
 

ANALYZING ANIMAL DISEASE, STOCKER CATTLE PRODUCTION SYSTEMS, AND 

POLICY CHOICES IN PRODUCTION AGRICULTURE 

 

A Dissertation 

by 

JUSTIN REYNALDO BENAVIDEZ  

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  David P. Anderson 
Committee Members, Pete Teel 
 Henry Bryant 
 F. M. Rouquette, Jr.  
 Joe Outlaw 
Head of Department, Mark Waller 

 

December 2018 

Major Subject: Agricultural Economics 

Copyright 2018 Justin Reynaldo Benavidez 

 

 

 

 



 ii 

ABSTRACT 

 

Agricultural producers across a diverse set of enterprises face significant risk each year 

when planting begins, livestock are purchased, or a new investment is made in machinery or 

facilities. Participants in other industries face risk from financial markets, global trends, and the 

preferences of customers. Unique to agriculture is risk from biologically-induced time-lags in 

production, climate variability, invasive species and pests, and disease in addition to the risks 

faced by other industries. Where some industries are able to spread risk over dozens, hundreds, 

even thousands of shareholders, the risk from working in production agricultural commonly 

accrues to a single nuclear family, or a small number of relatives.  

Farm managers face different decisions daily, and a single choice can significantly 

impact profitability. The collection of research in the following essay models under widely 

different circumstances in which management must choose between options that represent 

significantly different levels of profitability. 

The first essay included in this research estimates the cost of a Cattle Fever Tick 

eradication procedure in South Texas to an individual ranch and government agencies. The 

second essay estimates average daily gain in stocker enterprises based on different levels of days 

on pasture, stocking rate, and supplementation, and determines whether days on pasture are 

significantly impacted by changing temperature and precipitation. The third essay determines the 

value of a theoretical mix of the agricultural revenue coverage (ARC) and price loss coverage 

(PLC) programs.  
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CHAPTER I INTRODUCTION                                                                                 

THE COST OF A CATTLE FEVER TICK ERADICATION 

Introduction 

Cattle Fever Ticks (rhipicephalus annulatus and rhipicephalus microplus) (CFT) 

feed on cattle and other ungulates resulting in poor physical condition and reduced 

reproductive capacity. Additionally, CFT are a vector of Babesia bovis, a virulent 

species of Bovine babesiosis, commonly referred to as Cattle Fever. Cattle fever presents 

with anorexia, high fever, lack of appetite, weakness, immobility, diarrhea or 

constipation and damages the central nervous system which can lead to incoordination, 

teeth grinding and mania. In naïve cattle survival of cattle fever varies, however in fully 

susceptible breeds 50.0% or more of untreated animals and up to 10.0% of treated 

animals may die (Center for Food Security and Public Health, 2008). As the only vector 

of Babesia bovis, eliminating the CFT eliminates the possibility of infection.  

 Upon discovery of the CFT role in the spread of cattle fever in the late 1800s a 

systematic eradication protocol isolated the pest, within the U.S., to the Permanent 

Quarantine Zone (PQZ) along the Rio Grande in south Texas. The eradication of the 

1CFT is credited with the expansion and success of the U.S. livestock industry (Graham 

and Hourrigan, 1977). The eradication of the CFT left the U.S. livestock population 

                                                

1 Part of the data reported in this chapter is reprinted with permission from “Integrated strategy for 
sustainable cattle fever tick eradication in USA is required to mitigate the impact of global change” by 
Perez de leon, Adalberto A., P.D. Teel, A.N. Auclair, M.T. Messenger, F.D. Guerrero, G. Schuster, and 
R.J. Miller, 2012. Frontiers in Physiology, 3, 1-17, Copyright [2012] by Creative Commons.  
 

1 
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unexposed to cattle fever while it is still endemic in Mexico. Periodic infestations, both 

within and outside of the PQZ, lead to quarantine measures which lead to financial 

consequences for ranchers and government agencies.  

 The mortality of cattle fever poses significant financial hardship when it presents 

in a naïve cattle population. However, efforts to eradicate the CFT are also costly. Rule 

41.8 “Dipping, Treatment, and Vaccination of Animals” of the Agriculture title of the 

Texas Administrative Code states, “The owner or caretaker is responsible for all costs 

associated with and labor necessary for presenting the owner or caretaker's cattle for 

scratch inspection, dipping, treatment, or vaccination at the location prescribed by the 

commission.” 

 In March 2016 Texas Animal Health Commission (TAHC) announced the 

quarantine of a premises in Live Oak County, over 100 miles outside of the PQZ, after a 

bull on the property was confirmed as a host of a CFT. As a result, TAHC established a 

Control Purpose Quarantine Area (CPQA) to systematically inspect all wildlife and 

livestock in the area of the infested premises. The ‘Live Oak County outbreak’ resulted 

in the quarantine and designation as ‘check-premises’ of over 60 properties that were 

home to various wildlife, over 4,000 head of cattle, and 200 horses. The Live Oak 

County outbreak prompted this research and will serve as a template for scaling ranch-

level and agency-level costs of CFT eradication.  

 This study simulates a CFT infestation in a representative cattle herd, absent 

infection of cattle fever, and the resulting quarantine cost under different eradication 

options. The purpose of this study is to determine the cost of the different quarantine 
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procedures to ranchers and state and federal animal health agencies using the 

effectiveness of each treatment to determine the number of treatments in combination 

with the cost of each treatment.  

 This study is the first simulation model to combine the life cycle of the CFT with 

the cost of each of four eradication protocols. Rather than obtaining the cost of a single 

round of quarantine procedure, this study utilizes the biology of the fever tick in 

combination with the effectiveness of eradication protocols to determine the estimated 

number of quarantine procedures necessary to eradicate a CFT infestation. The 

bioeconomic model used in this study can be extrapolated to similar infestations and can 

be used as a template for other disease or pest control cost estimations.  

Literature Review 

Cattle Fever Tick history  

Cattle fever or Texas cattle fever has an extensively documented history. 

Inexplicably under-performing cattle in the southern United States compared to the north 

throughout the 1800s led to southern producers’ frustration and confusion (Graham and 

Hourrigan, 1977; Haygood, 1986). Producers sought various solutions to improving their 

herds including importing high quality breeding stock from the north, however these 

animals died upon exposure to cattle fever (Graham and Hourrigan, 1977). Animals that 

survived to adulthood in the south were slow to mature and underperformed in carcass 

quality, breeding, and milking. In addition to the losses experienced from 

underperforming stock, southern producers suffered from bans on transport of animals to 

regions unexposed to the CFT.  
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When cattle were moved north, either by rail or by long-distance cattle drives, 

there was a common occurrence of sudden death in animals native to the northern areas 

upon exposure to southern cattle. The disease caused a mortality rate of more than 

90.0% and, in some cases, 100.0% of the newly exposed cattle did not survive exposure 

(Haygood, 1986). The economic hardship caused by the high death loss led to the ban in 

certain states of southern cattle shipments.  

A groundbreaking study in the fields of veterinary science and human medicine 

by Smith and Killborne (1893) conducted to ascertain the cause of Babesiosis proved 

arthropods serve as the vector for the disease in humans and animals. In 1906, shortly 

after Smith and Killborne authored their study the United States enacted the Cattle Fever 

Tick Eradication Program (CFTEP).  

 The CFTEP spanned the period from 1907 to 1943 and required the cooperation 

of state and federal governments and local producers (Perez de Leon et al., 2012; Giles 

et al., 2014). The effort began with surveys to determine the northern border of cattle 

fever followed by restrictions on the northward-movement of cattle from tick-infested 

areas during warm weather; an area including approximately 700,000 square miles 

below a line that began in Virginia and ended in Texas and parts of California. Finally, 

federal governments employed veterinary staff, whose numbers were supplemented by 

state and local governments in certain cases, to monitor cattle for parasites and counties 

constructed dipping vats to apply acaricide to animals (Graham and Hourrigan, 1977). 

Voluntary cooperation of producers was integral to the success of the program, although 

participation was not always voluntary or cooperative.  
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Figure 1 “Texas Cattle Fever Tick Range” (Perez de Leon et al., 2012) contains 

the range of the CFT prior to the CFTEP and the PQZ established along the 

Texas/Mexico border. By 1960 CFT were restricted to an area along the Texas-Mexico 

border that is strictly monitored by the Animal and Plant Health Inspection Service, 

Veterinary Services (APHIS-VS) and the Texas Animal Health Commission (Giles et 

al., 2014). Estimates of the losses incurred by the U.S. economy due to the presence of 

the CFT and the resulting Babesiosis range from $23,250,000 to $130,500,000 (Mohler, 

1906; Harwood and James, 1969), and the CFT was widely considered as the major 

challenge in establishing a livestock market in the rural south.   

 
Figure 1. Texas Cattle Fever Tick range – Reprinted (Perez de leon et al., 2012) 
 

Since the late 1940s infestation of the CFT have been primarily isolated in the 

PQZ with periodic outbreaks outside of the boundary. The ‘Live Oak County outbreak’ 

in April 2016 is the most recent infestation to occur outside of the PQZ. 
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Cattle Fever Tick biology  

CFT spend the majority of their life off-host in the egg and larval stages, from six 

to nine months depending on the local microclimate (Graybill, 1911; Perez de leon et al., 

2012). CFT are one-host parasites that complete their larval stage in vegetation in search 

of a passing host and upon attachment remain on a single animal from the larval to adult 

stage. (Mount et al., 1991; Davey et al., 1994). Adults mate and detach with females 

depositing approximately 3,500 eggs, again, dependent upon microclimate conditions 

before dying (Davey et al., 1994). Each year, approximately six generations of the 

species are completed (Mount et al., 1991).  

 Climate plays a role in the oviposition and general success of the CFT, and 

different environmental conditions may alter tick biology (Davey et al., 1980; Mount et 

al., 1991; Perez de Leon et al., 2012). Teel et al. (1996) found that seasonal changes in 

the environment produce two population constraints for the CFT; one is the result of 

cold temperatures during winter months and another from high-temperature and low-

humidity-induced mortality. Numerous studies have also proven that individual pasture 

conditions and microclimate have a significant impact on the persistence of a CFT 

infestation (Teel et al., 1996; Teel et al., 1998; Teel et al., 2003; Corson et al., 2004). 

Additionally, global climate changes are a driver of geographic distribution of the CFT, 

specifically in northern Mexico and South Texas (Corson et al., 2004; Estrada-Pena et 

al., 2006; Estrada-Pena and Venzal, 2006).  

 The preferred host of the CFT are animals of the family Bovidae and, when the 

animals are present, CFT feed almost exclusively on domestic cattle (Anderson et al., 
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2008). Once a tick carrying Babesia transmits the pathogen to an animal it will exhibit 

fever, hemolytic anemia, hemoglobinuria and in many cases, death (Kuttler, 1998). 

Animals who do recover retain the infection and remain immune for long periods, and so 

act as vectors of the disease between ticks and other livestock themselves, and young 

animals are generally more tolerant than older animals (Jongejan and Uilenberg, 2004). 

Even when not acting as a disease vector ticks can cause direct harm to livestock, 

causing decreased productivity and poor health. Jongejan and Uilenberg (2004) describe 

an infestation of Boophilus microplus on the island of New Caledonia without 

introduction of diseases that have still necessitated intensive acaricidal treatment due to 

decreased productivity among Bos taurus on the island.  

   CFT will spread to other animals in the instance where cattle are unavailable 

(Kistner and Hayes, 1970; Cooksey et al., 1989; Perez de Leon et al., 2012; Bram et al., 

2002; Pound et al., 2010; Cardenas-Canales et al., 2011; Busch et al., 2014). When cattle 

are unavailable, numerous ungulate species serve as a suitable host. The most common 

host that has overlapping habitat with cattle in south Texas is the white-tailed deer. 

(Kistner and Hayes, 1970; Busch et al., 2014) These animals host fewer ticks in similar 

environments, possibly due to their grooming habits, and fewer ticks complete 

engorgement (Cooksey et al., 1989) however the parasites are present. Kistner and Hays 

(1970) collected white-tailed deer from four estates on St. Croix of the U.S. Virgin 

Islands and collected CFT from multiple deer, including two infested with B. (R.) 

microplus in an area that had not been exposed to livestock for 20 years. More 
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concerning than the presence of CFT, white-tailed deer were recently found to be sero-

positive for Babesia in Texas and northern Mexico (Pound et al., 2010).  

 An additional problematic species that serves as a suitable host to CFT are the 

wild Nilgai antelope (Boselaphus camelotragus) of South Texas (Sheffield et al., 1983). 

Cardenas-Canales (2011) conducted a study on a private ranch in Coahuila, Mexico, 

from which cattle had been absent for ten years, in which they collected blood samples 

from 20 Nilgai. The authors indicated Babesia-positive animals, but, no ticks and 

concluded that Nilgai cannot be disregarded as a potential reservoir of bovine babesiosis. 

An additional issue presented by Nilgai are their large (up to 16.3 km) home ranges that 

regularly crosses borders from infested to non-infested areas (Moczygemba et al., 2012).  

Wildlife and the Cattle Fever Tick 

 Wildlife complicate Cattle Fever Tick eradication efforts. Certain wildlife 

species, namely white-tailed deer (WTD) and nilgai, a large member of the family 

Bovidae, serve as reservoir species for CFT (Kistner and Hayes, 1970; Cooksey et al., 

1989; Pound et al., 2010; Cardenas-Canales et al., 2011). There are methods in place to 

treat these species’ infestations, however there is no guarantee that all animals are 

treated.   

There is evidence of stable tick populations with reduced productivity in WTD. 

White-tailed deer are widespread in south Texas (Currie, 2013; and serve as a suitable 

host for stable CFT populations (Currie, 2013; Perez de Leon et al., 2012) with reduced 

CFT population vitality (Currie, 2013). Cooksey et al. (1989) speculates that reduced 

CFT population vigor (fewer females fully engorged and reduced egg weight) results 
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from WTD ability to better groom than cattle. Grooming as a form of disturbance 

interrupting the development of CFT is supported by Davey et al. (1980) in which ticks 

disturbed during development presented reduced weight and number of eggs compared 

to those ticks that were undisturbed.  

Nilgai, a native of India and Pakistan were introduced to southern Texas during 

the early 1900s by the King Ranch for hunting (Moczygemba et al., 2012; Lohmeyer et 

al., 2018). The current number of nilgai in southern Texas is unknown, however by 1992 

the population was estimated at over 37,000 and nilgai are now considered the area’s 

most abundant free-ranging exotic ungulate (Traweek and Welch, 1992). Nilgai are 

similar in size and closely related to cattle making them a competent host for CFT. 

Nilgai do not congregate in similar numbers as WTD but their home ranges can exceed 

that of WTD by more than nine times (Moczygemba et al., 2012) and their ability to 

easily navigate high fences by jumping or pushing underneath them makes them a 

critical concern for the CFTEP (Lohmeyer et al., 2018).  

The percent of infestations attributed to WTD and nilgai has been increasing over 

time. Lohmeyer et al. (2018) documented the number of new CFT infestations for fiscal 

years 2007-2009 and 2014-2016. Table 1 presents a summary of Lohmeyer et al. (2018) 

findings. 
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Table 1. Properties newly infested with the cattle fever tick infestations in South 
Texas for years 2007-2009 & 2014-2016 categorized by species of initial detection.  
    Species 
Year   Cattle/Horses  WTD  Nilgai 
2007  74  9  1 
2008  106  24  0 
2009  129  16  1 
2014  21  6  0 
2015  34  14  3 
2016   61   18   8 

       
 

During the two periods in Lohmeyer et al. (2018) there was a change in the 

percentage of infestations attributed to wildlife. The average percentage of infestations 

attributed to wildlife in the first three-year period was 14.0% while the average 

percentage of infestations attributed to wildlife in the second three-year period was 

28.0%.  

There are eradication methods available for CFT infestations in WTD. TAHC 

can install ‘2-poster’ or ‘4-poster’ feeding stations where feeding WTD are exposed to 

topical acaricides, which will be distributed by the animal during grooming, and feed 

ivermectin treated corn (Currie, 2013; Lohmeyer et al., 2018). Both methods have 

limitations inherent in WTD social structure. Larger more dominant bucks will spend 

more time at feeders than does and more submissive bucks and not all deer in an infested 

area will encounter a feeder (Currie, 2013). Currently, there are no methods available for 

treating CFT infestations on nilgai (Lohmeyer et al., 2018).  

Consequences of a babesia bovis outbreak 



 11 

 The ultimate reason for eradicating the CFT, outside of concern for animal 

welfare, is the cost of babesia to the livestock industry. Prior to 1906 the United States 

attributed $130,500,000 to tick related losses (Harwood and James, 1969) with Graham 

and Hourrigan (1977) estimating that that sum would have exceeded $1 billion, 1976 

dollars. Mohler (1906) estimated a loss in value of approximately $1 million annually 

for the southern cattle market due to the impacts of CFT-born babesia.  Anderson et al. 

(2010) used representative ranch data developed and maintained by the Ag & Food 

Policy Center to estimate the cost of a CFT outbreak and found that an outbreak outside 

of the quarantine zone would cost an estimated $123 million in the first year, and about 

$97 million annually once capital costs were paid in the first year, exceeding current 

funding for the CFTEP. Additionally, Anderson et al. (2010) concluded that a 500 cow-

calf ranch in Texas would incur a cost of $250 per cow leading to a 47 percent increase 

in expenses due to an infestation of CFT and that a property adjacent to the infested 

ranch would experience an increase in cash expenses of approximately eight percent 

with an associated 13 percent decrease in net cash income. Finally, they concluded that 

an outbreak extending to the historic range, encompassing much of the southeast, would 

result in a minimum cost of $1.2 billion in the first year to the livestock industry; a low 

estimate due to a lack of infrastructure in most southeastern states.   

Eradication options of the Cattle Fever Tick 

 Treatments have evolved over time and there are now multiple options to 

consider when a CFT infestation occurs. Upon detection of an infestation producers and 

the TAHC will agree upon a prescribed system of applying a topical acaricide through 
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dipping or spraying, vaccination, or vacating the infested pasture (4 TAC, §41.8, 4 TAC 

§41.9).  

 Systematic dipping in an authorized dipping vat in some form of acaricide has 

long been found to be the most effective method of eliminating CFT on an infested herd 

(Graham and Hourrigan, 1977; George, 2000; George et al., 2004). Dipping began in the 

late 19th century in response to anecdotal evidence that ticks were leading to widespread 

disease in cattle even prior to Smith and Killborne (1893) (Graham and Hourrigan, 

1977). Figure 2 contains an example of a dipping or “plunge” vat design by Dr. Temple 

Grandin. Acaricide options have ranged widely since the begging of the effort to 

eradicate the CFT and have included oil, lime-sulphur, nicotine solutions, sodium 

sulphite and for approximately 60 years of the CFTEP, arsenic. (Graham and Hourrigan, 

1977; George, 2000). Arsenic was eventually phased out as a result of the narrow limits 

between the effective concentration for control and the toxic level for cattle in favor of 

organic insecticides (Graham and Hourrigan, 1977).   

 Dipping occurs on the premises of the affected herd every seven to 14 days for 

six to nine months, with the schedule dependent upon the CFT life cycle. (Texas Cattle 

Fever Tick, 2017). The procedure is repeated until the pasture is ‘clean’ of CFT. Dipping 

has likely proved to be the most effective option because the ticks latch on to the animals 

and are killed during the dipping process, effectively removing them from the breeding 

population, animal by animal, over time. The most significant issue facing dipping is 

acaricide-resistance in CFT. Arsenic, the previously mentioned longstanding acaricide 

used by the CFTEP was phased out, in part, due to resistance issues (George, 2000; 
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George et al., 2004) and resistance to organophosphates currently in use remain a 

concern in the eradication of the CFT (George, 2000; George et al., 2004).  

 
Figure 2. Dipping Vat Design – Reprinted (Grandin)   
 
 Topical acaricides can also be applied via a spray-dip machine where a vat is not 

reasonably available (4 TAC, §41.8). Under the direction of the TAHC animals are 

sprayed under the same schedule as the dipping protocol however they are moved 

through a portable ‘spray-box’, an enclosed chute with spray nozzles directed toward the 

animal from all directions. The nozzles emit an acaricide that, when applied correctly, 

provides the same efficacy as a dipping treatment2.  

 A second option available to producers upon infestation is the opportunity to 

vacate a premises. Vacating operates under the idea that the ticks will be “starved out” 

                                                

2 During summer 2018, the Texas Department of Agriculture Commissioner announced the 
discontinuation of the use of spray boxes in eradication efforts. As of writing, that situation is not resolved.  



 14 

from removal of the host (Texas Cattle Fever Tick, 2017). Vacating can be more 

economical because producers do not repeatedly need to collect and transport cattle for 

dipping, however it is less effective likely due to habitat crossover with wildlife. Suitable 

hosts (WTD, nilgai) remain behind after the cattle are removed and serve as suitable 

hosts for CFT so that when the cattle return the ticks are still present (Texas Cattle Fever 

Tick, 2017).  

 The final option available when dealing with an infestation of CFT is series of 

recently developed vaccines. “The … cloning and expression of the Bm86 antigen in 

Escherichia coli and commercialization of the recombinant Bm86 anti-tick vaccine 

marketed as TickGUARD provides the first practical technology for use in an integrated 

approach to control B. (R.) microplus” (George, 2000). An additional product, Gavac, 

was developed in Cuba in 1993 (George, 2000; Miller et al., 2012). George (2000) 

speculates that efficacious vaccines may become a cost effective alternative for 

eradication of B. (R.) microplus.  Miller et al. (2012) found overwhelming evidence 

supporting the use of vaccines in the effort to eradicate the CFT, reviewing multiple 

studies conducted in South and Central America and concluded that, “incorporating the 

practice of immunization, using a Bm86-based vaccine, to the existing protocol requiring 

the use of chemical acaricides would allow the elimination and prevention of outbreaks 

in the northwestern half (350 km) of the PQZ (Permanent Quarantine Zone) where R. 

annulatus is the predominant species,” however results have not been as 

overwhelmingly successful with R. microplus.  
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 As of September 2016 TAHC and APHIS have published procedures for use of a 

Bm86 immunomodulator by Zoetis as a new vaccine to target and kill both species of 

CFT within the quarantine zone (Texas Cattle Fever Tick, 2017). Under the use of the 

vaccine cattle receive an initial does, a booster four weeks later and an additional booster 

every six months indefinitely in order to maintain the concentration of antibodies for 

effective treatment (Texas Cattle Fever Tick, 2017). Each treatment option presents a 

different level of efficacy when eradicating a CFT infestation (Table 2).  

 Table 2. Characteristics of Cattle Fever Tick eradication options. 

Eradication option  Efficacy Frequency of administration Duration of 
treatment 

Injectable BM86  45.0% 
Initial dose, booster 1 month after 

initial dose, booster every 6 
months after first booster 

Initial dose 
- perpetuity 

Acaracide dip  97.0% Every 7-14 days 6-9 months 

Acaricide application 
in spray box 

 97.0% Every 7-14 days 6-9 months 

Pasture vacation*  0-97% Continuous 6-9 months 
*The efficacy of pasture vacation is highly variable and dependent upon presence of variety and density 
of wildlife  

Data and Methodology 

Model development 

The study utilizes a simulation model in a compartment modeling software with 

a daily time step over ten years to evaluate the cost of a fever tick outbreak by iteratively 

conducting the quarantine and life-cycle processes and evaluating the impact of a chosen 

policy. The model conducts 1,000 iterations of the simulation which are used to obtain 

average and standard deviations of the cost of each policy choice given its treatment 

efficacy. 
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 This research makes several assumptions. Following Anderson et al. (2010), the 

study assumes a herd size of 200 head with an average weight of 1,100 lbs. per animal, 

based on an Agriculture and Food Policy Center (AFPC) representative ranch based in 

Gonzales County, Texas. The representative ranch consists of 900 acres located 

approximately 100 miles from the location of the 2016 ‘Live Oak County outbreak’ in a 

similar habitat. The model is initiated by introducing 115 adult fever ticks into the 

system representing a theoretic infested animal that passed undetected. The number of 

fever ticks was chosen based on Teel et al. (2003) in which the authors establish a best, 

average, and worst case scenario of detecting a CFT infestation. In an average case 115 

CFT represents approximately a 50.0% chance of detection (Teel et al., 2003). 

Additionally, in all cases where CFT population dynamics are influenced by habitat 

and/or microclimate, the model assumed a mixed-brush environment under average 

climatic conditions.  

STELLA 

 STELLA (short for Systems Thinking, Experimental Learning Laboratory with 

Animation) is a visual programming language for systems dynamics modeling, and is 

used in a variety of modeling practices. STELLA uses a system of graphically 

represented stocks, flows, converters, and connectors to develop dynamic simulations. 

STELLA has been used extensively to model Cattle Fever Tick population dynamics and 

movement (Teel et al., 1998; Teel et al., 1996; Teel et al., 2003; Corson et al., 2004). 

STELLA can conduct a dynamic simulation with a specified number of iterations in 

order to obtain an “average case” scenario over a distribution of variables. 
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 The population dynamics of Cattle Fever Ticks are modeled similarly to previous 

studies. The contribution to the literature, and modeling efforts involve incorporating a 

dynamic representation of the possible eradication procedures into a system model with 

tick life-cycle dynamics.   

 Figure 3 is the graphic representation of the bioeconomic model used to estimate 

the cost of eradicating a CFT outbreak. Squares represent stock variables, circles 

represent converter variables (used for multiplication and the introduction of 

seasonality), blue ‘valves’ represent flows, and red arrows represent connectors, used to 

create interaction between the other variable types.  
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Figure 3. Graphic representation of STELLA compartment simulation model 
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Cost of treatment strategies - Ranch 

 Each eradication option poses a different set of costs to the rancher. The rancher 

is responsible for costs associated with presenting the animals for inspection and 

treatment. Costs of presenting animals are developed from the 2016 Texas Custom Rate 

Survey using the ‘South’ category, representing the region commonly infested with CFT. 

An additional employee is required for every 100 head of cattle quarantined and the need 

to repair 100 feet of steel t-post fence, once at the end of the quarantine, in all 

eradication options.  

For cattle dipping off the premises, the model assumes the cost of additional 

labor for gathering and processing cattle each time a treatment is required during a 

quarantine, fencing repair from increased use, and hauling cattle to and from the dipping 

site. Dipping under a single six to nine month quarantine will require treatments once 

every seven to 14 days depending on the protocol chosen by the rancher and TAHC. In 

addition to the cost of additional employees and fence repair, dipping off-site incurs a 

cost of hauling. Hauling 200, 1,100 lb. animals requires five semi-truck loads based on a 

50,000 maximum weight. The model assumes that the animals must be transported 

approximately 50 miles to an in-ground dipping vat and the cost of hauling the animals 

each time was taken from the 2016 Texas Custom Rate Survey ‘South’ category for semi 

hauling.  

For dipping, spraying, and vaccinating on-site the model assumes the cost of 

additional labor for gathering and processing cattle each time a treatment is required 

during a quarantine and fencing repair from increased use. Dipping and spraying under a 
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single quarantine will require six to nine months of treatment depending on the protocol 

chosen by the rancher and TAHC, and the BM86 vaccine will require boosters 

indefinitely.  

For vacating a pasture, the model assumes the cost of additional labor for 

gathering and processing cattle for two on-site dipping procedures and the cost of 

transporting the animals. Hauling 200, 1,100 lb. animals requires 5 semi-truck loads 

based on a 50,000-maximum weight. The model assumes that the animals must be 

transported approximately 100 miles to available pasture and the cost of hauling the 

animals was taken from the 2016 Texas Custom Rate Survey ‘South’ category for semi 

hauling. Unique to the pasture vacation option is the need to rent additional grazing for 

the duration of a quarantine. NASS survey data for the year 2016 for pastureland rent for 

the Coastal Bend, Lower Valley, South Central, and South Texas Agricultural Districts 

was used to compute an average cost per acre of rented pastureland. The average cost of 

pastureland from one animal unit per ten acres to one animal unit per twenty acres was 

averaged inn order to incorporate a variable stocking rate.  

Table 2 contains the average cost of each eradication option per six to nine 

month quarantine. The frequency and duration of treatments required varies based on 

TAHC and rancher established plans, representing a varying total average cost within the 

same eradication option. The costs per quarantine are multiplied by the number of 

quarantines necessary to eradicate a population per iteration of the model. 
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Table 3. Average cost to rancher of each eradication option per quarantine.  
  Day-

labor 
Fencing 
repair 

Hauling  
(50 mi) 

Pasture 
rent  Cost/Quarantine 

Eradication Option  Average/ 
treatment 

Average 
total cost 

Average/ 
treatment 

Average/ 
Acre  Average 

Total 
Std. 
Dev. 

Dipping off-
premises 

 $334.00 $5,387.50 $783.20 NA  $28,848 $2,413 

Vaccination  $334.00 $5,387.50 NA NA  $7,892 $431 
Dipping/spraying 
on-premises 

 $334.00 $5,387.50 NA NA  $7,892 $431 

Vacating  $334.00 NA $783.20 $8.35  $18,787 $4,154 
 

Cost of treatment strategies – Agencies 

 While the rancher is financially responsible for presenting cattle for treatment 

and for any damages to their property that occur from increased use, TAHC and APHIS 

share the cost of providing treatment for the infested livestock. Table 4 contains the 

spending categories by TAHC and APHIS when a quarantine is enacted. Wildlife 

feeders are placed under all quarantine procedures. Expenses that are incurred each time 

a quarantine is enacted are delineated by an X in the ‘Recurring Expense’ column.  

 Using the information provided by TAHC and the nature of each type of expense 

(recurring versus one-time) this study estimates the cost to government agencies of each 

type of eradication procedure each time a quarantine is enforced. Table 4 lists the 

estimated costs of each eradication strategy in its first year and subsequent years based 

on the recurring expense list in Table 4.  

 Outbreak-specific costs, designated with an “X” are costs that occur annually and 

depend on the individual outbreak. Other expenditures are capital outlays that can be 

purchased once, generally at the onset of the outbreak. The costs in Table 4 only 



 22 

represent an estimate of costs and could change based on the number of “check” and 

“adjacent” premises caused by an outbreak.  

Table 4. Categories of spending outlays by TAHC and APHIS under select 
quarantine procedures. 

 

Wildlife Feeders
Outbreak - 

specific
Cost Submersion Vat

Outbreak - 
specific

Cost

Feeders 50,000$   *Temporary in-ground vat facility 80,000$   
Panels (6/station) 28,980$   *Permanent vat facility 
Posts (12/station) 10,104$   Scratching chute (10 panels) 9,450$     
Corn X 91,375$   Personnel X
Ivermectin X 4,730$     Overtime (5 hours/week) X 9,070$     
Storage bin (22 ton) 10,000$   Equipment and supplies
Feeder filling equipment 14,000$   Property plant and equipment X 3,000$     
Travel expense X 63,000$   Cholinesterase testing X 5,200$     
Overtime X 9,208$     Sprayer 1,700$     
Personnel (1/100 feeders) X 77,000$   Air compressor 800$        
Trucks 78,000$   Utilities X
Fuel expense X 20,800$   Generator X 3,500$     
Overtime (5 hours/week) X 21,767$   Storage container 2,500$     
Equipment and supplies X 30,000$   Office 4,500$     
Cholinesterase testing X 5,200$     Fuel and miscellaneous X 5,000$     
Property plant and equipment X 3,000$     CoRal Remediation/disposal X

Spray Box/Vaccination
Outbreak - 

specific
Cost Payroll 

Outbreak - 
specific

Cost

Travel expense X 157,500$ Supervisor X 79,170$   
Overtime (rotating positions) X 23,019$   Financial services staff X 13,094$   
Personnel X 192,500$ Staff services X 52,780$   
Trucks 195,000$ IT staff X 26,390$   
Overtime X 22,674$   Administrative staff X 38,570$   
Equipment and supplies 75,000$   Legal/compliance X 11,419$   
Fuel expense X 50,000$   Epidimiologist (EPI) X 45,675$   
Sprayers 8,500$     Equipment and supplies X 68,250$   
Property plant and equipment X 7,500$     Trucks - supervisor 39,000$   
Cholinesterase testing X 13,000$   Fuel expense X 10,400$   
Spray box Travel - supervisor/EPI/legal X 24,000$   
Scratch chute 18,900$   
Panels w/ trailer 2,600$     *Only one of the options is used on a given property 
OK Corral 12,000$   
Recovery tank 7,400$     
Water tank (500 gallon trailer) 12,800$   
Dectomax X 75,000$   
BM86 Vaccine X 16,800$   
RFID Tag X 294$        
RFID Reader 1,500$     
Miscellaneous X 2,500$     
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Outbreak specific costs exceed capital costs annually. Table 5 shows that annual 

agency costs are higher for dipping off-premises than for the other two strategies, except 

for vaccination capital expenditures.  

Table 5. Estimated TAHC and APHIS combined agency cost under different 
eradication strategies. 
  Eradication Strategy 
Year  Dip (off-premises) Vaccine Vacate 
Year 1; capital expenditures and 
outbreak-specific expenditures 

 $1,870,018 $1,828,799 $956,305 

Year 1 + n; outbreak-specific 
expenditures  

 $1,406,990 $1,189,721 $705,527 
 
 

Efficacy 

 Each eradication option is associated with a different efficacy in eradicating a 

CFT infestation.  A protocol of systematic dipping off-site or spraying or dipping on-site 

is associated with an efficacy of 97.0%, the required efficacy of all acaricides allowed 

under the Texas Administrative Code (4 TAC, §41.8). TAHC officials are required to 

administer or be present for the administration of any topical acaricide applied due to a 

CFT infestation, so the model does not assume any reduction in effectiveness due to 

improper application.  

 Preliminary research presented on the CFT vaccine shows an efficacy of 45.0% 

in R. microplus and 99.0% in R. annulatus (Hasel, 2016). The vaccine must be 

administered under the supervision of TAHC professionals, and based on the species of 

CFT in infestation outside of the PQZ (R. microplus) the model assumes an efficacy of 

45.0%.  
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 Efficacy of vacating pastures is the most variable of the eradication options 

available and is highly dependent upon the presence of wildlife. Vacating pastures in the 

absence of ungulate wildlife yields an efficacy of 97.0%. The residual 3.0% survival is 

representative of untreated reservoir WTD. The decrease in efficacy from the presence 

of wildlife is discussed further in the ‘Wildlife Sub-model’ section of this study.  

Tick sub-model 

 This sub-model tracks the life cycle of the CFT population introduced into the 

representative ranch. The infestation is initiated in the state variable 

ENGORGED_ADULTS by introducing 115 adult CFT. The individuals in 

ENGORGED_ADULTS move via mortality or dropping.  Daily mortality of individuals 

in ENGORGED_ADULTS is a function of the number of individuals in 

ENGORGED_ADULTS and a seasonally adjusted death rate (Teel et al., 1996): 

 𝑀𝑂𝑅𝑇𝐴𝐿𝐼𝑇𝑌	𝑂𝐹	𝐸𝑁𝐺𝑂𝑅𝐺𝐸𝐷	𝐴𝐷𝑈𝐿𝑇𝑆

= 𝐸𝑁𝐺𝑂𝑅𝐺𝐸𝐷	𝐴𝐷𝑈𝐿𝑇𝑆

∗ H𝑆𝐸𝐴𝑆𝑂𝑁𝐴𝐿	𝐷𝐸𝐴𝑇𝐻	𝑅𝐴𝑇𝐸	𝑖𝑓	𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 < 0.05	
𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌	𝑖𝑓	𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 > 0.05  

(1) 

 Daily drop of individuals in ENGORGED_ADULTS is a function of the number 

in ENGORGED_ADULTS and the duration of time adult age ticks spend feeding, or a 

‘time to drop’ rate (x̄=0.036, σ=0.01) representing an average 28 day time to maturation 

(Hitchcock, 1955a).  

 𝐷𝑅𝑂𝑃 = 𝐸𝑁𝐺𝑂𝑅𝐺𝐸𝐷	𝐴𝐷𝑈𝐿𝑇𝑆 ∗ 𝑅𝐴𝑇𝐸	𝑂𝐹	𝐷𝑅𝑂𝑃 (2) 
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 Individuals in ENGORGED_ADULTS move into OVIPOSITION via drop in 

which female individuals lay eggs. Individuals exit OVIPOSITION via final seasonally 

adjusted mortality in which all individuals exit the system (Hitchcock, 1955b):  

 𝑀𝑂𝑅𝑇𝐴𝐿𝐼𝑇𝑌	𝑂𝐹	𝑂𝑉𝐼𝑃𝑂𝑆𝐼𝑇𝐼𝑂𝑁

= 𝑂𝑉𝐼𝑃𝑂𝑆𝐼𝑇𝐼𝑂𝑁 ∗ 𝑆𝐸𝐴𝑆𝑂𝑁𝐴𝐿	𝐷𝐸𝐴𝑇𝐻	𝑅𝐴𝑇𝐸 (3) 

 The number of eggs in the EGGS state variable is dictated by the number of 

individuals in the OVIPOSITION state variable, a seasonal adjustment factor, and an 

adjustment for the male/female population ratio (Teel et al., 1996):  

 𝐸𝐺𝐺	𝐿𝐴𝑌 = 𝑂𝑉𝐼𝑃𝑂𝑆𝐼𝑇𝐼𝑂𝑁 ∗ 𝑆𝐸𝐴𝑆𝑂𝑁𝐴𝐿	𝐸𝐺𝐺𝑆/𝐷𝐴𝑌 (4) 

 Individual eggs in EGGS move via mortality or hatching. Daily mortality of 

individual eggs in EGGS is a function of the number of eggs in EGGS and a seasonally 

adjusted EGG_LOSS/DAY (Teel et al., 1996):  

 𝑀𝑂𝑅𝑇𝐴𝐿𝐼𝑇𝑌	𝑂𝐹	𝐸𝐺𝐺𝑆 = 𝐸𝐺𝐺𝑆 ∗ 𝑆𝐸𝐴𝑆𝑂𝑁𝐴𝐿	𝐸𝐺𝐺	𝐿𝑂𝑆𝑆/𝐷𝐴𝑌 (5) 

 Daily hatch of individuals in EGGS is a function of the number of eggs in EGGS 

and a seasonally delayed incubation period (Hitchcock 1955b; Teel et al., 1996):  

 𝐻𝐴𝑇𝐶𝐻 = 𝐸𝐺𝐺𝑆 ∗ 𝑆𝐸𝐴𝑆𝑂𝑁𝐴𝐿	𝐼𝑁𝐶𝑈𝐵𝐴𝑇𝐼𝑂𝑁	𝐿𝐸𝑁𝐺𝑇𝐻 (6) 

 Upon hatching individuals move from EGGS to LARVAE. Individuals move out 

of LARVAE via mortality and attachment to a host. Daily mortality of individuals in 

LARVAE is a function of the number of individuals in LARVAE and a seasonally 

adjusted LARVAL_DEATH_RATE/DAY (Teel et al., 1996):  

 𝑀𝑂𝑅𝑇𝐴𝐿𝐼𝑇𝑌	𝑂𝐹	𝐿𝐴𝑅𝑉𝐴𝐸	𝑂𝐹𝐹	𝐻𝑂𝑆𝑇

= 𝐿𝐴𝑅𝑉𝐴𝐸 ∗ 𝐿𝐴𝑅𝑉𝐴𝐿	𝐷𝐸𝐴𝑇𝐻	𝑅𝐴𝑇𝐸/𝐷𝐴𝑌 (7) 
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 Daily attachment of larvae is a function of LARVAE and a theoretic attachment 

rate. Information on attachment rates is not well documented, however previous attempts 

at modeling attachment do exist (Mount et al., 1991; Teel et al., 1996). This study 

follows the method established by Teel et al. (1996) in which there is a theoretic 

encounter rate with an associated pickup rate combined to yield a final attachment rate. 

This study assumes a constant pickup rate of 50.0% and tests three encounter rates of 

0.004, 0.005, and 0.006, previously used by Teel et al. (1996), the combination of which 

yields attachment rates equal to 0.002, 0.0025, and 0.003. The daily attachment of larvae 

to a host is:  

 𝐴𝑇𝑇𝐴𝐶𝐻𝑀𝐸𝑁𝑇 = 𝐿𝐴𝑅𝑉𝐴𝐸 ∗ 𝐴𝑇𝑇𝐴𝐶𝐻𝑀𝐸𝑁𝑇	𝑅𝐴𝑇𝐸 (8) 

 Upon attachment larvae move from LARVAE to ON-HOST_LARVAE. 

Individuals move out of ON-HOST_LARVAE via mortality or maturity to engorged 

adult. Daily mortality of individuals in ON-HOST_LARVAE is a function of the number 

of individuals in ON-HOST_LARVAE and a death rate presented by Hitchcock (1955a) 

(x̄=.2106, σ=.065). Hitchcock (1955a) suggests no seasonality impacts on this life stage 

of the CFT as larval survival on host is not driven by climatic conditions. Mortality of 

ON-HOST_LARVAE is:  

 𝑀𝑂𝑅𝑇𝐴𝐿𝐼𝑇𝑌	𝑂𝐹	𝑂𝑁	𝐻𝑂𝑆𝑇	𝐿𝐴𝑅𝑉𝐴𝐸

= 𝑂𝑁	𝐻𝑂𝑆𝑇	𝐿𝐴𝑅𝑉𝐴𝐸

∗ H 𝑁𝑂𝑅𝑀~(0.2106,0.065) < 0.05
𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌	𝑖𝑓	𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 > 0.05 

(9) 

 EFFICACY is described in the ‘Sub-model Interaction’ section Individuals that 

survive move from ON-HOST_LARVAE to ENGORGED_ADULTS via maturity, a 



 27 

function of ON-HOST_LARVAVE and an on-host maturation rate that accounts for the 

duration to maturity of the CFT on-host. Hitchcock (1955a) reports a maturation 

duration of (x̄=0.067, σ=0.038) representing an average time to fully mature of 15 days 

prior to beginning engorgement. Movement of individuals from ON-HOST_LARVAE 

to ENGORGED_ADULTS is:  

 𝑀𝐴𝑇𝑈𝑅𝐼𝑇𝑌 = 𝑂𝑁	𝐻𝑂𝑆𝑇	𝐿𝐴𝑅𝑉𝐴𝐸

∗ 𝑂𝑁	𝐻𝑂𝑆𝑇	𝑀𝐴𝑇𝑈𝑅𝐴𝑇𝐼𝑂𝑁	𝑅𝐴𝑇𝐸 (10) 

 Movement of on-host larvae from ON-HOST_LARVAE to 

ENGORGED_ADULTS represents the beginning of next iteration of the population 

represented beginning in Equation (1) and Equation (2).  

Cattle quarantine sub-model 

 The AFPC representative ranch in Gonzales owned 200 head of cattle in 2010 

(Anderson et al., 2010), therefore the model initiates with 200 head of cattle in the state 

variable, CATTLE_UNDETECTED. Texas Animal Health Commission estimated that 

4,000 beef cattle and 200 horses were quarantined over 200 individual premises as a 

result of the Live Oak county outbreak, however TAHC did not provide an ‘average herd 

size’ estimate. This research assumes that the ranch examined derives the majority of it’s 

income on-farm, and therefore assumes a slightly larger herd size (200 head) than would 

be derived from simple division of the figures provided by TAHC.   

Upon detection of a CFT infestation, driven by the population dynamics of the 

tick sub-model, cattle transition from CATTLE_UNDETECTED to 

QUARANTINED_CATTLE via an infestation and detection check.  
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 𝐼𝑁𝐹𝐸𝑆𝑇𝐸𝐷	&	𝐷𝐸𝑇𝐸𝐶𝑇𝐸𝐷

= 𝑃(𝐷𝐸𝑇𝐸𝐶𝑇𝐼𝑂𝑁)𝐼𝑁𝐼𝑇𝐼𝐴𝐿

∗ 𝐶𝐴𝑇𝑇𝐿𝐸	𝑈𝑁𝐷𝐸𝑇𝐸𝐶𝑇𝐸𝐷	𝐻𝐸𝑅𝐷 

(11) 

 P(DETECTION)_INITIAL will be further described in the ‘Sub-model 

Interaction’ section. Upon the cattle reaching quarantine the individuals can move, as a 

unit, through one of three quarantine procedures, VACCINATE, DIP, or VACATE via 

selection of treatments:  

 𝑉𝐴𝐶𝐶𝐼𝑁𝐴𝑇𝐸 = 𝑄𝑈𝐴𝑅𝐴𝑁𝑇𝐼𝑁𝐸𝐷	𝐶𝐴𝑇𝑇𝐿𝐸 ∗	 H1	𝑖𝑓	𝑉𝐴𝐶𝐶𝐼𝑁𝐴𝑇𝐸0	𝑖𝑓	𝑂𝑇𝐻𝐸𝑅  (12) 

 𝐷𝐼𝑃 = 𝑄𝑈𝐴𝑅𝐴𝑁𝑇𝐼𝑁𝐸𝐷	𝐶𝐴𝑇𝑇𝐿𝐸 ∗ 	H 1	𝑖𝑓	𝐷𝐼𝑃
0	𝑖𝑓	𝑂𝑇𝐻𝐸𝑅 (13) 

 𝑉𝐴𝐶𝐴𝑇𝐸 = 𝑄𝑈𝐴𝑅𝐴𝑁𝑇𝐼𝑁𝐸𝐷	𝐶𝐴𝑇𝑇𝐿𝐸 ∗	 H1	𝑖𝑓	𝑉𝐴𝐶𝐴𝑇𝐸0	𝑖𝑓	𝑂𝑇𝐻𝐸𝑅  (14) 

 The policy choice is selected by the user. VACCINATE serves as a placeholder 

for vaccination, spraying, and dipping on the ranchers premises and efficacy of the 

treatment adjusted based on the user’s treatment assumption. Each time cattle move from 

CATTLE_UNDETECTED into one of the quarantine procedures the model assesses the 

cost described for that strategy per the description in ‘Cost of Treatment Strategies’. 

Each treatment is associated with a prescribed delay function of 225 days based on the 

length of treatment required (Texas Cattle Fever Tick, 2017). When the 225 day delay is 

complete the cattle move from their chosen treatment into the FINAL_INSPECTION 

state variable.  
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 Individuals move out of FINAL_INSPECTION by either moving back to 

CATTLE_UNDETECTED or RETURN_QUARANTINE. Individuals are cleared 

through final inspection via:  

 𝐶𝐴𝑇𝑇𝐿𝐸	𝐶𝐿𝐸𝐴𝑅	𝐼𝑁	𝐹𝐼𝑁𝐴𝐿	𝐼𝑁𝑆𝑃𝐸𝐶𝑇𝐼𝑂𝑁

= 𝐹𝐼𝑁𝐴𝐿	𝐼𝑁𝑆𝑃𝐸𝐶𝑇𝐼𝑂𝑁

∗	 H1	𝑖𝑓	𝑃
(𝐷𝐸𝑇𝐸𝐶𝑇𝐼𝑂𝑁)𝑆𝐸𝐶𝑂𝑁𝐷𝐴𝑅𝑌 < 0.1

0	𝑖𝑓	𝑃(𝐷𝐸𝑇𝐸𝐶𝑇𝐼𝑂𝑁)𝑆𝐸𝐶𝑂𝑁𝐷𝐴𝑅𝑌 > 0.1 

(15) 

CATTLE_CLEARED_IN_FINAL_INSPECTION represents cattle inspected 

with a CFT population low enough that <10.0% of inspections, shown by Teel et al. 

(2003) as an inflection point of detection in all worst, average, and best cases, would 

detect CFT presence. P(DETECTION)SECONDARY will be further described in the 

‘Sub-model Interaction’ section.  

Cattle can also move via failed inspection to RETURN_QUARANTINE, subject 

to the outcome of Equation (15): 

 𝑅𝐸𝑇𝑈𝑅𝑁	𝑄𝑈𝐴𝑅𝐴𝑁𝑇𝐼𝑁𝐸

= 𝐹𝐼𝑁𝐴𝐿	𝐼𝑁𝑆𝑃𝐸𝐶𝑇𝐼𝑂𝑁

∗	 H1	𝑖𝑓	𝐶𝐴𝑇𝑇𝐿𝐸	𝐶𝐿𝐸𝐴𝑅	𝐼𝑁	𝐹𝐼𝑁𝐴𝐿	𝐼𝑁𝑆𝑃𝐸𝐶𝑇𝐼𝑂𝑁 = 0
0	𝑖𝑓	𝑂𝑇𝐻𝐸𝑅  

(16) 

 

Wildlife interaction sub-model 

 The presence of wildlife on CFT infested property confounds eradication efforts 

(Pound et al., 2010; Lohmeyer et al., 2018), particularly when pasture vacation is used 

alone. This study incorporates a sensitivity analysis of the impact of different wildlife 
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densities on vacated pastures as a CFT eradication strategy. WTD and nilgai are the 

primary alternative hosts of interest and so this study incorporates populations of each 

species.  

 Deer and nilgai density is the driver of decreased efficacy of vacating pastures. 

Deer density and nilgai density are a function of the WTD_POPULATION and 

NILGAI_POPULATION state variables, respectively, and the ACREAGE state variable 

which accounts for the size of the property quarantined:  

 𝑊𝑇𝐷	𝐷𝐸𝑁𝑆𝐼𝑇𝑌 =
𝑊𝑇𝐷	𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁

𝐴𝐶𝑅𝐸𝐴𝐺𝐸  (17) 

 𝑁𝐼𝐿𝐺𝐴𝐼	𝐷𝐸𝑁𝑆𝐼𝑇𝑌 =
𝑁𝐼𝐿𝐺𝐴𝐼	𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁

𝐴𝐶𝑅𝐸𝐴𝐺𝐸  (18) 

 Currie (2013) describes an average deer density in pastureland of southern Texas 

of approximately one deer per ten acres. Cooksey et al. (1989) indicates that deer can 

carry approximately one-tenth the CFT population of cattle due to smaller size and better 

ability to groom. Based on these assumptions the model assumes that a 50.0% increase 

in deer density decreases efficacy of vacating a pasture by 10.0%:  

 𝑊𝑇𝐷	𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌	𝐷𝐸𝐶𝑅𝐸𝐴𝑆𝐸

=	 .1 + 0.05 ∗ H1	𝑖𝑓	𝑊𝑇𝐷	𝐷𝐸𝑁𝑆𝐼𝑇𝑌 > 1.5 ∗ 0.1
0	𝑖𝑓	𝑊𝑇𝐷	𝐷𝐸𝑁𝑆𝐼𝑇𝑌 < 1.5 ∗ 0.1 (19) 

 Little study exists on the carrying capacity of CFT in nilgai, however they are 

similar in size and grooming ability to cattle, yet daily move across a wider range. 

Moczygemba et al. (2012) studied the home range of nilgai in southern Texas and found 

that males have an average home range of 9,356 ha. (23,120 acres) and females have an 
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average home range of 8,355 ha. (20,646 acres). This study assumes a normal 

distribution of nilgai home ranges (x̄=5, σ=2) crossing the 900 acre pasture.  

 Based on the nilgai’s wide range and constant movement (Moczygemba et al., 

2012) their probability of encountering CFT is lower than that of cattle, however based 

on nilgai’s similar grooming habits to cattle the model assumes that once CFT attach 

they are likely to remain. Efficacy decrease from nilgai is a function of the number of 

nilgai present in the pasture on any day. Each nilgai present in the system decreases 

efficacy by 2.5% as function of the density compared to cattle:  

 𝑁𝐼𝐿𝐺𝐴𝐼	𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌	𝐷𝐸𝐶𝑅𝐸𝐴𝑆𝐸 = 	𝑁𝐼𝐿𝐺𝐴𝐼	𝑃𝑂𝑃𝑈𝐿𝐴𝑇𝐼𝑂𝑁 ∗ .025 (20) 

 WILDLIFE_EFFICACY_DECREASE reduces EFFICACY and is a function of 

NILGAI_EFFICACY_DECREASE in Equation (20) and 

WTD_EFFICACY_DECREASE in Equation (19). EFFICACY is described further in 

the ‘Sub-model Interaction’ section.  

Sub-model interaction 

 The interaction of the different sub-models drives the overall results. 

POLICY_CHOICE is a user input and allows for the choice of eradication strategy, 

which is enacted when cattle leave the CATTLE_UNDETECTED state variable. 

EFFICACY is the effectiveness of each eradication strategy in eliminating the CFT 

infestation, and is the major point of interaction for all three sub-models:  
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 𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌

= \
0.45	𝑖𝑓	𝑉𝐴𝐶𝐶𝐼𝑁𝐴𝑇𝐸 > 0

0.97	𝑖𝑓	𝐷𝐼𝑃 > 0	
(0.97 −𝑊𝐼𝐿𝐷𝐿𝐼𝐹𝐸	𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌	𝐷𝐸𝐶𝑅𝐸𝐴𝑆𝐸)	𝑖𝑓	𝑉𝐴𝐶𝐴𝑇𝐸 > 0

	 (21) 

 Based upon the user input in POLICY_CHOICE, the model assumes one of the 

listed eradication strategies and adjusts the VACATE efficacy based on the outcome of 

Equation (20). EFFICACY then acts upon Equation (1) and Equation (9) when above the 

prescribed value.  

 Three variables interact to determine probabilities of detection when CFT are 

present in the system. ENGORGED_ADULTS/HEAD is a function of the number of 

cattle assumed by the model and the number of engorged adult CFT present in the 

system:  

 𝐸𝑁𝐺𝑂𝑅𝐺𝐸𝐷	𝐴𝐷𝑈𝐿𝑇𝑆
𝐻𝐸𝐴𝐷 =

𝐸𝑁𝐺𝑂𝑅𝐺𝐸𝐷	𝐴𝐷𝑈𝐿𝑇𝑆
𝑁𝑈𝑀𝐵𝐸𝑅	𝐶𝐴𝑇𝑇𝐿𝐸  (22) 

 ENGORGED_ADULTS/HEAD is the exogenous variable acting upon 

P(DETECTION)_INITIAL and P(DETECTION) _SECONDARY. Teel et al. (2003) 

described the human factors that affect the probability of detecting a CFT infestation in 

different circumstances. Figure 3 from Teel et al. (2003) describes a best, average, and 

worst case scenario of detecting adult CFT based on the number of detectable ticks 

(ENGORGED_ADULTS) per cow.  
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Number of Detectable Ticks per Cow 

  
Figure 4. Probabilities of detecting at least one tick on a cow as a function of the number 
of ticks of a detectable size  
 

 P(DETECTION)_INITIAL is based on the worst-case detection curve. Prior to 

detection of a CFT infestation ranchers are not as likely to observe and report an 

infestation. P(DETECTION)_INITIAL acts upon Equation (11) to initiate the quarantine 

process in the ‘Cattle Quarantine’ sub-model. P(DETECTION)_SECONDARY is based 

on the best-case detection curve. Once a quarantine has been initiated the model assumes 

TAHC inspectors and ranchers will conduct more thorough inspections. 

P(DETECTION)_SECONDAY acts upon Equation (15) to move cattle either back into 

quarantine procedure or into the initial CATTLE_UNDETECTED state variable.  
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Results 

Each eradication procedure is associated with a different cost per quarantine as 

well as an estimated number of quarantine based on the probability of detecting a CFT 

infestation. 

Figure 5 – Figure 8 each show a graph of a single iteration of the tick population 

models under different eradication procedures, and different attachment rates. Regular 

increases and decreases over time show the seasonality of tick population dynamics, 

where populations decrease due to excessive summer heat or extreme cold. A spike in 

population, followed by a rapid population decrease, represents a tick detection and 

subsequent eradication effort. 
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Figure 5. On-host larvae and adult tick population dynamics with no treatment3 

                                                

3 Figure 5 – Figure 8 represent a single iteration of the Cattle Fever Tick ranch level model. Only one 
iteration was included to make the figures clear. Showing all iterations overlaid did not provide a clear 
representation of the tick populations under eradication protocols. The final iteration of the model was 
chosen for representation in Figure 5 – Figure 8. Other iterations may show different timing of tick 
population expansion and decrease, however the patterns of seasonality and response to eradication are 
similar in nature.  
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Figure 6. On-host larvae and adult tick population dynamics treated with vaccination 
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Figure 7. On-host larvae and adult tick population dynamics treated with acaricide 
dipping 
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Figure 8. On-host larvae and adult tick population dynamics treated with vacating 
 

Tick populations are highest in every eradication protocol, and when no 

treatment occurs under higher attachment rates. In addition to an increased quantity of 

ticks present in the system, populations grow at a faster rate under a higher attachment 
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rate. Tick populations grow to, and are sustained at a higher level when no treatment 

occurs than any system in which eradication procedures to occur. Under eradication 

procedures, tick populations may rebound from a near-zero population, requiring an 

extended or additional quarantine. These near-zero populations could consist of only 

larvae, or a small number of undetected adults, making their detection less likely and 

leading to the population rebounds. 

Table 6 describes the cost associated with vaccinating, dipping on-site, and 

dipping or spraying on site at different CFT larvae attachment rates. In all eradication 

options the least costly CFT attachment rate, on average, was 0.20%, the lowest 

probability of attachment. The lowest probability of attachment also led to the lowest 

average number re-infestations in all eradication strategies. In all eradication options the 

most costly CFT attachment rate, on average, was 0.30%, the highest probability of 

attachment. The highest probability of attachment also led to the highest average number 

of individual quarantines in all eradication strategies. Under all attachment rates 

dipping/spraying on-site was the mean least-cost eradicate strategy. The highest average 

cost eradication strategy was dipping off-site under all attachment rates.  

The lowest number of individual quarantines varied based on attachment rates 

between dipping off-site and dipping on-site. Under attachment rate 0.25% and 

attachment rate 0.30% dipping off-site required fewer individual quarantines and under 

0.20% attachment rate dipping/spraying on-site was the least costly. While vaccination 

remains cheaper than dipping off-site and vacating pastures, this research only covers a 

ten-year period. The perpetuity of boosters required under the BM86 vaccination 
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schedule will inflate costs beyond the period that is documented in this study.  The 

average time from infestation to a clear inspection was shortest for dipping off-premises 

and dipping or spraying on-premises (119 days and 116 days, respectively, at an 

attachment rate of 0.20%).   

Table 7 describes the cost associated with vacating a pasture infested with CFT at 

different larvae attachment rates under high and average wildlife density and absent 

wildlife. Under all wildlife densities the least costly CFT attachment rate, on average, 

was 0.20%, the lowest probability of attachment. The lowest probability of attachment 

also led to the lowest average number of individual quarantines in all wildlife densities. 

In all wildlife densities the most costly CFT attachment rate, on average, was 0.30%, the 

highest probability of attachment. 



 41 

  

 

 

 

 

Ta
bl

e 
6.

 S
um

m
ar

y 
st

at
is

tic
s 

of
 5

00
 it

er
at

io
ns

 o
f t

he
 c

os
t o

f v
ac

ci
na

tin
g 

w
ith

 B
M

86
, d

ip
pi

ng
 o

n-
si

te
, a

nd
 d

ip
pi

ng
/s

pr
ay

in
g 

on
-s

ite
 a

t 0
.2

0%
, 0

.2
5%

, a
nd

 0
.3

0%
 a

tta
ch

m
en

t r
at

es

At
ta

ch
m

en
t R

at
e 

0.
20

%
M

ea
n 

M
ax

M
in

 
St

d.
 D

ev
. 

M
ea

n 
M

ax
M

in
 

St
d.

 D
ev

. 
M

ea
n 

M
ax

M
in

 
St

d.
 D

ev
. 

R
an

ch
 c

os
ts

10
,6

72
$ 

17
,3

19
$ 

-
$ 

   
   

6,
63

7
$ 

   
38

,4
84

$ 
  

89
,4

56
$ 

  
-

$ 
   

   
15

,6
50

$ 
 

10
,2

16
$ 

25
,4

83
$ 

-
$ 

   
   

4,
17

9
$ 

   
Tr

ea
tm

en
t c

ou
nt

10
.8

9
24

.6
0

0.
00

2.
58

1.
33

3.
00

0.
00

0.
53

1.
29

3.
00

0.
00

0.
53

A
ve

ra
ge

 ti
m

e 
fr

om
 in

fe
st

at
io

n 
to

 c
le

an
 in

sp
ec

tio
n 

(d
ay

s)
13

3
27

0
0

51
12

0
27

0
0

48
11

6
27

0
0

47

At
ta

ch
m

en
t R

at
e 

0.
25

%
M

ea
n 

M
ax

M
in

 
St

d.
 D

ev
. 

M
ea

n 
M

ax
M

in
 

St
d.

 D
ev

. 
M

ea
n 

M
ax

M
in

 
St

d.
 D

ev
. 

R
an

ch
 c

os
ts

13
,4

46
$ 

14
,7

15
$ 

12
,5

46
$ 

5,
89

3
$ 

   
86

,3
34

$ 
  

15
3,

27
9

$ 
27

,0
71

$ 
19

,2
18

$ 
 

23
,9

59
$ 

38
,8

91
$ 

7,
49

0
$ 

  
4,

80
7

$ 
   

Tr
ea

tm
en

t c
ou

nt
16

.6
1

19
.2

3
14

.7
6

1.
04

2.
99

5.
00

0.
66

3.
04

5.
00

1.
00

0.
60

A
ve

ra
ge

 ti
m

e 
fr

om
 in

fe
st

at
io

n 
to

 c
le

an
 in

sp
ec

tio
n 

(d
ay

s)
32

5
45

0
27

0
55

26
9

45
0

90
59

27
3

45
0

90
54

At
ta

ch
m

en
t R

at
e 

0.
30

%
M

ea
n 

M
ax

M
in

 
St

d.
 D

ev
. 

M
ea

n 
M

ax
M

in
 

St
d.

 D
ev

. 
M

ea
n 

M
ax

M
in

 
St

d.
 D

ev
. 

R
an

ch
 c

os
ts

14
,2

51
$ 

14
,9

49
$ 

13
,5

14
$ 

5,
77

2
$ 

   
12

0,
58

9
$ 

17
8,

17
8

$ 
30

,0
56

$ 
19

,2
72

$ 
 

33
,1

80
$ 

49
,0

68
$ 

15
,8

78
$ 

5,
12

3
$ 

   
Tr

ea
tm

en
t c

ou
nt

18
.2

8
19

.7
2

16
.7

6
0.

79
4.

19
6.

00
0.

64
0.

64
4.

20
6.

00
2.

00
0.

64

A
ve

ra
ge

 ti
m

e 
fr

om
 in

fe
st

at
io

n 
to

 c
le

an
 in

sp
ec

tio
n 

(d
ay

s)
46

1
63

0
27

0
69

37
7

54
0

90
58

37
8

54
0

18
0

57

V
ac

ci
na

te
 (B

M
86

) 
D

ip
 o

ff
-s

ite
D

ip
/s

pr
ay

 o
n-

si
te

Ta
bl

e 
7.

 S
um

m
ar

y 
sta

tis
tic

s o
f 5

00
 it

er
at

io
ns

 o
f t

he
 c

os
t o

f v
ac

at
ing

 p
as

tu
re

s a
s a

n 
er

ad
ica

ito
n 

op
tio

n 
un

de
r h

igh
 a

nd
 a

ve
ra

ge
 w

ild
life

 d
en

sit
y 

an
d 

no
 w

ild
life

At
ta

ch
m

en
t R

at
e 

0.
20

%
M

ea
n

M
ax

M
in

St
d.

 D
ev

.
M

ea
n

M
ax

M
in

St
d.

 D
ev

.
M

ea
n

M
ax

M
in

St
d.

 D
ev

.
Ra

nc
h 

co
sts

45
,6

49
$ 

  
91

,4
73

$ 
  

-
$ 

   
   

 
16

,1
18

$ 
30

,6
59

$ 
  

68
,7

78
$ 

  
-

$ 
   

  
13

,4
72

$ 
29

,6
01

$ 
82

,3
21

$ 
  

-
$ 

   
   

13
,2

91
$ 

Q
ua

ra
nt

ine
 c

ou
nt

2.
04

4.
00

0.
00

0.
66

1.
36

3.
00

0.
00

0.
56

1.
30

3.
00

0.
00

0.
53

A
ve

ra
ge

 ti
m

e 
fro

m
 in

fe
sta

tio
n 

to
 c

lea
n 

ins
pe

ct
io

n 
(d

ay
s)

18
3.

42
36

0.
00

0.
00

59
.8

0
12

2.
76

27
0.

00
0.

00
50

.6
0

11
7.

00
27

0.
00

0.
00

47
.8

4

At
ta

ch
m

en
t R

at
e 

0.
25

%
M

ea
n

M
ax

M
in

St
d.

 D
ev

.
M

ea
n

M
ax

M
in

St
d.

 D
ev

.
M

ea
n

M
ax

M
in

St
d.

 D
ev

.
Ra

nc
h 

co
sts

12
1,

15
2

$ 
18

6,
04

1
$ 

72
,9

24
$ 

  
19

,6
19

$ 
72

,6
29

$ 
  

12
7,

50
7

$ 
35

,2
20

$ 
15

,5
42

$ 
68

,4
48

$ 
12

7,
61

7
$ 

12
,1

74
$ 

16
,4

99
$ 

Q
ua

ra
nt

ine
 c

ou
nt

5.
36

7.
00

4.
00

0.
73

3.
24

5.
00

2.
00

0.
60

3.
02

5.
00

1.
00

0.
64

A
ve

ra
ge

 ti
m

e 
fro

m
 in

fe
sta

tio
n 

to
 c

lea
n 

ins
pe

ct
io

n 
(d

ay
s)

48
2.

40
63

0.
00

36
0.

00
65

.8
6

29
1.

24
45

0.
00

18
0.

00
54

.0
8

27
1.

98
45

0.
00

90
.0

0
57

.9
3

At
ta

ch
m

en
t R

at
e 

0.
30

%
M

ea
n

M
ax

M
in

St
d.

 D
ev

.
M

ea
n

M
ax

M
in

St
d.

 D
ev

.
M

ea
n

M
ax

M
in

St
d.

 D
ev

.
Ra

nc
h 

co
sts

17
2,

95
9

$ 
25

0,
55

9
$ 

11
3,

37
9

$ 
21

,7
37

$ 
10

0,
57

0
$ 

15
9,

65
0

$ 
49

,3
65

$ 
18

,2
15

$ 
94

,1
87

$ 
15

0,
06

3
$ 

42
,7

69
$ 

17
,5

79
$ 

Q
ua

ra
nt

ine
 c

ou
nt

7.
67

10
.0

0
6.

00
0.

84
4.

46
6.

00
3.

00
0.

71
4.

17
6.

00
2.

00
0.

67

A
ve

ra
ge

 ti
m

e 
fro

m
 in

fe
sta

tio
n 

to
 c

lea
n 

ins
pe

ct
io

n 
(d

ay
s)

69
0.

66
90

0
54

0
76

.0
03

4
40

1.
76

54
0

27
0

64
.0

02
3

37
5.

12
54

0
18

0
60

.5
53

44

H
igh

 W
ild

life
 D

en
sit

y 
(1

 D
ee

r/5
 A

cr
es

)
A

ve
ra

ge
 W

ild
life

 D
en

sit
y 

(1
 D

ee
r/1

0 
A

cr
es

) 
N

o 
W

ild
life



 42 

The highest probability of attachment also led to the highest average number of 

individual quarantines in all wildlife densities. Under all attachment rates no wildlife 

was the mean least-cost option. The highest average cost eradication strategy was high 

wildlife density under all attachment rates. The lowest number of quarantines under all 

attachment rates was the situation in which there was no wildlife.  

The model does not appear to be sensitive to the introduction of a small number 

of wildlife. The model shows greater sensitivity to an increase in wildlife density from 

average to high. The percent change in total average quarantine cost was greater from 

average wildlife density to high wildlife density than from a system with no wildlife to a 

system with average wildlife density. The greatest percent change in cost from a system 

with no wildlife to a system with average wildlife density did not exceed 10.0%, while 

the smallest percent change in cost from a system with average wildlife density to a 

system with high wildlife density was greater than 50.0%.  

All eradication options were sensitive to the attachment rate, regardless of the 

presence of wildlife. The average change in cost from an attachment rate of 0.20% to 

0.25% over all categories was 139.0%. The average change in cost from an attachment 

rate of 0.25% to 0.30% was lower than the change in cost from 0.20% to 0.25%, 

however still large at 40.0%. The greatest change that occurred due to a change in 

attachment rate was in the vacating strategy under high wildlife density where the 

change in mean total cost increased 165.0% from attachment rate 0.20% to 0.25%.  
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 Agency costs are calculated by taking the results of Table 5 and multiplying them 

by the number of treatment count under each eradication strategy. Table 8 contains the 

average total cost of each quarantine strategy to TAHC and APHIS.  

Table 8. Summary statistics of 500 iterations of the cost of eradication procedures 
to state and federal animal health agencies including adjacent premises quarantines 
and check premises quarantines (average wildlife density, 0.20% larval attachment 
rate). 

Eradication strategy  Average Maximum Minimum Standard 
Deviation 

Vaccinate  $1,465,918 $2,379,442 $ - $426,924 
Dip (off-premises)  $1,669,960 $2,813,980 $ - $373,653 
Dip/spray (on-
premises) 

 $1,681,194 $2,813,980 $ - $354,473 

Vacate  $2,237,689 $3,527,635 $ - $467,182 
  

The most expensive eradication strategy to state and federal animal health 

agencies is the option to vacate pastures. This is likely due to the high number of repeat 

quarantines required under the vacating option. TAHC and APHIS only use the 

vaccination in combating R. annulatus (Hasel, 2016), so while vaccinating is the 

immediately obvious least costly option it is not as effective in R. microplus outbreaks as 

in R. annulatus. Of the two remaining available strategies dipping off-site and 

dipping/spraying on-site are similar in their cost, however this could change with the 

need to construct a temporary or permanent in-ground vat on-site which can cost from 

$80,000-$100,000.   

Conclusions 

 Cattle Fever Tick (CFT) infestations cause significant financial hardship, with a 

quarantine decreasing net cash farm income by up to 150.0% (Anderson et al., 2010). 

Failing to quarantine and eradicate the pest in Texas leading to an outbreak across the 
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historic range would pose an initial cost of $1.2 billion (Anderson et al., 2010). Losses 

from a widespread Bovine babesiosis outbreak could exceed that figure.  

 Quarantine procedures are necessary to prevent the spread of the CFT and the 

associated economic consequences described. This study contributes to the existing 

literature regarding the CFT by incorporating the biology of a CFT population into a 

quarantine system model in order to better determine the number of treatment 

counts/quarantines required under each eradication protocol. Better understanding the 

number of treatment counts/quarantines required under each eradication protocol 

provides a better understanding of the total cost of a quarantine.  

 While the cost of dipping off-premises is the highest in the short-run, the 

practiced leads to the shortest amount of time under quarantine (Table 6). The shorter 

time under quarantine from dipping or spraying leads to a lower overall cost and shorter 

time under quarantine, which means animals can be moved and/or sold, resulting in 

reopening revenue streams.  

 In addition to the complication of wildlife confounding eradication results, ticks 

have been observed possessing levels of acaricide resistance (Perez de leon et al., 2012).  
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Figure 9. 50.0% acaricide resistant on-host larvae and adult tick population dynamics 
treated with acaricide with attachment rate 0.002 
 

Figure 9 shows a single model iteration of population dynamics of ticks 

possessing 50.0% acaricide resistance. Compared to the panels in Figure 7 ticks display 

an earlier resurgence when they possess acaricide resistance. Not only does the tick 

population rebound more quickly when ticks possess acaricide resistance, but the 

rebound results in a higher number of ticks than the scenarios with no acaricide 

resistance. Acaricide resistant ticks on a single ranch poses significant risk of a longer 

infestation, and therefore a more costly eradication.  

Not all eradication strategies are available to all producers and so the decision 

will vary based on an individual producer’s circumstances and the technology available 

(the vaccine is only effective against R. annulatus). The model included in this study 

serves as a template that can be used to evaluate individual outbreaks to estimate the cost 

of an outbreak to ranchers and government agencies based on the duration of quarantine 

necessary.  
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 A number of areas for research are available using the model in this study. 

Further calibration of the wildlife sub-model based on more extensive nilgai data would 

provide more accurate results, and additional cost data from agency sources would 

provide a distribution of costs rather than a single figure. In addition to studying the cost 

of CFT eradication strategies the model in this study can be used as a template for 

evaluating other invasive pest and disease control methods.  
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CHAPTER II                                                                                            

PROFITABILITY OF EAST TEXAS IMPROVED PASTURE STOCKING 

SYSTEMS 

Introduction 

“Climate change, whether the result of natural variation or anthropogenic activities, will 

impact agricultural production throughout the world,” (Mader et al. 2009).  

 

“Adaptation behaviors such as changing crops and crop varieties, adjusting planting and 

harvest dates, and modifying input use and tillage practices can lessen yield losses from 

climate change in some regions and potentially increase yields in others where climate 

change creates expanded opportunities for production,” (Walthall et al. 2013).  

 

There has been much study given to the consequences of climate change on a 

macro level and to the impacts of climate change on crop production. However, few 

economic impact studies have estimated direct costs and productivity effects of climate 

change on livestock, and research on the effects of climate change at a livestock 

production enterprise level is virtually nonexistent.  

  The lack of research is due in part to a lack of data spanning enough time to 

capture the impacts of climate change. The purpose of the following study is to use 

multiyear pasture stocker grazing experiment datasets provided by F.M.Rouquette, Jr, 

Texas A&M AgriLife Research at the Texas A&M AgriLife Research & Extension 

Center at Overton, Texas that spans more than thirty years to estimate the impacts of 
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climate change on cattle stocker operations in east Texas and to provide a framework for 

future analysis of enterprise level climate change impacts. 

The data for this study was provided by F.M.Rouquette, Jr, of Texas A&M 

AgriLife Research at the Texas A&M AgriLife Research & Extension Center at 

Overton, Texas and spans more than 30 years. During the study period, faculty and staff 

at the Texas A&M AgriLife Research & Extension Center recorded birth dates, birth 

weights, sex, breed, weaning dates, weaning weights, calculated stocking rates, stocking 

strategies and methods, supplementation strategies, stocking trial begging dates, stocking 

trial beginning weights, intermediate trial weights, stocking trial terminal weights, 

average daily gain (ADG) and gain per acre for over 1,800 animals.  

Walthall et al. (2013) points out that, “Opportunities for adaptation are shaped by 

the operating context within which decision making occurs.” The idea that adaptation 

strategies are approached on a case-by-case basis necessitates the development of micro-

level analysis framework of the financial consequences of potential adaptation strategies.  

This study uses extensive data describing animal performance and environmental 

factors to determine the impact of management decisions (adaptations) including 

supplementation, length of days on pasture (DOP), and stocking rates on profitability in 

East Texas winter stocker programs. 

Review of Literature 

Climate Change 

“The atmosphere and ocean have warmed, the amounts of snow and ice have 

diminished, sea level has risen, and the concentrations of greenhouse gases have 
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increased” (IPCC, 2013). The Intergovernmental Panel on Climate Change (IPCC) 

Summary for Policymakers (SPM) gives a frank summary of one idea: the climate is 

changing. Economic impacts of climate change are difficult to measure globally with 

accuracy or locally with relevance, however extensive literature exists attempting to 

provide general impacts. The following review is only a brief treatment of the substantial 

body of climate change literature.  

Global annual rates of precipitation have changed, decreasing in certain latitudes 

and increasing in the average overland precipitation for the mid-latitudes of the Northern 

Hemisphere (IPCC, 2013). In the United States predictions range by area and model, 

however there is certainty of future change. The Centre National de Recherches 

Meteorologiques (CNR) general circulation model (GCM), beginning in 1994, forecast 

dramatic changes ranging from an increase in annual precipitation of up to 173.5 mm in 

the New England region to a decrease in precipitation of up to 144.9 mm in the southern 

Great Plains (Malcolm et al., 2012; Déqué et al, 1994). More recent estimates of the 

Center for Climate System Research MIROC GCM adapted by USDA predict annual 

precipitation increases of up to 102.7 mm in the Pacific Northwest and a decrease of up 

to 144.9 mm in the Deep South, and decreases of 3.4 to 38.7 mm in the Pacific 

Northwest and Southern Great Plains and Texas, respectively (Malcolm et al., 2012). 

The IPCC’s 2013 SPM found that, “The contrast in precipitation between wet and dry 

regions and between wet and dry seasons will increase, although there may be regional 

exceptions.” 
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Temperature change is another effect of the changing climate. “The globally 

averaged combined land and ocean surface temperature data…show a warming of 0.85 

⁰C, over the period 1880 to 2012” (IPCC, 2013). Temperature increases have the added 

impact of increasing evaporation yielding more brackish water in certain regions and 

lower salinity in others. “In most regions of our country, annual mean temperatures have 

increased significantly, though considerable variability exists across regions” (Walthall 

et al., 2013). In addition to regional variability, seasonal variability exists in temperature. 

The majority of the continental United States has seen increases in temperature ranging 

from 0.5 ⁰C to 2.0⁰C (Walthall et al., 2013) while Alaska has experienced more 

significant increases ranging from 1.0⁰C to 2.0⁰C (Walthall et al., 2013). The 

Southeastern United States is the only region to experience cooling over the historic 

period, ranging from a steady temperature to a decrease of between 0.5⁰C and 1.0⁰C, 

although much of the cooling occurred in the mid-20th century with temperatures rising 

recently (Walthall et al., 2013).  

While changes in localized historic temperature are relatively straightforward to 

measure, forecasts are less certain. The USDA Economic Research Service (ERS) 

adapted four general circulation models to forecast the change in mean annual maximum 

temperature under four climate change scenarios and found regional and nation-wide 

increasing temperatures in all cases. Moderate outcomes from the Max Planck Institute 

for Meteorology (ECH) and Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) GCMs found increases ranging from 0.4⁰C to 2.0⁰C (Bonan et 

al., 2002; Roeckner et al., 2003; Malcolm et al., 2012). The previously discussed CNR 
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adapted GCM found more significant increases in temperature ranging from 1.2⁰C to 

greater than 3.2⁰C in the southern Great Plains (Déqué et al, 1994; Malcolm et al., 

2012). The most recently developed of the adapted GCMs, the MIROC GCM predicts 

the most significant changes in temperature with only small portions of the United States 

seeing mean annual maximum temperature increases of at least 1.6⁰C and the majority 

of the continental United States sustaining temperature changes of over 2.8 ⁰C (Malcolm 

et al., 2012).     

 “Carbon dioxide concentrations have increase by 40.0% since pre-industrial 

times, primarily from fossil fuel emissions and secondarily from net land use change 

emissions” (IPCC, 2013). Forecasts for cumulative carbon dioxide emissions from 2012 

to 2100 vary depending on the Representative Concentration Pathway (RCP), a set of 

greenhouse gas concentration trajectories in use by the IPCC. All scenarios predict an 

increase in the emissions of carbon and carbon dioxide from 270 gigatonnes to 1,685 

gigatonnes and 990 to 6,180 gigatonnes, respectively (IPCC, 2013).  

 In addition to gradual, long-term impacts climate change will induce extreme 

weather and climate events. The IPCC SPM reports more land regions with increasingly 

heavy precipitation events than locations where such events have decreased. “Extreme 

precipitation events over most of the mid-latitude land masses and over wet tropical 

regions will very likely become more intense and more frequent by the end of this 

century, as global mean surface temperature increases” (IPCC, 2013). Chen and McCarl 

(2009) examined the cost of an increase in the frequency and intensity of hurricanes on 

the agricultural sector, motivated by the billions in property damage exacted by 
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hurricanes Katrina and Andrew, and found that regional crop yields are reduced from 

0.20% to 12.9%. A similarly devastating hurricane season occurred in 2017 with 

hurricanes Harvey and Irma making landfall.   

Impact of climate change on plant growth 

The changing climate does not impact all plant growth equally. Certain regions 

will benefit from redistributed precipitation while others will see reduced vitality and 

some plant species will benefit while others will experience reduced growth.  

The body of literature tends to agree that increased CO2 is beneficial up to a 

threshold for plant growth. Izaurralde et al. (2011) found that, “In general, it is expected 

that increases in CO2 and precipitation will enhance rangeland net primary production 

(NPP) whereas increased air temperature will either increase or decrease NPP.” C4 plants 

(corn, sorghum and bahiagrass) are under CO2 saturation under ideal precipitation 

amounts however, C3 plants (wheat, rye, oats and soybeans) will benefit from increasing 

concentrations of CO2 (Izaurralde et al., 2011) and can experience substantial variation 

in the timing of annual greening and growth (Baker et al., 1993). Doubling of CO2 can 

increase yield by up to 30.0% in select C3 species (Hatfield et al., 2011). 

Temperature increase should increase the length of the growing season through 

earlier green-up in rangeland (Badeck et al., 2004) and temperature is the primary 

climate driver that will determine growing season length (Izaurralde et al., 2011). Wan et 

al. (2005) found an increase in above ground NPP of 19.0% from a 2.0⁰C increase in 

daily minimum air temperature of tallgrass prairie, a C4 species. Controlling for 

interaction from changing precipitation associated with increased temperature, 
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temperature increases may enhance productivity however in already hot and dry regions 

these increases can lead to negative effects on NPP. Water loss associated with warming 

could offset any direct benefits of increased temperature (Izaurralde et al., 2011). 

In non-managed pasture/rangeland, the timing and geographic distribution is the 

determining factor in soil water availability and its impact on plant growth. Mu et al. 

(2013) found that as temperature and precipitation increased agricultural commodity 

producers reduced crop-land and increased pastureland. In general, adequate amounts of 

precipitation promote sustained growth and when plants receive below a certain 

threshold, depending on the species, their growth is less than optimal. The quantity of 

precipitation is not the only important factor in determining growth; timing also plays a 

role (Izaurralde et al., 2011). In an experiment in a tallgrass prairie ecosystem in Kansas 

increased variability in precipitation led to a reduction in soil water content and an 

associated 10.0% decrease in NPP (Knapp et al, 2002; Fay et al., 2003). In addition to 

forages available on pasture, certain supplements are dependent on precipitation. In a 

meta-analysis, Izaurralde et al. (2011) found that variation in precipitation will have a 

greater impact on alfalfa yield in the United States than CO2 concentrations or variations 

in temperature. Additionally, decreased precipitation and variability in the timing of 

precipitation will decrease yields of both soybeans and corn, key components of many 

supplemental feed mixes (Malcolm et al., 2012).  

Direct impacts of climate change on livestock 

 The indirect effects previously discussed may impair animal production more 

than direct effects, and more research is needed, however, direct effects from climate 
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change do exist. Studying the direct effects of changing temperature and increased CO2 

concentrations on livestock is difficult due to lack of sufficient data, confounding 

impacts and the difficulty of experimental integrity year over year, however some 

general conclusions have been reached. Postulated direct impacts of climate change on 

livestock include temperature-related illness and death, morbidity during extreme events, 

decreased voluntary feed intake, and below-optimal reproductive rates (Nardone et al., 

2010; Walthall et al., 2013; Zhang et al., 2013).  

 Voluntary feed intake above the maintenance threshold is the primary factor in 

determining production value in livestock. Mader et al. (2009) measured the impact of 

increased average daily temperature due to increased CO2 concentrations on voluntary 

feed intake in yearling feeder cattle between 770 lbs. and 1,200 lbs. Under a doubling 

and tripling of atmospheric CO2 levels beef producers would need to feed yearling 

feeder cattle up to 16.0% longer, however increases of four to five percent would be 

more common, and the magnitude of change was greater for swine than in beef cattle, 

and greatest for the eastern/southern region of the United States.  As a result of 

decreased voluntary feed intake females are less likely to meet their feed maintenance 

requirements and therefore lack the nutrition necessary to breed and successfully 

maintain pregnancy status full-term.  

 Individual studies have found localized negative responses to heat stress. Cook et 

al. (2002) and Yeruham et al., (2003) found a higher occurrence of mastitis during 

periods of hot weather. During a period of high heat stress in Italy in 2003 cell-mediated 

immunity in high yielding dairy cows was significantly impaired (Lacetera et al., 2005). 
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Nardone et al., 1997 suggested that heat stress may impair the protective value of 

colostrum in cows, and the negative influence of heat stress on beneficial colostral 

effects may explain the higher mortality of newborn calves observed during hot months 

(Martin et al., 1975). During summer, ketosis has is more prevalent due to increased 

maintenance requirements for thermoregulation and lower feed intake (Lacetera et al., 

2005), and the incidence of lameness increases as a consequence of metabolic acidosis 

(Shearer, 1999). In addition to the fore-mentioned studies,  numerous experiments have 

documented detrimental impacts of high heat load, the interaction of radiation, 

temperature humidity and wind speed (Johnson, 1987), on feed intake and efficiency, 

yield, animal health, growth and egg and milk production (Hansen et al., 2001; 

Wolfenson et al., 2001; Yalchin et al., 2001; Valtorta et al, 2002; Kerr et al., 2003; 

Faurie et al., 2004; Gaughan et al., 2004, Holt et al., 2004; Gaughan et al., 2009; 

Renaudeau et al., 2011).  

Studies on the correlation between heat stress and immune responses may be  

contradictory to each other with some reporting improvements and some impairments. 

The wide-ranging variety of experimental conditions (breed, species, location etc.) and 

lack of exact replication in repeated studies are likely to explain these discrepancies 

(Gaughan et al., 2009).  

Stocker cattle systems 

Peel (2006) describes the role of the stocker industry as providing a high degree 

of flexibility for the cattle industry, adjusting the timing and level of beef production 

according to market signals. The flexibility the stocking system provides is due to the 
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variability present between different operations, which makes the sector difficult to 

generalize, however certain attributes are constant throughout. 

 Peel (2006) describes typical stocker systems using data from USDA, 1995-

2005. Table 9 summarizes Peel’s findings regarding the typical stocker enterprise and 

table represents various combinations of typical stocker animals over a variety of 

production systems.  

Table 9. Stocker production characteristics.  
Stocker production characteristic Typical Range 
Beginning weight (lb.) 400-500 300-650 
Rate of gain (lb./d) 1.5-2.5 1.0-3.5 
Total gain (lb.) 200-300 100-400 
Ending weight (lb.) 650-850 600-950 
Length of time (days) 100-200 75-300 

 
 
 The characteristics of an individual stocker system are dependent upon available 

forage, which dictates cattle, duration of grazing, and feeding program (Huston et al., 

2011). Asem-Hiablie et al. (2015, 2016, 2017, 2018) collected and described region-

specific cattle production information. Asem-Hiable et al. (2018) describes management 

characteristics of eastern U.S. cattle producers. Of stocker operations surveyed in the 

Southeast (n=659), the mean number of head was 176 and the mean stocking rate was 

1.48 acres/stocker calf (Asem-Hiablie et al., 2018). Of the farms surveyed, the average 

amount of concentrate fed as a supplement was about 1.32 lb. of dry matter per day 

(DM/d), per animal. Purebred Angus and predominately Angus crosses were reported on 

70.0% of the operations surveyed (Asem-Hiablie et al., 2018).  

Grazing stocker cattle systems exist on rangeland and pastureland in Texas. 

Huston et al. (2011) reported that in the lower rainfall areas of Texas, generally the 
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western region, rangeland grazing is the dominant system. Larger pastures undisturbed 

by mechanical means, usually with native vegetation unenhanced except for grazing are 

characteristic of rangeland. Pastureland grazing, the system used at the Texas A&M 

AgriLife Research & Extension Center at Overton, Texas occurs in areas of higher 

rainfall in the eastern part of Texas. Pastureland grazing systems typically involve more 

management than rangeland systems through cultivation, fertilization, irrigation or 

another non-grazing enhancement (Huston et al., 2011).  

Grasses such as bermudagrass (Cynodon dactylon L.) and bahiagrass (Paspalum 

notatum Flueggé), and legumes including alfalfa (Medicago sativa L.) and clovers 

dominate warm-season pastureland stocker systems in the Southeast (Asem-Hiablie et 

al., 2018). Annual ryegrass (Lolium spp.), winter cereal rye (Secale cereal L.), and 

winter wheat (Triticum aestivum L.) were used in the Southeast during winter months to 

extend the grazing season (Asem-Hiablie et al., 2018). Warm-season perennial forage 

mass is characterized by a bimodal distribution where peak production occurs from late 

April through late summer with a secondary increase in mid-fall (Duble et al., 1971; 

Guerrero et al., 1984; Rouquette, 2015). Cool-season annual forage growth is 

characterized by a bimodal distribution that is temperature-driven, resulting in a minor 

peak in the fall and significant forage production in the late winter and spring  

Bermudagrass is the most persistent warm-season perennial grass used in 

pastureland grazing in the southeastern U.S. (Rouquette, 2016) and is the warm-season 

perennial grass of choice for the Texas A&M AgriLife Research & Extension Center at 

Overton, Texas. The release of Coastal bermudagrass (Cynodon dactylon (L.) Pers) in 
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the mid-1940s dramatically increasing production per acre (Rouquette and Smith, 2010).   

Sollenberger and Vanzant (2011) found that forage mass and forage allowance sets the 

parameters for potential ADG while nutritive value is responsible for setting the upper 

limits of potential ADG in bermudagrass pastures.  

Managed pastureland cool-season stocker systems typically follow one of two 

courses; sod-seeding (overseeding) of cool-season annual grasses and legumes onto 

warm-season perennial forages, or introduction of small grains into prepared seedbed via 

drilling or sod openers (Rouquette, 2015; Rouquette, 2016; Asem-Hiablie et al., 2018). 

Winter wheat varieties have long been used on prepared seedbed in parts of western 

Texas, Oklahoma, and Kansas in a mixed system of grain production and stocker grazing 

(Rouquette, 2015).  

Similar to the rest of the southeastern U.S. the Texas A&M AgriLife Research & 

Extension Center at Overton, Texas overseeds bermudagrass with cool-season annual 

forage or legumes. “Cool-season annual clovers and legumes are used in combination 

with perennial grasses such as bermudagrass to extend the active grazing period and 

provide increased nutritive value” (Rouquette, 2016). Early examples of sod-seeding 

oats or ryegrass in warm-season perennial grasses began as early as the 1940s (Dudley 

and Wise, 1953), and numerous studies have evaluated techniques and seeding rates for 

small grains, ryegrass or clovers into bermudagrass and other perennial grasses 

(Stephens and Marchant, 1958; Swain et al., 1965; Welch et al., 1967; Matocha, 1975). 

Overseeding of clovers and other legumes introduce benefits from nitrogen fixation 

through their symbiotic nitrogen (N) fixation and spring weed control (West and 
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Mallarino, 1996; Rouquette and Smith, 2010). Beck et al. (2007), Rouquette and Smith 

(2010), and Beck et al. (2013) examined an array of stocking strategies for stocker cattle 

using bermudagrass overseeded with small grains and ryegrass and determined that an 

initially low stocking rate accompanied by a doubling of the stocking rate in March 

maintains a stocker ADG of 1.25 kg d-1.  

 Another consideration when grazing stocker calves is whether or not to provide 

an energy or protein supplement. The decision is influenced heavily by individual 

circumstance but follows basic principles across stocking systems attempting to 

maximize profit. There are several reasons for supplementing stocker cattle including 

improving ADG, allowing for increased stocking density when forage is adequate or 

accounting for a lack of nutrients when forage is limited, and supplying additives 

(Cravey, 1993, Huston et al., 2011). In the southeastern U.S. farmers purchased 0.59 kg 

of concentrate dry matter (DM)/animal per day (Asem-Hiablie et al., 2018) for 

supplemental feeding. 

Huston et al. (2011) describes four supplemental feeding strategies: 1) 

Supplemental feeding involves providing limiting nutrients to allow forage to reach the 

potential level such that animal performance is not restricted by the deficiencies of other 

nutrients; 2) Enhancement feeding is utilized to increase the rate of gain or feed 

efficiency; 3) Substitution feeding requires alternate feeds be used to reduce or substitute 

the intake of grazed forage; 4) Supply feeding provides a major or exclusive portion of 

the animals’ DM in the event of inadequate forage quantity.   
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Considering the highly digestible nutrients of cool-season annual forages offering 

supplemental concentrates has two primary objects: 1) to use cheap grain sources to add 

animal weight economically and 2) to buffer the effect of over-stocking pastures to 

extend long-term pasture health (Grigsby et al., 1988c; Lippke et al., 2000; Pinchack et 

al., 1989; Huston et al., 2011).   
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Huston et al. (2011) provided an excellent overview of feeding different 

concentrates on stocker cattle grazing Coastal bermudagrass pasture. Table 10 is an 

adaptation of their summary table describing supplemental intake (lb./d), average daily 

gain (lb./d), and incremental gain (lb.) from supplement feeding over six grazing 

experiments. Average incremental gain across all six studies was 3.06 lb. The data from 

trials at the Texas A&M AgriLife Research & Extension Center at Overton, Texas 

includes mixes of corn, feather meal, molasses, soybean meal, Rumensin®, Bovatech®, 

GainPro®, amino acids, fishmeal, and gluten fed as concentrate supplement.   

Adaptation strategies for climate change in the livestock sector 

 The climate is changing and certain impacts are irreversible. The new state of the 

climate means that production practices must change in certain circumstances in order to 

achieve optimal profit, and in some cases the optimal profit has been irreversibly 

changed; these changes and new practices are strategies of adaptation. Gaughan et al. 

(2009) summarizes adaptation strategies by the livestock industry and established five 

categories for adaptation:  

1. Variations among breeds, species, and genotypes of both animal and forages  

2. Adjustment of livestock feed ration 

3. Management of livestock grazing intensities 

4. Alteration of facilities including barn construction and misters 

5. Relocation of livestock among regions 
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In the case of acute heat stress animal survival will be managed more cost-

effectively through environmental alteration per item four in the previous list (shade, 

misters, etc.), however in chronic heat-stress the effect of thermal stress cannot be 

eliminated by environmental modification and even major gains would be cost-

prohibitive (Renaudea et al., 2011). Genetic selection may hold the key to improving 

heat load tolerance in livestock experiencing chronic heat-stress. The “slick coat” gene 

which yields cattle with shorter hair has been observed to be more heat tolerant and 

present in tropical Bos taurus breeds (Gaughan et al., 2009). Zhang, Hagerman, and 

McCarl (2013) have found that producers in areas where heat stress is common select for 

more heat-tolerant cattle such as Bos indicus (Brahman). Producers have also 

transitioned to crosses of the English Bos taurus breeds with Bos Indicus, which has 

shown  to be more hearty in the face of high heat-stress and pest resistance.  

 There is evidence that in certain circumstances genetic adaptation within a 

species is not sufficient to provide economic returns above investment cost, and in some 

of these cases producers are turning to new species entirely. Seo, McCarl and 

Mendelsohn (2010) found shifts in species from cattle to sheep and goats in South 

America after controlling for soils, geography, household characteristics, and country 

fixed effects. “Sheep and goats are thought to be less susceptible to environmental stress 

than other domesticated ruminants” (Khalifa et al., 2005). The difference in species’ 

ability to withstand heat stress and lack of water should allow for selection of 

appropriate species for production practices, however markets for these species products 

could serve as a limiting factor for their adoption (Joyce et al., 2013).  
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 Adjusting stocking rates and varying the method of grazing by season and 

species of grass has proven to be another effective tool in adapting to climate change in 

livestock production. O’Reagain et al. (2011) found that financial returns were 

maximized after 12 years of adjusting stocking rate based on available forage followed 

by a moderate set-stocking rate. Using production characteristics of New Mexico, Torell 

et al., (2010) found that forage dependent stocking strategies as viable options to adapt 

to drought by allocating a significant part of a cow-calf enterprise to a flexible yearling 

enterprise. In a description of drought management in rangeland cattle grazing, Hart and 

Carpenter (2005) recommend that no more than 50.0% to 70.0% of grazing carrying 

capacity be allocated to a cow herd, and the remainder should be left as flexible grazing 

for drought management in times of inadequate precipitation and available for a stocker 

enterprise in periods of adequate precipitation.  

Extensive options for environmental modification exist, depending on the individual 

practice, and are described by Gaughan et al. (2009) as including, but not limited to: 

1. Shade 

2. Air movement 

3. Using water for cooling livestock 

4. Direct water application 

Each of these options has seen varying ranges of success and is highly dependent 

upon the resources available to producers, the species and breed in question, and the 

cost-benefit of each option (Renaudeau et al., 2011; Gaughan et al., 2009).  
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 There is an extensive body of literature surrounding the operation of stocker 

enterprises and even more for climate change. This research will contribute to the body 

of literature for the impact of changing temperature and precipitation on livestock 

production, and the profitability of those enterprises. In addition, this research will 

provide a template for studying the impact of other micro-climate changes on livestock 

enterprise profitability.   

Data & Methodology 

Data 

The data for this study was provided by F.M.Rouquette, Jr, of Texas A&M AgriLife 

Research at the Texas A&M AgriLife Research & Extension Center at Overton, Texas 

and spans more than 30 years. During the study period, faculty and staff with Texas 

A&M AgriLife Research recorded birth dates, birth weights, sex, breed, weaning dates, 

weaning weights, calculated stocking rates, stocking strategies and methods, grazing 

methods, supplementation strategies, stocking trial beginning dates, stocking trial 

beginning weights, intermediate trial weights, stocking trial terminal weights, average 

daily gain (ADG) and gain per acre for over 1,800 animals.  

Table 11 is a summary of the breeds of animals included in the rye and ryegrass 

grazing experiments. Each animal was counted based on the attribute of sire. All of the 

dams for the stockers in the stocking trials were F-1 (Brahman x Hereford or Brahman x 

Angus)  
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Table 11. Summary of breeds by breed of sire of cattle in stocking trials at Texas 
A&M AgriLife Research & Extension Center at Overton, TX. 
  Breed 
  Hereford Angus Simmental Tropically-adapted sires 
Count of 
animals 
over time 

 
5 246 983 48 

 

Table 12 is a summary of the trials that were included in this study. Of the original 

set provided by F.M.Rouquette, Jr., 514 observations were eliminated for lack of 

information regarding sex, birthweights, weaning weights, trial beginning and ending 

weights, breed information, or if there was an associated note regarding unusual 

circumstances.  
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Table 12. Summary of stocking trials at Texas A&M AgriLife Research & 
Extension Center at Overton, TX 

 
 

Additional trials were conducted, however they were excluded for the aforementioned 

missing data. Table 13 summarizes the growth and attributes of the animals included in 

the study.  
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Table 13. Summary of animals included in the winter pasture study    

 
Birth weight 

(lbs.) Female Wean weight Prewean 
ADG (lbs.) 

Weaning 
age (days)  

Mean  85 0.45 598 2.22 233 
Std. Dev.  15 0.5 71 0.31 20 
Min  42 0 375 -0.12 153 
Median 84 0 598 2.21 236 
Max 152 1 876 3.76 289 

 
     

 

Pretrial ADG 
(lbs.) 

Age at 
stocking 
(days)  

Initial 
stocking 

weight (lbs.)  

Stocking 
rate 

Days on 
pasture 

Mean  1.89 335 628 2.62 127 
Std. Dev.  0.28 39 78 0.74 30 
Min  1.19 110 366 1.04 58 
Median 1.88 335 627 2.56 126 
Max 5.56 492 908 5.76 183 

 
     

 

Terminal 
weight (lbs.) 

Trial ADG 
(lbs.) 

Total trial 
gain (lbs.) 

  

Mean  925 2.4 297   

Std. Dev.  123 0.85 108   

Min  543 -0.40 -23   

Median 922 2.49 291   

Max 1325 5.12 584     
 
 The difference between pre-wean total growth and initial stocking weight 

represents a pre-stocking period after the calves are weaned. The mean female value 

(0.45) represents a 45.0% female composition of the stockers over the study period. In 

order to incorporate the climatic changes on cool-season stocking systems the study 

includes weather data corresponding to the study period.   
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 For the animals included in the study there was a clear increase in total gain as 

days on pasture (DOP) increased (Figure 11). During the trial with the least DOP (58), a 

year with non-normal climate, only two animals achieved 200 lbs. or more of gained 

weight, while the average total trial weight gained over the average DOP of 127.15 days 

was 297.34 lbs.  

 
Figure 11. Total stocker gain 1985-2015 (Trend line; Total stocker gain = 169.06 + 
1.009*(Days on pasture4) + ε). 
  
 During the study period DOP decreased (Figure 12). Average DOP during the 

period from 1985-2000 was 139 days while the average number of DOP during the 

period from 2000-2015 was 119 days, a difference of 20 days, or just over two weeks.  

                                                

4 Bolded variable names represent significance at the 10.0% level. 
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Figure 12. Days on pasture (DOP) 1985-2015 (Trend line; Days on Pasture = 1857.518 - 
0.8647*(Year) + ε). 
 
 During the same period, temperature and precipitation displayed changes over 

time. Cool-season annual forage growth is characterized by a bimodal distribution that is 

temperature-driven, resulting in a minor peak in the fall and significant forage 

production in the late winter and spring (Rouquette, 2015). Changes to temperature can 

result in sub-optimal growth, and changes to the timing of a decrease in temperature 

could result in managers or producers planting at a later date, resulting in fewer DOP.  

In order to determine the relationship between temperature and precipitation 

changes and DOP this study incorporates NOAA monthly precipitation and monthly 

average maximum and monthly average minimum temperature data from weather 

stations at Henderson, TX, 15 miles from the Texas A&M AgriLife Research & 
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Extension Center at Overton, TX, and weather data from the Texas A&M AgriLife 

Research & Extension Center.  

 Figure 13 contains the monthly average maximum temperatures for 1985-2015. 

Monthly average maximum temperatures increased during the study period in all months 

August-February except for November, which experienced a slight decrease. The most 

significant increase in monthly average maximum temperature during the study period 

occurred in the month of October.  

 Figure 14 contains the monthly average minimum temperatures 1985-2015. 

Monthly average minimum temperatures over the study period did not vary in the same 

manner as monthly average maximum temperatures. In November, January, and 

February monthly average minimum temperatures decreased over the study period. 

Monthly average minimum temperatures in August, September, and December each 

experienced slight increases and October’s monthly average minimum temperature 

remained relatively stable over the study period.  
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Figure 13. Monthly average maximum temperatures August – Febraury (1985-2015); 
(A) Aug. Avg. Max Temp.  = -13.80 + 0.054*(Year) + ε; (B) Sep. Avg. Max Temp. = -
35.35 + 0.062*(Year) + ε; (C) Oct. Avg. Max Temp.  = -114.64 + 0.097*(Year) + ε; (D) 
Nov. Avg. Max Temp. = 70.36 -0.001*(Year) + ε; (E) Dec. Avg. Max Temp = -242.74 + 
0.151*(Year) + ε; (F) Jan. Avg. Max Temp. = 28.19 + 0.015*(Year) + ε; (G) Feb. Avg. 
Max Temp. = -334.01 + 0.196*(Year) + ε 
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Figure 14. Monthly average minimum temperatures August and November – March 
(1985-2015); (A) Aug. Avg. Min Temp.  = -54.98 + 0.063*(Year) + ε; (B) Nov. Avg. 
Min Temp. = 319.69 - 0.137*(Year) + ε; (C) Dec. Avg. Min Temp.  = -161.52 + 
0.099*(Year) + ε; (D) Jan. Avg. Min Temp. = 194.23 -0.079*(Year) + ε; (E) Feb. Avg. 
Min Temp. = 80.5 -0.02*(Year) + ε; (F) Mar. Avg. Min Temp. = -13.36 + 0.03*(Year) + 
ε 
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 There were also changes in precipitation in the area of the Texas A&M AgriLife 

Research & Extension Center at Overton during the study period. A downward trend 

exists in total rainfall during the period of September through December, from 1985-

2015 (Figure 15). 

  
Figure 15. Sum of precipitation September – December (1985-2015)  
(Trend Line; Fall precipitation = 469.23 - 0.225*(Year) + ε) 
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Figure 16. Sum of first quarter precipitation (1985-2015) 
(Trend line; First quarter precipitation = 81.49 - .034*(Year) + ε)  
 
 Total first quarter precipitation decreased over the study period (Figure 16), 

although not at the same rate as fall precipitation. Precipitation during the period 

described by Figure 15 occurs during the initial peak growth period of cool-season 

annual forages (Figure 11) and the secondary peak of warm-season perennial forages.  

 All else equal, during the study period increased DOP increased total gain per 

animal; thus fewer DOP would decrease total gain per animal, however changes in birth 

weight and growth may have offset the decrease in DOP.  

Considering Figure 11 and Figure 12 in combination leads to the conclusion that 

total trial weight gains over time should have decreased. During the study period, fewer 

DOP is associated with a lower total trial gain and from 1985-2015 the DOP decreased, 



 80 

however from 1985-2015 the total trial gain/animal displays an increasing trend (Figure 

17). Total trial gain/animal increased despite decreased DOP from 1985-2015 suggests 

an increased ADG. Figure 18 illustrates the trend of ADG from 1985-2015. ADG 

increased from 1985-2015. 

 
Figure 17. Total stocker gain (1985-2015).  
(Trend line; Total stocker gain = -1446.53 + 0.871*(Year) + ε) 
 

During the first half of the study period average ADG was 2.095 lbs. /day, while 

during the second half of the study period average ADG was 2.666 lbs. /day.  
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Figure 18. Stocker average daily gain (ADG) (1985-2015).  
(Trend line; Stocker ADG = -39.62 + .021*(Year) + ε) 
 

Several factors are possible contributors to the increased ADG from 1985-2015. 

Birthweights increased 1985-2015 (Figure 19). During the 1986 winter pasture trials at 

Overton, the average birthweight was 75.59 lbs. During the 2015 winter pasture trials at 

Overton, the average birthweight was 89.70 lbs. representing an increase of 13.11 

pounds of birthweights over 30 years. Average birthweights were highest during years 

from 2005-2010.  
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Figure 19. Stocker birth weight (1985-2015).  
(Trend line; Stocker birth weight = -1203.04 + 0.644*(Year) + ε) 
 

 Preweaning growth (Figure 20) and weights at the beginning of stocking periods 

(Figure 21) have both increased while the age of cattle entering the stocking enterprise 

has remained relatively constant (Figure 22). Increased weight at the beginning of the 

stocking period associated with stable age of entry into the stocking enterprise year over 

year was likely a result of the increased birthweights and increased preweaning growth.  
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Figure 20. Pre-wean total growth (1985-2015).  
(Trend line; Pre-wean total growth = -5050.94 + 2.781*(Year) + ε) 

 
Figure 21. Stocker weight at begging of stocking period. 
(Trend line; Initial weight = -2165.03 + 1.396*(Year) + ε) 
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Figure 22. Stocker age at beginning of trial. 
(Trend line; Stocker age at beginning of trial = 225.59 + 0.0544*(Year) + ε) 
 

 Terminal weights, the weight of the animals at the end of grazing, increased 

during the study period. Figure 23 illustrates the year over year increases in trial terminal 

weights.  
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Figure 23. Stocker terminal weight  
(Trend line; Stocker terminal weight = -3611.567 + 2.267*(Year) + ε) 
 

Methodology 

 Numerous factors impact animal growth and, in turn, profitability. While many 

factors are under the control of management, temperature and precipitation are not. In 

order to determine the impact of changing precipitation and temperature over the study 

period, this research will focus on the impact of days on pasture (DOP), driven by 

temperature and precipitation, on animal growth and profitability.  

 During each year of data collection at the Texas A&M AgriLife Research & 

Extension Center at Overton, Texas, new data was collected from different individuals, 

representing a pooled cross section over time, and therefore cannot be assumed 

identically distributed to estimate under the same model. A Chow-test (equation 23) for 

a structural break in the data revealed a structural break between years 2000 and 2001.  
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𝐶ℎ𝑜𝑤 =

(𝑆4 − (𝑆e + 𝑆f))/𝑘	
(𝑆e + 𝑆f)/((𝑁e + 𝑁f) − 2𝑘)

 (23) 

where Sc = Residual sum of squares, (1985-2015); S1=Residual sum of squares, 

(1985-2000); S2=Residual sum of squares, (2001-2015); N1=651; N2=631; k=18.  

 Considering the results of the Chow test for a structural break, an OLS regression 

was used to estimate each time period (1985-2000 and 2001-2015). Table 14 contains 

the results of each regression, where (dropped) indicates a variable that was dropped due 

to a significant degree of collinearity.  

Table 14. Table of regression results for prediction of average daily gain (ADG)  

 

In each regression, DOP was significant at the p=0.05 level, and displayed a 

negative relationship with ADG. As was discussed in the data section, total trial gain has 

R2 Adj. R2 R2 Adj. R2 R2 Adj. R2

0.456 0.451 0.458 0.45 0.424 0.415

Variable Name Coef. St. Err. P Coef. St. Err. P Coef. St. Err. P

Female -0.351 0.037 0 -0.328 0.047 0 -0.408 0.052 0

Weaning weight 0.006 0.001 0 0.007 0.001 0 0.001 0.001 0.418

Pre-wean ADG -0.721 0.158 0 -1.164 0.313 0.001 -0.387 0.179 0.03

Weaning age (days) -0.009 0.002 0 -0.01 0.003 0.002 -0.006 0.002 0.009

Initial weight -0.002 0 0 -0.001 0.001 0.129 -0.001 0.001 0.112

Stocking rate -0.492 0.025 0 -0.5 0.039 0 -0.501 0.034 0

Days on pasture -0.014 0.001 0 -0.013 0.001 0 -0.011 0.001 0

Supplemented 0.891 0.078 0 0.809 0.079 0.005 0.529 0.184 0.004

Supplemented 4.0% 
BW/day

-0.315 0.109 0.004 -0.304 0.1 0.003

Supplemented 1.0 
lb./head/day 

-0.583 0.197 0.003

Supplemented 2.0 
lb./head/day

-0.769 0.099 0 -0.194 0.191 0.309

Supplemented 4.0 
lb./head/day

-0.496 0.104 0.003 -0.094 0.236 0.691

Intercept 7.136 0.426 0 6.62 0.728 0 7.295 0.544 0

(dropped)

(dropped)

1985-2015 2001-2015 1985-2000

(dropped)

(dropped) (dropped)



 87 

remained constant or increased slightly 1985-2015. A negative relationship between 

DOP and ADG represents an increase in ADG required to maintain total trial gains over 

time as DOP decreased. Table 15 contains the results of regressions distributed along the 

same time periods as those in Table 14, where variables are used to estimate total stocker 

gain instead of ADG, where (dropped) indicates a variable that was dropped due to a 

significant degree of collinearity. 

 Table 15. Table of regression results for prediction of total stocker gain  

 

 Table 15 corroborates the idea of Figure 11 that total stocker gain increases as 

DOP increase. The rate at which stocker gains increase with additional DOP increased 

between 1985-2000 and 2001-2015.  

R2 Adj. R2 R2 Adj. R2 R2 Adj. R2

0.395 0.389 0.48 0.472 0.387 0.377

Variable Name Coef. St. Err. P Coef. St. Err. P Coef. St. Err. P

Female -45.85 4.93 0 -37.25 5.9 0 -59.84 7.41 0

Weaning weight 0.639 0.1 0 0.788 0.18 0 0.085 0.139 0.545

Pre-wean ADG -88.14 21.17 0 -127.8 39.363 0.001 -48.13 25.26 0.057

Weaning age (days) -1.04 0.243 0 -1.18 0.398 0.003 -0.637 0.311 0.042

Initial weight -0.246 0.052 0 -0.027 0.071 0.704 -0.165 0.081 0.041

Stocking rate -51.96 3.4 0 -60.94 4.95 0 -53.62 4.76 0

Days on pasture 0.43 0.089 0 1.1 0.154 0 0.533 0.132 0

Supplemented 127.88 10.47 0.004 104.8.49 9.89 0 55.58 26.07 0.033

Supplemented 0.4% 
BW/day

-38.83 14.63 0.008 -39.8 12.61 0.002

Supplemented 1.0 
lb./head/day

-91.95 26.55 0.001

Supplemented 2.0 
lb./head/day

-108.9 13.36 0 -12.7 27.04 0.639

Supplemented 4.0 
lb./head/day

-54.95 22.68 0.016 27.87 33.43 0.405

Intercept 594.4 57.32 0 446.68 91.6 0 660.54 77.77 0

(dropped)

(dropped)

1985-2015 2001-2015 1985-2000

(dropped)

(dropped) (dropped)
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 Days on pasture were estimated with weather data from Henderson, Texas (Table 

16) with weather variables significant to the growth of cool-season annual forages and 

bermudagrass.  

Table 16. Table of regression results for prediction of days on pasture (DOP)  

   

Simulations of 36 scenarios of profitability uses the results of Table 15 and Table 

16 to estimate final profit of a winter stocking system are shown in Table 17.  

R2 Adj. R2 R2 Adj. R2 R2 Adj. R2

0.877 0.874 0.783 0.78 0.952 0.952
Variable Name Coef. St. Err. P Coef. St. Err. P Coef. St. Err. P

7.878 0.355 0 40.5 2.321 0
2.45 0.686 0 -4.895 0.344 0

3.362 0.341 0 8.722 0.518 0 17.491 0.744 0
-2.477 0.373 0 18.986 1.269 0
-2.952 0.227 0 10.667 0.648 0
-7.266 0.544 0 0.292 0.503 0.561 -0.573 0.577 0.321
2.406 0.754 0.001

12.938 0.738 0
-5.605 0.81 0
-3.574 0.456 0 -1.748 0.523 0.001
-8.549 0.487 0 -3.092 0.53 0 18.472 1.074 0
-0.456 0.045 0 -3.967 0.254 0 -2.157 0.135 0
8.094 0.801 0
-4.473 0.785 0 -32.515 2.261 0
-7.586 0.373 0 -3.302 0.235 0 -7.438 0.203 0
2.262 0.551 0 -1.399 0.219 0 -4.082 0.239 0
5.112 0.352 0 2.235 0.818 0.006 -26.943 1.909 0

15.355 0.554 0 5.913 0.46 0
-5.673 0.247 0 -25.598 1.656 0
-1.062 0.353 0.003 -2.37 0.192 0
234.81 31.097 0 663.29 37.305 0 3382.9 156.45 0

Mar. Avg. Min T. (dropped)
Intercept

Oct. Avg. Min T.
Nov. Avg. Min T.
Dec. Avg. Min T.
Jan. Avg. Min T. (dropped)
Feb. Avg. Min. T. (dropped)

Feb. Avg. Max T.
Aug. Avg. Min T. (dropped) (dropped)
Sep. Avg. Min T. (dropped)

Nov. Avg. Max T. (dropped) (dropped)
Dec. Avg. Max T. (dropped)
Jan. Avg. Max T.

Aug. Avg. Max T.
Sep. Avg. Max T. (dropped) (dropped)
Oct. Avg. Max T. (dropped) (dropped)

Oct. Prec. (dropped)
Nov. Prec.
Dec. Prec. (dropped)
1st Quarter Prec. (dropped)

1985-2015 2001-2015 1985-2000

Sep. Prec. (dropped)
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Table 17. Profitability scenarios simulated under designated assumptions of 
stocking rate, supplementation, and DOP

 
  

Each scenario was simulated using Texas A&M AgriLife Extension’s November 

2018 Estimated Costs and Returns to November-May Stockers budget for the North 

Texas Extension District – 4 (Bennet, 2018), shown in Appendix A. The simulation 

maintained the assumptions of the budget in Appendix A with the exception of stocker 

purchase and sale weight and price, the gain contract, and bermudagrass hay. The gain 

contract in the Texas A&M AgriLife Extenion budget was eliminated.  

Bermudagrass hay was replaced with supplemental ration fed in different 

amounts. The supplemental ration, based on the data provided by Texas A&M AgriLife 

Research & Extension Center at Overton, TX could include a mixture of ingredients 

including corn, molasses, soybean meal, dried molasses, Rumensin ®, Bovatec ®, 

GainPro ®, amino acids, and gluten. No specific ingredient was intended as a variable of 

Scenario Stock. Rate
Supplementation 

Amount
Years for dist. 

of DOP
Scenario Stock. Rate

Supplementation 
Amount

Years for 
dist. of DOP

1 2.62 0 1985-2015 19 1.14 3 1985-2015

2 2.62 0 1985-2000 20 1.14 3 1985-2000

3 2.62 0 2001-2015 21 1.14 3 2001-2015
4 2.62 1 1985-2015 22 1.14 0.4% BW 1985-2015
5 2.62 1 1985-2000 23 1.14 0.4% BW 1985-2000
6 2.62 1 2001-2015 24 1.14 0.4% BW 2001-2015
7 2.62 3 1985-2015 25 4.1 0 1985-2015
8 2.62 3 1985-2000 26 4.1 0 1985-2000
9 2.62 3 2001-2015 27 4.1 0 2001-2015

10 2.62 0.4% BW 1985-2015 28 4.1 1 1985-2015
11 2.62 0.4% BW 1985-2000 29 4.1 1 1985-2000
12 2.62 0.4% BW 2001-2015 30 4.1 1 2001-2015
13 1.14 0 1985-2015 31 4.1 3 1985-2015
14 1.14 0 1985-2000 32 4.1 3 1985-2000
15 1.14 0 2001-2015 33 4.1 3 2001-2015
16 1.14 1 1985-2015 34 4.1 0.4% BW 1985-2015
17 1.14 1 1985-2000 35 4.1 0.4% BW 1985-2000
18 1.14 1 2001-2015 36 4.1 0.4% BW 2001-2015
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evaluation by this study, only the strategy of supplementation in general. The ration was 

priced using the current value of corn, $125.00/ton, and was either withheld or fed in one 

of three different daily amounts; one pound per head, three pounds per head, 0.40% of 

bodyweight.    

 All characteristics of cattle and market conditions were simulated using the 

coefficients shown in Table 14 for the period 2001-2015, except for DOP, which was 

simulated under three different periods.  Table 18 shows the levels for each variable used 

in the simulation. 

Table 18. Table of variable levels for estimation of total stocking gain 
Variable Name  Value used for simulation of profit 
Female  0 (indicates steer) 
Weaning weight  Multivariate empirical distribution of 2001-2015 data 
Pre-wean ADG  Multivariate empirical distribution of 2001-2015 data 
Weaning age 
(days) 

 Multivariate empirical distribution of 2001-2015 data 

Initial weight  Multivariate empirical distribution of 2001-2015 data 
Stocking rate  Set based on Scenarios in Table 9 

Days on pasture  Estimated using multivariate empirical distribution of precipitation 
and temperature data for 1985-2015, 1985-2000, 2001-2015 

Supplementation  Varied based on scenario 

Intercept  615.12 
 

The simulation assumes 200 steers, with no gains from specific breed type, 

supplemented with a mixed ration, under three stocking rates, and distributions of the 

other variables in Table 15, including DOP estimated with the results of Table 16.  

Table 18 shows that DOP were estimated using a multivariate distribution of 

precipitation and temperature data for 1985-2015, 1985-2000, 2001-2015. Precipitation 
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and temperature data for Henderson, Texas, located near the Texas A&M AgriLife 

Research and Extension Center at Overton, Texas were obtained from the National 

Oceanic and Atmospheric Administration (NOAA) (National Oceanic and Atmospheric 

Administration, 2018). Days on pasture were then estimated using those data and the 

regression results provided in Table 16. Days on pasture were adjusted to reflect the 

average number of DOP 1985-2015, the number of DOP from 1985-2000, and 2001-

2015 to provide an indication of the impact weather-driven changing DOP have had on 

profitability.   

Weaning weight, pre-wean ADG, weaning age, and initial weight were simulated 

under a multivariate empirical distribution using the data from 2001-2015 from the 

Texas A&M AgriLife Research and Extension Center at Overton, Texas, and provided 

stochastic values for the initiation of the simulation, where initial weight is the same as 

purchase weight. Cattle purchase and sale price were estimated using an empirical 

distribution of Oklahoma National Stockyard medium and large frame steer prices, at 50 

lb. increments from 300 lbs. – 1,200 lbs., provided by Livestock Marketing Information 

Center (LMIC) (Livestock Marketing Information Center, 2018). Animals were priced 

based on their weight at purchase and their weight at the end of the stocking period. 

Final revenue of the system came from the sale price ($/cwt) of feeder steers multiplied 

by the weight per steer, multiplied by the number of steers.  

Results 

 Profitability varied based on supplementation strategy, stocking rate, and 

estimated DOP. Table 19 shows the summary statistics of simulated profit for scenarios 
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1-36. The highest mean profit from the stocker enterprise, $10,065, for 200 steers, was a 

result of the conditions under Scenario 26 in which there was no supplementation, a 

stocking rate of 4.1 animals/acre, and days on pasture was estimated from the period 

1985-2000, i.e. longer days on pasture. The lowest mean profit from the stocker 

enterprise, $(10,503), per 200 steers, was a result of the conditions under Scenario 21, in 

which cattle were provided supplementation at a rate of 3 lbs./head/day, there was a 

stocking rate of 1.14 animals/acre, and days on pasture estimated for the period 2001-

2015, i.e. shorter days on pasture. 
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Table 19. Summary statistics of profit simulation for scenarios 1-36

 
 

Maximum-mean indicates that an increase in DOP increases mean profit from the 

stocking enterprise. In all 12 pairs of scenarios with the same assumptions but for the 

distribution of DOP, profit from the scenario with longer days on pasture exceeded profit 

1985-2015 1985-2000 2001-2015 1985-2015 1985-2000 2001-2015
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Mean $6,757 $9,776 $4,792 $502 $2,784 ($889)
Std. Dev. $74,752 $75,586 $70,715 $74,988 $76,405 $73,473
Min ($195,536) ($206,576) ($196,930) ($215,477) ($214,126) ($216,394)
Max $246,089 $257,191 $238,546 $252,449 $263,945 $244,638

Scenario 7 Scenario 8 Scenario 9 Scenario 10 Scenario 11 Scenario 12
Mean ($6,561) ($6,788) ($9,465) ($5,521) ($2,581) ($8,000)
Std. Dev. $78,275 $79,228 $76,908 $78,921 $79,259 $77,145
Min ($212,439) ($208,967) ($219,049) ($217,129) ($209,503) ($224,165)
Max $265,168 $277,452 $256,822 $261,067 $273,098 $252,894

Scenario 13 Scenario 14 Scenario 15 Scenario 16 Scenario 17 Scenario 18
Mean $5,719 $8,738 $3,754 ($536) $1,747 ($1,927)
Std. Dev. $74,752 $75,586 $70,715 $74,988 $76,405 $73,473
Min ($196,574) ($207,613) ($197,967) ($216,515) ($215,164) ($217,432)
Max $245,051 $256,154 $237,508 $251,411 $262,907 $243,600

Scenario 19 Scenario 20 Scenario 21 Scenario 22 Scenario 23 Scenario 24
Mean ($7,599) ($7,826) ($10,503) ($6,559) ($3,619) ($9,038)
Std. Dev. $78,275 $79,228 $76,908 $78,921 $79,259 $77,145
Min ($213,477) ($210,005) ($220,086) ($218,167) ($210,540) ($225,203)
Max $264,130 $276,414 $255,784 $260,030 $272,060 $251,856

Scenario 25 Scenario 26 Scenario 27 Scenario 28 Scenario 29 Scenario 30
Mean $7,046 $10,065 $5,081 $791 $3,074 ($600)
Std. Dev. $74,752 $75,586 $70,715 $74,988 $76,405 $73,473
Min ($195,247) ($206,286) ($196,640) ($215,188) ($213,837) ($216,105)
Max $246,378 $257,480 $238,835 $252,738 $264,234 $244,927

Scenario 31 Scenario 32 Scenario 33 Scenario 34 Scenario 35 Scenario 36
Mean ($6,272) ($6,499) ($9,176) ($5,232) ($2,292) ($7,711)
Std. Dev. $78,275 $79,228 $76,908 $78,921 $79,259 $77,145
Min ($212,150) ($208,678) ($218,760) ($216,840) ($209,213) ($223,876)
Max $265,457 $277,741 $257,111 $261,357 $273,387 $253,183
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from the scenario with shorter days on pasture. In certain cases, profit doubled from 

changing only the distribution of DOP. 

 Maximum profit indicates that increased DOP increases maximum profit from 

the stocking enterprise. In all 12 sets of scenarios with the same assumptions but for the 

distribution of DOP, maximum profit from the scenario with longer days on pasture 

exceeded profit from the scenario with shorter days on pasture. A shorter distribution of 

DOP is accompanied by a negative expected mean profit in nine of 12 scenarios with the 

shorter distribution of DOP. 

  There is a clear pattern in profit from the interaction between stocking rate, and 

the amount of supplementation provided. The six scenarios which provide the most 

profit did not provide a supplement. Within that grouping, the higher the stocking rate, 

the greater the expected mean profit was, and the longer distribution of DOP was always 

associated with a higher mean profit than the shorter distribution of DOP. The second set 

of six ranked scenarios, i.e. the seventh most profitable scenario to the twelfth most 

profitable scenario, followed the exact same pattern as the six most profitable scenarios, 

except that the cattle were provided with a supplemental ration at the rate of 

1lb./head/day. With each incremental increase in supplementation, profitability 

decreased.  

 Cumulative distribution functions (CDFs) of profit with the same 

supplementation strategies and stocking rates, with varying DOP (1985-2000 and 2001-

2015) are shown in Figure 24 – Figure 26. The CDFs show that there is little difference 
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in simulated profit under different DOP, and CDFs usually cross, indicating different 

highest profit at different probability levels.  

 
Figure 24. Cumulative distribution function (CDF) of profit of scenarios (1985-2000) 
and (2001-2015) with stocking rate (SR) = 2.62 
 

 Figure 24 does not show a clear difference in the scenarios on each graph of 

CDFs and in most cases the CDFs cross, making the most profitable choice unclear.   
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Figure 25. Cumulative distribution function (CDF) of profit of scenarios (1985-2000) 
and (2001-2015) with stocking rate (SR) = 1.14 
 

Figure 25 does not show a clear difference in the scenarios on each graph of 

CDFs and in most cases the CDFs cross, making the most profitable choice unclear.   
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Figure 26. Cumulative distribution function (CDF) of profit of scenarios (1985-2000) 
and (2001-2015) with stocking rate (SR) = 4.1 
 

Figure 26 does not show a clear difference in the scenarios on each graph of 

CDFs and in most cases the CDFs cross, making the most profitable choice unclear.   

The case-by-case CDFs in Figure 24-Figure 26 do not provide significant insight 

into the difference in scenarios, however Figure 19, CDFs of Scenario 26 and Scenario 

21, the scenarios with the highest expected profit most and least expected profit, 
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respectively, shows a significant difference in outcomes. Scenario 21 presents with 

approximately a 60.0% chance of negative returns, almost 20.0% greater than the chance 

of negative returns from Scenario 26. The CDFs for Scenarios 21 and 26 also do not 

cross, and so there is a definitive, overall more profitable scenario when comparing the 

two.  

 
Figure 27. Cumulative distribution function (CDF) of profit of scenarios Scenario 26 and 
Scenario 21 
 

A CDF that lies entirely to the right of another CDF indicates a more profitable 

scenario, however when CDFs cross other methods must be employed to determine the 

‘best’ scenario. Stochastic dominance with respect to a function (SDRF) with a risk 

aversion coefficient (RAC) 0.0 was used to rank scenarios from most preferred to least 

preferred. Scenario 26 remains the most preferred scenario using SDRF. The most 

profitable scenarios employ a strategy of no supplementation, and within each level of 

supplementation longer DOP and higher stocking rates yield higher profit.  

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-300000 -200000 -100000 0 100000 200000 300000

Pr
ob

Scenario 21: 2001-2015 Scenario 26: 1985-2000



 99 

Table 20. Analysis of Stochastic Dominance with Respect to a Function (SDRF) of 
stocker profitability scenarios (1985-2000) and (2001-2015) 
Risk Aversion Coefficient = 0  
Scenario name Level of Preference  
Scenario 26: 1985-2000 Most Preferred  
Scenario 2: 1985-2000 2nd Most Preferred  
Scenario 14: 1985-2000 3rd Most Preferred  
Scenario 27: 2001-2015 4th Most Preferred  
Scenario 3: 2001-2015 5th Most Preferred  
Scenario 15: 2001-2015 6th Most Preferred  
Scenario 29: 1985-2000 7th Most Preferred  
Scenario 5: 1985-2000 8th Most Preferred  
Scenario 17: 1985-2000 9th Most Preferred  
Scenario 30: 2001-2015 10th Most Preferred  
Scenario 6: 2001-2015 11th Most Preferred  
Scenario 18: 2001-2015 12th Most Preferred  
Scenario 35: 1985-2000 13th Most Preferred  
Scenario 11: 1985-2000 14th Most Preferred  
Scenario 23: 1985-2000 15th Most Preferred  
Scenario 32: 1985-2000 16th Most Preferred  
Scenario 8: 1985-2000 17th Most Preferred  
Scenario 36: 2001-2015 18th Most Preferred  
Scenario 20: 1985-2000 19th Most Preferred  
Scenario 12: 2001-2015 20th Most Preferred  
Scenario 24: 2001-2015 21st Most Preferred  
Scenario 33: 2001-2015 22nd Most Preferred  
Scenario 9: 2001-2015 23rd Most Preferred  
Scenario 21: 2001-2015 Least Preferred 

 

Conclusions 

“Opportunities for adaptation are shaped by the operating context within which 

decision making occurs” (Walthall et al., 2013). The three goals of this research were to 

determine the most profitable stocking strategies available for East Texas stocker 

enterprises, whether or not changing temperature and precipitation impact DOP, and if 

so what the impact of changing temperature and precipitation are having on profitability 
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of East Texas stocker enterprises. Within the context of the variables significant to 

estimating ADG and total gain in the data provided by F.M.Rouquette, Jr, Texas A&M 

AgriLife Research at the Texas A&M AgriLife Research & Extension Center at 

Overton, Texas over a 30+ year period the decisions available to grazing managers 

included stocking rate, supplementation strategies, and DOP.  

Scenario 26 was the most profitable scenario under all methods of evaluation. 

Stockers are were not provided a supplement, stocked at a rate of 4.1 animals/acre, and 

DOP are distributed according to data from 1985-2001, which on average indicates 

longer DOP than the period 2001-2015.  

The results of this study indicate that the cost of excessive supplementation may 

exceed the returns gained from the practice. Supplementing with corn has been shown to 

increase ADG, however the cost associated with the gains from supplementation in the 

data from the Texas A&M AgriLife Research & Extension Center at Overton, Texas 

appear to outweigh the profit from those gains. The positive relationship between 

stocking rate and increased profit follows the logic that, the more animals that can be 

grazed on a unit of land, the more profit will be captured from that land from increased 

total weight gain.  

Along with Scenario 26, the top scenarios in all combinations with similar 

management characteristics expect for DOP yield more profit when the distribution of 

DOP is longer, i.e. simulated using the data from 1985-2001. The longer animals are 

able to gain weight, the more profit will be derived from the stocking system, as long as 

costs do not increase dramatically.  
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The high explanatory power (R2 = 0.877) of precipitation and temperature 

variables in predicting DOP, and the significance of time in the estimation of 

precipitation and temperature (Figure 13 – Figure 16) indicate that changing 

temperatures are impacting DOP, which are decreasing over time (Figure 12). In fact, 

from the first period (1985-2000) to the second period (2001-2015) producers in East 

Texas have lost approximately 20 days, over two weeks, of grazing-days.  

Precipitation in September, October, and November is positively related to the 

number of DOP, however since 1985 precipitation in each of those months has declined 

significantly. Precipitation in December and the first quarter of each year are negatively 

related to the number of DOP, and precipitation in those periods has decreased 

significantly over time, potentially offsetting the losses in DOP from decreased 

precipitation in earlier fall months. Maximum temperature in September, October, and 

minimum temperature in August, December, and January are significantly positively 

related with DOP. Maximum temperature in December and February have increased and 

minimum temperature in December and January have decreased since 1985, and have 

led to a decrease in DOP.   

The final goal of this research was to determine whether or not decreasing DOP, 

driven by changing temperature and precipitation, decreases profit. Simulated scenarios 

of profitability, varying DOP under constant management strategies otherwise, typically 

leads to more profit. While the differences in profitability between scenarios are not 

always large, increasing DOP tends to increase profitability.  
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It is possible that the impact of decreased DOP over time might be more 

pronounced, were it not for the exogenous increases in cattle size over time. However, 

when size is held constant more DOP still provide more profit than fewer DOP. The 

result of the simulation in this research make clear that decreasing DOP, estimated using 

temperature and precipitation data, lead to lower profit, and DOP have decreased 

significantly since 1985.  

The data from the Texas A&M AgriLife Research at the Texas A&M AgriLife 

Research & Extension Center at Overton, Texas provides a host of opportunities for 

further research. Incorporating more weather and climate variables such as the Palmer 

Drought Index into estimates of DOP could increase the reliability of the estimation of 

DOP. In addition to the data provided, there is similar data from the Texas A&M 

AgriLife Research at the Texas A&M AgriLife Research & Extension Center for a cow-

calf enterprise, and data for the stockers exists through the cut-out stage. Utilizing 

similar methods to determine the impact of climate on DOP would benefit cow-calf 

producers and to determine the impact of climate-driven DOP on cut-out values, and for 

the entire cattle and beef industry.  

Studying Figure 11 and Figure 12 suggests a decrease in total gain over time, 

however Figure 17 shows an increase in total trial gain over time. Further studying the 

attributes of animals included in the study to determine the source of increased total 

gain, despite a significant decrease in DOP, would lend further accuracy to the findings 

of this study.  
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Incorporating forecasted temperature, precipitation, and other climate variables 

would allow the establishment of a long-term forecast of eastern Texas stocker 

profitability. In addition, varying death rates based on incremental climatic change and 

extreme events would create a more realistic study.  
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CHAPTER III CONCLUSION                                                                                                                  

THE VALUE OF A COMBINATION ARC AND PLC PROGRAM 

Introduction 

 The 2014 Farm Bill allowed producers to elect their farms into either Price Loss 

Coverage (PLC) or Agricultural Risk Coverage (ARC). PLC was designed to protect 

producers in an environment of low prices while ARC was designed to protect producers 

in an environment of declining revenues.  

 Both ARC and PLC are market-oriented risk management policies that were 

intended to decrease government outlays on commodity programs and eliminate direct 

decoupled payments to producers (Campiche et al., 2014; Shields, 2015). A decline in 

prices since the 2014 Farm Bill ballooned spending in the ARC and PLC programs from 

$5 billion on 2014’s production to almost $7 billion on 2015 and 2016’s production 

each, with outlays of over $4 billion annually projected for crop years 2016-2027 

(Angadjivand, 2017).  

 It is likely that the 2018 Farm Bill will likely allow producers to change their 

enrollment from ARC to PLC or vice versa (Zulauf et al., 2017). Alternative strategies to 

changing enrollment have been suggested, including weighted enrollment in both 

programs, i.e. 50.0% of base acres in ARC and 50.0% of base acres in PLC (Zulauf et 

al., 2017). In the Agriculture Act of 2014, producers were allowed to enroll their farm, 

on a crop by crop basis, in either ARC or PLC. For example, under the Agriculture Act 

of 2014, if a producer grew 100 acres of corn, all 100 acres were enrolled in either ARC 

or PLC for the life of the farm bill. The proposed blended program that is the subject of 
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this study would allow that same producer to enroll 50 of those corn base acres in ARC 

and 50 of the corn base acres in PLC.  

The purpose of this study is to evaluate the expected revenue of the proposed 

combination commodity support program for corn, soybeans, grain sorghum, wheat, 

barley, oats, seed cotton, and peanuts for payment years 2018-2024. These eight crops 

amount to approximately 98.0% of all non-generic base acres in the US (Farm Service 

Agency, 2015). This study utilizes FSA county level data for all counties with base in 

barley, corn, grain sorghum, peanuts, oats, seed cotton, soybeans, and wheat to 

determine expected revenue, including expected commodity program payments, for 

those crops. This study shows which of the original commodity support programs or 

what mixed program has the highest expected revenue in each county with non-irrigated 

base acreage in one of the previously described 8 crops. Additionally, this study will use 

the difference in outcomes of each of the existing commodity support programs and the 

theoretical mixed program to determine the mixed program’s value.  

Literature Review 

History 

 The history of modern United States (US) farm policy has been a sustained 

movement away from government-backed price supports and supply controls toward a 

market-oriented support system (Dimitri et al., 2005; Shields, 2015). Prior to the 1920s 

farm policy was focused on different goals. The origin of support for agriculture in the 

late 1700s was a series of policies aimed at expanding agriculture to newly acquired 

territories (Effland, 2000) followed by an increase in the quality of producer education, 
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technological development, and eventually market information tools and infrastructure 

services (Effland, 2000).  

 Following World War II, demand for US produced food fell as the rest of the 

world re-entered production agriculture and domestic prices fell (Effland, 2000). The 

New Deal dictated a more direct role of government intervention in markets and 

production decisions by farmers in order to provide support for an industry that was 

characterized by small, diverse farms primarily selling domestically (Dimitri et al., 2005; 

Doering and Outlaw, 2006). Beginning with the passage of the Agricultural Adjustment 

Act (AAA) farm policy has used various methods of direct market intervention to 

achieve different goals in the agricultural sector (Taylor et al., 2017). Doering and 

Outlaw (2016) describe the historic goals of farm policy as, first, supporting commodity 

prices as a percentage of parity, then supporting producer incomes at a politically 

acceptable level, and finally making US agricultural policy more responsive to market 

forces.  

 Pressed by the rising cost of commodity programs and the need to appease 

international trade requirements, a transition in the 1990s led to the replacement of price 

supports and supply controls with direct payments based on historic production (Effland, 

2000; Dimitri et al., 2005; Angadjivand, 2018). Since that time, direct payments to 

producers have iteratively moved towards market signal-based direct payments to 

producers and a risk-management oriented approach to agricultural support (Shields, 

2015; Angadjivand, 2018).  
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 Throughout their evolution, farm policy critics have held that commodity 

supports transfer risk from producers to taxpayers, encourage production on land that 

otherwise would go untouched, and cause market distortion (Shields, 2015). However, 

there are a host of rationales for government intervention in farm policy. In the New 

Deal era, a goal of commodity programs was to raise rural standards of living, the state 

of 25.0% of the US population, to that of urban communities (Doering and Outlaw, 2006 

; Shields, 2015). Since that time domestic food security, risk reduction from natural 

causes, industry stability, and conservation have been held up as rationales for, and 

benefits of commodity policy.  

Current commodity programs  

The 2014 Farm Bill allowed producers to select their farms into either Price Loss 

Coverage (PLC) or Agricultural Risk Coverage (ARC) in a one-time irrevocable 

decision through the next farm bill or, potentially, the extension of the 2014 Farm Bill. 

The programs represented a sweeping change to farm policy and replaced direct 

payments, moving towards a policy of risk management (Campiche et al., 2014; Farm 

Service Agency, 2014). The rationale behind the new programs was to reduce the deficit 

by eliminating decoupled payments not tied to declining prices or farm loss (Shields, 

2015).  

The ARC program provides revenue loss protection for producers in two formats 

(FSA, 2014; Campiche et al., 2014; Taylor et al., 2017). Agricultural Risk Coverage - 

County Level (ARC-CO) provides revenue loss protection based on a county-level 

yields and a national marketing year average (MYA) price and not on producers actual 
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crop production. ARC-CO guarantees 86.0% of a county’s benchmark revenue where 

the calculation is the same for all base acres of a crop in a county (Campiche et al., 2014; 

Taylor et al., 2017). Benchmark revenue is equal to the previous five-year Olympic 

average of county yield times the previous five-year Olympic MYA price. In ARC-CO, 

payments are determined on a crop by crop basis, not across an entire farm and 

payments are made on 85.0% of that crop’s base acreage.  

Agricultural Risk Coverage – Individual Level (ARC-IC) provides a safety net 

for producers based on their individual crop production. Producers enroll in ARC-IC on 

a whole-farm basis, regardless of the variety of crops in production on that farm and the 

payment calculation is slightly different. Producers enrolled in ARC-IC are required to 

provide FSA information on crops grown on their base acres and farm-level yields and 

prices received (Taylor et al., 2017). Payments from ARC-IC are determined by 

calculating revenue across all crops reported and comparing that revenue to a five-year 

Olympic average of that producers weighted per-acre revenue, with payments based on 

65.0% of base acres, not 85.0% as in ARC-CO (Taylor et al., 2017). Both ARC-CO and 

ARC-IC payments are capped at 10.0% of benchmark revenue.  

The third commodity program provide by the 2014 Farm Bill is Price Loss 

Coverage (PLC), a program similar to the counter-cyclical payment (CCP) in the 2008 

Farm Bill with significantly higher reference prices replacing CCPs target prices 

(Campiche et al., 2014). Base acres are enrolled by commodity as with ARC-CO and 

payments are eligible on 85.0% of base acres. PLCs payment is the difference between 

the reference price and the effective price (the higher of the marketing year price or loan 
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rate) when the reference price exceeds the effective price, multiplied by payment yield 

and the 85.0% coverage rate (Campiche et al., 2014). Producers enrolled in PLC have 

the option to enroll in the Supplemental Coverage Option (SCO) on the same acreage as 

a complement to a producer’s individual insurance policy. SCO is designed to cover the 

difference between 86.0% and the level of coverage on producer’s insurance policy, with 

SCO premiums subsidized at 65.0% by the United States Department of Agriculture 

(USDA). SCO is beneficial to producers that normally produce low levels of coverage 

due to cost that are commonly located in high-risk areas and in need of additional 

assistance (Taylor et al., 2017).  

 Enrollment in ARC and PLC varied by crop and region, with less than 1.0% of 

producers enrolling base acreage in ARC-IC (FSA ARC/PLC Election Data, May 2015). 

In total, producers enrolled 242,355,208 base acres in non-generic base acreage (Farm 

Service Agency, 2015). Record high prices in certain commodities directly preceding the 

enrollment period led to different enrollment patterns around the country (Taylor et al., 

2017). Figure 1 represents the percent of base acres enrolled in either ARC-CO or PLC 

as of May 2015. 
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Figure 28. Percent of Base Acres by Commodity 
Source: FSA ARC/PLC Election Data, May 2015 
 
 Figure 28 represents the percent of base acres in each of several major 

commodities enrolled in ARC-CO and PLC during the 2014-2018 farm bill enrollment.  

 
Figure 29. Percent of base acres in ARC and PLC by commodity for eight largest base 
acre crops 
Source: FSA ARC/PLC Election Data, May 2015 
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 Figure 29 shows that base acre enrollment in each of the three largest 

commodities in terms of base acres, ARC-CO enrollment exceeded 50.0%. Historic 

revenues experienced during the life of the 2008 Farm Bill, the period used to establish 

benchmark revenues for the 2014 Farm Bill, is what led producers of corn and soybeans 

to enroll heavily in ARC-CO under the expectation of higher payments than PLC 

(O’Donoghue and Hungerford, 2016; Taylor et al., 2017; Angadjivand, 2018). Since 

enrollment, the price of both corn and soybeans has seen significant reduction. Producers 

of peanuts and rice, crops whose price hovered around the newly proposed reference 

prices during the period used to establish historic price patterns, primarily enrolled in 

PLC under expectations of greater support from high fixed reference prices (Taylor et 

al., 2017). Wheat was the only major crop to experience relatively balanced enrollment; 

42.0% in ARC-CO and 56.0% in PLC.  

 Payments to program crops vary. Under the 2014 Farm Bill most of the outlays 

for commodity support programs between 2014-2016 are attributable to corn (46.0%), 

wheat (16.0%), soybeans (15.0%), rice (5.0%), and peanuts (4.0%) (Schnepf, 2017). The 

vast majority ($10.3 billion or 75.5%) of the outlays in PLC from the 2014-2016 crop 

years are attributable to corn while the majority ($1.6 billion or 31.9%) of payments in 

ARC-CO were directed to wheat (Zulauf et al., 2018). Average program payments for 

corn from the 2014-2016 crop years were $80/acre for corn, and $25/acre for wheat and 

soybeans (Taylor et al., 2017). 
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Proposed changes to commodity programs  

Expected payments from ARC are decreasing as each year of decreased prices is 

incorporated into payment calculations and PLC payments are expected to increase or 

remain constant as prices remain lower than statutorily set references prices (Richardson 

et al., 2017). Recommendations for restructuring commodity support programs run the 

gamut. In 2016’s “Options for Reducing the Deficit: 2017 to 2026,” Director Hall of the 

Congressional Budget Office (CBO) recommends several strategies related to 

commodity support programs for reducing the deficit. Strategies suggested include 

eliminating commodity support programs and limiting payments to 50.0% of base acres 

instead of 85.0%.  

Under current levels of farm stress these solutions would likely prove disastrous. 

Farm incomes have dropped drastically since the signing of the 2014 Farm Bill resulting 

in a similar situation to the 1980s farm crisis (Outlaw et al., 2017). Rather than program 

elimination or benefit reduction other programs have recommended programs that 

update ARC-CO historic yield formulation (Taylor et al., 2017; Angadjivand, 2018) or 

allowing mixed base acre enrollment (Zulauf et al., 2017).   

 The Bipartisan Budget Act of 2018 authorized Seed Cotton as a covered 

commodity under the ARC/PLC commodity programs of the 2014 farm bill. During the 

2014 farm bill cotton was eliminated as a covered commodity due to trade disputes with 

Brazil in the World Trade Organization (WTO). The new farm bill will continue the seed 

cotton program, allowing enrollment in ARC and PLC. The Bipartisan Budget Act of 
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2018 designates seed cotton, a combination of both cotton lint and cottonseed as a 

covered commodity. 

 To be eligible for enrollment of seed cotton in a commodity program, producers 

must have generic base acers, formerly upland cotton base acres prior to the 2014 farm 

bill. FSA reported over 19 million base acres in 2016 that will now be eligible for 

enrollment of seed cotton.   

Data & Methodology 

Expected revenue calculation 

 In order to determine the program of choice for each commodity in different 

counties with base acre history, each expected revenue outcome was simulated from 

2019-2023 per base acre. This study strictly reviews expected revenues, including 

expected program payments, for FSA program crops under the non-irrigated, otherwise 

known as dryland, practice in order to prevent inappropriate comparisons under FSA-

designated “all-practice” counties. Expected revenue from production is:  

 𝐸[𝑅𝑒𝑣𝑒𝑛𝑢𝑒] = 	𝐸[𝑃𝑟𝑖𝑐𝑒] ∗ 𝐸[𝑌𝑖𝑒𝑙𝑑] (25) 

 Farms qualify for payments under PLC when: 

 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑝𝑟𝑖𝑐𝑒 < 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑝𝑟𝑖𝑐𝑒 (26) 

where the effective price is the greater of the national marketing year average price or 

the national average loan rate. The national marketing year average price for a covered 

commodity is determined annually by USDA and was obtained from FSA program data. 

The national average loan rate is the national average loan rate for marketing assistance 

loans in the 2014 farm bill and was obtained from FSA program data.   
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The statutory reference price, needed for calculating PLC payments, is set in the 

2014 farm bill and the Bipartisan Budget Act of 2018 for seed cotton. Table 20 shows 

the statutorily established reference prices for the crops in this study.  

Table 21. – Reference prices for selected commodities.  
  Reference Price Unit 
Barley  $4.95 Bushel 
Corn  $3.70 Bushel 
Grain sorghum  $3.95 Bushel 
Oats  $2.40 Bushel 
Peanuts  $535.00 Ton 
Seed Cotton  $0.36 Pound 
Soybeans  $8.40 Bushel 
Wheat  $5.50 Bushel 

 

 The payment rate when a PLC payment is provided is: 

 𝑃𝑎𝑦𝑚𝑒𝑛𝑡	𝑟𝑎𝑡𝑒 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑝𝑟𝑖𝑐𝑒 − 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑝𝑟𝑖𝑐𝑒 (27) 

The national average loan rate represents the lowest effective price possible. 

Payment rates do not increase beyond the difference in the reference price and national 

average loan rate, even if real prices are below the national average loan rate. The total 

payment per base acre is:  

 𝑃𝑎𝑦𝑚𝑒𝑛𝑡	𝐴𝑚𝑜𝑢𝑛𝑡 = 𝑝𝑎𝑦𝑚𝑒𝑛𝑡	𝑟𝑎𝑡𝑒 ∗ 𝑝𝑎𝑦𝑚𝑒𝑛𝑡	𝑦𝑖𝑒𝑙𝑑 (28) 

 The payment yield for PLC payments is established by FSA and was obtained for 

each county studied from FSA program data.  

 Farms qualify for ARC-CO payments when:  

 𝐴𝑐𝑡𝑢𝑎𝑙	𝑐𝑟𝑜𝑝	𝑟𝑒𝑣𝑒𝑛𝑢𝑒 < 𝐴𝑅𝐶	𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 (29) 
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 The ARC guarantee is a base level of revenue designed as a safety net and 

calculated by:  

 𝐴𝑅𝐶	𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒 = 	0.86 ∗ 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘	𝑟𝑒𝑣𝑒𝑛𝑢𝑒 (30) 

where the benchmark revenue is:  

 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘	𝑟𝑒𝑣𝑒𝑛𝑢𝑒

= 5	𝑦𝑒𝑎𝑟	𝑂𝑙𝑦𝑚𝑝𝑖𝑐	𝑚𝑎𝑟𝑘𝑒𝑡𝑖𝑛𝑔	𝑦𝑒𝑎𝑟	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑝𝑟𝑖𝑐𝑒

∗ 5	𝑦𝑒𝑎𝑟	𝑂𝑙𝑦𝑚𝑝𝑖𝑐	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑐𝑜𝑢𝑛𝑡𝑦	𝑦𝑖𝑒𝑙𝑑 

(31) 

  Both the marketing year average price and average county yields are established 

by USDA and were obtained from FSA program data, where available, and 

supplemented with National Agricultural Statistics Service (NASS) data where 

necessary.  

 Actual crop revenue is obtained by:  

 𝐴𝑐𝑡𝑢𝑎𝑙	𝑐𝑟𝑜𝑝	𝑟𝑒𝑣𝑒𝑛𝑢𝑒

= 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑐𝑜𝑢𝑛𝑡𝑦	𝑦𝑖𝑒𝑙𝑑

∗ 	𝑚𝑎𝑥 H𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑚𝑎𝑟𝑘𝑒𝑡𝑖𝑛𝑔	𝑦𝑒𝑎𝑟	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑝𝑟𝑖𝑐𝑒𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑙𝑜𝑎𝑛	𝑟𝑎𝑡𝑒  

(32) 

 The payment rate when an ARC payment is provided is the lesser of the amount 

that the ARC guarantee for the year exceeds the actual crop revenue or 10.0% of the 

benchmark revenue for the crop year. Both ARC and PLC are subject to a limitation on 

total annual program payments of $125,000, including any loan deficiency payments 

(LDPs), to any one producer or legal entity.   
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The mixed base acreage option evaluated as a third choice by this study is 

calculated as:  

 𝑀𝑖𝑥𝑒𝑑	𝑏𝑎𝑠𝑒	𝑎𝑐𝑟𝑒𝑎𝑔𝑒	𝑝𝑎𝑦𝑚𝑒𝑛𝑡

= (𝛼)(𝐴𝑅𝐶 − 𝐶𝑂	𝑝𝑎𝑦𝑚𝑒𝑛𝑡)

+ (1 − 𝛼)(𝑃𝐿𝐶	𝑝𝑎𝑦𝑚𝑒𝑛𝑡) 

𝛼 ∈ (0,1) 

(33) 

 In the case of this study, a=0.5. Each program payment was simulated using a 

Latin Hypercube sampling procedure of 500 iterations to obtain a sum of commodity 

program revenues from 2019-2023.  

 The Food and Agricultural Policy Research Institute (FAPRI) provides a ten-year 

baseline forecast of major commodity prices. Table 21 contains FAPRI’s crop prices 

from 2018-2023 as of the August 2018 Baseline Update.  

Table 22. FAPRI August 2018 Baseline Update for U.S. Agricultural Markets 
selected crop prices 
   September – August year 
Crop Unit  2018/2019 2019/2020 2020/2021 2021/2022 2022/2023 
Barley Bushel  $4.61 $4.75 $4.80 $4.79 $4.76 
Corn Bushel  $3.62 $3.83 $3.85 $3.87 $3.85 
Grain 
sorghum Bushel  $3.34 $3.68 $3.60 $3.58 $3.55 

Oats Bushel  $2.82 $2.58 $2.67 $2.67 $2.67 
Peanuts Ton  $442.40 $418.20 $423.60 $441.40 $441.40 
Seed 
Cotton 

Pound  $0.752 $0.712 $0.710 $0.698 $0.702 

Soybeans Bushel  $8.73 $8.95 $9.29 $9.39 $9.23 
Wheat Bushel  $5.12 $5.11 $5.16 $5.21 $5.16 

 

Expected revenues from production and payments were forecast on a county-by-

county basis using a payment forecast program in Python developed by Dr. Henry 
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Bryant. The program uses official ARC yields and National Agricultural Statistics 

Service (NASS) yields to linearly project historic yields, where official ARC yield 

history is unavailable. Similarly, the program uses FSA prices to establish a historic 

price series where FSA data is available. If official FSA prices are not available FAPRI 

prices are used, and NASS price data is used when the first two choices are unavailable.  

Dependent on FAPRI price projections, the payment forecast program generates 

500 possible price draws, to forecast price for a specified period of time. In the case of 

this study five years from 2019-2023 are chosen. Using the 500 possible price draws and 

forecasted assumed yields at the county level the payment forecast program generates 

expected revenue from production for the specified time period. Additionally, each of 

the 500 possible revenue outcomes are evaluated using the payment formulas for ARC, 

PLC, and the blend to generate expected revenue from production and commodity 

program payments.  

Expected revenue comparison 

In addition to describing expected revenue from production and commodity 

program payments, this study utilizes certainty equivalents to determine the value of the 

ability to enroll in a blended commodity program.  

The utility of a payment, i.e. the subjective internal value attached to a payment, 

is the appropriate measure to rank monetary outcomes (Mas Colell, 1995); however, 

ranking the expected utility of revenues from production and ARC, PLC, or the blend 

only provides an ordinal ranking of the options, not the magnitude by which expected 

revenues from enrollment in one program exceeds expected revenues from the others. A 
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certainty equivalent provides a cardinally comparable, risk-adjusted expected revenue 

for each program.  

A utility function must be chosen to obtain a certainty equivalent. A logarithmic 

utility function is used for its risk aversion properties:  

 𝑢(𝑥) = ln	(𝑥) (34) 

This study assumes producers choosing between existing commodity programs 

and the proposed blend are risk averse and assumes the logarithmic utility function. The 

logarithmic utility function exhibits constant relative risk aversion (CRRA). Under 

CRRA, no matter the wealth of the individual at different points in time, the portfolio 

decisions of an individual in terms of budget share do not change (Mas Colell, 1995). 

The class of CRRA utility functions eliminates income effects when making decisions 

about risk as a proportion of an agent’s wealth, simplifying comparisons across wealth 

levels.  

A certainty equivalent (CE) utilizes the utility function of an economic agent to 

determine the monetary payment an economic agent would be willing to accept for 

certain to attain the same utility as a lottery with an uncertain outcome (Mas Colell, 

1995). For a given revenue forecast, expected utility is:  

 𝑢|𝐶𝐸(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑣𝑒𝑛𝑢𝑒)} =~𝑝(𝑥)𝑢(𝑥)
���

 

𝑥	𝜖	(𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + 𝐴𝑅𝐶, 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + 𝑃𝐿𝐶,𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + 𝐵𝑙𝑒𝑛𝑑) 
(35) 

where p(x) is the probability of outcome x, and u(x) is the utility from the given 

outcome. Substituting equation 34 into equation 35, yields:  
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 𝑙𝑛|𝐶𝐸(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑣𝑒𝑛𝑢𝑒)} = 	~𝑝(𝑥)ln	(𝑥) 

𝑥	𝜖	(𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + 𝐴𝑅𝐶, 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + 𝑃𝐿𝐶,𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + 𝐵𝑙𝑒𝑛𝑑) 
(36) 

Solving equation 36 for CE(Expected Total Revenue) yields: 

 𝐶𝐸(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑣𝑒𝑛𝑢𝑒) = 𝑒∑ �(�) ��(�)���  

𝑥	𝜖	(𝑅𝑒𝑣𝑒𝑛𝑢𝑒 + {𝐴𝑅𝐶, 𝑃𝐿𝐶,𝐵𝑙𝑒𝑛𝑑}) 
(37) 

 Obtaining the certainty equivalent of each program provides a risk adjusted value 

that can be used to compare programs cardinally. After annual revenue for each of the 

years from 2019-2023 is obtained, the expected revenue was discounted then summed in 

order to obtain the present value of the certainty equivalent (𝑃𝑉[𝐶𝐸]) for each expected 

revenue stream: 

 
𝑃𝑉[𝐶𝐸] = 	~𝑒���𝐶𝐸(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑣𝑒𝑛𝑢𝑒�)

���

�

 (38) 

 where t=2018 and r = 0.02. This study uses the expected PVCE for comparison 

and ranking of commodity programs.  

Results 

 Table 22 contains summary statistics of 𝑃𝑉[𝐶𝐸] for expected revenue from 

production and commodity program payments by crop 2018-2023. In all crops, 𝑃𝑉[𝐶𝐸] 

is highest for PLC. A higher CE means that an agent must receive more money for 

certain in order to avoid participating in the uncertain outcome than a lower expected 

CE. Therefore, Table 22 clearly shows that, on average, PLC is preferred in terms of 

𝑃𝑉[𝐶𝐸] across all crops, even when the blend is available. However, given that the 

Table 22 provides the 𝑃𝑉[𝐶𝐸] summed over 2018-2023, a period of five years, the 
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difference in average 𝑃𝑉[𝐶𝐸] between the blend and the existing program of choice may 

not be substantially different. In fact, in all crops except for peanuts the difference in 

𝑃𝑉[𝐶𝐸] for PLC does not exceed 𝑃𝑉[𝐶𝐸] for the blend by more than 5.0%. In soybeans, 

the difference in average 𝑃𝑉[𝐶𝐸]	674  and average 𝑃𝑉[𝐶𝐸]	()*+, of the blend, 2018-

2023, is less than half a percent.  

 At the maximum expected 𝑃𝑉[𝐶𝐸], the difference between the blend and PLC, 

the existing program that had the highest maximum 𝑃𝑉[𝐶𝐸]  in every crop, becomes 

even smaller in all crops but soybeans and wheat. The difference in the maximum 

𝑃𝑉[𝐶𝐸]()*+, and 𝑃𝑉[𝐶𝐸]674  remained the same in soybeans and wheat as the 

difference in the average 𝑃𝑉[𝐶𝐸]	for the blend and PLC. In soybeans and barley, the 

minimum 𝑃𝑉[𝐶𝐸]()*+,	in at least one county was higher than the 𝑃𝑉[𝐶𝐸]674. Table 22 

tells us that, on average, PLC nets a higher expected 𝑃𝑉[𝐶𝐸]  for all crops, however this 

statement must be evaluated across individual counties.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 129 

Table 23. Summary statistics of the present value of the certainty equivalent 
(𝑷𝑽[𝑪𝑬]) ($/acre) of expected revenue from production and commodity program 
payments by crop 2018-2023

 
  

Table 23 shows results on a more county by county basis. Table 23 shows:  

 𝑃𝑉𝐶𝐸()*+, −𝑀𝑎𝑥	{𝑃𝑉𝐶𝐸234, 𝑃𝑉𝐶𝐸674} (39) 

 Table 23 also shows how many counties in each crop would attain the maximum 

𝑃𝑉[𝐶𝐸]  from each of ARC, PLC, or the blend. Negative values in the top panel of 

Table 23 represent conditions in which the 𝑃𝑉[𝐶𝐸]()*+, for the blend does not exceed 

the expected 𝑃𝑉[𝐶𝐸]	for the existing two commodity programs. If the maximum 

expected 𝑃𝑉[𝐶𝐸]	of the blend is not positive, it means that the blend does not provide 

the highest expected 𝑃𝑉[𝐶𝐸]	of the three programs in any county for that crop.   

Blend ARC PLC Blend ARC PLC
Average $928.78 $900.69 $954.85 $1,921.58 $1,883.58 $1,957.18
Max $1,815.80 $1,778.44 $1,851.99 $4,021.93 $3,983.71 $4,059.44
Min $102.99 $90.43 $96.57 $260.28 $245.32 $260.80
Std. Dev. $356.80 $354.29 $360.97 $753.10 $751.92 $756.05
C.V. 38.40% 39.30% 37.80% 39.20% 39.90% 38.60%

Blend ARC PLC Blend ARC PLC
Average $1,006.39 $952.97 $1,056.71 $514.48 $500.69 $527.36
Max $1,873.35 $1,812.55 $1,948.61 $903.36 $884.03 $922.08
Min $291.31 $258.44 $320.88 $210.52 $196.97 $220.11
Std. Dev. $439.62 $436.40 $444.74 $157.24 $156.42 $158.41
C.V. 43.70% 45.80% 42.10% 30.60% 31.20% 30.00%

Blend ARC PLC Blend ARC PLC
Average $3,407.74 $3,088.45 $3,770.36 $2,383.23 $2,306.35 $2,456.39
Max $5,829.94 $5,575.76 $6,082.14 $4,506.56 $4,410.90 $4,600.44
Min $751.02 $546.59 $948.90 $634.84 $600.25 $666.63
Std. Dev. $978.05 $1,018.14 $1,020.65 $843.99 $831.48 $857.21
C.V. 28.70% 33.00% 27.10% 35.40% 36.10% 34.90%

Blend ARC PLC Blend ARC PLC
Average $1,460.38 $1,456.68 $1,463.39 $901.85 $854.50 $945.73
Max $2,514.47 $2,503.69 $2,524.65 $1,743.99 $1,668.69 $1,826.42
Min $626.96 $627.99 $625.55 $171.49 $149.31 $182.05
Std. Dev. $469.36 $468.66 $470.28 $345.31 $343.04 $349.29
C.V. 32.10% 32.20% 32.10% 38.30% 40.10% 37%

Soybeans ($/bu.) Wheat ($/bu.)

Peanuts ($/ton) Seed Cotton ($/lb.)

Oats ($/bu.)Grain Sorghum ($/bu.)

Barley ($/bu.) Corn ($/bu.)
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Table 24. Amount by which present value of the certainty equivalent (PV[CE]) of 
the blended plan exceeds the maximum PVCE of the existing commodity programs; 
Count of counties by program with maximum PV[CE]. 

 

 While Table 22 shows that PLC, on average, provides the highest 𝑃𝑉[𝐶𝐸] across 

all crops, results show slightly more variation at the county level. In particular, the blend 

provides the highest expected PVCE for soybeans in eight cases, and ARC provides a 

higher 𝑃𝑉[𝐶𝐸]	in 47 cases. The smallest range between 𝑃𝑉[𝐶𝐸]	of revenue from the 

blend per acre and the 𝑃𝑉[𝐶𝐸] of revenue from the 𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]234 ,	𝑃𝑉[𝐶𝐸]674}   

occurs in soybeans. This represents the small range between expected ARC and PLC 

payments 2018-2023. In counties growing soybeans where the blend provides the 

highest expected 𝑃𝑉[𝐶𝐸]	over the 2018-2023 period, the blend would ‘replace’ ARC as 

the best option in five counties, and ‘replace’ PLC as the best option in three counties. 

For both corn and barley, the counties the blend would ‘replace’ would both achieve the 

highest expected 𝑃𝑉[𝐶𝐸]	through enrollment in PLC in the absence of the blended plan.  

Barley Corn
Grain 

Sorghum
Oats Peanuts Seed Cotton Soybeans Wheat

Average (26.08)$ (35.59)$ (50.32)$ (12.89)$ (362.62)$    (73.16)$      (5.53)$   (43.88)$ 
Max 6.43$    17.54$  (25.37)$ (2.54)$   (197.49)$    (6.06)$       1.00$    (10.56)$ 
Min (41.56)$ (67.79)$ (95.31)$ (22.86)$ (1,270.21)$ (121.68)$    (20.94)$ (91.40)$ 
Std. Dev. 8.94$    16.11$  17.61$  4.68$    162.92$     27.39$       4.68$    13.63$  
C.V. 34.3% 45.3% 35.0% 36.3% 44.9% 37.4% 84.5% 31.1%

Barley Corn
Grain 

Sorghum
Oats Peanuts Seed Cotton Soybeans Wheat

ARC 0 0 0 0 0 0 47 0
PLC 62 221 113 128 42 114 89 169
Blend 1 2 0 0 0 0 8 0

Amount by which PVCE(Blend) > Max PVCE{ARC, PLC)

Count of counties by program with maximum(PVCE) 
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 Figure 30 through Figure 37 map the results of equation 39 by crop at the county 

level. A positive value represents a case in which the 𝑃𝑉[𝐶𝐸]()*+,	exceeds 

𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]234, 𝑃𝑉[𝐶𝐸]674} . Figure 30 is a map of the results of equation 39 for 

barley. Compared to other crops the range by which 𝑃𝑉[𝐶𝐸]674, the preferred plan, 

exceeds the 𝑃𝑉[𝐶𝐸]()*+,	 is relatively small. One county in Texas that produces non-

irrigated barley has a 𝑃𝑉[𝐶𝐸]()*+,	than the	𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]234, 𝑃𝑉[𝐶𝐸]674}, meaning that 

expected revenue in that county would increase as the result of creating a blended plan.   

 
Figure 30. U.S. county map of (𝑃𝑉[𝐶𝐸]()*+,	 –	𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]234, 𝑃𝑉[𝐶𝐸]674}), non-
irrigated barley  
 

 Figure 31 is a county map of the results of equation 39 for corn. The range of the 

results from equation 39 is greater for corn than for barley. The greater range is 

potentially a result of more data available and production across a more diverse 

geography. The 𝑃𝑉𝐶𝐸674  exceeds the 𝑃𝑉𝐶𝐸()*+,  by the greatest amount in Nebraska 
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and Kansas, two of the top ten corn producing states by total volume (USDA ERS, 

2018).  

 
Figure 31. U.S. county map of (𝑃𝑉[𝐶𝐸]()*+,	 –	𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]234, 𝑃𝑉[𝐶𝐸]674}), non-
irrigated corn 
 

 Figure 32 is a county map of the results of equation 39 for non-irrigated grain 

sorghum. Grain sorghum represents 4.0% of base acre enrollment (Figure 1). Unlike the 

result of equation 39 for corn, in no county does the result of equation 39 exceed 

$(25.00) for grain sorghum.  
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Figure 32. U.S. county map of (𝑃𝑉[𝐶𝐸]()*+,	 –	𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]234, 𝑃𝑉[𝐶𝐸]674}), non-
irrigated grain sorghum 
 

 
Figure 33. U.S. county map of (𝑃𝑉[𝐶𝐸]()*+,	 –	𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]234, 𝑃𝑉[𝐶𝐸]674}), non-
irrigated oats 
 

 Figure 33 is a county map of the results of equation 39 for non-irrigated oats. The 

results of equation 39 are most consistent county-to-county for oats. For all counties, the 

difference in 𝑃𝑉[𝐶𝐸]()*+, and 𝑃𝑉𝐶𝐸674  does not exceed $25.00/acre.  
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Figure 34. U.S. county map of (𝑃𝑉[𝐶𝐸]()*+,	 –	𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]234, 𝑃𝑉[𝐶𝐸]674}), non-
irrigated peanuts 

 
Figure 35. U.S. county map of (𝑃𝑉[𝐶𝐸]()*+,	 –	𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]234, 𝑃𝑉[𝐶𝐸]674}), non-
irrigated soybeans 
 

 Soybeans are the crop for which the result of equation 39 yields the most 

counties where 𝑃𝑉[𝐶𝐸]()*+,	exceeds 𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]674, 𝑃𝑉[𝐶𝐸]234}. Figure 35 is a 

county map of the results of equation 39 for non-irrigated soybeans. There is no 
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geographic pattern in the counties that have a higher 𝑃𝑉[𝐶𝐸]()*+,. Two counties in 

Oklahoma, a single county in Arkansas, and a cluster of counties on the 

Alabama/Georgia border have a 𝑃𝑉[𝐶𝐸]()*+, that exceeds 

𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]674, 𝑃𝑉[𝐶𝐸]234}.	In no county does the 𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]674, 𝑃𝑉[𝐶𝐸]234} 

exceed 𝑃𝑉[𝐶𝐸]()*+, by more than $25.00/acre.  

Figure 36 is a county map of the results of equation 39 for non-irrigated seed 

cotton. Seed cotton is the crop in which the number of counties that 

𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]674, 𝑃𝑉[𝐶𝐸]234},	exceeds 𝑃𝑉[𝐶𝐸]()*+,by more than $75.00/acre is 

greatest. Seed cotton production in Georgia overwhelmingly has a greater 𝑃𝑉[𝐶𝐸]674 

than 𝑃𝑉[𝐶𝐸]()*+,. For the majority of counties in the Texas Panhandle and south plains 

region of Texas, an area with extensive dryland cotton production, 𝑃𝑉[𝐶𝐸]674exceeds 

𝑃𝑉[𝐶𝐸]()*+,by more than $25.00/acre. There is no county with non-irrigated seed 

cotton production for which 𝑃𝑉[𝐶𝐸]()*+,	exceeds 𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]674, 𝑃𝑉[𝐶𝐸]234}. 
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Figure 36. U.S. county map of (𝑃𝑉[𝐶𝐸]()*+,	 –	𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]234, 𝑃𝑉[𝐶𝐸]674}), non-
irrigated seed cotton 
 

Figure 37 is a county map of the results of equation 39 for non-irrigated wheat. 

The geographic distribution of the results of equation 39 show more consistent patterns 

than the other seven commodities. The amount by which 

𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]674, 𝑃𝑉[𝐶𝐸]234},	exceeds 𝑃𝑉[𝐶𝐸]()*+, for wheat is clustered by amount 

in the southeastern U.S., the Texas Panhandle and great plains region, and the pacific 

northwest. There is no county with non-irrigated wheat production for which 

𝑃𝑉[𝐶𝐸]()*+,	exceeds 𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]674, 𝑃𝑉[𝐶𝐸]234}.  
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Figure 37. U.S. county map of (𝑃𝑉[𝐶𝐸]()*+,	-	𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]234, 𝑃𝑉[𝐶𝐸]674}), non-
irrigated wheat  
 

Conclusions 

Commodity support programs are an integral part of the food production system 

in the United States. The 2014 farm bill provided options for producers that are likely to 

be extended under the 2018 farm bill with an option to reenroll in a program or change 

from ARC to PLC or vice versa. A plan for a blended program that allows enrollment of 

half of a farm’s base acres in each program has been suggested as a method that could 

normalize payments.   

A greater 𝑃𝑉[𝐶𝐸] indicates the need for a higher certain payoff in order for an 

economic agent to opt out of a situation with an uncertain outcome. Based on the 

𝑃𝑉[𝐶𝐸]	of revenue from production and the ARC, PLC, or the blend, producers are 

overwhelmingly likely to choose enrollment in PLC, whether or not the blend is 
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available. The blended plan presented the highest 𝑃𝑉[𝐶𝐸]	of revenue from production 

and a commodity program in only eight of 1,000 counties over eight program crops.  

On average, the blended plan holds the most value for soybeans, in which eight 

counties have the highest  𝑃𝑉[𝐶𝐸]	from enrollment in the blend. Based on current 

market conditions, the 𝑃𝑉[𝐶𝐸]674 shows that PLC is the program that will provide 

farmers with the most revenue. The difference in 𝑀𝑎𝑥{𝑃𝑉[𝐶𝐸]674, 𝑃𝑉[𝐶𝐸]234},	and 

𝑃𝑉[𝐶𝐸]()*+, may not seem substantial when considering a single acre over a five year 

period, however when per acre value is multiplied by 100 or even 1,000 acres the 

difference can quickly become substantial.  

The result of equation 39 for corn means that in most cases, producers would 

require a higher certain payment to defer enrollment in PLC than to defer enrollment in 

the blended plan. With corn accounting for 40.0% of base acres (Figure 28), Figure 31 

shows that a substantial amount of U.S. crop producers would prefer enrollment in PLC 

over the blend.  

The results of this study indicate that the blended plan will not be financially 

beneficial to farmers under the current market outlook. The blend could gain value in a 

more volatile market. If crop prices were to rapidly increase beyond the reference price 

shortly after the signing of a farm bill, enrollment in the blended plan would provide 

more support as ARC revenue benchmarks rose as a result of the rapid price increase, 

while PLC payments would likely not exist. In the event that prices remain low, the 

blend would still not provide producers with the level of support available through the 

PLC program.  
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Numerous extensions exist for this study. The next step in pursuing this research 

will be to incorporate irrigated cropland into a similar nationwide study. Testing 

different weights for the blended plan under the same functional form and expanding to 

different functional forms will also provide additional information in answering whether 

or not there is a need for a blended commodity support program.  
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APPENDIX A.  

TEXAS A&M AGRILIFE EXTENSION NOVEMBER – MAY STOCKER 

BUDGET; DISTRICT 4 

 

 


