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ABSTRACT 

 

Copy number variants (CNV) are insertions or deletions of 1 kb or larger in a 

genome with variable number of copies compared to a reference genome that can affect 

phenotypic expression. Methods for identifying and applying CNV are less well 

developed than those for single nucleotide polymorphisms (SNP). Because CNV can 

encompass genes or their regulatory regions and contribute to genetic variation of traits 

of economic importance in beef cattle, it is of interest to study their effects; for example, 

on birth and weaning weights. This study identified and characterized bovine CNV in 

founders of a beef cattle mapping population, compared the performance of CNV 

identification methods, proposed ways to obtain CNV sets with fewer false discoveries, 

developed an approach to use SNP having high linkage disequilibrium with CNV to 

analyze association of CNV to economically important traits using genome-wide 

association studies (GWAS), and developed approaches to incorporate CNV into 

genomic selection for economically important traits.  

The performance of read-pair based methods highly rely on the depth of 

coverage of the tested genome compared to the control genome, selection of a control 

animal, and selection of window size. Using the consensus set of CNV regions (CNVR) 

from different control animals may lower the false discovery rate. Read-pair and split 

read based methods were relatively more stable, but could not identify large insertions. 

Split read based methods also had difficulty identifying other kinds of large-scale 

structural variants. Because any method alone was not comprehensive enough, and may 
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result in a high false discovery, it was better to focus on combined methods and the 

common set of CNVR. GWAS identified the association of CNVR with birth and 

weaning weights, and predictive modeling helped phenotype prediction by CNVR. 

Random forest and Bayesian sparse linear mixed models were the best models with 

highest prediction accuracy. The additive SNP model had slight advantages over 

dominance and recessive SNP models. Some novel genes that may have effects on birth 

and weaning weight were discovered. Further analysis will be required to determine if 

the gene effects discovered are real and how they affect these traits. 
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CHAPTER I  

INTRODUCTION 

 

Copy number variants (CNV) are insertions or deletions of 1 kb or larger in a 

genome that are present in a variable number of copies in comparison to a reference 

genome (reviewed by [1]). The reference genome may be the genomic reference for a 

species (e.g. UMD3.1 bovine reference sequence) or it may be a reference (control) 

genome for the experiment. Although CNV account for more nucleotides of genetic 

variation in a mammalian genome than single nucleotide polymorphisms (SNP) [2, 3], 

the methods for identifying and applying CNV are less well developed than those for 

SNP. Because CNV can encompass genes or their regulatory regions [3-6], I expect 

CNV will contribute to genetic variation of traits of economic importance in beef cattle. 

The goal of this study is to identify bovine CNV in a Bos taurus indicus x Bos taurus 

taurus (Nellore-Angus) cross population and to develop an approach to incorporate CNV 

into genome-wide association studies (GWAS) and genomic selection for growth and 

production traits. 

The following specific objectives are proposed to achieve the goals of this study: 

1) To compare the performance of software packages designed for CNV discovery; 2) 

To identify and characterize CNV from Angus and Nellore cattle; 3) To determine the 

proportion of bovine CNV captured with SNP data; 4) To adapt genome-wide 

association analysis methods for use with CNV and then identify CNV associated with 
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growth and production traits in a Nellore-Angus mapping population; 5) To develop a 

method to incorporate CNV into genomic selection. 

I.1 Literature Review 

Copy number variation can arise both meiotically and somatically [7] and is the 

primary mode by which individuals accumulate mutations. The mutation rate for CNV is 

1.7 x 10-5 per locus [4] compared with 1.8 x 10-8 for SNP [8]. The median size of CNV 

in humans is 2.9 kb [9] and it is estimated that a typical genome has ~160 copy number 

variants [3] encompassing 5 to 24 Mb of the genome [10]. The distribution of CNV is 

nonrandom and strongly correlated with exons, segmental duplications, and transposable 

elements [11]. Mechanisms known to cause CNV are non-allelic homologous 

recombination, non-homologous end-joining, the break-fusion-bridge cycle, and 

replication errors following template-switching or fork stalling (reviewed by [12]). In 

humans and mice, CNV have been shown to account for 18 to 74% of the genetic 

variation in gene expression, dependent on the tissue, and at least part of the differential 

expression is attributable to gene dosage effects [13, 14]. Large multiallelic CNV, which 

are a small subset of all CNV, cause 88% of the variation in human gene dosage [15]. 

Because CNV can impact phenotypic expression [3], there has been considerable 

interest in systematically identifying CNV genome-wide in cattle to incorporate 

variation attributable to CNV into selection programs. Matukumalli et al. [16] used the 

Illumina BovineSNP50 assay to detect 79 homozygous deletions in samples from 

diverse Bos taurus, Bos indicus and composite breeds previously characterized by the 

Bovine Hapmap Consortium [17]. Bae et al. [18] also used the 50K chip and found 368 
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CNV regions (CNVR) with median 171 kb size, and in a survey of 2654 bulls from 

Italian beef and dairy breeds, Cicconardi et al. [19] identified 326 CNVR with about 

60% of the CNV overlapping those identified by [18]. Similar to humans, the 

distribution of CNV in cattle is nonrandom with 20 to 25% of bovine CNV in segmental 

duplications [20, 21]. However, Hou et al. [21] showed that some SNP in CNVR have 

been depleted from the commercial assays, so SNP-based detection approaches are 

expected to underestimate the true number of CNV in the cattle genome. Recently, Xu et 

al. [22] used the BovineSNP50 assay to identify CNV associated with milk production 

traits in Holsteins. They performed a conventional genome-wide association study with 

SNP then characterized linkage disequilibrium between SNP and CNV to infer 34 CNV 

significantly associated with at least one milk trait. 

Array comparative genomic hybridization (CGH) is another approach to detect 

CNV. Liu et al. [23] used Roche NimbleGen 385,000 probe whole-genome CGH arrays 

to discover 177 high-confidence CNVR in 17 breeds of cattle. Using the same assay, 

Kijas et al. [24] identified CNVR spanning 0.45% of the genome with a minimum 

detectable length of 80 kb in a small sample of Angus, Brahman and composite cattle. 

To increase the resolution of CNV detection, Fadista et al. [20] designed a 6.3 million 

probe NimbleGen CGH array. Identified CNVR ranged from 1.7 kb to 2 Mb (median 

16.7 kb), and spanned 23 Mb of the bovine genome. However, in 2012 Roche 

discontinued manufacturing arrays and these assays are no longer commercially 

available.  
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In most of these earlier cattle studies, only large CNVR were found, probably 

reflecting the low resolution of these probe-based methods. Discovery of CNV in bovine 

whole-genome sequences (WGS) from Angus, Chikso, Hanwoo, Holstein, Jeju Heugu, 

and Nellore bulls, has been described recently [25-29]. The WGS in these studies ranged 

from low coverage (4x) for the Holstein [26] and Jeju Heugu [28], to high coverage (13-

22x). In most of these studies, either CNV-seq [30] or mrFAST and mrsFAST [31] were 

used to detect CNV based on read depth. The hypothesis for read depth methods is that 

the depth of coverage of a genomic region is correlated with copy number of the region 

[32]. However, these tools are designed for pairwise case/control comparisons rather 

than for characterizing populations and can have very high false discovery rates. Most 

recently, Shin et al. [29] identified deleted CNV in cattle using Genome Strip [33], 

which was developed to identify CNV for the 1000 human genomes project [3, 15, 34, 

35]. In addition to read depth, Genome Strip uses read-pair information to ascertain 

deletion alleles from read-pairs that map further apart than expected based on the insert 

size distribution of the library of DNA fragments for sequencing. Genome Strip also 

considers that a true polymorphism creates heterogeneity in a population, but this feature 

is sensitive to depth of coverage of the sequenced individuals. 

Stothard et al. [25] found 790 CNV ranging from 1,841 bp to 28,029 (median 

3,171 bp) and covering 3.3 Mb of autosomal sequence. CNV were all described as gains 

with respect to breed (i.e. gains in Angus vs. gains in Holstein). Bickhart et al. [26] 

identified 1265 CNV covering 55.6 Mb of sequence. Only CNV calls > 10 kb in length 

were declared (average 49.1 kb) and by validation with qPCR and array CGH the false 
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discovery rate was estimated as 8.1%. There were fewer shared CNV in pairwise 

comparisons of the Nellore bull and the Angus or Holstein bulls than among the taurine 

bulls, suggesting that there is greater CNV diversity between the subspecies than across 

taurine breeds. Choi et al. [27] used more conservative criteria for cnv-seq than [25] to 

reanalyze the Angus and Holstein sequences from [25] and compared those to Hanwoo. 

The CNVR ranged from 5,770-35,104 bp (median 7,178 bp) for the Angus vs. Hanwoo 

comparison and 4,176-22,398 bp (median 7,472 bp) for the Holstein vs. Hanwoo 

comparison. Choi et al. [28] used the same criteria for CNV-seq to identify CNV in other 

Korean breeds (Chikso, Jengu Huegu). In pairwise comparisons against Korean 

Holstein, they found 992 CNVR (median length 13,780 bp) covering 16 Mb of the 

genome for Hanwoo, 1881 CNVR (median 9,156 bp) spanning 4.7 Mb for Jeugu Heugu, 

and 1,881 CNVR (median 13,626bp) over 30.8 Mb for Chikso. There were appreciably 

more CNVR gains in Holstein than in Hanwoo and Chikso, but not Jengu Heugu.  This 

may be attributed to introgression of European breeds of cattle into Jengu Heugu [28]. 

There was a tendency for CNVR to be nonrandomly distributed across the chromosomes 

with more CNVR near the telomeres. Shin et al. [29] simultaneously characterized 10 

Holsteins and 22 Hanwoo using Genome Strip, which had sufficient power to detect 

deleted CNV but not insertion events. A total of 6,811 deleted CNV (20% FDR) with an 

average length of 2.7 kb covering 18.6 Mb of autosomal sequence were detected.  

In addition to genome-wide efforts to identify CNV in cattle, some researchers 

have focused on characterizing specific regions of the genome known to be associated 

with traits of economic importance. For example, Xu et al. [36] found that CNV 
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including the molecular interacting CasL-like protein 2 (MICAL-L2) gene are associated 

with body height, weight and length of cattle. Durkin et al. [37] showed that color 

sidedness is caused by a complex CNV of homologous but non-syntenic allele. One 

allele results from the translocation to BTA 29 of a 492-kb region of BTA 6 

encompassing viral oncogene homolog (KIT). The second allele is a 575 kb region fused 

with v-kit Hardy-Zuckerman 4 feline sacoma KIT on BTA 6 that is derived from the 

BTA29 allele. Subsequently, Venhoranta et al. [38] showed that the CNV allele on 

BTA29 causes gonadal hypoplasia in white cattle. Zhang et al. [39] identified two 

CNVR associated with body measurements in Chinese cattle, and demonstrated one of 

the CNVR had significant negative effects on expression of the PLA2G2D gene. 

McDaneld et al. [40] showed that a region of chromosome 5 associated with decreased 

reproductive efficiency in Bos indicus-influenced females contains a deletion CNV. 

These studies suggest that there is scope to consider CNV for genomic selection in cattle 

breeding to improve the growth and beef production related traits in cattle breeds. 

I.2 Approach 

I.2.1 Sequence Data 

Aligned sequence data from Gill et al. (unpublished) will be used for CNV 

discovery. Briefly, these bam-formatted alignment files are based on Illumina paired-end 

100 bp sequence from 7 Nellore (Bos taurus indicus) bulls and 6 Angus (Bos taurus 

taurus) cows that were the founders of a multigenerational mapping population [41]. 

After quality control trimming with fastq-mcf [42], reads were aligned to the UMD3.1 

bovine assembly [43] with BWA [44], and local realignment and recalibration of quality 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Venhoranta%20H%5BAuthor%5D&cauthor=true&cauthor_uid=24086604
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scores was done using GATK 3.2 [45]. Genome coverage ranges from 33x to 88x per 

animal. 

I.2.2 Comparison of Software for Detection of Copy Number Variants 

The performance of several packages for the detection of CNV in massively 

parallel sequence data will be compared. CNVer [46] combines read depth and read pair 

information to detect CNV gains and losses. It is distributed with a package for the 

analysis of human data, so a bovine package will be built for this tool. BreakDancer 

[47], is designed to detect structural variants including insertions, deletions, inversions 

and translocations from paired-end read mapping [48]. Several studies have used it to 

detect gene rearrangements, chromosomal translocations and inversions in the genome 

[49, 50]. However, BreakDancer applies a hard cluster method requiring reads map to a 

single genomic location, so it cannot detect variants in repetitive regions [51]. For the 

current study, only insertions and deletions will be considered. RAPTR-SV [52] 

combines read pair and split read data to detect insertions, deletions and tandem repeats 

in the genome. Because other bovine researchers have used CNV-seq [30], I will 

benchmark performance of the other packages against CNV-seq. The read depth method 

is better able to ascertain large insertions and deletions in complex regions [53]. 

Computational speed and concordance of CNV among call sets will be considered. For 

those packages that require a control sequence for comparison, I will use one of the 

Angus sequences and copy numbers will be reported relative to the control [51]. 

CNV-seq [30], in specific, can utilize the read coverage of the sequencing data 

and calculate the best window size which makes copy ratios between case and control 
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significantly differ. Then CNV-seq models the number of short reads in a genomic 

region by a Poisson distribution which, however, might not be an optimal model in some 

situations [54]. 

I.2.3 Optimization of CNV Detection with CNV-seq 

CNV-seq [30], which identifies CNV based on differences in read depth after 

normalization for depth of coverage across the genome, will be used to identify CNVR. 

The Angus cow that has the highest coverage and is most unrelated to the other animals 

will be chosen as the control individual for all pairwise comparisons. To enable 

comparison to previous studies [25, 27, 28] detecting bovine CNV using cnv-seq, strict 

threshold values (P = 0.001 and log2 threshold = 0.7) will be applied. Five combinations 

of overlapping windows and consecutive windows for annotation will be used for 

comparison and annotation: 1 kb overlapping window with 4 consecutive windows, 5 kb 

overlapping window with 4 consecutive windows, 3 kb overlapping window with 10 

consecutive windows, 4 kb overlapping window with 10 consecutive windows, and 5 kb 

overlapping window with 10 consecutive windows. For these approaches the minimum 

detectable CNV will be 2 kb, 10 kb, 15 kb, 20 kb, and 25 kb, respectively. Identified 

CNV will be summarized across the genome and by chromosome. To evaluate the 

influence of choice of control animal on CNV detection, analysis will be repeated with a 

Nellore as the control sequence. The effect of depth of coverage of the control animal 

will also be tested using a different Angus and a different Nellore as the control. 

I.2.4 Summarization and Visualization of CNVR 
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To summarize the CNVR data, the genome will be split in to consecutive 

windows of 50 kb and CNVR from each animal will be assigned to a window by their 

length and position. If a CNVR is longer than 50 kb, it will be split by the window. The 

total number of CNVR from Nellore and Angus falling in each window will be 

calculated. CNVR will be plotted as log2 values by position on the chromosome. 

Positive log2 values represent insertions (gains) with respect to the control, whereas 

negative log2 values represent deletions (losses). All graphs will be plotted using R. 

Graphs summarizing CNVR for the whole genome will be generated from a modified 

script for Manhattan plots. 

I.2.5 Annotation of CNVR 

Perl scripts will be written to map the CNV to the bovine RefSeq genes 

downloaded from the UCSC website. If a CNVR does not hit a gene, the genes in the 

neighboring upstream or downstream 50 kb window will be identified because the 

CNVR may function in the regulatory region of a gene. 

I.2.6 Gene Ontology Enrichment Analysis 

DAVID [55] will be used for GO enrichment analysis. Lists of genes overlapping 

with CNV in each of the animals will be analyzed. Within category Benjamini-Hochberg 

correction [56] will be applied to control the false discovery rate. 

I.2.7 qPCR Validation of CNVR 

Quantitative PCR will be used for validation. Twenty CNV be randomly chosen 

from the set of CNV overlapping with genes. As in prior studies [21, 27], we will use 

BTF3 for normalization, because it has not been found in a CVNR in cattle and is 
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assumed to have only two copies. Primers will be designed using Primer 3 Plus and 

applying the design criteria of [21, 57]. In particular, the GC clamp will be set to 2, self-

annealing will be minimized and the Tm for a pair of primers will be ~60°C. Standard 

qPCR procedures for SYBR green detection with technical triplicates will be used. The 

same Angus cow used as the control animal for CNV-seq will be the calibrator for 

qPCR.  Relative copy number for each sample will be calculated as 2−∆∆𝐶𝑡 . 

I.2.8 Linkage Disequilibrium between CNV and SNP 

SNP within 1 Mb of detected CNV will be extracted from imputed genotypes 

(Gill et al., unpublished) for the McGregor Genomics Cycle 1 population [41]. Using a 

SNP centered on the position of the CNV, linkage disequilibrium (r2) between each SNP 

against the CNV will be calculated using PLINK [58] to assess how effectively SNP 

data tag CNV. 

I.2.9 Genome-wide Association Study with CNV 

If I demonstrate that SNP can serve as an effective proxy for most CNV, then I 

will perform a SNP-based GWAS for growth and production traits using the linear 

mixed model approach implemented in GEMMA [59] that incorporates the genomic 

relationship matrix to account for relatedness and population stratification. The 

coordinates of SNP that are significant after multiple testing correction will be compared 

to the coordinates of detected CNV to infer that the CNV is associated with the trait as in 

[22]. However, if SNP cannot serve as a proxy or there is a subset of CNV not captured 

by SNP, then the statistical methods developed by Barnes et al. will be adapted 

accomplish the CNV GWA studies.  
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I.2.10 Genomic Selection with CNV 

If SNP are an adequate proxy for CNV then standard Bayesian procedures such 

as those implemented in GenSel will be applied [60]. Otherwise machine learning 

processes will be used for genetic prediction. It is likely that this will require that a 

scoring system is developed to assign copy number for CNV and that CNV haplotypes 

are established following the approaches described in [3]. 
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CHAPTER II  

IDENTIFICATION OF COPY NUMBER VARIANTS IN THE NELLORE AND 

ANGUS FOUNDERS OF A BEEF CATTLE MAPPING POPULATION 

 

II.1 Introduction 

CNV are insertions or deletions of 1 kb or larger in a genome that are present in a 

variable number of copies in comparison to a reference genome (reviewed by [1]). Copy 

number variation can arise both meiotically and somatically [61] and is the primary 

mode by which individuals accumulate mutations. The mutation rate for CNV is 1.7 x 

10-5 per locus [62] compared with 1.8 x 10-8 for SNP [63]. The median size of CNV in 

humans is 2.9 kb [64] and it is estimated that a typical genome has ~160 copy number 

variants [65] encompassing 5 to 24 Mb of the genome [66]. The distribution of CNV is 

nonrandom and strongly correlated with exons, segmental duplications, and transposable 

elements [67]. Mechanisms known to cause CNV are non-allelic homologous 

recombination, non-homologous end-joining, the break-fusion-bridge cycle, and 

replication errors following template-switching or fork stalling (reviewed by [12]). In 

humans and mice, CNV have been shown to account for 18 to 74% of the genetic 

variation in gene expression, dependent on the tissue, and at least part of the differential 

expression is attributable to gene dosage effects [68, 69]. Large multi-allelic CNV, 

which are a small subset of all CNV, cause 88% of the variation in human gene dosage 

[70].  
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Because CNV can impact phenotypic expression [65], there has been 

considerable interest in systematically identifying CNV in cattle to incorporate variation 

attributable to CNV into selection programs. Matukumalli et al. [71] used the Illumina 

BovineSNP50 assay to detect 79 homozygous deletions in samples from diverse Bos 

taurus, Bos indicus and composite breeds previously characterized by the Bovine 

Hapmap Consortium [72]. Bae et al. [73] also used the BovineSNP50 chip and found 

368 CNVR with median size of 171 kb, and in a survey of 2,654 bulls from Italian beef 

and dairy breeds, Cicconardi et al. [74] identified 326 CNVR with about 60% of the 

CNV overlapping those identified by [73]. Similar to humans, the distribution of CNV in 

cattle is nonrandom with 20 to 25% of bovine CNV in segmental duplications [75, 76]. 

However, Hou et al. [76] showed that some SNP in CNVR have been depleted from the 

commercial assays, so SNP-based detection approaches are expected to underestimate 

the true number of CNV in the cattle genome.  

Array comparative genomic hybridization (CGH) is another approach to detect 

CNV. Liu et al. [77] used Roche NimbleGen 385,000 probe whole-genome CGH arrays 

to discover 177 high-confidence CNVR in 17 breeds of cattle. Using the same assay, 

Kijas et al. [78] identified CNVR spanning 0.45% of the genome with a minimum 

detectable length of 80 kb in a small sample of Angus, Brahman and composite cattle. 

To increase the resolution of CNV detection, Fadista et al. [75] designed a 6.3 million 

probe NimbleGen CGH array, and CNVR detected ranged from 1.7kb to 2 Mb (median 

16.7 kb), and spanned 23 Mb of the bovine genome. However, in 2012 Roche 
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discontinued manufacturing arrays and these assays are no longer commercially 

available.  

In most of these earlier cattle studies, only large CNVR were found, probably 

reflecting the low resolution of these probe-based methods. Discovery of CNV in bovine 

whole genome sequences (WGS) from Angus, Chikso, Hanwoo, Holstein, Jeju Heugu, 

and Nellore bulls, has been described recently [25, 27, 79-81]. The WGS in these studies 

ranged from low coverage (4x) for the Holstein [79] and Jeju Heugu [80], to moderate 

coverage (13-22x). In most of these studies, CNV were detected based on read depth 

using either CNV-seq [30] or mrFAST and mrsFAST [82, 83]. The hypothesis for read 

depth methods is that the depth of coverage of a genomic region is correlated with copy 

number of the region [84].  

In this study, our objective was to discover bovine CNV using WGS of the 

Nellore and Angus founders of our mapping population. To compare our results to 

previous studies, we used CNV-seq [30] for this work. We explored the influence of 

window size, breed (Nellore vs. Angus) of the control animal, and the depth of coverage 

of WGS for the control animal on the sensitivity and specificity of detection of CNVR. 

II.2 Methods 

II.2.1 Whole genome sequencing and alignment 

All procedures involving animals were approved by the Texas A&M Institutional 

Animal Care and Use Committee (2011-291). There were seven Nellore (Bos taurus 

indicus) bulls and six Angus (Bos taurus taurus) cows, which were founders of the 

McGregor Genomics beef cattle population [85] that contributed to at least 10 calves in 
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the second generation of the cross, and from which we extracted high quality DNA from 

white blood cells or semen by standard proteinase K digestion and organic extraction 

methods. Fast Track DNA Sequencing Services (Illumina, Inc., San Diego, CA) 

prepared libraries for 100bp paired-end sequencing. Each animal was sequenced to a 

depth of at least 30x genome coverage (i.e. ~80 Gb DNA sequence) to facilitate 

characterization of structural variation using 2 to 6 lanes of a flowcell on a HiSeq2000 

without indexing.  

Raw reads were obtained from Illumina in standard fastq format [86]. After QC 

with fastq-mcf [87], reads were aligned to the UMD3.1 bovine assembly [88] with BWA 

[89], and local realignment and recalibration of quality scores was done using GATK 3.2 

[90]. Bam files of these sequences are available in the NCBI short read archive 

[Accession numbers to be added].  

II.2.2 Identification of copy number variant regions  

CNV-seq [30] was used to identify CNVR based on differences in read depth 

after normalization for depth of coverage across the genome. The CNV-seq package 

consists of a Perl script (CNV-seq.pl) and an R script (cnv.R). Input best-hit files listing 

the chromosome and UMD3.1 coordinate were generated from the bam alignment files 

using samtools view [91]. For a pair of genomes (control and test), the Perl script 

calculates the theoretical minimum window size to obtain the best possible resolution for 

a desired significance level and log2 ratio, and allows the user to apply a linear scaling 

factor (--bigger-window) to alter the specificity of detection. Alternatively, a user-

defined window size (--window-size) can be declared. The control and test genomes are 
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then divided into overlapping sliding windows, and the number of sequences in each 

window is counted (Appendix A, Figure A-1). Counts are processed as normalized ratios 

by the R package and specificity of CNV detection can be further refined at this point by 

declaring the minimum number of consecutive windows (--minimum-windows-required) 

deviating significantly from the log2 detection threshold required to annotate a CNV.  

Initially, the Angus cow that had the highest coverage (75x) and was most 

unrelated to the other animals (Π̂ < 0.15) was chosen as the control (A_ref) for all 

pairwise comparisons. Later, the influence of the breed (Nellore vs. Angus) of the 

control animal and the depth of coverage of the control on detection of CNVR was 

explored. To enable comparison to previous studies [27, 92] that detected bovine CNV 

using CNV-seq, we applied the same threshold values (P = 0.001 and log2 threshold = 

0.7) for all pairwise tests. In comparison to the control, a doubling of the number of 

copies in the test genome is equivalent to a log2 ratio of 1, half the number of copies is 

represented by log2 ratio of -1, and an unchanged number of copies is indicated by log2 

ratio of 0. 

First, for each pair of WGS, we let CNV-seq calculate the theoretical minimum 

window size in base pairs for each chromosome, increased this window by 5, and 

required 10 consecutive overlapping sliding windows to be significantly different from 

the threshold to annotate a CNV as in [27, 92]. By this approach a slightly different 

window size is used for every chromosome and each pair of animals. To better evaluate 

the sensitivity of CNV detection and allow comparisons among the Angus and Nellore 

samples for windows of the same size and spacing, next we chose 7 combinations of 
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user-defined overlapping sliding windows and consecutive windows for annotation: 1 kb 

window size and 4 consecutive windows; 1 kb and 10 consecutive windows; 2 kb 

window size and 10 consecutive windows; 5 kb window size and 4 consecutive 

windows; 3 kb window size and 10 consecutive windows; 4 kb window size and 10 

consecutive windows; 5 kb window and 10 consecutive windows. For these approaches 

the minimum detectable CNVR were 2kb, 5kb, 10kb, 10 kb, 15 kb, 20 kb, and 25 kb, 

respectively. For each chromosome we summarized the size of CNVR (min, max, 

median, mean), number of CNVR, nucleotides of CNVR, and proportion of each 

chromosome comprised of CNVR. 

After identifying CNVR by pairwise comparisons, we investigated how many of 

the CNVR were detected in common among the Angus and Nellore. Because the median 

size (and mean size) of most of the CNVR was below 50kb, we divided the genome into 

windows of this size and counted how many animals had a CNVR in each window. Note 

that if there were two CNV with different coordinates in the same window they were 

treated as different CNVR, but if a CNVR was longer than 50 kb, it was arbitrarily split 

by the window and counted twice. Log2 ratios from CNV-Seq for all animals 

simultaneously were plotted by UMD3.1 chromosomal coordinates. Positive log2 values 

represent insertions (gains) relative to the control animal, whereas negative log2 values 

represent deletions (losses).  

II.2.3 Gene ontology enrichment analysis 

Custom Perl scripts were written to identify the set of RefSeq genes that 

overlapped with CNVR on an animal-by-animal basis. DAVID [93] was used for gene 
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ontology (GO) enrichment analysis with default settings. Within category Benjamini-

Hochberg correction was applied to control the false discovery rate.  

II.2.4 Validation by quantitative PCR 

Twenty CNVR (expected to be 19 gains and 1 losses) that overlapped genes, and 

ten CNVR that were detected by the three control animals (expected to be 4 gains and 6 

losses) were chosen for validation by quantitative PCR (qPCR). As in prior studies [27, 

79], we used basic transcription factor 3 (BTF3) for normalization, because it is assumed 

to be a single copy gene (i.e. it has one location on a chromosome). Primers (Appendix 

C, Additional File C-1) were designed with Primer3Plus [94] using RepeatMasked 

sequence extracted from the UMD3.1 assembly. Amplicon length was set to 50-250 bp 

and the GC clamp was set to 2. We used SYBR green chemistry in triplicate 20 µl 

reactions for qPCR with amplification on an ABI 7900 HT thermocycler. The same 

Angus cow used as the initial control animal for CNV-seq was used as the calibrator for 

qPCR. Data values that are not reliable were deleted. Relative copy number for each 

region was calculated as 2 ∗ 2−∆∆𝐶𝑡  [95, 96]. The number of copies of a CNVR in a test 

animal is relative to the number of copies in the control animal, but a value of 1.0 should 

not be interpreted as being a single copy locus because the absolute number of copies in 

the control animal is not known. 

II.3 Results and discussion 

II.3.1 Identification of copy number variants 

One of the arguments for switching from chip- to sequence-based CNV detection 

approaches is better resolution [92]. When the window-size was calculated by CNV-seq, 
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the average minimum detectable CNVR (i.e. (window-size * 5) and 10 consecutive 

windows) was 4,953 bp, which is substantially smaller than bovine CNV detected by 

previous probe-based methods [73, 75]. The number of CNVR detected ranged from 

1,079 to 30,603, covering 13 Mb to 163 Mb of the genome (Appendix B, Table B-1). 

Genome coverage of our whole genome sequences ranged from 33x to 88x per animal. 

We found that the number of detected CNVR was strongly correlated (r = 0.73; P < 

0.01) with the depth of coverage of the tested WGS (Appendix B, Table B-2). Although 

the impact of a difference in the depth of coverage of the control genome compared to 

the test genome has been described for FREEC [97], we believe this is the first time it’s 

been shown for CNV-seq. The total length of CNVR was comparable to that found by 

Janevski et al. [97] for 8 human genomes. In previous bovine studies using the same 

criteria for CNV-seq, the most CNV detected was 1,881 covering 30.8 Mb from WGS of 

~29x coverage of the UMD3.1 reference assembly [27, 80].  

We also evaluated the number of CNVR detected when we manually set the 

window size. A window size of 1 kb with 10 consecutive windows has a minimum 

detectable CNVR of 5 kb, comparable to the average minimum CNVR from our first 

analysis. Although the CNVR counts for these two approaches were similar for Angus, 

there were large differences for some of the Nellore (Appendix B, Table B-1).  For 

example, for Nellore sample N03, only 25% of the CNVR genome coordinates detected 

by these two methods overlapped, whereas for the other samples 69% of the CNVR 

overlapped. However, it is not clear what caused this difference. We incrementally 

increased the size of the window to detect CNVR with minimum lengths of 2 kb to 25 kb 
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(Appendix B, Table B-1 and Appendix C, Additional Files C-2-C-9). For the CNVR 

with a minimum of 2 kb, we used 4 consecutive windows to produce the data (the 

default setting), but the number of detected CNVR seemed unrealistic, covering more 

than 10% of the length of chromosomes in most animals (Figure II.1 and Appendix B, 

Table B-1).  We also evaluated the impact of the number of consecutive windows for 

CNVR with a minimum size of 10 kb, and requiring 10 consecutive windows produced 

more conservative counts than 4 consecutive windows, and so we used 10 windows for 

all other comparisons. There was a sharp decrease in the number of detected CNVR 

between 5 kb and 10 kb, and then a more linear decrease to 25 kb (Figure II.2; Appendix 

A, Figure A-2 and Appendix B, Table B-3). Regardless of the length of the window step, 

fewer than 10% of the CNVR were separated by less than a step (Appendix B, Table B-

4), so the large inflation in counts does not appear to be an artifact of split CNV. 

Increasing the window size appears to lead to enrichment of multi-allelic CNVR (Figure 

II.3 and Appendix A, Figure A-3).  The rest of our analyses are based on counts from the 

windows that produced CNVR of 25 kb minimum length. For this size range, there were 

distinct multi-allelic CNVR detected for Nellore and Angus (Figure II.4; Appendix A, 

Figure A-4 and A-5).  

Because we had initially seen that depth of coverage was correlated with CNV 

counts, we repeated the analyses with a different Angus control animal (A03, 43x 

coverage). Janevski et al. [97] also showed that the population from which the control 

genome is selected impacts the number of detected CNVR, so we also used a Nellore 

control (N05, 45x coverage). It appears that to obtain the most conservative CNVR  
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Figure II.1 Comparison of CNVR counts and nucleotide content by window size. The minimum length of 

detected CNVR was controlled using 10 consecutive windows and a window-size such that the minimum 

detectable window was half the product of the number of consecutive windows and the window size. 
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Figure II.2 Effect of window size on detection of CNVR in an Angus and a Nellore. One Nellore animal 

(N06; orange) and one Angus animal (A02; blue) were used as examples. Red bars indicate the positions 

of CNV on each chromosome and dotted blue vertical lines indicate CNV selected for validation.  
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Figure II.3 Log2 ratios for CNVR across the genome for different window sizes. X-axis represents 

genomic positions for chromosomes 1 to 29 and X, and the Y-axis is the log2 ratio. In comparison to the 

reference, a doubling of the number of copies in the test genome is equivalent to a log2 ratio of 1, half the 

number of copies is represented by log2 ratio of -1, and an unchanged number of copies is indicated by 

log2 ratio of 0. Copy number variant regions detected in any one of the animals were plotted. 
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Figure II.4 CNVR identified in Nellore and Angus with a minimum length of 25 kb. X-axis represents 

genomic positions for chromosomes 1 to 29 and X, and the Y-axis is the log2 ratio of CNVR identified in 

(a) Nellore or (b) Angus. In comparison to the reference, a doubling of the number of copies in the test 

genome is equivalent to a log2 ratio of 1, half the number of copies is represented by log2 ratio of -1, and 

an unchanged number of copies is indicated by log2 ratio of 0.  
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counts, the control should closely match the depth of coverage of the test genome and be 

from the same population (Figure II.5 and Appendix C, Additional Files C-10 and C-11). 

Although we expected more CNV diversity between breeds than within breed, we found 

that more than half of the 50 kb windows containing CNVR were common to both 

breeds (Figure II.6). More than half of the CNVR identified by Choi et al. [27] were also 

identified by us with the original control animal, but there was little agreement between 

the CNVR we identified and those of Zhan et al. [92] (Figure II.7). There were 82 

CNVR in common with Choi et al. [27] when we considered the subset found by using 

all three control genomes.  

II.3.2 Gene ontology enrichment analysis  

The subset of CNVR identified by all three control genomes was mapped to the 

RefSeq database because we were interested in establishing which CNVR were 

associated with genes.  When we considered every CNVR identified in Angus, 56.1% 

overlapped with RefSeq compared with 60.5% for Nellore (Table II.1). Lists of CNVR 

mapped to RefSeq genes for each animal are in Appendix C, Additional File C-12.  

When we considered CNVR from the analysis with the original reference 

sequence, there was evidence of enrichment for only 8 gene ontology (GO) terms in 

Nellore, compared with enrichment of 55 GO terms in Angus. We suspected that this 

large difference was a function of aligning both breeds to a Bos taurus taurus assembly, 

and thereby potentially inflating the false positive rate in Nellore and diluting any true 

enrichment. Indeed, for the subset of CNVR identified by all three control genomes, 

there were 50 enriched terms in Nellore and 40 enriched terms in Angus, and 27 terms  
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Figure II.5 Impact of different control animals on identification of CNVR. One Nellore animal (N06; 

orange) and one Angus animal (A02; blue) were used as examples. Red bars indicate the positions of CNV 

on each chromosome and dotted blue vertical lines indicate CNVR selected for validation. Each animal 

was compared to three different control animals: The original Angus reference (A_ref), a different Angus 

(A03), and a Nellore (N05).  
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Figure II.6 CNVR detected in common among Angus and Nellore. The autosomes were divided into 50 

kb windows and the number of animals with a CNVR in each window was counted. If there were two 

CNV with different coordinates in the same window they were treated as different CNVR. The diagram 

was generated by InteractiVenn by Heberle et al [98].  
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Figure II.7 CNVR identified in Nellore and Angus by CNV-seq and in common with previous studies. 

CNVR identified by CNV-seq in this study, Choi et al. [27], and Zhan et al. [92] CNVR were compared. 

The autosomes were divided into 50 kb windows and the number of animals with a CNVR in each 

window was counted. If there were two CNV with different coordinates in the same window they were 

treated as different CNVR. The diagram was generated by InteractiVenn by Heberle et al [98].  
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Table II.1 Proportion of CNVR mapped to RefSeq genes.  

Breed Sample Ratio Total Ratio 

Angus 

A01 0.577 

0.561 

A02 0.583 

A03 0.546 

A04 0.570 

A05 0.526 

Nellore 

N01 0.637 

0.605 

N02 0.602 

N03 0.593 

N04 0.634 

N05 0.634 

N06 0.561 

N07 0.582 

 

The CNVR considered were the set with a minimum detectable length of 25 kb identified by all three 

references. 
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were enriched in both breeds. They included functions in olfactory transduction and the 

immune system (Table II.2 and Appendix C, Additional file C-13). Enrichment of these 

terms is consistent with other studies in human [99], pigs [100], and cattle [101-103] that 

have found enrichment of CNV associated with olfactory receptor genes, and immune 

system processes [25, 27]. 

II.3.3 Overlap of quantitative trait loci (QTL) and copy number variants 

For each test animal, the subset of CNVR identified by all three control genomes 

was compared to AnimalQTLdb [104] and those QTL that overlapped with one or more 

CNVR were recovered. For Nellore, we found 1003 CNVR out of 2124 discovered 

CNVR with a minimum length of 25 kb overlapped 203 cattle QTL, and for Angus there 

were 1058 CNVR out of 2098 CNVR that overlapped 593 cattle QTL (Figure II.8 and 

Appendix C, Additional file C-14). In comparison, Shin et al. [81] found 2220 QTL 

overlapped with 6,623 putative deleted CNV.  

II.3.4 Validation  

The set of CNVR selected for validation was chosen from those discovered using 

the original control sequence. A CNVR was considered valid if there was a significant 

positive correlation between the log2 ratio calculated by CNV-seq and the relative copy 

number from qPCR. By this approach, only 15% of CNVR from the original set were 

validated (Table II.3; Appendix A, Figure A-6 and Appendix C, Additional File C-15) 

confirming there was a very high false discovery rate when the control had much deeper 

coverage than the test genomes. After we had run CNV-seq with the other Angus and 

Nellore controls, we revisited these validation results. Both of the CNVR that were  
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Table II.2 GO terms that are significantly enriched in both Nellore and Angus animals. 

GO terms enriched in both breeds 

GO:0004984~olfactory receptor activity 

GO:0007186~G-protein coupled receptor protein signaling pathway 

GO:0007166~cell surface receptor linked signal transduction 

GO:0016021~integral to membrane 

GO:0031224~intrinsic to membrane 

GO:0042611~MHC protein complex 

GO:0019882~antigen processing and presentation 

mhc ii 

SM00407:IGc1 

GO:0042613~MHC class II protein complex 

IPR003006:Immunoglobulin/major histocompatibility complex, conserved site 

IPR003597:Immunoglobulin C1-set 

IPR007110:Immunoglobulin-like 

IPR013783:Immunoglobulin-like fold 

PIRAPTR-SVF001991:class II histocompatibility antigen 

IPR014745:MHC class II, alpha/beta chain, N-terminal 

signal peptide 

SM00048:DEFSN 

IPR006080:Mammalian defensin 

IPR001855:Beta defensin 

defensin 

Defense mechanisms 

GO:0005253~anion channel activity 

GO:0016820~hydrolase activity, acting on acid anhydrides, catalyzing 

transmembrane movement of substances 

GO:0043492~ATPase activity, coupled to movement of substances 

GO:0015405~P-P-bond-hydrolysis-driven transmembrane transporter activity 

GO:0015399~primary active transmembrane transporter activity 
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Figure II.8 Number of QTL overlapping a consensus set of CNVR. The number of QTL concordant with 

CNVR and detected by all comparison to all three control animals are reported by QTL category. The 

CNVR were identified using a 25 kb minimum window size.  
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Table II.3 Correlations of log2 ratios calculated by CNV-seq to Relative Copy Numbers for tested CNVR. 

CNVR Correlation P-value 

Found by all three 

references? 

(Including A04) 

Found by all 

three references? 

(Excluding A04) 

Validated? 

1_1 -0.688 0.019158 No No No 

1_9 -0.439 0.176507 No No No 

2_1 -0.526 0.096323 No No No 

2_13 0.250 0.485957 No No No 

3_15 -0.390 0.236328 Yes No No 

4_9 0.811 0.002439 No No Yes 

4_27 0.805 0.00281 Yes Yes Yes 

5_18 0.354 0.285762 Yes No No 

8_18 0.373 0.258567 Yes No No 

10_2 0.689 0.018929 Yes Yes Yes 

11_15 0.167 0.624396 Yes No No 

13_10 0.086 0.80242 No No No 

13_11 -0.313 0.348928 Yes No No 

14_11 -0.244 0.470441 Yes No No 

18_2 -0.193 0.568972 Yes No No 

18_9 -0.055 0.873244 No No No 

19_8 -0.050 0.882528 No No No 

21_4 -0.485 0.130627 Yes No No 

25_1 -0.245 0.467418 No No No 

28_9 -0.601 0.05029 No No No 
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detected using all three controls validated. One of those was the deletion CNVR 4_27, 

which spans 75026251-75116250 on BTA4 (Figure II.9). Nine of the ten more CNVR 

identified by the three control animals were validated because they have variable number 

of copies compared to the control A_ref, as shown in Appendix A, Figure A-7. 

II.4 Conclusions 

We observed that the number CNVR discovered using CNV-seq software was 

strongly correlated with the depth of coverage of the tested genome compared to the 

reference genome. The normalization algorithm of CNV-seq did not appear to 

adequately overcome large differences in depth of coverage and, consequently, the false 

discovery rate was grossly inflated. We overcame this issue by using different animals as 

the control and focusing on the common set of CNVR, which is summarized in 

Appendix C, Additional File C-16. We chose a conservative 25kb minimum window 

size for our final analyses because there appeared to be enrichment for multi-allelic 

CNVR as window size increased. Multi-allelic CNVR have previously been associated 

with variation in gene dosage and differential expression of genes. We showed that the 

CNVR discovered in Nellore and Angus covering RefSeq genes were enriched for 

olfactory transduction and immune system function. About half of the discovered CNVR 

were associated with previously identified cattle QTL for production, reproduction and 

health. We expect that future work with the population founded by the individuals 

characterized in this study will show that some of the discovered CNV contribute to 

variation in these important phenotypes. 



 

35 

 

 
 

Figure II.9 Log2 ratios for putative CNVR 4_27 on BTA 4 from 75026251-75116250 bp. The log2 ratios 

calculated by CNV-seq were plotted for each Angus (A) and Nellore (N). In comparison to the reference, a 

doubling of the number of copies in the test genome is equivalent to a log2 ratio of 1, half the number of 

copies is represented by log2 ratio of -1, and an unchanged number of copies is indicated by log2 ratio of 

0. 
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CHAPTER III  

COMPARISON OF THREE SOFTWARE APPLICATIONS FOR COPY NUMBER 

VARIANT DETECTION AND THE ALGORITHMS BEHIND THEM 

 

III.1 Introduction 

Previously, cytogenetic technologies including karyotyping and fluorescence in 

situ hybridization [105], array-based comparative genomic hybridization, and single-

nucleotide polymorphism array approaches [106] have been used to identify CNV. 

Limitations of them include hybridization noise, inability to discover novel and rare 

CNV, low genome coverage, and low resolution [107, 108]. In order to overcome the 

limitations of these traditional approaches, many WGS based methods have been 

developed. Currently, a variety of software applications based on various algorithms are 

publicly available. The major algorithms used include read depth (RD), read-pair (RP, or 

paired-end mapping), split read (SR), de novo assembly (AS), and the combined 

approaches based on them [109], as shown in Figure III.1. 

Read depth-based methods are major methods for CNV identification in NGS 

data. They compare RD of the test genome to a reference genome to identify CNV. The 

assumption underlying them is that in a genomic region, the depth of coverage is 

correlated to the copy number [32]. Read depth is calculated by counting the number of 

mapped reads in predefined windows. Read depth is then normalized and the potential 

biases from GC content and repetitive regions are corrected. Finally, copy numbers are 

detected along the chromosome and the genomic regions with similar copy numbers are  
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Figure III.1 The major algorithms used in CNV identification for NGS data. 
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merged to one CNVR [110]. Read depth-based methods can use a single sample, paired 

samples, or pooled samples [109]. If using a single sample, absolute copy numbers are 

calculated, whereas if using paired case/control samples, relative copy numbers of the 

test genome compared to the control genome are calculated [109]. Software applications 

based on RD methods include BIC-seq [111], CNV-seq [30], and CNVnator [112]. 

Among them, CNV-seq is designed to identify insertions (gains) and deletions (losses) in 

the genome compared to a control genome [30]. After normalization for depth of 

coverage across the genome, it detects CNV based on differences in RD. CNV-seq 

calculates a log2 value from which the relative copy numbers compared to the control 

genome can be obtained. It is widely used in CNV identification in cattle and humans. 

Read pair-based methods are based on the comparison of average insert size of 

DNA fragments. In paired-end sequencing, the insert sizes are expected to follow a 

specific distribution [113]. Read pair-based methods detect the discordance of the 

average insert size between sequenced RP from a test genome and the expected size 

from the control genome [109]. There are two frequently used approaches: the clustering 

approach, which uses a predefined distance to detect discordant reads, and the model-

based approach, which uses a probability test to find any unusual distances between read 

pairs compared to the distance distribution of the genome [114]. Limitations of RP-based 

methods include: not detecting insertions that are larger than the average insert size of 

the genome library [115], and not detecting CNV in regions of low-complexity with 

segmental duplications [114]. Software applications using RP-based methods include 

PEMer [116] and BreakDancer [47]. BreakDancer [47] detects a variety of structural 
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variants (SV) including CNV. The methods used by BreakDancer are BreakDancerMax, 

which utilizes the clustering approach, and BreakDancerMini, which utilizes the model-

based approach [114]. BreakDancerMini detects small indels (10–100 bps) whereas 

BreakDancerMax detects insertions, deletions, inversions, intra-chromosomal 

translocations, and inter-chromosomal translocations. But we are only considering 

insertions and deletions as CNV in this study. One more limitation for BreakDancer is its 

results are not reliable in repetitive regions, because each read is only assigned to one 

cluster, and the reads which can be mapped to several genomic regions are discarded by 

BreakDancer, even if they have a high mapping quality [114]. 

Split read-based methods utilize reads where one read from the pair has a reliable 

mapping, but the other one fails to map to the genome or is only partially mapped, which 

becomes a potential source of the break-point for the CNV at the single base pair level 

[117]. The incompletely mapped reads are split into fragments, and the first and last 

fragments of each split read are aligned to the genomic reference sequence 

independently to identify the precise start and end points of the CNV [114]. The 

limitations of SR-based methods are that they heavily rely on read length and only work 

with the unique regions of the reference genome [114]. Applications based on SR 

methods include Pindel [118] and AGE [119].  

Another approach is de novo assembly, which assembles a new genome based on 

short reads and compares it to the original genomic reference sequence to identify 

genomic regions with CNV [114]. This method is unbiased because it does not rely on 

read alignment, but it also has limitations: a minimum read coverage is required but high 
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coverage increases the complexity of assembly; the quality of the assembled contigs are 

low for non-human organisms; and there is high demand for computational resources 

[114]. Applications based on assembly include Magnolya [120] and the Cortex 

assembler [121]. Due to the limitations of this method, it was not used or compared in 

this study.  

Among the above methods, RD-based methods can detect the exact copy number 

of CNV, whereas RP and SR based methods only detects the position of CNV. Also, 

RD-based methods can identify large insertions and CNV in complex genomic regions, 

which are difficult for RP- and SP-based methods [53]. 

Because each method has their own strengths and limitations, combined 

approaches are created to take advantage of the best features of the various methods. 

Step-wise approaches are used to combine data from two or more sources [109].  

Applications like this are CNVer [46], which utilizes both RP and RD information, and 

RAPTR-SV [52], which is based on the combination of RP and SR methods to detect 

SV, and does not require a control genome. RAPTR-SV first identifies discordant RP, 

and places overlapping discordant RP with the same orientation into the same groups. 

Finally, SR are assigned by searching for complete and one-end unmapped alignments of 

split pairs, and CNV are identified [52]. 

In this study, we compare the performance of three software applications: 

BreakDancer, CNV-seq, and RAPTR-SV to identify CNV regions (CNVR) in the 

Nellore and Angus founders of a beef cattle mapping population, and discuss the 

advantages and shortcomings of the algorithms behind them. We also propose a way to 
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obtain a more reliable set of CNVR with fewer artifacts and noise by finding the CNVR 

set that are concordant across all three algorithms. 

III.2 Methods 

III.2.1 Aligned sequence data  

Bam files of seven Nellore (Bos taurus indicus) bulls and six Angus (Bos taurus 

taurus) cows, which were founders of the McGregor Genomics beef cattle population 

[85] (see II.2.1) were used for this study.  

III.2.2 Identification of copy number variant regions 

Three software applications were used to identify CNVR: CNV-seq [30], 

BreakDancer [48], and RAPT-SV [52].   

To enable comparison to CNV studies in Chapter II and previous bovine CNV 

studies by CNV-seq [27], the same strict threshold values (P = 0.001 and log2 threshold 

= 0.7) and a minimum detectable CNVR size of 25 kb (window-size = 5000, 

consecutive-window = 10) were used. These parameters were used because a 25 kb 

minimum detectable CNVR size was demonstrated to be a suitable window size for 

CNV detection for these sequence data in Chapter II. And the control animal for all 

pairwise comparisons was the same Angus cow (A_ref) as in Chapter II.  This Angus 

cow had the highest coverage (75x) and was the most unrelated to the other animals (Π̂ < 

0.15).  

Default settings of BreakDancer were applied for detection of structural variants. 

The same Angus animal (A_ref) was used as the control. Default setting of RAPTR-SV 

were used as well. No control animal was needed for this software application. After 
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identifying structural variants by RAPTR-SV, a filtration step was applied following the 

instructions on Git-hub for RAPTR-SV. 

Because RAPTR-SV categorizes insertions into two categories: insertions (one 

copy inserted somewhere else in the genome) and tandem duplications (one or multiple 

copies inserted next to the original sequence), we categorized insertions in the same way. 

The results from RAPTR-SV and BreakDancer were first filtered to omit other structural 

variants and to include CNVR larger than 1 kb, and then for comparison with CNV-seq 

they filtered to the size of 25 kb to 502.5 kb, which was the minimum and maximum 

sizes of CNVR detected by CNV-seq.  

After identification of CNVR by the three software applications, we investigated 

how many of the CNVR were detected in common among the applications and breeds 

(Nellore and Angus).  The genome was divided into 50 kb nonoverlapping windows 

because the median (and mean) sizes of all CNVR detected were close to 50 kb. The 

number of animals having a CNVR in each window was then counted. Like in II.2.2, if 

two CNV with different coordinates appeared in the same window, they were treated as 

two different CNVR. For CNVR longer than 50 kb, they were arbitrarily split by the 

window and counted twice. 

The performance of the three software applications was compared using R and 

custom Perl scripts. Venn diagrams were generated by InteractiVenn [98]. 

 

 

 



 

43 

 

III.2.3 Validation 

Ten CNVR identified by the three applications are chosen for validation using 

the same method as in II.2.4. Primers are summarized in Appendix C, Additional File C-

1. 

III.3 Results and discussion 

III.3.1 Identification of copy number variant regions 

Results from BreakDancer, CNV-seq and RAPTR-SV are summarized in 

Appendix B, Table B-5 and Appendix C, Additional File C-9 and Additional File C-17. 

Compared to CNV-seq, BreakDancer and RAPTR-SV detected much more insertions, 

deletions and tandem duplications for each of the animals before filtration, which 

included both small indels and large CNVR. The average number of CNVR detected for 

each animal was 19201 for BreakDancer, 809 for CNV-seq and 23149 for RAPTR-SV. 

There were on average 1,864 and 456 CNVR for BreakDancer and RAPTR-SV, 

respectively, after filtering the CNVR length to 25 kb to 502.5 kb. Examination of the 

distribution of CNVR identified by CNV-seq, shows that it identifies insertions, 

including tandem duplications, and deletions across the genome. BreakDancer and 

RAPTR-SV detect more SV types across chromosomes and unmapped contigs, but only 

insertions, tandem duplications, and deletions were retained for further analysis. Before 

filtration, BreakDancer and RAPTR-SV detected large proportions of small variants 

compared to CNV-seq (Appendix B, Table B-5): the mean and median sizes for 

BreakDancer were 1068.97 kb and 0.68 kb; the mean and median sizes for RAPTR-SV 
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were 9.79 kb and 0.17 kb; the mean and median sizes for CNV-seq: 45.90 and 32.71 kb. 

Note that the mean size for BreakDancer were large because it detected some extremely 

large CNVR, but the majority of CNVR detected by BreakDancer were very small. After 

filtering the CNVR size to larger than 1 kb, which is the minimum size of a CNV by 

definition, insertions and tandem duplications for BreakDancer disappeared completely, 

and insertions for RAPTR-SV disappeared as well, which confirmed that RP-based 

methods cannot detect insertions larger than the average insert size of the genome library 

[115], and SR based methods heavily rely on read length [114]. 

The remaining types of CNV identified by the applications after filtration are 

shown in Table III.1. The type and number of CNVR identified by the three applications 

in one Angus animal and one Nellore animal are also shown as an example in Figure 

III.2. After filtration, only 9.7% and 2.1 % of the total CNVR remained for BreakDancer 

and RAPTR-SV, respectively. 

The number, mean, and median sizes of CNVR identified by the three 

applications after filtration for each animal are summarized in Table III.2 and Figure 

III.3. The mean and median sizes for BreakDancer were 119.06 kb and 76.20 kb; the 

mean and median sizes for RAPTR-SV were 138.81 kb and 90.11 kb. Both the mean and 

median sizes for BreakDancer and RAPTR-SV were higher compared to those of CNV-

seq after filtration. There were large differences in the type and number of CNVR 

identified by the three applications. RAPT-SV detected much fewer CNVR than 

BreakDancer and CNV-seq. BreakDancer detected the most CNVR. The number of 

CNVR detected by CNV-seq was not consistent among the animals, whereas it was  
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Table III.1 Types of structural variants identified by BreakDancer, CNV-seq and RAPTR-SV.  

The “All types” shows all SV identified by each of the applications, and the “CNV types” shows all CNV 

types identified by the applications after filtration by length. 

  

Name Method 
Need 

Reference? 
All SV types detected 

CNV types 

detected after 

filtration of range 

BreakDancer 

BreakDancerMax 

and 

BreakDancerMini 

(based on read 

pair) 

Yes 

Insertions (including 

tandem duplications), 

deletions, inversions, 

intra-chromosomal 

translocations, inter-

chromosomal 

translocations 

Deletions 

CNV-seq Read depth Yes 

Insertions (including 

tandem duplications), 

deletions 

Insertions 

(including tandem 

duplications), 

deletions 

RAPTR-SV 

Combination of 

read pair and split-

read 

No 
Insertions, deletions, 

tandem duplications 

Deletions, tandem 

duplications 
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Figure III.2 Type and number of CNVR identified by BreakDancer, CNV-seq and RAPTR-SV. One 

Nellore animal and one Angus animal are shown as an example.  
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Table III.2 Comparison of lengths of CNVR identified by BreakDancer, CNV-seq and RAPTR-SV.  

The number of CNVR, mean and median sizes of CNVR identified by the three applications after filtration 

are summarized. BreakDancer identified the most CNVR counts. CNV-seq detected the lowest mean and 

median CNVR sizes while RAPTR-SV detected the highest mean and median CNVR sizes. Because 

RAPTR-SV does not need a control animal, it gives the information of A_ref as well.  

 

 

 

  

Sample 

Number Mean (kb) Median (kb) 

Break-

Dancer 

CNV-

seq 

RAPTR-

SV 

Break-

Dancer 

CNV-

seq 

RAPTR-

SV 

Break-

Dancer 

CNV-

seq 

RAPTR-

SV 

A01 1742 1914 377 119.36 42.16 146.53 77.07 32.5 94.86 

A02 1785 628 447 116.86 39.73 135.7 72.97 30 85.87 

A03 1945 165 465 118.12 54 137.87 76.7 40 89 

A04 1931 141 475 117.48 59.27 131.83 76.42 37.5 88.96 

A05 1942 1271 365 119.07 41.24 144.97 77.47 32.5 96.59 

N01 1902 1518 390 120.91 42.24 141.25 77.9 32.5 93.48 

N02 1946 679 473 120.8 46.97 138.04 77.46 30 89.83 

N03 1972 594 536 119.61 44.57 138.96 75.48 30 89.72 

N04 1769 603 510 116.77 47.64 142.31 72.66 32.5 89.07 

N05 1717 712 441 118.67 44.95 136.56 75 32.5 89.09 

N06 1738 697 501 119.39 44.62 136.48 77.3 30 90.17 

N07 1977 790 479 121.7 43.45 141.71 77.97 32.5 89.39 

A_ref - - 468 - - 132.37 - - 85.43 
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Figure III.3 Comparison of number and size for CNVR identified by BreakDancer, CNV-seq and 

RAPTR-SV. a) The number of CNVR identified by the three applications are summarized after filtration. 

b) Boxplot of CNVR sizes identified by BreakDancer, CNV-seq and RAPTR-SV in one Angus animal and 

one Nellore animal. Size of CNVR are after filtration. CNV-seq tend to identify smaller CNVR than the 

other two. 

 

  

a) 

b) 
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consistent for the other two applications, which may indicate that the RD-based method 

is more sensitive to depth of coverage of the sequences. Although CNVR detected by the 

three applications were filtered to the same size range, CNV-seq had the lowest mean 

and median CNVR sizes, therefore it detected the smallest CNV after filtration. RAPTR-

SV identified CNVR with the highest mean and median sizes, which were slightly 

higher than the mean and median of BreakDancer. RAPTR-SV was the only application 

among the three that did not need a control animal, so it provided information on the 

control animal, A_ref, as well. 

As shown in Table III.2 and Figure III.3 (a), the number of CNVR identified by 

CNV-seq had great differences among Angus animals, but were more consistent among 

Nellore animals. Because the control animal was an Angus, this further demonstrates the 

point in Chapter II that for CNV-seq and RD-based methods, CNVR counts are related 

to depth of coverage of the test genome compared to the control genome. The number of 

CNVR detected by BreakDancer and RAPTR-SV were more consistent among all 

Nellore and Angus animals compared to CNV-seq. This shows that the performance of 

RD methods highly rely on depth of coverage of the test genome compared to the control 

genome, whereas RP and SR methods do a better job in handling different depth of 

coverage among different samples. 

Copy number variant regions identified were then classified in the consecutive 

50kb windows on each of the chromosomes, and the distribution of CNVR by 

BreakDancer, CNV-seq and RAPTR-SV across the genome was analyzed. One Nellore 

and one Angus animal are shown in Figure III.4 as examples. CNVR identified by  
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Figure III.4 CNVR distribution by BreakDancer, CNV-seq and RAPTR-SV across the genome. CNVR 

identified by BreakDancer, CNV-seq and RAPTR-SV on each of the chromosomes of an Angus animal 

and a Nellore animal are shown. CNVR were classified in the consecutive 50 kb windows on each of the 

autosomes, and CNVR sizes are after filtration. Blue indicate deletions and red indicate insertions and 

tandem duplications. 
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RAPTR-SV were distributed across the genome with low density, while CNVR detected 

by BreakDancer and CNV-seq showed a relatively high density distributed uniformly 

across the chromosome. The three software applications identified some common 

CNVR, which indicates that those CNVR are more likely to be authentic structural 

differences biologically rather than artificially generated from the sequences. However, 

we notice that some common CNVR were identified as insertions or tandem duplications 

according to one or two applications, but were identified as deletions according to the 

other application(s) (Figure III.4), which indicated discordance among different 

applications and the methods behind them. For example, the common set of CNVR 

identified by the three applications include insertions, but no insertions were detected by 

BreakDancer. 

The agouti signaling protein (ASIP) gene, which locates on BTA13:64213312 – 

64239964, is known to have CNV in exon regions in ovine genome that affect coat color 

[122, 123]. ASIP gene in the ovine genome has similar organization of the exon-introns 

compared to that in the bovine genome, and mutations in this gene cause “non-agouti” 

mutations in livestock [122]. The region of 60 Mb to 70 Mb on BTA13 was extracted to 

compare CNVR identified by the three software applications in the ASIP gene. One 

Nellore animal (N01) was shown in Figure III.5 as an example.. Only two insertions 

were detected in this region for CNV-seq with 25 kb minimum detectable CNVR size, 

whereas RAPTR-SV and BreakDancer both detected deletions. These deletions had no 

overlap with the two insertions. Interestingly, the deletion detected by RAPTR-SV 

overlapped with one deletion detected by BreakDancer, which indicates that the  
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BreakDancer 

CNVR Chromosome Position 1 Position 2 Type Size 

1 13 61639838 61716178 DELETION 76371 

2 13 63036192 63158438 DELETION 122228 

3 13 63042153 63165534 DELETION 123334 

4 13 66423045 66450620 DELETION 27537 

CNV-seq with 25 kb minimum detectable CNVR size 

CNVR Chromosome Start End Type Size 

1 13 64436251 64463750 INSERTION 27500 

2 13 65566251 65591250 INSERTION 25000 

RAPTR-SV 

CNVR Chromosome Start End Type Size 

1 13 61639843 61716187 DELETION 76345 

 

 

 
 

Figure III.5 CNVR identified by BreakDancer, CNV-seq and RAPTR-SV between 60 Mb to 70 Mb on 

BTA13 in Nellore N01. Chromosome, start, end, type and size of each CNVR detected in this region are 

listed in a). The genes and CNVR in this region are plotted in b). Blue and green indicate deletions, 

whereas red indicate insertions. 

 

 

  

b) 

a) 
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outcomes of RP method are relatively consistent in different software applications, and  

SR method is more consistent with RP than RD method. However, this deletion doesn’t 

overlap with interesting genes, and none of the CNVR detected overlapped with ASIP 

gene.  

The CNVR shared by BreakDancer, CNV-seq with 25 kb minimum detectable 

CNVR size, and RAPTR-SV for the set of Angus and Nellore animals are shown in 

Figure III.6. Large proportions of CNVR common to the three applications were shared 

by CNV-seq and RAPTR-SV. Distribution of CNVR shared by all three software 

applications in Nellore and Angus breeds are shown in Table III.3. For all of the 

applications, more CNVR were shared between the two breeds than appeared in one 

breed only. The proportion of CNVR shared between breeds were high (about 61.7% ~ 

75%), which was consistent with the results from CNV-seq using various minimum 

detectable CNVR sizes in II.3. 

III.3.2 Comparison of performance and algorithms behind the three software 

applications 

Of the three applications used in this study, CNV-seq is the only one that 

generates log2 of the copy number ratio, which makes it possible to calculate the relative 

number of copies and copy number change for a CNVR. It also detects more insertions 

than deletions, in contrast to BreakDancer and RAPTR-SV. CNV-seq has several 

parameter settings to change, which greatly affect the number and size of CNVR 

detected, whereas the other two packages don’t have these parameters to adjust. 

BreakDancer and CNV-seq both require a control animal, so it is important to choose the  
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Figure III.6 Venn Diagram of CNVR shared between different software applications. CNVR identified by 

BreakDancer, CNV-seq with 25 kb minimum detectable CNVR sizes and RAPTR-SV for all Angus and 

Nellore animals are shown. CNVR were classified in the consecutive 50kb windows on each of the 

chromosomes and CNVR sizes are after filtration. The same windows appeared for the same software 

application are only calculated once. The diagram was generated by InteractiVenn by Heberle et al [98]. 
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Table III.3 Distribution of CNVR shared by all three software applications in Nellore and Angus breeds.  

 
 Angus Only Common Nellore Only 

BreakDancer 18 351 37 

CNV-seq 63 188 155 

RAPTR-SV 41 283 82 

 

CNVR shared by all three software applications are classified into three categories: appear in Angus only, 

shared between Nellore and Angus, and appear in Nellore only. CNVR were classified in the consecutive 

50kb windows on each of the chromosomes and CNVR sizes are after filtration. 
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most suitable control animal. The selection of the control animal for CNV-seq was 

discussed in II.2.2. RAPTR-SV is the only application that does not require a control 

sequence, and is the only application we used that categorizes insertions and tandem 

duplications separately. When the minimum and maximum size of CNVR were 

determined, BreakDancer detected the most CNVR. Unlike the other two applications, 

the number of CNVR were not uniform among samples with different depths of 

coverage in CNV-seq. 

Because we wanted to compare the performance of the three applications on the 

same scale, we filtered all the CNVR sizes detected to 25 kb to 502.5 kb.  The mean, 

median and maximum sizes of CNVR detected by CNV-seq were relatively low 

compared to the other two applications after filtration. Before filtration, for CNV-seq, 

the minimum sizes (25 kb) were much higher and the maximum sizes were much lower 

(502.5 kb) compared to the other two applications (Appendix B, Table B-5). When not 

filtered, BreakDancer and RAPTR-SV had very low median and minimum CNVR sizes 

(Appendix B, Table B-5). It is reasonable because RP and SR methods have problems 

detecting large insertions, and BreakDancer also has a method for detecting small indels. 

This observation is similar to Yoon et al. [53] that showed RD-based methods had a 

better performance in detecting large CNV, which was not the case for RP- and SR-

based methods.  Pirooznia et al. [109] also pointed out that it was difficult for SR-based 

methods to identify large-scale SV, which is similar to our findings that the median and 

mean CNVR sizes of RAPTR-SV are much smaller than that of CNV-seq (Table III.2). 
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However, BreakDancer and RAPTR-SV did detect many CNVR with reasonable length 

(>1 Mb) according to our findings (Appendix B, Table B-5). 

The CNVR identified by RD and RP methods differ greatly. The performance of 

RD-based methods highly rely on the depth of coverage of the test genome compared to 

the control genome, selection of the control animal, and selection of the window size. 

For RD-based methods, larger windows achieve higher confidence for CNV detection, 

but this results in more opportunities to miss small CNV. Therefore, it is important to 

choose suitable window sizes in order to obtain CNVR with desirable lengths. The 

normalization algorithm of CNV-seq did not appear to adequately overcome large 

differences in depth of coverage and, consequently, the false discovery rate was grossly 

inflated. This issue was overcome by using different animals as the control and focusing 

on the common set of CNVR, as shown in II.4. 

RP and SR based methods are more stable compared to RD, since the CNVR 

discovered are not that sensitive to parameter settings compared to RD-based methods. 

BreakDancer detects a large quantity of small CNVR before filtration, which is contrary 

to Medvedev et al. [115] who found that RP-based methods are insensitive to small 

insertions and deletions because it is difficult for them to separate small perturbations in 

read-pair distance from the normal background variability. One explanation may be that 

the accuracy of RP-based methods highly rely on insert size of sequencing libraries. 

Large-insert libraries may miss small insertion and deletion events [124]. 

Nowadays, combined methods are more popular since any method alone has its 

strengths and shortcomings because of the complex underlying structure of the SV sites, 
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and none of them are sufficiently comprehensive [125].  However, it was reported that 

combined methods did not perform well against duplications or repeats [125]. RAPTR-

SV, which uses a combination of read-pair and split read methods, detected a reasonable 

amount of CNVR including both tandem duplications and deletions, and the identified 

CNVR had many overlap with CNVR identified by BreakDancer and CNV-seq. 

Therefore, this combination of RP and SR methods is the most stable and consistent 

among the three, with the advantage of not needing a control animal. 

Since the limitations of each method may result in false discovery or only 

detecting a subset of CNV, it is important to find ways to obtain useful information from 

outputs of various applications and utilize them all. We chose to focus on the consensus 

set of CNVR (Appendix C, Additional File C-18) for future studies to overcome the 

limitations of individual methods. However, we noticed that a proportion of CNVR in 

the consensus set are insertions, which should not present because all CNVR found by 

BreakDancer are deletions. We still chose to use the consensus set because, except for 

the contradiction in losses and gains, there must be structural variation in those regions 

due to their identification by all three applications.  

III.3.3 Validation 

The ten CNVR were validated because they have variable number of copies 

compared to the control A_ref, as shown in Appendix A, Figure A-8. 

III.4 Conclusions 

The performance of RD-based methods highly rely on the depth of coverage of 

the tested genome compared to the reference genome, selection of a control animal, and 
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selection of the window size. Larger windows achieve higher confidence for CNV 

detection, but results in higher opportunities of missing small CNV. Read pair- and 

RAPTR-SV-based methods are more stable compared to RD, but it is difficult for them 

to identify large insertions. Also, SR based methods have problems detecting large-scale 

SV, including CNV. Except for these limitations, the combination of RP and SR 

methods used by RAPTR-SV is the most stable and consistent among the three, with the 

advantage of not needing a control animal.  

Few studies were done using multiple methods to detect SV including CNV in 

cattle. This study shows how these software applications and their underlying methods 

work and the performance of them, providing a good reference for method selection for 

CNV identification in future studies. 
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CHAPTER IV  

GENOME-WIDE ASSOCIATION STUDY OF SNP-TAGGED COPY NUMBER 

VARIANT REGIONS IN A BEEF CATTLE MAPPING POPULATION 

 

IV.1 Introduction 

Copy Number Variants may be involved in the formation of different phenotypes 

in the cattle populations due to the dosage variability of the genomic sequences 

underlying them [126]. Although sequence-based approaches for CNV detection provide 

higher resolution compared to chip-based approaches [92], it is expensive to perform 

WGS on a large population. However, it is known that CNVR can be tagged by nearby 

SNP, and the tagged SNP could be used to capture genetic variation and association with 

phenotypes [64, 127]. Therefore, if CNVR were detected from a few animals in a large 

population, SNP identified in that population having high linkage disequilibrium (LD) 

with these CNVR could be used to assess the association of these CNVR with interesting 

traits and predict the effect of these traits in the population. 

Genome-wide association studies are typical methods for assessing association of 

genetic variants, including SNP and CNVR, with traits and their effects on phenotypic 

expression. These studies model the effects of genetic variants genome-wide in a 

population to see if any variants are strongly associated with a specific trait of interest. 

Genome-wide association studies are often used to study diseases with complex genetics 

in humans [128], and they are also used in other organisms, including livestock. 

Although normally the genetic variants identified by GWAS only have small to modest 
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effects on the trait of interest in each individual, those variants contribute to the overall 

variation of that trait in the whole population [128]. Many studies have been done using 

GWAS to study important traits in livestock, especially quantitative traits. For example, 

Fortes et al. [129] tested the associations of SNP to 22 traits related to age at puberty, 

and captured some previously experimentally validated binding sites and identified new 

candidate genes and interactions. Xu et al. [22] used the BovineSNP50 assay to identify 

CNV associated with milk production traits in Holsteins by performing a conventional 

GWAS with SNP and characterizing the LD between SNP and CNV haplotypes to 

identify 34 CNV significantly associated with at least one milk trait. 

One limitation for algorithms using WGS, however, is that CNV haplotype are 

unknown, making it difficult to do GWAS with CNVR directly. Because there are only 

limited studies about GWAS using CNVR with unknown CNV haplotype, alternative 

methods are incorporated. For example, by coding CNVR as a binary marker the extent 

of LD between CNVR and SNP can be determined, and then the impact of SNP having 

high LD with those CNVR can be analyzed [130, 131]. SNP associated with CNVR may 

then be used in GWAS and predictive modeling to study the impacts of CNVR on 

phenotypes.  

In this study, two sets of bovine CNVR from a mapping population were used, 

LD with SNP were calculated, and SNP associated with those CNVR (r2 ≥ 0.8) were 

used to do GWAS.  Results were compared to verify if CNVR was significantly 

associated with a trait of interest and could be used as a marker for selection in the 

future. 
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IV.2 Materials and Methods 

IV.2.1 CNVR and SNP sets used in this study 

Copy number variant regions were identified from the bam files of seven Nellore 

bulls and six Angus cows, which are the founders of the McGregor Genomics beef cattle 

population [85], as shown in II.2.1. Two sets of biallelic CNVR with odd copy numbers 

on BTA1 to BTA29 from II.4 and III.3.2 were summarized and used in this study: 1) 

CNVR set 1: the consensus CNVR set identified by CNV-seq [30] with 25 kb minimum 

detectable CNVR size, which were also detected by BreakDancer [47] and RAPTR-SV 

[52]; 2) CNVR set 2: the consensus CNVR set identified by three different control 

animals: A_ref, A03 and N05 using CNV-seq with 25 kb minimum detectable CNVR 

size. 

The SNP were obtained from genotypes imputed to 770K array scale from the 

McGregor Genomics beef cattle population [85]. Three models: additive model, 

dominance model, and recessive model were used to code the SNP, as shown in 

Appendix B, Table B-6. 

IV.2.2 Phenotype records used in this study 

Phenotype data of 995 animals from McGregor Genomics beef cattle population 

[85] were used in this study, which include the ID, sex, birth date, weaning date, birth 

weight and weaning weight of each animal. Phenotypes data were cleaned and processed 

to have the following variables: ID, sex (three fixed levels: F, S and B), year and season 

of birth (random variable with various levels), weaning age (numeric covariate), birth 

weight (numeric response variable 1), and weaning weight (numeric response variable 
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2), as shown in Appendix C, Additional File C-19. Birth weight and weaning weight 

followed an approximate normal distribution (Appendix A, Figure A-9). 

IV.2.2 CNVR coding and LD calculation of CNVR with SNP 

In this study, we assume that the control animals have two copies in all copy 

number variant regions. Only biallelic CNVR with odd copy numbers on BTA1 to 

BTA29 were used (i.e. the sex chromosomes were omitted). In CNV-seq, the output log2 

ratio is the log of the copy number ratio of the test animal to control animal [30], so the 

relative copy number (RCN) in the founders was calculated from RCN =

2(log2 ratio+1) − 2, and rounded to the nearest integer. To be able to treat the biallelic 

CNVR as if they were SNP, they were then coded based on the following: AT for loss (-

X), TT for normal (0) and CT for gain (X) [130, 131]. X is the copy number for 

insertions and deletions. 

Linkage disequilibrium between CNVR and SNP in the range from 1 Mb 

upstream or downstream of that CNVR were then calculated using Plink [132, 133]. The 

threshold of r2 was set to be ≥ 0.8. Finally, a list of SNP from each of the additive, 

dominant and recessive models having r2 ≥ 0.8 were selected for each of the two sets of 

CNVR for the subsequent analysis. These results were compared to those from using all 

SNP in GWAS for additive, dominance and recessive models.  

IV.2.2 GWAS with the CNVR-SNP sets on birth and weaning weight 

Proc Mixed in SAS was used to model the linear mixed regression to obtain 

residuals of birth and weaning weight of this population to be used in GWAS. For birth 

weight, sex was treated as a fixed factor, the year and season of birth and its interaction 
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with sex were treated as random factors. For weaning weight, gender and weaning age 

were treated as fixed factors, and the year and season of birth was treated as a random 

factor. Other interactions were ignored because they did not explain any of the variance. 

For each CNVR-SNP set, GEMMA [134, 135] was then used for GWAS with 

phenotypes being the residuals of birth weight and residuals of weaning weight, 

respectively. The genomic relatedness matrix was calculated and association tests with 

Univariate Linear Mixed Models were used to perform Wald tests. The Wald p-values 

after Benjamini-Hochberg correction [136, 137] were then used to calculate – log10(p −

value), which were plotted in Circos [138]. The proportion of variance in phenotype 

explained by a given SNP (PVE) is calculated following [139, 140]. 

IV.3 Results and discussion 

IV.3.1 LD calculation between CNVR and SNP 

The two sets of CNVR and their RCN are summarized in Appendix C, 

Additional File C-20, with CNVR set 1 having 113 CNVR and CNVR set 2 having 163 

CNVR. 

The six CNVR-SNP sets are shown in Table IV.1 and Appendix C, Additional 

File C-21. The number of CNVR associated with SNP and the number of those SNP for 

each model are also summarized in Table IV.1. The IDs of CNVR associated with each 

SNP model and their location in the genome are listed in Appendix C, Additional File 

C22 for each of the CNVR-SNP sets. For CNVR set 1, 83.19% of the CNVR were 

tagged by SNP; for CNVR set 2, 91.41% of the CNVR were tagged by SNP. 
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Table IV.1 The SNP sets used in this study. Only CNVR and SNP on BTA1 – BTA29 were included. 

CNVR-SNP set 
SNP association 

with CNVR set 
SNP model 

Number of total 

CNVR associated 

with SNP 

Number of total 

SNP in association 

1 CNVR set 1 Additive 94 42595 

2 CNVR set 1 Dominant 88 16347 

3 CNVR set 1 Recessive 66 11476 

4 CNVR set 2 Additive 149 108428 

5 CNVR set 2 Dominant 121 17690 

6 CNVR set 2 Recessive 93 13372 
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IV.3.2 GWAS for birth weight and weaning weight  

Genome-wide association studies were done for birth and weaning weight for 

each of the CNVR-SNP sets and these were compared to GWAS using all SNP from 

additive, dominance and recessive models. The P-values of the significant SNP after 

Benjamini-Hochberg correction are summarized in Appendix C, Additional File C-23 

and C-24 for birth weight and weaning weight, respectively. Plots of the − log10 𝑃 −

values after Benjamini-Hochberg correction are shown in Figure IV.1 and Figure IV.2, 

and circus plots of the − log10 𝑃 − values before Benjamini-Hochberg correction are 

shown in Appendix A, Figure A-10. After Benjamini-Hochberg correction, most SNP 

marking the CNVR associated with the traits were not significant and so they were not 

plotted. For the SNP remaining in the tracks, some had very small P-values, which 

indicates there is evidence in those regions for differences in allele frequency affecting 

the respective phenotype. The PVEs are summarized in Appendix C, Additional File C-

23 and C-24. Some of the SNP marking CNVR were significant for different SNP 

models, and some were the same as in the GWAS track having all SNP in that model. 

Some GWAS peaks, however, appeared in the tracks for the CNVR-SNP sets, but did 

not appear in the tracks for all SNP for the respective models. Different models had 

some of the same significant SNP as in GWAS. For example, the peaks on BTA2 and 

BTA21 for birth weight, and BTA12 for weaning weight, indicating these regions might 

affect the respective phenotype. 

For birth weight with CNVR-SNP set 1 (Figure IV.1 a), peaks appeared on 

BTA10 and BTA12; for birth weight with CNVR-SNP set 4 (Figure IV.1 a), peaks  
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Figure IV.1 Circos plots of − log10 P for CNV tagging SNP. Circos plots of − log10 P for 

CNV tagging SNP associating with birth weight and weaning weight for the 6 CNVR-

SNP models on BTA1-BTA29 after Benjamini-Hochberg correction are plotted. For 

each circus plot, the tracks from inside to outside are: CNVR set 1, CNVR set 2, SNP 

associating with CNVR set 1 and CNVR set 2 for a-b) additive SNP model (CNVR-SNP 

set 1 and 4), c-d) dominance SNP model (CNVR-SNP set 2 and 5), and e-f) recessive 

SNP model (CNVR-SNP set 3 and 6), and all SNP in that SNP model, respectively. 

Figure a), c) and e) are for birth weight and Figure b), d) and f) are for weaning weight. 

For CNV tracks, red indicate insertions and blue indicate deletions. 
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Figure IV.1 Continued. 
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Figure IV.2 Manhattan plots of − log10 P for SNP. Manhattan plots of − log10 P for SNP associated with 

a) birth weight and b) weaning weight for the 6 CNVR-SNP models on BTA1-BTA29. Each color 

represents a different CNVR-SNP set as shown in the legend. 
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appeared on BTA1, BTA2, BTA7, BTA9, BTA14, and BTA19. The peaks on BTA12 

with set 1 and BTA14 with set 4 also appeared at similar loci in the GWAS track for all 

SNP in the additive model. For weaning weight with CNVR-SNP set 1 (Figure IV.1 b), 

peaks appeared on BTA3, BTA10, BTA11, BTA15, BTA16 and BTA21; for weaning 

weight with CNVR-SNP set 4 (Figure IV.1 b), peaks appeared on BTA8, BTA10, 

BTA13, BTA14, BTA18 and BTA21. The peak on BTA14 also appeared at similar loci 

in the GWAS track of all SNP for the additive model. The peaks on BTA10 and BTA21 

appeared for both CNVR-SNP sets 1 and 4, but did not show up in the track of GWAS 

for all SNP for the additive model, indicating that this region may have a high possibility 

of a CNV affecting weaning weight. 

For birth weight with CNVR-SNP set 2 (Figure IV.1 c), peaks appeared on 

BTA2, BTA12, BTA17 and BTA29. For birth weight with CNVR-SNP set 5 (Figure 

IV.1 c), peaks appeared on BTA2, BTA5, BTA11 and BTA17. The peak on BTA17 also 

appeared at similar loci in the GWAS track having all SNP under the dominance model. 

One peak on BTA2 appeared for both CNVR-SNP set 2 and 5, but did not show up in 

the track of GWAS for all SNP under the dominance model. For weaning weight with 

CNVR-SNP set 2 (Figure IV.1 d), there were peaks on BTA3, BTA17 and BTA21. For 

weaning weight with CNVR-SNP set 4 (Figure IV.1 d), there were peaks on BTA8, 

BTA11, BTA21 and BTA22. The peaks on BTA8, BTA11 and BTA21 also appeared at 

similar loci in the GWAS track of all SNP for the dominance model. In addition, one 

peak on BTA21 appeared for both CNVR-SNP set 2 and 5 and with all SNP, indicating 

that this region may have a high probability of affecting weaning weight.  
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For birth weight with CNVR-SNP set 3 (Figure IV.1 e), peaks only appeared on 

BTA11 and BTA29. For birth weight with CNVR-SNP set 6 (Figure IV.1 e), peaks 

appeared on BTA2, BTA8, BTA11, BTA16, BTA22, BTA25 and BTA29. The peak on 

BTA29 appeared for both CNVR-SNP set 3 and 6, and appeared at similar loci in the 

GWAS track of all SNP under the recessive model. For weaning weight with CNVR-

SNP set 3 (Figure IV.1 f), peaks only appeared on BTA11 and BTA12. For weaning 

weight with CNVR-SNP set 6 (Figure IV.1 f), peaks appeared on BTA9, BTA12, 

BTA16, BTA22 and BTA25. The peaks on BTA12 appeared for both CNVR-SNP set 3 

and 6, and appeared at similar loci in the GWAS track of all SNP under the recessive 

model.  

IV.3.3 RefSeq genes overlapping with significant SNP and CNV, and comparison to 

other studies 

The RefSeq genes overlapping with CNVR-tagged SNP are summarized in Table 

IV.2 and Appendix C, Additional File C-25. The genes overlapping with CNVR-SNP set 

1 to 6 range from 3 to 12 for birth weight and 3 to 31 for weaning weight. There were 30 

and 56 genes overlapping with CNVR-tagged SNP for birth weight and weaning weight, 

respectively, and 4 genes were in common: T cell receptor delta chain variable region 

BVd1.15 (BVD1.15 or BVD1.18), ubiquitin specific peptidase 20, LIM domains 

containing 1, and uncharacterized LOC100336282. Among them, ubiquitin specific 

peptidase 20 was found to be involved in bovine respiratory disease by a SNP 

association study from Neupane et al. [141], and LIM domains containing 1 was found  
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Table IV.2 Number of RefSeq genes overlapping with significant SNP in the 6 CNVR-SNP sets. 

Phenotype CNVR-SNP set Number of RefSeq genes overlapped 

Birth 

weight 

1 3 

2 9 

3 1 

4 11 

5 12 

6 3 

Weaning 

weight 

1 15 

2 3 

3 7 

4 31 

5 8 

6 3 
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to be associated with head and neck squamous cell carcinoma in human according to 

Ghosh et al. [142]. 

No genes were found by all 3 GWAS models for birth weight or weaning weight. 

However, many genes were found by 2 of the 3 GWAS models. Taking both birth 

weight and weaning weight into account, BVD1.18 was found by most of the GWAS 

models with CNVR-SNP set 1 for birth weight and with CNVR-SNP sets 1 and 4 for 

weaning weight. The common genes discovered overlapping with CNVR-tagging SNP 

in two of the CNVR-SNP sets for birth weight and weaning weight are summarized in 

Table IV.3. Among them, CHORDC1 on BTA29 was found by Anton et al. [143] to be 

associated with breeding value of beef. The SNP identified by Anton et al. is compared 

to SNP on BTA29 close to CHORDC1 identified in our study which associate with birth 

weight and weaning weight in Table IV.4.  

Some genes discovered directly overlap with CNVR, including secreted and 

transmembrane protein 1A, WC1.3 molecule, and protein tyrosine phosphatase, receptor 

type T (PTPRT), as shown in Table IV.5. None of the genes indicated above were 

previously reported to affect birth weight or weaning weight. However, some studies 

showed that PTPRT is included in a microdeletion in human, and this CNVR may be 

causative for neurodevelopmental disorders [144, 145]. 

IV.4 Conclusions 

SNP tagging CNVR can be used as genetic markers in GWAS to identify 

significant SNP and CNVR, and important genes associated with them. Focusing just on 

the SNP tagging specific CNVR reduces the multiple testing problem. Different SNP  
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Table IV.3 The common genes discovered overlapping with CNVR-tagging SNP in two of the CNVR-

SNP sets. 

Pheno-

type 

Chromo-

some 
Gene 

Identification in other SNP 

association studies 

Birth 

weight 

2 
Peptidyl arginine deiminase 2 

(PADI2) 

Rheumatoid arthritis in human and 

angiogenesis-regulation in mice 

[146, 147] 

2 F-box protein 42 (FBXO42) - 

2 EPH receptor A2 (EPHA2) Cataract in human  [148, 149] 

2 
Family with sequence similarity 

131 member C (FAM131C) 
- 

2 Chloride channel Ka (CLCNKA) 
Heart failure and glomerular 

filtration in human [150] 

2 
Heat shock protein family B (small) 

member 7 (HSPB7) 

Idiopathic dilated cardiomyopathy 

in human [151] 

29 
Cysteine and histidine rich domain 

containing 1 (CHORDC1) 

Breeding value of beef [143] and 

bovine respiratory disease [141] 

Weaning 

weight 

10 
T cell receptor alpha variable 

14/delta variable 4 (505306) 
- 

10 
T cell receptor delta chain variable 

region BVd1.15 (BVD1.18) 
- 

21 
Neurotrophic receptor tyrosine 

kinase 3 (NTRK3) 

Several neural disorders in human 

[152-157] 

21 Aggrecan (ACAN) - 
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Table IV.4 Comparison of SNP on BTA29 close to CHORDC1 identified by Anton et al. and our study. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

CNVR-SNP set chromosome Position MAF -log10P PVE 

3 

29 5057550 0.037 4.399647 0.016824 

29 5057695 0.037 4.399647 0.016824 

29 5058080 0.037 4.399647 0.016824 

29 4483843 0.185 3.671313 0.01369 

29 4477357 0.104 3.469031 0.012824 

29 4465341 0.109 3.424037 0.012631 

6 

29 5057550 0.037 4.346115 0.016593 

29 5057695 0.037 4.346115 0.016593 

29 5058080 0.037 4.346115 0.016593 

29 4483843 0.185 3.716973 0.013885 

29 4477357 0.104 3.5575 0.013202 

29 4465341 0.109 3.471724 0.012835 

29 4927893 0.077 3.242844 0.011858 

29 4917583 0.079 3.12765 0.011368 

Anton et al. 29 3901625 0.354 14.5 - 



 

76 

 

Table IV.5 RefSeq genes overlapping with significant SNP that have direct overlap with CNVR. BW 

indicate birth weight and WW indicate weaning weight. 

CNVR-

SNP set 
Phenotype Chromosome Start End Type Gene 

1 WW 10 23543751 23571250 Deletion LOC100335575 

2 WW 21 20158751 20188750 Deletion 

Myeloid-associated 

differentiation 

marker-like 

(LOC618633) 

4 WW 10 22173751 22323750 Insertion LOC100336282 

4 WW 10 23543751 23571250 Deletion LOC100335575 

4 WW 13 71903751 71933750 Deletion 

protein tyrosine 

phosphatase, receptor 

type T (PTPRT) 

  18 61703751 61731250 Deletion 
cationic amino acid 

transporter 3 

4 BW 19 51036251 51068750 Deletion 

Secreted and 

transmembrane 

protein 1A 

(SECTM1A) 

5 BW 5 103163751 103223750 Insertion 
WC1.3 molecule 

(WC1.3) 
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models yielded different results; however, different SNP models had some of the same 

significant peaks in GWAS, indicating these regions might affect the respective 

phenotype. Some peaks appeared at similar loci in the GWAS track of all SNP for the 

respective SNP model, indicating that the findings using CNVR yielded similar results to 

studies solely with SNP. Some peaks appeared for one or multiple CNVR-SNP sets but 

not with SNP alone, indicating that CNV in these regions may affect birth or weaning 

weights. 
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CHAPTER V  

PREDICTION OF EFFECTS OF CNVR ON BIRTH AND WEANING WEIGHT IN A 

BEEF CATTLE MAPPING POPULATION 

 

V.1 Introduction 

One approach to analyze the association of genetic variants with phenotypes is 

GWAS, as shown in Chapter IV. However, although GWAS can detect the genetic 

variants which are strongly associated with interesting traits, these variants typically 

only explain a small portion of the genetic variance and heritability, and they hence have 

low predictive power [158, 159]. An alternative approach is to use the genetic variants 

across the genome to predict interesting traits. Phenotypic prediction is typically 

performed with statistical models, and this is the approach we take here. 

One frequently used model is the Bayesian sparse linear mixed model (BSLMM) 

[160], which is a hybrid of a linear mixed model (LMM) in which every genetic variant 

affects the phenotype and a sparse regression model in which only a small proportion of 

all variants affect the phenotype. It combines the advantages of both models, yields good 

performance across a wide range of genetic architectures, and is valid and stable for 

phenotype prediction [160]. Because we do not know how large a proportion of all 

variants affects the phenotype, this model is well suited for our data and was chosen. 

Since we aimed to predict both birth weight and weaning weight as phenotypic 

outcomes, we also considered a multivariate linear regression (MLR) model (a 

regression model in which the response is multivariate) [161]; MLR models are often 
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used in QTL mapping with pedigree data [162, 163]. The advantage of this model is that 

it is able to find genetic loci that influence multiple traits jointly [164]. This is the only 

model in our study that detects CNVR which influence both traits simultaneously. The 

regression tree (RT) model and random forest (RF) model are nonparametric machine-

learning methods, with underlying theories quite different from the linear approaches 

described above. Therefore, they might be able to capture unique relationships between 

genetic variants and traits [165, 166]. The RT model is fit by recursively partitioning the 

data space and fitting simple prediction models within each partition, the results of 

which can be represented by a decision tree [166]. RFs are ensembles of classification 

and regression trees that can predict the outcome based on a large number of predictors 

like SNP [167, 168]. An example of RF applied in SNP analysis is shown in [169]. 

In 2015, Moser et al compared the performance of BSLMM, Hierarchical 

Bayesian Mixture Model (BayesR), LMM and a single-SNP analysis, and concluded that 

the Bayesian models had the highest true positive rate and prediction accuracy [159]. In 

2017, Zeng et al. compared BSLMM model to Lasso, Lasso and elastic net and LMM, 

and concluded that BSLMM performed best across different scenarios [170]. In 2000, 

Comings et al. used a multivariate regression model to simultaneously analyze the effect 

of 20 genes on a range of phenotypes for attention deficit hyperactivity disorder in 336 

unrelated Caucasian subjects [171]. In 2009, based on multivariate regression with 53 

clinical traits related to severe asthma and 34 SNP from 543 asthma patients, Kim et al. 

developed and compared the performance of several lasso regression models [164]. In 

2010, Peng et al. also developed a regularized multivariate regression model for 
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identifying master predictors for breast cancer analysis [172]. The RT and RF models 

are widely used in genetic analysis including large SNP data sets from GWAS [173-

175]. In 2009, García‐Magariños et al. recommended tree based models for large-scale 

genetic data where there are unknown interactions among true risk-associated SNP with 

marginal effects, and where a significant number of SNP due to noise are present [175]. 

In 2010, Goldstein et al. performed RF on a case-control dataset with 300,000 SNP 

genotypes across the genome, and concluded that RF is computationally feasible for 

GWA data, and the results made biologic sense [174]. However, although RF is widely 

used with large SNP data, Winham et al. argued that as dimensionality increased, RF’s 

detection ability declined more rapidly for interacting SNP than for non-interacting SNP 

[169]. 

In this study, four different models, BSLMM, MLR, RT and RF were used to 

predict birth weight and weaning weight in a beef cattle mapping population. Two sets 

of bovine CNVR which were tagged by SNP were used as training data. Three different 

SNP models: additive, dominant and recessive, which were coded as in [176] and 

Appendix B, Table B-6, were tested. Predictive accuracies were assessed, and model 

performance for each set of CNVR were compared. The study is novel because few 

phenotype prediction studies have been done with beef cattle previously, and a novel 

approach to phenotype prediction using CNVR and associated SNP was proposed, which 

makes it possible to predict phenotypes in a large population based on CNVR detected 

from WGS data in a much smaller population. In addition, four different models with 

distinct underlying theories were performed and compared to provide guidance in 
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choosing predictive models for livestock. This is broadly applicable to the field of 

breeding and selection in livestock, and, by extension, even in human medicine. 

V.2 Methods 

V.2.1 Source of data 

The six CNVR-SNP sets from IV.3.1 were used in this study. SNP in additive, 

dominant and recessive models were further coded for MLR, RF and RT models as in 

Appendix B, Table B-7. Phenotype data is the same as IV.2.2, except that it was 

processed to have the following variables: ID, sex (three fixed levels: F, S and B), birth 

season (4 fixed levels: spring, summer, autumn and winter), weaning age (numeric 

covariate), birth weight (numeric response variable 1), and weaning weight (numeric 

response variable 2), as shown in Appendix C, Additional File C-19. The response 

variables and weaning age were standardized in the following studies. The standardized 

response variables and their residuals from a MLR model with sex, birth season and 

weaning age were approximately normally distributed, as shown in Appendix A, Figure 

A-11. 

V.2.2 Predictive modeling 

The mapping population (n = 995 with non-missing phenotypes) was randomly 

split to training (n = 500) and testing (n = 495) data sets. Each of the 6 CNVR-SNP sets 

was tested for their performance for prediction of birth weight and weaning weight. In 

order to test the prediction performance of CNVR to the 2 phenotypes, SNP lists from 

each of the 6 CNVR-SNP sets were split based on which CNVR they were associated 
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with and were used for predictive modeling. Therefore, the prediction effect of SNP 

associated with a specific CNVR represents the prediction effect of that CNVR. 

Four predictive models were used: (1) BSLMM with a ridge regression / genomic best 

linear unbiased prediction (GBLUP) with standard non- Markov chain Monte Carlo 

(MCMC) method in GEMMA [160], (2) MLR, (3) RT and (4) RF. For each model, in 

the training data set, a 10-fold cross-validation (CV) was done to rank the CNVR based 

on their prediction accuracy (quantified by mean squared error (MSE)). This was 

followed by another round of 10-fold CV to find the number of ranked CNVR that 

yielded the highest prediction accuracy. The models were then assessed by prediction on 

the testing data set. Adjusted R2 and the Bayesian Information Criterion (BIC) [177] 

were also calculated for model comparison purposes. As one additional guide for model 

selection, we calculated Pearson correlation between predicted and original values of 

birth and weaning weights. The predicted birth and weaning weights were obtained by 

transferring back the residuals or standardized values to the original scale.  

The bootstrap [178] was performed to assess the variability of model 

performance estimates. Standard nonparametric bootstraps were performed for models 

(2), (3) and (4). However, for the BSLMM model, due to limitations of the GEMMA 

software, the MSE in each bootstrap loop was obtained by using the first 2/3 of the 

randomized bootstrap data as training data to perform prediction on the last 1/3 of the 

randomized bootstrap data. Finally, the performance of these models were compared. In 

addition, MSEs of training and prediction steps from a MLR model with sex, birth 

season and weaning age only, which were referred to as baseline training MSEs and 
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baseline prediction MSEs, were used to assess the performance of the four models with 

SNP effects in the model. A flow chart of this study is shown in Figure V.1. 

V.2.2.1 The BSLMM model 

We used the Plink software [132, 133] to prepare the necessary binary files 

containing SNP information. Phenotype information (birth and weaning weight) were 

added to the corresponding fam files one at a time, with phenotype values needing 

prediction masked. Those files were then used to fit the BSLMM model and perform 

prediction in GEMMA. The ridge regression/GBLUP with standard non-MCMC method 

were used because of its fast computation time. Preliminary results showed that the 

MSEs obtained from this option were very close to the linear BSLMM using MCMC for 

our data (data not shown). Since the BSLMM model in GEMMA does not accept 

covariates, residuals from a MLR model with sex, birth season and weaning age only 

were used as phenotype values. 

The BSLMM model in GEMMA is as follows [160]: 

𝐲 = 𝟏𝑛𝜇 + 𝐗𝜷 + 𝐮 + 𝝐 

 𝛽𝒊~𝜋N(0, 𝜎𝑎
2𝜏−1) + (1 − 𝜋)𝛿0, 𝐮~MVN𝑛(0, 𝜎𝑏

2𝜏−1𝐊), 𝝐~MVN𝑛(0, 𝜏−1𝐈𝑛) 

Where 𝒚 is a vector of residuals of standardized birth or weaning weight, 𝐈𝑛 is an 

n-vector of 1s, 𝜇 is a scalar representing the phenotype mean, 𝐗 is an n × p matrix of 

genotypes measured on n individuals at p genetic markers, 𝜷 is the corresponding p-

vector of the genetic marker effects, with 𝛽𝒊 for the ith column; 𝐮 is the term of random 

effects for phenotype means; 𝝐 is the term of random error; and MVN𝑛 denotes the n-

dimensional multivariate normal distribution. 
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Figure V.1 Flow chart of the study. 
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The other three models were performed by custom scripts using plink and R 

[179]. 

V.2.2.2 The MLR model 

The multivariate (vector response) linear regression model is as followings: 

𝐘 = 𝐗𝜷 + 𝐙𝜸 + 𝝐 

Where Y is a n × 2 vector which contains the responses (standardized birth and 

weaning weights). X contains the covariates for gender (categorical, with levels “F”, “S” 

and “B”), birth season (categorical, with levels “spring”, “summer”, “autumn” and 

“winter”), and standardized weaning age; see Appendix C, Additional File C-26 for 

details of how the covariates were coded. 

When fitting this model to the training data, SNP having exactly the same pattern 

and SNP with only one level were deleted. In cases where multicollinearity was an issue 

(design matrix computationally singular), a generalized linear model with lasso penalty 

[180] was used to shrink the model coefficients. During this step, sex, birth season and 

weaning age always remained in the model. As a result, only a very small subset of 

SNPs was selected by the MLR model. Two sets of coefficients were then selected: (1) 

coefficients based on the λ value that gives minimum mean CV error (lambda.min) and 

(2) coefficients based on the λ value from the most regularized model such that error is 

within one standard error of the minimum (lambda.1se). Two sets of SNP associated 

with CNVR were then selected based on the two sets of coefficients, and these were 

added to the design matrix. After this step, if multicollinearity was still an issue, the 

corresponding model's MSE was recorded as 'NA' (missing). Also, throughout the above 
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SNP filtering steps, if no SNP were left after filtering, further steps were not performed 

for that SNP set, and the model's MSE was recorded as 'NA'. For validation groups in 

the training data, the same SNP were selected in accordance with SNP selected in the 

training groups. Thus, validation group models have exactly the same covariates as 

training groups (same columns in the design matrix). Finally, if more than 5 MSEs were 

missing values for any 10-fold CV, a missing value was assigned to its overall MSE. In 

the end, only the results from lambda.min were used in the following steps because it 

produced smaller MSEs and fewer missing values for the MSEs. 

V.2.2.3 The RT and RF models 

Finally, we employed two decision tree-based models: (1) a basic RT (using the 

"tree" package in R [181] with default settings) and (2) a RF model (using the 

"randomForest" package in R [182] with default settings). The default parameters for the 

RF model were chosen because preliminary studies with 10 randomly selected CNVR 

from CNVR-SNP set 1 showed that increasing the number of trees to grow ('ntree') 

beyond the default value (50) did not substantially change model accuracy (Appendix A, 

Figure A-12). For the number of variables to choose per node (mtry), the default for 

classification trees is √number of SNP and the default for regression trees is the number 

of SNP / 3. Although the former performed slightly better than the latter, we still chose 

to use the latter in our study since our response variables were numeric. Since we want 

to keep the effects of sex, birth season and weaning age in our models, residuals from a 

MLR model with sex, birth season and weaning age only were used as phenotype values 

for birth and weaning weight for both of the models. 
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V.2.3 Identification of genes overlapping with best collections of CNVR 

Custom perl scripts were used to identify the genes overlapping with best 

collections of CNVR for each of the models. The RefSeq Bos taurus (assembly Bos 

taurus_UMD_3.1) genome database was used. InteractiVenn [98] was used to obtain the 

common genes identified by the four models. 

V.3 Results and discussion 

V.3.1 Building and tuning models with training data and CV 

The MSE obtained for each CNVR of the 6 CNVR-SNP sets from 10-fold CV 

with the four models is summarized in Figure V.2. It can be seen that BSLMM model 

yields relatively smaller MSEs compared to other models. Almost all of its MSEs were 

lower than baseline training MSEs (0.8864 for birth weight and 0.6004 for weaning 

weight). The other three models have a relatively large proportion of MSE values above 

the baseline training MSEs. 

The MSEs for varying numbers of ranked CNVR in each CNVR-SNP set for 

each model were then obtained and summarized for each of the models. The 

summarization for the BSLMM model is shown in Figure V.3 (a). For both birth and 

weaning weight, the MSEs first decrease and then increase as a function of the number 

of CNVR used as predictors. All MSEs obtained were less than the baseline training 

MSEs. The number of ranked CNVR corresponding to the minimum MSE for BSLMM 

model, and their model fit statistics are shown in Table V.1. For birth weight, the lowest 

MSE obtained from the training data set was 0.74 from CNVR-SNP set 4; 43 out of 144 

ranked CNVR were used to obtain this MSE. For weaning weight, the lowest MSE  
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Figure V.2 MSE of each CNVR from CV with the four models. The MSE of each CNVR from CV with 

a) BSLMM, b) MLR, c) RT and d) RF models are summarized for each CNVR-SNP set. The horizontal 

grey lines are baseline MSEs for predicting birth weight and weaning weight, but may not be visible 

because there are too many MSEs close to baseline MSEs. 
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Figure V.3 MSEs of varying numbers of ranked CNVR from CV. The MSEs of accumulating lists of 

ranked CNVR from CV for a) BSLMM b) RT and c) RF models are summarized for each of the CNVR-

SNP set. 1-6 indicates CNVR-SNP set 1-6. The left side is MSEs for prediction of birth weight, and the 

right side is MSEs for prediction of weaning weight. The horizontal grey lines in (b) and (c) indicate 

baseline MSEs for birth and weaning weights, respectively. All MSEs in (a) were below baseline MSEs. 

For RT, only the first 100 (or the total if total were less than 100) are displayed. 
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Table V.1 Number of ranked CNVR to obtain minimum MSE for BSLMM model.  

Phenotype 

CNV

R-

SNP 

set 

Total 

number 

of valid 

CNVR 

Best 

number of 

ranked 

CNVR 

Minimum 

MSE 
Correlation 

Adjuste

d 𝐑𝟐 
BIC 

Birth 

weight 

1 91 6 0.76 0.45 1.03 124.86 

2 88 8 0.83 0.35 1.03 139.90 

3 66 12 0.80 0.39 1.02 213.68 

4 144 43 0.74 0.48 1.00 3557.32 

5 121 21 0.81 0.38 1.02 236.48 

6 93 12 0.80 0.40 1.03 148.14 

Weaning 

weight 

1 91 7 0.54 0.68 1.02 189.04 

2 88 13 0.56 0.67 1.04 109.00 

3 66 10 0.56 0.67 1.03 150.50 

4 144 38 0.53 0.69 1.00 3523.72 

5 121 16 0.55 0.68 1.04 106.18 

6 93 9 0.56 0.67 1.03 134.40 

The best number of ranked CNVR to obtain minimum MSE from CV for BSLMM model is summarized 

for each of the CNVR-SNP set. Their corresponding correlation, R2 − adjusted and BIC are summarized 

as well. The best CNVR-SNP sets are marked in bold. 
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obtained from the training data set was 0.53, which was again from CNVR-SNP set 4; 

38 out of 144 ranked CNVR were used to obtain this MSE. Note that the MSEs for 

weaning weight prediction tended to be smaller than those for birth weight prediction. 

For the MLR model, there was no systematic association between the number of CNVR 

used and prediction accuracy (figure not shown). In most cases, their MSEs were larger 

than the baseline training MSEs. We obtained lists of varying numbers of ranked CNVR 

for each of the CNVR-SNP sets, which included the CNVR lists having at least one of 

the birth or weaning weight MSEs minimized (none of the lists have MSEs minimized 

for both birth and weaning weights simultaneously), or having both birth and weaning 

weight MSEs smaller than the baseline training MSEs, as summarized in Figure V.4 (b) 

and Appendix B, Table B-8. Their MSE, correlation, R2 − adjusted and BIC values are 

summarized in Figure V.4 (a) as well. The number of lists for different CNVR-SNP sets 

varies a lot. In most cases, only a few CNVR were selected for use in the MLR model, 

indicating that the MLR model may not be a very good fit for this population. 

For the RT model, the MSEs for varying numbers of ranked CNVR in each 

CNVR-SNP set were summarized in Figure V.3 (b), and the number of ranked CNVR to 

obtain minimum MSE along with their model fit statistics were summarized in Table 

V.2. For birth weight, the lowest MSE obtained from the training data set was 0.84 from 

CNVR-SNP set 4; 1 out of 149 ranked CNVR were used to obtain this MSE. For 

weaning weight, the lowest MSE obtained from the training data set was 0.55, which 

was again from CNVR-SNP set 1; 1 out of 94 ranked CNVR were used to obtain this 

MSE. For this model, the MSEs tend to increase with increasing numbers of CNVR, and  
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(a) 

 
(b) 

CNVR-

SNP set 

Analyzed 

CNVR 

CNVR collection 

to minimize MSE 

for BW 

CNVR collection 

to minimize MSE 

for WW 

Number of CNVR 

collections having MSEs 

< baseline MSEs of both 

BW and WW 

1 
33*46 of 

90*90 
2*1 1*2 5 

2 
13*43 of 

81*81 
7*18 1*2 40 

3 
19*25 of 

62*62 
16*10 1*2 1 

4 
29*26 of 

141*141 
23*5 10*14 27 

5 
39*70 of 

113*113 
1*1 4*1 1 

6 
26*41 of 

87*87 
1*1 2*4 0 

 

Figure V.4 Best CNVR to obtain minimum MSE for MLR model. The best collections of CNVR to obtain 

minimum MSEs for birth and/or weights, and MSEs smaller than baseline MSE for birth and weaning 

weights simultaneously for MLR model are summarized. Their MSE, correlation, adjusted R2 and BIC are 

summarized as well. In b, the numbers before and after ‘*’ are best collection of ranked CNVR based on 

birth weight and best collection of ranked CNVR based on weaning weight, respectively. Note that due to 

computation time, for CNVR-SNP set 4, only CNVR with MSEs less than baseline MSEs were analyzed 

(0.8864 for birth weight and 0.6004 for weaning weight); for other CNVR-SNP sets, CNVR with MSE 

less than 0.89 for birth weight and 0.61 for weaning weight were analyzed. BW indicate birth weight and 

WW indicate weaning weight.  
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Table V.2 Number of ranked CNVR to obtain minimum MSE for RT model. 

Phenotype 
CNVR-

SNP set 

Total 

number of 

valid 

CNVR 

Best 

number of 

ranked 

CNVR 

Minimum 

MSE 
Correlation 

Adjusted 

𝐑𝟐 
BIC 

Birth 

weight 

1 94 1 0.84 0.33 2.74 7.02 

2 88 3 0.85 0.34 1.40 14.45 

3 66 1 0.84 0.33 1.09 48.80 

4 149 1 0.84 0.33 1.08 51.38 

5 121 1 0.86 0.32 1.06 68.84 

6 93 1 0.84 0.32 0.00 1.06 

Weaning 

weight 

1 94 1 0.55 0.67 1.50 12.15 

2 88 1 0.57 0.65 -0.03 1.08 

3 66 1 0.57 0.66 -0.33 1.94 

4 149 2 0.56 0.66 1.35 15.62 

5 121 2 0.57 0.66 -0.04 1.15 

6 93 2 0.57 0.66 1.17 27.53 

The best number of ranked CNVR to obtain minimum MSE from CV for RT model is summarized for 

each of the CNVR-SNP set. Their corresponding correlation, R2 − adjusted and BIC are summarized as 

well. The best CNVR-SNP sets are marked in bold. 
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the majority of these MSEs were larger than the baseline training MSEs, for both birth 

and weaning weight. In addition, although all minimum MSEs from the 6 CNVR-SNP 

sets were smaller than the baseline training MSEs, only 1 to 3 CNVR were utilized, 

indicating the RT model may not be a very good fit to this population. 

Finally, for the RF model, the MSEs for varying numbers of ranked CNVR in 

each CNVR-SNP set were summarized in Figure V.3 (c), and the number of ranked 

CNVR to obtain minimum MSE along with their model fit statistics were summarized in 

Table V.3. For birth weight, the lowest MSE obtained from the training data set was 0.77 

from CNVR-SNP set 4; 26 out of 72 ranked CNVR were used to obtain this MSE. For 

weaning weight, the lowest MSE obtained from the training data set was 0.55, which 

was again from CNVR-SNP set 2; 43 out of 60 ranked CNVR were used to obtain this 

MSE. As with the MLR model, there was no systematic association between the number 

of CNVR used and prediction accuracy. The majority of these MSEs were smaller than 

the baseline training MSEs, for both birth and weaning weight. All minimized MSEs 

were smaller than the baseline training MSEs. The RF model tended to choose larger 

numbers of CNVR compared to the other models and fit this population better.  

Overall, the BSLMM and RF models yielded similar results, which were better than 

those from the other models. For the MLR model, we obtained some collections of 

CNVR having MSEs for both birth weight and weaning weight slightly smaller than the 

baseline training MSEs, which were similar to the MSEs from the RT model. Fitting the 

MLR, RT and RF models did not yield large differences on the MSEs for varying 

numbers of ranked CNVR for most CNVR-SNP sets, which indicate that there may be  
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Table V.3 Number of ranked CNVR to obtain minimum MSE for RF model.  

Phenotype 
CNVR-

SNP set 

Total 

number of 

valid CNVR 

analyzed 

Best 

number 

of ranked 

CNVR 

Minimum 

MSE 
Correlation 

Adjusted 

𝐑𝟐 
BIC 

Birth 

weight 

1 42 of 94 3 0.81 0.40 1.03 140.20 

2 45 of 88 16 0.82 0.36 1.01 390.83 

3 34 of 66 30 0.85 0.33 1.05 83.30 

4 72 of 149 26 0.77 0.43 1.00 1721.95 

5 73 of 121 40 0.83 0.33 1.01 409.00 

6 44 of 93 4 0.82 0.34 -0.18 1.67 

Weaning 

weight 

1 60 of 94 58 0.56 0.67 1.00 1739.09 

2 60 of 88 43 0.55 0.67 1.02 205.09 

3 37 of 66 36 0.57 0.66 1.02 193.16 

4 82 of 149 23 0.55 0.67 1.01 673.44 

5 90 of 121 27 0.57 0.66 1.04 110.14 

6 51 of 93 44 0.57 0.66 1.02 171.95 

The best number of ranked CNVR to obtain minimum MSE from CV for RF model is summarized for 

each of the CNVR-SNP set. Their corresponding correlation, R2 − adjusted and BIC are summarized as 

well. The best CNVR-SNP sets are marked in bold. Note that due to computation time, for CNVR-SNP set 

4, only CNVR with MSEs less than baseline MSEs were analyzed (0.8864 for birth weight and 0.6004 for 

weaning weight); for other CNVR-SNP sets, CNVR with MSE less than 0.89 for birth weight and 0.61 for 

weaning weight were analyzed.  
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multiple “good” numbers of CNVR to use for prediction since MSEs for lots of them 

were close. And these models lack the strength to select a most appropriate number of 

CNVR which perform much better than all others. In addition, for the best collections of 

CNVR for each model, the values of model fit statistics were similar, indicating that 

none of these models yielded significantly better results than others. 

V.3.2 Evaluating prediction accuracy of tuned models with testing data 

The model fit statistics for prediction in testing data set using best collections of 

CNVR for each of the CNVR-SNP set are summarized in Appendix B, Table B-9 for 

BSLMM, RT and RF models. The model fit statistics for prediction using the best 

CNVR-SNP set obtained from training step for each of the three models are summarized 

in Table V.4, and the CNVR used in these models are summarized in Appendix C, 

Additional File C-27. Since the baseline prediction MSEs were 1.0110 for birth weight 

and 0.5672 for weaning weight, and all MSEs from BSLMM model were below them, it 

seems that the BSLMM model fit the data well and made good predictions. CNVR-SNP 

set 5 yielded minimum MSE for prediction of birth weight (0.95), and CNVR-SNP set 4 

yielded minimum MSE for prediction of weaning weight (0.52). 

For prediction of birth weight using RT model, only CNVR-SNP set 1 and 6 

yielded MSEs slightly less than baseline prediction MSEs. For prediction of weaning 

weight using this model, CNVR-SNP set 3 and 4 yielded MSEs less than MSE from that 

MLR model. CNVR-SNP set 1 yielded minimum MSE for prediction of birth weight 

(1.00), and CNVR-SNP set 4 yielded minimum MSE for prediction of weaning weight 

(0.54). 
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Table V.4 Prediction in testing data set using BSLMM, RT and RF models. 

Model 

Birth weight Weaning weight 

MSE 
Correl

a-tion 

Adj. 

𝐑𝟐 
BIC MSE 

Correl

a-tion 

Adj. 

𝐑𝟐 
BIC 

BSLMM 
0.98 

(0.11) 
0.30 1.01 571.24 

0.52 

(0.08) 
0.68 1.01 565.76 

RT 
1.03 

(0.06) 
0.23 4.41 9.11 

0.57 

(0.04) 
0.64 -0.45 2.82 

RF 
0.97 

(0.00) 
0.31 1.02 276.7 

0.55 

(0.00) 
0.66 1.23 33.69 

MSEs and standard deviations of MSEs (in parentheses) of prediction using the best collections of ranked 

CNVR in testing data set for BSLMM, RT and RF models are summarized in this table. The best 

collections of CNVR were chosen from CNVR-SNP sets 1-6 for each of the 3 models. Their 

corresponding correlation, adjusted R2 and BIC are summarized as well. 
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For prediction of birth weight using RF model, CNVR-SNP set 1, 2, 3, 4 and 5 

yielded MSEs less than baseline prediction MSEs. For prediction of weaning weight 

using RF model, CNVR-SNP set 1, 2, 4 and 5 yielded MSEs less than MSE from that 

MLR model. CNVR-SNP set 1 yielded minimum MSE for prediction of both birth 

weight (0.96) and weaning weight (0.52), which were similar to the minimum MSEs 

from BSLMM model by CNVR-SNP sets 5 and 4, respectively, and relatively smaller 

than the minimum MSEs from RT model. 

The model fit statistics for prediction in testing data set using MLR model were 

summarized in Figure V.5. The CNVR used in these models are summarized in 

Appendix C, Additional File C-27. None of the CNVR collections from Appendix B, 

Table B-8 yielded MSEs less than baseline prediction MSEs for birth and weaning 

weights simultaneously. 

The best CNVR-SNP set obtained from training step does not necessarily yield 

best MSEs for the prediction step, according to Table V.4 and Appendix B, Table B-9. 

Prediction accuracy was much better for weaning weight than for birth weight, since it 

had much lower MSE values and much higher Pearson correlation values. 

V.3.3 Assessing prediction accuracy by Bootstrap 

To assess prediction accuracy of the models, bootstrap was performed for each of 

the models using the collection of CNVR that yielded minimum MSEs for each CNVR-

SNP set. The standard deviations of MSEs from bootstrap for the four models are 

summarized in Table V.4 and Appendix B, Table B-10. 
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Figure V.5 Prediction in testing data set using MLR model. MSE, correlation, adjusted R2 and BIC of the 

predictions in testing data set using best collections of CNVR selected by MLR model for each of the 

CNVR-SNP set are summarized. Different colors represent different CNVR-SNP sets. BW indicate birth 

weight and WW indicate weaning weight. 
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The BSLMM model had relatively high standard deviations for MSEs (about 

20% of MSE from prediction of both birth and weaning weight), which indicate that the 

prediction accuracy may be poor. However, this might due to the fact that the standard 

deviations of MSEs for BSLMM model were obtained using a different method 

compared to standard bootstrap used in the other models. 

The MLR and RT models had smaller standard deviations of MSEs (about 5% of 

MSE from prediction of birth weight and 9% of MSE from prediction of weaning 

weight) compared to that of BSLMM model, which indicate they have better prediction 

accuracy compared to BSLMM model. The standard deviations of MSEs for the RF 

model were the lowest and close to 0, indicating it was the model with highest prediction 

accuracy among the four models. 

Overall, the BSLMM model yielded the smallest MSEs for prediction in testing 

data set for both birth and weaning weights. RF model yielded slightly larger MSEs. RT 

model yielded larger MSEs compared to BSLMM and RF model. MSEs of these three 

models were all smaller than baseline prediction MSEs. However, the MSEs we 

obtained are still close to each other, and the decrease of MSE after fitting the predictive 

models were not large, which indicates that the CNVR have some effect on prediction of 

birth and weaning weight for the cattle population, but the effect was small. Also, the 

MLR model, which was expected to yield better prediction results than the other models, 

turned out to be no better than the other three models. It failed to yield MSEs smaller 

than baseline prediction MSEs.  
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In addition, although the MSEs for the BSLMM model were relatively small for 

prediction in testing data set, compared to the other three models, the standard deviation 

of its MSEs were the largest, which indicates that this model was not safe and stable to 

use for future predictions compared to the other three models. However, the large 

standard deviation may be due to the different approach used in bootstrap. The other 

three models had relatively small standard deviations of MSEs, meaning their 

predictions are more stable. The RF model performs best since it had relatively good 

prediction performance and highest prediction accuracy. 

V.3.4 Comparison of three SNP models: additive, dominant and recessive 

For each of the 4 prediction models, the 3 different SNP models did not seem to 

yield results with large differences in MSEs and standard deviation of MSEs. That is to 

say, within each prediction model, the different SNP models had similar predictive 

performances and accuracies. In training data sets, the MSEs from additive model were 

slightly smaller than the other two models; in testing data sets, additive model seemed to 

perform slightly better than dominant model, and then better than recessive model. And 

although the MSEs were similar for the three SNP models, the CNVR identified to yield 

minimum MSEs were quite different for different SNP models using the same prediction 

model. 

V.3.5 Genes overlapping with best collections of CNVR 

The number of RefSeq genes overlapping with best collections of CNVR for 

each model were summarized in Table V.5. The details of the RefSeq genes overlapping 

with these CNVR were summarized in Appendix C, Additional File C-28. For BSLMM,  



 

102 

 

Table V.5 Number of RefSeq genes overlapping with best collections of CNVR for each model.  

 CNV-SNP set 
Model 

BSLMM MLR RT RF 

BW 

1 6 6 0 3 

2 6 19 3 10 

3 6 12 1 22 

4 19 22 0 2 

5 12 3 0 21 

6 5 2 0 1 

Total 38 52 4 46 

WW 

1 5 6 0 43 

2 7 19 1 27 

3 5 12 1 24 

4 19 22 2 1 

5 9 3 1 13 

6 3 2 1 24 

Total 35 52 5 77 

The number of RefSeq genes overlapping with best collections of CNVR for each model are summarized 

for birth weight (BW) and weaning weight (WW). For MLR the number are the same for BW and WW 

since one set of CNVR were used to predict both phenotypes. The totals are without duplications.  
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RT and RF models, only one best collection for each CNVR-SNP set was used; for MLR 

model, varying numbers of lists of CNVR collections for each CNVR-SNP set, as shown 

in Figure V.4 (b) and Appendix B, Table B-8 were used to map to the RefSeq genes. 

Overall, the fewest genes were mapped by RT model; the most genes were mapped by 

MLR and RF models, further indicating that RT model didn’t provide appropriate fit, 

whereas RF model provided relatively good fit to the population. 

For birth weight in BSLMM model, the gene overlapping with most CNVR in 

the 6 CNVR-SNP data sets was LOC101907253 (T-cell receptor alpha chain V region 

PHDS58-like, NCBI uid 101907253) with 3 overlaps; for RF, the gene overlapping with 

most CNVR was RNF122 (ring finger protein 122, NCBI uid 510037) with 5 overlaps. 

For RT, all genes only overlapped with at most one CNVR, so they were not taken into 

account. For weaning weight, the gene overlapping with most CNVR was again 

RNF122, with 5 overlaps for BSLMM, 2 overlaps for RT, and 8 overlaps for RF. For 

MLR which models birth and weaning weight together, the gene overlapping with most 

CNVR was still RNF122, with 122 overlaps. LOC101907227 (putative protein 

FAM90A12P, NCBI uid 101907227) ranked the second for MLR with 67 overlaps, 

which also ranked second with 6 overlaps in RF for weaning weight. ULBP11 (UL16-

binding protein 11, NCBI uid 510707) ranked the ninth for MLR with 19 overlaps, and 

ranked second with 3 overlaps in RF for birth weight. The top genes overlapping with 

most CNVR were summarized in Appendix C, Additional File C-29. 

Two diagrams showing the common genes identified by the four models are 

shown in Figure V.6. For birth weight, the common genes were: RNF122, LGR6  
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Figure V.6 The common genes identified by the four models. The common genes identified by the four 

models are summarized in the Venn diagrams. BW indicate birth weight and WW indicate weaning 

weight. The diagram was generated by InteractiVenn by Heberle et al. [98] 
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(leucine rich repeat containing G protein-coupled receptor 6, NCBI uid 100336662) and 

LOC101907253 (T-cell receptor alpha chain V region PHDS58-like, NCBI uid 

101907253). For weaning weight, the common genes were: RNF122, MARK2 

(microtubule affinity regulating kinase 2, NCBI uid 535197) and an unknown gene with 

gene ID 100296090. 

V.3.6 Discussion of model performance 

For BSLMM model, in Lee et al.’s study [158], genotypic data as well as the 

family information were both used to yield higher correlation between actual and 

predicted phenotypes. In our study, however, genotypic information and basic 

information about animals like sex and birth season were used to model the effect not 

explained by CNVR. Family information was not considered since its heredity was 

included in the genotypic information. Our correlation for best CNVR collections for 

each of the four models were around 0.66, which was comparable to the correlations 

they obtained from their data, although our sample size was less than a half of theirs. 

They were comparable to the correlations in Zhou et al.’s human study [160] as well, 

though their study had larger sample sizes (about 2 to 4 times) and number of SNP 

(about 2 to 4 times) compared to ours. In Ober et al.’s study [183], it was discovered that 

the predictive ability of SNP kept increasing until above 150,000 SNP were involved; 

however, in our study, the SNP with highest predictive ability were much fewer than 

150000, and the ability of prediction in training data set first increase then decrease as 

the number of SNP increase. This difference might be due to: 1) the difference between 

the organisms (Drosophila was used in their study); 2) many SNP were close to each 
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other and may have high LD between them in our data; 3) we were using CNVR-SNP 

sets to detect the effect of CNVR on phenotypic expression, thus each CNVR was 

represented by a set of SNP, not individual SNP; 4) we ranked the CNVR-SNP sets first 

by MSEs from CV and then accumulate the number of SNP associated with ranked 

CNVR, therefore the SNP selected in our study may be more efficient than Ober et al.’s. 

For MLR model, we used lasso shrinkage methods to overcome multicollinearity 

issues and tuning by v-fold CV like what Kim et al. [164] and Peng et al. [172] did in 

their studies. However, instead of developing new models directly, we used glmnet 

package in R to perform shrinkage on birth and weaning weights separately, and then 

used SNP that were selected by either of the two traits to fit the MLR model. But both of 

their studies analyzed much fewer SNP than in our study. The reason that MLR model 

did not yield ideal performance as expected in our study may be because of two reasons: 

1) birth and weaning weights are supposed to have genetic correlation (0.5 in cattle [184] 

and 0.59 in swine [185]), but their correlation was weak in our data (r2 = 0.29); 2) there 

were a number of SNP associated with each CNVR, and the SNP were close together 

thus might have high LD between each other. This is also the reason why lasso 

shrinkage need to be involved to reduce multicollinearity. 

For RF model, Goldstein et al. [174] performed similar studies with different 

settings for the three tuning parameters: Number of variables to choose per node (mtry), 

Number of Trees to Grow (ntree) and weighting, and found that when mtry = 0.1 to 1 

times the number of SNP and ntree is more than 250, the error rate was minimized; but 

weighting did not play an important role on the gain of prediction accuracy. Thus, we 
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randomly chose 10 CNVR form CNVR-SNP set 1 to perform 10-fold CV with various 

parameter settings to compare their performance, as discussed in the previous sections 

and Appendix A, Figure A-12. Our study finally chose default parameter settings and 

yielded similar MSEs compared to Heslot et al.’s [165] study in wheat. 

We used four model fit statistics: MSE, Pearson correlation, R2 − adjusted and 

BIC. However, since number of features >> number of observations (n >> p), R2 −

adjusted and BIC may be inadequate. Their weird values in our study further proved 

this. 

Overall, in our study, there’s not much difference among the additive, dominant 

or recessive models, but the additive model performed slightly better than the other 

models in most cases. For the statistical models, although RF tended to be the best model 

and BSLMM tended to be a good model as well, the differences of MSE and correlation 

values among all four models were not large. Also, MSEs from the four models didn’t 

have large differences compared to baseline MSEs. These indicate that none of the 

models has a significant advantage over the other models; only subtle advantages were 

found. In addition, fitting these models didn’t have significant advantages over fitting a 

MLR model with only sex, birth season and weaning age effects. These all indicate that 

the genetic effects of the CNVR were small. In addition, there may be several other 

reasons to explain this: 1) The were too many SNP in the model, resulting in n >> p, 

resulting in inadequate model fits; 2) Multicollinarity issues were present since the 

amount of SNP was large, and most SNP were close to each other which may have 

similar effects on the phenotype; 3) In our study, each CNVR is represented by a list of 
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SNP having high LD (r2 ≥ 0.8) with it, but not all SNP in the list represent that CNVR 

well and contribute significantly to the phenotype; in addition, after shrinkage and model 

fitting, only several (most cases less than one hundred) SNP were left in the model, 

which may not be a very good representation of the whole CNVR; 4) A large proportion 

of the SNP in our study were imputed, which may be somewhat different to the true 

situation and the difference is not known; 5) The values of model fit statistics are very 

sensitive to the setting of random seeds; 6) For MLR model, birth and weaning weight 

are not highly correlated. This might be due to some inaccuracies in recording the 

phenotype. 

V.4 Conclusions 

There’s not much difference among additive, dominance or recessive SNP 

models, but additive model performed slightly better than other models in most cases. 

RF is the best prediction model with highest accuracy, while BSLMM is a second best 

model. MLR and RT models didn’t yield satisfactory prediction results. However, RF 

and BSLMM only have subtle advantages over the other models, since the MSE and 

correlation values were only slightly better than the other models, and MSEs are only 

slightly better than baseline MSEs. Thus the effects of CNVR on birth and weaning 

weight are small. 

In a word, the models we proposed helped phenotype prediction by CNVR to 

some extent, but better CNV calling methods and prediction models are waiting to be 

developed to better fit the population. These models could be used on other organisms 

including humans to predict interesting phenotypes. But one thing to keep in mind is: 
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since n >> p for SNP models, the best CNVR collections may not be unique. A lot of 

possible combinations may exist. 

RNF112 and the genes we found highly associated with birth and weaning 

weights were not observed in other studies. Further analysis will be required to find out 

if these gene effects are real and how they affect the two phenotypes. 

  



 

110 

 

CHAPTER VI  

CONCLUSION 

 

The normalization algorithm for CNV-seq did not appear to adequately 

overcome large differences in depth of coverage and, consequently, the false discovery 

rate was grossly inflated. This issue was overcome by using different animals as the 

control and focusing on the common set of CNVR. Future work may show that some of 

the discovered CNVR contribute to variation in important phenotypes. 

The performance of RD-based methods highly rely on the depth of coverage of 

the tested genome compared to the control genome, selection of a control animal, and 

selection of the window size. Larger windows achieved higher confidence for CNV 

detection, but resulted in higher opportunities of missing small CNV. The combination 

of RP and SR methods used by RAPTR-SV was the most stable and consistent among 

BreakDancer, CNV-seq and RAPTR-SV, with the advantage of not needing a control 

animal. Read pair- and SR-based methods were more stable compared to RD. However, 

both of them could not identify large insertions, and it was difficult for SR-based 

methods to identify large-scale SV. No single method was comprehensive enough, so 

focusing on the combined methods and the common set of CNVR could overcome the 

shortcomings and combine the advantages of the different detection methods. 

CNVR could be tagged by SNP having high LD with them. Although there is no 

haplotype information for CNVR identified by WGS, CNVR which are biallelic and 

having odd copy numbers could be coded by a specific pattern and LD could be 
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calculated. SNP tagging CNVR could be used as genetic markers in GWAS and 

predictive modeling to identify significant SNP and CNVR, as well as important genes 

associated with them. Focusing just on the SNP tagging specific CNVR reduces the 

multiple testing problem.  

In GWAS, different SNP models yielded different results; however, different 

SNP models had some of the same significant peaks, indicating these regions might 

affect the respective phenotype. Some peaks appeared at similar loci in the GWAS track 

of all SNP for the respective SNP model, indicating that the findings using CNVR 

yielded similar results to studies solely with SNP. Some peaks appeared for one or 

multiple CNVR-SNP sets but not with SNP alone, indicating that CNV in these regions 

may affect birth or weaning weights, but with SNP alone their effects did not show up 

because of the multiple testing problem. 

The models used in this study predicted phenotypes by CNVR to some extent, 

but better models are waiting to be developed that better fit the population. Random 

forest was the best model with the highest prediction accuracy. Bayesian sparse linear 

mixed model also had great performance; Multivariate linear regression and regression 

tree didn’t yield satisfactory results. The additive model had slight advantages over the 

dominance and recessive models. Some new genes that may have effects on birth and 

weaning weights in beef cattle were discovered. These models could be used on other 

organisms including humans to predict interesting phenotypes. Some CNVR collections 

were proposed to have best prediction effects, but for SNP models which have way more 

features than observations, a lot of other possible CNVR collections with good 
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performance may exist. Further analysis will be required to find out if the gene effects 

we discovered are real and how they affect birth and weaning weights in beef cattle. 
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APPENDIX A  

FIGURES 

 

 
 

 

Figure A-1 Determining the length of a CNVR using cnv-seq. Cnv-seq divides the sequence of a 

chromosome (green line) into overlapping windows where the size of the window = --window-size * --

bigger-window. The offset or step for each overlap is half the size of the window. For each window, cnv-

seq determines if the |log2| ratio of sequence counts in the test animal compared to the control animal 

significantly exceeds the threshold log2 value. If the |log2| value does not exceed the threshold log2 value, 

the position of the window is not recorded (hatched boxes). If a window does significantly exceed the 

|log2| value, the position of the window is recorded (teal box).  A CNV is annotated in the final output if 

the number of consecutive overlapping windows exceeding the log2 threshold is greater than or equal to 

the specified minimum number of windows required (--minimum-windows-required). In this example, 10 

consecutive windows were required for annotation. Thus, the minimum detectable length of a CNVR is 

step * --minimum-windows-required. The length of a CNVR is the number of consecutive windows 

deviating significantly from the log2 threshold multiplied by the size of the step.   
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Figure A-2 Relationship of CNV counts to minimum detectable CNVR sizes.  
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Figure A-3 Comparison of CNVR detected by chromosome for window sizes from 2 kb to 25 kb. 
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Figure A-4 CNV by chromosome identified in Nellore and Angus using a 25 kb minimum window. 
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Figure A-5 CNVR identified across the genome in all animals using different control animals. 
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Figure A-5 Continued. 
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Figure A-5 Continued. 
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Figure A-6 Relative number of 

copies in each of the animals 

tested for each CNVR. In 

comparison to the control, a 

doubling of the number of 

copies in the test genome is 

equivalent to a log2 ratio of 1, 

half the number of copies is 

represented by log2 ratio of -1, 

and an unchanged number of 

copies is indicated by log2 ratio 

of 0. 
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Figure A-6 Continued. 
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Figure A-7 Quantitative PCR 

validation for CNVR detected 

by the three control animals. 
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Figure A-8 Quantitative PCR 

validation for CNVR detected 

by the three software 

applications. 
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Figure A-9 Distribution of birth weight and weaning weight and their residuals. The Q-Q plots and 

histograms of a) birth weight and weaning weight, and b) their residuals from Proc Mixed in SAS are 

summarized. The first row shows birth weight and the second row shows weaning weight. The curves on 

histograms are standardized normal probability density functions. 

 

 

 

 

  

(a) (b) 
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Figure A-10 Circus plots of the − log10 P − values before Benjamini-Hochberg correction. 

  

(a) (b) 

(c) (d) 

(e) (f) 
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Figure A-11 Distribution of standardized birth weight and weaning weight, and their residuals. The Q-Q 

plots and histograms of a) standardized birth weight and weaning weight, and b) their residuals from a 

MLR model with sex, birth season and weaning age are summarized. The first row shows birth weight and 

the second row shows weaning weight. The curves on histograms are standardized normal probability 

density functions. 
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Figure A-12 MSEs of randomly selected CNVR for RF model from CV. The MSEs of a) birth weight and 

b) weaning weight for 10 randomly selected CNVR from CNV-SNP set 1 fitting the RF model for CV are 

plotted. Different colors indicate different number of trees to grow (ntree). 
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APPENDIX B  

TABLES 

 

Table B-1 CNVR counts and nucleotide content (Mb) by window size and animal. 

 

2 kb: window-size = 1000, consecutive-window = 4; 5 kb: window-size = 1000, consecutive-window = 

10; 5 kb*: bigger-window = 5, consecutive-window = 10; 10 kb: window-size = 2000, consecutive-

window = 10; 10 kb*: window-size = 5000, consecutive-window = 4; 15 kb: window-size = 3000, 

consecutive-window = 10; 20 kb: window-size = 4000, consecutive-window = 10; 25 kb: window-size = 

5000, consecutive-window = 10. 

  

 

  

Sample 2 kb 5 kb 5 kb* 10 kb 10 kb* 15 kb 20 kb 25 kb 

Count Mb Count Mb Count Mb Count Mb Count Mb Count Mb Count Mb Count Mb 

Angus A01 145286 502 21085 164 20618 163 6588 109 13442 232 3795 96 2584 87 1914 81 

A02 101990 323 11368 79 10253 74 2596 39 7001 106 1373 32 875 27 628 25 

A03 42781 134 4205 32 3737 30 746 14 871 18 337 11 233 10 165 9 

A04 4346 21 1032 12 1079 13 466 11 492 13 271 10 198 9 141 8 

A05 131496 433 16924 123 13240 110 4772 76 11065 179 2648 64 1734 57 1271 52 

Nellore N01 140007 469 18411 140 18842 141 5311 88 12623 210 3023 76 2037 69 1518 64 

N02 102482 333 11586 89 12137 91 2632 46 7403 118 1371 38 916 35 679 32 

N03 106661 343 11960 88 30603 148 2613 43 7916 120 1334 34 841 29 594 26 

N04 97932 317 10865 83 10367 81 2360 42 6617 105 1212 34 818 31 603 29 

N05 105259 341 11986 90 11678 88 2766 46 7910 124 1448 38 933 34 712 32 

N06 102149 332 11610 88 7676 71 2678 46 7473 118 1401 37 902 33 697 31 

N07 109715 353 12325 92 6583 67 2945 49 8257 130 1586 41 1056 37 790 34 
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Table B-2 Depth of coverage of whole genome sequences and associated CNVR counts by animal.  

 

Sample Coverage CNVR count 

A01 45x 20618 

A02 42x 10253 

A03 43x 3737 

A04 48x 1079 

A05 39x 13240 

N01 47x 18842 

N02 47x 12137 

N03 88x 30603 

N04 45x 10367 

N05 45x 11678 

N06 36x 7676 

N07 33x 6583 

A_ref 75x - 
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Table B-3 Number of CNVR per autosome in Nellore and Angus for different window sizes.  

 

Chr Nellore Angus 

2 

kb 

5 

kb 

10 

kb 

15 

kb 

20 

kb 

25 

kb 

2 

kb 

5 

kb 

10 

kb 

15 

kb 

20 

kb 

25 

kb 

1 56185 6611 1128 503 377 183 30433 3749 918 481 317 203 

2 48997 5976 1424 741 533 409 25412 3639 991 558 410 307 

3 36552 4591 1104 546 327 243 20856 2873 771 433 276 196 

4 40436 4783 1025 566 340 266 22205 2899 791 473 282 207 

5 36249 4569 1156 605 392 313 20723 3153 993 589 376 296 

6 43096 5059 1076 619 355 264 21485 2655 640 381 236 182 

7 35100 3996 1005 577 359 282 20323 2818 961 575 387 288 

8 33801 4061 1027 514 318 242 17408 1896 459 210 145 96 

9 33892 3412 724 339 215 177 17600 1909 428 223 145 103 

10 29076 3440 887 542 318 208 16294 2005 580 319 189 132 

11 28815 3632 959 444 314 245 17143 2405 700 345 247 200 

12 30583 4282 1141 662 450 375 17328 2704 770 452 297 242 

13 14538 1343 299 197 129 102 8466 769 198 121 69 53 

14 22676 2620 602 261 185 134 12680 1585 449 246 175 123 

15 24379 2771 719 390 288 214 14425 1807 526 321 222 160 

16 21142 2276 540 273 196 147 12495 1609 484 269 200 147 

17 22956 2742 632 364 230 172 13380 2200 715 409 300 231 

18 12663 1675 455 268 202 143 7941 1059 309 186 131 99 

19 11069 1426 472 337 208 190 6886 893 253 159 107 77 

20 21053 1952 408 163 123 81 11641 1265 304 141 96 69 

21 17864 2191 567 327 236 173 10676 1419 391 198 152 107 

22 13110 1287 301 139 83 56 7957 951 303 182 119 79 

23 10735 1067 281 150 103 83 6725 771 243 144 99 82 

24 14641 1141 173 112 72 37 8612 758 139 74 50 33 

25 4881 549 195 96 82 54 2674 234 67 28 25 12 

26 13037 1231 273 153 44 34 7952 885 222 123 55 37 

27 14766 1783 556 282 228 152 6059 586 139 60 53 29 

28 12513 1518 380 225 134 110 6906 826 201 107 67 50 

29 12759 1459 357 191 129 103 7477 899 321 165 108 89 

X 46641 5297 1439 789 533 401 25737 3183 883 452 289 190 

Sum 764205 88740 21305 11375 7503 5593 425899 54404 15149 8424 5624 4119 

 

2 kb: window-size = 1000, consecutive-window = 4; 5 kb: window-size = 1000, consecutive-window = 

10; 10 kb: window-size = 2000, consecutive-window = 4; 15 kb: window-size = 3000, consecutive-

window = 10; 20 kb: window-size = 4000, consecutive-window = 10; 25 kb: window-size = 5000, 

consecutive-window = 10. 
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Table B-4 Proportion of CNVR separated by less than a step. 

 

 

 

 

 

 

 

 

 

  

Sample 5 kb 

<1 kb 

10 kb 

<2 kb 

15 kb 

<3 kb 

20 kb 

<4 kb 

25 kb 

<5 kb 

A01 0.043 0.053 0.054 0.049 0.044 

A02 0.020 0.035 0.039 0.032 0.027 

A03 0.025 0.060 0.080 0.060 0.098 

A04 0.081 0.088 0.089 0.102 0.100 

A05 0.037 0.046 0.051 0.037 0.047 

N01 0.034 0.043 0.042 0.037 0.044 

N02 0.021 0.034 0.038 0.033 0.034 

N03 0.017 0.026 0.030 0.024 0.024 

N04 0.019 0.035 0.037 0.037 0.030 

N05 0.020 0.034 0.036 0.031 0.031 

N06 0.020 0.031 0.031 0.036 0.033 

N07 0.021 0.032 0.033 0.036 0.032 
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Table B-5 Comparison of length of CNVR identified by BD, CNV-seq and RS before filtration. 

 

  

Sample 
Number Mean (kb) Median (kb) 

BD CNV-seq RS BD CNV-seq RS BD CNV-seq RS 

A01 16488 1914 8733 1022.79 42.16 15.66 0.68 32.5 0.15 

A02 18237 628 36938 1058.20 39.73 3.86 0.62 30 0.19 

A03 17652 165 9517 1190.51 54 15.54 0.70 40 0.16 

A04 16018 141 10360 1306.24 59.27 13.68 0.78 37.5 0.13 

A05 18211 1271 8404 1230.63 41.24 14.68 0.67 32.5 0.15 

N01 21521 1518 11153 968.84 42.24 11.51 0.65 32.5 0.18 

N02 22017 679 40099 1008.25 46.97 4.32 0.65 30 0.19 

N03 21092 594 43922 1044.59 44.57 4.30 0.73 30 0.20 

N04 18546 603 41273 1038.73 47.64 4.41 0.70 32.5 0.19 

N05 19297 712 21012 979.40 44.95 7.04 0.65 32.5 0.19 

N06 18790 697 10892 1041.12 44.62 15.11 0.656 30 0.19 

N07 22548 790 35481 938.35 43.45 4.68 0.62 32.5 0.19 

A_ref - - 10741 - - 12.46 - - 0.13 
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Table B-6 SNP coding for additive, dominant and recessive models. Missing genotypes were coded as 0. 

There were 0.014% SNP with missing genotypes (1800~3600 out of 25412474). 

 

 Additive model Dominant model Recessive model 

A1A1 2 2 2 2 2 2 

A2A2 1 1 1 1 1 1 

A1A2 2 1 1 1 2 2 

A2A1 1 2 1 1 2 2 

Unphased 

heterozygous 

1 2 1 1 2 2 
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Table B-7 Further SNP coding in additive, dominant and recessive models for MLR, RF and RT models. 

 

 2 2 1 2 or 2 1 1 1 

Additive model 2 1 0 

Dominant model 1 1 0 

Recessive model 1 0 0 
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Table B-8 CNVR collections having MSEs < baseline MSEs of both birth weight and weaning weight for 

MLR model.  

 

CNVR-SNP set CNVR collections having MSEs < baseline MSEs of both 

birth weight and weaning weight 

1 1*2, 1*3, 3*3, 2*3, 2*4 

2 2*2, 3*2, 6*2, 7*2, 8*2, 9*2, 10*2, 12*2, 13*2, 2*3, 3*3, 5*3, 

6*3, 7*3, 8*3, 9*3, 10*3, 12*3, 13*3, 2*4, 3*4, 6*4, 7*4, 8*4, 

9*4, 10*4, 12*4, 13*4, 6*5, 8*5, 7*13, 4*15, 5*16, 6*16, 8*16, 

10*16, 6*17, 7*17, 4*18, 9*18 

3 14*11 

4 9*9, 14*9, 8*10, 13*12, 18*12, 3*13, 8*13, 13*13, 5*14, 

15*14, 1*17, 6*17, 5*21, 10*14, 10*21, 15*21, 10*22, 15*22, 

3*23, 8*23, 9*23, 11*23, 13*23, 14*23, 16*23, 20*23, 12*26 

5 1*1 

6 - 

 

CNVR collections having MSEs < baseline MSEs of both birth weight and weaning weight for MLR 

model are summarized.  
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Table B-9 Prediction in testing data set using BSLMM, RT and RF models.  

 

Phenotype CNVR-

SNP set 

Model 

BSLMM RT RF 

Birth 

weight 

1 0.99/0.27/1.45/20.97 1/0.24/-0.2/1.98 0.96/0.31/1.37/23.28 

2 0.98/0.27/1.37/23.52 1.07/0.15/-0.66/3.24 1.01/0.23/1.11/63.47 

3 0.99/0.27/1.22/35.48 1.03/0.21/5.41/8.7 1/0.25/1.89/14.2 

4 0.98/0.3/1.01/571.24 1.03/0.23/4.41/9.11 0.97/0.31/1.02/276.7 

5 0.95/0.31/1.19/39.03 1.02/0.22/2.36/11.89 1/0.25/1.11/66.37 

6 0.99/0.27/1.35/24.79 1.01/0.24/-0.02/1.03 1.02/0.21/-0.05/1.15 

Weaning 

weight 

1 0.52/0.68/1.24/31.26 0.57/0.64/-0.45/2.82 0.52/0.68/1.02/279.39 

2 0.55/0.65/1.55/18.35 0.58/0.64/-0.04/1.05 0.55/0.66/1.23/33.69 

3 0.56/0.65/1.34/25.31 0.56/0.65/-0.04/1.16 0.57/0.64/1.26/31.82 

4 0.52/0.68/1.01/565.76 0.54/0.67/-0.57/3.32 0.52/0.68/1.06/108.68 

5 0.56/0.65/1.58/17.91 0.58/0.64/-0.05/1.07 0.54/0.66/1.54/18.47 

6 0.55/0.65/1.4/22.71 0.59/0.63/-2.39/5.31 0.57/0.65/1.3/28.41 

 

MSEs of prediction in testing data set for BSLMM model, regression tree model and random forest model 

for each of the CNVR-SNP set are summarized in this table. The minimum MSE in each category were 

labeled in bold. 
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Table B-10 Standard deviations of MSEs from bootstrap to access variability of model performance 

estimates.  

 

CNVR-

SNP set 

Birth Weight Weaning Weight 

BSLMM MLR RT RF BSLMM MLR RT RF 

1 0.17 0.06 (0.01, 6) 0.06 0.01 0.12 0.04 (0.01, 6) 0.04 0.00 

2 0.21 0.06 (0.01, 42) 0.06 0.00 0.11 0.04 (0.01, 42) 0.04 0.00 

3 0.15 0.06 (0.01, 3) 0.06 0.01 0.13 0.05 (0.00, 3) 0.04 0.00 

4 0.11 0.04 (0.00,28) 0.06 0.00 0.08 0.03 (0.00,28) 0.04 0.00 

5 0.17 0.07 (0.01, 2) 0.06 0.01 0.13 0.05 (0.01, 2) 0.04 0.00 

6 0.19 0.07 (0.01, 2) 0.06 0.05 0.13 0.05 (0.01, 2) 0.04 0.00 

 

Standard deviations of MSEs (SD(MSE)) from bootstrap were summarized for BSLMM, MLR, RT and 

RF models to assess variability of model performance estimates. Note that the standard deviations of 

MSEs from BSLMM model were obtained using a different method compared to standard bootstrap used 

in other models. For MLR, the first number is the mean of SD(MSE) for all possible best CNVR 

collections, and the numbers in parentheses are the standard deviation of SD(MSE) and number of 

possible best CNVR collections. 
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APPENDIX C  

ADDITIONAL FILES 

 
Additional File C-1 Information and qPCR primers for CNVR validated. 

 

Additional Files C-2-C9 Lists of CNVR identified by each of the minimum detectable CNVR sizes. A list 

of CNVR identified by chromosome for each of the animals for each of the minimum detectable CNVR 

sizes are reported. In each of the tables, the column headers are: CNVR name, chromosome, start, end, 

size, log2 ratio and p-value. 

File name (.xlsx) Minimum detectable CNV size Parameters 

Additional File C-2 2 kb 
window-size = 1000 

consecutive-window = 4 

Additional File C-3 5 kb 
window-size = 1000 

consecutive-window = 10 

Additional File C-4 5 kb 
bigger-window = 5 

consecutive-window = 10 

Additional File C-5 10 kb 
window-size = 2000 

consecutive-window = 10 

Additional File C-6 10 kb 
window-size = 5000 

consecutive-window = 4 

Additional File C-7 15 kb 
window-size = 3000 

consecutive-window = 10 

Additional File C-8 20 kb 
window-size = 4000 

consecutive-window = 10 

Additional File C-9 25 kb 
window-size = 5000 

consecutive-window = 10 

 

Additional Files C10 The CNVR lists using Angus animal (A03) as control animal. The minimum 

detectable CNVR size for them is 25 kb. In each of the tables, the column headers are: CNVR 

name, chromosome, start, end, size, log2 ratio and p-value. 

 

Additional Files C11 The CNVR lists using Nellore animal (N05) as control animal. The minimum 

detectable CNVR size for them is 25 kb. In each of the tables, the column headers are: CNVR 

name, chromosome, start, end, size, log2 ratio and p-value. 

 

Additional File C-12 Lists of CNVR mapped to RefSeq genes in Nellore and Angus animals. Lists of 

CNVR identified by all three controls that overlap with RefSeq genes are summarized. The RefSeq genes 

are downloaded from UCSC genome database. Only genes are directly overlap with CNVR are reported. 

 

Additional File C-13 The enriched GO terms in Nellore and Angus animals. The enriched GO terms in 

Nellore and Angus animals are summarized. DAID was used for GO enrichment analysis for genes that 

overlap with CNVR identified by all three controls. 

 

Additional File C-14 CNVR overlapping with QTL in Nellore and Angus animals. The CNVR 

overlapping with QTL from AnimalQTLdb are summarized for Nellore and Angus animals. CNVR were 

identified by all three controls. 

 

Additional File C-15 Quantitative PCR results.  
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Additional File C-16 Common CNR set detected by the three control animals. 

 
Additional File C-17 CNVR identified by BreakDancer and RAPTR-SV. 

 

Additional File C-18 Common CNR set detected by the three software applications. 

 

Additional File C-19 Phenotype data of 995 animals from McGregor Genomics beef cattle population. 

 

Additional File C-20 The two sets of common CNVR and their RCN. 

 

Additional File C-21 The six CNVR-SNP sets. 

 

Additional File C-22 The IDs of CNVR associated with each SNP model and their location in the genome 

for each of the CNVR-SNP sets. 

 

Additional File C-23 The P-values of the significant SNP after Benjamini-Hochberg correction for birth 

weight. 

 

Additional File C-24 The P-values of the significant SNP after Benjamini-Hochberg correction for 

weaning weight. 
 

Additional File C-25 The RefSeq genes overlapping with CNVR-tagged SNP. 

 

Additional File C-26 Details of how the covariates were coded in the MLR model. 

 

Additional File C-27 The CNVR used in BSLMM, MLR, RT and RF models. 

 

Additional File C-28 The details of the RefSeq genes overlapping with best collections of CNVR for each 

model. 

 

Additional File C-29 The top genes overlapping with most CNVR for each model. 

 

 

 

 


