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ABSTRACT 

 

Soil salinity is a major constraint for crop production worldwide. Among many soil 

fertility issues associated with saline soils, phosphorus unavailability is most commonly 

noticed. Improving plant interactions with arbuscular mycorrhizal fungi (AMF) and other 

soil microbes have been widely shown to contribute to salinity tolerance and increase 

phosphorus (P) availability. However, there are many knowledge gaps to effectively 

improve AMF interactions in saline soils. Lower abundance of AMF is one of the 

limitations for increasing root colonization in saline soils. Supplementation of salt tolerant 

AMF spores is an emerging practice, however, identifying competent AMF species or 

combination of species beneficial at high salt concentration is a challenge. It is also not 

clear how introduced AMF species would interact with other native soil communities to 

influence phosphorus availability. Additionally, it is not clear whether improving soil 

conditions using a soil amendment can further enhance AMF interaction and colonization. 

In order to address these knowledge gaps, three experiments were conducted in a naturally 

saline soil to investigate: (1) the effects of AMF inoculation on plant growth and root 

colonization at different salinity levels, (2) the role of indigenous soil microbes with AMF 

inoculation to increase P availability to plants and (3) the combined effects of soil 

amendment and AMF inoculation on root colonization and P availability to plants. 

Microcosms were setup in growth chamber-based experiments to address above objectives 

separately. Results from the first experiment showed significantly different level of root 

colonization (p <0.05) among the three species of AMF inocula, and that colonization was 

generally higher with increasing salt concentrations, with some significant differences 
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between the inoculum species. Plant growth responses were significantly different between 

the AMF species as well. These results suggest that artificial inoculation can increase root 

colonization in saline soils, although at different levels by AMF species at different salinity 

levels. In the second experiment, soil sterilization significantly (p <0.05) reduced soil 

extractable P, ALP activity, phoD and fungal ITS gene abundances in the hyphosphere soil 

in both AMF-inoculated and uninoculated treatments. However, AMF inoculation in 

unsterilized soils resulted in a significantly (p <0.05) higher plant P uptake compared to 

uninoculated in both sterilized and unsterilized soils. These results indicate that AMF-

hyphosphere microbial community interactions play a synergistic role in increasing P 

availability in salt-affected soils. Findings of the third experiment indicated that combined 

application of BC and AMF significantly improved (p <0.05) plant shoot and root growth, 

plant P uptake, extractable P in bulk soil, and microbial community abundance in the 

rhizosphere compared to control. However, addition of BC significantly (p <0.05) reduced 

AMF colonization in both rhizosphere and bulk soils. These results suggest that combined 

application of BC and AMF can significantly increase plant production and P availability 

in salt-affected soils. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Salinity as a global agricultural issue 

Soil salinization is a persistent abiotic stress limiting agricultural productivity in 

cultivated areas around the world, especially in arid and semi-arid regions. It has been 

estimated that global human population will reach 8 billion by the year 2025. Thus, to meet 

growing food demand, salt-affected soils around the globe need to be improved to support 

agricultural production (Ladeiro, 2012). In terms of global distribution, nearly 10 % of 

total earth’s land surface is covered with salt-affected soils (Szabolcs, 1994). 

Approximately 20% of total cultivated and 33% of irrigated agricultural lands are affected 

by higher salt concentrations. Moreover, salinization is rapidly increasing due to climate 

change effects such as prolonged droughts (Blaylock et al., 1994), usage of saline water for 

irrigation (Blanco et al., 2002), high surface evaporation due to lower ground cover (Carter 

1975), in some areas weathering of native rocks (Salama et al., 1999), and intrusion of 

oceanic salts transferred by rain and winds (Parihar et al., 2015). The natural causes are 

referred to as primary salinity, while other causes induced by human activity are referred to 

as secondary salinity.  By the year 2050, estimates indicate that more than 50% of arable 

land in the world will be salinized (electrical conductivity of saturated soil extract > 4 

dS/m) (Jamil et al., 2011; Shrivastava and Kumar, 2015).  

1.2 Classification of salt affected soils 

Accumulation of soluble salts in soils or near root zone is known to negatively 

impact the growth of most plant species and crops. Generally, salt-affected soils are 
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classified to three types: saline soil, saline-sodic, and sodic soil. Saline soil is the soil that 

gives an electrical conductivity (EC) in a saturation extract greater than 4 deci-Siemens per 

meter (dS/m, approximately 40 mM NaCl), and have an exchangeable sodium 

percentage (ESP) less than 15 [or sodium adsorption ratio (SAR) less than 13]. Saline-

sodic soils have both, soluble salts greater than 4 dS/m and high proportion of sodium ions 

(ESP greater than 15 or SAR greater than 13). Sodic soils have EC less than 4 dS/m but 

high levels of sodium ions (ESP greater than 15 or SAR greater than 13). Sodic soil is 

considered the most troublesome of salt-affected soils due to its high pH (above 8.5) and 

dispersion of soil particles damaging soil structure because of high Na+ saturation (Brady 

and Weil, 2000).  

Among soluble salts in soils, sodium chloride (NaCl) is the most abundant and 

soluble salt released from weathering of earth’s parent material. Thus, NaCl is considered 

the most abundant salt in salt-affected soils. However, weathering of parent material 

releases other type of salts, such as chlorides of calcium, magnesium, and to a lesser 

extent, carbonates and sulfates (Szabolcs, 1989).  

1.3 Salinity effects on plant  

Salt stress is one of the major environmental factors limiting crop growth and 

production. High salt levels can negatively affect plants in two main ways. The first way is 

through the presence of high salt concentrations in soil disturbing the ability of roots to 

uptake and extract water from soil. The second way is through the presence of high salt 

concentrations within plant tissues, which can be toxic and inhibit different physiological 

and biochemical processes such as uptake and assimilation of plant nutrients (Hasegawa et 
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al., 2000; Munns, 2002). These two ways are explained in a two-phase model proposed by 

Munns (1995) as osmotic and ionic effects of salt stress. 

1.3.1 Osmotic stress 

The osmotic stress (the first phase) starts when salt concentration surrounding root 

surfaces increase to a level where roots start facing difficulties extracting water 

(approximately 40 mM NaCl for most plants), resulting in a significant shoot growth 

reduction (Carillo et al., 2011). The reduction in shoot growth in response to salinity is 

known to be expressed in plants by reduction in leaf area. In addition, stomatal closure and 

stunted shoots are also some of the symptoms due to salt stress. The negative impact of salt 

stress on leaf growth seems to be also a result of salt inhibition of symplastic xylem 

loading of Ca+2 in the roots (Läuchli and Epstein, 1990; Läuchli and Grattan, 2007). In 

addition, salt stress also inhibits the uptake of important mineral nutrients such as K+ and 

Ca+2, which in return negatively affect root cell growth and root tip expansion. However, 

shoot growth generally is more sensitive to salt-induced osmotic stress, which might be a 

result of leaf area reduction relative to root growth (Carillo et al., 2011).  

1.3.2 Ionic stress 

The ionic stress (the second phase) occur when ions (particularly Na+) accumulate 

in the leaf blade after being transferred through the transpiration stream. Accumulation of 

Na+ is toxic to plants, especially in old leaves due to their slower growth and dilution of 

new salt accumulation compared to young leaves. When the rate of old leaves dying 

increases more than the rate at which new leaves are produced, further reduction in growth 

rate will occur due to a reduction of photosynthetic capacity of the plant in supplying 

carbohydrates to young leaves (Munns and Tester, 2008). Moreover, the reduction of 
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photosynthesis related to salt stress in plants can also increase the production of reactive 

oxygen species (ROS), which will impair its removal by plants through antioxidative 

mechanisms (Foyer and Noctor, 2003).  

1.4 Mechanisms of plant tolerance to salt stress 

The mechanisms of salt tolerance in plants are still not fully understood. Plant 

tolerance to salt stress can vary depending on the plant species and/or environmental 

factors. Moreover, depending on the growth stage, plants response differently to salinity 

since some species are more sensitive to salts at germination, while others have increased 

sensitivity during reproduction (Howat, 2000). Plants have evolved different mechanisms 

to tolerate salt stress. These mechanisms can be generally grouped into three types: a) 

osmotic stress tolerance, b) Na+ exclusion from leaf blades and c) tissue tolerance (Munns 

and Tester, 2008). 

1.4.1 Osmotic stress tolerance 

The most limiting growth factor of salt-stressed plants is osmotic effects of salinity, 

which result in reduction of growth rate and stomatal conductance. Thus, the osmotic 

tolerance mechanisms involve ability of plants to maintain leaf expansion and growth of 

new leaves by sustaining photosynthetic capacity to meet new cells’ energy requirement, 

and stomatal conductance (Rajendran et al., 2009). Interestingly, some studies have shown 

a positive relationship between higher stomatal conductance in salt-stressed plants and 

higher CO2 assimilation rate (James et al., 2008).  

1.4.2 Na+ exclusion 

In most plant species stressed with higher salt levels, Na+ usually reaches its toxic 

concentration before Cl-. Hence, most studies focus on Na+ exclusion and controlling its 



 

5 

 

transport within plant. Sodium exclusion mechanisms involve ability of plant to reduce 

ionic stress by reducing or minimizing Na+ ions accumulating in the cytosols of transpiring 

leaf cells due to low net Na+ uptake by root cortex and controlling net loading of the xylem 

by parenchyma cells in the stele. This mechanism (as well as in tissue tolerance) involves 

up- and down-regulation of the expression of specific ion channels and transporters 

(Munns and Tester, 2008).  

1.4.3 Tissue tolerance 

Tissue tolerance mechanisms have more ability to increase survival rates of older 

leaves in salt-stressed plants. This mechanism involves the compartmentalization of Na+ 

and Cl- at the cellular and intracellular levels to escape these ions from reaching toxic 

levels within the cytoplasm, especially mesophyll cells of leaves, as well as the production 

and accumulation of compatible solutes in the cytoplasm. These compatible solutes can 

regulate osmotolerance in many ways, stabilize membrane or macromolecules, protect 

enzymes from denaturation, or mediate osmotic adjustment (Ashraf and Foolad, 2007). 

Compatible solutes are small water-soluble molecules, comprised of nitrogen containing 

compounds such as amino acids (such as proline, glycine betaine, etc.) amines and 

betaines, as well as some organic acids, sugars and polyols (Mansour, 2000).  

1.5 Alleviating salinity stress 

Restriction of salinization can be obtained through different practices such as 

changing farm management, applying chemical amendments (such as Ca+2-containing 

chemicals to replace Na+ from exchange sites), leaching of salt from root zone, and the use 

of salt-tolerant plants. In irrigated agricultural fields, practices such as partial root zone 

drying method or micro-jet irrigation to optimize plant usage of water can be adopted 
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(Shrivastava and Kumar, 2015). Moreover, changing farming systems to incorporate 

perennial plants in rotation with annual crops (phase farming), in site-specific plantings 

(precision farming), or in mixed plantings (alley farming, intercropping) can also be 

adopted. (Munns et al., 2002). Even though using these approaches can alleviate yield 

reduction under salt stress, implementation of such approaches is often limited due to their 

cost and availability of good water quality or water resources. Developing low cost, highly 

efficient, and readily adaptable practices or methods for abiotic stress management is a 

major challenge in agricultural fields. Extensive research projects worldwide are being 

carried out to develop practices or strategies to alleviate salt stress effects in different 

ways, such as development of salt- and drought-tolerant plant varieties, resource 

management practices, shifting the crop calendars, etc. (Venkateswarlu and Shanker, 

2009). 

1.6 Application of organic amendments 

Another way to alleviate salinity stress in soil is the application of organic 

amendments. Organic amendments can have diverse benefits to plant growth and soil 

physicochemical properties (Fan et al., 2016). Salt-affected soils generally have low 

organic matter content, which causes poor soil structural stability. Application of organic 

materials (such as compost, manures, etc.) has been shown to improve soil structure 

(Tejada et al., 2006; Oo et al., 2015). Organic matter amendments have been also found to 

accelerate Na+ leaching, reduce EC, ESP, and increase water stable aggregates when 

applied to saline soils (Barzegar et al., 1997). In addition, organic amendments can also 

reduce the negative effects of salt on the soil microbial community and its mediated 

processes such as mineralization (Wichern et al., 2006). However, to have beneficial 
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impacts, organic amendments need to be applied at relatively high rates and multiple times, 

especially in arid and semi-arid regions where temperature causes high decomposition 

rates (Alessandro and Nyman et al., 2017). Consequently, high application rates can be 

costly and not eco-friendly (e.g., increases CO2 emission) (Al-Wabel et al., 2017). 

1.6.1 Biochar 

Biochar has recently emerged in agriculture as a new soil amendment. Biochar is a 

solid carbon-rich residue (fine-grained charcoal), largely resistant to decomposition, and 

produced from pyrolysis (oxygen-free or oxygen-limited conditions at high temperature 

ranging from 300 – 1000 °C) of plant and waste feedstocks (Lehman, 2007; Hunt et al., 

2010). The growing interest in biochar as a soil amendment is due to its diverse benefits to 

plants, soil, and the environment. Biochar benefits to salt-affected soils, and normal soils, 

include improving soil structure stabilization, increasing soil nutrients (especially cations 

such as Ca, K, Mg, etc.) and organic carbon content, increasing CEC, improving water 

retention and air porosity, and increasing Na+ exchange by increasing Ca2+ in soil solution 

(Atkinson et al., 2010; Yue et al., 2016; Zheng et al., 2018). In addition, the high surface 

area of biochar can serve as habitat or shelter for many soil microorganisms that can 

alleviate salinity stress in salt-affected soils (Zheng et al., 2018; Dahlawi et al., 2018).  

1.7 Microbial roles in alleviating salinity stress 
 

Many recent studies have illustrated that adaptation of plants to their local 

environment is mostly driven by genetic differentiation in microorganisms closely 

associated with the plants (Rodriguez and Redman, 2008).  

Microbial roles in promoting plant growth, controlling diseases, and managing 

nutrients is well known. These beneficial microbes colonize the rhizosphere, endosphere, 
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and phyllosphere of plants and promote plant growth through multiple direct and/indirect 

mechanisms (Saxena et al. 2005). A very well-known example is symbiotic nitrogen fixing 

microbes that convert atmospheric dinitrogen gas (N2) into ammonia (NH3), such as 

Rhizobium & Frankia spp. However, the roles of other plant-associative microbes in 

alleviating biotic and abiotic stresses are gaining much attention in recent years. Most 

attention is directed towards plant growth promoting rhizobacteria (PGPR) and arbuscular 

mycorrhizal fungi (AMF) as alternative strategies to improve crop tolerance to stresses 

such as salinity, as many of these microbes have been shown to improve a wide range of 

crops in salinized soils (Yang et al., 2009; Grover et al., 2011).  

1.7.1 Role of PGPR in alleviating salinity stress 

The term of PGPR was first introduced in 1978 (Kloepper and Schroth, 1978) 

describing rhizospheric bacterial populations that may colonize plant root and promote its 

growth. These bacteria can cause several physical and chemical changes in rhizosphere 

through different mechanisms that result in increasing plant tolerance to stresses and 

promote growth. These mechanisms can be divided into direct and indirect mechanisms.  

Direct mechanisms include nitrogen fixation, phosphate solubilization, potassium 

solubilization, siderophore production, and phytohormone production (such as indole-

acetic acid (IAA), ethylene, cytokinins, gibberellins, etc.). On the other hand, indirect 

mechanisms include antibiotic production, hydrolytic enzymes production, siderophore 

production, induced systemic resistance (ISR), and exopolysaccharide (EPS) production 

(Gupta et al., 2015). The use of PGPR to alleviate salinity stress has been reviewed 

recently (Shrivastava and Kumar, 2015), and has been shown to improve plant growth 
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under saline conditions for different crops including pepper, lettuce, canola, tomato, and 

bean (Mayak et al., 2004; Yildirim and Taylor, 2005; Barassi et al., 2006).  

1.7.1.1 Mechanisms of PGPR promotion to plant growth 

Beside the well-known mechanisms of fixing atmospheric N to plant-available 

forms by N-fixing PGPR, other PGPR can solubilize phosphate to more available forms of 

phosphorus (P) through different strategies. These strategies include release of different 

complexed compounds (such as organic acids and protons), production of extracellular 

enzymes, and release of phosphate from substrate degradation (Sharma et al., 2013). 

Examples of such PGPR include: Enterobacter, Pseudomonas, Rhizobium, Bacillus, 

Arthrobacter, Burkholderia, Beijerinckia, Flavobacterium, Microbacterium, Serratia, 

Rhodococcus, and Erwinia spp. Such PGPR genera have grabbed attention in agricultural 

fields to be used as inocula or bio-fertilizers (Bhattacharyya and Jha, 2012). 

Another example of PGPR mechanisms is the production of low molecular weight 

iron-chelating compounds (siderophores), which bind to ferric iron (Fe3+) and sequester it 

in rhizosphere making Fe available to plants, but not to other organisms (Arora et al., 

2013). PGPR are also known to produce many phytohormones. For instance, 80 % of 

rhizobacteria can produce IAA hormone (natural plant auxin), which is known for its 

important roles in plant and root growth and development (Miransari and Smith, 2014). 

Moreover, many PGPR produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase, 

which can regulate ethylene levels in plants (under stress conditions, ethylene regulate 

plant homoeostasis, which reduces root and shoot growth) and reduce its deleterious effect, 

alleviate plant stress and promote its growth (Glick et al., 2007).  
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In term of indirect mechanisms, PGPR can benefit plants through the production of 

antibiotics and the competition with other microbes for nutrients. Antibiotic-producing 

PGPR are among the most studied biocontrol agents against phytopathogens in the last two 

decades (Shilev, 2013). Multiple antibiotics produced by PGPR have been identified such 

as amphisin, 2,4-diacetylphloroglucinol (DAPG), phenazine, oomycin A, pyrrolnitrin, 

pyoluteorin, tensin, tropolone, cyclic lipopeptides, etc. (Loper and Gross, 2007; Gupta et 

al., 2015).  

1.7.2 Role of AMF symbiosis and its ecological importance 

Association between plants and mycorrhizae is widely distributed in nature and 

possess a great ecological importance. Functions and structures of these mycorrhizas vary, 

but the most common plant-mycorrhizal association is that between arbuscular mycorrhizal 

fungi (AMF), belonging to the division of Glomeromycota, and the root of most terrestrial 

plants.  It has been estimated that approximately 80 % of all terrestrial plants form 

association with AMF, including many agriculturally important crops (Smith and Read, 

2010). Evidence based on the original descriptions of fossil records show that AMF are 

ancient fungi that have coevolved with plants for the last 400 million years (Pirozynski and 

Malloch, 1975; Krings et al., 2007).  

Arbuscular mycorrhizal fungi are obligate biotrophic, asexual, multinucleate and 

unculturable eukaryotic microbes. Thus, species identification and recognition of this 

group of fungi remain open to discussion (Rosendahl, 2008). Nevertheless, advances in 

molecular technologies and analyses opened an access to their identification and enhanced 

knowledge to these fungi (Ligrone et al., 2007). In a recent review, Berruti et al. (2015) 

reported that introducing AMF inocula should be more adapted in sustainable agriculture 
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since natural level/richness of AMF can be disturbed by either anthropic inputs (such P 

fertilizers) and stresses such as salinity. In his review, he showed that studies that 

introduced AMF to fields had almost similar benefits on plants found with greenhouse 

experiments such as higher P uptake, higher colonization, and higher overall plant 

biomass. In general, colonization of root systems by AMF provide direct benefits to the 

growth and development of hosts plant by the acquisition of phosphate and other important 

nutrients and water from the soil through extensive hyphal network (extraradical hyphae) 

that extend and explore beyond plant root systems. In return, in this symbiosis relationship 

the fungus obtains carbohydrates required for the completion of its life cycle from plants. 

Moreover, these fungi can also enhance the plant’s resistance to biotic and abiotic stresses 

(Reichenbach and Schönbeck, 1995). In general, the major effects of AMF symbiosis 

include: improving uptake of low mobile ions (mainly phosphate) and water, improving 

soil quality and structure (through glomalin produced by external hyphae), improving root 

and plant establishment, enhancing plant community diversity, improving soil nutrient 

cycling, and increasing plant tolerance to biotic and abiotic stresses (Smith and Read, 

2010). 

The process of AMF colonization of plant roots goes through different stages that 

involve multiple complex morphogenetic fungal changes. These stages include: 

germination of spore, differentiation of hyphae, appressorium formation, root penetration, 

intercellular growth, arbuscule formation, and transportation of nutrients (Harrier, 2001).   

Although AMF are symbiotic microorganisms, they also carry structures within 

their hyphae called bacterium-like organisms (BLO), which have been detected in spores 

and symbiotic mycelia. The majority of these BLO belong to group II Pseudomonads 
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(Burkholderia spp.) based on sequence analysis of rRNA genes (Bianciotto et al., 1996). In 

addition, AMF also have associative bacterial community in their hyphosphere (zone 

surrounding individual fungal hyphae) aside from mycorrhizosphere communities (zone 

influenced by both, the root and the mycorrhizal fungus). However, the significance and 

the mechanisms by which these microbial communities interact with AMF are still poorly 

understood (Bianciotto et al., 2000; Johansson et al., 2004). Moreover, some of these 

associated bacterial species in mycorrhizosphere have been shown to promote mycorrhizal 

development and are called mycorrhizal helper bacteria (MHB) (Duponnois and Garbaye 

1991). 

1.7.2.1 Mechanisms of AMF in alleviating salinity stress 

Many studies investigating the role of AMF (mainly Glomerales) in alleviating or 

protection plants against salt stress have shown that the symbiosis often results in increased 

nutrient uptake, increased photosynthetic rate and water use efficiency, and an 

accumulation of osmoregulator compounds, which suggest that alleviation of salt stress by 

AMF is a result of a combination of nutritional, biochemical, physiological, and molecular 

effects. However, depending on the AMF species involved, the positive effect on plant 

growth and development might vary (Marulanda et al. 2003, 2007; Wu et al. 2007; Evelin 

et al., 2009). 

1.7.2.1.1 Nutritional effects and plant growth 

AMF can enhance plant uptake of mineral nutrients (particularly low mobile ions 

such as phosphorus) and increase plant growth when grown under salt stress conditions 

(Al-Karaki and Clark, 1998). This effect is mainly regulated by improving the supply and 

uptake of nutrients and its transport to the root system through AMF. In addition, 
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increasing salt concentration has been shown to increase mycorrhizal dependency (Giri and 

Mukerji, 2004).  

1.7.2.1.1.1 Phosphorus 

Phosphorus (P) is one of the essential macronutrients required for plant growth. 

Phosphorus is a component of major molecules such as nucleic acids, ATP, and 

phospholipids; hence, a reliable supply of P is significant during plant growth. Yet, P is 

considered the second most limiting macronutrient after N for plant growth. Although its 

total amount in soil is high, P is mostly present in soil as unavailable forms. The available 

inorganic forms of P (iP) to plants (H2PO4
- & HPO4

2-) are scarce in soil solution pool due 

to its high reactivity and complexation with multiple soil compounds based on pH (Fig.1) 

(Schachtman et al., 1998).  

Saline soils can significantly reduce P absorption (and other mineral nutrients) due 

to the precipitation of P ions with Ca2+, Mg+2, Zn+2 ions under elevated salt content, 

making P unavailable to plants (de Aguilar et al., 1979). AMF can greatly enhance P 

uptake through their extensive hyphae, which explore more soil volume than the root 

system (Ruiz-Lozano and Azcón, 2000). Based on estimations, AMF hyphae can deliver 

up to 80 % of a plant’s P needs (Matamoros et al., 1999). Besides improving plant growth 

rate, improved P nutrition in mycorrhizal plants may also increase antioxidant production 

and reduce the negative effects of Na+ and Cl- ions through the maintenance of vacuolar 

membrane integrity, which will facilitate compartmentalization within vacuoles and 

selective ion intake. This will prevent ions from interfering in metabolic pathways of 

growth (Rinaldelli and Mancuso, 1996; Alguacil et al., 2003). 
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1.7.2.1.1.2 Na+ and K+ ions 

Plants tend to take up more Na+ under high salt content in soil, which decreases K+ 

uptake since Na+and K+ uptake occurs simultaneously through the Na+/K+ symporter in 

plants (Munns and Tester, 2008). Potassium is an important nutrient for plant metabolism 

and is involved in multiple functions such as protein synthesis and stomatal movement. 

These functions cannot be replaced by Na+ ions (Evelin et al., 2009). AMF in mycorrhizal 

plants can reverse the effects of salinity on Na+ and K+ nutrition by improving K+ 

absorption and preventing Na+ translocation to shoot tissues. Consequently, this will 

increase K+: Na+ ratio in root and shoot of plant hosts (Giri et al., 2007). Higher K+: Na+ 

ratio has multiple beneficial effects in plants in salt-stressed soil such as preventing the 

disruption of different K-mediated enzymatic processes and inhibition of protein synthesis. 

Furthermore, a higher K+: Na+ ratio is also beneficial by affecting ionic balance of the 

cytoplasm or Na+ efflux from plants (Founoune et al., 2002; Colla et al., 2008).   

1.7.2.1.2 Biochemical effects 

When soil is getting dryer and the water potential starts to be more negative, plants 

must decrease their water potential to maintain a favorable gradient for water to flow from 

soil into roots. To achieve this, plants can use multiple mechanisms. The most important of 

these mechanisms is osmotic adjustment or osmoregulation through active accumulations 

of inorganic ions and compatible organic solutes such as proline, glycine betaine, and 

soluble sugars (Rabie and Almadini, 2005). Reports have shown increasing accumulations 

of compatible solutes such as proline in mycorrhizal plants when compared to non-

mycorrhizal plants under salinity conditions (Jindal et al., 1993; Sharifi et al., 2007). 



 

15 

 

 

Figure 1.1. Terrestrial phosphorus cycle. Adapted from the Mississippi State 

University Extension (Mississippi State University Extension Service, 2017). 

 

 

Mycorrhization also have been reported to change and increase abscisic acid 

(ABA) levels in plants grown in salt-stressed soils. ABS is a phytohormone that is known 

to regulate plant growth and development and to play an important role for plant responses 

to abiotic stresses such as salinity (Duan et al., 1996; Ludwig-Muller, 2000; Estrada-Luna 

and Davies, 2003). Moreover, studies have also suggested that AMF can help alleviating 

plant salt stress by enhancing the activities of antioxidant enzymes (Harisnaut et al., 2003; 

He et al., 2007). Antioxidant molecules and enzymes are involved in plants protective 

mechanisms to escape oxidative damage caused by ROS (such as damaging cell structure 

http://extension.msstate.edu/
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and functions). Several plant species have been shown to have a correlation between 

tolerance to NaCl and antioxidant capacity (Zhang et al., 2001; Nunez et al., 2003). 

1.7.2.1.3 Physiological and molecular effects 

Elevated salt concentrations are known to affect several physiological processes in 

plants such as photosynthetic efficiency, gas exchange, membrane disruption, and water 

status. Some studies have demonstrated that AMF increases root hydraulic conductivities 

and prevented leaf dehydration caused by salinity (Aroca et al., 2007; Sheng et al., 2008). 

Inoculation with AMF has also been shown in some cases to change transpiration rate, and 

at the same time correlated with a change in ABA/cytokinins ratio (Goicoechea et al., 

1997; Bolandnazar et al., 2007).  

Studies focusing on the effects of AMF on plant molecular responses to salt stress 

are limited due to its complexity. By far, the few studies conducted in this area have 

focused on the expression of few proteins such as ∆1-pyrroline-5-carboxylate synthetase 

(LsP5CS) involved in proline biosynthesis, Na+/H+ antiporters, ABA (Lsnced), and late 

embryogenesis abundant protein (LsLea) (Jahromi et al., 2008; Evelin et al., 2009). In 

addition, a few studies have focused on the expression of aquaporin protein (an integral 

membrane protein facilitate water and some small solutes between cells across 

membranes) genes that are known to be induced under abiotic stresses such as drought and 

salinity (Ouziad et al., 2006; Aroca et al., 2007). However, some contradictions exist in 

these limited studies, indicating the need for further investigations to better understand the 

mechanisms by which AMF alleviates and affect plant responses to salt stress. 
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CHAPTER II 

EFFECTS OF DIFFERENT ARBUSCULAR MYCORRHIZAL FUNGAL 

INOCULA ON COLONIZATION AND GROWTH OF BARLEY IN A 

NATURALLY SALINE CLAY SOIL 

 

2.1 Synopsis 

Soil salinity is a major constrain in agricultural production. Arbuscular mycorrhizal 

fungi (AMF) have been widely suggested as salt-stress ameliorators to plants. However, 

little is known about AMF colonization efficiency and plant responses to AMF in unsterile 

clay saline soils. In this study, root colonization and plant growth responses to 5 AMF 

inocula were examined in microcosms: non-inoculated as control, Rhizophagus 

intraradices, Claroideoglomus etunicatum, Funneliformis mosseae, and a mixed inoculum 

of all three AMF under three different salinity stresses: moderate salt level + gypsum, 

moderate salt level at 6.3 dS/m, and high salt level at 26 dS/m. Significant variations in 

percentage of colonization were found among different AMF inocula, and colonization was 

negatively correlated to salt level in the control and C. etunicatum inocula. However, 

depending on salt level and AMF species, some plants had either a significant increase or 

decrease in, root, total plant dry weights and shoot to total plant dry weight ratios. The 

results in this study suggest that depending on AMF species and the salt level, colonization 

and parasitic or beneficial effects of AMF on plant growth might vary when introduced to 

unsterilized naturally saline soils.  
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2.2 Introduction 

Soil salinity is one of the most severe agricultural problems encountering the world. 

Most salinized areas are in arid and semi-arid regions, where organic matter is low, and 

alkalinity, calcareous and in many cases saline and/or sodic soils are present (Brady and 

Weil, 2010). Alleviating salinity stress and improving plant resistance by AMF have been 

reported with different plant hosts (Ruiz-Lozano and Azcón, 2000; Al-Karaki et al., 2001; 

Wu et al., 2007). Beside improving other nutritional and water uptake, these beneficial 

effects of AMF to plants are mostly attributed to increased P acquisition (Al-Karaki and 

Clark, 1998). 

However, it seems that AMF colonization strategies vary considerably based on 

taxonomic variations, indicating possible different functions of AMF belonging to different 

taxa (Hart and Reader, 2002). Moreover, very little is known about the impacts of different 

environmental factors on AMF communities in nature (Xu et al., 2017). Most studies on 

the beneficial effects of AMF on plants under abiotic stresses such as salinity are 

conducted under sterilized soil conditions, and mostly on sandy soils (Chen et al., 1991). 

Soils under natural conditions and characteristics may behave differently when a microbial 

inoculum is introduced into it due to competition with natural microflora and other factors. 

Our knowledge about effects of AMF species/genotypes on plant growth is very shallow. 

Moreover, the current knowledge about AMF is not sufficient to allow us to categorize 

different AMF species based on a parasitic-mutualistic continuum since same AMF species 

can behave differently with different plants, as well as little is known about variations of 

introduced versus native AMF species effects on plants (Klironomos, 2003).  
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In this study, the goal was to evaluate plant growth and the percentage of 

colonization of different AMF inocula as single and mixed species to barley in a clay 

saline soil under its natural microflora. Therefore, it was hypothesized that different AMF 

inocula isolated from alkaline soils will vary in their ability to colonize barley and affect its 

growth in a clay saline soil with its natural microflora. 

2.3 Material and Methods 

2.3.1 Soil 

Surface soil (top 0-30 cm) was collected near the Texas A&M AgriLife Research & 

Extension Center at Pecos in Reeves county, Texas, USA. The majority of soils found in 

this region are saline and moderately alkaline. The soil series in this region is Dalby clay 

and classified as Fine, smectitic, frigid Oxyaquic Vertic Hapludalfs (NRCS, USDA. Web 

Soil Survey). No vegetative cover or previous agricultural practices were present at the site 

where the soil was collected. Characteristics of the collected soil sample are listed in Table 

2.1. The soil texture was determined by a hydrometer (Bouyoucos, 1962), and % organic 

matter content was determined by the wet oxidation method (Walkley and Black, 1934). 

Soil pH, EC (saturated paste extract), and soil P (Mehlich-3) were determined by the Soil, 

Water and Forage Testing Laboratory Department of Soil and Crop Sciences, Texas A&M 

University.  

2.3.2 AMF inoculum and plant host 

AMF species Rhizophagus intraradices (accession code UT118), Claroideoglomus 

etunicatum (accession code AZ414B), and Funneliformis mosseae (accession code UT101) 

isolated from alkaline soils were obtained from INVAM (International Vesicular 

Arbuscular Mycorrhizal collection facility, University of West Virginia) as whole 
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inoculum containing different AMF propagules (soil with spores, infected root pieces, and 

hyphae). Winter malt barley (Wintmalt, KWS Saat, Germany) was used as the plant host in 

this experiment since barley is one of the most salt-tolerant crops and one treatment 

contained a very high level of salts. 

 

       Table 2.1. Characteristics of the soil used in first experiment. 

Parameter Value 

pH 8.5 

EC (saturated extract, dS/m) 6.32 

P (Mehlich-3, mg/kg) 45 

Organic matter content (%) 0.34 

Clay (%) 46.7 

Silt (%) 20.7 

Sand (%) 32.6 

 

2.3.3 Experimental design and growth conditions 

The experimental design used was a 3×5 factorial in a completely randomized 

design with 4 replicates. The treatment combinations consisted of 3 salinization levels 

[gypsum addition to lower the salinity stress by replacing Na+ with Ca2+ at the exchange 

sites and improve soil texture, natural level of EC in the soil (6.32 dS/m) as a moderately 

saline level, and addition of NaCl to raise the soil EC to approximately 26 dS/m as a high 

salt level], and 5 treatments [3 single AMF treatments (Rhizophagus intraradices, 

Claroideoglomus etunicatum, or Funneliformis mosseae, control treatment (inoculation 

with the same media but free of AMF), and a mixture treatment of all 3 AMF species used, 

at 1/3 rate for each], giving a total of 60 samples. The addition of AMF inocula was to 

ensure that the different effects were relevant to their addition when compared to control 

soil with only native AMF. These inocula were selected because they were isolated from 
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alkaline soils and are like species used in research projects and commercial products. Small 

plant containers (Ray Leach Containers™, Stuewe & Sons, Inc., Tangent, OR, USA; 2.5-

cm diameter, 12-cm length, 49-ml volume) were used to grow the plants. The soil was 

inoculated at two different depths (1 & 4 cm below seed) with 1 gm of inoculum at each 

depth. The plants were grown for 21 days after sowing in a growth chamber at 21 °C 

day/18 °C night, 16 h/8 h light/dark, 60 % humidity, & 500 µmol/m2/s light intensity, and 

watered daily to 60% water (determined based on maximum water holding capacity) 

(Noggle and Wynd, 1941).   

2.3.4 Plant growth parameters, root staining and AMF colonization 

At harvest, plants were gently removed from the pots and shoots were separated 

from the root systems. Shoots were placed in an oven at 60 °C for 48 hours and then 

weighed to get the dry weight. Roots were gently removed from soil and washed under tap 

water. A subsample was separated and weighed before and after drying in an oven at 60 °C 

for 48 hours to obtain the moisture content which was used to estimate total root dry 

weight. Remaining roots were cleared (to remove cytoplasm content of cells) and stained 

with trypan blue using a modified procedure of Phillips and Hayman (1970). Briefly, roots 

were placed in tissue cassettes (Fischer Scientific Inc., Hampton, NH, USA) and 

submerged in pre-boiled 10 % KOH for 10 min to remove cytoplasmic content of root 

cells. Cassettes were then washed 5X with tap water and submerged in 2 % HCl for 30 

min, followed by 5X washing with tap water. The cassettes were then submerged in pre-

boiled 0.05 % trypan blue solution (water, glycerin, lactic acid in 1:1:1 (v/v/v)) for 5 min. 

The cassettes were then washed 5X with tap water and stored at 4 °C for 3-5 days 

immersed in distilled water to remove excess stain. The percentage of AMF colonization 



 

22 

 

was then determined using the gridline intersection method (Giovannetti and Mosse, 

1980). Growth parameters of root dry weight, shoot dry weight, shoot to total dry weight 

and total dry weight were calculated. 

2.3.5 Statistical analysis 

Treatment effects were statistically analyzed using two-way ANOVA in SAS 

software (version 9.4), using PROC GLM procedure. Differences between treatments were 

obtained using Fisher’s least-significant-difference (LSD) test at a p-value of <0.05.  

2.4 Results 

2.4.1 AMF root colonization 

Mycorrhizal colonization results are shown in Figure 2.1. General comparisons 

between the different AMF inoculations showed that F. mosseae resulted in a significantly 

higher colonization (average of 21.6 %) compared to control (average of 12.3 %), R. 

intraradices (average of 15.2 %) and C. etunicatum (average of 14.8 %). Mixed AMF 

inoculum was significantly higher (average of 19 %) than only the control inoculum. 

Moreover, when looking to salt level effect on each AMF inoculum, control and C. 

etunicatum inocula had significantly higher colonization in the higher salt level compared 

to low and moderate ones. In contrast, R. intraradices, F. mosseae and mixed AMF inocula 

did not show significant colonization with salt level, although all trended higher at the 

highest salt level. p-values from ANOVA test of the different effects are listed in Table 

2.2.  

2.4.2 Plant growth parameters 

Data in Figures 2.2 – 2.5 illustrate the different barley growth parameters observed 

in this study. Total shoot dry weight showed no significant differences among the AMF 
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treatments in general (Figures 2.2). However, in the highest salt level (26 EC), all plants 

had significantly lower shoot dry weight for all AMF inocula compared to the low and 

moderate salt levels. 

 

Figure 2.1. Percentage of root colonization by AMF. Moderate salt level + gypsum 

= soil with 6.3 dS/m + gypsum; moderate salt level = soil with 6.3 dS/m; high salt 

= soil with 26 dS/m. Data are mean ± s.d (n=4). Different upper-case letters above 

bars and lower-case letters within each inoculum bars indicate significant 

difference (p < 0.05).  

 

 

 

Table 2.2. p-values of the different effects from analysis of variance (ANOVA) tests on % 

of colonization by AMF and plant growth parameters. AMF: effects caused by AMF 

inoculation factor. Salt: effects caused by salt factor. AMF× Salt: interaction effects of 

both AMF and salt. * = indicate significant difference (p < 0.05). 

 

Effect 

ANOVA p-value 

% AMF 

colonization 

Shoot dry 

weight 

Root dry 

weight 

Total dry 

weight 

Shoot to 

total dry 

weight 

AMF 0.0016* 0.6986 0.1651 0.1543 0.0220* 

Salt <.0001* <.0001* <.0001* <.0001* 0.3173 

AMF × Salt 0.8402 0.1630 0.0268* 0.0185* 0.0056* 
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Figure 2.2. Total shoot dry weight. Moderate salt level + gypsum = soil with 6.3 

dS/m + gypsum; moderate salt level = soil with 6.3 dS/m; high salt = soil with 26 

dS/m. Data are mean ± s.d (n=4). Different letters within each inoculum bars 

indicate significant difference (p < 0.05).  

 

Plant responses in term of root dry weight (Figure 2.3) had wider differences 

compared to shoot dry weight. No significant differences were found in overall root dry 

weight between the different AMF inocula. However, in term of salt level effect on plant 

root dry weight in each AMF inocula, C. etunicatum resulted in a significantly higher root 

dry weight in the moderate salt level compared to low and high salt levels (Figure 2.3A). 

In comparison, F. mosseae resulted in a significantly higher root dry weight in the low salt 

treatment compared to higher, but not moderate salt treatments (Figure 2.3A). All other 

AMF inocula did not show significant variations in term of root dry weight as impacted by 

salt level. In addition, within the moderate salt level (6.3 EC), inoculation with C. 

etunicatum species significantly increased root dry weight compared to the control and F. 
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mosseae inocula (Figure 2.3B). However, with the high salt level, C. etunicatum 

significantly lowered root dry weight comparing to all AMF inocula except F. mosseae. 

The overall plant production in term of total plant dry weight (Figure 2.4) did not 

show significant differences between overall inocula (Figure 2.4A). However, in term of 

salt level effect on total plant dry weight in each AMF inocula, C. etunicatum inoculum 

resulted in significant variations in total plant dry weights between all salt levels, where the 

highest total plant dry weight was found in the moderate salt level followed by to low and 

high salt levels. On the other hand, control, R. intraradices, F. mosseae and mixed AMF 

inocula resulted in significantly lower total plant dry weight at the highe salt level 

compared to low and moderate ones. When looking to differences between AMF inocula 

within each salt level, C. etunicatum in the 6.3 EC salt treatment resulted in a significantly 

higher total plant dry weight compared to control and F. mosseae, but no difference was 

found when compared to R. intraradices and mixed inocula (Figure 2.4B). However, in 

the low salt level treatment, C. etunicatum resulted in a significantly less total plant dry 

weight compared to control and mixed inocula, but no difference was found when 

compared to R. intraradices and F. mosseae. Similarly, in the highest salt treatment (26 

EC), C. etunicatum resulted in a significantly less total plant dry weight compared to R. 

intraradices and mixed inocula, but no difference was found when compared to control 

and F. mosseae.  
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Figure 2.3. Total root dry weight. A: comparison of overall root dry weight 

between the different AMF inocula in general and as impacted by salt level; 

moderate salt level + gypsum = soil with 6.3 dS/m + gypsum; moderate salt level = 

soil with 6.3 dS/m; high salt = soil with 26 dS/m. B: comparison of shoot to total 

plant dry weight ratios in the different AMF inocula within each salt level. Data are 

mean ± s.d (n=4). Different lower-case letters within each inoculum bars (figure A 

only) and upper-case letters with the same color indicate significant difference (p < 

0.05).  
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Figure 2.4. Total plant dry weight. A: comparison of overall total plant dry weight 

between the different AMF inocula in general and as impacted by salt level; 

moderate salt level + gypsum = soil with 6.3 dS/m + gypsum; moderate salt level = 

soil with 6.3 dS/m; high salt = soil with 26 dS/m. B: comparison of shoot to total 

plant dry weight ratios in the different AMF inocula within each salt level. Data are 

mean ± s.d (n=4). Different lower-case letters within each inoculum bars (figure A 

only) and upper-case letters with the same color indicate significant difference (p < 

0.05).  
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To have a better assessment of the variation in plant responses to the different AMF 

inocula, I calculated the percentage of shoot dry weight to total plant dry weight ratios 

(Figure 2.5). No significant differences were found in the overall shoot to total plant dry 

weight ratio when comparing AMF species to the control inoculum. However, C. 

etunicatum and F. mosseae resulted in significantly higher shoot to total plant dry weight 

ratios compared to R. intraradices and mixed inocula (Figure 2.5A). In the comparison 

between AMF inocula within each salt level (Figure 2.5B), the only significant differences 

were found in the higher salt treatment (26 EC) where C. etunicatum and F. mosseae 

significantly resulted in higher shoot to total plant dry weight ratios compared to control, 

R. intraradices and mixed inocula. p-values from ANOVA tests of the different effects on 

all plant growth parameters are listed in Table 2.2.  
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Figure 2.5. Shoot to total plant dry weight ratio as %. A: comparison of overall 

shoot to total plant dry weight ratios between the different AMF inocula in general 

and as impacted by salt level; moderate salt level + gypsum = soil with 6.3 dS/m + 

gypsum; moderate salt level = soil with 6.3 dS/m; high salt = soil with 26 dS/m. B: 

comparison of shoot to total plant dry weight ratios in the different AMF inocula 

within each salt level. Data are mean ± s.d (n=4). Different letters with the same 

color indicate significant difference (p < 0.05).  
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2.5 Discussion 

In this study, overall plant growth in terms of shoot and total plant dry weights was 

significantly decreased in the highest salt level (26 EC) compared to low (moderate + 

gypsum) and moderate salt levels. On the other hand, AMF colonization significantly 

increased in the highest salt level (26 EC) compared to low and moderate salt levels with 

control and C. etunicatum inocula. AMF colonization also trended higher for the other 

inocula in the highest salt level treatment, but the increases were not significant. Since 

barley is a salt tolerant plant, that may explain the no significant differences in colonization 

between the low and the moderate salt level (6.3 EC) in this study. Although AMF 

abundance in control was lower (uninoculated) compared to other inoculated treatments 

(native AMF + introduced AMF), no significant differences were found in % colonization 

between control, R. intraradices and C. etunicatum, but F. mosseae and mixed inocula 

were significantly higher than control. These variations suggest that AMF abundance may 

not translate into higher % of colonization in roots. Similar differences between AMF 

abundance in soil and % colonization was reported by Aliasgharzadeh et al. (2001) who 

found higher spore number in soils with higher salt levels compared to lower salt levels. In 

addition, Juniper and Abbott (2006) reported that AMF spore germination can range from 

zero to maximum with increased NaCl levels depending on the AMF species. Therefore, 

these research evidences support the finding in this study that abundance of AMF may not 

translate into higher colonization, but rather the AMF species involved. In this study, the 

different AMF species, from alkaline soil sources, used in this study resulted in different 

colonization percentages. For example, the highest colonization was observed with F. 

mosseae, which was significantly higher than the control, C. etunicatum, and R. 
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intraradices treatments. Despite that the mixed AMF treatment was not significantly 

different from F. mosseae, both had the highest colonization percentages among the 

different salt levels used in this study. Although the control treatment in this study did not 

have introduced AMF, they had a similar overall colonization rate to R. intraradices and F. 

mosseae resulting from indigenous AMF in the soil. In a study conducted by Juniper and 

Abbott (2006), they found that different AMF isolates from both saline and non-saline 

soils had different germination and hyphal extension rate using sterilized soil under 

different salt concentrations. In their study, they found that increasing NaCl concentrations 

reduced the overall spore germination and hyphal extension. However, some AMF species 

isolated from non-saline soils reached the highest germination rates at the highest NaCl 

used in their study (300 mM), and other AMF species did not differ in hyphal extension 

rate with the different salt levels (Juniper and Abbott, 2006). In another study conducted 

by Muhammad and his co-workers (2003), a mixture of indigenous AMF species resulted 

in higher colonization to barley roots compared to introduced Glomus intraradices when 

plants were grown for 5 weeks in fumigated clay loam saline soils. Furthermore, the 

indigenous AMF mixture in their study resulted in a slightly higher colonization (49%) 

under salt stress of 16 dS/m compared to 6.2 dS/m (42.1%) (Muhammad et al, 2003). 

Although it has been generally suggested that AMF colonization is reduced as salt 

stress/concentrations increased (Evelin et al, 2009), some studies have shown increased 

AMF colonization (Aliasgharzadeh et al., 2001; Giri and Mukerji, 2004), or no effect 

(Hartmond et al, 1987) with high salt concentration. However, those studies that reported 

increased AMF colonization in high salt concentrations were based on indigenous AMF 

species. Therefore, these findings may explain the findings in the present study that 
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indigenous AMF or AMF isolated from similar soil conditions to native species (herein 

AMF had alkaline soil sources) might result in a higher colonization rate as salt 

level/concentration increased. Although AMF colonization in the present study was overall 

relatively low (highest colonization 28 % with F. mosseae in the 26 EC salt treatment), this 

is probably due to the short growth period of this study (21 days), since increased % root 

colonized by AMF has been strongly linked to late plant growth stages where plants rely 

more on AMF for nutrient uptake (Javaid and Riaz, 2008). 

Despite that plant growth in this study generally was reduced under the highest salt 

level, parameters such as root and total plant growth indicated different plant responses 

depending on AMF species and salt level. For example, plants inoculated with C. 

etunicatum in the lower salt level were not significantly different from control in term of 

root dry weight, but they were significantly lower than mixed species. Yet, at the moderate 

salt level, plants inoculated with C. etunicatum had significantly higher root dry weight 

compared to both control and F. mosseae. In contrary, C. etunicatum resulted in a 

significantly lower root dry weights compared to control, R. intraradices and mixed 

inocula. Similar results were also found in the total plant dry weights. However, 

inoculation with C. etunicatum and F. mosseae resulted in a significantly higher shoot to 

total plant ratios compared to control, R. intraradices and mixed inocula only the highest 

salt level.  

The overall variations among the different AMF were more apparent in the root 

growth, total plant yield, and shoot to total plant dry weight compared to shoot dry weight. 

A greenhouse study by Al-Karaki et al. (2001) also reported that salt-tolerant tomato 

cultivar had significantly higher colonization rates at 1.4 and 7.1 dS/m salt levels compared 
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to salt-sensitive tomato cultivar, although in both plants AMF colonization significantly 

decreased with increased salt levels. Yet, in their study (Al-Karaki et al, 2001) they 

reported that the salt-sensitive plants responded better to AMF colonization in term of 

growth enhancement compared to the salt-tolerant ones, despite that the later had 

significantly higher colonization percentages under all salt levels. Although their findings 

disagree with the findings in this study in term of increased colonization with increased 

salt level, but it may explain the findings in this study that barley as a salt-tolerant plant 

may had relied more on AMF colonization, which in return may had an adverse effect on 

its growth as salt level increased.  

The results in this study also support the lack of knowledge that still exist in our 

understanding of how AMF can differ in affecting plant growth by causing either parasitic 

or beneficial effects (Klironomos, 2003). For example, in the current study, C. etunicatum 

had a significantly lower colonization rate at the low and moderate salt levels compared to 

the higher salt level. Yet, in contrast, C. etunicatum resulted in significantly higher root 

and total plant dry weights in the moderate salt level compared to both low and high salt 

levels. Thus, these differences suggest that C. etunicatum may had caused a parasitic effect 

on plants at the higher salt level, but beneficial effects at the moderate salt level in term of 

root and total plant dry weights. On the other hand, control plants had significantly higher 

colonization with the highest salt level compared to both lower and moderate salt levels 

but resulted in a significantly lower total plant dry mass at the highest salt level compared 

to low and moderate ones. Thus, in control plants, colonization by native AMF seemed to 

cause a parasitic effect on plants as salt level increased. These differences suggest that 

depending on salt level and the AMF species involved, AMF may cause either a parasitic 
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or a mutualistic effect on plant growth. As indicated above, the findings by Klironomos 

(2003) also support the findings in the present study that same AMF species can have a 

ranged of parasitic to mutualistic effects on plants. In addition, it is worth mentioning that 

different AMF species have been also shown to have different growth and colonization 

rates (Hart and Reader, 2002), which may also explain the differences between AMF 

species in impacting plant growth found in the present study.  

It has been generally known that salt stress may reduce AMF growth through 

different mechanisms. Such mechanisms include inhibiting spore germination (Estaun, 

1990), inhibiting hyphal growth or spreading in soil (McMillen et al., 1998), and reducing 

the number of AMF arbuscules (Pfetffer and Bloss, 1988). However, these studies were all 

conducted under sterilized conditions and may not necessarily represent AMF growth and 

subsequent effects on plants under field conditions. In addition to the above studies, most 

studies used sandy or sand rich media (Chen et al., 1991). Soil texture is relevant when 

comparing root colonization, as it has been suggested that AMF colonization maybe 

restricted in clayey soils compared to sandy soils (Carrenho et al, 2007). 

It is not clear in this study whether the variations in AMF colonization and plant 

growth responses to different AMF species were caused by their different responses to the 

relatively high soil P concentration (45 mg/kg, Mehlich-3), soil texture, and/or the role of 

the native microbial community. However, some research has shown improved plant 

growth at even high P concentration when inoculated with AMF (Colla et al, 2008). 

Nevertheless, the microcosm size and short growth time might have reduced the resolution 

of variations observed in this study.  A longer growth period as well as field studies may 

reveal different results. However, the discrepancy in results exist in AMF impacts on 
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plants grown in salt-affected soils invites more investigations to better understand factors 

regulating the parasitic or mutualistic effects of AMF in ecosystems.  

As shown in this study, it seems apparent that AMF effects on plant growth might 

vary along a continuum of parasitism to mutualism (Klironomos, 2003), and that our 

understandings of such complexity are still not fully developed (Friede et al, 2016). Also, 

our knowledge about the complexity of AMF-soil organism interactions are very limited as 

these interactions may also have competition, inhibition, or stimulation effects (Fitter and 

Garbaye, 1994). A very recent study has shown that some soils can be suppressive while 

others can be conducive to AMF activity and subsequent plant uptake of nutrients such as 

P in soils (Svenningsen et al, 2018). In their study, Svenningsen et al. (2018) reported that 

certain microbial phyla can have roles in causing these conducive or suppression effects on 

AMF activity, which point out that the soil microbiome plays a strong role in AMF 

ecosystem services. Moreover, the discrepancy in results exist on the different studies of 

AMF impacts on plants grown in salt-affected soils highlights the needs for more studies to 

better understand factors regulating the parasitic-mutualistic continuum of AMF effects on 

plant in these ecosystems.  

2.6 Conclusion 

In this study, I found that different AMF species vary in colonization efficiency and 

effects on plants in a saline clay soil. Overall, significant variations were noticed in 

percentage of colonization between AMF inocula in general. In addition, percentage 

colonization significantly increased with increasing salt level in the control and C. 

etunicatum inocula treatments. C. etunicatum significantly improved root and total plant 

dry weights at the medium salt level while significantly decreasing them at the low and 
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high salt level, while others such as control significantly reduced total plant dry mass. 

These differences between AMF inocula in this study suggest that different AMF species 

can colonize plant roots and affect its growth differently under different salt levels. 

Therefore, depending on both, AMF species involved and the salt level, AMF may cause 

either parasitic or mutualistic effects on plant growth when grown in unsterilized naturally 

saline soils.  
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CHAPTER III 

INTERACTIONS OF ARBUSCULAR MYCORRHIZAL FUNGI WITH 

HYPHOSPHERE MICROBIAL COMMUNITIES IN A SALINE SOIL: 

IMPLICATIONS ON PHOSPHORUS EXTRACTABILITY AND ALKALINE 

PHOSPHATASE GENE ABUNDANCE 

 

3.1 Synopsis 

Interactions between arbuscular mycorrhizal fungi (AMF) and soil microbes to 

solubilize organic and inorganic phosphorus (oP & iP) is not well understood, especially 

under stressed conditions such as salinity. I investigated the interaction effects of AMF 

(Funneliformis mosseae) and hyphosphere microbial communities (root-free soil) on P 

availability and uptake by plant (Sorghum bicolor), alkaline phosphatase (ALP) activity 

and its gene abundance (phoD) in a natural saline soil. The experiment was conducted 

using two-compartment microcosms (inner (I) as hyphosphere and outer (O) as rhizosphere 

compartments) separated with 25 µm nylon mesh. The soil in compartments had 4 

sterilization treatments: both inner (hyphosphere) and outer (rhizosphere) compartments 

sterilized (IS-OS), inner sterilized and outer unsterilized (IS-OU), inner unsterilized and 

outer sterilized (IU-OS), and both unsterilized (IU-OU). The hyphosphere compartments 

were amended with 200 mg/kg Na-phytate (oP) and 200 mg/kg rock phosphate (iP). The 

rhizosphere compartments were inoculated with AMF Funneliformis mosseae (Fm) or 

uninoculated. Soil sterilization significantly reduced acid (Mehlich-3) extractable P (p 

<0.05) in the hyphosphere compartments compared to unsterilized ones in both Fm-

inoculated and uninoculated treatments. Inoculation with Fm significantly increased plant 
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P uptake (p <0.05) only in the treatments where outer compartments had unsterilized soils 

(IS-OU and IU-OU) compared to uninoculated ones. Similarly, sterilization significantly 

(p <0.05) reduced phoD gene abundance and ALP activity in the hyphosphere 

compartments compared to unsterilized ones in both Fm-inoculated and uninoculated 

treatments. Although ALP activities were significantly higher (p <0.05) in unsterilized soil 

treatments compared to sterilized ones, the presence of Fm hyphae reduced ALP activity in 

the hyphosphere compartments of Fm-inoculated comparing to uninoculated treatments. 

Overall, our results indicate that AMF-hyphosphere microbial community interactions play 

a significant role in increasing bioavailable P in saline soils, and that enriching AMF and 

other soil microbes (especially phosphate solubilizing microbial community) may be an 

option for improving P bioavailability in soils with sparingly soluble P minerals. 

3.2 Introduction 

Biological and chemical interactions occurring in the mycorrhizosphere are not 

well understood and need further exploration, especially in the level of mechanisms 

controlling microbial community structure and functions. The importance of processes 

driven by these microbial communities might depend on arbuscular mycorrhizal fungi 

(AMF) species, host plant species, as well as environmental variables (Bending et al., 

2006). It is well known that AMF are obligate biotrophs; however, some studies have 

shown the ability of some bacteria (e.g., Paenibacillus validus) to support the growth of 

Glomus intraradices independently of the host plant (Hildebrandt et al., 2002). Production 

of raffinose and other unknown compounds by some Paenibacillus spp. might mimic the 

plant signaling molecules that may be important in the establishment of mycorrhiza 

(Bonfante and Anca, 2009). In addition, it seems that some diffusible compounds produced 
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by soil bacteria are important in spore germination and hyphal growth of AMF (Koltai and 

Kapulnik, 2010).  

Furthermore, contradictions and poor understanding still exist regarding the ability 

of AMF to solubilize phosphate rock as well as organic P, and the synergistic interactions 

with the natural microflora that contribute to P acquisition by AMF and plants. Whether 

the bacteria in the mycorhizosphere or hyphosphere help increase or reduce P solubility 

might depend on the level of P available for both the fungus and the associated bacteria. 

Moreover, the current knowledge of phosphatase-encoding genes in microbes are mostly 

based on culture-dependent methods. This raises the need for culture-independent methods 

when trying to study phosphatase-encoding genes in environmental samples (Ragot et al., 

2015). For example, alkaline phosphatase (ALP) activity has been shown to strongly 

correlate with phoD bacterial gene abundance in field agricultural soil (Fraser et al., 

2015a). Furthermore, majority of studies on the beneficial effects of AMF on plants under 

abiotic stresses such as salinity are conducted under sterilized soil conditions, and mostly 

on sandy soils (Chen et al., 1991). Hence, our knowledge of AMF-soil microbial 

community interactions is very limited. Understanding such interaction might improve our 

knowledge of the ecological importance of AMF and its associated bacterial communities, 

especially under stressed environments.  

Under salinity stress, both rhizosphere microbes and AMF have been shown to 

improve plant growth (Kumar et al., 2015; Shrivastava and Kumar). Such enhancement to 

plant growth have been attributed to many aspects such as production of phytohormones 

(Ahmad et al, 2013), N-fixation (Shukla et al, 2012) and P-solubilization (Tank and Saraf 

et al, 2010) by plant growth promoting rhizobacteria (PGPR), and improved soil structure 
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and water uptake (Kohler et al, 2010), P uptake (Giri and Mukerji, 2004), and increased 

K+/Na+ plant ratio (Giri and Mukerji, 2007) by AMF. However, our knowledge about 

interactive impacts of both groups of microbes on plant growth in salt-stressed soils is 

limited to studies with co-inoculation with single or a few species of PGPR and AMF, and 

mostly conducted in artificially saline soils (Rabie and Almadini, 2005; Kohler, 2009; 

Zhang et al, 2011). Aspects such as survival of introduced microbial species, competition 

with native microbes, and the need for re-application within same growing season might 

limit effectiveness of such approaches, especially in sustainable agriculture (Malusá et al, 

2012). In addition, such studies conducted under salt stress usually evaluate the impact on 

plant growth and P uptake by plants rather than investigating interactions in soil and how it 

affects available P and microbial enzymes related to P availability such as ALP in soils, 

rather than within plant roots.  

In this study, the goal was to assess the role of soil indigenous microbial 

community in enhancing AMF acquisition of P in a naturally saline soil. Therefore, I 

hypothesized that the indigenous saline soil microbial community would increase P access 

by AMF in hyphosphere and increase its uptake by plant shoots. 

3.3 Material and methods 

3.3.1 Soil 

Surface soil (top 0-30 cm) was collected near the Texas A&M AgriLife Research & 

Extension Center at Pecos in Reeves county, Texas, USA. The majority of soils found in 

this region are saline and moderately alkaline. The soil series in this region is Dalby clay 

and classified as Fine, smectitic, frigid Oxyaquic Vertic Hapludalfs (NRCS, USDA. Web 

Soil Survey). No vegetative cover or previous agricultural practices were present at the site 
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where the soil was collected. Characteristics of the collected soil sample are listed in Table 

3.1. The soil texture was determined by a hydrometer (Bouyoucos, 1962), and percent 

organic matter content was determined by the wet oxidation method (Walkley and Black, 

1934). Soil pH, EC (saturated paste extract), and soil P (Mehlich-3) were determined by 

the Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences, 

Texas A&M University.  

 

   Table 3.1. Characteristics of the soil used in second experiment. 

Parameter Value 

pH 8.5 

EC (saturated extract, 

dS/m) 

6.32 

P (Mehlich-3, mg/kg) 45 

Organic matter content 

(%) 

0.34 

Clay (%) 46.7 

Silt (%) 20.7 

Sand (%) 32.6 

 

3.3.2 AMF inoculum and plant host 

The AMF species used in this experiment was Funneliformis mosseae (Fm), 

obtained from INVAM (International Vesicular Arbuscular Mycorrhizal collection facility, 

University of West Virginia, accession code UT101) as whole inoculum containing 

different AMF propagules (soil with spores, infected root pieces, and hyphae). This AMF 

inoculum was chosen since it colonized plant roots well in my previous experiment also 

performed in saline clay soil (Figure 2.1). The addition of AMF inoculum was to ensure 
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that the different effects such as plant P uptake were relevant to their addition when 

compared to uninoculated pots. Sorghum bicolor was used as the plant host in this 

experiment since it is a moderately salt tolerant plant, commonly used as a mycorrhizal 

host, and suitable for the EC level of this experimental soil.  

3.3.3 Experimental design and growth conditions 

The experimental design in this experiment was a 2×2×2 factorial completely 

randomized design with 3 replicates. This experiment was conducted using a two-

compartment microcosm (inner (I) as hyphosphere and outer (O) as rhizosphere 

compartments) separated with 25 µm nylon mesh (LAB PACK, Sefar Inc., Buffalo, NY, 

USA) to allow hyphal penetration, but not roots (Figure 3.1). The hyphosphere 

compartment was a mini rectangular box (4.5-cm long, 2.5-cm wide, 1.5-cm height) (The 

Container Store Inc, Coppell, TX, USA) containing 12.5 gm soil/box (2 boxes/pot). The 

rhizosphere compartment was a small square nursery pot (6.5-cm diameter, 9-cm long, 

280-ml volume) containing 235 gm soil. The soil in compartments had 4 sterilization 

treatments: both inner (hyphosphere) and outer (rhizosphere) compartments sterilized (IS-

OS), inner sterilized and outer unsterilized (IS-OU), inner unsterilized and outer sterilized 

(IU-OS), and both unsterilized (IU-OU). Soils were sterilized by autoclaving for 1 hr at 

121 °C three times, on three consecutive days. Soil in the rhizosphere (outer) compartment 

were amended with nitrogen at 50 mg N/kg soil as NH4NO3. The hyphosphere 

compartments were amended with 200 mg P/kg soil as Na-phytate (Santa Cruz 

Biotechnology, Santa Cruz, CA) as organic P (oP) and 200 mg P/kg soil rock phosphate as 

inorganic P (iP). Plant seeds were sterilized with 10 % sodium hypochlorite for 20 min and 

germinated in plug tray cells (cell size 7/8" deep and 9/16" wide, Harris Seeds Inc., 
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Rochester, NY, USA) containing 2 gm inoculum (either Fm or no-Fm control inoculum) 

and 2 gm sterile low P sandy soil to promote AMF infection. This soil has 35 mg/kg P 

(Mehlich-3) and is a Darco loamy fine sandy soil collected from the Texas A&M Agrilife 

Research and Extension Center at Overton, TX, USA. After 12 days, seedlings with 

attached soils from the tray cells were transplanted to the designed pots of this experiment. 

Plants were grown for 42 days after transplanting in a growth chamber at 25 °C day/21 °C 

night, 16 h/8 h light/dark, 60 % humidity, and 500 µmol/m2/s light intensity, and watered 

every other day to 85% water holding capacity (determined based on maximum water 

holding capacity) (Noggle and Wynd, 1941) using sterilized distilled water. 

3.3.4 Plant growth parameters, root staining and AMF colonization 

At the harvest time, plants were gently removed from the pots and shoot were 

separated from the root system. Shoots were placed in an oven at 60 °C for 48 hours and 

then weighed to get the dry weight. Roots were gently removed from soil and washed 

under tap water. A subsample was separated and weighed before and after drying in an 

oven at 60 °C for 48 hours to obtain the moisture content for calculating total root dry 

weight. The remaining roots were stained with trypan blue using a modified procedure of 

Phillips and Hayman (1970). Briefly, roots were placed in tissue cassettes (Fischer 

Scientific Inc., Hampton, NH, USA) and submerged in pre-boiled 10 % KOH for 10 min to 

remove cytoplasmic content of root cells. Cassettes were then washed 5X with tap water 

and submerged in 2 % HCl for 30 min, followed by 5X washing with tap water. The 

cassettes were then submerged in pre-boiled 0.05 % trypan blue solution (water, glycerin, 

lactic acid in 1:1:1 (v/v/v)) for 5 min. The cassettes were then washed 5X with tap water 

and stored at 4 °C for 3-5 days immersed in distilled water to remove excess stain. The 
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percentage of AMF colonization was then determined using the gridline intersection 

method (Giovannetti and Mosse, 1980). Growth parameters of root dry weight, shoot dry 

weight, shoot to total dry weight and total dry weight were then calculated.  

3.3.5 Soil extractable P and plant shoot P content 

The top surface layer (~2mm) of the hyphosphere compartments was removed and 

discarded to reduce biases and possible exchange of microbes and nutrients between the 

rhizosphere and hyphosphere compartments. The remaining soil from the hyphosphere 

compartments of each pot (two compartments) were then mixed to have a one 

homogenized hyphosphere soil sample/pot and stored at -80°C for later molecular and 

enzyme assays. Soil samples from the hyphosphere compartments (previously stored at -80 

°C) and dried plant shoots were submitted to the Soil, Water and Forage Testing laboratory 

at Texas A&M University (College Station, TX, USA) to measure extractable P in soil 

(Mehlich-III) and determine P concentration in plant shoot tissue (ICP analysis).  

 

 

Figure 3.1. Diagram of the designed microcosm having rhizosphere and 

hyphosphere compartments separated by a nylon mesh. 
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3.3.6 DNA extraction  

Soil DNA was extracted from 0.5 g of the frozen hyphosphere soil samples using a 

PowerSoil DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA) following the 

manufacturer’s instructions. After extraction, all DNA samples were quantified to detect 

DNA quality using a Nanodrop ND-1000 spectrophotometer (Thermo-Fisher Scientific 

Inc., Wilmington, DE, USA). 

3.3.7 Quantitative PCR assays  

Quantitative real-time PCR (qPCR) was used to quantify the abundances of 

microbial phoD (alkaline phosphatase), total bacterial 16S rRNA, total AMF 18S rRNA, 

and total fungal internal transcribed spacer (ITS) gene targets in both rhizosphere and bulk 

soil (root-free soil). For quality control, all qPCR runs included 5 different concentration of 

DNA standards (gBlock standards, Integrated DNA Technologies Inc.) for each target gene 

(for standard curve) (details on these standards are listed in Table 3.2), no-template control 

(NTC), positive control, negative control, and 2 spiked random samples from the study’s 

DNA samples with one of the standards to test for possible qPCR inhibitors. Standards and 

NTC were run in triplicate, and the rest of controls and experiment samples were run in 

duplicate. Details on each target gene positive control and negative controls, R2 value, and 

reaction efficiency of standard curves are listed in Table 3.3. Primers (obtained from 

Integrated DNA Technologies Inc.), qPCR conditions and references are outlined in Table 

3.4. Amplifications of DNA was performed using Rotor-Gene SYBR® Green qPCR kit, 

with gene abundance measured using Rotor-Gene Q Software version 2.3.1.49 (QIAGEN, 

Hilden, Germany).  
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Table 3.2. Details of gBlock qPCR standards. Dilution range had 1 order of magnitude 

apart between each of 5 standards.  

Target gene Microbial source for sequence 

included in the gBlock standards 

Dilution range of the 

standards having the 

targeted gene (copies/2 µl) 

phoD Sinorhizobium meliloti 106 – 102  

16S rRNA Pseudomonas denitrificans 107 – 103 

AMF-18S rRNA Glomus intraradices 106 – 102 

ITS Rhizopus microsporus 107 – 103 

 

 

 

 

Table 3.3. Quality control details of the qPCR runs in second experiment. 

Target 

microbial 

group 

 

Positive control 

 

Negative control 

R2 value of 

standard 

curve 

Reaction 

efficiency 

phoD-

harboring 

microbes 

Sinorhizobium 

meliloti 

Escherichia coli 

K-12 

0.99 1.07 

16S 

rRNA 

Escherichia 

coli K-12 

Methanospirillum 

hungatei 

0.99 1.03 

AMF 18S 

rRNA 

Glomus 

intraradices 

Escherichia coli 

K-12 

0.987 1.00 

ITS Rhizopus 

microsporus 

Escherichia coli 

K-12 

0.99 1.06 
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          Table 3.4. Primers and conditions used for the qPCR assays in second experiment.  

Target 

microbial 

group 

Primers and sequences qPCR reaction 

mixture 

Thermal profile Reference 

phoD-

harboring 

microbes 

phoD-F733(5’-

TGGGAYGATCAYG

ARGT-3’)/ phoD-

R1083 (5’-

CTGSGCSAKSACRTT

CCA-3’) 

7.5 µl SYBR 

Green (2x) 

Master Mix, 1.5 

µl each primer 

(5 µM), 2 µl 

DNA template, 

2.5 nuclease free 

H2O. 

5 min at 98°C for initial 

denaturation; 35 cycles of 

30 s at 98°C, 30 s at 58°C, 

extension for 30 s at 72°C, 

and acquisition for 10 s at 

82°C. Melt curve produced 

at 55-98°C (1° and 5 s/cycle 

melt). 

Modified 

after Ragot 

et al (2015) 

Total 

bacteria 

(16S rRNA) 

341f-(5’-

CCTACGGGAGGCAG

CAG-3’)/ 797r-(5’-

GGACTACCAGGGTA

TCTAATCCTGTT-3’) 

 

7.5 µl SYBR 

Green (2x) 

Master Mix, 

0.225 µl F 

primer (0.3 µM), 

0.675 µl R 

primer (0.9 µM), 

2 µl DNA 

template, 4.6 

nuclease free 

H2O. 

3 min at 98°C for initial 

denaturation; 40 cycles of 

30 s at 98°C, 30 s at 61.5°C, 

extension for 20 s at 72°C, 

and acquisition for 10 s at 

82°C. Melt curve produced 

at 50-99°C (1° and 5 s/cycle 

melt) after a pre-melt 

conditioning for 90 s at 

50°C. 

Modified 

after Harter 

et al (2014) 
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       Table 3.4. Continued. 

Target 

microbial 

group 

Primers and 

sequences 

qPCR 

reaction 

mixture 

Thermal profile Reference 

Total 

AMF 

(18S 

rRNA) 

GC-AMV4.5NF- (5’-

CGC CCG CCG CGC 

GCG GCG 

GGC GGG GCG GGG 

GCA CGG GGG G 

[GC clamp] AAG 

CTC GTA GTT GAA 

TTT CG-3′)/ AMDGR-

( 5′-CCC AAC 

TAT CCC TAT TAA 

TCA T-3′) 

7.5 µl 

SYBR 

Green (2x) 

Master Mix, 

1.5 µl each 

primer (5 

µM), 2 µl 

DNA 

template, 

2.5 nuclease 

free H2O. 

10 min at 98°C for 

initial denaturation; 

35 cycles of 30 s at 

98°C, 30 s at 55°C, 

extension for 45 s at 

72°C, and acquisition 

for 10 s at 82°C. Melt 

curve produced at 50-

98°C (1° and 5 

s/cycle melt). 

Modified 

after Sato 

et al 

(2005) 

Total 

fungi 

(ITS) 

ITS1f-(5’-TCC GTA 

GGT GAA CCT GCG 

G-3’)/5.8s-(5’-CGC 

TGC GTT CTT CAT 

CG-3’) 

7.5 µl 

SYBR 

Green (2x) 

Master Mix, 

1.5 µl each 

primer (5 

µM), 2 µl 

DNA 

template, 

2.5 nuclease 

free H2O. 

10 min at 98°C for 

initial denaturation; 

35 cycles of 60 s at 

98°C, 30 s at 53°C, 

extension for 45 s at 

72°C, and acquisition 

for 10 s at 82°C. Melt 

curve produced at 48-

98°C (1° and 5 

s/cycle melt). 

Modified 

after 

Fierer et 

al (2005) 
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3.3.8 Alkaline phosphatase enzyme assay 

Potential soil alkaline phosphatase (ALP) activity was measured from the frozen 

hyphosphere soil (-80°C) using a modified assay of Tabatabai and Bremner (1969). 

Briefly, 0.5 g soil in duplicate was incubated in 0.0625 M p-nitrophenyl phosphate 

substrate (Sigma-Aldrich, USA) along with modified universal buffer solution (pH 11) at 

28°C in 2 mL deep-well plates. After 2 h, reactions were stopped with 2.5 M CaCl2 and 2.5 

M NaOH. Plates were then shaken for 5 min and centrifuged for 5 min at 500 rpm. Using 

96-well plates, formation of p-nitrophenol was determined colorimetrically using a 

Biolog Microstation Elx808BLG (BIO-TEK Instruments Inc., Winooski, VT, USA) 

spectrophotometer at 405 nm.  

3.3.9 Statistical analysis 

All treatment effects were statistically analyzed using ANOVA in SAS software 

(version 9.4), using PROC GLM procedure. Differences between treatments were obtained 

using Fisher’s least-significant-difference (LSD) test at a p-value of <0.05. 

3.4 Results 

3.4.1 Plant growth parameters and AMF colonization 

Plant growth responses and AMF colonization percentages are shown in Table 3.5. 

The uninoculated IU-OS treatment significantly increased shoot dry weight compared to 

IS-OS, IS-OU, IU-OU in uninoculated, and IS-OS, IS-OU, and IU-OS in the Fm-

inoculated pots. However, no significant difference was found in shoot dry weight when 

comparing uninoculated IU-OS to Fm-inoculated IU-OU. For root dry weight, no 

significant differences were found among the different soil sterilization treatments in both 

uninoculated and Fm-inoculated groups except with Fm-inoculated IU-OU which had 
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significantly higher root dry weight over Fm-inoculated IS-OU. However, within Fm-

inoculated treatments, IS-OU resulted in a significantly higher shoot to total dry matter % 

compared to IU-OS and IU-OU, but not IS-OS. Percentages of AMF root colonization 

were significantly higher in all Fm-inoculated treatments compared to uninoculated IS-OS, 

IU-OS, and IU-OU, but not the IS-OU. However, within Fm-inoculated treatments, IS-OU 

and IU-OS treatments significantly reduced % colonization compared to the IU-OU 

treatment, but no significant difference was found when compared to the IS-OS treatment.  

3.4.2 Extractable P in soil and its uptake by plants 

Results of the extractable P in hyphosphere soils are shown in Figure 3.2A. 

Treatments of unsterilized soils in hyphosphere (IU-OS and IU-OU) had significantly 

higher extractable P compared to sterilized soils (IS-OU and IS-OS) in both Fm-inoculated 

and uninoculated pots. For example, in IS-OS treatments of both Fm-inoculated and 

uninoculated, extractable P in hyphosphere compartments was reduced by 20 % and 18.7 

%, respectively compared to IU-OU. Similarly, in IS-OU treatments of both Fm-inoculated  

and uninoculated, extractable P in hyphosphere compartments was reduced by 11.8 % and 

10 %, respectively compared to IU-OS. However, although not significant, Fm inoculation 

tended to result in less extractable P compared to uninoculated pots. On the other hand, 

inoculation with Fm significantly increased P concentrations in plant shoots compared to 

uninoculated ones in IS-OU and IU-OU treatments (Figure 3.2B). In contrast, inoculation 

with Fm did not significantly impact P uptake in IS-OS and IU-OS treatments compared to 

uninoculated ones. When looking to P content/plant shoot, no significant differences were 

found between uninoculated and Fm-inoculated, except with IU-OU treatment which 

significantly increased P content/plant shoot by 91 % over the uninoculated treatment  
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Table 3.5. Plant growth parameters and AMF percentage of colonization of the different compartment’s soil treatment. IS-OS: 

soil in inner (hyphosphere) and outer (rhizosphere) compartments sterilized; IS-OU: inner sterilized and outer unsterilized; IU-

OS: inner unsterilized and outer sterilized; IU-OU: both unsterilized. “None”: control AMF inoculum. “Fm”: inoculated with 

Funneliformis mosseae. Data are presented as the mean ± s.d (n=3). Different upper (only within uninoculated group) or lower-

case letters (only within Fm-inoculated group) within same column indicate significant difference (p < 0.05).  
 

 

AMF 

inoculum Treatment 

 

Shoot dry 

weight (mg) 

 

Root dry weight 

(mg) 

 

Shoot to total 

dry matter (%) 

% root 

colonized by 

AMF 

 

 

None 

IS-OS 235.13±36.3 bc 440.31±145.2 BA 34.81±4 C 0±0 e 

IS-OU 274.03±67 bc 423.25±91.4 BA 39.3±7.6 BC 2.91±2.6 ecd 

IU-OS 455.06±97.5 a 474±84.5 A 48.98±3 BAC 0.05±0.08 e 

IU-OU 245.03±79.8 bc 402.21±150.3 BA 37.85±15 BC 1.95±1.5 ed 

 

 

Fm 

IS-OS 243.46±134.6 bc 276.28±209.4 ba 46.84±15.7 ba 25.9±15.1 ba 

IS-OU 155±139.5 c 178.46±162 b 46.48±2 a 15.30±6.2 bc 

IU-OS 223.3±115.8 bc 436.42±217.5 ba 33.84±7.3 c 14.47±7.6 bcd 

IU-OU 321.56±83.5 ba 485.20±105.4 a 39.85±2.2 bc 30.82±10.7 a 
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(Figure 3.2C). Within the uninoculated group of treatments, IU-OS had significantly 

higher P content/plant shoot (by 100 %) compared to IS-OS treatment. In contrast, within 

Fm-inoculated treatments, IU-OU had the highest P content/plant shoot compared to both 

IS-OU and IU-OS treatments, but not the IS-OS.  

3.4.3 Quantitative PCR assays 

The relative abundances of the targeted genes used in this study are shown in 

Figure 3.3. Alkaline phosphatase gene (phoD) abundances were significantly reduced by 

sterilization compared to unsterilized soils in both Fm and non-Fm-inoculated treatments 

(Figure 3.3A). In the Fm-inoculated treatment, sterilization reduced phoD gene abundance 

by 78.3 %, while in the uninoculated treatment the abundance was reduced by 77.7 %. 

Within unsterilized soils, phoD gene abundance was also significantly higher in the Fm-

inoculated treatments compared to uninoculated treatments. No significant differences 

were found in the abundance of 16S rRNA and AMF 18S rRNA genes (Figure 3.3B, 

Figure 3.3C, respectively). However, fungal ITS abundance was significantly higher in 

unsterilized soils compared to sterilized ones (Figure 3.3D). Moreover, when comparing 

phoD relative proportion among the total microbial community abundance (total of 16S 

rRNA and fungal ITS gene abundances), phoD proportions ranged from 0.30 in the 

uninoculated IS-OS up to 0.71 in the Fm-inoculated IU-OU (Figure 3.4).
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Figure 3.2. Extractable soil P and its uptake by plants in second experiment. A: 

Extractable P (Mehlich-3) in hyphosphere soil. B: P concentrations in plant shoot. C: P 

content/plant shoot. IS-OS: soil in inner (hyphosphere) and outer (rhizosphere) 

compartments sterilized; IS-OU: inner sterilized and outer unsterilized; IU-OS: inner 

unsterilized and outer sterilized; IU-OU: both unsterilized. Data are means ± s.d (n=3). 

Different letters indicate significant difference (p < 0.05).  
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Figure 3.3. Abundances of targeted genes in hyphosphere soil. A: phoD gene. B:16S 

rRNA gene. C: AMF 18S rRNA. D: fungal ITS. IS-OS: soil in inner (hyphosphere) and 

outer (rhizosphere) compartments sterilized; IU-OU: both soils unsterilized. Data are 

means ± s.d (n=3). Different letters indicate significant difference (p < 0.05).  

 

 

 
Figure 3.4. Relative proportion of phoD gene among the total microbial 

community abundances (as total 16S rRNA and ITS). 1 = 100%. IS-OS: soil in 

inner (hyphosphere) and outer (rhizosphere) compartments sterilized; IU-OU: both 

soils unsterilized. Data are means ± s.d (n=3).  
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3.4.4 Alkaline phosphatase enzyme assay 

The potential activity of soil alkaline phosphatase (ALP) from the hyphosphere 

soils is shown in Figure 3.5. Activity of ALP showed significant differences between all 

treatments. Soil sterilization significantly reduced ALP activity compared to unsterilized 

soils in both Fm-inoculated (reduction by 78 %) and uninoculated (reduction by 70 %) 

treatments. Moreover, Fm inoculation resulted in significantly less ALP activity for both 

unsterile and sterile soils compared to uninoculated ones. In sterilized soils, Fm inoculation 

reduced ALP activity by 76 % compared to uninoculated treatment. Similarly, in 

unsterilized soils, Fm inoculation reduced ALP activity by 23.8 % compared to 

uninoculated treatment.  

      

  

 
Figure 3.5. Potential soil alkaline phosphatase (ALP) activity in the 

hyphosphere soils. IS-OS: soil in inner (hyphosphere) and outer 

(rhizosphere) compartments sterilized; IU-OU: both soils unsterilized. Data 

are means ± s.d (n=3). Different letters indicate significant difference (p < 

0.05).  
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3.5 Discussion  

3.5.1 Plant growth response and AMF colonization 

Overall, soil sterilization did not have significant impacts on plant growth 

parameters in this study. Similarly, few significant differences were found in response to 

the AMF inoculation. However, some exceptions were found, where the uninoculated IU-

OS had significantly higher shoot dry weight compared to IS-OS, IS-OU, IU-OU in 

uninoculated, and IS-OS, IS-OU, and IU-OS in the Fm-inoculated pots. Also, in Fm-

inoculated IS-OS and IS-OU treatments, shoot to total dry matter % were significantly 

higher compared to IU-OS and to a lesser degree (significant only with IS-OU) to IU-OU 

treatments. Based on the results of this study, it is not clear why the above exceptions 

occurred. A possible explanation is that the root hairs of plants in the uninoculated IU-OS 

treatment may have accessed the unsterile hyphosphere compartments. Research have 

shown that the root hairs of plants may increase number and length in response to P 

demand, which may help to satisfy ˃ 60 % of plant P needs (Gilroy and Jones, 2000). At 

the time of harvest of this study, roots were noticed growing along the outer surface 

(facing rhizosphere compartment) of the 25 µm nylon mesh, which may have allowed root 

hairs to access P sources that were applied to the hyphosphere compartments. Sorghum 

root hairs have an average diameter of ~ 10 µm (Morgenstern et al, 1987), which could 

easily enable them to penetrate the 25 µm nylon mesh used in this study. However, the less 

apparent growth differences in most of the other plant growth parameters may have been 

caused by the volume difference between the rhizosphere compartment (~245 cm3, with 

total P mass of ~ 10.6 mg based on Mehlich-III prior conducting the experiment) compared 

to the hyphosphere compartments in each pot (~33 cm3, with total P mass of ~ 11.1 mg 
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based on Mehlich-III + oP addition + iP addition prior conducting the experiment). In this 

study, N amendment was only applied to the rhizosphere compartment, while all P 

amendments (iP and oP) were only applied to the hyphosphere compartments. Therefore, it 

may not be applicable to rely on plant growth responses based on the experimental design 

of this study due to the volume and nutrient amendment differences between the 

compartments. Instead focus should be on the goal of this study, which was to measure P 

availability in hyphosphere soils (comparable to bulk soil) and assess the possible 

relationship between P availability and abundance of microbes and microbial 

functionalities affecting P availability (e.g., via microbial gene abundances), and determine 

how such relationships influence plant P uptake. In addition, the different sterilization 

treatments may potentially have changed root exudate and microbial composition in the 

rhizosphere compartments which have the larger volume (Chen et al., 1991; Jacoby et al, 

2017), thus, causing changes in plant growth and uptake of other macronutrients not 

detected in this study (e.g., N and K).  

Soil sterilization did not show an impact on native AMF colonization in the 

uninoculated treatments. However, when one compartment was sterilized and the other 

was not in the Fm-inoculated treatments (IS-OU and IU-OS), % colonization was 

significantly reduced compared to IU-OU, but no significant difference was found when 

compared to IS-OS treatment. It is not clear what are the causes of these low colonization 

rates under these situations where AMF are facing sterilized and unsterilized soils 

simultaneously (Fm-inoculated IS-OU and IU-OS treatments). However, our knowledge 

about AMF-soil microbes interactions are still poorly understood. For instance, a research 

study has shown that specific soil microbes such as mycorrhizal helper bacteria (MHB) can 
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promote hyphal growth and root colonization (Frey-Klett et al, 2007), and that suppression 

or stimulation of AMF growth and colonization is related to microbial composition in soils 

(Svenningsen et al, 2018). A recent report by Ordoñez et al. (2016) also found that some 

bacterial strains strongly affect AMF colonization inside roots and hyphae growth outside 

roots, and that soil microbial community might have a role in limiting or increasing this 

effect depending on the P-solubilizing microbial species (Ordoñez et al, 2016). These 

research evidences may explain the low % colonization in the Fm-inoculated IS-OU and 

IU-OS treatments as such situations would change hyphal associated microbial community 

composition when growing across two zones differ in microbial abundance and 

composition (sterilization difference). However, it is apparent that further research studies 

are needed to evaluate how changes in microbial abundances and/or composition in salt-

affected soils could influence AMF colonization and their growth in such soils.  

3.5.2 Soil extractable P and its uptake by plants 

In the current study, sterilization significantly reduced extractable P in hyphosphere 

soils (IS-OS and IS-OU) compared to unsterilized ones (IU-OS and IU-OU) in both Fm-

inoculated and uninoculated treatments. For instance, in IS-OS treatments of both Fm-

inoculated and uninoculated, extractable P in hyphosphere compartments was reduced by 

20 % and 18.7 %, respectively compared to IU-OU. Thus, this indicates a greater role in P 

solubilizing ability for native soil microbes comparing to AMF alone. The findings in this 

study suggest that AMF cooperation with native soil microbes is critical in solubilizing P 

in saline soils. Therefore, this suggestion supports the notion that role of AMF hyphae 

seems to be more efficient exploration of the soil volume and transfer of solubilized P to 

plants (Ruiz-Lozano and Azcón, 2000) than their ability to actively solubilize P 
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independently of interacting with native soil microbes in the hyphosphere. Research 

evidence has indicated the role of AMF in increasing plant P uptake in salt-stressed soils 

(Evelin et al, 2009; Zhang et al, 2017). Although the mechanisms behind AMF ability to 

solubilize soil P has not been fully explored (Antunes et al., 2007), some suggested 

mechanisms have been proposed including: (1) increased physical exploration by 

mycorrhizal root through extensive hyphal network, which reduces distance of diffused P 

while increases surface area of absorbing sites (Sanders and Tinker, 1973); (2) movement 

of P into roots due to high affinity for phosphate (Howeler et al, 1982) and through lower 

threshold concentration for P absorption (Mosse et al, 1973) in mycorrhizal roots 

compared to non-mycorrhizal roots; and (3) direct modification of rhizosphere zone 

through production of organic acids and phosphatase enzymes (Parfitt, 1979; Bolan, 1991), 

and/or indirect modification through the production of chelating agents such as siderophore 

by AMF or other soil microbes (Jayachandran et al, 1989). However, the ability of AMF to 

solubilize soil P independently of other soil microflora has been questioned, especially for 

less soluble inorganic P such as rock phosphate (Jayachandran et al., 1989) compared to 

organic P sources such as phytate (Koide and Kabir, 2000). Jayachandran et al. (1989) 

suggested that plant access to rock phosphate was the results of interactions between AMF 

and the native soil microorganisms.  

In respect to salt-affected soils, studies evaluating AMF-microbial interactions 

roles in P availability are mostly conducted under artificial saline conditions with only a 

few AMF and other microbial PGPR inocula species such as P-solubilizers (Kohler, 2009; 

Zhang et al, 2011). Such studies only show the role of co-inoculation of AMF and P 

solubilizer microbe(s) in sterile soil under artificial salt condition. Therefore, the combined 



 

60 

 

AMF-native microbial community interactions have not been assessed in naturally salt-

affected soil. For example, Zhang et al. (2011) studied the interaction effects of two AMF 

species (Glomus aggregatum and Glomus mosseae) and a fungal P-solubilizer (Mortierella 

sp.) isolated from saline soils of seashore on the growth of seashore mallow and activities 

of soil enzymes at different salinity levels. In their study, inoculation with either of the two 

AMF species alone resulted in significantly higher P availability (Olsen P) in bulk soil 

compared to inoculation with Mortierella sp. alone (almost by double) in a 0 mM NaCl 

treatment. However, under a 100 mM NaCl treatment, inoculation with Mortierella sp. 

alone significantly increased P availability in bulk soil by almost the double compared to 

AMF species each alone. Moreover, even when compared to inoculation with all species 

combined (the two AMF species + the P-solubilizer fungus) in their study, inoculation with 

Mortierella sp. alone had the highest available P in bulk soil in the 100 mM NaCl 

treatment, but not the 0 mM NaCl treatment. They suggested that due to adaptability of the 

fungal P-solubilizer to a saline soil, the fungus was not activated under the non-saline 

condition, but significantly flourished under the 100 mM NaCl treatment. This research 

supports the findings in my study that native soil microbes or P-solubilizers naturally 

occurring in salt-affected soils are more effective in increasing P availability or solubility 

than AMF alone. However, although in Zhang et al. (2011) study the fungal P-solubilizer 

resulted in higher P availability under salt stress, this impact was in sterile and artificial 

saline conditions. Such results may not be feasible under natural conditions where survival 

and competitions with native microbial community may take place (Malusá et al, 2012). 

Nonetheless, as has been suggested in literature, the role of AMF in soil seems to be more 

profound in exploring new soil volume rather than directly or actively solubilizing P 
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independently of interacting with other soil microbes, which may indicate that AMF act 

only as conduits for P solubilized by other soil microbes (Jayachandran et al, 1989; 

Bonfante and Anca, 2009; Hodge, 2017).  

In the present study, inoculation with Fm significantly increased P concentration in 

plant shoots in the IS-OU and IU-OU treatments, where the rhizosphere (outer) 

compartment were unsterilized, compared to uninoculated ones. On the other hand, 

inoculation with Fm did not significantly impact P uptake in IS-OS and IU-OS treatments, 

which had sterilized soils in their outer compartments. These variations in P uptake 

between the above treatments support the earlier notation that the outer compartment had 

more volume (~245 cm3, with total P mass of ~ 10.6 mg based on Mehlich-III prior 

conducting the experiment) compared to the hyphosphere compartments (~33 cm3, with 

total P mass of ~ 11.1 mg based on Mehlich-III + oP addition + iP addition prior 

conducting the experiment) in the designed microcosm of this study. Therefore, plant roots 

and AMF in the outer compartment of unsterile soils may have had access to more native 

iP sources (since no P amendment were added to outer compartments) in soil due to the 

interactions with the native soil microbes, as illustrated in the extractable P results of 

unsterilized hyphosphere soils. However, in Fm-inoculated IS-OS treatment, shoot P 

concentration was not significantly different from all other treatments. Thus, the above 

explanations may explain literature reports that AMF might be only capable of hydrolyzing 

oP such as phytate (Koide and Kabir, 2000) rather than sparingly soluble iP (Jayachandran 

et al., 1989) such as Ca-phosphate in saline soils. Consequently, plants may have relied 

more on oP uptake by AMF, as the latter might have had more access to phytate in the 

hyphosphere compartment of IS-OS treatment due to the reduction in phoD harboring 
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microbial community caused by sterilization (compared to IU-OS treatment). Therefore, 

equalizing P demand in comparison to Fm-inoculated treatments where the outer 

compartments were unsterilized. The total P content in plant shoots aligns with the shoot P 

concentrations results in the IS-OS and IU-OU treatments, especially in the case of Fm-

inoculated IU-OU where P was significantly higher in plant shoots compared to 

uninoculated treatment; thus, supporting the earlier explanation that there was less 

extractable P in the hyphosphere soil of Fm-inoculated IU-OU compared to uninoculated 

one because it was translocated to the plant. However, in the case of IS-OU and IU-OS, 

although P content in plant shoots was not significantly different between inoculated 

versus uninoculated treatments, it seemed to not match with the trend of shoot P 

concentrations results. This could be related to the differences in the shoot dry weights of 

these treatments, which were reflected in their total P content, as in the case of 

uninoculated IU-OS which had the highest shoot dry weight observed in this study. As 

illustrated earlier, this increase in shoot dry weight in the uninoculated IU-OS may have 

resulted from root hair growth and access to P pool in the unsterile hyphosphere 

compartments in demand for P since the outer compartment was sterilized (less available 

P) and did not have AMF inoculation.  

3.5.3 Quantification of microbial genes 

Solubilization and release of complexed P in soil are largely dependent on the 

functions of the microbial community in soils. These functions are the mineralization of oP 

through phosphatase enzymes (e.g., ALP) or solubilization of iP by low molecular weight 

organic acids (LMWOAs) as well as inorganic acids to release bioavailable orthophosphate 

(Sylvia et al, 2005). In this study, I only focused on the detection of potential ALP enzyme 
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activity and its gene (phoD) abundance as an indicator of organic P solubilization in soils 

since directly detecting LMWOAs as indicators of iP transformation is a challenge since 

they exist in low quantities (especially in a root-free soil as in hyphosphere) and are highly 

susceptible to degradation or utilization by microbes within short amount of time (Gunina 

et al, 2014). On the other hand, inorganic acids such as carbonic acids are very reactive and 

dissociate quickly in high soil pH (Qadir et al, 1996) as in this study (pH=8.5).   

 In this research study, the relative abundance of phoD was significantly reduced 

with sterilization (IS-OS) in both Fm-inoculated (by 78.3 %) and uninoculated (by 77.7 %) 

treatments compared to unsterilized soils (IU-OU). Also, within unsterilized treatments, 

inoculation with Fm lead to significantly higher phoD gene abundance compared to 

uninoculated. These results support my hypothesis that AMF and indigenous microbe 

interactions increase P availability and its plant uptake. These results suggest that the 

increased plant P uptake in this study in the Fm-inoculated IU-OU soil resulted partly from 

the increased abundance of phoD harboring microorganisms, as this treatment had the 

highest phoD abundance compared to all other treatments. The total bacterial (16S rRNA) 

and AMF (18S rRNA) gene abundances did not show any significant differences in the 

different treatments of this study. However, abundance of total fungi (ITS) was 

significantly reduced with sterilization. In this study, the phoD gene abundance was higher 

than the total 16S rRNA gene abundance, which was expected since other soil microbial 

community members (such as fungi and archaea) also possess this gene homologue (Ragot 

et al, 2015). Archaea are more likely to exist in a very low abundance in dry soils (Richter 

et al, 2014), such as the one I used in this study, collected from an area dominated by dry, 

saline, and high shrink-swell potential soils (Jaco, 1980). Therefore, the difference between 
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phoD and the 16S rRNA gene abundances were more likely to be caused by the fungi 

possessing the phoD gene. Supporting this view is the ITS abundance in this study, which 

was significantly higher in unsterile compared to sterile soils. Thus, in the Fm-inoculated 

IU-OU treatment, the significantly higher plant P uptake compared to uninoculated IU-OU 

probably resulted from the phoD-harboring microbial community (bacteria and fungi) 

mineralizing phytate, which was then taken-up by the AMF. This is more apparent when 

we look to the relative proportions of phoD gene among the total microbial community 

abundance (as 16S rRNA + ITS) which ranged from 0.30 in the uninoculated IS-OS up to 

0.71 in the Fm-inoculated IU-OU.  

3.5.4 Alkaline phosphatase activity 

Soil sterilization significantly reduced ALP activity compared to unsterilized soils 

in both Fm-inoculated (reduction by 78 %) and uninoculated (reduction by 70 %) 

treatments. However, the inoculation with Fm significantly reduced ALP activity in the 

hyphosphere soils, as the highest ALP activity was found in the uninoculated treatments in 

both sterile and unsterile soils. It is not clear why AMF caused less ALP activity in this 

study. However, since extractable P was only measured at one time point post-harvest with 

no prior sampling points during the plant growth period, much of the P had possibly been 

solubilized by AMF-microbe cooperation and mobilized and translocated to the plant prior 

to harvesting. This is more apparent when knowing that autoclaving in this study did not 

significantly affects extractable P when comparing unsterilized to sterilized soils (46 and 

47 mg P/kg soil, respectively) prior conducting the experiment. Therefore, when 

hyphosphere soil was tested post-harvest, soil P concentrations trended higher (but not 

significant) in all uninoculated pots compared to Fm-inoculated pots. Supporting this view 
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is the higher trend of P concentrations in plant shoots of all Fm-inoculated plants (only 

significant with IS-OU and IU-OU treatments) compared to uninoculated plants. 

Interestingly, the treatments with significantly higher plant P uptake with Fm inoculation 

compared to uninoculated ones (IS-OU and IU-OU) had unsterilized soil in their 

rhizosphere (outer) compartments (more volume). Hence, this may indicate higher access 

to native soil iP by AMF in the presence of indigenous soil microbes. Moreover, this may 

explain the low ALP activity found with Fm-inoculated pots compared to uninoculated 

ones. Literature reports have also shown positive correlations between ALP activity and 

soil P levels exist (Harrison, 1983; Garg and Bahl, 2008), which support the findings in the 

present study that uninoculated pots trended higher (but not significantly different) in 

extractable P concentrations at the sampling time compared to Fm-inoculated pots. 

The above interpretations may also explain the different trends between phoD gene 

abundance and ALP activity observed in this study, where Fm inoculation has significantly 

reduced ALP activity while phoD abundance was significantly increased. This negative 

correlation probably was owing to the reduction of P solubility/availability caused by Fm 

inoculation as illustrated above. Research evidence has also shown similar trend where 

phoD gene abundance was significantly increased under low availability of soil P (Fraser 

et al, 2015b). Furthermore, it has been suggested that some microbial species have more 

inducible ALP genes that drive the enzyme production than other microbes (Fraser et al, 

2015a). Also, there are multiple ALP encoded genes that have been identified in Pho 

regulon such as phoD, phoA, and phoX, and that 32 % of sequenced prokaryotic genomes 

contain at least one of these three genes (Zimmerman et al, 2013). However, phoD gene 

was identified as the key ALP encoded gene in soils (Tan et al, 2013). In their study, Tan 
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et al. (2013) has shown that high P availability lead to an increase in certain bacterial phyla 

(such as Proteobacteria) and a decrease in other phyla in term of abundance. 

Consequently, these research evidences support the notion that some microbial species 

with highly inducible phoD gene might flourish in the absence of AMF. Such ecological 

aspects might be related to the antagonistic interactions or/and competition on nutrients 

such as soluble/available P between both AMF and other soil microbes. 

Very few studies on soil ALP activities as influenced by AMF under salt stress 

exist, which highlights research necessity to examine AMF roles in affecting soil enzyme 

activities in salinized soils. Most studies that have evaluated ALP activities in mycorrhizal 

plants under salt stress were mainly focused on root ALP rather than soil ALP activities 

(Grzybowska, 2004; Rabie and Almadini, 2005; Kohler, 2009). For example, Rabie and 

Almadini (2005) reported that root ALP activity decreased from 629 u/ml/min to 411 

u/ml/min in mycorrhizal roots grown under soil salt stress of 1.5 dS/m and 6 dS/m, 

respectively. To the contrary, Grzybowska (2004) reported that ALP activity significantly 

increased by 45 % when salt level increased from 3.92 mS/m (0.03 dS/m) to 24.7 mS/m 

(0.24 dS/m) in plants inoculated with G. geosporum isolated from a saline soil, while no 

significant differences were found with inoculation with G. intraradices isolated from a 

non-saline soil. However, both studies did not report data from soil ALP activity.   

In contrast to the present study and supporting the findings by Grzybowska (2004), 

a couple of studies have indicated increased soil ALP activity with co-inoculation of AMF 

and a fungal P-solubilizer in both sterile (Zhang et al, 2011) and unsterile (Zhang et al, 

2014) saline soils. Thus, indicating a gap of knowledge in our understanding of the 

relationship between ALP activities and AMF in salt-affected soils.  
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In non-saline soils, studies on correlations between AMF and ALP activities are 

also not well understood as some contradictions exist. Some reports have shown a positive 

correlation (Tarafdar and Marschner, 1994), while others showed a negative one (Kunze et 

al, 2011), or no effect (Joner et al, 1995) of AMF on ALP activity. Similar contradictions 

also exist in the correlation between ALP activity and available P in soil. Some studies 

have found a positive correlation between the total available P in soil and ALP activity 

(Harrison, 1983; Garg and Bahl, 2008), while other studies suggested an inverse 

relationship (Tan et al, 2013). 

Our knowledge about the AMF-soil microbial interactions driving the P cycle and 

their correlation to phosphatase encoded genes and P availability in salt-stressed soils is 

still limited. Future research will shed more light into the mechanisms driving AMF 

influence on P availability, ALP and its encoded microbial genes in salt-stressed soils. 

Such knowledge will enhance our ability for better management of P resources in salt-

stressed soils.  

3.6 Conclusion 

In this study, I found a significant role of AMF-hyphosphere microbial community 

interactions in increasing extractable P as well as plant P uptake in saline soil. In all Fm-

inoculated treatments, soil sterilization significantly reduced soil extractable P, phoD gene 

abundance and ALP activity compared to unsterilized soils. Thus, indicating the greater 

role of native microbial community in increasing P availability in salt-stressed soils, while 

AMF role seems to be less efficient in increasing P availability independently of 

interacting with these microbes.  



 

68 

 

This study along with the increased evidences in the scientific fields, highlight the 

role of AMF and its associated microflora in the hyphosphere in improving P uptake by 

crops. Thus, managing AMF/soil microbiome synergistic interactions seems to be a 

promising tool for the sustainable agriculture, especially under biotic or abiotic stresses 

such as salinity. Moreover, future studies should consider the contributions of other 

microbially regulated processes (release of low molecular weight organic acids and other 

phosphatase enzymes) and chemical processes (e.g., inorganic acids) driving P cycle in 

soils to have a comprehensive understanding of all aspects contributing to P availability in 

soils. Such tools and knowledge will enable us to better manage P resources in salt-stressed 

soils as well as in other agricultural lands with the increased food demand in our world.  
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CHAPTER IV 

EFFECTS OF BIOCHAR ON ARBUSCULAR MYCORRHIZAL FUNGAL 

COLONIZATION AND PLANT PHOSPHORUS UPTAKE IN A SALINE CLAY 

SOIL 

 

4.1 Synopsis 

The use of biochar (BC) as a soil conditioner/amendment has attracted much 

attention in recent years due to its diverse beneficial effects on soil health. However, our 

knowledge about BC interactions with arbuscular mycorrhizal fungi (AMF) in the 

remediation of salt-affected soils are still limited. In this study, I investigated the role of 

BC (pine wood, 500 °C) and AMF (Funneliformis mosseae) as a joint management in 

affecting AMF colonization and plant P uptake (Winter Malt Barley) under salt stress in a 

growth chamber for 42 days. I also investigated their impact on extractable soil P 

(Mehlich-3), soil alkaline phosphatase (ALP) activity, and abundances of microbial 

alkaline phosphatase (phoD), bacterial 16S rRNA, AMF 18S rRNA, and fungal internal 

transcribed spacer (ITS) gene targets in rhizosphere and bulk (root-free) soils. The 

experiment was conducted using a two-compartment microcosm (root growth 

compartment and root-free compartment as bulk soil) separated with 25 µm nylon mesh. 

The soil had 4 treatments: control (no BC with control no-AMF inoculum), BC application 

at 3 % w/w (with no-AMF control inoculum), AMF as Funneliformis mosseae (Fm), and 

BC+AMF (Fm). All soils were amended with 200 mg/kg P in the form of Na-phytate as 

organic P (oP) and NaCl to raise soil EC to 16 dS/m. The combined treatment of BC+AMF 
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significantly increased plant shoot and root growth, plant P uptake (by 70.2 % over 

control), and extractable P in the bulk soil. For AMF colonization, BC alone significantly 

reduced AMF colonization by 56 % compared to control, possibly due to less reliance of 

the plant on AMF symbioses, but was not significantly different from AMF and BC+AMF. 

Similarly, BC+AMF significantly reduced % colonization by 69.6 % compared to control 

and by 51 % compared to AMF alone. The targeted microbial genes in this study 

significantly increased in all treatments over control in the rhizosphere soil, but not in the 

bulk soil. The effect of BC and Fm seems to be mainly through improving plant growth 

conditions and P uptake, respectively. Overall, the findings in this study suggest that the 

combined application of BC+AMF inocula can significantly improve plant production and 

P availability in salt-affected soils.  

4.2 Introduction 

Biochar has gained much attention in recent years due to its diverse benefits to 

plants, soil, and the environment. Some of these benefits include water and nutrient 

retention in soil, carbon sequestration (reduce greenhouse gas emissions), increased 

populations of beneficial soil microbes, increased soil fertility, etc. (Atkinson et al., 2010). 

In addition, the role of arbuscular mycorrhizal fungi (AMF) is well known in improving 

plant nutritional status (especially phosphorus) as well as water uptake. However, 

knowledge about AMF occurrence and development in salt-affected soils is scarce and 

contradictory. For example, relatively high AMF populations have been reported in some 

AMF studies in saline soils (Sengupta and Chaudhuri 1990; Bhaskaran and Selvaraj 1997), 

while other studies indicated small AMF populations (Kim and Weber, 1985; Barrow et 

al., 1997). However, it seems that AMF spore numbers do not correlate with soil salt levels 
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(Aliasgharzadeh et al., 2001), while the percentage of AMF colonization seems to 

generally have a negative correlation with the salt levels (Guo and Gong, 2014; Miransari, 

2017), although some studies (including the study in Chapter II) have shown increased 

colonization with higher salt levels (Aliasgharzadeh et al., 2001; Giri and Mukerji, 2004). 

It is not clear how salt stress affects AMF occurrence in saline soils. It may be due to salt 

effects on the plant, the AM fungus, or both. Yet, there is evidence that increasing soil 

NaCl concentrations reduce root infection by AMF due to hyphal growth reduction or 

inhibition (McMillen et al., 1998). It is not clear whether this effect is due to specific ion 

toxicity or indirectly by osmotic stress in soil solution. On the other hand, the evidence that 

hyphal growth can occur under high salt concentration in soil has been linked to 

maintenance of turgor by mycorrhizal hyphae (Cooke and Whipps, 1993), which requires 

energy.  

Many studies have suggested that addition of nutrients to salt-affected soils resulted 

in improved plant growth, possibly by compensating for the low plant uptake of nutrients 

resulting from osmotic stress of saline soils (Hu and Schmidhalter, 2005; Ahanger and 

Agarwal, 2017). Since biochar sources are organic wastes, they can provide a wide range 

of plant nutrients at different nutrient release rates. Thus, addition of biochar to salt-

affected soils may improve soil fertility status as well as nutrient uptake by plants in these 

soils (Tagoe et al., 2008; Atkinson et al., 2010; Drake et al., 2016). Moreover, although 

some evidence indicates a role of biochar in changing or shifting rhizosphere microbial 

compositions (Grossman et al., 2010; Liang et al., 2010), the correlation between biochar 

and changing soil biota and its processes haven’t been yet fully understood and described 

(Lehmann et al., 2011). 

http://www.sciencedirect.com/science/article/pii/S0038071711001805#bib89
http://www.sciencedirect.com/science/article/pii/S0038071711001805#bib152
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Biochar has enormous surface area and different cation exchange capacities (CEC), 

which vary depending on the activation methods of biochar (Azargohar and Dalai, 2008). 

Consequently, its addition to soil will also increase soil CEC (Joseph et al., 2009). Biochar 

can also adsorb ions on its surfaces, and hence, prevent nutrient leaching (Yao et al., 2011). 

However, nutrients on biochar surfaces may not necessarily be available to plants, since 

most roots are unable to access the micro-habitat structures of the biochar due to their size, 

as the diameter of the finest roots of most plant species are of several hundred µm (Fitter, 

2002). On the other hand, AMF hyphae are finer and much smaller in diameter, therefore, 

can capture adsorbed nutrients on biochar surfaces (Hammer et al., 2015). AMF are known 

to increase plant P uptake. (Evelin et al, 2009). Thus, since biochar has been shown in 

recent studies to adsorb and desorb phosphate on its surfaces (Yao et al., 2011; Trazzi et 

al., 2016), the presence of AMF may further increase or enhance plant P uptake through 

the access to biochar surfaces by its hyphal network. In addition, some literature reports 

have also indicated that both AMF and biochar can significantly enhance root system 

architecture (RSA) and change soil microbial community compositions (Wu et al, 2012; 

Xiang et al, 2017). 

There are only a few studies that have evaluated the combined effects of biochar 

and AMF on plant growth, mycorrhizal colonization and P availability. Such studies have 

been mostly conducted in non-saline soils and show contradictory results (Warnock et al, 

2010; Elmer and Pignatello, 2011; Yamato et al, 2006). For example, Warnock et al. 

(2010) reported that addition of different types of biochar did not affect plant biomass 

production and either decreased or did not affect AMF colonization, but soil P availability 

was increased. In contrast, Elmer and Pignatello (2011) found increased AMF colonization 
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with biochar addition, but no effects were found on plant P uptake. On the other hand, the 

studies that investigated combined effects of biochar and AMF under salt stress were 

conducted in sterilized and artificially saline soils (Hammer et al, 2015). Therefore, such 

studies don’t consider soil microbial roles in interacting with biochar as well as with AMF, 

since the latest has been shown to increase P availability and uptake by plants (as 

illustrated in Chapter 3).   

Hence, the goal of this study was to understand the effects of AMF and biochar in 

improving soil P extractability and its uptake by plant as well as increasing mycorrhizal 

colonization in a naturally unsterile saline soil. Therefore, I hypothesized that biochar 

amendment would increase soil extractability and plant uptake of phosphorus and improve 

AMF colonization in a native unsterile saline soil. 

4.3 Material and methods 

4.3.1 Soil 

Surface soil (top 0-30 cm) was collected near the Texas A&M AgriLife Research & 

Extension Center at Pecos in Reeves county, Texas, USA. The majority of soils found in 

this region are saline and moderately alkaline. The soil series in this region is Dalby clay 

and classified as Fine, smectitic, frigid Oxyaquic Vertic Hapludalfs (NRCS, USDA. Web 

Soil Survey). No vegetative cover or previous agricultural practices were present at the site 

where the soil was collected. Characteristics of the collected soil sample are listed in Table 

4.1. The soil texture was determined by a hydrometer (Bouyoucos, 1962), and % organic 

matter content was determined by the wet oxidation method (Walkley and Black, 1934). 

Soil pH, EC (saturated paste extract), and soil P (Mehlich-3) were determined by the Soil, 
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Water and Forage Testing Laboratory Department of Soil and Crop Sciences, Texas A&M 

University. 

 

Table 4.1. Characteristics of the soil used in third experiment. 

Parameter Value 

pH 8.5 

EC (saturated extract) 

dS/m) 

6.32 

P (Mehlich-3, mg/kg) 45 

Organic matter content (%) 0.34 

Clay (%) 46.7 

Silt (%) 20.7 

Sand (%) 32.6 

 

4.3.2 AMF inoculum and plant host 

The AMF species used in this experiment was Funneliformis mosseae (Fm), 

obtained from INVAM (International Vesicular Arbuscular Mycorrhizal collection facility, 

University of West Virginia, accession code UT101) as whole inoculum containing 

different AMF propagules (soil with spores, infected root pieces, and hyphae). This AMF 

inoculum was chosen since it colonized plant roots well in my previous experiment also 

performed in saline clay soil (Figure 2.1). The addition of AMF inoculum was to ensure 

that the different effects such as plant P uptake were relevant to their addition when 

compared to uninoculated pots. Winter Malt Barley (Wintmalt, KWS Saat, Germany) (salt 

tolerant) was used as the plant host in this experiment since barley is one of the most salt-

tolerant crops and the soil in this study had additional added salt to increase its level. 

4.3.3 Biochar 

Biochar (BC) in this study was obtained from Wakefield Agricultural Carbon LLC, 

Columbia, MO, USA. The physical and chemical properties of BC are listed in Table 4.2, 
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as reported by the manufacturer, except for EC which was determined using an EC meter 

in a 1:10 w/v biochar-water suspension. Biochar was grounded to pass a 2 mm sieve prior 

to use in this experiment.  

 

Table 4.2. Physical and chemical properties of biochar (as reported by the     

manufacturer, except for EC). 

Property Specification/Value 

Pyrolysis temperature 500 °C 

Feedstock material Soft wood (Pine) 

Bulk density 0.48 g/cm3 

Total organic matter 95.12 % total mass 

Total carbon 88.01 % total mass 

Total organic carbon 87.67 % total mass 

Total inorganic carbon 0.34 % total mass 

Total ash 4.88 % total mass 

pH 7.4 

EC 0.35 dS/m (in 1:10 (w/v)) 

Nitrogen (N) 0.59 % wt 

Total phosphate 4.53 mg/kg 

Potassium (K) 614 mg/kg 

Sulfur 0.031 % wt 

Hydrogen 0.40 % wt 

Oxygen 6.09 % wt 

Calcium 4128 mg/kg 

Copper 5.38 mg/kg 

Iron 595 mg/kg 

Magnesium 1225 mg/kg 

Manganese 234 mg/kg 

Zinc 4.59 mg/kg 

Surface area 365.69 m2/dry g 

Particle size: <0.5mm 22.4 % 

Particle size: <1mm 70.1 % 

Particle size: <2mm 93.9% 

 

4.3.4 Experimental design and growth conditions 

The experimental design in this experiment was a 2×2 factorial completely 

randomized design with 3 replicates. Treatment combinations were 2 biochar (BC) 
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conditions (with/without biochar) and 2 AMF treatments (mycorrhizal and non-

mycorrhizal), giving 4 different treatments: control (no biochar with no-AMF control 

inoculum), biochar only (BC), AMF only (AMF), biochar + AMF (BC+AMF). Biochar 

was added at a 3 % rate (w/w) as an average rate observed from different biochar studies in 

the remediation of salt-affected soils (Dahlawi et al., 2018). Square plastic pots (Stuewe & 

Sons Inc., Tangent, OR, USA; 10.2 cm width × 14 cm height with 1.2-liter volume) were 

used to grow plants. Additionally, each pot had 2 root-free compartments (as bulk soil) as 

mini plastic boxes (The Container Store Inc, Coppell, TX, USA; 4.5-cm long, 2.5-cm 

wide, 1.5-cm height) wrapped with a 25 µm nylon mesh (LAB PACK, Sefar Inc., Buffalo, 

NY, USA) and buried in middle depth of each pot. All soils were amended with 200 mg/kg 

P of Na-phytate as organic P and 50 mg N/kg soil as NH4NO3, in addition to NaCl to raise 

EC of soil to ~ 16 dS/m as a moderate salt stress for barley. Seeds were sterilized with 10 

% sodium hypochlorite for 20 min and germinated in a sterile soil (autoclaved for 1 hr at 

121 °C three times, on three consecutive days) of the experiment without BC in square 

nursery pots (6.5-cm diameter, 9-cm long, 280-ml volume) for 10 days. Then, seedlings 

were transplanted to the designed pots with 10 gm of inoculum (either AMF or no-AMF 

control inocula) mixed with soil at the seedling zone. Plants were grown for 42 days 

(starting from emergence) in a growth chamber at 25 °C day/21 °C night, 16 h/8 h 

light/dark, 60 % humidity, & 500 µmol /m2/s light intensity, and watered every other day 

to 50 % water holding capacity (determined based on maximum water holding capacity) 

(Noggle and Wynd, 1941) with distilled water. 
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4.3.5 Plant growth parameters, root staining and AMF colonization 

At harvest, plants were gently removed from the pots and shoots were separated 

from the root system. Shoots were placed in an oven at 60 °C for 48 hours and then 

weighed to get the dry weight. Roots were gently removed from the soil and shaken to 

remove loose soil particles. Remaining soil adhering to the roots was then tapped gently to 

free it from roots and collected as rhizosphere soil and stored at -80 °C for later analysis. 

The soil from the root compartment was then sieved to manually collect remaining root 

pieces. All roots were then washed under tap water. A subsample of roots was then 

separated and weighed before and after drying in an oven at 60 °C for 48 hours to obtain 

the moisture content for estimating total root dry weight. The remaining root system was 

then washed and scanned with an Epson WinRHIZO scanner (Regent Instruments Inc., 

Quebec, Canada) to obtain measurements of root length, root surface area, root diameter, 

and root tip number using an installed Epson WinRHIZO software version 2017a. After 

scanning, roots were cleared (to remove cytoplasm content of cells) and stained with 

trypan blue using a modified procedure of Phillips and Hayman (1970). Briefly, roots were 

placed in tissue cassettes (Fischer Scientific Inc., Hampton, NH, USA) and submerged in 

pre-boiled 10 % KOH for 10 min to remove cytoplasmic content of root cells. Cassettes 

were then washed 5X with tap water and submerged in 2 % HCl for 30 min, followed by 

5X washing with tap water. The cassettes were then submerged in pre-boiled 0.05 % 

trypan blue solution (water, glycerin, lactic acid in 1:1:1 (v/v/v)) for 5 min. The cassettes 

were then washed 5X with tap water and stored at 4 °C for 3-5 days immersed in distilled 

water to remove excess stain. Percentage of AMF colonization was determined using the 

gridline intersection method (Giovannetti and Mosse, 1980). Growth parameters of root 
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dry weight, shoot dry weight, shoot to total dry weight and total dry weight were then 

calculated.  

4.3.6 Soil extractable P, plant shoot P content and salinity parameters 

After plant harvest, approximately 300 gm of soil without roots from the root 

growth compartment were collected and stored at -80 °C for later analysis. The soils from 

the root-free compartment was then collected after removing and discarding the surface 

layer (~2mm) where there was possible exchange of microbes and nutrients between both 

compartments. Soils of both root-free compartments of each pot were then mixed to have a 

one homogenized root-free soil/pot and stored at -80 °C for later analysis. Soil samples 

from both compartments (previously stored at -80 °C), and the dried plant shoots were all 

submitted to the Soil, Water and Forage Testing laboratory at Texas A&M University 

(College Station, TX, USA) to measure extractable P in soil (Mehlich-III) (in root and roo-

free compartments), soil pH (from saturated extract), sodium adsorption ratio (Na relative 

to Ca and Mg in a water extract from a saturated past using ICP analysis) and EC (based 

on a saturated paste extract) in root compartment soil only, and determine P, K and Na 

concentrations in plant shoots (ICP analysis). Shoot K/Na ratios were then calculated.  

4.3.7 DNA extraction  

Soil DNA was extracted from 0.5 g of soils (-80 °C) from the rhizosphere and the 

root-free compartments (as bulk soil) using DNeasy PowerSoil Pro DNA Isolation Kit 

(MO BIO Laboratories, Inc., Carlsbad, CA) following the manufacturer’s instructions. 

After extraction, all DNA samples were quantified to detect DNA quality using a 

Nanodrop ND-1000 spectrophotometer (Thermo-Fisher Scientific Inc., Wilmington, DE, 

USA). 
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4.3.8 Quantitative PCR assays  

Quantitative real-time PCR (qPCR) was used to quantify the abundances of 

microbial phoD (alkaline phosphatase), total bacterial 16S rRNA, total AMF 18S rRNA, 

and total fungal internal transcribed spacer (ITS) gene targets in both rhizosphere and bulk 

soil (root-free soil). For quality control, all qPCR runs included 5 different concentrations 

of DNA standards (gBlock standards, Integrated DNA Technologies Inc.) for each target 

gene (for standard curve)(details on these standards are same as in Table 3.2 in Chapter 3), 

no-template control (NTC), positive control, negative control, and 2 spiked random 

samples from the study’s DNA samples with one of the standards to test for possible qPCR 

inhibitors. Standards and NTC were run in triplicate, and the rest of controls and 

experimental samples were run in duplicate. Details on each target gene positive and 

negative controls, R2 value, and reaction efficiency of standard curves are listed in Table 

4.3. Primers (obtained from Integrated DNA Technologies Inc.), qPCR conditions and 

references are outlined in Table 4.4. Amplifications of DNA was performed using Rotor-

Gene SYBR® Green qPCR kit, with gene abundance measured using Rotor-

Gene Q Software version 2.3.1.49 (QIAGEN, Hilden, Germany).  

4.3.9 Alkaline phosphatase enzyme assay 

Potential soil alkaline phosphatase (ALP) activity was measured from the frozen 

rhizosphere and bulk (root-free) soils (-80°C) using a modified assay of Tabatabai and 

Bremner (1969). In addition, ALP activity in soil with and without BC were measured 

using the same soil (as collected from field) to test possible interference of BC with the 

enzyme assay itself. For all enzyme assays, 0.5 g soil in duplicate was incubated in p-

nitrophenyl phosphate substrate (Sigma-Aldrich, USA) along with modified universal 
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buffer solution (pH 11) at 28°C in 2 mL deep-well plate. After 2 h, reactions were stopped 

with 2.5 M CaCl2 and 2.5 M NaOH. Plates were then shaken for 5 min and centrifuged for 

5 min at 500g-force. Using a 96-well plate, formation of p-nitrophenol was determined 

colorimetrically using a Biolog Microstation Elx808BLG (BIO-TEK Instruments Inc., 

Winooski, VT, USA) spectrophotometer at 405 nm.  

4.3.10 Statistical analysis 

All treatment effects were statistically analyzed using ANOVA in a SAS software 

(version 9.4), using PROC GLM procedure. Differences between treatments were obtained 

using Fisher’s least-significant-difference (LSD) test at a p-value of <0.05. 

 

Table 4.3. Quality control details of the qPCR runs in third experiment. 

Target 

microbial 

group 

Positive 

control 

 

Negative control 

R2 value of 

standard 

curve 

Reaction 

efficiency 

phoD-

harboring 

microbes 

Sinorhizobium 

meliloti 

Escherichia coli 

K-12 

0.99 0.90 

16S rRNA Escherichia 

coli K-12 

Methanospirillum 

hungatei 

0.99 0.94 

AMF 18S 

rRNA 

Glomus 

intraradices 

Escherichia coli 

K-12 

0.99 0.95 

ITS Rhizopus 

microsporus 

Escherichia coli 

K-12 

0.99 1.00 
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      Table 4.4. Primers and conditions used for the qPCR assays in third experiment.  

Target 

microbial 

group 

Primers and sequences qPCR reaction 

mixture 

Thermal profile Reference 

phoD-

harboring 

microbes 

phoD-F733(5’-

TGGGAYGATCAYG

ARGT-3’)/ phoD-

R1083 (5’-

CTGSGCSAKSACRTT

CCA-3’) 

7.5 µl SYBR 

Green (2x) 

Master Mix, 1.5 

µl each primer 

(5 µM), 2 µl 

DNA template, 

2.5 nuclease free 

H2O. 

5 min at 98°C for initial 

denaturation; 35 cycles of 

30 s at 98°C, 30 s at 58°C, 

extension for 30 s at 72°C, 

and acquisition for 10 s at 

82°C. Melt curve produced 

at 55-98°C (1° and 5 s/cycle 

melt). 

Modified 

after Ragot 

et al (2015) 

Total 

bacteria 

(16S rRNA) 

341f-(5’-

CCTACGGGAGGCAG

CAG-3’)/ 797r-(5’-

GGACTACCAGGGTA

TCTAATCCTGTT-3’) 

 

7.5 µl SYBR 

Green (2x) 

Master Mix, 

0.225 µl F 

primer (0.3 µM), 

0.675 µl R 

primer (0.9 µM), 

2 µl DNA 

template, 4.6 

nuclease free 

H2O. 

3 min at 98°C for initial 

denaturation; 40 cycles of 

30 s at 98°C, 30 s at 61.5°C, 

extension for 20 s at 72°C, 

and acquisition for 10 s at 

82°C. Melt curve produced 

at 50-99°C (1° and 5 s/cycle 

melt) after a pre-melt 

conditioning for 90 s at 

50°C. 

Modified 

after Harter 

et al (2014) 

 

 

 



 

82 

 

  Table 4.4. Continued.  

Target microbial 

group 

Primers and 

sequences 

qPCR reaction 

mixture 

Thermal profile Reference 

Total AMF (18S 

rRNA) 

GC-AMV4.5NF- 

(5’-CGC CCG CCG 

CGC GCG GCG 

GGC GGG GCG 

GGG GCA CGG 

GGG G [GC clamp] 

AAG 

CTC GTA GTT 

GAA TTT CG-3′)/ 

AMDGR-( 5′-CCC 

AAC 

TAT CCC TAT 

TAA TCA T-3′) 

7.5 µl SYBR Green 

(2x) Master Mix, 

1.5 µl each primer 

(5 µM), 2 µl DNA 

template, 2.5 

nuclease free H2O. 

10 min at 98°C for 

initial denaturation; 

35 cycles of 30 s at 

98°C, 30 s at 55°C, 

extension for 45 s at 

72°C, and 

acquisition for 10 s 

at 82°C. Melt curve 

produced at 50-

98°C (1° and 5 

s/cycle melt). 

Modified after 

Sato et al (2005) 

Total fungi (ITS) ITS1f-(5’-TCC 

GTA GGT GAA 

CCT GCG G-

3’)/5.8s-(5’-CGC 

TGC GTT CTT 

CAT CG-3’) 

7.5 µl SYBR Green 

(2x) Master Mix, 

1.5 µl each primer 

(5 µM), 2 µl DNA 

template, 2.5 

nuclease free H2O. 

10 min at 98°C for 

initial denaturation; 

35 cycles of 60 s at 

98°C, 30 s at 53°C, 

extension for 45 s at 

72°C, and 

acquisition for 10 s 

at 82°C. Melt curve 

produced at 48-

98°C (1° and 5 

s/cycle melt). 

Modified after 

Fierer et al 

(2005) 
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4.4 Results 

4.4.1 Plant growth responses and AMF colonization 

The different growth responses of barley to BC and AMF are shown in Figures 4.1 

– 4.3. Both biochar and AMF significantly increased plant height compared to the control 

(Figure 4.1 A), with the highest height found in the BC+AMF treatment. However, 

compared to the control, biochar alone significantly increased plant growth in terms of 

shoot dry weight, root dry weight, and total plant dry matter (Figure 4.1 B, C, and Figure 

4.2 A, respectively). Shoot:total plant dry matter did not show significant differences 

between all four treatments (Figure 4.2 B). For root length (Figure 4.2 C), AMF and 

AMF+BC were significantly higher than the control with 55.5 and 103.9 % increases, 

respectively, with BC+AMF being significantly higher than all other. Root length in BC 

treatment was higher than the control but was not significantly different. No significant 

difference was found in root length between the BC and AMF treatments. Similarly, root 

surface area (Figure 4.3 A) was significantly higher than the control with 61.4 and 84.6 % 

increases in the AMF and AMF+BC, respectively. Biochar also trended higher than control 

in root surface area but was not significantly different. However, root surface area in BC 

was significantly less than BC+AMF, but not significantly different from AMF treatment. 

For root diameter (Figure 4.3 B), BC and BC+AMF resulted in significantly smaller root 

diameter by 15.5 and 10.16 % compared to control, respectively. When compared to AMF, 

BC and BC+AMF treatments also resulted in significantly smaller root diameter by 18.15 

and 12.9 %, respectively. No significant difference was found in root diameter when 

comparing control to AMF and BC to BC+AMF. For root tip number (Figure 4.3 C), 
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BC+AMF was significantly higher than the control by 141 %, while no significant 

differences were found between all other treatments. For AMF colonization (Figure 4.3 

D), BC and BC+AMF significantly reduced % colonization by 56 and 69.6 % compared to 

the control. Inoculation with Fm significantly reduced % colonization by 38 % over 

control but was not significantly higher than BC+AMF treatment. No significant difference 

was found between BC and AMF treatments.  

 

Figure 4.1. Plant and root growth parameters (part one). A: plant height. B: shoot 

dry weight. C: root dry weight. Control = saline soil with no biochar and no AMF. 

BC = saline soil with biochar. AMF: saline soil inoculated with Fm (Funneliformis 

mosseae). BC+AMF = saline soil with biochar and Fm inoculation. Data are means 

± s.d (n=3). Different letters indicate significant difference (p < 0.05). 
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Figure 4.2. Plant and root growth parameters (part two). A: total plant dry matter. 

B: shoot to total plant dry matter. C: root length. Control = saline soil with no 

biochar and no AMF. BC = saline soil with biochar. AMF: saline soil inoculated 

with Fm (Funneliformis mosseae). BC+AMF = saline soil with biochar and Fm 

inoculation. Data are means ± s.d (n=3). Different letters indicate significant 

difference (p < 0.05). 
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Figure 4.3. Root growth parameters and AMF colonization. A: root surface area. B: root diameter. C: root tip        

number. D: % root colonization by AMF. Control = saline soil with no biochar and no AMF. BC = saline soil with 

biochar. AMF: saline soil inoculated with Fm (Funneliformis mosseae). BC+AMF = saline soil with biochar and Fm 

inoculation. Data are means ± s.d (n=3). Different letters indicate significant difference (p < 0.05). 
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4.4.2 Soil extractable P, plant shoot P content and salinity parameters 

AMF and BC+AMF significantly increased plant P uptake in barley by 52.7 and 

70.2 %, respectively (Figure 4.4 A). Biochar was not significantly different from control. 

Also, no significant differences were found between BC, AMF and BC+AMF in P uptake. 

For extractable P in soil (Figure 4.4 B), no significant differences were found among all 

treatments in the root compartment soils. However, BC and BC+AMF significantly 

reduced extractable soil P in the bulk soil (root-free) by 10.2 and 13.2 % compared to 

control, and by 10.6 and 13.6 % compared to AMF, respectively. No significant 

differences were found between BC and BC+AMF treatments or between control and 

AMF treatments in extractable P from bulk soil.  

Post-harvest salinity parameters and shoot K:Na ratios are shown in Table 4.5. For 

shoot K:Na ratio (calculated from K and Na shoot concentrations obtained from the ICP 

analysis), treatments of BC, AMF and BC+AMF all resulted in significantly lower K:Na 

ratios, by 16.8, 25 and 23 %, compared to control, respectively. No significant differences 

were found in K:Na ratios between BC, AMF, and BC+AMF treatments. For soil pH, 

BC+AMF had significantly higher pH by 0.2 units compared to control. No significant 

differences were found in soil pH between BC, AMF, and BC+AMF. For soil EC, 

BC+AMF was significantly lower than AMF by 3.95 units, while no significant 

differences were found between control, BC and AMF treatments. Similarly, soil SAR was 

significantly lower by 5 units in BC+AMF compared to AMF, while no significant 

differences were found between control, BC and AMF treatments. 



 

88 

 

 

Figure 4.4. Extractable soil P and its uptake by plants in third experiment. A: shoot P 

concentration. Soil extractable P (Mehlich-3) from root and root-free (bulk) compartments. 

Control = saline soil with no biochar and no AMF. BC = saline soil with biochar. AMF: 

saline soil inoculated with Fm (Funneliformis mosseae). BC+AMF = saline soil with 

biochar and Fm inoculation. Data are means ± s.d (n=3). Different letters indicate 

significant difference (p < 0.05). 

 

 

Table 4.5. Plant shoot K:Na ratios and soil (from root compartment) post-harvest salinity 

parameters; soil pH, soil electrical conductivity (EC), and sodium adsorption ratio (SAR). 

Control = saline soil with no biochar and no AMF. BC = saline soil with biochar. AMF: 

saline soil inoculated with Fm (Funneliformis mosseae). BC+AMF = saline soil with 

biochar and Fm inoculation. Data are presented as the mean ± s.d (n=3). Different letters 

indicate significant difference (p < 0.05). 

Treatment Shoot K:Na 

ratio 

Soil pH Soil EC 

(dS/m) 

SAR 

C 1.20 ± 0.09 a 7.58 ± 0.1 b 7.57 ± 2.7 ba 18.14 ± 1.9 ba 

BC 1.00 ± 0.09 b 7.63 ± 0.08 b 8.69 ± 1.9 ba 18.57 ± 1.4 ba 

AMF 0.90 ± 0.14 b 7.64 ± 0.05 b 11.17 ± 1.3 a 21.42 ± 2.2 a 

BC+AMF 0.93 ± 0.01 b 7.79 ± 0.04 a 7.22 ± 1.6 b 16.41 2.9 b 

 

4.4.3 Alkaline phosphatase activity 

Potential ALP activity of both rhizosphere and bulk soil is shown in Figure 4.5 A, 

expressed as µg p-nitrophenol/dry g soil/hr. In all treatments, activity of ALP was 

significantly higher in rhizosphere than bulk/root-free soil. No significant differences were 

found between the control and AMF in ALP activity in rhizosphere and bulk soils. Since 
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treatments with BC (BC & BC+AMF) was significantly low compared to control and AMF 

in rhizosphere and bulk soils, I further tested whether BC itself impacted ALP activity 

during the assay procedure. The data in Figure 4.5 B show that BC significantly interfered 

with ALP assay.  

4.4.4 Quantitative PCR assays 

 

Abundance of the all targeted genes are shown in Figure 4.6. In rhizosphere soil, 

phoD abundances (Figure 4.6 A) were significantly higher in BC, AMF and BC+AMF 

compared to the control. No significant differences were found in phoD abundances 

between the BC, AMF and BC+AMF treatments in rhizosphere soil. In the bulk soil, no 

significant differences were found between all four treatments in phoD abundances. 

Similarly, bacterial 16S rRNA gene abundance (Figure 4.6 B) was significantly higher in 

BC, AMF and BC+AMF compared to the control rhizosphere soil. No significant 

differences were found in 16S rRNA abundances between the BC, AMF and BC+AMF in 

rhizosphere soil. In the bulk soil, no significant differences were found between all four 

treatments in 16S rRNA gene abundance. Like phoD and 16S rRNA, AMF-18S rRNA 

gene abundance (Figure 4.6 C) was significantly higher in BC, AMF and BC+AMF 

compared to the control rhizosphere soil. No significant differences were found in AMF-

18S rRNA abundances between the BC, AMF and BC+AMF rhizosphere soil. In the bulk 

soil, no significant differences were found between control, BC, and BC+AMF. However, 

AMF inoculation resulted in a significantly higher AMF-18S rRNA gene abundance than 

BC in the bulk soil. For ITS gene abundance (Figure 4.6 D), only BC+AMF resulted in a 

significantly higher gene abundance compared to control in the rhizosphere soil, while no 
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significant differences were found when compared to BC and AMF. In the bulk soil, no 

significant differences were found in ITS gene abundance between all four treatments.  

 

 

 
Figure 4.5. Potential soil alkaline phosphatase (ALP) activity. A: ALP activity in the 

rhizosphere and root-free soils. B: ALP activity in a field soil mixture with/without BC 

(data in figure B are presented as the mean ± s.d (n=8)). Control = saline soil with no 

biochar and no AMF. BC = saline soil with biochar. AMF: saline soil inoculated with Fm 

(Funneliformis mosseae). BC+AMF = saline soil with biochar and Fm inoculation. Data 

are presented as the mean ± s.d (n=3). Different letters indicate significant difference (p < 

0.05). 
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Figure 4.6. Abundances of the targeted genes in rhizosphere and bulk (root-free) soils. A: phoD gene. B:16S 

rRNA gene. C: AMF 18S rRNA. D: fungal ITS. Control = saline soil with no biochar and no AMF. BC = saline 

soil with biochar. AMF: saline soil inoculated with Fm (Funneliformis mosseae). BC+AMF = saline soil with 

biochar and Fm inoculation.Data are presented as the mean ± s.d (n=3). Different letters indicate significant 

difference (p < 0.05).  
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4.5 Discussion 

4.5.1 Plant growth responses 

Combined application of BC and AMF significantly increased all plant shoot and 

root growth parameters, except for shoot:total plant ratios, when compared to the control 

plants. These effects varied when considering each of BC and AMF alone. In terms of BC, 

its effects seemed to be significantly higher than AMF in improving shoot, root, and total 

plant dry weights when compared to the control. On the other hand, AMF was not 

significantly different from the control for these growth parameters (shoot, root, and total 

plant dry matter). However, AMF significantly increased root surface area compared to 

control. Inoculation with AMF (Fm) significantly increased root length and root surface 

area, while BC alone was not significant when compared to control. On the other hand, 

root diameter was significantly reduced in the treatments that had BC addition (BC and 

BC+AMF) compared to control and AMF. Root tip number was significantly higher only 

in BC+AMF compared to control. However, it trended higher in the order of control < BC 

< AMF < BC+AMF.  

The beneficial effects of combining BC with AMF in this study were most likely 

caused by the physicochemical changes in soil through BC addition, and increased plant 

available/accessible P by AMF. Application of BC is known to enhance soil 

physicochemical properties such as improving soil CEC, improving water infiltration and 

air exchange (through improved porosity, aggregation and water retention), and nutrient 

availability (Atkinson et al., 2010; Dahlawi et al, 2018).  

The role of BC in improving plant growth and its nutrient availability under salt 

stress has been reported in multiple recent laboratory and field studies (Wang and Xu, 
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2013; Thomas et al, 2013; Lin et al, 2015; Agbna et al, 2017). For example, in a 

glasshouse experiment conducted by Thomas et al. (2013), they reported that addition of 

sawdust beech wood BC at a rate of 50 t/ha rate (~ 2 % wt/wt) increased biomass 

production by ~50 % and survival by 100 % of Prunella vulgaris over control plants with 

the addition of 30 g/m2 NaCl to a commercial potting soil. However, when combined with 

AMF, BC has been shown to additionally improve plant production and alleviate salt stress 

on plants. For example, Hammer et al. (2015) reported additive beneficial effects of BC on 

plant biomass, P and Mn uptake and reduced Na:K ratio when combined with AMF 

inoculation. AMF is well known to improve plant uptake of nutrients, especially P, in salt-

affected soils (Evelin et al., 2009).  

The improvement in root traits measured in this study, especially in the BC+AMF 

treatment, may also indicate better growth conditions (such as improved porosity and water 

retention) nutrient acquisition (such as extractable P in bulk soil and its plant shoot 

concentration in this study) caused by BC and AMF. It has been shown that under drought 

or salt stress, several root traits could be advantageous for enhanced plant uptake of both 

water and nutrients. Such traits include larger root length, greater root surface area, smaller 

root diameter and higher number of root tips which are the primary sources of water and 

nutrient uptake in plants (Comas et al, 2013). In this study for example, root diameter was 

significantly reduced in BC and BC+AMF treatments which is considered an advantage in 

plant growing under drought stress or salt stress, as this would improve total root surface 

area and root hydraulic conductivity (Comas et al, 2013).  

Comparing to the study in Chapter II, the application of BC seemed more effective 

than amendment such as gypsum that is known to also improve physical properties of 
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saline and/or sodic soils (Amini et al, 2016). For example, in Chapter II, addition of 

gypsum did not significantly improve plant shoot and root dry weights (Figures 2.2 and 

2.3) in the uninoculated control plant when comparing soil with and without gypsum under 

the same EC levels. In contrast, addition of BC in this experiment significantly increased 

shoot and root dry weights compared to control. Similar observations have also been 

reported where addition of BC was more effective, and a better strategy compared to 

gypsum addition alone under a stress such as drought (Batool et al, 2015). As illustrated 

above, the improved plant shoots and roots growth found with BC addition in this study 

were most likely related to improved physical (e.g., hydraulic conductivity and increased 

porosity) and chemical (e.g., P availability) properties.  

4.5.2 AMF colonization 

In the present study, unlike what I hypothesized, addition of BC significantly 

lowered AMF colonization in the BC+AMF treatment (5.8 %) compared to both, control 

(19.4 %) and AMF (12 %), but not to BC alone (8.5 %). On the other hand, control plants 

had the significantly highest colonization in this study (19.4 %) compared to all other 

treatments, which may reflect increased salt stress effects on these plants. Since the results 

in this study suggest that BC could have a role in reducing dependency of plants on AMF, 

in the control it seems that plants increased their reliance on the native soil AMF due to 

increased salt stress, as has been shown with control plants in the same soil in Chapter II 

(increased % colonization with the highest salt level). Thus, this possibly may have caused 

a higher colonization rate compared to other treatments where salt stress could have been 

ameliorated by the introduced AMF (Fm), BC, or both. Moreover, the higher colonization 

rate in control plants might have resulted in a higher K:Na ratio, since control plants are 
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the only treatment that had significantly higher K:Na ratio compared to all other 

treatments. Correlation between higher colonization and increasing plant K:Na ratio have 

been well documented in literature (Smith and Read, 2010; Hammer et al, 2011). However, 

overall colonization rate in this experiment was generally low as the highest rate was found 

with control plants (19.4 %). This was expected since salt stress is known to negatively 

impact AMF colonization (Guo and Gong, 2014; Miransari, 2017). 

It is not clear why BC seems to have limited AMF colonization in this study. 

However, this negative effect of BC on AMF colonization might have been caused by 

changes in physicochemical properties and nutrient status of soil after addition of BC 

(Atkinson et al., 2010; Dahlawi et al, 2018), which may have resulted in less reliance of 

plants on AMF symbioses to reduce wasted energy. In addition, higher P availability or 

accessibility by plant roots could also have a role in reducing reliance of plants on AMF 

(Smith and Read, 2010). This was apparent in extractable P from bulk soil which was 

significantly higher in BC treatments (BC and BC+AMF compared to the control and 

AMF. However, these differences in extractable P were not observed in the rhizosphere 

soils (root compartment), which could be due to the presence of root pieces that would 

increase total extractable P as Mehlich-3 has been shown to extract organic P such as 

phytate (Cade-Menun et al, 2018). Another explanation of reduced colonization is that BC 

could have interfered with plant-AMF signaling interactions or acted as shelter for 

microbial grazers feeding on AMF hyphae (Warnock et al, 2007). Yet, the mechanisms on 

how BC affect soil biota are still not clearly understood (Lehmann et al, 2011). This lack 

of knowledge is related to multiple factors that can play roles in positively or negatively 

affection soil microbes such as nature and properties of BC, soil properties, presence of 
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biotic and abiotic factors (Thies et al, 2015). For example, Ogawa and Okimori (2009) 

related increased soil microbial population to BC micropores acting as microbial habitat. In 

the contrary, Dempster et al. (2012) found decreased microbial biomass following BC 

addition due to presence of toxic volatile organic compounds on BC surface.  

Studies on the combined effects of BC and AMF in salt-affected soils are scarce. 

Yet, several studies have evaluated BC effects on AMF colonization in non-saline soils, 

but some contradictions still exist. For instance, Blackwell et al. (2010) reported high a 

colonization rate in a field study when soil collected during a dry season and low in P was 

amended with BC. He suggested that BC may have improved AMF access to water and 

nutrients, therefore, increasing the symbioses level with plant. Contrarily, Warnock et al. 

(2010) found that AMF root colonization was significantly reduced with addition of BC, 

even when different feedstocks and application rates were used. He suggested that both 

decreased and increased P availability along with changes in soil pH resulted in these 

significant reductions in AMF colonization. Therefore, such gaps on our knowledge of BC 

behavior in soil and its effects on AMF and plants should invite researchers to conduct 

more studies on these aspects, especially in salt-affected soils.  

4.5.3 Plant P uptake and its extractability in soil  

In this study, both AMF and BC+AMF treatments significantly increased P uptake 

in barley by 52.7 and 70.2 % compared to control plants, respectively. However, BC was 

not significantly different from all other treatments. These differences suggest that AMF 

(through transport soil P to plant) and BC (through physical changes such as porosity and 

water access as illustrated above) may have increased plant access to P in soil. Although no 

significant differences in extractable P in root compartment soils were found in this study, 
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BC significantly increased extractable P in bulk (root-free) soils compared to treatment 

without BC (control and AMF). It is possible that BC may have also increased P 

extractability (possibly through reducing PO4
3- adsorption into clay surfaces) in the root 

growth compartment but, as illustrated above, the presence of some root pieces may have 

reduced resolution of variations in extractable P between the treatments since Mehlich-3 

extraction method can extract organic P forms such as phytate found in plant roots (Cade-

Menun et al, 2018). The significant increase of extractable P in bulk soil by BC may not be 

caused by possible release of P from BC surfaces, as the BC used in this study had only 

traceable amount of total phosphate (4.53 mg/kg) as reported by the manufacturer. Indeed, 

these results suggest that BC may have increased available P in soil. This increase in P 

availability might be caused by reduction in precipitation/complexation of P with Ca in soil 

or reduced P (e.g., PO4
3-) adsorption into soil clay particles caused by the high anion 

exchange capacity (AEC) usually found in BC surfaces (Taghavimehr, 2015). 

Generally, P availability is known as a limiting factor for plants growing under salt 

stress (Hu and Schmidhalter, 2005). There is increasing evidence that BC amendment 

increases P uptake and its availability in salt-affected soils through multiple ways 

including: (1) biochar acting as a source of P (may depend on release rate and feedstock 

type of BC) or improve soil conditions in a way that enhance plant nutrient uptake (Lashari 

et al, 2013). For example, Taghavimehr (2015) have shown that BC increased soil P 

availability through reducing phosphate adsorption into soil clay particles. (2) Biochar 

leading to increased relative abundances of phosphate solubilizing microbial community 

(Liu et al, 2017; Dahlawi et al. 2018). For example, Liu et al. (2017) reported that addition 

of BC to a saline soil tended to change structure of bacterial community compared to 
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unamended soil. The authors reported increased abundances of the well-known P-

solubilizing bacterial genera Thiobacillus, Bradyrhizobium and Pseudomonas in the saline 

soil, making them similar to abundances observed in a non-saline soil used in their study 

that had natively high abundance of these microbes. 

4.5.4 Post-harvest salinity parameters 

In this study, only BC+AMF resulted in a significantly higher pH (7.79) compared 

to all other treatments. However, all treatments had lower pH than the soil pH value prior 

conducting the experiment (pH = 8.5). On the other hand, BC+AMF had significantly 

decreased soil EC than AMF alone by 3.95 units, while no significant differences were 

found between control, BC and AMF treatments. In addition, BC+AMF significantly 

decreased SAR by 5 units compared to AMF alone, while no significant differences were 

found between control, BC and AMF treatments. The reduced EC values in all treatments 

of this study compared to the original EC value of soil (16 dS/m) was expected since it has 

been shown that EC in soil is regulated by changes in nutrient concentrations and carbon 

sources in soil solution caused by plant root growth and microbial activity (Carmo et al, 

2016). It is not clear why only the BC+AMF treatment resulted in a significantly higher pH 

compared to all other treatments, and significantly lower EC and SAR when compared to 

AMF alone, however, contradictory results still exist in studies using BC as a soil 

amendment. It has been widely suggested that properties of BC such as feedstock, 

physicochemical properties, pyrolysis temperature, aging and amount of BC added can 

control its ability to cause changes in salt-affected soil properties (Amini et al, 2016; 

Dahlawi et al. 2018). These aspects may explain the contradictions in some BC studies 

regarding impact on pH and salinity parameters such as EC and SAR. For example, Lin et 
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al. (2015) did not find a significant role of BC in changing pH in saline soil, but the soil 

and BC had similar pH (9 and 9.6, respectively) prior conducting their study. Contrarily, 

Sun et al. (2017) reported increased pH in saline soil amended with BC relative to control 

soil with no BC. Similarly, while some studies have shown BC to decrease SAR or 

exchangeable sodium percentage (ESP) (Amini et al, 2016) in saline-sodic/sodic soils, 

others have shown reduced ESP only because of increased supply of Ca, while no 

measurable effects were found of BC on CEC (Chaganti et al, 2015). Moreover, it is 

noteworthy here that BC studies in reclamation of salt-affected soils are still at infancy and 

mostly conducted in laboratories and for a short time (Dahlawi et al, 2018). Such studies 

are usually don’t apply leaching to remove excessive Na out of soil profile would be the 

case for field conditions (Dahlawi et al, 2018).   

4.5.5 Quantification of microbial genes 

In this study, I found significant increases in the abundances of phoD, 16S rRNA, 

and AMF-18S rRNA in the rhizosphere soil of BC, AMF, and BC+AMF treatments 

compared to the control. On the other hand, ITS gene abundance was only significantly 

higher in BC+AMF treatment of rhizosphere soil compared to control. No significant 

differences were found between BC, AMF and BC+AMF in all target gene abundances in 

rhizosphere soil. Also, no significant differences were found between all treatment in bulk 

soil except with AMF-18S rRNA, which was significantly lower in the BC compared to 

AMF treatment. This higher AMF-18S rRNA abundance could be explained by the AMF 

inoculation which could have enrichened bulk/root-free soil with hyphae over BC 

treatment that was not inoculated. The higher abundance of microbes (especially phoD, 

16S rRNA, and AMF 18S rRNA) in this study over the control treatment in the 
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rhizosphere soil could be attributed to multiple aspects. First, improved plant shoots and 

roots growth (especially in the combined treatment of BC+AMF) indicated an amelioration 

of salt stress through BC addition and AMF inoculation compared to the control plants. 

Consequently, this may have resulted in higher microbial abundances in rhizosphere as 

more C sources in root exudates would impact total microbial abundance as well as 

composition (Gul et al, 2015; Dahlawi et al, 2018). Second, increased root growth and 

enhanced traits could all translate into higher microbial abundances as more rhizosphere 

soil would be impacted by these roots as compared to control plant roots. The results of 

quantitative PCR in combination with plant growth responses indicate that BC and AMF 

both enhanced total microbial abundances in rhizosphere of salt-affected soils.  

It is well known that soil microbial communities are vulnerable to multiple changes 

and sensitive to different management practices and organic amendments inputs (such as 

biochar) (Thies and Grossman, 2006). The effects of BC on plants may also be indirect 

through mediation by soil microorganisms as a response to BC (Thies et al, 2015). Both 

BC and AMF have been shown to inhibit or increase proliferation of some microbial taxa 

(Vestergård et al, 2008; Kodadad et al, 2011). However, in the case of BC, controversial 

reports on its impact on soil microbes still exist. For example, some studies have shown 

increased growth and development of soil microbes with BC application through higher 

water retention and nutrient release in salt-affected soils (Ajayi and Rainer, 2017). 

Similarly, increased microbial abundance also have been attributed to increase C sources 

such as those in root exudates (Gul et al, 2015; Dahlawi et al, 2018). In contrast, some 

research has reported decreased soil microbial biomass in a coarse textured soil (Dempster 

et al, 2012), while others reported no effect of BC on microbial growth when added to a 
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saline soil (Chaganti et al, 2015). It is highly apparent that additional research is needed to 

fully develop a comprehensive understanding of BC interaction with soil microbes.  

4.5.6 Alkaline phosphatase activity 

The potential activity of ALP in this study was significantly higher in all 

rhizosphere soils compared to bulk soils. However, ALP activity was reduced significantly 

in treatments with BC addition (BC and BC+AMF) compared to control and AMF 

treatments. On the other hand, I did not find differences between control and AMF or 

between BC and BC+AMF treatments. Different studies have reported increased ALP 

activities in saline soils. For example, Liu et al. (2017) has reported a significant increase 

in ALP activity and Olsen-P in soil amended with rice husk biochar produced at 400 °C. In 

another study, Du et al. (2014) also reported an increased ALP activity in surface soil with 

addition of corncob biochar produced at 360 °C. In both studies, ALP activity was 

determined using the method described by Tabatabai and Bremner (1969). In contrast, Paz-

Ferreiro (2015) found that soil amended with poultry litter BC prepared at 400 °C had 

significantly low temperature sensitivity to phosphomonoesterase activities, indicating an 

underestimation of enzyme activities using current soil enzyme assays in BC-amended 

soils. Similarly, Jin (2010) found that ALP activities were underestimated up to 6-fold in 

soil slurries amended with BC, likely through the strong adsorption affinities of BC. In the 

present study, although extractable P increased with BC addition in bulk soil, activity of 

ALP was significantly reduced in both rhizosphere and bulk soil. As a result, I further 

tested whether BC had a role in interfering or impacting the colorimetric assay of ALP 

with the same soil used in this experiment. The results indicated that the presence of BC 

significantly reduced ALP activity compared to soil with no BC, which supports the notion 
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that BC can introduce biases in colorimetric assays of soil enzymes. Such biases might be 

a result of sorption/binding of assay substrate into BC or as illustrated above, a low 

temperature sensitivity of BC. Therefore, this bias of the ALP assay in this study explains 

the contradiction between phoD gene abundance and ALP activity when comparing BC 

treatment with control. Therefore, the results of ALP activity in this study may not be 

reliable to draw a conclusion or understand how it was impacted by BC due to the 

interference of BC with the enzyme assay. However, it is noteworthy here that increased 

ALP activities in BC-amended soils in some literature studies might be related to the 

feedstock and/or the pyrolysis temperature of BC. Such aspects have been increasingly 

suggested in the literature to control BC behavior and its interaction with soil 

physicochemical processes and soil microbes (Amini et al, 2016; Dahlawi et al. 2018).    

4.6 Conclusion 

The results of this study showed that combining BC with AMF inoculum 

significantly increased plant shoot and root growth, plant P uptake, and extractable P in 

bulk soil, but significantly reduced AMF colonization. Reduced AMF colonization in BC 

may be due to increased plant access to nutrients by higher root biomass, and less reliance 

on AMF symbioses. This assumption is also supported by higher colonization in control 

treatments with reduced root biomass. Positive effects of BC on root growth was probably 

due to improvements in soil physical characters such as porosity and water retention, that 

are more favorable for root expansion in clay soils, similar to the one used in this study. On 

the other hand, the role of AMF inoculum was evident in increasing plant P uptake 

compared to the control. BC and AMF treatments significantly increased rhizosphere 

phoD, 16S and ITS abundance compared to control. However, no significant differences 
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were observed in bulk soil microbial abundance. AMF inoculation did not alter the ALP 

activity compared to control. Since biochar appeared to have interfered with this 

colorimetry assay, its effect on ALP activity is considered invalid.  Overall, results of this 

study suggested that combined application of BC and AMF inocula can significantly 

improve plant growth in saline soils. Therefore, soil amendments and artificial inoculation 

of AMF appear to be potential tools for sustainable improvement of saline soils. 
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CHAPTER V 

SUMMARY 

 

The first experiment in Chapter II was conducted to investigate the ability of 

different saline-adapted AMF species to colonize plant roots and promote plant growth 

under different salinity levels in a naturally saline clay soil. The results indicated that 

artificial inoculation of AMF species increased root colonization under saline conditions, 

although only significantly higher in some AMF treatments. Results also indicated that 

AMF inoculation influenced plants growth, but at different scales as salinity level 

increased. Symbiotic effect of AMF colonization was evident, but is dependent on AMF 

species, and that not all AMF species may exhibit mutualistic interactions as salinity 

increases. It is evident from this experiment that artificial inoculation of AMF is beneficial 

for saline soils when competent AMF species are used.   

The aim in the second experiment in Chapter III was to evaluate tripartite 

interactions between plant roots, AMF and the native microbial community for their role 

on P solubility, accessibility and uptake by plants. The results indicated that the native 

community play a significant role in solubilizing mineral-P and organic-P, as soil 

sterilization significantly reduced extractable P concentrations in hyphosphere. 

Concurrently, ALP activity, phoD and fungal ITS gene abundances also significantly 

reduced in sterilized hyphosphere, regardless of AMF-inoculation. However, P uptake by 

plants was significantly higher only in AMF inoculated treatments, suggesting that AMF 

play a role in channeling solubilized P to roots. These results indicate that tripartite 

interactions are critical for supplying sparingly soluble-P to plants in saline soils.  
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The aim of the third experiment in Chapter IV was to evaluate the combined effects 

of amending soil with BC and AMF on root colonization, root biomass and P uptake by 

plants. The results demonstrated disparate role of BC compared to AMF, in enhancing P 

availability and plant growth. Results showed that BC significantly improved root biomass, 

but reduced AMF colonization, which suggest that BC may significantly improve physical 

attributes in clay soil, that are beneficial for root expansion. Microbial community 

abundance was also significantly influenced by both BC and AMF. These results suggest 

that applying BC with AMF to salt-affected soils could be a promising tool for improving 

P supplementation for crop production.  

Overall, the results indicate the importance of AMF and native microbiome 

interactions in salt-affected soils in improving P bioavailability to plants. Either improving 

soil conditions using an amendment such as BC or supplying beneficial AMF through 

artificial inoculation are potential avenues to increase P supply in saline soils.  
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