
GENE EVOLUTION AND FUNCTION IN ARABIDOPSIS TELOMERE BIOLOGY 

SYSTEM 

 

A Dissertation  

by 

CALLIE REBEKAH KOBAYASHI 

 

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

 

Chair of Committee,      Dorothy E. Shippen 
Committee Members,        Mary Bryk 
                                        Jean-Philippe Pellois 
                                        Libo Shan 
Head of Department,      Dorothy E. Shippen 
 

 

December 2018 

Major Subject: Biochemistry 

 

Copyright 2018 Callie Rebekah Kobayashi 



 

 ii 

ABSTRACT  

 

Telomeres protect chromosome ends from being recognized as double-strand 

breaks, and respond to incomplete end-replication through telomerase-mediated extension. 

POT1 (Protection of Telomere 1) is a highly conserved protein required for capping 

chromosome ends and for regulating telomere extension by telomerase. Arabidopsis 

thaliana encodes three POT1 paralogues: POT1a, POT1b, and POT1c. POT1a functions to 

maintain telomere length homeostasis by promoting telomerase processivity, while POT1b 

functions in the DNA damage response. POT1c is derived from a recent duplication of the 

POT1a locus, but its function is unknown.  

 In this dissertation, I examined the function and evolution of POT1c using genetic 

and biochemical approach. Unlike pot1a mutants which show defects in telomere 

maintenance, plants lacking POT1c exhibit no obvious telomere-related or developmental 

phenotypes. Furthermore, the POT1c gene is not expressed under standard growth 

conditions. Transposable elements (TE) are embedded in the POT1c promoter region; yet, 

active silencing is not observed. Although POT1a and the dS17 gene, which was created in 

the same duplication event that gave rise to POT1c, are highly conserved among A. 

thaliana accessions, POT1c is not. Comparison of POT1a and POT1c loci from species 

closely related to A. thaliana and A. lyrata indicates that POT1c initially had a functional 

promoter that was subsequently disrupted by TE insertion. Together, these studies provide 

new insights into the fate of newly duplicated genes, and the importance of proper 

regulation of telomere proteins. 
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In addition to the study of the POT1c locus, I have analyzed a newly identified 

gene (NOP2A) that is implicated in the control of telomere length set point. NOP2A is a 

conserved rRNA methyltransferase protein that positively correlates with cell proliferation. 

Telomere length is variable across eukaryotes, but each species establishes a specific set 

point that allows full protection for chromosome ends.  My research shows that mutation in 

NOP2A locus leads to shorter, but stable telomere length in the Col-0 accession of A. 

thaliana. These findings provide strong evidence that additional genes that regulate 

telomeres remain to be discovered.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Chromosome ends and their problems 

In 1961, Leonard Hayflick proposed that there are limits to the number of times 

normal human fetal diploid cells can divide. He demonstrated that cells can divide 40-60 

times before they arrest1. The idea of a limited cell life span was coined the “Hayflick 

Limit”. In support of the concept that normal cells are not immortal, it was later shown that 

cells that stop dividing enter a physiological state termed senescence1,2. We now know that 

one of the reasons cells cannot divide infinitely is because a bit of genetic material from 

the end of chromosomes is lost after each cell division3–5. A mechanistic link between the 

termination of cell division and critically short chromosome ends has been proposed to 

trigger cellular senescence, and to be a cause of aging in humans 4,6,7. However, this theory 

does not explain: (1) the difference between normal and immortal cells, and (2) why single 

celled organisms such as bacteria replicate infinitely, while normal human cells do not. To 

address these issues, research has focused on solving two major mysteries related to 

chromosome ends: the end replication problem and the end protection problem8–12.  

Unlike prokaryotic chromosomes, eukaryotic chromosomes are linear. As 

discussed below, the conversion of genomes from circular to linear demands a new 

mechanism for fully replicating the end of a chromosome and preventing the end from 

being recognized as a DNA double-strand break (DSB).  
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The end protection problem 

The concept of the end protection problem surfaced in the 1940s when Barbara 

McClintock demonstrated that broken chromosomes in maize are unstable 13. Subsequent 

studies showed that chromosomes lacking their natural ends are subjected to degradation 

by nucleolytic attack, and end-to-end fusion by being recognized as DSBs by DNA repair 

mechanisms14–17. DSB signaling activates the master kinases ATM and ATR, which induce 

cell cycle arrest. If not repaired, unprotected chromosome ends cause permanent cell cycle 

arrest and compromised genome integrity. Around the same time as McClintock’s 

pioneering work in maize, Herman Muller demonstrated that chromosome ends in fruit 

flies were naturally stabilized.  He termed the protective structure on chromosome ends, 

the telomere.  

 

The end-replication problem 

When the mechanism of DNA replication was revealed in the early 1970s, the 

question of the end replication problem arose. DNA replicates in a semi-conservative 

manner with DNA polymerase moving in the 5’ to 3’ direction, after the reaction is 

initiated by extension from an RNA primer18. Removal of the RNA primer creates a gap in 

the newly synthesized DNA between Okazaki fragments, which is then filled-in by a DNA 

polymerase (Figure 1-1). However, the extreme 5’ end of lagging strand lacks an upstream 

Okazaki fragment to provide a 3’ end for extension, which leaves the end of the nascent 

strand with a gap that cannot be filled (Figure 1-1). Thus, newly synthesized DNA strands 

become shorter.  Each time the cell replicates there will be a gradual shortening of 

chromosomal DNA3.   
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Figure 1-1. DNA replication. Model for semi-conservative DNA replication. Replication 
of the leading strand produces blunt ends, which are then processed by a 5’ to 3’ 
exonuclease to create a 3’ overhang. Replication of the lagging strand naturally produces a 
3’ overhang once the final RNA primer is removed from the 5’ end of the nascent strand. 
 
 
 
 
 

In almost all eukaryotes, the end-replication problem is solved by the telomerase 

reverse transcriptase.   Typically, the sequence at the end of the chromosome comprises 

simple tandem G-rich repeats. At the very ends of the chromosomes these G-rich repeats 

are synthesized by telomerase.  The continual addition of telomere repeats by telomerase 

prevents the shortening of chromosome ends after DNA replication of the bulk 

chromosomes, thereby compensating for the end-replication problem11,12. In addition, 

telomere-associated protein complexes bind to the chromosome terminus, serving as a 

physical cap on the terminus and recruit telomerase. Thus, telomere-associated protein 

complexes help to solve both the end-protection problem and the end-replication problem. 
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Telomeres and disease 

Telomeres and telomerase are important in maintaining genome integrity, and 

regulation of telomere length as well as telomerase enzyme activity is critical. Their 

misregulation leads to stem cell diseases and cancer. In the 1990’s telomeres were linked 

to cellular senescence, as telomere length strongly correlated with the internal clock for the 

Hayflick limit.  Thus, telomere length was shown to correlate with the number of times 

cells can divide. In somatic cells, where telomerase activity is low or absent, telomeres 

become shortened due to the end replication problem, causing cells to undergo replicative 

senescence or apoptosis7,19. This is not the case in germ cells where telomerase is highly 

active20–22.  A large body of data indicates that a major reason why germ cells, stem cells, 

and cancer cells are highly proliferative is because they have a mechanism to solve the 

end-replication problem.  

Conversely, when telomerase is inappropriately activated in non-proliferating cells, 

tumorigenesis can occur. Indeed, malignant cells, unlike their normal counterparts, 

maintain telomere length, primarily through the activation of telomerase20,23–25. Telomerase 

activity has been detected in more than 70% of in vitro immortalized human cell lines as 

well as ~85% of human tumors26. The remaining 15% of cancers maintain their telomere 

length through a DNA recombination mechanism termed alternative lengthening of 

telomeres (ALT)26–33. Mutations in genes that lead to short telomeres have been shown to 

cause a large number of proliferation-related diseases, including chronic lymphocytic 

leukemia, familial melanoma, and sporadic melanoma34–38. This is likely due to the 

genome instability that arises from telomere deprotection. Stabilization of telomeres is a 
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crucial process in gaining an immortal phenotype 3,39,40; therefore, limiting the replicative 

potential of cells by inhibiting telomere maintenance aids in tumor suppression 40–42.  

While misregulation of telomerase and/or telomere length is a rate-limiting step for 

cancer, critically short telomeres can also lead to age-related diseases and premature aging 

syndromes22,24,25,43,44. In mouse studies, loss of telomerase causes decreased tissue 

regeneration, viability and fertility, immune system failure, enhanced myocyte apoptosis 

and reactive hypertrophy leading to heart failure45–49. Age-related pathologies have also 

been associated with telomere dysregulation in humans. These include heart disease, 

ulcerative colitis, liver cirrhosis, and atherosclerosis50–53. Aplastic anemia and Coat’s plus, 

a pleiotropic multisystem disorder, are examples of premature aging diseases caused by 

mutations in telomere-related genes54–58. Dyskeratosis congenita (DC), a progressive bone 

marrow failure disease, is another example of a premature aging disease caused by 

mutations in telomerase59–64. DC patients suffer from other organ failures, including 

pulmonary fibrosis, liver cirrhosis, and esophageal stricture65–67. Interestingly, recent 

studies in mice suggest a link between telomere gene mutations, and an alteration in 

metabolic pathways and obesity 68.  Collectively, the diseases associated with telomere 

failure have been termed “telomereopathies”.  

 

Telomere features and structure 

The sequence and the number of telomere repeats found at chromosome ends vary 

among different species. Canonical G-rich telomere sequences are well conserved in 

eukaryotic evolution69. Specifically, TTAGGG is found in vertebrates, TTTAGGG in 
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plants, (TG1-3)n  in Saccharomyces cerevisiae, and (TTAC(A)(C)G1-8)n in 

Schizosaccharomyces pombe70–74.    

While canonical telomeres and their extension seems to be the most common 

mechanism for solving end-replication and end-protection problems, there are 

exceptions73,75–81. These include terminal repeat (TR) sequences in linear viral DNA, 

covalently closed hairpin ends (hairpin-based termini) in linear bacterial DNA, and 

telomere-specific transposable elements in dipteran insects77,82,91,83–90. 

 

Telomere features and higher-order structure 

Telomeres are structured in a way that allows chromosome ends to be protected, 

and also allows access for elongation when required. These structural features include a 

single stranded 3’ extension termed the G-overhang and a t-loop92 (Figure 1-2A).  

The G-overhang acts as a substrate for telomerase to elongate telomeres. It also 

recruits proteins that are involved in protecting chromosome ends93,94.  While the G-

overhang is naturally produced in lagging-strand replication, leading strand replication 

yields blunt ends (Figure 1-1). The blunt end is converted into a G-overhang by 

exonucleases, such as Apollo, which removes nucleotides 5’ to 3’ to create a 3’ extension, 

and thereby symmetrical chromosome ends95–98.  Interestingly, Apollo exonuclease appears 

to be absent in Arabidopsis thaliana. In A. thaliana half of the telomeres are blunt-ended or 

possess extremely short 1-2 nt overhangs, while the other half contain a G-overhang of 20-

30 nucleotides(Figure 1-2A)99,100.  
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Figure 1-2. Telomere features and higher-order structures. (A) G-overhang (right): the 
3’ terminus contains a G-rich single-strand extension created by lagging strand replication. 
Blunt end (left): the chromosome terminus generated by leading strand replication. T-loop: 
the G-overhang can invade the DNA duplex to create a D loop structure. (B) TRD: 
telomere rapid deletion due to t-circle resolution by homologous recombination machinery. 
The telomere is shortened and an extra-chromosomal telomeric circle (ECTC) is generated. 
ALT: alternative lengthening of telomeres through rolling-circle replication using an 
ECTC as a template. 
 

 

Single-stranded G-overhangs are able to fold back on themselves and invade into 

the double-stranded telomeric region to form a higher order structure called the t-loop. The 

t-loop sequesters and protects the chromosome end from being recognized as DNA damage 

response (DDR)101,102. A t-loop can also function to regulate telomeres that are too long 

through deletion of telomeric DNA sequences by TRD (Figure 1-2)103.  

One of the unique features of Arabidopsis is that unlike most organisms, which 

carry G-overhang on both ends of their chromosomes, A. thaliana chromosome ends are 

asymmetrical.  Approximately 50% of the chromosome ends have G-overhangs, but the 

remaining telomeres are blunt-ended (Figure 1-2A)99.   In Arabidopsis, the G-overhang is 
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protected by the telomere binding protein complex CST, while the blunt end is protected 

by Ku and is not processed into a G-overhang.   

 

Telomere length set point 

G-rich telomere repeats extend from the G-overhang into the duplex region of the 

chromosome terminus.  The total number of G-rich repeats varies across evolution, but 

each species has a fixed average length of telomeric DNA that is maintained through 

successive generations104,105. Telomere lengths vary, ranging from 2-9 kb in Arabidopsis 

thaliana 72,106, 40-160kb in Nicotiana tabacum74, 250-300bp in yeast73, 50-150kb in mouse 

107, and 5-15kb in humans108. Many genes have been implicated in determining the species-

specific telomere length set point to establish telomere length homeostasis109,110. A balance 

between the replicative erosion and elongation by telomerase is essential to establish the 

set point111.   

While end replication and end protection problems play a major role in telomere 

length homeostasis, there are additional mechanisms that can alter telomere length 

including homologous recombination (Figure 1-2B). When telomeres become too long, 

they can undergo a process termed telomere rapid deletion (TRD) through t-loop 

resolution, causing dramatically shortened telomeres112. A t-loop resembles a Holliday 

junction intermediate and can be resolved by homologous recombination (HR). Control of 

TRD is important to prevent over-shortening of telomeres, and this is mediated by a 

component of the telomere capping complex113–115. When t-loop resolution occurs it 

creates extra-chromosomal telomere circles (ECTCs) as a by-product. ECTCs have been 

found in mammals, yeast, and plants103,116–119. On the flip side of TRD, Alternative 
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lengthening of telomere (ALT) can cause telomere elongation by using the ECTCs as a 

template for rolling circle extension 120. The ALT pathway of telomere maintenance is 

independent of telomerase and has been seen among various eukaryotes121,122. 

 

Telomerase, its accessory proteins, and its regulation 

Telomerase 

 Telomerase is a ribonucleoprotein (RNP) reverse transcriptase that is responsible 

for extending G-overhangs, thus solving the end-replication problem 123. The minimal 

catalytic core of telomerase consists of a protein reverse transcriptase (TERT/TRT/Est2) 

and a template containing long noncoding RNA (lncRNA) (TER/TERC/TLC1) 123–132. 

LncRNAs are defined as transcripts longer than 200 nt that do not code for protein133–135. 

Loss of either the catalytic protein or the template lncRNA component results in an “Ever 

Shorter Telomere” (EST) phenotype, where the telomeres become shorter and shorter each 

generation130,136.  

TERT contains four highly conserved domains: the telomerase essential N-terminal 

(TEN) domain, the telomerase RNA binding domain (TRBD), the reverse transcriptase 

(RT), and the C-terminal extension (CTE)137. In contrast to TERT, the TER lncRNA is 

highly variable in size and sequence. Nevertheless, all TER molecules have conserved 

structural core elements (Figure 1-3)138–140. First is the telomere complementary sequence 

that acts as a template to direct nucleotide addition onto the G-overhang125,130,141. The 

second structure is the pseudoknot domain. 

While the pseudoknot in ciliate TERs is dispensable, a pseudoknot is critical for 

proper enzymatic activity of vertebrate and fungal telomerases17–20. Finally, the third 
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structure, the three-way-junction element, serves as the binding hub for accessory proteins. 

TERT and TER alone are sufficient for reconstitution of telomerase activity in vitro; 

however, the holoenzyme requires additional components in vivo. These accessory factors 

are important for proper RNP biogenesis, assembly, trafficking, and regulation of 

telomerase137. TER acts as a scaffold for many of these accessory factors. 

 

 

 
 
 

Figure 1-3.Telomerase RNA and Telomerase RNA binding proteins. The telomerase 
RNA and RNA binding proteins of S. cerevisiae and humans. Critical RNA elements are 
indicated in color: stem terminus element (green), Pseudoknot (orange), and template (red). 
Proteins responsible for RNA stability and biogenesis are bound at the RNA stability 
element (Blue). Yeast: Sm protein is responsible for nuclear import, processing, and 
stability of the telomerase RNA. Human: different proteins can associate with RNA 
stability element (purple). These proteins are responsible for RNA processing (NHC), 
stable accumulation (NHG), prevention of telomere shortening (KU), and telomerase 
trafficking and recruitment (TCAB1). 
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Telomerase accessory proteins in RNA biogenesis and trafficking 

The well characterized yeast and human systems of telomerase biogenesis will be 

discussed in this section139,141,146,147. In yeast, TER (TLC1) is processed in nucleoli, 

assembled into an enzymatically active telomerase in the cytoplasm, trafficked into 

nucleoplasm, and then onto telomeres by the help of Ku141,148–150.  Ku is a heterodimer that 

binds double-strand DNA ends and required for non-homologous end joining151. Ku 

interaction with the telomerase RNA is important for stable accumulation of telomerase, 

and recruitment of telomerase to the telomeres147,152,153. TLC1 is bound at its 3’ end by the 

Sm protein, which functions in nuclear import, processing, and stability of RNA131,154,155. 

Depletion of Sm in yeast leads to a drastic decrease in telomerase RNP accumulation, but 

seems to be dispensable for human telomerase function (Figure 1-3)154.  

In humans, TER (hTR) is modified in the Cajal body, a nuclear sub-organelle 

largely consisting of proteins and RNA141,156–161. The H/ACA motif of hTR binds a series 

of accessory factors that promote telomerase RNA assembly. The NHG complex (NOP10, 

NHP2, and GAR1) processes hTR, while the NHC complex (NOP10, NHP2, and 

Cbf5/dyskerin) is required for stable accumulation of hTR162–167. Another H/ACA motif 

binding protein is TCAB1. While TCAB1 is not important for telomerase assembly and 

activity, it is a major factor for telomerase trafficking between nucleoli and Cajal bodies 

and recruitment to telomeres (Figure 1-3)157,168. Dyskerin is a component of active 

telomerase in humans167; however, TLC1 in yeast does not associate with dyskerin, and 

depletion of yeast dyskerin does not have an effect on the yeast TER level164. Arabidopsis 

thaliana, like humans, has a dyskerin homolog. Mutation of A. thaliana dyskerin leads to 
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deregulated short telomeres, suggesting that involvement of dyskerin in telomere 

maintenance is conserved in multicellular organisms59,169. 

 

Telomerase accessory proteins in regulation and activity 

An enzyme possesses processivity when it has the ability to catalyze a reaction 

without releasing its substrate. The telomerase reverse transcriptase displays two types of 

processivity, nucleotide addition processivity and repeat addition processivity170,171. 

Nucleotide addition processivity requires the simultaneous translocation of the enzyme 

active site from the RNA-DNA duplex as each nucleotide is being added. Repeat addition 

processivity requires translocation of enzyme from the RNA-DNA duplex as each round of 

full repeat synthesis is completed. While nucleotide addition processivity is commonly 

associated with DNA polymerases, processive repeat addition is unique to telomerase, and 

requires telomerase-specific elements.  

Proteins involved in the positive regulation of telomerase include Est1 and Est3 

(budding yeast), p50 (Tetrahymena thermophila), and POT1a (A. thaliana)141. Cells 

lacking these proteins show an EST phenotype similar to cells lacking TERT or 

TER5,130,136,172. The Est1 and Est3 proteins from S. cerevisiae are dispensable in vitro, but 

are required in vivo173,174. Est1 binds TLC15,175,176, and was initially thought to be a 

recruitment factor for telomerase. It has since been shown to stimulate telomerase by 

activating telomerase at telomeres177. A protein with functional similarities to Est1 is A. 

thaliana POT1a. AtPOT1a is associated with the telomerase RNP, and is responsible for 

stimulating telomerase activity through enhancing repeat addition processivity132,172,178. 

Unlike Est1 and AtPOT1a, Est3 binds TERT instead of TLC1179. Est3 acts downstream of 
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TERT and Est1 for telomerase activation, and loss of Est3 leads to a decrease in nucleotide 

addition180,181.  T. thermophila p50 is another telomerase accessory protein that stimulates 

processive repeat addition182. While Est1 and AtPOT1a seem to be functional homologs, 

Est3 and p50 are structural and functional homologs of human telomerase stimulating 

factor TPP1182–185. Unlike Est3 and p50, TPP1 is not a component of telomerase, but rather 

is a stable component of telomeres. TPP1 will be discussed further below. 

Another interesting protein associated with telomerase is Ku. Ku has functions in 

diverse processes, most notably in DNA repair, immune system gene rearrangement, 

apoptosis, and telomere biology153,186,187. Although Ku mutants exhibit telomere defects in 

various organisms including S. cerevisiae, S. pombe, A. thaliana, mice, and trypanosomes, 

the precise role of Ku is slightly different among different organisms153. For example, in S. 

cerevisiae Ku is involved in telomerase biogenesis, trafficking, recruitment to telomeres, 

and telomere addition150,152,153,188–191. The absence of Ku leads to TLC1 accumulation in 

the cytoplasm and short telomeres150,152. In contrast, human Ku appears not to be involved 

in telomere length regulation, while the Ku protein in mice and A. thaliana is implicated in 

negative regulation of telomerase192–196.  

 

DNA double-strand breaks and de novo telomere formation by telomerase  

 When a DNA DSB occurs, the broken chromosome is typically repaired through the 

non-homologous end joining (NHEJ) or homologous recombination (HR) pathway197. 

Failure to properly repair a DSB is linked to increased cell death, cell-cycle arrest, 

telomere defects, and meiotic defects198,199. Therefore, a defect in DSB repair can 

compromise cell survival and the maintenance of genome integrity. Telomerase can 
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compete with DNA repair machinery at the site of DSBs, leading to the addition of 

telomere repeats and the establishment of a new telomere. This process, termed de novo 

telomere formation (DNTF) or chromosome healing, has been reported in many organisms 

including T. thermophila, yeast, mammals, and plants200–205.  

 Although DNTF can stabilize centromere-containing DNA, it will lead to the loss of 

non-centromere-containing fragments. Typically, only very small terminal deletions are 

viable, and studies have revealed that DNTF is associated with genetic disorders and 

mental retardation in humans206,207. Thus, control of telomerase action at internal 

chromosome sites is vital for genome stability and organismal viability.  

 To prevent unwanted telomere formation, organisms have acquired mechanisms to 

prevent DNTF.  In budding yeast, Mec1 (an ATR homolog and a check point protein 

kinase) and Pif1 (DNA helicase) are involved in DNTF inhibition208–211. Mec1 

phosphorylates the telomere binding protein Cdc13, thus inhibiting Cdc13 accumulation at 

DSBs. Mec1 is responsible for Pif1 activation210,212, which results in the unwinding of 

RNA-DNA hybrids in vitro, and is postulated to dislodge telomerase from its DNA 

substrate in vivo213. In addition, MLH1 (DNA mismatch repair) has been shown to inhibit 

DNTF in human cells, although the mechanism is still uncertain214.  

 A. thaliana appears to have evolved a unique mechanism to regulate DNTF by 

directly inhibiting telomerase activity in response to DSBs using a lncRNA215,216. 

LncRNAs are best known for their role in regulating gene expression, through mechanisms 

that involve their use as signals, decoys, guides, and scaffolds217,218. A. thaliana is unusual 

as its telomerase is associated with a non-templating lncRNA termed TER2, that functions 

to negatively regulate telomerase activity (see below). Although the exact mechanism of 
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inhibition is still under investigation, loss of TER2 leads to an increase in telomerase 

activity and the failure to down regulate enzyme activity in response to DSBs215,216. Thus, 

TER2 is proposed to prevent unwanted telomerase activity at the DSB by globally down 

regulating enzyme activity. 

 

Telomere-associated proteins  

 While telomerase is responsible for the physical extension of telomeric DNA, 

telomere binding protein complexes have the dual function of end protection and telomere 

length control (Figure 1-4)219–221. The first telomere end binding proteins (TEBP) were 

characterized in ciliate protozoa, and were shown to serve as a protective barrier for the G-

overhang222,223. In budding yeast and in A. thaliana, the G-overhang is associated with 

CST (CTC1/ Cdc13, STN1, TEN1)219,220. In contrast, the G-overhang of mammals and 

fission yeast are capped by a single-stranded DNA binding protein POT1 (Pot1), which is a 

member of a different telomere protein complex termed shelterin219,220. Proteins that bind 

the G-overhang serve as a bridge to the duplex region of telomeres through protein 

contacts. Double-stranded telomere binding proteins include components of the shelterin 

complex (TRF1 and TRF2) and in budding yeast Rif/Rap1 protein105,221,224. Mutations in 

any shelterin or CST component leads to loss of telomere length maintenance and genome 

instability221,224–228.  

 

CST: end protection, telomere length regulation, and telomere replication 

 CST is a heterotrimeric protein complex composed of CTC1/Cdc13, STN1, and 

TEN1 (Figure 1-4)105,220,226,227,229.  In multicellular eukaryotes, such as A. thaliana, Cdc13 
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is replaced by CTC1230. While shelterin contains both double and single strand DNA 

binding proteins, CST interacts with single-stranded telomeric DNA, and is structurally 

similar to RPA231. 

 

 

 
 
 
Figure 1-4. Telomere binding proteins. The telomere binding protein complexes of S. 
pombe (shelterin), S. cerevisiae (CST), human (shelterin), and A. thaliana (CST) are 
shown. The telomere sequence of each organism is indicated. Telomere proteins associate 
with both the duplex region of the telomere as well as the single strand G-overhang.  
Human CST and S. pombe Stn1/Ten1 are not stable components of telomeres, but rather 
associate with chromosome ends during S phase where they play a role in C-strand fill-in 
after telomerase has extended the telomere. Blunt-ends of A. thaliana telomeres are capped 
by KU70/80 heterodimer instead of the CST complex.   
 
 
 
 

Loss of any one CST component in S. cerevisiae or A. thaliana leads to an increase 

in G-overhang signal, and telomere shortening. In plants, chromosome end-to-end fusion 

also occurs (Figure 1-5A)230,232–239, indicative of chromosome deprotection and DDR 
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activation. CST also functions in telomere length regulation (Figure 1-5A)105. Yeast Stn1-

Ten1 acts as a negative regulator of telomere length, while Cdc13 functions as a positive 

regulator235,237,240. However, the co-assembly of trimeric complex CST negatively 

regulates telomerase during late S/G2240. During telomere elongation by telomerase, the 

interaction of Cdc13 with the telomerase accessory protein Est1 is essential 234,241. This 

interaction is enhanced by Cdk1 dependent phosphorylation of Cdc13, which favors 

Cdc13-Est1 interaction over Cdc13-Stn1 interaction242. The CST complex from A. thaliana 

appears to inhibit telomerase access to the telomeres, specifically through TEN1178. It is 

hypothesized that AtTEN1 is removed from CST and is replaced with POT1a to form a 

CSP (CTC1, STN1, POT1a) complex (Figure 1-5B)178. CSP would then allow telomerase 

access to telomeres. Thus, dynamic interactions among CST components are needed to 

properly regulate telomerase. 

Initially, shelterin and CST were thought to be mutually exclusive telomere protein 

complexes, with shelterin confined to vertebrates and fission yeast, and CST to plants and 

budding yeast. However, homologs of the CST complex were recently identified in 

vertebrates, suggesting that CST may serve distinct functions in different organisms230,243.  

Unlike the CST complex from budding yeast, vertebrate CST seems to be involved 

exclusively in telomeric DNA replication, and not in chromosome end protection (Figure 

1-5B)244,245. A role for vertebrate CST in DNA replication was not unexpected, since 

human STN1 and CTC1 were originally identified as part of the DNA polymerase-α 

stimulatory factor (AAF)246. Subsequent studies have shown that vertebrate CST 

components are not critical for telomere length regulation, but are important for G-

overhang maintenance. Vertebrate CST is responsible for terminating telomerase action on 
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extended G-overhang and then promoting the fill-in of the C-strand by DNA pola/ 

primase98,247,248. While CST components are well conserved, shelterin seems to have 

undergone an evolutionary transformation, because aside from POT1, the other 

components of shelterin are not readily found in plant genomes236,249–251.  

 

 

 

 
 

Figure 1-5. Functions of CST. (A) The CST (CTC1/STN1/TEN1) complex is important 
in chromosome end protection for both S. cerevisiae and A. thaliana. The dynamic 
assembly of distinct CST components leads to both positive and negative regulation of 
telomere length. (B) CSP (CTC1/STN1/POT1a) or Cdc13/Est1 functions to positively 
regulate telomerase for G-overhang extension (top). CST functions to negatively regulate 
telomerase (middle). Release of telomerase from telomeres, and CST association with 
Pola/primase allows C-strand fill-in (bottom).    
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Figure 1-6. Shelterin functions. (A) Shelterin components POT1 and TRF2 are critical 
for inhibition of a DNA damage response at vertebrate telomeres. TRF1 and TRF2 both 
contribute to t-loop formation, which in turn protects chromosome ends and regulates 
telomerase access. While TRF1 and POT1 negatively regulate telomere length, TRF2 and 
POT1-TPP1 positively regulate telomere length. (B) TIN2 binds TRF1, TRF2, and TPP1. 
TIN2 plays an indirect role in telomere length regulation through TRF1 (TRF1 inhibition 
of telomere elongation as shown in A), and DNA damage response through TRF2 and 
TPP1-POT1 stabilization. RAP1 interaction with TRF2 gives TRF2 telomere specificity. 
RAP1 modulates TRF2 association with telomeres, thus affecting telomere length 
regulation. 
 

 

 

Shelterin: end protection and telomere length regulation  

Shelterin is composed of six proteins (TRF1/2, RAP1, TIN2, TPP1, and POT1) 

(Figure 1-4). Double-strand telomeric DNA binding proteins TRF1 and TRF2, and the 

single-strand binding protein POT1 along with its binding partner TPP1, are bridged 

through TIN2 and RAP1252–254. Each component makes a distinct contribution as it 

connects to the shelterin complex network (Figure 1-6). 
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TRF1 and TRF2 binds double strand telomeric DNA to regulate telomere length 

and protect the chromosome ends. TRF1 negatively regulates telomere length255,256. TRF2, 

by contrast, acts to repress an ATM-dependent DNA damage response (DDR), non-

homologous end joining (NHEJ), and chromosome end-to-end fusion17,257–259. TRF1 and 

TRF2 accomplish these tasks by facilitating t-loop formation to promote both chromosome 

end protection and the regulation of telomerase access to telomeres260–262. During t-loop 

formation, TRF1 induces pairing of duplex telomeric DNA to allow bending and looping 

of the chromosome ends262, while TRF2 is important for invasion of the single-strand G-

overhangs into duplex telomeric DNA (Figure 1-6A) 260. Rap1 functions to negatively 

regulate telomere length through TRF2 association263–265. TIN2 negatively regulates 

telomere length through TRF1/TRF2 interaction, as well as prevents DDR by TPP1-POT1 

interaction (Figure 1-6B)266–268. Therefore, mutation in TRF1 or TRF2 leads to 

chromosome end deprotection and mis-regulation of telomere length255,256,17,257–259. 

POT1 is another shelterin protein that contributes both to telomere length 

regulation and chromosome end protection. POT1 is required to prevent activation of an 

ATR-dependent DDR259, and is also proposed to compete with RPA binding at the 

telomeres259,269. Prevention of ATR-dependent DDR and RPA binding at the telomeres is 

important for chromosome end-protection, since DNA double strand repair is not favored 

at the chromosome ends. In addition to these protective functions, POT1 acts as a negative 

regulator of telomere length by blocking telomerase interactions with telomeric DNA270,271. 

However, when POT1 is bound to TPP1, the POT1-TPP1 heterodimer acts as a positive 

regulator of telomere length by physically recruiting telomerase to telomeres, and 

enhancing telomerase activity and processivity272–275. Analysis of POT1 protein in A. 
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thaliana is a major focus of this dissertation (Chapter 2), and will be discussed further 

below. 

 

OB-fold proteins and evolution of POT1 

OB-fold containing telomere proteins 

One of the most common structural motifs seen in telomere proteins is the 

oligosaccharide/oligonucleotide binding domain (OB-fold). The three-dimensional 

structure of the OB-fold is highly conserved, but the amino acid sequence is not276. 

Therefore, proteins with an OB-fold are frequently identified based on structure prediction 

rather than through sequence similarity277. OB-fold proteins have diverse functions, and 

can interact with other proteins, DNA, and/or RNA277–280. OB-folds have been shown to 

play an important role in many different pathways, including DNA replication, DNA 

damage response and repair, transcription, translation, and telomere length homeostasis 

and end protection281–283,284–286,287–289.  

Telomere proteins that bind the G-overhang do so through an OB-fold. TEBPa/b 

from the ciliate Oxytricha nova was the first OB-fold containing telomere protein 

identified. It is a heterodimeric single-strand telomeric DNA binding protein, responsible 

for sequestering the 3’ end of the chromosome to facilitate end protection and for 

presenting the 3’ end during S phase for telomerase access222,223.  TEBP functions as both a 

telomerase stimulator and inhibitor based on its dimerization partner: the TEBPa 

homodimer is an inhibitor and TEBPa/b heterodimer is a stimulator290.  The ciliate TEBP 

proteins are thought to be ancestral to vertebrate and plant POT1.  The TEBPa/b 

heterodimer is orthologous to S. pombe (Pot1-Tpz1) and mammalian (POT1-TPP1) (Figure 
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1-4) 272,291. Notably, POT1 proteins typically carry two OB-folds at their N-terminus, 

which are structurally similar to the OB-folds of TEBPa from O. nova, and which directly 

bind the G-overhang230,254,292–295. In contrast, while each of the three CST subunits harbor 

OB-folds, this heterotrimer is more closely related to the RPA protein complex than to 

POT1 226,296.  

POT1 binds single-stranded telomeric DNA with sequence specificity conveyed by 

the first OB-fold297–302. 

 

The OB fold of POT1  

POT1 is highly conserved across eukaryotes (Figure 1-7)302–304. DNA binding by 

human and S. pombe POT1 is mediated through a nucleic acid binding pocket primarily 

within the first OB-fold that excludes RNA254,298,305. Interestingly, while POT1 is well 

conserved across the plant kingdom (Figure 1-7), its interaction with nucleic acids appears 

to have diverged. In vitro telomeric DNA binding has been shown for the POT1 proteins 

from green algae and several monocots, but not with POT1 proteins from the Brassicaceae 

family (Figure 1-7)300,302,306. Although the two full-length POT1 proteins from A. thaliana 

(POT1a and POT1b) do not bind telomeric DNA in vitro132, more recent studies with the 

first-OB fold of A. thaliana POT1a show that this domain in isolation has strong binding 

affinity for telomeric DNA revealing the conserved DNA binding component of POT1 

protein307.  

 

 

 



 

 23 

Single-copy to multi-copy POT1 

The POT1 protein family has undergone an expansion in some organisms. While 

humans possess only a single copy POT1 gene, other organisms possess more than one 

POT1 gene, including mice (POT1a and POT1b), T. thermophila (Pot1a and Pot2), C. 

elegans (POT-1, POT-2, POT-3, POT-4), and A. thaliana (POT1a, POT1b, and POT1c) 

(Figure 1-7 and Figure 1-8)303. The two mouse Pot1 proteins diverged to sub-functionalize, 

where each polypeptide contains a subset of the functions of single copy hPOT1308. The 

first OB-fold of mouse Pot1a is a negative regulator of telomere length and is important in 

preventing DNA damage response and DNA damage checkpoint activation309,310. In 

contrast, the C-terminal end of mouse Pot1b is important for the control of 5’-end 

resection308,310,311. C. elegans has four POT1 paralogues, and each contains only a single 

OB-fold (Figure 1-8).  

 

 
 
Figure 1-7. POT1 phylogenetic tree. Phylogenetic tree of POT1 from selected organisms 
in the Plantae kingdom. The early land plant P. patens, and the monocots S. bicolor and Z. 
mays POT1 protein bind telomeric DNA. Brassicaceae family (red box) including 
Arabidopsis POT1 proteins do not.   
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Figure 1-8.POT1 OB-fold. Human, mouse, T. thermophila, and A. thaliana POT1 consist 
of two OB-folds while C. elegans and A.thaliana POT1c consist of single OB-fold. 

 

 

C. elegans POT-1 and POT-2 retain canonical POT1 function, where both proteins 

associate with single-strand telomeric DNA292. Both POT-1 and POT-2 are negative 

regulator of telomerase, but the two proteins function in a non-redundant manner to repress 

telomerase activity312. The third POT1-like protein from C. elegans, POT-3, harbors single 

OB fold that resembles OB2 rather than OB1; but the function of this fourth POT1 protein 

is still unknown313.The fourth POT1-like protein POT-4, has a OB-fold and an SNM1 

family nuclease domain314. The activity of telomerase in vivo is dependent on the OB-fold 

of MRT-1; however, the detailed mechanism is still unclear.  

Another organism with two POT1 paralogues is T. thermophila; its POT1 genes are 

designated Pot1 and Pot2.  T. thermophila Pot1 is an essential gene, whose absence causes 

growth arrest, telomere length de-regulation, DNA damage response, and telomere end de-
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protection315. T. thermophila  Pot2 plays a role in sexual reproduction, as well as 

recruitment of telomerase and/or endonuclease to micronuclear chromosome breakage sites 

for DNA cleavage316. Thus, although the extra copies of POT1 in mice and C. elegans 

retain a function in telomere biology, T. thermophila Pot2 has undergone neo-

functionalization, acquiring a new function outside the conventional telomere pathway. 

Another example of an organism where POT1 paralogues may display neo-

functionalization is A. thaliana.  

In plant kingdom, there has been two independent duplication events that has led to 

two copies of POT1. First event was Panicoideae-specific in grasses 30 mya (monocot), 

and the second event at the base of Brassicaceae (eudicot)317–319. The first event occurred 

after the divergence of last common ancestor with rice, wheat, and barley, giving rise to 

two POT1 in Zea mays and Sorghum bicolor (Figure 1-7). The second event gave rise to 

two POT1 genes in Brassicaceae, which includes A. thaliana (Figure 1-7).   

Three POT1 genes have been identified in A. thaliana, which were generated by 

two separate duplication events. The first duplication event occurred during the whole 

genome duplication of the Brassicaceae family approximately 34 million years ago 

(mya)320,321. The second duplication is specific to A. thaliana, placing the gene duplication 

approximately 10 mya. 

Genetic data indicate that AtPOT1a is not required for telomere capping, but has 

maintained a function within telomere biology by regulating telomerase activity. POT1a 

does so by stimulating telomerase repeat addition processivity. The absence of POT1a 

protein leads to decreased telomerase activity and as a consequence, progressive telomere 

shortening similar to a tert mutant172,178. Furthermore, F65 is a highly conserved residue in 
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mammalian POT1 essential for telomeric DNA binding309,322, and F65A mutation does not 

rescue the pot1a phenotype in A. thaliana319. Thus, the residue important for nucleic acid 

binding is an important component for POT1a function.  

The phenylalanine at the amino acid position 65, located in the OB1, is important 

for telomeric DNA binding in AtPOT1a, and this residue is also found to be important for 

human POT1 to bind telomeric DNA305,307. In addition, POT1a OB1 is sufficient to 

stimulate telomerase processivity in vitro. In AtPOT1b, the critical amino acid for DNA 

binding in OB1 has been changed from phenylalanine to valine (V63).  In marked contrast 

to POT1a OB1, POT1b OB1 cannot bind telomeric DNA or stimulate telomerase 

processivity in vitro307. Another difference between POT1a and POT1b is the binding 

affinity for CTC1.  While POT1a has a binding affinity toward CTC1, POT1b does not319. 

POT1a has evolved to have an enhanced association with CTC1 through three sites, E35, 

S212 , and E293, that went under positive selection while those residues in POT1b did 

not319.  

Finally, unlike POT1a, the absence of POT1b protein does not lead to an obvious 

telomere phenotype other than a slight increase in telomerase activity (B. Barbero and X. 

Xie, unpublished data). In addition, POT1b resides in cytoplasm instead of nucleus, where 

POT1a is seen. Detailed analysis of pot1b mutants suggests that the protein function in 

plant development. Specifically, POT1b is required for seed germination and pollen 

viability (B. Barbero and C. Castillo, unpublished data). These findings suggest that like 

the T. thermophila Pot2 protein, AtPOT1b has evolved a function in reproductive 

development. Thus, POT1a has maintained its ancestral POT1 function in telomere biology 

whereas POT1b has evolved to have a function outside telomere biology.  
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A third POT1 gene from A. thaliana, POT1c, has also been reported.  Analysis of 

this gene is the focus of chapter 2 in this dissertation. 

 

Telomere length homeostasis  

Mechanism of telomere length regulation 

While regulation of telomere length is modulated by trans-acting factors, such as 

telomerase and homologous recombination machinery; cis-acting telomere binding 

proteins also play a critical role in establishing and maintaining length homeostasis. As 

discussed above, each species has a fixed average telomere length that is maintained, 

which is referred to as the telomere length set point. The set point is established by a 

balance of mechanisms that promote elongation of short telomeres, or shortening of 

excessively long telomeres225. Examples of cis-acting factors that modulate telomere 

length set point include the telomere binding proteins TRF, Taz1, and Rap1 (Figure 1-4). A 

protein counting model has been proposed to control telomere length based on a negative 

feedback loop where telomere protein binding serves to negatively regulate extension.  In 

this model, short telomeres are associated with fewer telomere binding proteins, while long 

telomeres bind more proteins, which ultimately inhibits telomere extension (Figure 1-9). In 

yeast, the telomere length “sensing mechanism” involves counting the number of Rap1 

proteins bound to telomeres 323–326, while in humans it is the number of TRF1 molecules 

bound that correlates with telomere length 262,270. As shelterin can stimulate t-loop 

formation, which inhibits telomerase access to the telomeres, t-loop prevents further 

telomere elongation224. The overall amount of shelterin components associated with 

telomeres also parallels the length of telomeres.   
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Figure 1-9.Telomere counting model. Longer telomeres allow more shelterin (top: 
mammals) and telomerase inhibitor (bottom: yeast) to associate with telomeres. Shorter 
telomeres have less shelterin (top: mammals) and telomerase inhibitor (bottom: yeast) 
associated with telomeres, thus allowing telomerase to access telomeres. 
 

 

Despite these studies of cis-acting telomere binding proteins, relatively little is 

known about the fundamental mechanisms that control telomere length set point. Because 

telomere length is a quantitative trait, multiple genes are likely involved in determining 

telomere length set point109. In 2004, a genome wide screen of haploid yeast deletion sets 

identified more than 150 genes that affect telomere length, many of which had no obvious 

connection to telomere biology110. Since then, over yeast 400 genes have been identified 

that affect telomere length109,327. Characterization of newly identified genes that are 

involved in A. thaliana telomere length set point is a major objective of this dissertation 

(Chapter 3). 
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Qualitative traits and quantitative trait mapping 

Quantitative traits (QT) and Quantitative trait loci (QTL) 

Phenotypic traits can be either qualitative or quantitative (Figure 1-10). Qualitative 

traits follow simple Mendelian genetics and are easy to categorize328. They are often 

controlled by a single gene, thus the mode of inheritance is monogenic. Examples of 

qualitative traits are blood types and enzyme defects. On the other hand, quantitative traits 

(QT) show a range of variations in phenotype that are influenced by multiple genes. Thus, 

the phenotype observed is a result from the cumulative effect of multiple genes. Unlike 

qualitative traits, QT do not follow the Mendelian rules of single-gene inheritance, but 

rather phenotypes reflect a continuous gradient of phenotype seen in bell curve (Figure 

1-10) and the mode of inheritance is polygenic329. Examples of qualitative traits are height 

and skin color, and telomere length set point is a quantitative trait.     

While qualitative genetics looks at the change in the frequency of specific alleles, 

an alternate form of a gene of interest, quantitative genetics quantifies the change in the 

frequency distribution of the phenotype being studied330–332. Analysis of QT are done by 

searching a quantitative trait locus (QTL). A chromosomal region is termed a QTL when a 

segment of that DNA (the locus) is associated with a QT. For quantitative genetic traits, 

the relationship between genotype and phenotype are not simple; therefore, it is much 

difficult to study compared to qualitative genetic traits. Therefore, QTL analysis relies on 

detecting an association between phenotype and the genotype of marker such as single 

nucleotide polymorphisms (SNPs)333.  
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Figure 1-10. Quantitative vs qualitative trait. Qualitative trait is shown on the left, 
following the simple Mendelian inheritance of phenotype. Quantitative trait is shown on 
the right, showing the complex polygene inheritance as bell curve. 
 

 

 

Mapping QTL 

To detect a QTL, four components are required: 1) a genetically variable 

population for the trait of interest, 2) marker systems that allow genotyping of the 

population, 3) methods that can analyze a quantitative phenotype (trait), and 4) 

experimental and statistical methods for detecting and locating QTL334.  

In A. thaliana several variable populations are available for QTL mapping (Figure 1-11). 

These include naturally occurring inbred lines (accessions or strains), synthetic 

populations, Heterogeneous Stocks (HS), and Multiparent Advanced Generation Intercross 

(MAGIC) lines. Synthetic populations include Recombinant Inbred Lines (RIL), and 

Advanced Intercross Lines (AIL). RILs are generated by crossing two parent accessions to 

create recombinants, which are then inbred until they are isogenic. AILs are generated by 

randomly and sequentially intercrossing RIL populations. AILs are an extension of RILs 
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that provides higher mapping resolution due to more recombination events; thus, AILs are 

useful in refining a QTL335. HS is an extended approach from AIL, generated from crosses 

between multiple parental lines. HS are crossed for many generations to produce a highly 

recombinant heterozygous outbred population. Notably, HS from 8 parental mice strains 

and 8 parental drosophila have been successfully used for fine-mapping QTL336–339. 

MAGIC lines are similar to HS but RILs are generated from multiple parents340. MAGIC 

lines provide an intermediate niche between naturally occurring inbred lines and existing 

synthetic populations. MAGIC lines have been generated for several different plant species 

including A. thaliana, Zea mays, and Oryza sativa341–343. 

 

 

 
 
Figure 1-11. (reprinted form) Variable population for QTL mapping.340 Recombinant 
Inbred Lines (RIL), Advanced Intercross Lines (AIL), and Multiparent Advanced 
Generation Intercross (MAGIC) lines. 
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QTLs are mapped through identification of molecular markers that correlate with 

the phenotype of interest. The main types of DNA markers commonly used for mapping 

populations are: 1) single nucleotide change/polymorphism (SNP); 2) insertion or deletions 

of various length; and 3) variations in the number of tandem repeats (VNTR)344–346. 

Methods to identify these differences in DNA sequences can be further categorized into 

three groups: bi-allelic dominant, bi-allelic co-dominant, and multi-allelic co-

dominant344,345,347.  

Bi-allelic dominant markers are detected using Random amplified polymorphic 

DNA (RAPD) or Amplified fragment length polymorphism (AFLP). RAPD is a PCR 

method that uses random short primers to amplify genomic DNA to look for a semi-unique 

profile by analyzing the amplification pattern (different size amplicons), while in the AFLP 

method genomic DNA is fragmented with restriction enzymes and a subset of fragments is 

amplified348,349. Unlike RAPD that assesses product size, AFLP looks at the presence or 

absence of the product. Bi-allelic co-dominant markers can be detected using Restriction 

Fragment Length Polymorphisms (RFLP), a method that compares the size of fragmented 

DNA using restriction enzymes350,351. Multi-allelic co-dominant markers are detected by 

microsatellite analysis. Microsatellites (also called short tandem repeats (STRs) or simple 

sequence repeats (SSRs)) are repetitive DNA sequences352,353. The method determines the 

number of repeats in different samples.  

 

Arabidopsis as a model organism  

 Arabidopsis is an established model system with unique features that allow it to be 

a reference organism for all of plant biology.  First, the life span of Arabidopsis is short, A. 
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thaliana produces reproductive organs 4 weeks after germination, and requires a total of 

only 6-8 weeks to generate offspring. Mature plants produce more than 5000 seeds. It is 

possible to store genetic stocks as seeds, which minimizes the maintenance effort.  

Second, Arabidopsis has a small compact genome that is fully sequenced. It 

contains 5 chromosomes with roughly 20,000 genes, and its genome is enriched with 

coding sequence (average of one gene in every 5kb)354–359. The Arabidopsis genome has 

been fully mapped, including mutant genes and molecular marker such as SNPs. Genetic 

analysis has also expanded to the study of epigenetic, gene silencing, centromere mapping, 

and reverse genetics.  Moreover, at least half of these genes in the A. thaliana genome are 

conserved from bacteria to humans.  

Third, the A. thaliana genome can be genetically manipulated in a simple and 

efficient manner for mutagenesis (including chemical and insertional), crosses, and DNA 

transformation.  

A fourth advantage of A. thaliana is that a large number of molecular tools are also 

available. The Arabidopsis Information Resource (TAIR) is a website that contains locus 

information, genome annotation, results of micro array data, polymorphisms, and stock 

ordering360. The stock center stores seeds for thousands of mutants defective in all aspects 

of plant growth and development.  

 

Arabidopsis Accessions, 1001 Genomes Project, and MAGIC Lines 

 There are over 855 Arabidopsis accessions.  These natural inbred lines are a 

product of natural selection under various environmental conditions from around the 

world. The 1001 Genomes Project, which was launched in 2008, seeks to provide whole-
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genome sequencing for individual accessions to explore sequence variation361,362. The 

accessions selected for analysis provide a wide range of natural variation in ecological and 

developmental traits. This large collection of intra-species genetic variants makes A. 

thaliana an invaluable source for the study of different traits. Different accessions have 

different phenotypes in morphology, fitness, flowering time, and metabolism. Thus, the 

1001 A. thaliana genomes project can establish links between genotype and phenotype, 

facilitating a wide area of studies in evolutionary science, and plant breeding. Since 2010, 

a total of 1135 A. thaliana genomes have been analyzed362. 

 For QTL mapping, MAGIC (Multiparent Advanced Generation Intercross) lines 

have been developed for A. thaliana. MAGIC lines are a mosaic of 19 founder accession 

genomes341.  MAGIC lines have several advantages over the classical mapping 

populations. Naturally occurring inbred lines have poor mapping resolution, and synthetic 

populations have limited phenotypic diversity. While HS has been successful in fine-

mapping QTL, individual genomes are unique and heterozygous.  Consequently, high-

density genotyping is required each time a population is phenotyped. Similar to HS, 

MAGIC lines provide high allelic and phenotypic diversity, and high mapping accuracy for 

detecting QTL. However, unlike HS, MAGIC lines eliminate the need to re-genotype the 

phenotyped population, saving time and money. There are over 700 MAGIC lines that are 

fully sequenced/genotyped, and the lines are genotyped at 1200 SNPs that are spaced 

approximately 100kb apart341. Thus, MAGIC lines have multiple advantages for fine-

mapping QTL. 
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Arabidopsis telomere biology 

 Amongst all the advantages Arabidopsis has as model organism, its impact on 

telomere biology is most relevant to this dissertation.  A. thaliana telomeres are relatively 

short, thus easy to analyze. Interestingly, telomere length set point varies among different 

A. thaliana accessions106, making it possible to use QTL mapping to identify novel genes 

that regulate telomere length.   

  As in humans, Arabidopsis cellular proliferation capacity is correlated with 

telomerase activity, which is highest in actively dividing cells including flowers and young 

seedlings363.  Overall, mechanisms of telomere and telomerase regulation are well 

conserved with vertebrates and yeast.  However, some mutations in telomere-associated 

genes that are lethal in mammals and yeast can be tolerated in Arabidopsis.   Thus, there 

are unique features in Arabidopsis telomere biology that allow study of telomere 

maintenance from an evolutionary standpoint.  

 

Dissertation overview 

There are two main research objectives described in this dissertation.  The first is 

characterization of the A. thaliana POT1c locus.  In Chapter II, genetic and evolutionary 

analyses of the AtPOT1c gene are presented.  The second research focus of the dissertation 

is analysis of the role of NOP2A in telomere length set point. Chapter III covers both 

genetic and biochemical characterization of the NOP2A gene, while Chapter IV covers 

analysis of NOP2A locus in other A. thaliana accessions. 

Chapter II describes the results of experiments aimed at investigating the function 

of POT1c and the fate of the POT1c locus after gene duplication.   Using a genetic 
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approach, molecular and developmental phenotypes of pot1c mutants were examined.  

There were no obvious telomere-related defects or perturbations to plant reproduction or 

vegetative development in the mutants. In addition, analysis of POT1c expression and 

evolution of the POT1c locus was performed using a combination of in silico analysis, 

biochemistry and molecular genetics. The data indicate that POT1c is very poorly 

expressed, and likely to be a pseudogene. POT1c bears two transposable elements 

upstream of the start codon, and lacks a functional promoter.  Unexpectedly, the POT1c 

locus shows no evidence of active gene silencing. POT1c is not well conserved among A. 

thaliana accessions, suggesting that it is not under selective pressure.  Comparison of the 

POT1c locus with the corresponding region in close relatives of A. thaliana indicates that 

the transposons were inserted in the POT1c promoter very soon after the duplication event, 

and this transposable element insertion has led to the silencing of POT1c locus.  

Chapter III describes the identification and characterization of new gene that plays 

a role in telomere length set point, NOP2A/OLI2. Genetic analysis was used to 

demonstrate that NOP2A/OLI2 is involved in telomere length set point. NOP2A/OLI2 

mutant analysis shows decrease in telomerase activity, but tert/nop2a and pot1a/nop2a 

show phenotypes similar to tert and pot1a single mutants. This suggests that NOP2A/OLI2 

stimulates telomerase activity in a different manner compared to POT1a. Finally, analysis 

of A. thaliana NOP2 paralogues do not show telomere shortening while mutants in OLI2 

genetic pathway shows same telomere shortening as NOP2A/OLI2, indicating that 

telomere length set point phenotype is associated with OLI genetic pathway rather than 

NOP2.  
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In Chapter IV, genetic study is used to show that NOP2A/OLI2 is one of the major 

factor for determining telomere length set point in A. thaliana. Sf-2 and Col-0 accessions 

were crossed and segregated by their NOP2A locus. Three key observations are made from 

this experiment: 1) only the Sf-2/Sf-2 genotype has long telomeres, 2) not all the Sf-2/ Sf-2 

genotypes have long telomeres, and 3) some Col-0/ Col-0 genotypes have telomeres longer 

than WT Col-0. The first observation indicates that NOP2A is necessary for long 

telomeres, the second observation proposes that there is another factor that functions with 

NOP2A, and the third observation suggests that there is another factor independent of 

NOP2A that plays a role in telomere length determination. Finally, the NOP2A locus is 

compared among 19 MAGIC parental accessions to investigate the difference in NOP2A 

locus, and how this difference may affect the telomeres of these accessions. 

Altogether, this dissertation sheds new light on the fate of newly duplicated genes 

and the importance of proper regulation of genes involved in telomere biology. It also 

reveals novel genes that play a role in determining telomere length set point.  These 

discoveries increase understanding of the complexity of telomere biology and its 

interconnectedness with fundamental processes that promote genome integrity.  
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CHAPTER II                                                                                                         

FATE OF THE NEW DUPLICATE GENE POT1C 

 

Summary 

 Protection of telomeres 1 (POT1) is a conserved telomere binding protein found in 

organisms as old as the earliest diverging land plants. POT1 proteins exhibit signature 

oligosaccharide/ oligonucleotide binding domains (OB-folds), typically two at their amino 

terminus. Although humans possess a single copy POT1 gene, POT1 is duplicated in other 

organisms, including rodents, ciliates and plants. Biochemical and genetic experiments 

reveal that the two mouse POT1 paralogs have sub-functionalized while Tetrahymena 

thermophila TtPot2 may have been subjected to neo-functionalization. The plant kingdom 

is characterized by at least two independent POT1 duplication events, one in the grasses 

and one in the Brassicaceae. A. thaliana carries three POT1-like loci, POT1a, POT1b and 

POT1c, that arose from two distinct duplication events. AtPOT1a has retain the ancestral 

function, while POT1b may have subjected to neo-functionalization. The current data for 

AtPOT1a and AtPOT1b genes argue that the A. thaliana POT1 gene family has been 

subjected to substantial, and ongoing functional divergence post duplication. This chapter 

explores the function and evolution of the third AtPOT1 paralog, POT1c. We provide 

evidence that the AtPOT1c locus is functionally silenced likely due to the acquisition of 

two transposable elements within the promoter and multiple deletions within the coding 

sequence. The data demonstrate a very different path POT1 duplicate in A. thaliana has 

taken: POT1c has non-functionalized through permanent silencing, while POT1b has neo-

functionalized. 
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Introduction 

 Protection of telomeres 1 (POT1) is a conserved telomere binding protein found in 

organisms as old as the earliest diverging land plants300,302. Human POT1 is a component 

of telomere capping complex, shelterin, and directly contacts single-stranded telomeric 

DNA on the extreme chromosome terminus254. POT1 has dual functions in protecting 

telomeres from eliciting an ATR-dependent DNA damage response (DDR) and in 

regulating telomerase access to chromosome ends254,259,271,364,365. Emerging data suggest 

that POT1 also plays a role in regulating the efficiency and fidelity of DNA repair366.  

 POT1 proteins exhibit signature oligosaccharide/ oligonucleotide binding domains 

(OB-folds), typically two at their amino terminus. The OB-folds convey sequence-specific 

recognition of single-stranded telomeric DNA. Although humans possess a single copy 

POT1 gene, POT1 is duplicated in other organisms, including rodents, ciliates and 

plants308,315,367. The two mouse POT1 genes exhibit 70-75% sequence similarity308,311.  

Biochemical and genetic experiments reveal that these two paralogs sub-functionalized, so 

that each expresses only a subset of the functions of single copy human POT1308. The first 

OB-fold of mPOT1a is a negative regulator of telomere length and is important in 

preventing DNA damage response and DNA damage checkpoint activation309,310. In 

contrast, the C-terminal domain of mPOT1b is required to control the resection of the 5’-

end of the chromsosome308,310,311. Tetrahymena thermophila also encodes two POT1 genes, 

termed Pot1 and Pot2.  TtPot1 is an essential gene, whose absence triggers growth arrest, 

telomere length de-regulation, DNA damage response, and telomere end de-protection315. 

In contrast, TtPot2 plays a role in sexual reproduction, as well as recruitment of telomerase 

and/or endonuclease to micronuclear chromosome breakage sites for DNA cleavage316.  
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These findings suggest that TtPot2 may have been subjected to neo-functionalization. 

The plant kingdom is characterized by at least two independent POT1 duplication 

events, one in the grasses and one in the Brassicaceae. A Panicoideae-specific POT1 

duplication occurred in the grasses (~75 mya), resulting in two POT1 paralogs in Zea mays 

and Sorghum bicolor, which share approximately 75% amino acid sequence 

similarity319,368.    A second duplication event occurred at the base of the Brassicaceae, a 

large family that includes Arabidopsis thaliana. Since POT1 genes are single copy in 

papaya and cotton, this POT1 duplication event was dated to approximately 100 mya317–

319.  

 A. thaliana carries three POT1-like loci, POT1a, POT1b and POT1c319,369, that arose 

from two distinct duplication events.  Strikingly, AtPOT1a and AtPOT1b display only 

52% sequence similarity overall.  Genetic analysis indicates that AtPOT1b cannot not 

complement AtPOT1a deficiency319. Moreover, the AtPOT1a gene is functionally distinct 

from the single copy POT1 gene in the moss Physcomitrella patens, which was previously 

shown to be critical for chromosome end protection in much the same way as hPOT12.  

Finally, although the Arabidopsis lyrata POT1a (98% amino acid similarity to AtPOT1a) 

can fully rescue an AtPOT1a deficient mutant, the Brassica oleracea POT1a (74% amino 

acid similarity to AtPOT1a) can not319. 

AtPOT1a appears to retain only a subset of the ancestral functions ascribed to 

hPOT1. Plants null for POT1a show decreased telomerase activity and, as a consequence, 

an ever shorter telomere phenotype similar to plants lacking the telomerase catalytic 

subunit172,363. However, unlike hPOT1, which is a stable component of the shelterin 

telomere capping complex, AtPOT1a only transiently associates with telomeres and 
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instead is physically associated with the telomerase ribonucleoprotein (RNP) where it 

positively regulates enzyme activity by stimulating telomere repeat addition 

processivity172,178. 

This study explores the function and evolution of the third AtPOT1 paralog, 

POT1c.   We show that AtPOT1c is derived from a very recent duplication event involving 

the POT1a locus and a neighboring gene encoding ribosomal protein S17 (dS17). The 

duplication was followed by deletion and inversion, leaving AtPOT1c with only a single 

OB-fold, rather than the two OB-folds associated with conventional POT1 proteins. We 

provide evidence that the AtPOT1c locus is functionally silenced likely due to the 

acquisition of two transposable elements within the promoter and multiple deletions within 

the coding sequence. Silencing of the POT1c locus has led to the accumulation of DNA 

mutations leading to non-conservation between accessions. Consistent with this 

conclusion, we found no discernable molecular or developmental defects in plants bearing 

a CRISPR mutation within the POT1c locus.  This study has provided new insight for the 

consequences of a newly duplicated gene that is involved in telomere maintenance. The 

data demonstrate a very different path that a POT1 duplicate in AtPOT1 has taken: POT1c 

has non-functionalized through permanent silencing, while POT1b has neo-functionalized. 

 

Materials and methods 

POT1c transcript analysis  

 Total plant RNA was extracted from plant flower, leaf, and seedlings using the Zymo 

RNA mini-prep kit. RNA transcripts were amplified using cDNA synthesized with oligo 

dT. Nested PCR was performed to identify an RNA corresponding to the TAIR annotation 
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using different primer combinations (F1, F2, F3, F4, R1, R2, and R3) (Table 2-1). 

Quantitative POT1c transcript levels were analyzed by qPCR with GAPDH as a reference 

gene (Table 2-1).  

 

POT1c promoter analysis and expression in vivo 

 A POT1c expression construct was created by cloning the ubiquitin promoter and 

genomic sequence of POT1c into pKGWFs7 destination vector using BamHI and SbfI, and 

SpeI (pKGWFs7:UBQp-POT1c) restriction enzymes, respectively. A GUS reporter 

construct for POT1c was created by cloning the POT1c promoter (845 bp upstream of the 

initial POT1c ATG) into pKGWFs7: GUS destination vector using EcoRI and XbaI 

(pKGWFs7:Pot1cp-GUS) restriction enzymes.  

 For transformation, small-scale Agrobacterium tumefaciens cultures were grown for 

24 h at 30°C.  500 mL LB was inoculated with 0.5 mL of A. tumefaciens culture and was 

grown at 28°C until the OD595 reached 1.5. The culture was centrifuged for 10 min at 4,000 

rpm, and was re-suspended in 15% sucrose 0.2% Silwet-77 solution. Plants with flowers 

were dipped in Agrobacterium solution for 1 min, and kept in the dark overnight. T1 seeds 

were selected on [20µg/ml] BASTA, and ½ MS media [25µg/ml] Kanamycin for pDs 

transformants.  

 For GUS detection, flowers, floral buds, seedlings and leaves were fixed using 90% 

acetone for 30 min. Samples were washed 3 times with citrate buffer for 10 min each. 

Samples were then treated with staining solution, vacuumed for 5 min and 15 min with 

each round releasing the vacuum slowly (2-3 min) to allow tissues to absorb the staining 

solution. Samples were then stained at 37C° for 48 h. Stained samples were washed with 



 

 43 

50% and 70% ethanol for 3 h each, and then placed in 100% glycerol overnight at RT.  

 

POT1c protein expression, purification, and gel shift analysis 

 A N-terminal SUMO tagged POT1c construct was created by cloning POT1c CDS 

sequence into pET28a vector containing N-terminal SUMO tag using BamHI and EcoRI 

(pET28a:His-SUMO-POT1c) restriction enzyme.  

 POT1c protein was expressed by inoculating six 1 litter LB media with 15 mL 

overnight E. coli culture containing pET28a:His-SUMO-POT1c. The inoculated culture 

was placed in 30 C° shaker until OD595 of 0.6 was reached. 500 mM IPTG was then added 

to allowed SUMO-POT1c expression at 16 C° for 18 hours. Culture was then spun down at 

5000g for 15 minutes, and resuspended in lysis buffer (50mM Tris-Cl pH 7.5, 500mM 

NaCl, 10mM imidazole, 1mM DTT, and 1x sigma protease inhibitor cocktail). Samples 

were then sonicated for 10 seconds on and 10 seconds off for 15 minutes. Lysed sample 

was spun down at 15000g for 30 minutes and loaded on Ni-NTA column. The column was 

washed with 240mL wash buffer (20mM Tris-Cl pH 7.5, 150mM NaCl, 10mM imidazole, 

and 1mM DTT), and His-SUMO-POT1c was eluted with mL of 100 mM and 10 mL of 

250 mM elution buffer (20mM Tris-Cl pH 7.5, 1500mM NaCl, 100 or 250 mM imidazole, 

and 1mM DTT). Elution samples were resolved by SDS-PAGE to select the fractions that 

contain His-SUMO-POT1c, and these samples were dialyzed over night at 4 C°. 

 Gel shit assay was performed by incubating the protein with 5’ [32P] labeled 

oligonucleotide probe (TTTAGGG)6 in binding buffer (20mM Tris-Cl pH7.5, 200mM 

potassium glutamate, 10mM MgCl2, 10% glycerol, 50µg/mL BSA, 1mM DTT, and 

1µg/µL tRNA) for 30 min at 37 C°. Samples were resolved by non-denaturing 0.8% PAGE 
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at 120 volts, and the gel was exposed with a phosphor-screen and imaged. The image was 

analyzed using QuantityOne software. 

 

In silico analysis  

 A secondary structure model for POT1c was derived using Jpred3 

(http://www.compbio.dundee.ac.uk/jpred/).  We assessed mRNA sequence, DNA 

methylation status, presence of small RNA, and transposable elements using data obtained 

from the Jacobsen epigenomics database (http://genomes.mcdb.ucla.edu/AthBSseq)370–374. 

Prediction of the POT1c promoter was performed using softberry, BDGP, and the plant 

promoter database 3.0. A total of 855 Arabidopsis thaliana accession sequences were 

obtained from the 1001 genomes project 

(http://signal.salk.edu/atg1001/3.0/gebrowser.php), and were analyzed using Geneious 

software. 

 

CRISPR mutation 

 The protospacer sequence (TAGCAAAGCCGGGAGTAGGC) was used for 

generation of a CRISPR/Cas9 mediated POT1c mutant. The construct was cloned into 

pEN: St1gRNA entry vector, kindly provided by the Fauser lab (pEN: St1gRNA-Pot1c). 

pEN: St1gRNA-Pot1c was then cloned into pDs: St1Cas9 destination vector, generously 

provided by the Puchta lab (pDs: St1Cas9-St1gRNA-Pot1c). A melting curve of T1 

transformants was obtained using the BioRAD CFX 96 system 3 step amplification 

melting curve protocol (Tm P1c CRISPR Fw and Tm P1c CRISPR Rv). DNA from plants 

that showed an altered melting curve was PCR amplified using gene-specific primers and 
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sequenced to confirm the mutation generated from CRISPR Cas9 system. Sequencing 

products were generated by amplification of the POT1c locus near the target site (Seq P1c 

CRISPR Fw and Seq P1c CRISPR Rv). The T2 generation of mutant plants was further 

screened to identify homozygous POT1c mutants. Homozygous mutants were then 

screened for the presence of the kanamycin gene using PCR (SS42 and SS102) to confirm 

a clean background, as well as the absence of the Cas9 nuclease system to prevent further 

alteration of the genome. 

 

Telomerase activity assay (TRAP) and telomere length analysis (TRF) 

 Protein extract was prepared from 6 day-old seedlings. 1 mL Buffer W (50mM Tris 

Acetate pH7.5, 5 mM MgCl2, 100 mM potassium glutamate, 20 mM EGTA, 10% glycerol, 

and 30% PVP) was added to ground tissue sample and incubated for 15 min at 4°C. 

Samples were centrifuged for 10 min at 15,000 rpm and the protein concentration was 

measured using the Bradford assay. 0.5µM of substrate telomeric DNA was extended by 

150 ng of protein extract together with 12.5µL Dynamo SYBR master mix for 45 min at 

37°C. Extended products were then measured by qPCR as output to gauge telomerase 

activity, and normalized to wild type (WT) activity for the fold-change difference. 

 Telomere length was determined using Terminal Restriction Fragment (TRF) 

analysis. Genomic DNA was digested overnight with MseI enzyme at 37°C and resolved 

on a 0.8% agarose gel overnight at 55V. DNA on the gel was denatured and transferred to 

a nitrocellulose or PVDF membrane. The membrane was hybridized with 5’ [32P] labeled 

oligonucleotide probe (TTTAGGG)4 and exposed with phosphor-screen and imaged. The 

image was analyzed using QuantityOne software.  
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In vivo DNA methylation status 

 Chop PCR was performed to analyze the DNA methylation status of the POT1a and 

POT1c loci in different genetic backgrounds.  Briefly, restriction enzymes SnaBI, 

HypCH4IV, and HhaI were used to digest genomic DNA. Digested DNA was PCR 

amplified using the primer sets ChopPCRP1cF1/ ChopPCRP1cR1, ChopPCRP1aF1/ 

ChopPCRP1aR1, ChopPCRP1aF2/ ChopPCRP1aR2, and ChopPCRP1aF3/ 

ChopPCRP1aR3 (Table 2-1). 

 

 
Table 2-1. PCR primer 

 

Plant transfection 

 Small scale Agrobacterium tumefaciens cultures were grown for 24 h at 30°C.  

500mL LB was inoculated with 0.5mL of A. tumefaciens culture and was grown at 28°C 

until the OD595 reached 1.5. The culture was spun down for 10 min at 4,000 rpm, and was 
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re-suspended in 15% sucrose 0.2% Silwet-77 solution. Plants with flowers were dipped in 

Agrobacterium solution for 1 min, and kept in the dark overnight. T1 seeds were selected 

on [20µg/ml] BASTA, and ½ MS media [25µg/ml] Kanamycin for pDs transformants.  

 

Results 

Identification of POT1c  

 In a BLAST search to identify POT1-like genes in A. thaliana, a truncated gene 

termed POT1c (At2g04395) located 255 kbp upstream of AtPOT1a (At2g05210) was 

found (Figure 2-1A)369. Although POT1a and POT1b paralogs exist throughout the 

Brassicaceae family, POT1c is unique to Arabidopsis thaliana (Figure 2-1B).  The absence 

of POT1c in Arabidopsis lyrata dates the POT1c duplication event at ~10 MYA375,376. 

Sequence analysis suggests that a proximal duplication and inversion of At2g05210 

(POT1a) and At2g05220 (encoding ribosomal protein S17) created At2g04395 (POT1c) 

and At2g04390 (dS17) (Figure 2-1A).  

 The POT1c gene is annotated in The Arabidopsis Information Resource (TAIR) as a 

474 nt transcript encoding a protein with 158 amino acids (Figure 2-1C). To verify this 

information, qPCR was performed with cDNA from flowers, seedlings, and leaves using 

the mRNA sequence predicted from TAIR. PCR with a high number of cycles (80) and a 

high cDNA concentration (500ng), a PCR product of 717 bp was generated in reactions 

with RNA from flowers, seedlings, rosette leaves, and cauline leaves (Figure 2-1C). 
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Figure 2-1. POT1c is a product of POT1a duplication. (A) The A. thaliana loci for 
POT1a (At2g05210) and S17 (At2g05220 (dark blue) and the duplicated locus for POT1c 
(At2g04395), and dS17 (At2g04390 (light blue) are shown. (B) Phylogenetic tree for the 
POT1 family in Brassicaceae and close relatives. POT1c (orange) is present only in A. 
thaliana. (C) Schematic of the POT1a, TAIR annotated POT1c, and POT1c loci. Boxes 
represent exons. Gray boxes in POT1a are missing in the POT1c transcript based on RT-
PCR amplification. Arrows indicate two sets of primers used to amplify POT1c. (D) OB-
fold domain outline of the A. thaliana POT1a, POT1b, and POT1c proteins. Percent amino 
acid similarity of the OB1 domains for POT1a-POT1b and POT1a-POT1c are indicated 
above (% AA SIM). 

 
 
 
 
 
 
 

 
 

Figure 2-2. RT-PCR product of POT1c. A new PCR product derived from the POT1c locus 
is shown. The expected size product based on TAIR annotation is 474 nt.   
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Reactions with several different primer sets generated a POT1c product with a Cq value of 

39, on par with background levels of expression (Figure 2-2). However, using standard 

This transcript encodes a 239 amino acid protein, longer than the POT1c polypeptide 

predicted from TAIR. The POT1c RNA we identified includes exons 5 and 6, while TAIR 

POT1c contains an in-frame stop codon after exon 4.  

The secondary structure prediction for POT1c shows a single OB-fold domain that 

is lacking C-terminal a-helix (Figure 2-1D and Figure 2-3A). The N-terminal region of the 

POT1c OB-fold exhibits high amino acid sequence similarity to the N-terminus of POT1a 

OB1 (98%), while the C-terminal region of the POT1c OB-fold resembles the C-terminal 

region of POT1a OB2 (90% SIM) (Figure 2-1D). Overall, POT1c exhibits 47% ID/49% 

SIM to POT1a. While atypical, there are examples of OB-fold containing proteins that lack 

a C-terminal a-helix279.  We generated a SUMO-tagged version of POT1c and were 

successful in expressing and purifying the recombinant protein from E. coli.  These results 

indicate that POT1c can be expressed as a polypeptide that is not grossly unfolded (Figure 

2-3B). Besides the presence of only a single OB-fold, a second major difference between 

POT1a and POT1c is the amino acid Phe at position 65 (Figure 2-3A). This amino acid is a 

highly conserved residue seen from Brassicaceae to plants with single copy POT1 that is 

important for telomeric DNA recognition305,307. In POT1c, Tyr is substituted for Phe at this 

position F65Y.  

 To ask if the POT1c protein can bind telomeric DNA in vitro similar to AtPOT1a 

OB1307, gel shift experiments were performed.  While 0.25µM AtPOT1a OB1 binds 

telomeric DNA, no DNA binding was observed with the same amount of SUMO-POT1c 

Figure 2-3C). When a higher concentration (up to 2µM) of SUMO-POT1c was tested, we 
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observed a weak association with telomeric DNA (Figure 2-3D). Although a faint band 

shift is observed at high protein concentration, the unbound signal remained unchanged. 

However, this weak binding is specific to telomeric DNA, as non-specific DNA does not 

compete with telomeric DNA (Figure 2-3E). To determine if the absence of robust 

telomeric DNA binding was due to the presence of Tyr instead of Phe in the nucleic acid 

binding pocket, we mutated POT1c to generate Y65F.  We found no increase in telomeric 

DNA binding.  Therefore, the low level of DNA binding by the POT1c protein is likely to 

reflect other differences in AtPOT1a OB1 and POT1c.   

 

POT1c transcripts are undetectable 

Because our PCR data indicated that POT1c was expressed at a very low level we 

analyzed the available in silico data for the POT1c locus374.  In seedlings, there was no 

evidence of POT1c transcript accumulation. (Figure 2-4A), although a low level of POT1a 

transcript was detected, consistent with previous RT-PCR data367. POT1c has been 

reported to be expressed in the flowers from an F1 generation cross of the Civ x Ler 

accessions377.  POT1c mRNA has also been detected in plants over-expressing IBL1, a 

protein involved in brassinosteroid signaling378. Nevertheless, these results suggest that 

POT1c is transcribed at very low to non-detectable level under standard growth conditions. 
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Figure 2-3. POT1c interaction with telomeric DNA in vitro. (A) 3D structure prediction 
overlay of POT1a OB1 (dark blue) and POT1c (light blue). Red box denotes the a-helix 
that is missing from POT1c. Conserved amino acid important for DNA recognition for 
POT1a (F65) is shown red and POT1c (Y65) shown in pink. (B) E. coli expressed and 
purified SUMO-POT1c. Y65F: POT1c with Y65F mutation. Expected size of SUMO-
POT1c is 41 kDa. (C) Results from AtPOT1a OB1 and SUMO-POT1c electrophoretic 
mobility  shift assay (EMSA). 0.25 µM protein was used to test for telomeric DNA 
binding. Substrate DNA is labeled with P32 at the 5’-end. (D) Results for WT and Y65F 
SUMO-POT1c EMSA. 0.25-2 µM protein was used to test for telomeric DNA binding. 
Substrate DNA is labeled with P32 at the 5’-end. (E) Results for WT SUMO-POT1c 
competition EMSA. 2 µM protein was used to test for DNA binding. Telomeric DNA is 
labeled with P32 at the 5’-end while non-specific DNA (CCCTAAA)5 is not labeled. 
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Figure 2-4. In silico analysis of the POT1c locus. (A) mCG methylation and RNA seq 
results for wild type (WT), ddm1, and dcl2,3,4 mutant seedlings at the At2g04395 
(POT1c), At2g04390 (dS17), At2gg05210 (POT1a), and At2g05220 (S17) loci from the 
Jacobsen database. Red arrows indicate the direction of transcription. (B) At2g04395 
(POT1c) and At2gg05210 (POT1a) promoter regions. Red asterisk represents the detected 
Transcription Start Site (TSS). 

 

 

 

POT1c mutants do not exhibit the molecular and developmental phenotypes associated 

with loss of POT1a or POT1b.   

 To ask if POT1c has a biological function, specifically a role in telomere 

maintenance or plant development, we generated a loss-of-function mutation in POT1c.   A 

mutation in the At2g04395 locus was created with the Streptococcus thermophilis 

CRISPR/Cas9 system to target the first exon of the POT1c gene. The mutant allele, termed 

pot1c-1, had a deletion in the predicted start codon (Figure 2-5Figure 2-5A &B). If the 

pot1c-1 allele were transcribed, the polypeptide derived from a downstream in-frame ATG 
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codon would lack the first two exons of POT1c, giving rise to a protein bearing only half 

of the residues needed for an OB-fold. Therefore, pot1c-1 is very likely a null allele.   

 We tested if telomere maintenance was impacted in pot1c-1 mutants using terminal 

restriction fragment (TRF) analysis to measure bulk telomere length and primer extension 

telomere repeat amplification (PETRA) to measure telomere length on individual 

chromosome arms.  In contrast to the shortened telomeres in plants deficient in POT1a, 

pot1c-1 telomeres were in the wild type size range and did not exhibit the sharp banding 

profile indicative of telomerase deficiency that is seen in plants lacking POT1a (Figure 

2-6A &B)172. 

 
 

Figure 2-5. Generation of a POT1c mutant. (A) Location of deletion by CRISPR-Cas9 
is indicated by the red triangle. (B) Chromatogram of wild type (WT), mutant (Mt), and 
heterozygous (Het) plants for POT1c locus. The vertical line indicates the start of deletion. 
Heterozygous chromatograms containing forward sequence (Het Fw) and reverse sequence 
(Het Rv) are shown.  
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To investigate whether telomerase activity was altered in plants deficient in POT1c, 

we performed the quantitative telomere repeat amplification protocol (TRAP).  As 

expected, telomerase enzyme activity was significantly reduced in pot1a mutants, but was 

the same as wild type in the POT1c mutant (Figure 2-6C). 

We next asked if pot1c depletion causes defects in plant growth and development 

similar to those associated with the loss of POT1b.  Plants lacking POT1b exhibit 

decreased pollen viability.  A second phenotype associated with pot1b mutants is short 

roots. Neither of these phenotypes is associated with the pot1c mutant (Figure 2-7A, B, and 

C). Indeed, we observed no remarkable difference in plant morphology or growth in pot1c-

1 mutants compared to wild type. One other notable phenotype in pot1b mutants is 

hypersensitivity to DNA damage.   

  

 
 

 
 
Figure 2-6. The pot1c-1 mutant does not exhibit a defect in telomere maintenance or 
telomerase activity. (A, B) TRF and PETRA analysis were conducted to assess telomere 
length in WT plants and plants deficient in either POT1a or POT1c. (C) Telomerase 
activity levels in WT, pot1a and pot1c mutants were determined using quantitative TRAP. 
N=4.   
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We monitor DNA damage response by measuring programmed cell death in the root apical 

meristem after treatment with the radiomimetic drug zeocin. In contrast to pot1b mutants, 

the root apical meristem of pot1c-1 mutants was indistinguishable from wild type 

following zeocin treatment (data not shown). Taken together, these data support the 

conclusion that POT1c does not act in the same manner as the other two A. thaliana POT1 

paralogs, and they also argue that POT1c may be a non-functional gene. 

 

 

 
Figure 2-7. POT1c mutants exhibit no obvious developmental phenotypes. (A&B) 
Pollen viability assays conducted on WT and mutant plants. Fluorescein was used to 
identify the total number of live and dead pollen. (C) Root length measurements in WT 
and mutant seedlings.  
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The POT1c locus does not produce a proper mRNA 

 To test if expression of POT1c gives any phenotype, the entire 1,400 bp POT1c locus 

was expressed under ubiquitin promoter. Plants producing transcript from POT1c locus 

under ubiquitin promoter were identified by performing PCR for the POT1c transcript, and 

the transcripts produced from this construct were sequenced. Analysis of POT1c transcript 

sequence revealed several different splice product. Furthermore, all the different splice 

products are incomplete splicing where the location of the splice sites are not consistent 

among transcripts.  This result indicates that POT1c locus has been altered so much from 

the original locus that current POT1c locus does not produce a proper transcript. 

 

The POT1c locus is not conserved among different A. thaliana accessions 

We leveraged the extensive A. thaliana sequence database to explore the 

evolutionary history of the POT1c locus to look for evidence of selective pressure.  Our 

approach was to examine natural variation at this locus across 855 fully sequenced A. 

thaliana accessions (http://1001genomes.org/). We found that POT1a exhibits 86% 

nucleotide ID (87% amino acid ID), while for POT1c this value drops to only 12% nt 

identity (33% aa ID) (Table 2-2A). Analysis of the gene neighboring POT1a, S17, 

(At2g05220: S17) revealed 61% nt ID (74% aa ID), while the duplicated S17 (At2g04390: 

dS17) adjacent to POT1c exhibited 56% nt ID (60% aa ID) (Table 2-2A). Thus, both 

POT1a and S17 loci are more conserved across 855 A. thaliana accessions than the POT1c 

locus. The level of sequence divergence within the POT1c gene is particularly remarkable 

given that the dS17 locus, created at the same time as POT1c, is highly conserved, 

exhibiting 98% aa ID identity with its S17 parent (Table 2-2B). 
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A notable aspect of POT1c divergence is the prevalence of coding sequence 

mutations across A. thaliana accessions. 20% of the A. thaliana accessions contain 

mutations that will affect POT1c at the protein sequence level. In contrast, only 2% of the 

dS17 loci have mutations that will affect the dS17 protein sequence (Table 2-2C). In 

addition, the dS17 mutations that will affect dS17 protein sequence all appear to derive 

from an in-frame deletion located near the C-terminal end (Figure 2-8B). At the DNA 

sequence level, there are a few accessions that carry nucleotide substitutions at the dS17 

locus, but these are silent mutations.  

 

 

 

 
Table 2-2. POT1c is not conserved among 855 accessions. (A) % pairwise nucleotide, % 
identical nucleotide, and % amino acid identity between 855 accessions at indicated loci. 
(B) Overall amino acid % identity between S17 and dS17, and POT1a and POT1c. (C) The 
types of mutations in percentage are shown for each category. The total percentage of 
accessions with mutations is shown in red. 
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Figure 2-8. Comparison of POT1c and dS17 loci from different A. thaliana accessions. 
(A) The POT1c and dS17 coding regions are shown.  Data for 67 representative accessions 
are presented to illustrate the different types of deletions within the POT1c and dS17 loci. 
Col-0 is shown with red asterisks. Boxes represent: dS17 deletion at ATG site (red box), 
POT1c deletion at ATG site (green box), POT1c deletion at exon 4 (orange box), and other 
internal deletions (blue box). (B) A blow up of the POT1c locus to illustrate the types of 
mutations. Red box on the right panel shows ATG site of accessions with deletions and 
nucleotide substitutions (letters with no color). Middle and left panel shows some 
accessions with nucleotide substitutions. Left panel shows example deletions within coding 
region. 
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On the other hand, the POT1c locus exhibits multiple nucleotide substitutions that 

are not silent and multiple random deletions within the coding region (Figure 2-8A 

&B).These deletions range from as little as 7nts to over 400 nts. Taken together, these 

findings suggest that coding region deletions are better tolerated at the POT1c locus than 

the dS17.   

 

The POT1c locus is not actively silenced 

 Since gene silencing pathways play a critical role in modulating transcription in 

Arabidopsis379,380, we used publicly available databases to investigate whether POT1c 

exhibits signatures of gene silencing, namely DNA methylation and small interfering 

RNA370–373. Arabidopsis displays three types of DNA methylation, CG, CHG, and 

CHH381,382.  Notably, only CG methylation is associated with sequences immediately 

upstream of the POT1a and POT1c coding regions (Figure 2-4A). To investigate whether 

CG methylation is regulated in POT1a and POT1c loci, and if methylation affects the level 

of POT1a and POT1c transcripts, we analyzed the methylation profile in plants lacking the 

chromatin remodeler DDM1383. In hypomethylated ddm1 mutants we found no change in 

the methylation profile of POT1c. However, CG methylation was decreased at the POT1a 

locus (Figure 2-4A).  Biochemical analysis by ChopPCR confirmed these results (Figure 

2-9A). Although DNA methylation was affected by the loss of DDM1 at the POT1a locus, 

in silico data showed no change in the transcript levels of POT1a or POT1c in 

hypomethylated plants (Figure 2-4A).  In contrast, RT-PCR reactions using the AtMu1 

TSA2 transposable element as a positive control showed a marked change in transcription 

(Figure 2-9B).   These findings argue that DNA methylation does not play a significant 
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role in the transcriptional regulation of POT1a or POT1c. 

 We found no evidence that POT1c transcription is regulated by the small RNA 

pathway. The published sRNA sequencing data do not identify sRNAs near or within the 

POT1c locus373. To further investigate possible sRNA-mediated regulation, we assessed 

POT1c transcript levels in plants lacking three Dicer-like proteins, DCL2, 3, 4380. As 

expected, miR173, a TAS1 transcript, increased in the triple mutant. However, neither the 

POT1a nor POT1c transcript level was altered in this background (Figure 2-9B).  In 

addition, there was no change in the DNA methylation profile for either POT1a or POT1c 

in the dcl2,3,4 triple mutant, as determined from in silico data and our ChopPCR 

experiments (Figure 2-4A and Figure 2-9A). 

 

 

Figure 2-9. The POT1c transcript is not actively silenced. (A) Results for Chop PCR.   
No DNA (1), untreated (2), treated with DNA methylation sensitive restriction enzyme 
SnaBI, HypCH4IV, and HhaI (3), and treated with restriction enzyme McrBC that cuts at 
sites of CG methylation (4). Red asterisks indicate amplification of DNA from incomplete 
digestion by McrBC. (B) qPCR analysis of POT1c and POT1a transcripts in ddm1 and 
dcr2,3,4 mutants. POT1a, POT1c, and TAS1 transcripts were normalized to the GAPDH 
transcript level. The fold change in POT1c was adjusted relative to WT POT1a. The 
mir173 target TAS1 was used as a control in the dcl2,3,4 mutant. (C) ddm1 mutant RT-
PCR. PCR data for WT and ddm1 were compared to the AtMu1 TSA2 transposable 
element to confirm the ddm1 mutation.  
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POT1c locus lacks a functional promoter  

 We used both in silico and molecular genetics approaches to investigate why POT1c 

expression is so low. Analysis of POT1a and POT1c loci revealed two transposable 

elements (TE), At2TE07050 and At2TE07055, immediately upstream of the POT1c ATG 

start codon (Figure 2-4A).  No TEs are predicted within the POT1a promoter region.  In 

addition, a single, strong promoter with a transcription start site (TSS) peak is predicted for 

the POT1a locus, but not for POT1c (Figure 2-4B). To directly test whether a functional 

promoter is associated with the POT1c locus, we created a transcriptional reporter 

construct bearing 845 bp of sequence upstream of the POT1c start codon fused to a GUS-

reporter.  As a positive control, we used a GUS-reporter under the control of CYCB1 in a 

pot1a mutant background.  In these plants strong GUS signals are observed in all of tissues 

analyzed, as opposed to the negative control (WT), where not GUS signal was detected 

(Figure 2-10). Expression of the POT1c-GUS reporter construct was monitored in root, 

shoot apical meristem, embryo, pollen, and seeds.  However, similar to the negative 

control, there was no GUS signal in any tissues analyzed. (Figure 2-10).  These data are 

consistent with in silico and qPCR data indicating that under standard growth conditions, 

POT1c is not actively transcribed. 
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Figure 2-10. The POT1c locus lacks a functional promoter. (A) Positive control: GUS 
reporter under the control of the CYCB1 promoter in a pot1a mutant background. Negative 
control: untransformed WT. GUS reporter expressed from the POT1c promoter. SAM: 
shoot apical meristem.  (B) PCR amplification of the POT1cp-GUS construct in three 
transformants. PCR amplification of ATR locus is shown at the bottom for DNA quality. 

 

TE insertion occurred after the POT1a locus duplication  

 A striking feature of the POT1c locus is the presence of two TEs immediately 

upstream of the coding region.  The TEs show low sequence conservation of 78.8% 

pairwise ID with 0% identical sequence across the 855 accessions.  This observation 

suggests 1) TEs were ancestral to the locus or 2) were inserted very soon after the 

speciation event that separated A. thaliana from A. lyrata. Hypothesis 1 predicts that 

POT1c was essentially silenced immediately after its creation and is now subject to genetic 

drift. Hypothesis 2 argues that expression of POT1c was deleterious, leading to rapid 

silencing by the TE insertion. 

 To explore these two possibilities, we compared the A. thaliana POT1a and POT1c 

loci to the POT1a locus from A. lyrata (Figure 2-11). We identified a 200 nt sequence in A. 

thaliana positioned between the TrpC gene and the POT1c start codon that is conserved 

with E- value of 3.57152e-45 in A. lyrata. Surprisingly, in A. lyrata this 200 nt sequence is 

not located adjacent to TrpC, but rather is embedded in the p450 gene some 700 nts 



 

 63 

upstream of the POT1a start codon (Figure 2-11). Because the two TEs associated with 

POT1c reside between the POT1c and the 200 nt conserved element, this observation 

indicates that the TEs were inserted after the duplication event that gave rise to the 

POT1c/dS17 locus (Figure 2-11). 

 

 

 

 

 

 
 
Figure 2-11. Organization of the POT1a and POT1c loci in Brassicaceae. A schematic 
diagram of the POT1a and POT1c loci shows gene rearrangement. POT1c and dS17 
(change in the diagram) are unique to A. thaliana, as are the TEs located upstream of 
AtPOT1c. 
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Discussion    

 Gene duplication drives genetic diversity, allowing speciation384,385. In this study we 

examined how gene duplication has impacted POT1, one of the most highly conserved 

components of the telomere complex. We report the rise and fall of a new POT1 gene in A. 

thaliana.  POT1c harbors single OB-fold, compared to POT1a and POT1b that has two 

OB-folds, and there are several amino acid residues that are POT1c specific , including the 

key amino acid in nucleic acid binding pocket where the phenylalanine is substituted to 

tyrosine. While POT1c locus is present is all A. thaliana accessions, the sequence is not 

well conserved. In addition, some accessions have deletions in the ORF that would prohibit 

the production of a polypeptide. 

 Although a POT1c transcript was reported in the TAIR database, we could find no 

evidence of POT1c transcription under standard growth conditions. Further, in silico 

promoter analysis failed to identify a transcriptional start site for POT1c, and experiments 

with a GUS reporter construct showed no promoter activity for the locus. On the chance 

that POT1c is expressed in a tiny fraction of critical cells, we created a CRISPR line to 

disrupt POT1c function in vivo. Plants with POT1c knockout show no telomere defect. In 

the “out of pollen” hypothesis, new genes of flowering plants often have expression bias to 

mature pollen386. Such case was not observed in pot1c mutants: no pollen defects or 

developmental defects of any kind were observed.  

 A striking feature of the POT1c locus is the presence of two TEs upstream of the 

ORF. We asked whether TEs were inserted before or after the POT1c locus was derived 

using an evolutionary reconstruction approach to evaluate the POT1a and POT1c loci from 

species closely related to A. thaliana. We discovered that the original POT1c/dS17 
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duplication product contained additional ~ 1 kb sequence upstream of POT1a gene. 

However, only 200 nt of the upstream sequence is retained upstream of the POT1c gene, 

indicating TEs were inserted upstream of the POT1c start codon. We present a model for 

the evolution of the A. thaliana POT1a and POT1c loci (). After A. thaliana speciation, 

S17 was integrated between POT1a and DNAJ. This genome segment, corresponding to a 

portion of p450, POT1a, and S17,  was then duplicated and inserted 255 kb upstream of 

POT1a. In the process, some sequences were deleted, creating POT1c from the POT1a 

locus. A functional promoter may have been associated with the early POT1c locus, but it 

was soon disrupted by the insertion of TEs.  An additional 17 kb sequence was inserted 

upstream of the POT1a coding region, giving rise to a new promoter. Thus, POT1c locus 

seems to have become non-functionalized through the TE insertion.  

 The local gene duplication event giving rise to the POT1c locus included the 

neighboring ribosomal protein-encoding gene S17, allowing us an opportunity to compare 

the fate of the two nascent genes. The POT1c locus is highly divergent across different A. 

thaliana accessions, but the dS17 is highly conserved. Thus, the dS17 locus, but not 

POT1c, was subjected to purifying selection. The fate of retained duplicate gene pairs is 

thought to be determined early with positive selection playing a significant role387.  The 

AtPOT1a lineage provides an instructive example in this regard319.  On the other hand, 

pseudogenes and redundant genes are fixed through neutral genetic drift, while sub-

functionalized and neo-functionalized genes are fixed through genetic drift and selective 

advantage388,389.  

 The half-life of A. thaliana genes derived from whole genome duplication (WGD) is 

estimated to be 17 million years390. AtPOT1a and AtPOT1b fall into this category319.  In 
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contrast, the average half-life for genes like POT1c and dS17 that arose from small-scale 

duplication (SSD) is typically only a few million years391. A. thaliana harbors 

approximately 187 species-specific duplicate gene pairs; 40% of them including POT1c 

are not expressed and have become non-functionalized392. Other such gene pairs are 

expressed and have redundant function392. The ribosomal protein genes like dS17 are 

known to evolve slowly, and are “over-retained” following gene duplication393–395. 

Because reduced expression of one ribosomal subunit can negatively impact ribosome 

assembly and lead to profound defects in physiology and development396,397, the gene 

balance hypothesis64 posits that ribosome components such as S17 would be subject to 

critical dosage balance398,399. 

 Was POT1c non-functionalized simply due to chance, or was there evolutionary 

pressure to inactivate the locus? Truncated and lowly expressed duplicate genes are 

preferred targets for non-functionalization due to their rapid divergence400. However, it is 

not known whether truncation of the POT1c ORF or its poor expression resulted from 

selective pressure.  What is clear is that the POT1c locus was inactivated very soon after it 

formed. TEs are embedded in the POT1c promoter region of every A. thaliana accession, 

indicating that TE invasion was ancestral to diversification of the POT1c locus.  In 

addition, POT1c is not subjected to active gene silencing through DNA methylation or the 

sRNA pathway, consistent with gene inactivation prior to establishing this type of 

regulatory mechanism.     

 Duplication of POT1 genes is rare across eukarya, and in all of the organisms 

where the POT1 gene family has expanded, non-overlapping functions are reported for the 

paralogs309,311,315,316. Thus, proper dosage of POT1 may be critical for viability. Shakirov et 
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al. reported that over-expression of the C-terminus of AtPOT1a or the N-terminus of 

AtPOT1b resulted in telomere shortening and chromosome end deprotection, 

respectively367, supporting the conclusion that a truncated form of POT1 could be highly 

deleterious.  We were unable to test the hypothesis that expression of the POT1c had a 

dominant negative impact, since over-expression of the POT1c locus failed to produce a 

properly spliced transcript. However, if the newly born POT1c was detrimental to 

Arabidopsis, selective pressure would have been strong to quickly render the locus non-

functional.    

 

 

 

Figure 2-12. Model of POT1c and POT1a loci evolution in A. thaliana. (1) Original 
locus after A. thaliana speciation. (2) Insertion of S17 (purple) downstream of POT1a. (3) 
Local duplication of 3’ p450 (orange), POT1a (light blue), and S17. (4) Inversion and 
insertion of duplicate gene (POT1c: blue). dS17 is shown as same purple as original locus 
S17. POT1c is shown as blue due to its partial deletion within the POT1c locus giving rise 
to unique POT1 gene compared to POT1a. (5) Transposable element insertion between 
POT1c ATG and 3’ p450. (6) 17kb insertion between p450 and POT1a ATG, providing 
POT1a with a new promoter. 
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CHAPTER III                                                                                              

ARABIDOPSIS NOP2A DETERMINES TELOMERE LENGTH SET POINT                                                                              

 

Summary 

The maintenance of telomeres at chromosome ends is a fundamental cellular 

process, remarkably conserved across eukaryotic kingdoms. Telomere length is likely 

under strong stabilizing selection in nature, since accelerated shortening of telomere tracts 

can cause early onset of aging diseases19,21,22,25,44. Interestingly, mean telomere length 

shows genetic (heritable) trait variation among individuals in a number of species, 

including humans106,401,402; however, the genetic factors that establish telomere length set 

point remain elusive. Multi-parent Advanced Generation Inter-Cross (MAGIC) mapping 

populations provide an ideal resource to define candidate loci that underlie quantitative 

traits such as telomere length. By taking a systems genetic approach we were able to 

leverage this genetic diversity to identify novel gene, NOP2A, establishing this important 

element of natural variation. We found that loss-of-function NOP2A/OLI2 mutants 

displayed rapid telomere shortening, but which in later generations stabilized at a new 

shorter telomere length set point. Same phenotype is observed in other genes that are 

involved in OLI2 genetic pathway, specifically, OLI5 and OLI7. These genes are involved 

in ribosome biogenesis and rRNA processing as the major regulators of telomere length in 

Arabidopsis, directly connecting these two crucial cellular pathways. Since NOP2 is a 

known proliferation-associated antigen that drives cancer progression in human and mouse 

cells403–406 and was previously shown to directly associate with human telomerase 
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enzyme407, our findings in A. thaliana establish NOP2A as a major regulator of telomere 

length that connects telomere biology, translation and cell proliferation pathway. 

 

Introduction 

The length of the telomeric DNA is species-specific (i.e. 5-15 kb at birth in humans 

and 2-9 kb in the model plant Arabidopsis thaliana)70–74 but considerable variation in 

average telomere length exist within mouse, yeast and plant populations and between 

human individuals106,401,402. This telomere length polymorphism is known to be under 

strong genetic control109,408, but only a handful of genetic factors have been shown to cause 

population-specific telomere length diversity between or within species. The model plant, 

Arabidopsis thaliana, offers an ideal system to advance these goals due to its small 

genome size, massive genetic resources and well documented heritable telomere length 

variation106.  

Multi-parent Advanced Generation Inter-Cross (MAGIC)341 and other complex 

mapping populations provide an ideal resource to define candidate loci that underlie 

quantitative traits such as telomere length. Unlike Genome Wide Association Study 

(GWAS), MAGIC populations have equal power to detect rare and common variants. 

Furthermore, in Arabidopsis thaliana the MAGIC population samples the diversity of 19 

genotypes, providing far more raw genetic variation than typical bi-parental designs. By 

taking a systems genetic approach — combining DNA, RNA and quantitative genetic 

polymorphism — we were able to leverage this genetic diversity to identify novel genes 

establishing this important element of natural variation.   
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Here we show that analysis of natural DNA sequence polymorphism in Arabidopsis 

thaliana MAGIC population identifies important genes controlling telomere length 

variation. Specifically, we identified a 848kb major effect QTL peak on distal end of 

chromosome 5 in a multi-parent mapping population. Allelic variation at this QTL 

explained 47% of telomere length variation. To search for candidate genes, we employed a 

systems-genetic approach by combining DNA variant, gene expression polymorphism, T-

DNA mutation knock-out and quantitative complementation comparative analyses. We 

found that loss-of-function NOP2A/OLI2 (At5gg55920) mutants displayed rapid telomere 

shortening in the first 3 plant generation, but which in later generations stabilized at a new 

shorter telomere length set point. The same phenotype is observed in other genes that are 

involved in OLI2 genetic pathway, specifically, OLI5 and OLI7.  

 Arabidopsis At5g55920 gene is annotated as OLIGOCELLULA 2 (OLI2) and 

encodes a homolog of the human and S. cerevisiae NOP2, a putative S-adenosyl-L-

methionine-dependent methyltransferase superfamily protein involved in ribosome 

biogenesis, cell proliferation and cancer progression403,409–411. NOP2 gene family is highly 

conserved and is present in yeast, plant and mammalian genomes.  Human NOP2 is a 

proliferation-associated antigen that is highly expressed in a wide range of malignant 

tumors.403 Mouse NOP2 has been characterized as a cancer-causing gene that drives cancer 

progression412. More recently, human NOP2 was purified as telomerase accessory protein 

and, through contacts with hTERT, NOP2 was shown to stimulate transcription of cyclin 

D1407. Similarly, A. thaliana NOP2A/OLI2 gene plays a role in organ size control by 

promoting cell proliferation and preventing compensation in normal leaf development413. 

OLI5 and OLI7 are two other genes identified with OLI2, and these two genes encodes 
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ribosomal protein L5. 

Therefore, genes involved in ribosome biogenesis and rRNA processing in 

Arabidopsis are directly connected to the two crucial cellular pathways: cell proliferation 

and ribosomal biogenesis. This findings in A. thaliana establish NOP2A as a major 

regulator of telomere length that connects telomere biology, translation and cell 

proliferation pathway.  

 

Materials and methods 

Multi-parent QTL mapping 

We conducted QTL mapping in the A. thaliana multi-parent advanced generation 

intercross (MAGIC) population341. The genotype matrix was imputed using shallow 

resequencing data414 via the construct.haplotype function within the HAPPY software 

package341. We employed the accompanying happy.hbrem algorithm available in the R 

environment for statistical computing to infer QTL peaks. Confidence intervals were 

constructed around QTL peaks using a –log10 P-value ‘drop’ of 5. That is, we assumed the 

causal locus of a QTL peak existed within an interval where the P-value was no more than 

5-orders of magnitude greater than the peak minimum P-value. This provided a very 

conservative genomic region with which to screen candidate genes.  

 

Computational screen for candidate genes 

We screened for candidate genes within the QTL interval on chromosome 5 using a 

combination of gene expression and DNA sequence polymorphism. Allelic effect 

distributions at the QTL peak demonstrated that the SF-2 parent contributes a private allele 
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that was responsible for causing telomere length variation. To infer candidate genes, we 

counted all SNPs that were private to the SF-2 parental genome for each gene in the 

interval. We also compared parental gene expression via a t-test comparing normalized 

expression of the SF-2 parent to the other parental expression values. Genes with >1 SF-2 

private SNP in the CDS and FDR-corrected P-value of differential expression ≤ 0.05 were 

considered candidates.  

 

Telomerase activity assay (TRAP) 

 Protein extract was prepared from 6 day-old seedlings. 1 mL Buffer W (50 mM Tris 

Acetate pH7.5, 5 mM MgCl2, 100 mM potassium glutamate, 20 mM EGTA, 10% glycerol, 

and 30% PVP) was added to ground tissue sample and incubated for 15 min at 4°C. 

Samples were centrifuged for 10 min at 15,000 rpm and the protein concentration was 

measured using the Bradford assay. 0.5µM of substrate telomeric DNA was extended by 

150 ng of protein extract together with 12.5µL Dynamo SYBR master mix for 45 min at 

37°C. Extended products were then measured by qPCR as output to gauge telomerase 

activity, and normalized to wild type (WT) activity for the fold-change difference. 

 

Telomere length analysis (TRF) 

 Bulk telomere length was determined using Terminal Restriction Fragment (TRF) 

analysis. Genomic DNA was digested overnight with MseI enzyme at 37°C. Digested 

DNA was resolved on a 0.8% agarose gel overnight at 55V. DNA on the gel was denatured 

and transferred to a nitrocellulose  or PVDF membrane. The membrane was hybridized 

with 5’ [32P] labeled oligonucleotide probe (TTTAGGG)4, and exposed with phosphor-
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screen and imaged. The image was analyzed using QuantityOne software.  

 

Results 

Genetic mapping of telomere length 

We surveyed telomere length in the A. thaliana MAGIC population using telomere 

restriction fragment (TRF) assay, which employs Southern blots to obtain standardized 

mean telomere length values for each MAGIC line. Telomere length (mean TRF) was 

normally distributed across the MAGIC population, ranging from ~1.7 kb to 8 kb, 

suggesting a polygenic genetic architecture (Figure 3-1A). Quantitative Trait Locus (QTL) 

analysis of mean TRF was performed using the mpMap software package, which takes 

advantage of the Hidden Markov Model for a multipoint probabilistic reconstruction of the 

genome of each MAGIC line, permitting statistical inference at the haplotype level. This 

analysis identified a major effect ~848 kb QTL interval on chromosome 5 and several 

minor QTL on chromosome 1 (Figure 3-1B), which together account for 55% of telomere 

length variation in the MAGIC population. When taken in isolation, allelic differences at 

the major effect chromosome 5 QTL explain 47.1% of the total mean telomere length 

variation present in the MAGIC population. Interestingly, the QTL interval did not harbor 

any known genes involved in telomere biology; therefore, the causal DNA polymorphism 

was associated with a novel gene.  
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Figure 3-1. Genetic mapping of telomere length variation in Arabidopsis. (A) 
Representative picture of telomere length variation in A. thaliana MAGIC lines. Overall 
pattern of mean telomere length distribution (in kb) in the MAGIC lines is shown on the 
right. (B) QTL scan of mean telomere length in the MAGIC population. The majority of 
natural genetic variation in telomere length of Arabidopsis MAGIC lines is explained by a 
large effect QTL on chromosome 5 and several minor effect peaks on chromosome 1 
(upper panel). Genome-wide permutation threshold (alpha=0.05). Major effect QTL is 
localized to ~848 kb on the right arm of chromosome 5 (lower panel). (C) Estimates of 
contribution of 19 parental haplotypes at Chromosome 5 QTL to telomere length (in kb) in 
Arabidopsis thaliana MAGIC lines. Plants that inherited the rare Sf-2 allele show up to 
50% longer telomeres. (D) The high confidence ~848 kb QTL interval on chromosome 5 
contains 249 genes (black bars, bottom), of which 112 genes harbor one or more Sf-2 
specific polymorphisms (blue dots). Of these, 20 genes have been selected for transgenic 
analysis due to the presence of private Sf-2 alleles, statistical differences in expression 
between SF-2 and other parental accessions or due to interesting annotation (orange 
asterisks). Knockouts of 19 of these genes harbor telomeres in the normal range for the 
wild type Col-0 accession (grey shaded area). However, transgenic T-DNA knockouts of 
At5g55920 gene showed the strongest effect on telomere length, indicating that variation at 
this locus may be responsible for the observed QTL. 

 
 
 
 



 

 75 

To define a list of potential candidate genes, we examined the parental allelic effect 

at the chromosome 5 QTL. While there was little variation among 18 of the 19 alleles, 

MAGIC progeny that inherited the Sf-2 allele exhibited a 50% increase in telomere length 

(Figure 3-1C). The identified chromosome 5 QTL interval contained 249 candidate genes 

based on the TAIR 10 Columbia (Col-0) reference genome (Figure 3-1D, black bars at the 

bottom). We scanned this interval in re-sequenced genomes of all 19 parental accessions 

for the presence of candidate genes with known Sf-2 specific DNA or gene expression 

polymorphism. Of the 249 genes, 112 genes harbored one or more Sf-2 specific DNA 

variants within coding or promoter (2kb upstream) regions (Figure 3-1D, blue dots). We 

then employed an analogous approach to gene expression, and found 33 genes with 

statistically significant expression differences between Sf-2 and all other parental MAGIC 

accessions. To further rank candidate genes, we examined annotations of all 112 genes 

with Sf-2 specific polymorphisms, excluding very unlikely candidates (e.g. photosystem II 

genes) and specifically focusing on loci possibly involved in DNA/RNA binding or 

metabolism, development, signal transduction or chromosome biology. Overall, 20 

candidate genes with Sf-2 specific polymorphisms that either showed unique expression 

pattern in Sf-2 or interesting annotations or both were selected for further genetic analysis 

(Figure 3-1D, orange dots).   

 

Identification of NOP2A/OLI2 as a candidate gene for telomere length 

To analyze the potential role of selected genes, we screened ≥3 biological replicates 

of homozygous T-DNA insertion mutant plants for each of the 20 candidate genes inside 

the chromosome 5 QTL interval. T-DNA mutants of 19 of the 20 genes displayed 
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telomeres in the wild type range of the Columbia (Col-0) background in which they were 

generated (Figure 3-1D, grey shaded area in the upper panel). Strikingly, homozygous T-

DNA nop2a-2 mutants of NOP2A/OLI2 (OLIGOCELLULA 2, At5g55920) gene harbored 

telomeres that were ~30% shorter than the wild type (Figure 3-1D). Arabidopsis 

NOP2A/OLI2 encodes a homolog of the human and S. cerevisiae NOP2, a putative S-

adenosyl-L-methionine-dependent methyltransferase superfamily protein thought to reside 

in nucleolus and involved in ribosome biogenesis, cell proliferation and cancer 

progression403,409–411. Similarly, in Arabidopsis the NOP2A/OLI2 gene controls organ size 

by promoting cell proliferation and preventing compensation in normal leaf development, 

and nop2a-2 mutant plants that are null for NOP2A function are characterized by up to 2-

fold reduction in the total number of cells in the first true leaves413.  

To further characterize telomere length phenotypes observed in nop2a mutants, we 

analyzed a total of three mutant lines, nop2a-2 (SALK_129648), nop2a-3 (SALK_082871) 

and nop2a-4 (SAIL_1279_H03), with T-DNA insertions in different locations inside the 

coding region of AtNOP2A gene (Figure 3-2A). Indeed, all individual homozygous plants 

with NOP2A gene disruptions displayed similar telomere length shortening (~30% 

reduction) as compared to Columbia wild type (Figure 3-2B), regardless of the T-DNA 

insertion site. Since multiple loss-of-function mutants display dramatically shortened 

telomeres, we conclude that NOP2A is a positive regulator of telomere length in 

Arabidopsis thaliana.  
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Figure 3-2. AtNOP2A gene has short telomeres. (A) Map of the AtOLI2 gene. Open blue 
boxes represent exons; black lines, introns; and gray boxes, untranslated regions. Positions 
of T-DNA insertion sites and the corresponding T-DNA numbers are indicated. (B) T-
DNA mutant lines of the OLI2 gene (At5g55920), oli2-2, oli2-3 and oli2-4 show shorter 
telomere length than the corresponding wild type, accession Col-0. Mean telomere length 
(mean TRF) for each individual analyzed plant is indicated at the bottom. Two additional 
mutant lines with T-DNA insertions inside the OLI2 gene display shorter telomere length.  

 
 

 

NOP2A gene disruptions cause re-establishment of telomere length at a shorter set point, 

resulting in an alternative telomere-length homeostasis 

 An important aspect of telomere length characterization is to determine if a 

particular gene affects telomere length maintenance or establishment. If telomeres 

continuously shorten from one plant generation of the mutant to the next (the so-called 

ever-shorter-telomere phenotype), this outcome indicates that the gene contributes to 
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telomere length maintenance. For instance, in most mutants of the genes involved in the 

telomerase pathway telomere length progressively shortens across generations until 

capacity of such cells to proliferate is depleted5,136,363,415. Alternatively, if shorter telomere 

length becomes fixed in the first few generations and is later maintained at this shorter 

level, this phenotype implies that a new equilibrium has been established and thus set point 

is affected in the mutant. 

To test if Arabidopsis NOP2A mutations affect telomere length maintenance or 

establishment, we analyzed several consecutive generations of NOP2A T-DNA mutants. 

Surprisingly, nop2a-2 and nop2a-3 mutants did not display additional telomere length 

shortening across generations (Figure 3-3A) beyond what we observed in plants from the 

initial batch of seeds received from the ABRC stock center. Since both the nop2a-2 and 

nop2a-3 mutants were already homozygous for the NOP2A mutations when we identified 

them, we suspect that these T-DNA lines had already been propagated at the Arabidopsis 

stock center for several generations in the absence of NOP2A prior to our analysis. 

Therefore, we performed multigenerational analysis of homozygous nop2a-4-/-, wild type 

nop2a-4+/+ and heterozygous nop2a-4+/- siblings, which were freshly segregated by self-

pollination from the heterozygous nop2a-4+/- parent. 

As expected, telomeres in the three consecutive generations of wild-type nop2a-

4+/+ sergeants appeared as a homogeneous smear of products with mean telomere length in 

the normal Col-0 range of 2.8-3.2 kb (Figure 3-3B). Interestingly, as for many other 

Arabidopsis telomere length mutants172,363, At NOP2A is not haplo-insufficient for 

telomere maintenance, as plants heterozygous for the nop2a-4 T-DNA insertion (nop2a-

4+/-) exhibited a wild-type telomere profile (Figure 3-3B). In contrast, the first three 



 

 79 

generations of homozygous nop2a-4-/- plants displayed progressive telomere shortening 

from one generation to another (Figure 3-3B). Notably, the rate of telomere shortening was 

the fastest in the first generation G1 (497 bp) but slowed down to 394 bp in G2 and further 

to 250 bp in G3.  

 

 

 
 

Figure 3-3. Inactivation of AtNOP2A gene leads to the establishment of the new 
shorter telomere length set point. (A) Telomere length is stable at a new shorter set point 
in several generations of oli2-2 and oli2-3 mutant plants. Asterisks indicate generations 
propagated in the lab, with G1* being homozygous for oli2-2 mutants, whose seeds were 
received directly from the ABRC stock center. (B) Telomere length analysis of several 
consecutive generations of oli2-4 mutants.  G1 plants are wild type, heterozygous and 
homozygous progeny of a single self-pollinated heterozygous oli2-4+/- plant. (C) Telomere 
length analysis of consecutive G3-G5 generations of oli2-4-/- mutants.   
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Remarkably, upon reaching the new stable level at 1.8-2.0 kb, telomere length stabilized in 

G3 and was maintained at this lower set point in the consecutive G4 and G5 generations of 

nop2a-4 knockout plants (Figure 3-3C). Taken together with results on nop2a-2 and 

nop2a-3 mutants, these data indicate that plants deficient in NOP2A gene function display 

progressively shorter telomeric DNA tracts until a new telomere length homeostasis is 

reached at the level ~1 kb shorter than in the wild type Col-0 plants. Such phenotype is 

novel in Arabidopsis and indicates that NOP2A gene functions in the establishment of 

species-specific telomere length set point. 

 

Arabidopsis NOP2A is necessary for full telomerase activity in vitro  

Similar to the situation in the first 3 generations of nop2a-4 mutants, plants with 

inactivated telomerase subunits TERT and POT1a also lose 200–500 bp of telomeric DNA 

per plant generation172,363,416. However, these mutants are unable to stabilize their telomeric 

tracts at a new shorter set point, which in later generations ultimately leads to massive 

genome instability and a complete loss of cellular proliferation capacity416. These 

observations prompted us to biochemically and genetically evaluate the possible 

connection between NOP2A and telomerase in Arabidopsis. First, we considered the 

possibility that NOP2A is required for telomerase enzyme activity. Using quantitative 

telomerase activity Q-TRAP assay, we measured in vitro telomerase activity levels in 

extracts from nop2a-2 mutants, wild type plants and pot1a seedlings, which were 

previously shown to have a 10-fold reduction in telomerase activity. Remarkably, nop2a-2 

and pot1a mutant plants harbored similar levels of telomerase activity reduction (Figure 

3-4A). These data implicate NOP2A in the promotion of maximum telomerase activity in 
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vitro, though the reduced level of telomerase activity observed in nop2a-2 mutants is still 

sufficient to stably maintain telomere length at the new shorter set point of 1.8-2.0 kb. 

 
 
 
 
 
 
 

 
 
Figure 3-4. NOP2A association with telomerase. (A) Quantitative TRAP assay for 
telomerase activity. Telomerase enzyme activity levels vary between natural Arabidopsis 
accessions but do not significantly change in oli2-2 mutants. (B&C) Telomeres shorten in 
oli2-2 mutant plants to the similar degree as in Arabidopsis tert mutants. oli2-2 mutant 
plants were crossed with mutant plants heterozygous for T-DNA insertion in the catalytic 
telomerase subunit tert. Double heterozygous for oli2-2 and tert mutations F1 plants were 
self-pollinated to generate oli2-2 and tert single homozygous F2 plants (B) and F3 plants 
(C) and plants double homozygous for both mutations, as well as wild-type. Telomeres 
shorten in double mutants to the similar degree as in either single mutant. 

 

 

To assay for possible genetic interactions between NOP2A and telomerase in vivo, 

individual tert and nop2a-2 T-DNA mutants were crossed, and double heterozygous F1 

mutants were allowed to self-pollinate to generate F2 progeny. Homozygous nop2a-2, tert 
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and nop2a-2 tert F2 mutant plants were identified by genotyping and assayed for telomere 

phenotypes. Both individual F2 nop2a-2 and tert mutant siblings showed a similar degree 

of telomere shortening (Figure 3-4B). Furthermore, telomeres in nop2a-2 tert double 

mutants shortened at approximately the same rate as in their single mutant siblings (Figure 

3-4B). Similar results were obtained in F3 plants (second generation of single and double 

mutants) (Figure 3-4C). Overall, the available genetic and biochemical data indicate that 

NOP2A and telomerase mutants may function in the same genetic pathway.  

Although NOP2A mutants are viable and fertile, they harbor up to 50% fewer leaf 

cells, consistent with major defects in cell proliferation413. We next asked if such severe 

morphological abnormalities and deficiency in telomere length maintenance are associated 

with cytogenetic defects and genome instability, such as chromosome fusions. As a gauge 

of genome stability, we determined the frequency of anaphase bridges in mitotic cells of 

nop2a-3 pistils. No anaphase bridges were observed in nop2a-3 cells, indicating that 

chromosome ends remain protected and thus, NOP2A is not involved in chromosome 

protection per se (Table 3-1). In a parallel approach, the more sensitive telomere fusion 

PCR assay using primers directed outward from the unique subtelomeric sequences found 

on Arabidopsis chromosomes415 also did not detect fusion PCR products, reflecting the 

absence of covalent telomere-to-telomere chromosome fusions in NOP2A mutants (Figure 

3-5). Taken together, these data argue that, like telomerase subunit genes TERT and 

POT1a, Arabidopsis NOP2a is dispensable for chromosome end protection.  
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Table 3-1. Anaphase bridge analysis of oli2, oli5, and oli7  mutants. 

 

 

 
Figure 3-5. PCR amplification of chromosome fusion junctions. (A) Diagram of the 
PCR strategy to amplify chromosome fusion junctions415. Arrows denote unique 
subtelomeric primers directed toward the chromosome terminus. PCR amplification occurs 
only when two subtelomeric regions are joined end-to-end (oval: centromere; wavy line: 
telomere). (B) Southern blot analysis of fusion PCR products using a telomeric probe. 
Fusion PCR results for 6 different subtelomeric primer combinations are shown using 
DNA from stn1 mutants (positive control) with well-characterized genome instability and 
massive chromosome fusions238, wild-type template DNA (negative control) and DNA 
from oli2-2 plants. Results for a single plant are shown in each lane. 
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Arabidopsis OLI genes connect telomere length homeostasis and ribosome biogenesis. 

Arabidopsis NOP2A/OLI2 was originally identified in a forward genetic screen for 

regulators of cell proliferation413. Several other Arabidopsis genes were identified in the 

same screen, including partially redundant OLI5 (At3g25520 locus) and OLI7 (At5g39740 

locus), which encode ribosomal proteins RPL5A and RPL5B, respectively. In humans and 

other eukaryotes, the highly conserved RPL5 protein binds the 5S rRNA to form a 

ribonucleoprotein particle that participates in the formation of the large ribosomal subunit 

in the nucleolus and is subsequently exported to the cytoplasm417. Since all three OLI 

genes were originally identified in the same genetic screen, localize to the nucleolus and 

display similar cell proliferation defects, we tested if T-DNA insertional mutants of 

AtOLI5 and AtOLI7 genes will also display telomere length defects. Indeed, both oli5 and 

oli7 homozygous T-DNA mutants displayed shorter telomeres (Figure 3-6A &B) 

compared to Col-0 wild type plants. Furthermore, mean telomere length in homozygous 

oli5-2 mutants remained shorter than in the wild type across at least 3 generations that they 

were propagated in the lab and was clearly stabilized at exactly the same level (~1.8-2.0 

kb) as in all nop2a/oli2 mutants (Figure 3-6A). Homozygous oli5-3-/- mutants segregated 

from a heterozygous oli5-3+/- parent also displayed progressive telomere shortening from 

one generation to another (Figure 3-6C) until stabilization at ~1.7-1.8 kb. The oli7-2 T-

DNA mutants also displayed telomere shortening, though its degree was smaller (Figure 

3-6B), possibly reflecting the nature of oli7-2 mutation, which is likely not a null mutant, 

as its corresponding T-DNA was inserted at the end of the OLI7 gene. 

Altogether, these genetic data clearly indicate that all three rRNA-interacting OLI 

genes are important for telomere length control, thus strongly supporting the notion that 
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the entire network of evolutionarily conserved ribosome biogenesis genes encoding rRNA-

binding proteins participates in setting the threshold for appropriate species-specific 

telomere length set point.  

 

 
 

 

 
 
Figure 3-6. Genetic analysis of OLI2 interaction network identifies several proteins 
with nucleolar function and implicates rRNA biogenesis and ribosome assembly as a 
conserved mechanism influencing telomere length set point. Arabidopsis OLI5 (A & C) 
and OLI7 (B) T-DNA knockout plants harbor stably shorter telomere phenotypes with a 
new length set point. G1, generation 1 mutants; G2, generation 2 mutants. 

 

 

 

Discussion 

There is considerable variation in average telomere length that exist within mouse, 

yeast and plant populations and between human individuals106,401,402. However, only a 

handful of factors have been shown to cause population-specific telomere length diversity 
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between or within species. The model plant, Arabidopsis thaliana, offers an ideal system 

to advance these goals due to its small genome size, massive genetic resources and well 

documented heritable telomere length variation106. Here, we show how MAGIC lines 

represent a very powerful new tool and great genomic resource for discovering novel 

genetic factors controlling natural telomere length variation. 

 

NOP2 may connect telomere biology, cell cycle and cancer progression  

The NOP2 gene family is highly conserved and is present in yeast, plant and 

mammalian genomes. Human and mouse NOP2 proteins exhibit a striking 96% identity at 

the amino acid level, while AtNOP2 and human NOP2 proteins are 61% identical and 73% 

similar. The high degree of evolutionary conservation suggests a critical role in all 

eukaryotes. Human NOP2 is a proliferation-associated antigen highly expressed in a wide 

range of malignant tumors418. Similarly, mouse NOP2 has been characterized as a cancer-

causing gene that drives cancer progression412 and is implicated in the development of 

colorectal, gastric and liver cancers419–421.  More recently, human NOP2 was purified as 

telomerase accessory protein and, through contacts with hTERT, NOP2 was shown to 

stimulate transcription of cyclin D1407. Similarly, AtNOP2 is involved in determination of 

plant organ size and the regulation of cell proliferation413.  

Our findings in A. thaliana directly implicate AtNOP2 in telomere length maintenance, 

and thus lend strong support to the hypothesis that NOP2 may connect telomere biology, 

cell cycle and cancer progression. Overall, our data in Arabidopsis raise important 

possibilities that human NOP2 may promote oncotransformation through interactions with 

telomere maintenance pathways.  
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nop2a contributes to a new telomere length set point 

Despite the strong connection between NOP2 and cellular proliferation and 

tumorigenesis in eukaryotes, surprisingly little is known about the molecular interactions 

of NOP2 and its mechanism of action. Interestingly, although telomere length shortens to a 

similar degree in nop2a-2 and tert mutants, their phenotypes are not identical. Inactivation 

of both tert and pot1a (a telomerase accessory protein) leads to a unique banding pattern of 

telomere profile on TRF gels172,363, with each band representing an individual telomere. In 

all three of the nop2a mutants, however, telomere profile on TRF gels remains smeary. 

One interpretation of this observation (consistent with Q-TRAP results in vitro) is that 

telomerase is still partially active in these mutants and can thus generate the observed 

heterogeneity in individual telomere lengths. Nevertheless, telomere shortening observed 

in the first several generations of nop2a-4 mutants indicates that telomerase, though active, 

is unable to fully compensate for overall telomere loss until a new homeostasis at the 

shorter set point is established. Whether this represents a defect in telomerase recruitment 

to the chromosome end or its elevated dissociation rate from the telomeric DNA will need 

to be determined in the future. 

 

Connecting ribosome biogenesis and telomere length  

In Arabidopsis, OLI5 (RPL5A) and OLI7 (RPL5B) proteins are extremely 

conserved at the amino acid level (only five amino acid substitutions). In addition, both 

genes have a very similar expression pattern and are considered duplicate genes with 

redundant function422. Nevertheless, all 3 identified OLI genes function as rRNA/ribosome 

biogenesis factors. The only known example of RNA modifying telomere protein that has 
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previously been shown is the dyskerin protein, but it was thought to be more specific for 

the telomerase RNA biogenesis rather than for general ribosome biogenesis. Therefore, for 

the first time we are connecting ribosome biogenesis as a major determinant of species-

specific telomere length. 

 

Functional conservation of telomere regulation 

In summary, we highlight the functional conservation of telomerase subunits and 

functions between plant and animal organisms. In addition, we have identified another 

conserved protein, NOP2A, that plays a role in telomere length regulation. Although 

telomere length in human and yeast NOP2 mutants have never been previously reported, 

our conclusions in Arabidopsis correlate well with available data from other species. 

NOP2A mutants in Arabidopsis are viable and fertile, but this is not the case for human 

and yeast orthologues, further providing A. thaliana as a good model to further study the 

connection of NOP2A in species-specific telomere length determination. 
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CHAPTER IV                                                                                           

MOLECULAR CHARACTERIZATION OF NOP2A LOCUS IN A. THALIANA 

ACCESSIONS 

 

Summary  

The length of the telomeric DNA is species-specific and varies between 5-15 kb at 

birth in humans, 2-9 kb in the model plant Arabidopsis thaliana, 40-160 kb in Nicotiana 

tabacum, 250-300 bp in yeast and 50-100 kb in mouse72–74,106–108. Most association studies 

between telomere length and SNPs in known telomere maintenance genes have so far been 

inconclusive. To date, common genetic variants at only seven loci have shown a replicated 

association, and each of these variants alone explains less than 1% of telomere length 

polymorphism423–426. Arabidopsis natural variation studies, fueled by the availability of 

hundreds of accessions (natural genetically diverse populations) collected from 

geographically distinct locations offers a unique opportunity to analyze natural intra-

species variation in telomere length in a multicellular eukaryote427,428. Our initial analysis 

has resulted in the identification of NOP2A gene as a major regulator of plant telomere 

length. The rare haplotype behind NOP2A gene is donated by the Sf-2 accessions. In this 

study, we investigated whether NOP2A is the causal gene, and whether allelic variations in 

NOP2A locus are responsible for the remarkable increase in telomere length observed in 

Sf-2.  
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Introduction 

Telomere length maintenance is a fundamental cellular process, which is remarkably 

conserved across eukaryotic evolution. However, the length of the telomeric DNA is 

species-specific and varies between 5-15 kb at birth in humans, 2-9 kb in the model plant 

Arabidopsis thaliana, 40-160 kb in Nicotiana tabacum, 250-300 bp in yeast and 50-100 kb 

in mouse72–74,106–108.  

Earlier family and twin studies indicated that up to 80% of human telomere length 

variation between individuals measured at birth is determined genetically429,430, but the 

nature of the causal genetic loci remains elusive. Difficulty in identifying these factors can 

be in part attributed to the complex quantitative genetic nature of telomere length set point 

phenotype109,110.  

Most association studies between telomere length and SNPs in known telomere 

maintenance genes have so far been inconclusive. To date, common genetic variants at 

only seven loci have shown a replicated association with mean telomere length in genome-

wide association studies423–426, and each of these variants alone explains less than 1% of 

telomere length polymorphism. In addition to studies in humans, research in model 

eukaryotes continues to yield valuable information on genes involved in telomere length 

control. For example, a genome-wide screen of F1 cross of two different mouse strains 

identified a helicase gene with an essential role in telomere maintenance431,432. A study in 

yeast using a cross between a vineyard and a laboratory strains identified two loci 

responsible for telomere length variation, including a Ubiquitin ligase complex BUL2, 

which controls not only telomere length but also cellular life span109,433.  
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Because of its superior biological and genomic resources, Arabidopsis offers a unique 

opportunity for the analysis of natural variation in telomere length. There is now an 

explosion of Arabidopsis natural variation studies, fueled by the availability of hundreds of 

accessions (natural genetically diverse populations) collected from geographically distinct 

locations427,428. The availability of these vast resources for genomic research offers a 

unique opportunity to analyze natural intra-species variation in telomere length in a 

multicellular eukaryote. Because Arabidopsis is self-pollinating, these accessions are 

inbred and mostly homozygous, greatly facilitating genetic analysis and mapping. 

Significant natural variation in Arabidopsis was reported for every phenotypic trait 

investigated428, including remarkable variation in telomere length set point106,434. Since its 

genetics lacks most of the technical and biological limitations associated with the human 

system, Arabidopsis is the model of choice for the identification of evolutionarily 

conserved genetic factors establishing population-specific telomere length polymorphism.  

Our initial analysis of genetic architecture of telomere length control performed in 

Arabidopsis thaliana has resulted in the identification of NOP2A gene as a major regulator 

of plant telomere length. NOP2A homologue in humans is NOP2 (also known as NOL1 

and p120, UniProtKB-P46087), which was originally discovered as a tumor-associated 

marker whose abundance in many cancer types directly correlates with tumor progression 

and poor patient prognosis435,436. Expression of NOP2 mRNA and protein parallels the rate 

of cell proliferation437 with NOP2 mRNA present in growing fibroblasts, but absent with 

quiescence438. NOP2 protein peaks in late G1-and early S-phase of synchronized 

fibroblasts439  and CHO-Ki cells404. Strikingly, NOP2 mRNA levels in many tumor cell 

types are 15-60 fold higher than in normal cells438. Insertional mutagenesis experiments in 
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mice provided additional support for NOP2 as a cancer-causing gene that drives cancer 

progression412. Specifically, mouse NOP2 has been implicated in the development of 

colorectal, gastric an d liver cancers419–421. Thus, our preliminary experiments in the model 

plant Arabidopsis thaliana have already resulted in the identification of an important 

evolutionarily conserved gene involved in telomere biology. 

The most intriguing aspect of our preliminary mapping result is that the rare haplotype 

behind chromosome 5 QTL, which we tentatively mapped to NOP2A gene, is apparently 

donated by the Sf-2 accession. Since most genetic resources in A. thaliana are developed 

for the reference Col-0 accession, very little information is available on the specific 

molecular differences between NOP2A loci in other Arabidopsis accessions, including Sf-

2.  

 In this study, we investigated whether NOP2A is the causal gene, and whether allelic 

variations in NOP2A locus are responsible for the remarkable increase in telomere length 

observed in Sf-2. Telomere length and expression differences of NOP2A alleles in all 19 

MAGIC parental accessions show no obvious correlations between NOP2A gene, 

suggesting that differences in NOP2A gene expression may not be causal for the 

chromosome 5 QTL. Analysis of amino acid sequence shows six accessions that harbor a 

total of 8 unique amino acid substitutions that are located outside of the highly conserved 

rRNA methyl-transferase domain. Most of the amino acid substitutions are seen in both Sf-

2 and Bur-0, accessions that harbor long telomeres. These correlations suggest that one or 

more Sf-2 and Bur-0 specific amino acid changes may be causal for the longer telomere 

phenotype observed in MAGIC plants with Sf-2 specific haplotype in chromosome 5 QTL 

region. Telomeres of F2 generation wild type Col-0 and Sf-2 cross plants, genotyped for 
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the accession-specific NOP2A locus, shows range of telomere length. This indicats that 

allelic differences in the NOP2A locus may play a role in the establishment of accession-

specific telomere length in Arabidopsis. Study of A. thaliana NOP2A among 19 MAGIC 

parental accessions revealed importance of NOP2A in determining telomere length. This 

study shows the presence of potential amino acids that may play a regulatory role in 

telomere length determination, as well as the presence of other genes that play a role in 

telomere length determination. 

 

Materials and methods 

Construct generation 

 NOP2A locus with its native promoter (1500 bp upstream of ATG and 800 bp down 

stream of TAA) was cloned into, pCBK05 destination vector using SbfI and BamHI 

(pCBK05:NOP2A).  

 

Plant line and Plant transfection 

SALK_129648 line was used as oli2-2.  

Small scale Agrobacterium culture was grown for 24hours at 30C°. 500mL LB was 

then inoculated with 0.5mL of small scale culture, and was grown at 28 C°  until the OD595 

reached 1.5. Agrobacterium culture was spun down for 10 minutes at 4,000 rpm, and was 

re-suspended in 15% sucrose 0.2% Silwet66 solution. Plants with flowers were dipped in 

Agrobacterium solution for one minute, and kept in dark overnight. T1 seeds were selected 

on BASTA for pCBK05 vector, and Kanamycin for pDs vector on ½ MS media. 
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Telomere length analysis (TRF) 

 Bulk telomere length was analyzed using Terminal Restriction Fragment (TRF) 

analysis. Genomic DNA was digest overnight with MseI enzyme at 37C°. Digested DNA 

was then ran on a 0.8% agarose gel overnight at 55V. DNA on the gel was denatured and 

transferred to a membrane. The membrane was probed with 5’-radio-labeled oligo 

(TTTAGGG)4, and exposed with phosphor-screen. 

 

Results 

Difference in NOP2A between A. thaliana accessions. 

 Since telomere length is known to vary between Arabidopsis accessions106, we first 

measured telomere length in all 19 parental accessions used to generate the MAGIC RIL 

population (Figure 4-1A). As expected, these accessions showed substantial variation in 

telomere length, with the shortest mean telomere length (2,531 bp) present in the Kn-0 

accession, and the longest (4,947 bp) – in the Sf-2 accession (Figure 4-1B). The reference 

Col-0 accession harbored second shortest mean telomeres at 2,727 bp. We next asked if 

levels of NOP2A gene expression also differ among different parental accessions. 

Significant expression differences for NOP2A gene were observed by Q-PCR in 

Arabidopsis accessions, with the highest levels detected in Ct-1 accession and the lowest in 

Ws-0. (Figure 4-1B). Overall, no obvious correlations between NOP2A gene expression 

levels and mean telomere length were detected, suggesting that differences in NOP2A gene 

expression may not be causal for the chromosome 5 QTL.  
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Figure 4-1. Telomere length and NOP2A expression level in different A. thaliana 
accessions. (A) Bulk telomere length (TRF) of 19 MAGIC parental accessions. (B) 
NOP2A transcript level and mean telomere length of 19 MAGIC parental accessions. 
NOP2A transcript level was normalized to wild-type Col-0 level. 

 
 
 
 

The observed differences in transcript abundance (Figure 4-1B) can arise from 

variations in either transcription efficiency or mRNA stability, which, in turn, may be 

correlated with sequence polymorphism in 5’ and 3’ UTR regions of the NOP2A gene. We 

thus looked at the nucleotide sequence variation in the NOP2A locus among Arabidopsis 

accessions, focusing initially on the 5’ (1000 bp upstream of the translation start codon 

ATG) and 3’ (1,500 bp downstream of the stop codon) sequences of NOP2A alleles in all 

19 parental accessions of the MAGIC population. While 15 out of 19 accessions have 

identical 5’ (upstream) sequence, 4 accessions (Bur-0, Po-0, Sf-2, and Zu-0) harbor 

nucleotide polymorphism within this region (Figure 4-2A). Substantially more sequence 

polymorphism is present in the 3’ (downstream) region of the NOP2A gene, and at least 

several phylogenetically close groups can be identified among the alleles. Despite this 

observation, no obvious correlation between accession-specific telomere length, NOP2A 

transcript level and sequence variation in the 5’ and 3’ regions of the gene can be 
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identified. One interpretation of this result is that sequence variation in these regions does 

not affect the steady state transcript level of NOP2A gene. However, the influence of 

sequence variation upstream and downstream of the NOP2A coding region still cannot be 

completely ruled out, as transcription rates and mRNA stability can also be modulated by 

other cis- or trans-acting accession-specific factors. Furthermore, longer stretches of the 

nucleotide sequences upstream and downstream of the NOP2A coding region may need to 

be analyzed in the future to test their effect on NOP2A gene expression. 

We next asked if NOP2A alleles harbor accession-specific amino acid changes. 

While most NOP2A proteins have identical amino acid sequence, six accessions harbor a 

total of 8 unique amino acid substitutions (Figure 4-2A). 

 

 

 
Figure 4-2. DNA and Amino acid sequence comparison in different A. thaliana 
accessions. (A) Phylogenetic tree of NOP2A sequence between 19 MAGIC parental 
accessions. 5’ UTR (1000 kb upstream of ATG) (left), 3’ UTR (1,500 kb downstream of 
stop codon) (middle), and amino acid (right). (B) Table of difference in amino acid. Amino 
acid #: amino acid position. Amino acid: amino acid majority of accessions have. ∆ amino 
acid: difference amino acid the unique accession has. Accession: accession with the unique 
amino acid. Difference: Amino acid difference calculated using composition, polarity, and 
molecular volume440. Red amino acids denotes major difference, and orange denotes 
change that can affect post translational modification. Diagram above the table shows 
location of amino acids that are different. Purple box denotes rRNA methyl transferase 
domain. 
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Interestingly, all substitutions are located outside of the highly conserved rRNA methyl-

transferase domain (Figure 4-2B, top). For example, a unique T69I substitution is present 

in No-0 accession (Figure 4-2B, top). Interestingly, the reference Col-0 accession harbors 

one amino acid change in position 655 (W to R substitution) that is not present in other 

accessions. While the exact impact of this W655R substitution is unclear, such change can 

potentially affect NOP2A protein ubiquitination profile.  

A very unusual NOP2A substitution is present in Ws-0 and Wil-2 accessions. An ATG 

to ATC codon change abolishes proper NOP2A protein translation start codon. 

Interestingly, another in-frame ATG codon 90 nucleotides downstream is present in all 

NOP2A sequences. Whether this alternative start codon is indeed utilized in Ws-0 and 

Wil-2 accessions is currently unclear, but this scenario can be tested in genetic 

complementation assays in the future (see below). Indeed, both Ws-0 and Wil-2 accessions 

belong to the group of accessions with relatively longer telomeres (upper half of the 

spectrum), and the influence of such substantial coding region change will clearly need to 

be tested in vivo.  

The most remarkable finding from the analysis of the putative NOP2A protein 

sequences in the parental MAGIC accessions is the observation that accessions Sf-2 and 

Bur-0 have the most amino acid changes (4 and 5, respectively) in comparison to all other 

accessions. Although in two cases a very similar amino acid is present in the protein 

sequence (R629K change in the Bur-0 allele and D575E change in both Bur-0 and Sf-2 

alleles), the effects of the other 3 amino acid changes may be more substantial. 

Specifically, the M165K change can potentially allow ubiquitination of Sf-2 and Bur-0 

sequences, while P647A can potentially affect protein secondary structure if this amino 
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acid is located within a α-helix. In addition, both E61V and M165K amino acid 

substitutions introduce changes in protein hydrophobicity by adding or removing a charged 

side chain. Interestingly, in addition to Sf-2 accession harboring the longest telomeres 

among all 19 MAGIC parent, telomeres in Bur-0 accession are also the seventh longest in 

the spectrum. These correlations suggest that one or more Sf-2 and Bur-0 specific amino 

acid changes, either alone or in combination with nucleotide substitutions in other regions 

of the NOP2A gene, may indeed be causal for the longer telomere phenotype observed in 

MAGIC plants with Sf-2 specific haplotype in chromosome 5 QTL region. 

 

Genetic complementation assay to compare complementation efficiency of NOP2A alleles 

from Col-0 and Sf-2 accessions 

As discussed earlier, all recombinant inbred MAGIC plants that inherited a rare Sf-2 

specific allele inside the chromosome 5 QTL region display up to 50% longer telomeres 

than the rest of the MAGIC population. To test our working hypothesis that polymorphism 

in the NOP2A locus is causal for this phenotype, we performed a series of transgenic 

experiments aiming to quantitatively and qualitatively complement NOP2A deficiency by 

transforming NOP2A knockout plants (in Col-0 background) with NOP2A alleles from Sf-

2 (longer telomeres) and Col-0 (shorter telomeres) accessions under the control of their 

natural promoters. We expected that the presence of a functional NOP2A allele from either 

accession  will complement telomere deficiency observed in the NOP2A knockout. 

However, if our hypothesis is correct, a difference in the degree of complementation 

between the two alleles may be observed. Specifically, plants with Sf-2 NOP2A allele 

would have longer telomeres compared to the plants with NOP2A allele from Col-0. 
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We transformed nop2a-2 knockout plants with the wild-type AtNOP2A alleles from 

the Col-0 and Sf-2 genetic backgrounds harboring the entire coding regions and containing 

1 kb each of sequences upstream of the translation start codon and downstream of the stop 

codon. Transformants were selected on the medium containing herbicide BASTA and 

analyzed to determine their telomere length. As expected, transformation with Col-0 allele 

of NOP2A was able to rescue shorter telomere phenotype of the oli2-2 mutant, increasing 

telomere length back to the wild type Col-0 level (Figure 4-3B). Similarly, transformants 

harboring the Sf-2 allele of NOP2A also harbored longer telomeres. However, the degree 

of telomere lengthening in transformants with Sf-2 specific NOP2A allele was the same as 

in transformants with Col-0 specific allele (Figure 4-3A). To test if the transformants with 

Sf-2 specific NOP2A allele required several additional plant generations to reach telomere 

length above the Col-0 level, primary T1 transformants were self-pollinated to generate T2 

and then T3 generation plants. Both T2 and T3 generation transgenic plants harbored 

telomeres in the same range as T1 generation or the Col-0 wild type plants, indicating that 

once the oli2-2 mutation is complemented with either Col-0 or Sf-2 NOP2A alleles, 

telomere length remains stable in the consecutive plant generations (Figure 4-3C). Overall, 

these data indicate that with the experimental approach employed here no functional 

differences between Col-0 and Sf-2 alleles of NOP2A gene can be established. Although 

further experiments will be necessary to confirm or reject the hypothesis that variations in 

NOP2A alleles are causal for the chromosome 5 QTL, our data provide direct evidence that 

both NOP2A alleles are functional, and further confirm that Arabidopsis NOP2A is a novel 

major player in the regulation of telomere length in A. thaliana. 
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Figure 4-3. nop2a genetic complementation analysis. (A) Telomere length of Sf-2 (Dark 
green), Col-0 (Green), and Col-0 nop2a mutant (Pink). Col-0 nop2a mutant was 
complement by either Col-0 NOP2A locus (orange diamond) or Sf-2 NOP2A locus (brown 
triangle). (B) Parent progeny telomere length of Col-0 nop2a mutant complemented by Sf-
2 NOP2A (#41 and #8).  

 
 
 
 
 
Alternative strategies to test for NOP2A causality 

Although we were unable to verify the causality of NOP2A locus for chromosome 

5 QTL with the functional complementation experiments presented in Figure 4-3, 

establishing causality can often be difficult and complicated by the presence of multiple 

significant SNPs and epistasis, or redundancy of NOP2A homeologs. Alternative strategies 

may include inactivating NOP2A gene in Sf-2 and other Arabidopsis accessions with the 
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Crispr-Cas9 strategy, or crossing different accessions and monitoring telomere length in 

the segregating progeny with alternative NOP2A alleles.  

To initiate the latter approach, wild type Col-0 and Sf-2 plants were crossed, 

genotyped for the accession-specific NOP2A locus, and the bulk telomere length of F2 

plants was analyzed (Figure 4-4). Plants that have acquired both Col-0 specific NOP2A 

alleles harbored telomere length of 2-5 kb, which is typical for Col-0 accession (Figure 

4-4, Col-0/Col-0 plants). Similarly, heterozygous plants with one Sf-2 specific and one 

Col-0 specific alleles harbored telomeres in the same range, 2-5 kb.  

 

 

 

 

Figure 4-4. Telomere analysis of F2 Sf-2 x Col-0 line. Wild type Col-0 and Sf-2 were 
crossed, and NOP2A locus of  F2 generation was genotype for Col-0 or Sf-2. F2 plants 
were segregated into plants with both NOP2A locus from Sf-2 (Sf-2/Sf-2), both NOP2A 
locus from Col-0 (Col-0/Col-0), and heterozygote for Col-0 and Sf-2 (Sf-2/Col-0). 
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However, plants that acquired both NOP2A alleles from Sf-2 accessions displayed 

two distinct profiles: several plants harbored short telomeres in the Col-0 range (2-4 kb), 

while other plants harbored a much wider range between 2 and 6 kb, with the longer 

telomere tracts approaching the telomere length maximum seen in the Sf-2 control (Figure 

4-4). Although additional experiments are clearly necessary, these data indicate that allelic 

differences in the NOP2A locus may indeed play a role in the establishment of accession-

specific telomere length in Arabidopsis. Further experiments with the progeny of F2 plants 

analyzed in Figure 4-4 may shed additional light on the importance of accession-specific 

NOP2A alleles in telomere length determination.  

   

Discussion 

There are set telomere range Between species, and there are also significant 

variations in average telomere length within species. While it is difficult to identify gene(s) 

that have phenotype of a quantitative trait, our lab has previously identified NOP2A. 

NOP2A has been shown to play a role in telomere length control in Col-0, but how much 

NOP2A contributes to A. thaliana telomere length has not been studied in detail. Here we 

have investigated whether NOP2A is the major gene responsible for Sf-2’s long telomeres, 

and how NOP2A differ between 19 MAGIC parental accessions. Through genetic 

complementation, we have shown that NOP2A is necessary for Col-0 to have telomere 

length of 2-4kb, but it is not sufficient for Col-0 to have long telomeres (5-6 kb). We have 

also shown through cross-accession analysis, that there may be another gene(s) that play(s) 

a role in telomere length control together with NOP2A. Finally, we show difference in 
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transcript level as well as amino acid sequence of NOP2A within 19 MAGIC parental 

accessions. 

 Complementation analysis of Col-0 nop2a with Sf-2 NOP2A locus does not give 

Col-0 a long telomeres (5-6kb). In addition, long telomeres (5-6kb) are only seen in F2 Sf-

2 x Col-0 lines that have NOP2A loci from Sf-2, but not all plants that have NOP2A loci 

from Sf-2 have long telomeres. These data indicate that NOP2A is necessary, and it is one 

of the major gene that plays a role in determining telomere length in A. thaliana. However, 

it is not sufficient to have long telomeres (5-6 kb). This is not surprising because telomere 

length phenotype is a quantitative trait109,110. Presence of plants that have two telomere 

length in both Sf-2/Sf-2 and Col-0/Col-0 indicates the existence of another genes that 

function in telomer length determination together and independently with NOP2A, 

respectively. It is possible, that one of these genes lie within the QTL peak from 

chromosome 1. Further analysis of these plants at this QTL locus may allow identification 

of other genes that are involved in telomere length determination. 

 While no correlations are seen between NOP2A transcript level and telomere length, 

difference in NOP2A transcript levels are seen between all 19 MAGIC parental accessions. 

There are also difference in DNA and amino acid Sequence. Although it is still unclear 

how NOP2A transcript levels are affected in these accessions, difference in transcript level 

suggests that amount of NOP2A affects telomere length. This hypothesis can be supported 

by the result from Sf-2 x Col-0 analysis, where Sf-2/Col-0 does not have long telomeres. 

Difference in amino acid sequence can lead to change in protein regulation and stability 

through post-translational modification. Col-0, Sf-2, and Bur-0 have single amino acid 

substitution that may affect ubiquitination. However, the major difference unique to Sf-2 
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and Bur-0 is the glutamine to valine substation. This substitution can potentially prevent 

phosphorylation of Sf-2 and Bur-0 NOP2A, if this residue is phosphorylated in other 

accessions. 

 In summary, study of A. thaliana NOP2A among 19 MAGIC parental accessions 

revealed importance of NOP2A in determining telomere length. Furthermore, the presence 

of other genes that plays telomere length determination, together and independent of 

NOP2A, opens a door to allow further study of how telomere length set point are 

determined. In addition, difference in amino acid sequence between these accessions will 

allow further biochemical studies to tease apart the mechanism of how NOP2A is involved 

in telomere length determination. 
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CHAPTER V                                                                                                                           

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Telomeres function to solve the end-protection and end-replication problems. In 

most species, the end-protection problem is addressed with the help of the telomere 

capping protein complexes shelterin and CST, while the end-replication problem is 

resolved by telomerase reverse transcriptase. Moreover, through complex interactions 

between telomere capping proteins and telomerase accessory proteins, proper regulation of 

telomerase and telomere length homeostasis is achieved. In this dissertation, I 

characterized two novel telomere-related genes: POT1c, one of three paralogs of POT1 

previously implicated in telomerase regulation and the DNA damage response, and 

NOP2A gene identified in a screen for quantitative trait loci that impact telomere length set 

point. 

It is common for plants to have multiple gene paralogs (gene families).  Among the 

many examples in A. thaliana are genes encoding single-strand DNA binding proteins 

RPA441–443, the RNA methyltransferase NOP2444, the TRFL double-strand telomere 

binding proteins and POT1367,445.  

POT1 is one of the most highly conserved telomere proteins, and its duplication is 

rare254,271,364. AtPOT1a has the ancestral function, and is important for telomerase activity 

by stimulating telomere repeat addition processivity172,178. Although POT1a does not show 

a telomere capping phenotype, POT1a has maintained a critical amino acid in OB1 (Phe65) 

that is important for telomeric DNA recognition305,307. In contrast, POT1b has diverged. 
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POT1b has lost the critical amino acid that allows telomeric DNA binding, and it does not 

associate with the canonical telomerase RNP or regulate telomerase activity. Instead, 

POT1b has acquired a new function in plant development. Thus, the duplicated POT1 

genes in A. thaliana do fully embody the conserved functions of the single-copy POT1 

genes from human or fission yeast, but instead provide examples of sub-functionalization 

and neo-functionalization308,309,311–316. Intriguingly, A. thaliana carries a third POT1 locus, 

POT1c, which is unique to A. thaliana. In Chapter II,  I examined the fate of this new 

duplicated gene by analyzing its expression, function and evolution.   

The second major focus of this dissertation is the characterization of novel gene 

that impact telomere length set point in A. thaliana. Species-specific telomere length set 

point is a quantitative trait determined by many genes. Yet, only a handful of factors that 

play a role in determining population-specific telomere length between or within species 

has been characterized.  

 

POT1c is a non-functional gene 

The POT1 protein is highly conserved across eukaryotes and is essential for 

telomere maintenance254,271,364. In some organisms, the POT1 protein family has undergone 

an expansion, and in each case there is evidence for functional divergence in the duplicated 

copies.  For example, first OB-fold of the mouse POT1a is a negative regulator of telomere 

length and the C-terminal domain of the mouse POT1b is required to control the resection 

of the 5’-end of the chromosome  309,310,308,310,311. These findings indicate the mouse POT1 

genes have sub-functionalized309,311.  In the ciliate Tetrahymena, gene divergence is more 

extreme. Tetrahymena Pot1is important for telomere length regulation, prevention of DNA 
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damage response, and telomere end protection315. In contrast, Tetrahymena Pot2 plays a 

role in sexual reproduction, as well as recruitment of telomerase and/or endonuclease to 

micronuclear chromosome breakage sites for DNA cleavage316.   

In this case, the ciliate POT1 proteins show evidence of neo-functionalization315,316.  

Similar to Tetrahymena,  A. thaliana POT1b exhibits evidence of neo-

functionalization. Unlike AtPOT1a, AtPOT1b accumulates in the cytoplasm instead of the 

nucleus. In addition, preliminary data indicate that POT1b functions in modulating the 

DDR and in promoting early plant development (C. Castillo-Gonzales, B. Barbero, X. Xie, 

and D. Shippen, unpublished data). 

C. elegans and A. thaliana and are the only known species with more than two 

copies of POT1. Three out of the four C. elegans POT1 genes appear to have undergone 

sub-functionalization, while the role of the fourth POT1 is still unknown312–314. Notably, 

the domain structure of the C. elegans POT1 genes is distinct from most other POT1 

proteins, as the worm POT1-like genes encode only a single OB-fold. The third A. thaliana 

POT1 gene, POT1c, is also predicted to harbor only a single OB-fold. In addition, POT1c 

is a newly duplicated gene derived from the POT1a, and completely unique to A. thaliana.  

This observation raises several important questions. Does POT1c express a sub-function of 

POT1a?  Alternatively, is POT1c like POT1b gaining a novel function? Finally, is POT1c 

a functional gene at all? In Chapter II, evidence was presented to show that the POT1c 

gene became non-functionalized, a pseudogene,.  Transposon invasion into a previously 

functional promoter, and accumulation of deletions throughout the gene body, led to 

POT1c gene silencing. 
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What does POT1c do? 

POT1c arose from a proximal duplication and inversion event of At2g05210 

(POT1a) and At2g05220 (S17), which created At2g04395 (POT1c) and At2g04390 

(dS17). Previous studies indicated that POT1a positively regulates telomerase through 

promoting repeat addition processivity178. Therefore, the first goal was to test the 

hypothesis that POT1c retained some or all of the functions of POT1a.  Several questions 

needed to be answered. First, the expression profile of POT1c needed to be determined. 

POT1a expression is ubiquitous, while the telomerase catalytic protein TERT is expressed 

almost exclusively in reproductive organs and meristematic tissues367,446. However, no 

POT1c expression was detected in any of the tissues analyzed.  

A second goal is to determine if POT1c has a biological function by examining the 

consequences of a null mutation in the POT1c gene. To this end, a homozygous CRISPR 

mutation was engineered in the POT1c gene (pot1c-1).  Molecular and developmental 

phenotypes were assessed.  However, no obvious phenotypes in telomere maintenance, 

telomerase regulation, plant growth, development or reproduction, or the response to DNA 

damage were detected. These data indicate that POT1c does not have a major function in 

A. thaliana under normal growth conditions.  

 

Why is POT1c not expressed? 

The absence of POT1c transcripts and the lack of phenotype in pot1c-1 mutants 

suggest several possibilities.  First, the lack of POT1c transcripts is that the gene is actively 

silenced. Genetic silencing can be active or permanent. In Chapter II, the POT1c locus is 

shown to be unaffected by the canonical active gene silencing pathways. POT1c is not 
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expressed in ddm1 (which relieves DNA methylation) and dcl2,3,4 mutants (which disrupt 

the sRNA pathway). Furthermore, DNA methylation status is not changed in ddm1 and 

dcl2,3,4 mutants and no small RNAs are identified within the POT1c locus.  Chapter II 

also shows the absence of a functional promoter for POT1c. Several promoter prediction 

websites were not able to predict a POT1c promoter with high certainty. In support of this 

prediction, a GUS reporter expressed under the control of the POT1c promoter region, was 

not detected in any of the tissues analyzed.  

The alternative possibility is that POT1c is a non-functional pseudogene gene.  

Loss of gene function can arise from accumulation of mutations in the locus or from 

permanent genetic silencing. This question is answered in Chapter II from the A. thaliana 

accession analysis and the A. thaliana-A. lyrata POT1a-POT1c locus analysis, 

respectively. Conservation of POT1a, POT1c, S17, and dS17 loci within 855 A. thaliana 

accessions revealed that POT1a, S17, and dS17 are well conserved in DNA and amino acid 

sequence, while POT1c is not. The conservation of dS17 can be attributed to its important 

function in ribosome biogenesis. What is interesting is the complete lack of conservation at 

the POT1c locus even though the POT1c and the dS17 duplication event happened 

together. The huge difference in the level of conservation between POT1c and dS17 shows 

the different fate of these duplicated genes. Evidence for permanent genetic silencing is 

seen at the POT1c locus. Cross-species analysis shows that POT1c sustained an ancestral 

POT1a promoter during the POT1a-S17 local duplication event, which was then disrupted 

by the insertion of two transposable elements.  In addition, the gene body of POT1c 

accumulated extensive deletions, ranging from a few nucleotides to over 400 nucleotides). 
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Thus, the lack of a functional promoter and poor conservation at the POT1c locus points to 

POT1c as a non-functional gene. 

 

Why is POT1c silenced? 

As discussed above, duplicate genes may be subjected to several fates.  For 

example, A. thaliana POT1b has diverged from POT1a to have a unique function outside 

of telomere biology, without being silenced. Why then was POT1c silenced, not having the 

chance to evolve like POT1b? The question that needs to be addressed is whether 

expression of POT1c causes a deleterious effect on A. thaliana. Is there a dosage threshold 

on the level of the POT1 gene that can be expressed? Or is the protein product from the 

POT1c locus aberrant?  

TERT expression levels are tightly regulated in humans, and mutations that cause 

mis-regulation of the TERT expression can lead to immortal phenotype447. In addition, 

overexpression of human Est1 and TRF2 lead to a telomere uncapping phenotype448,449. 

These observations suggest that the dosage of telomere-related proteins needs to be 

controlled, and when this regulation is disrupted unwanted effects arise. On the other hand, 

Shakirov et al. has shown that overexpression of full-length POT1a or POT1b in A. 

thaliana does not lead to telomere defects367.  However, overexpression of the OB-fold 

domains or the C-terminus could have detrimental consequences for telomere maintenance 

or chromosome end protection.  These findings argue while the dosage of full-length POT1 

proteins may not be critical, dominant negative effects can occur when the balance of 

individual domains is altered. A plant line overexpressing POT1c under the promoter of 

ubiquitin has been generated to test this hypothesis. We expect two possible outcomes 
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from expressing POT1c in A. thaliana, either phenotypes with negative effect or no 

phenotypic effect.  

The POT1c OB-fold is a chimera of POT1a OB1 and OB2. Does POT1c behave 

like POT1b OB1 overexpression? POT1a OB1 can bind telomeric DNA and is sufficient to 

stimulate telomerase processivity, but POT1b OB1 does not bind telomeric DNA and 

somewhat inhibits telomerase processivity in vitro307. This is due to a change in the amino 

acid between POT1a (F65) and POT1b (V63), a residue that is important for DNA 

binding305,307. Phenylalanine at this position provides base stacking between the amino acid 

and the DNA305. The amino acid residue at the same location in POT1c is tyrosine (Y65), 

which is an aromatic amino acid similar to phenylalanine with an additional hydroxy-

group. However, a crude in vitro binding assay showed no telomeric DNA binding for 

POT1c. This observation suggests that POT1c could potentially affect POT1a in a manner 

similar to the POT1b OB1 overexpression line. 

Alternatively, the POT1c locus may produce a peptide that does not fold properly. 

Tertiary structure prediction for the POT1c peptide does not indicate a complete OB-fold, 

because the C-terminus lacks an alpha-helix to cap the beta-barrel. In addition, POT1a 

OB1 is a stable protein in vitro but POT1c is not, which may be due to the presence of a C-

terminal tail. POT1c may not be stable in vivo either, as no transgenic protein can be 

detected in tobacco leaves or in A. thaliana protoplasts.  In contrast, POT1a has been 

successfully expressed in both systems. 
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Evolution of POT1c and POT1a loci 

While the evolutionary forces at work on the POT1a and POT1b lineages in the 

Brassicaceae has been studied319, the evolutionary path of genetic loci encoding these 

proteins as well as the newly derived POT1c locus is not clear.  There are several 

unanswered questions: 1) what happened to the loci surrounding POT1a, POT1b, and 

POT1c after A. thaliana-A. lyrata speciation?  2) are loci neighboring POT1a and POT1b 

conserved, or did these loci evolve? and 3) how did POT1c become a non-functional gene? 

In Chapter II, evidence was presented for the creation of the POT1c locus, and the 

divergence of the POT1a locus.  

A. thaliana has approximately 187 species-specific duplicate gene pairs, and 60% 

of these duplicate genes are expressed392. Most of these duplicate genes (over 80%) are 

inserted in the same chromosome of the original gene, including POT1c-dS17 duplicate. 

Species-specific duplication events have the highest conservation rate, while neo-

functionalization and specialization rates are lower, but approximately equivalent to each 

other. On the other hand, genus-specific duplication events have the highest specialization 

rate, followed by neofunctionalization and conservation rates. Thus, conservation cases 

decrease and specialization cases increase over the evolutionary time scale392. Tandem 

duplications contribute to genetic redundancy, while dispersed duplications, such as the 

POT1b locus, contribute to evolutionary novelty394. Proximal duplications, such as POT1c 

and ds17, are balanced in their contributions to genetic novelty and redundancy394. In 

Chapter II, an A. thaliana-A. lyrata cross species analysis at the POT1a-POT1c loci 

revealed that POT1c originally had an ancestral POT1a promoter, and that this promoter 

was disrupted by the insertion of two transposable elements. Since A. thaliana POT1a also 
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lacks this ancestral POT1a promoter, the local duplication event at the POT1a locus can be 

inferred to have occurred soon after A. thaliana-A. lyrata speciation. If POT1c-dS17 

followed A. thaliana’s genetic trend, a proximal duplication, POT1c and ds17 would have 

had an equal chance of contributing to either novelty or redundancy. Indeed, dS17 appears 

to have maintained its conserved function as a ribosomal protein, but POT1c took the path 

of non-functionalization. Silencing of the POT1c locus has led to the accumulation of 

DNA mutations leading to non-conservation between accessions. 

 

What happened to the POT1a locus after speciation?  

After the A. thaliana-A. lyrata speciation event, the S17 gene was inserted 

downstream of A. thaliana POT1a, and then the POT1a-S17 locus was duplicated. 

Sometime after the duplication, A. thaliana POT1a lost its original promoter and acquired 

a new one. Why did A. thaliana POT1a acquire a new promoter? A. thaliana has gone 

through massive genome rearrangement since speciation450, with a large number of 

transposable element insertions451,452. There are multiple locations in the A. thaliana 

genome, including the POT1a locus, where a large DNA sequence has been inserted. A. 

thaliana potentially acquired a new POT1a promoter due to the loss of its original 

promoter after a massive insertion of a DNA sequence. It is interesting to note, however, 

that the A. thaliana POT1b locus as well as its neighboring locus has not been disrupted. 

Was the acquisition of this new promoter a random event, or was there pressure on the  A. 

thaliana POT1a gene that required further regulation? There is a difference between the A. 

thaliana and A. lyrata POT1a transcript level, and A. lyrata shows higher POT1a RPKM 

(reads per kilobase of transcript per million mapped reads) level, translating to a 2-fold 
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higher level of transcripts. The difference in POT1a expression between the two species 

may be due to the difference in chromosome number, where the number of chromosomes 

in A. lyrata is higher than in A. thaliana. Therefore, A. thaliana may not require as much 

active telomerase compared to A. lyrata. Another possibility is that in addition to its 

telomeric function, POT1a may have an additional non-telomeric function that requires 

more POT1a protein. The first question can potentially be answered by comparing the 

level of TERT molecules and telomerase activity present in A. thaliana and A. lyrata. 

Furthermore, with the growing evidence of telomere proteins having roles outside telomere 

function453,454, it will be interesting to investigate whether A. lyrata POT1a also has a 

separate function obtained independently from A. thaliana POT1a that does not involve 

telomeres. 

 

NOP2A plays a role in the telomere length set point  

Each species maintains a fixed average telomere length. The set point is established 

by a balance of mechanisms that promote elongation of short telomeres or shortening of 

excessively long telomeres225. Regulation of telomere length is modulated by trans-acting 

factors, such as telomerase and homologous recombination machinery. Cis-acting telomere 

binding proteins also play a critical role in establishing and maintaining length 

homeostasis. A protein counting model has been proposed to control telomere length 

where short telomeres are associated with fewer telomere binding proteins. Conversely, 

long telomeres bind more proteins, which ultimately inhibits telomere extension. Despite 

these studies of cis-acting telomere binding proteins, relatively little is known about the 

fundamental mechanisms that control the telomere length set point. This is due to the 
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nature of phenotypes associated with quantitative traits, such as telomere length 109. 

Phenotypes that are associated with quantitative traits can be identified through 

Quantitative Trait Loci (QTL) mapping, using organisms with the trait of interest and a 

genetically variable population. Different species have different telomere length set points, 

and there are significant variations in average telomere length that exist within many 

different organisms, including A. thaliana accessions106. Utilizing MAGIC line and QTL, 

Chapter III shows evidence for the identification of a new gene, NOP2A, that contributes 

to the telomere length set point in A. thaliana. 

 

How is NOP2A involved in telomere biology? 

Chapter III shows data for the role of NOP2A, also known as OLI2, in establishing 

telomere length set point. Unlike pot1a or tert mutants, which show an ever shorter 

telomere phenotype, and CST mutants, which show massive telomere degradation from 

telomere deprotection 172,363,416, the nop2a mutant reaches a shorter but stable telomere 

length. NOP2A/OLI2 is part of a gene family that includes OLI5 and OLI7, and all three 

genes have been shown to play a role in the induction of cell compensation, a cell 

proliferation defect in developing leaf primordia that triggers excessive cell expansion413. 

Interestingly, NOP2A/OLI2 is, an rRNA methyltransferase, while the OLI5 and OLI7 

genes encode ribosomal L5 proteins. Although all of the OLI pathway mutants show the 

same telomere length phenotype as the nop2a mutant, the other NOP2A paralogues 

(NOP2B, NOP2C, NSUN5, and NOL1) do not show this phenotype. Thus, the telomere 

phenotype observed in nop2a is somehow related to both cell proliferation and ribosomal 

biogenesis. 



 

 116 

To investigate the molecular basis of short telomeres in nop2a mutants, genetic 

crosses were performed to create nop2a/pot1a and nop2a/tert double mutants.  Neither of 

these lines show any synergistic phenotypes with respect to telomere length, and instead 

have a telomere profile identical to pot1a and tert single mutants.  These results indicate 

that NOP2A functions downstream of the telomerase pathway.  Notably, the nop2a mutant 

shows decreased telomerase activity similar to the pot1a mutant. However, because the 

telomere length profile of the nop2a is distinct from the pot1a mutant, the data indicate that 

NOP2A does not impact telomerase in the same way as POT1a. This raises an important 

question: does NOP2A affect telomerase activity directly or indirectly?  

This question can be tested by first examining whether NOP2A associates with 

telomerase in vivo. While there is no available NOP2A antibody for A. thaliana, the human 

NOP2 antibody targets a conserved amino acid sequence that can recognize A. thaliana 

NOP2A and NOP2B. Immunoprecipitation with this antibody did not pull down 

telomerase, indicating that NOP2A does not associate with active telomerase. It is possible 

that NOP2B and NOP2A compete for the binding of the NOP2 antibody, diluting the 

signal for NOP2A association with active telomerase. To counteract this problem, 

immunoprecipitation of telomerase activity can be tested in the nop2b mutant background. 

Furthermore, association of NOP2A with TERT needs to be analyzed. Human NOP2 

associates with TERT protein407; therefore, A. thaliana NOP2A may also associate with 

TERT protein even though it is not associated with the active telomerase. In addition, more 

detailed biochemical analysis of the NOP2A protein may help shed light on how it works 

in telomere length determination. 
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Finally, human NOP2 has been reported to associate with TERT, but this 

association does not affect telomerase activity407. Instead the NOP2A-TERT interaction is 

important for  CYCD1 transcription.  NOP2-telomerase association in the context of 

telomere length regulation has not been explored407, making the discovery of NOP2A 

function in Arabidopsis telomere length set point a novel finding. Human NOP2 is well 

studied in regard to cell proliferation and is positively correlated with proliferation 

rate403,409–411. The conservation of function between hNOP2 and AtNOP2A in the cell 

proliferation pathway argues that hNOP2 may well play a role in the telomere length set 

point.  

 

NOP2A in other A. thaliana accessions 

MAGIC progeny that inherited Sf-2 specific haplotype at NOP2A locus showed 

longer telomere length in the QTL analysis. In Chapter IV, genetic complementation data 

are presented showing that a Col-0 nop2a mutant is complemented with the Sf-2 NOP2A 

locus. The Sf-2 NOP2A construct was sufficient to restore mutant telomeres back to wild 

type Col-0 (2-4 kb) level, but not to the wild type Sf-2 (4-6 kb) length. This result is not 

entirely surprising, since telomere length set point is a quantitative trait109. The observation 

demonstrates that while NOP2A is not sufficient to elongate Col-0 telomere length to the 

Sf-2 level, it is necessary for Col-0 to have telomere length of 2-4kb. From this result, an 

important question arises: is NOP2A one of the reasons Sf-2 has long telomeres? To 

answer this question, a nop2a mutant in the Sf-2 background needs to be examined. 

Generation of nop2a in Sf-2 using CRISPR-Cas9 is currently underway.  It will be 

interesting to see how the absence of NOP2A impacts telomere length set point in Sf-2.  
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Is NOP2A a major gene in determining telomere length? 

Although NOP2A is not the only factor involved in determining telomere length, 

Chapter III shows a large QTL peak on chromosome 5 where the NOP2A locus is located.  

In addition, Chapter IV shows that NOP2A is necessary for Col-0 to have its wild type 

telomere length. Together these findings imply that NOP2A may be one of the major 

determinants for telomere length set point.. To test this hypothesis Chapter IV shows data 

from cross-accession, Col-0 x Sf-2, telomere length analysis where F2 plants were 

genotyped at the NOP2A locus and segregated into three genotypes (Col-0/Col-0, Col-

0/Sf-2, and Sf-2/Sf-2). Three key conclusions can be made from the results of these 

experiments: 1) only the Sf-2/Sf-2 genotype has long telomeres, 2) not all the Sf-2/ Sf-2 

genotypes have long telomeres, and 3) some Col-0/ Col-0 genotypes have telomeres longer 

than wild type Col-0. The first observation indicates that NOP2A is necessary for long 

telomeres, the second observation indicates that there is another factor that functions with 

NOP2A, and the third observation suggests that there is another factor independent of 

NOP2A that plays a role in telomere length determination. 

A smaller QTL peak on chromosome 1 was also identified during QTL mapping of 

telomere length among MAGIC lines. Does the other factor reside within this QTL interval 

peak? This question can be answered by analyzing the telomeres of F2 progeny from cross 

of Sf-2/Sf-2 with long telomeres by Col-0/ Col-0.  The segregation pattern of telomeres in 

these F3 plants can be analyzed to determine if the phenotype segregates in a standard 

Mendelian manner. Furthermore, F3 plants with long telomeres can be genotyped at the 

QTL peak from chromosome 1 to see whether these plants acquired this loci from Sf-2. 



 

 119 

It has been shown that plants with Sf-2/ Col-0 genotype have a similar telomere 

profile to Col-0/ Col-0. There are plants with telomeres longer than Col-0, but none of the 

plants have telomeres in the range of 4-6kb. This suggests that plants need to acquire both 

copies of NOP2A loci from Sf-2 to have long telomeres. However, only a small number of 

plants have been tested; therefore, more samples need to be analyzed to confirm this 

hypothesis.  

 

Is there a difference in NOP2A locus among different accessions? 

Is there a difference in the NOP2A locus that can explain telomere length set point 

variation among A. thaliana accessions? In Chapter IV, the NOP2A transcript level as well 

as NOP2A DNA and amino acid sequence of 19 MAGIC parental accessions are analyzed 

to address this question. 

Transcript level analysis of NOP2A using data sets from the GEO repository 

(GSE53198) shows a range in NOP2A transcript levels; however, there is no correlation 

between transcript abundance and telomere length. Although it is difficult to draw any 

conclusions about the effect of NOP2A transcript level with telomere length, over-

expression of NOP2A in Col-0 can be tested to see whether the level of NOP2A protein 

correlates with telomere length.  

Amino acid alignment of NOP2A shows several amino acid differences among 19 

MAGIC parental accessions. Interestingly, these differences are located outside the 

conserved rRNA methyltransferase domain, suggesting that telomere length regulation 

may not be conveyed by the catalytic domain of NOP2A. A role for  rRNA 

methyltransferase activity in telomere length regulation cannot be completely excluded 
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however, since amino acid differences outside the catalytic active site might alter post-

translational modification or even allosteric regulation of the active site.  Three major 

differences identified are E61V and M165K in both Sf-2 and Bur-0, and W655R in Col-0. 

These changes can potentially affect binding affinity to yet unknown binding partner(s) 

involved in telomere length set point.  Experiments that could shed light on how natural 

variation in NOP2A contributes to variations in telomere length regulation include1) 

analysis of NOP2A phosphorylation and ubiquitination and 2) mass-spectroscopy on 

NOP2A immunoprecipitated samples to identify binding partners. 

 

Conclusions and Summary 

In summary, this dissertation has provided new insight for the consequences of a 

newly duplicated gene that was implicated in telomere biology, POT1c. The data 

demonstrate a very different path this duplicate has taken relative to its two other paralogs. 

POT1c has non-functionalized through permanent silencing, while POT1b has neo-

functionalized and POT1a has retained several of the ancestral functions. The data 

presented show 1) POT1c does not have a functional promoter; 2) transposable elements 

were inserted upstream of the locus after duplication, and 3) the locus is not conserved 

among 855 A. thaliana accessions.  In marked contrast, the progenitor of POT1c, POT1a, 

is an essential gene that functions in telomerase regulation, and its sequence is highly 

conserved among 855 A. thaliana accessions. Study of A. thaliana POT1c gene locus has 

revealed that dosage balance was placed on POT1c locus through non-functionalization, 

consistent with the hypothesis of dosage balance of POT1 proteins307. 
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Another important gene analyzed in this dissertation is NOP2A, a novel 

determinant in telomere length homeostasis and set point. Data presented in this 

dissertation demonstrated that 1) NOP2 may connect telomere biology, cell cycle and 

cancer progression, 2) nop2a contributes to a new telomere length set point, 3) ribosome 

biogenesis and telomere length can be connected, 4) NOP2A is one of the major factors 

involved in establishing telomere length in A. thaliana, 5) there are other factors that 

function in telomere length set point together with NOP2A, and 6) independent of NOP2A, 

and there are differences in NOP2A among accessions that potentially affect telomere 

length among these accessions. We have identified another conserved protein, NOP2A, 

that plays a role in telomere length regulation. Telomere length defects in human or yeast 

NOP2 mutants have not been previously reported, making this a novel finding. 

Furthermore, our data suggest that human NOP2 could promote oncotransformation 

through interactions with telomere maintenance pathways. In addition, for the first time we 

are connecting ribosome biogenesis as a major determinant of species-specific telomere 

length. Finally, although the NOP2A locus from Sf-2 is not sufficient, it is necessary for 

long telomeres in A. thaliana.  
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