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 ABSTRACT 

 

The stress on water resources is more critical in drylands due to ecological and 

climatological changes. Because upscaling the findings of paired-catchment studies to 

larger watersheds is difficult, hydrological models like the Soil and Water Assessment 

Tool (SWAT) were oftentimes used to investigate the impact of land use and land cover 

changes (LULC) on water yield. Such modeling studies first require the accurate 

estimates of LULC change using remote sensing images, which has been hindered by the 

presence of shadows in these images. Also, the data used in many previous modeling 

studies didn’t have the extent of variations in LULC and other variables including 

climatic conditions comparable to the simulation scenarios. The objectives of this study 

are to classify LULC types in the shadow areas of aerial images; to evaluate the 

complement between LULC data and ancillary data; to estimate LULC change; and to 

assess the impact of the LULC change on the water yield of the Nueces River 

Headwaters watershed using multi-year and multi-sensor LULC data and the SWAT 

model. 

More than 99% of the shadow area was identified with a 92.68% average 

accuracy. This outcome indicates that LULC types of shadow area on higher-resolution 

images can be classified successfully with a straightforward method incorporating the 

multi-sensor LULC classification schemes. The high accuracy of multi-year and multi-

sensor LULC maps revealed the benefits of ancillary data use in remote sensing image 

classification. LULC change detection analysis was conducted using higher-resolution 
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maps for precise quantification. There was at least an 8% reduction in juniper cover from 

2008 to 2014 in the watershed. To account for variations in LULC, 2008, 2012 and 2016 

maps were used to set up multiple SWAT models. Although satisfactory model 

performance statistics obtained from calibration, model performance was degraded for 

the validation period. This indicated that the model couldn’t sufficiently assess the 

variation in LULC and weather for a relatively brief period in the specific karst 

watershed. This study may be the first study conducted in a large karst watershed in the 

Edwards Plateau which accounted for the watershed-wide LULC changes for the entire 

modeling period.   
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CHAPTER I  

INTRODUCTION  

 

I.1 Background of the Study 

Drylands, categorized and defined according to the ratio of average annual 

precipitation to potential evapotranspiration by the United Nations Convention to 

Combat Desertification (UNCCD), cover approximately 35-47% percent of the world’s 

terrestrial area [1-4]. According to the Dryness Index described by the UNCCD, which is 

also called the dryness index with its value ranging from 0 to 1, drylands fall into the 

range of 0.05 to 0.65. Arid, semi-arid and sub-humid areas are the classes of drylands 

and have different dryness index intervals [5]. Only semi-arid and sub-humid regions are 

suitable for agricultural practices while some irrigatable places are also arable. The 

residents on drylands make up around one-third of the total world population [1, 4]. 

Increasing pressure has been exerted on these lands due to intensified changes 

originating from natural phenomena and human activities following the industrial era 

[6]. Increasing warming climatic conditions are expected in these areas due to 

exponential and persistent greenhouse gas concentrations, especially carbon dioxide 

emission, in the atmosphere[3]. Although some scholars see an opportunity to sequester 

extra carbon in drylands, water conservation has become another debated issue, 

especially in semi-arid regions[7-10]. 

Drylands are predominantly used as rangelands. Agricultural production, 

historical fire pressure, urbanization, and overgrazing have been the most prominent 
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drivers for local, landscape, and regional-level changes in the dryland ecosystems [11]. 

Invasions of exotic species, alteration of streamflow regime, and degradation of soil are 

notable consequences of these changes worldwide. Texas has very diverse ecological 

regions and climates due to its widespread territory. While Southeastern part of Texas is 

more humid, Northern and particularly Midwest are much drier. The Edwards Plateau in 

west-central Texas is a significant semi-arid ecoregion. Some prominent rivers of Texas 

like Colorado, the Guadalupe and the Nueces Rivers have their headwaters in the 

ecoregion [12]. The watersheds in the plateau are of crucial importance because the 

water from these watersheds is drained into the Edwards Aquifer which is the primary 

water source for Austin and San Antonio as well as many other municipalities [13].  

Accelerated increases in the human population around the region have sparked 

more demand for water for agriculture, industry, municipalities and for maintaining 

environmental flows in the rivers [14].  Shrub encroachment in the plateau has long been 

considered as a significant issue due to its large scale of land cover and high-water 

consumption[9, 15]. Following the European settlements, cattle numbers increased 

dramatically in the region[12]. Change in the fire regime has also provided a suitable 

environment for shrub establishment in the landscape [12]. Since water is the most 

important scarce resource in the drylands, statewide programs were initiated by the 

support of state Senate. In 1985 Texas Senate passed the State Agriculture Code (Bill 

1083) which enables the clearing and reduction of invasive brush species like mesquite, 

prickly pear, salt cedar or other phreatophytes exploiting water available in the soil to the 

extent to become a threat to water conservation [9]. A considerable amount of research 
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has been conducted so far to identify the impact of shrub encroachment on local and 

regional hydrology[10, 12-14, 16-20]. Although higher interception and transpiration 

from woody plants are widely accepted, existing research results aren’t always 

consistent in terms of streamflow generation. According to a study done on different 

sites of the Edward Plateau, daily water consumption of redberry juniper, Ashe juniper, 

mesquite, and live oak varies from 19.1 to 46.8 gallons per tree per day, while live oak 

consumes the least and redberry juniper consumes the most[15].  

Many studies showed that there is a significantly-augmented streamflow 

following brush management practices. Thurow in 1988 proposed that brush 

management can produce desirable consequences as long as the amount of annual 

rainfall surpasses the 450 mm threshold[21]. Wilcox and Huang in 2010 analyzed 85 

years of streamflow and its relationship with land use and cover (LULC) and found out 

an increase in the streamflow of three watersheds, Nueces, Frio, and Upper Guadalupe 

although the shrub cover has increased. They attributed this outcome to improved range 

conditions following a recession in the grazing pressure, eventually allowing continuous 

cover of rangelands by shrubs and native grasses which led to augmentation in the 

infiltration capacity of the soil. This result was counterintuitive given the fact that 

general acceptance of the negative impact of woody vegetation on the streamflow. 

Another study in the Edwards Plateau by Dammeyer et al. in 2016  pointed out the 

presence and importance of epikarst which is considerably effective for deep storage of 

water for a long period under the root zone of juniper species[22]. Counterintuitively, the 

live oaks which selectively remained on the brush removal site may exert a more severe 
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impact on the water budget because they have deeper roots than Ashe juniper and can 

access to stored water in the epikarst layer. They concluded that although the immediate 

response of recharge is relatively higher after brush control operation, previously 

available water content and subsequent extreme precipitation events can make the 

difference in terms of water yield. Many of these experimental studies covered a small 

scale of the region and thus it is unknown if the impact of shrubs in these areas can be 

upscaled to a larger part of the region. Because LULC alterations are usually more 

complex and heterogeneous in larger catchments along with the fact that change may 

often happen in a small proportion of the total area, finding control catchments beyond 

the headwater scale is usually quite difficult[23].Modeling studies, on the other hand, 

have the potential to represent a larger area using all essential variables and an 

integrative multidisciplinary approach.  

The Soil and Water Assessment Tool (SWAT), a physically-based semi-

distributed model developed by the joint efforts of the United States Department of 

Agriculture (USDA) and Texas A&M University is widely used to estimate the impact 

of land management and natural events on water quality and quantity [24]. The model 

divides a basin into many sub-basins connected by a stream network before further 

delineating the sub-basins into Hydrologic Response Units (HRUs) which reflects the 

unique combinations of LULC and geology in the sub-basins [25]. The model has the 

advantage to allow for readjustment of the LULC data and to enable the researchers to 

investigate the impacts of woody plant cover on the watershed hydrology. Recent studies 

simulated the effect of brush cover on the streamflow and concluded that an increase in 
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the surface runoff and streamflow occurs especially following the removal of the dense 

canopy of brush stands [26, 27]. 

 However, these modeling studies often focused on the augmentation of 

streamflow. Relatively fewer studies were conducted to demonstrate the accompanying 

impact of increased streamflow by the contribution of boosted surface runoff due to the 

removal of woody vegetation. Soil erosion is also a significant factor which contributes 

to the degradation of drylands. A few modeling studies conducted in drylands of Africa 

and Asia indicate a strong positive relationship between storm flow and soil loss.  

I.2 Problem Statement  

The studies reviewed above have generated important results on the relationship 

between brush cover and the hydrology of watersheds in the Edwards Plateau. However, 

these studies also have limitations. Although modeling studies offer a more 

comprehensive approach to the analysis of impacts of vegetation management practices 

on water budget, the incomplete representability of the study area by input data like 

LULC, climate, and geology is an important limitation. For example, utilization of a 

single LULC dataset for lengthy periods may neglect some land use and cover changes 

which may lead to more biases in the model outputs. And, the increments in the 

impervious surfaces like urban and barren areas would lead to an enhanced surface 

runoff. Besides, other types of vegetation like oak trees and herbaceous species may also 

have substantial effects on the hydrological cycle.  

Hence, the classification approaches which don’t consider these LULC classes 

may have the potential to overestimate or underestimate the impact of brush cover on the 
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water yield. Another constraint is the availability and utilization of high-resolution 

spatial data. For instance, digital image classifications from Landsat satellite images 

having a 30-meter spatial resolution usually may have to cope with mixed pixel 

problems. Such coarser resolution imagery may lead to a classification in which an area 

covered by sparsely distributed trees can be depicted as heavy woody vegetation. 

Another point to note is the simulation of moderate and heavy shrub conversion to native 

grass. In reality, removing the whole moderate and heavy shrub cover can bring about 

significant environmental problems. Most of the heavy shrub cover is found on steep 

slopes. Removing this cover possibly makes these areas more vulnerable to soil erosion 

and flash flooding [25].  

Models like SWAT can easily incorporate the variations in precipitation, 

temperature, and evapotranspiration(ET). This can compensate for the limitations 

existing in paired catchment studies. Assessing the impact of land cover on hydrology 

within the borders of the same watershed can be more practical than comparing two 

small catchments (<1 square km) with similar climate, geology, and land cover and 

using one catchment as treatment and the other as the control. Although the SWAT 

model can assess the dynamics of vegetation species for different years by the Potential 

Heat Unit parameterization, the model cannot account for all LULC changes if it isn’t 

fed by the land cover data. Furthermore, it is highly possible that there are ongoing brush 

management operations on the plateau, which need to be accounted for as well. 
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I.3 Research Hypotheses 

H1: Brush management led to LULC change in the Nueces Headwaters watershed 

during the 2008-2017 period. 

H2: Thematic map accuracy improves with the incorporation of different sensor data and 

classification algorithms. 

H3: The effect of brush management on water yield is significant. 

I.4 Objectives 

The goal of this study is to access the impact of the land use and land cover change 

on streamflow in the Nueces River Headwaters Subbasin, Edwards Plateau, Texas. The 

specific objectives of this research are to: 

i. assess the practicality and accuracy of mapping land use and land cover 

by using high-resolution National Agricultural Imagery Program (NAIP) 

images; 

ii. use multi-sensor, multi-algorithm and ancillary data to detect shadow 

areas and improve classification accuracy; 

iii. quantify land use and land cover change from 2008 to 2017, and 

iv. simulate the impact of brush management on the streamflow in the 

Nueces Headwaters Subbasin.  
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CHAPTER II  

LITERATURE REVIEW 

 

II.1 Brush Encroachment and Management on the Edwards Plateau  

The Edwards Plateau is geologically a karst dominated semiarid ecoregion in 

Texas. The characteristics of the plateau support the formation of abundant springs 

which feed the streams and enables a substantial amount of water to be stored in the 

underground aquifer systems [28]. While the area was mainly covered by native savanna 

grass, following the European settlements, the landscape had undergone a series of state 

changes including, in particular, the change from native herbaceous vegetation to the 

brush species[13, 29]. This change in the land cover configuration of the plateau 

concerned local and regional authorities and prompted researchers to conduct studies to 

reveal the impact of conversion from grassland to the brush dominated environment on 

the water resources of the region. The need for better understanding of plant water 

interactions on the plateau comes from the crucial importance of the Edwards aquifer 

which has been a very reliable source of water for several cities and municipalities in 

Texas[13]. The main drivers for the transformation of the landscape are mentioned to be 

overgrazing following the first European settlements and alterations in the natural fire 

regime[12]. Among the other invasive brush species, Ashe juniper is reported to be more 

common on the plateau. It’s high transpiration and interception values were documented 

by Owens and Ansley[15]. 
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Bednarz et all. prepared a feasibility report in 2000 to document the possible 

results of brush management applications to inform the Texas State Soil and Water 

Conservation Board[30]. According to the report, there was great potential to increase 

water yield ranging from 13,000 to 172,000 gallons for each treated acre in the eight 

Texas watershed where the effectiveness of brush management simulated using the Soil 

and Water Assessment tool. Several modeling studies followed Bednar’s study in 

varying watersheds on the Edwards Plateau. From these studies, Wu and Afinowicz 

reported significant water yield potential in Cusenbary Draw and North Fork Guadalupe 

River watersheds respectively[13, 16]. In contrary to these modeling studies, studies 

relying on observation and experiment data have counterintuitive results[12, 20]. Wilcox 

et al. reported that brush management can yield more water as long as the 500 mm 

precipitation threshold value is crossed which is first defined by Thurow and when the 

geology of the landscape allows spring formation. They elucidated that in the locations 

where soils are deeper and there are no subsurface conduits which are connected to 

springs, there are little if any benefits related to an increase in water yield following the 

brush management.  

II.2 Using Remotely Sensed Data for Mapping LULC and Change Detection 

Land use and land cover is an essential variable in studies related to management 

of water resource management, flood prediction, soil degradation, and nutrient loss 

assessment, and biodiversity conservation [31, 32]. It is one of the significant factors 

affecting the hydrological responses of an ecosystem. That’s why an accurate mapping 

of the LULC is a very important prerequisite to comprehending the influence of 
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vegetation on streamflow generation processes. However, there are some limitations 

associated with investigating the impact of LULC on the hydrological processes [33]. 

Paired catchment studies have been conducted to demonstrate that the impact of LULC 

on site hydrology is not capable of representing catchments usually larger than one 

square kilometer because of the high heterogeneity in biogeochemistry and climate of 

the area [23]. Because finding suitable control catchments is not feasible in large 

catchments, change detection analysis could offer a decent approach to cope with the 

analysis of the impact of  LULC change [34]. The methods selected to map LULC is 

decisive to evaluate its effect on streamflow more accurately. Recent developments in 

Remote Sensing is very promising and attractive. Remote Sensing is a science of 

extracting information from the various features on the earth by utilizing electromagnetic 

radiation as a tool of interaction [35]. While the information related to objects may be 

derived by simple visual interpretation of remotely sensed images, it is usually acquired 

from the classified images. Image Classification is the process employed to produce 

thematic maps from images and facilitates the extraction of information [35]. It is 

defined by Khatami et al. as the process of transforming remotely sensed imagery into 

useful products [36]. Classification of remotely sensed images offers a timely and more 

affordable way of producing LULC maps of large areas. While traditional methods 

require long field campaigns and very hard work in addition to prohibitive costs, remote 

sensing technologies can produce more accurate outcomes in a shorter time with less 

money and effort [37]. 
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  The primary steps involved in the image classification process are selecting a 

suitable classification scheme, making radiometric and geometric corrections, collecting 

representative training samples, determining the classification method, conducting post 

classification processes, and assessing the accuracy of classification. The way that these 

steps are implemented is critical in terms of the success of any classification. 

Availability and quality of data is oftentimes the most important limiting factor which is 

decisive in the accuracy of thematic maps. Using coarse resolution images like images 

from Landsat brings about mixed pixel problems. That’s why interpreting objects 

successfully from coarse resolution images is often complicated. The intensity of the 

problem is usually more obvious in relatively heterogeneous areas such as urban and the 

areas where two or more land use cover classes intersect [35].  

Classifications can be conducted in either a supervised or unsupervised format. 

Training samples are required to run a supervised classification. To produce highly 

accurate thematic maps, the selection of a suitable classification algorithm and the 

quality and quantity of training samples are the two crucial prerequisites. Classification 

methods can be split into two categories based on their spatial level (pixel level, sub-

pixel level, and field level) and whether they are parametric or nonparametric. Maximum 

Likelihood and Minimum Distance methods are two of the most commonly used 

parametric methods. They have supervised classification methods. K-means and Isodata 

which is the modified version of K-means are two frequently used unsupervised 

classification methods. Without requiring training samples, unsupervised classification 

methods produce spectral classes after a predefined number of iterations. This is an 
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advantage if there is no prior extensive knowledge on the objects of the area of interest. 

Another advantage of this unsupervised classification approach is its potential to detect 

unique features in the study area which may have not been observed formerly. However, 

to produce a thematic map, users need to examine and combine spectral classes into 

information classes. 

Non- parametric classifiers like fuzzy logic, neural network, decision tree, and 

knowledge-based classifications have been used more frequently in multisource data 

classifications. The fact that they don’t assume the normality of the training data which 

is considerably difficult to obtain in heterogeneous landscapes is an important advantage 

compared to parametric classification methods [35]. However, they are computationally 

intensive and oftentimes requires sufficient ancillary data. Due to the data availability, 

and acceptable accuracy in most cases and user-friendly nature, Maximum Likelihood is 

often preferred by researchers to produce thematic maps from aerial and satellite 

imagery. While classifying an unknown pixel, the maximum likelihood method assesses 

the variance and covariance of spectral responses from training samples. It is a 

supervised and parametric classification method [35, 38]. With the Gaussian Distribution 

assumption, the mean vector and covariance matrix can define the category response 

pattern. Considering these parameters, the statistical probability which determines the 

memberships of pixels for different classes can be computed [39]. Many studies 

benefited from using the maximum likelihood classification to map LULC and analyze 

the changes in LULC and used the classification and change detection outputs to explain 
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the impacts of LULC change on ecosystem processes such as hydrology and biodiversity 

[26, 27, 40].   

An LULC dataset is a significant input for modeling studies. Current and 

possibly future trends in deriving LULC data are the utilization of remotely sensed 

images. The accessibility, cost, and availability of the images are some of the primary 

decisive criteria in the selecting images for performing an LULC classification analysis. 

However, there are always important tradeoffs between satellite and aerial images while 

deciding which images to use. Landsat images are quite widely used in mapping 

vegetation cover to investigate the effect of vegetation change on the hydrology of 

watersheds [26, 41]. Landsat offers free satellite images to users in a 30-meter spatial 

resolution for the visible and near and mid-infrared bands. Landsat 7 and Landsat 8 

images have also thermal infrared bands having a 100-meter spatial resolution. The 

satellite revisits time is 16 days. The spatial resolution of Landsat for color infrared 

images is coarse and the utilization of Landsat images is mostly suitable for community-

level classifications. However, accurate individual object level classifications cannot be 

accomplished by Landsat based classifications alone.  

While classification of remotely sensed images into thematic maps offers an 

outstanding opportunity to conduct  environmental and socioeconomic studies in a cost-

effective and timely manner , it is still challenging due to the factors like complexity of 

the ecosystem components in the study area, selected remotely sensed data , image 

processing and classification techniques  which may impact the overall and individual 

class based accuracies of a classification approach [42].In a literature review of pixel-



 

14 

 

based land cover image classification processes, Khatami et al. (2016) found that 

Support Vector Machine (SVM) classification produced more accurate results than other 

classification algorithms [36]. According to their meta-analysis, the inclusion of texture 

into the classification process is the most effective method for the enhancement of 

classification accuracy. Unlike the Maximum Likelihood Classifier, Support Vector 

Machine doesn’t need to assume the normality of the training data. Although this is an 

important advantage of non-parametric classifiers, because when a landscape is 

complex, parametric classifiers may potentially produce noisy results, non-parametric 

classifiers such as Support Vector Machine and Neural Networks often require adequate 

expertise knowledge and ancillary data to perform a successful classification. 

Furthermore, they are computationally intensive compared to the Maximum Likelihood 

classification which has been used as a benchmark classification method for the analysis 

of LULC. 

II.3 Soil and Water Assessment Tool (SWAT) in Hydrological Analysis 

The SWAT (Soil and Water Assessment Tool) model is a process-based 

hydrological model which is capable of simulating physical processes taking place in 

river basins in a daily time step [43]. It is developed to analyze the impacts of land 

management practices on watershed processes. The model is able to simulate water, 

sediment and nutrient transport in watersheds and large basins under dynamic climate, 

soil, land use, and cover, stream network features and agricultural activities [24]. It 

currently works on two GIS (Geographic Information System) platforms: ArcGIS and 

QGIS. While ArcGIS is a licensed program QGIS is a public domain GIS platform. The 
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SWAT model requires spatially and temporally distributed datasets as inputs to the 

system. Within SWAT, a digital elevation model(DEM) is used to delineate a study area 

into watersheds and create the stream network. Soil and LULC datasets are the other two 

spatial datasets required by the model. The model has built-in weather data for the 

United States, currently available up to 2014. Daily precipitation and temperature data 

are the two most significant weather data to input the model.    

The SWAT model has been used worldwide and arguably the most cited 

hydrological model so far. Although the model’s preliminary objective is to predict the 

outcomes of management on water, sediment and agricultural activity drove nutrient 

generation in large ungaged basins without requiring the calibration of the model, the 

availability of the observed data and autocalibration software like SWAT-CUP urge 

researchers to calibrate models. Therefore, it is possible to divide a modeling study into 

three interconnected phases: calibration validation, and simulation. USGS (United States 

Geological Survey) streamflow monitoring gages offer reliable data within the USA 

which has been very helpful for researchers investigating the impact of land 

management and climate change on the hydrological processes. The streamflow data is 

mostly used observed data for assessing the accuracy of a model’s result.  

Being a physically based model it also comprises empirical components [44]. 

The fact that a considerably high number of parameters are used in the SWAT makes it a 

very complex model [45]. The parametrization of the hydrological components of the 

system determines the accuracy of the simulations. Parameters used in the SWAT model 

have an uncertainty range. The interval for the parameters can depend on the 



 

16 

 

experimental data, expert knowledge, and literature. Keeping these process-based input 

parameters within a realistic uncertainty range is crucial [43]. As an initial step, 

determining the most sensitive parameters before calibration and validation are 

recommended [43]. In SWAT-CUP two types of sensitivity analysis can be performed: 

one at a time and global sensitivity analysis. While a lot of initial simulations are needed 

for global sensitivity analysis, the interaction between different parameters cannot be 

explained by one a time sensitivity analysis [43]. Calibration of the model can be 

performed both manually and automatically. Automatic calibration is mostly favored due 

to the convenience of use and less labor and time compared to manual calibration. The 

criteria of the accuracy for a model was described by Moriasi et al [46]. Nash-Sutcliffe 

efficiency (NSE), percent bias (PBIAS) and coefficient of determination (R2) are the 

three most used statistics to express the uncertainty of the simulated results. According 

to Moriasi et al. NSE should be equal to or greater than 0.5 to accept a model’s output 

[46]. 

A few studies used the SWAT model to examine the impacts of shrub 

encroachment and brush control on the water yield of watersheds in Texas [16-18, 30]. 

In a  recent study, Qiao et al., (2015) modeled the impact of woody plant encroachment 

on watershed hydrology [18]. They calibrated SWAT model based on the observed 

parameters they obtained from three small (2 to 5 ha) paired catchments in Oklahoma. 

They validated the calibrated model in the Council Creek Watershed which is 78 km2 

and about 30 km from the experimental catchments. They also investigated the prolific 

invasion of juniper species in the region. They argued that antecedent studies like 
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Afinowicz et al. (2005) had substituted biophysical and hydrological parameters of 

juniper species (Ashe juniper at Edwards Plateau and Juniper virginiana at Council 

Creek watershed and experimental catchments) with evergreen forest or pine parameters 

since they are not readily available in the SWAT model database. They also compared 

the results of water yield estimations of Wu et al. (2001) and Afinowicz et al. (2005). 

While the SPUR-91 model used by Wu et al. estimated a reduction of about 200 mm  in 

actual evapotranspiration (ETa) as a result of clearing 40% of the woody vegetation in 

the Cusenbary Draw watershed ,the SWAT model used by Afinowicz et al. predicted 

about an increase of between 31.9 and 46.9 mm in water yield with a scenario of 

removing all heavy and moderate brush cover on North Fork of the Guadalupe River 

watershed [13, 16]. They argue that the inconsistency in the estimations of water budget 

may have stemmed from the misrepresentation of hydrological processes due to 

inadequate calibration of the model parameters. They emphasize that plot-level or 

experimental-catchment-level observations are crucial importance to understand the 

residing mechanisms of tree and shrub invasions on the elements of the hydrological 

processes. However, according to them, process-based modeling studies can be a more 

effective approach to accessing the ramifications of brush encroachment at larger scales 

with more diverse land use and cover and climate. 

The study by Qiao et al. demonstrated the effectiveness of the incorporation of 

experimental and modeling studies. They used in-situ surface runoff data and in-situ soil 

moisture data during the conditioning process of simulated results to the observed data. 

They underlined that the issue of parameter compensation and non-uniqueness may lead 
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the model calibration algorithm to produce irrational or unrepresentative parameter sets 

for watershed ecohydrological processes[18]. They pointed out that streamflow data is 

predominantly used for model calibration and validation since the availability of data is 

very limited beyond small-scale experimental watershed studies. However, they cited 

that incorporation of multiple water (e.g. streamflow, soil moisture) and energy variable 

measurements (e.g. ET, soil temperature, biomass) is a proved approach to curb degrees 

of freedom and parameter uncertainty due to the challenge to relate streamflow to the 

ecosystem state changes such as shrub encroachment.  According to the criteria 

described by Moriasi et al. (2007) for evaluating the accuracy of modeling studies for 

water quantity and quality, their study achieved very good uncertainty estimates in terms 

of both daily and monthly statistics [46]. Although NSE statistics were about 0.9 for 

monthly estimations of a model for paired catchments, the value of NSE was around 0.8 

for the validation model. They attributed this small reduction to the uncertainty involved 

in the climate data for the larger watershed (78 km2). As a result of their modeling study, 

they reported that an average of 100 mm more ETa was released from juniper 

encroached plots compared to grass plots within the study period (2011-2013). They 

claimed that the biophysical and hydrological parameters produced by their study are the 

first complete and reliable parameterization for invading juniper species. 

One of the most recent studies investigating the influence of brush management 

on watershed hydrology in Texas was by Jeremy White and others in 2017. They 

analyzed the importance of parameterization in providing robust uncertainty estimates 

from models simulating the feasibility of the brush management options used by 
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resource management decision makers [17]. The area they modeled was within the 

Edwards Plateau in Southern Texas. The size of the watershed modeled by them was 

very small (1.4 km2). Their study area has characteristics of karst geology which is 

specific to the Edwards Plateau. The study period covers the years from 2001 to 2010. 

They constructed two discrete models one for the 2001-2003 period and the other is for 

the 2004-2010 period. They called these two models as “conditioning’’(pretreatment) 

and “forecast’’ (post-treatment) respectively since 40% of the Ashe juniper was cleared 

mechanically in 2004.  

According to them, the uncertainty of the model outputs is usually coupled with 

the potential uncertainty naturally included in the model input datasets like weather, soil, 

DEM, and LULC. Thereby, evaluating the uncertainty of simulated results of LULC  

change is quite significant especially when the results are needed to inform decision-

making processes [17]. They specified two sets of parameters to calibrate models for 

uncertainty estimation: reduced parametrization and full parameterization. For the 

reduced parametrization, they selected 12 mostly used SWAT parameters from the 

literature which are used in the hydrological analysis of the land use management and 

they adjusted these parameters in the watershed scale meaning that every hydrologic 

response units (HRUs) in the watershed had the same value. For the full 

parameterization, they populated these 12 parameters in the HRU scale accordingly 

which resulted in 1305 adjustable parameters.  

They concluded that both types of parametrizations were able to yield 

satisfactory results in the estimation of average daily streamflow. However, the 
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estimation of the difference in total volumetric ET which is a pivotal measure for 

assessing the outcomes of brush control remained highly uncertain, especially for the 

reduced-parameterization model.  

Another recent study conducted by Jain et al. on the Nueces River Headwaters 

watershed investigated the impact of land use cover change on watershed hydrology. 

Arundo donax which is an invasive warm-season perennial grass began replacing native 

switchgrass in the riparian areas of the Nueces River for the past a couple decades [47]. 

Although the invasion occurred in specific locations they had to model an area of 2126 

km2 to calibrate the model with the observed streamflow data which was collected by the 

USGS gage at the watershed outlet. After the watershed delineation by the SWAT 

model, they located the areas of Arundo donax within the HRUs. Thus, they reported 

that seven HRUs along the river were identified. Since there were no Arundo donax 

biophysical and hydrological parameters prior to their modeling study they modified 

sugar cane parameters to represent Arundo donax in those seven HRUs. They divided 

the time-horizon into two periods: the pre-invasion period from 1979 to 1994 and the 

post-invasion period from 1995 to 2010. To reflect the high water, use of Arundo donax, 

they simulated irrigation from the river. Unlike the former Edwards Plateau hydrological 

modeling studies, they located and marked the losing streams, sinkholes, and springs 

which had characteristic geological features of the karst affected watersheds. Thus, they 

were able to isolate subbasins with no sustained flow from the subbasins which have 

springs and sinkholes. They pointed out that, modeling the hydrological components of 

the water budget is more complex in watersheds underlaid by karst due to the fact that 
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the distribution of karstic features varies significantly within the watershed. To represent 

the distinctive features of subbasins they defined different adjustable parameters for 

those subbasins. They reported very good NSE values for the uncertainty estimation of 

the model. The NSE value was 0.79 and 0.74 for the calibration and validation of the 

SWAT model respectively. The R-square was 0.76 and 0.64 respectively for calibration 

and validation. The P-bias (percent bias) value which is used to evaluate the uncertainty 

estimation of SWAT model-biases, was 15.5% and 4.3% for calibration and validation 

respectively. In conclusion, they reported that the water yield was 17 mm lower on 

average in the seven HRUs where Arundo donax encroachment had been monitored.   

The SWAT model has also been used to simulate the hydrological processes in 

karst-dominated watersheds in other parts of the US. Among the studies are Amatya et al 

and Baffaut et al. [48, 49]. The Chapel Branch Creek(CBC) watershed in the upper 

coastal plain of South Carolina which is 15 km2 in size and underlain by Santee 

limestone was studied by Amatya et al. [48]. Their study covered a relatively short 

period: 2006 to 2010. They found that the existence of horizontal and vertical subsurface 

conduits and voids in the karst affected watersheds can impair the model’s capability of 

estimating the ratio of streamflow components accurately (e.g. return flow, overland 

flow). They argued that the fewer number of studies on karst watersheds was a result of 

the complications involved in modeling the groundwater component of the watershed 

hydrology since groundwater can make dynamic impacts on the surface water flow’s 

magnitude and timing. According to Ghanbarpour et al. (2010), models like SWAT 

which are configured mostly for more typical watersheds is not able to produce 
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satisfactory predictions of flow in karst affected watersheds [50]. A similar conclusion 

was also reached by some other former studies conducted by Jourde et al. in 2007 and 

Salerno and Tartari in2009. They both underscored the complexity involved in using 

surface runoff models to simulate the flow in the watersheds of the karst-affected region 

because of the potential external water supply from adjacent watersheds and also likely 

delayed and prolonged contribution of karst subsurface flow to surface flow. Amatya et 

al. in 2011 calibrated the SWAT model using observation data from multiple gages. The 

data collected from two main points (SL1 and SL2) draining an area of 589 ha in total, 

and a location at a cave spring (CS) outlet draining about 1,090 ha were used in the 

calibration of the model. Based on the previous study they conducted in 2010, they 

noticed that measured flow data at SL2 and CS (cave spring) gages indicated that a 

significant amount of surface flow disappeared before discharging at SL2 and probably 

resurfaced at CS gage. So, while calibrating the SWAT model, they increased the 

hydraulic conductivity values of the main and tributary channel as a high as 150 mm per 

hour to prompt the model to simulate excessive transmission loss. Later they utilized a 

deep aquifer recharge coefficient which is the ratio of the subsurface flow lost from the 

watershed hydrological cycle. So, they noticed that the calibration of the SWAT model 

for the CBC watershed wasn’t a standard calibration process due to the challenging 

natural characteristics of the karst watershed. They reported that the calibration results at 

the CS outlet were improved after adding measured baseflow as a point source input to 

the model. They explained that the unsatisfactory monthly flow estimations of the model 

at SL1 and SL2 locations may be attributable to the probable flow routes under the karst 
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conditions and the interaction with the reservoir water levels at the downstream. 

Regarding this outcome, they emphasized that the SWAT model might be more useful 

for predicting streamflow which is predominantly composed of surface runoff. However, 

they pointed out that the model predictivity was much better in the estimation of 

monthly outflow at the reservoir outlet, particularly during wet periods. This may have 

resulted from the fact that when reservoir levels are high during the wet season, the 

storage capacity of subsurface conduits is exceeded, and the flow is conveyed as surface 

runoff. 

Using the SWAT model, Baffaut et al. in 2009  analyzed the applicability of 

modeling hydrological dynamics in karst-affected watersheds in a case study of the 

James River Basin, Missouri which is a large scale watershed (3600 km2) [49]. Their 

primary focus was testing how the SWAT model performs in estimations of flow 

components and water quality when modifications are made to original infiltration and 

percolation algorithms. They noted that groundwater contamination has higher potential 

in karst watersheds due to the higher connectivity between surface and groundwater. 

Plus, anthropogenic activities increase water pollution risk. They described important 

characteristics of karst watersheds such as sinkholes, losing streams and springs. To 

simulate the rapid transfer of water through vertical conduits which are specific to karts 

watersheds, they modified the deep aquifer recharge algorithm by changing the source 

code of the original SWAT model. A similar approach was taken formerly by Afinowicz 

et al. [16]. Baffaut et al. examined the estimations of streamflow partitioning into 

baseflow and surface runoff since there was a notable possibility that groundwater flow 
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and surface runoff derived from the SWAT may be substantially different from those 

observed in total streamflow due to the considerable impact of springs, in-stream 

transmission losses, and discharges from wastewater treatment facilities. They utilized 

the USGS hydrograph separation method (HYSEP) to check whether the simulated 

baseflow ratio (baseflow to total streamflow) is comparable to the measured baseflow 

ratio. They calibrated the model using the data collected from multiple observation 

points with some of them on tributaries and some of them on the stem of the main 

channel. They reported satisfactory NSE values mostly around 0.5 while some slightly 

lower than 0.5 for the calibration of streamflow. According to their results, the values 

representing the goodness of fit were better on the main channel while the estimations 

performed slightly poor on tributary channel locations. They attributed this to the 

possible transfer of water from the upstream of a subbasin to another subbasin with 

subsurface conduits which connect sinkholes to the downstream or neighboring streams. 

Although uncertainty estimation statistics performed slightly poorer in validation, they 

stated that the results were successful since the values were comparable. They reported 

that prediction efficiencies (the coefficient of determination utilized) for the water 

quality estimations ranged from 0.33 to 0.97. All in all, they suggested that the modified 

SWAT model can be a viable solution to simulating complex hydrological processes on 

the karst affected watersheds. 

Looking into the reported parameters used in the calibrations, one can see that 

there are no identical parameter sets even though the geological characteristics of the 

watersheds are comparable. According to Bakalowicz (2005), the generalization or 
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standardization of the methods and results used in the hydrological modeling of karst 

watersheds is a very challenging task due to the high heterogeneity. Yet, as also seen in 

the previous works, the approaches used in some studies guided others to evaluate and 

even to contribute to the existing knowledge of the hydrological modeling of the karst-

affected watersheds. However, none of these studies reviewed investigated the impacts 

of different sources of land use and cover datasets and digital elevation models on the 

hydrological modeling accuracy of the SWAT. While Amatya et al. (2011) used NAIP 

(National Agricultural Imagery Program) images and digitized topographic maps to 

produce a LULC dataset for the SWAT model, Landsat images were used by Baffaut et 

al. (2009). And, NLCD (National Land Cover Dataset) was used by Qiao et al. (2015), 

White et al. (2017) and Jain et al. (2015) as the LULC input data to the SWAT model. 

The NLCD datasets were produced by the Multi-Resolution Land Characteristics 

Consortium(MRLC) and they are Landsat-derived LULC datasets which are widely used 

by researchers in the United States. The spatial resolution of the Landsat images is 

coarse (30 meters). The National Agricultural Imagery Program of the USDA (United 

States Department of Agriculture), on the other hand, collects aerial images in 1-meter 

spatial resolution during the active vegetational growth period in order to support 

resource management decision making in a variety of fields like environmental 

protection, crop yield assessment, and forest management. The convenience of using 

available NLCD datasets prompts most researchers to use them as the input LULC data 

to hydrological models. Because SWAT has the parameters set for NLCD land use and 

land cover classes in its plant growth and hydrology database, the selection of NLCD 
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facilitates the model computation of hydrological processes. The DEM data used by 

previous studies vary considerably. A 1.4-meter lidar-derived DEM was used by Qiao et 

al. (2015) White et al. (2017) and Jain et al. (2015) used 10 and 30 meters DEMs 

respectively. Amatya et al. (2011) also used 10-meter DEM while Baffaut et al. (2009) 

used a very coarse resolution DEM (60 meters). The spatial resolution of DEM datasets 

is important because the SWAT model delineates watersheds and calculates slopes based 

on the information provided by DEM. For detecting complex karst features like 

sinkholes and depressions LIDAR (Light Detecting and Ranging) derived DEMs are 

recommended for future modeling studies not only for their spatial resolution and 

ground accuracy but also for their capability of enhancing the modeling accuracy of 

karst watersheds [49, 51].  

 There are a few studies conducted to analyze the effect of model input data such 

as LULC and DEM on the model performance in estimating water quantity and quality 

for managed watersheds. Fisher et al. (2018) compared the results of two different 

SWAT hydrological models: one constructed by using 1-meter resolution LULC and 

DEM datasets and the other built by the utilization of 30-meter LULC and DEM 

datasets[52]. Their primary focus was on the investigation of the impacts of remote 

sensing imagery spatial resolution on LULC classification and reliability of water quality 

modeling. With the high-resolution modeling method, they evaluated the VOI (value of 

information) which is a measurement of the maximum amount the resource managers 

are willing to pay for the extra information produced before making a decision. They 

argued that only a few studies evaluated the cost of varying data types and these studies 
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usually tended to resample the same source of dataset rather than assessing the datasets 

at their original resolution.   

 Fisher et al conducted their study at the Camboriu watershed in Southeastern 

Brazil. Their study was funded by a local municipal drinking water company (EMASA). 

The company was seeking for decreasing the cost of water treatment and losses of 

natural forests due to the replacement by other land uses like crop production which 

caused high total suspended sediment loads (TSS). Thereby, their mission was to 

analyze the feasibility of conservation practices in reducing TSS to inform the managers 

of EMASA. So, they tested the accuracy of modeling both streamflow and TSS loads 

using two data sources at different spatial resolutions. They recognized that the data 

acquisition for 1-meter spatial resolution satellite images was quite costly (9,000 dollars) 

while the 30-meter satellite data were obtained for free from the Landsat achieve.    

Furthermore, processing high-resolution satellite images would require 

substantially longer time and more labor (two weeks for the high resolution versus 9 

hours for the coarse resolution images). Plus, a lot of disk space was required to process 

and store the high-resolution satellite image data. However, although the processing and 

modeling of the high-resolution data were more difficult, they reported a better 

performance of the model, especially in water quality modeling. They found that the 

coarser resolution LULC datasets produced from the 30-meter spatial-resolution Landsat 

satellite images couldn’t detect most of the changes because most land use changes took 

place in smaller patches (less than 900 km2) such as the ones at the forest edge. As a 

consequence, they reported that there was a 22.8% difference between total area 
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estimations of land use classes mapped using two datasets. They also underlined the 

importance of the total area of each land use category and the spatial distribution of each 

land use in the assessment of water quality. According to them, the SWAT model 

doesn’t quite effectively represent the actual hydrologic processes in the watersheds due 

to its straightforward process representation which lacks the full spatial connectivity. All 

in all, they concluded that the spatial resolution of datasets is a decisive factor for both 

the accuracy of the LULC classification and water quality modeling. They stated that 

higher resolution imagery increased the accuracy of land use cover maps. They also 

indicated that the DEM data having a coarse resolution leads to the miscalculation of 

slope length and steepness. Besides, they found that the 30-meter SWAT model resulted 

in unsatisfactory NSE values for the larger EMASA watershed. Hence, they suggested 

that the use of higher resolution input data boosts the reliability of hydrological analysis 

results.  
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CHAPTER III  

RESEARCH METHODOLOGY 

 

III.1 Location of The Study Area 

The Nueces River Headwaters and East Prong Nueces River watersheds are a 

part of the Nueces Headwaters Subbasin and located within the semi-arid Edwards 

Plateau Ecoregion. Covered by an important amount of woody vegetation, especially 

juniper brush (Juniperus ashei), this area represents an ideal case to examine the 

relationship among vegetation cover, soil conditions and streamflow. The study area 

stretches from Edwards County to the West and Real County to the East. The Edwards 

County section and Real County section of the study area covers 154 and 197 square 

miles respectively. Edwards and Real Counties are in the southwestern part of Texas. 

Rocksprings is the county seat of Edwards County and about 150 miles northwest to San 

Antonio. Leakey is the county seat of Real County and about 120 miles northwest of San 

Antonio. Figure 1 indicates the location of the study area, climate stations and the USGS 

streamflow gauging station. 

III.2 Climate, Topography, Land Use and Cover and Geology of The Study Area 

The study area carries the common properties of the Edwards Plateau especially 

in terms of geology, climate, and vegetation. According to the soil survey of Edwards 

and Real Counties completed and updated in 2000, soils are predominantly very shallow 

or shallow and used mostly as rangeland [53]. According to this soil survey, croplands, 
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pastures, and orchards are located on deeper soils usually found on major drainage ways 

and high divides.  

 

 

Figure 1. Study area. 
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The elevation of the study area ranges from 435 to 736 meters above sea level. 

The 33-year average annual precipitation of the study area from 1984 to 2017 shown in 

figure 2 is 747.33 mm. However, as shown in the figure 2, the average annual rainfall 

remained below the long-term average during the study period (608.6 mm for the 2008-

2017 period). The rainiest month was May in the watershed area, while February was the 

month with the least precipitation during the period of study. According to the report 

obtained from USGS Streamer online application, the total length of the upstream 

section of the river from the gage is 125.52 kilometers (78 miles). The report described 

four important streams for the watersheds: Nueces River, East Prong Nueces River, 

Hackberry Creek, and Bullhead Creek. Figure 3 shows the upstream rivers of the USGS 

gage. The 2010 total county (Edwards and Real) population was 5.311. Figure 4 

indicates the location of the study area, climate stations and the USGS streamflow 

gauging station. 
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Figure 2. Annual precipitation of the study area from 1984-2017 (data from NCDC). 

 

 

 

 
 

Figure 3. The upstream rivers and creeks of the Nueces Rv Nr Barksdale gaging station. 

(Source: the USGS Streamer application) 
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Figure 4. Average annual and monthly precipitation of the study period (data from 

NCDC). 
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III.3 Spatial and Temporal Datasets  

I obtained both the Digital Elevation Model(DEM2013) and the National 

Agriculture Imagery Program’s (NAIP) and Texas Orthoimagery Program (TOP) quarter 

quad images of the study area in the raster format from the website of Texas Natural 

Resources Information System(TNRIS). While the DEM2013 has a 10-meter pixel 

resolution, the spatial resolution of NAIP and TOP aerial images varies from 0.5 meters 

to 1 meter. These high spatial resolution digital images have four spectral bands: red, 

green, blue and near infrared. The digital images are geometrically and radiometrically 

corrected. These images are collected by the Aerial Photography Field Office (APFO) of 

the United States Department of Agriculture’s (USDA) Farm Service Agency(FSA). The 

images are captured during the agricultural growing period. I downloaded 14 digital 

orthophoto quarter quad tiles(DOQQs) which are located within the Real and Edwards 

counties. The image tiles have a 3.75’ x 3.75’ quarter quadrangle format with a 300-pixel 

buffer. Six images were produced between 2008 and 2017: 2008, 2010, 2012, 2014, 

2015, and 2016. All images were projected to North American Datum of 1983 (NAD83).  

Another DEM dataset used in this study has a 30-meter spatial resolution and 

was produced by the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER). This DEM dataset was obtained from the USGS Earth Explorer 

using the online data search tool. Furthermore, two Landsat5 TM (thematic mapper) and 

four Landsat8 OLI_TIRS (operational land imager and thermal infrared sensor) scenes 

with path and row numbers of 28 and 39 respectively were downloaded from the USGS 

Earth Explorer interface. Only the images with no cloud cover were selected. I chose 
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images that matched or were as close as possible to the image capturing dates of NAIP 

and TOP missions. Because there was a failure in Landsat 7 ETM (Enhanced Thematic 

Mapper sensor) which deteriorated the quality of images I had to select Landsat 5 

images. Because Landsat 5 mission was terminated before 2012 and Landsat 8 satellite 

mission began operating in 2013, I had to substitute 2012 with Landsat 8 OLI-TIRS’s 

2013 image. Landsat 5 images captured by the TM sensor are composed of six spectral 

bands with 30-meter spatial resolution (bands 1-5 and 7). Band 6 of Landsat 5 images is 

a thermal band which has a 120-meter spatial resolution. However, the resolution of the 

thermal bands is resampled to 30 meters by USGS. Landsat 8 images have 11 bands in 

total including seven spectral bands (1-7), two thermal bands (10 and 11), a 

panchromatic band (8) and cirrus (9). The spectral and spatial features of the Landsat 

images were shown in the table 1. The revisit time of both satellites (temporal 

resolution) is 16 days  

The spatial data in NAD83 map projection for the streamflow recording station 

(Nueces Rv Nr Barksdale) obtained from the United States Geographical 

Survey’s(USGS) National Water Information System (NWIS). Daily, monthly and 

yearly discharge in cubic feet per second and gage height in feet are available in the 

interface. The station has been operational since February 6, 2009. Unfortunately, the 

station didn’t measure the suspended sediment levels for the operational period. I 

downloaded all available daily, monthly and yearly discharge data for the period from 

February 6, 2009, to December 31, 2017. 
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Table 1. Band properties of Landsat 5 and Landsat 8 images used in this study.   

       Landsat 5 TM     Landsat 8 OLI TIRS 

Bands Names 
Wavelength 

(micrometer) 

Res. 

(meter) 
Names 

Wavelength 

(micrometer) 

Res. 

(meter) 

1 Blue 0.45 - 0.52 30 Ultra-Blue 0.435 - 0.451 30 

2 Green 0.52 - 0.60 30 Blue 0.452 - 0.512 30 

3 Red 0.63 - 0.69 30 Green 0.533 - 0.590 30 

4 
Near 

Infrared 0.76 - 0.90 30 
Red 

0.636 - 0.673 30 

5 
Shortwave 

Infrared 1 1.55 - 1.75 30 

Near 

Infrared 0.851 - 0.879 30 

6 Thermal 
10.4 - 12.5 120 

Shortwave 

Infrared 1 1.566 - 1.651 30 

7 
Shortwave 

Infrared 2 2.08 - 2.35 30 

Shortwave 

Infrared 2 2.107 -2.294 30 

10 
      

Thermal 

Infrared 10.60 - 11.19 100 

 

The watershed boundary data was derived from the USGS’s National 

Hydrograph Dataset which has a 1:24000 scale. I extracted the study area watersheds 

utilizing ArcGIS 10.4. Using this geodatabase, I also extracted the streams of the study 

area. 

The most recent National Land Cover Database (NLCD) dates to 2011. I 

downloaded NLCD2011 from TNRIS for entire Texas. The data is Landsat based and 

has a 30-meter pixel resolution. I also downloaded the Ecological Mapping Systems 

(EMS) of Texas data using an interactive app called Texas Ecosystem Analytical 

Mapper(TEAM). Because it offers more comprehensive information on different 

vegetation species of Texas, the data from the app was used to identify the land use and 

cover classes of the study area. TEAM is a Google Maps-based application and 
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developed by Texas Parks and Wildlife’s(TPWD) Ecology program. The app allows 

users to view and download EMS data, Natural Resources and Conservation Services 

Soil Survey Geographic Data, National Hydrological Data, and TPWD’s Land and 

Water Resources Conservation and Recreation Plan (LWRCRP) Properties data. The 

EMS data downloaded from the TEAM application is in the shape format having a very 

detailed attribute table describing each map units. 

The Soil Survey Geographic Database(SSURGO) was used to obtain spatially 

distributed soil and geology data. The SSURGO data was downloaded from the Natural 

Resources Conservation Services (NRCS) website. The data was in the shape format and 

has a very detailed attribute table describing the characteristics of different soil types.  

I downloaded daily, monthly and annual climate data of the stations within and 

adjacent to the study area from the National Oceanic and Atmospheric Center’s (NOAA) 

online climate database for the 2008-2017 period. While deciding on the stations used in 

the analysis of the climate, I considered location, the period of record, and completeness 

of the precipitation measurements. All climate data was in the metric format. 

Unfortunately, there wasn’t a weather station having complete climate data within the 

study area. Hence, I used the climate data of the eight weather stations which are close to 

the study area. Table 2 indicates the weather stations which were used in this study. I 

also downloaded PRISM (Parameter-elevation Relationships on Independent Slopes 

Model) climate data because it considers many factors like elevation, coastal distance, 

topographic facet orientation and orographic efficiency of the landscape[54]. Prism 

precipitation data was in a 4-km grid format. 
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Table 2. Information about the weather stations. 

Station Name Lat. Long. Elevation 

Precipitation 

Coverage for 

the Study 

Period (%) 

Distance to 

the Study 

Area (km) 

Camp Wood 5.02 

SSE 
29.60 -100.00 423.70 100.00 13.00 

Hunt 10 W 30.06 -99.50 612.60 99.00 31.20 

Prade Ranch 29.92 -99.79 625.40 99.50 5.67 

Rocksprings 26 

SSW 
29.69 -100.42 525.80 100.00 35.00 

Rocksprings 5.4 

NW  
30.07 -100.28 719.90 98.00 9.15 

Rocksprings 8.5 

WSW 
29.97 -100.34 709.00 98.00 13.91 

Vanderpool 10 N 29.85 -99.55 696.20 99.00 27.87 

Vanderpool 4 N 29.81 -99.58 556.30 100.00 25.88 
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III.4 Analysis of the Climate and Hydrology of the Study Area 

III.4.1 Rainfall and Runoff 

Rainfall is a key characteristic of the climate in a region. While data from a rain 

gauge may be complete, it is not sufficient to represent the climatic characteristics of a 

region since the data can only offer point estimates. Thus, obtaining the estimates of 

precipitation partial distribution within a region from rain gauges is a significant concern 

of spatial interpolation [55]. Interpolation is a mathematical function which aims to 

produce estimated values for a location where measured data is absent by using the data 

from surrounding locations [56]. Spatial interpolation is helpful to obtain the estimates 

of precipitation for locations having varying distances to climate monitoring stations. 

Despite the availability of several interpolation methods, it is usually challenging to 

decide which one is the most suitable method to estimate rainfall as close as to actual 

conditions. Depending on the characteristics of datasets, interpolation methods can yield 

different results [57]. The inverse-distance weighting (IDW) method is widely used 

because of its easy computation and accessibility through many GIS packages. GIS users 

have the advantage of using the IDW as a default method to produce the attributes of 

unsampled locations using the values from sampled points in an area [58]. Many papers 

investigated the efficiency of different spatial interpolation methods to estimate areal 

rainfall and concluded that the IDW method can be used to present the distribution of 

precipitation when spatially dense gauges are found in the region.[59-61]. Furthermore, 

previous research indicated that the IDW method can also outperform other spatial 
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interpolation methods like ordinary kriging (OK) and spline even though the gauges are 

scarcely distributed throughout the region [57]. 

The IDW method estimates the values by calculating a weighted average of 

known points within a certain region. In calculating the weighted averages, close points 

(weather stations) carry higher weights than distant points. The method appoints values 

to unknown cells by utilizing the values of known cells. The values of unknown cells are 

the weighted sum of the values of N known data source [55]. Distance and power are 

two important parameters of the IDW method. An inverse relationship is established 

between known and unknown points in terms of the power of distance. The IDW 

formula for spatial interpolation of precipitation can be expressed as: 

�̂�𝑃 = ∑ 𝑤𝑖
𝑁
𝑖=1 𝑅𝑖      

𝑤𝑖 =
𝑑𝑖

−𝑎

∑ 𝑑𝑖
−𝑎𝑁

𝑖=1
           

where �̂�𝑃 refers to the unmeasured rainfall data(mm); Ri depicts the rainfall measured 

by gauge, N is the count of gauges, wi is the weight for gauges, di demonstrates the 

distance from gauge i to unmeasured locations, ɑ refers to the power.  

I selected suitable rain gauges to evaluate their precipitation coverage for the 

period of the study. I calculated precipitation coverage of each station using the simple 

formula below; 

𝑃𝐶 =
𝐷

365×𝐶𝑌
× 100           
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where PC is the precipitation coverage of a station, D is the total number of days with 

precipitation records including records with zero precipitation, and CY is the count of 

years for the period of interest. 

 Because all climate stations selected are outside of the study area, I decided to 

interpolate annual average precipitation values using ArcGIS. Inverse Distance 

Weighting(IDW), Spline, Ordinary Kriging, Cokriging, and Thiessen Polygons are 

widely used methods for interpolation of the data from sparsely or densely distributed 

point sources. In this case, I preferred to use the IDW method due to its practicality, 

efficiency and relatively higher accuracy compared to other methods [62]. While 

performing this IDW interpolation analysis I determined grid size to be 4x4 km aiming 

to compare with the results from the PRISM climate data. I subsetted both IDW 

interpolation and PRISM data into study area extents. Thus, each 4 x 4 km pixel has a 

specific precipitation value for both sources data. I calculated spatial statistics of the two 

datasets to derive spatially distributed annual precipitation of the watersheds from 2008 

to 2017. I entered the results into the JMP statistical software to compare both results 

derived from IDW and PRISM. I also calculated the simple average values of the climate 

data in daily, monthly and annual formats. Furthermore, I tested the influence of 

elevation on the distribution of rainfall for different stations.  
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Precipitation is the most significant element of a watershed which determines 

different patterns of the streamflow. The amount, duration and intensity of precipitation 

together with the season in which it occurs can bring about significantly different results. 

To explain the relationship between precipitation and streamflow I performed the one-

way ANOVA test using the JMP. I calculated annual water yield using the following 

formula: 

𝑄𝐴 =
𝑄∗365∗24∗3600∗0.0283168∗1000

𝐴
     

where  QA indicates annual streamflow per unit area which is also called annual water 

yield (mm). Q is the annual average streamflow measured at the USGS gage (f3/s). A 

indicates the area of the watershed (m2). 

I used the Web-based Hydrograph Analysis Tool (WHAT) to extract the 

baseflow fraction of the total flow, a key factor to characterize the hydrology of the 

watershed. WHAT is formerly used by Jain et al. (2005) and considered to be a suitable 

baseflow filtering program for karst watersheds. 
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III.4.2 Delineation of the Drainage Area  

I needed exact borders of the drainage area to resize the remote sensing images. I 

used the 10-meter DEM to delineate the area drained by the USGS streamflow 

measuring gage near Barksdale. To perform this analysis, I used several tools within the 

Spatial Analyst toolbox and under the Hydrology folder of ArcGIS. The sequential order 

of this tools was: 

i. Using the fill tool to interpolate the elevations of no data pixels using 

information from the neighboring pixels;  

ii. Calculating flow direction by using filled DEM and generating a raster of 

flow direction from each cell to its steepest downslope neighbor; 

iii. Computing flow accumulation by using flow direction raster and creating a 

raster of accumulated flow into each cell; 

iv. Snapping pour point (USGS gage, Nueces River Nr Barksdale): snapping 

pour points to the cell of the highest flow accumulation within a specified 

distance; and 

v. Finally, using the watershed tool to calculate the contributing area above a 

defined point in flow accumulation raster. 

The drainage area shapefile produced after these steps had an area which 

matched the USGS records (about 352 square miles). The shapefile was later used to clip 

all aerial and satellite images into the extents of the study area. 
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III.5 Remote Sensing Image Classifications  

III.5.1 Preprocessing of the aerial images 

For NAIP images, I first mosaicked all DOQQs using ArcGIS version 10.3. 

However, I realized some gaps within the red, green and blue bands of the 2008 aerial 

image. To prevent these pixels from being unclassified during the classification processes 

I interpolated these areas using a formula in the raster calculator tool of ArcGIS. Figure 5 

indicates the pixels with no value for band 3 (blue band). The code used to interpolate 

these pixels for the blue band was: 

“Con (IsNull ("top2008_4bands_composite.tif - Band_3"), Focal Statistics 

("top2008_4bands_composite.tif - Band_3”, NbrRectangle (5,5), "MEAN"), 

("top2008_4bands_composite.tif - Band_3"))” 

 

 
 

Figure 5. Areas with no data indicated by the small white scattered pixels on the water 

body (top left of the image) and within the woodland (bottom left). 
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The same steps were repeated for all bands to identify the pixels with no data. 

After filling the gaps for bands 1, 2 and 3 which are the red, green and blue bands 

respectively, I composited all the bands including near infrared to generate color-

infrared images of the study area. Because the original 2008 aerial image had a 0.5-

meter resolution, I resampled it to 1 meter to match the spatial resolution of other 

images. Following this initial processing I subsetted mosaicked aerial images to the 

extent of the study area using the drainage area shapefile. 

To improve classification accuracy, ancillary data is oftentimes used to combine 

spectral characteristics of the scene with the information obtained from using several 

techniques. Texture and vegetation indices are mostly used methods. Thereby, I 

produced the texture band for all aerial images using the guidelines provided by the 

United States Forest Service for texture band generation of NAIP images. Neighborhood 

statistics under the Spatial Analyst tool of ArcGIS are used for several steps during the 

production of the texture band. Steps involved in deriving the image texture information 

are listed below: 

1- Standard deviation is the primary statistic used for texture information. A 

window (rectangle) size of 7 was used to calculate standard deviations for the 

aerial images. 

2- The resulting images were filtered using a 3x3 low pass filter to remove high 

values of texture. 

3- Filtered texture images were smoothed using a focal mean function on the raster 

calculator. A 5 x 5 window is suggested by the United States Forest Service.  
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4- The copy raster tool was used to rescale created texture images. Data was 

converted to 8-bit signed integer.  

Normalized vegetation index(NDVI) is one of the mostly used vegetation indices 

which quantifies the ratio of vegetation by calculating the difference in the reflectance 

from the near infrared and red bands. While green, healthy vegetation strongly absorbs 

red light, near-infrared portion of the electromagnetic spectrum is substantially reflected 

from the healthy vegetation. The value of the NDVI ranges from -1 to +1. However, 

there is no decisive boundary for distinct types of land cover. But in most cases, negative 

values indicate water while values close to +1 imply the presence of dense green leaves. 

Values close to 0 usually represent urban and built-up areas. 

The formula of NDVI is:  

 𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
      

where NDVI is the Normalized Difference Vegetation Index, and NIR and RED are near 

infrared and red bands respectively.  

After generation of the NDVI and texture bands for each aerial image, I subsetted 

them into the extents of the study area and stacked them with the spectral bands of aerial 

images. As a result, each aerial image had 6 bands in total. Because these aerial images 

were geometrically and radiometrically corrected before being available to public use, 

those newly created 6-band image data was ready for analysis. Figure 6 demonstrates the 

NDVI, texture, natural and false color images of a small portion of the study area in 

2008.  
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Figure 6. Natural color composite (top left), NIR false color composite (top right), 

texture band derived from the image (bottom left) and NDVI band (bottom right) of the 

2008 aerial image. The area covered in the image is only 2.72 square kilometers and the 

scale is about 1/10000 (the study area is 907 square kilometers). The city seen in the 

images is Barksdale. 
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III.5.2 Determining the Classification Scheme  

A classification scheme is a preliminary step for a supervised classification 

method. Anderson classification system is widely employed in the classification of 

Landsat images [63]. However, while it is suitable for coarse resolution (>30) image 

classifications, Anderson Classification approach is not appropriate when high-

resolution aerial images are used for classification. Correctly identifying the major land 

use and cover types in the study area is critical. Field campaigns is not a cost-effective 

and practical alternative to analyze land use and cover in large and heterogonous 

watersheds. Besides, land use policy in the US makes this situation even more unfeasible 

because almost all the area is owned privately. Fortunately, there are a few alternatives 

to handle this problem. Prior studies can provide some knowledge about the land use and 

cover of the area. In addition to the information from the literature, the US-wide and 

Texas wide LULC datasets offer a decent opportunity to familiarize with the land use 

cover of the study area. 

The NLCD, a US-wide land use and cover dataset, is a cooperative project 

conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. Landsat 

satellite images were used to produce NLCD datasets. The most recent NLCD dataset is 

NLCD2011. Table 3 indicates LULC types of the study area based on the NLCD 2011. 

The overall accuracies for the preceding NLCD datasets tested for level two classes were 

reported to be 79% and 78% for NLCD2001 and NLCD2006 respectively [64]. The 

definition of the classes shown in Table 4 reveals that there is more than one vegetation 

type within a land use category. While this can bring about a problem to identify 
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individual plant species, it is still helpful to target specific locations in the study area. 

Hence, I used the NLCD 2011 dataset to examine land use and cover of the study area. 

After sub-setting the NLCD 2011 data into the extent of the study area, I reclassified it to 

incorporate land cover classes with the codes shown in the first raster data. Since 

ArcGIS doesn’t allow users to calculate statistics of a dataset with the floating-point data 

type, reclassification of the raw data enabled to create an attribute table by converting 

floating data type into integer data version. I calculated the percent cover of the classes 

represented in the drainage area by using the field calculator tool in the attribute table of 

the reclassified raster data. 

 

Table 3. The LULC classes and their areas mapped and calculated by NLCD 2011 for 

the study area. 

Class Code NLCD2011 Dataset Classes Area (km2) Area (%) 

52 shrub 544 60 

42 evergreen forest 229 25 

41 deciduous forest 99 11 

71 grassland/herbaceous 26 3 

21 developed, open space 7 1 

11 open water 0 0 

22 developed, low intensity 1 0 

23 developed, medium intensity 0 0 

24 developed, high intensity 0 0 

31 barren land(rock/sand/clay) 1 0 

43 mixed forest 0 0 

82 cultivated crops 0 0 

90 woody wetlands 1 0 

Total Area 908 100 
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Table 4. Description of the NLCD land use cover classes within the study area 

Class Code Class Description 

11 Open Water: Areas of open water, generally with less than 25% cover 

of vegetation or soil. 

21 Developed, Open Space: Areas with a mixture of some constructed 

materials, but mostly vegetation in the form of lawn grasses. Impervious 

surfaces account for less than 20% of total cover. These areas most 

commonly include large-lot single-family housing units, parks, golf 

courses, and vegetation planted in developed settings for recreation, 

erosion control, or aesthetic purposes. 

22 Developed, Low Intensity: Areas with a mixture of constructed 

materials and vegetation. Impervious surfaces account for 20% to 49% 

percent of total cover. These areas most commonly include single-

family housing units. 

23 Developed, Medium Intensity: Areas with a mixture of constructed 

materials and vegetation. Impervious surfaces account for 50% to 79% 

of the total cover. These areas most commonly include single-family 

housing units. 

24 Developed High Intensity: Highly developed areas where people reside 

or work in high numbers. Examples include apartment complexes, row 

houses and commercial/industrial. Impervious surfaces account for 80% 

to 100% of the total cover. 

31 Barren Land (Rock/Sand/Clay): Areas of bedrock, desert pavement, 

scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip 

mines, gravel pits and other accumulations of earthen material. 

Generally, vegetation accounts for less than 15% of total cover. 

41 Deciduous Forest: Areas dominated by trees generally greater than 5 

meters tall, and greater than 20% of total vegetation cover. More than 

75% of the tree species shed foliage simultaneously in response to 

seasonal change. 

42 Evergreen Forest: Areas dominated by trees generally greater than 5 

meters tall, and greater than 20% of total vegetation cover. More than 

75% of the tree species maintain their leaves all year. Canopy is never 

without green foliage. 
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Table 4 continued 

Class Code Class Description 

43 Mixed Forest: Areas dominated by trees generally greater than 5 meters 

tall, and greater than 20% of total vegetation cover. Neither deciduous 

nor evergreen species are greater than 75% of total tree cover. 

52 Shrub/Scrub: Areas dominated by shrubs; less than 5 meters tall with 

shrub canopy typically greater than 20% of total vegetation. This class 

includes true shrubs, young trees in an early successional stage or trees 

stunted from environmental conditions. 

71 Grassland/Herbaceous: Areas dominated by graminoid or herbaceous 

vegetation, generally greater than 80% of total vegetation. These areas 

are not subject to intensive management such as tilling but can be 

utilized for grazing. 

 

 

 Another land use land cover data source was the Texas Parks and 

Wildlife’s (TPWD) Ecological Mapping Systems (EMS) dataset. This dataset is Texas-

wide and much more detailed compared to the NLCD data. It has been produced by 

incorporation of Landsat satellite images and NAIP aerial images [65]. Both the NLCD 

and TEAM LULC datasets adopted a modified version of the Anderson Classification 

system. While the NLCD is in a 30-meter, TEAM data is originally created in a 10-

meter spatial resolution. However, the LULC data I downloaded from TEAM interface 

was in the shape format. That’s why I converted it into the raster format by specifying a 

raster resolution of 1 meter. Later, I repeated the same steps as in the NLCD and derived 

quantitative LULC information for the study area. Table 5 indicates the LULC classes of 

the study area based on the TEAM dataset.  
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Table 5. Land use cover for the study area derived from TEAM dataset 

Class 

Code 
Area (km2) Area (%) Land Use and Cover Class 

10 321.57 35.45 

Edwards Plateau: Ashe Juniper-Live Oak 

Shrubland 

22 146.80 16.18 Edwards Plateau: Ashe Juniper Slope Forest 

12 124.21 13.69 

Edwards Plateau: Ashe Juniper-Live Oak 

Slope Shrubland 

5 99.66 10.99 

Edwards Plateau: Ashe Juniper Motte and 

Woodland 

9 39.51 4.36 Edwards Plateau: Savanna Grassland 

6 31.22 3.44 

Edwards Plateau: Live Oak Motte and 

Woodland 

24 20.07 2.21 

Edwards Plateau: Oak - Ashe Juniper Slope 

Forest 

17 20.05 2.21 

Edwards Plateau: Riparian Ashe Juniper 

Shrubland 

3 14.74 1.63 

Edwards Plateau: Floodplain Ashe Juniper 

Shrubland 

21 11.30 1.25 Barren 

23 7.84 0.86 Edwards Plateau: Live Oak Slope Forest 

30 7.49 0.83 Urban Low Intensity 

27 7.18 0.79 Native Invasive: Mesquite Shrubland 

14 7.13 0.79 

Edwards Plateau: Riparian Ashe Juniper 

Forest 

25 6.95 0.77 

Edwards Plateau: Oak - Hardwood Slope 

Forest 

11 6.19 0.68 Edwards Plateau: Shin Oak Shrubland 

2 5.61 0.62 

Edwards Plateau: Floodplain Live Oak 

Forest 

33 5.10 0.56 

Edwards Plateau: Floodplain Herbaceous 

Vegetation 

7 4.14 0.46 

Edwards Plateau: Deciduous Oak - 

Evergreen Motte and Woodland 

4 3.64 0.40 

Edwards Plateau: Floodplain Deciduous 

Shrubland 

32 3.38 0.37 

Edwards Plateau: Floodplain Hardwood 

Forest 

8 2.88 0.32 

Edwards Plateau: Oak - Hardwood Motte 

and Woodland 
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Table 5 continued 

Class 

Code 
 Area(km2) Area (%)   Land Use and Cover Class 

1 2.54 0.28 Edwards Plateau: Floodplain Ashe Juniper 

Forest 

15 2.24 0.25 Edwards Plateau: Riparian Live Oak Forest 

13 1.30 0.14 Edwards Plateau: Shin Oak Slope Shrubland 

19 0.87 0.10 Edwards Plateau: Riparian Herbaceous 

Vegetation 

34 0.79 0.09 Edwards Plateau: Riparian Hardwood - Ashe 

Juniper Forest 

31 0.74 0.08 Edwards Plateau: Floodplain Hardwood - 

Ashe Juniper Forest 

29 0.61 0.07 Urban High Intensity 

18 0.35 0.04 Edwards Plateau: Riparian Deciduous 

Shrubland 

38 0.31 0.03 Edwards Plateau: Post Oak Motte and 

Woodland 

16 0.29 0.03 Edwards Plateau: Riparian Hardwood Forest 

37 0.20 0.02 Open Water 

35 0.07 0.01 Edwards Plateau: Wooded Cliff/Bluff 

36 0.06 0.01 Row Crops 

20 0.05 0.01 Southwest: Tobosa Grassland 

26 0.02 0.00 Native Invasive: Juniper Shrubland 

40 0.01 0.00 Edwards Plateau: Barren or Grassy 

Cliff/Bluff 

39 0.00 0.00 Marsh 

28 0.00 0.00 Grass Farm 

Total    

Area 907.12 100.00  
 

 

Examination of the land use and cover information obtained from these two 

datasets was quite helpful to understand vegetation types and intensity in the study area. 

The NAIP images are projected in North American Datum 1983 (NAD83) Zone 14 

North. So, I adjusted the projections of other spatial data to match the NAIP image 
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projection. I used ENVI version 5.4 to compare spatial data from various sources 

simultaneously. I viewed NLCD, TEAM and NAIP images in multiple windows after 

geometrically linking them in ENVI. Thus, I gained more confidence in the 

interpretation of individual objects. I also used Google Earth 3D-View to identify 

distinct types of woody vegetation. Ranch road 335 extends along the vertical axis of the 

study area and almost splits the study area into two similar halves. Also, a relatively 

short part of Highway Tx-55 passes through the western part of the study area. The street 

view provided by Google Earth 3D View is available along these two roads. This tool 

was an effective way to distinguish the species of woody plants. Oak and juniper spots 

marked along the ranch road 335 are shown in the Figure 7. Figure 8 demonstrates the 

use of Google Earth 3D View along with the aerial images and other available LULC 

datasets.  

 

  

Figure 7. Locations of the 3D viewed junipers and oaks along Ranch Road 355.Yellow 

line indicates the boundaries of the study area. 
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Figure 8. Distinguishing between junipers and oaks. All aerial images are displayed as 

near-infrared color composite (NIR-False color). The lower part is the exact cursor 

location displayed in Google Earth 3D View. While junipers have darker red color, oaks 

can be distinguished by bright red color. On the right-hand side of the road is mainly 

juniper while oaks are on the left. 
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I realized that there was a considerable amount of standing dead juniper trees in 

the study area.  Because brush control is applied to junipers via mechanical and chemical 

treatments, a substantial number of standing dead junipers could be a sign of former 

chemical treatment or drought. A brush management site was shown in Figure 9. Figure 

10 shows a small portion of the study area where dead junipers are seen. Additionally, 

image capturing dates vary considerably for the area. Although most of the images were 

taken in the agricultural growing periods, there were noticeable seasonal variation in the 

greenness of the herbaceous vegetation. Thus, I decided to have two separate herbaceous 

categories to preclude those cover types from producing noise during the classification.  

 

 

Figure 9. The progression of brush management from 2008 to 2012. Images displayed in 

smaller windows are TOP 2008 (top left), NAIP 2010 (top right), NAIP 2012 (bottom 

left) and TEAM land use land cover data. 
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Figure 10. Juniper mortality due to chemical treatment or drought.   

 

 

Urban area cover was very low in the study area. There are only two small cities 

which fall into the boundaries of the study area, including a small proportion of the 

Rocksprings (Northwest) and Barksdale (South). Due to lower human population, there 

are very few cultivated lands in the study area. Most of the area is managed as 



 

58 

 

rangeland. Based on this observation, I included croplands within the herbaceous 

category. 

Although the river channel is quite wide, water flows only in a narrow path from 

North to South. So, there are large unvegetated areas on the flanks of the riverbed. While 

flat areas usually covered by vegetation, barren areas can be easily observed on steeper 

slopes. Based on the TEAM, NLCD and Google Earth data, most of the woody 

vegetation cover is composed of Juniperus ashei, live oaks (Quercus virginiana) and 

some deciduous oaks.  

Although high resolution aerial and spaceborne images enhance the analysis of 

remote sensing data, shadowed areas on these images bring about a significant problem. 

There was sizeable shadow cover in the NAIP and TOP aerial images. Hence, I decided 

to define a separate shadow category to quantify the shadow area in each image. Overall, 

I defined nine categories of land use and cover observed in the study area. Below is the 

list of these preliminary classes: 

1) Juniper: All juniper species regardless of their height were included in this 

category. 

2) Oak: Live oaks, deciduous oaks, and some broad-leaved trees were mapped in 

this category. 

3) Green Herbaceous Vegetation: This class includes all types of non-woody 

vegetation having green leaves. 

4) Dry Herbaceous Vegetation: Non-woody vegetation which doesn’t have green 

foliage. 
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5) Dead Juniper: Any standing juniper trees and shrubs dried due to drought or 

herbicide treatment were placed into this category. 

6) Water: Any type of open water areas like ponds, pools, and streams having 

visible water standing or flowing was included in this category. Ephemeral 

streams can be mapped as water if they have water flowing when the image was 

captured. 

7) Shadow: Areas having little or no spectral response due to obstruction of 

incoming sun light were included under this category. 

8) Barren: Areas with the open soil surface, rock outcrops, dry stream channels, 

roads, mining locations were placed in this category. These areas are completely 

exposed to direct or diffuse radiation since there is no vegetative cover. 

9) Urban: Buildings of any size and type, and roads inside the city boundaries were 

included in this category.  
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III.5.3 Training Data Collection and Analysis of Spectral Separability   

Training data or sampling data is essential for remote sensing image 

classification. While unsupervised image classifiers don’t require sampling data, 

supervised classification algorithms use the statistical information derived from observed 

signals. Since every object on the earth has distinctive spectral characteristics (spectral 

signature), the quality and quantity of the training data are critical to the success of the 

classification. Sampling data is commonly obtained during field campaigns or collected 

on high resolution (<1 m) aerial photographs and satellite images [42]. 

 Because the study area is extensively large and privately owned, a field survey 

was not a practical alternative. Hence, I collected training data with the aid of NLCD, 

TEAM, Google Earth 3D View and aerial images. I marked several locations along 

Ranch Road 355 on Google Earth and I created polygons of different land use and cover 

types after examining the vegetation and land use in 3D view. I exported this feature 

layer as a shape file and viewed it in the ENVI. Comparisons of different woody 

vegetation species within these polygons in the ENVI helped me gain confidence in the 

visual interpretation of these features. I realized that the color and texture differences 

between oak and juniper were more obvious in the 2008 image. The 2015 image was the 

only image captured during the leave-off season. As a result, especially in the southern 

parts of the area, I noticed a considerable number of leafless trees on the image. 

However, this situation was helpful for differentiating between evergreen and deciduous 

woody plant species. The spatial pattern which was created by the configuration of dead 
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junipers in the study area shown in Figure 11 may imply the previous chemical 

treatments.  

 

 

 

Figure 11. Two separate locations for 2008, 2010, 2012, 2014, 2015, and 2016 showing 

the juniper mortality. Juniper mortality occurred after 2010.  
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Training data can be collected using ROI (Region of Interest) tool in ENVI. This 

tool enables the collection of training data in several formats like a geometry (polygon, 

square, point etc.), pixels, and growing and threshold techniques. I used the default 

polygon technique to create ROIs for each class. The representability and number of 

ROIs can make a significant impact on the accuracy of the classification outputs. The 

rule of thumb for the number of ROIs is to produce at least ten times of the number of 

spectral bands for each land use and land cover class in the classification scheme. 

Because the images preprocessed had six bands, the minimum number of training data 

for each class should have been sixty. However, I collected thousands of training data 

because the study area is very large. Table 6 shows the number of training pixels 

collected for each class. To prevent the same locations are being sampled more than 

once, during the assessment of the accuracy, I divided the study area into multiple 

parcels. I selected four parcels to collect reference points to assess the accuracy of each 

classification. Total area spared for collecting reference points covered approximately 

22% of the study area. Figure x shows the location of these parcels.   
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Table 6. Training data pixel counts for aerial image classification. 

Number 

of 

Classes 

Class Names 
Count of Training Pixels for Aerial Images 

2008 2010 2012 2014 2015 2016 

1 Barren 23111 18028 15083 10674 8164 12348 

2 Dead Juniper 1800 1227 1980 1421 1302 1345 

3 Dry Herb 21351 3669 16709 17668 4204 9803 

4 Green Grass 12371 40435 6858 5729 22267 15660 

5 Juniper 19502 15025 14083 14024 16846 14978 

6 Oak 48592 46723 45662 40929 52627 45403 

7 Shadow 1592 2260 727 1176 1190 938 

8 Urban 41225 42457 43860 35001 39352 39059 

9 Water 74014 72048 51296 45739 56636 64475 

Total Pixels 243558 241872 196258 172361 202588 204009 

 

 

To test the separability of the classes of training data, the Jeffries-Matusita (JM) 

distance was used. Assuming the normal distribution of the spectral data obtained from 

ROIs, JM calculates the separability of the classes in a pairwise manner. The formula 

can be expressed as [66]; 

𝐽𝑖𝑗 = √2(1 − 𝑒−𝑎)        

 where Jij  is the separability function for any two classes, ɑ depicts the Bhattacharya 

distance. JIj  values range from 0 to 2. The values greater than 1.9 implies very good 

separability between classes. The 1.0 to 1.9 interval indicates moderate separability 

while the values lower than 1.0 mean poor separability of classes. So, any ji value close 

to 1.9 and over 1.9 imply satisfactory separability between the classes. Jeffries-Matusita 

and Transformed Divergence separability analysis can be performed in ENVI.  
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Figure 12. Parcels allocated to collect validation points (outlined with yellow color). 
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I conducted separability analysis for both original aerial images having optical 

(red, green, blue) and NIR band and NDVI and texture-stacked images using ENVI. 

Thus, I compared the effect of using texture and NDVI data on improving the 

separability of spectral signatures of varying land use and cover classes. Because the 

results of the spectral separability were important, before proceeding to the classification 

phase, I listed some of the separability results in this methodology section. I also 

reported the percent increase in the spectral separability resulted from the addition of the 

texture and NDVI bands. Table 7 shows the spectral separability of the NDVI and 

texture stacked aerial images and the percent increase in separability compared to the 

original 4-band imagery.  

Based on the results of the separability analysis, I found that distinguishing 

between different objects can be improved by supplementing original images with the 

texture and NDVI data. Nevertheless, separability between oak and juniper remained 

below 1.9 for each training dataset. The 2008 training data had better juniper and oak 

separability than other years. Because only junipers were subjected to vegetation control 

in the study area and oak trees were selectively left during the brush treatment, I decided 

to map oak cover for only 2008 image. This approach was important in terms of reliable 

quantification of the oak area. So, I combined oak and juniper sampling data and created 

a “Tree” ROI for each year excluding 2008. As a result, the number of classes to be 

included in image classification became eight for these years. 
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Table 7. Improvement in spectral separability by addition of NDVI and Texture. 

CLASS PAIRS 
Original Stack 

Percent 

Increase 2008 

Juniper Oaks 1.55 1.82 17.46 

Greengrass Oaks 1.65 1.85 12.09 

Dryherbs Deadjunipers 1.65 1.99 21.02 

Shadow Deadjunipers 1.66 1.98 19.06 

Urban Barren 1.73 1.93 11.47 

Juniper Shadow 1.73 1.88 8.57 

Dryherbs Urban 1.88 1.98 4.94 

2010    

Juniper Oaks 1.51 1.69 11.92 

Greengrass Oaks 1.23 1.59 30.02 

Dryherbs Deadjunipers 1.61 1.95 20.82 

Shadow Deadjunipers 1.9 1.98 4.69 

Urban Barren 1.7 1.89 11.16 

Juniper Shadow 1.82 1.88 3.3 

Dryherbs Urban 1.77 1.93 8.61 

2012       

Juniper Oaks 1.59 1.79 12.89 

Greengrass Oaks 1.74 1.85 6.19 

Shadow Deadjunipers 1.36 1.73 27.44 

Juniper Shadow 1.7 1.93 13.27 

Dryherbs Urban 1.54 1.91 24.11 

Urban Deadjunipers 1.89 1.95 3.48 

Shadow Water 1.87 1.99 6.36 

2014    
Juniper Oaks 1.05 1.48 41.23 

Greengrass Oaks 1.51 1.72 14.01 

Dryherbs Deadjunipers 1.61 1.97 22.5 

Shadow Deadjunipers 1.68 1.92 14 

Urban Barren 1.77 1.95 9.69 

Juniper Shadow 1.58 1.82 15.27 

Dryherbs Urban 1.62 1.92 18.17 

Urban Deadjunipers 1.59 1.8 13.28 

Oaks Shadow 1.89 1.98 4.75 

Juniper Greengrass 1.73 1.91 10.88 

Urban Water 1.87 1.92 2.64 

Shadow Water 1.72 1.95 13.23 

Water Deadjunipers 1.88 1.96 4.16 
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Table 7. continued 

CLASS PAIRS 
Original Stack 

Percent 

Increase 2015 

Juniper Oaks 0.8038 1.0983 36.65 

Greengrass Oaks 1.1607 1.8054 55.55 

Dryherbs Deadjunipers 1.6003 1.9274 20.45 

Urban Barren 1.6462 1.8859 14.56 

Dryherbs Urban 1.5731 1.8215 15.79 

Urban Deadjunipers 1.6057 1.8024 12.25 

Juniper Greengrass 1.5683 1.933 23.25 

Oaks Deadjunipers 1.8377 1.9686 7.12 

Dryherbs Oaks 1.8297 1.9555 6.87 

2016     

Juniper Oaks 1.188 1.436 20.88 

Greengrass Oaks 1.7467 1.9227 10.07 

Dryherbs Deadjunipers 1.7024 1.9186 12.7 

Urban Barren 1.87 1.9693 5.31 

Dryherbs Urban 1.7209 1.9241 11.81 

Greengrass Dryherbs 1.8664 1.9508 4.52 

Urban Deadjunipers 1.738 1.9123 10.03 

Juniper Greengrass 1.6471 1.9358 17.53 

 

 

III.5.4 Preprocessing of Landsat Satellite images  

Before compositing each band of the Landsat images, I performed radiometric 

correction. I used the metadata file provided with the images to compute radiance, 

reflectance and at sensor-temperature. Landsat 8’s OLI sensor has two more spectral 

bands than Landsat 5’s TM sensor: a new coastal aerosol band (band1) and cirrus band 

(band9). Landsat 8’s TIRS sensor has two thermal bands (band 10 and 11) while Landsat 

5’s TM sensor has one thermal infrared band (band 6). However, it is suggested to not 

use Landsat 8’s thermal band 11 in scientific studies due to reported measurement errors 

[67]. So, I didn’t include band 11 while compositing the Landsat 8 scenes. I used eight 
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Landsat 8 bands (bands 1 to 7 and 10) and seven Landsat 5 bands (all the bands) in the 

analysis of the land use and cover. Radiometric corrections were performed on the 

ArcGIS platform.  

I derived NDVI and texture bands from Landsat images and stacked them with 

spectral bands and a thermal band of each scene. I generated the texture bands of 

Landsat images in ENVI using the variance of the spectral data. I applied a 3 x 3 kernel 

which was the minimum size for the calculation of variance. 

 

III.5.5 Classification Scheme of Landsat Images  

Images from Landsat satellite missions have a coarse-spatial resolution (30 

meters). Thereby, resolving the objects having a size smaller than 30 meters in 

horizontal space is not feasible with these coarse resolution images. The guidelines 

defined by Anderson were quite helpful when classifying land use and cover from these 

images [63]. I determined the land use and cover classes to map using Landsat images 

based on the knowledge I obtained during the analysis of NLCD, TEAM LULC datasets, 

fine resolution aerial images and Google Earth 3D View. I adopted a modified Anderson 

Classification system for the classification scheme. I realized that the majority of live 

oaks in the study area were mapped under the shrub category of the NLCD dataset. 

Another point is that any area covered by sparsely distributed woody vegetation was 

mapped as shrubs in the NLCD dataset even though I observed that oak trees established 

a scattered canopy structure, particularly in range areas.  
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Both Landsat satellite images and NAIP aerial photographs don’t provide any 

data on the heights of the objects. Light Detecting and Ranging (LIDAR) data is usually 

used to model canopy height. However, Lidar data is still very scarce. Because of these 

limitations, mapping shrub cover accurately is not a feasible way when multispectral 

remote sensing data is the only available source of data. So, I decided to map junipers 

regardless of their heights during Landsat image classifications. I defined two classes 

having oak cover: oak and oak savanna. I didn’t include the urban area in the 

classification scheme of Landsat images because urban area accounted for less than 1% 

of the total land use and cover in the study area. Furthermore, there was high potential 

confusion between urban areas and barren areas due to the similar spectral response. The 

classes and their descriptions were listed below. 

1) Juniper: Areas where Juniperus ashei covers more than 25% of the total 

vegetation area.  

2) Oak: Areas dominated by live and deciduous oaks typically covering more than 

50 % of the total vegetation area. 

3) Oak Savanna: Usually used as range areas, where oak trees scatter around while 

herbaceous vegetation dominates the open spaces among trees. Oak cover ranges 

from 20% to 50% of total vegetation.  

4) Unvegetated: Areas with less than 10% of total vegetation cover.  

5) Herbaceous: Areas dominated by herbaceous vegetation (more than 80% of the 

total vegetation cover). 

6) Water:  Any area covered by open water. 
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III.5.6 Training Data for Landsat Images and Spectral Separability  

I displayed corresponding Landsat scenes and aerial images in geometrically 

linked multiple windows in ENVI. I also compared locations on Landsat images to those 

in the NLCD and TEAM land use and cover datasets. The 2008 aerial image was 

employed to check for the oak-covered areas since I had sufficient confidence in 

identifying this land cover type only in 2008 data. Figure 13 demonstrates the 

identification of LULC on Landsat images during the training data collection. The 

number of training pixels collected for each class is shown in Table 8. I analyzed the 

spectral separability of Landsat training data using Jeffries-Matusita and Transformed 

Divergence techniques in ENVI. According to the results, most of the confusion 

occurred between herbaceous and oak savanna classes. There was also confusion to 

some extent between oak and juniper, oak and oak savanna, and oak savanna and juniper 

classes. Table 9 shows the results of separability analysis for each training dataset. 

 

Table 8. The number of total pixels included in training data for each type of class by 

different years of Landsat 5 and Landsat 8 images. 

Number 
of 

Classes 
Class Name 

Landsat Training Data Pixel Count 

2008 2010 2013 2014 2015 2016 

1 Herbaceous 2166 1920 1451 666 880 848 
2 Juniper 6044 5797 6089 2427 2952 2743 
3 Oak 1819 1431 1865 676 719 806 
4 Oaksavanna 2050 2331 5381 1000 938 904 
5 Unvegetated 724 569 628 473 263 192 
6 Water 502 401 446 279 334 347 

Total 13305 12449 15860 5521 6086 5840 
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Figure 13. Training data collection processes for Landsat Images. The ENVI screen 

above indicates an area of oak savanna (to the right of the image) and juniper area (to the 

left of the image). The TEAM land use and cover dataset was displayed on the bottom 

left window. Images shown in the screen on top are Landsat8 2014, TOP 2008, NAIP 

2014 and TEAM data from left to right, respectively. A brush management site is shown 

at the bottom of the ENVI split screen. The images displayed at the bottom screen are 

Landsat8 2015, TOP 2008, NAIP 2015 and TEAM dataset from left to right, 

respectively.  
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Table 9. Separability analysis of training data collected for Landsat image 

classifications.  

Class Pairs 
Roi Separability of Landsat Images 

2008 2010 2013 2014 2015 2016 

Herbaceous and Oaksavanna 1.67 1.58 1.49 1.68 1.42 1.58 
Oak and Juniper 1.88 1.73 1.86 1.78 1.74 1.84 
Oaksavanna And Juniper 1.89 1.74 1.78 1.94 1.96 1.98 
Oak and Oaksavanna 1.93 1.80 1.94 1.89 1.87 1.94 
Juniper and Water 1.95 1.94 1.99 1.96 1.97 1.97 
Unvegetated And Water 1.97 1.98 1.97 2.00 2.00 2.00 
Herbaceous and Juniper 1.98 1.88 1.88 1.97 1.97 1.95 
Herbaceous and Unvegetated 1.98 1.98 1.96 1.99 1.99 2.00 
Oak and Water 1.99 1.98 1.99 1.99 1.99 1.99 
Oaksavanna And Water 2.00 2.00 2.00 2.00 2.00 2.00 
Oaksavanna And Unvegetated 2.00 2.00 2.00 2.00 2.00 2.00 
Herbaceous and Water 2.00 2.00 2.00 2.00 2.00 2.00 
Unvegetated And Juniper 2.00 2.00 2.00 2.00 2.00 2.00 
Oak and Herbaceous 2.00 2.00 1.91 2.00 1.97 1.99 

Oak and Unvegetated 2.00 2.00 2.00 2.00 2.00 2.00 

 

 

III.5.7 Classification of Aerial and Satellite Images  

I used the supervised Maximum Likelihood method to perform the classification 

of each aerial image. For Landsat images, I used two classification techniques: 

Maximum Likelihood and Support Vector Machine(SVM). Maximum Likelihood 

Classifier uses the algorithm below to compute the probability that a pixel belongs to a 

specific class; 

𝑃(𝑖|𝜔) =
𝑃(𝑖|𝜔)𝑃(𝑖)

𝑃(𝜔)
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where P(i|ω) depicts the likelihood function, P(i) is the information from the training 

data which is the probability that class i exists in the area of interest and P(ω) is the 

probability that ω is observed(ω), and can be calculated by;  

𝑃(𝜔) = ∑ 𝑃(𝜔|𝑖)𝑃(𝑖)𝑀
𝑖=1        

where M indicates the number of classes. To make sure   ∑ P(i|ω)P(i)𝑀
𝑖=1  adds up to 1, 

P(ω) is generally treated as a normalization constant. Any pixel depicted by X is placed 

into a class (e.g., class ¡) by the formula;  

𝑥 𝜖 𝑖   𝑖𝑓 𝑃(𝑖|𝜔)  >  𝑃(𝑗|𝜔)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 𝑖           

 According to these calculations, each pixel is placed into the class having the 

highest probability. Provided that the likelihood values are below a threshold defined by 

the user, those pixels are labelled as unclassified. In my case I didn’t specify any 

threshold during the classification processes. 

Support Vector Machines (SVM) is a nonparametric supervised classification 

method which has been tested in many studies investigating land use and cover change 

[68]. It doesn’t require the assumption of the normal distribution of the spectral data. It 

has the capability of statistical learning. The necessary parameters to set up SVM are 

defined by users and every parameter has a distinctive effect on kernel type (polynomial, 

linear, radial basis function, sigmoid). As such, the classification accuracy of SVM 

models strongly relies on the selected parameters and kernel types. Ustuner et al. (2017) 

examined the impact of different parameter sets and kernel types on the accuracy of 63 

different models in a study Turkey [68]. I adopted the best parameter set and kernel type 



 

74 

 

reported by Ustuner et al. So, I set up the SVM with kernel type and parameters 

indicated below: 

i. Kernel type:                    Polynomial  

ii. Gamma:                           0.1 (default)  

iii. Polynomial Degree:         6    

iv. Bias:                                  5 

v. Error Penalty:                 800 

 

III.6 Intermediary Statistics and Classification Editing 

III.6.1 Aerial Image Classifications and Initial Editing  

After classifying aerial images using the Maximum Likelihood algorithm in 

ENVI, I combined green herbaceous and dry herbaceous classes to create a “herbaceous” 

category. While visually interpreting the classification outputs I realized that a great deal 

of pixels having no vegetative cover were mapped as urban. This was expected due to a 

similar spectral response from uncovered and urban areas. Since the total area of human-

built structures accounts for less than 1% of the study area as documented in the NLCD 

and TEAM datasets, I decided to combine urban and barren areas into an unvegetated 

category. Figure 14 shows classification result of before and after class combinations 

applied. Later, I used the shape files created to delineate the urban area in the study area 

to edit the unvegetated class and extract urban/built-up areas.  

Mapping dead junipers wasn’t easy or even possible with coarse-resolution 

satellite images. However, modeling dead junipers is not a practical way in terms of 
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hydrological modeling. In other words, including dead juniper within the juniper 

category increases the bias when estimating the hydrological response of watersheds. 

Every object within the watershed can have an influence on the hydrological cycle. But 

this impact can be so negligible or significant depending on the combination of many 

factors like biophysical characteristics and spatial distribution and coverage. Table 10 

indicates the initial classification results. The results implied that more than 5% of the 

study area was covered by dead Junipers. This result can be significant to account for the 

impact of dead junipers in hydrological modeling studies investigating the impact of 

brush encroachment on water yield. Figure 15 shows an area covered by dead juniper 

and its classification result. 

 

Table 10. Area of each land use and cover class in different years computed by using the 

initial classifications. 

Class Name 

Initial Classification Statistics 

Area of The Classes (Percent) 

2008 2010 2012 2014 2015 2016 

Dead junipers 10.27 8.45 5.55 12.07 8.58 12.33 

Herbaceous 17.84 22.96 19.22 17.19 14.77 11.33 

Juniper 36.66      
Oaks 13.61      
Shadow 5.55 4.69 4.83 10.00 9.44 6.61 

Trees  52.30 44.63 40.66 53.16 48.61 

Unvegetated 15.89 11.43 25.65 19.85 13.89 20.92 

Water 0.18 0.15 0.11 0.23 0.16 0.20 

Total 100.00 100.00 100.00 100.00 100.00 100.00 
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Figure 14. Classification of the 2008 image before combining urban with barren and dry 

herbaceous with green grass (above) and after applying combinations (below). 
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Figure 15. A juniper treatment site in 2008 aerial image (left) and the Maximum 

Likelihood classification result for the same location (right). Oaks, junipers, herbaceous, 

barren areas, and dead junipers were indicated by darker green, light green, yellow, 

white, and red color, respectively. 

  

 

Although class statistics hinted that the dead juniper cover was significant, I 

realized some noise in the classification of dead junipers, especially in 2008 and 2012 

images. Brush management activities in the study area were intensified after 2010. I 

observed by visual interpretation of the classification images and aerial images that the 

mechanical treatment areas expanded substantially after 2010. I found that dead juniper 

area was significantly overestimated in 2008 image classification. In contrast, the dead 

juniper area was underestimated in the 2012 classification. The overestimation problem 

in 2008 classification primarily resulted from the misclassification of areas where a 

transition from shadow to herbaceous occurs. These misclassified dead juniper pixels 

mostly concentrated around the sparsely distributed woody vegetation (mostly live 
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oaks). Figure 16 indicates misclassified dead juniper area in the 2008 aerial image. I 

resolved this issue by converting dead juniper pixels into the herbaceous category. I 

relied on several assumptions when applying this solution: 

i. Brush management was performed by mechanical or chemical treatments in the 

study area. The goal of brush control is to convert invasive shrub species like 

junipers into native herbaceous vegetation. Hence, I assumed that the final land 

use and cover state of the areas where brush control was implemented was 

herbaceous. 

ii. Empirical data is needed to quantify rainfall interception from this standing dead 

juniper mass to model their hydrological influence accurately. Plus, there is 

currently no matching database in the SWAT’s land use cover and plant database 

associated with the dead juniper category. Because dead junipers aren’t 

biologically active, the ET from those areas cannot match the ET from the areas 

covered by healthy junipers. I assumed that the ET from dead juniper areas is 

more comparable to ET from herbaceous cover.  

iii. I assumed that the issue of overestimated dead juniper pixels in 2008 image due 

to the confusion of dead juniper spectral response with shadow is substantially 

compensated when herbaceous and dead juniper classes are combined. This 

adjustment is also applicable to other years. 
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Figure 16. Misclassified dead juniper pixels. On the left is the NIR false-color 

composite of TOP 2008 aerial image, and on the right is the ML classification of 2008 

image. 

 

 

Classified shadow area for each aerial image ranged from 4.49 % to 10% of the 

total area. Especially, as shown in Figure 17, 2014 and 2015 image classifications 

indicated that there was very high shadow cover during the image capturing. Overall, 

because the shadow cover accounted for a very significant number of pixels in each 

classification, it is important to identify land use and cover within the shaded locations. 

Because the temporal resolution of NAIP images causes a significant limitation to reveal 

what type of land use and cover resides under the shadow, I developed a strategy to 

handle this challenge. I decided to compensate the limitation resulted from the temporal 

resolution of aerial imagery with the information provided from satellite image 

classifications. I’ll describe the methodology for identifying LULC of shadow pixels 

after the satellite image classification section.  
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Figure 17. Intensive shadow cover of 2014 and 2015 aerial images. The images below 

from left to right are 2014 and 2015 ML classifications, respectively. 

 

 

III.6.2 Satellite Image Classifications and Post Classification Editing 

I classified six Landsat images using Maximum Likelihood (ML) and SVM 

methods. The same ROI data was used to train both classification algorithms. For 2014 

Landsat image, I re-collected training data using the pixel method with varying brush 

sizes (mostly greater than 2) instead of using geometric features like polygons. Thus, I 

aimed to investigate the impact of different ROI collection methods on the response of 

the same classification algorithm. I found out that the selection of ROI collection method 

had an important impact. The area of each land use cover was different in two Landsat 

2014 ML classifications. Table 11 indicates the area of each class for 2014 Landsat 

image based on the two-training data collection method. Oak savanna area was estimated 

substantially higher in the classification which used pixel method. I noticed that this 
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higher estimate of oak savanna resulted from the classification of herbaceous cover as 

oak savanna with this approach. 

 

Table 11. Area of classes for two 2014 ML classifications performed using differently 

collected ROIs. 

Classes 

2014 Landsat Ml Class Statistics(Percent) With Different 

Roi Methods 

                        Polygon Method                 Pixel Method 

Herbaceous 11.28 5.76 

Juniper 57.37 48.63 

Oak 12.51 7.17 

Oaksavanna 14.35 30.01 

Unvegetated 2.43 4.49 

Water 2.06 3.94 

 

 

Table 12 shows the results of the ML and SVM classifications for Landsat 

images. The results indicated that there was a considerable difference in terms of the 

area of each class. I realized that while juniper cover was overestimated in SVM 

classifications, water area was overestimated in ML classifications. Because my major 

focus was on identifying shadow pixels in aerial image classifications, I decided to 

utilize ML classification results.  
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Table 12. Initial statistics of Landsat ML and SVM classifications. 

Classes 

Maximum Likelihood (ML) and Support Vector Machine (SVM) 

Landsat Classification LULC Statistics (Percent) 

2008 

ML 

2008 

SVM 

2010 

ML 

2010 

SVM 

2013 

ML 

2013 

SVM 

Herbaceous 14.11 12.66 17.83 12.65 8.47 4.73 

Juniper 54.07 62.80 49.93 61.13 54.10 61.26 

Oak 8.61 7.25 7.65 4.76 8.22 7.37 

Oaksavanna 19.22 15.04 19.34 18.47 23.95 23.79 

Unvegetated 2.26 1.95 3.39 2.44 4.09 2.26 

Water 1.74 0.28 1.87 0.55 1.17 0.59 

Total 100 100 100 100 100 100 

Classes 

Maximum Likelihood (ML) and Support Vector Machine (SVM) 

Landsat Classification LULC Statistics (Percent) 

2014 

ML 

2014 

SVM 

2015 

ML 

2015 

SVM 

2016 

ML 

2016 

SVM 

Herbaceous 5.76 6.55 10.37 6.38 12.81 6.56 

Juniper 48.63 69.92 60.91 66.70 55.60 63.40 

Oak 7.17 8.75 7.68 7.05 11.23 11.11 

Oaksavanna 30.01 12.52 16.94 17.65 15.38 16.55 

Unvegetated 4.49 1.95 2.48 1.73 3.15 1.98 

Water 3.94 0.31 1.63 0.48 1.82 0.40 

Total 100 100 100 100 100 100 
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I edited the pixels classified as water in ML classifications using the information 

extracted from SVM classifications. Figure 18 demonstrates the adjustment of water 

pixels in Landsat ML classification with the use of information derived from Landsat 

SVM classifications. I first applied a majority filter with a window size of 3 to both ML 

and SVM classifications to remove isolated pixels. Thus, some misclassified individual 

water pixels were removed in SVM classifications. I found out that some 

electromagnetic radiation from urban area led SVM to classify some urban area as water. 

In ArcGIS, I created a polygon shapefile and digitized urban areas using high-resolution 

aerial images. I converted this urban shapefile into an ENVI ROI file and converted 

water pixels into unvegetated on SVM products using the ENVI post classification 

editing tool. Later, I used the “convert classification to vector” tool in ENVI and created 

vector files for each category classified by the SVM. Having these vector files converted 

to ROI files, I edited the water pixels of ML products. After these steps, I performed 

accuracy assessment for Landsat ML image classifications and converted ML products 

into the vector files for use in editing shadow pixels in ML classifications of NAIP 

images. Final area statistics for Landsat ML classifications are shown in Table 13. 
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Figure 18. Correcting for water pixels in Landsat 2013 ML classification image using 

the information from the same image’s SVM classification. While water pixels scatter 

around in the 2013 ML product (top), they were substituted with the juniper pixels 

imported from the SVM (bottom). 
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Table 13. Area of each class for every Landsat image ML classification after water 

pixels are edited. 

Classes 

Finalized Landsat Images ML Classification LULC Statistics (Percent) 

2008 ML 

Final 

2010 ML 

Final 

2013 ML 

Final 

2014 ML 

Final 

2015 ML 

Final 

2016 ML 

Final 

Herbaceous 13.19 17.23 6.86 5.00 9.05 11.72 

Juniper 58.85 54.85 58.27 54.03 65.59 60.25 

Oak 6.67 5.63 6.25 5.54 5.39 9.09 

Oaksavanna 18.93 18.85 24.21 31.10 17.26 15.51 

Unvegetated 2.08 3.14 3.81 4.05 2.25 3.02 

Water 0.20 0.25 0.54 0.23 0.40 0.36 

 

 

III.7 Accuracy Assessment of the Classified Images  

As a measure of reliability and utility of a product of remote sensing image 

classification, thematic map accuracy quantifies the level of agreement between the 

attributes of a thematic map and reference points [69]. The primary step for analyzing 

the accuracy of a map is the identification of the target population which indicates the 

locations depicted by the LULC map [70]. Ground truth data (reference points) can be 

provided for each class by interpreting high-resolution aerial photography and satellite 

images, videography, field surveys, or with the incorporation of all these techniques 

[70]. 

The accuracy assessment of the classifications can be conducted by generating an 

error matrix (confusion matrix), which compares the agreement between ground truth 

data (field surveys, high resolution aerial and satellite imagery) and the resulting 

thematic map on a class-by-class basis [71]. Table 14 indicates a sample confusion 

matrix.   
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Table 14. Sample confusion matrix for the accuracy assessment of a classification. 

Map Categories 

Ground Truth Pixels 

Total 

1 2 3 k 

Classified 

Pixels 

1 X 1,1 X 1,2 X 1,3 X 1, k TotalR1 

2 X 2,1 X 2,2 X 2,3 X 2, k TotalR2 

3 X 3,1 X 3,2 X 3,3 X3, k TotalR3 

k X k,1 X k,2 X k,3 X k, k TotalR4 

Total TotalC1 TotalC2 TotalC3 TotalC4 Total Obs. 

 

 

The diagonal values in the confusion matrix demonstrate the full agreement 

between the ground truth pixels and the classified pixels. The ratio of the sum of all 

correctly classified pixels to a total number of ground truth pixels gives the overall 

accuracy of the classification. It is shown as a percentage. The overall accuracy can be 

formulated as; 

𝑂𝐴 =
∑ 𝑋𝑘𝑘

𝑈
𝑎=1

𝑄
× 100        

where OA is the overall accuracy of the classification, Q depicts the total number of 

pixels and U shows the total number of classes. According to Scepan. (1999) an 

acceptable overall accuracy should be equal to or greater than 85%[72]. Producer’s and 

user’s accuracies are two other important accuracy measurements for the classification.  

Producer’s accuracy is measured by the ratio of the number of correctly 

classified ground truth pixels to the sum of ground truth pixels for each class. The 
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resulting value indicates how well the ground truth pixels are correctly classified for 

each type of class. The diversion from the complete accuracy in the producer’s accuracy 

gives the omission errors. The formula for the producer’s accuracy can be written as:  

𝑃𝐴 =
𝑋𝑘𝑘

𝑋𝐶𝑘
× 100        

where PA is the producers’ accuracy, Xkk is the value at the kth row and kth column, XCk 

is the column total for any class. Story and Congalton (1986) stated that minimum 

acceptable producer’s accuracy for a class should be 90% [73]. 

 User’s accuracy quantifies how successfully the classification is done. The 

resulting statistic shows the percentage of the probability that a pixel on the classified 

data truly represents that class on the ground [73]. It is calculated by the ratio of the total 

number of correctly classified pixels for each class to the row sums for each class. The 

deviation from the complete accuracy gives the commission error. The formula for 

calculating the user’s accuracy can be written as: 

𝑈𝐴 =
𝑋𝑘𝑘

𝑋𝑅𝑘
× 100        

where UA is the User’s Accuracy, Xkk is the total number of correctly classified pixels 

for each class, and XRk is the row sum for each class. Another quantification method for 

classification accuracy is the Kappa coefficient which integrates the off-diagonal values 

along with the diagonal ones so that it can generate a more reliable assessment of the 

accuracy compared to overall accuracy[38].The formula of the Kappa coefficient can be 

written as [74]: 

𝐾 =
𝑁(∑ 𝑋𝑖𝑖)−∑ (𝑋𝑖+×𝑋+𝑖)

𝑘
𝑖=1

𝑘
𝑖=1

𝑁2−∑ (𝑋𝑖+×𝑋+𝑖
𝑘
𝑖=1 )
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where K is the Kappa coefficient, N is the total number of sample pixels, ∑ 𝑋𝑖𝑖
𝑘
𝑖=1  is the 

sum of major diagonal, and ∑ (𝑋𝑖+ × 𝑋+𝑖
𝑘
𝑖=1 ) is the sum of products of the class row total 

and the class column total for all rows and columns. 

 

III.7.1 Collection of Validation Samples  

There are several types of sampling strategies for obtaining reference data 

including random, stratified random, systematic, and cluster sampling. Determining 

sampling size is another challenging task. However, the rule of thumb for the size of 

reference points is to collect at least 50 samples for each LULC class. For classifications 

having more than 12 classes, collecting at least 75 to 100 samples is recommended. 

Reference points were collected with the interpretation of high-resolution aerial 

images, Google Earth 3D view and TEAM LULC map. Figure 19 demonstrates the 

collection of reference points for 2015 Landsat Image. I adopted the random sampling 

approach while collecting the points. More points were collected for juniper and oak 

classes. I collected validation points within the parcels spared for the accuracy 

assessment of the classifications. The number of reference pixels collected for each 

LULC class to test the accuracy of Landsat ML classifications is shown in Table 15. 

Table 16 shows the number of preliminary reference pixels collected for the initial 

accuracy assessment of aerial image classifications.  
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Figure 19. Collecting validation samples for 2015 Landsat 8 image using both aerial 

photographs and TEAM dataset. Images seen on the split screen are 2015 Landsat image 

(top left), 2008 TOP aerial image (top right), 2015 NAIP image (bottom left) and TEAM 

LULC dataset (bottom right).  

 

 

Table 15. Number of validation pixels collected for the accuracy assessment of Landsat 

image classifications  

Class Name 

Reference Data Pixel Count for Landsat Image Classification 

Accuracy Assessment 

2008 2010 2013 2014 2015 2016 

Herbaceous 100 100 100 100 100 100 

Juniper 250 250 250 250 250 250 

Oak 200 150 200 200 200 200 

Oak Savanna 150 100 100 100 150 99 

Unvegetated 90 70 70 100 100 70 

Water 60 70 70 70 100 75 

Total 850 740 790 820 900 794 
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Table 16. Preliminary validation pixels collected before editing shadows in the aerial 

image classifications 

Class Name 
Reference Data Pixel Count  

2008 2010 2012 2014 2015 2016 

Dead juniper 70 70 70 70 70 70 

Herbaceous 100 100 100 100 100 100 

Shadow 70 70 70 70 70 70 

Tree  300 300 300 300 300 

Unvegetated 70 70 70 70 70 70 

Water 70 70 70 70 70 70 

Juniper 200      
Oak 100      
Total 680 680 680 680 680 680 

 

 

III.7.2 Accuracy of the Initial Aerial Image Classifications and Final Satellite Thematic 

Maps 

I reported four types of accuracy metrics for initial NAIP and final Landsat 

classifications: overall accuracy, Kappa coefficient, producer’s and user’s accuracy. 

Because I used the information derived from the Landsat classifications to identify the 

shadow area in the aerial images, I reported the final accuracy results of Landsat 

classifications in the methodology chapter. The final accuracy statistics for Landsat ML 

image classifications are shown in Table 17. Table 18 shows the results of the accuracy 

assessment of the preliminary ML aerial image classifications.  

 

 

 

 



 

91 

 

Table 17. Final accuracy assessment results of the Landsat image classifications. 

class name  

Landsat ML user accuracy (percent) 

2008 2010 2013 2014 2015 2016 

herbaceous 91.67 84.68 70.51 88.14 82.73 94.06 

juniper 90.74 95.20 87.36 90.48 87.28 93.80 

oak 99.44 96.21 93.81 96.55 95.93 94.30 

oaksavanna 94.19 76.72 78.64 63.01 92.31 89.22 

unvegetated 97.73 100.00 90.79 96.08 94.95 100.00 

water 100.00 100.00 100.00 100.00 100.00 100.00 

class name 

Landsat ML producer accuracy (percent) 

2008 2010 2013 2014 2015 2016 

herbaceous 99.00 94.00 55.00 52.00 91.00 95.00 

juniper 98.00 95.20 94.00 98.80 98.80 96.80 

oak 89.50 84.67 91.00 84.00 82.50 91.00 

oaksavanna 97.33 89.00 81.00 92.00 88.00 91.92 

unvegetated 95.56 92.86 98.57 98.00 94.00 95.71 

water 81.67 94.29 100 94.29 93.00 97.33 

 overall and kappa   

2008 2010 2013 2014 2015 2016 

kappa coefficient 0.93 0.90 0.84 0.85 0.89 0.93 

overall accuracy (%) 94.59 91.76 87.59 88.17 91.33 94.46 
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Table 18. Initial accuracy assessment results of aerial image classifications. 

Class 

Initial User Accuracy 

(Percent) 

2008 2010 2012 2014 2015 2016 

dead junipers 93.33 93.94 87.32 98.48 97.10 98.53 

herbaceous 94.74 71.22 87.62 79.28 85.19 98.99 

shadow 100.00 97.18 90.41 81.40 90.67 95.65 

trees 99.66 99.62 99.66 97.88 98.61 99.67 

unvegetated 73.40 78.82 77.22 83.95 79.76 83.33 

water 98.11 100.00 100.00 100.00 96.49 98.33 

juniper 98.02      
oak 100.00      

class 

initial producer accuracy 

(percent) 

2008 2010 2012 2014 2015 2016 

dead junipers 100.00 88.57 88.57 92.86 95.71 95.71 

herbaceous 90.00 99.00 92.00 88.00 92.00 98.00 

shadow 98.57 98.57 94.29 100.00 97.14 94.29 

trees 97.67 87.00 97.33 92.33 94.33 99.67 

unvegetated 98.57 95.71 87.14 97.14 95.71 100.00 

water 74.29 81.43 84.29 75.71 78.57 84.29 

juniper 99.00      
oak 92.00           

overall accuracy 94.12% 90.44% 92.94% 91.32% 92.94% 96.91% 

kappa coefficient 0.93 0.87 0.91 0.88 0.91 0.96 

 

 

III.8 Identifying Shadow Pixels on Aerial Images and Associated Accuracy 

Shadow areas on aerial images can result from many factors like image capturing 

date and time, sensor position, topographic features, and clouds. Revealing shadow areas 

is of particular importance when the thematic maps are used in hydrological modeling. 

Therefore, I developed a strategy to identify the true cover of shadow pixels. After 

obtaining satisfactory accuracy for Landsat image classifications I converted all classes 

of Landsat thematic maps into ENVI vector files (EVF). Then I converted the EVFs to 

normal shape files and ROI files, respectively. The Post Classification Editing tool in 
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ENVI is a very helpful multitasking tool which enables users to import spatial 

information from external sources in the ROI format. Before converting shadow into 

associated land use and cover categories using the ROI files I made the following 

assumptions: 

1) Any shadow inside the oak savanna ROI file hides the herbaceous vegetation 

cover. I made this assumption due to the sparse distribution of oaks within the 

oak savanna areas. Figure 20 shows an oaksavanna vector file derived from 

Landsat ML classification displayed on sparsely distributed oak trees shown in 

the aerial image.  

 

 

Figure 20. An oaksavanna vector derived from Landsat image classification overlain on 

the corresponding aerial image.  
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2) Any shadow pixel inside the oak ROI hides oaks. 

3) Any shadow area inside the juniper ROI is covered by junipers. Although the 

juniper class is defined to cover at least 25% of the total vegetation area in the 

classification scheme of the Landsat image, I realized that most of the shadowed 

pixels are inside the denser canopies of juniper-dominated areas and on higher 

elevations with steeper slopes where junipers are usually the dominant land cover 

type.  

4) Excluding the water ROI, I decided to convert shadow pixels into herbaceous for 

the rest of the ROI files which had very few shadow pixels. I excluded editing 

the shadows falling into the water ROI because there was a higher potential for a 

spatial mismatch of Landsat-derived ROIs due to the coarse resolution. For 

example, when a stream channel width is about 20 meters, the entire Landsat 

pixel falls onto this specific location is most probably classified as water. There 

are riparian hardwood species along the river and they cause shadowed areas 

within the stream channel or adjacent to the stream channel. So, to prevent this 

shadow from being edited incorrectly, I had to ignore the shadow pixels along or 

within the river channel. Figure 20 shows a water vector file derived from 

Landsat ML classification displayed on a part of the Nueces River. 
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Figure 21. Water vector file derived from Landsat ML classification overlain on the 

aerial image.  

 

 

Based on the assumptions made, I edited shadow pixels in ENVI using the ROI 

files derived from Landsat ML classifications. Figures 22, 23 and 24 demonstrate the 

process of shadow detection. To test the accuracy and utility of this approach I collected 

ground truth samples from the tree, herbaceous, oak, and juniper covered areas under 

shadow cover for a specific image. Because I could only map oak and juniper cover for 

2008, juniper and oak ROIs are used for only 2008 image. I identified the cover type of 

shadow pixels by displaying every year’s aerial images on geometrically linked multiple 

windows in ENVI which is demonstrated by Figure 24.  
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Figure 22. The image on top shows the oak vector file displayed over the NIR false-

color composite of 2008 aerial image. The image below indicates the conversion of 

shadows to oaks on 2008 ML classification of the aerial image utilizing the oak vector 

file derived from 2008 Landsat ML classification. Darker green represents oaks, and 

light green color represents juniper trees. Note that the location depicted by the 

classifications is not the same with the image shown at the top. 
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Figure 23. Before (top right) and after (bottom left) shadow detection in 2008 aerial 

image classifications. The image on the top left is the NIR false-color composite of the 

2008 image, the image bottom left is from the TEAM LULC map. 

 

 

 

Figure 24. Maximum Likelihood classification of 2008 aerial image before (bottom left) 

and after (bottom right) shadow editing. The urban area is also finalized after editing 

shadows. 
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Figure 25. Validation data collection on ENVI for the accuracy assessment of the edited 

shadow areas. Images in the top row are 2008, 2010, and 2012, and images in the second 

row are 2014, 2015, and 2016, respectively. All images displayed as near infrared false-

color composite.  
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Table 19. Number of ground truth points collected from shadowed areas. 

Class Name 
 

2008 2010 2012 2014 2015 2016 

Herbaceous 70 70 70 71 70 70 

Juniper 71      

Oak 70      

Tree  70 70 70 70 70 

 

After using reference points shown in Table 19 for the accuracy assessment of 

shadow detection, I combined them with the initially collected reference points to 

perform the final accuracy assessment. I also quantified the area of classes converted 

from shadow cover. After completing all the editing for shadow, I applied a majority 

filter with a window size of five to every ML classification of aerial images. 

III.9 Thematic Change Detection Analysis 

Quantification of land use and cover change in the study area was a necessary 

task for investigating the impact of LULC on the hydrology of the watershed. 

Computing the change statistics and mapping the spatial configuration of change were 

achieved using Change Detection Statistics and Thematic Change workflows in the 

ENVI software. The change detection statistics routine outputs a detailed tabulation of 

changes between two classification images. The changes can be reported as pixel counts, 

percentages and areas. To perform a successful change detection analysis, classification 

images must be georeferenced or co-registered. Co-registration can be done 

automatically in ENVI using the available map information. I combined juniper and oak 

classes into the “tree” class to comply with the rest of the classification images. I 

assumed that any change occurred in the tree cover in the study area can be attributed to 

juniper control or invasion. I neglected the change in the oak cover based on the site-
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specific knowledge obtained from the literature and the visual interpretation of brush 

control sites. A brush control site is shown in Figure 26 where oak trees were left.  

 

 

Figure 26. A brush treatment site where junipers were removed, and oaks were left. 

Images in the left column from top to bottom are 2015 Landsat 8 and 2015 NAIP 

images, respectively. In the right column are the 2008 TOP image (top) the TEAM 

dataset (bottom). 

 

 

In the thematic change detection workflow, the option “don’t show no change 

area” is automatically activated if the classification categories have the same names for 

different years. Because I suffixed all class names with the associated year to prevent 

possible confusion due to multiple-year data, I edited class names using the “edit class 

names and color” option in the ENVI software. However, the option “don’t show no 

change area” couldn’t be activated. Therefore, I decided to use suffixes for any class 

name while performing thematic change detection analysis. The analysis resulted in 

thematic maps that have more than thirty classes representing the combinations of any 
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classes in the initial-state and final-state maps. I used “combine classes” in the post 

classification toolbox to combine any classes indicating no change or negligible change 

into the “No Change” category. 

 I realized that the class changes from “herbaceous” to “unvegetated” and from 

“unvegetated” to “herbaceous” had many pixels. This situation stemmed from the image 

capturing date. In other words, herbaceous cover at a specific location could be easy or 

difficult to detect depending on the season when the images were captured. For example, 

there would be a rigorous herbaceous cover when soil moisture conditions were 

favorable, but herbaceous cover might not be so obvious during the drought period. 

Figure 27 shows the seasonal variations among the herbaceous and unvegetated classes. 

   

 
Figure 27. Seasonal changes in unvegetated and herbaceous land covers. Images shown 

from left to right are 2008, 2012 and 2016 aerial images (above) and corresponding 

classification images (below). 
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Because my primary goal was to investigate the impact of changes in woody 

cover on streamflow, I included the change between herbaceous and unvegetated cover 

within the “No Change” category. Thus, I calculated change statistics for the following 

classes: 

i. Herbaceous to Tree 

ii. Unvegetated to Tree 

iii. Tree to Herbaceous  

iv. Tree to Unvegetated 

After having change and no change classes, I applied post classification 

aggregation to highlight the brush control areas. Deciding which window size was 

suitable required several iterations. I tested multiple window sizes from very small to 

large and compared them visually to align aerial image series with the associated 

classifications. Finally, I decided to use a window of 250 m after many iterations. Figure 

28 demonstrates the results of different iterations with relatively small window sizes.   
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Figure 28. Iterations to find the best window size for post classification thematic change 

aggregation.  

 

III.10 Analyzing the Relationship Between Mapped Tree Cover, Interpolated 

Rainfall and Measured Streamflow 

After processing all the data, I quantified tree cover for six years, annual rainfall 

from 2008 to 2017 for each year and obtained the measured streamflow from 2009 to 

2017. I tested the impact of two variables, annual tree cover and annual rainfall 

(independent variables), on the streamflow (dependent variable) using multi-regression 

analysis. I used the JMP statistical analysis software to perform this analysis. The 

statistical testing results were evaluated at a 95% confidence level. I also analyzed the 

linear relationships between rainfall and water yield and between tree cover and water 

yield separately. I used the 2008 LULC map to associate with the 2009 rainfall and 

water yield because the streamflow data was only available after 2009.  
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III.11 Modeling the Hydrological Impact of LULC Change 

The SWAT model was used in this study to investigate the ramifications of the 

land use and cover change on water yield. My primary goal was to achieve acceptable 

uncertainty estimates for the model calibration and validation. The model is primarily 

used to simulate ET, surface run-off, percolation, lateral flow, groundwater flow (return 

flow), and transmission losses [24]. These hydrological components are calculated using 

the daily equation below: 

𝑆𝑊𝑡  = 𝑆𝑊0  + ∑(𝑅𝑑𝑎𝑦 –  𝑆𝑈𝑅𝑄 –  𝐸𝑎 – 𝑊𝑠𝑒𝑒𝑝–  𝐺𝑊𝑄)    

where SWt is the final soil water content (mm), SW0 is the initial soil water content 

(mm), t is the time (days), Rday is the amount of daily precipitation (mm/day), SURQ is 

the amount of surface runoff (mm), Ea is the amount of ET (mm), Wseep is the amount of 

water penetrating the vadose zone from the soil profile (mm), and GWQ is the amount of 

groundwater flow (mm). To estimate surface run-off, run-off curve number methods 

were used. The Net Water Yield (WYLD) was calculated as follows:  

𝑊𝑌𝐿𝐷 = 𝑆𝑈𝑅𝑄 + 𝐿𝐴𝑇𝑄 + 𝐺𝑊𝐹𝑄 − 𝑇𝐿𝑂𝑆𝑆     

where LATQ is the lateral flow (mm), and TLOSS is the transmission loss (mm). The 

SWAT uses the exponential function of soil depth and moisture to measure evaporation 

and a linear function of Potential Evapotranspiration (PET) and Leaf Area Index (LAI) 

while computing transpiration [75]. 

The Nash-Sutcliffe model efficiency (NSE) and the Coefficient of the 

Determination (R2) are oftentimes utilized to evaluate the performance of the model 

estimations [76]. The value of R2 is between 0 and 1. It assesses the goodness of fit 
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between the simulated data and the observed data. The value of 1 indicates the best fit 

while 0 means no correlation between them. Most of the hydrological studies use NSE to 

test the model performance [77]. While the value of NSE ranges from negative infinity (-

∞) to 1, a value of 1 for NSE indicates the perfect fit between the measured and 

simulated data. The minimum acceptable R2 value should be 0.60 while it should be at 

least 0.50 for the NSE [76, 78]. R2 and NSE are computed by the following equations, 

respectively: 

𝑅2 = [
∑ (𝑄𝑜𝑏𝑠−    𝑄𝑜𝑏𝑠 ) ⃖            (𝑄𝑠𝑖𝑚−𝑄𝑠𝑖𝑚    ) ⃖               𝑛

𝑖=1

[∑ (𝑄𝑜𝑏𝑠−    𝑄𝑜𝑏𝑠 ) ⃖            2𝑛
𝑖=1 ]

0.5
[∑ (𝑄𝑠𝑖𝑚−𝑄𝑠𝑖𝑚    ) ⃖               2𝑛

𝑖=1 ]
0.5]      

𝑁𝑆𝐸 = [1 −
∑ (𝑄𝑠𝑖𝑚−𝑄𝑜𝑏𝑠)2𝑛

𝑖=1

∑ (𝑄𝑜𝑏𝑠−    𝑄𝑜𝑏𝑠 ) ⃖            2𝑛
𝑖=1

]       

where Qobs and 𝑄𝑜𝑏𝑠 are the observed value and the mean of the observed data, 

respectively, and 𝑄𝑠𝑖𝑚 and  𝑄𝑠𝑖𝑚 are simulated and the mean of simulated data, 

respectively. 

Following the completion of the LULC classifications and change detection 

analysis, I used the land use and cover data to set up the SWAT models. I decided to 

construct multiple SWAT models to account for the changes occurred from 2009 to 

2017. Because there was a lack of 2009 LULC data, I used the 2008 LULC map instead. 

I divided the data into three subsets for model warmup, calibration, and validation, 

respectively. Specifying a few years (2 to 5) as the model warmup period is a 

recommended measure to allow the model to adjust parameters to the conditions of the 

study area. No simulation result was outputted for the warmup period. I decided to leave 

the 2008-2011 period as the warmup period for the model calibration. This decision was 
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reasonable given that there was no streamflow record for 2008. The calibration data 

covered the period from 2012 to 2015. The validation data covered the 2016-2017 

period. The processes described hereafter includes the setups of the SWAT model 

calibration, validation, and simulation.  

 

III.12 Model Setup and Watershed Delineation 

I used ArcSWAT version 2012 for my modeling purposes. The 2012 version of 

the SWAT can work on ArcGIS 10.4 and preceding versions. My first SWAT project 

was devised for the calibration period. Automatic watershed delineation workflow was 

used to delineate a basin into subbasins. A digital elevation model was required to 

compute flow direction and flow accumulation. So, a stream network can be created 

following these steps if a predefined stream network isn’t available or not preferred. 

Although I obtained the National Hydrography Dataset from the USGS, I preferred to 

use the 10-meter DEM to let the model create a stream network to avoid any potential 

error. After the model created the stream network I determined the whole watershed 

outlet based on the location of the streamflow measuring gage (USGS 0818999010 

Nueces Rv Nr Barksdale). The basin area was calculated to be 350 square miles. The 

drainage area was divided into 31 subbasins by the model. Then, the model calculated 

subbasin parameters and completed the watershed delineation process. Figure 29 shows 

the resulting subbasins after watershed delineation process in the SWAT-NAIP models. 
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Figure 29. The stream network and delineated watershed. The three weather stations 

used by SWAT are the closest ones to the study area out of 8 stations inputted to the 

model. 
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Multiple models were set in this study. The models created with the use of the 

thematic maps derived from the NAIP aerial images were named as SWAT-NAIP and 

classified into two categories depending on whether the crack flow code was active. The 

models having the active crack flow were in the pre-processed category while the 

remaining SWAT-NAIP models with the inactive crack flow were placed under the 

default model category. The models based on the Landsat and NLCD LULC datasets 

were named as SWAT-LANDSAT and SWAT-NLCD, respectively, and they were 

placed in the default model category. All the SWAT models were set up are shown in 

Table 20.  

 

Table 20. All SWAT models set in this study. 

# 
MODEL 
GROUP MODEL NAME TYPE PERIOD 

WRM
UP 

DEM 
(m) 

 
SUBS. HRU 

1 
pre-prc. SWAT-NAIP 

calibration 2012-2015 4 10.31 31 1239 

2 validation 2016-2017 0-4 10.31 31 1201 

3 

default 

SWAT-NAIP 
calibration 2012-2015 4 10.31 31 1239 

4 validation 2016-2017 4 10.31 31 1201 

5 
SWAT-LANDSAT 

calibration 2012-2015 4 28.97 35 851 

6 validation 2016-2017 4 28.97 35 851 

7 SWAT-NLCD validation 2012-2015 4 28.97 35 875 

8 SWAT-NAIP verification 2009-2011 1 10.31 31 1207 

9 SWAT-NAIP scenario 2009-2011 1 10.31 31 1044 
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III.13 Hydrologic Response Unit (HRU) Analysis 

An HRU is a unique combination of land use cover, soil, and slope. The 

hydrological response of these units varies significantly depending on the type of the 

combination. Before inputting LULC thematic maps into land use/soils/slope definition 

workflow I reclassified and resampled them respectively. Because the resolution of the 

DEM data defines the resolution of the SWAT model, resampling thematic maps 

improved the computational speed of the model. The nearest neighbor method was used 

when resampling the raster datasets. Thereby, the new spatial resolution of the LULC 

raster datasets matched the resolution of the DEM. I created an “oak mask” in ArcGIS 

using 2008 aerial image classification. Figure 30 demonstrates the extraction of the 2008 

oak cover. I reclassified the resampled 2008 LULC raster data using spatial analyst tools. 

I converted the value of oak to “0” and the value of all the other classes to “1”. Later, I 

multiplied the resampled 2012 and 2016 LULC raster datasets with this mask raster. So, 

the area represented by “0” in the new 2012 and 2016 maps was the same oak area in the 

2008 map. Using spatial analyst tools in ArcGIS I reclassified the 2012 and 2016 LULC 

data and converted the value of 0 into 3 (oak class value in 2008) and all the remaining 

tree class (value=5) into the juniper class (value=1). I matched the class values of 2008, 

2012 and 2016 images and created a land use cover lookup table which is shown in 

Table 21 to prompt the SWAT model to import the LULC data.  
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Figure 30. Masking out the oak cover of the 2008 thematic map. 
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Table 21. Class names and values of the produced thematic maps and corresponding 

SWAT LULC codes. 

VALUE CLASS NAME SWAT LAND USE CODE 

1 JUNIPER JUNI 

2 HERBACEOUS RNGE 

3 OAK OAK 

4 BARREN BARR 

6 WATER WATR 

7 URBAN/BULTUP URML (Urban Medium Low Density) 

 

 

The SWAT model plant database didn’t have juniper data. However, Dr. 

Raghavan Srinivasan who is one of the important contributors and developers of the 

SWAT model provided me with the juniper database which is shown in Table 22. I had 

to update the plant database in the model using this dataset. However, hydrological 

parameters of the plant like the Soil Conservation Service (SCS) curve numbers (CN2) 

for soil moisture condition and Canopy Maximum Storage (CANMAX) weren’t 

included in the provided dataset. So, I determined juniper hydrological parameters based 

on the literature [18]. The Soil Survey Geographic dataset (SSURGO) is recognized by 

the model. However, the SSURGO dataset was also missing in the 2012 version of the 

SWAT soil database. I downloaded the ArcSWAT12 SSURGO database from the 

website of the model and loaded the folder into the project database directory. Later, I 

resampled and projected the SSURGO dataset to match the spatial resolution and 

projection (NAD1983 UTM Zone 14N) of the DEM and LULC datasets.  

 

 



 

112 

 

Table 22. Biophysical parameter database of the juniper.   

Land cover/plant code       JUNI   

Land cover/plant 
classification 

 Warm season perennial (6) 
 

Crop Name   JUNIPER  
Plant Biophysical 
Parameters 

 Description  Value 

BIO_E    Radiation use efficiency (kg/ha)/(MJ/m**2) 16 

HVSTC    Harvest index 0.01 

BLAIC    Maximum potential leaf area index  12 

FRGRW1   Fraction total PHU at 1st point on leaf dev. curve 0.2 

LAIMX1   Fraction BLAI at 1st point on leaf dev. curve   0.2 

FRGRW2 Fraction total PHU at 2nd point on leaf dev. curve  0.99 

LAIMX2   Fraction BLAI at 2nd point on leaf dev. curve  0.99 

DLAIC   
Fraction of growing season when leaf area 
declines 

0.99 

CHTMXC   Maximum canopy height (m)  12 

RDMXC    Maximum root depth (m)   3.5 

TOPT     Optimal temperature for plant growth (deg C)  30 

TBASE   
Minimum (base) temperature for plant growth 
(deg C) 

10 

CNYLDC   
Normal fraction of nitrogen in yield (kg N/kg 
yield) 

0.0015 

CPYLDC   
Normal fraction of phosphorus in yield (kg P/kg 
yield)  

0.0003 

BN1      N fraction in plant at emergence  0.006 

BN2     N fraction in plant at 50% maturity  0.002 

BN3      N fraction in plant at maturity  0.0015 

BP1C     P fraction in plant at emergence  0.0007 

BP2C     P fraction in plant at 50% maturity 0.0004 

BP3C     P fraction in plant at maturity 0.0003 

WSYFC  Lower limit of harvest index  0 

USLE_C 
Minimum value of USLE C factor for water 
erosion  

0.001 

GSIC    Maximum stomatal conductance (m/s) 0.007 

VPDFR    Threshold vapor pressure deficit (VPD) (kPa) -3.5 

FRGMAX Decline in BIO_E per unit increase in VPD  1 

WAVPC   
Decline in leaf conductance per unit increase in 
VPD  

8 

CO2HI    
Elevated CO2 atmospheric concentration (uL 
CO2/L air) 

660 
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Table 22 continued 
Land cover/plant code       JUNI   
Land cover/plant 
classification 

 Warm season perennial (6) 
 

Crop Name   JUNIPER  
Plant Biophysical 
Parameters 

 Description  Value 

BIOEHI   Biomass-energy ratio corresponding to CO2HI 15 
RSDCOPL   Plant residue decomposition coefficient 0.05 
ALAIMIN  Minimum LAI during winter dormant period  0.75 
BIOLEAF  Fraction of biomass accumulated each year 0.3 

MAT_YRS  
No of yrs req for tree species to reach full 
development 

50 

BMX_TREES  Maximum biomass for a forest (metric tons/ha) 1000 
EXT_COEF  Light extinction coefficient 0.37 
BMDIEOFF  Fraction above ground biomass that dies 0.1 

 

 

Updating the plant and soil database of the SWAT model version 2012, I 

inputted the LULC and SSURGO data into the model. After LULC codes were imported 

from the look-up file, the model reclassified LULC data. For calibration and validation 

of the model, 2012 and 2016 LULC data were used. For scenario simulation 2008 LULC 

data derived from the ML classification of aerial image was used. Figure 31 shows the 

entire 2008 LULC map for the study area. Map Unit Key (mukey) is the attribute of the 

SSURGO dataset which was recognized by the model. Since I converted the SSURGO 

data from feature class to raster by specifying mukey as the raster value, the SWAT 

model easily matched the associated soil attributes.  
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Figure 31. Land use and cover of the study area derived from the 2008 aerial image. 
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The last step was to define the slope gradient to complete land use/soils/slope 

definition workflow. I specified multiple slopes. I divided slope into five categories 

based on the slope gradient classification of the United States Department of Agriculture 

(USDA). The slope gradients and their range are shown in Table 23. Figure 32 shows the 

distribution of the slope gradients in the entire study area. Following the reclassification 

of land use cover, soil, and slope, the model overlayed all the input data to generate 

unique combinations.  

 

Table 23. Slope classes generated for land use/soil/slope definition. 

Slope Number Slope Level (%) Class 

1 0-3 Flat 

2 3-9 Gentle 

3 9-15 Moderate 

4 15-35 Steep 

5 >35 Extremely Steep 

 

 

I used the HRU definition tool to produce final HRUs for the model. I selected 

the multiple-HRUs option to specify thresholds for final HRU generation. Thresholds 

can be specified in either percentage or area. Land use is the base layer and soil 

threshold applies the soils on the land use cover which is over the specified land use 

threshold. Following this, slope threshold applies to the remaining slopes on the land use 

and soils.  
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Figure 32. The slope categories of the study area. 
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The default thresholds for land use, soil, and slope were 20%, 10%, and 20%, 

respectively. However, I specified 10%, 5% and 5% thresholds for land use, soil, and 

slope, respectively, to increase the representation of the land use, soil, and slope. Since 

the mean subbasin area was around 29 km2, the 10% land use threshold was crossed by 

major LULC classes (juniper, oak, herbaceous and barren). The representability of the 

watershed characteristics by the created HRUs was very high (90% to 100%). Figure 33 

shows the model’s LULC, soil and slope report for the SWAT-NAIP model calibration.  
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Figure 33. Final HRU distribution for the calibration model (2012-2015) in the study 

area.  
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III.14 Writing Input Tables 

The SWAT model can use either observed or simulated weather data. The US 

Weather Generator first-order (WGEN US First Order) monthly weather database 

including 1041 stations for the entire US can be used to simulate monthly rainfall, 

temperature, solar radiation, wind speed, and relative humidity. However, this weather 

data is only available until 2014. Rainfall and temperature are two key weather data 

required by the model. I imported observed daily rainfall and temperature data. Two 

lookup files defining the name, longitude, latitude, and elevation of the precipitation and 

temperature stations were also needed. Separate text files had to be prepared for the 

temperature and precipitation records of different stations. The names of the stations 

were given to the corresponding files so that the model could extract the data via the use 

of the station's lookup file. The daily temperature and precipitation data must be entered 

in a sequential order. Only the initial date of the measured data can be specified on top 

of the column. The first day of the weather data was accepted as the starting date of the 

simulation. The weather data obtained from the National Climatic Data Center (NCDC) 

was in the metric format and daily time step. I noted that there was some missing data 

for eight stations. The SWAT model can interpolate gaps in the weather data if a “-99” 

value specified. So, in Excel, I identified missing dates for each station and filled these 

gaps with “-99”. However, after running the model I realized that most of the “-99” s 

caused an error when the weather data was created and led to very excessive rainfall 

estimates. After talking to Dr. Srinivasan, I prepared weather data from scratch by 

interpolating missing dates’ data from other stations. Fortunately, almost no missing date 
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of a station coincided with the missing date of other stations. I used the average 

precipitation and temperature of other stations to fill the gaps. Then I prompted the 

model to write all the input tables to the current project database. Figure 34 shows the 

model input tables. After writing all parameters to the project database, I was ready to 

run the model. The first model was built for calibration which covered the 2012-2015 

period. Four years were specified as Number of Years to Skip (NYSKIP) which was the 

period of the model warm-up. I ran all models in a monthly time step. Figure 35 shows 

the model configuration for the SWAT-NAIP calibration. 

 

 

Figure 34. The SWAT model input tables.   
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Figure 35. The calibration period model configuration. 

 

III.15 Calibration and Validation of the SWAT Model 

The model calibration can be done manually, automatically or with the 

combination of both. The complex nature of the hydrological model due to the 

substantial number of parameters involved in the representation of the biogeochemical 

and hydrological processes make calibration a very challenging task. The default 

parameters in the SWAT project database were based on the experimental studies and 

published records. Parameter values can vary significantly from one watershed to 

another due to the site-specific hydrological response of different regions. Thus, 

parameters in the SWAT model are given an uncertainty range. However, any calibrated 

parameter value should be within the minimum and maximum limits. SWAT-CUP is an 

automatic calibration program which was devised to calibrate and validate the SWAT 

projects. Absolute SWAT values available in the SWAT-CUP project guide users to 
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check if the calibrated parameter within the reasonable range. Table 24 shows the 

absolute range of the parameters which were adjusted throughout the calibration of the 

model. 

 

Table 24. The absolute range and definitions of the 15 parameters. 

Parameters 

Absolute Range 

Description of The Parameters 

Min Max 

gw 

1 rchrg_deep 0.00 1.00 Deep aquifer percolation fraction. 

2 gwqmn 0.00 5000 

Threshold depth of water in the shallow 

aquifer required for return flow to occur 

(mm). 

3 alpha_bf 0.00 1.00 Baseflow alpha factor (days). 

4 gw_delay 0.00 500 Groundwater delay (days). 

5 revapmn 0.00 500 
Threshold depth of water in the shallow 

aquifer for "revap" to occur (mm). 

6 gw_revap 0.02 0.20 Groundwater "revap" coefficient. 

hru 

7 ovn 0.01 30 Manning's "n" value for overland flow. 

8 canmax 0.00 100  Maximum canopy storage. 

9 surlag 0.05 24 Surface runoff lag time. 

10 esco 0.00 1.00 Soil evaporation compensation factor. 

sol 

11 sol_awl 0.00 1.00 
Available water capacity of the soil 

layer(mm/mm) 

12 sol_k 0.00 2000 Saturated hydraulic conductivity(mm/hr) 

mgt 13 cn2 17.00 98 SCS runoff curve number  

sub 14 ch_k1 0.00 300 
 Effective hydraulic conductivity in 

tributary channel alluvium. 

rte 15 
ch_k2 -0.01 500 

 Effective hydraulic conductivity in main 

channel alluvium. 
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After the initial runs of the model, I created the SWAT-CUP SUFI2 project. My 

initial iterations using the parameters commonly reported by many studies weren’t 

satisfactory. While R2 was over 0.6 for most of the iterations, the NSE value remained 

below 0. The best-simulated mean flow was more than three-fold of the observed mean 

flow for the 2012-2015 period. Later, I found that Jain et al. (2015) also studied the 

Nueces Headwaters Basin and identified subbasins with no flow and subbasins with 

springs and sinkholes. They parameterized their model to account for the distinctive 

characteristics of the karst watershed. Hence, I identified the losing streams and 

sinkholes for each subbasin from the aerial images. Thereby, I adopted the approach of 

Jain et al. (2015) and defined distinct parameter ranges for the subbasins having 

sustained flow throughout the year and the subbasins with no observed surface flow in 

the stream channel. Figure 36 demonstrates the spatial distribution of the subbasins with 

continuous stream flow and the subbasins with losing streams.  

Before parameterizing the model automatically, I conducted initial manual 

calibration to familiarize myself with the hydrological processes taking place in the 

study area. I performed eight iterations until I felt the preprocessed model was ready for 

autocalibration. Table 25 shows the steps of the manual calibration process. The first 

iteration didn’t include any change to the parameters. Besides, I didn’t define a warm-up 

period for the first iteration to compare the result to that of the following iteration having 

a 4-year warm-up period. The second iteration had a 4-year warm-up period, but no 

change was made to the parameters. 



 

124 

 

 

Figure 36.The subbasins with losing streams and subbasins with sustained flow. 
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Table 25. Manual calibration processes summarized in this table. 

Steps Description 

Mean 

Sim.Flo

w(m3/se) 

Mean 

Obsrvd 

Flow(m3/s) 

R 

Square 

Iter1 

No warm-up period was specified. The model 
was run for the 2008-2015 period. All 
parameters were default except Runoff 
Coefficient (CN2) parameters for juniper. 
Values were reported for 2012-2015. 7.05 0.92 0.61 

Iter2 
Four- year warm up period defined: 2008-
2011. Calibration period: 2012-2015 7.05 0.92 0.61 

Iter3 Crack flow was activated 
6.77 0.92 0.76 

Iter4 

The deep aquifer percolation (rchrg_deep) 
parameter was increased to 0.7 from the 
default value (0.05). 6.28 0.92 0.68 

Iter5 

Ground water (gw) parameters adjusted to 

increase baseflow (revapmin, 

gwqmin,gw_delay, alpha_bf) 7.62 0.92 0.70 

Iter6 

Soil available water capacity (sol_awl) was 
increased to maximum. Saturated hydraulic 
conductivity (sol_k) was decreased to 
minimum 4.83 0.92 0.76 

Iter7 

Hydrologic response unit (hru) parameters 
were adjusted (canmax,esco,ovn and surlag) 
for OAK, JUNI, BARR and RNGE categories. 3.59 0.92 0.78 

Iter8 

Based on the preceding simulations, every 
parameter that had made notable change to 
the model results were adjusted. Soil 
parameters were adjusted based on the 
hydrological group and cared for the spatial 
characteristics of different soil types. 3.80 0.92 0.79 

 

 

I monitored the results using SwatCeck module which reads outputted results 

through the output.std file and illustrates results on a schematic representation of the 

hydrological processes. I imported the resulting reach file to the Scenarios-Tables out-

SwatOutput database where I filtered the subbasins and singled out the subbasin 31, 
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which has the whole watershed outlet. Thus, I extracted the cumulative flow for the 

calibration period. I used the cumulative flow outputted by each iteration to investigate 

the correlation between the simulated flow and the observed flow. In Excel, I calculated 

R2 of the regression analysis and averages of the observed and simulated flows to 

compare the results of manual calibration iterations. The first two iterations produced the 

same results. I realized that the predicted surface runoff was far above the observed 

surface runoff values derived from the hydrograph separation analysis.  

The results of the hydrograph separation were very helpful for comparing 

simulated hydrological responses. To understand the relative contributions of baseflow 

and surface runoff to total flow, I adjusted the model parameters to catch the observed 

results. The values of the adjusted parameters for each manual calibration iteration is 

shown in Table 26. For the third iteration, I activated the crack flow which is a general 

watershed/basin parameter and found that the flow separation improved substantially 

with a sharp decrease in the surface runoff and an associated sharp increase in the 

baseflow. For the next four iterations, I adjusted groundwater, soil and HRU parameters. 

Observing the model output after each iteration, I found that the model was quite 

sensitive to the parameters adjusted.  

Consideration is required by the soil parameters because the mathematical 

function (relative, absolute, and replace) should account for the spatial variability of the 

parameters. For example, the saturated hydraulic conductivity of the soil (SOL_K) varies 

significantly depending on the type of soil hydrological group. Using a replace function 

may lead to neglection of this variability. To investigate this impact, iteration 6 
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employed a replace function. But, this also showed that soil available water capacity 

(SOL_AWL) and SOL_K were very sensitive parameters. 

 

 Table 26. Default and adjusted parameter values for manual calibration iterations. 

Parameters 
Swat 

Default 
Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 

bsn 

crack flow NO NO YES YES YES YES YES YES 

esco 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.5 

surlag 2 2 2 2 2 2 2 20 

gw 

rchrg_deep 0.05 0.05 0.05 0.7 0.7 0.7 0.7 0.7 

gwqmn 1000 1000 1000 1000 5 5 5 5 

alpha_bf 0.048 0.048 0.048 0.048 0.01 0.01 0.01 0.012 

gw_delay 31 31 31 31 3 3 3 1 

revapmn 750 750 750 750 500 500 500 500 

gw_revap_juni 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.065 

gw_revap_oak 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.06 

gw_revap_rnge 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.056 

gw_revap_barr 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.05 

hru 

ovn_juni 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.5 

ovn_oak 0.14 0.14 0.14 0.14 0.14 0.14 0.2 0.4 

ovn_rnge 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.3 

ovn_barr 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.2 

surlag_juni 2 2 2 2 2 2 20 20 

surlag_oak 2 2 2 2 2 2 15 16 

surlag_rnge 2 2 2 2 2 2 10 12 

surlag_barr 2 2 2 2 2 2 7 8 

canmax_juni 0 0 0 0 0 0 4 3.17 

canmax_oak 0 0 0 0 0 0 3 3 

canmax_rnge 0 0 0 0 0 0 2 1.8 

canmax_barr 0 0 0 0 0 0 0.2 0.2 

esco_juni 0.095 0.095 0.095 0.095 0.095 0.095 0.5 0.53 

esco_oak 0.095 0.095 0.095 0.095 0.095 0.095 0.6 0.6 

esco_rnge 0.095 0.095 0.095 0.095 0.095 0.095 0.7 0.65 

esco_barr 0.095 0.095 0.095 0.095 0.095 0.095 0.8 0.7 

 

 

 



 

128 

 

Table 26 continued 

Parameters 
Swat 

Default 
Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 

sol 

sol_awl_a 0.09 0.09 0.09 0.09 0.09 1 1 0.2 

sol_awl_b 0.18 0.18 0.18 0.18 0.18 1 1 0.28 

sol_awl_c 0.08 0.08 0.08 0.08 0.08 1 1 0.18 

sol_awl_d 0.09 0.09 0.09 0.09 0.09 1 1 0.2 

sol_k_a 100.8 100.8 100.8 100.8 100.8 1 1 100.8 

sol_k_b 32.4 32.4 32.4 32.4 32.4 1 1 32.4 

sol_k_c 32.4 32.4 32.4 32.4 32.4 1 1 32.4 

sol_k_d (374302-

03,374308,374310) 
32.4 32.4 32.4 32.4 32.4 1 1 32.4 

sol_k_d (374292-93) 9.72 9.72 9.72 9.72 9.72 1 1 9.72 

mgt 

cn2_juni_a 25 25 25 25 25 25 25 25 

cn2_juni_b 55 55 55 55 55 55 55 38 

cn2_juni_c 70 70 70 70 70 70 70 48 

cn2_juni_d 77 77 77 77 77 77 77 53 

cn2_oak_a 45 45 45 45 45 45 45 45 

cn2_oak_b 66 66 66 66 66 66 66 66 

cn2_oak_c 77 77 77 77 77 77 77 77 

cn2_oak_d 83 83 83 83 83 83 83 83 

cn2_rnge_a 49 49 49 49 49 49 49 49 

cn2_rnge_b 69 69 69 69 69 69 69 69 

cn2_rnge_c 79 79 79 79 79 79 79 79 

cn2_rnge_d 84 84 84 84 84 84 84 84 

cn2_barr_a 77 77 77 77 77 77 77 77 

cn2_barr_b 86 86 86 86 86 86 86 86 

cn2_barr_c 91 91 91 91 91 91 91 91 

cn2_barr_d 94 94 94 94 94 94 94 94 

 

 

The results of each manual calibration iteration are shown in Table 27. Based on 

the knowledge I obtained from the first seven iterations, I set up a new SWAT model 

from scratch to account for the spatial variability of the soil parameters along with the 

CN2 parameters which play a very significant role in the rainfall/runoff partitioning.  
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Table 27. The model results of manual calibration iterations. Each iteration has a single 

simulation.  

RESULT OF THE 

ITERATIONS 

ITER1 ITER2 ITER3 ITER4 ITER5 ITER6 ITER7 ITER8 

  

PERIOD 

2008-

2015 
2012-2015 

SWAT PRCPT (mm) 
565.80 686.20 686.20 686.20 686.20 686.20 686.20 686.20   

IDW PRCP (mm) 
578.06 644.07 644.07 644.07 644.07 644.07 644.07 644.07  

ET (mm) 
348.20 398.20 402.40 402.40 402.40 501.60 544.00 536.40  

PET (mm) 
1834.9 1771.8 1771.8 1771.8 1771.8 1771.8 1771.8 1771.8  

AVERAGE CN2 
72.52 72.52 72.52 72.52 72.52 72.52 72.52 59.49  

SURFACE RUNOFF 
116.31 157.61 69.16 69.16 69.16 68.56 51.73 11.82  

PERC.TO SHALL.AQ. 
62.87 88.27 192.51 192.51 192.68 101.92 79.72 94.87  

RVP. FRM SHALL. AQ. 
35.64 33.32 35.44 35.44 35.44 35.44 35.44 19.81  

LATERAL FLOW 
33.70 42.30 21.09 21.09 21.09 13.45 10.17 42.70  

RETURN FLOW 
31.78 50.08 144.51 12.38 56.21 29.28 22.23 25.89  

RCHR. TO DEEP AQ. 
3.14 4.41 9.63 134.76 134.68 71.34 55.81 66.41  

RATIOS 
                

OBS. 

STREAMFLOW/PRECP. 
0.32 0.36 0.34 0.15 0.21 0.16 0.12 0.12 

0.046-

0.047 

BS.FLW./T.FLW 
0.36 0.37 0.71 0.33 0.53 0.38 0.39 0.85 0.78 

SRF.FLW/T.FLW 
0.64 0.63 0.29 0.67 0.47 0.62 0.61 0.15 0.22 

ET/PRCP 
0.62 0.58 0.59 0.59 0.59 0.73 0.79 0.78   

 

 

To adjust CN2, SOL_K, and SOL_AWL, I had to know the hydrological groups 

of soil classes. I adopted the CN2 parameter values for juniper from the study of Qiao et 

al. (2015) and updated the juniper plant database using on-interface tools. However, I 
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found that the average CN2 values remained the same despite updating plant CN2 

values. Therefore, I had to update the management database of the project. I identified 

every soil classes with varying hydrological groups and used this information while 

updating CN2 values for Juniper. Because CN2 values increase by hydrological soil 

groups from A to D, identifying soil classes for each hydrologic group helped me while 

updating the model with automatically produced parameters from SWAT-CUP. I found 

that 16 soil classes out of 24 represented by HRUs and they accounted for 97% of the 

study area. Because 87% of the study area underlain by the soils in the group D, average 

CN2 value was high. Table 28 indicates the area of each hydrological soil group within 

the study area. I mapped the distribution of the soil hydrological groups within the study 

area and quantified the soil class representability. Figure 37 shows the distribution of 

hydrological soil groups in the study area.  

 

Table 28. Hydrological soil groups and associated soil classes included or excluded in 

the HRUs in the watershed. 
Hydrological 
Group Mukey 

Area 
(%) 

A 374290/374313 1.00 

B 374304/374305/374307 3.00 

C 374288/374291/374298/374309/374318 5.00 

D 374292/374293/374308/374310/374316/374317 87.00 
Not 
represented 374297/374301/374302/374303/374306/374312/393914/393915 5.00 
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Figure 37. Spatial distribution of the hydrological soil groups included in the HRUs and 

soil classes remained below the defined threshold. 
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After identifying each soil class with its corresponding soil hydrological group 

using the model database which is demonstrated in Figure 38, I adjusted the CN2 

parameter for each land use and cover and soil group. I also adjusted soil available water 

capacity in the final manual calibration iteration considering the variability among soil 

hydrological groups. I adjusted 15 parameters in total. However, some of these 15 

parameters were populated for different land use and cover classes and soil types for the 

manual calibration. I further populated these 15 parameters when conducting automatic 

calibration to account for the hydrological variability in subbasins based on the study of 

Jain et al. (2015). After completing manual calibration, I used the manually calibrated 

model (model after iteration 8) to set up a SWAT-CUP project for automatic calibration. 

After running an iteration with 350 simulations and 15 parameters, I performed a global 

sensitivity analysis.  

 

 

Figure 38. Identification of soil classes with corresponding soil hydrological group.  
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I realized that the autocalibration of the preprocessed SWAT-NAIP model 

yielded satisfactory R square and NSE values based on the model performance criteria 

established by Moriasi et al. (2007) which is shown in Table 29. However, the percent 

bias from the calibration of the preprocessed model was very high. The hydrograph of 

the observed and simulated flow indicated that the model was able to capture the large 

peak in 2015 but couldn’t capture the small peaks for the rest of the period. The trend 

line of the flow estimated by the model was almost uniform except 2015. This outcome 

could be the result of using crack flow code to prompt the model to capture the baseflow 

ratio of the hydrograph separation. Figure 39 shows the response of the model when the 

crack flow code was activated. To investigate this and decrease percent bias, I set up a 

new SWAT-NAIP model. I didn’t adjust any parameter of the new model manually and 

called it “Default Model” hereafter. Thus, I had two SWAT-CUP projects for SWAT-

NAIP calibrations: one constructed by the preprocessed model and the other with the 

default model. I tested many parameterization approaches to find the best combination of 

parameters and their range. These alternatives were parameterizing preprocessed and 

default model by considering subbasins with flow and subbasins with no flow, 

parameterizing the default model without considering subbasins with no flow and 

parameterizing the default model with reduced parameter set. 
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Table 29. Model Performance Evaluation Criteria. Adapted by Moriasi et al., Van Liew 

et al. and Fernandez et al. [46, 79, 80]. 

R Square 
Nash Sutcliffe 
Efficiency 

Percent Bias (PBIAS) 
Model 
Performance 

0.75 ≤ R2≤ 1.00 0.75 ≤ NSE ≤ 1.00 Pbias ≤ ± 10 Very Good 

0.60 ≤ R2 ≤ 0.75 0.60 ≤ NSE ≤ 0.75  ± 10 < Pbias ≤ ± 15 Good 

0.50 ≤ R2 ≤ 0.60 0.36 ≤ NSE ≤ 0.60  ± 15 <  Pbias ≤  ± 25 Satisfactory 

0.25 ≤ R2 ≤ 0.50 0.00 ≤ NSE ≤ 0.36  ± 25 < Pbias ≤  ± 50 Poor 

R2 ≤ 0.25 NSE ≤ 0.00  ± 50  ≤ Pbias Inadequate 

 

 

I realized that the initial rainfall/runoff partitioning was better represented by the 

NLCD model with the default parameters. Because NLCD is a community-level LULC 

classification dataset, the area of the barren class was much lower compared to the 

higher resolution thematic map. The shrub category has the largest area (about 60%) in 

the NLCD, which was commonly associated with the Range Brush (RNGB) in the 

modeling studies and has default CN2 values like those of an evergreen forest. Upon 

quantifying the area of each 3rd level classes mapped within the brush category of the 

NLCD dataset, I found that 30.72% and 12.28% of the brush area are composed of 

juniper and barren, respectively. This outcome explains the lower average CN2 values 

which led to more baseflow and less surface runoff in the NLCD SWAT model. Later, I 

also quantified the 3rd level class area inside the 2nd level NLCD deciduous forest, 

evergreen forest, and range grass land use cover categories.  
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Figure 39. Screenshots indicating how the rainfall partitioning has improved for the 

watershed following the activation of crack flow (below). 
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Because Jain et al. (2015) reported calibrated parameters for the whole Nueces 

River Headwaters watershed, I didn’t calibrate NLCD-SWAT model. To investigate if 

the calibrated parameters can validate the model for the same watershed in a different 

period, I constructed the NLCD-SWAT model with the similar input data sources used 

by Jain et al. Although the validation period for the SWAT-NAIP and SWAT-

LANDSAT models was from 2016 to 2017, I preferred to validate the SWAT-NLCD 

model for the 2012-2015 period to have more years and same period to compare the 

results to the SWAT-NAIP and SWAT-LANDSAT calibrations. I included the same 

parameters for SWAT-NLCD validation based on the calibrated parameters reported by 

Jain et al., and gave very small range to prompt the SWAT-CUP account for the 

parameter uncertainty. Later, I ran an iteration with 150 simulations in SWAT-CUP.  

 All SWAT-LANDSAT calibration and validation models were default. ASTER 

DEM data with the 28.97-meter resolution was used to delineate watersheds. Total 

number of subbasins were 35 in the SWAT-LANDSAT models. LULC class matching 

was the same for all classes like the SWAT-NAIP models excluding the oak savanna 

category. Because there is no oak savanna category in the SWAT model and those areas 

usually located in the range grass (RNGE) and range brush (RNGB) categories of the 

NLCD data, I determined to match oak savanna area with RNGB category. Because I 

included most of the parameters related to land use cover like groundwater revaporation 

coefficient, canopy maximum storage, soil evaporation compensation factor, and curve 

number (Gw_revap, Canmx, Esco, Cn2) in the parameterization of the models, the 
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default RNGB parameters could be adjusted to capture the hydrological and biological 

features of the oak savanna land cover class.  

Model validation was performed to investigate the reliability of the calibrated 

parameter set for the study area. I selected 2016-2017 period for model validation. 

Because the warm-up periods aren’t simulated by the model but having at least one year 

of the warm-up period is suggested, I specified the 2012-2015 period as the warm-up 

period for the default SWAT-NAIP and LANDSAT validation models. According to the 

user’s manual of SWAT-CUP, to validate the model, calibrated parameter ranges should 

be used without any additional change while running an iteration having the same 

number of simulations used for calibration. This could be less challenging if one LULC 

and SWAT model used in this study. However, for validating the calibrated models I had 

to set up validation models for both Landsat and NAIP images. 
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III.16 Model Simulation Scenario 

A scenario of brush control on flat, gentle and moderate slopes was created to 

simulate the effect of brush management on the water yield of the watershed after the 

calibration and validation of the model. The scenario assumed the implementation of 

brush control on slopes less than 15% in the entire study area.  The data covering the 

period of 2009-2011 was used for model verification, and the verified model was used to 

simulate the impact of brush control. I selected this period because it was used as the 

model’s warm-up period for calibration and wasn’t simulated. Furthermore, I had the 

opportunity to verify the model after calibration and validation using the observed 

streamflow data.  

I identified the juniper cover subjected to brush control to produce the 

hypothetical LULC data. To achieve this, I created a slope mask by reclassing slopes 

lower than 15% into one class and slopes greater than 15% into another. I specified the 

raster values as 10 and 0 for suitable (less than 15 %) and unsuitable (greater than 15%) 

slopes for brush control, respectively. Then I extracted juniper cover on suitable slopes 

by summing 2008 land cover raster data with the slope mask raster. I calculated the 

statistics of the product and reported in Table 30. So, junipers on slopes lower than 15% 

made up about 18% (160 km2) and 40.53% of the study area and total juniper cover, 

respectively. 
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Table 30. Land use and land cover in the study watershed before and after hypothetical 

brush management. 

2008 LULC STATISTICS BEFORE HYPOTHETICAL BRUSH MANAGEMENT 

Value Class Name Area (%) Area (km2) 

1 Juniper 25.95 235.42 

2 Herbaceous 27.79 252.05 

3 Oak 13.52 122.66 

4 Barren 14.8 134.27 

6 Water 0.16 1.49 

7 Urban/Built-up 0.08 0.72 

11 Juniper treatment planned 17.69 160.47 

2008 LULC STATISTICS AFTER HYPOTHETICAL BRUSH MANAGEMENT 

Value Model LULC Code Area (%) Area (km2) 

1 JUNI 25.95 235.42 

2 RNGE 45.48 412.52 

3 OAK 13.52 122.66 

4 BARR 14.8 134.27 

6 WATR 0.16 1.49 

7 URML  0.08 0.72 

LULC CODE DEFINITION 

JUNI Juniper BARR Barren 

RNGE Range Grass WATR Water 

OAK Oak URML  Urban Medium Low Density 

 

 

I simulated the impact of brush control on the hydrology of the watershed under 

the brush management scenario. To do this, I first ran the model using the original 2008 

LULC data to establish a benchmark for comparison. The distribution of the junipers on 

suitable slopes in the study area is shown in Figure 40. I converted all juniper cover on 

the suitable slopes into herbaceous cover as specified in the brush control/management 

scenario. Figure 41 shows the hypothetical LULC data used for the scenario simulation.  

I used this hypothetical LULC data to run the SWAT model. Finally, I compared the 

simulated ET, surface runoff, baseflow and water yield under the brush management 

scenario with the benchmark results to assess the impact of brush control. 
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Figure 40. Suitable area for the brush control application.  
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Figure 41. Hypothetical LULC data for the scenario simulation. 
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CHAPTER IV  

RESULTS AND DISCUSSION 

 

IV.1 Interpolated Annual Rainfall, Measured Water Yield and Baseflow Ratio 

I found that annual rainfall didn’t change significantly with elevation in the study 

area. Figure 42 demonstrates the distribution and magnitude of the storm events greater 

than 2.5 mm measured by stations which have different elevations. Green lines in Figure 

42 indicates the average of the rainfall. ANOVA results for the precipitation and 

elevation is shown in Table 31. 

 

 

Figure 42. Normal outlier box plots of precipitation over elevation.  
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Table 31. The statistical relationship between precipitation and elevation. 

Summary of Fit     

Rsquare 0.015   

Adj Rsquare 0.013   

Root Mean Square Error 16.872   

Mean of Response 16.43   

Observations  2688   

Means for Oneway Anova 

Elevation Category 

Precipitation Events 

           (>2.5 mm) Mean Std Error 

423.7 379 15.35 0.87 

525.8 257 19.01 1.05 

556.3 451 14.80 0.79 

612.6 281 18.93 1.01 

625.4 411 15.06 0.83 

696.2 282 20.56 1.00 

709 295 14.72 0.98 

719.9 332 15.45 0.93 

 

 

The measured water yield is shown in Table 32 demonstrated that annual water 

yield was very low. The ratio of annual water yield to interpolated annual precipitation 

remained below 8% for the entire study period. This outcome was comparable to the 

results from Wilcox and Huang [12]. Simple annual rainfall averages were better 

correlated with the results from the IDW method (R2 = 0.99 with 95% confidence) than 

with the PRISM rainfall data (R2 = 0.91 with 95% confidence). Table 33 shows the high 

correlation between IDW precipitation and PRISM precipitation. However, there is a 

possibility that the annual rainfall was slightly overestimated by PRISM.  
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Table 32. Measured annual water yield by years and its ratio to interpolated annual 

rainfall. 

Year 

Annual 

Rainfall 

(mm) 

Annual 

Mean 

Flow 

(f3/s) 

Annual Flow 

Volume (m3) 

Drainage 

Area (m2) 

Annual 

Flow Per 

Unit Area 

(mm) 

Water 

Yield 

(%) 

2009 475.29 26.05 23,258,592.84 907,130,836.2 25.64 5.40 

2010 669.75 38.04 33,971,211.15 907,130,836.2 37.45 5.59 

2011 325.09 16.94 15,128,909.59 907,130,836.2 16.68 5.13 

2012 557.18 20.21 18,046,043.16 907,130,836.2 19.90 3.57 

2013 606.21 27.49 24,550,060.37 907,130,836.2 27.07 4.46 

2014 484.90 16.43 14,674,967.88 907,130,836.2 16.18 3.34 

2015 928.00 66.39 59,287,763.25 907,130,836.2 65.37 7.04 

2016 805.71 61.68 55,083,221.24 907,130,836.2 60.73 7.54 

2017 625.40 41.42 36,985,086.40 907,130,836.2 40.78 6.52 

 

 

Table 33. The statistical relationship between IDW and PRISM annual precipitation. 
Regression Statistics         

Multiple R 0.966     
R Square 0.931     
Adjusted R Square 0.922     
Standard Error 60.84     
Observations 9     

ANOVA 

    df SS MS F 

Significance 

F 

Regression 1 354856.3 354856.3 95.87635 0.000024576 

Residual 7 25908.31 3701.187   
Total 8 380764.6       

 

 

Hydrograph separation results displayed in Table 34 indicated that about 80% of 

the stream flow is the contribution of the baseflow. The hydrograph of the average 

stream flow and precipitation shown by Figure 43 indicated that not every storm event is 

capable of producing peak flows in the watershed outlet.  
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Table 34. Results of the hydrograph separation analysis. 

 

 

 

Figure 43. Monthly rainfall and streamflow for the period of 2009-2017. Note that the 

units are different. Rainfall is expressed in mm, and streamflow is expressed in cubic 

feet per second. This graph was prepared to indicate peak flows as a response to storm 

events.   

 

Year 
Average of 

Flow 

Average of 

Base Flow 

Average of 

Direct 

Runoff 

Baseflow           

Ratio 

Surface 

Runoff 

Ratio 

2009 26.06 20.09 5.97 77.08 22.92 

2010 37.71 30.13 7.58 79.91 20.09 

2011 16.89 13.55 3.34 80.25 19.75 

2012 20.18 16.31 3.87 80.81 19.19 

2013 27.47 21.38 6.08 77.85 22.15 

2014 16.41 13.31 3.10 81.08 18.92 

2015 66.77 48.31 18.46 72.35 27.65 

2016 61.71 48.96 12.74 79.35 20.65 

2017 41.21 33.32 7.89 80.85 19.15 

Study Period 

Average 34.93 27.26 7.67 78.84 21.16 
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For example, there wasn’t significant peak flow observed in 2012 although there 

were a considerable number of storm events. This situation was addressed previously by 

Dammeyer et al. who reported that antecedent rainfall makes a significant impact on 

runoff generation [22]. The annual rainfall distribution of the study area is shown for 

2009-2017 period in Figure 44.  

 

 

Figure 44. Annual average precipitation distribution throughout the study area 

calculated by the IDW method for the period 2009-2017. The precipitation values are 

expressed in mm.  
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IV.2 Land Use and Cover Maps and Change Detection  

IV.2.1 Accuracy of the Shadow Identification Approach and Final Thematic Maps 

Classification of the multiple-year aerial and satellite images was a very arduous 

task. Moreover, the problems caused by shadows and pixel confusion required extra 

labor. However, the accuracy in the shadow identification method was quite satisfactory 

and enhanced the utility of the final thematic maps. According to the accuracy 

assessment results of the shadow detection method which is shown in Table 35, the 

probability of correctly identifying a shadow area ranged from 89.3% to 98.6%. The 

count of shadow pixels in the final classifications became so minimal that they are 

unlikely to make a negative impact for the further hydrological analysis of the study 

area. More than 99% of the shadow area was identified for each year. Table 36 reports 

the area of identified shadow cover and the remaining shadow area.   

 

Table 35. Accuracy assessment of the shadow identification method. 

Cover Type Inside 

the Shadow 
Ground Truth Pixel Count 

2008 2010 2012 2014 2015 2016 

Juniper 71      
Oak 70      
Trees  70 70 70 70 70 

Herbaceous 70 70 70 71 70 70 

Shadow Total 211 140 140 141 140 140 

  Count of Correctly Identified Shadow Pixels 

Classes Converted 

from Shadow  

2008 

ML 

2010 

ML 

2012 

ML 

2014 

ML 
 2015 ML 2016 ML 

Juniper 61 

Oak 67 

Trees  69 70 65 66 70 

Herbaceous 64 69 55 64 60 64 

Total 192 138 125 129 126 134 

Percent Accuracy 91.00 98.57 89.29 91.49 90.00 95.71 
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Table 36. Areas of classes detected within the shadowed areas and remaining 

unidentified shadow areas. 

Classes Edited for Shadow  

Area of the LULC (Percent) 

2008 

ML 

2010 

ML 

2012 

ML 

2014 

ML 

2015 

ML 

2016 

ML 

Herbaceous Before Editing 28.11 31.42 24.77 29.26 23.35 23.66 

Herbaceous After Editing 29.03 32.48 25.45 31.29 24.84 24.76 

Herbaceous Inside Shadow 0.92 1.06 0.68 2.02 1.49 1.10 

Tree After Editing  55.93 48.75 48.60 61.08 54.09 

Tree Before Editing  52.30 44.63 40.66 53.16 48.61 

Tree Inside Shadow  3.62 4.12 7.94 7.92 5.48 

Juniper Before Editing 36.66 

Juniper After Editing 39.37 

Juniper Inside Shadow 2.71 

Oak Before Editing 13.61 

Oak After Editing 15.53 

Oak Inside Shadow 1.92 

Remaining Shadow  0.01 0.01 0.03 0.03 0.02 0.02 

Total Shadow Cover 5.55 4.69 4.83 9.99 9.44 6.61 

Total Shadow Area 

Identified 5.55 4.68 4.80 9.96 9.41 6.58 

Percentage of Shadow 

Identified  99.85 99.83 99.29 99.73 99.74 99.63 

 

 

Accuracy assessment of the finalized thematic maps yielded very satisfactory 

results which is shown in Table 37, especially for 2008, 2014 and 2016 image 

classifications. The accuracy of 2014 image improved by 3% after converting the 

shadow area into associated land use and cover. All classifications met the minimum 

accuracy threshold (85% overall accuracy). I also reported other accuracy metrics like 

Kappa Coefficient, user and producer accuracies.  
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Table 37. Final accuracies of the NAIP ML image classifications.  

Overall and Kappa 

2008 

ML 

2010 

ML 

2012 

ML 

2014 

ML 

2015 

ML 

2016 

ML 

Overall 93.74% 91.35% 93.02% 93.81% 92.89% 97.29% 

Kappa 0.92 0.87 0.89 0.91 0.89 0.96 

Class 

User Accuracy 

(Percent) 

2008 2010 2012 2014 2015 2016 

Herbaceous 96.94 83.15 93.33 89.06 91.53 100.00 

Trees  97.62 94.30 96.92 94.40 98.40 

Unvegetated 75.27 84.34 79.49 88.75 82.50 82.35 

Urban/Built-up 100.00 100.00 95.83 100.00 100.00 100.00 

Water 98.18 100.00 100.00 100.00 100.00 100.00 

Juniper 96.65      

Oak 92.57      

Class 

Producer Accuracy 

(Percent) 

2008 2010 2012 2014 2015 2016 

Herbaceous 92.50 94.58 87.50 94.61 90.00 97.08 

Trees  88.65 98.38 93.51 95.68 99.73 

Unvegetated 100.00 100.00 88.57 100.00 94.29 100.00 

Urban/Builtup 96.30 96.00 92.00 96.00 92.00 96.00 

Water 77.14 84.29 88.41 85.51 86.96 82.86 

Juniper 96.30      

Oak 95.29           

 

 

The accuracy assessment results demonstrated that incorporating data from 

different sensors having distinctive temporal and spatial resolutions can be a very 

effective strategy to produce useful thematic maps by compensating for the tradeoffs 

inherent to the data from a single source. Table 38 shows the initial and finalized 

accuracies of the LULC maps derived from the ML classification of NAIP images. 

High-resolution imagery provides tremendous details for the analysis of land use and 
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cover. However, using higher-resolution images for large area mapping is quite labor-

intensive.  

 

Table 38. Accuracy of the higher-resolution maps before and after shadow editing.   

Image Year 
Initial Accuracy Stat Final Accuracy Stat 

          Overall (%)                     Kappa          Overall (%)    Kappa 

2008 0.94 0.93 0.94 0.92 

2010 0.90 0.87 0.91 0.87 

2012 0.93 0.91 0.93 0.89 

2014 0.91 0.88 0.94 0.91 

2015 0.93 0.91 0.93 0.89 

2016 0.97 0.96 0.97 0.96 

 

 

The percent area of each LULC class is shown in Table 39. I want to note that 

tree cover was the highest for 2015. This was because the 2015 aerial image was 

captured at the end of 2015 and early 2016. The rainfall in 2015 was very excessive 

compared to the long-term average annual precipitation. There was less space observed 

between tree crowns in 2015 NAIP image which was demonstrated by Figure 45. This 

was a result of favorable moisture conditions which led to exponential leafe production 

especially in the juniper-dominated areas. Juniper trees are hydrologically and 

biologically active all year long and their response to suitable moisture conditions is very 

rapid. Besides, I found that brush regrowth was occurring from 2008 to 2014 gradually, 

accelerated in 2015 due to optimal climatic conditions. Although the year 2016 was also 

a wet year, tree cover dropped compared to 2015. This indicates that a different period of 

image capture can have a very different canopy morphology of brush species.  
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Table 39. Percentage of the area of each LULC class across the years. 

Number 

of Classes 
Class Name 

Final Area of LULC Classes(Percent) 

2008 2010 2012 2014 2015 2016 

1 Herbaceous 27.81 29.41 22.08 28.69 23.82 23.22 

2 Shadow 0.01 0.00 0.03 0.02 0.02 0.02 

3 Trees  60.77 52.45 51.74 63.58 56.98 

4 Unvegetated 14.81 9.59 25.22 19.32 12.39 19.49 

5 Urban/Built-up 0.08 0.06 0.11 0.11 0.08 0.09 

6 Water 0.16 0.16 0.11 0.11 0.11 0.20 

7 
Juniper 43.60 

Oak 13.53 

       Total (%)      100 100 100 100 100 100 

 

 

 

Figure 45. Figure 44: Decreases in intercanopy space from 2014 (left column) to 2015 

(right column). 
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Figure 46 demonstrates the presence of more unvegetated area in 2016 when the 

image captured compared to 2015. The 2016 image was captured at late summer when 

there was less rainfall, which may explain the lower canopy cover. I would like to point 

out that higher-resolution details in aerial image classifications can indicate seasonal 

biogeomorphological changes very effectively. It would be more difficult to see this 

dynamism with community-level classifications because most of the change occurs in 

smaller areas (less than 900 m2) [52]. Figure 47 shows the thematic maps derived from 

the classification of aerial images for a part of the study area.  

 

 

Figure 46. Differences in canopy closure between 2015 (left column) and 2016 (right 

column). 
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Figure 47. A portion of the study area shown by classified (below) and NIR false color 

composite (above) aerial images. The year of the images from left to right is 2008, 2012 

and 2016. Note that the farthest distance in this portion of the area is longer than 10 

kilometers.   
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IV.2.2 Thematic Change Detection 

Below, as shown in Table 40 and 41, I reported the changes in area (km2) and 

percentages between tree cover and other two land use and cover classes (herbaceous 

and unvegetated) given the focus of this study on brush management. Because the 

statistics from change detection were important to update the SWAT model, I quantified 

the change from 2008 to another year instead of for any consecutive years Thus, I could 

see the increase or decrease in the tree cover from 2008 to any year having a thematic 

LULC map. 

 

Table 40. The results of change detection analysis reported in percentages for 

aggregated and original thematic change. 

Period 2008 to 2010 (%) 2008 to 2012 (%) 2008 to 2014(%) 

Type 
Bf. Agg. After Bf. Agg. After Bf. Agg. After 

Class Summary 

No Change 85.72 98.16 83.41 95.42 80.36 94.27 

Herbaceous' To 'Trees' 5.62 0.84 4.02 0.47 4.33 0.70 

Trees' To 'Herbaceous' 3.35 0.50 5.21 2.79 8.52 3.56 

Trees' To 'Unvegetated' 1.98 0.08 5.42 1.21 4.00 1.03 

Unvegetated' To 'Trees' 3.33 0.41 1.93 0.11 2.80 0.43 

Sum 100 100 100 100 100 100 

Tree Difference  3.62 0.67 -4.68 -3.43 -5.39 -3.46 

Period 2008 to 2015(%) 2008 to 2016(%)   
Type 

Bf. Agg. After Bf. Agg. After   
Class Summary   
No Change 80.58 95.28 82.30 95.73   
Herbaceous' To 'Trees' 9.01 1.96 6.24 0.89   
Trees' To 'Herbaceous' 4.14 1.83 4.60 2.22   
Trees' To 'Unvegetated' 2.36 0.45 4.33 1.07   
Unvegetated' To 'Trees' 3.91 0.47 2.54 0.09   
Sum 100 100 100 100     

Tree Difference  6.41 0.14 -0.16 -2.30     
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Table 41. Results of thematic change detection analysis reported in area. 
Period 2008 to 2010  2008 to 2012  2008 to 2014 

Type Bf. Agg. After Bf. Agg. After Bf. Agg. After 

Class Summary Area (km2) Area (km2) Area (km2) 

No Change 777.58 890.45 756.66 865.55 729.01 855.12 

Herbaceous' To 'Trees' 50.98 7.64 36.49 4.26 39.25 6.37 

Trees' To 'Herbaceous' 30.38 4.54 47.26 25.31 77.25 32.33 

Trees' To 'Unvegetated' 17.95 0.73 49.18 11.02 36.24 9.37 

Unvegetated' To 'Trees' 30.23 3.76 17.53 0.99 25.37 3.94 

Sum 907.13 907.13 907.13 907.13 907.13 907.13 

Tree Difference  32.88 6.12 -42.42 -31.07 -48.87 -31.38 

Period 2008 to 2015 2008 to 2016     

Type Bf. Agg. After Bf. Agg. After   
Class Summary Area (km2) Area (km2)     

No Change 730.92 864.35 746.54 868.38   
Herbaceous' To 'Trees' 81.70 17.77 56.59 8.10   
Trees' To 'Herbaceous' 37.60 16.64 41.73 20.12   
Trees' To 'Unvegetated' 21.42 4.10 39.27 9.69   
Unvegetated' To 'Trees' 35.49 4.26 23.00 0.85   
Sum 907.13 907.13 907.13 907.13     

Tree Difference  58.17 1.29 -1.41 -20.86     

 

 

I compared the statistics of original thematic change and aggregated thematic 

change with tables and figures. Figure 48 shows a large brush control area for different 

years and the thematic change detection maps in the original format.  
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Figure 48. Land cover change at a large brush management site in the study area. The 

NIR false-color images are 2008, 2010, 2012 (above) and 2014, 2015, 2016 (below) 

from left to right. Below are the original thematic change maps showing land cover 

change. On top from left to right, the thematic change maps are 2008-2010, 2008-2012, 

2008-2014. Below from left to right 2008-2015 and 2008-2016 thematic change maps 

are shown. Dark color indicates no change, yellow indicates a change from trees to 

herbaceous, white indicates a change from trees to unvegetated, and green indicates a 

change from herbaceous or unvegetated to trees. 
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Aggregated thematic change maps are shown in Figure 49 for the same location. 

Aggregation of change detection classes yielded very distinctive results. The potential of 

representing changes resulting from brush control activities and brush encroachment 

increased by the aggregation because smaller changes due to forage production and loss 

were eliminated. 

 

 

Figure 49. Aggregated thematic change maps from 2008 to all other years (with 2010, 

2012, 2014 above and 2015 and 2016 below and aligned from left to right). Dark color 

indicates no change, yellow indicates change from trees to herbaceous, and white 

indicates change from trees to unvegetated. 

 

 

According to the original change detection analysis, the total change between 

trees and the other two classes ranged from 14% to 20 % of the total area. On the other 

hand, aggregated change detection statistics indicated that total interclass changes varied 
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between 1.84% and 6.83% of the total area. Since the changes between these classes 

were multi-directional, the final gain and loss values were important. The intensity of 

brush control peaked between 2012 and 2014. I also observed this before change 

detection analysis by visual interpretation of both classified and unclassified images as 

demonstrated in Figure 50. 

 

Figure 50. Land cover change at a brush management cite in the study area. Images 

from left to right are 2008, 2012 and 2016 with the NIR false color composites above 

and the classified images below. 

 

The largest brush management activities took place between 2008 and 2014 and 

covered an area of 48.87 square kilometers (5.39 % of the total area). Figure 51 shows 

the spatial distribution of brush control activities took place in the entire study area 

between 2008 and 2014. 
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Figure 51. Spatial distribution of change from juniper cover to herbaceous and barren 

(from 2008 to 2014). 
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IV.3 Statistical Relationship Between Annual Rainfall, Tree Cover and Water Yield 

According to the results of the multiple regression analysis shown in Table 42, 

93% of the change in the water yield can be explained jointly by annual rainfall and tree 

cover with a 95% confidence level. However, the effect of tree cover was insignificant 

(p-value = 0.663) while rainfall had a significant impact (p-value = 0.032).  

 

Table 42. Multiple regression results of annual precipitation, tree cover, and water  

yield. 

Regression Statistics 

Multiple R 0.964     
R Square 0.93     
Adjusted R Square 0.883     
Standard Error 7.20     
Observations 6         

ANOVA 

  df SS MS F 

Significance 

F 

Regression 2 2065.79 1032.89 19.92 0.019 

Residual 3 155.53 51.84   

Total 5 2221.32       

  Coefficients 

Standard 

Error t Stat P-value   

Intercept -57.48 48.91 -1.18 0.33  

Tree Cover(km2) 0.056 0.12 0.48 0.66  
Annual Rainfall 

(mm) 0.101 0.03 3.80 0.03  

 

 

Linear regression results of water yield-rainfall and water yield-tree cover is 

shown in Table 43. All in all, the impact of tree cover on water yield wasn’t significant 

at the 5% significant level in both statistical tests. This result, though derived from a 

small sample, is counterintuitive to the findings of some previous studies in which they 
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found brush management led to a positive impact on water yield [13, 16, 30]. This study 

revealed that an area of about 42 square kilometers was converted from brush to 

herbaceous and unvegetated in 2012. Although the annual rainfall in 2012 (557.18 mm) 

was higher than that in 2009 (475.29 mm) and 2011 (325.9 mm), the water yield 

percentage in 2012 (3.57%) remained below that in 2009 (5.40%) and 2011 (5.13%). 

 

 

Table 43. Linear regression of water yield on rainfall (top) and tree cover (bottom). 

Summary of Fit (Rainfall and Water Yield) 

RSquare 0.93     

RSquare Adj 0.91     

Root Mean Square Error 6.47     

Mean of Response 37.55     

Observations (or Sum Wgts) 6         

Analysis of Variance (Rainfall and Water Yield) 

Source DF SS MS F Ratio Significance 

Model 1 2053.80 2053.8 49.04 0.0022 

Error 4 167.53 41.88   

C. Total 5 2221.32    

Summary of Fit (Tree cover and Annual Water Yield) 

RSquare 0.59     

RSquare Adj 0.49     

Root Mean Square Error 15.03     

Mean of Response 37.55     

Observations (or Sum Wgts) 6     

Analysis of Variance (Tree cover and Annual Water Yield) 

Source DF SS MS F Ratio Significance 

Model 1 1317.46 1317.46 5.83 0.0732 

Error 4 903.87 225.97   

C. Total 5 2221.32       
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Figure 52. Annual tree cover, rainfall and water yield in the study area. 

 

 

Figure 52 shows the annual water yield, tree cover and rainfall of all years having 

the data. The measured water yield was the lowest in 2014 which also had the lowest 

tree cover of all years included in the analysis. Besides, the amount of rainfall in 2014 

(484.9 mm) was higher than that in 2009 (475.29 mm). The decline in the water yield in 

2012 and 2014 could be resulted from the increased surface runoff due to a significant 

amount of brush removal in those years. Because the study area is composed of karst 

watersheds, karstic features like depressions and sinkholes can trap the water coming via 
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overland flow. The study area falls into a semi-arid climate zone. The water accumulated 

especially in uncovered sinkholes and depressions can easily be evaporated following 

the storm events due to relatively high potential evapotranspiration rates in semi-arid 

regions.  

According to Dammeyer et al., water is stored in the deeper parts of the epikarst 

and cannot be accessed by the juniper roots [22]. They noted that previous water content 

of the soil and pattern of the rainfall are key factors which can enable bypass flow and 

generate deep recharge [22]. The results of the statistical tests and observations also 

comply with the finding of Wilcox and Huang (2010) that in karst watersheds where 

springs exist, and soils are shallow, degradation (removal of vegetative cover, mostly 

human-induced) leads to a reduction in water yield. They also marked that brush 

encroachment favored the increase in water yield in such an environment where 

baseflow is the dominant component of the stream flow [12]. I found that baseflow 

contribution to streamflow accounts for about 80% of the total flow in the study area. 

This finding also supports the notion that the infiltration capacity of soil was reduced 

following the removal of junipers reducing the groundwater flow and stream flow [12].  
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IV.4 Quantified 3rd Level LULC Classes within The NLCD 2011 Classes 

The area of varying land cover features which are included in the NLCD 2011 

LULC map categories for the study area is shown in Table 44. The quantification of the 

higher-level classes in each NLCD category indicated that barren area computed by the 

aerial image classification involved in every major NLCD land use cover classes with 

varying intensity. The barren area in NLCD classes ranged from 7.86% in evergreen 

forest class to 17.98% in brush class. This outcome explains the higher surface runoff 

initially simulated by the SWAT-NAIP model. Because the SWAT model clumped 

scattered barren pixels in a subbasin, the surface runoff estimated by SWAT-NAIP 

models was higher than the SWAT-NLCD and SWAT-LANDSAT models before 

parameterizations applied to the models. So, it is obvious that the model cannot account 

for the full connectivity between different land cover types. 

Another point to make, the oak cover was quantified inside the deciduous 

category covered 10.55% of the class area while juniper covered 68.55%. This result 

indicates the low accuracy of NLCD data, especially in mapping deciduous tree cover. 

Furthermore, this result implies that NLCD data cannot provide sufficiently precise 

information on land use cover. Even though the classification scheme of the NLCD and 

aerial image classifications are different, higher resolution image classifications can be a 

much better alternative for supporting decision making in natural resource management. 
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Table 44. Area of each land use and cover class mapped using higher-resolution aerial 

images inside the community-level classes of the NLCD 2011 dataset.  

NLCD 2011 

(30m) 

Area 

(Km2) 

Percent 

Study 

Area 

Higher Res. Map 

(1m) 

Area in 

NLCD 

Class 

(Km2) 

Area % 

Brush 543.37 59.91 

Juniper 166.93 30.72 

Herbaceous 210.29 38.70 

Oak 66.75 12.28 

Barren 97.68 17.98 

Shadow 0.02 0.00 

Water 0.88 0.16 

Urban/Built-up 0.43 0.08 

Evergreen 

Forest 
225.67 24.88 

Juniper 152.11 67.41 

Herbaceous 15.52 6.88 

Oak 40.04 17.74 

Barren 17.75 7.86 

Shadow 0.01 0.00 

Water 0.15 0.07 

Urban/Built-up 0.01 0.01 

Deciduous 

Forest 
92.31 10.18 

Juniper 63.29 68.55 

Herbaceous 8.91 9.65 

Oak 9.74 10.55 

Barren 10.31 11.17 

Shadow 0.00 0.00 

Water 0.04 0.05 

Urban/Built-up 0.01 0.01 

Grassland/ 

Herbaceous 
23.56 2.60 

Juniper 5.17 21.93 

Herbaceous 11.14 47.30 

Oak 3.03 12.87 

Barren 4.06 17.23 

Shadow 0.00 0.01 

Water 0.12 0.52 

Urban/Built-up 0.04 0.16 
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IV.5 Model Results 

IV.5.1 Calibration and Sensitivity Analysis 

The results of the sensitivity analysis are shown in Table 45 revealed that 

SOL_AWL, GW_DELAY, GWQMN, CH_K2, and SOL_K were the most sensitive 

parameters. While CN2 was reported by most studies to be one of the most sensitive 

parameters, the sensitivity of CN2 for the model was insignificant. Because the models 

are calibrated by the incorporation of manual and automatic calibration are very rare 

may explain this outcome. To elaborate, because I adjusted CN2 for each major land use 

and cover class and hydrological soil group based on the values from the most recent 

literature, before importing the model simulation into SWAT-CUP, no significant further 

adjustments were made to CN2 parameters by the SUFI2 algorithm. Thereby, I was able 

to decrease the model uncertainty caused by CN2 values. Similarly, the uncertainty 

decreased for a considerable number of parameters following the adjustments prior to 

autocalibration. So, beginning even from the first iteration in SWAT-CUP, I could 

obtain satisfactory uncertainty estimates for the calibration of the model considering the 

R square and NSE. Table 46 shows the results of the calibration of the pre-processed and 

default SWAT-NAIP model. 
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Table 45. The results of the sensitivity analysis conducted by following the automatic 

calibration of previously adjusted parameters. 

PARAMETER SENSITIVITY ANALYSIS 

Par.Number Parameter Name Function t-Stat P-Value 

1 
SOL_AWC(..).sol absolute 16.19 0.00 

2 
GW_DELAY.gw replace 4.70 0.00 

3 
GWQMN.gw replace 3.11 0.00 

4 
CH_K2.rte replace -1.89 0.06 

5 
SOL_K(..).sol relative -1.83 0.07 

6 
RCHRG_DP.gw replace -1.23 0.22 

7 
ESCO.hru replace -1.23 0.22 

8 
ALPHA_BF.gw replace -1.07 0.29 

9 
OV_N.hru replace 0.83 0.41 

10 
SURLAG.bsn replace 0.64 0.52 

11 
GW_REVAP.gw replace 0.60 0.55 

12 
CH_K1.sub replace 0.23 0.82 

13 
CN2.mgt relative 0.12 0.90 

14 
REVAPMN.gw replace 0.11 0.92 

15 
CANMX.hru replace 0.04 0.97 
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Table 46. Pre-Processed and default SWAT-NAIP Calibration Results. 
SWAT-NAIP PRE-PROCESSED MODEL CALIBRATION RESULTS (2012-2015) 

Iteration 

No 

Simulation 

Count 

Crack 

Flow 

Karst Features 

Considered 

Par. 

Count 

R 

Square  NSE  

Mean 

Sim. 

Mean 

Obs. PBIAS 

3 500 Active YES 49 0.89 0.63 1.44 0.93 -55.7 

7 250 Active YES 50 0.67 0.6 1.2 0.93 -29.9 

8 650 Active YES 50 0.71 0.63 1.22 0.93 -31.8 

SWAT-NAIP DEFAULT MODEL CALIBRATION RESULTS (2012-2015) 

Iteration 

No 

Simulation 

Count 

Crack 

Flow 

Karst Features 

Considered 

Par. 

Count 

R 

Square  NSE  

Mean 

Sim. 

Mean 

Obs. PBIAS 

3 250 Inactive NO 37 0.54 -2.43 1.98 0.93 -114.5 

5 100 Inactive YES 39 0.49 0.48 0.93 0.93 -0.7 

7 250 Inactive YES 39 0.58 0.57 0.90 0.93 2.6 

11 75 Inactive YES 30 0.61 0.6 0.89 0.93 4.3 

 

 

Every best parameter set of the calibrated pre-processed models yielded 

significantly higher mean values and percent bias. I reported the best parameters of two 

iterations for the pre-processed model calibration which is shown in Table 47.  

 

 

 

 

 

 

 

 

 



 

169 

 

Table 47. The best parameters of the pre-processed SWAT-NAIP calibration from 

iterations 7 and 8. 

Parameters Func. LULC 

Main 

Chnl 

Flow 

Hyd. 

Grp 

Pre-processed 

Model Value  
ITER 7 

ITER  

8 

1 cn2.mgt replace JUNI  A 25 18.466 18.343 

2 cn2.mgt replace JUNI  B 38 37.521 37.609 

3 cn2.mgt replace JUNI  C 48 44.291 44.310 

4 cn2.mgt replace JUNI  D 53 52.085 51.520 

5 cn2.mgt replace OAK  A 45 23.787 23.807 

6 cn2.mgt replace OAK  B 66 34.756 40.531 

7 cn2.mgt replace OAK  C 77 53.218 53.751 

8 cn2.mgt replace OAK  D 83 64.910 65.675 

9 cn2.mgt replace RNGE  A 49 35.791 35.884 

10 cn2.mgt replace RNGE  B 69 57.898 58.465 

11 cn2.mgt replace RNGE  C 79 60.735 61.017 

12 cn2.mgt replace RNGE  D 84 65.972 63.549 

13 cn2.mgt replace BARR  A 77 65.155 64.994 

14 cn2.mgt replace BARR  B 86 66.310 66.512 

15 cn2.mgt replace BARR  C 91 70.139 69.213 

16 cn2.mgt replace BARR  D 94 73.496 75.034 

17 esco.hru replace JUNI   0.53 0.463 0.457 

18 esco.hru replace OAK   0.6 0.633 0.635 

19 esco.hru replace RNGE   0.65 0.632 0.645 

20 esco.hru replace BARR   0.7 0.630 0.638 

21 canmx.hru replace JUNI   3.17 5.829 5.833 

22 canmx.hru replace OAK   3 4.140 3.888 

23 canmx.hru replace RNGE   1.8 2.197 2.408 

24 sol_awc(..).sol add    0.1(a) 0.066 0.121 

25 gw_delay.gw replace  Cont.  1 218.578 232.119 

26 rchrg_dp.gw replace  Cont.  0.7 0.538 0.463 

27 ch_k2.rte replace  Cont.  default 31.320 16.486 

28 alpha_bf.gw replace  Cont.  0.012 0.012 0.011 

29 sol_k(..).sol relative  Cont.  default -0.305 -0.293 

30 gwqmn.gw replace  Cont.  5 495.966 502.494 

31 revapmn.gw replace  Cont.  500 303.404 296.323 
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Table 46 continued 

Parameters Func. LULC 

Main 

Chnl 

Flow 

Hyd. 

Grp 

Pre-processed 

Model Value  
ITER 7 

ITER  

8 

32 revapmn.gw replace   Intrm.   500 301.016 295.568 

33 gwqmn.gw replace  Intrm.  5 2.83 1.939 

34 sol_k(..).sol relative  Intrm.  default 0.168 0.182 

35 gw_delay.gw replace  Intrm.  1 0.205 0.493 

36 rchrg_dp.gw replace  Intrm.  0.7 0.825 0.846 

37 alpha_bf.gw replace  Intrm.  0.012 0.998 0.983 

38 ch_k2.rte replace  Intrm.  default 260.06 257.887 

39 gw_revap.gw replace JUNI   0.065 0.088 0.087 

40 gw_revap.gw replace OAK   0.06 0.068 0.07 

41 gw_revap.gw replace RNGE   0.056 0.048 0.051 

42 gw_revap.gw replace BARR   0.05 0.054 0.053 

43 ov_n.hru replace JUNI   0.5 0.764 0.755 

44 ov_n.hru replace OAK   0.4 0.745 0.74 

45 ov_n.hru replace RNGE   0.3 0.205 0.204 

46 ov_n.hru replace BARR   0.2 0.108 0.105 

47 surlag.bsn replace JUNI   20 19.472 18.789 

48 surlag.bsn replace OAK   16 14.477 14.627 

49 surlag.bsn replace RNGE   12 9.62 9.004 

50 surlag.bsn replace BARR     8 6.751 6.201 

 

 

Unlike the pre-processed model calibration, default model calibration generated 

very comparable mean simulated flow to observed flow. With respect to very close 

average simulated flow, percent bias was very low for the calibration of the default 

SWAT model. This implied that crack flow activation led the model to misrepresent a 

sizable portion of the small peaks which is demonstrated in Figure 53. 
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Figure 53. The best simulation results of iteration 8 for the pre-processed SWAT-NAIP 

calibration.   

 

 

Calibration of the default model without considering the subbasins with different 

flow conditions yielded very unsatisfactory results. The results shown in Figure 54 

indicated that the model substantially overestimated the streamflow and produced more 

peaks compared to the observed flow. 
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Figure 54. The best simulation result of iteration 3 for the default SWAT-NAIP 

calibration model. Karst features weren’t considered in the parametrization. 

 

 

Because karst watersheds are very heterogenous and complex, it is quite difficult 

to express a certain reason residing behind the overestimated flow. There is little 

potential that this negative bias can be substantially decreased with a thorough 

examination of parameters and more iteration if the cumulative flow measured at the 

USGS gage missing some portion of the flow due to the transport of water via 

subsurface conduits.  Because the NSE and R2  values crossed the minimum threshold to 

be counted as satisfactory and percent bias values were more satisfactory for the default 

SWAT-NAIP model which considers the karst features, I used the best parameter set 

shown in Table 48 derived from the calibration of the default SWAT model for the 

model validation.  
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Table 48. The best parameters of the iteration 7 for the default SWAT-NAIP calibration. 

NO Parameter Name          

Math. 

Operation LULC 

 Fitted 

Value      Min value       

Max 

value SUBBASINS 

1 CN2.mgt  Relative JUNI -0.100 -0.123 0.019 

All 

2 CN2.mgt Relative OAK -0.090 -0.126 0.035 

3 CN2.mgt Relative RNGE -0.172 -0.269 -0.090 

4 CN2.mgt Relative BARR -0.315 -0.316 -0.226 

5 ESCO.hru Replace JUNI 0.549 0.501 0.559 

6 ESCO.hru Replace OAK 0.537 0.500 0.580 

7 ESCO.hru Replace RNGE 0.612 0.500 0.800 

8 ESCO.hru   Replace BARR 0.785 0.600 0.900 

9 CANMX.hru  Replace JUNI 4.119 3.795 4.600 

10 CANMX.hru Replace OAK 3.899 3.091 4.366 

11 CANMX.hru  Replace RNGE 1.524 1.250 2.102 

12 SOL_AWC(..).sol  Add 
 

0.523 0.335 0.551 

13 GW_DELAY.gw     Replace   147.591 80.192 241.433 

With 

Continuous 
Flow 

14 RCHRG_DP.gw  Replace 
 

0.479 0.403 0.711 

15 CH_K2.rte      Replace 
 

6.264 0.000 66.642 

16 ALPHA_BF.gw  Replace 
 

0.014 0.012 0.016 

17 SOL_K(..).sol    Relative 
 

-0.495 -0.494 -0.496 

18 GWQMN.gw       Replace 
 

258.323 184.417 454.146 

19 REVAPMN.gw     Replace   439.884 406.787 731.270 

20 REVAPMN.gw      Replace   145.929 129.749 390.709 

With Losing 

Streams 

21 GWQMN.gw        Replace 
 

5.653 2.493 5.996 

22 SOL_K(..).sol  Relative 
 

0.195 0.175 0.226 

23 GW_DELAY.gw     Replace 
 

0.551 0.417 0.981 

24 RCHRG_DP.gw     Replace 
 

0.780 0.665 0.989 

25 ALPHA_BF.gw     Replace 
 

0.933 0.898 0.978 

26 CH_K2.rte         Replace   307.433 258.810 313.442 

27 GW_REVAP.gw      Replace JUNI 0.070 0.065 0.076 

All 

28 GW_REVAP.gw       Replace OAK 0.062 0.060 0.070 

29 GW_REVAP.gw      Replace RNGE 0.033 0.028 0.049 

30 GW_REVAP.gw       Replace BARR 0.049 0.032 0.051 

31 OV_N.hru         Replace JUNI 0.562 0.417 0.606 

32 OV_N.hru       Replace OAK 0.469 0.458 0.590 

33 OV_N.hru        Replace RNGE 0.293 0.260 0.344 

34 OV_N.hru       Replace BARR 0.119 0.101 0.127 

35 SURLAG.bsn        Replace JUNI 21.861 16.415 24.000 

36 SURLAG.bsn        Replace OAK 11.833 9.876 13.654 

37 SURLAG.bsn       Replace RNGE 8.256 5.000 9.000 

38 SURLAG.bsn        Replace BARR 6.525 4.680 8.606 

39 ESCO.bsn         Replace   0.678 0.585 0.783 
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The best simulation result of the default SWAT-NAIP model with the parameter 

set 7 is shown in Figure 55. As shown in Figure 55, simulated streamflow was more 

comparable to observed streamflow given the higher streamflow was simulated by the 

pre-processed SWAT-NAIP model. 

 

 

Figure 55. The best simulation of the default SWAT-NAIP calibration iteration 7. 

 

 

Calibration of the SWAT-LANDSAT model produced satisfactory results. Table 

49 shows the results of the successful iterations derived from the calibration of the 

SWAT-LANDSAT model. Figure 56 and 57 show the relationship between simulated 

streamflow by the SWAT-LANDSAT model and observed streamflow. 
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Table 49. Calibration results of the SWAT-LANDSAT model. 

DEFAULT SWAT-LANDSAT MODEL CALIBRATION RESULTS (2012-2015)   

Iteration 

No 

Simulation 

Count 

Crack 

Flow 

Karst 

Features 

Considered 

Par.    

Cnt. 
R2 NSE  

Mean 

Sim. 

Mean 

Obs. 
PBIAS 

6 150 Inactive YES 59 0.6 0.58 1.08 0.93 -16.15 

8 500 Inactive YES 44 0.69 0.68 0.99 0.93 -6.80 

 

 

 

Figure 56. The best simulation result of iteration 6 for the SWAT-LANDSAT 

calibration. 

 

 

 

 

0

1

2

3

4

5

6

7

1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11

2012 2013 2014 2015

    simulated observed



 

176 

 

 

Figure 57. The best simulation result of iteration 8 for the SWAT-LANDSAT 

calibration. 

 

 

IV.5.2 Results of the Model Validation 

I used the parameter set 7 and 11 from the calibration of the default SWAT-

NAIP model for validation. For validation of the pre-processed SWAT-NAIP model, I 

used the calibrated parameter set 8. Table 50 shows the results of the validation of the 

default and pre-processed SWAT-NAIP models. 
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Table 50. Validation results of the SWAT-NAIP models for the data period of 2016-

2017. 

   

Parameter 

Set Number 

Model 

Category 

Warm-

Up Year 

Cnt R2 NSE 

Mean        

Simulated 

Mean 

Observed 

 

BIAS 

(%) 

8 PRE-PROC. 0 0.07 -2.14 1.07 1.46 26.8 

8 PRE-PROC. 4 0.42 0.09 1.79 1.46 -22.9 

7    DEFAULT 4 0.15 0.14 1.49 1.46 -2.2 

11    DEFAULT 4 0.07 0.05 1.55 1.46 -6.1 

 

 

For the SWAT-LANDSAT model, calibrated parameter sets 6 and 8 were used 

respectively during the validation in SWAT-CUP. As I mentioned earlier, I tried to 

validate the SWAT-NLCD model for the 2012-2015 period with the parameters obtained 

for the Nueces Headwaters Watershed in a previous modeling study [47]. Table 51 

shows the validation results of the SWAT-LANDSAT and SWAT-NLCD models. 

 

Table 51. Validation results of the SWAT-LANDSAT and SWAT-NLCD models. 

THE SWAT-LANDSAT MODEL (2016-2017) 

 

Parameter 

Set 

Number   

Simulation 

Count 

Crack 

Flow 

Karst 

Features 

Considered 

Parameter 

Count 
R2  NSE  

Mean 

Sim. 

Mean 

Obs. 
PBIAS 

6 150 Inactive YES 59 0.01 -9.55 2 1.46 -37.30 

8 500 Inactive YES 44 0.13 0.01 1.58 1.46 -7.90 

THE SWAT-NLCD MODEL (2012-2015) 

 

Parameter 

Set 

Number   

Simulation 

Count 

Crack 

Flow 

Karst 

Features 

Considered 

Parameter 

Count 
R 2 NSE  

Mean 

Sim. 

Mean 

Obs. 
PBIAS 

1 150 Inactive YES 17 0.58 -3.77 2.57 0.92 -178.4 
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Unfortunately, none of the calibrated parameter sets yielded satisfactory R2 and 

NSE statistics for the validation processes. However, the percent bias obtained from the 

validation processes was the lowest and within the very reasonable range for the default 

SWAT-NAIP model. Figure 58 shows the observed and simulated streamflow obtained 

from the default SWAT-NAIP model which produced relatively better results.  

 

 

Figure 58. Validation simulation of the SWAT-NAIP model with calibrated parameter 

set 7 of the default model.  
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SWAT-CUP project. I imported the best parameters of the iteration 8 obtained from the 

pre-processed SWAT-NAIP model calibration. Because a 4 year-warm-up period 

specified in this validation, the results were different. R2 value increased from 0.07 to 

0.42 and NSE increased from -2.14 to 0.09. Percent bias was the statistics changed the 

most. It changed from a positive value of 26.8 to a negative value of -22.9. This outcome 

underscores the necessity of specifying at least one year as the model’s warm-up period. 

Figure 60 shows the simulation result of the pre-processed SWAT-NAIP model 

validation after defining a 4-year warm-up period.  

 

 

Figure 59. The result of the validation simulation of the SWAT-NAIP model with the 

parameter set 8 from the preprocessed model calibration. No warm-up period was 

specified. 
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Figure 60. Validation simulation of the pre-processed SWAT-NAIP model after 

specifying a 4-year warm-up period. 

 

 

The percent bias resulted from the validation of the SWAT-LANDSAT model 

was also in the acceptable range whereas the R2 and NSE remained below the acceptable 

range. Figure 61 shows the simulation result of the SWAT-LANDSAT model validation.   

Parameters used to validate the SWAT-NLCD model is shown in Table 52. 

Although the calibrated parameters proved to yield good statistics in the Jain et al.’s 

study for the same ecohydrological and geological setting, they didn’t yield good 

statistics for the validation of the SWAT-NLCD model in this study. Both NSE and 

PBIAS statistics were below the acceptable range in the validation of the SWAT-NLCD 

model. However, the R2 value of the SWAT-NLCD validation was 0.58. Figure 62 

shows the streamflow simulated by the validation of the SWAT-NLCD model and 

observed streamflow.  
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Figure 61. The simulation result of the SWAT-LANDSAT model validation with the 

calibrated parameter set 8 from the calibration of the model.  

 

 

 

Table 52. Parameters based on two previous studies used for SWAT-NLCD model 

validation. Adapted by Jain et al. (2015) and Qiao et al (2015).  

# Parameter Name 
Land 

Cover 
Method Subbasins 

Fitted 

Value 
Min.Value Max.Value 

1 CN2.mgt         Relative ALL -0.15 -0.16 -0.15 

2 ESCO.hru   Add ALL -0.12 -0.09 -0.12 

3 CANMX.hru    JUNI Replace ALL 3.18 3.15 3.18 

4 CANMX.hru    OAK Replace ALL 2.60 2.50 3.00 

5 CANMX.hru     RNGE Replace ALL 1.82 1.70 1.90 

6 CANMX.hru      RNGB Replace ALL 2.13 1.80 2.20 

7 SOL_AWC(..).sol   Add ALL 0.15 0.09 0.15 

8 GW_DELAY.gw      Replace SUBBASINS 
WITHOUT 

SPRINGS 

AND 

SINKHOLES 

216.08 215.00 220.00 

9 CH_K2.rte        Replace 51.35 49.00 52.00 

10 ALPHA_BF.gw     Replace 0.015 0.01 0.02 

11 SOL_K(..).sol    Relative -0.28 -0.20 -0.30 

12 GWQMN.gw       Replace 

SUBBASINS 

WITH 

LOSING 
STREAMS 

4.50 4.00 6.00 

13 SOL_K(..).sol    Relative 0.14 0.14 0.17 

14 GW_DELAY.gw    Replace 1.46 0.90 1.50 

15 RCHRG_DP.gw     Add 0.20 0.19 0.21 

16 ALPHA_BF.gw     Replace 0.98 0.90 1.00 

17 CH_K2.rte        Replace 245.57 245.00 255.00 

 

 

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

2016 2017

  simulated observed



 

182 

 

 

Figure 62. The simulation result of the SWAT-NLCD validation with the calibrated 

parameters obtained from the literature.  

 

 

Although the calibration of the default and pre-processed models produced 
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results compared to the calibration methods accounting for them. Hence, more work is 

required to better identify and quantify karst features like sinkholes, springs and losing 

streams in the study area. However, this is beyond the scope of this study given the large 

size of the watershed. Field studies could take months or even years to map all karst 

features thoroughly in a large karst watershed like this one.  

Second, the previous studies conducted on karst watersheds have modeled either 

small subbasins with short periods or large watersheds with longer periods. This study, 
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on the other hand, strives to model a large watershed with a relatively short period. 

Because antecedent climatic conditions used to calibrate the model are very decisive to 

the hydrological response of the karst watershed to future weather events like storms, 

longer periods of calibration and validation data could yield greater consistency between 

the calibration and validation results. For example, Jain et al. modeled the same 

watershed by specifying 15 years for each of the calibration and validation periods. A 

longer time period can reduce the impact of extreme values of some factors (e.g., 

rainfall) in a specific year on the calibration and validation results, increasing their 

agreement. 

Third, most previous studies modeled the hydrological response of the watershed 

to LULC changes, usually based on the same LULC data used for model calibration. 

Therefore, the average values of climate and other variables like land cover are more 

likely to be similar in the two periods selected for model calibration and validation. 

Thus, obtaining comparable results from the calibration and validation of the models 

became a much easier task. With such a modeling approach, satisfactory calibration 

results can usually guarantee satisfactory validation results due to similar ecological, 

geological and climatological characteristics of the two periods. In contrast, the 

calibration and validation periods specified in this study had very distinct climatic and 

ecological conditions. For example, the average rainfall of the calibration period was 

644 mm while it was 715 mm in the validation period. The unusually high rainfall in 

2015 (928 mm) increased the average rainfall of the calibration period, forcing the 
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model to capture the impact of the extreme event at the cost of neglecting the normal 

conditions prevailing during most of the data period.  

At least about 8% of the total juniper cover was removed from 2008 to 2014 by 

human or climate-induced factors. This indicated that there was LULC change even in 

such a short modeling period. This implies that using a single LULC data of a given year 

to model the impact of LULC change over a longer period conflicts with the primary 

goals of the studies by ignoring the potential land cover changes over the modeling 

period. Additionally, calibrating the model for the whole watershed by focusing on a 

specific type of land use and cover change in a small portion of the watershed can also 

underestimate the potential changes in the rest of the study area. In contrast, I used 

different LULC datasets for each of the calibration, validation and verification periods. It 

is obvious that calibrated parameters can’t always ensure that the SWAT model 

estimates the streamflow successfully when the calibration and validation periods have 

distinct LULC and climate features. This situation may have been compounded given the 

heterogeneity and unpredictability of the karst watershed.  

 Fourth, although the stream flow data measured by the USGS has been used very 

widely for conditioning the hydrological models, this approach have limitations. For 

example, in late May 2015, the stream flow couldn’t be measured by the USGS for four 

days and had to be estimated. But, the estimated streamflow was quite high compared to 

the records of the previous and following days. Given the excessive rainfall in May 

2015, this could be reasonable. However, there is still some deficiency associated with 

using only the observed value of one variable from a single location. This limitation was 
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also addressed by Qiao et al. and Baffaut et al [18, 49]. Also, because the location of the 

gage was not in the final outlet of the Headwaters Nueces River, some of the incoming 

flow may have followed a separate way towards to the final outlet via underground 

conduits which are common in karst geological settings.  

 The SWAT-NLCD model couldn't produce satisfactory result although I used 

previously reported calibrated parameters. The only difference was made to the SWAT-

NLCD model validation was the inclusion of canopy maximum storage (CANMX) 

parameters based on Qiao et al.’s study. It was a necessary step because the SWAT 

model didn't have any value for canopy maximum storage values of different land cover 

types in the HRU parametrization. I discussed this with Dr. Srinivasan and was told that 

CANMX values should be inputted to the model. To conclude, even a model constructed 

with the same source of input data (soil, land use cover, and elevation) and 

parameterized with the published calibrated parameters for the same hydrological setting 

couldn’t capture the observed streamflow satisfactorily for a period having a distinct 

climate. 

 The relatively better calibration and validation results obtained from the SWAT-

NAIP models indicated that the resolution of the DEM and LULC data can have an 

impact in the estimation of the streamflow. A similar finding was formerly reported by 

Fishers et al. (2017) [52]. They emphasized that this impact was more obvious when 

estimating the total suspended sediment yield. 
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IV.5.3 Results of the Verification and Scenario Analysis 

I used the parameter set 7 obtained from the calibration of the default SWAT-

NAIP model for the model verification and scenario simulation. Because it produced 

satisfactory statistics for the calibration period and the highest values of R2 and NSE 

(though unsatisfactory), the calibrated parameter set 7 was the best alternative. Because 

there is no measured streamflow for 2008, I specified this year as the model’s warm-up 

period. Using the same parameter ranges which yielded the best parameter set from 

iteration 7 in SWAT-CUP, I ran an iteration with the same number of simulations as in 

the calibration process. The R2 and NSE were also unsatisfactory for the verification 

period as shown in Table 53. But the PBIAS value was 15.8 and in the acceptable range. 

 

Table 53. Whole verification period modeling results. 

SWAT-NAIP MODEL VERIFICATION RESULTS (2009-2011) 

Par 

Set  

Sim. 

Count MODEL 

Karst 

Features 

Considered 

Par. 

Count R2   NSE  

Mean  

Sim. 

Mean  

Obs. PBIAS 

7 250 DEFAULT YES 39 0.03 -0.53 0.63 0.77 15.8 

 

 

I realized that the SWAT model produced better-simulated streamflow for the 

second half of the period from June 2010 to December 2011. R2 value was 0.44 for this 

period. The simulated results were even closer to the observed values for 2011 with an 

R2 of 0.56 which is reported in Table 54. But for the whole verification period, these 

values were very low depending on the simulation of the first half of the period. The 

poor performance of the model for the first half of the period may have been resulted 
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from the short (1 year) model warm-up period. Figure 63 shows the verification 

simulation for the whole period and Figure 64 shows the simulation for the second half 

of the period.  

 

 

Table 54. R2 value obtained from the SWAT-NAIP model for the second half and last 

year of the verification period. 

6/2010 to 12/2011 

Regression Statistics 

Multiple R 0.66 

R Square 0.44 

Adjusted R Square 0.41 

Standard Error 0.16 

Observations 19 

2011 

Regression Statistics   

Multiple R 0.75 

R Square 0.56 

Adjusted R Square 0.52 

Standard Error 0.14 

Observations 12 

 

 

I used the verification SWAT-NAIP model (pre-treatment/benchmark) results to 

compare the results of the scenario model (post-treatment). SWAT-CUP uses executable 

files to run SWAT model while doing autocalibration. However, the resulting parameters 

need to be updated manually using the on-interface tools. So, I updated every calibrated 

parameter for the verification model using the manual calibration helper on the interface. 

I used the same parameter values to update the scenario model.  
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Figure 63. Verification simulation of the SWAT-NAIP model with the parameters 

obtained from the default model calibration parameter set. 

 

 

 

 

 
 

Figure 64. Simulation result of the second half of the verification period. 
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The hydrological results obtained from the benchmark and scenario simulations 

were reported in Table 55. Although statistical values especially for the first half of the 

pre-treatment model were poor, I found simulated water yield, base flow, surface flow, 

and streamflow ratios were comparable to observed data. The average ET estimated by 

the benchmark model was about 460 mm per year. This result was comparable to the 

study of Bednarz et al. (2001) who conducted brush control feasibility studies in the 

several Texas watersheds including Nueces River Headwater watershed. They reported 

533 mm ET with brush condition and 471.62 mm ET without brush condition. The 

simulated ET was more comparable to the ET simulated in Afinowicz et all’s study 

(474.85 mm) [16]. But, there was very insignificant ET change between pre-treatment 

and post-treatment simulations in this study. Although CANMX, ESCO, GWREVAP 

parameters for Juniper were approximately two-fold of the range grass, the ET remained 

almost the same. This can be explained by the relatively low average rainfall of the 

period. Qiao et al. also reported that the ET was limited by the amount of rainfall in a 

relatively dry period resulting in an insignificant difference between juniper and range 

grass [18]. Some woody plants are very adaptive to water stress. When there is less 

rainfall they consume less when the rainfall is over a threshold they consume more.  
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Table 55. Results of the benchmark and scenario models. 

 
swat-naip           

benchmark 

model 

scenario model observed 

 Period 2009-2011 

Mean Precipitation(mm) 508.60 508.60 490 (IDW) 

Mean Water yield (mm) 25.07 24.33 26.59 

Water yield/Rainfall 0.0492 0.0478 0.054 

ET 459.50 459.70  

Baseflow/Total Flow 0.85 0.84 0.79 

Surface runoff/Total Flow 0.15 0.16 0.21 

 

 

The rainfall was about 350 mm in 2011 and remained below the 450 mm 

threshold proposed by Thurow and Wilcox as the minimum amount of rainfall required 

for a brush control to yield streamflow increase. But in 2009 and 2010 rainfall was over 

the proposed threshold. Simulated streamflow after juniper removal was higher only in 

May 2010 compared to pre-treatment model simulation. This finding was reasonable 

given the surface runoff contribution to total flow increase when there is sufficiently 

large runoff generating storm events. These results agree with the observational analysis. 

The mapped brush control in the study period was intensified in 2012 to 2014 removing 

at least about 8% of the juniper didn’t result in a distinct increase in the streamflow. On 

the contrary, the water yield to rainfall ratio was the lowest in these two years. The 

decline in the streamflow may have resulted from the increase in the surface runoff as 

predicted by the scenario model simulation.  
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The scenario simulation results illustrated by Figure 65 indicated that average 

surface runoff increased by about 8% following the juniper removal with a concurrent 

4.8% decrease in average baseflow which resulted in a 3% reduction in average water 

yield for the period. Baseflow ratio decreased by 1% after a hypothetical brush control. 

Because about 85% of the streamflow generated by the contribution of baseflow, water 

yield decreased slightly. This finding was in a good agreement with the study of Wilcox 

et al. (2010) in which they investigated the impact of woody plant encroachment on the 

streamflow of several watersheds in the Edwards Plateau including the Nueces River 

Watershed. They reported that in 3 out of the 4 watersheds, water yield increased 

fallowing the brush encroachment. The water yield also increased in the Nueces River 

was the minimum among those three watersheds. They reported that improved land 

cover condition due to juniper encroachment, the baseflow almost doubled depending on 

the higher infiltration capacity of the soil. 
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Figure 65. Before (above) and after (below) the simulation of the juniper removal.  
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CHAPTER V  

CONCLUSION 

 

Water yield from the semi-arid watersheds of Texas has long been under intense 

pressure due to changing climatic and ecological conditions. Rangelands in Texas have 

undergone considerable land use cover transformations in the last 150 years. The impact 

of the land use and cover change on the water yield has been investigated by several 

studies. These studies include long-term trend analysis of observed streamflow, and 

research using paired-catchment, experimental watershed, and hydrological modeling 

approaches.  

Expansion in the woody plant cover has been considered a threat to water budget 

due to reported higher water use of brush species like salt cedar and juniper. The studies 

investigating the impact of brush control on water yield are usually based on 

hydrological modeling conducted mostly on small and mesoscale watersheds. Most of 

the modeling studies suggested brush removals as a viable resource management 

alternative for obtaining more water from the watersheds. However, the results of these 

studies weren’t consistently confirmed by the observational field studies. Besides, the 

same or a single LULC dataset was used for both calibration and validation of the 

models. As a result, the data used for the model calibration and validation had similar 

climatic, geologic and ecologic conditions which were often sharply different from the 

conditions defined in the simulation scenarios. NLCD land cover data was widely used 

in these studies as the input land cover data to the SWAT model. However, the spatial 
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and temporal resolution of the NLCD is coarse. Therefore, the high model performance 

evaluation statistics obtained from these studies may be overrated in terms of the 

model’s applicability to simulating the defined simulation scenarios.  

The objectives of this study were to classify LULC types in the shadow areas of 

aerial images; to evaluate the complement between LULC data and ancillary data; to 

detect LULC changes covering the data period (2008-2017); and to assess the impact of 

land cover change on the water yield of the Nueces River Headwaters watershed by 

using multi-year and multi-sensor LULC data and the SWAT model. 

 National Agricultural Imagery Program (NAIP) and Landsat images were used to 

produce LULC maps of the study area (about 908 km2). Using higher-resolution NAIP 

images in image classification was more time consuming than using Landsat images. 

Based on the spatial resolution, classification schemes for NAIP and Landsat images 

were different. Higher-resolution LULC data was a requirement to quantify LULC 

change precisely for the 2008-2017 period. However, a sizable amount of shadow cover 

on the aerial images brought about a notable challenge. The average shadow cover in six 

aerial images used in this study accounted for 6.83% of the study area. The tradeoff 

between the temporal and spatial resolutions of the digital images (NAIP: higher spatial 

resolution, lower temporal resolution; Landsat: coarse spatial resolution, higher temporal 

resolution) was mitigated by the incorporation of multi-sensor data to image 

classifications. Thus, more than 99% of the shadow area was identified with a 92.68% 

average accuracy. Six higher-resolution (1 meter) LULC maps were derived from the 

National Agricultural Imagery Program (NAIP) images. The overall classification 
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accuracy using these maps ranged from 91.35% to 97.29%. I used a modified version of 

Anderson classification scheme to derive the LULC maps from Landsat 5 and Landsat 8 

scenes. The acquisition dates of Landsat images corresponded with the data year of the 

NAIP images. These maps generated overall classification accuracies ranging from 87% 

to 94.59%. 

Thematic change detection analysis was conducted using LULC maps derived 

from the NAIP images. The results revealed about an 8% (aggregated change detection) 

to 12.37% (original change detection) reduction in the total juniper cover of 2008 for the 

2008-2014 period due to human (e.g. brush control) and climate-induced (e.g. drought) 

factors. Considering the notable LULC change, 2012, 2016 and 2008 LULC data were 

used to construct the SWAT models for the calibration (2012-2015), validation (2016-

2017), and simulation scenario (2009-2011) periods, respectively. Also, the 

corresponding year’s Landsat classification maps were used to test the model’s 

sensitivity to different spatial resolutions and classification schemes of LULC data. The 

NLCD LULC data was used to construct a comparable model to validate formerly-

reported parameters for the Nueces Headwaters Watershed and junipers. 

Although satisfactory uncertainty estimates were obtained from the calibration of 

the model, the R2 and NSE values were degraded in the validation of the model. The 

model constructed with the NLCD data and parameterized with the previously-reported 

parameters didn’t yield satisfactory uncertainty estimates. A benchmark model was 

constructed for the 2009-2011 period using the most successful parameter set in the 

calibration and validation. Simulated baseflow, surface runoff, and total flow were 
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comparable to the observed data. A hypothetical 40% juniper removal scenario was 

simulated, and the results were compared with those of the benchmark model. An 8% 

increase in the average surface runoff, a 4.8% decrease in the average baseflow, and a 

3% reduction in the average water yield were simulated by the scenario. The results were 

reasonable given the higher contribution of the baseflow to the total streamflow in the 

study area (about 80% for the 2009-2017 period). 

Overall, LULC types of shadow area on higher-resolution images can be 

classified successfully with a straightforward method incorporating the multi-sensor 

LULC classification schemes. The high accuracy of multi-year and multi-sensor LULC 

maps revealed the benefits of ancillary data use in remote sensing image classification. 

Thematic change detection results indicated that the variability in LULC needs to be 

accounted for especially in hydrological modeling studies of large watersheds over a 

lengthy period. Because addressing a specific vegetation cover precisely is not possible 

with a coarser-resolution image classification scheme, the LULC maps derived from the 

higher-resolution NAIP images can be a viable alternative source of LULC data for 

hydrological modeling and LULC change monitoring.  

My study makes several contributions to LULC classification and hydrological 

modeling. First, I developed and tested an approach to detecting LULC types in shadow 

areas of remote sensing images. Second, I assessed the feasibility and benefits of using 

multi-sensor data for LULC classification. Third, to best of my knowledge, this study 

may be the first study conducted in a large karst watershed in the Edwards Plateau which 

accounted for the watershed-wide LULC changes for the entire modeling period. The 
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approaches and results generated from this study would be of value for future LULC 

classification and hydrological modeling, especially in semi-arid rangelands. 

This study, however, has limitations. The calibration and validation results of the 

SWAT model indicated that the model was somewhat sensitive to the resolution and 

classification scheme of the LULC data. The percent bias was lower for the model 

constructed with the higher-resolution LULC data. Poor uncertainty estimates obtained 

from the validation of the model imply that the model couldn’t sufficiently assess the 

variability in the LULC and weather data for the relatively short validation period in this 

specific karst watershed. Unlike the former modeling studies investigating the impact of 

shrub encroachment/management on the water yield of the same and nearby watersheds, 

this study couldn’t find an increase in the average water yield in the case of removing 

40% of junipers in the study area. This outcome may imply that the increase in the 

surface runoff following the brush management may lead to a decrease in the baseflow 

and water yield in the karst-influenced watershed where the baseflow ratio substantially 

outweighs the surface runoff ratio. However, better model uncertainty estimates are 

necessary to support decision making on shrub management. Hence, the future 

hydrological modeling studies should thoroughly investigate the LULC changes that 

took place in the watersheds within the entire modeling period and focus on improving 

the model uncertainty estimates. 
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