying a local grid refinement (LGR) to the well cell as well as its adjacent 

four cells. In particular, the DTOFs to the edge center of the well cell are calculated 

simultaneously with all other DTOF values evaluated at the cell center and cell vertex 

(Figure 3.11).  

Thus, the hybrid of  pV   function can be constructed in a reduced form 

(Eq.(3.18)) using DTOFs calculated from six FMMs (C5, V5, V9, C5V9, C5V9 (LGR), 

and CVE9). Using the same homogeneous and heterogeneous reservoir models (Figure 

3.3) with the same input parameters (Table 3.2), we investigate the hybrid  pV   function 
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within both the near-well region (5x5 uniform square grids) and the entire reservoir 

domain (199x199 uniform square grids).  

In homogeneous media, the reference hybrid cumulative pore volume model is 

constructed based on the DTOF that is calculated by solving the Eikonal equation 

analytically. Analytic DTOF values are evaluated at the cell center, vertex and edge center 

of grid cells within the reservoir model. Only unique values of these DTOFs, which are 

first sorted in an ascending order, are kept as the DTOF samples to evaluate the hybrid 

cumulative pore volume (Eq.(3.16) and Eq.(3.18)). In heterogeneous media, the reference 

hybrid cumulative pore volume model is constructed based on the DTOF that is calculated 

from solving the Eikonal equation using the CVE9 FMM. In such a way, it can be 

guaranteed that the same DTOF input is used when comparing the cumulative pore volume 

constructed from different FMMs. 

In both the homogeneous and heterogeneous media, we construct the hybrid 

cumulative pore volume model in the reduced and complete forms. Hybrid cumulative 

pore volume models constructed from FMMs under different discretization schemes are 

compared consistently with the corresponding reference model, either in the reduced or 

complete form. For the C5 FMM, only the hybrid cumulative pore volume model in the 

reduced form is investigated. For the remaining V5, V9, C5V9, CVE9 and C5V9 (LGR) 

FMMs, both the reduced and complete forms of the hybrid cumulative pore volume 

models are investigated (Figure 3.12). 
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Reduced Form Complete Form 

  

(a) Homogeneous, Near-well Region (5x5) 

  

(b) Homogeneous, Entire Reservoir (199x199) 

  

(c) Heterogeneous, Near-well Region (5x5) 

  

(d) Heterogeneous, Entire Reservoir (199x199) 

 

Figure 3.12 Hybrid cumulative pore volume calculated for a vertical well at the center of the 

homogeneous and heterogeneous reservoirs models using FMMs under different 

discretization schemes  
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From the near-well region (Figure 3.12a and c), we can observe that the reduced 

hybrid cumulative pore volume calculated from the FMMs under different discretization 

schemes are significantly smaller than the reference model. The complete hybrid 

cumulative pore volume function is more capable of capturing the pressure front 

propagation in the near-well region by taking the minimum and maximum grid-cell DTOF 

values to interpolate the sampling DTOFs. This provides important information for our 

later discretization of the one-dimensional diffusivity equation based on the DTOF 

calculated from the FMM and calibration of the well pressure or production response. 

Within the entire reservoir domain, both the reduced and complete forms of the hybrid 

cumulative pore volumes can generate solutions close to the reference model in both the 

homogeneous and the smooth heterogeneous models (Figure 3.12b and d). 

Suppose there are a total number of N  sampling DTOF data used as independent 

input variables to evaluate the hybrid  pV   function, which are the same for both the 

reference and the calculated functions. Similar to the RMSE analysis of the DTOF 

calculation, we can also define the RMSE of the calculated hybrid  pV   function as   

 
  
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


  

(3.19) 

where  p j cal
V   and  p j ref

V   represent the hybrid  pV   using grid-cell DTOFs 

(evaluated at the cell center, cell vertex or edge center) calculated from the different FMMs 
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and from the reference DTOFs (analytic in the homogeneous reservoir model), 

respectively, for a particular input DTOF value with index  1,2, ,j j N  . 

If we only consider the 2D homogeneous square reservoir model, we can conduct 

a convergence rate analysis of the complete hybrid  pV   function (Eq.(3.16)) calculated 

using the five different FMMs (V5, V9, C5V9, C5V9 with LGR and CVE9) (Figure 3.13). 

 

(a) 

 

(b) 

 
  

Figure 3.13 Convergence rate analysis of the hybrid cumulative pore volume as a function 

of the DTOF calculated from FMMs in the homogeneous reservoir model: (a) including 

coarse grids; (b) excluding coarse grids 
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In Figure 3.13, the 2D homogeneous reservoir model is discretized using different 

grid numbers (NX = NY = 11, 25, 51, 101, 201, 801) with a fixed outer boundary length 

and width. We define the grids as coarse if the number of grid cells in the x and y directions 

is less than 100 (NX = NY < 100) and compare the convergence rates of the hybrid  pV   

function with (Figure 3.13a) and without (Figure 3.13b) the coarse grid refinement. As 

can be observed from Figure 3.13, the hybrid cumulative pore volume constructed based 

on DTOFs calculated using the V5 FMM generates the largest truncation errors compared 

with the analytic solution. The results generated from the V9, C5V9 and C5V9 (LGR) 

FMMs have significantly improved computational accuracy for the hybrid  pV   

function. The solution generated from the C5V9 FMM significantly overlaps the solution 

generated from the V9 FMM, especially when the reservoir model is discretized into fine 

grids (Figure 3.13b). The hybrid  pV   function calculated from the C5V9 (LGR) FMM 

can slightly decrease the truncation error compared with the solutions generated from the 

V9 and C5V9 FMMs because of a more accurate calculation of the DTOF in the near-well 

region (Figure 3.11). The CVE9 FMM generates the hybrid  pV   function with the least 

truncation error mainly because of the most accurate DTOFs used as the input variables. 

It is also worth noting that the convergence rates estimated for the hybrid  pV   function 

using the five different FMMs when the coarse grids are included (Figure 3.13a) are quite 

close to those estimation when only the fine grids are used (Figure 3.13b). 

Using the same reservoir model and grid discretization schemes, we also make the 

convergence rate analysis for the reduced hybrid  pV   function (Eq.(3.18)) using the 
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RMSE estimation. The C5 FMM is added into the convergence rate estimation for the 

reduced  pV   function since the cell-center DTOF values are mainly used (Figure 3.14). 

 

(a) 

 

(b) 

 
  

Figure 3.14 Convergence rate analysis of the reduced hybrid cumulative pore volume as a 

function of the DTOF calculated from FMMs in the homogeneous reservoir model: (a) 

including coarse grids; (b) excluding coarse grids 
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From Figure 3.14, we can observe that the C5 FMM generates the reduced hybrid 

 pV   function with almost the same accuracy compared with that generated from the V5 

FMM. Truncation errors of the reduced hybrid  pV   functions generated from the C5 

and V5 FMMs are significantly higher than those errors generated from the V9, C5V9, 

C5V9 (LGR) and CVE9 FMMs. Similar to the complete form (Figure 3.13), the reduced 

hybrid  pV   function generated from the C5V9 FMM overlaps largely the solution 

generated from the V9 FMM. Using the C5 and V5 FMMs, the convergence rates of the 

reduced hybrid  pV   function estimated when both the coarse and fine grids are included 

(Figure 3.14a) are slightly lower than the estimation from only fine grid refinements 

(Figure 3.14b). In contrast, the convergence rates estimated for the reduced hybrid  pV   

function by means of the remaining four FMMs when only fine grids are used are 

significantly lower than the convergence rates estimated when both coarse and fine grids 

are employed.  

Using only the fine grid refinements, the truncation errors estimated from the 

hybrid  pV   function (Figure 3.13b) and its reduced form (Figure 3.14b) are quite 

similar. This result indicates that the reduced hybrid  pV   function will decrease the 

computational accuracy when the grid size is large but can be as accurate as its complete 

form when the resolution of the reservoir model is high. 
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Table 3.9 Numerical errors and convergence rate of the hybrid cumulative pore volume as a 

function of the DTOF calculated from FMMs in the 2D homogeneous reservoir model 

 

Discretization  

Schemes (2D) 

Correlation 

Coefficients 
RMSE (ft3) Convergence Rate 

(Confidence Interval) 
(5x5) (199x199) (5x5) (199x199) 

V5 0.882247 0.985469 4.8701E+3 9.6636E+5 
0.7846  

(0.7458, 0.8234) 

V9 0.951925 0.996009 2.4417E+3 2.9985E+5 
0.8151 

 (0.7887, 0.8416) 

C5V9 0.951925 0.996009 2.4417E+3 2.9985E+5 
0.8151  

(0.7887, 0.8416) 

C5V9 (LGR) 0.971002 0.996419 1.4312E+3 2.6655E+5 
0.7918 

 (0.7566, 0.8271) 

CVE9 0.982425 0.998123 8.1595E+2 1.3784E+5 
0.7964  

(0.7631, 0.8298) 

 

 

 

Table 3.10 Numerical errors and convergence rates of the reduced hybrid cumulative pore 

volume as a function of the DTOF calculated from FMMs in the 2D homogeneous reservoir 

model 

 

Discretization  

Schemes (2D) 

Correlation 

Coefficients 
RMSE (ft3) Convergence Rate 

(Confidence Interval) 
(5x5) (199x199) (5x5) (199x199) 

C5 0.855438 0.986107 8.4509E+3 9.1641E+5 
0.7822  

(0.7491, 0.8152) 

V5 0.817355 0.985389 9.8450E+3 9.7271E+5 
0.7911  

(0.7591, 0.8231) 

V9 0.876423 0.995942 8.1435E+3 3.0692E+5 
0.8409  

(0.8322, 0.8496) 

C5V9 0.929274 0.995958 6.7758E+3 3.0582E+5 
0.8373  

(0.8309, 0.8436) 

C5V9 (LGR) 0.937046 0.996364 5.9757E+3 2.7279E+5 
0.8176  

(0.8113, 0.8239) 

CVE9 0.967357 0.998067 4.5172E+3 1.4557E+5 
0.8502  

(0.8265, 0.8739) 
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In Table 3.9 and Table 3.10, we generated the correlation coefficients between the 

hybrid  pV   function (in both the complete and reduced forms) and its analytic solution 

within the near-well region (5x5 grids) and the entire modeling domain (199x199) of the 

2D homogeneous reservoir model. Estimated from only the fine grid refinements (Figure 

3.13b and Figure 3.14b), the convergence rates of the hybrid  pV   functions base on the 

RMSE analysis are also included in Table 3.9 and Table 3.10. 

Following the same procedure, we calculated the hybrid cumulative pore volume 

function and its reduced form on the 2D heterogeneous reservoir model (Figure 3.3a). The 

hybrid  pV   functions generated from the CVE9 FMM is used as the reference model to 

compare with solutions from other four FMMs (C5, V5, V9, C5V9, and C5V9 with LGR). 

The correlation coefficients between the calculated hybrid  pV   functions using different 

FMMs and the reference model are listed in Table 3.11 and Table 3.12. 
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Table 3.11 Numerical errors of the hybrid cumulative pore volume as a function of the DTOF 

calculated from FMMs in the 2D heterogeneous reservoir model (VDP = 0.5573) 

 

Discretization  

Schemes (2D) 

Correlation Coefficients RMSE (ft3) 

(5x5) (199x199) (5x5) (199x199) 

V5 0.907328 0.992053 4.2771E+3 5.4114E+5 

V9 0.975410 0.998737 1.5281E+3 8.6825E+4 

C5V9 0.975410 0.998737 1.5281E+3 8.6825E+4 

C5V9 (LGR) 0.989352 0.998927 7.0601E+2 7.2683E+4 

 

 

 

Table 3.12 Numerical errors of the reduced hybrid cumulative pore volume as a function of 

the DTOF calculated from FMMs in the 2D heterogeneous reservoir model (VDP = 0.5573) 

 

Discretization  

Schemes (2D) 

Correlation Coefficients RMSE (ft3) 

(5x5) (199x199) (5x5) (199x199) 

C5 0.869905 0.990187 7.8272E+3 6.6082E+5 

V5 0.876858 0.992089 7.3960E+3 5.3919E+5 

V9 0.939947 0.998771 5.0874E+3 8.5599E+4 

C5V9 0.977816 0.998762 4.0702E+3 8.6089E+4 

C5V9 (LGR) 0.976744 0.998952 2.7954E+3 7.1964E+4 

 

  

 

From the RMSE analysis results of the hybrid  pV   functions listed in Table 3.11 

and Table 3.12, we can see that the reduced hybrid cumulative function can be almost as 

accurate as its complete form if fine grid cells (199x199) are used to discretize the 
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smoothly varying heterogeneous reservoir model (VPD = 0.5573). This is consistent with 

previous RMSE analysis of the hybrid  pV   functions in homogeneous media (Table 3.9 

and Table 3.10).  

Table 3.9 to Table 3.12 demonstrate that the reduced form of hybrid  pV   might 

provide sufficient accuracy for the drainage volume calculation compared with the 

complete form, which will be validated later for pressure transient analysis. Meanwhile, 

the root-mean-square error (RMSE) analysis of the cumulative pore volume calculated 

shows that DTOFs generated from the C5V9 (LGR) FMM will lead to sufficiently 

accurate hybrid  pV   solutions without adding much computational cost. Moreover, the 

convergence rate of the hybrid  pV   function constructed from the C5V9 (LGR) FMM 

is closest to that generated from the CVE9 FMM (Table 3.9 and Table 3.10), which 

indicates that the DTOFs generated from C5V9 (LGR) discretization of the Eikonal 

equation is most accurate compared with the other four discretization schemes (C5, V5, 

V9 and C5V9). 

Similar to analysis of the DTOF calculation, we test the hybrid  pV   function 

within more heterogeneous media in the 1st layer and the 72nd layer within the SPE10 

model (Figure 3.15). The DTOF samples are generated from the CVE9 FMM (which is 

also used to generate the reference model) for a fixed well location in the 2D SPE10 

reservoir model. 
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(a) Complete Form  

Layer 1, Well (40, 90) 
(b) Complete Form  

Layer 1, Well (25, 134) 

    
(c) Complete Form  

Layer 72, Well (33, 103) 
(d) Complete Form  

Layer 72, Well (42, 100) 

  
(e) Reduced Form  

Layer 1, Well (40, 90) 
(f) Reduced Form  

Layer 1, Well (25, 134) 

  
(g) Reduced Form  

Layer 72, Well (33, 103) 
(h) Reduced Form  

Layer 72, Well (42, 100) 

 
Figure 3.15 Hybrid cumulative pore volume as a function of the DTOF calculated for the 1st 

layer and 72nd layer within the SPE10 model using FMMs under different discretization 

schemes  
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If the hybrid cumulative pore volume function is calculated in the complete form 

(Figure 3.15a, b, c, and d), the  pV   solutions generated from all four FMMs (V5, V9, 

C5V9 and C5V9 with LGR) are closely correlated with the reference model. The solution 

generated from the V5 FMM shows to be slightly smaller than the reference model at some 

grid cells of the highly heterogeneous reservoir, which is mainly due to the overestimation 

of the vertex DTOF values. The results are generalized in Table 3.13 and Table 3.14. 

 

Table 3.13 Numerical errors of the hybrid cumulative pore volume calculated from the FMM 

in the 1st layer within the SPE10 model (VDP = 0.9191) 

 

Discretization 

Schemes (2D) 

Correlation Coefficients RMSE (ft3) 

Well (40, 90) Well (25, 134) Well (40, 90) Well (25, 134) 

V5 0.989343 0.981577 4.6472E+3 8.5804E+3 

V9 1.000581 0.995879 2.6041E+2 2.2704E+3 

C5V9 0.999207 0.993800 4.5756E+2 3.0867E+3 

C5V9 (LGR) 0.999425 0.998229 3.7374E+2 8.4986E+2 

 

 

Table 3.14 Numerical errors of the hybrid cumulative pore volume calculated from the FMM 

in the 72nd layer within the SPE10 model (VDP = 0.9982) 

 

Discretization 

Schemes (2D) 

Correlation Coefficients RMSE (ft3) 

Well (33, 103) Well (42, 100) Well (33, 103) Well (42, 100) 

V5 0.994607 0.989759 2.6276E+3 5.3532E+3 

V9 1.003950 1.001835 1.8568E+3 1.2275E+3 

C5V9 1.000788 0.998872 6.4712E+2 1.5542E+3 

C5V9 (LGR) 1.000979 1.000807 6.5388E+2 6.6514E+2 
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If the hybrid cumulative pore volume function is calculated in the reduced form 

(Figure 3.15e, f, g and h), it is easy to discover an underestimated  pV   using the C5 

FMM. This is more obvious in the 72nd layer of the SPE10 model, where the permeability 

is more heterogeneous than the 1st layer, especially when the well is located at a low-

permeability grid cell (Figure 3.15g and h). It is mainly due to an overestimation of the 

cell-center DTOF values using the C5 FMM, which proves once again inappropriate for 

description of the pressure propagation within highly heterogeneous media. All other 

discretization schemes show much better characterizations of the hybrid  pV   function 

in the reduced form compared with the reference model CVE9 FMM. Particularly in the 

72nd layer, the V5 and V9 FMMs used for DTOF calculation in the reduced form of the 

hybrid  pV   construction show to overestimate the cumulative pore volume at some 

DTOF values compared with the reference model (Figure 3.15c and d). This indicates an 

underestimation of the DTOF values at some places in the reservoir model due to a lack 

of DTOF evaluation at the cell center using the V5 and V9 FMMs. This result is consistent 

with previous analysis from Figure 3.8 and Figure 3.9, which once again demonstrates the 

importance of the cell-center DTOF evaluation. 

By comparing the correlation coefficients with the reference model and calculating 

the RMSE, it is easy to find that the C5V9 (LGR) scheme for DTOF calculation (Figure 

3.11) generates the most accurate solution for the cumulative pore volume solution (Table 

3.15 and Table 3.16). 
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Table 3.15 Numerical errors of the reduced hybrid cumulative pore volume calculated from 

the FMM in the 1st layer within the SPE10 model (VDP = 0.9191) 

 

Discretization 

Schemes (2D) 

Correlation Coefficients RMSE (ft3) 

Well (40, 90) Well (25, 134) Well (40, 90) Well (25, 134) 

C5 0.937578 0.919439 2.2875E+4 3.1973E+4 

V5 0.991900 0.984004 3.8288E+3 7.7145E+3 

V9 1.003169 0.998326 1.1621E+3 1.4864E+3 

C5V9 1.000109 0.994547 3.4966E+2 2.8440E+3 

C5V9 (LGR) 1.000327 0.998974 3.3394E+2 6.5655E+2 

 

 

Table 3.16 Numerical errors of the reduced hybrid cumulative pore volume calculated from 

the FMM in the 72nd layer within the SPE10 model (VDP = 0.9982) 

 

Discretization 

Schemes (2D) 

Correlation Coefficients RMSE (ft3) 

Well (33, 103) Well (42, 100) Well (33, 103) Well (42, 100) 

C5 0.918605 0.847231 3.3417E+4 7.1534E+4 

V5 1.007271 1.002245 4.2814E+3 3.7216E+3 

V9 1.016738 1.014442 7.2361E+3 6.1561E+3 

C5V9 1.001125 0.999225 9.3355E+2 1.7577E+3 

C5V9 (LGR) 1.001314 1.001140 9.1900E+2 9.3492E+2 

 

 

Table 3.13 to Table 3.16 show that the reduced hybrid  pV   function is almost as 

accurate as its complete form for each of the FMMs compared in highly heterogeneous 

media. This is important information for later hybrid drainage volume as well as well test 

derivative construction using the DTOF. Because it provides the possibility to construct 
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the drainage volume forward model in a less complex form and makes the inversion 

computationally more efficient. On the other hand, the complete form of the hybrid  pV   

function provides a solid basis for later calculation of a piecewise constant DTOF 

derivative of the cumulative pore volume, which plays an important role in solving the 

DTOF-based one-dimensional diffusivity equation.  

Above analysis demonstrates that the hybrid cumulative pore volume is 

significantly impacted by the accuracy of DTOFs calculated from the FMM. In this sense, 

selection of an appropriate discretization scheme for the Eikonal equation needs to meet 

the demand for computational accuracy and require a computational cost as low as 

possible. The C5V9 (LGR) FMM (Figure 3.11) proves to be an appropriate fit for the 

DTOF-based cumulative pore volume calculation. 

From the RMSE of the calculated hybrid  pV   function to the reference model as 

well as the correlation coefficients between them, it is easy to provide the subsequent 

observations along with the DTOF discretization analysis in this section. 

 By applying the analytic solution to the drainage volume function within the 

well cell, the cumulative pore volume has a significantly improved solution 

when a hybrid version of the function is constructed, either in a complete form 

or a reduced form. 

 In the homogeneous media, the 2D CVE9 FMM proves to be able to generate 

the most accurate  pV   solution, which validates its candidacy as the 

reference FMM for  pV   calculation in heterogeneous media.  
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 In both homogeneous and heterogeneous media, the 2D V9, C5V9 and C5V9 

(LGR) discretization schemes show to generate more accurate DTOF values, 

which correspondingly give rise to more accurate cumulative pore volume 

solutions in the hybrid form than the 2D C5 and V5 discretization schemes for 

the Eikonal equation.  

 Adding an additional degree of freedom of the DTOF at the cell center can not 

only help generate more accurate Eikonal solutions without much 

computational cost introduced, it will also lead to a more accurate construction 

of the cumulative pore volume. This is especially important for heterogeneous 

reservoir models that have regions with very low permeability values. 

 The 2D C5V9 (LGR) scheme shows to be an ideal candidate for both the DTOF 

calculation and the hybrid cumulative pore volume construction.  

 

3.2.3 Extension to the Fast Marching Method 

Accurate DTOF solutions will definitely help generate accurate drainage volume 

solutions (Eq.(3.5)). After analysis of cumulative pore volume calculation using the DTOF 

from different FMMs, it is easily to find that the numerical DTOF solution will lose 

accuracy if DTOFs are evaluated merely in the X (or I) and Y (or J) directions in the 

Cartesian coordinate (Figure 3.16a). However, the accuracy of the solution to the Eikonal 

equation can be significantly improved if the DTOF can also be updated in the XY (or IJ) 

direction (Figure 3.16b).  
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(a) 5 Stencil (4 Quadrants) (b) 9 Stencil (8 Octants) 

Figure 3.16 Illustration of the DTOF calculation using the 2D FMM with different 

discretization orientations 

 

 

If we analyze the computational accuracy as well as the computational cost for 

each FMM discretization in both the homogeneous and heterogeneous media, the 2D V9, 

C5V9 and CVE9 FMMs prove to be better algorithms compared with the 2D C5 and V5 

FMMs (Table 3.3 and Table 3.4) among the five discretization schemes for the Eikonal 

equation listed before (Figure 3.2). Because each unknown DTOF value will be updated 

by 8 octants around it, the CVE9 FMM provides the most accurate DTOF solution to the 

Eikonal equation. Meanwhile, it also requires the most computational efforts among all 

the five schemes. The V9 scheme can also provide an accurate DTOF solution because 

each unknown at the cell vertex will also be updated by 8 surrounding octants. However, 

it lacks the capability of describing pressure front propagation within low-permeability 

cells due to its lack of the cell-center DTOF value. The C5V9 FMM can meet the 

requirement of both computational accuracy and efficiency, with vertex DTOF values 

providing most accurate Eikonal solutions and cell-center DTOF values “capturing” the 

pressure propagation across the grid cell it occupies. 
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Since the accuracy of the DTOF solution within the near-well region plays a 

significant role in ensuring that the pressure (drop) gradient can be approximated by the 

DTOF gradient, which the asymptotic pressure approximation relies heavily upon, the 

C5V9 FMM is extended to a modified version. Within the modification, the DTOF to the 

edge center of the well cell is also evaluated (C5V9 discretization with LGR) and is 

updated simultaneously with all other DTOF values within the FMM algorithm (Figure 

3.11). By such a slight modification of the C5V9 discretization of the Eikonal equation, 

the accuracy of DTOFs to centers of the four cells adjacent to the well cell can be 

significantly improved without much computational cost added. This makes sure that the 

pressure front within the near-well region can propagate along the shortest path, which 

will have a great impact on the next-step DTOF-based pressure transient calculation. Thus, 

the C5V9 (LGR) FMM is selected in the following sections to calculate the DTOF, which 

is used for validation of the asymptotic pressure approximation. This C5V9 (LGR) FMM 

will also contribute to a more accurate construction of the DTOF derivative of the 

cumulative pore volume, by means of which the transient flow simulation based on the 

inter-cell transmissibility between the “τ-contours” generated from the FMM calculated 

DTOF can be realized. 

 

3.3 Flow Simulation 

In above discussion on cumulative pore volume discretization, we compared the 

analytic form, piecewise linear form and piecewise constant form of  pV   using the 

DTOF. The hybrid version of the  pV   construction, which combines the three forms of 
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the formulation, proves to be able to generate much more accurate solutions. In this section, 

we start with the construction of the  w   variable, which is defined as the DTOF 

derivative of the cumulative pore volume. It is calculated based on the hybrid the  pV   

function discussed before and included into the pressure transient simulation by means of 

the drainage volume formulation (Eq.(3.5)). The impact of  pV   calculation on transient 

flow simulation using the DTOF will be analyzed in more detail. 

 

3.3.1 Vp(τ) and w(τ) 

The asymptotic pressure approximation relies upon an accurate characterization of 

the drainage volume  V t , which can be used to represent the pressure transient and is 

greatly influenced by calculation of the  w   variable (Eq.(3.5)). By definition, the  w   

variable is the derivative of the cumulative pore volume  pV   with respect to the DTOF. 

  
 pdV

w
d





   (3.20) 

Its numerical solution relies upon the DTOF (τ) values calculated from solving the Eikonal 

equation and the construction of the cumulative pore volume within the “τ-contour”. 

Similar to the permeability and porosity values of orthogonal grid cells within the 

Cartesian coordinate, the  w   function can be used to reflect the heterogeneity of the 

reservoir media. It also plays a pivotal role in pressure transient formulation in terms of 

the DTOF and transient flow simulation based on the inter-cell transmissibility 

constructed within the τ-intervals. 
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For a 2D homogenous field with one single well located at the center of the square 

reservoir model, it is easy to generate the DTOF distribution by solving the Eikonal 

equation analytically (Figure 3.3b). The  w   function increases linearly with the DTOF 

before the pressure front reaches the outer boundary of the reservoir model and begins to 

decrease sharply afterwards (Figure 3.17a). 

 

  

(a) Homogeneous media (b) Heterogeneous media 

Figure 3.17 Cumulative pore volume and its DTOF derivative for the 2D square reservoir 

model (199x199) with a vertical well located at Cell (100, 100) 

 

 

Since the “τ-contour” for infinite-acting flow in heterogeneous media appears 

near-circular in shape (Figure 3.3c), it is intuitively reasonable to analyze the distribution 

of  w   by means of a local differentiation of the cumulative pore volume,  pV  , with 

respect to the corresponding DTOF series. However, it is hard to obtain a straightforward 

relationship between the DTOF and  w   because the data are not locally smooth. A 

smoothing technique has been used to process the raw data sets of DTOFs against the 

 w   generated from the FMM calculation (Zhang et al., 2016). The bandwidth of the 
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smoother can be tuned to the DTOF value in order to maximize the signal and reduce the 

noise of calculation (Figure 3.17b). Though straightforward, the smoothing procedure for 

the  w   calculation could be time-consuming by trial and error and might not provide a 

stable solution.  

Given these concerns on stability and efficiency of  w   construction from the 

smoothing technique, we designed an alternative strategy for generation of the  w   

function. This new approach is based upon the hybrid  pV   construction in the complete 

form (Eq.(3.16)). A limited number of τ-intervals independent of the DTOFs calculated 

from the FMM could be created. They may range from the effective wellbore radius 

location (where the DTOF value is w  as calculated from Eq.(3.10)) to the maximum 

DTOF value calculated from the FMM for the entire reservoir model (which is usually 

located at the outer boundary of the reservoir). After that, we can calculate the cumulative 

pore volume within each of those τ-contours by a linear interpolation of the minimum and 

maximum grid-cell DTOFs generated from the FMM. Finally, the  w   function can be 

created by taking an average of the incremental  pV   values over each τ-interval. 

Suppose there are a total number of N  τ-intervals ( 0,1, , 1i N   ) used to 

generate the hybrid  pV   function in the complete form (Eq.(3.16)). Then the  w   

within a specific τ-interval can be calculated in a piecewise constant form as  

 
,

, 0,1, , 1
p i

i

i

V
w i N




   


  (3.21) 
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where ,p iV  and i  are the incremental pore volume and the incremental DTOF of the 

i-th τ-interval, respectively. The first τ-interval can be designed to range from w  to 0  

(Figure 3.10a and Figure 3.11b), which corresponds to the Element 0 well cell introduced 

previously in Section 3.2 (which has a pore volume and DTOF derivative that can be 

calculated using Eq.(3.11) and Eq.(3.21), respectively).  

 

 

 

Figure 3.18 Illustration of w(τ) generated from the hybrid Vp(τ) function constructed using 

the  C5V9 (LGR) FMM within τ-intervals for a 2D heterogeneous reservoir model (199x199) 

with a vertical well located at Cell (100, 100) 

 

 

This leads to a  w   function close to the results from the smoothing technique in 

both homogeneous and heterogeneous media (Figure 3.18). Particularly, the fixed DTOF 

width of the first τ-interval will help generate a stable well pressure/flux profile after 

solving the DTOF-based one-dimensional diffusivity equation that will be discussed later. 

Since the pressure drop in the near-well region has a gradient higher than regions far away, 
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it is reasonable to generate logarithmically distributed τ-intervals. Thus, the τ-intervals 

near the well have smaller DTOF widths compared with others. This new method for 

 w   construction help us generate a solution similar in shape to that generated from the 

smoothing technique (Figure 3.17), but with an improved stability (Figure 3.18). 

From Figure 3.19 to Figure 3.24, we applied this new methodology for  w   

function generation to the 2D synthetic models (Figure 3.3) as well as the 1st and 72nd 

layers of the SPE10 reservoir model (Figure 3.6). Within each of the two layers of the 

SPE10 model, two models are set up corresponding to two different well placements. In 

both the synthetic models and the 2D SPE10 models,  w   functions generated from this 

new method are stable and provide a solid basis for subsequent transient flow simulation. 

Because of the logarithmically distributed τ-intervals created, the  w   function 

generated from local differentiation of the hybrid  pV    function can be stable even with 

a limited number of τ-intervals. 

According to the theory of the asymptotic pressure approximation, an increasing 

 w   function represents an outward propagation of the pressure front from the 

production well without much hindrance. In contrast, the decreasing  w   function 

represents the local “reflection” of the pressure front due to the high contrast porous media 

or the reservoir boundary (King et al., 2016; Wang et al., 2017).  
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               Hybrid Vp(τ) Smoothing 

NTau = 10 

  

NTau = 20 

  

NTau = 50 

  

NTau = 1,000 

  

  

Figure 3.19 w(τ) functions constructed from the hybrid cumulative pore volume and the 

smoothing technique within the logarithmically distributed τ-intervals of the homogeneous 

reservoir model (199x199, Well (100, 100)) 
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Hybrid Vp(τ) Smoothing 

NTau = 10 

  

NTau = 20 

  

NTau = 50 

  

NTau = 1,000 

  

  

Figure 3.20 w(τ) functions constructed from the hybrid cumulative pore volume and the 

smoothing technique within the logarithmically distributed τ-intervals of the heterogeneous 

reservoir model (199x199, Well (100, 100))  
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Hybrid Vp(τ) Smoothing 

NTau = 10 

  

NTau = 20 

  

NTau = 50 

  

NTau = 1,000 

  

  

Figure 3.21 w(τ) functions constructed from the hybrid cumulative pore volume and the 

smoothing technique within the logarithmically distributed τ-intervals of the 1st layer within 

the SPE10 model (Well (40, 90)) 
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Hybrid Vp(τ) Smoothing 

NTau = 10 

  

NTau = 20 

  

NTau = 50 

  

NTau = 1,000 

  

  

Figure 3.22 w(τ) functions constructed from the hybrid cumulative pore volume and the 

smoothing technique within the logarithmically distributed τ-intervals of the 1st layer within 

the SPE10 model (Well (25, 134)) 
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Hybrid Vp(τ) Smoothing 

NTau = 10 

  

NTau = 20 

  

NTau = 50 

  

NTau = 1,000 

  

  

Figure 3.23 w(τ) functions constructed from the hybrid cumulative pore volume and the 

smoothing technique within the logarithmically distributed τ-intervals of the 72nd layer 

within the SPE10 model (Well (33, 103))  
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Hybrid Vp(τ) Smoothing 

NTau = 10 

  

NTau = 20 

  

NTau = 50 

  

NTau = 1,000 

  

  

Figure 3.24 w(τ) functions constructed from the hybrid cumulative pore volume and the 

smoothing technique within the logarithmically distributed τ-intervals of the 72nd layer 

within the SPE10 model (Well (42, 100)) 
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In the homogeneous and smoothly varying heterogeneous porous media, the  w   

function decreases mainly when the pressure front arrives at the no-flow boundary of the 

reservoir model (Figure 3.19 and Figure 3.20). However, multiple decreasing trends of the 

 w   function can be observed in the 2D SPE10 model, which represent multiple 

reflections of the pressure front within the highly heterogeneous porous media before it 

reaches the outer boundary (Figure 3.21 to Figure 3.24). 

After comparing the  w   function generated from the smoothing technique and 

that generated from direct local differentiation of the hybrid  pV   function in the 

complete form (Eq.(3.16)), we can observe that the second method for  w   generation 

we propose can better keep all signatures of reservoir heterogeneity, especially for highly 

heterogeneous media (Figure 3.21 to Figure 3.24). This new method for  w   function 

generation does not introduce any unsatisfactory under-smoothing or over-smoothing 

artifacts, which is particularly important for near-well pressure transient analysis. 

 

3.3.2 Pressure Transient Simulation: V(t) 

Analysis of the analytic, first-order and zero-order volumetric elements for the 

cumulative pore volume as a function of the DTOF provides useful insights into designing 

discretization schemes for drainage volume evolution with time, especially at the near-

well region. The hybrid construction of  pV   function indicates that formulation of the 
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pressure transient might also need a combination of the analytic solution in the near-well 

region and numerical solution at other locations. 

For the 2D infinite-acting radial flow (IARF) in homogeneous and isotropic media, 

the drainage volume increases linearly as a function of time. 

   4 DV t ht    (3.22) 

Since the minimum and maximum grid-cell DTOF values can be easily calculated by 

solving the Eikonal equation using the C5V9 (LGR) FMM, a piecewise linear form of 

drainage volume as a function of time can be formulated when the piecewise constant 

 w   evaluated on each grid cell is substituted into the integral form of the drainage 

volume (Eq.(3.5)). 

  
max min

max min
2 2

ijk ijk ijk

ijk ijk ijk

PV
V t t erf erf

t t

 


 

      
                     

   (3.23) 

Correspondingly, a piecewise constant form of drainage volume as a function of time can 

be formulated when only DTOFs to the grid-cell centers are used for pressure transient 

formulation. 

  
 

2
4cell

ijk t

ijk

ijk

V t PV e


    (3.24) 

The analytic, piecewise linear and piecewise constant formulations of the drainage volume 

provide the basis for the hybrid formulation of the pressure transient, which is expected to 

better represent the pressure propagation as a function of time, especially in the near-well 

region. 
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Within the well cell,  V t  can be represented by a combination of the analytic 

(Eq.(3.22)) and piecewise linear forms of the drainage volume (Eq.(3.23)). Beyond the 

well cell,  V t  can be calculated by summing up all the individual integral values 

evaluated on each orthogonal grid cell, either in a piecewise linear (Eq.(3.23)) or a 

piecewise constant form (Eq.(3.24)).  

In a 3D reservoir model that consists of orthogonal grid cells, the construction of 

a hybrid version of  V t  can be achieved in the following procedure. 

 When 00     , the drainage volume can be formulated as 

      
0

22
0, /4/4

0 0, 0,

0

4 1 ijk tt

ijk D ijk ijk

ijk

V t d w e DZ t e


   
         (3.25) 

where ijkDZ  represents the height of a particular orthogonal well cell. This first 

part of drainage volume formulation corresponds to the Element 0 well cell 

mentioned before. 

 When 0 1    , the drainage volume can be evaluated on the Element 1 well 

cell beyond the annular Element 0 well cell, which can be calculated in a 

piecewise linear form. 
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  (3.26) 

 For the remaining non-well cells, the drainage volume can be calculated either 

in a piecewise linear form (Eq.(3.23)), which can be represented as 
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  
max min

2 max min
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or in a piecewise constant form (Eq.), which can be represented as 

  
 

2
4

2

cell
ijk t

ijk

ijk

V t PV e


    (3.28) 

This piecewise constant formulation of the drainage volume within the non-

well cells leads to a much simpler computation of the pressure transient model 

using the DTOF.  

 Then the hybrid version of drainage volume can be obtained by combining the 

three parts together. 

        0 1 2V t V t V t V t     (3.29) 

If the third part of the hybrid drainage volume,  2V t  , is calculated in a piecewise 

linear form (Eq.(3.27)), the hybrid drainage volume is constructed in a complete form. 

Otherwise, the hybrid drainage volume is constructed in a reduced form if  2V t  is 

calculated in a piecewise constant form (Eq.(3.28)). This corresponds well with the hybrid 

construction of the cumulative pore volume function,  pV  . The hybrid formulation of 

drainage volume as a function of time is expected to generate a more accurate pressure 

transient formulation, especially in the near-well region. 

For the infinite-acting flow around the vertical well with a constant production rate, 

wq , the asymptotic pressure approximation can be formulated using the DTOF calculated 

from the FMM and the drainage volume constructed. 
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c e
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 
  (3.30) 

By taking a zero value of DTOF at the vertical well center, we can derive the well test 

derivative. 
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  
    

  
  (3.31) 

Within homogeneous and smoothly varying heterogeneous media, the well test 

derivative curve will be horizontal at early times of flow on a diagnostic plot of constant 

well production rate. The hybrid version of drainage volume construction will help 

validate the asymptotic pressure approximation for infinite-acting flow around the 

production well with constant flow rate using the well test derivative. Accurate 

constructions of both the drainage volume and the well test derivative are crucial for our 

understanding of the transient flow near the wellbore. 

 

3.3.3 Transient Flow Simulation: w(τ) and transmissibility 

The DTOF (τ) calculated from solving the Eikonal equation has a unit of square 

root of time and provides an effective means of describing the pressure front propagation 

in homogeneous and smoothly varying heterogeneous media. It can also be treated as a 

spatial coordinate that transforms the 3D pressure diffusivity equation in the Cartesian 

coordinate into an equivalent 1D form in the “τ-contour” system (Figure 3.25). 
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(a) 

τ-intervals within and  

beyond the well cell  

(b) 

“τ-contours” in 

homogeneous media 

(c) 

“τ-contours” in 

heterogeneous media 

Figure 3.25 “τ-contours” generated under the Cartesian coordinate system 

 

 

This transformed one-dimensional diffusivity equation relies upon an assumption 

that the pressure (drop) contour is aligned with the τ-contour (Eq.(3.32)).   

 
 

 
1 p p

w
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
  

   
 

   
  (3.32) 

This assumption is valid for transient flow in homogeneous and “sufficiently” smooth 

heterogeneous reservoir models. Under such circumstances, the  w   function can be 

used to describe the reservoir heterogeneity, which is similar to the role played by 

permeability. By evaluating the pressure gradient along the DTOF (τ) coordinate, we can 

formulate an approximation to the Darcy’s equation using  w   and the total 

compressibility of the reservoir model. 

    
 ,

, t

p t
q t c w


 







  (3.33) 

Eq.(3.32) and Eq.(3.33) provide the governing equation and the basic law of mass 

conservation for transient flow in the presence of reservoir heterogeneity, respectively. 
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Taking advantage of the DTOF (τ) coordinate, it is straightforward to apply various 

boundary conditions to the one-dimensional diffusivity equation and calculate the pressure 

and flux solution under appropriate discretization schemes.  

For a fixed flow-rate constraint at the wellbore, the flux boundary condition can 

be expressed as 

  
w

t w

p
c w q

 


 

 
  

  (3.34) 

For a fixed bottom-hole flowing pressure (BHP) constraint at the wellbore, the 

pressure boundary condition can be expressed as 

 
w

wfp p
 

   (3.35) 

Under transient flow conditions, the outer-boundary pressure is kept constant as 

the initial reservoir pressure and does not need to be specified. These governing equations 

along with corresponding boundary conditions constrained at the well make it possible to 

perform a rapid simulation of transient flow in reservoir models using DTOFs as the 

spatial coordinate. From the FMM calculated DTOFs, the hybrid cumulative pore volume 

in the complete form (Eq.(3.16)) can be constructed using the minimum and maximum 

grid-cell DTOF values (Eq.(3.15)). Then the piecewise constant  w   can be easily 

obtained from dividing the incremental pore volume by the incremental DTOF value 

across each of those τ-intervals (Eq.(3.21)), which are independent of the DTOFs 

calculated from the FMM. 

In the following discussion, we will focus on demonstrating how the one-

dimensional diffusivity equation (Eq.(3.32)) can be discretized into a series of τ-intervals 
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as well as the way pressure values within those τ-intervals are solved. This procedure relies 

heavily upon the  w   function evaluated on each of those τ-intervals and the inter-cell 

transmissibility construction. 

Suppose the entire reservoir model is discretized into a total number of N  τ-

intervals ( 0,1, , 1j N   ), which range from a minimum DTOF value evaluated at the 

wellbore, w , to a maximum DTOF (τ) value evaluated at the outer boundary of the 

reservoir model (Figure 3.25). The first τ-interval (Element 0 well cell) has a lower limit 

of w  and an upper limit of 0 , which is actually the Element 0 well cell discussed before 

(Figure 3.26a).  

 

 

 

 

(a) Flow within Element 0  (b) Inter-cell flow beyond Element 0 

Figure 3.26 Flow within the τ-intervals generated from the FMM calculated DTOFs for the 

reservoir model with one single vertical well 
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The  w   within the Element 0 well cell is a linear function of  (Figure 3.26a). 

   02

t

k h
w

c


 


    (3.36) 

We formulate the well index (WI) to ensure flow communication between the vertical well 

(with an effective wellbore radius of wr ) and the first τ-interval. 
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During flow simulation, it is not required to know the location where the pressure at the 

first Element 0 well cell is evaluated. From this location to the upper boundary of the first 

τ-interval, we formulate a half-cell transmissibility similar to the way the well index is 

derived. 
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  (3.38) 

Beyond 0 , there are 1N   τ-intervals. Across each of those τ-intervals, the DTOF value 

can be evaluated at the cell face ,f i  (Figure 3.26b). This makes it possible to evaluate the 

 w   value for each τ-interval beyond the first one by local differentiation of the 

incremental pore volume to the DTOF difference across it.  

 , 1 , , 0,1,..., 1i f i f i i N         (3.39) 

Then the  w   for each τ-interval beyond the Element 0 well cell can then be calculated 

as 
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  (3.40) 

Here iPV  represents the pore volume of the i-th τ-interval beyond the Element 0 well cell. 

Across the i-th τ-interval beyond Element 0, the  w   function evaluated on it ( iw ) is 

constant. The τ-intervals beyond 0 can be discretized with any resolution. When solving 

the DTOF-based one-dimensional diffusivity equation (Eq.(3.32)), it is recommended to 

use logarithmically distributed τ-intervals beyond Element 0 since they can make the 

pressure solution within them converge fast. Based on Eq.(3.40), we can construct the 

inter-cell transmissibility beyond the annular Element 0 well cell as 
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      (3.41) 

The pressure within those τ-intervals beyond the Element 0 well cell is evaluated at the 

cell center. The flow communication between τ-intervals beyond 0  relies upon an inter-

cell transmissibility that can be constructed as 
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  (3.42) 

Using Eq.(3.42), we can calculate the inter-cell transmissibility by means of a harmonic 

average of the half-cell transmissibility values between adjacent τ-intervals beyond 

Element 0 (Eq.(3.41)).  

Between the Element 0 well cell and its adjacent τ-interval, the flow 

communication relies upon an inter-cell transmissibility that can be constructed as 
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  (3.43) 

This construction of the inter-cell transmissibility between the first and second τ-intervals 

will lead to a well pressure or flux profile more accurate than the Pedrosa and Aziz’s 

method (1986), which will be demonstrated when validating the transient flow simulation. 

 

 

Figure 3.27 Illustration of the effective DTOF value calculated for the Element 1 well cell 

using the Petrosa and Aziz’s method (Pedrosa and Aziz, 1986) 

 

 

As an alternative approach to constructing the inter-cell transmissibility between 

the first and second τ-intervals, the Pedrosa and Aziz’s method (1986) takes advantage of 

the DTOF value evaluated at the vertex of the well cell ( 1 ) to obtain an effective DTOF 

(τ) value ( 1e ) used as the upper limit of the second τ-interval beyond 0  (Figure 3.27). 

This second τ-interval has an equal pore volume as the Element 1 well cell (Figure 3.10a 

and Figure 3.25a). 
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Here  1pV   can be calculated using Eq.(3.16) and must take into account of the adjacent 

cells of the well cell. The inter-cell transmissibility between Element 0 and its adjacent τ-

interval can then be calculated using 1e . 
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  (3.45) 

The inter-cell transmissibility construction for the remaining τ-intervals stays in the same 

constant form (Eq.(3.42)). 

By applying appropriate boundary conditions at the wellbore (Eq.(3.34) or 

Eq.(3.35) ) and assigning a reasonable initial pressure to the reservoir model, the pressure 

values distributed within those discretized τ-intervals can be efficiently solved for the 

DTOF-based one-dimensional transient flow equation (Eq.(3.32)). 

 

3.4 Convergence and Validation 

In this section, we validate the pressure transient represented by the drainage 

volume and the DTOF-based transient flow simulation by either the analytic solution for 

homogenous reservoir models or the numerical solution from a reservoir simulator 

(ECLIPSE) for heterogeneous reservoir models.  
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3.4.1 Validation of the Pressure Transient 

The asymptotic pressure approximation (Eq.(3.30)) relies significantly upon an 

accurate formulation of the drainage volume as a function of time (Eq.(3.5)) based on the 

DTOF calculated from solving the Eikonal equation (Eq.(3.1)). It can reflect the pressure 

transient behavior by means of the well test derivative, which demonstrates to be inversely 

proportional to the drainage volume,  V t   (Eq.(3.31)). Previous convergence analyses 

of DTOFs calculated from different discretization schemes of the Eikonal equation have 

proved that the 2D C5V9 (LGR) FMM can help generate sufficiently accurate DTOF 

solutions without much computational cost involved. So, we use this discretization scheme 

to calculate the DTOF and construct the drainage volume in the analytic, piecewise linear, 

piecewise constant as well as hybrid forms. By comparing different discretization schemes 

for the drainage volume, we can determine an ideal strategy for the pressure transient 

analysis using the DTOF. 

We investigate the pressure transient behavior for a constant flow rate well test on 

a 2D homogeneous reservoir model using the asymptotic pressure approximation to the 

well test derivative (Eq.(3.31)). The input parameters for the homogeneous reservoir are 

listed in Table 3.2, except for the permeability value (15.53md), which is the same as that 

used for DTOF calculation shown in Figure 3.3b. The production well is located at the 

reservoir center with a constant flow rate of 100 res bbl/day. 

Figure 3.28 demonstrates the drainage volume calculated using four discretization 

schemes during the well test performed within a short period of 100hrs and a long period 

of 1000hrs, respectively. The homogeneous reservoir model is discretized into a 7x7 and 
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51x51 uniform square grid systems, respectively. Within each one of the two discretized 

reservoir models, we compare the drainage volume constructed in four different forms, 

which include the piecewise constant form (represented as “Constant”, Eq.(3.24)), the 

piecewise linear form (represented as “Linear”, Eq.(3.23)), the complete hybrid form 

(represented as “Hybrid”, Eq.(3.22), Eq.(3.26), Eq.(3.27) and Eq.(3.29)), and the reduced 

hybrid form (represented as “Reduced Hybrid”, Eq.(3.22), Eq.(3.26), Eq.(3.28) and 

Eq.(3.29)). The four discretized drainage volumes are compared with the analytic solution 

(Eq.(3.22), which is represented as “Analytic”). The corresponding well test derivatives 

can be calculated straightforwardly using Eq.(3.31). 

Comparing the four different discretization schemes of drainage volume variation 

as a function time (the left column of plots in Figure 3.28), we can hardly differentiate 

them because they significantly overlaps each other except for the 100hrs simulation under 

the 7x7 grid discretization. However, we can more easily differentiate the four forms of 

pressure transient if they are interpreted in terms of the well test derivative (the right 

column of plots in Figure 3.28), where only the hybrid pressure transient is largely 

overlapping its reduced form (Eq.(3.29)). 
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             Drainage Volume          Well Test Derivative 

(a) 7x7 (100hrs) 

  

(b) 7x7 (1,000hrs) 

  

(c) 51x51 (100hrs) 

  

(d) 51x51 (1,000hrs) 

  

  

Figure 3.28 Calibration of the pressure transient for a constant flow rate well test within a 

2D homogeneous reservoir model using DTOFs calculated from the C5V9 (LGR) FMM 
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We can easily find that the piecewise constant form of drainage volume 

discretization leads to a numerical solution that is significantly higher than the analytic 

formulation at very early times of flow. The discrepancy between numerical and analytic 

solutions can be decreased by applying the piecewise linear formulation of drainage 

volume (Figure 3.28a). The divergence of constant and linear forms of drainage volume 

from the analytic solution can be decreased by increasing the numbers of grid cells within 

the reservoir model (Figure 3.28c and d). However, early-time errors still exist and become 

particularly visible when the pressure transient is interpreted by means of the well test 

derivative. The hybrid versions of drainage volume discretization can help generate far 

more accurate numerical solutions at early times of simulation. The complete hybrid 

drainage volume construction gives rise to an overestimation of the numerical solution 

when the pressure front passes from the well cell to adjacent cells, which leads to an 

underestimation of the well test derivative. On the contrary, the well test derivative shows 

to be a little higher than the analytic solution when the pressure front passes across the 

well cell due to an underestimation of the drainage volume when it is constructed in the 

reduced hybrid form. 

As the number of grid cells increases, the divergence of well test derivatives from 

the analytic solution due to a hybrid construction of the drainage volume occurs at an 

earlier time. Particularly, the complete form of hybrid drainage volume leads to a more 

accurate well test derivative compared with the reduced hybrid formulation. However, the 

reduced hybrid formulation of the drainage volume requires less computational efforts, 

which is important for establishing the forward model and performing rapid inversion that 
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will be discussed in the next section. The errors caused by both forms of hybrid 

construction of the drainage volume are negligible as long as the well test time is short 

enough and the transient flow can be ensured. 

As the well test time increases and boundary effect is being felt, the hybrid 

drainage volume formulated in terms of the DTOF will diverge significantly from the 

analytic solution, making the well test derivative curve not horizontal anymore (Figure 

3.28b and d). This circumstance should be avoided for reservoir parameter estimation from 

pressure transient analysis, because much more errors will be introduced by inaccurate 

forward modeling. 

The hybrid drainage volume construction using the DTOF calculated from the 

C5V9 (LGR) FMM shows to converge very fast to the analytic solution and proves to be 

able to generate sufficiently accurate numerical solutions as long as resolution of the 

reservoir model is high enough. It provides a useful tool for pressure transient analysis in 

heterogeneous reservoir models and can be efficiently used to validate the transient flow 

based on the asymptotic pressure approximation. 

 

3.4.2 Validation of the Transient Flow Simulation 

The solution from the DTOF-based transient flow simulation can be validated with 

the bottom-hole flowing pressure (BHP) and well production rate generated from the 

reservoir simulator (ECLIPSE) under fixed well production rate and fixed bottom-hole 

flowing pressure conditions, respectively. Using the inter-cell transmissibility constructed 

from the complete form of hybrid cumulative pore volume (Eq.(3.16) as well as the 
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corresponding  w   function generated, we solve the DTOF-based one-dimensional 

diffusivity equation (Eq.(3.32)) and calibrate the pressure and flux response at the 

production well.  

On the basis of the same reservoir models used for  w   function construction as 

shown in Figure 3.3 and Figure 3.6, we conduct numerical simulations of the single-phase 

transient flow with one vertical production well placed within the 2D reservoir model. An 

initial reservoir pressure of 1,000 psi is assigned to all cases. The boundary condition is 

defined by constraining the production rate or BHP at the well, which is located at the 

center of the 2D synthetic reservoir model but might be located at different locations 

within the 1st and 72nd layers of the SPE10 reservoir model (Table 3.17). The well 

placement in all cases is consistent with previous  w    function construction (Figure 

3.19 to Figure 3.24). 
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Table 3.17 2D Reservoir dimensions and boundary conditions constrained at the production 

well 

 

Reservoir Model 
Reservoir 

Dimension 

Well 

Location 

Initial reservoir 

Pressure (psi) 

Fixed Well 

Rate (res bbl/d) 

Fixed Well 

 BHP (psi) 

Homogeneous 199x199 (100, 100) 5000 100 4300 

Heterogeneous 199x199 (100, 100) 5000 100 4500 

SPE10, Layer01 60x220 (40, 90) 5000 10 4900 

SPE10, Layer01 60x220 (25, 134) 5000 10 4000 

SPE10, Layer72 60x220 (33, 103) 5000 10 4900 

SPE10, Layer72 60x220 (42, 100) 5000 10 4000 

 

 

In all the six 2D reservoir models (Table 3.17), logarithmically distributed τ-

intervals (ranging from DTOF evaluated at the wellbore to DTOF evaluated at the 

reservoir outer boundary) are used to discretize the one-dimensional pressure diffusivity 

equation (Eq.(3.32)). The pressure values are correspondingly evaluated within the τ-

intervals, with the output pressure or flux at the well compared with that calculated from 

a numerical simulator (ECLIPSE).  

In order to determine the best scheme designed for the  w   function calculation, 

we compared three different methods for the  w   generation and their applications in 

the transient flow simulation using the C5V9 (LGR) FMM. They use the same set of 

logarithmically distributed τ-intervals, which has a fixed DTOF width across the first 

Element 0 well cell ranging from w  to 0 . The τ-intervals have a maximum DTOF value 

equal to the maximum DTOF calculated from the C5V9 (LGR) FMM for the entire 
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reservoir model, but are independent of the FMM calculated DTOFs beyond the Element 

0 well cell. The method we proposed (Eq.(3.37) to Eq.(3.43)) for the DTOF-based 

transient flow simulation is compared with the Petrosa and Aziz’s method (PA) and the 

smoothing technique (SM) for  w   and inter-cell transmissibility constructions. 

Simulations of the six reservoir models (Table 3.17) are demonstrated from Figure 

3.29 to Figure 3.40. The results are compared with the ECLIPSE simulation, which is 

represented by the blue solid curve as “ECL”. The well BHP and flux generated from the 

method we propose for τ-interval generation and inter-cell transmissibility calculation is 

represented by the red dash line as “FMM”. The well responses generated from the method 

used by Pedrosa and Aziz (1986) for hybrid τ-interval generation near the well is 

represented by the green dash line as “FMM (PA)”. The well responses generated from 

the method that relies on the smoothing technique to generate the  w   function and 

calculate the inter-cell transmissibility is represented by the pink dash line as “FMM 

(SM)”. The numbers of logarithmically distributed τ-intervals used for simulation are 10, 

20, 50 and 1000, respectively. 
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NTau = 10 NTau = 20 

  

NTau = 50 NTau = 1,000 

Figure 3.29 Calibration of BHP in the homogeneous reservoir model (199x199) by solving 

the DTOF-based one-dimensional diffusivity equation using the 2D C5V9 (LGR) FMM with 

a fixed well production rate 

 

  

NTau = 10 NTau = 20 

  

NTau = 50 NTau = 1,000 

Figure 3.30 Calibration of well production rate in the homogeneous reservoir model 

(199x199) by solving the DTOF-based one-dimensional diffusivity equation using the 2D 

C5V9 (LGR) FMM with a fixed BHP 
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NTau = 10 NTau = 20 

  

NTau = 50 NTau = 1,000 

Figure 3.31 Calibration of BHP in the heterogeneous reservoir model (199x199) by solving 

the DTOF-based one-dimensional diffusivity equation using the 2D C5V9 (LGR) FMM with 

a fixed well production rate 

 

  

NTau = 10 NTau = 20 
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Figure 3.32 Calibration of well production rate in the heterogeneous reservoir model 

(199x199) by solving the DTOF-based one-dimensional diffusivity equation using the 2D 

C5V9 (LGR) FMM with a fixed BHP 
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Figure 3.33 Calibration of BHP in the 1st layer of the SPE10 model with a well (40, 90) by 

solving the DTOF-based one-dimensional diffusivity equation using the 2D C5V9 (LGR) 

FMM with a fixed well production rate 
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Figure 3.34 Calibration of well production rate in the 1st layer of the SPE10 model with a 

well (40, 90) by solving the DTOF-based one-dimensional diffusivity equation using the 2D 

C5V9 (LGR) FMM with a fixed BHP  
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Figure 3.35 Calibration of BHP in the 1st layer of the SPE10 model with a well (25, 134) by 

solving the DTOF-based one-dimensional diffusivity equation using the 2D C5V9 (LGR) 

FMM with a fixed well production rate 
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Figure 3.36 Calibration of well production rate in the 1st layer of the SPE10 model with a 

well (25, 134) by solving the DTOF-based one-dimensional diffusivity equation using the 2D 

C5V9 (LGR) FMM with a fixed BHP 
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Figure 3.37 Calibration of BHP in the 72nd layer of the SPE10 model with a well (33, 103) by 

solving the DTOF-based one-dimensional diffusivity equation using the 2D C5V9 (LGR) 

FMM with a fixed well production rate 
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Figure 3.38 Calibration of well production rate in the 72nd layer of the SPE10 model with a 

well (33, 103) by solving the DTOF-based one-dimensional diffusivity equation using the 2D 

C5V9 (LGR) FMM with a fixed BHP 
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Figure 3.39 Calibration of BHP in the 72nd layer of the SPE10 model with a well (42, 100) by 

solving the DTOF-based one-dimensional diffusivity equation using the 2D C5V9 (LGR) 

FMM with a fixed well production rate 
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Figure 3.40 Calibration of well production rate in the 72nd layer of the SPE10 model with a 

well (42, 100) by solving the DTOF-based one-dimensional diffusivity equation using the 2D 

C5V9 (LGR) FMM with a fixed BHP  
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The simulation is first performed on the 2D homogeneous reservoir model (Figure 

3.29 and Figure 3.30). The well BHP and flux calculated from the method we propose 

significantly overlaps that calculated from the smoothing technique under the four 

resolutions of the τ-intervals. The results generated from the two methods match 

excellently with the ECLIPSE simulation. As the number of τ-intervals increases, the well 

pressure and flux generated from the Pedrosa and Aziz’s method begins to “drift” away 

from the ECLIPSE result. Although the well pressure and flux profiles will converge as 

the number of τ-intervals increases, the Pedrosa and Aziz’s method proves to generate less 

accurate transient flow solutions compared to the other two methods. 

Figure 3.31 and Figure 3.32 show the simulation results from the 2D 

heterogeneous reservoir model (Figure 3.3a) with smoothly varying heterogeneity (VDP 

= 0.5573). Well pressure and flux profiles will converge using all three methods, but the 

results generated from the Pedrosa and Aziz’s method and the smoothing technique show 

to “drift” away from the ECLIPSE result. The method we propose generates the most 

accurate well BHP and flux profiles compared with ECLPSE simulation under all the four 

τ-interval resolutions. 

Figure 3.33 to Figure 3.40 show the simulation performed on the 2D SPE10 

reservoir models. The calibration results with the ECLIPSE simulation are far from 

satisfactory using all three methods for transient flow simulation, which correspond well 

to the multiple  w   decreasing trends observed before (Figure 3.21 to Figure 3.24) that 

indicates strong local reflections of the pressure front within the highly heterogeneous 

media. 
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After comparing the pressure or flux profile at the well using different methods of 

 w    calculation, we can make the following observations. 

 The Petrosa and Aziz’s method for calculating the effective DTOF value for 

the upper limit of the Element 1 well cell and its application in the inter-cell 

transmissibility construction (Eq.(3.45)) between the first and second τ-

intervals cannot improve the computational accuracy for the transient flow 

simulation. When high resolution τ-intervals are used, the Petrosa and Aziz’s 

method leads to a consistently lower well pressure or flux profile in 

homogeneous and smooth heterogeneous media compared with the ECLIPSE 

simulation (Figure 3.29 to Figure 3.32). 

 Though performing well in homogeneous media (Figure 3.29 and Figure 3.30), 

the  w   function generated from the smoothing technique fails to generate 

accurate numerical solutions for transient flow simulation in heterogeneous 

media, even with a fixed DTOF width across the first τ-interval (Figure 3.31 

to Figure 3.40). 

 The method we propose for  w   and inter-cell transmissibility calculations 

provides the most accurate solution for the transient flow simulation in 

reservoir models with smoothly varying heterogeneity. The result is in 

excellent agreement with the ECLIPSE simulation (Figure 3.29 to Figure 

3.32). 
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 Due to strong local reflections of the pressure front, all three methods fail to 

generate a transient flow solution that can match well with the ECLIPSE 

simulation in highly heterogeneous reservoir models, even when the well is 

placed at a cell with a high permeability value (Figure 3.33 to Figure 3.40). 

 

To get a deeper understanding of the excellent simulation results for the first two 

synthetic models and the unsatisfactory performance in the 2D SPE10 models, we 

investigate the pressure drop behavior within the entire reservoir model and its relationship 

with the FMM calculated DTOFs. The asymptotic pressure approximation is compared 

with ECLIPSE simulation in both well cells (where the well test derivatives can be 

compared) and non-well cells (where the pressure drop derivatives can be compared) 

during the constant flow rate well test. 

 

 

  
  

 
Figure 3.41 Calibration of the well test derivative calculated from the DTOF-based 

asymptotic pressure approximation with the ECLIPSE simulation during a constant flow 

rate well test on the 2D reservoir model 
 



 

145 

 

 

From Figure 3.41, it is easy to find that both the asymptotic pressure approximation 

and the ECLIPSE simulation reflect an infinite-acting flow within a 240hrs of constant 

flow rate well test in the homogeneous and smoothly varying heterogeneous media. The 

good agreement between FMM and ECLIPSE calculated well test derivatives corresponds 

well with the BHP agreements from the transient flow simulations (Figure 3.29 and Figure 

3.31). We can also compare the pressure drop values generated from the asymptotic 

pressure approximation (Eq.(3.30)) with the ECLPSE simulation within the entire 

reservoir model. By taking a scatter plot of the pressure drop derivative against the DTOF 

and against the drainage volume weighted exponential term (Eq.(3.30)) for each grid cell, 

we test the validity of the asymptotic pressure approximation in both homogeneous and 

smoothly varying heterogeneous media (Figure 3.42). 
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100hrs 

  

 Heterogeneous (VDP = 0.5573) 
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Figure 3.42 Comparison of the pressure drop derivatives calculated from the FMM and 

ECLIPSE within the entire homogeneous and heterogeneous reservoir models (199x199) 

during a constant flow rate well test 
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From the left column of Figure 3.42, it can be observed that the pressure drop 

derivative with respect to time generated from the ECLIPSE simulation and that from the 

FMM calculation are matching well with each other, especially in the homogeneous 

reservoir model. Within a distance “τ” less than 40hr0.5 from the well, the ECLIPSE 

generated pressure drop derivative is gradually decreasing, which indicates the out-going 

pressure front propagation from the well without much local reflection. This is consistent 

with the increasing  w   function within the “τ” distance of 40hr0.5 from the well in 

Figure 3.19 and Figure 3.20.  From the right column of Figure 3.42, we can find that the 

pressure drop derivatives calculated from the FMM have a strong linear relationship with 

those calculated from the ECLISPE simulation within the entire reservoir domain, 

especially for the homogeneous model. This indicates that our assumption of the 

agreement between the pressure contour and the DTOF contour is valid for homogenous 

and “sufficiently” smooth heterogeneous reservoir media. 

Pressure transient analysis using both the ECLPSE simulation and the asymptotic 

pressure approximation can also be conducted on the 2D SPE10 models. Figure 3.43 

shows the well pressure interpreted by the well test derivative for the four constant flow 

rate well tests within the 1st layer (Figure 3.42a and b) and 72nd layer (Figure 3.42c and d) 

of the SPE10 model. The well test derivative calculated from the FMM is close to the 

ECLIPSE simulation at early times of simulation only if the permeability within the well 

cell is high (Figure 3.43a and c; Table 3.6). The discrepancy between the FMM and 

ECLIPSE generated results becomes larger when the well is placed in low-permeability 

cells (Figure 3.43b and d; Table 3.6). 
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          (a)                 

           Layer 1 within SPE10 

         Well (40, 90) 

          (b)                 

            Layer 1 within SPE10 

          Well (25, 134) 

  

         (c)                

           Layer 72 within SPE10 

          Well (33, 103) 

          (d)               

             Layer 72 within SPE10 

              Well (42, 100) 

Figure 3.43 Calibration of the well test derivative calculated from the DTOF-based 

asymptotic pressure approximation with the ECLIPSE simulation during a constant flow 

rate well test on the 2D SPE10 model 

 

 

In Figure 3.43, we can see the quick reflection of the pressure front at the no-flow 

reservoir boundary interpreted from the ECLIPSE simulated well test derivative with non-

zero slope. The reason for the discrepancy between the FMM and ECLIPSE simulations 

can be further investigated by analysis of the pressure drop derivative within the entire 

reservoir model (Figure 3.44 to Figure 3.47). 
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Figure 3.44 Comparison of the pressure drop derivatives calculated from the FMM and 

ECLIPSE within the entire reservoir field of the 1st layer within the SPE10 model during a 

constant flow rate well test with the well located at Cell (40, 90) 
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Figure 3.45 Comparison of the pressure drop derivatives calculated from the FMM and 

ECLIPSE within the entire reservoir field of the 1st layer within the SPE10 model during a 

constant flow rate well test with the well located at Cell (25, 134) 
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Figure 3.46 Comparison of the pressure drop derivatives calculated from the FMM and 

ECLIPSE within the entire reservoir field of the 72nd layer within the SPE10 model during 

a constant flow rate well test with the well located at Cell (33, 103) 
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Figure 3.47 Comparison of the pressure drop derivatives calculated from the FMM and 

ECLIPSE within the entire reservoir field of the 72nd layer within the SPE10 model during 

a constant flow rate well test with the well located at Cell (42, 100)  
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In Figure 3.44, the production well is placed at a high-permeability cell within the 

1st layer of the SPE10 model (Table 3.6). At the very early times of simulation (within one 

minute) when the pressure front propagates within a “τ” distance less than 0.6hr0.5 from 

the well, the pressure drop derivative with respect to time calculated from the FMM 

matches very well with the ECLIPSE simulation. The linear relationship between the 

FMM calculated pressure drop derivative and the drainage volume weighted exponential 

term within the asymptotic pressure approximation can approximately represent the 

ECLIPSE pressure simulation within all reservoir grid cells. This corresponds well with 

the increasing  w   function where the “τ” distance from the well is less than 0.6hr0.5 in 

Figure 3.21. Before the pressure front reaches the “τ” distance of 10hr0.5, multiple 

decreasing trends of the  w   function can be observed (Figure 3.21). This represents 

multiple local reflections of the pressure front within the highly heterogeneous media, 

which corresponds to the degraded approximation to the reservoir pressure derivative 

using the asymptotic pressure approximation at 1hr and 6hrs shown in Figure 3.44. After 

the pressure front has arrived at the “τ” distance of 10hr0.5, the reflection from the no-flow 

boundary of the reservoir can be more felt, which can be represented by the sharp 

decreeing  w   function when the “τ” distance is greater than 10hr0.5
 (Figure 3.21). 

Figure 3.45 to Figure 3.47 show that the asymptotic pressure approximation can 

barely represent the ECLIPSE calculated pressure transient behavior only within a short 

period of 1min. Beyond this very early time of simulation, multiple local reflections of the 

pressure front can be observed from the multiple decreasing trends of the  w   function 
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that occurs at short “τ” distances from the well (Figure 3.22 to Figure 3.24). These 

correspond to the rapidly deteriorated correlation between the pressure drop derivatives 

calculated from the asymptotic pressure approximation and those from ECLIPSE 

simulation (Figure 3.45 to Figure 3.47). This situation becomes even worse if the 

production well is located at the low-permeability cells within the two layers of the SPE10 

model (Figure 3.45 and Figure 3.47; Table 3.6), in which cases the asymptotic pressure 

approximation shows to be invalid during most of the simulation time. 

The asymptotic pressure approximation relies upon an assumption that the DTOF 

contour generated from solving the Eikonal equation is aligned with the pressure contour 

around the production well. When transient flow occurs in homogeneous and 

“sufficiently” smooth heterogeneous media, local reflections of the pressure front will not 

be strongly felt. But the pressure front “reflection” becomes more obvious when the 

reservoir media are highly heterogeneous. By testing the methodology from the highly 

heterogeneous SPE10 model, we can see that the asymptotic pressure approximation is 

more appropriate for describing transient pressure behavior in reservoir models with 

smoothly varying heterogeneity. 

 

3.5 Discussion 

The asymptotic pressure approximation to the diffusivity equation proves to be an 

efficient methodology for characterization of the transient pressure behavior in the 

reservoir porous media. It relies significantly upon the DTOF calculation and the drainage 

volume formulation, which could provide us a geometric understanding of the pressure 
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front propagation in the subsurface. This cannot be easily achieved by the conventional 

reservoir simulation (e.g. the finite difference method, finite volume method and finite 

element method, etc.). Accurate calculation of the drainage volume is crucial for DTOF-

based pressure transient analysis as well as the transient flow simulation.  

Discretization analysis of the Eikonal equation and the potential DTOF solutions 

proves that an extension of the FMM from the block-centered scheme (C5) to a 

discretization scheme capable of describing pressure propagation in more directions is 

needed. Evaluation of the DTOFs at both the grid-cell vertex and center can not only 

significantly improve the accuracy of the Eikonal solution, it can also better capture 

pressure propagation in low permeability regions. In addition, the near-well pressure 

gradient can be better represented by adding one more degree of freedom of the DTOF at 

the edge center of the well cell. Ensuring both computational accuracy and efficiency, the 

C5V9 (LGR) FMM proves to be the most appropriate discretization scheme for solving 

the Eikonal equation and constructing the 2D drainage volume. 

Our study shows that the drainage volume is mainly affected by the discretization 

scheme at early times of flow simulation and relies more on the accuracy of DTOFs 

calculated from the FMM at later times. A hybrid construction of the drainage volume 

which utilizes the analytic, piecewise linear as well as piecewise constant formulations of 

the cumulative pore volume leads to a significantly improved numerical solution. The 

complete form of hybrid drainage volume is more appropriate for  w   calculation based 

upon the minimum and maximum grid-cell DTOFs calculated from the FMM. The 
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reduced form of hybrid drainage volume construction can improve the computational 

efficiency for pressure transient analysis without losing much accuracy. 

One primary limitation of our methodology is the assumption that the porous 

media are “sufficiently” smooth and the heterogeneity is not quite large. So that the 

pressure (drop) gradient can be approximated by the DTOF gradient and the pressure 

transient can be efficiently calculated. This assumption is valid when the  w   function 

generated from the cumulative pore volume is “smoothly” increasing with the DTOF (τ). 

However, this assumption becomes less valid if the asymptotic pressure approximation is 

applied in highly heterogeneous reservoir models. Multiple decreasing trends of the  w   

function represent multiple local reflections of the pressure front within the highly 

heterogeneous porous media. 

 

3.6 Section Summary 

We proposed a novel method to characterize drainage volume and simulate 

transient flow in porous media by means of the “diffusive time of flight” (DTOF) 

calculated from the fast marching method (FMM). Application of the FMM to DTOF (τ) 

calculation and transient flow simulation in the reservoir can make the computational 

speed orders magnitude faster than conventional reservoir simulators. This method relies 

heavily upon construction of the cumulative pore volume as a function of the DTOF and 

calculation of its DTOF derivative,  w  . 

Based on above analysis of drainage volume and transient flow simulation using 

the DTOF, following conclusions can be drawn: 
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1) Discretization analysis of the drainage volume for the 2D infinite-acting flow 

shows that application of the piecewise constant or piecewise linear form of 

drainage volume will generate an inaccurate solution, especially at very early 

times of simulation.  

2) Application of an analytic form of drainage volume within the orthogonal well 

cell can help significantly reduce the discrepancy between the numerical and 

analytic solutions. 

3) Hybrid versions of drainage volume, in which different orders of  w   are 

applied on rectangular cells, help generate a consistently horizontal well test 

derivative curve for the infinite-acting radial flow (IARF) in homogeneous 

media.  

4) Discretization of the Eikonal equation proves to have great impacts upon the 

accuracy of DTOF calculation, which will also affect the accuracy of the 

drainage volume solution. 

5) Following the hybrid construction of the cumulative pore volume as a function 

of the DTOF,  pV  , a hybrid  w   function can be calculated by a local 

differentiation of the incremental pore volume to the incremental DTOF (τ) 

value across each one of the τ-intervals. Generation of the τ-intervals can be 

independent of the FMM calculated DTOFs within the grid cells. 

6) The hybrid  w   function converges to a stable distribution after the grid 

refinement beyond the first analytic τ-interval achieves a certain level. This 
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 w   function can help generate a stable pressure solution to the DTOF-based 

one-dimensional diffusivity equation. 

7) The  w   function generated from the hybrid cumulative pore volume 

function can be used to describe the reservoir heterogeneity. A smoothly 

increasing  w   function represents the pressure front propagation from the 

well without much hindrance. The decreasing  w   function represents the 

reflection of the pressure front from either the no-flow reservoir boundary or 

the high-contrast porous media within the reservoir model.  

8) When the infinite-acting flow occurs in the reservoir, the transient drainage 

volume calculated from the DTOF proves to be consistent with the pressure 

solution from the one-dimensional diffusivity equation. 

9) The validity of the asymptotic pressure approximation proves to be 

significantly affected by the reservoir heterogeneity. Thus, it is recommended 

to evaluate the reservoir heterogeneity first before applying this methodology 

to pressure transient analysis in heterogeneous reservoir models. 
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4. INTEGRATION OF PRESSURE TRANSIENT DATA INTO RESERVOIR 

MODELS USING THE FAST MARCHING METHOD* 

 

Calibration of reservoir model properties by integration of well test data remains 

an important research topic. Well test data has been recognized as an effective tool that 

can be used to describe transient flow behavior in petroleum reservoirs. It is also closely 

related to the drainage volume of the well and the pressure front propagation in the 

subsurface. Traditional analytic means of estimating reservoir permeability relies on an 

interpretation of the diagnostic plot of the well pressure and production data, which usually 

leads to a bulk average estimation of the reservoir permeability. When more detailed 

characterization of reservoir heterogeneity is needed, a robust forward model needs to be 

established and a numerical inversion technique is required. 

We utilize the concept of the “diffusive time of flight” (DTOF) to formulate an 

asymptotic solution of the diffusivity equation that describes transient flow behavior in 

petroleum reservoirs. The DTOF is obtained from the solution of the Eikonal equation 

using the fast marching method (FMM). It may be used as a spatial coordinate which 

reduces the three dimensional diffusivity equation to an equivalent one dimensional 

formulation. We investigate the drainage volume evolution as a function of time in terms  

 

__________________________ 

 
*Material adapted with permission from “Integration of Pressure Transient Data Into Reservoir Models 

Using the Fast Marching Method” by Li, C. and King, M.J., 2016: Paper SPE-180148-MS Presented at the 

SPE Europec featured at 78th EAGE Conference and Exhibition in Vienna, Austria, 30 May-2 June 2016. 

Copyright 2016 Society of Petroleum Engineers. Further reproduction prohibited without permission. 



 

160 

 

 

of the DTOF. The drainage volume may be directly related to the well test derivative 

which may be used in an inversion calculation to calibrate reservoir model parameters. 

The analytic sensitivity coefficients of well test derivative with respect to reservoir 

properties are derived and incorporated into the objective function to perform history 

matching. The key to formulating the sensitivity coefficients is to utilize the functional 

derivative of the Eikonal equation to derive the analytic sensitivity of the DTOF to 

reservoir permeability. Its solution is implemented by tracking the characteristic trajectory 

of the local Eikonal solver within the FMM. The major advantage of formulating 

sensitivity coefficients using the FMM is its great computational efficiency while 

inversion is conducted. 

This inverse modeling approach is tested on a two-dimensional synthetic 

heterogeneous reservoir model and then applied to the three-dimensional Brugge field, 

where a single well with constant flow rate is simulated. The well test derivative is shown 

to be inversely proportional to the drainage volume and is treated as the objective function 

for inversion. With an additional constraint to honor the prior model, our inverse modeling 

approach will adjust the reservoir model to obtain permeability as a function of distance 

from the well within the drainage volume. It provides a modification of reservoir 

permeability both within and beyond the depth of investigation (DOI). 

 

4.1 Introduction 

Adjusting reservoir model parameters frequently involves integrating dynamic 

data to characterize subsurface heterogeneity. Pressure transient information is widely 
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used in history matching of reservoir models because of its ready availability and rapid 

response at the well. The well pressure response can be affected by both geometry and 

flow properties of the reservoir. One may estimate bulk reservoir properties around the 

injection or production well by analyzing the well test curve (Miller et al., 1950; Ehlig-

Economides and Joseph, 1987). Though merely applying to a limited amount of idealized 

models, the analytic approach provides the simplest way to obtain reservoir parameters 

through analysis of pressure changes. Many definitions about the concept of radius of 

investigation (ROI) relate to the propagation of a pressure disturbance or detectable 

pressure or rate changes in space (Kuchuk, 2009; Datta-Gupta et al., 2011). Based on the 

ROI, the near-well effective permeability can be estimated as a function of distance from 

the well from pressure transient data (Oliver, 1990, 1992; Feitosa et al., 1994; Sagar et al., 

1995; Thompson and Reynolds, 1997).When more detailed characterization of reservoir 

heterogeneity is needed, a numerical inversion technique is required to integrate the 

dynamic observational data into reservoir models (Tarantola, 2005). 

Reservoir parameter estimation from inverse modeling usually relies upon 

establishment of a robust forward model and determination of an objective function to be 

minimized. The forward model formulated in differential equations that governs the 

physical process of subsurface flow in the reservoir media requires numerical simulation 

of pressure and fluid communications between discretized grid cells. The objective 

function is frequently used to measure the difference between the observational data and 

calculated reservoir response at the well, which can be predicted by the forward model 

(Tarantola, 2005; Oliver et al., 2008). Minimization of the objective function can be 
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achieved using a gradient-based algorithm, which requires calculation of the sensitivity 

coefficients of the objective function with respect to reservoir parameters. Sensitivity-

based inversion often entails calculation of partial derivatives of the objective function to 

reservoir properties in all grid cells of the model, which becomes considerably expensive 

and even computationally infeasible as the model grows to a large size (Yeh, 1986; Oliver 

et al., 2008). 

Given the crucial role played by sensitivity calculation in gradient-based inversion, 

extensive research efforts have been made to calculate the sensitivity coefficient using 

more efficient approaches when integrating pressure transient data into reservoir models 

(e.g. the Modified Generalized Pulse Spectrum Technique (MGPST) (Chu et al., 1995a) 

and the linear search procedure (Landa and Horne, 1997; Landa et al., 2000)). The 

Bayesian approach is the most popular probabilistic inversion methodology, where the a 

priori static geologic information is contained in a prior probability density function (PDF) 

and the a posteriori PDF provides the solution to the inverse problem (Duijndam, 1988a, 

b; Oliver et al., 2008). The sensitivity coefficients of the well pressure data to reservoir 

model parameters can be included into a composite objective function to be minimized 

using the Maximum a Posteriori (MAP) estimation of reservoir parameters (e.g. the Gauss-

Newton and Levenberg-Marquardt algorithms). By using models that are linearized about 

the maximum likelihood point, multiple generalizations of the permeability field 

conditioned to the well test data can be realized (Oliver, 1996) and extended to the three-

dimensional reservoir model (He et al., 1997). The computational cost in inversion can be 

decreased by implementing a subspace method to reparameterize the reservoir model 
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(Reynolds et al., 1996; Abacioglu et al., 2001). Stochastic modeling and geostatistics can 

be used to reduce uncertainty when calibrating reservoir model parameters and provide 

optimization algorithms for automatic history matching of reservoir models with well 

pressure and production data (Reynolds et al., 1999; Zhang et al., 2002; Zhang and 

Reynolds, 2002). The gradient-based history matching of reservoir models with pressure 

transient data can also be connected with the application of the the Monte Carlo (MC) 

method (Oliver, 1996), the Markov chain Monte Carlo (MCMC) method (Oliver et al., 

1996; Oliver et al., 1997; Bonet-Cunha et al., 1998), and the ensemble Kalman filter 

(EnKF), where the sensitivity coefficients are approximated through an ensemble of 

realizations of the observational data and model parameters at each analysis step (Chen 

and Zhang, 2006; Zafari and Reynolds, 2007; Oliver et al., 2008; Oliver and Chen, 2011). 

The asymptotic approach has been widely used in geometric optics and 

seismology. Many of its concepts related to propagating interfaces also prove to be 

valuable in reservoir engineering. Both the concept of radius of investigation (ROI) in 

homogeneous media (Lee, 1982) and its extension to depth of investigation (DOI) in 

heterogeneous media (Datta-Gupta et al., 2011) can be interpreted as the propagation 

distance of the “peak” pressure disturbance for an impulse source or sink. By deriving the 

high frequency asymptotic expansion form of the diffusivity equation, Vasco et al. (1999 

and 2000) and Kulkarni et al. (2001) introduced the concept of “diffusive time of flight” 

(DTOF) that has a unit of (time)1/2. Based on the asymptotic method and the DTOF, 

pressure transient data were integrated into reservoir models by formulating analytic 

sensitivity coefficients along the pressure gradient trajectories, which can be approximated 
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as the streamline trajectory (Datta-Gupta and King, 1995). Thus, the sensitivity matrix 

required for solving the inverse problem can be constructed in an analytic form using one 

single forward simulation and the computational speed will be tremendously accelerated. 

Xie et al. (2015a, b) developed a new asymptotic approach to formulating the “drainage 

volume” using the DTOF and integrated production history of shale gas into the reservoir 

model. This methodology associates the propagation of the peak of a pressure pulse with 

the DTOF that can be calculated by solving the Eikonal equation using the fast marching 

method (FMM). By taking a high-frequency asymptotic solution of the classic three-

dimensional diffusivity equation for general heterogeneous reservoir models, a one-

dimensional diffusivity equation was formulated in terms of the DTOF, which provides a 

convenient forward modeling approach for rapid field-scale performance assessment and 

reservoir parameter estimation in history matching by use of a genetic algorithm (Zhang 

et al., 2016). King et al. (2016) and Wang et al. (2017) improved this asymptotic 

methodology by redefining the “drainage volume” and reformulating the ROI and DOI in 

terms of the DTOF. 

In this section, we propose a novel methodology for integrating well test data with 

a prior geologic model for inverse modeling. The approach is based upon the use of the 

DTOF (τ) to characterize the geologic model. The forward model is established by using 

an approximate pressure solver, from which the initial and predicted well test data are 

calculated analytically. One single production well is placed in the reservoir to record 

pressure and construct the well test derivative as the objective function in history 

matching. By tracking the characteristic trajectory of the local Eikonal solver proposed by 
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Qian et al. (2007), which is included in the FMM algorithm we propose, an analytic 

calculation of the sensitivity of well test derivative to reservoir properties is performed to 

support the inversion for reservoir permeabilities. The main advantage of using the FMM 

to solve the Eikonal equation and run the forward model is its great computational 

efficiency that makes the inversion tremendously faster than those traditional gradient-

based methods. By means of evaluating the sensitivity coefficient of the well test 

derivative with respect to reservoir permeability on each “τ-interval” instead of each 

Cartesian grid cell, sensitivity calculation becomes independent of the size of the 3D 

reservoir inversion problem. Comparing with the numerical perturbation scheme, this new 

approach for analytic sensitivity coefficients construction makes the computational speed 

orders of magnitudes faster. 

 

4.2 Methodology: Inversion Approach 

The methodology we propose relies upon the asymptotic pressure approximation 

to the diffusivity equation that can be used to describe transient pressure behavior in 

heterogeneous porous media. It transforms the 3D diffusivity equation into an equivalent 

1D form using the “diffusive time of flight” (DTOF), which can be calculated from solving 

the general anisotropic Eikonal equation. Based upon the DTOF, we set up the forward 

mathematical model in the form of the drainage volume as well as the well test derivative, 

which can be treated as the objective function for inverse modeling. Then their sensitivity 

coefficients with respect to reservoir permeability are formulated analytically by taking 

the functional derivative of the Eikonal equation, which are then included in a penalized 
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form of the objective function that is used for history matching of the reservoir model with 

well test data. 

 

4.2.1 Validation of the Forward Model 

The forward model used for inversion is derived from the asymptotic pressure 

approximation for the constant flow-rate well test.  
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where the DTOF (τ) is obtained by solving the Eikonal equation. 

         tx x x x c      k   (4.2) 

or 

       1Dx x x       (4.3) 

where  D x  is the diffusivity tensor evaluated at location x , which can expressed as 

  
 

 
D

t

x
x

x c 


k
   (4.4) 

The numerical DTOF (τ) solution to the Eikonal equation is calculated using the FMM. 

Then, the forward model is obtained from the drainage volume as a function of time and 

from the corresponding well test derivative. 
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The drainage volume (Eq.(4.5)) used for inversion is constructed in the reduced hybrid 

form as discussed in Section 3. Then the well test derivative is formulated as inversely 

proportional to the drainage volume with a constant production rate at the well (Eq.(4.6)). 

Suppose there is a 2D reservoir model with an equal length and width of 10,000ft 

as well as a uniform thickness of 10ft. It is discretized into a 51x51 square grid system, 

with a vertical well placed at the center of the model (26, 26). The reservoir media are 

homogeneous and isotropic, with a uniform permeability of 20md and porosity of 0.1. All 

other reservoir geometry information and fluid properties are listed in Table 4.1. 

 

 

Table 4.1 Input parameters for the 2D radial flow in a square-shaped reservoir model 

 

LX   10,000 ft  k   20 md 

LY   10,000 ft     0.1  

h   10 ft     1 cp 

NX   51   tc   1.0E-5 psi-1 

NY   51   oB   1 res bbl/STB 

Well (26, 26)   wq   100 res bbl/day 
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              (a) 2D C5V9 FMM              (b) 2D C9V9E5 FMM   

Figure 4.1 Illustration of triangulation of square cells that comprise the 2D reservoir model 

where the FMM can be implemented (reprinted with permission from Li and King, 2016) 

 

 

In Section 3, the 2D C5V9 (LGR) discretization scheme for the Eikonal equation 

is extended from the 2D C5V9 discretization scheme. In such a way, the pressure gradient 

close to the wellbore can be better approximated by the DTOF gradient when the DTOF 

values to the centers of grid cells adjacent to the well cell are more accurately calculated 

from the FMM. In this section, we further extended the 2D C5V9 FMM (Figure 4.1a) to 

a 2D C9V9E5 FMM by adding more degrees of freedom of the DTOF to the edge center 

of the 2D orthogonal grids (Figure 4.1b). Each unknown DTOF value in the 2D space will 

be determined from its neighboring four or eight local Eikonal solutions. Only the 

minimum local Eikonal solution among the neighboring four our eight candidate solutions 

will be used to update the unknown DTOF. The index of the minimum local Eikonal 

solution can also be recorded when DTOFs are calculated within the FMM algorithm, 

which will help generate analytic sensitivity coefficients of DTOFs with respect to 

reservoir model parameters in the inversion (Figure 4.1). Accuracy of FMM calculated 
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DTOFs to reservoir regions far away from the wellbore can be further improved, which 

will make the hybrid drainage volume (in the reduced form) converge faster to the analytic 

solution. The C9V9E5 discretization scheme is used for DTOF calculation from the FMM, 

which provides the basis for the 2D drainage volume forward model construction and the 

subsequent inverse modeling (Figure 4.1b). 

We first conduct a convergence analysis for the numerical drainage volume by 

comparing it with the infinite-acting analytic solution for 2D radial flow in homogeneous 

reservoir media. The hybrid drainage volume under different grid-cell resolutions (3x3, 

5x5, 11x11, and 51x51, respectively) is analyzed under two well tests of 240 hours and 

1200 hours, respectively (Figure 4.2). 

 

  

                 (a) 240hrs                  (b) 1200hrs 

Figure 4.2 Convergence analysis of hybrid drainage volume discretization using the C9V9E5 

FMM for 2D radial flow (reprinted with permission from Li and King, 2016) 

   

After comparing the simulations, it is easy to find that the hybrid drainage volume 

matches well with its analytic solution at very early times of flow (Figure 4.2a). 

Meanwhile, it converges to the analytic solution with DTOFs calculated from the C9V9E5 
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FMM, even on a coarse grid. However, as expected, the hybrid solution will diverge from 

the infinite-acting analytic solution as the flowing time becomes longer than when the 

pressure front has arrived at the no-flow reservoir boundary (Figure 4.2b). 

This flow regime transition can also be reflected in the diagnostic plot, when the 

well test derivative changes from an early horizontal line representing IARF to a later 

curve with a non-zero slope. It is quite important to validate the flow regime as transient 

infinite-acting flow before establishing the forward model for inversion, making sure that 

no significant boundary effects can be felt during history matching. On the basis of the 

hybrid drainage volume, the well test derivative for 2D/3D IARF can be set up and its 

sensitivity coefficients with respect to reservoir parameters can be derived in an analytic 

form. 

 

 

  

               (a) 

 Heterogeneous KX 

       VPD = 0.4617 

                    (b) 

           DTOFs within 

       homogeneous media  

                     (c) 

            DTOFs within 

       heterogeneous media 

Figure 4.3 Permeability and DTOFs calculated from C9V9E5 FMM within a 51x51 uniform 

square grid system (reprinted with permission from Li and King, 2016) 
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Calculation of the DTOF using the FMM provides the basis for understanding of 

the pressure front propagation using the depth of investigation (DOI). We calculate the 

DTOFs for both a homogeneous reservoir (with a uniform permeability value of 20md) 

and a heterogeneous reservoir (Figure 4.3) with one vertical well located at the reservoir 

center by solving the Eikonal equation (Eq.(4.2)) using the C9V9E5 FMM (Figure 4.1b). 

In both cases, the DTOF has a minimum zero value at the well location and increases 

monotonically to the outer boundary. In particular, the DTOF distribution in the 

homogenous reservoir is radial because of the isotropy of the permeability (Figure 4.3b). 

The maximum DTOF values calculated from the C9V9E5 FMM in the homogenous and 

heterogeneous reservoir models are 97.4hr0.5 and 59.7hr0.5, respectively.  

Based on the asymptotic pressure approximation, we can define the concepts of 

depth of investigation (DOI) and “limit of detectability” (LOD) using the DTOF, which 

can both be expressed as a function of time (King et al., 2016; Wang et al., 2017). The 

DOI can be calculated based on the hybrid drainage volume formulation that has been 

discussed in Section 3. 
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  (4.7) 

The numerator in Eq.(4.7) can also be calculated in a hybrid version, which is 

similar to the way drainage volume is discretized. For the infinite-acting flow occurring 

in the homogeneous models and sufficiently smooth heterogeneous models (VPD = 
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0.4617 in this case), there exists an approximate relationship between the DOI expressed 

in terms of the DTOF and the time (King et al., 2016; Wang et al., 2017). 

 
2

1
4

DOI

t


  (4.8) 

Similarly, the LOD can be defined as (King et al., 2016; Wang et al., 2017) 

 
2

4
4

LOD

t


  (4.9) 

For an infinite-acting flow in homogeneous and smooth heterogeneous media, it can be 

estimated that the LOD is approximately twice as large as the DOI in terms of the DTOF 

at a given time (Eq.(4.8) and Eq.(4.9)). Defining the DOI and LOD using the DTOF 

provides a convenient way to characterize the pressure front propagation in the subsurface. 

The validity of asymptotic pressure approximation for the infinite-acting radial 

flow (IARF) in homogeneous media has been demonstrated in Section 3. We need to 

validate its application within the heterogeneous reservoir model (Figure 4.3a), which has 

a Dykstra-Parsons coefficient (VDP) of 0.4167, before it can be treated as the reference 

model for inversion. After calculating the DTOF values generated from the heterogeneous 

reservoir model using the FMM, we can construct the hybrid drainage volume (Eq.(4.5)) 

and the well test derivative (Eq.(4.6)).  
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(a) 6hrs 

  
   

(b) 24hrs 

  
   

(c) 100hrs 

  
   

(d) 240hrs 

  
   

Figure 4.4 Validation of the asymptotic pressure approximation with ECLIPSE simulation 

within the 2D heterogeneous reservoir model (51x51, Well (26, 26), VDP = 0.4167) under a 

constant flow rate well test (qw = 100 res bbl/day) 
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Figure 4.4 shows the validation of pressure generated from the asymptotic pressure 

approximation with that generated from the numerical reservoir simulator (ECLIPSE) in 

the 2D heterogeneous reference model. The production well is placed at the reservoir 

center with a constant rate of 100 res bbl/day. Other input parameters for the 2D reservoir 

models are listed in Table 4.1. We plot the time derivative of the pressure drop against the 

DTOFs calculated from the FMM and against the drainage volume weighted exponential 

terms of the asymptotic pressure approximation (Eq.(4.1)). The overall performance of the 

asymptotic pressure approximation can reflect the real transient flow behavior within a 

100hrs of constant flow rate well test, without significant boundary effects being felt 

(Figure 4.4a, b and c). Beyond 100hrs, the linear relationship between FMM and ECLIPSE 

calculated reservoir pressures deteriorates and the transient state of flow can no longer be 

ensured (Figure 4.4d). 

Within 100hrs, the pressure drop derivative with respect to time generated from 

the asymptotic pressure approximation is in good agreement with the ECLIPSE 

calculation. The pressure drop calculated from the asymptotic pressure approximation has 

a strong linear relationship with that from the ECLIPSE simulation (Figure 4.4a, b and c). 

Even at 100hrs, the LOD approximately estimated as 40hr0.5 (Eq.(4.9)) is still less than the 

maximum reservoir DTOF value of 59.7hr0.5. Thus, a well test period of time up to 100 

hours is used for pressure transient analysis so that no much boundary effect will be felt 

when the pressure front propagates in the reservoir media.  
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4.2.2 Sensitivity Coefficient Formulation 

Formulation of the analytic sensitivity coefficients of the objective function with 

respect to reservoir parameters plays a crucial role in inverse modeling and history 

matching. They relate reservoir response at the well to reservoir property disturbance at 

other locations within the reservoir model. We consider variations in the permeability 

tensor that maintain the local anisotropy but which modify the magnitude of the 

permeability: 

       lnx k x x  k k  (4.10) 

where  ln k x  is the variation in the natural logarithm of the permeability tensor  xk . 

Formulation of analytic sensitivity coefficients for permeability inversion in 2D/3D 

reservoir models can be achieved by taking the functional derivative of the Eikonal 

equation with respect to the reservoir parameter. 
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The left hand side of Eq.(4.11) consists of two parts. The first part indicates the 

characteristic direction within the local Eikonal solver and the second part represents the 

gradient of the DTOF sensitivity. The right hand side of Eq.(4.11) includes the variations 

in reservoir parameters. This formulation for the sensitivity coefficients relates DTOF 

changes in one location ( x ) to reservoir property changes in another location ( 'x ). 

Numerical realization of the analytic sensitivity coefficient formulation relies upon tracing 

the characteristic vector direction of the local Eikonal solution within the FMM. 
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Figure 4.5 Lagrangian formulation of the local Eikonal solution 
 

 

The local Eikonal solution within the FMM can be expressed using a Lagrangian 

formulation (Figure 4.5). If the solutions at two nodes of a specific triangular element are 

known ( 1  and 2  in Figure 4.5), the DTOF to a parametric point on the upstream 

boundary of the domain is obtained by a linear interpolant 

 1

1

N
D

s m m

m

  



  (4.12) 

where m  are non-negative weights ( 0m  ) and sum to unity, 
1

1
N

m

m




 . Here N  can be 

1, 2, or 3, depending on the 1D/2D/3D local Eikonal solution used within the FMM. Based 

upon Fermat’s Principle, the unknown DTOF value at the remaining node of the triangular 

element ( s  in Figure 4.5) can be updated along the characteristic direction. If we define 

md  as the displacement vector measured from the location of the unknown s , we will 

know the parametric point in terms of the displacement vectors. 
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Then we can calculate the DTOF difference distance between the upstream unknown node 

and downstream boundary within a triangular element as 
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If we use  , ,i j k  as the index for a grid cell in 3D space, we can calculate the DTOF 

sensitivity with respect to the permeability within that particular cell as 
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Here, both the diffusivity D  tensor and the weight m  can be obtained from the local 

Eikonal solution. In such a way, formulation of the analytic sensitivity coefficient with 

respect to reservoir permeability through the functional derivative of the Eikonal equation 

can be realized on the grid-cell basis using Eq.(4.15). It can be readily achieved by post-

processing the non-negative weights for each nodal DTOF value updated within the FMM 

in a sequential approach after one single forward simulation of the FMM. 
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Cell being perturbed -δτ / δln(k) (numerical) -δτ / δln(k) (analytic) 

 
  

 
  

 
  

 
  

 

Figure 4.6 Dependence of the 2D sensitivity coefficients of the DTOFs with respect to the cell 

permeability for various positions of the perturbed cell using the 2D C9V9E5 FMM (δτ / 

δln(k) in hr0.5) (reprinted with permission from Li and King, 2016) 
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To estimate the impact of grid-cell permeability disturbance on DTOF response of 

the reservoir model, a 2D model with homogeneous and isotropic media is investigated 

(Figure 4.6). It is discretized into a 3x3 square-grid system, within which each grid cell is 

subdivided into eight identical triangular elements so that the C9V9E5 FMM method can 

be applied. A line-source well is placed at the bottom-left corner of the reservoir model. 

The yellow cell represents the location where the reservoir permeability is being 

perturbed. From the bottom left to the top right of the modeling domain, the magnitude of 

DTOF disturbance in each grid cell is different. Only cells behind the cell being perturbed 

will be affected. We can also observe that the grid-cell based analytic sensitivity 

coefficients of DTOFs to reservoir parameters (Eq.(4.15)) obtained from the functional 

derivative of the Eikonal equation (Eq.(4.11)) show an excellent match with their 

numerical counterparts. 

When the infinite-acting flow (IARF) occurs in “sufficiently” smooth 

heterogeneous media, there exists a strong relationship between the pressure contour and 

the DTOF contour (King et al., 2016). In such situations, it is reasonable to assume that 

the pressure gradient and the DTOF gradient are aligned and the Darcy velocity stays 

parallel to the scalar product between the permeability tensor and the DTOF gradient 

(Wang et al., 2017). The asymptotic pressure approximation we propose is suitable to 

establishing the forward model used for inversion. When the well test data is treated as the 

objective function, its sensitivity coefficients with respect to reservoir properties can be 

formulated analytically using the chain rule based on the DTOF sensitivity coefficients 

formulated (Eq.(4.11)). 
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Since we have constructed a hybrid form of the drainage volume as a function of 

time,  V t , which consists of three parts that include an analytic form, a piecewise linear 

form and a piecewise constant form, it can be used to formulate the pressure transient 

sensitivity coefficients with respect to the grid-cell reservoir permeability.  
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Using the chain rule, the well test derivative sensitivity coefficients can be derived as 
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The analytic sensitivity coefficient of the pressure transient data with respect to reservoir 

permeability can later be included into a penalized objective function for inversion. 
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 δV(t) / δln(k) (Numerical) δV(t) / δln(k) (Analytic) 

(a) 

Homogeneous 

24hrs 

  
   

(b) 

Heterogeneous 

24hrs 

  
   

(c) 

Homogeneous 

120hrs 

  
   

(d) 

Heterogeneous 

120hrs 

  
   

Figure 4.7 Sensitivity of the drainage volume with respect to the grid-cell reservoir 

permeability (reprinted with permission from Li and King, 2016) 
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In Figure 4.7, we demonstrate investigation of the sensitivity of drainage volume 

with respect to the grid-cell permeability with a homogeneous and heterogeneous reservoir 

model based on Eq.(4.16). The homogeneous model has a uniform permeability of 

86.31md, which is the same as the average permeability value of the heterogeneous model. 

Both models are represented on a 51x51 square grid system, with the remaining reservoir 

properties listed in Table 4.1. The drainage volume sensitivity with respect to the grid-cell 

permeability for the entire reservoir model are evaluated numerically and analytically. 

It can be easily observed that the analytic sensitivity coefficient of drainage volume 

with respect to reservoir permeability matches excellently with the numerical sensitivity 

coefficient. However, the drainage volume sensitivity coefficient evaluated on a grid-cell 

basis demonstrates a “dendritic” effect in both the homogeneous and heterogeneous 

models (Figure 4.7). This reflects the sensitivity preference along certain directions that 

might have adverse impacts upon the inversion results. 

Assuming that there is a 2D reservoir model discretized into a limited number of 

grid cells and each grid cell has its unique reservoir properties (e.g., permeability and 

porosity). DTOFs to cell centers, cell vertices and cell edge centers can be calculated using 

the C9V9E5 FMM (Figure 4.1b). The local Eikonal solver can be easily implemented 

upon the basic triangular element within the square cell, so that the DTOF values can be 

updated in the upwind direction (Figure 4.8a). 

Instead of calculating the sensitivity of DTOF to the permeability of a specific grid 

cell, we can analyze the DTOF sensitivity with respect to the permeability within a 

particular τ-interval that might have a DTOF range overlapping with it (Figure 4.8b). 
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      (a) local Lagrangian Eikonal solver      (b) τ-interval based sensitivity 

Figure 4.8 Calculation of the analytic sensitivity coefficient of the DTOF with respect to 

reservoir parameters within a τ-interval based on the functional derivative of the Eikonal 

equation 

 

 

 

Combining with DTOFs calculated from the FMM in the upwind direction along 

the characteristic vector, sensitivity of DTOFs of the entire reservoir model with respect 

to the permeability within a specific τ-interval perturbed can be calculated sequentially. 
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Here 1l   and l  represent the lower and upper DTOF limits of the τ-interval being 

perturbed. Eq.(4.18) shows the sensitivity relationship between the upstream point and a 

downstream point, which essentially is the functional derivative of the Eikonal equation 

(Eq.(4.11)) discretized in a 1D form. It can be easily extended to multi-dimensional 

implementations if the causality information is retained when the DTOF is calculated 

using the FMM algorithm. More importantly, the sensitivity perturbation occurs only to 



 

184 

 

 

permeabilities within a limited number of τ-intervals so that the sensitivity coefficients 

can be generated without dependence upon the model size. In other words, the degrees of 

freedom of the reservoir parameters to be calibrated in inversion can be significantly 

reduced, which will make the computational efficiency of inverse modeling tremendously 

improved. 

Based on the same homogeneous and heterogeneous reservoir models used for 

grid-cell based drainage volume sensitivity analysis (Figure 4.7), we investigate the DTOF 

sensitivity with respect to permeability perturbation within τ-intervals. In both cases, one 

single vertical well is located at the center (26, 26) of the 51x51 uniform square grid 

system and DTOFs are calculated using the C9V9E5 FMM (Figure 4.1b). From the FMM 

calculated DTOFs, the lower and upper limits of a particular τ-intervals can be set and 

used to calculate the sensitivity of DTOFs with respect to permeability within it for the 

entire reservoir model (Figure 4.9). 
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Homogeneous 

(max(τ) = 46.9hr0.5) 

Heterogeneous 

(max(τ) = 59.7hr0.5) 

(a) 

θ1 = 0.0hr0.5 

θ2 = 10.0hr0.5 

  
   

(b) 

θ1 = 10.0hr0.5 

θ2 = 20.0hr0.5 

  
   

(c) 

θ1 = 20.0hr0.5  

θ2 = 40.0hr0.5 

  
   

Figure 4.9 Analytic sensitivity of the DTOF with respect to reservoir permeability within the 

τ-interval calculated from C9V9E5 FMM for the 2D square reservoir model (51x51) with 

one production well at the reservoir center (26, 26) 
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If the lower τ-interval limit is set as zero and its upper limit is set as a positive 

value less than the maximum DTOF value of the reservoir model, the magnitude of DTOF 

sensitivity with respect to permeability keeps increasing to the outer reservoir boundary. 

Gradation of DTOF sensitivity within the τ-interval is more obvious than the remaining 

reservoir region, where the magnitudes of DTOF sensitivities are almost the same (Figure 

4.9a). If both the lower and upper limits of the τ-interval are set as positive values that are 

less than the maximum reservoir DTOF value (τ), DTOF sensitivities at regions within the 

lower DTOF (τ) limit become zero; only DTOF sensitivities within the τ-interval being 

perturbed and behind it are non-zero (Figure 4.9b and c). This is consistent with previous 

grid-cell based sensitivity analysis (Figure 4.6). Meanwhile, larger lower and upper DTOF 

limits of the τ-interval being perturbed lead to higher magnitudes of DTOF disturbance 

within the reservoir model (Figure 4.9c). 

From above analysis of DTOF sensitivities with respect to the reservoir 

permeability in the 2D homogeneous reservoir model, it is evident that only areas behind 

the perturbed cell have DTOF disturbance; areas in front of the perturbed cell have zero 

values of DTOF sensitivities. This is consistent with the asymptotic pressure 

approximation which utilizes the DTOF to reduce the 2D/3D reservoir model to a 

simplified 1D form. It also meets our expectation on DTOF sensitivity formulation based 

on functional derivative of the Eikonal equation, which can be readily expressed in terms 

of a discretized DTOF (τ) sequence. 

From the DTOF sensitivity calculated analytically (Eq.(4.11) and Eq.(4.18)), the 

drainage volume and well test derivative sensitivity coefficients with respect to reservoir 
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parameters within the τ-interval can also be formulated analytically using the chain rule 

(Eq. (4.19) and Eq.(4.20)). 
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(4.20) 

The real benefit of the τ-interval based sensitivity formulation is that it can generate a 

stable inversion which the grid-cell based sensitivity formulation cannot provide. This 

sensitivity formulation method will prove later to be more efficient than the grid-cell based 

scheme for calibrating reservoir model parameters, especially for 3D reservoir models 

which usually consists of a large number of grid cells. 

 

 

  

Figure 4.10 Sensitivity of the well test derivative with respect to the permeability within τ-

intervals in a 2D heterogeneous reservoir model (DOI = Depth of Investigation; LOD = Limit 

of Detectability) (reprinted with permission from Li and King, 2016) 
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Figure 4.10 demonstrates sensitivity coefficients of the well test derivative with 

respect to permeabilities within the τ-intervals as a function of time (Eq.(4.20)) within the 

2D heterogeneous reservoir model (Figure 4.3a). One single production well is located at 

the reservoir center with a constant production rate of 100 res bbl/day during a well test 

period of 24hrs. From the reservoir center to the outer boundary, 1,000 linearly distributed 

τ-intervals with equal widths are defined. Taking the average DTOF values of the 20th, 

30th, 40th, and 50th τ-intervals near the wellbore, we can estimate the times when the DOI 

and LOD pass them (Eq.(4.8) and Eq.(4.9)). The solid vertical lines represent the DOI and 

dashed lines represent the LOD. 

In Figure 4.10, it can be easily observed that the maximum magnitude of well test 

derivative sensitivity at a given location occurs approximately when the DOI passes by. 

This result is consistent with previous investigations of the sensitivity of well test data to 

radially symmetric non-uniform reservoir properties (Oliver, 1993). For a specific τ-

interval, the LOD occurs much earlier than the DOI. This indicates that a major proportion 

of well test derivative sensitivity occurs after the LOD passes a particular location in space. 

In other words, the magnitude of well test derivative sensitivity is negligibly small before 

the LOD passes by a specific “τ” distance from the well. The sensitivity occurs much 

earlier in τ-intervals closer to the well compared to τ-intervals far away. Among the four 

demonstrated τ-intervals, only the 20th τ-interval from the wellbore has sensitivities at a 

very early time of 0.1hr. The other three τ-intervals farther away from the wellbore will 

have non-zero sensitivities at a later time as the pressure front passes by. 
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From above sensitivity analysis, it is easy to define a certain number of τ-intervals 

from the wellbore to the outer boundary of the reservoir model, with a lower DTOF limit 

of zero and an upper DTOF limit equal to the maximum DTOF value calculated from the 

FMM for the entire model. In such a way, degrees of freedom of reservoir parameters to 

be updated can be efficiently reduced to the limited number of τ-intervals. It also enables 

us to extend the pressure transient analysis beyond the DOI estimated from the maximum 

well test time (Eq.(4.8)) to the maximum DTOF value of the reservoir model. In other 

words, not only reservoir permeability within the DOI will be updated, remaining grid 

cells beyond it in the reservoir model can also be calibrated since there are still some non-

zero sensitivities in that region (Figure 4.10). Reservoir parameters within the DOI are 

expected to be updated fast during history matching because of the relatively large 

magnitude of the well test derivative sensitivity with respect to permeability within it 

(Figure 4.10). 

Since the C9V9E5 FMM (Figure 4.1b) is used for DTOF calculation, it is easy to 

identify the minimum and maximum DTOF values evaluated for each grid cell. We use 

Min

ijk   and 
Max

ijk  to represent the minimum and maximum DTOF values for the grid cell 

within the 3D Cartesian coordinates, which can be evaluated at the cell center, cell vertex, 

face center as well as edge center. Then we can establish the relationship between the grid-

cell based sensitivity and the τ-interval based sensitivity. 
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Using Eq.(4.21), grid-cell based reservoir permeability values will be updated by 

projecting permeability changes within the τ-interval back to the spatial grid cells using a 

pore volume weighted scheme, which relies upon the proportion of DTOF each grid cell 

overlaps with a τ-interval. For reservoir models with anisotropic media, permeabilities in 

I, J and K directions are updated with the same magnitude. Definition of the τ-intervals 

can be completely independent of the time used for estimation of the DOI (Eq.(4.8)) and 

LOD (Eq.(4.9)). Specifically, linearly instead of logarithmically distributed τ-intervals 

with equal DTOF width are recommended to be used for inversion. Densely distributed τ-

intervals with narrow width around the wellbore will easily give rise to unstable inversion 

results that will be demonstrated in later discussions.  

 

4.2.3 Extension to the Fast Marching Method 

From the forward model set up above, it is evident that extension of the Eikonal 

equation discretization from the C5V9 scheme to the C9V9E5 scheme makes the hybrid 

drainage volume converge to the analytic solution for 2D infinite-acting radial flow 

(IARF) in homogenous media (Figure 4.2). By adding extra degrees of freedom of DTOF 

values at the edge center of the rectangular cells, the pressure front propagation can be 

better characterized by the Eikonal solution. An equivalent discretization scheme for the 

Eikonal equation is required for drainage volume and well test derivative constructions 

for 3D infinite-acting flow. Since the asymptotic pressure approximation relies upon an 

assumption that the pressure gradient is aligned with the DTOF gradient (King et al., 2016; 

Wang et al., 2017), it is important to capture the shape of the pressure front by more 
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accurate DTOF calculation. To this end, we extend the 2D C9V9E5 FMM to (Figure 4.1b) 

an equivalent 3D C27V27F11E11 FMM (Figure 4.11).  

 

 

Figure 4.11 Illustration of the 3D C27V27F11E11 discretization scheme for the Eikonal 

equation 
 

 

In the C27V27F11E11 discretization scheme for the Eikonal equation, each 

orthogonal grid is subdivided into 48 equivalent tetrahedral elements. DTOF values are 

evaluated at the cell center, cell vertex, face center as well as the edge center. In such a 

way, the DTOF values calculated in each of the three horizontal slices within the 

orthogonal grid will be identical to those calculated from the equivalent 2D C9V9E5 FMM 

if a vertical well perforates the face center from the top to the bottom. This 

C27V27F11E11 FMM forms the basis for the DTOF calculation in subsequent 3D full 

field inversion. 
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4.2.4 Integration of Pressure Transient Data 

Based on the methodology we proposed above for asymptotic expansion to the 

diffusivity equation and the hybrid drainage volume constructed from the DTOF 

calculation, high-resolution geostatistical reservoir models can be reconciled with well 

production history. The asymptotic approach in combination with the FMM provides us 

with an efficient way to integrate pressure transient data into the reservoir models. 

Sensitivity coefficients of the objective function with respect to reservoir parameters 

required for inversion can be formulated analytically in one single forward simulation. 

The DTOF and its analytic sensitivity with respect to reservoir parameters can be updated 

simultaneously within the FMM algorithm. 

In this study, the well test derivative (which is inversely proportional to the 

drainage volume formulated in terms of the DTOF and time) is treated as the objective 

function to be optimized in inversion. It is included in a penalized form of the objective 

function, which consists of three terms as follows: 

 1 2J         d S R R L R  (4.22) 

In this objective function, d  is the data residual vector which is the difference between 

observed data and calculated results; S  is the sensitivity matrix containing well 

production response due to a small disturbance in reservoir parameters; R  refers to the 

updating of reservoir parameters during inversion; L  is a second-spatial-difference 

operator which computes the spatial gradient of the model by taking differentiations 

between adjacent block values (Parker, 1994). The first term represents the data misfit that 

minimize the observed well response and calculated pressure data. The second term is 
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called a “norm” constraint, which penalizes deviations from the prior model. It helps 

preserve the geologic information that has already been incorporated into the prior model. 

The third term is the “roughness penalty” ensuring that production data are best suited to 

resolving large-scale property variations. 

The minimization of Eq.(4.22) can be realized by an iterative least-square solution 

to the augmented linear system (Vasco et al., 2000; Kulkarni et al., 2001). 
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The coefficients 1  and 2  are weights that determine the relative strengths of the prior 

model and roughness term. The inverse modeling result will be affected by these 

weighting coefficients. Reasonable weighting coefficients should be assigned to the 

regularization term that controls the prior information so that the pressure profile at the 

well can match with the observational data, even at very early times of flow. As long as 

comparable magnitudes of the prior and roughness terms are used, the penalized objective 

function can be easily minimized during data integration. This is important for achieving 

optimized inversion results in history matching reservoir models with the well test data. 

Since the augmented matrix is large and sparse, an iterative sparse-matrix solver, LSQR, 

can be used for solving this linear system in an accurate and efficient way. 

 



 

194 

 

 

4.3 Validation and Application 

On the basis of the forward model we set up and the analytic sensitivity coefficients 

formulated, history matching can be tested for reservoir models where infinite-acting flow 

occurs. In all subsequent inverse modeling cases, one single vertical well with a constant 

production rate is located at the center of the 2D/3D reservoir model during integration of 

pressure transient data. 

 

4.3.1 Synthetic Illustrative Examples 

The inversion technique is tested first on a 2D synthetic permeability field with the 

same heterogeneous permeability distribution shown in Figure 4.3a, which is used as the 

reference model to generate the “observational” well test derivative data. It has a 

maximum, minimum and average permeability values of 432.41md, 22.38md and 

86.31md, respectively. One vertical well is located at (26, 26) of the 51x51 grid system, 

with a constant production rate of 100 res bbl/day. All other reservoir parameters are listed 

in Table 4.1. Before conducting history matching of the reservoir model with the well test 

data, it is important to validate the asymptotic pressure approximation by comparing the 

FMM generated well pressure profile with a numerical reservoir simulator (ECLIPSE). 
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              (a) Without LGR around the well 

                                in ECLIPSE 

              (b) With LGR around the well 

                                  in ECLIPSE 

Figure 4.12 Validation of the well test derivative calculated within the 2D heterogeneous 

reservoir field (51x51) used as the reference model for inversion.  

 

 

In Figure 4.12, we validate the FMM generated well test derivative with the 

ECLIPSE simulation result. If no local grid refinement (LGR) around the well is applied 

within the ECLISPE simulation, an obvious non-zero slope of the well test derivative can 

be observed at very early times of the well test due to the effective wellbore radius (Figure 

4.12a). By applying LGR around the wellbore within the ECLIPSE simulation, the FMM 

generated well test derivative can match very well with the ECLIPSE result, even at very 

early times of simulation (Figure 4.12b). Thus, it is recommended to apply the LGR 

around the wellbore within the ECLIPSE simulation when it is used to validate the 

asymptotic pressure approximation before inversion. 

The good agreement between the ECLIPSE and FMM generated well pressure 

profiles (Figure 4.12b) corresponds well with previous validation of the forward model on 

the entire 2D modeling domain within 100hrs (Figure 4.4a, b and c). Because of the 

“sufficiently” smooth permeability distribution within the 2D heterogeneous reference 
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model (VDP = 0.4167), there is little local reflection being felt when the pressure front 

propagates from the wellbore into the reservoir. Moreover, both the ECLIPSE and FMM 

generated well test derivative curves keep a horizontal shape during the 100hrs well test. 

This indicates that radial flow dominates the entire inversion process, which can make the 

calibrated permeability more uniformly distributed after history matching the reservoir 

model with the well test data (Figure 4.12). 

Three sets of permeability fields are used to test the integration of well test data 

into the reservoir model and calibrate the grid-cell permeabilities using the FMM. The 

reference model, which is heterogeneous (Figure 4.3a), is the same for all three sets of 

inversion. In the first and second sets, the prior models are homogeneous with a low 

permeability value of 20md and a high permeability value of 200md, respectively. In the 

third set, the prior model is heterogeneous and has an average permeability value of 

36.31md. The homogeneous and heterogeneous prior models are treated as the a priori 

information, based on which reservoir permeabilities are calibrated. The “observational” 

well test derivative data are generated from the heterogeneous reference model using 

ECLIPSE (Figure 4.12b).   
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           (a) Well Test Derivative            (b) Objective Function 

Figure 4.13 Integration of pressure transient data into the 2D homogeneous model (KX = 

20md) during a constant flow rate well test with a heterogeneous reference model using grid-

cell based sensitivity coefficients (β1 = 5 and β2 = 15) (reprinted with permission from Li and 

King, 2016) 

 

 

 

   

     (a) Reference KX      (b) Prior KX  (c) Calibrated KX 

    

       (d) Calibrated KX − Prior KX (e) Calibrated KX − Reference KX 

Figure 4.14 Calibration of permeability values within the 2D reservoir model during a 

constant flow rate well test with a homogeneous prior model (KX = 20md) and a 

heterogeneous reference model using grid-cell based sensitivity coefficients (reprinted with 

permission from Li and King, 2016) 
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           (a) Well Test Derivative            (b) Objective Function 

Figure 4.15 Integration of pressure transient data into the 2D heterogeneous model (average 

KX = 36.31md) during a constant flow rate well test with a heterogeneous reference model 

using grid-cell based sensitivity coefficients (β1 = 5 and β2 = 15) (reprinted with permission 

from Li and King, 2016) 

 

 

 

   

     (a) Reference KX      (b) Prior KX  (c) Calibrated KX 

    

       (d) Calibrated KX − Prior KX (e) Calibrated KX − Reference KX 

Figure 4.16 Calibration of permeability values within the 2D reservoir model during a 

constant flow rate well test with a heterogeneous prior model (average KX = 36.31md) and 

a heterogeneous reference model using grid-cell based sensitivity coefficients (reprinted with 

permission from Li and King, 2016) 
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As demonstrated from Figure 4.13 to Figure 4.16, we first test the data integration 

procedure within the first and third sets of permeability fields using the grid-cell based 

sensitivity coefficients. The degrees of freedom of reservoir permeabilities to be calibrated 

in both cases are 2601. After a limited sets of iterations, the penalized objective function 

decreases and converges to an almost constant value (Figure 4.13b and Figure 4.15b). 

The well test derivatives obtained from inversion match well with the 

“observational” data generated from the reference permeability field in both cases, even 

at the early times of simulation (Figure 4.13a and Figure 4.15a). However, this good 

agreement between the well test derivative profile after inversion and the “observational” 

data cannot represent a “good” adjustment of the permeability values in the near-well 

region to the static prior geologic model (Figure 4.14c and Figure 4.16c). 

Regularization coefficients are assigned to the penalized objective function 

(Eq.(4.22) and Eq.(4.23)) to investigate the impact of the prior information and roughness 

upon history matching results. Though a sufficiently high value of coefficient (β2 = 15 in 

both cases) has been assigned to the roughness term of the penalized objective function, 

an obvious “spike” can still be observed in the calibrated permeability (Figure 4.14c and 

Figure 4.16c). This results mainly from the directional preference of the sensitivity 

coefficients evaluated on the grid-cell basis (Figure 4.7) using FMM calculated DTOFs, 

which leads to significantly higher magnitudes of permeability updates in certain 

directions than others. Since only one production well is employed to record the pressure 

transient data, an alternative method of calculating the analytic sensitivity coefficients is 
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required so that the preference of updating reservoir parameters in certain directions can 

be avoided and more stable inversion results can be obtained. 

From Figure 4.17 to Figure 4.26, we try alternatively to calibrate the reservoir 

permeability using the τ-interval based sensitivity formulation in view of the inherent 

“drawback” in grid-cell based sensitivity calculation. Similar to the transient flow 

simulation by solving the DTOF-based one-dimensional diffusivity equation discussed in 

Section 3, the τ-intervals defined for inversion are independent of the grid-cell DTOF 

values calculated from the FMM, except for the upper and lower limits. 

We first test the new inversion scheme on the second set of permeability fields 

(with a homogeneous prior permeability of 200md). A total number of 20 τ-intervals are 

used for inversion, which has a lower limit of zero and an upper limit equal to the 

maximum reservoir DTOF value calculated from the FMM. We compare the inversion 

results based on two ways of defining the 20 τ-intervals, which are linearly and 

logarithmically distributed, respectively. In both approaches, the upper limit of the first τ-

interval is fixed at 0  evaluated at the well cell (Figure 3.10). The purpose of fixing the 

width of the first τ-interval is to avoid the unstable permeability calibration near the 

wellbore when the τ-intervals are logarithmically distributed. 

Since the prior permeability value is significantly higher than the average 

permeability value within the reference model (86.31md), a higher regularization 

coefficient is assigned to the roughness terms within the penalized objective function (β1 

= 10; β2 = 350) so that the well test derivative profile after inversion can match that 

generated from the reference model. 
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           (a) Well Test Derivative            (b) Objective Function 

Figure 4.17 Integration of pressure transient data into the 2D homogeneous model (KX = 

200md) during a constant flow rate well test with a heterogeneous reference model using τ-

interval based sensitivity coefficients (β1 = 10 and β2 = 350; linearly distributed τ-intervals; 

NTau = 20) (reprinted with permission from Li and King, 2016) 

 

 

 

   

     (a) Reference KX      (b) Prior KX  (c) Calibrated KX 

  

       (d) Calibrated KX − Prior KX (e) Calibrated KX − Reference KX 

Figure 4.18 Calibration of permeability values within the 2D reservoir model during a 

constant flow rate well test with a homogeneous prior model (KX = 200md) and a 

heterogeneous reference model using τ-interval based sensitivity coefficients (linearly 

distributed τ-intervals; NTau = 20) (reprinted with permission from Li and King, 2016) 
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           (a) Well Test Derivative            (b) Objective Function 

Figure 4.19 Integration of pressure transient data into the 2D homogeneous model (KX = 

200md) during a constant flow rate well test with a heterogeneous reference model using τ-

interval based sensitivity coefficients (β1 = 10 and β2 = 350; logarithmically distributed τ-

intervals; NTau = 20) (reprinted with permission from Li and King, 2016) 

 

 

 

   

     (a) Reference KX      (b) Prior KX  (c) Calibrated KX 

  

       (d) Calibrated KX − Prior KX (e) Calibrated KX − Reference KX 

Figure 4.20 Calibration of permeability values within the 2D reservoir model during a 

constant flow rate well test with a homogeneous prior model (KX = 200md) and a 

heterogeneous reference model using τ-interval based sensitivity coefficients 

(logarithmically distributed τ-intervals; NTau = 20) (reprinted with permission from Li and 

King, 2016) 
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In Figure 4.17 and Figure 4.18, we can see that the linearly distributed τ-intervals 

used for sensitivity calculation leads to a good history matching of the reservoir models 

with pressure transient data. The well test derivative after inversion matches well with the 

ECLIPSE generated “observational” data from the reference model (Figure 4.17a). The 

penalized objective function decreases very fast to a constant value after a limited sets of 

iterations (Figure 4.17b). The calibrated permeability is radially symmetric to the well 

located at the reservoir center (Figure 4.18c), with major modifications of the permeability 

values within the near-well region (Figure 4.18d). No sensitivity preference is observed 

from the calibrated permeability field, which indicates that the linearly defined τ-intervals 

from the wellbore to the reservoir boundary can help generate stable inversions.  

However, this is not the case for the inversion that relies on logarithmically 

distributed τ-intervals to calculate the sensitivity coefficients (Figure 4.19 and Figure 

4.20). Assigning the same regularization coefficients to the penalized objective function, 

we can observe a calibrated permeability field (Figure 4.20c) that is closer to a “bulk 

average” change from the homogeneous prior model (Figure 4.20d). The gradation of the 

calibrated permeability from the wellbore to the reservoir boundary is less similar to the 

pressure front propagation. More importantly, all three terms of the penalized objective 

functions are not converging to constant values and even begin to increase again after 

several sets of iterations (Figure 4.19b). Although the calibrated permeability can still 

generate a well test derivative matching well with the “observational” data (Figure 4.19a), 

the logarithmically defined τ-intervals proves less capable to generate stable inversion 

results compared with the linearly defined τ-intervals. 
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           (a) Well Test Derivative            (b) Objective Function 

Figure 4.21 Integration of pressure transient data into the 2D homogeneous model (KX = 

20md) during a constant flow rate well test with a heterogeneous reference model using τ-

interval based sensitivity coefficients (β1 = 5 and β2 = 10; linearly distributed τ-intervals; 

NTau = 10) (reprinted with permission from Li and King, 2016) 

 

 

 

   

     (a) Reference KX      (b) Prior KX  (c) Calibrated KX 

  

       (d) Calibrated KX − Prior KX (e) Calibrated KX − Reference KX 

Figure 4.22 Calibration of permeability values within the 2D reservoir model during a 

constant flow rate well test with a homogeneous prior model (KX = 20md) and a 

heterogeneous reference model using τ-interval based sensitivity coefficients (linearly 

distributed τ-intervals; NTau = 10) (reprinted with permission from Li and King, 2016) 
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           (a) Well Test Derivative            (b) Objective Function 

Figure 4.23 Integration of pressure transient data into the 2D homogeneous model (KX = 

200md) during a constant flow rate well test with a heterogeneous reference model using τ-

interval based sensitivity coefficients (β1 = 10 and β2 = 40; NTau = 10; linearly distributed τ-

intervals; NTau = 10) (reprinted with permission from Li and King, 2016) 

 

 

  

   

     (a) Reference KX      (b) Prior KX   (c) Calibrated KX 

  

       (d) Calibrated KX − Prior KX (e) Calibrated KX − Reference KX 

Figure 4.24 Calibration of permeability values within the 2D reservoir model during a 

constant flow rate well test with a homogeneous prior model (KX = 200md) and a 

heterogeneous reference model using τ-interval based sensitivity coefficients (linearly 

distributed τ-intervals; NTau = 10) (reprinted with permission from Li and King, 2016)  
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           (a) Well Test Derivative            (b) Objective Function 

Figure 4.25 Integration of pressure transient data into the 2D heterogeneous model (average 

KX = 36.31md) during a constant flow rate well test with a heterogeneous reference model 

using τ-interval based sensitivity coefficients (β1 = 5 and β2 = 10; linearly distributed τ-

intervals; NTau = 10) (reprinted with permission from Li and King, 2016) 

 

 

 

   

     (a) Reference KX      (b) Prior KX   (c) Calibrated KX 

  

      (d) Calibrated KX − Prior KX (e) Calibrated KX − Reference KX 

Figure 4.26 Calibration of permeability values within the 2D reservoir model during a 

constant flow rate well test with a heterogeneous prior model (average KX = 36.31md) and 

a heterogeneous reference model using τ-interval based sensitivity coefficients (linearly 

distributed τ-intervals; NTau = 10) (reprinted with permission from Li and King, 2016) 
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After above analysis, we determine to use linearly distributed τ-intervals to 

calculate the well test derivative sensitivity coefficients and perform history matching of 

the 2D reservoir models with pressure transient data (Figure 4.21 to Figure 4.26). A total 

number of 10 linearly distributed τ-intervals with equal widths are defined from the 

wellbore at the reservoir center to the reservoir outer boundary. The lower and upper limits 

of the τ-intervals are still defined as zero at the wellbore and the maximum reservoir DTOF 

value, respectively. The upper limit of the first τ-interval is not fixed anymore and can be 

defined beyond the well cell. Since the number of τ-intervals to be used to adjust reservoir 

parameters during pressure transient analysis has decreased from 20 to 10, we try to assign 

less weights to the regularization terms when the penalized objective function is iteratively 

minimized during inversion (Figure 4.21, Figure 4.23 and Figure 4.25). 

From the homogeneous prior models, we can get an inversion result that has a 

permeability radially symmetric to the vertical well and is distributed as a function of 

distance “DTOF (τ)” to the center of the reservoir domain (Figure 4.22 and Figure 4.24). 

Inversion using the heterogeneous permeability field as the prior model generates a 

calibrated heterogeneous permeability that keeps the main shape of permeability 

distribution in the a priori information, but with values closer to the reference model. 

(Figure 4.26). Significantly higher magnitudes of permeability changes from the prior 

model can be observed approximately at the DOI than other regions during the 100hrs 

well test, which is especially obvious in the inversion with the homogeneous prior 

permeability with a low value of 20md (Figure 4.22d). This can be explained by the 
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maximum magnitudes of sensitivity coefficients of the well test derivative to permeability 

values within a specific τ-interval when the DOI passes by (Figure 4.10). 

From Figure 4.22, Figure 4.24, and Figure 4.26, we can find that integration of 

pressure transient data into 2D reservoir models generates a calibrated permeability that 

is closer to the reference model in the near-well region than other regions of the reservoir 

model. This is mainly because that the well pressure is much more sensitive to reservoir 

properties near the production well within the depth of investigation (DOI) than regions 

far away. Reservoir permeability values beyond the DOI to the outer boundary can also 

be updated during history matching because of the small but still non-zero well test 

derivative sensitivities beyond the DOI (Figure 4.10). These results are consistent with 

previous studies in the estimation of reservoir properties using transient pressure data 

(Oliver, 1990, 1992). 

In all the three cases above, the initial pressure drop profiles at the well (well test 

derivatives) are distinctively higher or lower than the “observational” data (Figure 4.21, 

Figure 4.23, and Figure 4.25). This indicates that the reservoir permeability can still be 

calibrated using the well test data even when the prior geologic model provided for 

inversion is totally wrong (Figure 4.22b and Figure 4.24b). Using a heterogeneous prior 

model, the calibrated reservoir permeability becomes more similar to the reference model, 

especially in the near-well region (Figure 4.26). 

By comparison, it is evident that integration of the single-well pressure transient 

data into reservoir models using the τ-interval based analytic sensitivity coefficients can 

significantly improve the stability of the inversion result because the permeability within 
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the τ-intervals are updated with the same magnitude when the objective function is 

minimized (Figure 4.21 to Figure 4.26). In contrast, the grid-cell based analytic sensitivity 

calculation by means of the FMM calculated DTOFs can easily create adverse impacts 

upon the permeability calibration due to the sensitivity “preference” in certain directions 

(Figure 4.14 and Figure 4.16). In addition, inversion using τ-interval based analytic 

sensitivity calculation has more advantages over grid-cell based analytic sensitivity 

calculation in terms of the computational efficiency, especially for large-scale 3D 

reservoir models usually with millions of grid cells. Since the number of τ-intervals 

defined is independent of the number of grid cells within the geologic model, the 

computational cost can be tremendously reduced. 

 

4.3.2 Brugge Field Application 

After testing it on the 2D synthetic model, we demonstrate this inversion 

technology on the 3D Brugge full field reservoir model (Hegan, 2008). The reference 

model (FN-SS-KP-1-92 within the TNO Brugge data set) has heterogeneous permeability 

and porosity values, with an anisotropic permeability distribution that has different values 

in the x, y and z directions.  

Two sets of reservoir parameters including porosity and permeability are used as 

the prior models for inversion. In the first prior model, the porosity is the same as in the 

reference model but the permeability is homogeneous. In the second prior model (FN-SS-

KS-2-80 within the TNO Brugge data set), both the porosity and permeability are 

heterogeneous, and they are different to those of the reference model. The reference model 
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has a higher average permeability value compared with those of the two prior models. The 

porosity will not change during history matching of the 3D full field Brugge reservoir 

models with the well test data. 

Orthogonal and non-uniform grid cells are used for the entire 3D Brugge model, 

with inactive cells located at the outer boundary and no faults considered. One vertical 

well is located at the grid cell (70, 23) and perforates the entire 9 layers, with a constant 

production rate of 10,000 res bbl/day (Table 4.2). 

 

 
Table 4.2 Input parameters for the 3D Brugge full field models 

 

NX   139  DX   412.12 ft     1 cp 

NY  48  DY  405.35 ft  tc   1.0E-5 psi-1 

NZ  9  DZ  22.92 ft  oB   1 res bbl/STB 

Well (70, 23)      wq   10,000 res bbl/day 

 

 Reference Model  
 Prior Model 1 

(homogeneous) 
 

  Prior Model 2 

 (heterogeneous) 

KX   476.9 md  200.0 md  223.2    md 

KY  475.7 md  200.0 md  222.6    md 

KZ    34.2 md  20.0 md  18.3    md 

    0.18   0.18   0.18  
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Table 4.3 Dykstra-Parsons coefficients (VDP) for the 3D heterogeneous reference and prior 

permeability fields within the Brugge full field models 

 

 Heterogeneous Reference Model Heterogeneous Prior Model 

VDP (KX) 0.8673 0.8079 

VDP (KY) 0.8676 0.8087 

VDP (KZ) 0.8569 0.8208 

 

 

The reference and prior models have the same grid-cell geometry, which has an 

average cell length, cell width and cell thickness of 412.12ft, 405.35ft and 22.92ft, 

respectively. The permeability within the heterogeneous reference model has average 

values of 476.9md, 475.7md and 34.2md in the I, J, and K directions, respectively. Their 

corresponding Dykstra-Parsons coefficients (VDP) are 0.8673, 0.8676 and 0.8569, 

respectively. The permeability within the second prior model has average values of 

223.2md, 222.6md and 18.3md in the I, J, and K directions, respectively, with the 

corresponding VDP of 0.8079, 0.8076 and 0.8208, respectively. Both the reference model 

and the second prior model are highly heterogeneous (Table 4.2 and Table 4.3). 

The DTOFs to the grid nodes along the vertical well are all assigned zero values. 

With DTOF values evaluated at the cell center, cell vertex, face center as well as edge 

center of each cell within the reservoir model by solving the 3D anisotropic Eikonal 

equation (Eq.(4.2)) using the C27V27F11E11 FMM (Figure 4.11), we provide the basis 

for the 3D hybrid drainage volume construction. With more degrees of freedom of DTOF 

values evaluated at different locations of each grid cell, pressure drop in the 3D Brugge 
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reservoir model can be better represented by the DTOF contour, especially in the near-

well region. 

 

 

L1 L2 L3 

   

 L4 L5 L6 

 

   

L7 L8 L9 

   
    

Figure 4.27 DTOFs calculated from the C27V27F11E11 FMM within the reference 3D 

Brugge full field model with heterogeneous and anisotropic media (back circle represents 

the vertically perforated well) 

 

 

The DTOFs calculated from the C27V27F11E11 FMM for the heterogeneous 

reference Brugge model are shown in Figure 4.27, which have a minimum value of zero 

at the wellbore and maximum value of 88.52hr0.5 at the outer boundary. In general, DTOF 

distributions in the nine layers of the reservoir model are quite similar, which indicates 

strong vertical pressure communication between them. This is mainly because that the 

ratios of grid-cell length to grid-cell permeability in the I, J, and K directions are quite 

close in general (Table 4.2), which makes pressure front propagation in three principal 

directions of anisotropy with almost equal ease.  
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             (a) Without LGR around the well  

               in ECLISPE 

         (b) With LGR around the well 

               in ECLISPE 

Figure 4.28 Validation of the well test derivative calculated within the 3D heterogeneous and 

anisotropic Brugge full field used as the reference model for inversion 

 

 

Figure 4.28 demonstrates the well test derivatives calculated using the asymptotic 

pressure approximation and a reservoir simulator (ECLIPSE) for the 3D Brugge reference 

model. Application of LGR in the near-well grid cells can significantly improve the 

accuracy of ECLIPSE simulation in early times (Figure 4.28b) by decreasing the wellbore 

radius effect (Figure 4.28a). At the very beginning of the simulation, the well test 

derivative calculated from the asymptotic pressure approximation is in good agreement 

with that generated from ECLIPSE. As time goes by, this pressure profile agreement 

deteriorates and the discrepancy between the FMM generated well test derivative and that 

from the ECLIPSE simulation becomes larger (Figure 4.28b). 

Following the same procedure used for validating entire reservoir pressure 

calculated from the asymptotic pressure approximation with pressure generated from the 

numerical simulation before 2D inversions, we investigate the pressure drop within each 

grid cell of the 3D Brugge reference model (Figure 4.29). Reservoir pressures are recorded 
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at the simulation times of 30min, 3hrs, 24hrs and 100hrs, respectively. At each one of the 

four times, the FMM and ECLIPSE simulated reservoir pressure drops are compared, with 

an analysis focused on their correlation. 

From Figure 4.29, we can observe that the pressure drop derivative with respect to 

time within the entire 3D Brugge reference model demonstrates the same transient 

pressure behavior that can be interpreted from the diagnostic plot (Figure 4.28b). Since 

the well is located at a region with relatively high and smoothly varying permeability 

values, the FMM calculated reservoir pressure is closely correlated with the ECLIPSE 

generated reservoir pressure at an early time of simulation. This indicates that the “τ-

contour” generated from the FMM calculation can well approximate the pressure drop 

contour in the near-well region (Figure 4.29a), which can also explain the well pressure 

agreement between FMM and ECLIPSE simulations in the diagnostic plot of the well test 

at the very beginning (Figure 4.28b). At a later time, the discrepancy between pressure 

drops generated from the asymptotic pressure approximation and those from the ECLIPSE 

simulation becomes larger. Especially at the near-well region, the significantly higher time 

derivative of pressure drop generated from ECLIPSE compared with the FMM simulation 

represents strong local pressure front reflections between horizontal reservoir layers 

(Figure 4.29b, c and d). This is similar to the strong near-well reflections of the pressure 

front propagating in the 2D SPE10 model (Figure 3.44 to Figure 3.47), where multiple 

decreasing trends of the  w   function can be observed (Figure 3.21 to Figure 3.24). 
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(a) 

30min 

  
   

(b) 

3hrs 

  
   

(c) 

24hrs 

  
   

(d) 

100hrs 

  
   

Figure 4.29 Validation of the asymptotic pressure approximation with ECLIPSE simulation 

within the 3D Brugge full field heterogeneous and anisotropic reference model (139x48x9, 

Well (70, 23, 1:9)) under a constant flow rate well test (qw = 10,000 res bbl/day) 
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These results demonstrate that the validity of integrating pressure transient data 

into the 3D reservoir model based on the asymptotic pressure approximation is a function 

of time. Given that the forward modeling of the well test derivative using the FMM is not 

significantly different to that generated from ECLIPSE and no much boundary effect has 

been felt yet (Figure 4.28b), we can still calibrate the near-well reservoir permeabilities 

within the prior model from pressure transient analysis within 100hrs. The 3D Brugge 

reference model is only used to generate the “observational” data from ECLIPSE. 

 Similar to 2D inversions, we define 20 linearly distributed τ-intervals with equal 

widths from the vertical well to the outer boundary of the 3D reservoir model. The 

ECLIPSE generated pressure transient data are integrated into the prior reservoir model 

after formulating the well test derivative sensitivity coefficients with respect to reservoir 

permeabilities within the τ-intervals.  
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           (a) Well Test Derivative          (b) Objective Function 

Figure 4.30 Integration of pressure transient data into the 3D homogeneous prior model 

during a constant flow rate well test with the 3D heterogeneous Brugge full field as the 

reference model using τ-interval based sensitivity coefficients (β1 = 0.5 and β2 = 150; linearly 

distributed τ-intervals; NTau = 20) 

 

 

  

            (a) Well Test Derivative             (b) Objective Function 

Figure 4.31 Integration of pressure transient data into the 3D heterogeneous prior model 

during a constant flow rate well test with the 3D heterogeneous Brugge full field as the 

reference model using τ-interval based sensitivity coefficients (β1 = 0.5 and β2 = 200; linearly 

distributed τ-intervals; NTau = 20) 

 

 

From Figure 4.30 and Figure 4.31, we can observe the well test derivative variation 

when the penalized objective function is minimized during history matching of the 3D 
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Brugge reservoir model with the well test data. After several sets of iterations, the well 

test derivative after inversion can generally match the reference well response (Figure 

4.30a and Figure 4.31a). However, there are still some discrepancies between the FMM 

and ECLIPSE generated well test derivatives after inversion. When the pressure front 

propagates beyond the well cell, the reduced hybrid drainage volume formulated based on 

the FMM calculated DTOFs will have some adverse impact upon the well test derivative 

curve, which will be slightly higher than the ECLIPSE generated well well test derivative. 

As the well test time is longer than 3hrs, strong local reflections of the pressure front can 

be felt in the near-well region within the reference model (Figure 4.29b, c and d) due to 

the high permeability contrast. This makes the well pressure profile calculated from the 

asymptotic pressure approximation at late times less valid compared with that calculated 

at the early times of well test, when the pressure front propagates mainly within the near-

well high-permeability region (Figure 4.30a and Figure 4.31a). This explains why the data 

misfit within the penalized objective function stops decreasing after three sets of iterations 

in both cases of the 3D Brugge model inversion (Figure 4.30b and Figure 4.31b). 

From Figure 4.32 to Figure 4.37, we demonstrate the inversion results after 

integrating the pressure transient data into the 3D Brugge full field model. The updated 

model has a permeability has a major modification of the prior permeability near the 

wellbore, which is also more similar to the reference permeability around it. This is 

because major drainage volume sensitivity occurs within the near-well region. Beyond 

that region, there are still some sensitivity and reservoir properties are updated with much 

smaller magnitudes from the prior model (Figure 4.32d to Figure 4.37d).  
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In the first inversion (Figure 4.32 to Figure 4.34), an ellipse-shaped permeability 

is distributed close to the wellbore in each horizontal layer since a homogeneous and 

anisotropic prior model is used for adjusting reservoir permeabilities (Figure 4.32c, Figure 

4.33c and Figure 4.34c). This result demonstrates that the inversion methodology we 

propose can be efficiently used for the near-well permeability calibration using pressure 

transient data within general 3D heterogeneous and anisotropic reservoir models.  

The second inversion result (Figure 4.35 to Figure 4.37) shows that the calibrated 

permeability is closer to the reference heterogeneous permeability, especially within those 

high-permeability layers (Layer 6, Layer 7 and Layer 8 in Figure 4.35c, Figure 4.36c and 

Figure 4.37c, respectively) where much more permeability changes from the prior model 

can be observed (Figure 4.35d, Figure 4.36d and Figure 4.37d). The is mainly because the 

pressure front propagates faster in those high-permeability regions, which will make the 

sensitivity of the drainage volume and well test derivative to reservoir properties higher 

compared to other regions (Figure 4.7b and d). 

However, the overall calibrated permeability is still quite similar to the 

heterogeneous prior permeability (Figure 4.32 to Figure 4.37) even only a small 

coefficient is assigned to the prior term within the penalized objective function (β1 = 0.5). 

Even the prior information given is completely wrong, the calibrated permeability still 

preserve large proportions of features within the prior model (Figure 4.32, Figure 4.33 and 

Figure 4.34). This reminds us the significant role the prior static geologic model plays 

during history matching of the reservoir model using pressure transient data. 

 



 

220 

 

 

 (a) Reference KX 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 

 

         

(b) Prior KX 

         

 (c) Calibrated KX 

          

 (d) Calibrated KX − Prior KX 

          

 (e) Calibrated KX − Reference KX 

          

          

Figure 4.32 Anisotropic permeability inversion for 3D infinite-acting flow from the Brugge 

full field with a homogeneous prior permeability (PERMX inversion) using τ-interval based 

sensitivity coefficients (linearly distributed τ-intervals; NTau = 20) 
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 (a) Reference KY 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 

 

         

(b) Prior KY 

         

 (c) Calibrated KY 

          

 (d) Calibrated KY − Prior KY 

          

 (e) Calibrated KY − Reference KY 

          

          

Figure 4.33 Anisotropic permeability inversion for 3D infinite-acting flow from the Brugge 

full field with a homogeneous prior permeability (PERMY inversion) using τ-interval based 

sensitivity coefficients (linearly distributed τ-intervals; NTau = 20) 
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 (a) Reference KZ 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 

 

         

(b) Prior KZ 

         

 (c) Calibrated KZ 

          

 (d) Calibrated KZ − Prior KZ 

          

 (e) Calibrated KZ − Reference KZ 

          

          

Figure 4.34 Anisotropic permeability inversion for 3D infinite-acting flow from the Brugge 

full field with a homogeneous prior permeability (PERMZ inversion) using τ-interval based 

sensitivity coefficients (linearly distributed τ-intervals; NTau = 20) 
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 (a) Reference KX 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 

 

         

(b) Prior KX 

         

(c) Calibrated KX 

         

 (d) Calibrated KX − Prior KX 

          

 (e) Calibrated KX − Reference KX 

          

          

Figure 4.35 Anisotropic permeability inversion for 3D infinite-acting flow from the Brugge 

full field with a heterogeneous prior permeability (PERMX inversion) using τ-interval based 

sensitivity coefficients (linearly distributed τ-intervals; NTau = 20) 
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 (a) Reference KY 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 

 

         

(b) Prior KY 

         

(c) Calibrated KY 

         

 (d) Calibrated KY − Prior KY 

          

 (e) Calibrated KY − Reference KY 

          

          

Figure 4.36 Anisotropic permeability inversion for 3D infinite-acting flow from the Brugge 

full field with a heterogeneous prior permeability (PERMY inversion) using τ-interval based 

sensitivity coefficients (linearly distributed τ-intervals; NTau = 20) 
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 (a) Reference KZ 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 

 

         

(b) Prior KZ 

         

(c) Calibrated KZ 

         

 (e) Calibrated KZ − Prior KZ 

          

 (e) Calibrated KZ − Reference KZ 

          

          

Figure 4.37 Anisotropic permeability inversion for 3D infinite-acting flow from the Brugge 

full field with a heterogeneous prior permeability (PERMZ inversion) using τ-interval based 

sensitivity coefficients (linearly distributed τ-intervals; NTau = 20) 



 

226 

 

 

4.4 Discussion 

Successful application of the asymptotic pressure approximation in heterogeneous 

reservoir models relies on a “sufficiently” smooth distribution of the porous media. This 

will guarantee that the pressure gradient can be well approximated by the DTOF gradient. 

When the reservoir model heterogeneity increases, it is advisable to calculate the Dykstra-

Parsons coefficient (VDP) for the reservoir permeability first, which can provide us a 

general idea of the applicability of our methodology for pressure transient analysis.  

Calibrating reservoir permeability from well test data using the asymptotic 

pressure approximation relies upon an accurate drainage volume forward model, which is 

significantly impacted by the DTOF calculation. In this sense, discretization of the Eikonal 

equation and selection of a sufficiently accurate FMM becomes quite important. 

Inversion with respect to grid-cell parameters fails because of the directional 

“preference” of the well test derivative sensitivity with respect to grid-cell reservoir 

parameters. The grid-cell based analytic sensitivity calculation easily leads to an unstable 

inversion even when comparable magnitudes of the prior information and roughness are 

included into the penalized objective function. 

The τ-interval based analytic sensitivity calculation can significantly reduce the 

sensitivity “preference” in certain directions in 2D and 3D spaces. It proves to be more 

suited than the grid-cell based sensitivity calculation to calibrating the near-well 

permeabilities using the pressure transient data. From the wellbore to the reservoir outer 

boundary, only a limited number of τ-intervals needs to be defined. Hence, sensitivity 

calculation does not depend upon the size of the inverse problem. 
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Linearly distributed τ-intervals defined from the wellbore to the outer boundary of 

the reservoir model are recommended to be used in inversion because they can make the 

regularization of the penalized objective function easier compared with the logarithmically 

distributed τ-intervals. Using the logarithmically distributed τ-intervals to calibrate near-

well permeaiblities can easily generate unstable inversion results, especially when the 

prior information is far from accurate. Except for the lower and upper limits, definition of 

the τ-intervals can be independent of the DTOFs calculated from the FMM. 

 

4.5 Section Summary 

We developed and demonstrated a new method for integrating well test derivative 

data into 3D heterogeneous and anisotropic reservoir models reconciled with a prior static 

geologic model. It relies upon a calculation of the drainage volume in terms of the 

“diffusive time of flight” (DTOF) using the fast marching method (FMM). This method 

takes advantage of the fast simulation speed of the FMM to calculate the analytic 

sensitivity coefficient of the DTOF (τ) with respect to reservoir parameters, which can be 

included into a penalized objective function to be minimized during inversion. 

Application of the grid-cell based sensitivity calculation fails to generate stable 

inversion results. In steady, formulation of the analytic sensitivity coefficients of the well 

test derivative to reservoir parameters within the “τ-intervals” can significantly improve 

the inversion stability. Successful calculation of the τ-interval based analytic sensitivity 

coefficients can effectively help adjust permeability values within the depth of 

investigation (DOI) to a prior static geologic model. 
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The following conclusions can be drawn for this inversion study.  

1) Application of the asymptotic pressure approximation relies significantly on 

the “smoothness” of the heterogeneous reservoir porous media. Before 

inversion, it is recommended to validate its applicability by comparing the 

pressure profile generated from the asymptotic pressure approximation with a 

reservoir simulator. 

2) The well test derivative is shown to be inversely proportional to the drainage 

volume as a function of time. It is important to keep a predominantly transient-

state flow within the reservoir model when using the well test derivative as the 

objective function to conduct history matching. 

3) Analytic sensitivity coefficients of the DTOF with respect to reservoir 

parameters can be formulated from a functional derivative of the Eikonal 

equation, which can be numerically realized by tracking the “characteristic” 

direction of the local Eikonal solver using one single forward simulation of the 

FMM. 

4) Analytic sensitivity coefficients have been validated with numerical ones. At 

a given time of the constant flow rate well test, magnitudes of the sensitivity 

coefficients of the well test derivative with respect to reservoir permeabilities 

in the near-well region are larger than those far away from the well. At a given 

location within the reservoir model, the well test derivative sensitivity with 

respect to reservoir permeability is a function of time. The well test derivative 

sensitivity coefficient will reach a “peak” magnitude when the DOI passes by. 
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5) Evaluation of the sensitivity coefficients using the FMM on a grid-cell basis 

leads to unstable inversion results due to the directional “preference” of the 

drainage volume sensitivity formulated in terms of the DTOF (τ). 

6) Grid-cell based sensitivity formulation can help generate stable inversion 

results in 1D models, but fails in calibration of 2D and 3D reservoir models 

using the pressure transient data. By formulating the analytic sensitivity 

coefficients of well test data with respect to reservoir parameters within a 

limited number of τ-intervals defined, degrees of freedom of reservoir 

parameters to be calibrated in inversion can be significantly reduced and the 

computational efficiency of inverse modeling can be tremendously improved 

using the FMM.  

7) Our inverse modeling approach will adjust the reservoir model to the average 

permeability as a function of distance “DTOF (τ)” to the wellbore within the 

drainage volume. Major modifications of the prior permeability occur within 

the DOI because major drainage volume sensitivity occurs within it. Beyond 

the DOI, reservoir permeability values can also be updated but with smaller 

magnitudes. 

8) Large proportions of the geologic features within the prior model will be 

preserved during history matching of the reservoir model with pressure 

transient data, even when the prior information provided is completely wrong. 

Inverse modeling results remind us of the importance of the prior static 

geologic model. 
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5. AN ANISOTROPIC FAST MARCHING METHOD FOR RESERVOIR MODELS 

WITH COMPLEX GEOMETRIES IN FAULTED CORNER POINT GRIDS 

 

Three-dimensional reservoir models often need to deal with geologic formations 

that are not horizontal with non-uniform thickness. The grid cells used to discretize the 

reservoir models with irregular shapes usually need to have sufficient flexibility that can 

adapt to the complex geometric features. The corner point grid (CPG) has been recognized 

as efficient in representing complex geologic features for reservoir simulation using 

distorted structures with an easy numerical implementation. It provides the basis for 

characterization of fluid and pressure communications between grid cells that have a 

mutual interface with complete or partial overlapping areas.  

We propose a new algorithm for solving the Eikonal equation in general 

anisotropic and heterogeneous media using the fast marching method (FMM) in 3D 

reservoir models within the CPGs. It is an extension of the first-order local Eikonal 

solution implemented on 2D triangular meshes and 3D tetrahedral meshes. The new 

scheme relies upon an upwind finite difference approximation to the local gradient and 

ensures the causality relationship when the “diffusive time of flight” (DTOF) is updated 

within a simplex. Local Eikonal solutions in 1D, 2D, and 3D spaces are formulated in a 

general quadratic equation based on the tangent vectors within the CPG, the unknown of 

which has explicitly formulated coefficients. Solution of the quadratic equation for the 

unknown DTOFs requires an enforcement of the causality condition within the 2D 

triangular element and 3D tetrahedral element. The new Eikonal solver is included in a 
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FMM algorithm, which can be efficiently used to solve for the DTOF in reservoir models 

within the faulted CPG system. 

 

5.1 Introduction 

The fast marching method (FMM) has a wide application in seismology, where the 

solution of the Eikonal equation is used for prediction of seismic travel times and 3D 

teleseismic tomography (Rawlinson and Sambridge, 2004, 2005). Most of those grids used 

in travel time calculation and seismic tomography are orthogonal, where the media 

anisotropy can be treated without rotation of the speed (equivalently permeability or 

diffusivity in reservoir engineering) tensor matrix that defines its principal components in 

the 3D coordinate system. Thus, calculation of the arrival time or the time of flight (TOF) 

for general heterogeneous and anisotropic media using the FMM is easy to implement 

within the orthogonal grid system.  

For unstructured grid meshes where the basic elements are triangular, the local 

solver of the Eikonal equation that can be used for updating the TOF value at one particular 

node is formulated either based on Fermat’s principle or an Eulerian discretization. Both 

formulations can be used for either isotropic or anisotropic media. In isotropic media, the 

TOF gradient is aligned with the characteristic direction. In contrast, there usually exists 

a discrepancy between the TOF gradient and the characteristic direction in anisotropic 

media. In both methodologies, updating the TOF value at a specific node in 3D space 

replies upon one, two or three nodes whose TOF values are given. If the local solver is 

constructed based on Fermat’s principle, the actual travel time to the unknown is 
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calculated by a minimization algorithm. It is easy for physical interpretations but the 

computational cost is expensive, especially when the model size is large. The local solver 

based on an Eulerian discretization is proven to be equivalent to the one based on Fermat’s 

principle and is more straightforward to be implemented, especially for TOF calculation 

within anisotropic media.  

The key to successful implementation of the FMM is to maintain the causality 

relationship, which means that the solution of each node to be updated depends only upon 

the smaller adjacent values (Sethian and Vladimirsky, 2000). This requirement is more 

likely to be violated when the anisotropic Eikonal equation is being solved within 

unstructured grids. Many research efforts had been made to avoid violation of the causality 

condition. Some of these efforts focus on approximating front propagation in triangulated 

meshes that contain simplexes with obtuse angles by a splitting section method, where any 

obtuse angle will be divided into acute angles (Sethian and Vladimirsky, 2000; Qian et al., 

2007). Another commonly used technique to ensure the causality condition is the recursive 

correction, where TOF values of all neighboring nodes to a particular node being just 

accepted need to be re-computed using the newly and already accepted values (Konukoglu 

et al., 2007). 

One effective strategy for maintaining the causality condition is enforcing the 

characteristic vector to pass through a triangular or tetrahedral element, where the 3D 

Eikonal solution often reduces into a 2D or 1D Eikonal solution (Qian et al., 2007). This 

process requires an efficient algorithm to compute travel time from one source point to 

another specific point in 3D homogeneous and anisotropic media, which can be achieved 
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using an iterative algorithm (Qian and Symes, 2001; Qian et al., 2007). However, this 

might lead to increased computational efforts when causality enforcement is required to 

be implemented extensively.  

In this section, we propose a new local Eikonal solution that can be used to 

compute travel time in general anisotropic media. It is derived from the Eulerian 

discretization and much more straightforward to implement within the FMM algorithm. 

The causality enforcement can be more efficiently realized by an explicit formulation of 

a 1D or 2D Eikonal solution in 3D space, without the need to use iterative procedures. 

This new FMM is adaptive for unstructured and corner point grids, where complex 

geometric reservoir features like faults and pinch-outs can be easily represented.  

 

5.2 Methodology: Corner Point Grid 

Corner point grids (CPG) have wide applications in reservoir simulation because 

of its ready adaptability to structural variation in geologic formations and the capability to 

represent complex geologic features (Ponting, 1989). A typical 3D corner point is 

constructed by four pillars and the coordinate in the vertical direction (z-coordinate), with 

the top and base conforming to geologic strata. 
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Figure 5.1 Tri-linear interpolation in (α, β, γ) from the 8 cell vertices (Zhang et al., 2013) 

 

 

Its distorted geometry can be defined by the tri-linear isoparametric mapping from 

the reference unit space to the physical space (Figure 5.1). Given the point (X, Y, Z) within 

the physical space and its corresponding isoparametric coordinates (α, β, γ) within the 

unite space, it is convenient to specify the tangent vectors at any location within the CPG. 

The permeability tensor can be defined based on the tangent vectors and will also become 

location-dependent within the CPG.  

 

5.2.1 Anisotropy and Cell Geometry 

In anisotropic reservoir media, the Eikonal equation used for characterizing the 

pressure front propagation in the subsurface can expressed using the permeability tensor 

(Datta-Gupta et al., 2007).   

     tx x c     k   (5.1) 
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By constructing the permeability tensor as a function of location within a CPG, we can 

reformulate the anisotropic Eikonal equation (Eq.(5.1)) using the tangent vectors and the 

isoparametric coordinates within it. 

Zhang et al. (2013) represents the anistropic Eikonal equation (Eq.(5.1)) using the 

tangent vector of the CPG. Suppose that the principal directions of anisotropy for the 

reservoir media are along the tangent unit vectors /l ltt  ( 1,2,3l  ), where lt  is the norm 

of lt . In the reference space, the permeability tensor can be formulated as a diagonal 

tensor  ldiag k . By introducing a transformation matrix that consists of the unit vectors 

associated with the principal directions of anisotropy, 
1 1 2 2 3 3/ , / , /t t t   T t t t , the 

permeability tensor in the physical space can be written as ( )diag k k T T , which further 

reduces to 
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Then the Eikonal equation in the corner point grid can be expressed as 
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  (5.3) 

Here the unknown variable becomes dependent upon the isoparametric coordinate 

 , ,    in the reference space. 

The anisotropic Eikonal equation formulated in Eq.(5.3) sets up the basis for 

DTOF calculation within the CPG with complex geometries, which might even be used 

for pinch-out feature characterization. For example, if a CPG with a pinch-out feature 
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occurs in one of the three principal directions of anisotropy (I, J, or K), the magnitude of 

the tangent vector along that direction becomes zero and the norm of diffusivity tensor 

along that direction becomes infinity. This will lead to a zero value of DTOF increase 

along the direction where pinch-out occurs.  

 

5.2.2 Pressure Communication 

The pressure communication between adjacent CPGs relies upon their geometric 

features and the inter-cell transmissibility calculated. For a given DTOF value to be 

evaluated at the vertex of the CPG, it will be identical to DTOF to the vertex of the adjacent 

grid only when the inter-cell transmissibility is positive and share the same geometric 

position in space (Figure 5.2). 

 

 

 

Figure 5.2 Pressure communication based vertex DTOF evaluation for adjacent CPGs 

sharing identical geometric positions in 2D and 3D spaces and having positive inter-cell 

transmissibilities 

 



 

237 

 

 

For the DTOF evaluated at a particular vertex  ,   of a CPG located at  ,I K  

in the 2D space, the location where pressure communicates with identical DTOFs 

calculated from the adjacent grid cells can be expressed as 

 
     

     

: 1 2 , @ 1 ,

: , 1 2 @ ,1

Adjacent Cell I Cell I K

Adjacent Cell K Cell I K

  

  

  

  
  (5.4) 

Similarly, the vertex location  , ,    for pressure communication to occur with 

identical DTOF values calculated from the adjacent grid cells in the 3D space can be 

expressed as 

 

     

     

     

: 1 2 , , @ 1 , ,

: , 1 2 , @ ,1 ,

: , , 1 2 @ , ,1

Adjacent Cell I Cell I J K

Adjacent Cell J Cell I J K

Adjacent Cell K Cell I J K

   

   

   

  

  

  

  (5.5) 

By such an identification of grid cells with potential common vertex DTOF values, 

the pressure communication will be ensured to occur only across adjacent grid cells with 

positive inter-cell transmissibilities. This is particularly important for the application of 

the transmissibility multiplier between faulted CPGs. 

 

5.2.3 Grid Faulting and Non-Neighbor Connections 

One of the major advantages of applying CPGs in reservoir simulation is its 

flexibility in defining non-neighbor connection (NNC) cells, which often occurs in the 

form that multiple cells stack together and share a mutual interface with another cell along 

complex fault-juxtapositions. The mutual interface area between two cells across a fault 

should be treated as a factor in inter-cell transmissibility calculation (Ponting, 1989).  
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Meanwhile, the transmissibility multiplier determined by permeability and 

thickness of the fault zones can be used to control the flow communications between cells 

separated by a fault (Manzocchi et al., 1999). In particular, application of realistic fault 

transmissibility multipliers within faulted reservoir models built using CPGs can 

significantly reduce the potential error in transmissibility formulation between partially-

connected cells (Islam and Manzocchi, 2017). 

 

 

Figure 5.3 C9V5 Discretization of the Eikonal equation used for DTOF calculation within 

the FMM algorithm for 3D unfaulted grids 
 

 

Given the NNC requirement for fault juxtaposition, we designed a new 

discretization scheme for the anisotropic Eikonal equation in corner point geometry 

models. The DTOF values are evaluated at the cell center and vertex of each CPG, which 

is name as a C9V5 discretization (Figure 5.3). Under such a discretization, each node at 

the cell center is connected with eight nodes at the cell vertices. Without faulted grid 

features, each node at the cell vertex is connected with fourteen nodes at cell centers and 

vertices. The basic element (simplex) used for constructing the local Eikonal solver is 
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triangular or tetrahedral in shape. Each unknown DTOF value is determined from the 

minimum local Eikonal solutions among neighboring elements. 

The key to successful implementation of the C9V5 discretization scheme for the 

Eikonal equation is construction of a “next-node” variable used to store neighboring nodes 

for each node within the CPG reservoir model. The “next-node” variable is especially 

important for those nodes on the interface of partially juxtaposed cells across a fault. In 

the vertical direction (Z-direction), a node on the fault interface may not only have 

connections with the nodes within the cell it belongs to, it can also have immediate 

connections with nodes from adjacent grid cells along the fault interface (Figure 5.4).  

 

 

 
 

NNC in 2D coordinate NNC in 3D coordinate 

Figure 5.4 Illustration of the nearest Z-node from the adjacent cell where pressure 

connection exists for faulted grids with NNC 

 

 

DTOFs calculated for cells with neighbor and non-neighbor connections can 

represent the pressure communication across faulted grids. When the transmissibility 

multiplier is applied, the diffusivity can then be multiplied by an appropriate factor to 



 

240 

 

 

control the speed of pressure front propagation, which will have a significant impact on 

DTOF distributions across the faulted grids. 

 

5.2.4 Extension to the Fast Marching Method 

The corner point grid (CPG) has the flexibility in shape to conform to irregular 

geologic formations by a distorted cellular structure. Given the non-orthogonal shape of 

CPGs designed for reservoir models, we devised a new local Eikonal solver from an 

Eulerian discretization (Yang et al., 2017) that is easy for implementation within the FMM 

algorithm. This new local Eikonal solver is designed for the 2D triangular element and 3D 

tetrahedral element, so that the causality relationship can be easily maintained by 

enforcing the characteristic vector to fall within the simplex investigated (Figure 5.5). 

 

 

 

            (a) 2D triangular element            (b) 3D tetrahedral element 

Figure 5.5 Local Eulerian causal solution to the Eikonal equation designed for the 

anisotropic FMM 
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Suppose we are computing the Eikonal solution to a node with an unknown DTOF 

value ( 0 ) based on two known DTOF values ( 1  and 2 ) in a 2D triangular element 

(Figure 5.5a) or based on three known DTOF values ( 1 , 2  and 3 )  in a 3D tetrahedral 

element (Figure 5.5b). The DTOF gradient within the element is assumed to be constant 

and can be related with the DTOF difference between two nodes with known and unknown 

DTOF values as 

 0i id        (5.6) 

where i  is referenced to the displacement vector id  measured from the location of the 

unknown 0 , and 1,..., 3i N  . The Eikonal characteristic vector can be defined as 

 
1

N

D j j

j

a d


     (5.7) 

where 
0

D

tc


k
  and 

0k  is the permeability tensor evaluated at the node where the DTOF 

is unknown. Thus, we can derive the DTOF gradient as 

 
1

1

N

j D j

j

a d 



       (5.8) 

The characteristic direction is constrained by the data support. If the solutions are causal 

then the weights satisfy 0ja  . The data and the unknown 0  provide linear equations for 

the weights   , 1,...,ia i N  as: 

    1

0

1

N

i i j i D j

j

d a d d   



          (5.9) 
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Based on above derivations, solution of the Eikonal equation can be represented by a 

quadratic equation for the unknown variable 0 . 

    0

1 1

1
N N

D i j i D j i i

ij i

a a d d a   
 

             (5.10) 

To efficiently solve the quadratic equation, some implementation procedures are 

summarized below. 

 If the unknown variable is supported by only one data point, a 1D local Eikonal 

solver can be derived from the elliptical solution (N = 1) for the anisotropic 

media   , , ,, ,D x D y D z   . Since the elliptical solution is known to be a function 

of  r , where 

 

2 2 2
2

, , ,D x D y D z

x y z
r

  
     (5.11) 

The DTOF gradient can be written as 

 
, , ,

1
, ,

D x D y D z

x y z

r


  

 
    

 

  (5.12) 

The Eikonal equation becomes 

 

2

D

d

dr


 

 
     

 
   (5.13) 

And  

  
1 1

, ,D

d d
x y z d

r dr r dr

 
     (5.14) 

In such a way, the characteristic direction is aligned with the data support, d . 
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 If the unknown variable is supported by two or three data points (Figure 5.5), 

then a 2D or 3D local Eikonal solvers need to be formulated. Let’s define 

1id   if data exists for point i ; otherwise, 0id  . Then Eq.(5.9) can be re-

expressed in terms of a matrix form. 
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 

1

0

1

3
1

1

3

1

, 1
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      

   

  









   (5.15) 

In combination, for , 1,..., 3i j N   

       1

0

1 1

1
N N

id i j id ij id jd i D j ij j

j j

a d d D a       

 

          (5.16) 

    11ij id ij id jd i D jD d d           (5.17) 

Here 1ij   if i j ; otherwise 0ij  . If we define 1M D , the weights for 

causality satisfaction can be expressed as 

      0 0

1 1

N N

i ij jd j id ij jd j

j j

a M M      
 

         (5.18) 

Specifically, 0ia   if no data exist for point i . Substituting Eq.(5.18) into 

Eq.(5.10), the Eikonal equation can be obtained: 

      0 0 0

1 1

1
N N

D i i id ij jd i j

i ij

a M         
 

            (5.19) 

or 
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      2

0 0

1 1 1

2 1 0
N N N

id ij jd id ij jd j id ij jd i j

ij ij ij

M M M          
  

 
     

 
     (5.20) 

The coefficients for unknowns in Eq.(5.20) are easy to construct, leading to a local 

Eikonal solution that is much easier to implement within the FMM than that implemented 

by Qian et al. (2007) within the fast sweeping method (FSM). The latter often requires an 

iterative procedure to compute the wave or front propagation speed from a given direction 

when the unknown DTOF needs to be determined from two unknown points in the 3D 

space (Qian and Symes, 2001; Qian et al., 2007). 

Since the diffusivity (or permeability) tensor in the CPGs depends upon the tangent 

vectors and varies within the cell, it is required that its value to be evaluated at the 

unknown points: 

 0
,0 2 2

1 10 0

1 1N N

D

t t

k
t t t t

c c t   

   
k

   (5.21) 

When the characteristic vector falls within the 2D triangular element or the 3D tetrahedral 

element, the causality relationship is satisfied. In contrast, the causality relationship will 

be violated if the characteristic vector falls beyond the element. In this case, causality can 

be enforced by reducing the problem from 3N   to 2N   or from 2N   to 1N   

(discarding one or more data points). It is always causal when 1N  . If the causality is 

still not satisfied within the triangular elements, the DTOF value to the unknown point can 

be updated by solving the Eikonal equation using the 1D elliptical solution. This causality 

enforcement has been used when DTOF values are calculated within the unstructured 

triangular meshes using the FSM (Qian et al., 2007). 
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5.3 Validation and Application 

After formulating the causal Eulerian Eikonal solution, we applied it within the 

FMM algorithm and tested it with 3D reservoir models with heterogeneous and anisotropic 

porous media. We first applied this C9V5 FMM within a simple 3D synthetic model with 

heterogeneous but isotropic permeability and a uniform porosity distribution. There are 

pinch-out CPG geometries in the synthetic model and DTOFs evaluated at cell vertices 

are analyzed in detail. Then we test the C9V5 FMM on the Brugge benchmark model that 

has a highly heterogeneous and anisotropic permeability distribution as well as a 

heterogeneous porosity distribution. One main feature of the Brugge field is its faulted 

CPGs. We will show the DTOF distribution calculated from the anisotropic FMM across 

this fault and the potential impacts of the transmissibility multiplier across faulted grids 

have on pressure communication between them. 

 

5.3.1 DTOF in Pinch-out Grid Geometry 

A simple 3D reservoir model is built within a 5x5x5 CPG system, within which 

the central 3x3x3 grids have zero pore volume and are treated as inactive cells. This 

reservoir grid configuration leads to pinch-out geometry within grids on the outer 

boundary of the reservoir model. The horizontal permeabilities in the X (I) and Y (J) 

directions are identical and homogeneous, which have a uniform value of 100md. The 

permeability values in the Z (K) direction are 100md in the top and bottom layers, and are 

significantly lower within the second, third and fourth layers, which are only 0.1md. The 

reservoir porosity, viscosity and total compressibility are assumed to be 0.2, 1cp, and 1.0E-
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5 psi-1, respectively. All the 3D CPGs have an equal length and width of 50ft, and with a 

uniform height of 10ft in cells with no pinch-out geometries (Figure 5.6).  

 

 

 

 

 

 

 PERMX  PERMZ 

Figure 5.6 Anisotropic permeability distribution within the synthetic 3D reservoir model 

with pinch-out grid geometries 
 

 

 

 
  

Figure 5.7 DTOFs calculated from the C9V5 FMM for the synthetic 3D reservoir model with 

pinch-out grid geometries and a fully-perforated vertical well (I =3; J = 3; K = 1:5) 

 

 

Assume that a vertical well is placed the grid cell (3, 3) and perforates the 5 

reservoir layers. Assigning the DTOFs at the grid-cell center of the top and bottom well 



 

247 

 

 

cell as zero, DTOFs at cell centers and vertices can be calculated using the C9V5 FMM. 

If we take a sectional view of a slice close to the well (between J = 2 and J = 3), we can 

observe the DTOF values at those pinch-out grid cells (Figure 5.7). 

 

 

 
  

Figure 5.8 DTOFs calculated from the C9V5 FMM for the synthetic 3D reservoir model with 

pinch-out grid geometries and a partially-perforated vertical well (I = 3; J = 3; K = 1) 

 

 

If the vertical well only perforates the first layer of the 3D reservoir model at the 

Cell (3, 3, 1), the DTOF values calculated from the C9V5 FMM at the bottom layer of the 

reservoir will increase. The DTOF value evaluated at the vertex where pinch-outs occur 

stays the same (Figure 5.8). 

In both the model with a full-perforated well and the model with a partially-

perforated well, the DTOF values are largest at those cells located at the reservoir outer 

boundary with peach-out features. The permeability in the Z (or K) direction within those 

cells is quite small (0.1md), which indicates the pressure front will arrive late at those cells 

mainly along the vertical direction (Figure 5.7 and Figure 5.8).   
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5.3.2 DTOF in Faulted Grid Geometry 

The C9V5 FMM is tested on the Brugge full field model to solve for DTOFs within 

the CPGs and its distribution across the faulted grid cells with non-neighbor connections 

(NNC). 

The Brugge model has a permeability field that is heterogeneous and anisotropic. 

The porosity within it is heterogeneous. The fluid viscosity and total compressibility of 

the reservoir are assumed to be 1cp and 1.0E-5 psi-1, respectively. The reservoir model has 

a 3D dimension of 139x48x9 with a total number of 60048 cells, in which 44404 are active 

and 15644 are inactive with zero values of permeability and porosity. All active cells are 

located at the central reservoir region. Most of the inactive cells are located at outer 

boundary of the reservoir model. There is a major fault geometry within the active cell 

region, which is defined by (I = 64:95, J = 13:13, K = 1:9) and (I = 64:96, J = 14:14, K = 

1:9), respectively. Grid cells with pinch-out features are all inactive and will have no 

impact on the DTOF calculation. In our study, a vertical well is placed at the (70, 23) 

location and perforates the entire nine reservoir layers (Figure 5.9). 
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 PERMX  PERMY 

    

 PERMZ  PORO 

Figure 5.9 Permeability and porosity distributions within the Brugge full field model 

 

 

 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 

 Block-centered FMM       

 

         

C9V5 CPG FMM       

         
          

Figure 5.10 DTOFs generated from the Brugge full field model using the 3D block-centered 

FMM and the 3D C9V5 CPG FMM 
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Before simulation, we assign zero DTOF values to the centers of the nine cells 

where the vertical well perforates. In Section 2, we have calculated the DTOFs from the 

same Brugge model using a 3D block-centered FMM, which have a smooth variation 

across the fault region (Figure 5.10). By comparison, we can find that the DTOFs 

calculated from the 3D C9V5 CPG FMM are distinctively smaller than those generated 

from the 3D block-centered FMM. This indicates that accuracy of the Eikonal solution 

can be improved by adding more degrees of freedom of DTOFs to cell vertices. More 

importantly, abrupt changes of DTOF values across the fault structure can be clearly 

observed (Figure 5.10). This result demonstrates that the C9V5 CPG FMM can better 

capture pressure front propagation across faulted grids with NNCs. 

 

 

 

    
MULTFLT = 0.1 MULTFLT = 1 

  
MULTFLT = 0.001 MULTFLT = 0.01 

   

Figure 5.11 Illustration of DTOF distributions across faulted grids with NNCs influenced by 

the transmissibility multiplier implemented within the C9V5 CPG FMM within the Brugge 

full field model 
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Based on above analysis, we extended the C9V5 CPG FMM by including the 

transmissibility multiplier across the faulted grids. We take a slice (I = 70) across the fault 

in the Brugge model and compare the DTOF distribution on it when multiple values of 

transmissibility multipliers are implemented on the faulted grids with NNCs. The 

transmissibility multiplier is simply treated as a factor and multiplied by the permeability 

values within CPGs separated by the fault geometry (Figure 5.11).  

From Figure 5.11, it can be observed that DTOF changes more abruptly across the 

fault when smaller values of transmissibility multiplier are assigned to the faulted grids. 

While the upstream DTOF values beyond the fault becomes larger as a result of stronger 

pressure barrier, the overall changes of DTOF in the downstream are not significant 

because of a closer distance to the wellbore. This result demonstrates that the C9V5 

anisotropic FMM we propose for DTOF calculation can effectively capture pressure front 

propagation across fault features within 3D CPG reservoir models. 

 

5.4 Discussion 

Accurate calculation of the DTOF from the Eikonal equation in heterogeneous and 

anisotropic media is vital for characterization of pressure front propagation in the reservoir 

model. Discretization analysis of the Eikonal equation in previous sections has proven the 

importance of DTOF evaluation at both the cell center and vertex of orthogonal grids. It 

provides useful insights into more complex situations where faulted corner point grids 

(CPG) with distorted shapes are used for reservoir model discretization.  
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The Eikonal equation expressed in terms of the unknown DTOF variable and a 

symmetric permeability tensor forms the basis of DTOF calculation within general 

heterogeneous and anisotropic media. The permeability tensor expressed in terms of the 

tangent vector within a CPG makes it possible to evaluate the DTOF value at any location 

within the cell. Complex geometric features like faults and pinch-outs can be characterized 

by DTOFs calculated by solving the symmetric tensor Eikonal equation within the CPGs.  

The transmissibility multiplier can be included into the CPG FMM to control the 

DTOF distribution separated by the fault, which can represent the ease of pressure 

communication between faulted grid cells. Abrupt DTOF changes between faulted CPGs 

with non-neighbor connections (NNC) indicate the pressure communication barrier 

between them. 

The C9V5 FMM designed for general 3D heterogeneous and anisotropic reservoir 

models proves to be a fast and efficient numerical method for DTOF calculation from 

solving the anisotropic Eikonal equation, which is expressed in terms of reservoir 

properties and the tangent vectors within the CPGs. It provides us a convenient tool to 

characterize pressure communication between faulted CPGs with complex geometries 

using the DTOFs based on the asymptotic pressure approximation. 

 

5.5 Section Summary 

In this section, we presented a new local Eikonal solver based on Eulerian 

discretization and implemented it into the FMM for calculating the “diffusive time of 

flight” (DTOF) in reservoir models with anisotropic and heterogeneous media. It is readily 
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adaptable to unstructured triangulated meshes and has been successfully applied within 

faulted corner point grids (CPG). 

After formulation of the causal local Eikonal solver and application to 3D reservoir 

models within the CPG system, following conclusions can be drawn. 

1) The novel formulation of the local Eikonal solver can be successfully 

implemented on 2D triangular elements and 3D tetrahedral elements. 

2) If the characteristic vector falls inside the elements in which the unknown point 

resides, the causality relationship is satisfied. If the causality is violated, it can 

be enforced by reducing the 3D local solver to the 2D or 1D local solver. 

3) By solving a quadratic equation which has explicit coefficients of unknown 

variables, the new local Eikonal solution can be conveniently used to calculate 

the unknown DTOF based on three or two known DTOF values. 

4) If the unknown DTOF is supported by only one data point, the elliptical 

solution can be used. This ensures that the DTOF is updated along the 

displacement vector from the unknown point to the known data point, which is 

aligned with the characteristic direction. 

5) Solving for the DTOF using the 2D and 1D local Eikonal solvers within 

anisotropic media in the 3D space using the Eikonal solution we propose can 

be much more straightforward, without the need of an iterative algorithm to 

compute the front propagation speed from a given direction. 
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6) Based on the local causal Eulerian Eikonal solver we designed, we can 

calculate the DTOFs that can represent fault and pinch-out grid features in the 

CPG reservoir models with general heterogeneous and anisotropic media. 
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6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

6.1 Dissertation Contributions and Conclusions 

In this dissertation, we presented the application of the fast marching method 

(FMM) to design a forward model as well as an efficient inversion scheme for pressure 

transient analysis. Detailed investigation of the FMM algorithm itself is the key to success 

of this research. 

First, we investigate the asymptotic pressure approximation to the diffusivity 

equation based on the “diffusive time of flight” (DTOF) that can be calculated from 

solving the Eikonal equation using the FMM. A constant flow rate well test model is 

analyzed and related with drainage volume characterization. Discretization of both the 

Eikonal equation and the drainage volume is investigated and validated with the analytic 

solution. Pressure transient analysis is also related with the DTOF-based transient flow 

simulation. A hybrid drainage volume is constructed from the FMM calculated DTOFs, 

which relies significantly upon the analytic solution within the well cell to ensure an 

accurate characterization of the pressure transient behavior at very early times of flow 

simulation. The hybrid drainage volume construction leads to a stable DTOF derivative of 

the cumulative pore volume, which contributes to a significantly improved numerical 

solution to the DTOF-based one-dimensional diffusivity equation. 

Second, we developed an inverse modeling method for integrating pressure 

transient data into reservoir models using the DTOF-based forward model. The inversion 

is realized by formulating the analytic sensitivity coefficients of the well test derivative 
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data with respect to reservoir parameters and by minimization of the objective function 

using a LSQR algorithm. The analytic sensitivity coefficients of the DTOF (τ) to reservoir 

permeability values can be obtained simultaneously with the DTOFs calculated from the 

FMM using one single forward simulation. Compared with the grid-cell based analytic 

sensitivity coefficient calculation, the “τ-interval” based sensitivity formulation can not 

only further improve the computational efficiency by decreasing the degrees of freedom 

of reservoir parameters to be calibrated, it also proves to help generate more stable 

inversion results. 

Last, we presented a new formulation of the local Eikonal solution and extended 

the FMM to faulted corner point grids (CPG). The local solution to the Eikonal equation 

is derived from an Eulerian discretization that is consistent with Fermat’s Principle. 

Complex geometric features are taken into account when the corner point grid FMM is 

designed. 

The main findings in this research study are summarized below. 

1) The novel local Eikonal solution formulated from an Eulerian discretization 

relies upon data support from nodal DTOF values already known. It can be 

used to solve for the DTOF of a specific point based upon one, two, or three 

data points with known DTOF values. Its implementation is straightforward 

and can be realized by solving a quadratic equation. In cases where the 

characteristic does not fall within the element in which the unknown nodal 

point reside, the causality condition can be enforced by reducing the number 

of data supports. 
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2) It has been proven that both discretization of the Eikonal equation and 

discretization of the drainage volume have significant impacts on pressure 

transient results. A hybrid version of drainage volume discretization leads to a 

much more accurate well pressure profile, especially during early times of 

simulation. The FMM that includes internal triangulation of grid cells proves 

to generate more accurate DTOF solutions than those Eikonal equation 

discretization schemes relying purely on corner point grids. Taking advantage 

of the analytic solution within the well cell and the more accurately calculated 

minimum and maximum DTOFs for each grid cell, a hybrid cumulative pore 

volume as a function of the DTOF can be used to better represent the pressure 

front propagation. Hence, the  w   function constructed from a local 

differentiation of the hybrid cumulative pore volume on individual τ-intervals 

can lead to a stable and consistent transient flow simulation.  

3) The analytic sensitivity coefficients of the DTOF with respect to reservoir 

parameters can be efficiently formulated by taking the functional derivative of 

the Eikonal equation, which had been validated with the numerical 

computation and proves to be able to tremendously improve the computational 

speed in sensitivity-based inversion. For a given time during the constant flow 

rate well test, magnitudes of the well test derivative sensitivity to reservoir 

properties in the near-well region are larger than those in regions far away from 

the well. For a specific location in the reservoir model, the maximum 

magnitude of sensitivity coefficient of the well test derivative with respect to 
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permeability is found to occur approximately when the depth of investigation 

(DOI) passes by. Thus, largest magnitudes of reservoir parameter 

modifications in inversion occur approximately at the DOI, which is a function 

of time. Permeability values both within and beyond the DOI will be updated 

during history matching of the reservoir models with the pressure transient data, 

with major permeability modifications occurring within the DOI. Linearly 

distributed τ-intervals defined from the wellbore to the reservoir outer 

boundary are recommended to be used for calculation of the analytic sensitivity 

coefficients. Adjustment of reservoir parameters within equally spaced τ-

intervals makes regularization of the penalized objective function much easier 

than logarithmically defined τ-intervals, especially when the prior information 

is far from accurate. 

4) The anisotropic FMM that includes the local Eikonal solver we propose can be 

used to calculate the DTOF within corner point grid reservoir models. The 

DTOF generated can represent pressure and fluid communications between 

grid cells with complex geologic features like faults and pinch-outs. 

 

6.2 Research Outlook 

Although efficient numerical algorithms are designed for pressure transient 

analysis and integration of the well test data into reservoir models, the methodology we 

propose still has large room to improve. Recommendations for future work are provided 

below. 
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1) In most of the cases when the asymptotic pressure approximation is applied, it 

is assumed that the heterogeneous porous media are “sufficiently” smooth and 

the simulation is under the transient state. In field cases where the reservoir 

heterogeneity is high, the well response discrepancy between the asymptotic 

pressure approximation and the reservoir simulator becomes large. It is 

recommended to include more exponential terms in the asymptotic pressure 

approximation, which might represent pressure front reflection, so that the 3D 

forward model can more accurately represent the flow behavior in highly 

heterogeneous reservoir models. 

2) The hybrid version of the drainage volume discretization we designed makes 

the flow simulation in the near-well region much more accurate. This hybrid 

drainage volume formulation might provide insights into the efficient well 

placement design. 

3) The current FMM-based data integration technique works well for pressure 

transient analysis. It is recommended to extend this sensitivity-based inversion 

methodology to rate transient analysis where well pressure is fixed. 

4) Meanwhile, data integration using analytic sensitivity coefficients of well test 

data with respect to reservoir permeability can be extended to multiple-well 

scenarios. 

5) Aside from the deterministic approach, we might consider assimilating well 

pressure or production data into reservoir models using the ensemble Kalman 

filter (EnKF). Analytic sensitivity coefficients of the DTOF to reservoir 
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parameters calculated from the FMM can be applied to the “covariance 

localization” for history matching. 

6) Tracking the characteristic vector within the local Eikonal solver within the 

FMM suggests that it might be related to the velocity (streamline) trajectory 

generated from the convection-diffusion equation. A projection method might 

be applied to the characteristic vectors, so that they can transform into a mass 

conservative velocity field.  

7) Since integration of pressure transient data into reservoir models has been 

successfully achieved, it is recommended to consider calibrating reservoir 

model parameters by water-cut data using the FMM. Analytic sensitivity 

coefficients of the convective time of flight (TOF) with respect to velocity 

values within the reservoir grid cell can be derived through functional 

derivative of the Eikonal equation. Extra efforts are suggested to be made to 

investigate the relationship between the velocity field and reservoir 

permeability and porosity, so that the analytic sensitivity coefficients of the 

TOF and water-cut with respect to reservoir parameters can be established for 

inversion.  
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