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ABSTRACT 

  Two animal models, growing pigs (n = 26) and yearling horses (n = 20), were used 

to test the hypothesis that whole body vibration (WBV) would improve bone density and 

composition. Digital radiographs with an aluminum step wedge were used to determine 

bone density in terms of radiographic bone aluminum equivalency (RBAE). Serum 

biomarkers of bone formation (osteocalcin, OC) and bone resorption (carboxy-terminal 

collagen crosslinks, CTX-I) were determined as measures of bone cell actibvity. The effect 

of dietary calcium (Ca) and phosphorus (P) on bone was also tested in the pig study.  

The maximum RBAE values for the medial or lateral cortices of the left third 

metacarpal bone were not affected by WBV in either the pig or horse models. Although 

there was not a statistically significant difference between vibrated pigs and horses and 

their respective controls, horses that were vibrated tended to have increased (P = 0.062) 

maximum RBAE values for the lateral cortices compared to controls. Pigs fed a diet with 

adequate concentrations of Ca and P tended to have increased RBAE max values for the 

medial and lateral cortices compared to those fed a diet with deficient concentrations of Ca 

and P. Mean RBAE max values for medial cortices increased (linear, P = 0.028) in pigs 

from d 0 to 60. Mean RBAE max values for the lateral cortices had a marginally 

significant increase (quadratic, P = 0.084). from d 0 to 60. 

Horses and pigs receiving vibration treatment had decreased CTX-1 concentrations 

(P = 0.003 and P = 0.044, respectively) compared to the non-vibrated control group. The 

decreased CTX-I concentrations observed may be the result of an adaptive response of 

modeling bone to whole body vibration.  
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Mean serum concentrations for CTX-1 and OC increased (quadratic, P = 0.0002 

and linear, P = 0.001, respectively) in horses from d 0 to 120 indicative of a measured 

bone turnover response. Increased CTX-I was likely the result of housing in individual 

stalls which could have contributed to increased bone resorption, as characterized by 

osteopenia during immobilization. Pigs fed a diet with adequate Ca and P had decreased 

concentration of OC from d 0 to 30, and then increased concentrations from d 30 to 60. 

Whole body vibration treatment did elicit a response in the trabecular bone 

parameters trabecular number (TbN.) and trabecular separation (Tb.Sp) in pigs. Those that 

were vibrated had lower Tb.N values and higher Tb.Sp values, suggestive of bone 

resorption, and WBV did not significantly change any cortical bone parameters.  

Normal physiological responses of bone to a low Ca, P diet were observed in this 

study. Although WBV did not elicit an osteogenic response, indications of an early local 

adaptive response were observed. The frequency and amplitude of WBV applied in this 

study was likely sufficient to elicit a bone remodeling response, but the duration of the 

study may not have captured the full cycle. 
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CHAPTER I 

INTRODUCTION 

 

Healthy bones, as assessed by adequate bone mass and strength. Underpin the 

health of an individual (animal or human). The mass and strength of bone can be positively 

(or negatively) affected by mechanical loading of the skeleton. Whole body vibration 

(WBV) is a relatively easy therapy that has the potential to load parts of the skeleton to 

achieve these adaptive responses. The body performs many activities that increase load and 

strains experienced by the skeleton. The transmission of load to bone is sensed by bone 

embedded cells (osteocytes) that respond accordingly. Load is transmitted to the skeleton 

by all manners of activity, walking, running and for this study vibration. Exogenous 

methods, such as WBV, that are practical and easily implemented, can potentially increase 

bone mass and strength, being beneficial for animals and humans alike.  

In the equine athlete, WBV could potentially be utilized to stimulate bone 

adaptation to ensure the skeletal system can withstand intense training, potentially 

resulting in decreased incidence of lameness, break down, and/or skeletal failure. In 

humans, WBV has been of great interest in the medical community as a means to 

counteract the bone loss from post-menopausal osteoporosis. The National Osteoporosis 

Foundation reports that approximately 54 million Americans have osteoporosis and low 

bone mass. This has attributed to 2 million broken bones and $19 billion in related costs 

every year (National Osteoporosis Foundation, 2015). In addition, numerous studies have 

reported the positive effects of WBV in patients with cerebral palsy, Duchenne’s muscular 

dystrophy, and pediatric leukemia, where osteopenia from disuse (unloading) is a major 
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debilitating complaint (Ward et al., 2004; Rauch, 2009). Thus, WBV is considered a 

promising therapy to counteract bone loss in humans. 

Bone research in humans and horses is largely limited to in vivo studies and can be 

complicated by mammal size and expense related to testing, therefore other animal models 

are utilized to provide supporting evidence of mammalian responses. The pig is a good 

model for both human and horse bone research due to its more manageable size, similar 

bone qualities, and relative acceptance of harvest for ex vivo testing. Therefore, a 

preliminary study was conducted with pigs to utilize techniques that yield more detailed 

insights on bone metabolism and microarchitecture.  

Additionally, skeletal integrity is vital for economic sustainability of swine 

operations. Pigs in the production cycle must remain sound or be culled to minimize 

economic loss. Many factors contribute to bone quality and strength for soundness, with 

adequate mineral intake of high priority. Calcium and phosphorus are two important 

dietary mineral considerations for adequate skeletal growth and maintenance. A balance 

must be achieved to avoid excess or deficiency when feeding minerals such as Ca and P for 

skeletal development, therefore this study also tested the effects of decreased dietary Ca 

and P levels.  

Despite the prevalence of anecdotal claims that WBV therapy improves 

physiological functions or increases bone density, conclusive evidence does not exist to 

substantiate these claims especially in the young, growing animal. The research presented 

in this �issertation was designed to assess the purportedly positive effects of WBV on 

bone metabolism, bone microarchitecture, and bone mass in growing pigs and yearling 

horses.  
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CHAPTER II  

LITERATURE REVIEW AND SUMMARY 
 
 

LITERATURE REVIEW 
 
Bone Biology 
 
 The skeleton is complex organ that consists of the cartilaginous joints, the calcified 

cartilage of growth plate, marrow cavity, cortical bone, and cancellous bone. The 

mammalian skeleton is composed of a large number of bones that are categorized into four 

groups: long bones, short bones, flat bones, and irregular bones (Bilezikian et al., 2008). 

Bone is a vital living tissue of the body and is constantly undergoing remodeling to 

maintain bone health and strength. During growth, bone undergoes a substantial amount of 

modeling to ultimately reach genetic potential of size and mass (Bilezikian et al., 2008). 

The skeleton functions to provide structural support for the body, is a mineral depot to 

maintain mineral homeostasis, and support hematopoiesis within the marrow spaces 

(Taichman et al., 2005).  

 Long bones provide structure, strength, and mobility to the body. They are 

composed of a diaphysis, a tubular shaft, that spreads into a metaphysis on each end that is 

wider than the shaft. The metaphysis and epiphyses are separated by the growth plate. The 

diaphysis is composed of dense compact bone with a ratio of cortical bone to trabecular 

bone of 95:5. The metaphysis and epiphysis are primarily composed of trabecular bone 

surrounded by a thin shell of cortical bone.  surrounding a central medullary cavity. As a 

whole, the skeleton is composed of 80% cortical bone and 20% trabecular bone 

(Hadjidakis and Androulakis, 2006). Cortical bone is dense and attributes to much of the 

strength of the skeleton. Trabecular bone takes more the form of a sponge with open spaces 
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and a network of trabecular plates and rods. Although very different in overall structure, 

both the cortical and trabecular bone of larger animals (dogs, pigs, horses, humans) are 

composed of osteons (Clarke, 2008).  

 Cortical bone is maintained and remodeled by the Haversian system. Cortical bone 

is typically less metabolically active than trabecular bone (Clarke, 2008; Kim and Park, 

2013). Cortical bone porosity is typically very low, however porosity does tend to increase 

with aging. Remodeling activity takes place on both the outer periosteal surface and the 

inner endosteal surface. Appositional growth largely takes place at the periosteum. 

Trabecular osteons are called packets. Cortical and trabecular bone typically form in a 

lamellar pattern (Bilezikian et al., 2008), which gives bone its strength and rigidity.  

 Bone undergoes substantial longitudinal and radial growth during growth and 

development. Longitudinal growth begins at the growth plate as cartilage that eventually 

proliferates into the epiphysis and diaphysis and becomes mineralized to form new bone. 

Bone modeling changes the shape of bones to better withstand mechanical forces placed on 

the skeleton (Seeman, 2009). Bone resorption and formation are not closely coupled in 

modeling of bone as formation predominates during growth (Hillam and Skerry, 1995). In 

healthy individuals, modeling predominately takes place during growth and development 

and becomes minimal in adulthood (Seeman, 2009).  

 The skeleton is continually renewed by a process of bone remodeling, which is 

resorption and formation carried out by osteoclasts and osteoblasts, respectively. 

Remodeling is continuous throughout life, serving to replace old bone or specific areas of 

micro damaged bone with new bone to sustain a bone balance (Seeman, 2009). Bone 

remodeling begins from a state of quiescence and is carried out by the coupled activity of 
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osteoclasts and osteoblasts in the basic multicellular unity (BMU) (Fig 1, step 1) 

(Hadjidakis and Androulakis, 2006). Bone resorption is mediated by osteoclasts and takes 

approximately 2 to 4 wk during each cycle (Fig 1, step 2). Osteoclast formation, activation, 

and resorption activity is regulated by numerous factors including the ratio of receptor 

activator of NF-κB ligand (RANKL) to osteoprotegerin (OPG), IL-1 and IL-6, colony-

stimulating factor (CSF), parathyroid hormone, 1,25-dihydroxyvitamin D, and calcitonin 

(Boyle et al., 2003; Blair and Athanasou, 2004). Osteoclasts secrete hydrogen ions into a 

resorption compartment created by integrin receptors linking the osteoclast membrane to 

the bone lining. As the mineral component of the bone matrix is dissolved by H+ ions, 

cathepsin K digests the matrix, which is mostly composed of type I collagen (Boyle et al., 

2003). Resorption pits made by osteoclasts on the surface of trabecular bone are called 

Howship’s lacunae and in cortical bone the BMU forms a cylindrical canal creating the 

Haversian canals. (Eriksen, 1986; Reddy, 2004). Bone resorption then transitions to 

formation through a reversal phase that can last up to 4 or 5 weeks and involves 

monocytes, osteocytes, and pro-osteoblasts (Fig 1, step 3) (Hadjidakis and Androulakis, 

2006). Bone formation takes approximately 4 to 6 mo to complete. Osteoblasts secrete 

bone matrix in the void created by osteoclasts (Fig 1, step 4). Ultimately, some osteoblasts 

become trapped in their own bone matrix giving rise to osteocytes. Osteocytes are the most 

abundant cells in bone and they communicate through an extensive canalicular network 

that connects them to bone surface lining cells, osteoblasts, and each other (Turner et al., 

2002; Buenzli, 2015). Therefore, osteocytes are thought to act as mechanosensors, 

instructing osteoclasts and osteoblasts in the remodeling process (Burger et al., 2003). 

Newly formed osteoid (unmineralized bone matrix) is mineralized to form bone resulting 
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in the completion of the remodeling cycle (Hadjidakis and Androulakis, 2006). Bone 

remodeling is essentially the same for cortical and trabecular bone (Clarke, 2008). 

 

 

Figure 1. Schematic of bone remodeling cycle.  
 
 
Horse Skeleton  

 Survival of the horse is dependent upon offspring having the ability to stand on a 

sound skeletal structure and develop rapidly. Prior to birth, the third metacarpal bone of the 

equine fetus changes from circular to conical to allow for immediate weight bearing after 

birth (Oikawa et al., 1991). Due to the proximal placement of bulky limb musculature, the 

equine appendicular skeleton is designed for minimizing energy expenditure during 

locomotion, even at a very young age. This design, however, can be to the detriment of the 

performance horse whom is plagued with musculoskeletal injuries (Hodgson et al., 2014).  
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The highest readings were obtained in the proximal shaft where the cortex was thickest. 

The velocity values gradually decreased towards the distal end where the cortex was 

thinner, particularly in animals less than 12 mo old. 

Many studies of weanling and yearling horses have shown an increase in bone 

mineral content up to the first year and a half of life, with increasing mineralization of the 

skeleton occurring with maturation (Buckingham and Jeffcott, 1987; Raub et al., 1989; 

McCarthy and Jeffcott, 1992; Nielsen et al., 1997; Reichmann et al., 2004). Cross-sectional 

area of the third metacarpal bone increases with age (Jeffcott and McCartney 1985; 

Nunamaker et al. 1989; Buckingham et al. 1992), with a sharp increase between 1d and 1yr 

of age (El Shorafa et al., 1979).  

Studies by Lawrence et al. (1994) and El Shorafa et al. (1979) have provided 

insight to properties pertaining to quality and quantity of the third metacarpal bone over 

time. Lawrence et al. (1994) used 25 horses ranging from 1 d to 27 yr old and El Shorafa et 

al. (1979) used 41 horses ranging from 1 d to 33 yr old. Lawrence et al. (1994) found 

maximum BMC was reached at 6.0 ± 1.8 yr of age and 76% of maximum BMC was 

achieved by 1 yr of age. Maximum breaking load was reached at 4.6 ± 1.8 yr of age and 

was highly correlated to BMC (r2 = 0.92). Breaking strength peaked at 6.3 ± 1.2 yr of age 

and it was well correlated with BMC (r2 = 0.84). By 1 yr old, 85% of maximum breaking 

strength was achieved. El Shorafa et al. (1979) reported that the metacarpal bone reaches 

maximum ash content, cortex area and failure stress resistance at age 4 to 7 years. Ash 

content reaches a maximum at 4 yr of age, which is maintained through age 7 yr, then 

begins to decline (El Shorafa et al., 1979). As detected by ultrasound, horses have thicker 
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cortex at the proximal shaft of the metacarpal bone and thickness decreases towards the 

distal end, especially in horses under the age of 1 yr (Jeffcott and McCartney, 1985).  

The third metacarpal bone and the twelfth rib have similar calcium levels, but differ 

significantly in phosphorus, dry fat-free ash percentage, and ash as a percentage of wet 

weight (Cooper et al., 2001). Calcium, phosphorus and magnesium in bone ash of the third 

metacarpal ranges from 35 to 39, 14 to 17 and .32 to .85%, respectively. The range of 

calcium to phosphorus ratio is 2.1 to 2.6 (El Shorafa et al., 1979). 

Pig Skeleton 

Pigs have been extensively used in biological models for humans biomedical 

research due to their distinct similarities in anatomy, physiology, metabolism and nutrition 

(Bustad, 1966; Douglas, 1972; Pong, 1978; Miller and Ullrey, 1987; Swindle et al., 2012). 

There are also some important similarities in bone composition between humans and the 

pig (Dickerson, 1962). 

 Growth in the pig requires a skeletal structure that adapts to growth in muscle and 

fat very quickly to maintain structurally integrity (Tanck et al., 2001). Trabecular bone 

adapts to loading by altering both density and architecture (Bilezikian et al., 2008). Load 

placed upon the pig skeleton increases gradually as size and weight increases, therefore 

eliciting trabecular bone adaptation. Growth plates of the proximal tibia were nearly closed 

at 104 wk old pigs in a study conducted by Tanck et al. (2001) to quantify trabecular bone 

adaptation to growth. The author equated 104 wk old pigs to be similar to about 15 yr old 

humans and 230 wk old pigs to about 30 yr old humans (Tanck et al., 2001).  

 From birth to 84 d of age (up to 31 kg live weight), growth of the long bones in the 

limb increase in shaft diameter more than length (Liu et al.). However, growth in diaphysis 
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length of the metacarpal bones is substantial during the growth period from 50 to 68 kg 

carcass weight whereas growth in thickness and density predominates from 68-92 kg  

(Cuthbertson and Pomeroy, 1962).  

 Bone ash is approximately 37.22% Ca and 18.88% inorganic P with an estimated C 

to P ratio of 1.97:1 (Eveleth, 1938; Ryan et al., 2011). Long bones such as the femur and 

rib contain 22.3% and 20.4% Ca respectively, in pigs (Field et al., 1974). 

 In the context of bone studies, pigs have some attributes that make them a good 

model for human research (Douglas, 1972; Miller and Ullrey, 1987; Swindle et al., 2012). 

In a comparative study by Aerssens et al. (1998), the dog and pig most closely aligned with 

human bone mineral content (BMC), volumetric bone mineral density (vBMD), and 

fracture stress values compared to the cow and sheep. Ash content of the cortical bone was 

similar in human, dog, and pig and of trabecular bone was similar in human, dog, pig, and 

sheep (Aerssens et al., 1998). 

Bone Remodeling Biomarkers 

The skeleton is continually renewed by a process of bone turnover, which is 

resorption and formation carried out sequentially by macrophage-derived osteoclasts and 

mesenchymal-derived osteoblasts, respectively (Bilezikian et al., 2008). Bone turnover 

markers give insight to these processes, risk of fracture, and response to treatments and can 

be complementary to other bone testing measures (Hlaing and Compston, 2014).  

Bone turnover is initiated by the resorption of bone by osteoclasts eroding bone 

mineral surfaces (Bilezikian et al., 2008). Osteoclasts attach to the bone surface, form a 

detailed and elaborate ruffled border membrane and then secrete a mixture of acid and 

proteases onto the bone surface to degrade the collagen into fragments and liberate mineral 
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and embedded growth factors (Blair and Athanasou, 2004). The measurement of collagen 

breakdown products, including hydroxyproline (OHP), hydroxylysine glycosides, and the 

collagen cross-links, provides a measure of the extent of bone resorption and insight to the 

bone turnover process (Calvo et al., 1996; Allen, 2003). Other useful biomarkers, but not 

as widely used, include enzymes, such as tartrate-resistant acid phosphatase (TRAcP) and 

cathepsin K, secreted by osteoclasts and required for the degradation of collagen type I 

(Cremers et al., 2008; Vassalle and Pagani, 2016). 

Most bone resorption markers are indicators of collagen breakdown during 

osteoclast activity. Hydroxyproline (OHP) has historically been an important marker for 

resorption and measures levels in the urine. However, OHP is present in nearly all tissues 

and lacks specificity for bone, rendering it less widely used in current research (Cremers et 

al., 2008). Collagen cross-links, pyridinoline (PYD) and deoxypyridinoline (DPD), are 

predominately in skeletal tissue and measurement in urine as a sensitive index of the extent 

of bone resorption (Seibel et al., 1992). However, DPD is more prevalent in bone and 

dentin (Eyre et al., 1984). The amino- and carboxy-terminal cross-linked telopeptides of 

type I collagen (NTX-I and CTX-I, respectively) are two widely used bone resorption 

markers that have relatively high sensitivity and specificity for the degradation of type I 

collagen. However, choosing to measure CTX-I or NTX-I must be determined with great 

care to deduce the most relevant information, as each marker varies with specific bone 

metabolism, diseases and assays (Herrmann and Seibel, 2008). Galactosyl hydroxylysine is 

a modified amino acid of collagen and is relatively specific to bone collagen degradation 

(Krane et al., 1977) however, the lack of commercial immunoassay has resulted in a lack 

of incorporation of this marker into many bone studies (Cremers et al., 2008). 
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Other useful biomarkers as indicators of bone resorption involve the enzymatic 

degradation of bone by the osteoclasts. Enzymes such as TRAcP are located in the ruffled 

border of the osteoclast membrane and in the bone resorption lacunae. Tartrate-resistant 

acid phosphatase activity has been reported to be indication of bone resorption rates (Yam, 

1974). However, its distinction from other tissue acid phosphatases in serum has yet to be 

elucidated and its stability in serum is poor, therefore creating challenges with its use 

(Cremers et al., 2008). Cathepsin K is an enzyme located in the cytoplasm of osteoclasts 

and is secreted in the resorption lacunae to induce bone collagen degradation. It has 

appealing potential to measure bone degradation but is largely understudied for clinical use 

and assays available lack sensitivity (Cremers et al., 2008).  

Bone resorption activity is followed by bone formation. Osteoblasts secrete new 

bone matrix (osteoid) that gradually fills in the resorptive cavity made by osteoclasts. 

Biomarkers involved in osteoblastic activity can be measured to determine level of bone 

formation. They include the propeptides of type I collagen, osteocalcin (OC), and bone-

specific alkaline phosphatase (BALP) (Weaver et al., 1997). 

Propeptides of type I collagen with extensions amino (N)- and carboxyl (C)-

terminal are cleaved during collagen biosynthesis resulting in the C propeptide (PICP) and 

amino-terminal propeptide (PINP). As with any collagen type I related markers, other 

contributions from soft tissue synthesis of type I collagen could potentiate differences in 

actual PICP and PINP levels. However, the rate of collagen turnover in bone is faster than 

in other tissues and therefore any changes in concentration could be assumed to reflect 

bone collagen synthesis (Cremers et al., 2008). Good correlations between serum PICP and 
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bone formation have been demonstrated though (Hassager et al., 1991; Eriksen et al., 

1993). 

Osteocalcin is a small protein synthesized by osteoblasts. It is a sensitive and 

specific marker for measuring bone formation from osteoblastic activity (Brown et al., 

1984; Charles et al., 1992; Weaver et al., 1997). In humans, a circadian rhythm in OC 

levels has been characterized by a decline during the morning to a low around noon, 

followed by a rise in the afternoon and early evening, and reached a peak nocturnally 

(Gundberg et al., 1985). Seasonal changes have also been defined with higher levels of OC 

in the winter and spring compared to summer and fall. This effect could be attributed to 

subclinical vitamin D deficiency during the winter period (Thomsen et al., 1989; Douglas 

et al., 1996; Woitge et al., 1998). Therefore, consideration must be given for timing of 

sample collections. Osteocalcin is not released during bone resorption and therefore 

measured levels can confidently be interpreted  as osteoblastic activity in bone formation 

(Price et al., 1981). 

Alkaline phosphatase is an enzyme and its two most common organ sources are 

liver and bone. Techniques specific to each isoform have been developed to distinguish 

from which source the ALP is derived. There is great variation from individual to 

individual in ALP levels (Crofton, 1982) and BALP levels are affected by age, gender, and 

hormonal status (Calvo et al., 1996).  

Bone turnover biomarkers can be very helpful to substantiate other bone analyses. 

The markers most used in the human clinical settings include OC, BALP, PINP, and CTX-

I (Bergmann et al., 2009; Brown et al., 2009). International Scientific Societies (IOF, 

IFCC, and NBHA) recommend the use of serum PINP and serum CTX-I in laboratory and 
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clinical applications for determining rate of bone formation and resorption, respectively, in 

osteoporosis. (Bergmann et al., 2009; Brown et al., 2009; Vasikaran et al., 2011; Bauer et 

al., 2012). 

All the biomarkers in the aforementioned section have been validated and 

successfully used in human clinical settings. However, additional information is still 

needed to legitimize the use all these biomarkers in animals to quantity the relationship 

between serum and urine levels and bone turnover. With animals, information on 

biomarker synthesis and secretion response to criteria such as aging, exercise, disease, 

surgery, or medical treatment is lacking (Allen, 2003). Diurnal rhythms exist for serum OC 

and urinary PYD and DPD in adult horses, confirming that time of collection should be 

considered when using bone biomarkers (Lepage et al., 1991; Black et al., 1999). 

When assessing bone turnover in the horse, serum and urine testing can be more 

sensitive, economical, and less invasive in comparison to more traditional techniques 

employed, such as radiography and bone biopsy. Over the last three decades, a minimal 

number of studies have been published on biomarker validation to quantify bone turnover 

in the horse. Biomarkers most widely accepted for use in the horse include OC, PICP, 

BALP, DPD, ICTP, and CTX (Lepage et al., 2001). 

Post hoc analysis compiled by Nielsen et al. (2008) showed that osteocalcin 

corresponds strongly with estimates of bone quality in horses. Serum BALP and 

osteocalcin concentrations were measured in foals from birth to 112 d of age by Reller et 

al. (2003). High biological variability was observed between foals, but there tended to be 

no differences in bone formation markers between sex. Thoroughbred foals had higher 

osteocalcin and BALP concentrations than Quarter Horse foals. Differences in osteocalcin 
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concentrations have also been reported between draft and warmblood horses (Lepage et al., 

1997). An inverse correlation between age and bone biomarkers PICP, ICTP, and BALP 

was observed by Price et al. (1995). Lepage et al. (1990) observed this same correlation 

between ALP, OC, and age up to 48 mo. The most significant changes in bone biomarkers 

happened over the first two years. In newborn foals, 92% of total ALP is attributed to 

BALP compared to approximately 20% in horses over 5 yr of age. A marked decrease in 

serum osteocalcin has been observed over the first 30 months of life (Lepage et al., 1990) 

and 18 months of life (Price et al., 2001) in the horse, indication that there is a significant 

slowdown in bone formation from birth to what is considered to be a mature adult horse. A 

positive correlation, as well, has been observed in BMC and OC and CTX-1 levels with 

age (Lepage et al., 1990; Fletcher et al., 2000; Reichmann et al., 2004; Donabédian et al., 

2008). Osteocalcin has been shown to decrease with onset of industry race training (0-42 

d) and then increase in the serum with continued training (42-112 d), which also followed 

RBAE values depicting BMC (Nielsen et al., 1998). Billinghurst et al. (2003) reported 

significantly higher percent changes from baseline in CTX-I serum levels for foals 

receiving forced exercise in comparison to those stalled or pastured, which would be 

suggestive of bone resorption. And finally, for the first 28 d of stalling, horses not 

exercised had decreased osteocalcin concentrations and increased urinary bone resorption 

marker DPD (Hoekstra et al., 1999), perhaps suggestive of a disuse response.  

Over a 140-d period, Hoekstra et al. (2010) compared BMC and biochemical 

markers, OC and DPD, in stalled versus pastured yearling horses, and detected an increase 

in DPD in stalled horses. Bone mineral content of the third metacarpal also decreased in 

stalled horses. Both outcomes together would be indicative of decreased loading in horses 
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that are stalled and therefore expected increase in bone resorption (Hoekstra et al., 2010). 

Other bone resorption biomarkers have been studied in the horse with the most useful 

being type I collagen degradation molecules. Draft horses have higher serum ICTP levels 

than Warmblood horses whereas, serum OC levels are lower in Draft horses than in 

Warmblood horses (Lepagea et al., 1998). Levels of serum ICTP decrease with age in 

horses and the most significant changes occur during the first year of life (Price et al., 

1995). Carboxy-terminal cross-linking telopeptide of type I collagen concentration was 

also inversely correlated with age (Carstanjen et al., 2004). As horses aged, serum levels of 

CTX-I decreased. However, in horses under a year old, CTX-I concentrations have been 

shown to significantly increase up to 11 mo old (Billinghurst et al., 2003). Horses from this 

study that had free exercise at pasture had less type I collagen degradation than those that 

received forced exercised or were box stalled with no exercise. No significant circadian 

variations in plasma CTX-I and serum osteocalcin concentrations in horses were detected 

by Carstanjen et al. (2004).  

Nutritional Influence of Macro Minerals Ca and P on Bone 

 Calcium and phosphorus are important components of bone and vital for bone 

modeling and remodeling. They also play a vital role in intracellular and extracellular 

activities of the body. Calcium is essential for maintenance of nerve tissue, resting 

membrane potential, blood clotting mechanisms, and myocardial contraction. Calcium also 

regulates activity of many enzymes, microtubule assembly, generation of ATP, release of 

hormones and neurotransmitters and muscle cell contraction (Epstein et al., 1986; 

Littledike and Goff, 1987). Phosphorus is the second most abundant essential mineral in 

the body, next to Ca. It plays a major role in bone mineralization as most P is skeletal as 
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hydroxyapatite (Ca10(PO4)6(OH)2). Approximately 10-20% of P is not in skeletal tissue 

and provides the structural framework for nucleic acids and is used in energy metabolism 

(Raina et al., 2012).  

Blood serum Ca in the pig is on average 11.93 mg/dl. Bone ash is approximately 

37.22% Ca and 18.88% inorganic P with an estimated C to P ratio of 1.97:1 (Eveleth, 

1938; Ryan et al., 2011). Complex homeostatic mechanisms maintain blood Ca to mitigate 

hypocalcemia and hypercalcemia (Fig. 2). Some Ca leaves the body permanently, such as 

through urine and feces excretion, milk expulsion, and birth of the fetus. Calcium from 

these losses must be replenished by the diet or drawn from reserves in the body. Bone 

serves a mineral depot and is used to restore Ca levels in the blood and in most cases can 

restore homeostatic conditions. Calcium concentrations in the plasma are regulated by 

primarily three hormones: parathyroid hormone (PTH), 1, 25-dihydroxyvitamin D3 

(calcitriol), and calcitonin (CT). Parathyroid hormone is secreted by the parathyroid glands 

and normally in response to hypocalcemia. It signals the renal tubules to reabsorb Ca that 

would otherwise be excreted in the urine. Parathyroid hormone also stimulates the 

conversion of 25-hydroxy vitamin D into calcitriol in the kidney. Calcitriol also works to 

increase Ca plasma levels by stimulating dietary Ca uptake from the gastrointestinal tract, 

renal tubular reabsorption of Ca, and osteoblast release of RANKL to activate osteoclasts. 

Parathyroid hormone also works on bone to indirectly stimulate osteoclast activity and 

increase Ca release into the blood. Calcitonin is therefore a counter balance to PTH, 

regulating increases in Ca plasma levels. Calcitonin is secreted from the thyroid gland and 

acts on the kidney to increase urine excretion of Ca. Calcitonin also inhibits osteoclast 

resorption of bone (Littledike and Goff, 1987).  
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Figure 2. Schematic representation of Ca regulation by parathyroid hormone (PTH), 
calcitonin, and calcitriol (active Vitamin D).  
 
 
 Phosphorus is not as tightly regulated as Ca, but still can cause consequential 

disturbances if left unchecked. It is largely regulated by actions of the kidney. By PTH 

stimulation, excretion of P is increased through the renal tubules. Calcitriol’s stimulation to 

increase bone resorption to release Ca from the bone also results in a release of P into the 

plasma (Schröder et al., 1996). 

Calcium and P are two important diet considerations for adequate skeletal growth 

and maintenance. Dietary Ca and P are bound together in the bone at a constant ratio of 

2.2:1 and the skeleton is a reserve for both Ca and P (Crenshaw et al., 2001). A balance 

must be achieved to avoid excess or deficiency when feeding minerals such as Ca and P for 

skeletal development (Doige et al., 1975). Excess mineral intake of P has resulted in 

decreased bone growth, skeletal material, and structural properties and decreased bone 



 18 

strength in growing rats despite adequate Ca intake (Huttunen et al., 2006). High levels of 

Ca and P intake in growing pigs did not increase mineral accretion in bone and decreased 

bone resorption. Therefore Fernández (1995) concluded optimal mineral supply for normal 

bone development and turnover is more complicated than simply increasing mineral 

intake. Additionally, Wu et al. (2018) demonstrated that excess dietary Ca negatively 

affected growth performance and percentage bone ash of nursery pigs when diets were 

deficient in P. Deficient bone mineralization combined with an increased bone resorption 

was observed in growing pigs fed for 32 d on diets low and very low in Ca, at 0.4% and 

0.1%, respectively (Eklou-Kalonji et al., 1999). Reducing digestible P in the diet from 3.7 

to 3.0 g/kg for 28 d did not affect aBMD in metacarpal bones of pigs fed to an average end 

weight of 26.25 kg, but feeding the deficient diet for 56 d did result in a decreased aBMD. 

Reducing digestible P in the diet from 2.8 to 1.6 g/kg for 35 d decreased skeletal aBMD in 

the whole pig and individual limbs when fed to an average end weight of 102.43 kg (Ryan 

et al., 2011). Finally, increasing attention has been placed on the environmental impact of 

feeding excess P and economic loss, therefore identifying adequate feeding rates is 

important (Poulsen, 2000). Dietary P is the third most expensive ingredient after protein 

and energy. It typically is supplied by grain-based diets which provide P bound by 

phytates. This necessitates supplementing with non-renewable sources, such as inorganic 

P, which greatly increases feed costs (Cordell et al., 2009). 

Diets deficient in Ca and P can predispose pigs to decreased bone quality and 

quantity, increasing the risk of bone fractures and resulting in economic loss. Bone mineral 

density and content was decreased in growing pigs fed diets deficient in P (Liesegang et 

al., 2002). Gonzalo et al. (2018) demonstrated that diets low in Ca and P decreased gain of 
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whole body BMC in the growing phase of pigs from 15 to 35 kg BW. Pigs on the control 

diet had a bone mineralization gain of 10.4 g/day in comparison to pigs fed a low Ca, P 

diet at 3.99 g/day. Interestingly, the same study reported a -0.014 g/day bone 

mineralization gain for vertebrae L2-L4 in pigs fed a low Ca, P diet in comparison to 

controls at 0.136 g/day for that same growing period. Overall, through four phases of 

growth (15-130 kg BW), on average, whole body bone demineralization was 23% and 

lumbar vertebrae was 30% in pigs at the conclusion of the depletion phase with low Ca, P 

diets. Vertebrae are composed of cortical and trabecular bone at a ratio of approximately 

25:75 in comparison to long bones, such as the femoral head at 50:50 and the radial 

diaphysis at 95:5. Trabecular bone is typically more metabolically active than cortical bone 

in maintaining mineral homeostasis (Clarke, 2008). Trabecular bone also has a greater 

surface-to-volume ratio that is 10 times higher than cortical bone making it more sensitive 

to early biochemical changes in bone metabolism (Kim and Park, 2013). Therefore, a more 

pronounced effect of demineralization would be expected for trabecular bone, which was 

demonstrated by Gonzalo et. al. (2018). Additionally, greater chemical composition 

changes were observed in the vertebrae of miniature piglets fed diets low in Ca and P in 

comparison to their tibia and cranium (Schanler et al., 1991). 

Several studies have characterized skeletal changes due to calcium and phosphorus 

deficiencies in growing swine. Calcium deficiency has shown to induce osteoporosis, 

hyperparathyroidism, osteodystrophy, and decreased BMC in growing pigs (Storts and 

Koestner, 1965; Shaw et al., 2006; Gonzalo et al., 2018) and rickets in piglets (Miller et al., 

1962). It has also been demonstrated that P deficiency can lead to osteoporosis in growing 

pigs (Bayley and Thomson, 1969) and rickets in piglets (Miller et al., 1962).  
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Bone Response to Mechanical Loading 

 The skeleton is highly sensitive to mechanical loading and by remodeling, it 

structurally adapts to increase bone mass and strength (Nilsson and Westlin, 1971; 

Williams et al., 1984). Wolff (1892) first proposed the alterations of the internal 

architecture from “stressing of the bones.” The mechanisms of the bone remodeling cycle 

are tightly coupled between bone resorption and formation, and defects such as 

microfractures are repaired by their coupling (Hadjidakis and Androulakis, 2006). 

Functional adaptation to mechanical loading or reduced loading, as with disuse (Zerwekh 

et al., 2009), requires local regulation or “mechanostat” to meet loading demands on the 

bone (Frost, 1987; Sugiyama et al., 2010). Deformation of the bone from loading can be 

measured through strain. Osteocytes are the most abundant bone cells in the skeleton and 

have been identified as sensors and transductors of strain (Huiskes et al., 2000; Han et al., 

2004; Buenzli, 2015). Osteocyte signaling induces bone formation through a complex 

syncytium formed with osteoblasts and lining cells (Huiskes et al., 2000; Han et al., 2004; 

Suva et al., 2005).  

 The appendicular skeleton of the horse undergoes tremendous strain especially 

during extreme locomotion (Biewener et al., 1983; Rubin et al., 2013). Functionally 

induced strain provides a means for translating demands from activity into a site-specific 

signal relevant to bone morphology (Rubin et al., 2013). Horses typically have four gaits 

that they use for locomotion including the walk, trot, canter, and gallop. Depending on the 

gait, strain is applied to the bones of the limb at different levels during movement. The 

third metacarpal bone (cannon bone) is often used to study strain in the horse due to its 

lack of muscle attachment and minimal soft tissue interference at the midshaft (Rubin et 
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al., 2013). The distribution of normal strain indicates that the third metacarpal is loaded in 

a combination of axial compression (Biewener et al., 1983) and bending (Gross et al., 

1992). Rubin et al. (2013) found that cantering resulted in the greatest maximal 

compression strain on the cannon bone, which was a 2-fold increase from the walk. The 

posterior/lateral cortex was consistently exposed to the greatest magnitude normal and 

shear strain, while the anterior/medial cortex was consistently exposed to the lowest strain 

(Rubin et al., 2013). Studies have shown an increase in bone mineral content of the medial 

and lateral cortices compared to the dorsal and palmar, indicating a greater strain perceived 

in those locations (Hiney et al., 2004). Maximum compressive strains were located within 

the posterior/medial quadrant, while tensile strains were found in the anterior/lateral aspect 

of the bone of one 5 yr old Thoroughbred (Gross et al., 1992). Bigot et al. (1996) reported 

that specimens taken from birth to 4 yr of age, from the lateral and medial cortices at mid-

diaphysis of the metacarpal bone, had greater average bending strength, average Young's 

modulus, and average yield stress than the cranial cortices. The caudal cortices gave the 

lowest values in that study (Bigot et al., 1996). Weanlings exercised at a medium trot for 

up to 20 min, 5 d/wk tended to have an increased radiographic bone density of the medial 

cortices of the third metacarpal bone (Raub et al., 1989). At mid-diaphysis, the third 

metacarpal bone appears to be designed to resist axial compression and mediolateral 

bending, as it has a greater stiffness than the anterior/posterior plane, and exhibits uniform 

resistance to torsion along its length (Piotrowski et al., 1983). Increasing bone strength and 

its resistance to strain has the possibility to reduce skeletal failure and therefore decrease 

wastage in the equine industry (Verheyen and Wood, 2010).  
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The response of bone to exercise has been documented in foals (Raub et al., 1989; 

Cornelissen et al., 1999; Firth et al., 1999) yearlings (Schryver, 1978; McCarthy and 

Jeffcott, 1992), and horses undergoing training (Firth et al., 2005; Murray et al., 2007; 

Firth et al., 2011) The impact of confinement on bone in young horses has been studied to 

some extent. Young horses entering training are typically stalled and therefore the 

repercussion of disuse on the skeleton is of great interest to the equine industry. Many have 

demonstrated that confining a horse under the age of 2 yr to a stall without exercise results 

in increased bone resorption and therefore decreased bone mineral content, decreased bone 

formation, and delayed musculoskeletal development (Mäenpää et al., 1988; Hoekstra et 

al., 1999; Bell et al., 2001; Barneveld and Weeren, 2010).   

In humans it has been demonstrated that loading of the skeleton, such as with 

exercise, can increase bone mass and strength (Nilsson and Westlin, 1971; Williams et al., 

1984). The same can be concluded for horses (Jeffcott et al., 1987; Warden et al., 2004; 

Nielsen et al., 2008). The intensity of exercise influences the level of bone response. Long, 

slow exercise, such as with endurance training, has not shown to increase bone mineral 

content as determined by radiographic bone aluminum equivalency (RBAE) in 2 yr olds 

(Spooner et al., 2008). This study, however, did not balance for gender, having all fillies in 

the control group and all geldings in the treated group. Even so, numerous publications 

examining the impact of exercise on bone mineral content have validated no effect of sex 

on results (Jeffcott et al., 1986; Lawrence et al., 1994; Nielsen et al., 1997; Nielsen et al., 

1998; Hoekstra et al., 1999; Bell et al., 2001; Hiney et al., 2004; Reichmann et al., 2004; 

Spooner et al., 2008). Weanlings exercised at a medium trot for up to 20 min, 5 d/wk 

tended to have an increased radiographic bone density of the medial cortices of the third 
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metacarpal bone (Raub et al., 1989). High intensity, short duration sprint exercise at 82 

m/d, 5 d/wk increased bone mineral content in stalled weanlings compared to pasture-

reared weanlings (Hiney et al., 2004). It has been suggested that training at low speeds will 

not necessarily stimulate appropriate bone modeling or remodeling in comparison to 

galloping (Nunamaker et al., 1990). 

RBAE values have shown BMC in Quarter Horses in typical, industry race training 

to decrease from Day 0 to 56 and then increase up to 112 days. These findings follow the 

understood bone remodeling process initiated by exercise, starting with resorption 

activities and followed by bone formation (Nielsen et al., 1998). This aligns with the 

remodeling cycle timeline in humans where bone resorption takes approximately 2 to 4 

wk, reversal can take up to 4 or 5 weeks (Hadjidakis and Androulakis, 2006), and bone 

formation takes approximately 4 to 6 mo to complete (Clarke, 2008). 

Whole Body Vibration (WBV) 

The use of vibration plates in human research in the last decade has gained 

substantial traction in hopes of finding a safe and effective treatment and prevention for 

osteoporosis and osteopenia from immobilization and disuse (Gusi et al., 2006). Whole 

body vibration (WBV) has been of great interest in the medical industry as a means to 

counteract bone loss from osteoporosis. The National Osteoporosis Foundation reports that 

approximately 54 million Americans have osteoporosis and low bone mass. This has 

attributed to 2 million broken bones and $19 billion in related costs every year (National 

Osteoporosis Foundation, 2015). Whole body vibration is a promising therapy to 

counteract osteoporosis, a prominent skeletal disease in humans. 
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Whole body vibration positively impacted bone density in young women (age 15-

20 years) with low bone mineral density (BMD; (Gilsanz et al., 2006). Specifically, 

vibration at 30 Hertz, 10 minutes a day for 12 months resulted in increased bone density as 

reflected by the 2.1% increase in lumbar vertebrae trabecular BMD and the 3.4% increase 

in femoral midshaft cortical BMD. Many variations in WBV including magnitude, 

frequency, duration, and vibration direction (i.e. vertical, oscillatory) can influence results. 

One study of particular interest, as it relates to this research, looked specifically at the 

effects of vertical vibration in postmenopausal women. Whole body vibration for six 

months at 35-40Hertz resulted in a 0.93% increase from baseline in BMD of the hip 

(Verschueren et al., 2004). Slatkovska et al. (2010) performed a met-analysis of 

randomized controlled trials (RCTs) examining WBV. Eight RCTs including 

postmenopausal women (five RCTs), young adults (one RCT), and children and 

adolescents (two RCTs) were reviewed. The regimens were heterogeneous and study 

durations were relatively short. In postmenopausal women, WBV was found to 

significantly increase hip BMD versus controls, but not spine BMD or tibia trabecular 

BMD. In young adults, WBV did not increase spine or hipbone mineral content, or tibia 

trabecular BMD. In children and adolescents, WBV significantly increased spine 

trabecular BMD (Slatkovska et al., 2010).  

Every day activity has been shown to be characterized more as low amplitude, high 

frequency on the bone (Fritton et al., 2000). Therefore, experiments testing WBV at a low 

amplitude, high frequency have been done in other species including sheep (Rubin et al., 

2001a; Rubin et al., 2001b; C. Rubin et al., 2002; Clinton Rubin et al., 2002), rats (Flieger 

et al., 1998; Oxlund et al., 2003) and mice (Xie et al., 2006). In growing mice (8 weeks 
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old), vibration exposure of short durations of low magnitude and high frequency can 

inhibit trabecular bone resorption indicating a maintenance of current bone status (Xie et 

al., 2006). Collectively, these studies demonstrate that low amplitude, high frequency 

vibration can be effectively transmitted to the bone to stimulate an adaptive response. 

  Whole body vibration research in the horse has been limited to a minimal number 

of studies since 2013. Two studies focused on physiological effects of short-term vibration 

(Carstanjen et al., 2013; Buchner et al., 2017). Nowlin et al. (2018) tested the effects of 

both acute and prolonged vibration treatment on lameness. The remaining studies tested a 

more long-term exposure to WBV ranging from 28-120 d (Hulak et al., 2015; Halsberghe, 

2017; Hyatt et al., 2017; Maher et al., 2017). The physiological responses measured varied 

widely across these studies.  

Carstanjen et al. (2013) subjected seven adult horses to 10 min of WBV at 15-21 

Hz. Clinical parameters, hematology, fibrinogen, lactate, IGF-I, GGT, creatinine, 

myeloperoxidase activity and bone biomarkers, osteocalcin and CTX-1, were measured. A 

significant decrease in cortisol and creatine kinase was observed. A drop in serum cortisol 

concentration could be indicative that stress levels did not increase as a result of exposure 

to vibration. However, other parameters, such as lactate and fibrinogen, remained 

unchanged. Most notable is that serum osteocalcin (serum marker of bone formation) and 

CTX-1 (serum marker of bone resorption) concentrations were not influenced by WBV. 

This is not surprising considering normal bone physiology. The low frequency of 15 to 21 

Hz for a single session in this study was not enough to elicit a bone remodeling response 

(Carstanjen et al., 2013). 
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 An identical vibration platform was used by Carstanjen et al. and Buchner et al. 

The vibration applied was both vertical and horizontal in direction. The entire vibration 

unit consisted of four independent platforms where each foot of the horse was positioned 

on one platform. Buchner et al. (2017) compared vibrated horses to those receiving a light 

warm up by longing. The study revealed that 10 min of vibration at 15 Hz (3 min), 22 Hz 

(4 min), and 25 Hz (3 min) did not stimulate major limb or back muscle groups in the same 

way a light warm up of longing did (Buchner et al., 2017). 

 Nowlin et al. (2018) evaluated the effect of both short-term and long-term vibration 

treatment on lameness. Six aged, Arabian horses were vibrated one time at 50 Hz for 30 

min then re-evaluated for lameness. They then continued to be vibrated 5 d/wk for 3 wk 

and were re-evaluated again for lameness. Vibrated horses did not have significant changes 

in lameness score, stride length, lameness locator, or heart rate in comparison to controls at 

any point of re-evaluation. 

 The long-term studies conducted on WBV in the horse evaluated physiological 

responses related to bone and muscle and the therapeutic effects in chronic lameness. 

Hulak et al. (2015) compared WBV to light exercise in adult horses (mean age 17±4 yr) 

that were stalled. Vibrated horses stood on a vibration plate for 45 min at 50 Hz, 5 d/wk. In 

comparison, exercised horses were worked on a mechanical panel exerciser for 60 min, 6 

times per week. After a 28 d treatment period, RBAE determined BMC to increase in both 

groups concluding that WBV maintained BMC in the same way light exercise would in 

stalled horses (Hulak et al., 2015). Although that study did not have a negative control and 

was performed in aged horses with mature skeletal structures, it took an important first step 

to assess WBV effects on the skeleton in horses.  
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 This same group of researchers took another step towards evaluating WBV in 2017 

by comparing horses exercised to those exercised and vibrated. Horses were stalled and 

radiographic bone aluminum equivalence values were calculated from radiographs taken at 

-28, 0, and 28 d. Stride length, heart rate, and serum biomarkers pyridinoline cross-links 

and osteocalcin were also evaluated. Results indicated no influence of WBV on RBAE 

values of any bone cortices or bone turnover biomarkers. However, there was a period 

effect of a decrease in RBAE lateral cortices and total bone density, which the author 

contributed to a likely effect of stalling. Stride length was also not different between the 

two groups. As suggested by anecdotal evidence, there was a significant difference in heart 

rate in horses vibrated in this study. Horses receiving vibration had a lower heart rate (-4.8 

± 2.83 bpm) than those that did not (3.0 ± 2.83 bpm) (Maher et al., 2017).  

Hyatt et al. (2017) evaluated the effect of WBV on muscle metabolites on 20 

stalled, yearling horses. Ten horses received vertical vibration of 50 Hz for 30 min, 5 d/wk 

for 120 d. All horses were allotted 30 min free turnout 5 d/wk throughout the duration of 

the study, with the treated group receiving vibration immediately following turnout and the 

control group being returned to their stalls. Serum was collected pre- and post-turnout or 

vibration on d 0, 30, 60, 90, and 120. Aspartate aminotransferase (AST) showed significant 

reduction across all serum collections in the control group. Gamma-glutamyltransferase 

values significantly declined between collections for both groups. There was also a 

treatment x day interaction for creatine kinase (CK). In conclusion, muscle metabolites 

were not significantly effected by WBV in this study (Hyatt et al., 2017). 

 Finally, Halsberghe et al. (2017) engaged in a pilot study to determine effects of 

WBV on chronic lameness in a single subject, repeated measures design. Some anecdotal 
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evidence has shown that WBV could be helpful for horses experiencing lameness. This 

study used horses with gradable lameness and a previous history of lameness to test WBV. 

They were subjected to WBV at a frequency of 40 Hz, amplitude of 0.8 mm for 30 min 

twice daily, 5 d/wk, for 60 d. A trend towards improvement in lameness was noted within 

the first 30 d. However, there was not a significant change in lameness after 30 or 60 d of 

WBV (Halsberghe, 2017). 

 To the authors’ knowledge, there are no studies published on the influence of WBV 

on bone remodeling in pigs. A handful of studies have focused on stress response to 

vibration in livestock in an effort to better quantify and improve hauling welfare. It has 

been reported by measuring heartrate in pigs, that vibration sensitivity increases with 

acceleration magnitude (1 or 3 m/s2) more than with frequency (2-18 Hz) (Perremans et al., 

1998). Frequencies of vibration on a vehicle towing a trailer with dairy cattle measured at 

85 km/h were 1.3, 5.1 and 12.6 Hz, with a secondary peak at 23 Hz along the vertical 

direction (Gebresenbet et al., 2011). It has been shown in sheep that low level, high 

frequency (20-50 Hz) mechanical strain in the form of an oscillatory platform can result in 

a 10.6% increase in bone mineral content (BMC) and trabecular number that is 8.3% 

higher over the period of a year of exposure (Clinton Rubin et al., 2002; Judex et al., 

2003).  

Methodological Approaches for Studying Bone  

 Many methodologies for assessing bone are available and vary in usefulness 

depending on the subject and information being solicited. Digital radiography is the 

primary diagnostic tool for veterinarians to use in diagnosing skeletal changes and injuries 

in livestock. It also has its usefulness in human diagnostics. Advances in digital 
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radiography have led to more defined parameters that can be assessed in comparison to 

conventional radiography. Radiographic absorptiometry (RA) and computed digital 

absorptiometry (CDA) have been shown to accurately assess bone mineral density (BMD) 

in humans (Compston et al., 1995; Bouxsein et al., 1997; Nolla et al., 2000) and horses 

(Vaccaro et al., 2012). Computed digital absorptiometry is similar to RA, using a single-

energy X-ray source, an aluminum step-wedge, and a charge-coupled device (CCD) 

detector system to automatically compute bone mineral content (BMC, g) and bone 

mineral density (BMD, g/cm2)(Nolla et al., 2000). The aluminum step-wedge is a standard 

of various known thicknesses and densities that is included in each radiograph allowing for 

calibration from image to image. The grayscale at the region of interest (ROI) is 

determined by the brightness/darkness index as calibrated by the standard (Bowen et al., 

2013). The advantage of CDA over RA is results can be obtained immediately (Bouxsein 

et al., 1997). Digital radiography has a distinct advantage over other methodologies by 

being inexpensive, portable, and easy to use in the field setting (Bowen et al., 2013). 

 Dual-energy x-ray absorptiometry (DXA) is considered the gold standard in 

diagnosing osteoporosis. It is a two-dimensional measurement that uses attenuation of x-

ray beams with two different energies. Bone mineral content of a specific region can be 

obtained with DXA. Bone mineral density can be calculated using the obtained BMC and 

scanned area. It has also proven useful in capturing bone microarchitecture of the lumbar 

spine to determine a trabecular bone score (TBS), which is useful in addition to the BMD 

measurement (Silva et al., 2014). Dual-energy x-ray absorptiometry has disadvantages that 

include inability to distinguish cortical bone from trabecular bone and variability in BMD 

based on the size of the bone (Dhainaut et al., 2016). 
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 Quantitative computed tomography (QCT) is similar to DXA in technique, 

however the detector rotates around the subject therefore allowing the construction of 

three-dimensional images from sequential two-dimensional sections (Dhainaut et al., 2016; 

Riggs, 2018) . Quantitative computed tomography also has the capabilities to determine a 

volumetric BMD (vBMD) independent of bone size and can differentiate between cortical 

and trabecular bone with high accuracy (Cornelissen et al., 1999; Boutroy et al., 2005; 

Donnelly, 2011). Bone geometry and density can be characterized as elements of bone risk 

fracture when using QCT. Bone mineral density only characterizes approximately 70 to 

75% of bone strength (Leichter et al., 1982; Ammann and Rizzoli, 2003) and therefore 

other parameters of bone such as macro- and micro-architecture and tissue quality are 

important to measure which is possible with QCT (Burghardt et al., 2011). High resolution 

computed tomography or microCT is a higher resolution technique from QCT allowing for 

more refined measurements of microarchitecture and the three-dimensional reconstruction 

array is created directly (Feldkamp et al., 1989; Dhainaut et al., 2016). Although not 

readily accessible for most practical applications, QCT and microCT have proven very 

useful in detecting bone morphological changes to detect bone fracture in horses where 

other modalities failed (Beccati et al., 2017; Cresswell et al., 2018; Whitton et al., 2018).   

 Computed tomography (CT) has been used in the veterinary practice for nearly 30 

yr, but with limited use in the equine due to the drawbacks with use. Equine scans require 

general anesthesia to place the horse in lateral recumbency to position the desired body 

part, usually the limb, within the annulus of the CT machine for imaging. Even under 

anesthesia there could be complications associated with the horse reacting violently and 

potentially damaging an expensive machine. Additionally, images are of a non-
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weightbearing limb and the whole procedure can be costly (Riggs, 2018). In an attempt to 

overcome these challenges, a few groups have been working towards designing a CT 

machine that take images while the horse remains standing. These advancements hold 

great promise, but are still in the early stages of development and few are installed to date 

(Riggs, 2018). 

 Quantitative ultrasound (QUS) gives an indirect measure of bone density although 

not directly comparable to other densitometry methods (Dhainaut et al., 2016). It measures 

velocity and frequency-dependent attenuation. Quantitative ultrasound has found a niche 

measuring peripheral skeletal sites, such as the metacarpal bone, and has gained popularity 

due to its portability and cost savings in comparison to other technologies such as DXA 

and QCT (Krieg et al., 2008). Quantitative ultrasound has found usefulness in bone 

assessment in the equine industry due to its convenience and non-radiation methods, 

making it useful in onsite and clinical settings (Lepage et al., 2001).  

 Some comparative studies have been conducted to validate use of imaging 

techniques to assess bone. Mean gray value (MGV) from radiographs of bovine metatarsal 

bones and equine femurs were compared to bone mineral density measurements taken with 

DXA. The MGV of conventional and digital radiography was highly correlated with BMD 

measurements from DXA (0.910 and 0.937, respectively) (Vaccaro et al., 2012). It has 

been noted that conventional radiographs can be limited in their usefulness to diagnose 

fractures in the horse, often failing to detect small fractures, especially those that are fairly 

recent (Kawcak et al., 1995). Comparative diagnosis between radiographs and CT of 

osteomyelitis in foals resulted in an 37% underestimation of the area of lesion by 
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radiography. Radiography projections were also 2.5-fold more variable in the measurement 

area compared with CT (Lean et al., 2018).  
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SUMMARY 

 Despite the prevalence of anecdotal claims that WBV therapy improves 

physiological functions or increases bone density, conclusive evidence does not exist to 

substantiate these claims especially in the young, growing animal. This dissertation 

research project was designed to assess the purportedly positive effects of WBV on bone 

metabolism, microarchitecture, and mineralization in growing pigs and yearling horses. To 

investigate the effects of WBV and Ca and P levels on bone quality and turnover, digital 

radiographs with an aluminum step wedge determined bone mineral content by 

radiographic bone aluminum equivalency (RBAE) and serum biomarkers of bone 

formation (osteocalcin, OC) and bone resorption (carboxy-terminal collagen crosslinks, 

CTX-I) were measured in pigs and horses.  
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CHAPTER III 

RESPONSE OF BONE MICROARCHITECTURE AND BIOMARKERS OF BONE  
 

METABOLISM TO WHOLE BODY VIBRATION AND DIETARY CALCIUM AND  
 

PHOSPHORUS IN GROWING PIGS 
 
 

INTRODUCTION 

Skeletal integrity is vital for economic sustainability of swine operations. Pigs in 

the production cycle must remain sound or be culled. Many factors contribute to bone 

quality and strength for soundness, with adequate mineral intake of high priority. Calcium 

and phosphorus are two important diet considerations for adequate skeletal growth and 

maintenance. Dietary Ca and P are bound together in the bone at a constant ratio of 2.2:1 

and the skeleton is a reserve for both Ca and P (Crenshaw et al., 2001a). A balance must be 

achieved to avoid excess or deficiency when feeding minerals such as Ca and P for skeletal 

development (Doige et al., 1975). Excess mineral intake of P has resulted in decreased 

bone growth, skeletal material, and structural properties and decreased bone strength in 

growing rats despite adequate Ca intake (Huttunen et al., 2006). High levels of Ca and P 

intake in growing pigs did not increase mineral accretion in bone and decreased bone 

resorption, therefore Fernández (1995) concluded optimal mineral supply for normal bone 

development and turnover is more complicated than simply increasing mineral intake. 

Additionally, Wu et al. (2018) demonstrated that excess dietary Ca negatively affected 

growth performance and percentage bone ash of nursery pigs when diets were deficient in 

P. Finally, increasing attention has been placed on the environmental impact of feeding 

excess P and therefore identifying adequate feeding rates is important (Poulsen, 2000). 

Diets deficient in Ca and P can predispose pigs to bone fractures resulting in economic 



 35 

loss. Bone mineral density and content was decreased in growing pigs fed diets deficient in 

P (Liesegang et al., 2002; Gonzalo et al., 2018). 

Other contributing factors to bone quality and quantity include strain and 

concussion from activities such as exercise. The body performs many activities that 

increase load and concussion to the skeleton and this includes vibration. Vibration can be 

experienced in many forms including through exercise. Perhaps one of the most common 

is vehicle transportation, or in the animal’s case, trailer transportation. Frequencies of 

vibration on a vehicle towing a trailer with dairy cattle measured at 85 km/h were 1.3, 5.1 

and 12.6 Hz, with a secondary peak at 23 Hz along the vertical direction (Gebresenbet et 

al., 2011). Vibration from daily activities can be mimicked in a controlled manner by the 

use of whole body vibration, which is a therapy that exposes an individual to mechanical 

oscillations typically by standing on a vibrating platform. Some studies have shown WBV 

to have an osteogenic effect and increase bone quality and quantity in humans and rodents 

(Oxlund et al., 2003; Verschueren et al., 2004; Gilsanz et al., 2006; Xie et al., 2006; 

Pasqualini et al., 2013; Vanleene and Shefelbine, 2013). It has been shown in sheep that 

low level, high frequency (20-50 Hz) mechanical strain in the form of a oscillatory 

platform can result in a 10.6% increase in bone mineral content (BMC) and trabecular 

number that is 8.3% higher over the period of a year of exposure (Clinton Rubin et al., 

2002; Judex et al., 2003). In growing mice (8 weeks old), vibration exposure of short 

durations of low magnitude and high frequency can inhibit trabecular bone resorption 

indicating a maintenance of current bone status (Xie et al., 2006). The use of vibration 

plates in human research in the last decade has gained substantial traction in hopes of 

finding a safe and effective treatment and prevention for osteoporosis.  
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 To the author’s knowledge, no studies have been performed in swine to evaluate 

bone quality and quantity as a result of whole body vibration therapy with the use of a 

vibration platform. To better understand this therapy’s influence on bone in humans and 

horses, a preliminary study in pigs was performed and utilized additional bone quality and 

quantity testing techniques that can be performed ex vivo including micro computed 

tomography.  

 Pigs have been extensively used as a reliable biological model for humans in 

biomedical research due to their distinct similarities in anatomy, physiology, metabolism 

and nutrition (Bustad, 1966; Douglas, 1972; Pong, 1978; Miller and Ullrey, 1987; Swindle 

et al., 2012). There are also some important similarities in bone composition between 

humans and the pig (Dickerson, 1962). The trial was conducted using growing pigs as a 

biological model to: a) determine effects of whole body vibration stimulus on changes in 

bone density and composition and b) determine changes to bone composition due to low 

and adequate dietary levels of Ca and P.  

This dissertation research examined the purported positive effects of whole body 

vibration (WBV) on bone parameters (turnover, bone mass and microarchitecture) using 

the pig model. Although evidence exists supporting the idea that WBV therapy improves 

physiological functions or increases bone density, very little conclusive evidence exists to 

substantiate these claims.  
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MATERIALS AND METHODS 

Animals 

A total of 26 Yorkshire cross pigs (initial average BW 40.2 kg) were used in this 

study. Pigs belonged to Texas A&M University and were individually housed in pens (1.32 

x 0.71 m) in the Mineral Studies room of the Nutrition and Physiology Center (NPC) at the 

Animal Science, Teaching, Research, and Education Center (ASTREC). Pigs were 

acclimated to diet and housing seven days prior to start of the trial. Ambient temperature of 

the room was maintained between 70-78°F. Use of animals was approved by the Texas 

A&M University Institutional Agricultural Animal Care and Use Committee using 

guidelines set forth by the Federation of Animal Science Societies (2015). 

Treatments  

Pigs were blocked by gender and group and balanced by initial weight, then 

assigned to one of four treatments. Treatments were arranged in a 2 × 2 factorial with 

factors consisting of dietary Ca and P concentration (adequate vs low) and WBV (no 

vibration or subject to vibration (Table 1). 

 

Table 1. Treatment group for pigs (n = 26). 

TRT Group   Diet-NRC (Ca-P)  WBV Therapy  n  

I    Adequate   No   n = 6 

II    Low-Ca, P   No   n = 7 

III    Adequate   Yes    n = 7 

IV    Low-Ca, P   Yes    n = 6 
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Pigs receiving vibration treatment were backed out of their individual pens and 

walked to the vibration plate (Equivibe, Lincoln, NE), which is a stationary platform 4 

inches off the ground. Pigs were contained on the plate with a freestanding pen and 

vibrated for 30 min per day, 3 days per week at a high frequency of 50 hertz and a low 

magnitude of 1-2mm. Two pigs separated by a panel received whole body vibration at the 

same time for 30 minutes and then were returned to their pen. Pigs alternated between 

which side they stood on the vibration plate each time they received the vibration 

treatment. Control pigs were also backed out of their individual pens and walked to the 

vibration plate and then returned to their pens with no vibration treatment. 

For dietary treatment, the adequate diet was formulated to meet all nutritional needs 

according the NRC recommendations for growing pigs (NRC, 2012). Low-Ca, P diet was 

formulated to be 0.9 g/kg less than the recommended levels of available P and Ca, but 

adequate in all other nutrients. Samples diets were collected by randomly selecting samples 

of feed at d 30 and 60. Feed samples were submitted to a commercial laboratory for 

detailed analysis (Table 2) (Cumberland Valley Analytical Services, Hagerstown, MD). 

Feed at d 60 was based on corn, soybean meal, and monocalcium P analyzed for calcium 

and phosphorus and used for diet formulation. Pigs had ad libitum access to feed and water 

throughout the trial. Feeders were monitored daily and feed was weighed, recorded, and 

added twice daily, as needed. Refusals were collected before each feeding, then dried and 

weighed to subtract from intakes recorded.   
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Table 2. Diet composition (as-fed basis) 

 Day 0 to 30 Day 30 to 60 

Ingredient Adequate Low Ca, 
P Adequate Low Ca, 

P 
Corn 75.54 76.4 80.89 81.72 
Soybean meal (48% CP)  21.77 21.71 16.83 16.77 
Monocalcium P 0.90 0.20 0.78 0.10 
Limestone 0.83 0.73 0.60 0.50 
Salt 0.35 0.35 0.35 0.35 
L-Lys HCl 0.28 0.28 0.25 0.25 
DL-Met 0.03 0.03 0.01 0.01 
L-Thr 0.06 0.06 0.05 0.05 
Vitamin and trace mineral premix1 0.25 0.25 0.25 0.25 
Calculated composition     
CP, % 16.9 17 15 15 
ME, Kcal/kg  3,291 3,318 3,307 3,333 
Ca, % 0.54 0.38 0.42 0.27 
P,% 0.54 0.40 0.50 0.35 
STTD of P, % 0.31 0.18 0.28 0.15 
Feed Analysis Composition     

Ca, % 0.67 0.44 --2 --2 
P, % 0.52 0.36 --2 --2 
1Provided per kilogram of premix, 3,520,000 IU vitamin A, 661,380 IU vitamin D3, 
1,763,680 IU vitamin E, 441 mg menadione, 2,204 mg riboflavin, 8,818 mg pantothenic 
acid, 13,228 mg niacin, 13 mg vitamin B12, 8,818 mg pantothenic acid, 88.2 mg biotin, 
441 mg thiamine, 441 mg folic acid, 882 pyridoxine, 8.9 g Mn, 50 g Fe, 50 g Zn , 6.05 g 
Cu, 240 mg I, and 120 mg Se 

2Corn, soybean meal, and monocalcium P were analyzed for calcium and phosphorus. 
Analyzed values were used for diet formulation. 
  

Physical Measurements  

On Day 0, 30, and 60 of the trial, individual body weight was measured by walking 

each pig to a calibrated standard livestock scale. Feed intake was measured and used with 

weight to calculate average daily gain (ADG), average daily feed intake (ADFI), and gain 

to feed ratio (G:F).  
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Direct Measurements of Bone - Digital Radiographic Analysis 

Radiographs of the left, third metacarpal bone and aluminum step wedge were 

taken on Day 0, 30, and 60 using a Portable Veterinary X-ray unit (MinXray, Inc, 

Northbrook, IL). A dorsal-palmar view was taken at a focal distance of 26 cm and 

exposure of 76 kVp and 0.06 ms. Images were produced by snaring the pigs in an elevated 

crate and then draping the left front leg over a 10x10 inch cassette over the edge of the 

crate. An aluminum step wedge penetrometer of 11 steps ranging from 5 mm to 35 mm in 

3mm increments was attached to each radiographic cassette on the same side. The 

aluminum step wedge was used to standardize readings and determine RBAE values using 

software validated by O’Connor-Robison and Nielsen (2013). 

Original digital radiograph files were converted to 16-bit TIFF picture files using 

the open source software ImageJ (Research Services Branch, National Institute of Mental 

Health, Bethesda, Maryland, USA.). Quantity One 1-D analysis software (BioRad, 

Hercules, CA) was then used to analyze TIFF files. Images were rotated to orient the third 

metacarpal bone in a vertical position and enlarged to life size, using the penetrometer as a 

guide. The Volume Rect Tool was used to draw a box around the area of interest. The 

same sized box was copied and pasted on each step of the AL step wedge (11 steps total) 

and on the cortical bone. The exact size of box was confirmed by the identical area 

provided by the Volume Analysis Report. Each individual bone was measured from the 

proximal end to the distal end and two boxes were placed on the cortical bone at the half 

way point on the diaphysis. One box was placed to encompass the medial aspect and the 

other placed to encompass the lateral aspect of the cortical bone. The Volume Analysis 

Report was used to obtain data from these boxes on the following parameter: 
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 Max Value (INT) - The value of the highest intensity pixel in the volume 

Values for each parameter were obtained from the boxes for each step of the AL 

step wedge and were used to develop a best-fit linear equation to predict the values of the 

medial and lateral boxes of the cortical bone.  

Radiographs were also taken of the excised metacarpal bones post-harvest. Six or 

seven bones were placed from left to right in the same orientation (proximal/distal) on each 

cassette with the AL step wedge and radiographed and analyzed in the same manner as 

described above.  

Direct Measurements of Bone - Micro Computed Tomography (CT) 

After harvest, bones were fixed in 10% neutral buffered formalin, covered, and 

sealed and stored at room temperature until imaging. High resolution micro-CT (µCT 50 

(Scanco Medical, Brüttisellen, Switzerland) was used to qualitatively and quantitatively 

analyze specimens (Hildebrand and Ruegsegger, 1997a; Hildebrand and Ruegsegger, 

1997b). Samples were scanned in a µCT 50 (Scanco Medical, Brüttisellen, Switzerland) 

with parameters: 70 kVp, 76 µA, 0.5 Al Filter, 900 ms integration time, and 20 µm voxel 

size calibrated to 5 known densities (mg/cm³) of hydroxyapatite according to approval 

guidelines (Bouxsein et al., 2010). The third metacarpal metaphysis was analyzed for 

trabecular architecture and volumetric bone mineral density (Fig. 3). Fractional bone 

volume (bone volume/total volume; BV/TV) and architectural properties of trabecular 

bone, thickness, number, and spacing were calculated for each excised left, third 

metacarpal bone. The following parameters were calculated: 

TV (mm3)-total volume  

BV (mm3)-bone volume  
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BV/TV (%)-relative bone volume  

Tb.N (1/mm)-trabecular number 

Tb.Th (mm)-trabecular thickness  

Tb.Sp (mm)-trabecular separation = marrow thickness  

Conn.D. (1/mm3)-connectivity density, normed by TV  

SMI (0 for parallel plates, 3 for cylindrical rods)-structure model index 

vBMD (g/cm3)  

DA (1= isotropic, › 1 anisotropic by definition DA = length of longest divided by shortest  
 
H-vector)-degree of anisotropy 
 
 
 

  
Figure 3. Region of interest for analysis of trabecular and cortical bone by microCT of pig 
third metacarpal bone. 
 
 

The CT images of the mid-diaphysis of the third metacarpal for cortical bone 

analysis were segmented into bone and marrow regions by applying a visually chosen, 

fixed threshold for all samples, after smoothing the image with a three-dimensional 

Gaussian low-pass filter. The outer contour of the bone was found automatically with the 

Region of interest, identified visually 
and containing trabecular bone. 

Region of interest, mid-diaphysis 
containing cortical bone.  
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built-in Scanco iterative contouring tool. Total area was calculated by counting all voxels 

within the contour, bone area by counting all voxels that were segmented as bone, and 

marrow area was calculated as total area − bone area. This calculation was performed on 

all 20 slices (1 slice = 12.5 µm), using the average for the final calculation. The outer and 

inner perimeter of the cortical midshaft was determined by a three-dimensional 

triangulation of the bone surface (BS) of the 20 slices, and cortical thickness was 

calculated (Bagi et al., 2006). The following parameters were calculated: 

Cort. CSA (mm)-cortical cross-sectional area 

Cort. Th (mm)-cortical thickness 

Endo. Perimeter (mm)-endosteal perimeter 

Bone Biomarkers 

Blood was collected on Day 0, 30, and 60 via jugular venipuncture using a 3.81 cm, 

20-gauge needle. A 10mL purple-top vacutainer (EDTA) and a 10mL red-top vacutainer 

(no additive) were collected. Red-top tubes were allowed to clot at room temperature for 

20 min, then transferred to an ice chest before being centrifuged at room temperature (<6 

hr elapsed from time of collection to harvest). Purple-top tubes were immediately 

transferred to an ice chest before being centrifuged at 2000 x g at 4°C for 20 minutes. 

Serum and plasma was collected and stored at -80°C until analysis. Serum was analyzed 

for biomarkers to measure the rate of bone turnover (remodeling). Serum concentration of 

osteocalcin was determined via Rat-MID osteocalcin enzyme immunoassay (EIA) kit 

(Immunodiagnostic Systems Holdings PLC, Gaithersburg, Maryland) as indicator of 

osteoblast activity indicating bone osteogenesis (formation). Serum concentration of 

carboxy-terminal collagen crosslinks (CTX-1) was determined via human C-telopeptide of 
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collagen (CTX) ELISA kit (Immunodiagnostic Systems Holdings PLC, Gaithersburg, 

Maryland) as an indicator of bone resorption. Kits were validated by dilutional parallelism 

and intra and inter assay variability. Evaluated samples were assayed within the linear 

range. 

Post-Harvest Carcass Measurements 

Pigs were transported on Day 60 to K & C Meat Processing (Navasota, TX) for 

harvest. Immediately following harvest, the left leg was removed from the carcass at the 

knee and transported on ice to the Endocrine Physiology Laboratory within the Department 

of Animal Science in Kleberg Animal and Food Sciences Center. The third metacarpal 

bone of each front limb was carefully dissected and cleaned of any tendons and muscles. 

Bones were then placed in containers filled with 10% neutral buffered formalin, covered, 

and sealed and stored at room temperature. Carcass measurements were taken one day 

post-harvest. Measurements included hot carcass weight. Carcass weight ranged from 60.9 

kg to 85 kg (mean = 73.3 kg). 

Statistical Analysis 

Data was analyzed as a randomized complete block design using the MIXED 

procedure of SAS (SAS Institute INC., Cary, NC) with pig as the experimental unit. Ca 

and P level, vibration treatment, and Ca and P level × vibration therapy served as fixed 

effects. Least squares means were calculated and tested for significance using the pdiff 

procedure of SAS (SAS Institute INC., Cary, NC). For radiographic AI-step wedge, 

ultrasound, and blood measurements the statistical structure was the same except day of 

measurement and all interactions served as fixed effects in addition to treatment. Day was 

analyzed using linear and quadratic polynomials for equally spaced treatments. Day of 
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measurement also served as the repeated measure with animal as the subject. Statistical 

significance was determined at P < 0.05 and P < 0.10 was considered a trend. 
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RESULTS 
 

Growth Performance and Carcass Characteristics 

 There were no whole body vibration (WBV) × diet interactions or main effects of 

diet or vibration (P > 0.05) on growth performance of finishing pigs (Table 3). There were 

no WBV × diet interactions (P > 0.05) for hot carcass weight (HCW). Pigs vibrated had 

increased (P = 0.041) HCW compared to the controls. Pigs fed diets with increased 

concentration of Ca and P had increased (P < 0.05) HCW compared to those fed diets with 

low concentrations of Ca and P. 

 
 
Table 3. Main effects of whole body vibration (WBV) and Ca and P levels on 
growth performance and carcass characteristics of finishing pigs1 
 Diet   WBV  P-Value2 

 Adequate Low-
Ca, P SEM   No Yes SEM WBV Diet 

BW, kg          

d 30 68.27 67.68 4.31  68.09 67.86 4.31 0.793 0.558 
d 60 93.77 91.77 7.73  92.77 92.77 7.72 0.986 0.264 

d 0 to 60          

ADG, kg 0.950 0.914 0.125  0.932 0.932 0.125 0.996 0.252 
ADFI, kg 2.57 2.57 0.498  2.60 2.54 0.498 0.429 0.928 
G:F 0.37 0.36 0.148  0.36 0.37 0.148 0.377 0.152 
HCW, kg 73.86 69.86 3.70   69.78 73.80 3.704 0.041 0.050 
1A total of 26 finishing pigs (average initial BW = 40.2kg) were used in a 60-d trial. 
Pigs were individually housed, n = 6 (adequate diet, no vibration) n = 7 (low Ca, P, no 
vibration) n = 7 (adequate diet, vibrated) n = 6 (low Ca, P, vibrated). 
2No WBV x diet interaction was observed (P > 0.05). 
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Radiographic Bone Aluminum Equivalency (RBAE) 

There were no WBV × diet × day or two-way interactions (P > 0.14) on max 

RBAE values for the medial or lateral cortices of the third metacarpal bone in finishing 

pigs (Table 4). There was no evidence for difference between vibrated pigs or control pigs 

on RBAE max values for the medial or lateral cortices. Pigs fed a diet with adequate 

concentrations of Ca and P tended to have increased RBAE max values for the medial and 

lateral cortices compared to those fed a diet with deficient concentrations of Ca and P. 

Mean RBAE max values for medial cortices increased (linear, P = 0.028) in pigs from d 0 

to 60. Mean RBAE max values for the lateral cortices had a marginally significant increase 

(quadratic, P = 0.084) from d 0 to 60.   
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Table 4. Main effects of whole body vibration (WBV) and Ca and P levels on radiographic bone aluminum equivalence (RBAE) max values 
of medial and lateral cortices of the third metacarpal bone in finishing pigs1  
 Diet  WBV  P-value2 

 Adequate Low-
Ca, P   Yes No SEM 

WBV 
× 

Day, 
Linear 

WBV × 
Day, 

Quadratic 

Diet × 
Day, 

Linear 

Diet × 
Day, 

Quadratic 
WBV Diet Day, 

Linear 
Day, 

Quadratic 

Medial 
Cortices3,4 

              

d 0 9.31 8.74  9.22 8.83 1.063 0.796 0.140 0.513 0.311 0.713 0.102 0.028 0.464 
d 30 9.89 9.79  9.53 10.15          

d 60 10.69 9.50  10.41 9.77          

Lateral 
Cortices3,4 

              

d 0 9.55 9.00  9.56 8.99 1.358 0.793 0.237 0.488 0.614 0.493 0.101 0.453 0.084 
d 30 10.63 10.15  10.16 10.61      

    
d 60 10.47 9.04   10.20 9.30                   
  1A total of 26 finishing pigs (average initial BW = 40.2kg) were used in a 60-d trial.     
  2No Vibration x Diet x Day interaction was observed (P > 0.05).     
   3Initial Day 0 RBAE max values used as a covariate.     
   4RBAE max values in mm Al.      
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Micro-Computed Tomography (CT) -Trabecular and Cortical Bone 

There were no WBV × diet interactions (P > 0.12) for architectural parameters of 

BV/TV, Conn D., SMI, Tb.Th, Tb. Sp, vBMD, or TRI-DA (Table 4). A WBV × diet 

interaction (P = 0.025) for Tb.N was observed. Pigs not receiving vibration treatment and 

fed either diet had similar Tb.N for the third metacarpal bone. Conversely, pigs that 

received vibration and were fed the adequate diet had increased Tb.N compared to those 

vibrated and fed a low Ca and P diet. Pigs receiving vibration treatment had increased (P = 

0.003) Tb.Sp values compared to those not vibrated. All other microCT parameters 

measured were not significantly different between pigs vibrated and control animals. Diet 

was not a significant contributor to any differences between microCT parameters measured 

between pigs fed an adequate diet and pigs fed a low Ca and P diet.  

There were no WBV × diet interactions (P > 0.355) for Cort. CSA and Endo. 

Perimeter, but there was a tendency for an interaction (P = 0.085) for Cort. Th (Table 7). 

Pigs that were not vibrated tended to have higher Cort. Th values when fed the adequate 

Ca, P diet. There was no effect (P > 0.185) of vibration or diet for all cortical bone 

parameters between treated pigs and controls.  
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Table 5. Interactive effects of whole body vibration (WBV) and Ca and P levels on microCT 
of trabecular bone of third metacarpal in finishing pigs1 

 No Vibration   WBV   P-value2 

 Adequate 
Diet 

Low-
Ca, P   Adequate 

Diet 
Low-
Ca, P SEM WBV Diet WBV × 

Diet 

BV/TV 
(%) 0.287 0.274  0.276 0.237 0.018 0.150 0.124 0.410 

Tb.N 
(1/mm) 2.05 2.136  1.975 1.721 0.082 0.002 0.247 0.025 

Tb.Th 
(mm) 0.165 0.162  0.165 0.160 0.007 0.898 0.590 0.897 

Tb.Sp 
(mm) 0.481 0.459  0.534 0.605 0.030 0.003 0.409 0.120 

Conn.D. 
(1/mm3) 12.79 12.02  13.02 11.22 1.110 0.793 0.245 0.636 

SMI  0.527 0.455  0.555 0.729 0.117 0.183 0.646 0.273 
vBMD 677.83 668.13  679.42 676.46 6.710 0.453 0.340 0.608 
TRI-DA 1.90 1.94   1.88 1.87 0.043 0.332 0.695 0.600 
1A total of 26 finishing pigs (average initial BW = 40.2kg) were used in a 60-d trial. Pigs were 
individually housed, n = 6 (adequate diet, no vibration) n = 7 (low Ca, P, no vibration) n = 7 
(adequate diet, vibrated) n = 6 (low Ca, P, vibrated). 
2No WBV x diet interaction was observed (P > 0.05). 
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Table 6. Main effects of whole body vibration (WBV) and Ca and P levels on 
microCT parameters of trabecular bone of third metacarpal in finishing pigs1 

  Diet     WBV   P-value 

 Adequate  Low-
Ca, P SEM   No Yes SEM WBV Diet 

BV/TV 
(%) 0.281 0.256 0.013  0.281 0.257 0.013 0.150 0.124 

Tb.N 
(1/mm) 2.01 1.93 0.062  2.09 1.850 0.062 0.002 0.247 

Tb.Th 
(mm) 0.165 0.161 0.005  0.163 0.162 0.005 0.898 0.59 

Tb.Sp 
(mm) 0.508 0.532 0.020  0.47 0.57 0.020 0.003 0.409 

Conn.D. 
(1/mm3) 12.91 11.62 0.758  12.41 12.12 0.758 0.793 0.245 

SMI  0.541 0.592 0.082  0.491 0.642 0.083 0.183 0.646 
vBMD 678.62 672.3 4.57  672.98 677.94 4.57 0.453 0.340 
TRI-DA 1.89 1.90 0.031   1.92 1.88 0.031 0.332 0.695 
1A total of 26 finishing pigs (average initial BW = 40.2kg) were used in a 60-d trial. 
Pigs were individually housed, n = 6 (adequate diet, no vibration) n = 7 (low Ca, P, 
no vibration) n = 7 (adequate diet, vibrated) n = 6 (low Ca, P, vibrated). 
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Table 7. Interactive effects of whole body vibration (WBV) and Ca and P levels on microCT 
parameters of cortical bone of third metacarpal in finishing pigs1 

  No WBV   WBV   P-value 

 Adequate 
Diet 

Low-
Ca, P   Adequate 

Diet 
Low-
Ca, P SEM WBV Diet WBV 

× Diet 

Cort. CSA 
(mm) 2.378 2.495  2.523 2.484 0.09 0.424 0.636 0.355 

Cort. Th 
(mm) 0.170 0.146  0.150 0.153 0.01 0.444 0.185 0.085 

Endo. 
Perimeter 
(mm) 

0.382 0.368   0.376 0.372 0.02 0.937 0.550 0.730 

1A total of 26 finishing pigs (average initial BW = 40.2kg) were used in a 60-d trial. Pigs 
were individually housed, n = 6 (adequate diet, no vibration) n = 7 (low Ca, P, no vibration) n 
= 7 (adequate diet, vibrated) n = 6 (low Ca, P, vibrated). 

 
 
Serum Bone Biomarkers - Osteocalcin (OC) and Carboxy-Terminal Collagen 
Crosslinks (CTX-1) 
 

There were no WBV × diet × day interactions (P > 0.05) on bone turnover 

biomarkers osteocalcin and carboxy-terminal collagen crosslinks (CTX-1; Table 8). There 

was a tendency (linear, P = 0.067) for interactive effects between vibration and day for 

CTX-1 concentrations. Pigs receiving vibration treatment had decreased concentrations at 

d 30 and 60 compared to pigs not vibrated (Figure 4). There was no difference in CTX-1 

concentrations between pigs fed an adequate diet and pigs fed a low Ca and P diet.  

 Interactive effects were observed between diet and day (linear, P < 0.0001) for 

osteocalcin concentration. Pigs fed an adequate diet had decreased concentration of 

osteocalcin from d 0 to 30, and then increased concentrations from d 30 to 60. Therefore, 

osteocalcin concentrations in pigs fed an adequate diet in Ca and P were similar at d 0 and 

60. Pigs fed a low Ca and P diet had increased osteocalcin concentrations from d 0 to 60 

(Figure 5). 
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Table 8. Main effects of whole body vibration (WBV) and Ca and P levels on bone biomarkers of finishing pigs1 

 Diet  WBV  P-value2 

 Adequate Low-
Ca, P   Yes No SEM 

WBV 
× 

Day, 
Linear 

WBV × 
Day, 

Quadratic 

Diet × 
Day, 

Linear 

Diet × 
Day, 

Quadratic 
WBV Diet Day, 

Linear 
Day, 

Quadratic 

CTX-13,4           
    

d 0 0.160 0.160  0.163 0.156 0.025 0.067 0.665 0.946 0.120 0.044 0.156 <0.0001 0.019 
d 30 0.160 0.220  0.169 0.211       

   
d 60 0.301 0.310  0.273 0.336       

   
Osteocalcin3,5            

   
d 0 2471.39 2499.30  2484.64 2486.04 201.28 0.978 0.504 <.0001 0.431 0.638 <.0001 <.0001 0.001 
d 30 1980.02 2911.04  2523.72 2367.34       

   
d 60 2449.81 3920.34   3188.17 3181.98                   
1A total of 26 finishing pigs (average initial BW = 40.2kg) were used in a 60-d trial. Pigs were individually housed, n = 6 
(adequate diet, no vibration) n = 7 (low Ca, P, no vibration) n = 7 (adequate diet, vibrated) n = 6 (low Ca, P, vibrated). 

    
2No Vibration x Diet x Day interaction was observed (P > 0.05).     
3Initial Day 0 biomarker values used as a covariate.  

    
4Bone resorption biomarker (ng/mL).  

    
5Bone formation biomarker (ng/mL).      
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Figure 4. Changes in serum concentrations of CTX-1 (ng/mL) over time (d) for pigs 

receiving WBV (treatment) and those not receiving vibration (Control). Means differ at a 
time with no letters in common P < 0.05. 

 

 
Figure 5. Changes in serum concentrations of osteocalcin (ng/mL) over time (d) for pigs 
fed a diet low in Ca and P (Treatment) and pigs fed a diet adequate in Ca and P (Control). 

Means differ at a time with no letters in common P < 0.05. 
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DISCUSSION 

 The primary objective of this study was to determine the effects of whole body 

vibration (WBV) and dietary levels of Ca and P on bone mass and bone microarchitecture 

in pigs. We hypothesized that WBV would have an anabolic effect on bone and therefore 

improve bone quality and quantity. Bone quality is the totality of properties that make bone 

resistant to fracture, and includes microarchitecture, accumulation of microscopic damage, 

quality of collagen, mineral crystal size, and bone turnover (Bouxsein, 2003; Fyhrie, 

2005). Robust bones defy failure while fragile bones are more prone to fail (Fritton J and 

Schaffler M, 2008). 

We also hypothesized that decreased levels of Ca and P in the diet would have 

increase bone resorption leading to deleterious effects on the bone. Deficient dietary levels 

of Ca and P have been shown to increase bone resorption, which can predispose pigs to 

lameness, fracture, and potential economic loss for the producer (Jensen et al., 2012). 

Calcium and P are two critical macro minerals for adequate skeletal growth and 

maintenance (Crenshaw et al., 2001b). Complex homeostatic mechanisms maintain blood 

Ca to mitigate hypocalcemia and hypercalcemia. Bone serves as a mineral depot for the 

body and is used to restore Ca concentrations in the blood, and in most cases can restore 

homeostatic conditions (Clarke, 2008). Results from this study confirm the expected bone 

changes due to a sustained low Ca and P diet. During hypocalcemia, immediate actions of 

the parathyroid glands, kidneys, and gastrointestinal tract bring blood Ca concentrations 

back to normal homeostatic conditions. If needed, longer term actions to restore serum Ca 

are taken by PTH and calcitriol to stimulate osteoclast activity which release Ca from 

bone. Increased osteoclastic activity leads to increased bone resorption (Littledike and 



 56 

Goff, 1987). Most bone resorption markers are indicators of collagen breakdown during 

osteoclast activity. Carboxy-terminal cross-linked telopeptides of type I collagen (CTX-I) 

is a widely used bone resorption marker that has relatively high sensitivity and specificity 

for the degradation of type I collagen. Mean concentrations for CTX-I in this study 

progressively increased over the 60 d period in pigs fed the low Ca, P diet, which would be 

expected with increased resorption activity to maintain blood Ca levels. Findings by 

Eklou-Kalonji et al., (1999) closely aligned with this study when testing a similar dietary 

Ca concentration. Deficient bone mineralization combined with an increased bone 

resorption was observed in growing pigs fed for 32 d on diets low (0.38%) and very low 

(0.11%) in Ca (Eklou-Kalonji et al., 1999). Additionally, pigs fed low P levels (4.1 g/kg 

DM) also resulted in increased serum CTX-I concentrations in a study by Sørensen et al. 

(2018). The scope of this study did not permit measurement of other important indicators 

of Ca and P status, such as blood Ca and P, along with PTH and calcitriol. However, it has 

been demonstrated that changes in blood Ca may not be detectible except in cases of 

extreme Ca deficiencies in the diet (Eklou-Kalonji et al., 1999). An increase in plasma 

PTH would be expected during hypocalcemia to increase Ca retention in the kidneys, 

conversion of 25-hydroxy vitamin D into calcitriol, and bone resorption. Consequently 

increases in plasma calcitriol would also be observed in attempt to return Ca to 

homeostatic conditions (Eklou-Kalonji et al., 1999). 

Bone resorption is coupled with bone formation (Parfitt, 1982). Osteoblasts secrete 

new bone matrix (osteoid) that is subsequently mineralized to fill in the resorptive cavity 

made by osteoclasts (Clarke, 2008). Bone formation biomarker OC can be measured to 

determine the level of osteoblastic activity (Brown et al., 1984; Charles et al., 1992; 
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Weaver et al., 1997). Osteocalcin is not released during bone resorption and therefore 

measured levels are interpreted as osteoblastic activity during bone formation (Price et al., 

1981). Serum OC concentrations were greater in pigs fed low Ca, P diet in comparison to 

those fed the control. This could be attributed to the coupled action of bone resorption and 

formation, which has been observed by others (Eklou-Kalonji et al., 1999; Shaw et al., 

2006).   

Although the bone turnover markers are demonstrative of a resorptive process, the 

dietary decrease in the Ca, P did not produce a change in micro computed tomography 

(micoCT) parameters of the excised bone in either trabecular or cortical bone. Means for 

BV/TV and Tb.N were lower in pigs fed the low Ca, P diet, while Tb.Sp was higher, 

suggestive of a bone resorption response, although not statistically significant. There was a 

tendency for both medial and lateral cortices radiographic bone aluminum equivalency 

(RBAE) values to be lower in pigs fed the low Ca, P diet indicating a decrease in bone 

mineral content, likely resulting from resorption activities. 

Bone turnover changes in response to WBV are mixed across human and rodent 

studies. Some literature has indicated bone-strengthening effects from WBV (Flieger et al., 

1998; Rubin et al., 2001b; Oxlund et al., 2003; Verschueren et al., 2004; Gilsanz et al., 

2006; Gusi et al., 2006; Xie et al., 2006) while others have shown no effect (Torvinen et 

al., 2003). In this study, WBV treatment did elicit a response change in trabecular bone 

parameters TbN. and Tb.Sp. Pigs that were vibrated had lower Tb.N values and higher 

Tb.Sp values, suggestive of bone resorption, which can be visually observed in Figure 6. 

Although not statistically significant, lower BV/TV mean percentage in vibrated pigs also 

confirms a bone resorption response to vibration. WBV did not significantly change any 
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cortical bone parameters, which is not surprising, considering that trabecular bone is more 

metabolically active than cortical bone in maintaining mineral homeostasis (Clarke, 2008). 

Trabecular bone also has a greater surface-to-volume ratio that is 10 times higher than 

cortical bone making it more sensitive to early biochemical changes in bone metabolism 

(Kim and Park, 2013). Therefore, a more pronounced effect of bone resorption would be 

expected for trabecular bone (Gonzalo et. al. (2018). These findings have been 

corroborated in sheep vibrated for 20 min/day with low-level (0.3g), high-frequency (30 

Hz) mechanical vibration (Rubin et al., 2002). No change was observed in cortical bone by 

pQCT, but changes in trabecular bone remodeling were evident (C. Rubin et al., 2002). 

Furthermore, max RBAE values for the medial and lateral cortices were not significantly 

different between vibrated pigs and controls. However, this could be attributed to the 

anatomy of the pig’s lower limb and tendency for the 2nd metacarpal bone to interfere with 

accurate readings of cortices in vivo for RBAE values for the 3rd metacarpal bone from a 

radiograph. In vivo studies using radiography to determine RBAE values should avoid 

metacarpal bones and consider other long bones such as the humerus or femur. 

Collectively, whole body vibration did not have a discernible osteogenic effect on bone in 

the pig when analyzed with imaging techniques.  
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Figure 6. Micro-computed tomography (CT) image of (a) pig (vibrated, adequate diet) 
with decreased trabecular number (TbN.) and increased trabecular separation (Tb.Sp) 
compared to (b) pig (not vibrated, adequate diet). 
  
 

Skeletal maturation in the growing animal is achieved through bone linear growth 

and bone mineral accrual. Bone remodeling functions to renew the skeleton with the 

coupled action of osteoclasts and osteoblasts (Allen and Burr, 2014), however, bone 

modeling occurs predominately during growth and functions to adapt bone to physiological 

influences or mechanical forces (Seeman, 2009). During bone modeling, bone adapts via 

independent actions of osteoblasts and osteoclasts in response to biomechanical forces 

(Clarke, 2008). Mechanical loading can inhibit bone resorption and stimulate formation 

locally in the modeling bone (Hillam and Skerry, 1995). These effects were observed in 

this study with growing pigs. Mean concentrations of CTX-I were lower in pigs receiving 

whole body vibration at 30 d and 60 d indicating bone resorption was reduced in those 

undergoing mechanical loading from the vibration. The adaptive response of bone to 

mechanical loading induces bone formation and inhibits resorption (Hillam and Skerry, 

1995) and is a localized effect from strain (Sugiyama et al., 2010). Mean concentrations of 

bone formation marker osteocalcin were higher in vibrated pigs at 30 d and 60 d, and 

although not statically significant, might be indication of bone formation, also confirming 

a b 
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a local adaptive response. Certainly, more animal units in this study could have led to a 

more discernable outcome for WBV.  

 Growth performance characteristics of all four groups were similar. Eklou-Kalonji 

et al., (1999) reported similar findings when testing deficient Ca levels in the diet. Health, 

daily gain, feed conversion, and lean meat content has been satisfactory in many studies 

testing varying levels of Ca and P deficiency. Whereas, bone growth as well as mineral 

deposition is more influenced by variations in the supply of calcium and phosphorus. 

Growth and carcass characteristics may not be ideal parameters to test whereas testing 

bone parameters may be more beneficial (Nielsen, 1972). 

Some of the more sensitive testing measures (microCT and bone biomarkers) of 

bone pointed towards bone resorption in the bone remodeling process due to whole body 

vibration. Given the duration of this 60 d study, the mechanical stimulus from vibration 

may not have been long enough to fully measure bone formation coupled with the initial 

bone resorption. Each remodeling cycle starts with bone resorption, which takes 

approximately 2 to 4 wk. Upon reversal, bone formation then takes approximately 4 to 6 

mo to complete (Clarke, 2008). Also, perhaps the influence of decreased activity from 

housing in individual crates could have also contributed to increased bone resorption, as 

characterized by osteopenia during immobilization (Bloomfield, 2010). Further studies 

should focus on longer durations to capture the entire bone remodeling response and 

increase detailed knowledge about the bone remodeling timeline in the pig. When possible, 

studies should implement in vivo microCT analysis of bone to better quantify changes over 

time.  
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Additionally, the level of frequency and amplitude applied to the skeleton by WBV 

in this study may not have been sufficient to elicit a measurable bone remodeling response 

in cortical bone with the techniques utilized. Bone tissue will adapt if forces cause 

sufficient deformation, but if those forces are lacking, bone will not respond to increase its 

resistance to deformation (Frost et al., 1998). Every day activity has been shown to be 

characterized more as low amplitude high frequency on the bone (Fritton et al., 2000). 

Experiments testing WBV at a low amplitude, high frequency have been done in other 

species including sheep (Rubin et al., 2001a; Rubin et al., 2001b; C. Rubin et al., 2002; 

Clinton Rubin et al., 2002), rats (Flieger et al., 1998; Oxlund et al., 2003) and mice (Xie et 

al., 2006). In growing mice (8 wk old), vibration exposure of short durations of low 

magnitude and high frequency inhibited trabecular bone resorption indicating a 

maintenance of current bone status (Xie et al., 2006). Collectively, these studies 

demonstrate that the low magnitude high, frequency vibration used in this study should be 

effectively transmitted to the bone to stimulate an adaptive response. 

Normal physiological responses of bone to a low Ca, P diet were observed in this 

study. And, although WBV did not elicit an osteogenic response, early indications of a 

local adaptive response were observed. The frequency and amplitude applied in this study 

was likely sufficient to elicit a bone remodeling response, the number of analyzed may also 

have been insufficient and certainly the duration of the study did not capture a full bone 

remodeling cycle. 
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CHAPTER IV  

RESPONSE OF SERUM BIOMARKERS OF BONE METABOLISM AND  
 

BONE MINERALIZATION TO WHOLE BODY VIBRATION IN THIRD  
 

METACARPAL BONE OF STALLED YEARLING HORSES 
 

 
 

INTRODUCTION 

The strength and longevity of the performance horse has long been an area of 

interest for horse researchers, managers, and owners alike. Developing management 

practices to mitigate mechanical breakdown in the athletic horse is of great importance for 

the well-being of the animal, and also economics of the horse industry. Distal limb 

fractures are a common cause of career termination for many performance horses, 

including racehorses (Norwood, 1978; Verheyen and Wood, 2010). The longevity of the 

performance horse is largely dependent upon the quality of the appendicular skeleton. 

Numerous studies have focused on the epidemiology of fatal and non-fatal fractures in the 

racehorse (Mundy, 1997; Parkin, 2008). There have been several identifiable contributing 

factors and the two factors with the most relevance to this study are age and bone maturity 

and strength. The impact of age on soundness in the racehorse has been studied at length 

(Robinson et al., 1988; Mohammed et al., 1991; Wilson et al., 1996; Carrier et al., 1998; 

Williams et al., 2010). Two-year-old Thoroughbreds undergoing hard training experience 

higher incidents of unsoundness when their distal radial epiphysis has not yet closed 

(Mason and Bourke, 1973). Mixed perceptions exist about training and competing with 

horses as a long yearling and/or two-year-olds and its impact on bone development and 

injury. Evidence from the Poland racehorse industry has shown that horses first started as 
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two year olds achieved a longer race career than those started as three years olds 

(Sobczyńska, 2007). Additionally, Henley et al. (2006) showed that risk of fatal injury in 

racing increases with age.  

Training and competition of the young horse is common, which can result in 

increased strain on developing skeletal structures. Increasing bone strength, especially in 

the young, growing horse has the potential to decrease failure of the skeletal system from 

mechanical stress due to training and competition. Horses experienced fewer injuries when 

they had greater cortical mass in the lateral and medial aspects of the third metacarpal, 

relative to the palmar aspect, at the commencement of race training in a large study 

conducted by Nielsen et al. (1997). Often these failures happen early in the training, as 

more demands are placed on a skeletal system that has not yet adapted to the new strain of 

training. Adaptation to intense exercise of the third metacarpal bone in the 2 year old horse 

has been largely attributed to changes in modeling rather than remodeling (McCarthy and 

Jeffcott, 1992; Firth et al., 2005). Upon some level of strain, bones undergo a remodeling 

process that is characterized by an increase in bone resorption. However, it has been 

demonstrated that porosity is lower at sites subjected to repetitive high magnitude loading 

(Whitton et al., 2010). During remodeling, resorption is followed by a period of bone 

formation, which ultimately results in a stronger bone to withstand strain. Resorption of 

bone is generally at its highest in the horse at about the same time the cardiovascular 

system begins to reach a level of fitness indicating adjustment to training demands 

(Nielsen et al., 1998). During this point of skeletal weakness, but cardiovascular fitness, 

training usually intensifies resulting in an increased chance of fatigue damage to the bone. 



 64 

Over the past 30 years, whole body vibration (WBV) has received considerable 

attention in the research community as a means to improve bone mass and strength and 

there have been numerous studies to determine the effects of WBV on athletic performance 

and well-being (Hortobágyi et al., 2015). Whole body vibration is a therapy that exposes 

an individual to mechanical oscillations typically by standing on a vibrating platform. 

Some studies have shown WBV to have an osteogenic effect and increase bone quality and 

quantity in humans and rodents (Oxlund et al., 2003; Verschueren et al., 2004; Gilsanz et 

al., 2006; Xie et al., 2006; Pasqualini et al., 2013; Vanleene and Shefelbine, 2013). It is 

also widely used in the equine industry, especially with athletes, and has anecdotal 

evidence of positive effects on performance and health. However, limited research in the 

horse is available to support the idea of using WBV as a therapy or treatment in the care of 

the horse.  

Whole body vibration is a non-invasive and relatively easy therapy to implement to 

economically manage an equine athlete. It could potentially be utilized to increase bone 

remodeling to ensure the skeletal system has adapted before extensive training and 

competition is superimposed on growth and development, limiting the probability of injury 

and career termination. This study is designed to address the question of whether WBV is 

an effective practice to increase bone density in young, growing horses.  

Therefore, the objective of this study was to determine if WBV stimulation improves bone 

mass in young horses before early phase training through analysis of radiographic bone 

aluminum equivalent (RBAE) values and serum biomarkers, as indication of bone 

remodeling.  
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MATERIALS AND METHODS 

 
Animals 

Yearling, Quarter Horses (n=20; 11.4 to 15.5 mo of age; mean = 13.5 mo) with 

initial BW ranging from 271.8 kg to 347.7 kg (mean = 313.8 kg) and final BW ranging 

from 312.7 kg to 395.5 kg (mean = 355.8 kg) were used in this study. Horses belonged to 

Texas A&M University or were leased from private individuals. Horses were housed in 

10×10 ft stalls at the Dick Freeman Equestrian Center. All 20 horses received 30 min of 

individual, free turnout time in a 30×30 ft dry lot 5 d/wk. Individual housing allowed for 

precise measurement of dietary intake. Horses were acclimated to diet and stalling 

regimens over a 2-wk period prior to the study. Use of animals was approved by the Texas 

A&M University Institutional Agricultural Animal Care and Use Committee using 

guidelines set forth by the Federation of Animal Science Societies (2016).  

Diet 

 Diet consisted of forage and pelleted concentrate. Forage offered was Coastal 

Bermuda grass hay (92.7% DM). Concentrate fed was a 14% crude protein pelleted feed 

(Table 9) (Producer’s Cooperative Association, Bryan, Texas). Samples were obtained by 

random core sampling of forage. Samples were submitted to a commercial laboratory for 

analysis (Table 10) (Dairy One, Ithaca, New York). Horses were fed a diet providing 100% 

NRC recommendation for DE and 110% NRC recommendation for Ca, P and protein. 

Horses had ad libitum access to water and a mineralized salt block throughout the 

experiment. Refusals and wastage were collected, dried and measured to subtract from 

intakes recorded.  
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Table 9. Concentrate nutrient analysis 
Components1  As Fed 
Crude Protein (%) 14.4 
Lysine (%) 0.70 
Fat (%) 6.0 
ADF (%) 12.2 
NDF (%) 23.9 
Calcium (%) 0.83 
Phosphorus (%) 0.53 
Magnesium (%) 0.22 
Potassium (%) 1.04 
Sodium (%) 0.58 
Iron (ppm) 146 
Zinc (ppm) 115 
Copper (ppm) 47 
Manganese (ppm)   129 
Horse DE, Mcal/lb  1.4 
1Acid detergent fiber, ADF; neutral 
detergent fiber, NDF; digestible energy, 
DE.  
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Table 10. Coastal bermudagrass hay nutritional analysis 
Components1  As Fed2 Dry Matter2 As Fed3 Dry Matter3 
Moisture (%) 7.3 - 8 - 
Dry Matter (%)  92.7 - 92 - 
Crude Protein (%) 9.9 10.7 14 15.2 
Adjusted Crude Protein (%) 9.9 10.7 14 15.2 
ADF (%) 39.4 42.5 32.2 34.8 
aNDF (%) 69.5 75 62.5 67.9 
NFC (%) 4.7 5.1 7.1 7.7 
TDN (%) 51 55 52 57 
NEL, Mcal/lb    0.34 0.36 0.42 0.46 
NEM, Mcal/lb  0.42 0.46 0.45 0.49 
NEG, Mcal/lb 0.19 0.21 0.22 0.24 
Relative Feed Value - 69 - 85 
Calcium (%) 0.35 0.37 0.35 0.38 
Phosphorus (%) 0.2 0.21 0.2 0.21 
Magnesium (%) 0.16 0.18 0.18 0.2 
Potassium (%) 0.65 0.7 0.69 0.75 
Sodium (%) 0.37 0.39 0.46 0.5 
Iron (ppm) 228 246 207 225 
Zinc (ppm) 20 21 26 28 
Copper (ppm) 6 7 11 12 
Manganese (ppm)   238 257 170 184 
Molybdenum (ppm) 0.6 0.6 0.4 0.5 
Horse DE, Mcal/lb  0.74 0.8 0.81 0.88 
1Acid detergent fiber, ADF; neutral detergent fiber, aNDF; non-fibrous carbohydrate, 
NFC; total dietary nitrogen, TDN; net energy for lactation, NEL; net energy for 
maintenance, NEM; net energy for gain, NEG; digestible energy, DE. 
2Coastal Bermudagrass hay sample submitted for analysis May 4, 2016.    
3Coastal Bermudagrass hay sample submitted for analysis September 16, 2016.   

 

Treatments  

Horses were blocked by weight and balanced for gender (geldings = 4; fillies = 16), 

then assigned to either receive WBV or serve as a control (not receiving WBV). Horses 

receiving vibration treatment (n = 10) stood on a vertical whole body vibration plate 

(Equivibe, Lincoln, NE), which is a stationary platform 4 inches off the ground, for 30 
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min/d, 5 d/wk for 120 d. Horses undergoing vibration treatment were walked to the 

vibration plate Monday-Friday. Vibration was a low magnitude (1-2mm) and high 

frequency (50 Hertz). A freestanding stock surrounded the vibration plate to ensure the 

horse remained standing and correctly positioned. The vibration plate was rotated 180 

degrees every three weeks to ensure both sides of the plate was equally represented in the 

vibration treatment. 

Physical Measurements 

Horses were weighed with a digital, platform scale on Day 0, 30, 60, 90, and 120. 

Radiographic Bone Aluminum Equivalency (RBAE) Measurements 

Digital radiographs of the left, third metacarpal bone and aluminum step wedge 

were taken on Day 0, 30, 60, 90, and 120 using a Portable Veterinary X-ray unit (MinXray, 

Inc, Northbrook, IL). A dorsal-palmar view was taken at a focal distance of 26 cm and 

exposure of 76 kVp and 0.06 ms. Images were produced by standing the horse in a stock 

and placing a 10×10 inch cassette directly in line with the area of interest. An aluminum 

(AL) step wedge penetrometer of 11 steps ranging from 5 mm to 35 mm in 3mm 

increments was attached to each radiographic cassette on the same side. Aluminum step 

wedge was used to standardize readings and determine RBAE values using software 

validated by O’Connor-Robison and Nielsen (2013).  

Original digital radiograph files were converted to 16-bit TIFF picture files using 

the open source software ImageJ (Research Services Branch, National Institute of Mental 

Health, Bethesda, Maryland, USA.). Quantity One 1-D analysis software (BioRad, 

Hercules, CA) was used to analyze TIFF files. Images were rotated to orient the third 

metacarpal bone in a vertical position using the penetrometer as a guide. The Volume Rect 
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Tool was used to draw two boxes around the area of interest, the cortices 1 cm distal to the 

nutrient foramen of the diaphysis (Fig. 7). The same sized box was copied and pasted on 

each step of the AL step wedge (11 steps total) and on the cortical bone. Exact size of box 

was confirmed by identical Area given in the Volume Analysis Report. The Volume 

Analysis Report was used to obtain data from these boxes on the following parameters: 

Volume (Intensity (INT)*mm2)-Sum of the intensities of the pixels inside the volume 

boundary x area of a single pixel. 

Area (mm2)-The total area of the volume box you have drawn in mm2. 

Mean Value (INT)-The mean intensity of the pixels inside the volume boundary. 

Min. Value (INT)-The value of the lowest intensity pixel in the volume. 

Max. Value (INT)-The value of the highest intensity pixel in the volume 

Density (INT/mm2)-The total intensity of all the pixels in the volume divided by the area 

of the volume. 

Values for each parameter were obtained from the boxes for each step of the AL 

step wedge and used to develop a best-fit linear equation to predict the values of the medial 

and lateral boxes of the cortical bone.  
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Figure 7. Digital radiograph of horse third metacarpal diaphysis next to aluminum step 
wedge. Cortices one cm distal to nutrient foramen were analyzed using Quantity One 
software to determine radiographic bone aluminum equivalency. 
 
 

Serum Bone Biomarkers 

Blood samples were collected on 0, 30, 60, 90, and 120 d via jugular venipuncture 

using a 3.81-cm, 20-gauge needle. A 10mL purple-top vacutainer (EDTA) and a 10mL 

red-top vacutainer (no additive) were collected. Red-top tubes were allowed to clot at room 

temperature for 20 min, then transferred to an ice chest before being centrifuged at room 

temperature (<6 hr elapsed from time of collection to harvest). Purple-top tubes were 

immediately transferred to an ice chest before being centrifuged at 2000 x g at 4°C for 20 

min. Serum and plasma were collected and stored at -80°C until analysis. Serum was 

analyzed for biomarkers to measure the rate of bone turnover (remodeling). Serum 

concentration of osteocalcin was determined via rat osteocalcin enzyme immunoassay 
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(EIA) kit (Immunodiagnostic Systems Holdings PLC, Gaithersburg, Maryland) as 

indicator of osteoblast activity indicating bone osteogenesis (formation). Serum 

concentration of carboxy-terminal collagen crosslinks (CTX-1) was determined via human 

C-telopeptide of collagen (CTX) ELISA kit (Immunodiagnostic Systems Holdings PLC, 

Gaithersburg, Maryland) as an indicator of bone resorption. Kits were validated by 

dilutional parallelism and intra and inter assay variability. Evaluated samples were assayed 

within the linear range. 

Statistical Analysis 

Data was analyzed as a completely randomized design using the MIXED procedure 

of SAS (SAS Institute INC., Cary, NC) with horse as the experimental unit. Day of RBAE 

measurement served as the repeated measure. The RBAE values were determined by 

developing a linear regression equation from the aluminum step-wedge penetrometer of 

varying steps of optical density. The aluminum step-wedge is a standard for each 

radiograph and therefore an equation was developed for each radiograph. The equation was 

then used to solve for the bone optical density of each cortices. Statistical significance was 

determined at P < 0.05 and P < 0.10 was considered a trend. 
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RESULTS 

Radiographic Bone Aluminum Equivalency (RBAE) 
 
 There were no vibration × day interactions (P > 0.05) on max RBAE values for the 

medial and lateral cortices of the third metacarpal bone in yearling horses (Table 10). A 

significant difference was not observed between max RBAE values for the medial cortices 

in horses that were vibrated compared to controls. However, horses that were vibrated 

tended to have increased (P = 0.062) max RBAE values for the lateral cortices compared 

to controls (Figure 8). Mean RBAE max values for medial and lateral cortices were 

unchanged from d 0 to 120 (P > 0.223). 
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Table 11. Main effects of whole body vibration (WBV) on radiographic bone aluminum 
equivalence (RBAE) max values of medial and lateral cortices of third metacarpal bone in 
yearling horses1 

 WBV   P-value2 

  Yes No SEM   
WBV × 

Day, 
Linear 

WBV × 
Day, 

Quadratic 
WBV Day, 

Linear 
Day, 

Quadratic 

Medial 
Cortices3,4 

         

d 0 25.7 25.4 0.792  0.654 0.227 0.436 0.223 0.341 
d 30 24.3 25.6        

d 60 23.8 25.7        

d 90 26.7 25.9        

d 120 23.9 23.8        

Lateral 
Cortices3,4 

         

d 0 22.4 22.1 0.928  0.480 0.730 0.062 0.973 0.906 
d 30 21.4 20.2  

      

d 60 21.3 21.0  
      

d 90 24.4 21.8  
      

d 120 21.6 20.5               
1A total of 20 yearling horses (average initial BW = 314kg) were used in a 120-d trial. 
Horses were    individually housed, n = 10 (vibrated) n = 10 (control). Means differ at a time 
with no letters in common P < 0.05. 
2No WBV x day interaction was observed (P > 0.05). 
3Day 0 radiographic bone aluminum equivalency (RBAE) max values used as a covariate. 
4Radiographic bone aluminum equivalency (RBAE) max values in mm aluminum.  
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Figure 8. Changes in RBAE max values for the lateral cortices over time (d) for horses 

receiving vibration (Treatment) and those not receiving vibration (Control). Means differ at 
a time with no letters in common; lower case, P < 0.05. 

 
 

Serum Bone Biomarkers – Osteocalcin (OC) and Carboxy-Terminal Collagen  
 
Crosslinks (CTX-I) 
 

There were no vibration x day interactions (P > 0.14) on bone turnover biomarkers 

osteocalcin and carboxy-terminal collagen crosslinks (CTX-1; Table 11). Horses receiving 

vibration treatment had decreased (P = 0.003) CTX-1 concentrations compared to horses 

that were not vibrated (Figure 9). There was no difference in osteocalcin concentrations 

between horses that were vibrated and controls except at 90 d (Figure 10). Mean 

concentrations for CTX-1 and osteocalcin increased (quadratic, P = 0.0002 and linear, P = 

0.001, respectively) in horses from d 0 to 120. 
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Table 12. Main effects of whole body vibration (WBV) on bone turnover biomarkers in 
yearling horses1 
 WBV   P-value2 

  Yes No SEM   
WBV 
× Day, 
Linear 

WBV × 
Day, 

Quadratic 
WBV Day, 

Linear 
Day, 

Quadratic 

CTX-13,4          

d 0 0.26 0.26 0.381  0.143 0.622 0.003 <0.0001 0.0002 
d 30 0.31 0.37        

d 60 0.35 0.40        

d 90 0.41 0.51        

d 120 0.31 0.40        

Osteocalcin3,5          

d 0 672.9 655.9 76.6  0.434 0.873 0.752 0.001 0.658 
d 30 536.8 654.5  

      

d 60 752.7 765.2  
      

d 90 897.5 696.6  
      

d 120 823.3 841.0               
1A total of 20 yearling horses (average initial BW = 314kg) were used in a 120-d trial. Horses 
were    individually housed, n = 10 (vibrated) n = 10 (control). Means differ at a time with no 
letters in common P < 0.05. 
2No WBV x day interaction was observed (P > 0.05). 
3Day 0 biomarker values used as a covariate. 
4Bone resorption biomarker (ng/mL). 
5Bone formation biomarker (ng/mL). 
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Figure 9. Changes in serum concentrations of CTX-1 (ng/mL) over time (d) for horses 
receiving WBV (treatment) and those not receiving vibration (control). Means differ at a 

time with no letters in common P < 0.05. 
 

 

 

Figure 10. Changes in serum concentrations of osteocalcin (ng/mL) over time (d) for 
horses receiving WBV (treatment) and those not receiving vibration (control). Means differ 

at a time with no letters in common P < 0.05. 
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DISCUSSION 

 The primary objective of this study was to determine the effects of whole body 

vibration (WBV) on radiographic bone mass and composition in yearling horses. We 

hypothesized that WBV would have an anabolic effect on bone and therefore improve 

bone quality and quantity. Bone quality is the totality of properties that make bone resist to 

fracture, such as its microarchitecture, accumulation of microscopic damage, quality of 

collagen, mineral crystal size, and bone turnover (Bouxsein, 2003; Fyhrie, 2005). Robust 

bones defy failure while fragile bones are more prone to fail (Fritton J and Schaffler M, 

2008). 

Bone turnover changes in response to WBV are mixed across human and rodent 

studies. Some literature has indicated bone-strengthening effects from WBV (Flieger et al., 

1998; Rubin et al., 2001; Oxlund et al., 2003; Verschueren et al., 2004; Gilsanz et al., 

2006; Gusi et al., 2006; Xie et al., 2006) while others have shown no effect (Torvinen et 

al., 2003). In this study, WBV treatment tended to elicit a response change in the bone 

mineral content of the lateral cortices. Max RBAE values were greater in lateral cortices of 

horses vibrated than controls. Medial cortices, however, were not significantly different 

between vibrated horses and controls. Numerical values for means of max RBAE values in 

this study would indicate that the greatest strain from whole body vibration was over the 

medial aspect of the cortex, with higher means than the lateral aspect throughout the entire 

study. This is contradictory to strain levels recorded by Rubin et al. (2013), who reported 

the posterior/lateral cortex was consistently exposed to the greatest magnitude normal and 

shear strain, while the anterior/medial cortex was consistently exposed to the lowest strain, 

indicating a higher bone mineral content would be expected in the lateral cortices 
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compared to the medial cortices. However, their study was severely limited by only 

assessing three animals (Rubin et al., 2013). Others have confirmed increased bone quality 

of the medial cortices in comparison to other areas, such as the lateral and palmar aspects 

of the third metacarpal bone (Nielsen et al., 1997). The largest recorded strains during 

galloping occur in the dorsal and medial cortices of the third metacarpal bone (Gross et al., 

1992), therefore it would be expected that exercise would cause greater mineralization to 

occur in those areas. Weanlings exercised at a medium trot for up to 20 min, 5 d/wk tended 

to have an increased radiographic bone density of the medial cortices compared to those 

that did not receive exercise (Raub et al., 1989). Additionally, the third metacarpal bone 

appears to be designed to resist axial compression and mediolateral bending, as it is has a 

greater stiffness than the anterior/posterior plane (Piotrowski et al., 1983).  

The data reported in this chapter supports the conclusions reached by Hiney et al. 

(2004). Similar to ours, that study observed that changes in RBAE values may have been 

due to formation of new bone rather than increased mineralization of preexisting bone, 

which is often the case with bone modeling in young, growing animals. Skeletal 

maturation in the growing animal is achieved through bone linear growth and bone mineral 

accrual. Bone remodeling functions to renew the skeleton with the coupled action of 

osteoclasts and osteoblasts (Allen and Burr, 2014), however, bone modeling occurs 

predominately during growth and functions to adapt bone to physiological influences or 

mechanical forces (Seeman, 2009). During bone modeling, bone adapts via independent 

actions of osteoblasts and osteoclasts in response to biomechanical forces (Clarke, 2008). 

Mechanical loading, such as exercise, can inhibit bone resorption and stimulate formation 

locally in the modeling bone (Hillam and Skerry, 1995). These effects were observed in 
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this study with growing horses. Mean concentrations of CTX-I were lower in horses 

receiving whole body vibration from 30 d to 120 d of the study, indicating bone resorption 

was reduced in those undergoing mechanical loading from the vibration. The adaptive 

response of bone to mechanical loading induces bone formation and inhibits resorption 

(Hillam and Skerry, 1995) and is a localized effect from strain (Sugiyama et al., 2010). 

Bone formation is confirmed in this study by the numerical increase in osteocalcin 

concentrations from baseline in the vibrated horses, although not statistically significant.  

 Many horse studies focus on the cortical bone, however, it has been shown that 

trabecular bone is more metabolically active than cortical bone in maintaining mineral 

homeostasis (Clarke, 2008). Trabecular bone also has a greater surface-to-volume ratio, 

being 10 times higher than cortical bone. As a result, trabecular bone is far more sensitive 

to early biochemical changes in bone metabolism (Kim and Park, 2013). Therefore, a more 

pronounced effect of bone resorption would be expected for trabecular bone (Gonzalo et. 

al. 2018). These findings are corroborated in sheep vibrated for 20 min/day with low-level 

(0.3g), high-frequency (30 Hz) mechanical vibration (Rubin et al., 2002). No change was 

observed in cortical bone by peripheral quantitative computed tomography (pQCT), but 

changes in trabecular bone remodeling were evident (Rubin et al., 2002). Trabecular bone 

has been indicated as more suitable to study the effects of external factors as turnover time 

was found to be 8 times as fast as in cortical bone (Scotti and Jeffcott, 1988). Further 

studies of changes in equine bone would be well served to incorporate more sensitive and 

detailed imaging techniques that allow for the assessment of trabecular bone, in addition to 

cortical bone. Because radiography and dual energy X-ray absorptiometry scanning are 

planar techniques, they cannot be used to illustrate and quantify features of bone 
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development except serial measurement of linear dimensions (Davies et al., 1999) and 

areal density (Fujita, 2002). Bone mineral density only characterizes approximately 70 to 

75% of bone strength (Ammann and Rizzoli, 2003) and therefore other parameters of bone 

such as macro- and micro-architecture and tissue quality are important to measure, which 

is possible with more advanced technologies (Burghardt et al., 2011). Use of more 

sensitive modalities to detect changes may be the difference between diagnosing 

microdamage and mitigating catastrophic failure (Morgan et al., 2006). Even so, digital 

radiography still has distinct advantages over other methodologies by being inexpensive, 

portable, and easy to use in the field setting (Bowen et al., 2013). Additionally, RBAE 

values have been highly correlated with bone mass (Meakim et al., 1981) which, in turn, 

has been described as the best measurable determinant of bone strength in horses. 

To the author’s knowledge, no equine study has used the rat EIA for osteocalcin 

measurements in the horse. In humans, a strong correlation was obtained between CTX-I 

concentrations obtained with serum Serum CrossLaps ELISA and sandwich CTX-I ECLIA 

(Christgau et al., 1998). Carstanjen et al. (2004) then found good correlation between 

expected equine serum CTX-I concentrations and measured serum CTX-I concentrations 

by CTX-I ECLIA. This study used the Serum CrossLaps ELISA to measure CTX-I 

concentrations, and therefore, concentrations obtained in this study are close in range to 

those obtained by Carstanjen et al. (2004) for similar age of horses. Many bone biomarker 

results in the horse are only reported as percentage change from baseline, thereby making 

it difficult to make inferences about actual concentrations measured between this study and 

others. The observed increases in CTX-1 concentrations across all horses from 0 d to 90 d 

in this study could be indicative of normal physiological response to disuse. The influence 
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of decreased activity from housing in individual stalls could have contributed to increased 

bone resorption, as characterized by osteopenia during immobilization (Bloomfield, 2010). 

Confinement of foals inhibited musculoskeletal development, but brief exercise in addition 

to confinement or continual pasture exercise resulted in bone properties that were more 

resistant to deformation (Barneveld and Weeren, 2010). Many investigators have 

demonstrated that confining a horse under the age of 2 yr to a stall without exercise results 

in increased bone resorption and therefore decreased bone mineral content, decreased bone 

formation, and delayed musculoskeletal development (Mäenpää et al., 1988; Hoekstra et 

al., 1999; Bell et al., 2001; Barneveld and Weeren, 2010).  

While osteocalcin levels in this study did not confirm a decrease in bone formation, 

other studies have found no difference to be noted in osteocalcin concentrations in 

yearlings stalled for 84 d in comparison to those turned out on pasture (Hoekstra et al., 

1999). Additionally, urinary concentrations of deoxypyridinoline, a bone resorption 

marker, were greater at d 28 in horses housed in stalls than on pasture. In this same study, 

RBAE values for medial and lateral cortices also tended to be lower in horses confined to a 

stall than those turned out to pasture (Hoekstra et al., 1999). Additionally, a study in 2017 

compared horses exercised to those exercised and vibrated. Results indicated no influence 

of WBV on RBAE values of any bone cortices or bone turnover biomarkers, pyridinoline 

cross-links and osteocalcin. However, there was a period effect of a decrease in RBAE 

lateral cortices, which the author also contributed to a likely effect of stalling (Maher et al., 

2017). Medial and lateral cortices max RBAE means were lower from 0 d to 120 d in all 

horses in this study confirming that housing yearling horses in stalls, with limited access to 

exercise, may decrease bone mineral content.  
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Finally, the level of frequency and amplitude applied to the skeleton by WBV in 

this study may not have been sufficient to elicit a measurable bone remodeling response in 

cortical bone with the techniques utilized. Bone tissue will adapt if forces cause sufficient 

deformation, but if those forces are lacking, bone will not respond to increase its resistance 

to deformation (Frost et al., 1998). Hulak et al. (2015) compared WBV to light exercise in 

adult horses (mean age 17±4 yr) that were stalled. Vibrated horses stood on a vibration 

plate for 45 min at 50 Hz, 5 d/wk, which was a slight increase in duration from this study 

at 30 min per vibration session. Hulak et al. (2015) exercised a second group of horses on a 

mechanical panel exerciser for 60 min, 6 times per wk. After a 28-d treatment period, 

RBAE determined BMC to increase in both groups concluding that WBV maintained 

BMC in the same way light exercise would in stalled horses (Hulak et al., 2015). Every 

day activity has been shown to be characterized more as low amplitude high frequency on 

the bone (Fritton et al., 2000). Experiments testing WBV at a low amplitude, high 

frequency have been done in other species including sheep (Rubin et al., 2001a; Rubin et 

al., 2001b; C. Rubin et al., 2002; Clinton Rubin et al., 2002), rats (Flieger et al., 1998; 

Oxlund et al., 2003) and mice (Xie et al., 2006). In growing mice (8 weeks old), vibration 

exposure of short durations of low magnitude and high frequency inhibited trabecular bone 

resorption indicating a maintenance of current bone status (Xie et al., 2006). Collectively, 

these studies demonstrate that the low magnitude, high frequency vibration used in this 

study should be effectively transmitted to the bone to stimulate an adaptive response. 

Responses observed from 0 d to 60 d in RBAE values for both medial and lateral 

cortices closely align with a study conducted by Nielsen et al. (1997) in 53 Quarter Horses 

put into race-training at 18 mo of age. A decrease in both medial and lateral cortices RBAE 



 83 

values were noted from 0 d to 62 d, with 0 d being the commencement of training. In this 

study, RBAE values also decreased from 0 d to 60 d. The decline in RBAE values are 

indicative of a bone remodeling response to exercise. Each remodeling cycle starts with 

bone resorption, which takes approximately 2 to 4 wk (Clarke, 2008). Bone resorption then 

transitions to formation through a reversal phase that can last up to 4 or 5 wk (Hadjidakis 

and Androulakis, 2006), and finally bone formation takes approximately 4 to 6 mo to 

complete the remodeling cycle (Clarke, 2008). Given the duration of this 120 d study, the 

mechanical stimulus from vibration may not have been long enough to fully measure bone 

formation coupled with the initial bone resorption. Further studies should focus on longer 

durations to capture the entire bone remodeling response and increase detailed knowledge 

about the bone remodeling timeline in the young horse. 
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CHAPTER V 
 

SUMMARY 
 
 
 

 Mechanical loading of the skeleton can have positive effects on bone by increasing 

mass and strength. Whole body vibration (WBV) is a relatively easy therapy that has the 

potential to load the skeleton to produce adaptive responses. It has been implemented in 

the equine industry to manage horse athletes, but also in human health as a method to 

counteract bone loss, such as with osteoporosis. This research project assessed the 

purportedly positive effects of whole body vibration (WBV) on bone density in the horse. 

Despite the prevalence of claims that WBV therapy improves physiological functions or 

increases bone density in horses, very little research exists to substantiate these claims.  

A preliminary trial was conducted with growing pigs, which began to define the 

effects of WBV and Ca and P levels on bone mass and composition. Since horses are not 

routinely slaughtered in the United States, the preliminary study in pigs allowed for 

utilization of additional bone testing techniques, including micro computed tomography 

(CT), which was performed on the excised third metacarpal bone.  

 This study defined the outcomes of bone remodeling in response to WBV as a form 

of mechanical loading. In both studies, bone biomarkers osteocalcin (OC) and carboxy-

terminal collagen crosslinks (CTX-I) were utilized to measure serum changes in bone 

turnover. Future studies on bone, especially in equine studies, should consider use of bone 

biomarkers to measure changes.  

 MicroCT was utilized in the pig study to provide detailed information regarding 

bone microstructure and changes in both trabecular and cortical bone in response to WBV. 
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Equine studies would be well served to evaluate changes in trabecular bone, in addition to 

cortical bone, to establish an overall perspective of bone turnover. Unfortunately use of 

computed tomography (CT) is limited in the horse, and use of microCT necessitates an 

invasive bone biopsy. However, advancement in CT technology for use in horses is on the 

horizon. In the meantime, radiographic bone aluminum equivalency (RBAE) values 

demonstrate measurable changes in cortical bone of the horse, but not necessarily in the 

pig when evaluating the third metacarpal bone.  

 Studies utilizing young, growing animals to evaluate changes in the skeleton need 

to address changes observed due to modeling and remodeling. Both are active parts of the 

developing skeleton and must be considered when drawing conclusions based on data 

collected. Reponses measured in this study pointed toward changes observed in both 

modeling from growth and remodeling from mechanical stimulation.  

Implications 

 There are still clear limitations to fully defining the effects of WBV in the horse, 

especially its influence on the skeleton. It continues to be widely used in the industry as 

anecdotal evidence grows in support of its positive effects. Whole body vibration has 

potential to be useful in equine therapy, however placebo controlled trials are lacking to 

fully define the effects of WBV.  

 Studies in humans have typically exposed patients to 6 mo to 1 yr of WBV, 

therefore the duration of this study may not have been long enough to fully capture the 

effects of WBV. However, the amount of time to skeletal maturity in animals, like the pig 

and horse, is substantially shorter than that in humans. A duration of 120 d in horses and 
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60 d in pigs was predicted to be adequate to measure a skeletal response to WBV. Future 

studies should consider a longer experimental duration to capture the full bone response.  

 The amplitude and frequency used in this study has shown to maintain bone 

mineral content in stalled horses (Hulak et al., 2015), however an osteogenic effect has yet 

to be demonstrated in horses. The level of strain induced by WBV at different amplitudes 

and frequencies on specific bones is an important factor that future studies should consider 

defining. The horse appendicular skeleton undergoes tremendous amounts of strain during 

fast locomotion and the skeletal response is osteogenic (Nunamaker et al., 1990; Hiney et 

al., 2004). Perhaps low amplitude, high frequency WBV may not be enough strain to elicit 

an osteogenic response in the horse. There are numerous combinations of strain, session 

length of WBV, and duration of exposure to WBV that have yet to be studied. It would 

also be useful for future studies to measure the vibration intensity at certain locations on 

the vibration platform. Vibration across the platform may lack uniformity and therefore 

horse stance on the platform may influence how much strain is actually being transduced 

across the body. 

 Mechanical loading of the modeling (growing) skeleton may result in the best 

opportunity for improvement of skeletal strength. Modeling changes the shape of bones to 

better withstand mechanical forces placed on the skeleton (Seeman, 2009). Horses under 

the age of 2 yr experience a time of rapid growth and bone mineralization (El Shorafa et 

al., 1979), which is a window of opportunity for skeletal adaptation to loading. Future 

studies in growing horses need to more closely define outcomes that are a modeling 

response or a remodeling response. 
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 Changes in trabecular bone, in addition to cortical bone, can be insightful to 

interpretation of bone response to loading. Future horse studies would be well served to 

define changes in trabecular bone. Unfortunately, methods for analyzing trabecular bone in 

the horse are limited. Use of computed tomography (CT) is expensive, complicated, and 

not practical. However, improvements of CT technology for use in horses are on the 

horizon, which may make it more accessible. In the meantime, careful considerations need 

to be implemented to minimize analytical variation in studies utilizing radiographs. 

Radiographs need to be consistently placed and executed from animal to animal. This 

includes capturing images at the same distance from each specimen and placing 

radiographic cassette in an immobile stand that allows for the consistent angles during 

radiography. 

 In vivo studies using radiography to determine RBAE values in pigs should avoid 

the metacarpal bones and consider using other long bones, such as the humerus or femur. 

The anatomy of the pig’s lower limb results in a tendency for the 2nd metacarpal bone to 

interfere with accurate readings of cortices for the 3rd metacarpal bone from a radiograph. 

The 3rd metacarpal bone in the horse is an excellent specimen to evaluate bone changes 

with radiography due to minimal soft tissue and bone interferences, however it should be 

avoided in the pig.  
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APPENDIX 

Appendix Table 1. Radiographic bone aluminum equivalency (RBAE) max calculated values using aluminum step wedge with 1 to 
11 steps. Values obtained from dorsal/palmar (DP) radiograph evaluating medial and lateral cortices of third metacarpal bone for each 
yearling horse at 0 d.  

 

 

 

 

Horse Day

Vibration 
(A=Yes; 
B=No) 5 8 11 14 17 20 23 26 29 32 35

Difference 
first, last 
AL step m b

X-Medial 
Cortices

Y-Medial 
Cortices

X-Lateral 
Cortices

Y-Lateral 
Cortices

1 0 B 446 618 728 916 1130 1634 2201 2654 2971 3207 3382 2936 0.0088 4.0923 2292 24.2595 1577 17.9682
2 0 B 532 726 817 1069 1275 1899 2422 2857 3048 3272 3463 2931 0.0088 2.8332 2405 24.0749 2257 22.7677
3 0 A 392 504 692 880 991 1397 1984 2471 2930 3231 3586 3194 0.0084 5.4610 2419 25.7605 2012 22.3451
4 0 B 554 664 765 916 1126 1588 2161 2594 3083 3231 3398 2844 0.0088 3.9099 2627 27.0651 2078 22.2260
5 0 A 387 533 716 925 1211 1549 2147 2720 2964 3271 3419 3032 0.0086 4.5095 2615 26.9661 2208 23.4710
6 0 B 394 596 751 902 1242 1567 2156 2763 2968 3208 3397 3003 0.0087 4.1959 1858 20.3915 1744 19.3978
7 0 B 452 595 767 935 1164 1570 2161 2598 2927 3229 3383 2931 0.0089 3.9877 1948 21.3332 2352 24.9305
8 0 B 353 510 678 908 1124 1492 2149 2802 2893 3183 3400 3047 0.0085 4.8854 2401 25.3652 2057 22.4310
9 0 A 374 558 696 922 1117 1480 2124 2724 2955 3282 3395 3021 0.0085 4.7979 2819 28.8159 2164 23.2353
10 0 A 398 574 668 928 1143 1503 2140 2780 2952 3169 3438 3040 0.0086 4.6466 2212 23.6167 2081 22.4933
11 0 A 480 592 773 925 1277 1652 2214 2684 3122 3324 3430 2950 0.0086 3.9772 2188 22.8136 1992 21.1262
12 0 A 388 542 710 970 1141 1564 2146 2729 2967 3275 3390 3002 0.0086 4.5056 2745 28.1084 1836 20.2923
13 0 B 367 540 686 908 1125 1514 2117 2687 2976 3242 3476 3109 0.0085 4.8702 2119 22.8283 1703 19.3028
14 0 B 582 725 860 1080 1480 2250 2532 2881 3257 3356 3481 2899 0.0087 2.2918 3243 30.3875 2299 22.2092
15 0 B 448 560 730 897 1147 1556 2163 2606 2994 3247 3383 2935 0.0087 4.3704 2227 23.7753 1618 18.4688
16 0 B 512 656 790 999 1311 1752 2434 2850 3116 3320 3480 2968 0.0086 3.4674 3281 31.5861 3106 30.0863
17 0 A 544 734 827 1007 1384 1942 2472 2903 3143 3321 3466 2922 0.0087 2.8242 2742 26.6505 2097 21.0459
18 0 A 428 539 684 907 1105 1506 2099 2545 2963 3248 3418 2990 0.0087 4.6991 2330 24.8700 1728 19.6584
19 0 A 417 547 686 897 1145 1578 2158 2614 2975 3206 3385 2968 0.0087 4.4775 2455 25.8558 2442 25.7426
20 0 A 479 612 811 988 1341 1798 2428 2764 3030 3265 3422 2943 0.0088 3.2702 2708 27.0713 2508 25.3135

Max. Value (INT)-The value of the highest intensity pixel in the volume
Calculated ValuesAluminum Step Wedge Steps 1 through 11 (mm)
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Appendix Table 2. Radiographic bone aluminum equivalency (RBAE) max calculated values using aluminum step wedge with 1 to 
11 steps. Values obtained from dorsal/palmar (DP) radiograph evaluating medial and lateral cortices of third metacarpal bone for each 
yearling horse at 30 d. 

 

 

 

 

 

Horse Day

Vibration 
(A=Yes; 
B=No) 5 8 11 14 17 20 23 26 29 32 35

Difference 
first, last 
AL step m b

X-Medial 
Cortices

Y-Medial 
Cortices

X-Lateral 
Cortices

Y-Lateral 
Cortices

1 30 B 358 552 670 868 1077 1499 2152 2584 2945 3207 3413 3055 0.0086 4.9147 2335 24.9647 1494 17.7432
2 30 B 151 473 673 882 1202 1623 2235 2841 3153 3395 3622 3471 0.0078 5.6360 2067 21.7641 1739 19.2048
3 30 A 384 594 731 946 1106 1634 2261 2668 2957 3307 3387 3003 0.0086 4.3530 2360 19.3373 2710 27.7041
4 30 B 324 559 733 944 1129 1541 2226 2746 3113 3318 3699 3375 0.0081 5.0985 2687 21.7626 1822 19.7875
5 30 A 242 472 642 874 1073 1403 2061 2605 2938 3279 3640 3398 0.0081 5.8209 2286 27.8022 1859 20.8996
6 30 B 145 354 572 813 1024 1325 1918 2582 3001 3300 3614 3469 0.0078 6.7066 2364 27.7766 1568 19.0020
7 30 B 321 534 685 891 1185 1635 2277 2665 3054 3413 3340 3019 0.0083 4.8202 2257 23.9058 1628 18.4122
8 30 B 357 522 699 892 1098 1532 2178 2625 2910 3214 3389 3032 0.0086 4.7484 2521 25.1750 2368 25.2096
9 30 A 302 526 704 877 1123 1569 2216 2623 2932 3310 3405 3103 0.0085 4.9009 3042 24.0394 2130 22.9625
10 30 A 292 512 650 810 988 1275 1926 2492 2975 3251 3661 3369 0.0081 6.1864 1822 26.5276 1801 20.7181
11 30 A 246 441 633 862 973 1459 2210 2649 2919 3186 3280 3034 0.0084 5.5659 2143 31.1780 1549 18.6077
12 30 A 287 542 715 892 1196 1602 2324 2832 3038 3311 3567 3280 0.0081 4.9647 2919 19.8045 2683 26.8172
13 30 B 264 501 670 850 1159 1521 2198 2650 2913 3275 3353 3089 0.0085 5.0716 2228 23.2543 1541 18.1465
14 30 B 377 592 764 965 1245 1706 2340 2775 3157 3320 3371 2994 0.0085 4.1214 2907 28.8568 1901 20.2303
15 30 B 355 521 697 887 1131 1547 2201 2621 2991 3210 3259 2904 0.0087 4.6269 2318 24.0277 2069 22.6432
16 30 B 322 561 710 928 1171 1619 2314 2745 3131 3273 3534 3212 0.0082 4.7855 2721 28.7423 1817 19.7595
17 30 A 296 512 658 891 1095 1635 2277 2648 3054 3413 3409 3113 0.0082 5.1714 2325 24.1829 1593 18.2366
18 30 A 332 539 689 902 1171 1631 2159 2689 3060 3319 3490 3158 0.0083 4.8484 2291 27.5451 1704 19.0620
19 30 A 293 530 686 932 1210 1695 2413 2824 3425 3351 3665 3372 0.0077 5.2286 2117 23.1975 1695 18.3285
20 30 A 298 504 657 864 1080 1529 2194 2600 3006 3231 3411 3113 0.0084 5.1802 2347 24.4572 2006 22.0592

Max. Value (INT)-The value of the highest intensity pixel in the volume
Aluminum Step Wedge Steps 1 through 11 (mm) Calculated Values
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Appendix Table 3. Radiographic bone aluminum equivalency (RBAE) max calculated values using aluminum step wedge with 1 to 
11 steps. Values obtained from dorsal/palmar (DP) radiograph evaluating medial and lateral cortices of third metacarpal bone for each 
yearling horse at 60 d. 

 

 

 

 

 

 

 

Horse Day

Vibration 
(A=Yes; 
B=No) 5 8 11 14 17 20 23 26 29 32 35

Difference 
first, last 
AL step m b

X-Medial 
Cortices

Y-Medial 
Cortices

X-Lateral 
Cortices

Y-Lateral 
Cortices

1 60 B 358 552 670 868 1077 1499 2152 2584 2945 3207 3413 3055 0.0086 4.9147 2335 23.0928 1494 17.7432
2 60 B 123 452 633 912 1177 1603 2232 2831 3153 3395 3622 3499 0.0078 5.8074 2082 24.5109 1772 19.5481
3 60 A 383 569 769 946 1214 1634 2261 2700 3009 3168 3387 3004 0.0088 4.0282 2360 25.1127 2574 26.5943
4 60 B 316 539 716 944 1110 1541 2226 2746 3093 3260 3699 3383 0.0081 5.1635 2687 21.9929 1822 19.8912
5 60 A 228 451 649 874 1061 1423 2061 2595 2938 3279 3640 3412 0.0081 5.8628 2286 26.7118 1859 20.9204
6 60 B 131 359 572 780 987 1280 1918 2509 2980 3305 3697 3566 0.0077 6.9583 2433 27.7745 1568 19.1056
7 60 B 378 590 700 843 1132 1622 2289 2563 3005 3216 3443 3065 0.0086 4.5843 2318 24.1810 2532 26.2899
8 60 B 307 533 675 814 1076 1532 2161 2588 2910 3214 3389 3082 0.0086 5.0714 2503 25.8816 2355 25.2144
9 60 A 325 523 704 877 1123 1573 2216 2623 2954 3224 3405 3080 0.0086 4.7811 2964 26.4661 2055 22.3809
10 60 A 292 484 650 848 1023 1318 1926 2562 2975 3284 3661 3369 0.0081 6.0726 1822 26.2305 1801 20.5769
11 60 A 263 477 633 832 1098 1520 2210 2649 3058 3135 3268 3005 0.0085 5.2677 2143 23.4093 1549 18.3808
12 60 A 297 508 711 892 1196 1622 2288 2832 3106 3356 3567 3270 0.0081 5.0773 2919 17.5567 2683 26.6927
13 60 B 288 496 705 895 1095 1587 2273 2712 2996 3275 3360 3072 0.0084 4.9832 2228 22.9687 1541 17.9163
14 60 B 406 569 766 984 1274 1808 2455 2759 3157 3320 3437 3031 0.0084 3.9420 2907 28.5709 1901 19.9816
15 60 B 375 521 647 854 1119 1547 2193 2608 2928 3201 3288 2913 0.0087 4.7410 2295 24.1367 2154 23.4925
16 60 B 333 549 742 869 1171 1628 2404 2778 3156 3305 3534 3201 0.0081 4.8816 2740 28.4998 1826 19.7171
17 60 A 287 513 656 891 1098 1635 2277 2677 3054 3413 3408 3121 0.0082 5.1928 2257 23.9686 1628 18.5118
18 60 A 350 538 715 902 1171 1631 2312 2804 3060 3319 3490 3140 0.0083 4.7720 2291 27.3904 1698 18.7888
19 60 A 293 553 744 932 1185 1695 2413 2824 3108 3355 3665 3372 0.0080 4.8624 2117 22.9594 1830 19.5357
20 60 A 307 527 679 895 1152 1529 2261 2737 3008 3251 3492 3185 0.0083 5.0145 2412 24.0512 2069 22.2065

Aluminum Step Wedge Steps 1 through 11 (mm) Calculated Values
Max. Value (INT)-The value of the highest intensity pixel in the volume
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Appendix Table 4. Radiographic bone aluminum equivalency (RBAE) max calculated values using aluminum step wedge with 1 to 
11 steps. Values obtained from dorsal/palmar (DP) radiograph evaluating medial and lateral cortices of third metacarpal bone for each 
yearling horse at 90 d. 

 

 

 

 

 

 

 

Horse Day

Vibration 
(A=Yes; 
B=No) 5 8 11 14 17 20 23 26 29 32 35

Difference 
first, last 
AL step m b

X-Medial 
Cortices

Y-Medial 
Cortices

X-Lateral 
Cortices

Y-Lateral 
Cortices

1 90 B 541 745 850 1106 1521 2057 2648 2951 3144 3357 3452 2911 0.0087 2.2672 2778 26.4885 2275 22.1029
2 90 B 553 733 826 1090 1437 1982 2608 3004 3167 3359 3416 2863 0.0086 2.6090 2515 24.3056 2367 23.0288
3 90 A 600 754 855 1128 1474 2013 2648 3021 3229 3327 3479 2879 0.0086 2.2908 3068 28.8200 2242 21.6775
4 90 B 531 684 880 1060 1458 2111 2748 3080 3265 3461 3530 2999 0.0082 2.9476 3065 28.1546 2396 22.6527
5 90 A 651 735 968 1243 1748 2377 2880 3187 3219 3361 3415 2764 0.0087 1.2658 2908 26.4621 2845 25.9163
6 90 B 512 666 794 1060 1455 2183 2648 2957 3157 3451 3445 2933 0.0084 2.9386 2570 24.5404 2153 21.0354
7 90 B 685 772 956 1191 1504 2172 2782 3050 3226 3284 3404 2719 0.0089 1.4466 2100 20.0596 2492 23.5341
8 90 B 613 742 981 1203 1638 2190 2763 3080 3279 3368 3534 2921 0.0087 1.5899 3065 28.1256 2368 22.0912
9 90 A 601 766 936 1114 1440 2012 2697 3098 3302 3445 3537 2936 0.0084 2.4696 3019 27.8386 2807 26.0571
10 90 A 527 684 830 996 1378 2066 2614 2924 3190 3325 3323 2796 0.0086 2.9289 2337 23.0070 2422 23.7373
11 90 A 537 688 813 1056 1445 2089 2600 2958 3178 3339 3355 2818 0.0086 2.6909 2928 27.9648 2512 24.3740
12 90 A 570 766 899 1101 1514 2007 2650 3058 3225 3379 3495 2925 0.0086 2.3079 2833 26.6345 2870 26.9523
13 90 B 621 815 936 1186 1568 2154 2847 3001 3243 3400 3462 2841 0.0087 1.6123 2933 27.1468 2798 25.9715
14 90 B 628 825 936 1217 1615 2184 2724 3045 3188 3280 3349 2721 0.0090 1.0886 3027 28.4772 1939 18.6329
15 90 B 588 797 1003 1211 1621 2229 2809 3170 3364 3523 3570 2982 0.0084 1.7959 3057 27.4249 2925 26.3183
16 90 B 644 871 1018 1278 1765 2381 2820 3095 3308 3413 3497 2853 0.0088 0.6525 3191 28.8433 2229 20.3445
17 90 A 578 771 911 1104 1531 2090 2758 3134 3252 3289 3472 2894 0.0085 2.2125 2703 25.3176 2142 20.5222
18 90 A 450 648 772 1059 1341 1890 2558 3004 3155 3217 3323 2873 0.0086 3.3246 2143 21.6787 1636 17.3364
19 90 A 555 673 879 1141 1462 2023 2695 3061 3175 3427 3575 3020 0.0084 2.6921 2973 27.6643 2757 25.8500
20 90 A 548 794 916 1209 1588 2220 2713 3045 3158 3225 3374 2826 0.0090 1.4518 2866 27.1100 2493 23.7707

Max. Value (INT)-The value of the highest intensity pixel in the volume
Aluminum Step Wedge Steps 1 through 11 (mm) Calculated Values
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Appendix Table 5. Radiographic bone aluminum equivalency (RBAE) max calculated values using aluminum step wedge with 1 to 
11 steps. Values obtained from dorsal/palmar (DP) radiograph evaluating medial and lateral cortices of third metacarpal bone for each 
yearling horse at 120 d. 

 

Horse Day

Vibration 
(A=Yes; 
B=No) 5 8 11 14 17 20 23 26 29 32 35

Difference 
first, last 
AL step m b

X-Medial 
Cortices

Y-Medial 
Cortices

X-Lateral 
Cortices

Y-Lateral 
Cortices

1 120 B 513 710 781 950 1199 1641 2368 2820 3114 3324 3397 2884 0.0086 3.7613 2001 20.9314 1606 17.5420
2 120 B 481 627 760 919 1153 1700 2271 2700 3133 3269 3489 3008 0.0085 4.1265 1914 20.4274 1655 18.2216
3 120 A 547 739 859 1045 1301 1885 2633 2947 3179 3407 3468 2921 0.0085 3.0550 2429 23.6254 2621 25.2513
4 120 B 634 761 888 1069 1464 2017 2651 3061 3238 3406 3561 2927 0.0085 2.4521 2976 27.7026 2009 19.4979
5 120 A 494 669 826 1021 1286 1864 2528 2869 3117 3371 3544 3050 0.0085 3.4032 2443 24.0621 1962 19.9946
6 120 B 580 755 888 1066 1339 1892 2493 3005 3214 3465 3566 2986 0.0084 2.9362 2206 21.5352 1713 17.3787
7 120 B 490 686 824 1054 1419 2054 2647 2891 3181 3366 3510 3020 0.0085 2.9547 2775 26.4746 1883 18.9143
8 120 B 545 723 843 978 1291 1831 2502 3008 3257 3359 3606 3061 0.0083 3.5265 2303 22.5450 2082 20.7200
9 120 A 560 736 788 957 1250 1778 2466 2939 3206 3360 3447 2887 0.0084 3.5523 2803 27.1541 1930 19.8033
10 120 A 579 740 919 1029 1340 1827 2510 2982 3229 3360 3434 2855 0.0086 2.8409 2090 20.8138 2215 21.8888
11 120 A 488 688 846 999 1263 1841 2354 2861 3250 3324 3406 2918 0.0086 3.4128 2424 24.1577 1758 18.4580
12 120 A 584 806 899 1110 1541 1971 2632 3067 3278 3359 3533 2949 0.0086 2.2147 3087 28.7263 3223 29.8943
13 120 B 582 769 886 1094 1530 2070 2693 3012 3215 3272 3538 2956 0.0087 2.1560 2661 25.2049 2416 23.0828
14 120 B 527 758 850 1070 1378 1859 2475 2888 3151 3340 3405 2878 0.0088 2.6581 2662 26.0582 2717 26.5417
15 120 B 509 702 848 997 1366 1962 2529 2906 3160 3384 3472 2963 0.0085 3.0625 2513 24.5053 2375 23.3278
16 120 B 451 617 745 942 1188 1623 2324 2792 3190 3353 3433 2982 0.0083 4.3359 2500 25.1880 2513 25.2964
17 120 A 500 685 834 1033 1264 1987 2441 2929 3176 3394 3444 2944 0.0085 3.2701 2103 21.1155 1561 16.5163
18 120 A 484 631 782 926 1153 1634 2312 2776 3007 3208 3404 2920 0.0087 3.9069 1976 21.1240 1500 16.9766
19 120 A 609 700 812 994 1286 1696 2390 2828 3118 3318 3432 2823 0.0087 3.1868 2354 23.7392 2214 22.5169
20 120 A 565 755 873 1057 1306 1787 2391 2976 3225 3399 3609 3044 0.0084 3.1892 2105 20.9285 1852 18.7964

Max. Value (INT)-The value of the highest intensity pixel in the volume
Aluminum Step Wedge Steps 1 through 11 (mm) Calculated Values


