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ABSTRACT

1This work seeks to answer the question: as the (near-) orthogonality of weights is found to

be a favorable property for training deep convolutional neural networks, how we can enforce

it in more effective and easy-to-use ways? Through this work we look to come up with novel

orthogonality regularizations for training deep CNNs, utilizing various advanced analytical tools

such as mutual coherence and Restricted Isometric Property. These plug-and-play regularizations

can be conveniently incorporated into training almost any CNN without extra hassle. We then

benchmark their effects on three state-of-the-art models: ResNet, WideResNet, and ResNeXt,

on CIFAR-10 and CIFAR-100 and SVHN datasets. To validate method’s efficacy across various

distribution and dataset, we apply the best performing regularizer(SRIP), for different setting of

WideResNet to ImageNet Dataset. We observe consistent performance gains after applying those

proposed regularizations, in terms of both the final accuracies achieved, and accelerated and more

stable convergences.

1Reprinted with permission from Abstract section of Can We Gain More from Orthogonality Regularizations in
Training Deep Networks? by N. Bansal, X. Chen and Z. Wang, 2018,Advances in Neural Information Processing
Systems 31 (NIPS 2018) pre-proceedings

ii



ACKNOWLEDGMENTS

I would like to thank the Neural Information Processing Systems for allowing me to re-use my

work titled Can We Gain More From Orthogonality Regularizationss in Training Deep CNNs?,

which was accepted in NIPS 2018 as a poster, as my Thesis report. I would also like to thank my

Committee members and Chair for guidance and suggestions. Special thanks go to Dr. Bobak

Mortazavi for agreeing to be an evaluator in my final presentation at a very short notice.

iii



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Dr. Atlas Wang and Dr. Yoonsuck

Choe of the Department of Computer Science and Engineering at Texas A&M University and Dr.

Alan Dabney of the Department of Statistics at Texas A&M University. Xiaohan Chen, my peer

at VITA Lab, at Texas A&M University, contributed during different phase of my thesis work in

deriving and discussing theoretical concepts. GPU Resources provided by HPRC TAMU were also

pivotal in smooth running of the experiments.

Funding Sources

Graduate study was supported by funding from part-time student worker positions and Teaching

assistant fellowship at Texas A&M University.

iv



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Current Work & Its Relevance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Our Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Related Work Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Models and Architecture Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.1 ResNet[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 WideResNet [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 ResNext [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.4 DenseNet [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Deriving New Orthogonality Regularizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Baseline: Soft Orthogonality Regularization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Double Soft Orthogonality Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Mutual Coherence Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 Spectral Restricted Isometric Property Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Scheme Change for Regularization Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 CIFAR 10 [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.2 CIFAR 100 [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.3 SVHN [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.4 IMAGENET [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



4. RESULTS AND OBSERVATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 CIFAR10/100 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1 ResNet 110 - BottleNeck Residual Unit Model [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Wide ResNet 28-10 Model [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.3 ResNext 29-8-64 Model [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.4 Comparing SRIP with Spectral Regularization [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.5 Comparing SRIP with Jacobian based Regularization [9] . . . . . . . . . . . . . . . . . . . . . . 29

4.2 ImageNet and SVHN Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5. SUMMARY AND INFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Summary Remarks and Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6. FUTURE WORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Possible Extension of the Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.1 Object Detection Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.2 Person Re-identification Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.3 GAN Training Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



LIST OF FIGURES

FIGURE Page

1.1 Training and Loss Curves : Original Regularizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Training and Loss Curves : Orthogonal Regularizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Residual Block : Reprinted From [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Resnet Regularizer Ensemble Outlook: Reprinted From [10] . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Pre-Activation ResNet: Reprinted From [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 ResNet34 :Reprinted From [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 WideResNet: Reprinted From [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 ResNext: Reprinted From [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.7 DenseNet Architecture: Reprinted From [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.8 DenseNet Model: Reprinted From [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.9 Sample Images: CIFAR 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.10 Sample Images: CIFAR 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.11 Sample Images: SVHN: Reprinted From [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.12 Sample Images: Imagenet:Reprinted From [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Validation Curves:ResNet-110. Top: CIFAR 10; Bottom: CIFAR 100 . . . . . . . . . . . . . . . . 25

4.2 Validation Curves:WideRes 28-10. Top: CIFAR 10; Bottom: CIFAR 100 . . . . . . . . . . . . 26

4.3 Validation Curves: Resnext. Top: CIFAR 10; Bottom: CIFAR 100 . . . . . . . . . . . . . . . . . . . . 28

6.1 Faster RCNN:Reprinted From [14]; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Weight Vectors Learned: Reprinted From [15]; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



6.3 Nash Equilibrium: Players x and y: Reprinted From [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

viii



LIST OF TABLES

TABLE Page

4.1 Top-1 Error Rates Achieved: ResNet 110 For CIFAR 10 and CIFAR 100. * Indicates
Results During Our Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Top-1 Error Rates Achieved: Wide ResNet For CIFAR-10 and CIFAR-100. *
Indicates Results During Our Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Top-1 Error Rates Achieved: ResNext For CIFAR 10 and CIFAR 100. * Indicates
Results During Our Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Top-5 Error Rates Achieved:ImageNet and (Top-1 Error) SVHN. * Indicates Results
During Our Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



1. INTRODUCTION

1.1 Current Work & Its Relevance

† Despite the tremendous success of deep convolutional neural networks (CNNs) [17], their

training remains to be notoriously difficult both theoretically and practically, especially for state-

of-the-art ultra-deep CNNs. Potential reasons accounting for such difficulty lie in multiple folds,

ranging from vanishing/exploding gradients [18], to feature statistic shifts [19], to the proliferation

of saddle points [20], and so on. To address these issues, various solutions have been proposed to

alleviate those issues, examples of which include parameter initialization [21], residual connections

[1], normalization of internal activations [19], and second-order optimization algorithms [20].

This paper focuses on one type of structural regularizations: orthogonality, to be imposed

on linear transformations between hidden layers of CNNs. The orthogonality implies energy

preservation, which is extensively explored for filter banks in signal processing and guarantees

that energy of activations will not be amplified [22]. Therefore, it can stabilize the distribution

of activations over layers within CNNs [23, 24] and make optimization more efficient. Another

way to analyze this would be to see through the prism of matrix norm and thus constraining the

singular values of the Parameter Matrix of the model.[21] advocates orthogonal initialization of

weight matrices, and theoretically analyzes its effects on learning efficiency using deep linear

networks. The paper [21] argues importance of random orthogonal initialization for weights, as it

provides conditions similar to that provided by unsupervised pre-training, and also helps in faithful

propagation of gradients.Practical results on image classification using orthogonal initialization are

also presented in [25]. More recently, a few works [26, 27, 28, 29, 30] look at (various forms of)

enforcing orthogonality regularizations or constraints throughout training, as part of their specialized

models for applications such as classification [29] or person re-identification [31]. They observed

encouraging result improvements. However, a dedicated and thorough examination on the effects

†Reprinted with permission from Introduction section of Can We Gain More from Orthogonality Regularizations
in Training Deep Networks? by N. Bansal, X. Chen and Z. Wang, 2018,Advances in Neural Information Processing
Systems 31 (NIPS 2018) pre-proceedings
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Figure 1.1: Training and Loss Curves : Original Regularizer

of orthogonality for training state-of-the-art general CNNs has been absent so far. Even more

importantly, how to evaluate and enforce orthogonality for non-square weight matrices does not

have a sole optimal answer. As we will explain later, existing works employ the most obvious but

unnecessarily appropriate option, while we will introduce a series of more sophisticated regularizers

that lead to larger performance gains.

1.2 Motivation and Our Focus

As we have already seen various difficulty, which we face while training a deep neural networks,

and how orthogonality could be of help. We, as part of our work focus on achieving two goals:

• Improving Task Accuracy

• Improving Training Stability

Previous work in the field of orthogonality [29] or [31], have shown great promise in terms of

achieving better task accuracy, but discuss little about the stability factor. We found that there is

large fluctuations in training accuracy and loss, while training original Resnet Model, as shown in

the Figure 1.1 between 20-80 epochs. Fluctuations seen could be attributed to unstable parameter

space, or wild change in the network parameters, while the training process.

To draw the comparison and show the effectiveness of our method, we train the model based on

one of our regularizer. Figure 1.2 shows the training curve achieved with our regularizer enforced,

2



Figure 1.2: Training and Loss Curves : Orthogonal Regularizer

and we could see the stark difference between the curves achieved by 1.2 1.1 in term of stability,

particularly in epochs ranging between 25-80.

This work aims to investigate and push forward various ways to enforce orthogonality regular-

izations on training deep CNNs. Specifically, we introduce three novel regularization forms for

orthogonality, ranging from the double-sided variant of standard Frobenius norm-based regular-

izer, to utilizing Mutual Coherence (MC) and Restricted Isometry Property (RIP) tools [32, 33].

Those orthogonality regularizations have a plug-and-play nature, i.e., they can be incorporated with

training almost any CNN without hassle. We extensively evaluate the proposed orthogonality regu-

larizations on three state-of-the-art CNNs: ResNet-110 [1], ResNeXt [3], WideResNet [2]. In all

experiments, we observe the consistent and remarkable accuracy boosts (e.g., 2.47% in CIFAR-100

top-1 accuracy when using WideResNet), as well as accelerated and more stable convergences,

without any other change made to the original models. It implies that many deep CNNs may have

not been unleashed with their full powers yet, where orthogonality regularizations can help. Related

to the concept of stable convergence, we use the term better Parameter Space instead, where a

model in better Parameter Space, keeps/updates parameters during training in such a fashion, that

there are very few fluctuations in validation accuracy, implying better parameter learning. Stability

during the training process, is one of the most sought after property of a good model, predominantly

in field of Generative Adversarial Networks. The orthogonal regularizers proposed in our work,

3



could be further used in discriminator and generator module of the GANs to provide further stability

and also have regularizing effect.

Our experiments further reveal that larger performance gains can be attained by designing

stronger forms of orthogonality regularizations. We find the RIP-based regularizer, which has better

analytical grounds to characterize near-orthogonal systems [34], to consistently outperform existing

Frobenius norm-based regularizers and others.

4



2. RELATED WORK

2.1 Related Work Literature Survey

† To remedy unstable gradient and co-variate shift problems, [18, 35] advocated near constant

variances of each layer’s output for initialization. [19] presented a major breakthrough in stabilizing

training, via ensuring each layer’s output to be identical distributions which reduce the internal

covariate shift. [36] further decoupled the norm of the weight vector from its phase(direction)

while introducing independence between mini-batch examples, resulting in a better optimization

problem. Orthogonal weights have been widely explored in Recurrent Neural Networks (RNNs)

[37, 38, 39, 40, 41, 42] to help avoid gradient vanishing/explosion. [37] proposed a soft constraint

technique to combat vanishing gradient, by forcing the Jacobian matrices to preserve energy

measured by Frobenius norm. The more recent study [41] investigated the effect of soft versus hard

orthogonal constraints on the performance of RNNs, the former by specifying an allowable range

for the maximum singular value of the transition matrix and thus allowing for its small intervals

around one.

In CNNs, orthogonal weights are also recognized to stabilize the layer-wise distribution of

activations [23] and make optimization more efficient. [21, 25] presented the idea of orthogonal

weight initialization in CNNs, which is driven by the norm-preserving property of orthogonal

matrix: a similar outcome which BN tried to achieve. [21] analyzed the non-linear dynamics of

CNN training. Under simplified assumptions, they concluded that random orthogonal initialization

of weights will give rise to the same convergence rate as unsupervised pre-training, and will be

superior than random Gaussian initialization. However, a good initial condition such as orthogonality

does not necessarily sustain throughout training. In fact, the weight orthogonality and isometry

will break down easily when training starts, if not properly regularized [21]. Several recent works

[27, 28, 30] considered Stiefel manifold-based hard constraints of weights. [27] proposed a Stiefel

†Reprinted with permission from Related Work section of Can We Gain More from Orthogonality Regularizations
in Training Deep Networks? by N. Bansal, X. Chen and Z. Wang, 2018,Advances in Neural Information Processing
Systems 31 (NIPS 2018) pre-proceedings

5



layer to guarantee fully connected layers to be orthogonal by using Reimannian gradients, without

considering similar handling for convolutional layers; their performance reported on VGG networks

[43] were less than promising. [28] extended Riemannian optimization to convolutional layers

and require filters within the same channel to be orthogonal. To overcome the challenge that

CNN weights are usually rectangular rather than square matrices, [30] generalized Stiefel manifold

property and formulated an Optimization over Multiple Dependent Stiefel Manifolds (OMDSM)

problem. Different from [28], it ensured filters across channels to be orthogonal. A related work

[26] adopted a Singular Value Bounding (SVB) method, via explicitly thresholding the singular

values of weight matrices between a pre-specified narrow band around the value of one. The

above methods [26, 27, 28, 30] all fall in the category of enforcing “hard orthogonality constraints”

into optimization ([26] could be viewed as a relaxed constraint), and have to call the singular

value decomposition (SVD) repeatedly during training. The cost of SVD on high-dimensional

matrices is expensive even in GPUs, which is one reason why we choose not to go for the “hard

constraint” direction in this paper. Moreover, since CNN weight matrices cannot exactly lie on a

Stiefel manifold as they are either very “thin” or “fat” (e.g., W TW = I may never happen for an

overcomplete “fat” W due to rank deficiency of its gram matrix), special treatments are needed to

maintain such hard constraint. For example, [30] proposed group based orthogonalization to first

divide an over-complete weight matrix into “thin” column-wise groups, and then applying Stiefel

manifold constraints group-wise. The strategy was also motivated by reducing the computational

burden of computing large-scale SVDs.

A recent work [29] explored orthogonal regularization, by enforcing the Gram matrix of each

weight matrix to be close to identity under Frobenius norm. It constrains orthogonality among filters

in one layer, leading to smaller correlations among learned features and implicitly reducing the

filter redundancy. Such a soft orthonormal regularizer is differentiable and requires no SVD, thus

being computationally cheaper than its “hard constraint” siblings. However, we will see later that

Frobenius norm-based orthogonality regularization is only a rough approximation, and is inaccurate

for “fat” matrices as well. The authors relied on a backward error modulation step, as well as similar
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group-wise orthogonalization as in [30]. We also notice that [29] displayed the strong advantage

of enforcing orthogonality in training the authors’ self-designed plain deep CNNs (i.e. without

residual connections). However, they found fewer performance impacts when applying the same

to training prevalent network architectures such as ResNet [1]. In comparison, our orthogonality

regularizations can be added to CNNs as “plug-and-play” components, without bothering any

assistance components. We observe evident improvements brought by them on most popular ResNet

architectures.

Finally, we briefly outline a few works related to orthogonality in more general senses. One

may notice that enforcing matrix to be (near-)orthogonal during training will lead to its spectral

norm being always equal (or close) to one, which provides a potential link between regularizing

orthogonality and spectrum. In [44], the authors showed that the spectrum of Extended Data

Jacobian Matrix (EDJM) affected the network performance, and proposed a spectral soft regularizer

that encourages major singular values of EDJM to be closer to the largest one. [45] claimed that the

maximum eigenvalue of the Hessian predicted the generalizability of CNNs. Motivated by that, [8]

penalized the spectral norm of weight matrices in CNNs. A similar idea was later extended in [46]

for training generative adversarial networks, by proposing a spectral normalization technique to

normalize the spectral norm/Lipschitz norm of the weight matrix to be one.
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3. METHODOLOGY

3.1 Models and Architecture Used

The main task which we concentrate as to validate the effectiveness of our new regularizer

is, Image Classification.Since the inception of AlexNet[17] in 2012, there have been plethora of

Network which have come, and shown great improvement in task of Image Classification. VGG

[47], has been one such model proposed, which gave better results when compared to AlexNet.

Since, then work such as ResNet-110 [1], ResNeXt [3], WideResNet [2] and [11], have pioneered

in utilizing the advantage of residual connections, to give state-of-art results for Classification task

for all datasets.

3.1.1 ResNet[1]

[1] was the first of its kind of work, which talked about residual connections in the Deep CNN

Models, which helped curb the problem of vanishing gradient in the Deep Network. The models

proposed before ResNet[1], were failing to add to the accuracy, even after adding substantial number

of layers. The accuracy instead saw a decrease as the model were made more deeper, mainly due

to gradient instability and proliferation of saddle points. Even if there was some improvement

seen in some cases, the computational cost was too expensive,as the we had to add millions of

new parameter to see an improvement of 0.1-0.2%. As shown in various residual based models

ResNet-110 [1], ResNeXt [3], WideResNet [2] and [11], residual connections seems to help, the

gradient flow, as the residual connections provide an alternate path for the flow of gradients, and

also acts as an regularizer by acting as an ensemble of CNNs, and thus reducing over-fitting due to

increase in the number of parameters. As seen in the figure 3.1, Output of the one residual Block

is calculated based not only on the Convolutional Layers the Input passes through but the input

itself.At this point it will be apt to mention,there are two ways of defining the Residual Block,One

where the activation is applied after the residual connection and one where the activation is applied

before(pre-activation). The pre-activation version of the ResNet shows better training stability
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Figure 3.1: Residual Block : Reprinted From [1]

Figure 3.2: Resnet Regularizer Ensemble Outlook: Reprinted From [10]

as argued in [11]. Figure 3.3 shows the different configuration of Residual Block. We had also

mentioned earlier that ResNet model, acts as a regularizer too, We see in the Figure 3.2, how

the ResNet could be visualized as a Ensemble of Networks,which can be used reduce variance of

the resulting model and this acts an regularizer. The model itself consists of various blocks of

Residual Blocks, stacked on top of each other, to make models of varying depth such as 34,50,101

or 110. Figure 3.4 shows a comparison between the VGG and a simple ResNet Model for ImageNet

Dataset. There are slight modification in model, for different dataset, but most of it remains the

same.
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Figure 3.3: Pre-Activation ResNet: Reprinted From [11]

3.1.2 WideResNet [2]

WideResNet [2] offers a slightly alternate structure to the model proposed in [1]. [1] model also

seems to be ineffective in terms of accuracy improvement, when the depth of the model increases.

[2] argued about broadening the channel width, while keeping the kernel size same. Figure 3.5

shows the difference between the a simple ResNet block and a WideResNet block. Most of other

architectural details remains the same, while further details are mentioned in Results and Summary

section.

3.1.3 ResNext [3]

Model proposed in [3], is inspired both from [1] and the Google Inception Model [48], where

the architecture is divided in to different paths, named as Cardinality of the Model.This model

further emphasizes on increasing the width rather than the depth of the ResNet model, which results

in further improvement in the network.Model uses all other features used in a basic ResNet model,

except for it uses a different Residual Block, and a typical ResNext model is characterized by

Depth-Width-Cardinality. Figure 3.6, shows the three version of visualizing the ResNext Building

Blocks.
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Figure 3.4: ResNet34 :Reprinted From [1]
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Figure 3.5: WideResNet: Reprinted From [2]

Figure 3.6: ResNext: Reprinted From [3]

3.1.4 DenseNet [4]

The last Model, in the family of vastly successful ResNet Family has been the DenseNet [4],

which was the latest model to come out, beating all the previous models in most of the scenarios

in the classification task. DenseNet [4] model looks to exploit the residual connections to an

even greater extent by, connecting each layer with every other layer directly. This definitely make

the model more convoluted and harder to interpret, but nevertheless outperformed other models

unequivocally. Figure 3.7 explicitly shows how each layers are connected to each other in a typical

DenseNet Model. However, Connecting every other layer with all the layers, brings with itself

unnecessary complications, which the paper solves via proposing a comparatively simpler model,

where only layers in a group are connected to each other, and a group consists of a predefined

number of layers, which is a hyper-parameter. Figure 3.8 shows the simpler version of Original

DenseNet model, which is actually being used.
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Figure 3.7: DenseNet Architecture: Reprinted From [4]

Figure 3.8: DenseNet Model: Reprinted From [4]

3.2 Deriving New Orthogonality Regularizations

† In this section, we will derive and discuss several orthogonality regularizers. Note that

those regularizers are applicable to both fully-connected and convolutional layers. The default

mathematical expressions of regularizers will be assumed on a fully-connected layer W ∈ m×n (m

could be either larger or smaller than n). For a convolutional layerC ∈ S×H×C×M , where S,H,C,M

are filter width, filter height, input channel number and output channel number, respectively, we

will first reshape C into a matrix form W ′ ∈ m′ × n′, where m′ = S ×H × C and n′ = M . All

our regularizations are directly amendable to almost any CNN: there is no change needed on the

network architecture, nor any other training protocol (unless otherwise specified).

†Reprinted with permission from Deriving New Orthogonality Regularizations section of Can We Gain More from
Orthogonality Regularizations in Training Deep Networks? by N. Bansal, X. Chen and Z. Wang, 2018,Advances in
Neural Information Processing Systems 31 (NIPS 2018) pre-proceedings
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3.2.1 Baseline: Soft Orthogonality Regularization

[29] proposed to require the Gram matrix of the weight matrix to be close to identity, which we

term as Soft Orthogonality (SO) regularization:

(SO) λ||W TW − I||2F , (3.1)

where λ is the regularization coefficient (the same hereinafter). It is a straightforward relaxation

from the “hard orthogonality” assumption [27, 28, 30] under the standard Frobenius norm, and can

be viewed as a different weight decay term limiting the set of parameters close to a Stiefel manifold

rather than inside a hypersphere. The gradient is given in an explicit form: 4λW (W TW − I), and

can be directly appended to the original gradient w.r.t. the current weight W .

However, SO (3.1) is flawed for an obvious reason: the columns of W could possibly to

mutually orthogonal, if and only if W is under-complete (m ≤ n). For over-complete W (m > n),

its gram matrix ∈ m×m cannot be even close to identity, because its rank is at most n, making

||W TW − I||2F a biased minimization objective. In practice, both cases can be found for layer-wise

weight dimensions. The authors of [30, 29] advocated to further divide over-complete W into

under-complete column groups to resolve the rank deficiency trap. In this paper, we choose to

simply use the original SO version (3.1) as a fair comparison baseline.

The authors of [29] argued against the hybrid utilization of the original `2 weight decay and

the SO regularization. They suggested to stick to one type of regularization all along training. Our

experiments also find that applying both together throughout training will hurt the final accuracy.

Instead of simply discarding `2 weight decay, we discover a scheme change approach which is

validated to be most beneficial to performance, details on this can be found in Section 4.1.

3.2.2 Double Soft Orthogonality Regularization

The double soft orthogonality regularization extends SO in the following form:

(DSO) λ(||W TW − I||2F + ||WW T − I||2F ). (3.2)
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Note that an orthogonal W will satisfy W TW = WW T = I; an ove-rcomplete W can be

regularized to have small ||WW T − I||2F but will likely have large residual ||W TW − I||2F , and

vice versa for an under-complete W . DSO is thus designed to cover both over-complete and

under-complete W cases; for either case, at least one term in (3.2) can be well suppressed, requiring

either rows or columns of W to stay orthogonal. It is a straightforward extension from SO.

Another similar alternative to DSO is “selective” soft orthogonality regularization, defined as:

λ||W TW − I||2F , if m > n; λ||WW T − I||2F if m ≤ n. Our experiments find that DSO always

outperforms the selective regularization, therefore we only report DSO results.

3.2.3 Mutual Coherence Regularization

The mutual coherence [33] of W is defined as:

µW = max
i 6=j

|〈wi, wj〉|
||wi|| · ||wj||

, (3.3)

where wi denotes the i-th column of W , i = 1, 2, ..., n. The mutual coherence (3.3) takes values

between [0,1], and measures the highest correlation between any two columns of W . In order for

W to have orthogonal (if m ≤ n) or near-orthogonal (if m > n) columns, µW is expected to be as

low as possible (zero if m ≤ n).

We wish to suppress µW as an alternative way to enforce orthogonality. Assume W has been

first normalized to have unit-norm columns, 〈wi, wj〉 is essentially the (i, j)-the element of the

Gram matrix W TW , and i 6= j requires us to consider off-diagonal elements only. Therefore, we

could equivalently re-express (3.3) into the following Mutual Coherence (MC) regularization term:

(MC) λ||W TW − I||∞, (3.4)

In practice, we implement (3.4) using two-stage components. We first fulfill the necessary pre-

processing of normalizing ||W ||2 = 1, via inserting a standard weight normalization with g

fixed as 1 [36]. It implies an interesting possible implication of WN on the CNN weight orthog-
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onality. Next, we add the λ||W TW − I||∞ regularizer when computing the gradient w.r.t. W .

Although we do not explicitly normalize the column norm of W to be one, we find experimentally

that minimizing (3.4) often tends to implicitly encourage close-to-unit-column-norm W too, making

the objective of (3.4) a viable approximation of mutual coherence (3.3)∗.

The gradient of ||W TW − I||∞ could be explicitly solved by applying a smoothing technique

to the non-smooth `∞ norm, e.g., [49]. However, it will invoke an iterative routine each time to

compute `1-ball proximal projection, which is less efficient in our scenario where massive gradient

computations are needed. In view of that, we turn to using auto-differentiation to approximately

compute the gradient of (3.4) w.r.t. W .

3.2.4 Spectral Restricted Isometric Property Regularization

Recall that the RIP condition [32] of W assumes:

Assumption 1. For all vectors z ∈ n that is k-sparse, there exists a small δW ∈ (0, 1) s.t. (1−δW ) ≤
||Wz||2
||z||2 ≤ (1 + δW ).

The above RIP condition essentially requires that every set of columns in W , with cardinality

no larger than k, shall behave like an orthogonal system. If taking an extreme case with k = n, RIP

then turns into another criterion that enforces the entire W to be close to orthogonal. Note that both

mutual incoherence and RIP are well defined for both under-complete and over-complete matrices.

We rewrite the special RIP condition with k = n in the form below:

||Wz||2

||z||2
− 1| ≤ δW , ∀z ∈ Rn (3.5)

Notice that σ(W ) = supz∈Rn,z 6=0
||Wz||
||z|| is the spectral norm of W , i.e., the largest singular value

of W . As a result, σ(W TW − I) = sup
z∈Rn,z 6=0

| ||Wz||2
||z||2 − 1|. In order to enforce orthogonality to W

from an RIP perspective, one may wish to minimize the RIP constant δW in the special case k = n,

which according to the definition should be chosen as sup
z∈Rn,z 6=0

| ||Wz||2
||z||2 − 1| as from (3.5). Therefore,

∗We also tried to first normalize columns of W and then apply (3.4), without finding any performance benefits.
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we end up equivalently minimizing the spectral norm of W TW − I:

(SRIP) λ · σ(W TW − I). (3.6)

It is termed as the Spectral Restricted Isometry Property (SRIP) regularization.

The above reveals an interesting hidden link: regularizations with spectral norms were previously

investigated in [8, 46], through analyzing small perturbation robustness and Lipschitz constant. The

spectral norm re-arises from enforcing orthogonality when RIP condition is adopted. But compared

to the spectral norm (SN) regularization [8] which minimizes σ(W ), SRIP is instead enforced on

W TW − I . Also compared to [46] requiring the spectral norm of W to be exactly 1 (developed for

GANs), SRIP requires all singular values of W to be close to 1, which is essentially stricter.

We again refer to auto differentiation to compute the gradient of (3.6) for simplicity. However,

even computing the objective value of (3.6) can invoke the computationally expensive EVD. To

avoid that, we approximate the computation of spectral norm using the power iteration method.

Starting with a randomly initialized v ∈ Rn, we iteratively perform the following procedure a small

number of times (2 times by default) :

u← (W TW − I)v, v ← (W TW − I)u, σ(W TW − I)← ||u||
||v||

. (3.7)

3.3 Scheme Change for Regularization Coefficients

All the regularizers have an associated regularization coefficient denoted by λ, whose choice play

an important role in the regularized training process. Correspondingly, we denote the regularization

coefficient for the `2 weight decay used by original models as λ2.

From experiments, we observe that fully replacing `2 weight decay with orthogonal regularizers

will accelerate and stabilize training at the beginning of training, but will negatively affect the final

accuracies achievable. We conjecture that while the orthogonal parameter structure is most benefit

at the initial stage, it might be overly strict when training comes to the final “fine” stage, when we

should allow for more flexibility for parameters. In view of that, we devise a switch scheme between
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Figure 3.9: Sample Images: CIFAR 10

two regularization schemes at the beginning and late stages of training. Concretely, we gradually

reduce λ (initially 0.1) by factors of 1e-3, 1e-4 and 1e-6, after 20, 50 and 70 epochs, respectively,

and finally set it to zero after 120 epochs. For λ2, we start with 1e-8; then for SO/DSO regularizers,

we increase λ2 to 1e-4/5e-4, after 20 epochs. For MC/SRIP regularizers, we find them insensitive to

the choice of λ2, potentially due to their stronger effects in enforcing W TW close to I; we thus

stick to the initial λ2 throughout training for them. Such an empirical “scheme change” design is

found to work nicely with all three models, benefiting both accuracy and efficiency.

3.4 Datasets

3.4.1 CIFAR 10 [5]

The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, with 6000 images

per class. There are 50000 training images and 10000 test images. The dataset is divided into five

training batches and one test batch, each with 10000 images. The test batch contains exactly 1000

randomly-selected images from each class. The training batches contain the remaining images in

random order, but some training batches may contain more images from one class than another.

Between them, the training batches contain exactly 5000 images from each class. Figure 3.9, shows

a sample of the images in the CIFAR100 Dataset, these images were self generated.
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Figure 3.10: Sample Images: CIFAR 100

3.4.2 CIFAR 100 [5]

This dataset is similar to CIFAR-10 in terms of Image distribution, except it has 100 classes

containing 600 images each. There are 500 training images and 100 testing images per class. The

100 classes in the CIFAR-100 are grouped into 20 super-classes. Each image comes with a "fine"

label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs).Figure

3.10, shows a sample of the images in the CIFAR100 Dataset, these images were self generated.

3.4.3 SVHN [6]

SVHN is a real-world image dataset for developing machine learning and object recognition

algorithms with minimal requirement on data preprocessing and formatting. It can be seen as similar

in flavor to MNIST (e.g., the images are of small cropped digits), but incorporates an order of
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magnitude more labeled data (over 600,000 digit images) and comes from a significantly harder,

unsolved, real world problem (recognizing digits and numbers in natural scene images). SVHN is

obtained from house numbers in Google Street View images. Figure 3.11, shows a sample of the

images in the SVHN Dataset.

3.4.4 IMAGENET [7]

ImageNet is a Image database, which uses a model, which is similar to what is used for WordNet

schema, to categorize different objects. The database was presented as a poster in 2009 CVPR.

ImageNet still serves as the benchmark, for evaluating the performance of models which primarily

has task such as Image Classification and Object Detection.

ImageNet by itself contains 14 million URLs of images. The annotation of the images is

manually, and uses crowd-annotation tools such as Mechanical turk.For the Object detection task

along with labels about the class of object, it provides bounding boxes for almost 1 million images.

ImageNet 2012 classification dataset that consists of 1000 classes. The models are trained on the

1.28 million training images, and evaluated on the 50k validation images. There also has been

an annual competition known as Imagenet Large Scale Visual Recognition Challenge(ILSVRC),

where the existing state-of-art models for Image Classification and Object detection are applied on

Imagenet Dataset, to see and verify its efficacy and to set new benchmark in terms of performance.

Figure 3.12, shows a sample of the images in the Imagenet Dataset.
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Figure 3.11: Sample Images: SVHN: Reprinted From [12]
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Figure 3.12: Sample Images: Imagenet:Reprinted From [13]
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4. RESULTS AND OBSERVATIONS

4.1 CIFAR10/100 Datasets

† We first explain the experimental set up used to verify the efficacy of different regularizers. We

choose three popular state-of-the-art models: ResNet[1], Wide ResNet[2] and ResNext[3]. We will

train each of the models with each of our proposed regularizers, and comparing their performance

with the original version, in terms of both final achieved accuracy and convergence speed/stability.

We choose CIFAR-10 and CIFAR-100 as our primary testbeds. They consist of 60,000 images

of size 32×32 with a 5-1 training-testing split, divided into 10 and 100 classes respectively. All

pre-processing and data augmentation are strictly identical to the original training protocols in

[2, 1, 3]. All hyper-parameters and architectural details remain unchanged too, unless otherwise

specified.

4.1.1 ResNet 110 - BottleNeck Residual Unit Model [1]

We employ a 110-layer ResNet Model [1], a very strong ResNet version, to evaluate our

proposed regularizers here. The ResNet architecture uses Bottleneck Residual Units, with a formula

setting given by p = 9n+ 2, where n denotes the total number of convolutional blocks used and p

the total depth of the model. We use the Adam optimizer to train the model for 200 epochs, with

learning rate varied: starting with 1e-2, and then subsequently decreasing to 1e-3, 1e-5 and 1e-6,

after 80, 120 and 160 epochs, respectively.

Several meaningful observations are found from Table 4.1. First, SRIP gives very competitive

results: the best on CIFAR-10 and second best on CIFAR-100. Second, SO provides a surprisingly

strong baseline here too, with second best on CIFAR-10 and the best on CIFAR-100. Besides, MC

outperforms the original baseline and DSO (in the case even worse than original baseline), but

remains inferior to SRIP and SO. Overall, we are able to gain as much as 0.49% on CIFAR-10

†Reprinted with permission from Experiments on Benchmark section of Can We Gain More from Orthogonality
Regularizations in Training Deep Networks? by N. Bansal, X. Chen and Z. Wang, 2018,Advances in Neural Information
Processing Systems 31 (NIPS 2018) pre-proceedings
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Table 4.1: Top-1 Error Rates Achieved: ResNet 110 For CIFAR 10 and CIFAR 100. * Indicates
Results During Our Experiment

Model Depth-K-
Cardinality

CIFAR-10 CIFAR-100 Regularizer

ResNet-110 [1] 110 7.04* 25.42* None (origi-
nal)

110 6.78 25.01 SO
110 7.04 25.83 DSO
110 6.97 25.43 MC
110 6.55 25.14 SRIP

(SRIP) and 0.41% on CIFAR-100 (SO), by simply enforcing orthogonality regularizations.

Figures 4.1 plots the training curves (in terms of validation accuracies w.r.t epoch numbers)

of different methods on CIFAR-10 and CIFAR-100. We observe that all four regularized models

have their training curves grow much faster in the initial training stage, and stay at higher accu-

racies throughout (most part of) training, compared to the un-regularized original version. Those

regularized curves also tend be show less fluctuations, and grow more stably and smoothly. This

observation becomes more stark in the region between epochs 20-80. Among them all, SRIP shows

to provide the best training stability and efficiency, in addition to the highest/second highest final

accuracies achieved.

4.1.2 Wide ResNet 28-10 Model [2]

For the Wide ResNet model [2], we have used depth 28 and k (width) 10, as this configuration

gives the best accuracies for both CIFAR-10 and CIFAR-100, and is (relatively) computationally

efficient. The model uses a Basic Block B(3,3), as defined in ResNet [1]. We have used the SGD

optimizer with a Nesterov Momentum of 0.9 to train the model for 200 epochs. The learning rate

starts at 1e-1, and is then decreased by a factor of 0.2, after 60, 120 and 160 epochs, respectively.

We have followed all other settings of [2] identically. As shown in the Table 4.2, all four orthogonal

regularizers significantly boost the accuracies over the original result. SRIP is the best performer

in both datasets, giving rise to impressive 0.50% and 2.47% improvements on CIFAR-10 and
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Figure 4.1: Validation Curves:ResNet-110. Top: CIFAR 10; Bottom: CIFAR 100
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Figure 4.2: Validation Curves:WideRes 28-10. Top: CIFAR 10; Bottom: CIFAR 100
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Table 4.2: Top-1 Error Rates Achieved: Wide ResNet For CIFAR-10 and CIFAR-100. * Indicates
Results During Our Experiments

Model Depth-K-
Cardinality

CIFAR-10 CIFAR-100 Regularizer

Wide ResNet[2] 28-10 4.16* 20.50* None (origi-
nal)

28-10 3.76 18.56 SO
28-10 3.86 18.12 DSO
28-10 3.68 18.90 MC
28-10 3.66 18.03 SRIP
28-10 3.73 18.76 OMDSM [30]
28-10 3.93 19.08 SN [8]

Table 4.3: Top-1 Error Rates Achieved: ResNext For CIFAR 10 and CIFAR 100. * Indicates Results
During Our Experiments

Model Depth-K-
Cardinality

CIFAR-10 CIFAR-100 Regularizer

ResNext[3] 29-8-64 3.70* 18.53* None (origi-
nal)

29-8-64 3.58 17.59 SO
29-8-64 3.85 19.78 DSO
29-8-64 3.65 17.62 MC
29-8-64 3.48 16.99 SRIP
29-8-64 3.54 17.27 SN [8]

CIFAR-100, respectively. MC performs only next to SRIP on CIFAR-10, while DSO performs

the second best on CIFAR-100. SO still seems to be reasonably robust, ranking third among the

four on both datasets. Figure 4.2 displays similar tendency as enforcing orthogonality makes

training/validation curves smoother and more stable, and SRIP has the most positive impact in that

regard. We also include the recent results (average accuracies) reported by [30] on improving Wide

ResNet using hard Stiefel manifold constraints (OMDSM), which makes a fair comparison with

ours, on soft regularization forms versus hard constraint forms of enforcing orthogonality. The

OMDSM results lead to competitive accuracies, but are inferior to SRIP on both CIFAR-10 and

CIFAR-100.
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Figure 4.3: Validation Curves: Resnext. Top: CIFAR 10; Bottom: CIFAR 100
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4.1.3 ResNext 29-8-64 Model [3]

For ResNext Model [3], we consider the 29-layer architecture with a cardinality of 8 and widen-

ing factor as 4, which reported the best state-of-the-art CIFAR-10/CIFAR-100 results compared to

other contemporary models with similar amounts of trainable parameters. We use SGD optimizer

with a Nesterov Momentum of 0.9 to train the model for 300 epochs. The learning starts from 0.1,

and decays by a factor of 0.1 after 150 and 225 epochs, respectively

Table 4.3 shows that all orthogonality regularizers give rise to improved accuracies, except for

DSO. SRIP is again the best performer among all in both datasets, with 0.22% gain on CIFAR-10

and 1.54% on CIFAR-100, respectively.Figure 4.3 shows the validation curve obtained for both the

CIFAR Dataset. Similarly, SRIP is observed to also improve stability and convergence speed of

training/validation curves (more notably on CIFAR-100), in particular at the initial stage.

4.1.4 Comparing SRIP with Spectral Regularization [8]

We compare the spectral norm (SR) regularization developed in [8]: λs
2
σ(W )2, with the authors’

default λs = 0.1. All other settings in [8] have been followed identically. We apply the SN

regularization to training the Wide ResNet-28-10 Model and the ResNext 29-8-64 Model. For the

former, we obtain a top-1 error rate of 3.93% on CIFAR-10, and 19.08% on CIFAR-100. For the

latter, the top-1 error rate is 3.54% for CIFAR-10, and 17.27% for CIFAR-100. As shown in Tables

4.2 and 4.3, we find that SRIP gives a consistent marginal improvement over SN in all cases. That

reminds us of the previous discussion on the hidden link between the two, and suggests SRIP to

be the better choice. Besides, both SN and SRIP are observed to lead to stabilized and smoother

training curves.

4.1.5 Comparing SRIP with Jacobian based Regularization [9]

There has been a recent work on CNNs [9],which propounds the idea of using Norm of the

Jacobian as a regularizer to the the model . The paper uses a Wide ResNet [2] with 22 layers of

width 5, on CIFAR-10, which achieves an error rate 6.66%, and with their proposed regularizer

5.68%. We trained this model using SRIP over the same augmented full training set, achieving

4.28% error, that shows a large margin over the CNN gradient norm-based regularizer.
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Table 4.4: Top-5 Error Rates Achieved:ImageNet and (Top-1 Error) SVHN. * Indicates Results
During Our Experiments

Model Depth-K ImageNet Regularizer
ResNet34[1] 34 9.84 None

34 9.68 OMDSM [30]
34 8.32 SRIP

ResNet50[1] 50 7.02 None
50 6.87 SRIP

Pre-Resnet34[11] 34 9.79 None
34 9.45 OMDSM [30]
34 8.79 SRIP

Model Depth-K SVHN Regularizer
WideResNet[2] 16-8 1.63 None

16-8 1.56 SRIP

4.2 ImageNet and SVHN Dataset

We ran extensive experiments on Imagenet Dataset for different configuration of Resnet[1],

Pre-Resnet[11] and WideResnet[2] architectures. Results obtained with these architectures were

later compared with, existing regularization methods. The experimental details and hyper-parameter

settings for Imagenet dataset were kept consistent with the original model [1]. The Initial learning

rate is set to 0.1, which is decreased at epoch 30,60,90 and 120 by a factor of 0.1. For all the

Imagenet experiments, the initial value of λ constant was changed to 1e-6. The results achieved

with ResNet34 and Pre-ResNet34 [1] were compared with the work in [30] ,achieving better Top-5

final accuracies for both ResNet34 and Pre-ResNet34 models. For Experiments related to SVHN,

initial value of λ constant was made similar to that used for CIFAR dataset, which is 1e-2, and we

used WideResnet [2] architecture to perform the experiments. The Table 4.4 summaries all the

observation related to both the dataset under different settings.
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5. SUMMARY AND INFERENCES

5.1 Summary Remarks and Insights

† From the extensive experiments with three state-of-the-art models on two popular benchmarks,
we can conclude the following points:

• In response to the question in our title: Yes, we can gain a lot from simply adding orthogonality

regularizations into training. The gains can be found in both final achievable accuracy and

empirical convergence.

For the former, the three models have obtained (at most) 0.49%, 0.50%, and 0.22% top-1

accuracy gains on CIFAR-10, and 0.41%, 2.47%, and 1.54% on CIFAR-100, respectively. For

the latter, positive impacts are widely observed in our training and validation curves (Figure

4.1 as a representative example), in particular faster and smoother curves at the initial stage.

Note that those impressive improvements are obtained with no other changes made.

• With its nice theoretical grounds, SRIP is also the best practical option among all four

regularizations evaluated in this paper. It consistently performs the best in achieving the

highest accuracy as well as accelerating/stabilizing training curves. It also outperforms other

recent methods utilizing spectral norm [8] and hard orthogonality [30].

• Despite its simplicity (and potential estimation bias), SO is a surprisingly robust baseline and

frequently ranks second among all four. We conjecture that SO benefits from its smooth form

and continuous gradient, which facilitates the gradient-based optimization, while both SRIP

and MC have to deal with non-smooth problems.

• DSO does not seem to be helpful. It often performs worse than SO, and sometimes even

worse than the un-regularized original model. We interpret it by recalling how the matrix W

†Reprinted with permission from Summary Remarks and Insights section of Can We Gain More from Orthogonality
Regularizations in Training Deep Networks? by N. Bansal, X. Chen and Z. Wang, 2018,Advances in Neural Information
Processing Systems 31 (NIPS 2018) pre-proceedings
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is constructed (Section 3 beginning): enforcing W TW close to I has “inter-channel” effects

(i.e., requiring different output channels to have orthogonal filter groups); whereas enforcing

WW T close to I enforce “intra-channel” orthogonality (i.e., same spatial locations across

different filter groups have to be orthogonal). The former is a better accepted idea. Our results

on DSO seems to provide further evidence (from the counter side) that orthogonality should

be primarily considered for “inter-channel”, i.e., between columns of W .

• MC brings in certain improvements, but not as significantly as SRIP. We notice that (3.4)

will approximate (3.3) well only when W has unit columns. While we find minimizing (3.4)

generally has the empirical results of approximately normalizing W columns, it is not exactly

enforced all the time. As we observed from experiments, large deviations of column-wise

norms could occur at some point of training and potentially bring in negative impacts. We

plan to look for re-parameterization of W to ensure unit norms throughout training, e.g.,

through integrating MC with weight normalization [36], in future work.

• Comparison between SRIP and other existing Regularization techniques also seem to suggest,

SRIP succeeds in providing better training parameter space. on CIFAR dataset, in [50],

achieves an error rate of 5.68%, with our method we see an improvement of about 1.5%, on

Wide-Resnet architecture.

• Verifying the efficacy of the model, we trained it on a large dataset such as ImageNet, for

ResNet34[1], Pre-ResNet34[11] and ResNet 50[1], to see an improvement in terms of top-5

accuracy, from the model, which doesn’t uses any regularization term.The improvement

achieved ranges from 0.15% for ResNet 50 to as high as 1.5% for simple ResNet34. We also

postulate that, as the number of layers are increased and Model becomes more deeper, the

improvement would be more stark.
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6. FUTURE WORK

6.1 Possible Extension of the Idea

The applications of this work, and the improvements achieved by the proposed regularizations

could be used in various domain to improve the accuracy, stability and convergence of the model.

We look to apply the same idea in both Sequence based models and vision based models to see the

efficacy of our method and improvements it brings.We are primarily looking to see its effect on:

• Object Detection

• Person Re-identification

• Gan Training

6.1.1 Object Detection Task

There have been work in the past in the Object Detection task, as similar to Classification

task, where enforcing orthogonality on the feature vectors, so that they respond to different classes

independently has also shown improvements.All the state of art models [1],[2], [3], which have

shown a subsequent Improvement in terms of Classification accuracy on CIFAR and ImageNet

Dataset have followed up with verifying the efficacy of the proposed model with Object Detection

task.

Specifically, Authors of [1] have run the model on PASCAL VOC [51] and COCO [52] dataset,

on a model based on Faster R-CNN [14], with the backbone of the network changed from VGG

[47] to Resnet. As an extension of our work, we look to employ the same idea,this time adding the

new regularization term based on SRIP, in to the Backbone Network. As shown in the figure 6.1, In

the first stage, we pass the Input Image, through a backbone network, which is a CNN model, used

for Feature Extraction, named as Conv Layers in the figure. We look to enforce orthogonality to

this network, and evaluate its performance both on region proposal generated and hence the final

precision achieved.
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Figure 6.1: Faster RCNN:Reprinted From [14];
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Figure 6.2: Weight Vectors Learned: Reprinted From [15];

6.1.2 Person Re-identification Task

Person Re-identification task, which is a task which comes in the ambit of task related to

Face Recognition, could also use orthogonal property of weights to its advantage in improving its

performance. Recent work in this domain, seems to validate this claim, as work shown in [15],

shows improvement in re-ID accuracy for Market-1501, CUHK03, and Duke datasets. The model

proposed propounds the same theory, emphasizing that enforcing orthogonality, encourages to

produce more discriminative features which subsequently helps in performance gain. As shown

in the figure 6.2, shows the feature weight vector learned for different persons, which could be

made more discriminative by employing orthogonality. Paper proposes to use CaffeNet and ResNet

architectures for training. We look to add our SRIP based regularizer to the base network, and see if

it helps in further separating the features learned.
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6.1.3 GAN Training Stability

Recent work in GANs and all its variant [53], have shown great promise in terms of generating

target distribution, particularly for vision related tasks. One is also aware about the instability faced

during training the GANs.Some of which are:

• Non-Convergence of Model Parameters, Where the Generator or the Discriminator never

seems to converge.

• Unequal training,which leads to one of the Model becoming more powerful than other,

hampers goal of the GAN. For Example, a strong Discriminator would lead to diminished

gradient problem, where as a strong Generator could lead to a mode collapse, for a multi-mode

target distribution.

• Training being hyper-sensitive to hyper parameters and regularizers.

Figure 6.3 shows a typical example of non-convergence of the value xy in a quintessential Nash

equilibrium scenario. Miyato et al., proposed a method called spectral Normalization in [46],

which constraints the singular values of the parameter matrix of the discriminator, which helps in

regularizing the discriminator and hence curbing the problem of divergence and mode collapse. The

method proposed in the model normalizes all the singular values of the weight matrix with, the

largest singular value, using power iteration method. The model showed great promise in terms

of achieving training stability and generating diverse image for CIFAR and ImageNet Dataset.

Since, our best performing regularizer, which also penalizes in accordance with spectral norm, we

think, enforcing this to either Discriminator or Generator or both should help stabilize the training

of GANs. We are currently working towards replicating the results for DCGAN [54] on CelebA

dataset and seeing the effect of our method compared to Spectral Normalization Method.
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Figure 6.3: Nash Equilibrium: Players x and y: Reprinted From [16]

37



REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,

2016.

[2] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint arXiv:1605.07146,

2016.

[3] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for

deep neural networks,” in Computer Vision and Pattern Recognition (CVPR), 2017 IEEE

Conference on, pp. 5987–5995, IEEE, 2017.

[4] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected convolutional

networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

vol. 1, p. 3, 2017.

[5] A. Krizhevsky, “Learning multiple layers of features from tiny images.” https://www.cs.

toronto.edu/~kriz/cifar.html, 2012.

[6] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng 2011.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale

Hierarchical Image Database,” in CVPR09, 2009.

[8] Y. Yoshida and T. Miyato, “Spectral norm regularization for improving the generalizability of

deep learning,” arXiv preprint arXiv:1705.10941, 2017.

[9] J. Sokolic, R. Giryes, G. Sapiro, and M. R. Rodrigues, “Robust large margin deep neural

networks,” IEEE Transactions on Signal Processing, vol. 65, Aug 2017.

[10] V. Fung, “Resnet and its variant models.” https://towardsdatascience.com/

an-overview-of-resnet-and-its-variants-5281e2f56035, 2017.

38

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035


[11] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” CoRR,

vol. abs/1603.05027, 2016.

[12] “Sample pictures of svhn.” http://ufldl.stanford.edu/housenumbers.

[13] “Sample pictures of imagenet.” https://www.crit-research.it.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with

region proposal networks,” in Proceedings of the 28th International Conference on Neural

Information Processing Systems - Volume 1, NIPS’15, (Cambridge, MA, USA), pp. 91–99,

MIT Press, 2015.

[15] Y. Sun, L. Zheng, W. Deng, and S. Wang, “Svdnet for pedestrian retrieval,” CoRR,

vol. abs/1703.05693, 2017.

[16] J. Hui, “Why is it hard to train generative adversarial networks,” 2018.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.

[18] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in Proceedings of the Thirteenth International Conference on Artificial Intelligence

and Statistics, pp. 249–256, 2010.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing

internal covariate shift,” in International conference on machine learning, pp. 448–456, 2015.

[20] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, “Identifying

and attacking the saddle point problem in high-dimensional non-convex optimization,” in

Advances in neural information processing systems, pp. 2933–2941, 2014.

[21] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear dynamics of

learning in deep linear neural networks,” arXiv preprint arXiv:1312.6120, 2013.

39

http://ufldl.stanford.edu/housenumbers
https://www.crit-research.it


[22] J. Zhou, M. N. Do, and J. Kovacevic, “Special paraunitary matrices, cayley transform, and

multidimensional orthogonal filter banks,” IEEE Transactions on Image Processing, vol. 15,

no. 2, pp. 511–519, 2006.

[23] P. Rodríguez, J. Gonzalez, G. Cucurull, J. M. Gonfaus, and X. Roca, “Regularizing cnns with

locally constrained decorrelations,” arXiv preprint arXiv:1611.01967, 2016.

[24] G. Desjardins, K. Simonyan, R. Pascanu, et al., “Natural neural networks,” in Advances in

Neural Information Processing Systems, pp. 2071–2079, 2015.

[25] D. Mishkin and J. Matas, “All you need is a good init,” arXiv preprint arXiv:1511.06422,

2015.

[26] K. Jia, D. Tao, S. Gao, and X. Xu, “Improving training of deep neural networks via singular

value bounding,” CoRR, abs/1611.06013, 2016.

[27] M. Harandi and B. Fernando, “Generalized backpropagation,\’{E} tude de cas: Orthogonality,”

arXiv preprint arXiv:1611.05927, 2016.

[28] M. Ozay and T. Okatani, “Optimization on submanifolds of convolution kernels in cnns,”

arXiv preprint arXiv:1610.07008, 2016.

[29] D. Xie, J. Xiong, and S. Pu, “All you need is beyond a good init: Exploring better solution for

training extremely deep convolutional neural networks with orthonormality and modulation,”

arXiv preprint arXiv:1703.01827, 2017.

[30] L. Huang, X. Liu, B. Lang, A. W. Yu, and B. Li, “Orthogonal weight normalization: Solution

to optimization over multiple dependent stiefel manifolds in deep neural networks,” arXiv

preprint arXiv:1709.06079, 2017.

[31] Y. Sun, L. Zheng, W. Deng, and S. Wang, “Svdnet for pedestrian retrieval,” arXiv preprint,

2017.

[32] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE transactions on information

theory, vol. 51, no. 12, pp. 4203–4215, 2005.

40



[33] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information theory, vol. 52,

no. 4, pp. 1289–1306, 2006.

[34] T. Zhang, “Sparse recovery with orthogonal matching pursuit under rip,” IEEE Transactions

on Information Theory, vol. 57, no. 9, pp. 6215–6221, 2011.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification,” in Proceedings of the IEEE international conference

on computer vision, pp. 1026–1034, 2015.

[36] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to

accelerate training of deep neural networks,” in Advances in Neural Information Processing

Systems, pp. 901–909, 2016.

[37] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural networks,”

in International Conference on Machine Learning, pp. 1310–1318, 2013.

[38] V. Dorobantu, P. A. Stromhaug, and J. Renteria, “Dizzyrnn: Reparameterizing recurrent neural

networks for norm-preserving backpropagation,” arXiv preprint arXiv:1612.04035, 2016.

[39] M. Arjovsky, A. Shah, and Y. Bengio, “Unitary evolution recurrent neural networks,” in

International Conference on Machine Learning, pp. 1120–1128, 2016.

[40] Z. Mhammedi, A. Hellicar, A. Rahman, and J. Bailey, “Efficient orthogonal parametrisation of

recurrent neural networks using householder reflections,” arXiv preprint arXiv:1612.00188,

2016.

[41] E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal, “On orthogonality and learning recurrent

networks with long term dependencies,” arXiv preprint arXiv:1702.00071, 2017.

[42] S. Wisdom, T. Powers, J. Hershey, J. Le Roux, and L. Atlas, “Full-capacity unitary recurrent

neural networks,” in Advances in Neural Information Processing Systems, pp. 4880–4888,

2016.

41



[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[44] S. Wang, A.-r. Mohamed, R. Caruana, J. Bilmes, M. Plilipose, M. Richardson, K. Geras,

G. Urban, and O. Aslan, “Analysis of deep neural networks with extended data jacobian

matrix,” in International Conference on Machine Learning, pp. 718–726, 2016.

[45] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On large-

batch training for deep learning: Generalization gap and sharp minima,” arXiv preprint

arXiv:1609.04836, 2016.

[46] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative

adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.

[47] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” CoRR, vol. abs/1409.1556, 2014.

[48] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich CoRR, vol. abs/1409.4842, 2014.

[49] Z. Lin, C. Lu, and H. Li, “Optimized projections for compressed sensing via direct mutual

coherence minimization,” arXiv preprint arXiv:1508.03117, 2015.
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