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ABSTRACT 

Timely crowd evacuation in life-threatening situations such as fire emergency or 

terrorist attack is a significant concern for authorities and first responders. An individual’s 

fate in this kind of situation is highly dependent on a host of factors, especially (i) agent 

dynamics: how the individual selects and executes an egress strategy, (ii) hazard 

dynamics: how hazards propagate (e.g., fire and smoke spread, lone wolf attacker moves) 

and impair the surrounding environment with time, (iii) intervention dynamics: how first 

responders intervene (e.g., firefighters spread repellents) to recover environment. This 

thesis presents EVAQ, a simulation modeling framework for evaluating the impact of 

these factors on the likelihood of survival in an emergency evacuation. The framework 

captures the effect of personal traits and physical habitat parameters on occupants’ 

decision-making. In particular, personal (i.e., age, gender, disability) and interpersonal 

(i.e., agent-agent interactions) attributes, as well as an individual’s situational awareness 

are parameterized in a deteriorating environment considering different exit layouts and 

physical constraints. Further, the framework supports a variety of hazard propagation 

schemes (e.g., fire spreading in a given direction, lone wolf attacker targeting individuals), 

and intervene schemes (e.g., firefighters spreading repellents, police catch the attacker) to 

support a wide range of emergency evacuation scenarios. The application of EVAQ to 

crowd egress planning in an airport terminal and a shopping mall in the fire emergency is 

presented in this thesis, and results are discussed. Result shows that the likelihood of 

survival decreases with a decrease in availability of the nearest exits and a resulting 
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increase in congestions in the environment. Also, it is observed that the incorporation of 

group behavior increases the likelihood of survival for children, as well as elderly and 

disabled people. In addition, several verifications and validation tests are performed to 

assess the reliability and integrity of EVAQ in comparison with existing evacuation 

modeling tools. As personalized sensing and information delivery platforms are becoming 

more ubiquitous, findings of this work are ultimately sought to assist in developing and 

executing more robust and adaptive emergency mapping and evacuation plans, ultimately 

aimed at promoting people’s lives and wellbeing. 
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1 INTRODUCTION 

1.1 Motivation 

Improper crowd management, more specifically, erroneous evacuation strategies 

may increase casualties during an emergency. An emergency situation may arise due to 

natural (e.g., flood, hurricane, tornado, earthquake) or manmade (e.g., fire, chemical spill, 

toxic gas release, radiological accident, explosion, civil disturbance, workplace violence) 

causes. One of the best practices for crowd management is to create emergency action 

plans beforehand, rather than waiting for the time of crisis. In this regard, thorough 

investigation of emergency mapping and egress route assignment (i.e., workplace layout, 

the position of exits, floor plans, and safe or refuge areas) during all stages of design, 

construction, and operation of a building or facility are deemed critical (Kobes, Helsloot, 

De Vries, & Post, 2010; Wright, 2007). 

Among all causes of accidents in the built environment, fire-related accidents 

cause a large number of lives and property loss both in residential and commercial 

buildings. In 2015, the FEMA (2017) had reported 2,565 deaths, 11,475 injuries, and $7 

billion in damage from 380,900 fire incidents in residential buildings. During the same 

period, 104,600 fire incidents were reported in commercial buildings and facilities with 

70 deaths, 1,325 injuries, and $2 billion in damage. Records show that 32% of fatalities 

are caused by ineffective egress and escape-related planning  (FEMA, 2017) which is often 

caused by large population density in a confined space, human interactions, limited 

number of exits, nonfunctional exits or egress routes, improper use of exits, physical 



 

2 

 

obstacles, unfamiliarity with the layout, insufficient time due to long distance to the 

nearest clear exit and selecting a suboptimal exit route. NFIRS identified leading 

contributing factors to fire fatalities in residential buildings during 2013-2015 (FEMA, 

2017). As Figure 1 shows, in 61.7% of reported cases, fire pattern is one of the major 

causes of civilian fire fatalities. Besides, human factor (e.g., gender, age, physical 

disability, interaction with involved individuals) has also been cited as a significant factor 

contributing to 32.1% of reported fire fatalities.  

 

Figure 1: Contributing factors to fire fatalities in residential buildings. 

In addition to fire, other causes of the loss of life include attacks by a knife stabber, 

lone wolf attacker, or shooter who randomly walks around in a crowded area. According 

to the FBI (2016) crime data, the number of people killed by knives or cutting instruments 

was four times more than that by rifles. An average of 1,190 knife-related injuries was 

treated every day by EMS units in the U.S. from 1999-2008 (Smith, 2013). Therefore, it 

is imperative that much attention be drawn to studying and characterizing emergency 
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action planning for crowd evacuation under different scenarios including building fire or 

random attacker.  

Previous research has developed evacuation models mostly to understand the 

human and social behavior of a crowd during the evacuation process (Zheng, Zhong, & 

Liu, 2009). The physical characteristics (i.e., building floorplan, room layout, presence of 

glass doors, firewalls, flame retardant system) of a hazard-affected environment (i.e., 

building on fire) can influence the behavior of occupants. In a literature review conducted 

as part of this research, it was found that the majority of existing evacuation models only 

model crowd movements in hazard-free environments, overlooking the influence of 

hazard in steering crowd behavior. Moreover, the value of intervention systems (i.e., fire 

extinguishers, sprinklers) to evacuation from a deteriorating environment has been, at best 

sparsely studied. Therefore, an inclusive simulation platform capable of capturing all key 

components (e.g., environment, hazard, intervention, and people) of an emergency can 

significantly reinforce the egress analysis. 

1.2 Research Goal 

The main objective of this research is to design an end-to-end simulation 

framework, EVAQ, for modeling emergency evacuations while capturing the key events 

occurring during the evacuation, and information about the safety of the involved 

individuals. In developing EVAQ, two research questions were identified and successfully 

addressed, 

1. How an individual’s characteristics affect his/her survival probability (micro-level)? 
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2. How the system dynamics (e.g., environment, hazard, or intervention) affect the 

likelihood of survival rate (macro-level)? 

To address these questions, EVAQ considers four principal factors of an 

emergency evacuation, all of which influence the fate of evacuees, namely: 

(a) Layout of the affected environment (e.g., building plan, exit layout) and building 

materials (e.g., fire resistance rates). 

(b) Dynamics of the hazard (e.g., hazard type, propagation speed, and pattern). 

(c) Dynamics of potential intervention (e.g., repellent type, effectiveness). 

(d) Evacuees’ personal (e.g., age, gender, disability) and interpersonal a.k.a., behavioral 

(e.g., interaction among involved individuals) characteristics. 

Accordingly, the architecture of EVAQ consists of four main modules, namely: 

1. Environment module (for modeling building plan, exit layout, and construction 

materials). 

2. Hazard module (for modeling hazard propagation and ramification). 

3. Intervention module (for modeling repellents and their interaction with the hazard). 

4. Agent module (for modeling personal and interpersonal characteristics of evacuees’, 

and their exit strategies). 

Multiple fire-affected scenarios are modeled as proof-of-concept examples to 

develop and demonstrate the skeleton and implementation of EVAQ. In addition to the 

fire hazard, this research also investigates the evacuation process in the presence of 

hazards with random movement patterns to imitate social disturbance (e.g., knife stabber, 

lone wolf attacker, random shooter). 
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1.3 Literature Review 

With the increasing use and acceptance of performance-based codes, simulation 

modeling has become an essential tool for verifying building design, construction, 

operation, and maintenance. As related to this research, evacuation models are used to 

perform fire safety design assessment and safe egress analysis (Ronchi, & Nilsson, 2013). 

Previously, researchers categorized existing evacuation models based on modeling 

principles (Gwynne, Galea, Owen, Lawrence, & Filippidis, 1999), methodological 

approaches (Zheng et al., 2009), occupant movement, their behavior, route choice, user 

availability, validation procedure and so on (Kuligowski, Peacock, & Hoskins, 2010).  

Gwynne et al. (1999) reviewed 22 evacuation models and categorized them into 

three modeling principles. Optimization models consider occupant’s optimal path to exit 

without considering their personal and interpersonal characteristics (Xie, Ren, & Zhou, 

2003; Yuan, Fang, Wang, Lo, & Wang, 2009). On the other hand, simulation models try 

to realistically represent the occupant’s exit strategy considering their unique 

characteristics with acceptable quantitative results (Fahy, 1999; Owen, Galea, & 

Lawrence, 1996; Thompson, Lindstrom, Ohlsson, & Thompson, 2003). Additionally, risk 

assessment models quantify risks associated with safe egress of occupants from a hazard-

affected environment (Fraser-Mitchell, 1994; Shestopal & Grubits, 1994).  

According to the methodological approaches, evacuation models can be classified 

into macroscopic and microscopic models (Zheng et al., 2009).  Microscopic models 

where pedestrian dynamics are modeled as a particle are further divided into five different 

types, namely cellular automata models (Fu et al., 2015; Kirchner & Schadschneider, 
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2002; Wei, Song, Lv, Liu, & Fu, 2014), multi-lattice models (Guo & Huang, 2008; Guo, 

Chen, You, & Wei, 2013), social force models (Yang, Dong, Wang, Chen, & Hu, 2014), 

agent-based models (Bonabeau, 2002; Goldstone, & Janssen, 2005), and game theory 

models (Lo, Huang, Wang, & Yuen, 2006). Macroscopic models, on the other hand, model 

pedestrian dynamics similar to a body of fluid, thus ignoring individuals’ distinctive 

behaviors during evacuation (Guo, Huang, & Wong, 2011; Lee, 2012). Given the complex 

nature of crowd behavior, researchers have recently started to combine the basic principles 

of these approaches to develop hybrid evacuation models. Examples of such models 

include the cellular automata model combined with lattice gas approach (Yamamoto, 

Kokubo, & Nishinari, 2007) or social force approach (Yang, Zhao, Li, & Fang, 2005; Wei-

Guo, Yan-Fei, Bing-Hong, & Wei-Cheng, 2006), lattice gas model based on social force 

(Song, Xu, Wang, & Ni, 2006), ABMs in combination with cellular automata (Bandini, 

Federici, Manzoni, & Vizzari, 2005; Toyama, Bazzan, & Da Silva, 2006) or social force 

(Braun, Bodmann, & Musse, 2005; Pelechano, Allbeck, & Badler, 2007). 

Kuligowski et al. (2010) reviewed 25 computational tools and classified them 

based on different features such as occupant movements and their behaviors, public 

availability, modeling method, and validation scheme. Table 1 and Table 2 summarize 

such classifications and corresponding features.  
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Table 1: Categorization of simulation tools based on availability, structure, perspective and validation scheme. 

Simulation Tools Public Availability Grid/Structure Model 
Perspective 

Validation 
Scheme 

ASERI (Schneider, 2001) Free or with a fee Continuous network Microscopic Past literature 
ALLSAFE (Heskestad & Meland, 1998) Consultancy basis Coarse network Macroscopic Other models 
BldEXO (Gwynne et al., 1999) Free or with a fee Fine network Microscopic Fire drills 
CRISP (Fraser-Mitchell, 1994) Consultancy basis Fine network Microscopic Fire drills 
EVACNET4 (Francis & Saunders, 1979) Free or with a fee Coarse network  Macroscopic Fire drills 
EGRESS 2002 (Ketchell et al., 2002) Consultancy basis Fine network Microscopic Fire drills 
EXIT89 (Fahy, 1999) Not released yet Coarse network Microscopic Fire drills 
EvacuatioNZ (Ko, Spearpoint, & Teo, 2007) Not released yet Coarse network Microscopic Past literature 
EPT (Harmon & Joseph, 2011) Consultancy basis Fine network Microscopic Fire drills 
FDS+Evac (Heliövaara, 2007) Free or with a fee Continuous network Microscopic Other models 
GridFlow (Bensilum & Purser, 2003) Free or with a fee Continuous network Microscopic Past literature 
Legion (Kagarlis, 2008) Consultancy basis Continuous network  Microscopic Code 
Myriad II (Still, 2007) Consultancy basis Continuous network Microscopic Past literature 
MassMotion (Morrow, 2010) Consultancy basis Continuous network Microscopic Code 
MASSEgress (Pan, 2006) Not released yet Continuous network Microscopic Past literature 
PathFinder (Thornton et al., 2011) Consultancy basis Fine network Microscopic Code 
PEDROUTE (Daly, McGrath, & Annesley, 1991) Free or with a fee Coarse network Macroscopic No validation 
PEDFLOW (Helbing & Molnar, 1995) Free or with a fee Continuous network Microscopic Past literature 
PedGo (Klüpfel, 2007) Consultancy basis Fine network Microscopic Fire drills 
STEPS (MacDonald, 2003) Free or with a fee Fine network Microscopic Code 
Simulex (Thompson & Marchant, 1995) Free or with a fee Continuous network  Microscopic Fire drills 
SimWalk (Steiner, 2007) Free or with a fee Continuous network Microscopic Fire drills 
SpaceSensor (Sun & de Vries, 2009) Free or with a fee Continuous network Microscopic Other models 
SGEM (Lo & Fang, 2000) Consultancy basis Continuous network Microscopic Other models 
WAYOUT (Shestopal & Grubits, 1994) Free or with a fee Coarse network Macroscopic Fire drills 
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Table 2: Categorization of simulation tools based on fire model, occupant movement and behavior, and modeling method. 

Simulation 
Tools 

Fire 
Model 

Occupant Movement Occupant 
Behavior 

Modeling Method 

ASERI Yes Inter-person distance Conditional  Behavioral model with risk assessment capabilities 
ALLSAFE  Yes Unimpeded flow Implicit  Partial behavioral model 
BldEXO Yes Conditional Conditional  Behavioral model 
CRISP Yes Conditional Conditional  Behavioral model with risk assessment capabilities 
EVACNET4  No User’s choice No  Movement/optimization model 
EGRESS 2002  Yes Based on space density Conditional  Behavioral model 
EXIT89  Yes Based on space density Conditional  Partial behavioral model 
EvacuatioNZ  Yes User’s choice Conditional  Behavioral model 
EPT Yes User’s choice Conditional  Behavioral model 
FDS+Evac Yes Inter-person distance Conditional  Partial behavioral model 
GridFlow No Based on space density Implicit  Partial behavioral model 
Legion Yes Inter-person distance Conditional  Behavioral model 
Myriad II  Yes Based on space density Conditional  Behavioral model 
MassMotion  No Conditional Conditional  Behavioral model 
MASSEgress  No Conditional Conditional Behavioral model 
PathFinder  No Inter-person distance No Movement model 
PEDROUTE  No Based on space density Implicit  Partial behavioral model 
PEDFLOW  Yes Inter-person distance Conditional  Behavioral model 
PedGo  Yes Conditional Conditional Behavioral model 
STEPS  Yes Conditional Conditional  Behavioral model 
Simulex  No Inter-person distance Implicit  Partial behavioral model 
SimWalk  No Follow a potential map  Conditional  Partial behavioral model 
SpaceSensor  No Conditional Conditional  Behavioral model 
SGEM  No Based on space density Implicit  Partial behavioral model 
WAYOUT  No Based on space density No  Movement model 
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Considering the parameters listed in Tables 1 and 2 EVAQ can be positioned in 

the context of computational tools for egress analysis as a fine-grid microscopic network 

capable of modeling hazards (e.g., fire) and occupant movements and behaviors. In 

particular, the floor plan in EVAQ is divided into an array of small grid cells (0.5m×0.5m), 

creating a fine-grid network model. EVAQ is a microscopic simulation environment as it 

simulates evacuees’ movement throughout the evacuation process and can give 

information about each person at any point in time. Moreover, EVAQ incorporates fire 

model, and occupants’ movements depend on the availability (i.e., emptiness) of the 

surrounding cells and the conditions (e.g., hazard type, propagation speed, and pattern ) 

of the hazard-affected environment. Therefore, EVAQ models allow the incorporation of 

evacuees’ conditional behaviors. EVAQ is a partial behavioral model as it primarily 

simulates evacuees’ movement strategies considering the different combinations (e.g., 

age, gender, disability, group interaction) of agent behaviors. Last but not least,  EVAQ is 

verified and validated using previous literature and results are compared to those of other 

simulation models. It must be noted that as described in this Thesis, EVAQ offers unique 

features such as modeling of hazard intervention systems and random-walking hazards 

which makes it an ideal platform for simulating large crowd evacuations in a variety of 

scenarios.  

It must be noted that most of the simulation tools listed in Table 1 and 2 are only 

available commercially or through consultation services. Besides, ambiguities in model 

development and limited availability of open source may cause challenges for simulation 

practice, research, or training. In addition, most tools (e.g., STEPS, ASERI) do not 
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incorporate the key components (e.g., environment, hazard, intervention, agent) of an 

emergency scenario in one single framework. Specifically, no literature was found on 

simulating the effect of an intervention system in evacuation from a hazard-affected 

environment. Lastly, some evacuation simulation models (e.g., EVACNET4, 

MASSEgress, Simulex) are unable to the propagation of hazards in a deteriorating 

environment and its impact on egress route selection and movement drifts. 

1.4 Organization of the Thesis 

The thesis is organized as follows: 

• Section 2 documents the EVAQ framework development in Python programming 

language. Detailed information and explanation of the structure of the framework are 

presented including concepts or algorithms used for modeling hazard propagation, 

repellent propagation, and evacuees’ exit strategy selection and execution in a dynamic 

(i.e., hazard-affected) environment. 

• Section 3 demonstrates the steps followed to verify and validate EVAQ using a series 

of standardized test methods and datasets suggested by NIST. V&V experiments are 

performed to benchmark the performance of EVAQ and evaluate its applicability to 

performance-based building design and analysis. 

• Section 4 presents the implementation of EVAQ to model the impact of key factors 

(e.g., human characteristics, environmental constraints, hazard and intervention 

systems) on the likelihood of survival in an emergency evacuation. Two specific 
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scenarios for crowd egress planning in a fire emergency, namely an airport terminal 

and a shopping mall are presented, and results are discussed. 

• Section 5 summarizes the research contributions and presents the future direction of 

the research. 

• Appendix A presents the flowchart of the key steps of the simulation process in EVAQ 

with pseudo-code for each of the model components (i.e., hazard, intervention, agent) 

to facilitate the discussion of the flowchart. 
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2 EGRESS FRAMEWORK: EVAQ 

2.1 Introduction 

In this Section, the skeleton of EVAQ is described. EVAQ has been developed 

using the Python programming language. The following Subsections contain detailed 

information and explanation of the structure of the framework, as well as concepts or 

algorithms used for modeling hazard propagation, repellent propagation, and evacuees’ 

exit strategy and execution in a dynamic (i.e., hazard-affected) environment. 

2.2 Framework Architecture 

Figure 2 depicts the architecture of EVAQ, which consists of four key modules, 

namely the Environment module, Hazard module, Intervention module, and Agent 

module. All modules interact with each other via the Simulation Engine. The generated 

results are animated or visualized through the Visualizer. 

 

Figure 2: Architecture of EVAQ framework. 
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(a) The Environment module represents the physical geometry or layout of a 

hazard-affected environment (e.g., residential building, stadium, shopping mall) in a 2D 

grid system. This module discretizes a floor plan into cells of 0.5m by 0.5m in size, where 

each cell can accommodate one person. At any given time, the state of each environment 

component (e.g., position and status of exits, objects, evacuees, hazards, and repellents) is 

captured and stored by this module. The Environment module also contains a sub-module 

named Object to model the material types of different objects (e.g., wall or ceiling finishes) 

in the environment, particularly their fire resistance properties (Milke, Kodur, & Marrion, 

2002).  

(b) The Hazard module initiates hazards by specifying their position in the 

environment. It models different hazard characteristics such as propagation (e.g., for fire) 

or movement (e.g., for attacker) patterns, as well as propagation direction, initiation time, 

speed, and deceleration over time. The current implementation of EVAQ allows for 

multiple hazards, each with its distinct characteristics. 

(c) The Intervention module initiates fire repellents (i.e., sprinkler system, fire 

extinguisher) by specifying their position in the environment. It models different repellent 

characteristics such as initiation time, lifetime, as well as propagation pattern, direction, 

speed, and deceleration over time. The current implementation of EVAQ allows multiple 

repellents, each with its distinct characteristics. 

(d) The Agent module generates individual persons and distributes them in the grid 

to represent a crowd. Each person is defined using a set of attributes such as age (child, 

adult, elderly), gender (female, male), and physical trait (disabled, able). The current 
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implementation of EVAQ also supports group formation (e.g., friends or family members 

who stick together during evacuation). Group members select the same egress route and 

exit for evacuation. This module models the exit strategy of evacuees using a variant of 

the BFS Algorithm (Leiserson & Schardl, 2010). 

(e) The Simulation Engine is a key module of EVAQ architecture that controls the 

interaction of all four modules described above. The simulation starts with the user input 

describing the initial state of the hazard-affected environment, occupant distribution and 

their attributes, as well as repellent positions. The user input is stored in the 

environment_state matrix. Next, agents, hazards, and repellents interact with each other 

following basic interaction procedures, and their positions are updated in an iterative loop. 

The simulation loop is terminated once the fate (death or survival) of all agents is 

determined. The flowchart of the overall simulation process and pseudo-code for each 

component of EVAQ is presented in Appendix A. 

(f) The Visualizer module is programmed in MATLAB. This main function of this 

module is to generate animations of the simulated evacuation process to facilitate the 

communication of simulation results. It receives the position of agents, hazards, and 

repellent in each simulation time step and creates a color-coded animation. 

2.3 Module 1: Environment 

The Environment module discretizes a building floor plan into cells. To quantify 

cell size, the average human shoulder-to-shoulder width (0.5m) is considered. This 

assumption also supports the fact that human shoulder width is a major factor in the design 
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of doorways or stairways (Still, 2000). The submodule Object represents different building 

material types according to their flame spread ratings (Hurley et al., 2015). The flame 

spread rating of the objects (e.g., walls, furniture) captured through this submodule 

determines how long it takes for a fire to consume those objects and propagate to the next 

cell. In the current implementation of EVAQ, the Environment module stores the user 

input of the physical environment in the environment_state matrix. Although user input is 

the preferred method for configuring the physical environment, it is also possible to 

generate environment_state matrix using a random generator in Python. 

Figure 3 shows an example of a shopping mall where the floor layout is discretized 

into square cells to create the environment for EVAQ simulation. The dimensions of the 

floor in this Figure are 15m wide by 35m long, which is divided into a 30×70 grid 

containing 2,100 cells each being 0.5m×0.5m. There are 7 exits, including 3 regular and 

4 accessible exits. An accessible exit is primarily intended for disabled agents. As a 

general rule, while disabled people cannot use regular exits, able people can use accessible 

exits. Cells marked as exits (either regular or accessible) are considered as the final 

destinations for people trapped in a hazard-affected environment, and as such, the egress 

strategy of each evacuee involves reaching one of these cells. As a convention, an exit that 

is n-cells wide can accept at most n number of people at the same time. This parameter is 

also referred to as exit capacity. For this specific test case, some exits are 3-cells wide 

(1.5m), that means each can accept at most three people at the same time. Initially, the 

mall is populated with 200 people with ID numbers from 101 to 200. Each cell within the 

grid is marked using the following notations, 
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0 = Cell is not accessible to evacuees due to the presence of an obstacle (e.g., wall, 

furniture). 

1 = Cell is accessible to evacuees (each cell can only hold one person at a time). 

2 = Cell is a regular exit. 

3 = Cell is an accessible exit. 

4 = Cell is affected by hazard, and thus not accessible to evacuees.  

-4 = Cell is occupied by repellent and remains accessible to evacuees.  

51 = Class A material for object in this cell. 

52 = Class B material for object in this cell. 

53 = Class C material for object in this cell. 

>101 = Cell is occupied by a person whose ID is the same as the marked integer. 

 

Figure 3: Initial grid layout of a shopping mall floor plan for evacuation simulation. 
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2.3.1 Time and space granularity 

Time and space granularity plays a pivotal role in designing a simulation 

framework (Guo, Hu, & Wang, 2012). In general, time and space granularity in a 

simulation environment can be different from the real time and space; although an easy 

conversion exists. For example, if an agent’s real velocity is 1.5 m/s in normal condition, 

and the space granularity is represented as the cell dimension (e.g., 0.5m), then the agent 

takes 0.33s to move from her current cell to an adjacent cell. Under this condition, if 

simulation time granularity is chosen as 0.11s, then the same agent will take three SS to 

complete this move. In EVAQ, time granularity is specified such that all event times 

including agent and hazard movements are integer multiples of this time granularity. 

Therefore, if one simulation step is taken as being equivalent to 0.11s, all events will occur 

at multiples of 0.11s (0.11s, 0.22s, 0.33s, 0.44s, …). Accordingly, space granularity is 

specified such that no entity (i.e., agent, hazard) does not move more than one cell in any 

given simulation time step; however, an entity can move one cell in several time steps 

This is consistent with the previous notion of time granularity. To avoid precision loss 

(and capture all movements of hazards and people), in the current implementation of the 

simulation framework, time granularity is chosen as, 1SS =  0.25s and space granularity 

as, 1 cell = 0.5mx0.5m. If the speed of three agents, for example, is given as 2 m/s, 1 m/s, 

and 0.67 m/s, then according to the conversation rule, 

2 m/s = 2 meter per 1 sec = 0.5 meter per 0.25 sec = 1 cell per 1 SS.  

1 m/s = 1 meter per 1sec = 0.5 meter per 0.5 sec = 1 cell per 2 SS.  

0.67 m/s = 0.67 meter per 1 sec = 0.5 meter per 0.75 sec = 1 cell per 3 SS. 
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2.4 Module 2: Hazard 

The current implementation of EVAQ supports hazard propagation with time, and 

thus fulfills the requirement of dynamic constraint modeling. For the purpose of hazard 

propagation and/or movement, the adjacency (neighborhood) of a cell is defined as the 

eight surrounding cells on top, bottom, left, right, top-left, top-right, bottom-left, and 

bottom-right as shown in Figure 4. At present, EVAQ allows two types of hazard 

modeling, namely fire and random attacker as discussed in the following Subsections. 

 

Figure 4: Adjacency of a fire hazard cell. 

2.4.1 Fire propagation model 

Fire spreads to other objects either by radiation or through the smoke layer 

consumed in the upper portion of the environment (Milke et al., 2002). As new objects 

ignite, the temperature of the smoke layer increases causing more heat to be radiated to 

surrounding objects. In a small space, unburned objects ignite almost simultaneously; the 

phenomenon commonly referred to as flashover (Milke et al., 2002). However, for large 

environments, it is more likely that objects will ignite sequentially. The sequence of the 
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ignition depends on the fuel arrangement, and composition and ventilation available to 

support combustion of available fuels (Hurley et al., 2015). Currently, a forest-fire inspired 

model (Bak, Chen, & Tang, 1990) is used to represent sequential hazard propagation in 

EVAQ. Primarily, for each fire hazard, an initiation point and a propagation time tH is 

specified as input. The parameter tH  represents the pace of fire spread, which follows the 

conversion of time and space granularity described in Subsection 2.3.1. In EVAQ, 

propagation time refers to the time by which adjacent cells of a fire-affected cell also 

become affected. For instance, a tH = 5 implies that fire propagates to its adjacent cells at 

every 5SS (i.e., 5SS, 10SS, 15SS, 20SS, …) until the entire environment is affected. 

Generally speaking, a smaller tH means a faster spread of fire and vice versa. For example, 

for tH =10, the fire propagates to its adjacent cells at every 10SS (i.e., 10SS, 20SS, 30SS, 

40SS, …) which indicates a slower pace than the fire with tH = 5.  

Using this criterion, fire is modeled to propagate from its initial position in either 

symmetrical or directional pattern. As shown in Figure 5, in symmetrical propagation 

(case 0), fire propagates to all of its adjacent cells. In directional propagation (cases 1 

through 8), fire consumes a certain portion of its adjacent cells depending on the direction 

of spread (i.e., upward, downward, left, right, up-left, up-right, down-left, and down-

right). In particular, each fire-affected cell propagates only to its three adjacent cells in 

upward, downward, left, and right patterns of fire propagation, and to its two adjacent cells 

for the remaining directional propagation patterns at tH multiples. In Figure 5, for each fire 

propagation pattern (cases 0 through 9), three-time steps are demonstrated which include 

the initiation point at time 0 (left grid in each scenario), first step in propagation at time tH 
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(middle grid in each scenario), and second step of propagation at time 2tH (right grid in 

each scenario). The area affected by fire after each step of the propagation is termed 

blockage area. The designed simulation framework supports the inclusion of several 

hazards in different directions within the same environment, a feature that is largely 

missing in many existing frameworks (Tang & Ren, 2008; Guo et al., 2013; Nguyen, Ho, 

& Zucker, 2013). The pseudo-code for hazard propagation process in EVAQ is presented 

in Appendix A. 

 

Figure 5: Symmetrical and directional fire propagation at times 0, tH, and 2tH. 

2.4.2 Fire propagation in reality 

In reality, fire does not propagate at a constant speed. Fuel properties, fuel quantity, 

ventilation (natural or mechanical), compartment geometry (volume and ceiling height), 

the location of the fire, and ambient conditions (e.g., temperature, air flow) are some major 

contributing factors to fire development and spread in any environment (Hurley, 2015). 
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The classic fire development curve (NIST, 2010) in Figure 6 shows that fire growth is not 

limited by a lack of oxygen; rather, energy level (or temperature) continues to increase 

until all available fuel is consumed (fully developed). At this stage, as the fuel is burned 

away, the energy level begins to decay, and fire decreases in size and continues to 

propagate at a lower speed until full decay. The key to this fire development model is that 

oxygen is available at all times to generate the energy (or temperature) and the speed of 

fire propagation gradually decreases with time after the ignition.  

 

Figure 6: Classic fire development curve. 

In EVAQ, in order to incorporate variation in propagation time, two more 

attributes are to the fire model, namely maximum fire propagation time and fire 

deceleration rate. These two variables capture the full spectrum of time-dependent 

propagation of fire, similar to what is shown in Figure 6. In this research, maximum fire 

propagation time is considered as the constant propagation time at which fire propagates 

after the decay phase. Similarly, fire deceleration rate refers to the rate at which fire 

propagation time gradually increases after its ignition until it reaches the decay phase. The 
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described attributes of fire propagation thus provide maximum flexibility to users when 

simulating different fire-affected environments. In EVAQ, all fire attributes are linked to 

the hazard position and stored in the hazard_position_descriptors dictionary developed in 

Python. In a cell-based system such as EVAQ, this dictionary defines the cell 

characteristics occupied by fire hazards in a matrix form, as shown below, 

hazard_position_descriptors [(x position, y position)] = 

[direction, propagation time, maximum fire propagation time, 

fire deceleration rate] 

For example, hazard_position_descriptors = {(2, 1): [8, 5, 7, 2]} 

implies that fire initiates from position (2, 1) in the grid (marked as 4) and at simulation 

time step 5, hazard will propagate from (2, 1) to two adjacent cells in down-right direction 

(coded as 8), (3, 1) and (2, 2) respectively, as shown in the Figure 7. Accordingly, new 

cell descriptors are created for the position (3, 1) and (2, 2). These new cell descriptors 

inherit the properties of the source cell (i.e., they have the same propagation time, 

direction, deceleration rate, maximum fire propagation time). Fire propagation time 

increases by one at every two steps of propagation (as deceleration rate coded as 2) until 

it reaches to maximum fire propagation time (coded as 7). As shown in Figure 7, a fire 

starts propagating at 5SS, then again at 10SS, and thereafter (16SS, 22SS, 29SS, 36SS, 

43SS, …). This means that tH = 5 for the first two steps of fire propagation (i.e., 5SS and 

10SS), and it increases to tH = 6 in the next two steps (16SS, 22SS), and finally, tH = 7 

(29SS, 36SS, 43SS, …) as the fire reaches its maximum propagation time or decay phase. 
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Figure 7: Schematic representation of a sample directional propagation of fire hazard.    

2.4.3 Hazard-environment interaction 

The International Building Code (IBC) categorizes interior walls and ceiling 

finishes into three classes according to the flame spread index from 0 to 200 (Hurley et 

al., 2015). These classes are: 

Class A (0-25): inorganic materials (e.g., brick, gypsum wallboard). 

Class B (26-75): whole-wood materials (e.g., cedar, hemlock). 

Class C (76-200): reconstituted wood materials (e.g., plywood, fiberboard). 

The flame spread index determines the extent of the fire-retardant property of 

building materials. The lower the index value, the higher the control against the spread of 

fire in the environment. Almost all new buildings must follow safety regulations to restrict 

the rate of fire spread. For example, finishes in vertical exit ways or corridors leading to 

exits should have a lower index value than the finishes in the living room (Hurley et al., 

2015).   
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In EVAQ, the Object submodule in the Environment module encapsulates these 

three types of materials (cells marked as 51, 52, 53 in the environment). In particular, fire 

propagation time increases by 8, 5, and 2 for cells marked as 51, 52, and 53 respectively. 

This means that when the fire reaches cells marked as 51, 52, or 53, these cells act similar 

to a repellent to fire propagation. A schematic representation of a hazard-environment 

interaction is illustrated in Figure 8, where a 20×10 environment with two divider wall in 

the center is modeled, separating the space into three rooms. For this space, Class A 

(marked as 51) and Class C (marked as 53) materials are used for the interior wall finish, 

whereas Class B (marked as 52) material is used for the exterior wall finish. If fire 

propagation time is taken as tH = 10, fire initiates at its ignition position (marked as 4) in 

room 1, 2 and 3 at 10SS, and generally continues to propagate at 20SS, 30SS, 40SS, 50SS, 

and so on. In Figure 8(a) the fire spread is temporarily blocked (delayed by 8SS) in part 

due to the presence of cells marked as 51 (divider wall). After 10SS fire propagates to 

Class A cells at 28SS (10+8) and adjacent to Class A cells at 46SS in the right direction. 

Similarly, in Figure 8(b) fire spread is temporarily blocked (delayed by 2SS) in part due 

to the presence of cells marked as 53 (divider wall). After 10SS fire propagates to Class C 

cells at 22SS (10+2), instead of propagating at 20SS. For this case, the fire continues to 

be propagating down-right direction at 34SS, 46SS, and so on. Finally, in Figure 8(c) fire 

spread is temporarily blocked (delayed by 5SS) in part due to the presence of cells marked 

as 52 (exterior wall). After 10SS fire propagates to Class B cells at 15SS (10+5), instead 

of propagating at 20SS. For this case, the fire continues to be propagating symmetrically 

at 30SS to the adjacent cells of Class B cells.  
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(a) Fire propagation delayed by 8SS due to Class A material. 

 

(b) Fire propagation delayed by 5SS due to Class B material. 

 

(c) Fire propagation delayed by 2SS due to Class C material. 

Figure 8: Schematic representation of hazard-environment interaction. 

2.4.4 Human threat movement model 

In the current implementation of EVAQ, two types of human threat movement 

patterns are modeled. This allows for maximum flexibility in describing life-threatening 
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situations involving lone wolf attackers (e.g., suspect carrying a knife, shooter wandering 

in a crowded area).  

In the first model, the attacker is assumed to not follow any predictable movement 

pattern, rather randomly moving in the environment. In EVAQ, such pattern is referred to 

as “random walk” model. To model random walk, an attacker is initiated using a starting 

position (cell) and a movement time tH. At every multiple of tH, the attacker moves from 

its current cell to any one of the eight adjacent cells randomly without following any 

pattern. Here, cell adjacency is defined similar to Figure 4. This random movement 

continues until the fate (i.e., death or survival) of all people in the environment is 

determined. A schematic representation of a random-walking hazard (attacker) is 

illustrated in Figure 9. 

 

Figure 9: Schematic representation of random hazard movement. 

In the second model, the attacker’s goal is to maximize damage, and as such, s/he 

adjusts his/her movement pattern in accordance with the density of people in the 

environment. For example, an attacker carrying a knife may target as many people as 

possible by moving in the direction that allows reaching more people. To model such 

targeted attack, an attacker is initiated by a starting position (cell) and a movement time 
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tH, the same as the random walk model. However, at each multiple of tH, the attacker moves 

from its current cell to the adjacent cell that allows reaching the targets in the shortest 

possible time. Specifically, for each adjacent cell to the attacker’s current position, the 

distance of all targets to that cell is first computed. Next, an overall (sum) distance is 

obtained by adding all such individually calculated values. Finally, the adjacent cell with 

the smallest overall distance is selected as the attacker’s next position. It is observed that 

under this model, more people are likely to be injured than under the random movement 

model. 

2.5 Module 3: Intervention  

An added modeling feature that distinguishes EVAQ from its predecessors and 

creates a more realistic output is the ability to incorporate intervention systems (e.g., fire 

extinguisher, sprinklers). The following Subsections describe the propagation models of 

repellent materials in more details.  

2.5.1 Repellents to fire hazard 

Air, heat, and fuel are the three major components of fire generation in any 

environment (Hurley et al., 2015). Therefore, any fire-fighting technique should involve 

removing any or a combination of these elements from the environment. Fire extinguisher 

and sprinkler systems are two widely used repellent mechanisms for fire hazards. There 

are primarily three types of fire extinguisher systems, namely water extinguisher that cools 

down the environment by removing heat from the fire, and dry chemical extinguisher and 
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carbon dioxide extinguisher prevent fire (Schmidt, 1974). In buildings, fire extinguishers 

are often installed in hallways or passageways or by the side of stairs. Home fire sprinklers, 

on the other hand, include a network of piping filled with water under pressure installed 

behind the walls and ceilings (Alpert & Ward, 1984). If a fire breaks out, the air 

temperature above the fire rises (Cao, Song, Liu, & Mu, 2014), and higher air temperature 

activates the sprinkler (Hoffmann & Galea, 1993). Consequently, the sprinkler sprays 

water forcefully over the flames, extinguishing them entirely in most cases, or at least 

controlling the heat and advancement of harmful smoke material. It must be noted that 

only the sprinkler nearest to the fire activates with an increase in the air temperature. Home 

fire sprinklers discharge roughly 10-25 gallons of water per minute and it continues until 

the time firefighters arrive and shut down the system manually (Hurley, 2015). 

2.5.2 Repellents propagation modeling 

In the current implementation of EVAQ, fire extinguisher chemical is modeled 

such that it propagates toward the direction of approaching the fire, while the water 

sprayed from a sprinkler system can propagate in both symmetrical and directional 

patterns. As shown in Figure 10, possible patterns of repellent propagation (symmetrical 

or directional) resemble the fire propagation patterns introduced in Subsection 2.4.1 and 

depicted in Figure 5.  
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Figure 10: Symmetrical and directional repellent propagation at times 0, tH, and 2tH. 

All key attributes of a given repellent such as its effectiveness and the variation of 

its propagation time are stored and updated in repellent_position_descriptors in Python, 

as shown below,  

repellent_position_descriptors [(x position, y position)] = 

[direction, repellent propagation time, maximum propagation 

time, repellent deceleration rate, initiation time, 

duration] 

The only difference between hazard and repellent cell descriptors is that repellent 

cell descriptors includes two more static variables, namely initiation time and duration. 

While the former indicates the time at which the repellent initiates in the environment and 

prevents a hazard from propagating to the adjacent cells, the latter is a measure of time 

during which the repellent will remain active in the environment following its initiation. 

The pseudo-code for repellent propagation process in EVAQ is presented in Appendix A. 
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2.5.3 Repellent-hazard interaction 

For a better understanding of the interaction between repellent and hazard, the 

scenario illustrated in Figure 11 is used. In this Figure, repellent properties are described 

as repellent_position_descriptors = {(3, 3): [0, 3, 3, 0, 3, 7]} which implies that the 

repellent initiates in position (3, 3) of the grid at 3SS and propagates symmetrically (coded 

as 0). At 6SS, the repellent will propagate from (3, 3) to all eight adjacent cells 

symmetrically. Accordingly, new cell descriptors are created, and they inherit the same 

properties of the source cell (i.e., repellent’s propagation direction, propagation time, 

maximum propagation time, repellent deceleration rate, initiation time, and duration). 

Similar to the fire hazard, repellent propagation time may increase after a number of steps 

of propagation. 

However, in this example, the repellent is considered to propagate at a constant 

speed (this is coded by assigning the value of 3 to maximum propagation time, and 0 to 

repellent deceleration rate). Since repellent duration is 7, it will become inactive after 

10SS (initiation time + duration). A schematic representation of this symmetrical repellent 

propagation is illustrated in Figure 11, where cells coded as 4 represent fire (tH = 4; 

considering a constant fire propagation time), and cells coded as -4 represent repellent. 

The pseudo-code for repellent-hazard interaction process in EVAQ is presented in 

Appendix A.  
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Figure 11: Implementation of repellent propagation in a hazard-affected environment. 

2.5.4 Targeted repellent movement model 

A targeted repellent dynamically adjusts its direction toward hazard to mitigate the 

hazard as early and efficiently as possible. For example, firefighters gradually move from 

periphery to the center of burning fire to extinguish it. Similarly, law enforcement officials 

may run toward or chase an attacker to prevent him/her from causing further damage. In 

EVAQ, the targeted repellent movement is presented by modeling the bi-directional flow 

of agents. Specifically, two agents with different goals can create an adversarial pair 

enabling them to move toward each other. Figure 12 shows an attacker (marked as 4) 

moving in the right direction while a repellent (i.e., law enforcement officials marked as -

4) moves to the left direction toward the attacker. 

In the repellent movement model used in this test case, the targeted repellent and 

the randomly moving attacker are considered to be present in the system at t = 0 (i.e., 

simulation initiation time) and t = 3, respectively. Consequently, the repellant starts 

moving toward the attacker at t = 4. For each movement, the repellent computes the 

shortest path between its current cell and the hazard cell and then moves to the next cell 

along this path. Eventually, the repellent meets the hazard and mitigates it. In the example 
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illustrated in Figure 12 targeted repellent is considered to take 1SS to move from one cell 

to another in the direction of the hazard. 

 

Figure 12: Targeted repellent movement in a hazard-affected environment. 

2.6 Module 4: Agent 

An evacuee’s personal and interpersonal characteristics have a major impact on 

his/her movement during an emergency. Therefore, EVAQ considers human 

characteristics to model egress strategies selection and execution in a hazard-affected 

environment. The following Subsections demonstrate the contributing factors and 

algorithmic approach to evacuee’s movements, as well as explain potential interactions 

between hazard, repellent, and agent modules.  

2.6.1 Evacuee’s personal characteristics 

Once the parameters and constraints of the evacuation model are fully defined, the 

first step of the simulation process is to model personal (a.k.a. physical) characteristics of 

people that can influence their fates (i.e., survival or death). Attributes such as age, gender, 

and disability are generated using results from previous studies (Shi et al., 2009). The 

aggregation of these attributes determines two limiting factors that can potentially impact 
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an evacuee’s fate, namely velocity and egress plan. The current implementation of EVAQ 

supports modeling of people with different velocities for 12 different combinations of 

attributes (gender: male or female; age: child, adult, or elderly; disability: yes or no).  For 

the age distribution, children are considered as less than 12 years old, and elderly people 

are considered as more than 65 years (Shi et al., 2009). In a static environment (no hazards 

present), the goal of each person is to pick the nearest exit considering his/her attributes 

that collectively define his/her velocity.  

Table 3 shows the parameters (mean, standard deviation) of normally distributed 

velocity for different agent types. 

Table 3: Velocity distribution of different agent class. 

Agent Class (attributes) Mean (m/s) Std. Deviation (m/s) 
male, child, able 1.08 0.26 

male, child, disabled 0.92 0.34 
male, adult, able 1.24 0.45 

male, adult, disabled 1.06 0.26 
male, elderly, able 1.05 0.15 

male, elderly, disabled 0.91 0.13 
female, child, able 1.08 0.26 

female, child, disabled 0.92 0.34 
female, adult, able 1.30 0.38 

female, adult, disabled 1.06 0.26 
female, elderly, able 1.04 0.16 

female, elderly, disabled 0.89 0.14 

At the beginning of the simulation, for each evacuee, the velocity value is 

randomly selected from the corresponding distribution, thus introducing stochasticity in 

the evacuation model. Next, absolute velocity values are converted to simulation time and 
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space units using the previously described time and space granularity (Subsection 2.3.1) 

to calculate the simulation time steps taken by each evacuee to move from one cell to the 

next. In the current implementation of EVAQ, these physical characteristics are defined 

by the user and stored in a designated text file named agent_characteristics. The simulation 

engine reads this file and generates the time steps corresponding to the movements of each 

person in the environment, in order to simulate the evacuation process. 

2.6.2 Evacuee’s interpersonal characteristics 

Agent-agent interaction is one of the most crucial in crowd evacuation planning 

and emergency mapping (Lo et al., 2006; Li & Qin, 2012; Tan, Hu, & Lin, 2015). For 

example, friends or family members mostly stick together and take the same path during 

evacuation, or follow a leader (a.k.a., leader-follower behavior) (Ji, & Gao, 2006), some 

people help others who need help, for example, a child, or a disable person (a.k.a., 

altruistic behavior) (Pan, Han, Dauber, & Law, 2007). Sometimes, lack of situational 

awareness creates a tendency in an individual to follow a group of people who are at a 

closer distance to him/her, rather than following those who are farther away (a.k.a., 

herding behavior) (Pan et al., 2007). The current implementation of EVAQ supports three 

distinct types of such group behavioral patterns and formations, as follows, 

(a) Group I for leader-follower behavior: when a group of people (three or 

more) is uncertain about their exit plan, a leader emerges out of this group, and everyone 

else in the group follows the leader’s strategy. A natural choice for a leader is the person 
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nearest to the closest exit, as it is easier for him/her to commit to a particular exit. The rest 

of the group members will then follow the same egress path.  

(b) Group II for altruistic behavior: when a group of people (two or more) 

consists of a child or a disabled person, all group members move at the velocity of its 

weakest member (i.e., minimum velocity of all members) to ensure that no one in that 

group is left behind. 

(c) Group III for herding behavior: when an evacuee is not fully affiliated with 

the environment, or uninformed about possible exit positions, then s/he moves toward the 

nearest group of people. Such a person identifies the target group by first calculating (in 

the real world, eyeballing) his/her distance all surrounding groups, followed by moving in 

the direction of the least total distance.  

Sometimes, people may compete for the same exit (a.k.a., competing behavior) 

(Kirchner, Klüpfel, Nishinari, Schadschneider, & Schreckenberg, 2003), whereas 

sometimes, they take the exit in an orderly fashion (a.k.a., queuing behavior) (Bo, Cheng, 

Hua, & Lijun, 2007). In EVAQ, an exit that is n-cells wide can accept at most n people at 

the same time. Therefore, the person closest to the exit takes the exit first, followed by the 

next closest person, and so on until all evacuees’ positions are updated. This exhibits an 

orderly queuing behavior based on the physical distance to the exit. In certain cases, 

competition may arise when two or more people are at the same distance from a 1-cell 

wide exit. In this situation, the person with a higher velocity will take the exit first followed 

by the next fastest person, and so on. If two or more people have the same velocity and 

are both one cell away from an exit, one of them is randomly selected to take the exit first. 
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This exhibits a competitive behavior. In EVAQ congestion at the exit depends on the agent 

position in front of the exit and is solved pursuing either queuing or competitive behavior. 

The pseudo-code for agent movement process (both individual and group) in EVAQ is 

presented in Appendix A. 

2.6.3 Agent movement modeling: Breadth First Search algorithm  

The current implementation of EVAQ supports agent movements based on 

dynamic decision-making. This means that evacuees do not choose their egress routes only 

at the beginning of the simulation, as in previously developed models (Gwynne et al., 

1999; Zheng et al., 2009). Rather, they have the ability to change their mind afterward and 

reconsider their decisions dynamically by taking into account the latest state of the 

environment (i.e., which cells are no longer available). This egress planning, selection, 

and execution scheme is devised using the BFS algorithm (Leiserson & Schardl 2010), 

which is widely used in connected graph problems such as a traveler exploring paths 

within a neighborhood to reach a destination (Stout 1996; Li et al. 2017). There are other 

search algorithms used for graph traversal problem as well, namely the DFS, Dijkstra, and 

A*. However, DFS is not suitable for identifying the shortest path in graph traversal 

problems as it may output a loop (Tarjan, 1972). Furthermore, A* is useful for weighted 

graphs (Dijkman, Dumas, & García-Bañuelos, 2009), whereas in EVAQ, the generated 

graph (i.e., grid system) is unweighted as all cells are equidistant. As a result, to solve the 

shortest path problem in an unweighted graph, BFS and Dijkstra are the two preferred 

choices (Yusoff, Ariffin, & Mohamed, 2008). However, in terms of time complexity BFS 
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works best for unweighted graphs. This is because the time complexity of BFS is O(V+E), 

where V is the number of nodes and E the number of edges. In comparison, the complexity 

for Dijkstra is O(V+E logV).  

The BFS algorithm systematically considers all available adjacent cells to a 

person’s current location, and then adjacent cells of those adjacent cells, and so on, until 

the traverse reaches the desired destination (as shown in Figure 13). In evacuation 

modeling, preferred destinations are exit locations within the floor layout. The algorithm 

identifies the nearest available exit based on the current state of the environment. BFS 

traversals work based on available (unoccupied) cells marked with 1 (as shown in Figure 

3) or agent IDs, as these cells can be occupied by evacuees (marked as white in Figure 

13). Once a person moves from one cell to another, the first cell becomes unoccupied and 

the next one becomes occupied. In Figure 13, agent A moves from one cell to another 

avoiding occupied cells (marked as grey represents obstacle) and reaches to exit E. 

Besides, if a cell becomes affected by a hazard, it is marked as unavailable (occupied) for 

evacuees forcing them to update their egress strategy accordingly or change their egress 

route. Note that a cell occupied by a repellent remains available for agents. 

 

Figure 13: Systematic heterogenous agent movement process using the BFS algorithm. 
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2.6.4 Agent-fire-repellent interaction  

For a better understanding of agent-fire-repellent interaction, a schematic 

representation of evacuees’ movements based on dynamic decision-making is illustrated 

in Figure 14. In this Figure, a 10m×10m grid is shown in which the properties of the hazard 

cell (marked with 4) is defined by, 

hazard_position_descriptors = {(4, 6): [0, 3, 3, 0]}. 

This description implies that hazard propagation follows a symmetrical pattern, 

and the hazard propagates every 3SS (i.e., 3SS, 6SS, 9SS, 12SS, …). Similarly, repellent 

cell descriptors is defined as follows, 

repellent_position_descriptors = {(6, 6): [1, 2, 2, 0, 2, 4]}. 

This description implies that the repellent initiates at 2SS, and constantly 

propagates at 4SS, and 6SS (because repellent propagation time = 2). The repellent 

activates in the environment and restricts fire propagation for (2+4) or 6SS. Also, based 

on its description, this repellent propagates toward the top of the grid (upward direction). 

Finally, the repellent is terminated at 7SS.  

Now, suppose that an evacuee, marked as 101 in Figure 14, who is a male, an able 

adult takes 2SS to move from one cell to the next. The evacuee’s and the hazard’s initial 

positions, as well the evacuee’s initial optimal egress route (dashed line) to exit 2 is shown 

in 0SS. At 2SS, the evacuee moves one cell diagonally, and at 3SS, hazard propagates into 

the eight adjacent cells, which also affects the evacuee’s initial optimal egress route. 

However, as repellent propagates upward at 4SS and retards the fire, the evacuee finds an 

opportunity to stick to his/her original egress plan. At 6SS, evacuee, repellent, and hazard 
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positions are updated according to their properties. In particular, the evacuee moves one 

cell to the left, and the repellent propagates upward to the adjacent five cells. As the 

repellent keeps the fire hazard from propagating downwards until 6SS, fire can only 

propagate upwards. Thus, the evacuee can still stick to his/her initial egress route. At 9SS, 

fire propagates again, but prior to this propagation, at 8SS, the evacuee has already moved 

one more cell to the left. Finally, at 12SS, fire propagates one more time, which causes the 

evacuee to be trapped inside the hazard-affected area (a.k.a., blockage area). 

In the current implementation of EVAQ, this evacuee is considered compromised, 

and his/her fate is determined (i.e., death). It must be noted that in reality, if a person is 

trapped inside the blockage area and there are no safe egress routes, s/he will wait for as 

long as possible for help to arrive. However, in this implementation, this behavior is not 

modeled, and rather, a trapped person is considered compromised and subsequently 

removed from the system. The pseudo-code for agent plan execution in presence of hazard 

and repellent is presented in Appendix A.  

 

Figure 14: Evacuee egress route toward an exit in a hazard-affected environment in the 

presence of repellent. 
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2.6.5 Situational awareness of agent 

Evidently, an evacuee’s level of knowledge of the environment can influence 

his/her exit strategy selection and execution. In a fully observable environment, people 

have situational awareness as they are moving. In EVAQ, this is described by assigning 

the value of 1 to the crowd knowledge level, implying that evacuees do not inadvertently 

drift from their optimal egress routes (zero random movements) and they are fully 

affiliated with the environment (i.e., exit locations are known to them). In contrast, in a 

partially observable environment (e.g., limited visibility, smoke inhalation, excess heat, 

or being new to the environment), people may randomly move while trying to find the 

nearest exit. In EVAQ, this is described by assigning randomness (ranging from 0.1 to 1) 

to agent movements and lowering the crowd knowledge level until it approaches 0. At 

zero level of knowledge, evacuees do not possess any affiliation with the environment, 

thus making 100% random movements between unoccupied cells in their immediate 

vicinity.  

In the current implementation of EVAQ, this is achieved by allowing agents to 

probabilistically choose their next move from one of the two options: (i) the next cell as 

identified by the optimal exit plan (this is the best possible move), (ii) the next cell will be 

randomly selected from all unoccupied adjacent cells based on a uniform distribution. In 

particular, a variable fate_control determines the extent of randomness in agent 

movement. Besides, another variable named drift_flag is also introduced and used to 

identify if an agent will (drift_flag = 1) or will not (drift_flag = 0) drift from their optimal 

exit plan. A fate_control= 0 implies a fully-observable environment (i.e., no randomness 
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in the movement; drift_flag = 0). In contrast, a fate_control value ranging from 0.1 to 1.0 

indicates partially observable environment (drift_flag = 1). For example, fate_control = 

0.5 means that the environment is partially observable to agents and they have a 50% 

chance to take the best possible next move or take any random cell amongst the 

unoccupied cells in their surrounding neighborhood. If situation degrades, there could be 

100% random movement that implies fate_control = 1. In this case, people take more time 

to evacuate the environment compared to when there is 0% random movement. It is also 

observed that more people would be compromised due to the increase in random 

movements. 

2.7 Summary & Conclusions 

In this Section, the architecture of EVAQ, an open-source person-specific large 

crowd evacuation simulation framework, was explained. EVAQ has been developed in 

Python and is capable of modeling key events of an evacuation process in a hazard-

affected environment while incorporating information on attributes of involved 

individuals (i.e., evacuees). An EVAQ model considers four principal factors of 

emergency evacuation, all of which influence the fate of evacuees, namely (i) layout of 

the affected environment (e.g., building plan, exit layout), (ii) dynamics of the hazard (e.g., 

hazard type, propagation speed and pattern), (iii) dynamics of the potential intervention 

(e.g., repellent type, propagation speed and pattern),and (iv) evacuees’ personal (e.g., age, 

gender, disability) and interpersonal a.k.a., behavioral (e.g., group behavior) 

characteristics. Accordingly, the main building blocks of EVAQ include the (i) 
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environment module (for modeling building plan, exit layout, and construction materials), 

(ii) hazard module (for modeling hazard propagation and ramification), (iii) intervention 

module (for modeling repellent propagation and effectiveness), and (iv) agent module (for 

modeling personal and interpersonal characteristics of evacuees’, and subsequent exit 

strategy). This modular architecture provides maximum modeling flexibility by allowing 

users to revise the parameters and content of each module independently. For example, 

modelers can incorporate random hazard movement patterns in the hazard module to 

imitate social disturbance or workplace violence cases, or simulate evacuees’ behavioral 

traits (e.g., herding, altruistic, leader-follower) in the agent module. 
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3 VERIFICATION AND VALIDATION 

3.1 Introduction 

ISO (2008) defines V&V as follows: 

• Verification: “the process of determining that a calculation method implementation 

accurately represents the developer's conceptual description of the calculation method 

and the solution to the calculation method.” 

• Validation: “the process of determining the degree to which a calculation method is 

an accurate representation of the real world from the perspective of the intended uses 

of the calculation method.” 

The NIST presents a review of the current procedures, tests, and methods available 

in the existing literature to assess the V&V of building evacuation models (Ronchi, 

Kuligowski, Reneke, Peacock, & Nilsson, 2013). Although these guidelines were 

originally developed by IMO for maritime evacuation simulation tools, they are often 

employed for other application areas (e.g., buildings, transportation systems). 

It must be noted that unlike other classes of simulation models, V&V of evacuation 

simulation models is not trivial since in the majority of cases, there is a lack of 

standardized testing procedures and real-world emergency evacuation datasets, causing 

modelers to adopt inconsistent procedures, or simply overlook this important step in 

simulation modeling (Ronchi et al., 2013). However, V&V is always required for 

accreditation of results, and for assessing the reliability of generated simulation output. 

Therefore, in this Section, the steps followed to verify and validate EVAQ using a number 
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of NIST suggested test methods and datasets are discussed, in order to benchmark its 

performance and better evaluate its applicability to performance-based building design 

and analysis. 

3.2 Verification Tests 

The performance of EVAQ is assessed using a series of hypothetical tests 

suggested for the verification of evacuation models by NIST. These tests are organized 

according to five main core components of evacuation models (Ronchi et al., 2013), 

namely 1) pre-evacuation time, 2) movement and navigation, 3) exit usage, 4) route 

availability, and 5) flow conditions/constraints. These elements are required for the most 

basic representation of an evacuation scenario. The tests conducted for this purpose 

address different functionalities in EVAQ models, and a qualitative evaluation is 

performed by comparing EVAQ results (via observation of the model’s visualization 

output) with the expected evacuees’ behaviors in the real world. Besides, some 

quantitative evaluation is performed by considering the difference between the expected 

results and the simulation results. Table 4 presents the list of verification tests successfully 

conducted for EVAQ along with a comparison with Simulex (Kuligowski et al., 2010). It 

must be noted that while Simulex can simulate movements between floors (i.e., elevation 

change), the current implementation of EVAQ uses a 2D grid to model the environment, 

and as such, verification for ‘speed on stairs’ is out of the current scope of the framework. 

However, as previously stated, EVAQ can model dynamic environments (imitating real-

world evacuation scenarios in the presence of hazards), while Simulex only considers 
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static environments. This makes EVAQ an ideal candidate for the ‘dynamic availability 

of exit’ test. In the following Sub-sections, quantitative analyses of three verification tests 

(e.g., pre-evacuation time distribution, speed in the corridor, affiliation, and maximum 

flow rates) are presented. 

Table 4: Verification tests for evacuation model. 

Core Component Sub-element Test EVAQ Simulex 
1 Pre-evacuation time distribution Y Y 
2 Speed in a corridor 

Speed on stairs 
Movement around a corner 

Assigned demographics 
Reduced visibility vs. walking speed 

Occupant incapacitation 
Elevator usage 

Horizontal counter-flows (rooms) 
Group behaviors 

People with movement disabilities 

Y 
N 
Y 
Y 
Y 
N 
N 
Y 
Y 
Y 

Y 
Y 
Y 
Y 
Y 
N 
N 
Y 
Y 
Y 

3 Exit route allocation 
Social influence 

Affiliation 

Y 
Y 
Y 

Y 
Y 
Y 

4 Dynamic availability of exit Y N 
5 Congestion 

Maximum flow rates 
Y 
Y 

Y 
Y 

3.2.1 Pre-evacuation time distribution 

IMO test 5 is used to verify the ability of evacuation models to reproduce imposed 

pre-evacuation times. This test can also be used to verify distribution assignment in the 

simulation framework. The pre-evacuation time refers to the time window between the 

moment an alarm or cue is evident and when individuals start traveling to exit(s) to 
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evacuate the place (Shi et al., 2009) and consists of recognition time and response time. 

The recognition time begins with an alarm or cue and ends with the first response. The 

response time, on the other hand, begins with first response until all individuals start 

traveling to the exit(s). The time required to reach an exit from the moment a person starts 

moving in the system is often referred to as the movement time. 

Scenario:   A room of size 8m by 5m with a 1m-wide exit located centrally on a 

5m wall is modeled in EVAQ. A total of 10 occupants are randomly distributed in the 

room marked as 101-110, as shown in Figure 15. Occupants are assigned uniformly 

distributed pre-evacuation times ranging between 5s and 10s. 

 

Figure 15: Geometric layout of pre-evacuation time distribution test. 

Expected Result: Pre-evacuation time of each occupant should fall within the 

specified range. Total evacuation time can be represented as normally distributed over 

multiple simulation runs. 

Simulation Result: The stacked bar chart in Figure 16 shows that the pre-

evacuation time of each occupant falls within the range of 5s to 10s, thus affirming the 

expected results. In addition, after 100 simulation runs, the total evacuation time appears 
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to be more or less normally distributed, as shown in Figure 17 with a mean value of 30.27s 

and a standard deviation of 10.9s, affirming the expected results. 

 

Figure 16: Evacuation time for each occupant. 

 

Figure 17: Distribution of evacuation time. 

3.2.2 Speed in a corridor 

IMO test 1 proposed is used to verify if an occupant can maintain his/her assigned 

velocity over the simulation time.  
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Scenario: A corridor of size 4m wide and 20m long is modeled in EVAQ with 

4×40 grid cells. An occupant is assigned a speed of 1 m/s and walks along the corridor 

from one end to the other to reach an exit, as shown in Figure 18.  

 

Figure 18: Geometric layout of speed in a corridor test. 

Expected Result: Given the velocity and distance values, the occupant should be 

able to cover the 20m long distance in 20s. 

Simulation Result: Considering the space and time granularity (i.e., 1 cell = 0.5m; 

1SS = 0.25s), the occupant velocity is converted as follows: 

1 m/s = 1 meter per 1s = 0.5 meter per 0.5s = 1 cell per 2SS. 

This implies that the occupant takes 2SS to move from one cell to the next. Simulation 

result shows that the occupant takes exactly 160SS or (80×0.25 = 20s) to complete the 

evacuation. 

3.2.3 Maximum flow rate 

IMO test 4 is suggested to set a conservative requirement of maximum admitted 

flow rates.  

Scenario: A Room of size 8 m by 5 m with a 1m-wide exit located centrally on 

the 5 m walls is modeled in EVAQ, as shown in Figure 19. A total of 100 occupants (of 

different characteristics) are placed in the room and assigned to the exit. This combination 



  

49 

 

results in a density of 2.5 people/m2 (100 people divided by 40 m2). This high density is 

chosen to investigate flow rates in a congested area. 

 

Figure 19: Geometric layout of maximum flow rate test. 

Expected Result: According to the NFPA, the maximum design flow rate at an 

exit location should not exceed 1.33person/m/sec (Ronchi et al., 2013). 

Simulation Result: Considering 1SS = 0.25sec and 1 cell = 0.5m, the average 

evacuation time (over 20 simulation runs) is found to be 337SS = 337×0.25 = 84.25sec, 

and the average flow rate is calculated as 100/84.25 = 1.18 person/m/sec, which is less 

than the prescribed limit of 1.33person/m/sec by 11.2%. This can be attributed to the fact 

that occupants are of mixed types (different genders, ages, disability status), adding some 

variability to the results. 

3.3 Steps of Validation of Simulation Models 

Validation of simulation models is a challenging problem, especially in evacuation 

simulation studies. Previously, researchers have proposed validation strategy to solve this 

problem. According to (Thomsen, Levitt, Kunz, Nass, & Fridsma, 1999), validation of 

any simulation models consists of several steps as shown in Table 5. Toy problems and 
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intellective experiments are used to validate the reasoning assumptions of the simulation 

framework. Validation of the representation and usefulness depends on the experiments 

done in previous steps. Authenticity, Generalizability, and Reproducibility experiments 

are used to validates if the simulation system can capture the key features being studied. 

Finally, the usefulness of the simulation system is validated using Retrospective, 

Gedanken, Natural History, Intervention experiments. 

Table 5: Steps of validation trajectory. 

Validation Steps Description 
Toy problems Develop test cases to assess whether micro-behavior has 

been correctly encoded. 
Intellective Experiments Examine hypothetical problems in an idealized setting. 
Authenticity Represent a real-world scenario with the simulation model. 
Generalizability Assess if the model is over-fitted to a particular test setting. 
Reproducibility Validate if two modelers will get the same result for the 

same scenario. 
Retrospective Duplicate past performance calibrate model (if required). 
Gedanken Perform ”what-if” analysis based on the retrospective 

evaluation. 
Natural History Predict future result and evaluate by performing the real-

world experiment. 
Intervention Deploy model in the real world to monitor performance. 

Seven of these steps were most applicable to EVAQ and thus were selected and 

carried out (or will be carried out as part of future work) to assess the performance of 

EVAQ, as shown in Table 6. 
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Table 6: Steps of validation performed by EVAQ. 

Validation Steps Description 
Toy problems Investigated several small-scale problems for individual 

component testing (verification tests). 
Intellective Experiments Performed experiments on idealized settings such as an open 

floor with multiple people. 
Authenticity Modeled real-world environments such as the Rhode Island 

nightclub fire. 
Generalizability Modeled a variety of environments such as an airport 

terminal and a shopping mall. 
Reproducibility Confirmed model stability by running models several times 

and recording output for statistical analysis. 
Retrospective Replicated the results of past work (e.g., Rhode Island 

nightclub fire event) 
Gedanken Performed for the Rhode Island test case (e.g., distribution 

of agent, fire position, exit assignment) 
Natural History Fire drill (future work). 
Intervention Face validation (future work). 
 

3.4 Validation Tests 

As stated earlier, it is very difficult to find experimental datasets to test the validity 

of emergency evacuation models in a manner that all key model components (e.g., pre-

evacuation time, movement and navigation, exit usage, route availability, and flow 

conditions/constraints) are assessed. In this research, the performance of EVAQ is 

validated against Simulex with respect to the maximum flow rate. In addition, a historical 

fire incident (as one of the very few publicly available datasets) is modeled and simulated 

in EVAQ to validate its performance in comparison with previous evacuation literature 

(Grosshandler, Bryner, Madrzykowski, & Kuntz, 2005).  
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3.4.1 Maximum flow rate test 

The maximum flow rate test is used in a scenario involving the evacuation of 100 

individuals from space with exits of varying widths. The simulation results of the crowd 

flow rate test are compared with the previously reported results from Simulex to check for 

consistency (Thompson & Marchant, 1995). For comparison, similar settings such as the 

configuration and number of occupants are used for both EVAQ and Simulex. However, 

there are a number of basic differences between the two platforms that should be noted. 

First, EVAQ uses a fine network model where a floorplan is divided into small grid cells, 

and occupants move from one cell to the next in discrete times. The minimum cell size 

considered for EVAQ is 0.5m by 0.5m (i.e., the space occupied by one person standing) 

(Still, 2000). In contrast, Simulex allows the modeling of a continuous plane representing 

the floorplan. Second, given a particular setting, simulation results from Simulex will not 

fluctuate, since it is a deterministic model, whereas in EVAQ, due to the stochasticity in 

movement speeds and the dynamic nature of egress route selection and execution, results 

differ from one simulation run to the next.  

In the maximum flow rate test with Simulex, the exit width ranges from 0.7m to 

3.0m with increments of 0.1m. In contrast, since in EVAQ, exit width is a function of cell 

size (minimum cell size is 0.5m×0.5m), only six exit widths (0.7m, 1.0m, 1.5m, 2.0m, 

2.5m, and 3.0m) are considered for the comparison, as listed in  

Table 7. For the 0.7m-wide exit, the entire layout is discretized into 0.7m cells, 

and for all other exit widths (i.e., 1.0m, 1.5m, 2.0m, 2.5m, 3.0m), the layout is divided into 
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0.5m cells. A total of 100 individuals are distributed within a 5m by 5m space around a 

single exit, as shown in Figure 20. A corridor is placed on the other side of the exit.  

The crowd is expected to go through the exit and then continue walking along the 

corridor. For comparing simulation results between Simulex and EVAQ, the position and 

movement velocity (unimpeded movement velocity, 1.19m/s) of each are kept identical 

(Thompson & Marchant, 1995). Also, for the EVAQ model, validation test is conducted 

in a fully observable environment (i.e., no randomness in evacuees’ movements). Constant 

velocity and no movement randomness makes the EVAQ model deterministic, creating a 

better baseline for comparison with the deterministic Simulex model. The flow rate Q 

(person/m/s) is calculated by Equation 1 (Thompson & Marchant, 1995),   

𝑄𝑄 =  �

80
𝑤𝑤(𝑇𝑇90−𝑇𝑇10)

(𝑤𝑤 ≥ 1.1𝑚𝑚)
65

𝑤𝑤(𝑇𝑇70−𝑇𝑇5)
(𝑤𝑤 < 1.1𝑚𝑚)

 …………………………………………………………(1) 

In Equation (1),  w is the exit width in meters, and T5, T10, T70, and T90 represent 

the times it takes for 5, 10, 70, and 90 people to pass through the exit, respectively. 

 

(a) Environment in EVAQ 

 

(b) Environment in Simulex 

Figure 20: Initial crowd distribution for crowd flow rate validation test. 
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One simulation run by Simulex and EVAQ is conducted for each exit width (0.7m, 

1.0m, 1.5m, 2.0m, 2.5m, and 3.0m). The output of Simulex is collected from the previous 

literature (Thompson & Marchant, 1995). The comparison with the output of EVAQ is 

tabulated in  

Table 7. The relative difference in evacuation time flow rates between the two 

models is calculated using Equation 2 and listed in  

Table 7. In addition, Figure 21 illustrates the variation in flow rate and total 

evacuation time with different exit widths for EVAQ and Simulex.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑅𝑅𝑅𝑅)(%) =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 × 100%..........................(2) 

Table 7: Comparison of simulation results in Simulex (S) and EVAQ (E). 

Exit 
Width 
(m) 

T5 (s) T10 (s) T70 (s) T90 (s) Total Time (s) Flow Rate 
(person/m/s) 

 S E S E S E S E S E RD S E RD 
0.70 6 5.4 12 9.9 72 63.9 92 81.9 100 90.9 10 1.41 1.59 12 
1.00 3 3.6 7 5.4 39 32.4 50 41.4 55.5 65.9 17 1.81 2.26 22 
1.50 3 2.7 5 4.5 24 27.9 31 36.9 34.9 40.2 14 2.05 1.65 21 
2.00 2.5 2.3 4.8 4 21 23.4 26.5 29.4 29.8 33.5 11 1.84 1.57 16 
2.50 1.5 1.4 3.2 3.6 17 18.9 20.1 22.9 23.4 26.7 13 1.89 1.66 12 
3.00 1.3 1.2 3.4 3.2 14 14.4 16.5 17.3 19.8 21.9 10 2.04 1.86 9 

According to Table 7, the evacuation time and flow rate do not differ much for 

Simulex and EVAQ. The difference in total evacuation time between the two platforms 

range between 10% and 17%, which implies that the time to evacuate all people is 

relatively close for the two frameworks. The same observation applies to flow rate results, 

where the output of the two platforms differs in the range of 9% to 22%. Given the 
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difference in modeling principles described earlier, such discrepancy is expected, and 

results are within striking distance from each other. 

Considering Figure 21(a) and (b) the trends of simulation results for the particular 

test case described here are similar between the two platforms. For example, in both 

Simulex and EVAQ models, it can be observed that increasing the exit width causes the 

total evacuation time to decrease. Note that, if each exit cell could accommodate more 

than one person at a time, an increase in flow rate and a resulting decrease in evacuation 

time could be expected. Finally, this example also demonstrates that crowd behavior at 

the exit location can significantly influence the egress process. 

 

(a) Flow Rate 

 

(b) Evacuation Time 

Figure 21: Variation in flow rate and evacuation time for different exit widths in 

Simulex and EVAQ. 

3.4.2 Required number of the simulation run 

While deterministic simulation requires only one run to generate valid predictions, 

in stochastic simulation modeling, it may not always be trivial to determine the required 
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number of simulation runs to yield statistically significant results.  To achieve best results, 

modelers often run simulations for multiple (e.g., 10, 20, 50, or more) times. However, it 

is imperative to run a complex stochastic model enough times to understand its predictions 

while not spending time and computational resources by running it more than necessary 

iterations. Moreover, large number of simulation runs may not be feasible when models 

are run in a network or have a large number of parameters (Ritter, Schoelles, Quigley, & 

Klein, 2011). For example, for a model with 100 parameters, making 100 runs per 

parameter setting requires 100,000 runs. To avoid this situation, research suggests that a 

model is run until it has stable performance in key predictions (Ritter et al., 2011; Currie 

& Cheng, 2016). Here, for evacuation analysis each test case is run for several iterations 

until it arrives at a stable and valid output (e.g., evacuation time). To this end, mean-

variance plot for different numbers of simulation runs is developed for each test case of 

different parameter settings. This plot facilitates to determine the required number of runs 

that yields a stable prediction of each parameter. For example, Figure 22(a) shows the 

mean-variance plot of evacuation time for the example illustrated in the previous Section 

(i.e., maximum flow rate validation test). To introduce the stochasticity in the previous 

example 40% randomness in agent movement is considered (i.e., partially observable 

environment) to evacuate the environment. For an exit width of 0.7m, the EVAQ model 

provides a mean evacuation time of 100.80 seconds over 20 simulation runs. To arrive at 

this number, the simulation was run for 30 times, and mean-variance values were plotted. 

As Figure 22 suggests, with increasing the number of simulation runs beyond 20, 

the mean and variance of evacuation time values (in seconds) does not change 
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significantly. Therefore, the resultant distribution (mean, variance) is considered to have 

converged, and no significant variation can be seen after 20 simulation runs. In other 

words, the mean evacuation time is stable after 20 simulation runs. However, an increase 

in randomness requires more simulation runs for stable prediction. As shown in Figure 22 

(b) for 80% random movement required simulation runs increases to 40 (mean evacuation 

time of 155.84 seconds). The same test case has been used for the parameter ‘flow rate’ to 

determine the required number of simulations in the presence of 40% and 80% random 

movements. Results show that with an increase in randomness the required number of 

simulation runs to achieve stable output increases to 30 (mean flow rate of 1.26 

persons/m/s), 80 (mean flow rate of 1.18 persons/m/s) respectively (Figure 23). It must be 

noted that Figure 22 and Figure 23 show the cumulative plots of mean-variance of the 

vertical axis variable (i.e., evacuation time, flow rate). In addition to cumulative plots, 

evacuation time or flow rate can be plotted for each individual run to visualize the actual 

variability of these parameters from one simulation run to the next. 

 

Figure 22: Mean-variance plot for different numbers of simulation runs for stable 

evacuation time prediction. 
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Figure 23: Mean-variance plot for different numbers of simulation runs for stable flow 

rate prediction. 

3.4.3 Replication of historical event-the Rhode Island nightclub fire case  

EVAQ is used to replicate a historical event of fatal fire occurred at a nightclub in 

Rhode Island. The dataset used for this validation experiment is obtained from the 

literature, and the simulation results are further compared with those reported by NIST 

(Grosshandler et al., 2005).  

Environment: The nightclub floorplan is illustrated in Figure 24(Grosshandler et 

al., 2005). The building is a single-story wood frame with approximately 415 m2 in floor 

area. As shown in Figure 24, there are four exit locations (the front entrance, backside exit 

door, kitchen exit door, and a platform exit door). Since most of the evacuees were aware 

of the main entrance, some congestion started to occur in front of the main entrance after 

some time of fire initiation. According to NIST data, the platform door became impassable 

due to the spread of fire approximately 30 seconds later. Therefore, to simulate this event, 

fire initiation point (shown by flame icon) is placed near the platform door. It was also 

reported that 79 people were able to escape by breaking windows. However, due to the 



  

59 

 

lack of information about window positions, the corresponding EVAQ model considers 

that people were only using the exits to evacuate. 

Assumptions: To simulate the emergency evacuation for the environment 

illustrated in Figure 24, EVAQ considers the following assumptions, 

a) From NIST data, a total of 350 people (all adults, 50%-50% between males and 

females) are randomly distributed on the floor (shown by human icon).  

b) A total of 230 people are randomly selected and assigned to main entrance for egress. 

c) A total of 20 people are randomly selected and assigned to platform door for egress. 

d) All evacuees evacuate the building using either queuing or competitive behavior based 

on their distance to the exit. 

It must be noted that assumptions (b) and (c) are consistent with NIST data which 

suggest that most of the people only aware of the front entrance and some people tried to 

take platform exit door which was compromised after 30seconds of fire initiation. 

 

Figure 24: Layout of the Rhode Island nightclub floor. 
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Simulation Result: Using different random spatial distributions of people and 

hazard in the environment, the EVAQ simulation determines the average results over 20 

simulation runs, as listed in Table 8, where a comparison is also made with NIST reported 

data. Results indicate that the EVAQ model closely replicates the NIST report. 

Table 8: Comparison of simulation result between EVAQ model and NIST data for the 

Rohde Island nightclub fire. 

Data Total 
Number 
of People 

Survivors Total 
Fatalities Using Exits Using 

Windows 
Total 

NIST  350 171 79 250 100 
EVAQ  350 273 - 273 77 

3.5 Summary & Conclusions 

This Section presents the V&V methodology for EVAQ framework to evaluate the 

reliability of its application. Several NIST suggested verification tests for the emergency 

evacuation model have been performed and the results are further compared with another 

evacuation simulation tool Simulex. The result shows EVAQ can simulate dynamic 

availability of exits which is not possible in the Simulex environment. However, EVAQ 

cannot model congestion at the stair use which is included in the future direction of the 

research.  

On the other hand, to validate the evacuation model steps of validation trajectory 

have been followed demonstrated by Thomsen et al., (1999). Two validation tests have 
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been performed suggested by NIST—maximum flow rate test and the replication of Rhode 

Island nightclub fire incident. The results from the maximum flow rate test are further 

compared with the results from Simulex for the environment. The result shows that 

difference variation ranges between 9% and 22% due to the different modeling method of 

Simulex and EVAQ. On the other hand, Rhode Island simulation result shows that EVAQ 

can simulate a large environment with higher occupant load. 
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4 APPLICATION STUDIES AND ANALYSIS OF RESULTS 

4.1 Introduction 

This Section presents the implementation of EVAQ to answer the research 

questions previously listed in Subsection 1.2 by evaluating the impact of factors such as 

human traits (personal and interpersonal characteristics), environmental constraints, as 

well as hazard and intervention systems and their interactions on the likelihood of survival 

in an emergency evacuation. Two specific scenarios for crowd egress planning in a fire 

emergency, namely an airport terminal and a shopping mall are presented, and results are 

discussed.  

4.2 Airport Terminal Evacuation Plan 

In this Section, an airport departure terminal is modeled to assess the performance 

of EVAQ for egress strategy planning and analysis. The model imitates the evacuation 

process in a dynamic (deteriorating in the presence of fire hazards) environment and 

identifies critical egress issues for further investigation and consultation with building 

codes. As shown in Figure 25, the 800 m2 terminal floor consists of check-in counters, 

offices, restrooms, café and bars, and retail shops. In this scenario, 275 people (shown by 

human icon) and 3 fire initiation points (shown by flame icon) are modeled. Also, there 

are 9 exits (E1 through E9) and 8 boarding gates (G1 through G8) in the airport terminal. 

Each traveler must go through a security checkpoint before entering the secured area and 
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boarding the plane. To study the evacuation pattern during a fire emergency, two test cases 

are considered and modeled in EVAQ. These include, 

Test case 1: The security checkpoint remains open and accessible to the crowd during the 

evacuation, allowing people to move in and out of the secured area to egress.  

Test case 2: The security checkpoint and boarding gates remain inaccessible to maintain 

the integrity of the secured area, thus separating the secured and unsecured areas of the 

terminal during the evacuation. In this case, travelers who have already entered the secured 

area can only use the exit marked as wayout in Figure 25 for egress.  

 

Figure 25: Airport terminal layout and distribution of travelers. 

To perform egress analysis for both of the cases, three assumptions are considered 

as follows, 

a) A total of 275 people of 12 different types (see Table 3) are randomly distributed in 

the environment, and no group behavior is considered. 

b) Each evacuee chooses his/her nearest exit and pursues it using either queuing or 

competitive behavior based on his/her distance from that exit.  
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c) No randomness in agent movement and no pre-evacuation time is considered. 

4.2.1 Minimum evacuation time 

To establish a baseline for evacuation analysis, EVAQ is first used to determine 

the minimum time required to evacuate the terminal building under full occupancy and no 

fire propagation with time (i.e., static environment state). The movement speed of each 

person is predefined according to their physical characteristics, as described in  

Table 3. The goal of each person is to find and arrive at the nearest exit and use 

that exit (either in a queue or with the competition with others) to evacuate to safety. A 

total of 30 simulation runs are conducted with different seeds and the average evacuation 

time of people for safely exiting is illustrated in Figure 26.  

 

Figure 26: Cumulative plot of the average number of people evacuating the terminal 

building with time. 

According to results, in test case 1 (i.e., security checkpoint is open) it takes 860 

SS or 215 seconds to evacuate the terminal, while in test case 2 (i.e., security checkpoint 
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is closed), it takes 1780 SS or 445 seconds to evacuate the terminal. The difference in 

evacuation time (230 seconds) can be attributed to the fact that in test case 2 people inside 

the secured area are only allowed to use wayout and the boarding gates to egress, thus 

creating more congestion and longer queues at exit locations. 

4.2.2 Situational awareness 

As previously described in Subsection 2.6.5, an evacuee’s level of knowledge of 

the environment can influence his or her exit strategy selection and execution. Table 9 

shows the average evacuation time at two extreme levels of knowledge (i.e., full and none) 

for the abovementioned test cases. For each test case, a total of 30 simulation runs are 

conducted. As expected, in both cases the evacuation time is longer for people with no 

knowledge about their surroundings than those with full knowledge. 

Table 9: Average evacuation time at distinct levels of knowledge for the airport terminal 

evacuation scenario. 

Test Case Level of Knowledge Evacuation Time (sec.) 
1 1 215 

0 480 
2 1 445 

0 1,020 

Of note, when it comes to situational awareness, more is not always necessarily 

better. A well-designed evacuation simulation model developed in EVAQ provides more 

insight into this by helping users understand what degree of situational awareness is 
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required in what type of environment for survival. For example, in a layout with abundant 

exits, it is easy to locate an exit, even if evacuees have limited situational awareness. 

4.2.3 Likelihood of survival 

The developed EVAQ model for this scenario is used to determine the effect of an 

individual’s characteristics and environmental constraints on their likelihood of survival 

rate, which is defined using Equation (3) below, 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛.𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋 

………(3) 

Similar to the static environment state, the velocity values of evacuees are 

predefined according to their physical characteristics, and the goal of each person is to 

find and arrive at the nearest exit to evacuate to safety. Two test cases are considered and 

a total of 30 iterations are run for each case using different seed numbers. It is found that 

in test case 1, the likelihood of survival is generally higher than in test case 2, regardless 

of agent type. This is due to the fact that in test case 2, the security checkpoint remains 

inaccessible during evacuation, thus creating more chaos and congestion in the secured 

area of the terminal, adding to the likelihood of people being compromised as fire spreads. 

Figure 27and Figure 28 illustrate the likelihood of survival for 12 different agent classes 

in the environment for both cases.  
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Figure 27: Likelihood of survival of able agents for (a) test case 1, and (b) test case 2. 

 

Figure 28: Likelihood of survival of disabled agents for (a) test case 1, and (b) test case 

2. 

According to these Figures, the likelihood of survival decreases with a decrease in 

availability of the nearest exits and a resulting increase in congestions in the environment. 

These Figures also show the effect of evacuees’ personal characteristics on their survival. 

In terms of age, the likelihood of survival of children and elderly people is almost equal 

but less than that of adults. This can be attributed to the fact that the survival of vulnerable 

evacuees (e.g., children and elderly people) largely depends on group interactions (i.e., it 

may be difficult for a child or elderly person to find the exit and safely evacuate without 
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any help), which is not present in this scenario. Finally, while there is no significant 

difference in the likelihood of survival for different genders, disability status can play a 

role in an evacuee’s chance of survival. In particular, the fate of a disabled person largely 

depends on the availability of special exits, as well as the presence of group behavior and 

interactions. For the airport terminal simulation, the output of the EVAQ model shows 

that on average, 174 out of a total of 230 able people could safely evacuate (i.e., 73%), 

while only 29 out of a total of 45 disabled people could safely evacuate (i.e.,64%) for test 

case 1. However, these two value decreases for test case 2—55% and 39% respectively. 

4.3 Shopping Mall Evacuation Plan 

In this Section, a shopping mall is modeled to assess the performance of EVAQ 

for egress strategy planning and analysis. As shown in Figure 29, the 1,012.5 m2 mall floor 

consists of 15 stores, restrooms, two cafés and a food court, and children playground. In 

this scenario, 200 people (shown by human icon), 2 fire initiation points (shown by flame 

icon), and 7 main exits (E1 through E7) are modeled. To study the evacuation pattern 

during emergency, two test cases are considered and modeled in EVAQ. These include, 

Test case 1: Evacuation is possible only through the main exits of the shopping mall. 

Test case 2: 15 additional emergency exits (located in the back of the 15 stores) can be 

accessed and used for evacuation. 

To perform egress analysis for both of the cases four assumptions are considered 

as follows, 
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a) A total of 200 people of 12 different types (see Table 3) are randomly distributed in 

the environment. 

b) Half of the population (i.e., 100 people) exhibit one of the three different group 

behaviors, namely altruistic (20 people), leader-follower (50 people), and herding (30 

people) behavior. 

c) Each evacuee chooses his/her nearest exit and pursues it using either queuing or 

competitive behavior based on his/her distance from that exit.  

d) No pre-evacuation time is considered. 

 

Figure 29: Shopping mall layout and distribution of shoppers. 

4.3.1 Effect of additional emergency exits 

Two specific test cases (test case 1 and 2) are considered for this scenario, and a 

total of 20 simulations are run for each case. It is confirmed that allowing people to use 

more exits results in a reduced evacuation time. In particular, the average evacuation time 

is reduced from 660.4 seconds in test case 1 to 456.3 seconds in test case 2. Results also 

indicate that 34 more people survive in test case 2 (122 survivals in test case 1 compared 

to 156 survivals in test case 2) due to the availability of more exits.  
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Figure 30 (a) and (b) illustrate evacuees’ heat maps in both test cases. In this 

Figures, light-colored lines represent the salient evacuation paths that are highly utilized 

(occupied for 20+SS for test case 1 and 15+SS for test case 2) during the evacuation 

process, while dark-colored lines indicate less utilization of evacuation paths by evacuees. 

It is evident from these Figures that when fewer exits are accessible for emergency 

evacuation, more congestion is expected at each exit, whereas people are more evenly 

routed (less density) when 12 additional exits are deployed for evacuation.  

 

Figure 30: Heat map of evacuees’ movement patterns for (a) test case 1, and (b) test case 

2. 

It must be noted that while such findings (i.e., fewer exits lead to more congestion 

at the exit locations, adding to evacuation time) are not surprising, some more nuanced 

conclusions of such analyses with real implication to emergency planning are identifying 

the best possible positioning of the exits, and the degree to which each added exit could 

help save lives. Since implementing such layout modifications in the real world are costly, 

EVAQ can provide an opportunity to better understand the tradeoff between cost and 

safety. 
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4.3.2 Effect of randomness in evacuees’ movements 

As previously explained, in a dynamic environment people may take random steps 

to find and arrive at nearest exits due to the limited visibility, smoke inhalation, and excess 

heat. To analyze the impact of hazard severity on evacuees’ fates, the EVAQ simulation 

of the shopping mall scenario is revisited. Figure 31 shows that the chance of survival 

decreases with an increase in movement randomness (due to limited visibility, smoke 

inhalation, and excess heat) from 0 (no random moves) to 1 (all random moves), in both 

test cases 1 and 2. 

 

Figure 31: Survival rate at different levels of randomness in shopping mall evacuation. 

4.3.3 Effect of a hazard intervention system 

To understand the effect of the intervention system on the likelihood of survival, 

the EVAQ simulation of the shopping mall scenario is revisited. As shown in Figure 29, 

there are 2 fire extinguishers in the mall to control fire propagation. This model is run for 

test case 1 over 30 times (using different seed numbers) for both with and without fire 

extinguishers in the system. Results illustrated in Figure 32 and Figure 33  show that the 
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likelihood of survival increases in the presence of a hazard intervention system regardless 

of evacuees’ gender and disability status. Also, it is observed that the incorporation of 

group behavior increases the likelihood of survival for children, as well as elderly and 

disabled people.  

 

Figure 32: Likelihood of survival of able agents (a) with, and (b) without a hazard 

intervention system. 

 

Figure 33: Likelihood of survival of disabled agents (a) with, and (b) without a hazard 

intervention system. 
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4.3.4 Effect of firewall 

To understand the effect of the firewall on the survival rate, the EVAQ simulation 

of the shopping mall scenario is revisited. As shown in Figure 29, the wall surrounding 

the playground is modeled for three types of materials mentioned in Subsection 2.4.3. 

Three test cases are developed with three different materials (e.g., Class A, Class B, and 

Class C). For these three test cases two main assumptions are considered as follows, 

a) All agents take only main exits (E1-E7) for evacuation. 

b) No use of fire extinguisher. 

 Each test case is run over 20 times with different seed numbers. Results show that 

on average more people can be saved if the wall is modeled with Class A materials rather 

than Class C materials. The reason is that Class A materials more effectively prevent the 

fire from propagating to adjacent cells than Class C materials. Table 10 shows the average 

number of evacuees survived for each class of materials. 

Table 10: Average number of survivors due to firewall of different materials for the 

shopping mall evacuation scenario. 

Test Case Material of Playground Wall Number of Survivors 
1 Class A 169 
2 Class B 147 
3 Class C 129 
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4.4 Summary & Conclusions 

In this Section, EVAQ was used to model two person-specific egress simulation 

in fire emergency (an airport terminal and a shopping mall), and results were discussed. 

Findings confirm that EVAQ can successfully simulate large crowd evacuations by 

modeling evacuees’ personal (i.e., age, gender, disability) and interpersonal (i.e., group 

interactions) attributes, and situational awareness in a deteriorating environment. Results 

also show the effectiveness of EVAQ in simulating the impact of the space design (e.g., 

shape and size of rooms and obstacles, number and width of exits) in crowd evacuation. 

In the airport terminal evacuation simulation, it was found that less availability 

of alternative exit routes and lack of situational awareness of existing exits in the 

environment create more congestion and longer queues at the main entrance and 

eventually increase average evacuation time. Besides, on average, the likelihood of 

survival for different agent classes decreases by 60%  due to congestion at the main 

entrance for both able and disable evacuees. 

In the shopping mall evacuation model, it was found that the positioning of the 

exits should be considered carefully, as it decreases the evacuation time and increases the 

survival rate as well. The effect of the intervention system in the hazard affected area is 

also studied with the shopping mall evacuation model. It shows the use of an intervention 

system increases the survival probability by 10% on average for different agent classes. 

Also, the incorporation of group behavior increases the likelihood of survival for children, 

elderly and disabled people, which is not observed for the airport terminal evacuation 

model.    
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As personalized sensing and information delivery platforms are becoming more 

ubiquitous, findings of this work are ultimately sought to assist in developing and 

executing more robust and adaptive emergency mapping and evacuation plans, ultimately 

promoting people’s lives and wellbeing. 
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5 CONTRIBUTIONS & CONCLUSIONS 

5.1 Introduction 

The overarching goal of this research was to design and test a person-specific 

simulation modeling tool for investigating the role and impact of human characteristics 

(e.g., personal and interpersonal), environmental constraints, and intervention systems on 

the safe egress of evacuees from a hazard-affected environment. To achieve this goal, an 

end-to-end simulation framework was developed which takes as input the layout of the 

environment, as well as the characteristics of and interactions between evacuees, hazards, 

and intervention systems, to facilitate evacuees’ decision-making, and increase the 

likelihood of survival by suggesting the best possible egress strategy in a deteriorating 

environment. In this Section, a concise statement on research contributions and a 

discussion of the limitations and directions for future work are presented. 

5.2 Contributions to the Body of Knowledge 

The contributions of the research are categorized as methodological contributions 

and scientific contributions. The development of a comprehensive evacuation simulation 

tool is considered as the key methodological contribution of this research. As described 

throughout this Thesis, EVAQ is a holistic system that models all key components of an 

emergency evacuation (e.g., environment, people, hazards, and intervention systems) and 

controls their interactions in real time through the simulation engine. This enables 

modelers to revise individual components without affecting the integrity of the model. 
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EVAQ adopts a combination of cellular automata-agent based simulation modeling where 

each evacuee individually assesses his/her status and the status of the surrounding 

environment for making a rule-based decision (Bonabeau, 2002). In addition, the ability 

to model intervention systems is an entirely new direction of research in evacuation 

simulation modeling. Moreover, beyond modeling typical mechanical intervention 

systems such as home water sprinkler recently presented by NIST in FDS (McGrattan, 

Klein, Hostikka, & Floyd, 2010), EVAQ has the ability to model dynamic intervention 

systems (e.g., police officers chasing an attacker, firefighters moving against the crowd 

flow to put out fire).  

Several verification tests prescribed by NIST were conducted to evaluate the 

performance of EVAQ. Qualitative and quantitative results of verification tests indicate 

that EVAQ can successfully model occupants’ pre-evacuation time distribution, 

movement, navigation, exit choice/usage, exit route availability, and flow constraints. 

Besides, EVAQ was validated using NIST dataset from a historical incident of fatal fire 

at a nightclub in Rhode Island. Collectively, the outcome of the V&V stage indicates the 

potential of EVAQ for improved crowd management and emergency mapping.  

The scientific contributions of the research presented in this Thesis include 

creating person-specific egress strategies by capturing key events occurring during the 

evacuation process, as well as factoring in information on attributes of involved 

individuals. EVAQ provides insights into crucial evacuation planning parameters such as 

evacuees’ likelihood of survival given their personal and interpersonal characteristics. 

This can help designers and architects evaluate building/facility layouts to minimize the 
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number and severity of potential casualties in case of an emergency, and subsequently 

modify their designs prior to construction. Moreover, this information helps to make 

important decisions at all levels of emergency management. Specifically, EVAQ can help 

in benchmarking a design against historical data such as school shootings or workplace 

disturbances to investigate whether a given building design meets the minimum 

requirement of an emergency evacuation. Results demonstrate that the likelihood of 

survival is directly proportional to the number and location of exits, the presence of 

intervention systems, signage, and evacuees’ situational awareness (drift).   

5.3 Future Work & Conclusions 

The current implementation of EVAQ does not consider the variation in 

evacuees’ velocities during an emergency. In essence, each person in the system is 

initially assigned a velocity value sampled from the distribution in  

Table 3, and maintains the same velocity during the evacuation until the 

completion of his/her egress plan. In reality, however, velocity is subject to change during 

the evacuation. For instance, an evacuee may decide to slow down for a while to catch a 

breath or speed up as s/he sees hazard approaching. In general, the instantaneous velocity 

of evacuees is a function of their status, as well as the severity of hazards, and the 

availability of free space in the environment. Incorporating variations in velocity values 

can result in a more realistic output, which can, in turn, lead to more informed simulation-

based decision-making.  
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To better capture the actual velocity distribution of evacuees in the 

environment, EVAQ uses a grid division of space (i.e., 1 cell = 0.5m×0.5m). However, by 

reducing this cell size, the evacuation environment can be represented at a finer level, 

which helps to approximate the agent velocities with higher precision. For example, if the 

cell size is reduced to 0.25m×0.25m, then an evacuee can only cover multiples of 0.25m 

per simulation time. By further reducing the cell size to 0.1m×0.1m, an evacuee can cover 

multiples of 0.1m per simulation time. The latter retains the individual’s velocity with 

higher precision and thus better captures the overall distribution of evacuees’ movements 

(including mean and standard deviation). To avoid precision loss in a finer grid system, 

the environment can be modeled in such a way that each person occupies more than one 

cell (multi-grid model) as previously done in different evacuation studies (Song et al., 

2006; Cao, Song, Lv, & Fang, 2015; Cao, Song, & Lv, 2016).    

Moreover, the research presented in this Thesis was mainly focused on 

designing and testing the main skeleton of EVAQ considering the four key components of 

any evacuation scenario, namely environment, people, hazards, and intervention systems. 

In the environment module, user input is used for configuring the physical environment. 

However, creating functionality that allows the integration of CAD/BIM files in EVAQ 

for the automated generation and population of the building/facility layout will be of great 

value since it can lead to more intuitive interface design while allowing the integration of 

EVAQ functionalities with those of CAD/BIM software. The current implementation of 

EVAQ does not consider elevation changes in a floor plan. In other words, evacuees are 

modeled in a 2D grid system. Therefore, staircase, elevators, and escalators are not part of 
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the modeled environment. Also, incorporation of physics-based evacuation modeling 

(Cantrell, Petty, Knight, & Schueler, 2018) allows modelers to analyze a more extensive 

range of human behavior (e.g., pushing, falling, trampling), all likely events during a real-

world emergency evacuation.  

In the current implementation, EVAQ is validated through retrospective 

experiments and datasets replicating historical events (Thomsen et al., 1999). While using 

retrospective evaluation allows a wide range of “what-if” analysis to be performed, for 

full confidence in the results, it is ideal the outcome be assessed against established 

theories, real-world cases (difficult to accomplish given the scarcity of datasets in this 

domain), or verified by experts (i.e., face validation). 
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APPENDIX  

In this Appendix, the flowchart of the key steps of the simulation process in EVAQ 

is presented (Figure 34). Several pieces of pseudo-code for each of the model components 

(i.e., hazard, intervention, agent) are also included to facilitate the discussion of the 

flowchart. This Section demonstrates the functionality of EVAQ written in Python 

language, specifically the process of simulation result generation which is finally 

converted into a 2D visualization with the help of MATLAB visualizer.  

 

Figure 34: Flowchart of the overall simulation process. 
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Repellent Propagation: 

[1] FOR each repellent cell descriptor in the list of 

repellent cell descriptors 

 [2] GET all required information from the descriptor 

 [3] IF current simulation time is the activation time 

of the repellent AND current simulation time lies 

within the boundary of initiation time and repellent 

duration 

 [4] COMPUTE new cells where repellent propagates 

 [5] FOR each new repellent cell 

  [6] CREATE new repellent cell descriptor 

 [7] END FOR 

[8] END IF 

[9] END FOR 

[10] APPEND the new repellent cell descriptors to the list 

of repellent cell descriptors 

 

Hazard Propagation: 

[1] FOR each hazard cell descriptor in the list of hazard 

cell descriptors 

 [2] GET all required information from the descriptor 
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 [3] IF current simulation time is the activation time 

of the hazard 

 [4] UPDATE the hazard cell descriptor for future 

propagation 

 [5] COMPUTE new cells where hazard propagates 

 [6] FOR each new hazard cell 

[7] FOR each cell in the list of object 

position descriptors 

[8] IF the new hazard cell contains an 

object 

[9] COMPUTE delayed activation 

time for the hazard cell 

   [10] END IF 

  [11] END FOR 

  [12] CREATE new hazard cell descriptors 

 [13] END FOR 

[14] END IF 

[15] END FOR 

[16] APPEND the new hazard cell descriptors to the list of 

hazard cell descriptors 
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Repellent-Hazard Interaction: 

[1] FOR each repellent cell descriptor in the list of 

repellent cell descriptors 

 [2] GET all required information from the descriptor 

[3] IF current simulation time lies within the 

boundary of initiation time and repellent duration 

[4] FOR each cell in the list of hazard cell 

descriptors 

[5] IF the repellent cell contains any 

hazard 

[6] APPEND cell position to the list of 

mitigated hazard positions 

  [7] END IF 

 [8] END FOR 

[9] END IF 

[10] END FOR 

[11] FOR each cell position in the list of mitigated hazard 

positions 

[12] REMOVE the corresponding descriptor from the list 

of hazard cell descriptors 

[13] END FOR 
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Agent Decision Making: 

Independent Agent: 

[1] FOR each agent position in the list of current agent 

positions 

[2] COMPUTE exit path as the shortest safe path 

current position to the nearest exit 

 [3] IF there is no safe path to exit 

[4] UPDATE the agent’s exit path to stay in 

current position 

[5] END IF 

[6] UPDATE the agent’s plan with the exit path 

[7] END FOR 

Group Agent: 

[1] FOR each agent group in the list of the agent group 

 [2] IDENTIFY the common destination for the group 

[3] FOR each member agent of the group 

[4] COMPUTE exit path as the shortest safe path 

from current position to the common destination 

[5] IF there is no safe path to common 

destination 

[6] UPDATE the agent’s exit path to stay in 

current position 
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[7] END IF 

[8] UPDATE the agent’s plan with the exit path 

[9] END FOR 

[10] END FOR 

 

Agent Plan Execution: 

[1] SORT agent list based on the distance of agents from 

exit 

[2] FOR each agent in the sorted agent list 

 [3] IF agent is not at the exit already 

[4] IF agent is executing the exit plan (fully 

observable environment) 

[5] COMPUTE agent’s next position as per 

exit plan 

  [6] ELSE  

[7] COMPUTE agent’s next position as a 

random adjacent position 

  [8] END IF 

[9] IF agent’s next position is empty (no other 

agent) 

[10] UPDATE agent’s position to the next 

position 
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  [11] END IF 

 [12] END IF 

[13] END FOR 
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