GENETIC DISSECTION OF GRAIN YIELD, AGRONOMIC TRAITS AND END-USE QUALITY IN TEXAS WHEAT USING LINKAGE AND ASSOCIATION

STUDY

A Dissertation

by

SMIT DHAKAL

Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee,	Shuyu Liu
Co-Chair of Committee,	Amir M. H. Ibrahim
Committee Members,	Jackie C. Rudd
	Qingwu Xue
	Joseph Awika
Head of Department,	David D. Baltensperger

December 2018

Major Subject: Plant Breeding

Copyright 2018 Smit Dhakal

ABSTRACT

Quantitative trait loci (QTL) study opens the door to marker-assisted selection by dissecting loci into individual component loci, their genetic effects and interactions. The objectives of this study were to find stable marker-trait association and to map QTL associated with grain yield, agronomic traits and end-use quality traits. An association mapping panel consisting of 298 synthetic derived lines from nine environments were phenotyped for end-use quality traits and genotyped with 76K genotype-by-sequencing (GBS) to find marker-trait association. Another population of $124 F_{5:7}$ recombinant inbred lines were phenotyped for end-use quality in seven environments and for grain yield and agronomic traits in 28 environments. With the use of 90K single nucleotide polymorphism (SNP) and GBS, QTLs for grain yield, agronomic traits and end-use quality traits were determined. Association analysis revealed two sub-population structures originating from maternal parents of the backcross and slight relatedness among lines. Loci on the short arm of chromosome 1B (17.2-30.4 Mb) were significantly associated with mixograph parameters explaining up to 13.0% of the R^2 . Hardness loci on the short arm of chromosome 5D (0.3-9.3 Mb) also affected hardness index and flour yield, explaining up to 27% and 33%, respectively. Glu-D1 loci had strong influence on dough rheology of bi-parental population explaining up to 54.6% of the variation in midline peak time, with favorable allele coming from TAM 112. From multi-trait QTL analysis, homologue group 1 QTLs were strongly linked to mixograph traits from linkage analysis as well. Phenological development gene dependent QTLs

were identified on chromosome 1A, 3B for grain yield, and 2B, 4B and 5B for test weight. Phonological development gene independent QTLs were also identified on chromosome 6D, 7D for grain yield, and on 4D, 6B for test weight. We found five genomic regions on chromosome 1D, 4B, 4D and 7D that are related to more than a single trait analyzed. This study unveiled previously identified loci linked to major genes as well as some newly identified QTLs. It will be necessary to validate these QTLs in different wheat backgrounds evaluated under similar growth conditions before developing markers for marker-assisted selection.

DEDICATION

To my lovely wife

Ashmita Bogati

And

My brother Ichchhuk Dhakal and my parents, Indra B. Dhakal and Nirmala Dhakal

They are the source of inspiration in my life!

ACKNOWLEDGEMENTS

This dissertation is one of the gems in my academic career. To reach this point on my life, several people have given their contribution. First and foremost, it gives me immense pleasure to thank my committee chair Dr. Shuyu Liu and co-chair Dr. Amir M. H. Ibrahim for their guidance and support. Your guidance, support, and patience have certainly developed professionalism within me. Your never tiring effort certainly have helped me to achieve my career a step closer. My deep appreciation goes to my committee members, Dr. Jackie Rudd, and Dr. Qingwu Xue and Dr. Joseph Awika for their critical review over my thesis, suggestions and guidance during experimentation. I would also like to remember help from my non-voting committee member, Dr. Shichen Wang for his support and critical help on genomics data analysis.

I would like to thank Maria Pilar Fuentealba, Lisa Garza, Geraldine Opena for their help on logistic and other research related work. I would also like to thank Dr. Ravindra Devkota, Jason Baker, Kirk Jessup for population development and phenotyping in the Texas High Plains and Bryan Simoneaux in south Texas. I would like to convey my special thank you to Dr. Silvano A. Ocheya for guiding me through highs and lows of my carrier and boosting the confidence in me. I really learned lot of statistical analysis from you. I owe my gratitude to Dr. Audrey Gerrard for phenotyping end-use quality related works. Thank you, all my lab mates, Dr. Yan Yang, Dr. Sarah Ajayi, Anil Adhikari, Mahendra Bhandari for their valuable input and critical discussion. I would like to take this moment to thank student help from Jackie Avila, Hangjin Yu, Kila Andrew, Ashley Holmes and the whole wheat genetics lab for their valuable support ranging from DNA extraction up to filed phenotyping. Many thanks go to Jacob Price for providing me first-hand information regarding mite and viruses.

Loving thanks to my mom, dad, and my wife for supporting and encouraging me through the tough time. I wouldn't have been able to continue my higher education without financial and moral support from my brother. Uncle Niranjan and Ranjan, you are the one who sowed the seed of education within me. You were exemplary inspiration to me. I could not expect such better parent and family than this. I am grateful for everything you have done for me.

CONTRIBUTORS AND FUNDING SOURCES

Contributors

PhD study and the dissertation were supervised by a committee consisting of Dr. Shuyu Liu (advisor), Dr. Amir M. H. Ibrahim (co-advisor), Dr. Jackie C. Rudd, Dr. Qingwu Xue, and Dr. Joseph Awika of the Department of Soil and Crop Science. Dr. Shichen Wang from Genomics and Bioinformatic Service at the Texas A&M AgriLife Research Center was a special appointment as a non-voting committee member for the dissertation.

All work for the dissertation was completed by the student, under the advisement of Dr. Shuyu Liu of the Department of Soil and Crop Science.

Funding Sources

Graduate study was supported by a College of Agriculture and Life Science (COALS) fellowship from Texas A&M University and a dissertation research by the Tom Slick Senior Graduate Research fellowship for College of Agriculture and Life Science. Part of the funding for this research study also came from Texas A&M AgriLife Research and Texas Wheat Producer Board.

NOMENCLATURE

AA	QTL-by-QTL Interaction/Additive-by-Additive Interaction
AAE	QTL-by-QTL-by-Environment Interaction
ANOVA	Analysis of variance
BLUP	Best Linear Unbiased Estimate
СТАВ	Cetyltrimethylammonium Bromide
DNA	Deoxyribonucleic Acid
FYLD	Flour Yield (%)
GEI	Genotype-by-Environment Interaction
GLM	General Linear Model
GY	Grain yield
HARD	Hardness index
HD	Heading date
HMW-GS	High Molecular Weight Glutenin Sub-units
HT	Plant Height
HVA	High Value Allele
ICIM	Inclusive Composite Interval Mapping
LMW-GS	Low Molecular Weight Glutenin Sub-units
MAS	Marker-Assisted Selection
MLM	Mixed Linear Model
MLPH	Midline Peak Height

MLPT	Midline Peak Time
MLRS	Midline Right Slope
MLRW	Midline Right Width
MLTW	Midline Tail Width
PCR	Polymerase Chain Reaction
QTL	Quantitative Trait Loci
RIL	Recombinant Inbred Lines
SKCS	Single Kernel Characterization System
SNP	Single Nucleotide Polymorphism

TABLE OF CONTENTS

ABSTRACT	ii
DEDICATION	iv
ACKNOWLEDGEMENTS	V
CONTRIBUTORS AND FUNDING SOURCES	vii
NOMENCLATURE	viii
TABLE OF CONTENTS	X
LIST OF FIGURES	xiii
LIST OF TABLES	xiv
CHAPTER I INTRODUCTION	1
References	4
CHAPTER II ASSOCIATION ANALYSIS OF END-USE QUALITY IN	
SYNTHETIC DERIVED WHEAT	9
INTRODUCTION	9
MATERIALS & METHODS.	
Populations and trials	
Grain quality evaluation	
Genotyping	15
Phenotypic data analysis	16
Linkage Disequilibrium	18
Population structure and kinship	18
Marker-Trait Association Model testing	19
RESULTS	20
ANOVA and heritability	20
Pearson correlation	22
SNP statistics, population structure and relative kinship	24
Association mapping analysis of end-use quality traits	

CONCLUSION 43 REFERENCES 44 CHAPTER III LINKAGE MAPPING OF END-USE QUALITY IN TAM WHEAT51 INTRODUCTION 51 MATERIALS AND METHODS 54 Populations and trials 54 Grain quality evaluation 55 Phenotypic data analysis 57 Genotypic data analysis 59 RESULTS 60 Pearson correlation 63 QTL for Kernel Characteristics 65 QTL for Flour yield and characteristics 77 QTL for Mixograph Traits 77 QTL clusters and stable QTL 80 Epistasis 84 DISCUSSION 86 CONCLUSION 91 REFERENCES 93 CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITS IN TAM WHEAT 98 MATERIALS AND METHODS 100 Population, trials and phenotyping	DISCUSSION	
REFERENCES 44 CHAPTER III LINKAGE MAPPING OF END-USE QUALITY IN TAM WHEAT51 INTRODUCTION 51 MATERIALS AND METHODS 54 Populations and trials 54 Grain quality evaluation 55 Phenotypic data analysis 57 Genotyping and linkage map construction 58 QTL analysis 60 ANOVA and heritability 60 Person correlation 63 QTL for Kernel Characteristics 65 QTL for Kernel Characteristics 77 QTL for Mixograph Traits 77 QTL clusters and stable QTL 80 Epistasis 84 DISCUSSION 86 CONCLUSION 91 REFERENCES 93 CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITS IN TAM WHEAT 98 INTRODUCTION 98 MATERIALS AND METHODS 100 Population, trials and phenotyping 100 Population, trials and phenotyping 100 Population, trials and phenotyping 100 Porusping and linkage map construction	CONCLUSION	
CHAPTER III LINKAGE MAPPING OF END-USE QUALITY IN TAM WHEAT51 INTRODUCTION 51 MATERIALS AND METHODS 54 Populations and trials 54 Grain quality evaluation 55 Phenotypic data analysis 57 Genotyping and linkage map construction 58 QTL analysis 59 RESULTS 60 ANOVA and heritability 60 Person correlation 63 QTL for Kernel Characteristics 75 QTL for Kernel Characteristics 76 QTL clusters and stable QTL 80 Epistasis 84 DISCUSSION 86 CONCLUSION 91 REFERENCES 93 CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITS IN TAM WHEAT 98 MATERIALS AND METHODS	REFERENCES	
INTRODUCTION 51 MATERIALS AND METHODS 54 Populations and trials 54 Grain quality evaluation 55 Phenotypic data analysis 57 Genotyping and linkage map construction 58 QTL analysis 59 RESULTS 60 ANOVA and heritability 60 Pearson correlation 63 QTL for Kernel Characteristics 65 QTL for Kernel Characteristics 77 QTL clusters and stable QTL 80 Epistasis 84 DISCUSSION 86 CONCLUSION 91 REFERENCES 93 CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITS 98 INTRODUCTION 98 MATERIALS AND METHODS 100 Population, trials and phenotyping 100 Population, trials and phenotyping 100 Phenotypic data analysis 102 Genotyping and linkage map construction 104 QTL for plant height 107 Pearson correlation 107 Pearson correlation 109 </td <td>CHAPTER III LINKAGE MAPPING OF END-USE QUALITY IN TAM V</td> <td>VHEAT51</td>	CHAPTER III LINKAGE MAPPING OF END-USE QUALITY IN TAM V	VHEAT51
MATERIALS AND METHODS 54 Populations and trials 54 Populations and trials 54 Grain quality evaluation 55 Phenotypic data analysis 57 Genotyping and linkage map construction 58 QTL analysis 59 RESULTS 60 ANOVA and heritability 60 Pearson correlation 63 QTL for Flour yield and characteristics 65 QTL for Flour yield and characteristics 75 QTL for Mixograph Traits 77 QTL clusters and stable QTL 80 Epistasis 84 DISCUSSION 86 CONCLUSION 91 REFERENCES 93 CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITS IN TAM WHEAT 98 MATERIALS AND METHODS 100 Population, trials and phenotyping 100 Phenotypic data analysis 102 Genotyping and linkage map construction 104 QTL for plant height 107 Pearson correlation 109 QTL for plant height 110 </td <td>INTRODUCTION</td> <td>51</td>	INTRODUCTION	51
Populations and trials 54 Grain quality evaluation 55 Phenotypic data analysis 57 Genotyping and linkage map construction 58 QTL analysis 59 RESULTS. 60 ANOVA and heritability 60 Pearson correlation 63 QTL for Kernel Characteristics 65 QTL for Flour yield and characteristics 75 QTL for Kernel Characteristics 75 QTL for Kernel Characteristics 77 QTL clusters and stable QTL 80 Epistasis 84 DISCUSSION 86 CONCLUSION 91 REFERENCES 93 CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITS IN TAM WHEAT 98 MATERIALS AND METHODS 100 Population, trials and phenotyping 100 Population, trials and phenotyping 100 Phenotypic data analysis 102 Genotyping and linkage map construction 104 QTL analysis 107 ANOVA and heritability 107 Pearson correlation	MATERIALS AND METHODS	
Grain quality evaluation 55 Phenotypic data analysis 57 Genotyping and linkage map construction 58 QTL analysis 59 RESULTS 60 ANOVA and heritability 60 Pearson correlation 63 QTL for Kernel Characteristics 75 QTL for Flour yield and characteristics 75 QTL clusters and stable QTL 80 Epistasis 84 DISCUSSION 86 CONCLUSION 91 REFERENCES 93 CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITS 100 Population, trials and phenotyping 100 PortL analysis 106 RESULTS 107 ANOVA and heritability 107 Pearson correlation 109 QTL for grain yield 110 QTL for plant height 117 QTL for test weight 118 QTL for test weight	Populations and trials	
Phenotypic data analysis 57 Genotyping and linkage map construction 58 QTL analysis 59 RESULTS. 60 ANOVA and heritability 60 Pearson correlation 63 QTL for Kernel Characteristics 65 QTL for Kernel Characteristics 75 QTL for Mixograph Traits 77 QTL clusters and stable QTL 80 Epistasis 84 DISCUSSION 86 CONCLUSION 91 REFERENCES 93 CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITS 98 INTRODUCTION 98 MATERIALS AND METHODS 100 Population, trials and phenotyping 100 Pohenotyping and linkage map construction 104 QTL analysis 106 RESULTS 107 ANOVA and heritability 107 Pearson correlation 109 QTL for grain yield 110 QTL for plant height 117 QTL for test weight 118 QTL for test weight 118	Grain quality evaluation	
Genotyping and linkage map construction58QTL analysis59RESULTS60ANOVA and heritability60Pearson correlation63QTL for Kernel Characteristics65QTL for Flour yield and characteristics75QTL for Mixograph Traits77QTL clusters and stable QTL80Epistasis84DISCUSSION86CONCLUSION91REFERENCES93CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITSIN TAM WHEAT98MATERIALS AND METHODS100Population, trials and phenotyping100Phenotypic data analysis102Genotyping and linkage map construction104QTL analysis107ANOVA and heritability107Paranton Correlation109QTL for grain yield110QTL for grain yield110QTL for test weight118QTL cluster and stable QTL124DISCUSSION124DISCUSSION124DISCUSSION127	Phenotypic data analysis	
QTL analysis59RESULTS60ANOVA and heritability60Pearson correlation63QTL for Kernel Characteristics65QTL for Flour yield and characteristics75QTL for Mixograph Traits77QTL clusters and stable QTL80Epistasis84DISCUSSION86CONCLUSION91REFERENCES93CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITSIN TAM WHEAT98MATERIALS AND METHODS100Population, trials and phenotyping100Phenotypic data analysis102Genotyping and linkage map construction104QTL analysis107ANOVA and heritability107Pearson correlation104QTL for grain yield110QTL for test weight118QTL for test weight118QTL for test weight124DISCUSSION124DISCUSSION124	Genotyping and linkage map construction	
RESULTS 60 ANOVA and heritability 60 Pearson correlation 63 QTL for Kernel Characteristics 65 QTL for Flour yield and characteristics 75 QTL clusters and stable QTL 80 Epistasis 84 DISCUSSION 86 CONCLUSION 91 REFERENCES 93 CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITS 98 INTRODUCTION 98 MATERIALS AND METHODS 100 Population, trials and phenotyping 100 Phenotypic data analysis 102 Genotyping and linkage map construction 104 QTL analysis 107 ANOVA and heritability 107 Pearson correlation 109 QTL for grain yield 110 QTL for heading date 118 QTL for heading date 118 QTL for test weight 118 QTL cluster and stable QTL 120 Epistasis 124	QTL analysis	59
ANOVA and heritability 60 Pearson correlation 63 QTL for Kernel Characteristics 65 QTL for Kernel Characteristics 75 QTL for Mixograph Traits 77 QTL clusters and stable QTL 80 Epistasis 84 DISCUSSION 86 CONCLUSION 91 REFERENCES 93 CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITS IN TAM WHEAT 98 MATERIALS AND METHODS 100 Population, trials and phenotyping 100 Population, trials and phenotyping 100 Phenotypic data analysis 102 Genotyping and linkage map construction 104 QTL for grain yield 117 QTL for plant height 117 QTL for test weight 118 QTL for test weight 118 QTL for test weight 1120 Epistasis 124 DISCUSSION 127	RESULTS	60
Pearson correlation63QTL for Kernel Characteristics65QTL for Flour yield and characteristics75QTL for Mixograph Traits77QTL clusters and stable QTL80Epistasis84DISCUSSION86CONCLUSION91REFERENCES93CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITSIN TAM WHEAT98MATERIALS AND METHODS100Population, trials and phenotyping100Phenotypic data analysis102Genotyping and linkage map construction104QTL for grain yield107ANOVA and heritability107QTL for grain yield116QTL for test weight118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	ANOVA and heritability	60
QTL for Kernel Characteristics65QTL for Flour yield and characteristics75QTL for Mixograph Traits77QTL clusters and stable QTL80Epistasis84DISCUSSION86CONCLUSION91REFERENCES93CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITSIN TAM WHEAT98INTRODUCTION98MATERIALS AND METHODS100Population, trials and phenotyping100Phenotypic data analysis102Genotyping and linkage map construction104QTL analysis107ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for test weight118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	Pearson correlation	63
QTL for Flour yield and characteristics75QTL for Mixograph Traits77QTL clusters and stable QTL80Epistasis84DISCUSSION86CONCLUSION91REFERENCES93CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITSIN TAM WHEAT98MATERIALS AND METHODS100Population, trials and phenotyping100Phenotypic data analysis102Genotyping and linkage map construction104QTL analysis107ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for test weight118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	QTL for Kernel Characteristics	65
QTL for Mixograph Traits77QTL clusters and stable QTL80Epistasis84DISCUSSION86CONCLUSION91REFERENCES93CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITSIN TAM WHEAT98INTRODUCTION98MATERIALS AND METHODS100Population, trials and phenotyping100Phenotypic data analysis102Genotyping and linkage map construction104QTL analysis107ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for test weight118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	QTL for Flour yield and characteristics	75
QTL clusters and stable QTL80Epistasis84DISCUSSION86CONCLUSION91REFERENCES93CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITSIN TAM WHEAT98INTRODUCTION98MATERIALS AND METHODS100Population, trials and phenotyping100Phenotypic data analysis102Genotyping and linkage map construction104QTL analysis107ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for heading date118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	QTL for Mixograph Traits	77
Epistasis84DISCUSSION86CONCLUSION91REFERENCES93CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITSIN TAM WHEAT98INTRODUCTION98MATERIALS AND METHODS100Population, trials and phenotyping100Phenotypic data analysis102Genotyping and linkage map construction104QTL analysis107Pearson correlation109QTL for grain yield110QTL for grain yield117QTL for leading date118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	QTL clusters and stable QTL	
DISCUSSION86CONCLUSION91REFERENCES93CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITSIN TAM WHEAT98INTRODUCTION98MATERIALS AND METHODS100Population, trials and phenotyping100Phenotypic data analysis102Genotyping and linkage map construction104QTL analysis107ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for beading date118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	Epistasis	
CONCLUSION.91REFERENCES.93CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITSIN TAM WHEAT.98INTRODUCTION.98MATERIALS AND METHODS.100Population, trials and phenotyping.100Phenotypic data analysis.102Genotyping and linkage map construction.104QTL analysis.107ANOVA and heritability.107Pearson correlation.109QTL for grain yield.110QTL for beading date.118QTL for test weight.118QTL cluster and stable QTL.120Epistasis.124DISCUSSION.127	DISCUSSION	
REFERENCES.93CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITSIN TAM WHEAT.98INTRODUCTION.98MATERIALS AND METHODS.100Population, trials and phenotyping.100Phenotypic data analysis.102Genotyping and linkage map construction.104QTL analysis.107ANOVA and heritability.107Pearson correlation.109QTL for grain yield.110QTL for beading date.118QTL for test weight.118QTL cluster and stable QTL.120Epistasis.124DISCUSSION.127	CONCLUSION	
CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITS IN TAM WHEAT	REFERENCES	
IN TAM WHEAT	CHAPTER IV GENETIC DISSECTION OF YIELD AND AGRONOMIC	FRAITS
INTRODUCTION98MATERIALS AND METHODS100Population, trials and phenotyping100Phenotypic data analysis102Genotyping and linkage map construction104QTL analysis106RESULTS107ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for plant height117QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	IN TAM WHEAT	
MATERIALS AND METHODS100Population, trials and phenotyping100Phenotypic data analysis102Genotyping and linkage map construction104QTL analysis106RESULTS107ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for beading date117QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	INTRODUCTION	98
Population, trials and phenotyping100Phenotypic data analysis102Genotyping and linkage map construction104QTL analysis106RESULTS107ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for plant height117QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	MATERIALS AND METHODS	100
Phenotypic data analysis102Genotyping and linkage map construction104QTL analysis106RESULTS107ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for plant height117QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	Population trials and phenotyping	100
Genotyping and linkage map construction104QTL analysis106RESULTS107ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for plant height117QTL for test weight118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	Phenotypic data analysis	
QTL analysis106RESULTS107ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for plant height117QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	Genotyping and linkage map construction	
RESULTS.107ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for plant height117QTL for heading date118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	OTL analysis	
ANOVA and heritability107Pearson correlation109QTL for grain yield110QTL for plant height117QTL for heading date118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	RESULTS	
Pearson correlation109QTL for grain yield110QTL for plant height117QTL for heading date118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	ANOVA and heritability	
QTL for grain yield110QTL for plant height117QTL for heading date118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	Pearson correlation	
QTL for plant height	OTL for grain yield	110
QTL for heading date118QTL for test weight118QTL cluster and stable QTL120Epistasis124DISCUSSION127	OTL for plant height	117
QTL for test weight	OTL for heading date	118
QTL cluster and stable QTL	OTL for test weight	118
Epistasis	OTL cluster and stable OTL.	
DISCUSSION	Epistasis	120
	DISCUSSION	

CONCLUSION	
REFERENCES	
CHAPTER V SUMMARY AND CONCLUSION	138
APPENDIX A	141

LIST OF FIGURES

F	Page
Figure 2.1. Average LD decay in A MPSY population.	25
Figure 2.2. Distribution of pair-wise kinship coefficients among AMPSY on 2849 SNP markers.	26
Figure 2.3. Estimation of the number of populations by calculating delta K values	27
Figure 2.4. Principle component analysis of 295 synthetic derived lines in AMPSY population.	28
Figure 2.5. Manhattan Plot of significant markers and traits from combined analysis	33

LIST OF TABLES

	Page
Table 2.1. Analysis of variance, heritability and mean performance for end-use quality (combined analysis)	21
Table 2.2. Phenotypic correlation (combined analysis)	23
Table 2.3. Marker summary for AMPSY population	25
Table 2.4. Test statistic for the five models used to discover marker-trait associations	29
Table 2.5. Single Nucleotide polymorphism (SNP) marker loci significantly associated with end-use traits	32
Table 2.6. QTL associated with end-use quality from combined environment data	34
Table 3.1. Analysis of variance, heritability and mean performance of end-use quality in linkage population (combined analysis)	61
Table 3.2. Correlation matrix for end-use quality traits for predicted means (BLUP) across environments	64
Table 3.3. Significant end-use quality trait QTLs, additive effects detected in Individual environment analysis	66
Table 3.4. Significant QTLs, additive effects and additive-by-environment interaction effects from single trait-multi environment trials	70
Table 3.5. Multi-trait QTL (QTL clusters) for end-use quality detected from individual and multi-environment QTL analysis	81
Table 3.6. Stable and consistent QTL for end-use quality detected from individual environment QTL analysis	83
Table 3.7. Additive-by-additive epistatic interaction, and epistatic-by-environment interaction among significant loci	85
Table 4.1. Analysis of variance, heritability and mean performance of grain yield and agronomic traits	108
Table 4.2. Correlation matrix for grain yield and agronomic traits for predicted means (BLUP) across environments	110

Table 4.3. Significant grain yield and agronomic trait QTLs, additive effects detected in individual environment analysis	.111
Table 4.4. Significant QTLs, additive effects and additive-by-environment interaction effects from single trait-multi environment analysis	.114
Table 4.5. Multi-trait QTL (QTL clusters) for grain yield and agronomic traits detected from individual and multi-environment QTL analysis	.121
Table 4.6. Stable and consistent QTL for grain yield and agronomic traits detected from individual environment QTL analysis	.123
Table 4.7. Additive-by-additive epistatic interaction, and epistatic-by-environment interaction among significant loci	.125

CHAPTER I

INTRODUCTION

Wheat (*Triticum aestivum* L.) is a major crop in terms of area planted and nourishment of humankind. It provides nearly 20% calories and protein diet to global population (Shiferaw et al., 2013). A wide array of end products such as bread, noodles, cookies are made from wheat flour. With the expected population of 9 billion by 2050, annual genetic gain in crops must increase to 2-3% to meet food and feed demands (Hawkesford et al., 2013). However, current annual genetic gain in wheat is about 1%. In most part of the world, wheat yield is stagnant. Additionally, because of domestication and intensive selection pressure by nature and human kind, wheat has lost more than 69% of the genetic diversity that is present in the wheat genome (Haudry et al., 2007). Furthermore, most of the wheat breeding programs utilize elite-by-elite cross to create new genetic variability, which is the main bottleneck for increasing yield potential (Hao et al., 2010). In this context, selection of plants with desirable traits for increased yield, biotic and abiotic stress should be a major focus of plant breeders (Parry, 2012).

The primary challenge of wheat production in Texas is drought and heat stress which occurs frequently and with increasing intensity. Drought is one of the major factors limiting wheat production in the Southern Great Plains of the U.S. and other parts of the world. The Texas Panhandle area receives an average annual precipitation of 480 mm (Xue et al., 2014). Most of the cultivars grown in Texas are also susceptible to heat stress (Mason et al., 2010). From consumption point of view, awareness about daily diet and demand for diverse wheat food products is increasing in public. Breeding for enduse quality is equally important as breeding for grain yield to any breeding program. Thus, high yielding and drought tolerant wheat varieties without yield penalty and good end-use quality are desirable in Texas and other parts of the world.

In the past several decades, concerted efforts involving Texas A&M University's wheat breeding, genetics, physiology, pathology and entomology have developed widely adapted germplasm and cultivars for the U.S. Great Plains. These germplasm and cultivars possess novel alleles for high grain yield, drought tolerance, disease resistance and better end-use quality traits. Hard red winter wheat (HRWW) cultivar TAM 112 and TAM 111 developed by TAMU wheat breeding program were planted in millions of acers due to their drought tolerance and high grain yield potential (Lazar et al., 2004; Rudd et al., 2014). TAM 112 and TAM 111 rank among the top drought tolerant cultivars in the Southern Great Plains of the U.S. (NASS, 2012,

http://www.nass.usda.gov). Advanced breeding line TX05A001822 was high yielding and excellent for end use quality in yield trials (HWWQC, 2010). Synthetic derived wheat was encompassed by TAMU wheat breeding program to increased genetic diversity as well as to break the yield plateau.

Genotypic variation already exists in wheat to make it possible to breed for improved grain yield and end-use quality traits. However, genetic basis and possible candidate genes for these traits are needed before they can be deployed in crop development. With few exceptions, grain yield, agronomic traits and end-use quality traits have continuous phenotype distributions i.e. these traits are controlled by multiple genes termed quantitative trait loci (QTL). QTL study via classical linkage mapping and association mapping provides the starting point to dissect complicated traits into the component alleles, their relative effects on a specific trait and genomic regions responsible for the marker-trait association for traits of interest (Doerge, 2002). It also provides a foundation for marker-assisted selection (MAS), that expedite the breeding process given the proper estimation of position and effects of QTLs.

In this dissertation, single nucleotide polymorphism (SNPs) is used for genetic mapping and detecting QTL for yield, yield components, agronomic traits, and end-use quality. Chapter II studied the major marker-trait association for end-use quality traits in synthetic derived wheat with TAM 112 and TAM 111 in the genetic background. We associated double digest restriction site associated DNA sequencing (ddRAD-Seq) SNPs with important kernel texture, flour characteristics and dough mixing parameters across whole genome (Poland et al., 2012). Chapter III covers mapping and identification of QTLs for end-use quality in bi-parental population from the cross of TAM 112/TAM 111. In chapter IV, linkage mapping for grain yield and agronomic traits is covered on data collected from 28 environments.

3

References

- AACC. 2010. Approved Methods of Analysis, 11th Ed. American Association of Cereal Chemists (AACC) International, St. Paul, MN, USA.
- Barton, N.H. and P.D. Keightley. 2002. Understanding quantitative genetic variation. Nature Reviews Genetics 3: 11-21. doi:DOI 10.1038/nrg700.
- Bekes, F., P.W. Gras, R.S. Anderssen and R. Appels. 2001. Quality traits of wheat determined by small-scale dough testing methods. Australian Journal of Agricultural Research 52: 1325-1338. doi:Doi 10.1071/Ar01041.
- Borevitz, J.O. and J. Chory. 2004. Genomics tools for QTL analysis and gene discovery. Current Opinion in Plant Biology 7: 132-136. doi:10.1016/j.pbi.2004.01.011.
- Bortiri, E., D. Jackson and S. Hake. 2006. Advances in maize genomics: the emergence of positional cloning. Current Opinion in Plant Biology 9: 164-171. doi:10.1016/j.pbi.2006.01.006.
- Carlborg, O. and C.S. Haley. 2004. Epistasis: too often neglected in complex trait studies? Nature Reviews Genetics 5: 618-U614. doi:10.1038/nrg1407.
- Dhungana, P., K.M. Eskridge, P.S. Baenziger, B.T. Campbell, K.S. Gill and I. Dweikat. 2007. Analysis of genotype-by-environment interaction in wheat using a structural equation model and chromosome substitution lines. Crop Science 47: 477-484. doi:10.2135/cropsci2006.06.0425.
- Dilbirligi, M., M. Erayman, B.T. Campbell, H.S. Randhawa, P.S. Baenziger, I. Dweikat, et al. 2006. High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics 88: 74-87. doi:10.1016/j.ygeno.2006.02.001.
- Doerge, R.W. 2002. Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews Genetics 3: 43-52. doi:DOI 10.1038/nrg703.
- Frankham, R. 1997. The genetical analysis of quantitative traits: by Michael J. Kearsey and Harpal S. Pooni Chapman & Hall (1996). £27.50 pbk (xiii and 381 pages) ISBN 0412 60980 0. Trends in Genetics 13: 123. doi:https://doi.org/10.1016/S0168-9525(97)86747-9.
- Hao, C.Y., M.R. Perretant, F. Choulet, L.F. Wang, E. Paux, P. Sourdille, et al. 2010.Genetic diversity and linkage disequilibrium studies on a 3.1-Mb genomic region of chromosome 3B in European and Asian bread wheat (Triticum aestivum L.)

populations. Theoretical & Applied Genetics 121: 1209-1225. doi:10.1007/s00122-010-1382-x.

- Haudry, A., A. Cenci, C. Ravel, T. Bataillon, D. Brunel, C. Poncet, et al. 2007. Grinding up wheat: A massive loss of nucleotide diversity since domestication. Mol Biol Evol 24: 1506-1517. doi:10.1093/molbev/msm077.
- Hawkesford, M.J., J.L. Araus, R. Park, D. Calderini, D. Miralles, T.M. Shen, et al. 2013. Prospects of doubling global wheat yields. Food Energy Secur 2: 34-48. doi:10.1002/fes3.15.
- Huang, X.Q., S. Cloutier, L. Lycar, N. Radovanovic, D.G. Humphreys, J.S. Noll, et al. 2006. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113: 753-766. doi:10.1007/s00122-006-0346-7.
- HWWQC. 2010. Milling and baking test results for hard winter wheat harvested in 2010-61st report on wheat quality.
- Kunert, A., A.A. Naz, O. Dedeck, K. Pillen and J. Leon. 2007. AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides x T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appl Genet 115: 683-695. doi:10.1007/s00122-007-0600-7.
- Kusterer, B., J. Muminovic, H.F. Utz, H.P. Piepho, S. Barth, M. Heckenberger, et al. 2007. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics 175: 2009-2017. doi:10.1534/genetics.106.069005.
- Lanceras, J.C., G. Pantuwan, B. Jongdee and T. Toojinda. 2004. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology 135: 384-399. doi:10.1104/pp.103.035527.
- Lazar, M.D., W.D. Worrall, G.L. Peterson, A.K. Fritz, D. Marshall, L.R. Nelson, et al. 2004. Registration of 'TAM 111' Wheat. Crop Science 44: 355-356. doi:10.2135/cropsci2004.3550.
- Li, Y.L., R.H. Zhou, J. Wang, X.Z. Liao, G. Branlard and J.Z. Jia. 2012. Novel and favorable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat. Molecular Breeding 29: 627-643. doi:10.1007/s11032-011-9578-6.

- Li, Z.K., S.B. Yu, H.R. Lafitte, N. Huang, B. Courtois, S. Hittalmani, et al. 2003. QTL x environment interactions in rice. I. Heading date and plant height. Theoretical and Applied Genetics 108: 141-153. doi:10.1007/s00122-003-1401-2.
- Maccaferri, M., M.C. Sanguineti, V. Natoli, J.L.A. Ortega, M.B. Salem, J. Bort, et al. 2007. A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Genetic Resources 4: 79-85. doi:10.1079/PGR2006117.
- Mason, R.E., S. Mondal, F.W. Beecher, A. Pacheco, B. Jampala, A.M.H. Ibrahim, et al. 2010. QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174: 423-436. doi:10.1007/s10681-010-0151-x.
- Mujeeb-Kazi, A., V. Rosas and S. Roldan. 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat. x T. tauschii; 2n=6x=42, AABBDD) and its potential utilization for wheat improvement. Genetic Resources and Crop Evolution 43: 129-134. doi:10.1007/bf00126756.
- Parry, M. 2012. Food and energy security: exploring the challenges of attaining secure and sustainable supplies of food and energy. Food Energy Secur 1: 1-2. doi:10.1002/fes31.
- Patil, R.M., S.A. Tamhankar, M.D. Oak, A.L. Raut, B.K. Honrao, V.S. Rao, et al. 2013. Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica 190: 117-129. doi:10.1007/s10681-012-0785y.
- Peterson, C.J., R.A. Graybosch, D.R. Shelton and P.S. Baenziger. 1998. Baking quality of hard winter wheat: Response of cultivars to environment in the great plains (Reprinted from Wheat: Prospects for global improvement, 1998). Euphytica 100: 157-162. doi:Doi 10.1023/A:1018361502435.
- Poland, J.A., P.J. Brown, M.E. Sorrells and J.L. Jannink. 2012. Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach. Plos One 7: e32253. doi:ARTN e3225310.1371/journal.pone.0032253.
- Qi, L.L., B. Echalier, S. Chao, G.R. Lazo, G.E. Butler, O.D. Anderson, et al. 2004. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168: 701-712. doi:DOI 10.1534/genetics.104.034868.

- Rousset, M., J.M. Carrillo, C.O. Qualset and D.D. Kasarda. 1992. Use of Recombinant Inbred Lines of Wheat for Study of Associations of High-Molecular-Weight Glutenin Subunit Alleles to Quantitative Traits .2. Milling and Bread-Baking Quality. Theoretical and Applied Genetics 83: 403-412.
- Rudd, J.C., R.N. Devkota, J.A. Baker, G.L. Peterson, M.D. Lazar, B. Bean, et al. 2014. 'TAM 112' Wheat, Resistant to Greenbug and Wheat Curl Mite and Adapted to the Dryland Production System in the Southern High Plains. Journal of Plant Registrations 8: 291-297. doi:10.3198/jpr2014.03.0016crc.
- Schlotterer, C. 2004. The evolution of molecular markers just a matter of fashion? Nature Reviews Genetics 5: 63-69. doi:10.1038/nrg1249.
- Semagn, K., R. Babu, S. Hearne and M. Olsen. 2014. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Molecular Breeding 33: 1-14. doi:10.1007/s11032-013-9917-x.
- Shiferaw, B., M. Smale, H.J. Braun, E. Duveiller, M. Reynolds and G. Muricho. 2013. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur 5: 291-317. doi:10.1007/s12571-013-0263-y.
- Tang, Y.-l., W.-y. Yang, J.-c. Tian, J. Li and F. Chen. 2008. Effect of HMW-GS 6 + 8 and 1.5 + 10 from Synthetic Hexaploid Wheat on Wheat Quality Traits. Agricultural Sciences in China 7: 1161-1171. doi:https://doi.org/10.1016/S1671-2927(08)60160-1.
- Tanksley, S.D. and S.R. McCouch. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063-1066. doi:DOI 10.1126/science.277.5329.1063.
- Torada, A., M. Koike, K. Mochida and Y. Ogihara. 2006. SSR-based linkage map with new markers using an intraspecific population of common wheat. Theoretical and Applied Genetics 112: 1042-1051. doi:10.1007/s00122-006-0206-5.
- Tuberosa, R. and S. Salvi. 2006. Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11: 405-412. doi:10.1016/j.tplants.2006.06.003.
- Wang, R.X., L. Hai, X.Y. Zhang, G.X. You, C.S. Yan and S.H. Xiao. 2009. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai X Yu8679. Theoretical and Applied Genetics 118: 313-325. doi:10.1007/s00122-008-0901-5.

- Williams, R.M., L. O'Brien, H.A. Eagles, V.A. Solah and V. Jayasena. 2008. The influences of genotype, environment, and genotype x environment interaction on wheat quality. Australian Journal of Agricultural Research 59: 95-111. doi:10.1071/Ar07185.
- Xing, Y.Z. and Q.F. Zhang. 2010. Genetic and Molecular Bases of Rice Yield. Annual Review of Plant Biology, Vol 61 61: 421-442. doi:10.1146/annurev-arplant-042809-112209.
- Xue, Q., J.C. Rudd, S. Liu, K.E. Jessup, R.N. Devkota and J.R. Mahan. 2014. Yield Determination and Water-Use Efficiency of Wheat under Water-Limited Conditions in the US Southern High Plains. Crop Science 54: 34-47. doi:10.2135/cropsci2013.02.0108.

CHAPTER II

ASSOCIATION ANALYSIS OF END-USE QUALITY IN SYNTHETIC DERIVED WHEAT

INTRODUCTION

Bread wheat (*Triticum aestivum* L., 2n=6x=42, AABBDD) is most widely grown in the world and second in terms of production (FAO, 2016). It provides 20% of the daily protein and food calories to the world as well as other minerals and micro-nutrients (Shiferaw et al., 2013). Bread wheat originated from two consecutive hybridization events of three ancestral grass species. First natural hybridization between wild einkorn (*Triticum Urartu*, 2n=2x=14, AA) and a close relative of goat grass (*Aegilops speltoides* 2n=2x=14, BB) gave rise to wild emmer wheat (*Triticum turgidum*, 2n=4x=21, AABB) nearly 0.82 million years ago (Petersen et al., 2006). The second natural hybridization between wild emmer wheat and goat grass (*Aegilops tauschii*, 2n=2x=14, DD) produced today's bread wheat about 0.43 million years ago near the Tigris and Euphrates rivers in the fertile-crescent region (Dubcovsky and Dvorak, 2007; International Wheat Genome Sequencing, 2014; Petersen et al., 2006).

A wide array of end products such as bread, noodles, and cookies, can be made from wheat flour depending upon functional properties of wheat seed, flour, and protein. With changing food preference of increasing population, demand for diverse food products is also increasing. Flour end product's fate is predicted by the kernel characteristics, milling, near infra-red parameters of flour, and dough rheology. These characteristics are collectively called as end-use quality traits (Finney et al., 1987). Gluten protein, comprised of glutenin and gliadin, is responsible for elasticity and extensibility properties of dough, one of the must traits for bread making (Gianibelli et al., 2001). Glutenin gives dough elasticity and gliadins give dough extensibility. Millers demands uniform kernel, high flour yield, and milling efficiency, while bakers require bright white flour with high gluten quantity and strength (Gaines et al., 1997; Simons et al., 2012).

However, because of domestication and intensive selection pressure by nature and humankind, wheat has lost more than 69% of the genetic diversity that is present in the wheat genome and increased the non-random association of alleles between loci (linked or unlinked) i.e. linkage disequilibrium (LD) (Haudry et al., 2007). *Glu-Ay* genes in the short arm of chromosome 1A is expressed in A-genome species, *Triticum dicoccoides*. During the domestication process, *Glu-1Ay* subunit for glutenin remains unexpressed in bread wheat (Waines and Payne, 1987). Interspecific hybridization between tetraploid *Triticum turdigum* and diploid *Aegilops tauschii* accessions were carried out to create synthetic hexaploidy wheat (SHW) in 1987 at CIMMYT, Mexico (Mujeeb-Kazi, 2003a; Mujeeb-Kazi, 2003b). Synthetic hexaploid wheat is useful for introducing novel genes for disease and insect-pest resistance as well as drought tolerance, end-use quality traits and yield and yield-related components (Aktaş et al., 2017).

Many of end-use quality traits are correlated and help us predict the bread making quality (Huang et al., 2006), but its measurement in early generation material is technically demanding. As a result, several predictive indirect assays have been developed, including sodium dodecyl sulfate (SDS) sedimentation volume (SSD), grain protein content (GPC), grain hardness (GH) and various mixograph parameters, and these are widely used in breeding programs to evaluate processing quality (AACC, 2010). These protocols are tedious and time consuming therefore relegating quality testing in earlier generations when there is significantly increasing number of lines to be tested. Moreover, the amount of seed available for extensive quality analysis is limited. Even though amount of seed available in later generation of breeding cycle is no longer an issue, we would loss many genetic resources by pushing end-use quality test towards advanced breeding generation. However, use of molecular signatures as a proxy for enduse quality makes it feasible to test large number of genotypes in advanced generation.

Synthetic hexaploid wheat (SHW) is undoubtedly an excellent source of genetic variation. However, SHW usually shows overall poor agronomic performance. These SHW lines are often backcrossed with elite wheat lines to develop synthetic derived wheat (SDW) lines. SDW bring diversity back without losing much of adapted gene pool in a wheat breeding program. SDW lines were extensively studied for yield, yield components, heat, drought tolerance, greenbug and other biotic stresses in Texas A&M wheat breeding program (Cooper et al., 2013; Cooper et al., 2012; Reddy, 2015). To meet the needs of millers, food processors and consumers, it is necessary to bred for end-use quality traits. However, genetic variability for end-use traits in the SDW lines remained unexplored. Understanding genetic architecture, individual components, and alleles linked to quantitative traits like end-use quality traits are necessary to improve

11

wheat breeding. Genome-wide association study (GWAS) utilizes ancestral recombination present to uncover a significant association between the trait and a gene or molecular marker base on the LD (Zhang et al., 2007). The objectives of this study are 1) to understand the genetic basis of end-use traits using an association mapping approach, 2) to determine the population structure so that the best model can be chose for association analysis, 3) to identify the chromosomal regions affecting end-use quality traits in synthetic derived wheat.

MATERIALS & METHODS

Populations and trials

In the current study, a population of 298 synthetic derived wheat lines was used for association mapping, thus called as association mapping panel of synthetic wheat (AMPSY). This population was created from the back-cross of TAM 111 or TAM 112 with 21 primary synthetic wheat from CIMMYT (International Center for Maize and Wheat Improvement). TAM 111 and TAM 112 are both well adapted hard red winter wheat in the Southern Great Plains of the United States, developed by Texas A&M AgriLife Research (Lazar et al., 2004; Rudd et al., 2014). Multi-environment trails were conducted in more than nine environments to explore genetic variability for end-use quality traits. Backcross population (BC1F5:9) along with TAM 111 and TAM 112 were planted in Etter, TX (35° 51' N, 101° 58' W), Bushland, TX (35° 06' N, 102° 27' W), Chillicothe, TX (34° 15' N, 99° 30' W), and Clovis, NM (34° 24' N, 103° 12' W) in crop year 2014, 2015 and 2016. A total of nine environments (Year-location) were planted: 2014 Chillicothe dry (14CH), 2014 Etter 75% of Evapo-transpiration (ET) demand (14EP4), 2014 Etter 100% ET (14EP5), 2015 Etter 60% ET (15EP3), 2015 Etter 75% ET (15EP4), 2015 Etter 100% ET (15EP5), 2016 Bushland dry (16BD), 2016 Bushland irrigated (16BI), and 2016 Clovis irrigated (16CLI). Dry environment consisted of 14CH, 15EP3, and 16BD, while irrigated environment consisted of 14EP4, 14EP5, 15EP4, 15EP5, 16BI, and 16CLI. All traits were replicated twice in alpha-lattice design with plot dimension of 15 feet long and 5 feet wide on the dry environments and 10 feet long and 5 feet wide on the irrigated environments with 0.3 meter between plots. Standard agronomic practices were carried out for each environment.

Grain quality evaluation

From each line in all the environments under study, 80 g and 30 g of clean samples were drawn from a single replication. The for milling, near infra-red, and dough rheological studies and the latter being used for single kernel characterization, both conducted at Texas A&M Cereal Quality Lab, College Station, TX.

Single Kernel Characterization System (SKCS)

Kernel properties were determined using 30 g of samples in SCKS 4100 instrument (Perten Instruments, Hagersten, Sweden). It measured the hardness index (HARD), single kernel diameter (DIAM), single kernel weight (SKW) and kernel moisture (GMOIST). Hardness index is measured on 0-100 scale, 0 being the soft kernel and 100 being the hard kernel. DIAM, SKW, and GMOIST were expressed in mm, mg, and %, respectively.

Flour Milling

Based on grain moisture content from SKCS 4100, 80 g of clean seeds were tempered for 24 hours to 14 % moisture content. Samples were soaked in a flask and kept on a shaker for 60 mins. Soaked samples were kept overnight and milled using the Barbender Quadramat Jr. Precision laboratory roller mill (Barbender Instruments, South Hackensack, NJ, USA). Flour weight (FWT) (g) and percentage flour extraction (FYLD) were recorded for each line.

Near infra-red (NIR)

Protein and moisture content of the milled flour were determined by third generation diode array near infra-red spectroscopy (NIR), model DA 7250 (Perten Instruments, Hagersten, Sweden). Flour protein content at 14 % moisture (PROT14) was determined simplicity plus software v2.86, a GUI program attached with NIR instrument. The amount of distilled water added to the flour was determined based on AACC method 54-40.02 (AACC International, 2010). The percent optimum water absorption (WABS) was calculated using the formula WABS = $1.5 \times Prot14 + 43.6$, where PROT14 is protein at 14% moisture basis. Flour moisture (FMOIST) were expressed in percentage term.

Dough properties

Dough mixing properties 10-gm flour at 14 % moisture basis were determined by mixogram (National Manufacturing Co. Lincoln, NE) with the aid of MixSmart software v1.0.404, based on AACC method 54-40.02 (AACC International, 2010). Midline variable of the mixograph at peak, two mins after the peak, time_X (8 min) were noted.

Time to reach the midline peak is recorded as midline peak time (MLPT), height of midline peak as midline peak height (MLPT), width of outer and inner envelop at midline peak as midline peak width (MLPW), width of outer and inner envelop at midline two minutes after peak as midline right width (MLRW), width of outer and inner envelop at midline eight minutes after peak as midline tail width (MLTW), and slope of midline between two minutes and eight minutes as midline right slope (MLRS) (Figure A1).

Genotyping

Leaf tissue was collected at the two-leaf stage from each of the 298 lines in Texas A&M AgriLife Research Center, Amarillo, TX. Genomic DNA was isolated using a modified cetyl trimethyl ammonium bromide (CTAB) method (Murray and Thompson, 1980). Extracted DNA was checked for quality and quantity by gel analyses. GBS libraries for 298 lines were prepared as developed by Peterson et al. (2012) with some noted modifications and were sequenced with double digest restriction site associated DNA sequencing (ddRAD-seq) with Illumina HiSeq 2500 platform (2*125 bp paired-end) at the Genomics and Bioinformatics Center, Texas A&M AgriLife Research at College Station.

Raw sequence reads were demultiplexed according to the index reads. Sequences were first quality-filtered using the program FASTX-Toolkit (http://hannonlab.cshl.edu/fastx-toolkit): 1). raw sequencing reads were first trimmed to remove low quality bases with quality score less than 20 on the ends of reads; 2). reads with 30% or more bases showing low quality score (Q < 15) were removed.

The reference genome for hexaploid wheat (V1.0) was downloaded from International Wheat Genome Sequencing Consortium (IWGSC) website. Bowtie2 [http://bowtie-bio.sourceforge.net/bowtie2/index.shtml] was used to align qualityfiltered reads to the reference with the default parameters. Aligned reads were then processed with SAMtools v1.19 [Li et al., 2009] to generated coordinate sorted binary SAM files (BAM). Reads with mapping quality (MQ) less than 5 were removed. Following the aforementioned steps, the local re-alignment tool in the Genome Analysis Toolkit (GATK, https://software.broadinstitute.org/gatk) was used to perform realignment in the Insertion/Deletion regions. Finally, the processed alignment files were fed to the tool UnifiedGenotyper, which is part of the GATK, to call variations and perform genotyping for each sample.

SNPs with less than 5 % minor allele frequency (MAF) are filtered. Meanwhile, SNPs with more than 20 % missing values and heterozygotes more than 10 % were also excluded from the dataset along with all monomorphic SNPs. A final set of 76K SNPs was retained for the subsequent association analysis.

Phenotypic data analysis

Each location-by-year combination was considered as a single environment. All the traits within each environment were analyzed as an individual environment analysis. Best linear unbiased predictor (BLUP) mean of each trait across environments were analyzed as single trait analysis. BLUP mean for all the traits combined across locations were analyzed as combined analysis. The current study had the spatial rep and therefore the analysis of variance (ANOVA) follows a statistical linear model of single environment analysis.

$$Y_{ilp} = \mu + E_p + I_{l(p)} + G_i + \varepsilon_{ik}$$

Where Y_{ilp} is the observed phenotypic value of the ith genotype in lth block in pth repetition, μ is the overall mean, E_p is the rep effect, $I_{l(p)}$ is the block effect, G_i is the genetic effect of ith genotype and ε_{ilp} is the residual term corresponding to a quasigenotype-by-environment interaction (GEI). Combined analysis of variance (ANOVA) for all the traits was determined for the significance of genetic variance, phenotypic variance and genotype-by-environment interaction (GEI) components in each environment. In this context, the interaction of replication (environment in this case) with genotype (ε_{ilp}) was used as the error term to test the significance of genotypes. Although we cannot separate the GEI component from the error term in this study, we computed the magnitude of variance component due to each source of variation to determine the relative proportionality of each component. The variance components were computed using PROC VARCOMP in SAS 9.4 (SAS Institute Inc., 2015). The entry-mean heritability estimate was calculated according to Fehr et al (1987) using the formula:

$$h^2 = \frac{\sigma_g^2}{\sigma_e^2/r + \sigma_g^2}$$

Where r is the number of replication (rep), σ_g^2 is the genotype variance, and σ_e^2 is the residual variance. PROC CORR in SAS was used to compute Pearson correlations (r_P) based on the following formula:

$$r_{\rm P} = \frac{{\rm Cov}_{\rm x,y}}{\left(\sigma_{\rm x}^2 \ \sigma_{\rm y}^2\right)^{1/2}}$$

Linkage Disequilibrium

For LD calculation, numerical imputation of SNP data was done in TASSEL v 5.0 (Bradbury et al., 2007) using default setting of five nearest neighbor mean. LD estimate was done as the squared allele frequency correlation (R^2). R^2 was plotted against physical distance for each pair locus located on the same chromosome using nonlinear regression as described in the GAPIT v 2.0 (Lipka et al., 2012). Loci were in significant LD when p-value < 0.01.

Population structure and kinship

A subset of 8922 markers from original 76K markers that had $r^2 < 0.1$ and no missing data were used to determine subpopulation. Subpopulation membership of lines were estimated in STRUCTURE 2.3.4 (Pritchard et al., 2000). Using the admixture model with correlated allele frequencies and without prior information, the membership of each line was determined with a burn-in period equal to 50,000 iterations and a run of 50,000 replication of Monte Carlo Markov Chains (MCMC) for subpopulations (K) numbers ranging from K=1 to K=10. For each run, five independent runs of STRUCTURE were performed for each K value, and the posterior probability was determined for each run. The optimum number of subpopulations, ad hoc criterion deltaK, was determined using STRUCTURE HARVESTER (Earl and Vonholdt, 2012). To avoid stochastic effects of replicated STRUCTURE runs, the results were collated using the program CLUMPP (Jakobsson and Rosenberg, 2007). PCA was also used to see relative dispersion of each lines in two-dimensional space as well as validation for deltaK value from STURCUTRE. A pairwise kinship coefficient matrix (K-matrix) that estimates the probability of recent co-ancestry between lines was determined using SPAGeDi v1.2 (Hardy and Vekemans, 2002). Diagonal values were normalized to two and all the negative values for the kinship matrix was set to zero as described by (Yu et al., 2006).

Marker-Trait Association Model testing

Marker-trait association was tested in TASSEL v 5.0 (Bradbury et al., 2007) using SNP data from ddRAD-seq and the three set of phenotypic means, mean from single environment analysis, mean from single trait across environments analysis, and BLUP mean from traits combined across environments analysis. Three different general linear models (GLMs) and two different mixed-linear models (MLMs) were tested best marker-trait association model that reduces the deviation between observed and predicted probability. For GLMs, we considered marker-trait association was calculated. For GLM, kinship (K), principle component analysis (PCA), and population structure (Q) model were tested. For MLM, PCA as covariate and kinship (PCA + K), and population structure as covariate and kinship (Q + K) were tested with the optimum level of compression and population parameters previously determined (P3D). For each model, all marker p-values were ranked from smallest to largest, and the mean square deviation (MDS) was calculated as (Mamidi et al., 2011)

$$MSD = \frac{\{\sum_{i=1}^{n} [p_i - (i/n)^2]\}}{n}$$

Where *i* is the rank number, p_i is the probability of the ith ranked p-value, and *n* is the number of markers. Significant markers were selected only from the model determined to have the lowest MSD value. For each marker, the false discovery rate (FDR) was estimated using the 'qvalue' in R environment (Storey et al., 2015). Bonferroni correction of 0.01 genome-wide significance level was applied to declare significant association. Manhattan plot was used to visualize the distribution of markers associated with the traits across different chromosomes using 'CMplot' package in R (LinLin, 2018).

RESULTS

ANOVA and heritability

Fourteen end-use traits under four broad categories were analyzed in this study. Combined ANOVA showed highly significant differences (< 0.001) among lines for all the 14 traits (Table 2.1). All the environments, treated as pseudo-rep, were also significant except for PROT14. However, most of the variation for NIR related traits was explained by pseudo-rep, except for moisture. Traits with heritability ≤ 0.3 were categorized as lowly heritable, 0.4 - 0.6 as moderately heritable and > 0.6 as highly heritable traits. All the single kernel related traits are with high entry-mean heritability. Mean seed moisture content of lines was 11.3% with an average hardness index of 62.1%, an average diameter of 2.7 mm, and mean single kernel weight of 33.6 mg. Flour yield, expressed in percentage, was highly heritable with mean 69% flour extraction. Except for flour moisture content, other NIR related traits were highly heritable.

			0 1	0 ÷	2 6	2 4		
Trait name	Abbreviation	Units	σ^2_{Geno}	σ^2_{Rep}	σ^2 Iblk (Rep) [§]	σ^2_{Res}	h ² #	X±SD
Single kernel characteriz	ation system							
Hardness Index	HARD	%	133.03***	93.918*	4.88***	11.88***	0.99	62.1 ± 15.3
Moisture	GMOIST	%	0.01***	1.2*	0.14***	0.16***	0.37	11.3 ± 1.18
Diameter	DIAM	mm	0.004***	0.018*	0.0008***	0.005***	0.90	2.7 ± 0.16
Single kernel weight	SKW	mg	3.48***	18.2*	0.62***	2.95***	0.91	33.6 ± 4.83
Milling								
Flour yield	FYLD	%	12.7***	2.9*	2.6***	11.5***	0.89	69.0 ± 5.45
Near infra-red								
Protein (14% moisture)	PROT14	%	0.22***	1.3	0.04***	0.32***	0.83	12.8 ± 1.29
Moisture (Flour)	FMOIST	%	0.015***	0.23*	0.21***	0.12***	0.47	13.7 ± 0.73
Water absorption	WABS	%	0.66***	2.52*	0.13***	0.65***	0.88	62.9 ± 1.9
Mixograph								
Midline peak time	MLPT	min	0.6***	0.16*	0.06***	0.31**	0.93	4.00 ± 1.05
Midline peak width	MLPW	%	4.97***	26.88*	13.72***	24.10***	0.59	29.8 ± 8.16
Midline peak height	MLPH		3.47***	25.15	11.82***	27.68***	0.47	60.1 ± 7.95
Midline right width	MLRW	%	12.77***	13.07	5.54***	16.47***	0.84	18.0 ± 6.82
Midline tail width	MLTW	%	15.55***	10.71	3.84***	14.86***	0.88	14.8 ± 6.67
Mixing tolerance	TOL	% min-1	0.19***	0.17*	0.14***	1.27***	0.52	-3.2 ± 1.32

Table 2.1. Analysis of variance, heritability and mean performance for end-use quality (combined analysis)

[†] σ^2_{Geno} , Genotypic variance [‡] σ^2_{Rep} , Variance due to replication (environment) in percentage [§] $\sigma^2_{Iblk (Rep)}$, Variance due to incomplete block nested within replication (environment) in percentage [¶] σ^2_{Res} , residual variance in percentage [#] h^2 , entry-mean heritability ^{*}, **, *** significant at 0.05, 0.01, and 0.001 probability levels, respectively
Mean flour moisture was 13.7% with heritability of 0.47. Protein at 14% moisture was they highly heritable trait with average flour protein of 12.8%. Midline peak time (MLPT), which is average time to the maximum dough consistency, was 4 minutes with heritability of 0.93. At the peak time, midline peak width (MLPW) and midline peak time (MLPT) had the heritability of 0.59 and 0.47, respectively. Average MLPW was 29.8%, and average MLPH was 60.1%. Midline right width (MLRW), which is 2 minutes after peak time, was 18% with heritability of 0.84. Midline tail width eight minutes after the dough development (TAILW) was highly heritable with an average value of 14.8%. Mixing tolerance (TOL) is the right slope after peak time had the mean slope of -3.2 % min-1 and heritability of 0.52.

Pearson correlation

The phenotypic relationship between traits on combined data was determined using Pearson correlation coefficients (Table 2.2). Correlation coefficients \leq 0.3 between two traits were categorized as low correlation, 0.4 - 0.6 as moderate correlation, and > 0.6 as high correlation. SKW and DIAM showed highly significant (0.84) correlation suggesting line with bigger and plum seed always weigh heavier. Similar significant association (0.72) was found between HARD and FYLD. This implies harder the seed will result in higher flour extraction. Flour protein (PROT14) is nearly perfectly related to WABS and this relationship is significant in the positive direction (0.97). Given WABS is calculated using protein %, this relationship holds true. Most of the dough rheological traits were highly positively significantly related.

Table 2.2. Phenotypic correlation (combined analysis)

Traits†	HARD	GMOIST	DIAM	SKW	FYLD	PROT14	FMOIST	WABS	MLPT	MLPW	MLPH	MLRW	MLTW
HARD													
GMOIST	-0.14*												
DIAM	-0.09	-0.13*											
SKW	-0.11	-0.11	0.84^{***}										
FYLD	0.72***	-0.22***	0.12*	0.17**									
PROT14	0.17**	-0.2***	0.37***	0.28***	0.2***								
FMOIST	-0.04	-0.73***	0.21***	0.20***	0.11*	0.24***							
WABS	0.16**	-0.19**	0.38***	0.27***	0.16**	0.97***	0.23***						
MLPT	0.19***	0.20***	-0.21***	-0.29***	-0.06	-0.07	-0.25***	-0.06					
MLPW	0.004	0.13*	0.11	0.005	0.06	0.15**	-0.10	0.17**	0.33***				
MLPH	0.04	-0.23***	0.15**	0.13*	0.18**	0.35***	0.15*	0.31***	-0.23***	0.19***			
MLRW	0.13*	0.21***	-0.02	-0.12*	-0.01	0.06	-0.18**	0.07	0.7***	0.69***	-0.04		
MLTW	0.17**	0.19**	-0.04	-0.14*	-0.01	0.02	-0.20***	0.05	0.84***	0.58***	-0.11	0.89***	
TOL	0.18**	0.24***	-0.07	-0.1	-0.08	-0.07	-0.19**	-0.06	0.51***	0.09	-0.44***	0.45***	0.53***

[†] Traits abbreviation, HARD, Hardness index (%); GMOIST, grain moisture (%); DIAM, kernel diameter (mm); SKW, single kernel weight (mg); FYLD, flour yield (%); PROT14, flour protein at 14% moisture basis; FMOIST, flour moisture (%); WABS, water absorption (%); MLPT, midline peak time (min); MLPW, Midline peak width (%); MLPH, midline peak height (%); MLRW, midline right width (%); MLTW, midline tail width (%); TOL, tolerance i.e. midline right slope (% min-1)

*, **, *** significant at 0.05, 0.01, and 0.001 probability levels, respectively

All the midline width traits at the different time (MLPW, MLRW, TAILW) were significantly correlated in the positive side. MLPT was also highly and significantly correlated (0.19-0.69) with MLRW, TAILW, TOL. Grain moisture (GMOIST) was significantly (-0.14) related to hardness (HARD). Kernel characteristics were weakly correlated to mixograph trait, so they are the poor predictor of mixograph traits and cannot be used as a proxy. FYLD is positively correlated with kernel characteristics except for grain moisture, which is negatively correlated. MLPH is negatively correlated with TOL. MLPH was negatively moderately correlated (-0.44) with tolerance.

SNP statistics, population structure and relative kinship

Among 76K SNPs, 32.2% of them were on A genome, 36.8% on B genome, and 31% on the D genome of synthetic derived wheat lines. In a biparental mapping population derived from both the Texas elite lines, A genome had 43.2%, B genome had 42.5% and D genome had 14% of the makers (Yang et al., 2018). With the SDW lines, D genome polymorphism was comparable among three sub-genomes had nearly equal polymorphisms. Genetic diversity for the AMPSY population ranged 0.04 to 0.5 with an average of 0.24. The expected heterozygosity was 0.024, which generally low for SNP markers because of their bi-allelic nature and the selfing nature of *T. aestivum*. The markers were polymorphic with PIC values, the genetic diversity measure, ranging from 0.04 to 0.38 with an average of 0.21 (Table 2.3).

Parameters †	Average	Minimum	Maximum
Major allele frequency	0.83391952	0.5	0.98
Availability	0.968830444	0.75	1
Gene Diversity	0.244412472	0.039	0.5
Heterozygosity	0.024013573	0	0.48
PIC	0.205494297	0.039	0.375
F	0.902085591	-0.24	1

Table 2.3. Marker summary for AMPSY population

[†]Availability is calculated as (1-obs)/n, where *obs* is the number of observations, and *n* is the number of individuals sampled; Gene diversity, the probability that two randomly chosen alleles from the population are different; Heterozygosity, proportion of heterozygous individuals in the population; PIC, polymorphic information content; F, inbreeding coefficient

Using all pair-wise analysis of 76K markers with LD sliding window size of 50 markers, LD parameter square allele frequency correlation (R^2) value was regressed on the physical distance (Figure 2.1).

Figure 2.1. Average LD decay in A MPSY population. X-axis represents the distances in mega base pairs (Mb), and Y-axis represents linkage disequilibrium (LD) value (R^2) on 0 – 1 scale. Green dotted line represents R^2 =0.1 threshold line for declaring LD decay.

The average decay of LD in terms of physical distance declined to $R^2 < 0.1$ at 20 Mb. Both 8922 and a subset of 1872 markers without missing data, were used to determine population structure and to calculate relative kinship between pairs of individuals, respectively. The subset of 1872 is the representation of 8922 markers to reduce computational burden. Over 70% of the pair-wise combination had kinship coefficients of 0.05-0.1 and 21 % had kinship coefficients between 0.1-0.15 (Figure 2.2). These values suggest the slight amount of relatedness between lines in the current study.

Figure 2.2. Distribution of pair-wise kinship coefficients among AMPSY on 2849 SNP markers.

X-axis represents relatedness on 0-1 scale, 0 being the unrelated and 1 being perfectly related individuals. On Y-axis percentage of individuals in pair.

Based on the posterior probability of the data peak at the two subpopulations,

8922 SNPs can separate the AMPSY into two sub-population (K=2) (Figure 2.3). PCA

was also conducted to visualize the relative dispersion of the subpopulation in twodimensional space (Figure 2.4). First principal component and second principal components explained 27 % and 7 % of the total variance. All the TAM 111 backcrossed SDW lines were grouped together on left side of the cluster along with the TAM 111.

Figure 2.3. Estimation of the number of populations by calculating delta K values. X-axis is subpopulation (K) ranging from 2 to 9, and Y-axis represents the posterior probability (Delta K) for each subpopulation.

TAM 112 backcrossed SDW lines grouped together on the right side of the cluster along with TAM 112 (Figure 2.4). F1 lines from TAM111/primary synthetics were crossed with TAM112 and they also clustered with TAM 112 derived cluster on right. Based on STRUCTURE and PCA, TAM 111 backcrossed subpopulation was different from TAM 112 backcrossed population.

Figure 2.4. Principle component analysis of 295 synthetic derived lines in AMPSY population.

On X-axis is principle component 1 and on Y-axis is principle component 2. Percentage of variation explained by each PC are enclosed in parenthesis.

Association mapping analysis of end-use quality traits

Model testing was performed to determine number of parameters to be included and mode to be run. Five different models were compared to access their usefulness in accounting for population structure and their ability to reduce the inflation of false positive associations (Type I error). (Table 2.4). To observe the degree to which the statistical results for a model deviated from the expected distribution, MSD was calculated. In this study, MLM models that accounted for population structure and relatedness had MSD value of 0.12, whereas MLM model accounting subpopulation

from PCA and kinship had 0.16.

Table 2.4. Test statistic for the five models used to discover marker-trait associations

Model [†]	Percent p-values<0.05	MSD‡
Κ	8.19	0.1421
PCA	8.47	0.1365
Q	7.33	0.1465
PCA + K	6.43	0.1599
Q + K	10.44	0.1210

[†] K, kinship matrix; PCA, principle component analysis; Q, population structure matrix [‡] MSD, mean square deviation

The ideal model would exhibit a uniform distribution when cumulative p-values are regressed on observed p-values. This imply Q+K MLM model is the best suited for our population. In most cases controlling for population structure and family relatedness was needed. Association analysis of phenotypic data obtained from individual environment analysis, single trait across environments and combined analysis were conducted using MLM corrected for population structure and kinship i.e. Q+K model.

Based on the IWGSC RefSeq v1.0, QTL within 50 Mb regions was viewed as a unique QTL ID. Three different analysis were performed on phenotypic data; single environment analysis, single trait multi-environment analysis, and combined analysis. For the three analysis, 727, 603, and 44 significant marker-trait association (MTA) corresponding to 132, 123, and 3 unique QTL regions were found, respectively (Table A1, A2, and A3). In individual environmental analysis, significant markers were identified for kernel weight, grain moisture, flour yield, hardness index, protein at 14 % moisture basis, midline peak height, midline right slope, midline right width and midline tail width (Table A1). Markers associated with hardness index (HARD) were detected genome-wide, but majority were on the chromosome 5D. Hardness index decreased by 8.5% or increased up to 7.7% for a locus. These markers explained 10.2% - 32.5% of the total variation present in the hardness index (Table A1). Marker associated with kernel weight (SKW) were environment specific and expressed only in Etter, TX in 2015 (15EP5). Theses markers were located at 672.1 Mb on the chromosome 4A and explained 10.3% - 12.1% of phenotypic variation of single kernel weight. Grain moisture (GMOIST) associated markers were detected on Clovis, NM in 2016 (16CLI) (Table A1). These markers were identified on the homeolougs group 7 chromosome and 3B explaining 9.7% - 21.3% of the phenotypic variation in the grain moisture. Flour yield (FYLD) related markers were throughout the genome, but majority of the markers were clustered on the chromosome 5D. Phenotypic variation explained by these markers ranged from 9.8% - 27%. Depending upon the marker and alleles, mean FYLD reduced by 2.7% or increased by 1.94% for some locus. Markers associated with protein at 14% moisture basis (PROT14) were detected in mean data from irrigated environments. Chromosomal location of these markers was scattered throughout the genome explaining 10.3% -23.4% of the variation in this trait. Markers on the chromosome 7A from mean of dry environments were associated with water absorption (WABS) explaining 11.8% of the total phenotypic variation. Only one marker was detected for Midline peak height (MLPH) on the chromosome 3B, that explained 11.7% of the total phenotypic variation.

Allele associated with this marker reduced MLPH by 1.7%. Markers associated with midline right slope (MLRS), i.e. tolerance were spread over the genome explaining 11.1% - 17.9% of the variation in this trait. Presence of these markers decreased 0.33 % min-1 and increased the mean phenotypic value up to 0.27 % min-1. Makers associated with midline right width (MLRW) were detected on the chromosome 1B and were very specific to Bushland, TX under irrigation in 2016 (16BI) (Table A1). Presence of these markers increased MLRW by 3.15 % and decreased it up to 3.15%. Chromosomal location of the markers associated with midline tail width (MLTW) were scattered throughout the genome and explained 9.3% -25.1% of the total phenotypic value by 2.7% (Table A2).

Among 44 significant association from combined analysis, 15 were associated with FYLD, 22 with HARD, one with PROT14, two with MLRW and four with TAILW (Table A3). Twenty-seven markers were uniquely consistently associated with hardness index, flour yield (%), protein at 14% moisture basis, midline right width and midline tail width parameters across three analyses (Table 2.5, A3). These 27 markers were defined as consistent marker-trait association. Some of these markers were associated with more than one trait. Such marker-traits were defined as clustered marker-trait association.

31

GBS SNP marker	Chromosome	SNP	Mb^\dagger	Major	Minor	Minor
		position		allele	allele	allele
		(bp)				Frequency
3453826_1bs_3023	1B	5923	17.146165	G	С	21.2
3453826_1bs_3043	1B	5926	17.146145	С	Т	20.5
3453826_1bs_3226	1B	5932	17.145962	G	Т	20.6
3434158_1bs_9081	1B	6314	30.403173	G	А	17.3
4860661_4bs_1872	4B	57492	134.9	Т	G	8.3
1477005_5ds_2010	5D	75878	0.344579	Т	С	22.2
2770151_5ds_4035	5D	75899	7.257066	С	А	9.5
2765676_5ds_2839	5D	75901	1.344429	Т	С	6.3
2773392_5ds_1206	5D	75906	2.22108	Т	С	12.24
2773392_5ds_1238	5D	75910	2.221048	А	G	14.28
2773392_5ds_1412	5D	75911	2.220874	Т	С	12.24
2736392_5ds_5233	5D	75917	0.934031	Т	G	10.6
2739337_5ds_2304	5D	75953	7.485266	G	Т	37.4
2745573_5ds_3677	5D	75978	0.55498	А	G	14.23
2781671_5ds_9157	5D	75986	9.332315	А	С	7.8
2781671_5ds_9179	5D	75987	9.332293	А	G	7.1
2781671_5ds_9219	5D	75989	9.332253	Т	G	7.1
2781671_5ds_9223	5D	75990	9.332249	G	С	7.8
2781671_5ds_9235	5D	75991	9.332237	С	G	7.1
2781671_5ds_9443	5D	75992	9.332029	А	С	7.1
2781671_5ds_9461	5D	75993	9.332011	С	Т	7.1
2781671_5ds_9472	5D	75997	9.332	G	С	7.45
2781025_5ds_24421	5D	76005	8.018756	С	Т	5.4
2781025_5ds_24425	5D	76006	8.018752	С	Т	5.4
2774182_5ds_7304	5D	76010	8.613963	А	С	7.8
2745020_5ds_15344	5D	76053	8.419265	А	С	10.3
2745020_5ds_15346	5D	76054	8.419267	А	С	10.3

Table 2.5. Single Nucleotide polymorphism (SNP) marker loci significantly associated with end-use traits

[†] Physical position of the corresponding markers in IWGSC RefSeq v1.0

Two markers, 3453826_1bs_3043, and 3453826_1bs_3226 were significantly associated with both MLRW and TAILW on chromosome 1B (Figure 2.5, Table 2.6). All the 17 markers that were significantly associated with FYLD were also associated with HARD on chromosome 5D at 0-9.3 Mb (Figure 2.5, Table 2.6, Table A3).

Figure 2.5. Manhattan Plot of significant markers and traits from combined analysis. Abbreviation: FYLD, Flour yield (%); HARD, Hardness index (%); MLRW, Midline right width (%); MLTW, Midline tail width (%); PROT14, Protein at 14% moisture basis (%). On X-axis is chromosome names, and on Y-axis is associated $-\log 10(p)$ value. Red dotted line (y = $-\log 10(p) = 7.0$) is threshold limit for declaring significant marker-trait association.

Traits / Chrom †	Position (bp)	Markers	-log10(p) ‡	R ² (%) §	Effect ¶	Env#
MLRW						
1B	5926	3453826_1bs_3043	7.42 - 7.71	0.12 - 0.13	C > t > CT: -1.1 > 2.07	IRR, COMB
1B	5932	3453826 1bs 3226	7.38 - 7.57	0.12 - 0.12	G > t > GT: -1.02 > 2.1	IRR. COMB
TAILW						, <u> </u>
1B	5923	3453826_1bs_3023	7.1 - 8.01	0.11 - 0.12	c > G > CG: 2.3 > -0.9	16BI, COMB
1B	5926	3453826_1bs_3043	7.70 - 7.78	0.11 - 0.12	C > t > CT: -0.9 > 2.6	16BI, COMB
1B	5932	3453826_1bs_3226	8.02 - 8.19	0.13 - 0.13	G > t > GT: -0.8 > 2.9	16BI, COMB
1B	6314	3434158_1bs_9081	7.1 - 8.25	0.09 - 0.12	a > G: 2.8	16BD , <u>COMB</u>
PROT14						
4B	57492	4860661_4bs_1872	7.21 - 10.50	0.12 - 0.18	g > T > GT: 2.5 > 2.4	IRR, <u>COMB</u>
FYLD					-	
5D	75878	1477005_5ds_2010	7.69-14.32	0.11 - 0.23	c > T: -3.27	14EP4, 14EP5, 15EP3, 15EP5, 16BD, <u>16BI</u> , DRY, IRR, COMB
5D	75899	2770151_5ds_4035	7.03-7.98	0.1 - 0.11	a > C: -2.96	14EP4, <u>COMB</u>
5D	75906	2773392_5ds_1206	9.32-15.04	0.14 - 0.24	c > T: -4	14EP4, 14EP5 , <u>15EP3</u> , 15EP5, DRY, IRR, COMB
5D	75910	2773392_5ds_1238	7.63-15.78	0.11 - 0.26	A > g: 3.91	14EP4, 14EP5 , 15EP3, 15EP5, 16BD, <u>16BI</u> , DRY, IRR, COMB
5D	75911	2773392_5ds_1412	9.32-15.05	0.14 - 0.24	c > T: -4	14EP4, 14EP5 , <u>15EP3</u> , 15EP5, DRY, IRR, COMB
5D	75917	2736392_5ds_5233	8.9-16.44	0.13 - 0.27	g > T: -4.7	14EP4, 14EP5, 15EP3, <u>16BI</u> , 16CLI, DRY, IRR , COMB
5D	75953	2739337_5ds_2304	7.11-7.95	0.11 - 0.12	G > t: -2.47	<u>14EP5, COMB</u>
5D	75978	2745573_5ds_3677	7.37-14.13	0.11-0.22	A > g: 3.73	14EP4, 14EP5, 15EP3, 16BI, 16CLI, DRY, IRR, COMB
5D	75987	2781671_5ds_9179	7.03-7.21	0.09-0.1	A > g: 3.68	<u>14EP4,</u> IRR, COMB
5D	75989	2781671_5ds_9219	7.03-7.21	0.09-0.1	g > T: -3.68	<u>14EP4,</u> IRR, COMB
5D	75991	2781671_5ds_9235	7.03-7.21	0.09-0.1	C > g: 3.68	<u>14EP4,</u> IRR, COMB
5D	75992	2781671_5ds_9443	7.03-7.21	0.09-0.1	A > c: 3.68	<u>14EP4,</u> IRR, COMB
5D	75993	2781671_5ds_9461	7.03-7.21	0.09-0.1	C > t: 3.68	<u>14EP4,</u> IRR, COMB
5D	75997	2781671_5ds_9472	7.18-7.33	0.1-0.11	c > G: -3.6	IRR, <u>COMB</u>
5D	76010	2774182_5ds_7304	7.23 - 10.6	0.1 - 0.16	A > c: 4.32	14EP4, 14EP5, 15EP3, 15EP5, <u>16CLI</u> , DRY, IRR, COMB
HARD						
5D	75878	1477005_5ds_2010	10.4 - 15.2	0.16 - 0.25	c > T: -12.95	14CH, 14EP4, 15EP4 , 14EP5, 15EP3, 15EP5, 16BD, <u>16BI</u> , 16CLI, DRY, IRR,
						COMB
5D	75899	2770151_5ds_4035	7.66 - 8.1	0.11 - 0.12	a > C: -12.27	<u>15EP3</u> , DRY, COMB
5D	75901	2765676_5ds_2839	7.46 - 7.86	0.12 - 0.13	c > T > CT: -22.4 > -7.4	15EP3, <u>COMB</u>
5D	75906	2773392_5ds_1206	12.43 - 16.92	0.19 - 0.28	c > T: -17.8	14CH, 14EP4, 15EP4, 14EP5, 15EP3 , 15EP5, 16BD, <u>16BI</u> , 16CLI, DRY, IRR,
						COMB
5D	75910	2773392_5ds_1238	13.02 - 17.84	0.2 - 0.3	A > g: 17.68	14CH, 14EP4, 15EP4, 14EP5, 15EP3 , 15EP5, 16BD, <u>16BI</u> , 16CLI, DRY,
						COMB
5D	75911	2773392_5ds_1412	12.43 - 16.92	0.19 - 0.28	c > T: -17.8	14CH, 14EP4, 15EP4, 14EP5, 15EP3 , 15EP5, 16BD, <u>16BI</u> , 16CLI, DRY, IRR,
						СОМВ
5D	75917	2736392_5ds_5233	13.82 - 18.23	0.22 - 0.32	g > T: -21.2	14CH, 14EP4, 15EP4 , 14EP5, 15EP3, 15EP5, 16BD, <u>16BI</u> , 16CLI, DRY, IRR,
					~	COMB
5D	75953	2739337_5ds_2304	/.1 - 9.6	0.1 - 0.15	G > t: -9.2	14EP4, 15EP4, 15EP3, 15EP5, <u>16BD</u> , 16BI, 16CLI, DRY, IRR , COMB

Table 2.6. QTL associated with end-use quality from combined environment data

Table 2.	6 Continued					
5D	75978	2745573_5ds_3677	11.78 - 18.9	0.18 - 0.33	A > g: 18.5	14CH, 14EP4, 15EP4 , 14EP5, 15EP3, 15EP4, 15EP5, 16BD, <u>16BI</u> , 16CLI,
						DRY, IRR, COMB
5D	75986	2781671_5ds_9157	7.23 - 8.41	0.11 - 0.13	A > c: 15.7	14EP4, 15EP3, 15EP4 , 15EP5, <u>16CLI</u> , IRR, COMB
5D	75987	2781671_5ds_9179	7.34 - 9.3	0.11 - 0.14	A > g: 17.5	<u>14CH</u> , 14EP4, 14EP5, 15EP3, 15EP4, 15EP5 , 16BD, 16BI, 16CLI, DRY, IRR,
						COMB
5D	75989	2781671_5ds_9219	7.34 - 9.3	0.11 - 0.14	g > T: -17.5	14CH, 14EP4, 14EP5, 15EP3, 15EP4, 15EP5 , <u>16BD</u> , 16BI, 16CLI, DRY, IRR,
						COMB
5D	75990	2781671_5ds_9223	7.23 - 8.41	0.11 - 0.13	c > G: -15.7	14EP4, 15EP3, 15EP4 , 15EP5, <u>16CLI</u> , IRR, COMB
5D	75991	2781671_5ds_9235	7.34 - 9.3	0.11 - 0.14	C > g: 17.5	<u>14CH</u> , 14EP4, 14EP5, 15EP3, 15EP4, 15EP5 , 16BD, 16BI, 16CLI, DRY, IRR,
						COMB
5D	75992	2781671_5ds_9443	7.34 - 9.3	0.11 - 0.14	C > g: 17.5	<u>14CH</u> , 14EP4, 14EP5, 15EP3, 15EP4, 15EP5 , 16BD, 16BI, 16CLI, DRY, IRR,
						COMB
5D	75993	2781671_5ds_9461	7.34 - 9.3	0.11 - 0.14	C > g: 17.5	<u>14CH</u> , 14EP4, 14EP5, 15EP3, 15EP4, 15EP5 , 16BD, 16BI, 16CLI, DRY, IRR,
						COMB
5D	75997	2781671_5ds_9472	7.33 - 8.93	0.11 - 0.13	c > G: -16.4	14EP4, <u>15EP3</u> , 15EP4, 15EP5 , IRR, 16CLI, COMB
5D	76005	2781025_5ds_24421	8.19 - 11.85	0.12 - 0.18	C > t: 20.6	14CH, 14EP4, <u>14EP5</u> , 15EP3, 15EP4, 15EP5 , 16BD, 16BI, 16CLI, DRY, IRR,
						COMB
5D	76006	2781025_5ds_24425	8.19 - 11.85	0.12 - 0.18	C > t: 20.6	14CH, 14EP4, <u>14EP5</u> , 15EP3, 15EP4, 15EP5 , 16BD, 16BI, 16CLI, DRY, IRR,
						COMB
5D	76010	2774182_5ds_7304	7.3 - 11.8	0.11 - 0.19	A > c: 18.2	14CH, 14EP4, <u>14EP5</u> , 15EP3, 15EP4, 15EP5 , 16BD, 16BI, 16CLI, DRY, IRR,
						COMB
5D	76053	2745020_5ds_15344	7.16 - 8.01	0.12 - 0.13	A > c > AC: 20.4 > 6.8	14EP4, <u>14EP5</u> , 15EP3, 15EP4 , 16BD, DRY, COMB
5D	76054	2745020_5ds_15346	7.16 - 8.01	0.12 - 0.13	A > c > AC: 20.4 > 6.8	14EP4, <u>14EP5</u> , 15EP3, 15EP4 , 16BD, DRY, COMB

[†]Trait and chromosome abbreviation, FYLD, flour yield (%); HARD, hardness index (%); MLRW, midline right width (%); PROT14, flour protein at 14% moisture basis; TAILW, midline tail width (%)

‡ range of -log10(p) value across multiple environments. When a single value is present, the marker for corresponding trait is expressed only in single environments

§ range of R^2 (%) across multiple environments. When a single value is present, the marker for corresponding trait is expressed only in single environments ¶Genotypic effects of alleles at that loci are based on combined environment analysis; lower case represents minor allele, upper case allele represents major allele, negative value means reduction in trait value, positive value means enhancement of the trait. A class with lowest frequency is set to zero effect, then the other genotype effects are given as deviations between their estimated values and the lowest frequency class after correcting for population structure and relationship matrix. For example, c > G > CG: 1.9 > -1.02, heterozygous class has the lowest frequency, GG class has value 1.02 less than heterozygous class, CC class has value 1.9 higher than heterozygous class. So, class GG has 1.9- (-1.02) less than CC class.

Environment abbreviation, 14CH, 2014 Chillicothe, TX; 14EP4, 2014 Etter pivot (75% ET), TX; 14EP5, 2014 Etter pivot (100% ET), TX; 15EP3, 2015 Etter pivot (60% ET), TX; 15EP4, 2015 Etter pivot (75% ET), TX; 15EP5, 2015 Etter pivot (100% ET), TX; 16BD, 2016 Bushland Dry, TX; 16BI, 2016 Bushland Irrigated, TX; 16CLI, 2016 Clovis Irrigated, NM; DRY, data averaged over dry environments (i.e. 14CH, 15EP3, 16BD); IRR, data averaged over irrigated environments (i.e. 14EP4, 14EP5, 15EP4, 15EP5, 16BI, 16CLI); COMB, data averaged over all the locations.

BOLD environments represent environments with maximum $-\log(p)$ value and $R^2(\sqrt[6]{b})$. UNDERLINDED environments represents minimum $-\log(p)$ value and $R^2(\sqrt[6]{b})$.

Significant marker-trait association were expressed in all the environments from individual environment analysis. Variance explained by markers ranged from 9.33 % in 16BI for TAILW to 32.5 % in 15EP4 for HARD in individual environment analysis (Table A1 & A2). From single trait analysis, association were significant for FYLD, HARD, MLRW, GMOIST, PROTdb, SKW, TAILW, TOL, WABS (Table A2). In combined analysis, similar variation range was found with 9.5 % variation for HARD to 31 % for TAILW (Table 2.6). In this analysis, only five traits, FYLD, HARD, MLRW, TAILW, and PROT14 were significantly present above threshold limit. Markers for FYLD, HARD, MLRW, TAILW, and PROT14 explained up to 27 %, 33 %, 13 %, 13% and 18 % variation, respectively. Minor allele a single locus normally reduced the flour yield up to 4.7 % and hardness index up to 22.4. Major allele at a single locus increased FYLD up to 4.32 % and HARD up to 20.6. Similar pattern for allele effect was found for MLRW. Positive effect was imparted by major allele, up to 2.1 % for MLRW.

DISCUSSION

Genetic variability that were present in the ancient wheat gene pools are lost due to domestication as well as selection process that skyrocketed after green revolution. Heavy reliance on elite-by-elite cross to create new germplasm has led to a genetic pool with reduced diversity (Hao et al., 2011). These factors have contributed up to 69 % loss in genetic diversity in wheat (Haudry et al., 2007). To overcome the narrow genetic base, and continued pressure from biotic and abiotic stress, breeders are constantly looking for new source of genetic variation in wheat germplasm. Synthetic wheat is a promising source for improving qualitative and quantitative traits in wheat (Ogbonnaya et al., 2013). In CIMMYT huge task of bringing back lost genetic diversity was carried out in 1980's (Mujeeb-Kazi et al., 1996; Warburton et al., 2006). Durum wheat were crossed with Ae. tauschii to create synthetic hexaploid wheat (SHW) or primary synthetics (PS). Primary synthetics are characterized by higher grain yield than elite varieties primarily due to improvement in yield components (Warburton et al., 2006). However, SHW are low yielding and have poor agronomic and quality traits (Trethowan and Ginkel, 2009). Backcrossing of primary synthetics with elite lines is reported to have better agronomic performance and end-use quality traits (Lopes and Reynolds, 2011).

Evaluating QTL across several environments conditions is essentials to achieve consistent and validated QTL, which is the important basis for dissecting the candidate genes further. In the present study we explored SDW from end-use quality traits perspective. Combined ANOVA shows significant genotypic difference present for all the traits analyzed. Genetic diversity of primary synthetics and this population was accessed across three sub-genomes. SDW had 32.2%, 36.8%, and 31% marker polymorphism compared to biparental population of the two TAM elite cultivars where 43.2%, 42.5% and 14.4% marker polymorphisms were present. Molecular analysis of these SDW lines has indicated improvement in the genetic diversity of bread wheat genome (Dreisigacker et al., 2008).

Synthetic derived wheat has bigger kernel diameter and increased kernel weight (Cooper et al., 2012; Reddy, 2015). Uniformly large, plump and vitreous seed is one the quality requirement for millers and bakers. Kernel weight and kernel width both are positively related to flour yield. Larger kernel tends to be associated with a higher flour

yield than kernel dimension (Breseghello and Sorrells, 2006). We found significantly positive but weaker relationship between KW and KD with FYLD using combined data. Kernel diameter and weight has significantly stronger correlation and both the traits are also highly heritable. High, significant correlation between hardness index and flour yield is also observed and both the traits are highly heritable. It is easier to select these traits phenotypically and simultaneous improvement of correlated traits is possible. Significant markers that are associated with flour yield are also associated with hardness index. High heritability of these traits means significant shift in the mean performance of these traits can be achieved through selection. Mixograph traits were highly correlated, this could be because all these traits explain gluten strength and mostly controlled by same locus.

A careful choice of the biometrical model is pivotal in association mapping and greatly depends on the underlying population structure and relatedness of the germplasm used in the study (Stich et al., 2008; Zhao et al., 2007). Because population structure and kinship matrix are estimated with marker data, overcorrection for population stratification can result in a low power to detect QTL (Wurschum et al., 2011). Inability to account for population structure and genetic relatedness may result in spurious marker-trait associations (Gupta et al., 2010). Population structure, kinship and PCA varies with populations, traits, or both (Sun et al., 2010). Mean significant deviation (MSD) helps to select best model and parameters in the given model. One effective strategy to address this problem is the mixed linear model (MLM) suggested by Yu et al. (2006) based on the chosen Q-matrix derived from STRUCTURE and the kinship-matrix from SPAGeDi. Our analysis also supports the choice of population structure and kinship while doing marker-trait association. Determining number of subpopulations is not explicitly understood. Principle component analysis is classic way of figuring number of clusters. PCA of the AMPSY population revealed two subpopulations. Since percentage of variance explained by PC1 and PC2 were 27 % and 7%, these higher percentage suggest major population structure present in our population. PC1 captured variation due to maternal pedigree, while PC2 captured the variation created due to backcross i.e. percentage of in the final product. Kinship coefficient K_{ij} of two individuals i and j are the probability of two alleles, one drawn from i and the other drawn from j are identical-by-descent (IBD). The slight K_{ij} values observed between several pairs of wheat lines in this study clearly point to the presence of family structures. Accounting for population structure and kinship does not avoid false positives due to pleiotropy, multiple casual factors or epistasis.

End-use quality trait is must-have traits to any wheat breeding. End products from wheat flour ranges from noodles, cookies, cake, bread and so on. Increasing population is relying on wheat for their daily diet. Increasing urban population means increased demand for variety of wheat products. Increasing awareness among people and significantly higher rural population in Indian subcontinent is depending on wheat flour for chapati (flat bread). Hardness index is an essential measurement for breeders, producers, millers, and bakers and is used primarily to determine the suitability of different wheat varieties for various end-use products. Hard wheat is mainly used for bread whereas soft wheat is used for cookies. Hardness is controlled by a single locus Ha on distal part of chromosome 5DS that controls puroindoline (*Pina* and *Pinb*) and grain softness protein (Gsp-1) genes (Gautier et al., 1994; Giroux and Morris, 1998). Wild type *Pina* and *Pinb* i.e. *Pina-D1a* and *Pinb-D1a* gives soft grain texture. Point mutation of *Pina-D1a* gives *Pina-D1b*, and mis-sense mutation of *Pinb-D1a* give rise *Pinab-D1b*. Mutation in one of the wild alleles or both gives hard grain texture. Durum wheat do not have D genome and is hardest wheat of all. Different mutation has been reported to cause different degree of kernel hardness in wheat. *Pina-D1b/Pinb-D1b > Pina-D1b/Pinb-D1a* > *Pina-D1a/PinbD1b* > *Pina-D1a/Pinb-D1a* imparts hardness in declining order; left being the hard and the right most being the soft kernel (Rasheed et al., 2016). We identified 22 markers significantly associated with hardness index. Physical location of these markers was very close to Pina and Pinb on Ha locus on the short arm of chromosome 5D. Pina-D1 and Pinb-D1 are at 3.5 Mb on IWGSC RefSeq v1.0, which is very close to 2773392_5ds_1206, one of the markers associated with hardness index at 2.2 Mb (Rasheed et al., 2016). Interclass hybridization between soft and hard wheat demonstrated that the hardness locus Pinb on 5D chromosome had a strong influence on flour yield (Campbell et al., 2001). Flour yield, or the percentage of flour from a given quantity of grain, is of great importance to flour milling companies. It can be increased through either enhancement of techniques in the milling process or through the development of varieties with higher flour yield. We identified 17 markers significantly associated with flour yield on chromosome 5D. These markers are mapped in 0.34-9.33 Mb region on IWGSC RefSeq v1.0. Since location of these markers are close to Pina and Pinb gene, it could be the effect from these loci. Pinb-D1b increase

flour yield, higher loaf volume and lower ash (Hogg et al., 2005). In spring wheat RIL genotyped with 116 DArT markers, QTL for HARD was detected on chromosome 5D (Tsilo et al., 2011). Arbelbide and Bernardo (2006) reported QTL for HARD on chromosome 5D. Crepieux et al. (2005) detected significant QTL for HARD on chromosome 5D.

Mixograph tells protein quality, which is predictive of baking quality. Longer Midline peak times (how longer it took to develop dough) and wider midline peak width indicates stronger dough. Midline right width is indicative of dough tolerance to overmixing (Miles et al., 2013). Wider MRLW means tolerance to gluten overmixing even after peak. The ascending and descending slopes are critical parameter in the interpretation of the mixograph as they indicate mixing tolerance or stability (MMST). Gentler slope is favorable as it implies greater resistance to overmixing. The majority (90%) of the wheat kernel protein is composed of gluten. Which is further composed of polymeric, insoluble glutenins (40-50%) and monomeric, soluble gliadins (30-40%) (Lindsay and Skerritt, 1999). Glutenin is further classified into high molecular weight glutenins sub-unit (HMW-GS) and low molecular weight glutenins sub-unit (LMW-GS). HMW-GS encoded by the Glu-A1, Glu-B1 and Glu-D1 loci on chromosome 1A, 1B, and 1D respectively. LMW-GS are encoded by *Glu-A3*, *Glu-B3*, and *Glu-D3* loci on the short arm of chromosome 1A, 1B and 1D, respectively (Payne, 1987). Gliadins are encoded by Gli-A1, Gli-B1, and Gli-D1 loci on the short arm of chromosome 1A, 1B, and 1D, respectively. The allelic variability at these loci impacts the protein functionality and defines the end-use quality traits of wheat. We identified three common markers,

3453826_1bs_3023, 3453826_1bs_3043, 3453826_1bs_3226 for MLRW and TAILW within 20 bp interval on the short arm of chromosome 1B. These markers are at 17.1 Mb region and 3434158_1bs_9081 marker uniquely associated with TAILW, is at 30.4 Mb region. Reif et al. (2011) mapped wmc419 on chromosome 1B at 31.8 cM for protein content and sedimentation volume. This marker was mapped very closely to the chromosomal regions of glutenin and gliadin-related genes at 52.3 Mb region on IWGSC RefSeq v1.0. Mann et al. (2009) mapped QTLs for grain protein content, Bx subunit of Glu-B1, MLPT, MLPW, LMW-GS on chromosome 1BS using Australian wheat population. Suprayogi et al. (2009) identified GPS QTL on 1BS on durum DH population. Li et al. (2009) found SSD QTL on chromosome 1BS, region like Reif (2009). QTL for MLPT was detected on chromosome 1B, with significant additive genetic effects (Ocheya, 2016). Crepieux et al. (2005) reported significant QTL for dough strength on homoeologous region of chromosome 1A, 1B and 1D near the high molecular weight glutenin loci. QTL for curve widths were mapped on chromosome 1A and 1D (Ocheya, 2016). Although there is no direct match of QTL position for studies using different population and markers, genomic regions on chromosome 1 seem to be important for dough strength. In addition, the MTXW QTL on chromosome 1A was detected in all the individual environments which further support environment nonspecificity for this QTL. The QTL linked to mixing tolerance was detected only in a multi-trait model on chromosome 1D.1, consistent with previous studies although the QTL position could be different (Huang et al., 2006; Sun et al., 2008). The magnitude of

the R² and the effect size were relatively low. QTL collocated on 1B include MMST, MPV, MPW, and MRW ((Ocheya, 2016).

CONCLUSION

In the present work, use of synthetic derived wheat line increased the overall diversity and especially maintained D-genome diversity. Two population structure were identified with the help of a set of unlinked markers. Twenty-seven markers were uniquely associated with flour yield, hardness index, flour protein, and mixograph trait after accounting for population structure and relatedness. From association analysis, genomic regions on chromosome 1B and 5D are important for end-use quality traits in wheat. Chromosome 1B is associated with mixograph traits like MLRW and TAILW, and chromosome 5D is associated with HARD and FYLD. The SNP associated with FYLD, HARD, MLRW, TAILW and PROT14 could be targeted in MAS for end-use quality traits and for future wheat breeding work.

REFERENCES

- AACC International. 2010. Approved Methods of Analysis, 11th Ed. American Association of Cereal Chemists (AACC) International, St. Paul, MN, USA.
- Aktaş, H., M. Karaman, İ. Erdemcİ, E. Kendal, S. Tekdal, H. Kılıç, et al. 2017. Comparison grain yield and quality traits of synthetic and modern wheat genotypes (Triticum aestivum L.). Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi 3: 25-32.
- Arbelbide, M. and R. Bernardo. 2006. Mixed-model QTL mapping for kernel hardness and dough strength in bread wheat. Theoretical and Applied Genetics 112: 885-890. doi:10.1007/s00122-005-0190-1.
- Bradbury, P.J., Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss and E.S. Buckler. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633-2635. doi:10.1093/bioinformatics/btm308.
- Breseghello, F. and M.E. Sorrells. 2006. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172: 1165-1177. doi:10.1534/genetics.105.044586.
- Campbell, K.G., P.L. Finney, C.J. Bergman, D.G. Gualberto, J.A. Anderson, M.J. Giroux, et al. 2001. Quantitative Trait Loci Associated with Milling and Baking Quality in a Soft × Hard Wheat Cross Crop Science 41: 1275-1285. doi:10.2135/cropsci2001.4141275x.
- Cooper, J.K., A.M.H. Ibrahim, J. Rudd, D. Hays, S. Malla and J. Baker. 2013. Increasing Hard Winter Wheat Yield Potential via Synthetic Hexaploid Wheat: II. Heritability and Combining Ability of Yield and its Components. Crop Science 53: 67-73. doi:10.2135/cropsci2011.07.0383.
- Cooper, J.K., A.M.H. Ibrahim, J. Rudd, S. Malla, D.B. Hays and J. Baker. 2012. Increasing Hard Winter Wheat Yield Potential via Synthetic Wheat: I. Path-Coefficient Analysis of Yield and Its Components. Crop Science 52. doi:10.2135/cropsci2011.07.0382.
- Crepieux, S., C. Lebreton, P. Flament and G. Charmet. 2005. Application of a new IBDbased QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength. Theoretical and Applied Genetics 111: 1409-1419. doi:10.1007/s00122-005-0073-5.

- Dreisigacker, S., M. Kishii, J. Lage and M. Warburton. 2008. Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Australian Journal of Agricultural Research 59: 413-420. doi:10.1071/Ar07225.
- Dubcovsky, J. and J. Dvorak. 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316: 1862-1866. doi:10.1126/science.1143986.
- Earl, D.A. and B.M. Vonholdt. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359-361. doi:10.1007/s12686-011-9548-7.
- FAO. 2016. FAOSTAT statistics database. Available at http://www.fao.org/faostat/en/#data Accessed on 08 August 2018.
- Fehr, W.R., E.L. Fehr and H.J. Jessen. 1987. Principles of cultivar development.Macmillan, New York.
- Finney, K.F., W.T. Yamazaki, V.L. Youngs and G.L. Rubenthaler. 1987. Quality of Hard, Soft, and Drumum Wheats. In: E. G. Heyne, editor Wheat and wheat imrovement. ASA-CASSA-SSSA, Madison, WI. p. 677-784.
- Gaines, C.S., P.L. Finney and L.C. Andrews. 1997. Influence of kernel size and shriveling on soft wheat milling and baking quality. Cereal Chemistry 74: 700-704. doi:Doi 10.1094/Cchem.1997.74.6.700.
- Gautier, M.F., M.E. Aleman, A. Guirao, D. Marion and P. Joudrier. 1994. Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25: 43-57. doi:10.1007/bf00024197.
- Gianibelli, M.C., O.R. Larroque, F. MacRitchie and C.W. Wrigley. 2001. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chemistry 78: 635-646. doi:Doi 10.1094/Cchem.2001.78.6.635.
- Giroux, M.J. and C.F. Morris. 1998. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proceedings of the National Academy of Sciences of the United States of America 95: 6262-6266. doi:DOI 10.1073/pnas.95.11.6262.
- Gupta, P.K., P. Langridge and R.R. Mir. 2010. Marker-assisted wheat breeding: present status and future possibilities. Molecular Breeding 26: 145-161. doi:10.1007/s11032-009-9359-7.

- Hao, C.Y., L.F. Wang, H.M. Ge, Y.C. Dong and X.Y. Zhang. 2011. Genetic Diversity and Linkage Disequilibrium in Chinese Bread Wheat (Triticum aestivum L.) Revealed by SSR Markers. Plos One 6. doi:ARTN e1727910.1371/journal.pone.0017279.
- Hardy, O.J. and X. Vekemans. 2002. SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2: 618-620. doi:DOI 10.1046/j.1471-8286.2002.00305.x.
- Haudry, A., A. Cenci, C. Ravel, T. Bataillon, D. Brunel, C. Poncet, et al. 2007. Grinding up wheat: A massive loss of nucleotide diversity since domestication. Mol Biol Evol 24: 1506-1517. doi:10.1093/molbev/msm077.
- Hogg, A.C., B. Beecher, J.M. Martin, F. Meyer, L. Talbert, S. Lanning, et al. 2005. Hard wheat milling and bread baking traits affected by the seed-specific overexpression of puroindolines. Crop Science 45: 871-878. doi:10.2135/cropsci2004.0113.
- Huang, X.Q., S. Cloutier, L. Lycar, N. Radovanovic, D.G. Humphreys, J.S. Noll, et al. 2006. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113: 753-766. doi:10.1007/s00122-006-0346-7.
- International Wheat Genome Sequencing, C. 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345: 1251788. doi:10.1126/science.1251788.
- Jakobsson, M. and N.A. Rosenberg. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801-1806. doi:10.1093/bioinformatics/btm233.
- Lazar, M.D., W.D. Worrall, G.L. Peterson, A.K. Fritz, D. Marshall, L.R. Nelson, et al. 2004. Registration of 'TAM 111' Wheat. Crop Science 44: 355-356. doi:10.2135/cropsci2004.3550.
- Li, H., B Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer et al. 2009. The sequence alignment/Map format and SAMtools. Bioinformatics 25 (6): 2078-9.
- Li, Y., Y. Song, R. Zhou, G. Branlard and J. Jia. 2009. Detection of QTLs for breadmaking quality in wheat using a recombinant inbred line population. Plant Breeding 128: 235-243. doi:10.1111/j.1439-0523.2008.01578.x.

- Lindsay, M.P. and J.H. Skerritt. 1999. The glutenin macropolymer of wheat flour doughs: structure-function perspectives. Trends Food Sci Tech 10: 247-253. doi:Doi 10.1016/S0924-2244(00)00004-2.
- LinLin, Y. 2018. CMplot: Circle Manhattan Plot. R package version 3.3.1. https://CRAN.R-project.org/package=CMplot.
- Lipka, A.E., F. Tian, Q.S. Wang, J. Peiffer, M. Li, P.J. Bradbury, et al. 2012. GAPIT: genome association and prediction integrated tool. Bioinformatics 28: 2397-2399. doi:10.1093/bioinformatics/bts444.
- Lopes, M.S. and M.P. Reynolds. 2011. Drought Adaptive Traits and Wide Adaptation in Elite Lines Derived from Resynthesized Hexaploid Wheat. Crop Science 51: 1617-1626. doi:10.2135/cropsci2010.07.0445.
- Mamidi, S., S. Chikara, R.J. Goos, D.L. Hyten, D. Annam, S.M. Moghaddam, et al. 2011. Genome-Wide Association Analysis Identifies Candidate Genes Associated with Iron Deficiency Chlorosis in Soybean. Plant Genome-Us 4: 154-164. doi:10.3835/plantgenome2011.04.0011.
- Mann, G., S. Diffey, B. Cullis, F. Azanza, D. Martin, A. Kelly, et al. 2009. Genetic control of wheat quality: interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties. Theoretical and Applied Genetics 118: 1519-1537. doi:10.1007/s00122-009-1000-y.
- Miles, C.W., A. Van Biljon, W.M. Otto and M.T. Labuschagne. 2013. Grain and milling characteristics and their relationship with selected mixogram parameters in hard red bread wheat. Journal of Cereal Science 57: 56-60. doi:10.1016/j.jcs.2012.09.011.
- Mujeeb-Kazi, A. 2003a. New genetic stocks for durum and bread wheat improvement. Tenth International Wheat Genetic Symposium, Paestum, Italy: 772-774.
- Mujeeb-Kazi, A. 2003b. Wheat improvement facilitated by novel genetic diversity and In vitro technology. Plant Tissue Culture 13: 179-210.
- Mujeeb-Kazi, A., V. Rosas and S. Roldan. 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat. x T. tauschii; 2n=6x=42, AABBDD) and its potential utilization for wheat improvement. Genetic Resources and Crop Evolution 43: 129-134. doi:10.1007/bf00126756.

- Murray, M.G. and W.F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8: 4321.
- Ocheya, S.A. 2016. Genetic mapping and phenotypic characterization of whet for yield, yield components and agronomic traits. Ph.D. diss. Texas A&M University, College Station, TX.
- Ogbonnaya, F.C., O. Abdalla, A. Mujeeb-Kazi, A.G. Kazi, S.S. Xu, N. Gosman, et al. 2013. Synthetic Hexaploids: Harnessing Species of the Primary Gene Pool for Wheat Improvement. Pl Bred Re 37: 35-122. doi:Book_Doi 10.1002/9781118497869.
- Payne, P.I. 1987. Genetics of Wheat Storage Proteins and the Effect of Allelic Variation on Bread-Making Quality. Annual Review of Plant Physiology and Plant Molecular Biology 38: 141-153. doi:DOI 10.1146/annurev.arplant.38.1.141.
- Petersen, G., O. Seberg, M. Yde and K. Berthelsen. 2006. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39: 70-82. doi:10.1016/j.ympev.2006.01.023.
- Pritchard, J.K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
- Rasheed, A., W. Wen, F. Gao, S. Zhai, H. Jin, J. Liu, et al. 2016. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129: 1843-1860. doi:10.1007/s00122-016-2743-x.
- Reddy, B.K. 2015. Enhancing yield potential of hard red winter wheat (*Triticum aestium* L.) via use of improved synthetic backcross. Ph.D. diss. Texas A&M University, College Station, TX.
- Reif, J.C., M. Gowda, H.P. Maurer, C.F. Longin, V. Korzun, E. Ebmeyer, et al. 2011. Association mapping for quality traits in soft winter wheat. Theor Appl Genet 122: 961-970. doi:10.1007/s00122-010-1502-7.
- Rudd, J.C., R.N. Devkota, J.A. Baker, G.L. Peterson, M.D. Lazar, B. Bean, et al. 2014. 'TAM 112' Wheat, Resistant to Greenbug and Wheat Curl Mite and Adapted to the Dryland Production System in the Southern High Plains. Journal of Plant Registrations 8: 291-297. doi:10.3198/jpr2014.03.0016crc.

SAS Institute Inc. 2015. SAS/STAT 14.1 user's guide. Cary, NC: SAS Institute Inc. Shiferaw, B., M. Smale, H.J. Braun, E. Duveiller, M. Reynolds and G. Muricho. 2013. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur 5: 291-317. doi:10.1007/s12571-013-0263-y.

- Simons, K., J.A. Anderson, M. Mergoum, J.D. Faris, D.L. Klindworth, S.S. Xu, et al. 2012. Genetic Mapping Analysis of Bread-Making Quality Traits in Spring Wheat. Crop Science 52: 2182-2197. doi:10.2135/cropsci2012.03.0175.
- Stich, B., J. Mohring, H.P. Piepho, M. Heckenberger, E.S. Buckler and A.E. Melchinger. 2008. Comparison of mixed-model approaches for association mapping. Genetics 178: 1745-1754. doi:10.1534/genetics.107.079707.
- Storey, J.D., A.J. Bass, A. Dabney and D. Robinson. 2015. qvalue:Q-value estimation for false discovery rate control. R package version 2.12.0, http://github.com/jdstorey/qvalue.
- Sun, G., C. Zhu, M.H. Kramer, S.S. Yang, W. Song, H.P. Piepho, et al. 2010. Variation explained in mixed-model association mapping. Heredity 105: 333-340. doi:10.1038/hdy.2010.11.
- Suprayogi, Y., C.J. Pozniak, F.R. Clarke, J.M. Clarke, R.E. Knox and A.K. Singh. 2009. Identification and validation of quantitative trait loci for grain protein concentration in adapted Canadian durum wheat populations. Theoretical and Applied Genetics 119: 437-448. doi:10.1007/s00122-009-1050-1.
- Trethowan, R.M. and M.v. Ginkel. 2009. Synthetic wheat-An emerging genetic resource. In: B. F. Carver, editor Wheat Science and Trade. Wilye-Blackwell, Ames, Iowa, USA. p. 369-385.
- Tsilo, T.J., S. Simsek, J.B. Ohm, G.A. Hareland, S.M. Chao and J.A. Anderson. 2011. Quantitative trait loci influencing endosperm texture, dough-mixing strength, and bread-making properties of the hard red spring wheat breeding lines. Genome 54: 460-470. doi:10.1139/G11-012.
- Waines, J.G. and P.I. Payne. 1987. Electrophoretic Analysis of the High-Molecular-Weight Glutenin Subunits of Triticum-Monococcum, T-Urartu, and the a-Genome of Bread Wheat (Triticum-Aestivum). Theoretical and Applied Genetics 74: 71-76. doi:Doi 10.1007/Bf00290086.
- Wang, S., D. Wong, K. Forrest, A. Allen, S. Chao, B.E. Huang, et al. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant biotechnology journal 12: 787-796. doi:10.1111/pbi.12183.

- Warburton, M.L., J. Crossa, J. Franco, M. Kazi, R. Trethowan, S. Rajaram, et al. 2006. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149: 289-301. doi:10.1007/s10681-005-9077-0.
- Wurschum, T., H.P. Maurer, B. Schulz, J. Mohring and J.C. Reif. 2011. Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theoretical and Applied Genetics 123: 109-118. doi:10.1007/s00122-011-1570-3.
- Yang, Y., B.R. Basnet, A.M.H. Ibrahim, J.C. Rudd, Q. Xue, R.N. Devkota, et al. 2018. Study of QTL by environment interactions for stripe rust resistance in TAM 111 using staurated genetic maps with 90K and GBS SNPs. Crop Sci. in review.
- Yu, J., G. Pressoir, W.H. Briggs, I. Vroh Bi, M. Yamasaki, J.F. Doebley, et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38: 203. doi:10.1038/ng1702.
- Zhang, X.-y., Y.-p. Tong, G.-x. You, C.-y. Hao, H.-m. Ge, L. Wang, et al. 2007. Hitchhiking Effect Mapping: A New Approach for Discovering Agronomic Important Genes. Agricultural Sciences in China 6: 255-264. doi:https://doi.org/10.1016/S1671-2927(07)60043-1.
- Zhao, K.Y., M.J. Aranzana, S. Kim, C. Lister, C. Shindo, C.L. Tang, et al. 2007. An Arabidopsis example of association mapping in structured samples. Plos Genetics 3. doi:ARTN e410.1371/journal.pgen.0030004.

CHAPTER III

LINKAGE MAPPING OF END-USE QUALITY IN TAM WHEAT

INTRODUCTION

Successfulness of a breeding program is governed by the development of cultivars with higher yield, superior end-use quality and better adaptability to wider range of growing environments. Wheat grown in the Southern High Plains is under continuous threat of drought stress and adversely affecting end-use quality (Bekes et al., 2001). End-use quality test is now an inseparable part of selection process besides grain yield. End-use quality traits referred here imply characteristics of the wheat-flour derived food products. Different methods are used to quantify end-use quality traits depending on wheat classes. Based on kernel texture, wheat is categorized into hard and soft classes. Hard wheat is characterized by strong gluten, extensive starch damage during milling, and high-water absorption, while soft wheat tends to have weaker gluten and low starch damage and water absorption (Breseghello and Sorrells, 2006). In general, end-use quality traits are evaluated by physical, functional, biochemical and rheological assays.

Several characteristics are measured to predict bread making quality. These include hardness index, flour protein content, water absorption, flour paste viscosity, and dough resistance. Kernel properties including single kernel weight, diameter, moisture, and hardness are needed beforehand while setting milling machine. Flour properties are needed for determining the amount of water to be added to dough. Millers and bakers use mixograph to determine the suitability of dough to bread-making (Primard et al., 1991). To reproduce the similar results as millers and bakers, breeding programs utilized small-scale testing equipment to quantify the end-use quality traits of breeding lines. The US wheat breeding programs also rely heavily on 10g-mixograph to discriminate end-use performance of breeding lines since this method requires 8 min or less for relatively a small amount of flour (Liang et al., 2010)

End-use quality traits are primarily under genetic control. Major wheat storage protein gluten is classified into glutenin and gliadins based on solubility and peptide structure. The glutenin is further composed of high molecular weight glutenin subunit (HMW-GS) and low molecular glutenin subunit (LMW-GS) (Payne, 1987). HMW-GS is encoded by Glu-1 orthologous genes on the long arm of chromosome 1A, 1B, and 1D (Payne, 1987). LMW-GS is encoded by Glu-3 orthologous genes on the short arm of chromosome 1A, 1B, and 1D (Gupta et al., 1989). Gliadin protein is encoded by the Gli-1 and Gli-2 gene on the short arm of chromosome 1A, 1B, and 1D, and Gli3 on the short arm of chromosome 6A, 6B, and 6D (Payne, 1987). However, almost half the phenotypic variation in dough resistance is explained by the main and two-way interaction effects of the *Glu-1* and *Glu-3* orthologous genes (Eagles et al., 2002). In addition to glutenin protein-encoding regions, Ha locus on the short arm of chromosome 5D is important for bread-making quality of hard red winter wheat (HRWW). Two genes *Pina-D1* and *Pinb-D1* at Ha locus encodes the puroindoline (Pin) protein *Pina* and *Pinb* (Giroux and Morris, 1998), with wildtype (*Pina-D1a* and *Pinb-D1a*) resulting in softer

wheat. While null mutation and mis-sense mutation (*Pina-D1b*, and *Pinb-D1b*) impart harder texture in hard wheat (Rasheed et al., 2016).

End-use quality traits are influenced by genotypic, environmental and genotypicby-environmental (G×E) factors. Environmental factors affect most of the end-use quality traits than genotypic factors (Rozbicki et al., 2015b). The strong effect of year and location on water absorption, and dough development respectively is documented, certain quality traits like hardness, flour yield, Zeleny sedimentation value are highly influenced by the genotype (Carson and Edwards, 2009; Rozbicki et al., 2015a; Yong et al., 2004). Multi-environment trials enable us to partition phenotypic variation in enduse quality traits into genotypic, environmental and G×E terms.

Even though breeding program utilizes these small-scale assessment methods, it can still be expensive, laborious and require quantities of grain more than that available at the early stages of a breeding cycle. Which pushes end-use quality trait testing down towards advanced generation in breeding pipeline. Due to the greater influence of environmental variable (field and lab) on end-use quality traits, it may reduce the heritability of phenotypic quality selection, making it further inefficient. With the aid of diagnostic molecular markers, we can test end-use quality trait in the early generation of breeding cycles as well as avoid the environmental influence. In the present study, we used molecular markers from 90K Illumina Infinium array single nucleotide polymorphism (SNP) and double digest restriction-site associated DNA sequencing (ddRADSeq) to genotype 124 RIL lines derived from TAM 112/TAM 111. The objective of this study was to understand and identify the genetic components controlling end-use quality trait of wheat. In the multi-environment trials of winter wheat in crop year 2013 and 2014, 16 traits were investigated that characterize grain, flour and dough quality. The complex genetic basis of wheat end-use quality trait was analyzed using QTL IciMapping software with inclusive composite interval mapping (ICIM) mapping function.

MATERIALS AND METHODS

Populations and trials

A recombinant inbred line (RIL) population of 124 F5:7 lines from the cross of TAM 112 and TAM 111 was generated to map end-use quality traits. TAM 111 and TAM 112 are both well adapted HRWW in the Southern Great Plains of the United States, developed by Texas A&M AgriLife Research (Lazar et al., 2004; Rudd et al., 2014). Both parents are identical in terms of glutenin-gliadin ratio, high molecular weight glutenin subunit (HMW-GS) to low molecular weight glutenin subunit (LMW-GS) ratio. Overall, TAM112 with *Glu-D1* subunit 5x+10y, has better milling and baking quality than that of TAM 111 with *Glu-D1* subunit 2x+12y (Jondiko et al., 2016). The RIL plus parents were planted in Etter, TX (35° 51' N, 101° 58' W), and Chillicothe, TX (34° 15' N, 99° 30' W) in the year 2013, and 2014. A total of seven environments (yearlocation) were planted: 2013 Etter 40% of evapotranspiration (ET) demand (13EP2), 2013 Etter 60% ET demand (13EP3), 2013 Etter 75% ET demand (13EP4), 2013 Etter 100% ET demand (13EP5), 2014 Chillicothe dry (14CH), 2014 Etter 75% ET demand (14EP4), 2014 Etter 100% ET demand (14EP5). Dry environment consisted of 13EP2, 13EP3, and 14CH while irrigated environment consisted of 13EP4, 13EP5, 14EP4, and

14EP5. All trails were replicated twice in alpha-lattice design, and three occurrences of each parent in a replication. Plot dimension was 15 feet long and 5 feet wide on the dry environments and 10 feet long and 5 feet wide on the irrigated environments with 0.3 meter between plots. Standard agronomic practices were carried out for each environment.

Grain quality evaluation

End-use quality trait phenotyping was performed on sample from a single replication form each environment at Texas A&M Cereal Quality Lab, College Station, TX. From each genotype, 30g and 80g of clean samples was drawn. The former was for single kernel characterization, and the latter for milling, near infra-red, and dough rheological studies.

Single Kernel Characterization System (SKCS)

Kernel properties were determined using 30g of samples in SCKS 4100 instrument (Perten Instruments, Hagersten, Sweden). It measured the hardness index (HARD), single kernel diameter (DIAM), single kernel weight (SKW) and kernel moisture (GMOIST). Hardness index is measured on 0-100 scale, 0 being the soft kernel and 100 being the hard kernel. DIAM, SKW, and GMOIST were expressed in mm, mg, and %, respectively.

Flour Milling

Based on grain moisture content from SKCS 4100, 80g of clean seeds was tempered for 24 hours to 14 % moisture content. Samples were soaked in a flask and kept on a shaker for 60 mins. Soaked samples were kept overnight and milled using the Barbender Quadramat Jr. Precision laboratory roller mill (Barbender Instruments, South Hackensack, NJ, USA). Flour weight (FWT) (g) and flour yield (FYLD) (%) were recorded for each genotype.

Near infra-red (NIR)

Protein and moisture content of the milled flour were determined by third generation diode array near infra-red spectroscopy (NIR), model DA 7250 (Perten Instruments, Hagersten, Sweden). Flour protein content at 14 % moisture (PROT14) was determined simplicity plus software v2.86, a GUI program attached with NIR instrument. Flour moisture (FMOIST) were expressed in percentage term. The amount of distilled water added to the flour was determined based on AACC method 54-40.02 (AACC International, 2010). The percent optimum water absorption (WABS) was calculated using the formula WABS = $1.5 \times Prot14 + 43.6$, where PROT14 is protein at 14% moisture basis.

Dough properties

Dough mixing properties of flour at 14 % moisture basis were determined by mixogram (National Manufacturing Co. Lincoln, NE) with the aid of MixSmart software v1.0.404, based on AACC method 54-40.02 (AACC International, 2010). Midline variable of the mixograph at peak, two mins after the peak, eight minutes after the peak were noted. Time to reach the midline peak is recorded as midline peak time (MLPT), width of outer and inner envelop at midline peak as midline peak width (MLPW), height of the midline at peak as midline peak value (MLPV), area under the midline curve until peak time as midline peak integral (MLPI), width of outer and inner envelop at midline two minutes after peak as midline right width (MLRW), width of outer and inner envelop at midline eight minutes after peak as midline tail width (MLTW), and slope of midline between two minutes and eight minutes as midline right slope (MLRS) (Table 3.1). All mixing characteristics except mixing time are reported on a 100-mixograph unit scale (% height). Mixing time is measure on the minute scale and MLPI is expressed as % torque (TQ) x min.

Phenotypic data analysis

Descriptive statistics including means, minimum, maximum, standard deviation, and coefficient of variation were calculated to evaluate the variability of the examined traits. Each location-by-year combination was considered as a single environment. Raw data for all the traits within each environment were analyzed as an individual environment analysis. The phenotypic mean of a trait across environments was analyzed as single trait analysis. Best linear unbiassed predictor (BLUP) mean for all the traits combined across locations were analyzed as combined analysis. BLUP was calculated using a restricted maximum likelihood (REML) approach implemented in 'Ime4' package on META-R (Alvarado et al., 2018). The current study had the spatial rep and therefore the analysis of variance (ANOVA) follows a statistical linear model of single environment analysis.

$$Y_{ilp} = \mu + E_p + I_{l(p)} + G_i + \varepsilon_{ilp}$$

Where Y_{ilp} is the observed phenotypic value of the ith genotype in lth block in pth repetition, μ is the overall mean, E_p is the rep effect, $I_{l(p)}$ is the block effect, G_i is the genetic effect of ith genotype and ε_{ilp} is the residual term corresponding to a quasi-
genotype-by-environment interaction (GEI). Combined analysis of variance (ANOVA) for all the traits was determined for the significance of genetic variance, phenotypic variance and genotype-by-environment interaction (GEI) components in each environment. In this context, the interaction of replication (environment in this case) with genotype (ε_{ilp}) was used as the error term to test the significance of genotypes. The ANOVA and significance were calculated using PROC MIXED with replication and incomplete block as random effect in SAS 9.4 (SAS Institute Inc., 2015). The variance components were calculated to estimate the share of the factors and their interaction in the total variability of the examined traits. The variance components were computed using PROC VARCOMP in SAS 9.4 (SAS Institute Inc., 2015). The entry-mean heritability estimate was calculated according to Fehr et al (1987) using the formula:

$$h^2 = \frac{\sigma_g^2}{\sigma_e^2/r + \sigma_g^2}$$

Where r is the number of replication (rep), $\sigma 2g$ is the genotype variance, and $\sigma 2e$ is the residual variance. PROC CORR in SAS was used to compute Pearson correlations (rP) based on the following formula:

$$r_{\rm P} = \frac{{\rm Cov}_{\rm x,y}}{\left(\sigma_{\rm x}^2 \ \sigma_{\rm y}^2\right)^{1/2}}$$

Genotyping and linkage map construction

DNA was isolated from young leaf tissue of each RIL using the cetyl trimethylammonium bromide (CTAB) method with modifications (Doyle and Doyle, 1990; Liu et al., 2013). DNA purification and quantification were conducted in the

wheat genetics lab at Texas A&M AgriLife Research, Amarillo, TX. RIL lines along with parental DNA were genotyped with Illumina Infinium iSelect 90K array SNP. This population was also genotyped with double digest restriction-site associated DNA sequencing (ddRADSeq) method developed by Peterson et al (2012) with slight modification in Texas A&M AgriLife Research's Genomics and bioinformatics center, College Station, TX (Wang et al., 2014). SNP with significant segregation distortion and similarity index of one were eliminated. A total of 5948 polymorphic SNP, and GBS markers were mapped into 25 linkage groups covering 21 chromosomes using maximum likelihood (ML) algorithm, and minimum LOD score for linkage of 3 in JoinMap v4.0 software (Van Ooijen, 2006).

QTL analysis

One-dimensional scanning for mapping additive QTL, and two-dimensional scanning for mapping epistasis were undertaken using both the adjusted for multienvironment analysis and unadjusted data for single environmental analysis in the QTL IciMapping software (Wang et al., 2016). Unadjusted data from individual environment were ran as individual environment QTL analysis. Raw data for a trait across multiple environments were analyzed as multi-environment QTL analysis. The genetic position and effects of QTL were determined by integrated composite interval mapping (ICIM) function in QTL IciMapping for additive effect (ICIM-ADD) and epistasis effect (ICIM-EPI). Stepwise regression with a walking speed of 1cM for additive mapping (ICIM-ADD) and 5cM for epistasis mapping (ICIM-EPI) was set. Two flanking markers for ICIM-ADD and two pairs of flanking markers for ICIM-EPI were selected automatically to control for genetic background in additive and epistasis mapping. The probability for entering variables in stepwise regression of residual phenotype on marker variables was set at 0.001 for ICIM-ADD, and 0.0001 for ICIM-EPI. Threshold for declaring the presence of a QTL was determined through permutation analysis (n=1000) for each trait in each environment to obtain a 0.05 genome-wide probability level of Type I error. The QTL position was estimated as the point on the LOD curve with a peak score greater than the threshold. The QTL were designated according to guidelines in McIntosh et al. (2003) with a slight change as *QX.tamu.Y.N*, where x is a trait, tamu is Texas A&M University, Y is chromosome on which the QTL is located, and N is the unique QTL identifier given to genomic regions within 50 Mb of the QTL.

RESULTS

ANOVA and heritability

Sixteen end-use quality traits under four broad categories were analyzed in this study. Combined ANOVA showed highly significant differences (< 0.001) among lines for all the 16 traits except for midline peak integral (MLPI) (Table 3.1). All the environments, treated as pseudo-rep, were not significant even though it explained most of the variation for most of the traits. Traits with heritability \leq 0.3 were categorized as lowly heritable, 0.4 – 0.6 as moderately heritable and > 0.6 as highly heritable traits. All the end-use quality traits were highly heritable (0.69- 0.95) except flour moisture (FMOIST) and midline right width (MRLW), which are moderately heritable (0.4-0.5). Hardness index (HARD) was highly heritable (0.93) with the mean of 64.7 %. Mean seed moisture content (GMOIST) of lines was 11.6% with heritability of 0.91.

Table 3.1. Analysis of variance, heritability and mean performance of end-use quality in linkage population (combined analysis)

Traits	Units	$\sigma^{2}_{Geno}{}^{\dagger}$	$\sigma^2_{Rep}^{\ddagger}$	$\sigma^2_{\text{Iblk (Rep)}^{\$}}$	σ^2_{Res} ¶	h ^{2#}	 <i>¯</i> X ±SD	TAM 112	TAM 111
Single kernel characterization system	n								
Hardness Index (HARD)	%	23.81**	75.52	0.89	11.60**	0.93	64.66 ± 9.97	68.15	63.17
Moisture (GMOIST)	%	0.016**	0.07	0.011**	0.011**	0.91	11.63 ± 0.32	11.74	11.61
Diameter (DIAM)	mm	0.002**	0.05	0.00	0.002**	0.84	2.44 ± 0.21	2.42	2.48
Single kernel weight (SKW)	mg	0.99**	28.39	0.35**	1.42**	0.84	26.15 ± 5.19	25.95	27.51
Milling									
Flour yield (FYLD)	%	2.06**	4.13	0.76**	2.96**	0.83	68.44 ± 3.08	68.76	69.15
Near infra-red									
Flour moisture (FMOIST)	%	0.002**	0.05	0.02**	0.015**	0.50	13.6 ± 0.29	11.74	11.61
Protein (14% moisture) (PROT14)	%	0.09**	2.60	0.09**	0.22**	0.75	14.29 ± 1.66	14.63	14.04
Ash (14% moisture) (ASH14)	%	0.00017**	0.00	0.0002**	0.0003**	0.77	0.45 ± 0.04	0.47	0.45
Water absorption (WABS)	%	0.17**	5.84	0.18**	0.54**	0.69	65.015 ± 2.49	65.38	64.72
Mixograph									
Midline peak time (MLPT)	min	0.77**	0.36	0.00	0.26**	0.95	3.92 ± 1.15	4.74	3.3
Midline peak width (MLPW)	%	4.74**	17.27	5.11**	20.78**	0.65	24.89 ± 6.86	23.21	25.18
Midline peak value (MLPV)	%	6.74**	36.32	8.07**	18.09**	0.71	59.46 ± 8.5	60.77	62.37
Midline peak integral (MLPI)	%TQ x min	4.00	1138.80	12.42	634.29**	0.95	160.81 ± 49.79	197.96	137.02
Midline right slop (MLRS)	% min-1	0.55**	0.49	0.18	1.38**	0.71	-3.14 ± 1.59	-2.43	-3.6
Midline right width (MLRW)	%	2.99	26.41	28.92**	31.33**	0.40	16.32 ± 9.34	15.76	13.67
Midline tail width (MLTW)	%	7.05**	10.80	3.62**	9.71**	0.84	10.56 ± 5.18	13.82	8.64

[†] σ^2_{Geno} , genotypic variance [‡] σ^2_{Rep} , variance due to replication (environment) in percentage [§] $\sigma^2_{Iblk (Rep)}$, variance due to incomplete block nested within replication (environment) in percentage [¶] σ^2_{Res} , residual variance in percentage [#] h^2 , entry-mean heritability

*, **, significant at 0.05, and 0.01 probability levels, respectively

On average kernel of RIL population was 2.4 mm, and heritability of 0.84. Similarly, the heritability of single kernel weight (SKW) was 0.84 with mean kernel weight of 26.15 mg. Flour yield (FYLD), expressed in percentage, was highly heritable (0.83) with mean 68.4% flour extraction. All near infrared (NIR) related traits were highly heritable except flour moisture. Protein at 14% moisture (PROT14) was highly heritable (0.75) with average flour protein of 14.3%. Midline peak time (MLPT), which is average time to the maximum dough consistency, was 3.92 minutes with heritability of 0.95. At the peak time, midline peak width (MLPW) had the heritability of 0.65 with an average width of 24.9%. Midline peak value (MLPV), which is the height of the midline at peak, was also highly heritable (0.71) with the average midline peak height of 59.5%. Midline tail width eight minutes after the dough development (MLTW) was highly heritable (0.84) with an average value of 10.6%. Mixing tolerance or midline right slope (MLRS) is the right slope after peak time had the mean slope of -3.1 % min-1 and heritability of 0.71. Mean flour moisture (FMOIST) was 13.6% with heritability of 0.5. Midline right width (MLRW), which is 2 minutes after peak time, was 16.3% with heritability of 0.40. Two parents were significantly differing for hardness index (HARD), flour moisture (FMOIST), protein at 14% moisture (PROT14), ash content at 14% moisture (ASH14), midline peak time (MLPT), midline peak integral (MLPI), and midline tail width (MLTW) (Table A4). Hardness index for the population ranged from 39.5% to 87.5%. Midline peak integral (MLPI) showed greatest variability from 62.92 -294.8 % TQ x min-1. Transgressive segregation was observed for hardness index (HARD) towards TAM112, flour yield (FYLD) towards TAM 112, midline peak width

(MLPW) towards TAM 111, Midline right width (MLRW) towards TAM 112 and midline tail width (MLTW) towards TAM 112 (Table A4).

Pearson correlation

The phenotypic relationship between traits on combined data was determined using Pearson correlation coefficients (Table 3.2). Correlation coefficients ≤ 0.3 between two traits were categorized as low correlation, 0.4 - 0.6 as moderate correlation, and > 0.6 as high correlation. Single kernel weight (SKW) and kernel diameter (DIAM) showed highly significant (0.71) correlation suggesting line with bigger and plum seed always weigh heavier. Flour protein (PROT14) is nearly perfectly related to WABS and this relationship is significant in the positive direction (0.96). Given WABS is calculated using protein %, this relationship holds true. Midline peak time (MLPT) and midline peak value (MLPV) were also almost perfectly and significantly correlated (0.97). MLPT is also highly correlated with midline right slope (MLRS) (0.58), and midline tail width (MLTW) (0.77). Midline tail width (MLTW) showed positive and high correlation with midline peak integral (MLPI) (0.77) and midline right width (MLRW) (0.65). Most of the dough rheological traits were highly positively significantly related (Table 3.2). All the midline width traits at the different time (MLPW, MLRW, TAILW) were significantly correlated in the positive direction. Moderate and negative correlation was found between flour moisture (FMOIST) and ash content at 14% moisture (ASH14) (-0.43), hardness index (HARD) and midline peak width (MLPW) (-0.44), and midline peak value (MLPV) and midline right slope (MLRS) (-0.49).

Traits [†]	HARD	GMOIST	DIAM	SKW	FYLD	FMOIST	PROT14	ASH14	WABS	MLPT	MLPW	MLPV	MLPI	MLRS	MLRW
GMOIST	0.13														
DIAM	-0.12	-0.02													
SKW	-0.29**	-0.13	0.71**												
FYLD	-0.09	-0.02	0.18*	0.12											
FMOIST	-0.28**	-0.36**	-0.01	0	0.23*										
PROT14	0.07	-0.37**	-0.09	-0.16	0.26**	0.35**									
ASH14	-0.13	0.03	0.02	-0.01	-0.06	-0.43**	0.02								
WABS	0.11	-0.38**	-0.11	-0.18*	0.24**	0.33**	0.96**	0.02							
MLPT	0.01	0.14	0.02	0.02	0.11	0.02	-0.07	0.07	-0.12						
MLPW	-0.44**	-0.13	0.06	-0.02	0.2*	0.2*	0.27**	0.07	0.24**	0.06					
MLPV	-0.31**	-0.09	0.05	-0.12	0.13	0.16	0.4**	0.15	0.41**	-0.15	0.53**				
MLPI	-0.06	0.08	0.03	0.02	0.13	0.07	-0.02	0.07	-0.06	0.97**	0.18*	-0.02			
MLRS	0.32**	-0.03	-0.06	-0.01	-0.12	-0.16	-0.16	0.04	-0.18*	0.58**	-0.2*	-0.49**	0.51**		
MLRW	-0.13	-0.1	0.06	0.07	0.05	0.05	-0.01	-0.01	-0.04	0.34**	0.61**	0.03	0.42**	0.3**	
MLTW	0.08	0.02	-0.01	0.01	-0.01	-0.07	0	0.02	-0.05	0.77**	0.31**	-0.08	0.77**	0.58 * *	0.65**

Table 3.2. Correlation matrix for end-use quality traits for predicted means (BLUP) across environments

[†] HARD, hardness index; GMOIST, grain moisture; DIAM, kernel diameter; SKW, single kernel weight; FYLD, flour yield %; FMOIST, flour moisture; PROT14, flour protein at 14% moisture basis; ASH14, flour ash content at 14% moisture; WABS, water absorption; MLPT, midline peak time; MLPW, midline peak width; MLPV, midline peak value; MLPI, midline peak integral; MLRS, midline right slope; MLRW, midline right width; MLTW, midline tail width

*, **, significant at 0.05, and 0.01 probability levels, respectively

Positive and moderate correlation (r = 0.4-0.58) was found for PROT14 and MLPV, WABS and MLPV, MLPW and MLPV, MLRS and MLPI, MLRW and MLPI, and MLRS and MLTW.

QTL for Kernel Characteristics

The QTL for hardness index (HARD) were detected on chromosome 1A (*Qhard.tamu.1A*, at 13.8, 393.8 and 474.6 Mb), 1B (*Qhard.tamu.1B* at 7.2 Mb), 2D (Qhard.tamu.2D at 1.7 Mb), 4D (Qhard.tamu.4D at 62.8 Mb), and 7D (Qhard.tamu.7D) at 72 Mb) both in individual environment (Table 3.3) and multi-environment trial analysis (Table 3.4). Additional QTLs were detected on chromosome 3A (Qhard.tamu.3A at 702.6 Mb) in 14CH, and on chromosome 7D (Qhard.tamu.7D at 175.9 Mb) in 13EP5 from individual environment analysis (Table 3.3). Similarly, two additional QTL was detected on chromosome 2B (Qhard.tamu.2B at 16.9 and 578.7 Mb), one on chromosome 5A (Qhard.tamu.5A at 688.3 Mb) from multi-trait environment analysis. All the QTLs on chromosome 1A at 13.8, 399.2 and 475.6 Mb explained 7.8%-33.9% of the variation in hardness index. High value allele (HVA) came from TAM 112 for QTLs in chromosome 1A, 1B, 2D, 4D, and from TAM 111 for QTLs in chromosome 3A, 5A, and 7D (Table 3.3). All the QTLs for hardness index showed significant QTL × Env (AE) interactions accounting for 2.44%-43.1%, and their effect ranged from 0.01 – 6.67 depending on environment and QTLs (Table A5)

Traits [†]	Envs [‡]	QTL name	QTL ID	Peak (cM)	LeftCI§	RightCI [¶]	Mb [#]	Peak SNP	LOD ^{††}	R ^{2‡‡}	A ^{§§}	M-E¶
HARD	14EP4	Qhard.tamu.1A.1	1	10	9.5	11	13.8	IWB55537	15.60	31.33	3.73	Y
HARD	14EP5	Qhard.tamu.1A.1	1	10	9.5	11	13.8	IWB55537	14.72	29.32	4.03	Y
HARD	13EP4	Qhard.tamu.1A.4	4	55	53.5	56	393.8	3928641_1al_1202	9.22	14.90	1.75	Y
HARD	13EP3	Qhard.tamu.1A.4	4	56	55.5	57	399.2	3920586_1al_9412	4.46	11.16	1.65	Y
HARD	13EP2	Qhard.tamu.1A.5	5	61	60.5	62	474.6	IWB44485	3.62	7.76	1.29	Y
HARD	14CH	Qhard.tamu.1A.5	5	62	61.5	63	475.6	3974856_1al_3401	13.60	26.09	4.54	Y
HARD	13EP2	Qhard.tamu.1B.7	7	3	1.5	4.5	0.6	3473141_1bs_756	6.86	15.49	1.82	Y
HARD	13EP3	Qhard.tamu.1B.7	7	6	5.5	14	7.2	3285535_1bs_1678	7.07	19.75	2.18	Y
HARD	13EP4	Qhard.tamu.1B.7	7	6	5.5	11	7.2	3285535_1bs_1678	17.03	33.94	2.63	Y
HARD	13EP5	Qhard.tamu.1B.7	7	9	5.5	16	7.2	3285535_1bs_1678	9.50	25.16	2.84	Y
HARD	14EP4	Qhard.tamu.1B.7	7	6	5.5	14	7.2	3285535_1bs_1678	11.90	17.90	2.82	Y
HARD	14EP5	Qhard.tamu.1B.7	7	6	5.5	14	7.2	3285535_1bs_1678	8.60	14.37	2.82	Y
HARD	14EP4	Qhard.tamu.2D.22	22	20	11.5	23	1.7	IWB34642	3.79	5.15	1.51	Y
HARD	14CH	Qhard.tamu.3A.27	27	109	107.5	112	702.6	4365353_3al_191	4.61	7.81	-2.49	Ν
HARD	13EP2	Qhard.tamu.4D.39	39	11	8.5	12	62.8	2305880_4ds_1018	8.36	19.30	2.03	Y
HARD	14EP5	Qhard.tamu.7D.72	72	90	86.5	96	78.5	IWB44453	6.77	11.15	-2.49	Y
HARD	13EP4	Qhard.tamu.7D.72	72	97	93.5	100	84.3	3938880_7ds_2029	7.01	11.35	-1.52	Y
HARD	14CH	Qhard.tamu.7D.72	72	96	92.5	99	84.3	3938880_7ds_2029	7.17	12.95	-3.20	Y
HARD	14EP4	Qhard.tamu.7D.72	72	94	86.5	98	84.3	3938880_7ds_2029	4.06	5.36	-1.54	Y
HARD	13EP2	Qhard.tamu.7D.72	72	100	97.5	102	91.1	3891967_7ds_1529	4.24	9.10	-1.40	Y
HARD	13EP5	Qhard.tamu.7D.73	73	128	127.5	133	175.9	IWB27602	3.96	7.02	-1.54	Ν
GMOIST	13EP5	Qgmoist.tamu.1B.7	7	3	0	4.5	0.6	3473141_1bs_756	3.38	8.16	-0.05	Y
GMOIST	14CH	Qgmoist.tamu.4B.37	37	45	44.5	53	404.0	7040005_4b1_5774	3.34	7.25	0.06	Ν
GMOIST	13EP5	Qgmoist.tamu.4D.39	39	8	5.5	8.5	29.0	IWB30733	11.27	31.85	0.09	Y
GMOIST	14EP5	Qgmoist.tamu.4D.39	39	8	4.5	8.5	29.0	IWB30733	7.10	17.59	0.10	Y
GMOIST	14EP4	Qgmoist.tamu.4D.39	39	9	8.5	11	35.4	2305190_4ds_510	6.05	17.70	0.08	Y
GMOIST	14CH	Qgmoist.tamu.4D.39	39	10	8.5	12	62.8	2305880_4ds_1018	12.51	32.17	0.13	Y
GMOIST	13EP2	Qgmoist.tamu.4D.42	42	20	19.5	21	312.7	14410083_4dl_v2_5128	3.92	13.67	0.07	Ν
GMOIST	13EP4	Qgmoist.tamu.4D.43	43	27	24.5	29	408.8	IWA5751	4.02	13.77	0.07	Ν
GMOIST	14EP4	Qgmoist.tamu.7D.72	72	79	77.5	81	60.6	IWB35446	4.16	11.81	-0.06	Y
GMOIST	14EP5	Qgmoist.tamu.7D.72	72	79	77.5	81	60.6	IWB35446	3.66	8.76	-0.07	Y
DIAM	13EP2	Qdiam.tamu.2D.24	24	114	111.5	115	531.4	9852937_2d1_2983	5.14	17.46	0.03	Y
DIAM	13EP4	Qdiam.tamu.2D.24	24	113	111.5	115	531.4	9852937_2d1_2983	4.56	15.25	0.03	Y
DIAM	13EP5	\widetilde{Q} diam.tamu.2D.24	24	113	111.5	115	531.4	9852937_2d1_2983	4.28	14.63	0.03	Y
DIAM	13EP3	Qdiam.tamu.5D.52	52	21	18.5	21	385.6	4522185_5dl_458	4.94	12.40	-0.02	Y
DIAM	13EP3	Qdiam.tamu.6A.54	54	87	84.5	91	104.4	IWB23452	4.15	10.29	-0.02	Y
DIAM	14EP5	Qdiam.tamu.7D.72	72	85	84.5	90	72.9	IWA1247	4.26	14.43	0.03	Ν
SKW	14CH	Qskw.tamu.1D.11	11	12	10.5	14	8.6	IWA1788	3.79	10.06	0.56	Ν
SKW	13EP2	Oskw.tamu.2D.24	24	114	111.5	115	531.4	9852937_2d1_2983	3.50	10.79	0.35	Y
SKW	13EP4	Qskw.tamu.2D.24	24	113	111.5	115	531.4	9852937_2d1_2983	4.52	15.02	0.49	Y
SKW	13EP5	Qskw.tamu.2D.24	24	113	111.5	115	531.4	9852937_2d1_2983	4.95	12.81	0.81	Y

Table 3.3. Significant end-use quality trait QTLs, additive effects detected in Individual environment analysis

Table	3.3	Continued

		lueu										
SKW	14EP4	Qskw.tamu.4D.42	42	22	21.5	23	366.3	IWB10053	6.28	18.99	-0.91	Y
SKW	14EP5	Qskw.tamu.4D.42	42	22	21.5	23	366.3	IWB10053	3.39	11.20	-0.58	Y
SKW	13EP5	Qskw.tamu.5B.51	51	152	150.5	156	704.8	IWB53784	4.70	11.59	0.77	Y
SKW	14EP5	Qskw.tamu.7D.72	72	89	86.5	93	78.5	IWB44453	5.97	21.42	0.80	Y
FYLD	13EP2	Qfyld.tamu.1A.5	5	88	87.5	89	485.2	IWA4536	5.00	12.87	-1.11	Ν
FYLD	14CH	Qfyld.tamu.4D.40	40	13	11.5	14	109.8	2279925_4ds_1008	11.13	11.31	1.87	Y
FYLD	13EP5	Qfyld.tamu.7D.74	74	187	186.5	190	596.9	3395780_7dl_1754	4.17	11.78	-0.68	Ν
FMOIST	13EP3	Qfmoist.tamu.2A.16	16	29	28.5	33	36.8	IWB70473	5.14	15.47	-0.10	Ν
FMOIST	13EP2	Qfmoist.tamu.2A.17	17	136	135.5	137	742.1	6290829_2al_337	3.78	9.43	-0.05	Ν
FMOIST	13EP2	Qfmoist.tamu.2D.23	23	103	96.5	106	82.0	5329935_2ds_3804	5.28	13.86	0.06	Y
FMOIST	14CH	Qfmoist.tamu.4D.39	39	8	4.5	8.5	29.0	IWB30733	3.82	13.09	-0.07	Ν
PROT14	14EP4	Qprot14.tamu.4D.39	39	5	4.5	7.5	29.0	IWB30733	8.62	23.18	0.33	Y
PROT14	14EP5	Qprot14.tamu.4D.40	40	13	12.5	14	109.8	2279925_4ds_1008	34.64	27.26	0.75	Y
PROT14	14EP5	Qprot14.tamu.4D.41	41	18	17.5	19	182.6	2273804_4ds_1113	17.14	9.34	-0.44	Y
PROT14	13EP3	Qprot14.tamu.4D.43	43	28	25.5	29	445.5	IWB3336	4.38	10.41	-0.20	Y
PROT14	14EP4	Qprot14.tamu.5B.50	50	74	60.5	75	588.2	IWB36196	4.32	10.68	-0.23	Y
PROT14	14CH	Qprot14.tamu.7B.68	68	58	55.5	65	126.1	7950984_2bl_656	3.42	10.84	0.18	Ν
ASH14	14CH	Qash14.tamu.2A.16	16	93	92.5	94	684.1	6337088_2al_8303	6.21	12.61	-0.01	Y
ASH14	14CH	Qash14.tamu.2A.17	17	120	119.5	121	728.8	IWA1960	4.17	8.15	0.01	Ν
ASH14	14CH	Qash14.tamu.2B.21	21	133	130.5	134	730.6	7956824_2bl_4641	3.35	6.47	0.01	Ν
ASH14	13EP5	Qash14.tamu.6B.58	58	20	18.5	21	662.3	3252764_6dl_2803	3.86	17.38	-0.01	Y
ASH14	14EP4	Qash14.tamu.6B.58	58	20	17.5	21	662.3	3252764_6dl_2803	4.78	12.30	-0.01	Y
WABS	14EP4	Qwabs.tamu.4D.39	39	6	4.5	7.5	29.0	IWB30733	6.66	21.49	0.52	Y
WABS	14EP5	Qwabs.tamu.4D.40	40	13	12.5	14	109.8	2279925_4ds_1008	34.62	27.26	1.12	Y
WABS	14EP5	Qwabs.tamu.4D.41	41	18	17.5	19	182.6	2273804_4ds_1113	17.11	9.33	-0.66	Y
WABS	13EP3	Qwabs.tamu.4D.43	43	28	25.5	29	445.5	IWB3336	5.31	10.31	-0.30	Y
WABS	14CH	Qwabs.tamu.7B.68	68	58	55.5	65	126.1	7950984_2bl_656	3.42	10.84	0.27	Ν
MLPT	14CH	Qmlpt.tamu.1A.3	3	43	42.5	44	357.6	3966094_1al_942	5.63	6.31	-0.36	Y
MLPT	13EP2	Qmlpt.tamu.1B.7	7	4	3.5	4.5	1.4	3482114_1bs_10487	4.25	6.40	0.25	Y
MLPT	14EP4	Qmlpt.tamu.1B.7	7	7	5.5	17	7.2	3285535_1bs_1678	5.96	13.72	0.31	Y
MLPT	14EP4	Qmlpt.tamu.1D.13	13	58	57.5	59	412.0	IWB58572	14.99	34.64	0.50	Y
MLPT	13EP2	Qmlpt.tamu.1D.13	13	59	58.5	60	412.5	2207179_1dl_2124	23.86	54.60	0.74	Y
MLPT	13EP5	Qmlpt.tamu.1D.13	13	59	58.5	60	412.5	2207179_1dl_2124	11.25	37.85	0.72	Y
MLPT	13EP3	Qmlpt.tamu.1D.13	13	60	59.5	61	413.2	2236927_1dl_656	18.38	48.27	0.69	Y
MLPT	14EP5	Qmlpt.tamu.1D.13	13	60	59.5	61	413.2	2236927_1dl_656	15.31	39.15	0.54	Y
MLPW	14CH	Qmlpw.tamu.1A.1	1	6	3.5	6.5	9.2	IWB33789	8.29	24.11	-2.13	Y
MLPW	14EP4	Qmlpw.tamu.1A.2	2	21	20.5	22	230.0	3980487_1al_11151	11.51	35.10	-2.83	Ν
MLPW	13EP2	Qmlpw.tamu.1A.5	5	64	63.5	65	485.2	3894604_1al_116	4.76	17.03	-2.38	Y
MLPW	14EP5	Qmlpw.tamu.1D.11	11	16	14.5	17	10.4	1884715_1ds_1224	3.99	12.86	1.24	Ν
MLPV	13EP3	Qmlpv.tamu.1A.1	1	12	11.5	13	14.4	IWB10932	3.68	13.67	-2.49	Ν
MLPI	14EP4	Qmlpi.tamu.1A.1	1	10	9.5	11	13.8	IWB55537	25.31	30.65	-26.95	Ν
MLPI	13EP2	Qmlpi.tamu.1A.2	2	20	19.5	21	227.9	3904015_1al_2374	14.13	20.86	21.71	Ν
MLPI	14CH	Qmlpi.tamu.1A.3	3	43	42.5	44	357.6	3966094_1al_942	5.37	6.36	-13.57	Y

Table 3 3	Continued

Traits [†]	Envs ‡	QTL name	QTL ID	Peak (cM)	LeftCI§	RightCI [¶]	Mbp [#]	Peak SNP	$LOD^{\dagger\dagger}$	R ^{2‡‡}	A ^{§§}	M-E¶
MLPI	14EP5	Qmlpi.tamu.1A.5	5	61	60.5	62	474.6	IWB44485	5.45	8.29	-9.90	Y
MLPI	13EP3	Qmlpi.tamu.1A.5	5	62	61.5	63	475.6	3974856_1al_3401	3.82	4.24	-9.74	Y
MLPI	13EP3	Qmlpi.tamu.1B.7	7	4	3.5	4.5	1.4	3482114_1bs_10487	4.82	5.56	11.20	Y
MLPI	14EP4	Qmlpi.tamu.1B.7	7	9	5.5	18	7.2	3285535_1bs_1678	6.98	4.80	10.66	Y
MLPI	14EP5	Qmlpi.tamu.1D.13	13	58	57.5	59	412.0	IWB58572	19.43	36.98	20.90	Y
MLPI	14EP4	Qmlpi.tamu.1D.13	13	59	58.5	60	412.5	2207179_1dl_2124	23.51	17.14	20.13	Y
MLPI	13EP2	Qmlpi.tamu.1D.13	13	64	63.5	65	416.1	IWB35348	24.10	40.01	29.93	Y
MLPI	13EP3	Qmlpi.tamu.1D.13	13	64	63.5	65	416.1	IWB35348	24.12	42.44	30.81	Y
MLPI	13EP5	Qmlpi.tamu.1D.13	13	64	63.5	65	416.1	IWB35348	11.19	36.36	26.78	Y
MLPI	13EP3	Qmlpi.tamu.3A.26	26	66	63.5	68	608.4	IWA8374	4.80	5.59	-11.19	Y
MLPI	14EP5	Qmlpi.tamu.5A.44	44	25	22.5	26	17.2	1514513_5as_10557	4.98	7.15	9.26	Y
MLRS	13EP2	Qmlrs.tamu.1B.7	7	13	5.5	25	7.2	3285535_1bs_1678	4.61	16.32	0.74	Y
MLRS	13EP2	Qmlrs.tamu.1D.13	13	60	59.5	61	413.2	2236927_1dl_656	7.62	17.94	0.78	Y
MLRS	13EP3	Qmlrs.tamu.1D.13	13	66	65.5	68	418.5	2252364_1dl_16749	5.29	13.82	0.61	Ν
MLRW	14EP5	Qmlrw.tamu.1A.1	1	12	11.5	13	14.4	IWB10932	7.07	14.84	-1.45	Y
MLRW	14EP5	Qmlrw.tamu.1D.13	13	58	57.5	59	412.0	IWB58572	4.33	8.45	1.08	Y
MLRW	14EP5	Qmlrw.tamu.5A.44	44	25	22.5	26	17.2	1514513_5as_10557	5.88	11.86	1.29	Ν
MLTW	13EP2	Qmltw.tamu.1B.7	7	3	1.5	4.5	0.6	3473141_1bs_756	4.64	15.97	1.74	Y
MLTW	13EP5	Qmltw.tamu.1B.7	7	8	5.5	23	7.2	3285535_1bs_1678	4.87	13.66	2.03	Y
MLTW	14CH	Qmltw.tamu.1B.7	7	13	5.5	25	7.2	3285535_1bs_1678	3.68	12.39	1.65	Y
MLTW	13EP5	Qmltw.tamu.1D.13	13	58	57.5	59	412.0	IWB58572	3.88	8.86	1.63	Y
MLTW	14EP4	Qmltw.tamu.1D.13	13	60	59.5	61	413.2	2236927_1dl_656	4.04	11.31	0.92	Y
MLTW	14EP5	Qmltw.tamu.1D.13	13	63	62.5	64	414.8	IWB12851	5.10	15.39	0.96	Y
MLTW	14CH	Qmltw.tamu.1D.13	13	64	63.5	65	416.1	IWB35348	7.13	14.16	1.76	Y
MLTW	14EP5	Qmltw.tamu.5A.44	44	25	22.5	26	17.2	1514513_5as_10557	3.55	10.50	0.80	Ν
MLTW	13EP3	Qmltw.tamu.6B.56	56	1	0	1.5	3.2	2950610_6bs_6372	4.54	8.53	-1.63	Ν
MLTW	14CH	Qmltw.tamu.7D.72	72	78	75.5	79	58.9	IWB6964	5.07	9.67	-1.46	Ν
MLTW	13EP2	Qmltw.tamu.7D.74	74	181	180.5	183	591.2	IWB10006	3.33	11.10	1.45	Y

[†] HARD, hardness index; GMOIST, grain moisture; DIAM, kernel diameter; SKW, single kernel weight; FYLD, flour yield %; FMOIST, flour moisture; PROT14, flour protein at 14% moisture basis; ASH14, flour ash content at 14% moisture; WABS, water absorption; MLPT, midline peak time; MLPW, midline peak width; MLPV, midline peak value; MLPI, midline peak integral; MLRS, midline right slope; MLRW, midline right width; MLTW, midline tail width

[‡] Env, environments; 13EP2, 2013 Etter pivot 2; 13EP3, 2013 Etter pivot 3; 13EP4, 2013 Etter pivot 5; 13EP5, 2013 Etter pivot 5, 14CH, 2014 Chillicothe; 14EP4, 2014 Etter pivot 4; 14EP5, 2014 Etter pivot 5

[§] Left Confidence interval for QTL position

[¶]Right confidence interval for QTL position

[#] IWGSC RefSeq v1.0 pseudomolecule position in mega base pair (Mbp)

^{††} Logarithm of odds

Table 3.3 Continued

^{‡‡} Phenotypic variance explained by each QTL ^{§§} Additive effect of each QTL, negative additive effects indicate high value allele (HAV) from TAM 111, positive values correspond to HVA from TAM 112

[¶]M-E, multi-environment QTL analysis; Y, QTL was also detected in multi-environment analysis; N, QTL was detected only in individual environment analysis

Traits [†]	QTL Name	QTL ID	Peak (cM)	LeftCI [‡]	RightCI§	Mbp¶	Peak SNP	LOD#	$R^{2\dagger\dagger}$	\mathbb{R}^2	\mathbb{R}^2	A¶	AE##	$I-E^{\dagger\dagger\dagger}$
	-	-								(A) ^{‡‡}	(A×E) §§			
HARD	Qhard.tamu.1A.1	1	10	9.5	10.5	13.8	IWB55537	30.43	24.89	7.94	16.95	1.17	-0.98, 2.85	Y
HARD	Qhard.tamu.1A.4	4	55	53.5	55.5	393.8	3928641_1al_1202	9.40	2.57	0.62	1.95	0.33	-0.12, 1.42	Y
HARD	Qhard.tamu.1A.5	5	62	61.5	62.5	475.6	3974856_1al_3401	13.64	16.22	3.31	12.91	0.76	-0.49, 3.66	Y
HARD	Qhard.tamu.1B.7	7	3	1.5	4.5	0.6	3473141_1bs_756	8.06	3.72	1.19	2.53	0.45	-0.32, 1.35	Y
HARD	Qhard.tamu.1B.7	7	6	5.5	7.5	7.2	3285535_1bs_1678	57.40	27.06	22.34	4.72	1.97	0.12, -1.93	Y
HARD	Qhard.tamu.2B.18	18	14	13.5	14.5	16.9	IWA2303	50.45	46.46	3.37	43.08	0.76	-0.76, 6.67	Ν
HARD	Qhard.tamu.2B.20	20	107	106.5	108.5	578.7	8086989_2bl_2189	6.77	3.53	3.08	0.45	0.73	-0.03, 0.56	Ν
HARD	Qhard.tamu.2D.22	22	21	17.5	21.5	1.7	IWB34642	7.34	3.71	2.55	1.16	0.67	-0.08, 0.75	Y
HARD	Qhard.tamu.4D.39	39	11	9.5	11.5	62.8	2305880_4ds_1018	13.63	6.05	3.61	2.44	0.79	-0.01, 1.22	Y
HARD	Qhard.tamu.4D.42	42	22	21.5	22.5	366.3	IWB10053	9.09	3.89	2.98	0.91	0.72	0.04, -0.74	Ν
HARD	Qhard.tamu.5A.48	48	187	185.5	187.5	688.3	IWA2947	7.45	3.65	3.30	0.35	-0.76	0, -0.38	Ν
HARD	Qhard.tamu.7D.72	72	95	93.5	96.5	84.3	3938880_7ds_2029	25.13	14.71	10.13	4.58	-1.32	-0.11, -1.55	Y
GMOIST	Qgmoist.tamu.1B.7	7	3	1.5	4.5	0.6	3473141_1bs_756	7.30	7.48	5.25	2.23	-0.03	0, 0.03	Y
GMOIST	Qgmoist.tamu.4D.39	39	10	9.5	10.5	62.8	2305880_4ds_1018	19.59	21.31	8.86	12.45	0.04	0, 0.09	Y
GMOIST	Qgmoist.tamu.7B.70	70	2	1.5	2.5	709.6	IWB5306	6.82	6.23	4.94	1.29	-0.03	0, 0.03	Ν
GMOIST	Qgmoist.tamu.7D.72	72	79	78.5	79.5	60.6	IWB35446	15.02	14.42	12.76	1.66	-0.04	0, 0.02	Y
DIAM	Qdiam.tamu.1A.1	1	1	0	2.5	3.4	IWB47522	8.45	1.62	1.51	0.11	-0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.1A.1	1	9	8.5	9.5	11.8	IWB46642	8.51	1.67	1.55	0.12	-0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.1A.1	1	11	10.5	11.5	13.8	IWB63611	8.34	1.62	1.51	0.11	-0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.1A.2	2	22	21.5	24.5	232.6	3877153_1al_1567	7.71	1.49	1.37	0.12	-0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.1A.2	2	26	25.5	26.5	263.5	846120_1al_517	8.02	1.56	1.44	0.12	-0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.1A.2	2	28	27.5	29.5	289.2	3968338_1al_936	8.22	1.62	1.50	0.12	-0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.1A.3	3	34	33.5	35.5	304.1	3916820_1al_4455	8.18	1.60	1.48	0.12	-0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.1A.3	3	37	36.5	37.5	316.6	3871107_1al_72	7.17	1.40	1.29	0.10	-0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.1A.3	3	40	39.5	40.5	347.8	3871937_1al_2041	9.97	1.98	1.81	0.17	-0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.1A.4	4	48	46.5	49.5	364.7	3976654_1al_3742	8.39	1.67	1.46	0.21	-0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.1A.4	4	53	52.5	54.5	390.1	IWB31924	8.27	1.64	1.46	0.17	-0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.1A.5	5	59	58.5	60.5	458.4	IWB74868	8.09	1.69	1.45	0.23	-0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.1A.5	5	64	62.5	64.5	485.2	3894604_1al_116	7.36	1.51	1.38	0.13	-0.01	0, -0.01	Ν
DIAM	Qdiam.tamu.1D.11	11	26	21.5	28.5	12.3	IWB14343	8.22	1.74	1.52	0.22	0.01	0, -0.01	Ν
DIAM	Qdiam.tamu.2D.24	24	113	111.5	115	531.4	9852937_2dl_2983	17.97	3.91	3.30	0.61	0.02	0, -0.01	Y
DIAM	Qdiam.tamu.4B.38	38	117	114.5	117	671.7	IWB9483	6.84	1.72	1.38	0.34	-0.01	0, -0.01	Ν
DIAM	Qdiam.tamu.4D.39	39	6	3.5	7.5	29.0	IWB30733	7.83	1.49	0.48	1.01	0.01	0, -0.02	Ν
DIAM	Qdiam.tamu.5D.52	52	21	18.5	21	385.6	4522185_5dl_458	7.16	1.07	0.63	0.44	-0.01	0, 0.01	Y
DIAM	Qdiam.tamu.6A.54	54	87	85.5	91.5	104.4	IWB23452	7.67	1.25	0.77	0.47	-0.01	0, 0.01	Y
DIAM	Qdiam.tamu.7D.71	71	65	57.5	69.5	38.5	IWB60795	7.09	1.51	1.38	0.13	0.01	0, 0.01	Ν
DIAM	Qdiam.tamu.7D.73	73	126	124.5	129.5	123.3	10396674_3b_3606	9.84	1.93	1.86	0.07	-0.01	0, 0	Ν
SKW	Qskw.tamu.2D.24	24	114	112.5	115	531.4	9852937_2dl_2983	15.92	13.19	8.10	5.10	0.33	0.02, 0.5	Y
SKW	Qskw.tamu.4D.42	42	22	21.5	22.5	366.3	IWB10053	10.79	13.69	4.75	8.94	-0.25	0.15, -0.66	Y

Table 3.4. Significant QTLs, additive effects and additive-by-environment interaction effects from single trait-multi environment trials

Table	34	Continue	he
I auto .	J.4 '	Commu	JU

Traits [†]	QTL Name	QTL ID	Peak (cM)	LeftCI [‡]	RightCI§	Mbp¶	Peak SNP	LOD#	R ^{2††}	\mathbb{R}^2	\mathbb{R}^2	A¶	AE##	I-E ^{†††}
	-				C	1				(A) ^{‡‡}	(A×E) ^{§§}			
SKW	Qskw.tamu.5B.51	51	153	150.5	156	704.8	IWB53784	8.37	8.30	5.05	3.25	0.26	0.01, 0.43	Y
SKW	Qskw.tamu.7D.71	71	59	58.5	64.5	38.5	IWB60795	8.90	7.37	6.04	1.34	0.28	-0.01, -0.23	Ν
SKW	Qskw.tamu.7D.72	72	91	86.5	92.5	78.5	IWB44453	8.61	8.58	5.21	3.37	0.26	-0.01, 0.42	Y
FYLD	Qfyld.tamu.1A.6	6	88	87.5	88.5	533.4	IWA4536	6.99	10.72	4.66	6.06	-0.30	0.05, -0.79	Ν
FYLD	Qfyld.tamu.1B.9	9	74	73.5	74.5	430.3	3884244_1al_6978	7.10	6.88	4.27	2.61	-0.29	-0.03, 0.31	Ν
FYLD	Qfyld.tamu.2B.21	21	135	134.5	136.5	734.4	7939581_2bl_9591	6.82	6.97	5.79	1.17	-0.34	-0.01, -0.3	Ν
FYLD	Qfyld.tamu.4D.40	40	13	11.5	13.5	109.8	2279925_4ds_1008	15.03	30.13	8.08	22.05	0.39	-0.11, 1.47	Y
FMOIST	Qfmoist.tamu.2D.23	23	103	97.5	105.5	82.0	5329935_2ds_3804	7.28	22.54	4.78	17.76	0.00	-0.01, 0.06	Y
PROT14	Qprot14.tamu.4B.34	34	32	26.5	32.5	47.4	4962193_4bs_3020	6.73	5.43	5.04	0.39	-0.09	0, -0.05	Ν
PROT14	Qprot14.tamu.4B.35	35	36	33.5	36.5	181.4	4909258_4bs_448	6.96	5.76	5.30	0.46	-0.09	0, -0.05	Ν
PROT14	Qprot14.tamu.4B.37	37	51	45.5	57.5	404.0	7040005_4bl_5774	8.41	5.35	5.06	0.28	-0.09	0, -0.05	Ν
PROT14	Qprot14.tamu.4D.39	39	5	4.5	7.5	29.0	IWB30733	10.44	11.04	1.30	9.74	0.05	-0.02, 0.29	Y
PROT14	Qprot14.tamu.4D.40	40	13	12.5	13.5	109.8	2279925_4ds_1008	36.11	49.96	6.74	43.22	0.10	-0.04, 0.64	Y
PROT14	Qprot14.tamu.4D.41	41	18	17.5	18.5	182.6	2273804_4ds_1113	18.18	17.50	3.36	14.14	-0.07	-0.02, -0.36	Y
PROT14	Qprot14.tamu.4D.43	43	28	25.5	28.5	445.5	IWB3336	11.08	8.11	1.69	6.42	-0.05	-0.05, -0.18	Y
PROT14	Qprot14.tamu.5B.50	50	74	68.5	74.5	588.2	IWB36196	7.56	7.50	4.19	3.31	-0.08	-0.01, -0.14	Y
ASH14	Qash14.tamu.2A.16	16	93	92.5	93.5	684.1	6337088_2al_8303	9.02	6.07	4.13	1.94	0.00	0, -0.01	Y
ASH14	Qash14.tamu.3D.32	32	69	68.5	69.5	573.6	6936842_3dl_1518	7.51	7.18	6.24	0.94	0.00	0,0	Ν
ASH14	Qash14.tamu.6B.58	58	20	18.5	20.5	662.3	3252764_6d1_2803	10.38	8.54	4.76	3.78	0.00	0, 0.01	Y
WABS	Qwabs.tamu.4B.37	37	53	46.5	58.5	404.0	7040005_4b1_5774	7.83	6.83	5.90	0.93	-0.12	0, -0.1	Ν
WABS	Qwabs.tamu.4D.39	39	6	4.5	7.5	29.0	IWB30733	8.88	16.41	1.44	14.97	0.06	-0.01, 0.42	Y
WABS	Qwabs.tamu.4D.40	40	13	12.5	13.5	109.8	2279925_4ds_1008	36.14	77.16	10.25	66.91	0.16	-0.08, 0.96	Y
WABS	Qwabs.tamu.4D.41	41	18	17.5	18.5	182.6	2273804_4ds_1113	18.36	27.12	4.59	22.53	-0.10	0.03, -0.55	Y
WABS	Qwabs.tamu.4D.43	43	28	25.5	28.5	445.5	IWB3336	9.73	11.27	1.50	9.77	-0.06	0.07, -0.23	Y
MLPT	Qmlpt.tamu.1A.1	1	12	10.5	13.5	14.4	IWB10932	7.18	0.00	0.00	0.00	-0.12	-0.01, 0.11	Ν
MLPT	Qmlpt.tamu.1A.2	2	22	21.5	22.5	232.6	3877153_1al_1567	7.24	0.00	0.00	0.00	-0.12	-0.01, 0.13	Ν
MLPT	Qmlpt.tamu.1A.2	2	24	23.5	24.5	251.3	3923134_1al_161	7.64	0.00	0.00	0.00	-0.12	-0.01, 0.13	Ν
MLPT	Qmlpt.tamu.1A.2	2	27	25.5	28.5	283.1	3922416_1al_1034	7.56	0.00	0.00	0.00	-0.12	-0.01, 0.14	Ν
MLPT	Qmlpt.tamu.1A.3	3	34	33.5	35.5	304.1	3916820_1al_4455	6.86	0.00	0.00	0.00	-0.11	-0.01, 0.13	Y
MLPT	Qmlpt.tamu.1A.3	3	38	36.5	39.5	333.5	3939178_1al_9799	7.03	0.00	0.00	0.00	-0.11	-0.01, 0.13	Y
MLPT	Qmlpt.tamu.1A.3	3	43	42.5	43.5	357.6	3966094_1al_942	14.13	0.00	0.00	0.00	-0.18	0, -0.19	Y
MLPT	Qmlpt.tamu.1A.4	4	50	47.5	52.5	367.1	3900873_1al_350	9.14	0.00	0.00	0.00	-0.13	-0.01, 0.14	Ν
MLPT	Qmlpt.tamu.1A.4	4	56	55.5	57.5	399.2	3920586_1al_9412	8.54	0.00	0.00	0.00	-0.12	-0.02, 0.13	Ν
MLPT	Qmlpt.tamu.1A.5	5	60	58.5	63.5	465.5	IWB65944	8.56	0.00	0.00	0.00	-0.12	-0.02, 0.13	Ν
MLPT	Qmlpt.tamu.1B.7	7	0	0	1.5	0.6	3473141_1bs_756	8.07	0.00	0.00	0.00	0.11	0.02, 0.16	Y
MLPT	Qmlpt.tamu.1B.7	7	4	3.5	4.5	1.4	3482114_1bs_10487	11.59	0.00	0.00	0.00	0.15	0.02, -0.16	Y
MLPT	Qmlpt.tamu.1B.7	7	6	5.5	9.5	7.2	3285535_1bs_1678	13.30	0.00	0.00	0.00	0.14	-0.02, -0.17	Y
MLPT	Qmlpt.tamu.1B.10	10	90	87.5	90.5	570.3	IWA5160	7.09	0.00	0.00	0.00	0.12	0.02, -0.11	Ν
MLPT	Qmlpt.tamu.1D.13	13	58	57.5	58.5	412.0	IWB58572	24.65	0.00	0.00	0.00	0.16	-0.13, 0.46	Y
MLPT	Qmlpt.tamu.1D.13	13	60	59.5	60.5	413.2	2236927_1dl_656	32.93	0.00	0.00	0.00	0.18	-0.13, 0.5	Ν
MLPT	Qmlpt.tamu.5A.44	44	25	24.5	25.5	17.2	1514513_5as_10557	11.27	0.00	0.00	0.00	0.15	0, -0.17	Ν

Table 3.4 Continued

Traits [†]	QTL Name	QTL ID	Peak (cM)	LeftCI [‡]	RightCI [§]	Mbp¶	Peak SNP	LOD#	$R^{2\dagger\dagger}$	\mathbb{R}^2	\mathbb{R}^2	A¶	AE##	$I-E^{\dagger\dagger\dagger}$
		-				•				(A) ^{‡‡}	(A×E) §§			
MLPT	Qmlpt.tamu.7A.65	65	131	127.5	134	657.7	4557355_7al_14033	7.18	0.00	0.00	0.00	-0.09	-0.01, 0.13	Ν
MLPW	Qmlpw.tamu.1A.1	1	6	3.5	6.5	9.2	IWB33789	10.12	9.82	3.33	6.49	-0.55	0.17, -1.56	Y
MLPW	Qmlpw.tamu.1A.5	5	64	63.5	64.5	485.2	3894604_1al_116	7.75	9.67	3.83	5.84	-0.59	0.16, -1.59	Y
MLPW	Qmlpw.tamu.4B.34	34	32	30.5	32.5	47.4	4962193_4bs_3020	27.91	38.35	11.63	26.72	-1.03	0.46, -3.59	Ν
MLPI	Qmlpi.tamu.1A.3	3	43	42.5	43.5	357.6	3966094_1al_942	8.98	10.12	4.22	5.89	-4.45	-2.16, -9.81	Y
MLPI	Qmlpi.tamu.1A.4	4	51	50.5	51.5	380.7	3916130_1al_8063	8.89	7.33	3.36	3.96	-3.99	3, -6.13	Ν
MLPI	Qmlpi.tamu.1A.5	5	61	60.5	61.5	474.6	IWB44485	9.20	7.26	3.48	3.78	-4.05	3.06, -5.66	Y
MLPI	Qmlpi.tamu.1B.7	7	0	0	2.5	0.6	3473141_1bs_756	6.87	6.85	3.23	3.62	3.89	0.44, 5.32	Y
MLPI	Qmlpi.tamu.1B.7	7	4	3.5	4.5	1.4	3482114_1bs_10487	10.38	8.33	4.39	3.94	4.55	0.14, 6.94	Y
MLPI	Qmlpi.tamu.1B.7	7	6	5.5	10.5	7.2	3285535_1bs_1678	8.01	5.64	2.86	2.78	3.66	0.72, -4.98	Y
MLPI	Qmlpi.tamu.1D.13	13	58	57.5	58.5	412.0	IWB58572	29.54	32.53	8.88	23.65	6.45	5.06, 18.52	Y
MLPI	Qmlpi.tamu.1D.13	13	64	63.5	64.5	416.1	IWB35348	41.83	49.70	15.83	33.87	8.62	-6.8, 21.5	Y
MLPI	Qmlpi.tamu.3A.26	26	65	63.5	67.5	595.8	4308065_3al_1951	6.63	7.16	4.58	2.57	-4.64	0.01, -5.91	Y
MLPI	Qmlpi.tamu.4B.38	38	78	76.5	78.5	649.5	IWB53155	8.54	6.23	2.88	3.34	-3.68	0.19, 8.79	Ν
MLPI	Qmlpi.tamu.4B.38	38	88	87.5	88.5	654.3	2804533_5al_4865	12.55	10.05	1.30	8.76	2.47	-0.7, 14.74	Ν
MLPI	Qmlpi.tamu.4D.39	39	10	8.5	11.5	62.8	2305880_4ds_1018	7.09	4.55	2.54	2.00	3.46	1.16, -5.2	Ν
MLPI	Qmlpi.tamu.5A.44	44	25	23.5	25.5	17.2	1514513_5as_10557	13.73	10.32	7.52	2.80	5.98	-0.63, -6.99	Y
MLRS	Qmlrs.tamu.1A.2	2	20	19.5	20.5	227.9	3904015_1al_2374	7.07	7.11	4.24	2.87	0.18	0.1, -0.21	Ν
MLRS	Qmlrs.tamu.1B.7	7	6	5.5	10.5	7.2	3285535_1bs_1678	8.67	8.92	5.77	3.15	0.21	0.01, -0.33	Y
MLRS	Qmlrs.tamu.1D.13	13	60	59.5	60.5	413.2	2236927_1dl_656	13.61	17.22	8.95	8.26	0.27	0.02, 0.56	Y
MLRS	Qmlrs.tamu.1D.13	13	65	64.5	65.5	418.5	2252364_1dl_16749	9.49	10.41	5.71	4.70	0.21	-0.02, 0.41	Y
MLRW	Qmlrw.tamu.1A.1	1	12	11.5	12.5	14.4	IWB10932	8.20	2.37	0.96	1.41	-0.47	-0.03, 1.01	Y
MLRW	Qmlrw.tamu.1D.13	13	58	57.5	58.5	412.0	IWB58572	40.34	15.80	7.73	8.07	1.31	-0.09, 3.14	Y
MLRW	Qmlrw.tamu.1D.13	13	60	59.5	60.5	413.2	2236927_1dl_656	27.58	10.22	0.01	10.21	0.05	0, -3.5	Y
MLTW	Qmltw.tamu.1B.7	7	4	0	4.5	1.4	3482114_1bs_10487	6.85	11.63	5.38	6.25	0.50	-0.09, 1.02	Y
MLTW	Qmltw.tamu.1B.7	7	6	5.5	10.5	7.2	3285535_1bs_1678	11.49	19.18	10.81	8.36	0.70	-0.29, 1.08	Y
MLTW	Qmltw.tamu.1D.13	13	64	63.5	64.5	416.1	IWB35348	7.39	10.56	2.88	7.68	0.36	0.19, 1.38	Y
MLTW	Qmltw.tamu.1D.13	13	75	74.5	75.5	433.3	IWB49445	7.15	20.53	1.21	19.32	0.23	-0.06, 2.22	Y
MLTW	Qmltw.tamu.7D.74	74	181	180.5	182.5	591.204218	IWB10006	10.17	19.25	7.78	11.47	0.60	-0.12, 1.74	Y

[†]HARD, hardness index; GMOIST, grain moisture; DIAM, kernel diameter; SKW, single kernel weight; FYLD, flour yield %; FMOIST, flour moisture; PROT14, flour protein at 14% moisture basis; ASH14, flour ash content at 14% moisture; WABS, water absorption; MLPT, midline peak time; MLPW, midline

peak width; MLPV, midline peak value; MLPI, midline peak integral; MLRS, midline right slope; MLRW, midline right width

[‡]Left Confidence interval for QTL position

[§]Right confidence interval for QTL position

[¶] IWGSC RefSeq v1.0 pseudomolecule position in Mega base pair

#Logarithm of odds for total genetic effects

^{††} total Phenotypic variance explained by each QTL

^{‡‡} phenotypic variance explained by additive effect

Table 3.4 Continued

 ^{\$\$} phenotypic variance explained by additive by environmental effect
^{\$\$} Additive effect of each QTL, negative additive effects indicate high value allele (HAV) from TAM 111, positive values correspond to HVA from TAM 112; MLTW, midline tail width

AE, additive-by-environment interaction effect, Negative value indicates the additive-by-environment reduced the trait, positive value increased the trait

^{†††} I-E, Individual environment analysis; Y, corresponding QTL was also detected in individual-environment analysis; N, corresponding QTL was detected only in multi-environment analysis

From the individual environment and multiple-environment analysis, QTLs for grain moisture (GMOIST) were found on chromosome 1B (*Qgmoist.tamu.1B* at 0.6 Mb), 4D (*Qgmoist.tamu.4D* at 29.0-62.8 Mb), and 7D (*Qgmoist.tamu.7D* at 60.6 Mb) (Table 3.3 and 3.4). Additional QTLs were detected on chromosome 4B (*Qgmoist.tamu.4B* at 404.0 Mb), 4D (*Qgmoist.tamu.4D* at 312.7, 408.8 Mb) from individual environment analysis, and on 7B (*Qgmoist.tamu.7B* at 709.6 Mb) from multi-environment trial (Table 3.3 and 3.4). High value allele for QTL on chromosome 1B, 7B and 7D came from TAM 111 while it came from TAM 112 for rest. QTLs for grain moisture explained 8.16%-32.18% of the variation in grain moisture (Table 3.3), and 1.66%-12.45% of the variation in QTL-by-environment interaction (Table 3.4) and AE ranged from 0.007-0.09% (Table 3.4), A ranged from 0.05-0.1 (Table 3.3).

QTLs for kernel diameter (DIAM) were detected on chromosome 2D (*Qdiam.tamu.2D* at 531.4 Mb), 5D (*Qdiam.tamu.5D* at 385.6 Mb), and 6A (*Qdiam.tamu.6A* at 104.4 Mb) from both individual environment analysis and multi-trait environment analysis. From multi-environment analysis, additional QTLs were detected on chromosome 1A (*Qdiam.tamu.1A* at 3.4-13.8, 23), 1D (*Qdiam.tamu.1D* at 12.3 Mb), 4B (*Qdiam.tamu.4B* at 671.7 Mb), 4D (*Qdiam.tamu.4D* at 29.0 Mb), and 7D (*Qdiam.tamu.7D* at 38.5 and 123.3 Mb) (Table 3.4). High value alleles for QTLs on chromosome 2D and, 7D came from TAM 112 parent, and for QTL on 5D and 6A it was from TAM 111. Additive effect ranged from 0.02-0.03 mm in diameter from these QTLs accounting up to 17.5 % of the variation. Significant AE interaction was observed for diameter, accounting for 0.07%-1.01% of the variation. QTLs linked to single kernel weight (SKW) were mapping on chromosome 2D (*Qskw.tamu.2D* at 531.4 Mb), 4D (*Qskw.tamu.4D* at 366.3 Mb), 5B (*Qskw.tamu.5B* at 704.8 Mb), and 7D (*Qskw.tamu.7D* at 78.5 Mb) from both individual and multienvironment analysis. Additional QTLs were detected on chromosome 1D (*Qskw.tamu.1D* at 8.6 Mb) from the individual environment, and on 7D (*Qskw.tamu.7D* at 38.5 Mb) from the multi-environment analysis. QTLs for single kernel weight explained 10.8%-21.4% of the variation present in SKW. The beneficial effect came from TAM 112 for QTLs on chromosome 1D, 2D, 5B, and 7D, whereas for QTLs on chromosome 4D, it came from TAM 111. QTL-by-environment (AE) explained up to 8.9% of the variation in SKW, with its effect ranging from 0.005-0.6 mg (Table A5).

QTL for Flour yield and characteristics

Flour yield (FYLD) related QTLs were mapped on chromosome 1A (*Qfyld.tamu.1A* at 485.2 Mb), 4D (*Qfyld.tamu.4D* at 109.8 Mb), and on 7D (*Qfyld.tamu.7D* at 596.9 Mb) from individual environment analysis (Table 3.3). QTLs on 4D (*Qfyld.tamu.4D* at 109.8 Mb) were also detected in multi-environment analysis. QTLs on chromosome 1A (*Qfyld.tamu.1A* at 533.4 Mb), 1B (*Qfyld.tamu.1B* at 430.3 Mb), 2B (*Qfyld.tamu.2B* at 734.4 Mb) were also linked to flour yield from multi-environment analysis (Table 3.4). The main additive effect for FYLD QTLs from single environment analysis ranged 0.68-1.11, which explained up to 12.9% of the variation present in this trait. Significant AE effect was present for this trait, explaining 1.1%-22% of the variation. When combined, main effect and AE effect explained up to 30.1% of the variation in flour yield (Table 3.4).

For flour moisture (FMOIST), QTLs were present on chromosome 2A

(*Qfmoist.tamu.2A* at 36.8 and 742.1 Mb), 2D (*Qfmoist.tamu.2D* at 82.0 Mb), and 4D (*Qfmoist.tamu.4D* at 82.0 Mb) from single environment analysis. QTL *Qfmoist.tamu.2D* at 82.0 Mb was also detected in the multi-environment analysis. The R² for flour moisture QTLs explained 9.4%- 15.5% of the variation. High value allele came from TAM 112 for QTLS on chromosome 2D, while it came from TAM 111 for rest of the QTLs for FMOIST (Table 3.3).

The QTLs linked to flour protein at 14% moisture basis (PROT14) were detected on chromosome 4D (*Qprot14.tamu.4D* at 29.0, 109.8, 182.6 and 445.5 Mb), 5B (*Qprot14.tamu.5B* at 588.2 Mb) both in individual and multi-environment analysis (Table 3.3 and 3.4). Additional QTL were detected on chromosome 7B (*Qprot14.tmau.7B* at 126.1 Mb) from individual environment analysis, and on chromosome 4B (Qprot14.tamu.4B at 47.7, 181.4, 404.0 Mb) from multi-environment analysis. QTLs related to PROT14 on chromosome 4D at 182.6 and 445.5 Mb, and 5B received favorable allele from TAM 111 but those on chromosome 4D at 29.0 and 109.8 Mb, and on 7B at 126.1 Mb were from TAM 112 (Table 3.3). The R² ranged from 9.3%-27.2% for these QTLs, with effect increased from 0.2-0.8. AE interaction for QTL on 4D (*Qprot14.tamu.4D* at 109.8 Mb) explained 43.2% of the variation alone (Table 3.4). Rest of the QTL by environment interaction ranged almost zero (0) to 0.7 (Table A5). For flour ash content at 14% moisture basis (ASH14), QTLs were detected on chromosome 2A (*Qash14.tamu.2A* at 684.1 Mb) and 6B (*Qash14.tamu.6B* at 662.3 Mb) from both individual and multi-environment analysis. QTLs on chromosome 2A

(*Qash14.tamu.2A* at 728.8 Mb), 2B (*Qash14.tamui.2B* at 730.6 Mb) were detected additionally for ASH14 on individual environment analysis. In multi-environment analysis, QTL *Qash14.tamu.3D* at 573.6 Mb on chromosome 3D was additionally detected.

QTLs linked to flour water absorption (WABS) were detected on chromosome 4D (*Qwabs.tamu.4D* at 29.0, 109.8, 182.6 and 445.5 Mb) from the individual as well as multi-environment analysis. Additional QTLs on chromosome 7B (*Qwabs.tamu.7B* at 126.1 Mb) from individual environment analysis, and on 4B (*Qwabs.tamu.4B* at 404.0) from the multi-environment analysis. Like PROT14, high value allele came from TAM 112 for QTLs on chromosome 4D at 29.0 and 109.8 Mb and those came from TAM 111 for QTLs on chromosome 4D at 182.6 and 445.5 Mb. Combined R² for A and AE ranged from 6.8%-77.1% of the total variation on WABS.

QTL for Mixograph Traits

QTLs linked to midline peak time (MLPT) were detected on group 1 homeologs chromosome from both analyses. QTLs *Qmlpt.tamu.1A* at 357.6 Mb, *Qmlpt.tamu.1B* at 1.4-7.2 Mb, *Qmlpt.tamu.1D* at 412.5 Mb explained 6.4%-54.6% of the variation present in the MLPT. Except for the QTL on chromosome 1A, high value alleles were contributed by TAM 112 (Table 3.3). However, additional QTLs detected on chromosome 1A (*Qmlpt.tamu.1A* at 14.4, 232.6-251.3, 367.1-399.2, 465.5 Mb) and 5A at 17.2 Mb from multi-environment analysis, receiving high value allele from TAM 111 (Table 3.4). These QTLs had additive effect ranging from 0.25 min – 0.74 min. Even

though significant AE interaction was present, the proportion of variation explained by these QTLs was almost equal to zero (Table 3.4).

Midline peak width (MLPW) QTLs were detected on chromosome 1A (*Qmlpw.tamu.1A* at 9.2, 485.2 Mb) in both individual and multi-environment analysis. Additional QTLs were detected on chromosome 1A (*Qmlpw.tamu.1A* at 230.0 Mb), 1D (*Qmlpw.tamu.1D* at 10.4 Mb) from individual environment analysis (Table 3.3), and on 4B (*Qmlpw.tamu.4B* at 47.4 Mb) from multi-environment analysis (Table 3.4). Except for the QTL on chromosome 1D, HVA for other QTLs originated from TAM 111 explaining up to 24.1% of the variation in MLPW. Significant AE interaction explained up to 26.7% of the variation with effect ranging from 0.16 in 13EP3 to 3.6 in 14EP4 (Table A5).

Only one QTL for midline peak value (MLPV) was detected on chromosome 1A (*Qmlpv.tamu.1A* at 14.4 Mb) receiving high value allele from TAM 111 using individual environment analysis. This QTL explained 13.7% of the variation present in MLPV with the additive effect of 2.5 (Table 3.3).

Like MLPT and MLPW, QTLs linked to midline peak integral (MLPI) were detected on group 1 homoeologous chromosome (at 357.6, 474.6, 1.4-7.2 and 412.0-416.1 Mb) from both individual and multi-environment analysis. Common QTLs was detected on chromosome 3A (*Qmlpi.tamu.3A* at 608.4 Mb), and on 5A (*Qmpli.tamu.5A* at 17.2 Mb) from both analyses. Additional QTLs were detected on chromosome 1A (*Qmlpi.tamu.1A* at 13.8 and 227.9 Mb) in individual environment analysis, and on chromosome 4B (*Qmlpi.tamu.4B* at 649.5-654.3 Mb) and 4D (*Qmlpi.tamu.4D* at 62.8 Mb) from multi-environment analysis. High value alleles originated from TAM 112 for QTLs on 1A at 227.9, 1B, 1D, and 5A. QTL *Qmlpi.tamu.4B* at 649.5-654.3 Mb showed significant AE interaction by switching HVA from TAM 112 in 13EP2 and 13EP3 to TAM 111 in the rest of the environments (Table A5). QTLs for MLPI explained from 4.8%- 42.4% of the variation in MLPI with the additive effects ranging from 9.2 in 14EP5 to 30.8 in 13EP5. AE interaction for these QTLs ranged from 0.01 to 21.5, covering 33.8 % of the phenotypic variation in MLPI (Table A5).

QTLs associated with tolerance, midline right slope (MLRS), were detected on group 1 homologous chromosomes. QTLs on chromosome 1A (*Qmlrs.tamu.1B* at 7.2 Mb), 1D (*Qmlrs.tamu.1B* at 413.2-418.5 Mb) were confirmed in both individual and multi-environment analysis. Additionally, one QTL on chromosome 1A (*Qmlrs.tamu.1A* at 227.9 Mb) was identified by multi-environment QTL analysis. For MLRS, all the favorable allele came from TAM 112 explaining 13.8%-17.9% of the variation in it. The additive effect for QTLs identified ranged from 0.6-0.8 (Table 3.3). In combination with the additive effect, AE of these QTLs explained up to 17.2 % of the variation present in MLRS (Table 3.4).

For midline right width (MLRW), two QTLs were detected by both analyses. First QTL was on chromosome 1A (*Qmlrw.tamu.1A* at 14.4 Mb), and second on 1D (*Qmlrs.tamu.1D* at 412.0 Mb). One additional QTL was detected on chromosome 5A for MLRW (*Qmlrw.tamu.5A* at 17.2 Mb). Effects combined these QTLs explained up to 23% of the variation present in MLRW (Table 3.3). High value alleles for QTL on 1A originated from TAM 111 and for rest, it came from TAM 1112. Like other mixograph traits, QTLs for midline tail width (MLTW) were clustered on group 1 homoeologous chromosome. QTLs on chromosome 1B (*Qmltw.tamu.1B* at 0.6-7.2 Mb), 1D (*Qmltw.tamu.1D* at 412.0-416.1 Mb), and 7D (*Qmltw.tamu.7D* at 591.2 Mb) were detected in both individual environment and multi-environment analysis. High value alleles for all the detected QTLs came from TAM 112 except QTLs on chromosome 6B (*Qmltw.tamu.6B* at 3.2 Mb) and 7D (*Qmltw.tamu.7D* at 58.9 Mb). These QTLs explained 8.5%- 15.9% of the variation present on MLTW, across seven different environments (Table 3.3). The additive effect for these QTLs were in the range of 0.8 – 2.03, and AE interaction effect was in 0.05- 2.2 (Table A5).

QTL clusters and stable QTL

From individual environment or multi-environment analysis, ten genomic regions were associated with more than a single trait. These traits were identified as multi-trait QTL or QTL clusters (abbreviated as *Qmt.tamu.chr*). From individual environment analysis, 17 QTLs were detected in more than one environment for hardness index, grain moisture, kernel diameter, single kernel weight, flour ash content at 14% moisture basis, midline pea time, midline peak integral, midline right slope, and midline tail width. These QTLs were identified as stable QTLs or consistent QTLs (abbreviated as *Qcon.tamu.chr*). First cluster (*Qmt.tamu.1A*, #1) was on the short arm of chromosome 1A (3.4-14.4 Mb). At this region, QTLs were co-located for hardness index, kernel diameter, midline peak time, midline peak width, midline peak value, midline peak integral, and midline right width, explaining R² of 1.67 for diameter to 31.3% for hardness index (Table 3.5).

QTL Name	QTL	Mbp^{\dagger}	Peak SNP	LOD range	R ^{2‡}	A§	HAV [¶]	Traits [#]
	ID							
Qmt.tamu.1A	1	3.4-14.4	IWB55537	4.13-30.43	31.33, 1.62, 0.0, 24.1,	4.0, 0.01, 0.12, 2.13,	P1, P2, P2, P2, P2,	HARD, DIAM, MLPT, MLPW,
					13.6, 30.65, 14.8	26.9, 1.45	P2, P2	MLPV, MLPI, MLRW
Qmt.tamu.1A	4	364.7-399.2	3916130_1al_8063	4.46-13.31	14.9, 1.67, 7.3	1.75, 0.01, 3.99	P1, P2, P2	HARD, DIAM, MLPT
Qmt.tamu.1A	5	458.4-475.6	3974856_1al_3401	3.38-19.02	26.1, 1.7, 12.9, 0.0,	4.56, 0.01, 1.11, 0.12,	P1, P2, P2, P2, P2,	HARD, DIAM, FYLD, MLPT,
					17.1, 8.29	2.38, 9.9	P2	MLPW, MLPI
Qmt.tamu.1B	7	0.6-7.2	3285535_1bs_1678	3.56-57.4	33.9, 8.1, 13.7, 8.3,	2.8, 0.05, 0.3, 11.2,	P1, P2, P1, P1, P1,	HARD, GMOIST, MLPT, MLPI,
					16.3, 19.2	0.7, 1.7	P1	MLRS, MLTW
Qmt.tamu.1D	13	412-433.3	2252364_1dl_16749	3.64-41.83	48.2, 49.7, 17.9, 15.8,	0.7, 30.81, 0.8, 1.3,	P1, P1, P1, P1, P1	MLPT, MLPI, MLRS, MLRW,
					1.8	1.76		MLTW
Qmt.tamu.2D	24	531.4	9852937_2d1_2983	3.5-17.97	17.5, 15.0	0.03, 0.8	P1, P1	DIAM, SKW
Qmt.tamu.4D	39	20.6-62.8	2305190_4ds_510	3.61-19.59	19.3, 32.2, 1.5, 13.1,	2, 0.1, 0.01, 0.07, 0.3,	P1, P1, P1, P2, P1,	HARD, GMOIST, DIAM,
					23.2, 21.5, 4.5	0.5, 3.46	P1, P1	FMOIST, PROT14, WABS, MLPI
Qmt.tamu.4D	42	312.7-366.3	2867136_4dl_v2_357	3.86-10.79	3.9, 19.7, 19	0.7, 0.07, 0.9	P1, P1, P2	HARD, GMOIST, SKW
Qmt.tamu.7D	72	58.9-91.1	IWA1247	4.16-25.13	14.7, 11.8, 14.4, 21.4,	3.2, 0.07, 0.03, 0.8,	P2, P2, P1, P1, P2	HARD, GMOIST, DIAM, SKW,
					9.7	1.5		MLTW

Table 3.5. Multi-trait QTL (QTL clusters) for end-use quality detected from individual and multi-environment QTL analysis

[†] Position, IWGSC RefSeq v1.0 pseudomolecule position

 ${}^{\ddagger}R^{2}$, maximum phenotypic variance explained by additive effect to each trait

[§] A, maximum additive effect corresponding to each trait

[¶]HVA, high value allele corresponding to each trait; P1=TAM 112, P2=TAM 111

[#]Traits, HARD, hardness index; GMOIST, grain moisture; DIAM, kernel diameter; SKW, single kernel weight; FYLD, flour yield %; FMOIST, flour moisture; PROT14, flour protein at 14% moisture basis; ASH14, flour ash content at 14% moisture; WABS, water absorption; MLPT, midline peak time; MLPW, midline peak width; MLPV, midline peak value; MLPI, midline peak integral; MLRS, midline right slope; MLRW, midline right width

At this region, hardness QTL (Qcon.tamu.1A at 3.4-14.4 Mb) was detected consistently in 14EP4, 14EP5, and irrigated environment (Table 3.6). The genomic region at 364.7 – 399.2 Mb on chromosome 1A co-expressed QTL for hardness index, diameter and midline peak time (Table 3.5). Hardness index QTL (*Qcon.tamu.1A* at 364.7-399.2 Mb) was consistently detected in 13EP3, and 13EP4 environment (Table 3.6). On chromosome 1A, another multi-trait QTL (*Qmt.tamu.1A* at 458.4-475.6 Mb) were detected for hardness index, kernel diameter, flour yield, midline peak time, midline peak width, and midline peak integral (Table 3.5). Like previous two consistent QTLs on chromosome 1A, QTL for hardness (*Qcon.tamu.1A* at 458.4-475.6 Mb) were detected 13EP2, 14CH, DRY, and COMB. QTL at short arm of chromosome 1B was a hotspot for many mixograph traits and their consistent expression over the ranges of environment. QTLs were co-located for hardness index, grain moisture, midline peak time, midline peak integral, midline right slope, and midline tail width (Table 3.5). Midline peak integral QTL (*Qcon.tamu.1B* at 0.6-7.2 Mb) were detected in 13EP3, 13EP4, DRY, and COMB environment (Table 3.6). Midline tail width QTL (Qcon.tamu.1B at 0.6-7.2 Mb) were also consistent across 13EP2, 13EP5, 14CH, DRY, and COMB environment. Hardness QTL (Qcon.tamu.1B at 0.6-7.2 Mb) were stably expressed in all the environment except 14CH (Table 3.6). The physical region at 412-433.3 Mb on chromosome 1D is another hotspot for co-localization and stable detection of many mixograph traits. QTL associated with MLPT, MLPI, MLRS, MLRW, and MLTW were co-segregated at this region. MLP, MLPI, MLRS, and MLTW were detected in multiple environments.

Traits [†]	QTL Name	QTL	Mbp [‡]	Peak SNP	LOD	$\mathbb{R}^{2\S}$	A¶	HAV [#]	Environments ^{††}
		ID			range				
HARD	Qcon.tamu.1A	1	3.4-14.4	IWB55537	14.72-16.98	27.97-31.3	2.8-3.7	P1	14EP4, 14EP5, IRR
HARD	Qcon.tamu.1A	4	364.7-399.2	3916130_1al_8063	4.46-9.22	11.2-14.9	1.6-1.7	P1	13EP3, 13EP4
HARD	Qcon.tamu.1A	5	458.4-475.6	3974856_1al_3401	3.62-19.02	7.76-30.9	1.29-4.5	P1	13EP2, 14CH, DRY, COMB
HARD	Qcon.tamu.1B	7	0.6-7.2	3285535_1bs_1678	6.86-17.03	14.3-33.9	1.8-2.8	P1	13EP2, 13EP3, 13EP4, 13EP5, 14EP4, 14EP5, DRY, IRRI, COMB
HARD	Qcon.tamu.7D	72	58.9-91.1	IWA1247	4.06-8.19	5.3-12.9	1.4-3.2	P2	13EP4, 14CH, 14EP4, 14EP5, DRY, IRR, COMB
GMOIST	Qcon.tamu.4D	39	20.6-62.8	2305190_4ds_510	6.05-17.92	17.6-31.8	0.08-0.1	P1	13EP5, 14CH, 14EP5, 14EP5, DRY, IRR, COMB
GMOIST	Qcon.tamu.7D	72	58.9-91.1	IWA1247	8.76-11.81	8.76-11.8	0.04-0.07	P2	14EP4, 14EP5, DRY, IRR
DIAM	Qcon.tamu.2D	24	531.4	9852937_2dl_2983	4.28-6.77	14.6-17.8	0.02-0.03	P1	13EP2, 13EP4, 13EP5, DRY, IRR, COMB
SKW	Qcon.tamu.2D	24	531.4	9852937_2dl_2983	3.5-4.95	10.9-15.3	0.33-0.8	P1	13EP2, 13EP4, 13EP5, DRY, IRR, COMB
SKW	Qcon.tamu.4D	42	312.7-366.3	2867136_4dl_v2_357	3.39-6.28	11.2-18.9	0.58-0.91	P2	14EP4, 14EP5
ASH14	Qcon.tamu.6B	58	662.3	3252764_6dl_2803	3.35-6.21	12.3-17.9	0.01	P2	13EP5, 14EP4, IRR
MLPT	Qcon.tamu.1D	13	412-433.3	2252364_1dl_16749	11.25-30.22	34.6-56.4	0.5-0.8	P1	13EP2, 12EP3, 13EP5, DRY, IRR, COMB
MLPI	Qcon.tamu.1B	7	0.6-7.2	3285535_1bs_1678	3.78-6.98	3.4-5.6	6.2-11.2	P1	13EP3, 14EP4, DRY, COMB
MLPI	Qcon.tamu.1D	13	412-433.3	2252364_1dl_16749	11.19-30.37	17.1-49.2	20.1-30.8	P1	13EP2, 13EP3, 13EP5, DRY, IRRI, COMB
MLRS	Qcon.tamu.1D	13	412-433.3	2252364_1dl_16749	4.57-8.52	1.25-17.9	0.2-0.8	P1	13EP2, 13EP3, DRY, IRR, COMB
MLTW	Qcon.tamu.1B	7	0.6-7.2	3285535_1bs_1678	3.68-6.25	12.4-16.6	0.97-1.65	P1	13EP2, 13EP5, 14CH, DRY, COMB
MLTW	Qcon.tamu.1D	13	412-433.3	2252364_1dl_16749	4.04-9.45	8.9-25.9	0.9-1.8	P1	13EP5, 14CH, 14EP4, 14EP5, DRY, IRR, COMB

Table 3.6. Stable and consistent QTL for end-use quality detected from individual environment QTL analysis

[†] Traits, HARD, hardness index; GMOIST, grain moisture; DIAM, kernel diameter; SKW, single kernel weight; FYLD, flour yield %; FMOIST, flour moisture; PROT14, flour protein at 14% moisture basis; ASH14, flour ash content at 14% moisture; WABS, water absorption; MLPT, midline peak time; MLPW, midline peak width; MLPV, midline peak value; MLPI, midline peak integral; MLRS, midline right slope; MLRW, midline right width

[‡]Position, IWGSC RefSeq v1.0 pseudomolecule position

[§] R², maximum Phenotypic variance explained by additive effect to each trait

[¶]A, maximum Additive effect corresponding to each trait

[#] HVA, high value allele corresponding to each trait; P1=TAM 112, P2=TAM 111

^{††} Environments; 13EP2, 2013 Etter pivot 2; 13EP3, 2013 Etter pivot 3; 13EP4, 2013 Etter pivot 5; 13EP5, 2013 Etter pivot 5, 14CH, 2014 Chillicothe; 14EP4, 2014 Etter pivot 4; 14EP5, 2014 Etter pivot 5; DRY, dry environments; IRR, irrigated environments; COMB, combined environments

These QTLs explained up to 49.2% of the variation in mixograph traits and HVA originated from TAM 112 only (Table 3.6). Other regions that exhibited co-location of multiple trait QTLs were on long arm of chromosome 2D (*Qmt.tamu.2D* at 531.4 Mb), short arm of chromosome 4D (*Qmt.tamu.4D* at 20.6-62.8 Mb), long arm of 4D (*Qmt.tamu.4D* at 312.7-366.3 Mb) and on short arm of 7D (*Qmt.tamu.7D* at 58.9-91.1 Mb) (Table 3.5). For each of these, QTL for diameter (*Qcons.tamu.2D* at 531.4 Mb), grain moisture (*Qcon.tamu.4D* at 20.6-62.8 Mb), single kernel weight (*Qcon.tamu.4D* at 312.7-366.3), and hardness index and grain moisture (*Qcon.tamu.7D* at 58.9-91.1 Mb) were detected in multiple environments (Table 3.6).

Epistasis

Significant epistasis (A×A or A×A×E) were found for hardness index, grain moisture, midline peak integral and midline peak time (Table 3.7). QTL-by-QTL (AA, additive-by-additive) interaction for hardness index across genome accounted 2-3% of the phenotypic variation. Recombination of parental alleles at two loci on a given chromosome increase the mean trait value, as indicated by negative AA effect. Significant Epistasis-by-environment (A×A×E) were observed for the hardness index, increasing the mean phenotypic value of the hardness index. A×A and A×A×E interaction for grain moisture explained up to 5-6 % of the phenotypic variation, both leading to increased grain moisture. QTLs for mixograph traits on group 1 homolog were interacting with QTLs on another chromosome. These interactions explained up to 3% of the total variation present in mixograph traits.

Traits	QTL 1 Name	Mbp 1 [†]	QTL	Peak SNP 1	QTL 2 Name	Mbp 2	QTL	Peak SNP 2	\mathbb{R}^2	\mathbb{R}^2	A*A¶	A*A*E#
			ID				ID		(A * A) [‡]	(AA*E)§		
			1				2					
HARD	Qhard.tamu.1A	548.41	6	IWB26168	Qhard.tamu.6A	5.12	53	4427795_6as_12820	2.44	0.6	-0.94	-1.46
HARD	Qhard.tamu.1B	0.57	7	3473141_1bs_756	Qhard.tamu.2A	623.95	16	6341271_2al_905	2.38	1.08	0.93	-1.43
HARD	Qhard.tamu.2D	1.67	22	IWB34642	Qhard.tamu.3A	639.15	26	IWB8470	2.49	0.16	0.95	-0.81
HARD	Qhard.tamu.2D	14.42	22	IWA4746	Qhard.tamu.3B	28.36	28	IWB56882	2.53	0.5	-0.95	-1.39
HARD	Qhard.tamu.3A	1.32	25	3335448_3as_4124	Qhard.tamu.6D	350.42	60	3254329_6dl_5253	2.36	0.37	-0.94	-1.26
HARD	Qhard.tamu.5A	548.82	46	1134341_5al_336	Qhard.tamu.7B	19.11	67	3096912_7bs_110	2.4	0.26	-0.94	-0.89
MOIST	Qmoist.tamu.2B	39.2	18	IWB22828	Qmoist.tamu.6D	438.34	61	3325327_6dl_5670	4.93	0.17	-0.04	-0.02
MOIST	Qmoist.tamu.3A	21.01	25	3442664_3as_2715	Qmoist.tamu.3B	557.99	29	10446102_3b_9187	5.46	0.42	-0.05	-0.03
MLPT	Qmlpt.tamu.1B	570.28	10	IWA5160	Qmlpt.tamu.7A	623.96	64	4433586_7al_347	2.28	0.21	-0.16	-0.15
MLPT	Qmlpt.tamu.1D	0.39	11	1881608_1ds_7447	Qmlpt.tamu.7D	15.32	71	IWB12582	2.19	0.37	0.16	-0.21
MLPT	Qmlpt.tamu.4B	649.68	38	6975707_4bl_1851	Qmlpt.tamu.4B	652.78	38	IWA4490	0.69	0	-0.27	-0.3
MLPT	Qmlpt.tamu.4D	408.79	43	IWA5751	Qmlpt.tamu.5B	682.84	51	IWB64985	1.92	0.43	0.15	-0.18
MLPI	Qmlpi.tamu.1A	227.88	2	3904015_1al_2374	Qmlpi.tamu.1A	393.79	4	3928641_1al_1202	0.33	0	-14.37	-20.52
MLPI	Qmlpi.tamu.2B	596.21	20	8042513_2bl_9079	Qmlpi.tamu.7D	549.36	74	3395678_7dl_6495	2.35	0.63	-6.44	-10.86

Table 3.7. Additive-by-additive epistatic interaction, and epistatic-by-environment interaction among significant loci

[†]Position, IWGSC RefSeq v1.0 pseudomolecule position

 $R^{2}(A*A)$, phenotypic variance explained by epistasis (additive-by-additive) effect

 R^{2} (AA*E), phenotypic variance explained by epistasis-by-environment effect

[¶]A*A, additive-by-additive effect. Negative sign indicates the recombination of the parental alleles increased the traits, positive sign indicates parental allelic combination reduced the traits

[#] A*A*E, range of additive-by-additive-by-environment effect. Negative value indicates the epistasis-by-environment reduced the trait, positive value increased the trait

DISCUSSION

Traits that are highly heritable and repeatable are important to breeders. All the end-use quality traits analyzed in this study were moderate to highly heritable except midline right width (MLRW). From variance partitioning, the genotypic variance is apparently higher than the residual variance, which is confounding effect of residual and genotype-by-environment interaction. Higher heritability and higher genotypic variance indicated that these traits are genetically controlled, which makes it suitable for genetic gain from selection in a breeding program. Higher heritability of end-use traits is also reported by El-Feki et al (2013) and Simons et al (2012). The significant genotypic variance was present in all the traits except for midline peak integral (MLPI). Due to the resource, time and financial constraints, single sample for each line was tested. Since we fitted the individual environments as pseudo-replication, we couldn't test environmental significance. Significant differences existed between parents for hardness index, flour protein content, midline peak time, midline peak integral and midline tail width, with TAM 112 better than TAM 111 for most of the end-use quality traits. This result is further strengthened by finding from a subset of the same population from a single environment (Jondiko et al., 2016).

The winter wheat bread-making quality is a complex trait that is described by many parameters and determined by many factors. The bread-making quality of hard wheat is strongly influenced by the allelic variation of HMW-GS and LMW-GS genes (Payne, 1987). Given there are multiple alleles at each of the glutenin loci, the significance of these genes on dough rheology in any given cross will be largely determined by which alleles are carried by the parents. From the screening of *Glu-D1* markers, our mapping population was segregating at *Glu-Dl* locus on the long arm of chromosome 1D. TAM 112 possesses Glu-D1d alleles (5x + 10y subunits), whereas TAM 111 possessed *Glu-D1a* alleles (2x + 12y subunits). Also, TAM 112 possess wheat-rye translocation 1AL.1RS on short arm of chromosome 1A (Dhakal et al., 2017). According to Gupta et al. (1991) and Liang et al. (2010), subunits 5x + 10x gives significantly better effects for dough mixing strength and bread-making performance than subunits 2x+12y. Mixograph is a powerful tool to discriminate inter-genotypic variation in dough properties of lines carrying alleles 5x+10y and 2x+12y at *Glu-D1* locus (Primard et al., 1991). In accordance with Cooper et al. (2016), lines carrying Glu-Dla alleles showed greater midline peak height than alternative alleles. TAM 111 carried *Glu-D1a* alleles and its MLPH value is greater than that of TAM 112 carrying Glu-D1d allele. The detrimental effect of rye translocation 1RS in end-use quality trait of lines is reported (Graybosch, 2001; Graybosch et al., 1993). The 1BL.1RS translocation results in reduced tolerance to overmixing, production of 'sticky' doughs. Even though lines carrying 1AL.1RS translocation have better end-use quality trait than lines carrying 1BL.1RS, still lines carrying 1AL.1RS is not better than non-1RS lines (Graybosch, 2001; Graybosch et al., 1993) which is partly explained by the loss of LMW-GS Glu-A3 and Gli-A1, and Glu-B1 and Gli-B1 from the short of chromosome 1A and 1B in the translocated lines, respectively.

Mixograph parameters are located on group 1 homolog, with QTL for midline peak time (*Qmlpt.tamu.1D*) and midline peak integral (*Qmlpi.tamu.1D*) at 412.433.3 Mb

explaining up to 48.2% and 49.7% of the trait variation (Table 3.5). Both the QTLs received favorable allele from TAM 112. The physical location of the peak marker 2252364_1dl_16749 linked to both QTLs was at 412-433.3 Mb region across different environments tested, which is the exact physical location of *Glu-D1* gene (Rasheed et al., 2016). QTL for midline tail width (*Qmltw.tamu.1A* at 458.4-475.6 Mb) on the long arm of chromosome 1A explained 17.1% of the variation. However physical location of this QTL was 25 Mb upstream of *Glu-A1* loci that is at 508.72 Mb (Rasheed et al., 2016). A major determinant of hardness is located on 5DS at 3.6 Mb. Presence of hardness QTLs in the same cluster with mixograph traits on group 1 homolog was contradictory to its real physical position. Aussenac et al. (2012) found that Glu-D1 has a significant effect on hardness with the d alleles (5x+10y) significantly higher than that with an allele (2x+12y). Research has shown the physical structure and strength of the protein matrix influence wheat hardness (Stenvert and Kingswood, 1977). Nevertheless, different studies showed that the number and chromosomal locations of QTL varied greatly, depending on the genetic crosses, complex nature of traits (Groos et al., 2004; Huang et al., 2006; Tsilo et al., 2010)

Clustering of QTLs in certain genomic regions was observed. Highly correlated traits were consistent with clustering of QTLs associated with them, with allele effects originating from the same parents in those traits. Mixograph traits are highly correlated and repeatable (Martinant et al., 1998). Mixograph traits including midline peak time, midline peak width, midline right slope is highly correlated and shared QTL location on chromosome 1A, 1B and 1D. This also agrees with the result from Tsilo et al. (2011a;

2011b). Single kernel weight (SKW) and kernel diameter (DIAM) were also highly correlated (r = 0.71, P < 0.01) and were clustered on chromosome 2D and 7D. Flour protein and WABS are highly correlated, which is true given the predicted water absorption is derived from the flour protein. These two traits also clustered chromosome 4D at 20.6-62.8 Mb region. For such traits, it is not possible to tease apart individual genetic effect separately if selection is practiced in opposite direction. But it helps to improve these traits concurrently. It is also common to see QTLs for traits with weaker or no correlation were also in the same cluster in some cases, such as QTLs for hardness (HARD) and kernel diameter (DIAM) on short arm and long arm of chromosome 1A, QTLs for hardness and mixograph traits on group 1 homologs, and QTLs for hardness and grain moisture on chromosome 1B, 4D, and 7D. A weaker correlation was present between diameter and flour yield in this study, with QTLs (Qmt.tamu.1A at 458.4-475.6 Mb) for these two clustered on the long arm of chromosome 1A (Table 3.5). In general, higher flour yield is expected from larger seed size (Wiersma et al., 2001). For traits with weak or no correlation, it is possible to select traits with combination at opposite direction. It also avoids the undesirable effect of one QTL by selecting against it while improving another QTL. Desirable bread making quality is associated with strong gluten, which is revealed by high values for MLPT and MLPH, combined with mixing tolerance, indicated by less negative values for MLRS (Campbell et al., 2001). Higher values for MLPW and MLRW are also considered favorable (Zheng et al., 2009). Midline peak value (MLPV) is correlated with hardness (HARD). During the mixing process, when grain hardness increases, the dough viscosity, as measured by MLPV,

increases due to extensive starch damage (Martinant et al., 1998). However, in this study relationship between MLPV and HARD were correlated but in opposite direction. MLPV is also a key determinant of optimal water absorption as differences in MLPV is partly explained by differences in water absorption among the samples (Bettge and Morris, 2000). A positive correlation between MLPV and WABS in this study supports the above finding. Harder grain produces coarse flour with more fractured starch granules, which absorbs more water during the baking process. A plausible explanation of clustering of QTLs with positively and negatively related traits is the linkage between them in coupling and repulsion phase, respectively.

Stable expression of the same QTL in multiple environments is a way of confirming the worthiness of pursuing. However, it is common to detect a QTL in one environment and not in other. In this study, we categorized seven environments into either dry and irrigated environment to confirm stable expression of QTLs in different management conditions as well. Our results indicate that 10 QTLs corresponding to hardness index, grain moisture, diameter, single kernel weight, ash content, midline peak time, midline peak integral, midline right slope, and midline tail width on chromosome 1A, 1B, 1D, 2D, 4D, 6B, and 7D were detected in more than one environment with high value alleles contributed by same parent (Table 3.6). QTLs detected in individual environment analysis were not detected in either of DRY, IRR, and COMB analysis for hardness on chromosome 1A at 3.4-14.4 and 364.7-399.2 Mb, grain moisture on 7D at 58.9-91.1 Mb, single kernel weight on 4D at 312.7-366.3 Mb, and flour ash content on 6B at 662.3 Mb (Table 3.6). Similarly, QTLs for flour yield, flour moisture content,

midline peak width, midline peak value, and midline right width were expressed in only one environment. Also, QTL analysis was carried out on phenotypic data collected from diverse environmental conditions, making QTL unable to express in multiple environments. These finding strongly imply the presence of $G \times E$ effects on quality traits although we couldn't partition $G \times E$ from residual error term in this study. High error variance in certain environment inhibits the expression of QTLs (Bernardo, 2008). Except for midline peak value and midline right width, rest of the traits had less error variance as revealed by heritability. For midline peak value, one QTL was detected in 13EP3 with minor additive effects. In addition, QTLs detection for midline right width is also reduced compared to other traits with low residual variance. We observed the shift in QTL peak for hardness (*Qhard.tamu.7D* at 78.5-91.1 Mb), grain moisture (*Qgmoist.tamu.4D* at 29.0-62.8 Mb), midline tail width (*Qmltw.tamu.1B* at 0.6-7.2 Mb), and midline peak integral (*Qmlpi.tamu.1D* at 412.5-413.2 Mb) indicating that these traits are likely controlled by multiple genes expressed in different environments.

CONCLUSION

In conclusion, we had 124 recombinant inbred lines from hard red winter wheat crosses. This population was characterized for 14 end-use quality traits collected from 14 environments during two cropping seasons. All the traits had moderate to high heritability with most of the phenotypic variation due to genotypic value. A total of 163 QTLs were detected from individual environment analysis, and 109 QTLs from multienvironment trails. As expected, most of mixograph traits were detected on chromosome 1A, 1B and 1D, with peak marker for QTL on 1D positioned on *Glu-D1* locus. Due to a major gene effect, kernel hardness is found to influence mixograph traits. We found nine genomic regions on chromosome 1A, 1B, 1D, 2D, 4D and 7D that are related with more than a single trait analyzed. QTLs for hardness, grain moisture, midline peak time, and midline peak integral on these clusters were consistently expressed in multiple environments. Because of the complex inheritance of these traits, it will be necessary to validate these QTL in different wheat background evaluated in similar growth conditions before developing markers for marker-assisted selection.

REFERENCES

- AACC International. 2010. Approved Methods of Analysis, 11th Ed. American Association of Cereal Chemists (AACC) International, St. Paul, MN, USA.
- Alvarado, G., M. López, M. Vargas, Á. Pacheco, F. Rodríguez, J. Burgueño, et al. 2018. META-R (Multi Environment Trail Analysis with R for Windows) Version 6.03. CIMMYT Research Data & Software Repository Network.
- Aussenac, T., V. Lesage, L. Rhazi, B. Meleard and G. Branlard. 2012. Effects of HMW and LMW-Glutenins and grain hardness on size of wheat storage proteins polymer.
- Bekes, F., P.W. Gras, R.S. Anderssen and R. Appels. 2001. Quality traits of wheat determined by small-scale dough testing methods. Australian Journal of Agricultural Research 52: 1325-1338. doi:Doi 10.1071/Ar01041.
- Bernardo, R. 2008. Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20 Years. Crop Science 48: 1649-1664. doi:10.2135/cropsci2008.03.0131.
- Bettge, A.D. and C.F. Morris. 2000. Relationships among grain hardness, pentosan fractions, and end-use quality of wheat. Cereal Chemistry 77: 241-247. doi:Doi 10.1094/Cchem.2000.77.2.241.
- Breseghello, F. and M.E. Sorrells. 2006. Association analysis as a strategy for improvement of quantitative traits in plants. Crop Science 46: 1323-1330. doi:10.2135/cropsci2005.09-0305.
- Campbell, K.G., P.L. Finney, C.J. Bergman, D.G. Gualberto, J.A. Anderson, M.J. Giroux, et al. 2001. Quantitative Trait Loci Associated with Milling and Baking Quality in a Soft × Hard Wheat Cross Crop Science 41: 1275-1285. doi:10.2135/cropsci2001.4141275x.
- Carson, G.R. and N.M. Edwards. 2009. Criteria of Wheat and Flour Quality. In: K. Khan and P. R. Shewry, editors, Wheat (Fourth Edition). AACC International Press. p. 97-118.
- Cooper, J.K., J.A. Stromberger, C.F. Morris, G.H. Bai and S.D. Haley. 2016. End-Use Quality and Agronomic Characteristics Associated with the Glu-B1al High-Molecular-Weight Glutenin Allele in US Hard Winter Wheat. Crop Science 56: 2348-2353. doi:10.2135/cropsci2015.10.0610.
Dhakal, S., C.-T. Tan, L. Paezold, M.P. Fuentealba, J.C. Rudd, B.C. Blaser, et al. 2017. Wheat Curl Mite Resistance in Hard Winter Wheat in the US Great Plains. Crop Science 57: 53-61. doi:10.2135/cropsci2016.02.0121.

Doyle, J. and J. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15.

- Eagles, H.A., G.J. Hollamby, N.N. Gororo and R.F. Eastwood. 2002. Estimation and utilisation of glutenin gene effects from the analysis of unbalanced data from wheat breeding programs. Australian Journal of Agricultural Research 53: 367-377. doi:10.1071/Ar01074.
- El-Feki, W.M., P.F. Byrne, S.D. Reid, N.L.V. Lapitan and S.D. Haley. 2013. Quantitative Trait Locus Mapping for End-Use Quality Traits in Hard Winter Wheat Under Contrasting Soil Moisture Levels. Crop Science 53: 1953-1967. doi:10.2135/cropsci2012.12.0674.
- Fehr, W.R., E.L. Fehr and H.J. Jessen. 1987. Principles of cultivar development.Macmillan, New York.
- Giroux, M.J. and C.F. Morris. 1998. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proceedings of the National Academy of Sciences of the United States of America 95: 6262-6266. doi:DOI 10.1073/pnas.95.11.6262.
- Graybosch, R.A. 2001. Uneasy unions: Quality effects of rye chromatin transfers to wheat. Journal of Cereal Science 33: 3-16. doi:10.1006/jcrs.2000.0336.
- Graybosch, R.A., C.J. Peterson, L.E. Hansen, D. Worrall, D.R. Shelton and A. Lukaszewski. 1993. Comparative Flour Quality and Protein-Characteristics of 1bl/1rs and 1al/1rs Wheat-Rye Translocation Lines. Journal of Cereal Science 17: 95-106. doi:DOI 10.1006/jcrs.1993.1010.
- Groos, C., E. Bervas and G. Charmet. 2004. Genetic analysis of grain protein content, grain hardness and dough rheology in a hard X hard bread wheat progeny. Journal of Cereal Science 40: 93-100. doi:10.1016/j.jcs.2004.08.006.
- Gupta, R.B., F. Bekes and C.W. Wrigley. 1991. Prediction of Physical Dough Properties from Glutenin Subunit Composition in Bread Wheats - Correlation Studies. Cereal Chemistry 68: 328-333.
- Gupta, R.B., N.K. Singh and K.W. Shepherd. 1989. The Cumulative Effect of Allelic Variation in Lmw and Hmw Glutenin Subunits on Dough Properties in the Progeny of 2 Bread Wheats. Theoretical and Applied Genetics 77: 57-64. doi:Doi 10.1007/Bf00292316.

- Huang, X.Q., S. Cloutier, L. Lycar, N. Radovanovic, D.G. Humphreys, J.S. Noll, et al. 2006. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113: 753-766. doi:10.1007/s00122-006-0346-7.
- Jondiko, T.O., L.Y. Yang, D.B. Hays, A.M.H. Ibrahim, M. Tilley and J.M. Awika. 2016. Prediction of wheat tortilla quality using multivariate modeling of kernel, flour, and dough properties. Innov Food Sci Emerg 34: 9-15. doi:10.1016/j.ifset.2016.01.010.
- Lazar, M.D., W.D. Worrall, G.L. Peterson, A.K. Fritz, D. Marshall, L.R. Nelson, et al. 2004. Registration of 'TAM 111' Wheat. Crop Science 44: 355-356. doi:10.2135/cropsci2004.3550.
- Liang, D., J. Tang, R.J. Peña, R. Singh, X. He, X. Shen, et al. 2010. Characterization of CIMMYT bread wheats for high- and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica 172: 235-250. doi:10.1007/s10681-009-0054-x.
- Liu, S., C.A. Griffey, M.D. Hall, A.L. McKendry, J. Chen, W.S. Brooks, et al. 2013. Molecular characterization of field resistance to Fusarium head blight in two US soft red winter wheat cultivars. Theor Appl Genet 126: 2485-2498. doi:10.1007/s00122-013-2149-y.
- Martinant, J.P., Y. Nicolas, A. Bouguennec, Y. Popineau, L. Soulnier and G. Branlard. 1998. Relationships between mixograph parameters and indices of wheat grain quality. Journal of Cereal Science 27: 179-189. doi:DOI 10.1006/jcrs.1997.0156.
- McIntosh, R., Y. Yamazaki, K.M. Devos, J. Dubcovsky, W.J. Rogers and R. Appels. 2003. Catalogue of Gene Symbols for Wheat. USDA-ARS, Genomics and Gene Discovery Unit, Albany, CA.
- Payne, P.I. 1987. Genetics of Wheat Storage Proteins and the Effect of Allelic Variation on Bread-Making Quality. Annual Review of Plant Physiology and Plant Molecular Biology 38: 141-153. doi:DOI 10.1146/annurev.arplant.38.1.141.
- Peterson, B.K., J.N. Weber, E.H. Kay, H.S. Fisher and H.E. Hoekstra. 2012. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLOS ONE 7: e37135. doi:10.1371/journal.pone.0037135.
- Primard, S., R. Graybosch, C.J. Peterson and J.H. Lee. 1991. Relationships between Gluten Protein-Composition and Quality Characteristics in 4 Populations of High-Protein, Hard Red Winter-Wheat. Cereal Chemistry 68: 305-312.

- Rasheed, A., W. Wen, F. Gao, S. Zhai, H. Jin, J. Liu, et al. 2016. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129: 1843-1860. doi:10.1007/s00122-016-2743-x.
- Rozbicki, J., A. Ceglinska, D. Gozdowski, M. Jakubczak, G. Cacak-Pietrzak, W. Madry, et al. 2015a. Influence of the cultivar, environment and management on the grain yield and bread-making quality in winter wheat. Journal of Cereal Science 61: 126-132. doi:10.1016/j.jcs.2014.11.001.
- Rozbicki, J., A. Ceglińska, D. Gozdowski, M. Jakubczak, G. Cacak-Pietrzak, W. Mądry, et al. 2015b. Influence of the cultivar, environment and management on the grain yield and bread-making quality in winter wheat. Journal of Cereal Science 61: 126-132. doi:https://doi.org/10.1016/j.jcs.2014.11.001.
- Rudd, J.C., R.N. Devkota, J.A. Baker, G.L. Peterson, M.D. Lazar, B. Bean, et al. 2014. 'TAM 112' Wheat, Resistant to Greenbug and Wheat Curl Mite and Adapted to the Dryland Production System in the Southern High Plains. Journal of Plant Registrations 8: 291-297. doi:10.3198/jpr2014.03.0016crc.
- SAS Institute Inc. 2015. SAS/STAT 14.1 user's guide. Cary, NC: SAS Institute Inc.
- Simons, K., J.A. Anderson, M. Mergoum, J.D. Faris, D.L. Klindworth, S.S. Xu, et al. 2012. Genetic Mapping Analysis of Bread-Making Quality Traits in Spring Wheat. Crop Science 52: 2182-2197. doi:10.2135/cropsci2012.03.0175.
- Stenvert, N.L. and K. Kingswood. 1977. Influence of Physical Structure of Protein Matrix on Wheat Hardness. Journal of the Science of Food and Agriculture 28: 11-19. doi:DOI 10.1002/jsfa.2740280103.
- Tsilo, T.J., G.A. Hareland, S. Chao and J.A. Anderson. 2011a. Genetic Mapping and QTL Analysis of Flour Color and Milling Yield Related Traits Using Recombinant Inbred Lines in Hard Red Spring Wheat. Crop Science 51. doi:10.2135/cropsci2009.12.0711.
- Tsilo, T.J., G.A. Hareland, S. Simsek, S. Chao and J.A. Anderson. 2010. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet 121: 717-730. doi:10.1007/s00122-010-1343-4.
- Tsilo, T.J., J.-B. Ohm, G.A. Hareland, S. Chao and J.A. Anderson. 2011b. Quantitative trait loci influencing endosperm proteins and end-use quality tratis of hard red spring wheat breeding lines. Czech J. Genet. Plant Breed. 47: S190-S195.

- Van Ooijen, J.W. 2006. JoinMap® 4.0: software for the calculation of genetic linkage maps in experimental population. In: Kyazma BV (ed) Wageningen, the Netherlands.
- Wang, J., H. LI, L. Zhang, L. Chunhui and M. Lei. 2016. QTL IciMapping: Integrated Software for Building Linkage Maps and Mapping Quantitative Trait Genes.
- Wang, S., D. Wong, K. Forrest, A. Allen, S. Chao, B.E. Huang, et al. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant biotechnology journal 12: 787-796. doi:10.1111/pbi.12183.
- Wiersma, J.J., R.H. Busch, G.G. Fulcher and G.A. Hareland. 2001. Recurrent selection for kernel weight in spring wheat. Crop Science 41: 999-1005. doi:DOI 10.2135/cropsci2001.414999x.
- Yong, Z., H. Zhonghu, G. Ye, Z. Aimin and M. Van Ginkel. 2004. Effect of environment and genotype on bread-making quality of spring-sown spring wheat cultivars in China. Euphytica 139: 75-83. doi:10.1007/s10681-004-2131-5.
- Zheng, S.S., P.F. Byrne, G.H. Bai, X.Y. Shan, S.D. Reid, S.D. Haley, et al. 2009. Association analysis reveals effects of wheat glutenin alleles and rye translocations on dough-mixing properties. Journal of Cereal Science 50: 283-290. doi:10.1016/j.jcs.2009.06.008.

CHAPTER IV

GENETIC DISSECTION OF YIELD AND AGRONOMIC TRAITS IN TAM WHEAT

INTRODUCTION

Grain yield in wheat (*Triticum aestivum* L) is one of the major goals to most of the wheat breeding program, particularly in moisture stressed condition. In the Southern High Plains, bread wheat is grown under wide range of mega environments that differ for soil moisture and rainfall pattern. Given the unpredictable nature of environmental factors, cultivars that can maintain grain yield (GY) in stressed environments would be of prime importance to all the stakeholders involved in the wheat production. Grain yield is affected by agronomic traits like heading date and plant height and all of them interact with each other to dictate final grain yield of wheat. Each trait is the controlled by complex genetic interactions of multiple loci and their interactions with environmental conditions and cultural practices (Dhungana et al., 2007; Xing and Zhang, 2010). The genetics of GY and other important traits are frequently complicated by the occurrence of epistatic interactions among the multiple QTL/genes controlling the target trait (Kusterer et al., 2007; Li et al., 2003).

There are many *Rht* genes responsible for plant height reduction. Semi-dwarfing, Norin-10 genes (*Rht-B1b* and *Rht-D1b*) introduced into global wheat during the green revolution are very important since they increased straw strength and harvest index (HI) and grain yield (Addisu et al., 2010; Borlaug, 1968; Worland, 1996). *Rht-D1b* was associated with increased grain yield through improved harvest index, rather than increased aboveground biomass (Addisu et al., 2010). The height-reducing genes and their alleles influence grain yield in wheat by reducing the internal competition for assimilate supply between the developing ears and the stems. Semi-dwarfing *Rht* genes possess a positive effect on grain yield under favorable growing condition (Trethowan et al., 2007). However, several dwarfing genes can reduce early season growth in low input environment (Addisu et al., 2010).

Heading date is another key adaptive trait influenced by many traits, namely vernalization, photoperiod, and earliness. These traits are under the control of three group of genes, *Ppd* gene for photoperiod on homeologus group 2, *Vrn* gene for vernalization on homeologus group 5, and *Efl* gene for earliness in flowering on 2D, 3A, 4D, 6B, 6D, 7B (Scarth and Law, 1984; Sourdille et al., 2000; Worland et al., 1998). *Ppd-D1a* was associated with earlier flowering, reduced height and grain yield (Addisu et al., 2010). Heading time is controlled by several main and epistatic effect QTLs through their control of vernalization, photoperiod response, and earliness (Distelfeld et al., 2009; Reif et al., 2011). Like GY, epistatic interactions contributed to a low extent to the genotypic variance for flowering time (Griffiths et al., 2009).

Grain yield and associated morphological traits show significant genotype, environment and genotype-by-environment interactions, which reduces the genetic gain achieved by phenotypic selection. Change in the relative performance of lines across environments further complicate the selection. Plant breeders often utilize multienvironment trials on as many heterogeneous environments as possible to predict the performance of genotypes across years and locations. However, the genetic and environmental basis of yield, agronomic traits and their interaction with environments is not well understood. With the advent of cost-effective genotyping and dense marker coverage of chromosomes, QTL mapping has enabled the dissection of complicated trait like yield into component loci and their relative effects (Doerge, 2002). It is now possible to quantify gene-gene and genes-environment interaction. With the help of molecular marker and QTL analysis selecting genes for grain yield would be rapid and efficient. QTL analysis identifies the targets for marker-assisted selection of genotype, which can later be used to selection genotype.

In the present study, we used molecular markers from 90K Illumina Infinium array single nucleotide polymorphism (SNP) and double digest restriction-site associated DNA sequencing (ddRADSeq) to genotype 124 RIL lines derived from TAM 112/TAM 111. The objective of this study was to understand and identify the genetic components controlling grain yield and agronomic traits of wheat. In the multi-environment trials of hard red winter wheat from 2011-2017, grain yield (GY), plant height (HT), heading date (HD) and test weight (TW) were investigated. The complex genetic basis of yield and agronomic trait was analyzed using QTL IciMapping software with inclusive composite interval mapping (ICIM) mapping function.

MATERIALS AND METHODS

Population, trials and phenotyping

A recombinant inbred line (RIL) population of 124 F5:7 lines from the cross of TAM 112 (PI 643143) and TAM 111 (PI 631352) was generated to map grain yield and

agronomic traits. TAM 111 and TAM 112 are both well-adapted HRWW in the Southern Great Plains of the United States, developed by Texas A&M AgriLife Research (Lazar et al., 2004; Rudd et al., 2014). TAM 112 is adapted to drought stress conditions, while TAM 111 is high yielding cultivars in moderate-high input environments. The RIL plus parents were planted in Bushland, TX (35° 06' N, 102° 27' W), Chillicothe, TX (34° 15' N, 99° 30' W), Clovis, NM (34° 24' N, 103° 12' W), Etter, TX (35° 51' N, 101° 58' W), and Uvalde, TX (29° 21' N, 99° 75' W) from year 2011-2014, and 2017. A total of 28-year-site combinations (environments) were harvested: Bushland dryland in 2011, 2012 and 2017 (11BD, 12BD, 17BD), Bushland irrigated in 2017 (17BI), Chillicothe in 2011, 2012, and 2014 (11CH, 12CH, 14CH), Clovis irrigated in 2017 (17CVI), Etter with five irrigation levels (0% evapotranspiration demand (EP1), 40% ET demand (EP2), 60% ET demand (EP3), 75% of ET demand (EP4), 100% ET demand (EP5)) in 2011, 2012, 1013, 2014, and 2017 (11EP1, 11EP2, 11EP3, 11EP4, 11EP5, 12EP1, 12EP2, 12EP3, 13EP2, 13EP3, 13EP4, 13EP5, 14EP5, 14EP5, 17EP5), Uvalde with four irrigation levels (0% irrigation level (UVLD), 50% irrigation (UV5), 70% irrigation (UV7), and 100% irrigation (UVL)) in 2012 and 2013 (12UVLD, 12UV5, 12UV7, 12UVL, 13UVL, and 13UVLD). Dry environment consisted of 11BD, 12BD, 17BD, 11CH, 12CH, 14CH, 11EP1, 11EP2, 11EP3, 12EP1, 12EP3, 12EP3, 13EP2, 13EP3, 12UVLD, 12UV5, 13UVLD), while irrigated environment consisted of 17BI, 17CVI, 11EP4, 11EP5, 13EP4, 13EP5, 14EP4, 14EP7, 17EP5, 12UV7, 12UVL, 13UVL). All trails were replicated twice in alpha-lattice design with an incomplete block size of five plots, and three occurrences of each parent in a replication. Plot dimension

was 6.09 m by 1.52 m on the dry environments and 4.57 m by 1.52 m on the irrigated environments with 0.3 meter between plots. Standard agronomic practices were carried out for each environment.

Grain yield (GY) was measured on all environments, whereas and test weight (TW), days to heading (HD), and plant height (HT) were measured in a subset of environments. Test weight data were collected from 19 environments (11EP5, 11BD, 12CH, 12EP1, 12EP2, 12EP3, 12UV5, 12UV7, 12UVL, 13EP2, 13EP3, 13EP4, 13EP5, 14CH, 14EP4, 14EP5, 17BD, 17BI, 17EP5), heading date from 11 environments (11BD, 11EP1, 11EP2, 11EP3, 11EP4, 11EP5, 12BD, 12EP1, 12EP2, 12EP3, 17BD), and plant height from 11 environments (11BD, 11EP1, 11EP2, 11EP3, 11EP4, 11EP5, 12BD, 12CH, 17BD, 17CVI, 17EP5). Heading date were recorded at visible head stage (Feekes growth stage 10.1) when half of the plants were fully visible. At ripening stage (Feekes growth stage 11), plant height was measured in centimeters (cm) from representative plants in each plot as the distance from the base of the stem to the tip of the spike excluding awns. All trials were harvested using a combine harvester and the total plot weight was used to calculate yield in metric kg ha-1. Test weight, in lb bu-1, was measured using Seedburo equipment (www.seedburo.com, Des Plaines, IL, USA).

Phenotypic data analysis

Descriptive statistics including means, minimum, maximum, standard deviation, and coefficient of variation were calculated to evaluate the variability of the examined traits. Each location-by-year combination was considered as a single environment. Phenotypic traits within each environment were analyzed as an individual environment analysis. The phenotypic mean of a trait across environments was analyzed as single trait analysis. Best linear unbiased predictor (BLUP) mean for all the traits combined across environments were analyzed as combined analysis. BLUP was calculated using a restricted maximum likelihood (REML) approach implemented in 'lme4' package on META-R (Alvarado et al., 2018). The individual environment analysis of variance (ANOVA) followed a statistical linear model as follows:

$$\mathbf{Y}_{ilp} = \boldsymbol{\mu} + \mathbf{R}_{p} + \mathbf{B}_{l(p)} + \mathbf{G}_{i} + \boldsymbol{\varepsilon}_{ilp}$$

Where Y_{ilp} is the observed phenotypic value of the ith genotype in pth repetition in lth block, μ is the overall mean, R_p is the rep effect, $B_{l(p)}$ is the block effect, G_i is the genetic effect of ith genotype and ε_{ϕ} is the residual term. Replication and incomplete block were fitted as random term. The combined environment analysis of variance (ANOVA) followed a statistical linear model as follows:

$$Y_{ijlp} = \mu + R_{r(i)} + B_{l(p)} + G_i + E_j + (GE)_{ij} + \varepsilon_{ijp}$$

Where Y_{ilp} is the observed phenotypic value of the ith genotype in jth environment in pth repletion in lth block, μ is the overall mean, $R_{p(j)}$ is the effect of pth rep effect in jth environment, $B_{l(pj)}$ is the effect of ith block within the pth replication in the jth environment, G_i is the genetic effect of ith genotype, E_j is the effect of the jth environment, (GE)_{ij} is the effect of the interaction of the ith genotype in the jth environment, and ϵ_{se} is the residual term. Replication, incomplete block was fitted as random effect. Combined analysis of variance (ANOVA) for all the traits was determined for the significance of genetic variance, phenotypic variance and genotype-by-environment interaction (GEI) components in each environment. The ANOVA and

significance were calculated using PROC MIXED with replication and incomplete block as random effect in SAS 9.4 (SAS Institute Inc., 2015) The variance components were calculated to estimate the share of the factors and their interactions in the total variability of the examined traits. The variance components were computed using PROC VARCOMP in SAS 9.4 assuming a random model (SAS Institute Inc., 2015). The entrymean heritability estimate for combined environment was calculated according to Fehr et al. (1987) using the formula:

$$h^{2} = \frac{\sigma_{g}^{2}}{\sigma_{e}^{2}/_{rt} + \frac{\sigma_{g}^{2}}{\sigma_{g}^{2}/_{t} + \sigma_{g}^{2}}}$$

Where r is the number of replication (rep), t is the number of environments, $\sigma 2g$ is the genotype variance, $\sigma 2ge$ is the G×E interaction variance, and $\sigma 2e$ is the residual variance. PROC CORR in SAS was used to compute Pearson correlations (r_P) based on the following formula:

$$r_{\rm P} = \frac{{\rm Cov}_{\rm x,y}}{\left(\sigma_{\rm x}^2 \ \sigma_{\rm y}^2\right)^{1/2}}$$

Genotyping and linkage map construction

Total genomic DNA was isolated from young leaf tissue of each RIL using the cetyl trimethylammonium bromide (CTAB) method with minor modifications (Doyle and Doyle, 1990; Liu et al., 2013). DNA extraction, purification and quantification were conducted in the wheat genetics lab at Texas A&M AgriLife Research, Amarillo, TX. DNA from RIL lines along with four set of parental was genotyped with Illumina Infinium iSelect 90K array-SNP based on the manufacturer's protocol (www.illumina.com) in USDA-ARS, Fargo, ND. The fluorescence signal captured by Illumina scanner were color coded with red color representing homozygous AA genotype, blue color for homozygous BB genotype and grey color for the heterozygotes (AB). Automatic clustering followed by manual curation of clusters for every marker was done in Genotyping module of GenomeStudio software. Linkage map construction followed the procedures in these research (Assanga et al., 2017a; Assanga et al., 2017b; Liu et al., 2016). This population along with the three sets of parents was also genotyped with double digest restriction-site associated DNA sequencing (ddRADSeq) method developed by Peterson et al (2012) with slight modification in Texas A&M AgriLife Research's Genomics and bioinformatics center, College Station, TX (Wang et al., 2014). GBS libraries were sequenced with Illumina HiSeq 2500 platform (2*125 bp paired-end) at the Genomics and Bioinformatics Center, Texas A&M AgriLife Research at College Station. Custom Perl pipeline utilized to analyses the raw genotypic data. The analysis procedure and parameter settings were conducted according to the description in Wang et al. (2014) with slight modification. SNPs with less than 5 % minor allele frequency (MAF) are filtered. GBS with more than 20 % missing values and heterozygotes more than 10 % were also excluded from the dataset along with all monomorphic GBSs.

SNPs with significant chi-square segregation distortion (P < 0.01) or similarity of 100% were eliminated to improve computational efficiency. A total of 5948 polymorphic SNPs, and GBS markers were mapped into 25 linkage groups covering 21 chromosomes using maximum likelihood (ML) algorithm using JoinMap v4.0 software

(Van Ooijen, 2006). Minimum independence LOD score of 3 was set for linkage grouping with an incremental walking speed of 1cM. Linkage groups were assigned to chromosomes and physical locations of corresponding SNPs were extracted from the International Wheat Genome Sequencing Consortium (IWGSC) reference sequence version 1.0 (IWGSC RefSeq v1.0) (Consortium, 2014).

QTL analysis

One-dimensional scanning for mapping additive QTL and two-dimensional scanning for mapping epistasis were undertaken using both the adjusted and unadjusted data in the QTL IciMapping software (Wang et al., 2016). Unadjusted data from individual environment were ran as individual environment QTL analysis. Raw data for a trait across multiple environments were analyzed as multi-environment QTL analysis. The genetic position and effects of QTL were determined by integrated composite interval mapping (ICIM) mapping function in QTL IciMapping for additive effect (ICIM-ADD) and epistasis effect (ICIM-EPI). Stepwise regression with a walking speed of 1cM for additive mapping (ICIM-ADD) and 5cM for epistasis mapping (ICIM-EPI) was set. Two flanking markers for ICIM-ADD and two pairs of flanking markers for ICIM-EPI were selected automatically to control for genetic background in additive and epistasis mapping. The probability for entering variables in stepwise regression of residual phenotype on marker variables was set at 0.001 for ICIM-ADD, and 0.0001 for ICIM-EPI. Threshold for declaring the presence of a QTL was determined through permutation analysis (n=1000) for each trait in each environment to obtain a 0.05 genome-wide probability level of Type I error. The QTL position was estimated as the

point on the LOD curve with a peak score greater than the threshold. The QTL were designated according to guidelines in (McIntosh et al., 2003) with a slight change as *QX.tamu.Y*(.#N), where x is a trait, tamu is Texas A&M University, Y is chromosome on which the QTL is located, and N is the unique QTL identifier (optional) given to genomic regions within 50 Mb of the QTL.

RESULTS

ANOVA and heritability

Combined ANOVA showed significant genotypic differences (P < 0.01) for grain yield, test weight, heading date and plant height (Table 4.1). Significant differences were also observed for the environments (year-location combination). Grain yield, heading date and plant height exhibited significant difference for incomplete block nested within replication and environment. As expected, significant genotype-by-environment (GE) interactions were present for the four traits analyzed. Except for grain yield, genotype differences explained more variation than genotype-by-environment variation. Traits with entry-mean heritability ≤ 0.3 were categorized as lowly heritable, 0.4 - 0.6 as moderately heritable and > 0.6 as highly heritable traits. All the traits were highly heritable (0.77-0.96). Grain yield showed high heritability (0.77) with an average yield of 2877.4 kg ha-1. An average test weight was 59.1 lb bu-1 with entry-mean heritability of 0.94.

Table 4.1. Analysis of variance, heritability and mean performance of grain yield and agronomic traits

Traits	Units	$\sigma^2_{Geno}^{\dagger}$	σ^2_{Env} [‡]	$\sigma^2_{\text{Rep (Env)}}$	σ ² _{Iblk (Rep*Env)} [§]	$\sigma^2_{GE}^{\ddagger}$	σ^2_{Res} ¶	h ^{2#}	LSD	<u></u> ₹±SD	TAM 112	TAM 111
Grain yield (GY)	Kg/ha	26561**	1797204.4**	28148.4**	57564.5**	85329.9**	79569.2**	0.77	552.9	2877.4 ± 1394.4	3043.9	2986.4
Test weight (TW)	lb/bu	0.87**	3.25**	0.08	0.13	0.82**	0.16**	0.94	0.78	59.1 ± 2.1	59.60	59.84
Heading Date (HD)	Days from Jan 1	3.05**	15.46**	0.01	0.21**	1.30**	1.28**	0.96	2.22	115.5 ± 4.01	113.68	117.36
Plant Height (HT)	cm	4.31**	404.71**	0.83	2.41**	3.48**	13.16**	0.87	7.11	73.8 ± 19.01	72.74	73.95

[†] σ^2_{Geno} , genotypic variance [‡] σ^2_{Rep} , variance due to replication (environment) in percentage [§] $\sigma^2_{Iblk (Rep)}$, variance due to incomplete block nested within replication (environment) in percentage [¶] σ^2_{Res} , residual variance in percentage [#] h^2 , entry-mean heritability ^{*}, **, significant at 0.05, and 0.01 probability levels, respectively

Heading date, recorded in Julian days, were highly heritable with mean heading date of 114 days. An average plant height was 72.74 cm with high heritability (0.87). Transgressive segregates were present for all the traits analyzed (Table 4.1). No significant differences were found between parents for all the traits analyzed except heading date.

Pearson correlation

The phenotypic relationship between traits on combined data was determined using Pearson correlation coefficients (Table 4.2). Correlation coefficients ≤ 0.3 between two traits were categorized as low correlation, 0.4 - 0.6 as moderate correlation, and > 0.6 as high correlation. GY showed significant negative correlation with heading date, but this correlation was weaker (0.26). Correlation between GY and HT on adjusted data from dry environment showed positive correlation in 12BD and 17BD, and significant positive (0.31) in 11BD (Table A6). In irrigated environment, negative correlation (0.23) was observed between GY and HT. Similar correlation and direction was observed between GY and HT in 17EI. Even though no significant correlation was found between GY and HD on combined data, significant negative correlation was found in dry environment, which is further supported by the similar finding from 11BD and 17BD. In irrigated environment, this relationship was positive but not significant as seen in 11EP5 and 11EP4 (Table A6). Positive significant correlation (0.3) was found between GY and TW in both dry and irrigated environment. Negative correlation was found between heading date and plant height in dry environment. This relationship was positive in irrigated environments as seen in 11EP4 and 11EP5.

Table 4.2. Correlation matrix for grain yield and agronomic traits for predicted means (BLUP) across environments

Traits [†]	GY	TW	HD
TW	0.05461		
HD	0.14238	-0.14448	
HT	-0.26039**	0.12404	-0.1489

[†]GY, grain yield; TW, test weight; HD, heading date; HT, plant height *, **, significant at 0.05, and 0.01 probability levels, respectively

QTL for grain yield

From the individual environment and multi-environment analysis, 17 unique QTLs were detected for grain yield (Table 4.3 and 4.4). Among them, five QTLs were detected in both the analysis. QTLs for grain yield on chromosome 1D (*Qyld.tamu.1D.*11 at 421.8 Mb), 4B (*Qyld.tamu.4B.*33 at 266.8 Mb), 4D (*Qyld.tamu.4D.*36 at 109.8 Mb, and *Qyld.tamu.4D.*38 at 445.5 Mb) and 7D (*Qyld.tamu.7D.*63 at 60.6-84.3 Mb) were detected in individual and multi-environment QTL analysis (Table 4.3 and 4.4). These QTLs on chromosome 1D, 4B and 7D received high value allele (HAV) from TAM 112, while remaining QTLs received it from TAM 111. These five QTLs explained R² from 6.8-28% of the variation present in the yield, with the additive effects (A) up to 374.1 kg ha-1(Table 4.3). Additive-by-environment (AE) interaction explained up to 96.7% of the variation, which is 378.2 kg ha⁻¹(Table 4.4).

Traits^\dagger	Env [‡]	QTL name	QTL ID	Peak (cM)	Mbp [§]	Peak SNP	LOD¶	R ^{2#}	$A^{\dagger\dagger}$	M-E ^{‡‡}
HD	11BD	Qhd.tamu.1D.11	11	68	420.9	2236906_1d1_5649	3.9	8.4	-0.8	Ν
HD	12EP1	Qhd.tamu.1D.12	12	114	486.8	IWB41436	3.6	8.8	0.7	Y
HD	12EP3	Qhd.tamu.1D.12	12	114	486.8	IWB41436	3.7	7.3	0.5	Y
HD	17BD	Qhd.tamu.1D.12	12	114	486.8	IWB41436	29.7	29.9	1.1	Y
HD	11EP5	Qhd.tamu.2B.18	18	61	39.2	IWB22828	4.0	11.3	0.9	Ν
HD	11EP1	Qhd.tamu.2B.19	19	64	65.1	IWB72841	5.0	11.3	1.0	Ν
HD	11EP1	Qhd.tamu.2D.21	21	29	16.0	IWB8481	5.8	13.1	1.1	Y
HD	11EP2	Qhd.tamu.3A.25	25	59	507.5	4285803_3al_628	3.7	9.4	-1.1	Ν
HD	11EP2	Qhd.tamu.4B.34	34	94	659.2	IWA27	6.7	18.3	1.5	Y
HD	12EP3	Qhd.tamu.7B.59	59	21	8.5	IWB6455	3.8	8.0	0.5	Y
HD	11BD	Qhd.tamu.7D.63	63	82	64.3	3950120_7ds_5316	8.8	22.4	-1.3	Y
HD	11EP4	Qhd.tamu.7D.63	63	81	64.3	3950120_7ds_5316	5.8	15.2	-1.1	Y
HD	11EP5	Qhd.tamu.7D.63	63	82	64.3	3950120_7ds_5316	5.6	16.1	-1.1	Y
HD	12BD	Qhd.tamu.7D.63	63	82	64.3	3950120_7ds_5316	13.2	31.9	-0.9	Y
HD	12EP1	Qhd.tamu.7D.63	63	81	64.3	3950120_7ds_5316	6.0	16.8	-1.0	Y
HD	12EP2	Qhd.tamu.7D.63	63	81	64.3	3950120_7ds_5316	5.4	18.3	-0.7	Y
HD	12EP3	Qhd.tamu.7D.63	63	81	64.3	3950120_7ds_5316	8.4	18.5	-0.8	Y
HD	17BD	Qhd.tamu.7D.63	63	80	64.3	3950120_7ds_5316	11.4	7.6	-0.6	Y
HD	11EP1	Qhd.tamu.7D.63	63	89	78.5	IWB44453	7.9	20.4	-1.4	Y
HT	12BD	Qht.tamu.1A.3	3	33	296.2	3888483_1al_4013	10.4	16.5	-0.5	Y
HT	12BD	Qht.tamu.1A.5	5	77	520.4	3904706_1al_3369	4.0	5.7	0.3	Ν
HT	12BD	Qht.tamu.1D.12	12	80	444.0	2285810_1dl_1627	3.9	5.7	0.3	Y
HT	11EP4	Qht.tamu.1D.12	12	118	492.2	IWA3764	4.4	11.0	2.3	Y
HT	12BD	Qht.tamu.4D.35	35	0	20.6	IWB15038	4.2	5.9	0.3	Y
HT	12BD	Qht.tamu.6A.48	48	16	7.6	IWB11242	5.0	7.1	0.4	Y
HT	12BD	Qht.tamu.7A.57	57	90	85.8	4219271_7as_2211	4.0	5.6	0.3	Ν
HT	12CH	Qht.tamu.7D.62	62	50	21.7	IWB21023	5.6	16.8	1.1	Y
HT	17EI	Qht.tamu.7D.63	63	79	60.6	IWB35446	3.3	8.1	-1.0	Y
HT	11EP5	Qht.tamu.7D.63	63	80	64.3	3950120_7ds_5316	3.8	13.5	-1.6	Y
HT	12BD	Qht.tamu.7D.64	64	126	123.3	10396674_3b_3606	4.0	5.6	0.3	Ν
TW	13EP5	Qtw.tamu.1A.5	5	64	485.2	3894604_1al_116	4.1	5.4	-0.4	Y
TW	12EP3	Qtw.tamu.1D.11	11	46	375.4	2263785_1dl_1257	4.9	11.8	0.5	Y
TW	12CH	Qtw.tamu.1D.11	11	69	421.8	2237051_1d1_3543	3.8	11.3	0.4	Y
TW	13EP5	Qtw.tamu.2B.20	20	124	708.7	8055466_2bl_812	7.3	10.5	0.5	Y
TW	12EP3	Qtw.tamu.2B.20	20	141	745.9	8091350_2b1_6123	3.6	8.6	0.4	Y
TW	13EP5	Qtw.tamu.2D.22	22	103	82.0	5329935_2ds_3804	5.3	7.2	0.4	Y
TW	13EP4	Qtw.tamu.4B.32	32	27	17.0	IWB49194	3.6	10.0	-0.6	Ν
TW	12UV7	Qtw.tamu.4D.35	35	5	29.0	IWB30733	5.6	2.5	0.6	Y
TW	17BD	Qtw.tamu.4D.35	35	9	35.4	2305190_4ds_510	4.8	13.6	0.5	Y
TW	12BD	Qtw.tamu.4D.35	35	10	62.8	2305880_4ds_1018	3.9	8.5	0.3	Y

Table 4.3. Significant grain yield and agronomic trait QTLs, additive effects detected in individual environment analysis

Table 4.3	Continued
1 auto 4.5	Commucu

Traits [†]	Env [‡]	QTL name	QTL ID	Peak (cM)	Mbp [§]	Mbp [§] Peak SNP		R ^{2#}	$A^{\dagger\dagger}$	M-E ^{‡‡}
TW	12EP1	Qtw.tamu.4D.35	35	10	62.8	2305880_4ds_1018	4.2	13.3	0.5	Y
TW	12EP3	Qtw.tamu.4D.35	35	10	62.8	2305880_4ds_1018	6.2	15.2	0.5	Y
TW	13EP2	Qtw.tamu.4D.35	35	11	62.8	2305880_4ds_1018	7.8	16.3	0.8	Y
TW	14CH	Qtw.tamu.4D.35	35	11	62.8	2305880_4ds_1018	4.8	12.0	0.6	Y
TW	12UV5	Qtw.tamu.4D.36	36	13	109.8	2279925_4ds_1008	3.5	9.9	0.5	Ν
TW	12UVL	Qtw.tamu.4D.37	37	22	366.3	IWB10053	4.2	10.8	0.5	Ν
TW	12BD	Qtw.tamu.6A.48	48	20	12.4	4344525_6as_6773	4.1	9.1	0.3	Y
TW	12UV7	Qtw.tamu.6A.49	49	134	603.3	IWB11675	20.0	11.6	1.3	Y
TW	13EP5	Qtw.tamu.6A.49	49	139	608.5	IWB45148	4.6	6.0	-0.4	Y
TW	12CH	Qtw.tamu.6A.49	49	144	613.5	IWB42057	3.4	9.7	-0.4	Y
TW	12UVL	Qtw.tamu.6B.50	50	1	130.3	IWB38972	6.5	17.6	0.6	Y
TW	14EP4	Qtw.tamu.6B.50	50	0	130.3	IWB38972	5.0	13.7	0.3	Y
TW	11EP5	Qtw.tamu.6B.51	51	6	466.0	4352366_6bl_1112	5.5	11.8	0.5	Y
TW	12BD	Qtw.tamu.6B.51	51	7	466.0	4352366_6b1_1112	5.0	11.1	0.3	Y
TW	13EP2	Qtw.tamu.6B.51	51	7	466.0	4352366_6bl_1112	4.5	9.0	0.6	Y
TW	14CH	Qtw.tamu.6B.51	51	7	466.0	4352366_6b1_1112	3.8	9.3	0.6	Y
TW	17BD	Qtw.tamu.6B.51	51	6	466.0	4352366_6bl_1112	3.8	10.0	0.5	Y
TW	13EP5	Qtw.tamu.6B.52	52	8	559.4	IWB14861	10.4	16.0	0.7	Ν
TW	12BD	Qtw.tamu.6D.56	56	96	458.5	3290494_6dl_50	4.3	9.5	-0.3	Y
TW	12UV5	Qtw.tamu.6D.56	56	97	459.2	IWB24926	4.0	11.3	-0.6	Y
TW	11EP5	Qtw.tamu.7D.63	63	79	60.6	IWB35446	9.2	21.6	0.7	Y
TW	12CH	Qtw.tamu.7D.63	63	79	60.6	IWB35446	4.0	11.9	0.4	Y
TW	13EP2	Qtw.tamu.7D.65	65	188	745.9	Gb3P4y	3.8	7.5	-0.5	Ν
YLD	17EI	Qyld.tamu.1A.4	4	58	411.7	3975933_1al_3664	5.2	12.9	-102.2	Ν
YLD	12CH	Qyld.tamu.1D.11	11	69	421.8	2237051_1dl_3543	5.6	9.9	68.7	Y
YLD	13EP3	Qyld.tamu.2A.17	17	125	734.5	6415190_2al_16820	5.0	10.8	96.6	Ν
YLD	12UVL	Qyld.tamu.3B.27	27	5	48.6	10435017_3b_750	4.8	9.9	-174.0	Ν
YLD	17CVI	Qyld.tamu.4B.33	33	39	266.8	4883984_4bs_7910	20.4	22.3	-374.1	Y
YLD	14EP4	Qyld.tamu.4B.34	34	94	659.2	IWA27	3.6	9.8	98.8	Ν
YLD	12UVLD	Qyld.tamu.4B.34	34	99	660.9	IWB32997	4.3	11.9	96.5	Ν
YLD	17CVI	Qyld.tamu.4D.35	35	2	20.6	IWB15038	5.6	4.9	-173.2	Ν
YLD	17BI	Qyld.tamu.4D.36	36	13	109.8	2279925_4ds_1008	8.3	18.4	-280.6	Y
YLD	14CH	Qyld.tamu.4D.38	38	28	445.5	IWB3336	13.4	28.2	85.9	Y
YLD	17BI	Qyld.tamu.6A.48	48	20	12.4	4344525_6as_6773	4.4	8.9	-195.8	Ν
YLD	14CH	Qyld.tamu.6D.54	54	1	19.6	2080712_6ds_6490	4.3	7.7	45.2	Ν
YLD	12CH	Qyld.tamu.7B.59	59	24	15.6	IWA1089	6.0	10.9	-72.3	Ν
YLD	12CH	Qyld.tamu.7B.60	60	100	617.0	6722360_7b1_819	5.1	9.3	67.0	Ν
YLD	12UVLD	Qyld.tamu.7D.63	63	79	60.6	IWB35446	3.5	9.7	87.3	Y
YLD	12CH	Qyld.tamu.7D.63	63	80	64.3	3950120_7ds_5316	5.0	8.8	64.5	Y
YLD	17BD	Qyld.tamu.7D.63	63	80	64.3	3950120_7ds_5316	3.9	12.5	60.1	Y
YLD	14CH	Qyld.tamu.7D.63	63	86	72.9	IWA1247	3.7	6.8	42.4	Y

Table 4.3 Continued

$Traits^{\dagger}$	Env [‡]	QTL name	QTL ID	Peak (cM)	Mbp [§]	Peak SNP	LOD¶	R ^{2#}	$A^{\dagger\dagger}$	M-E ^{‡‡}
YLD	17BI	Qyld.tamu.7D.63	63	97	84.3	3938880_7ds_2029	5.0	11.1	-218.0	Y
YLD	12BD	Qyld.tamu.7D.65	65	181	591.2	IWB10006	4.7	13.5	24.7	Ν
YLD	13EP4	Qyld.tamu.7D.65	65	198	598.6	IWB45562	3.4	9.0	45.2	Ν

[†]HD, heading date; HT, plant height; TW, test weight; YLD, grain yield

* Env, environments; 11BD, 2011 Bushland dryland; 12BD, 2012 Bushland dryland; 17BD, 2017 Bushland dryland; 17BI, 2017 Bushland irrigated; 11CH, 2011 Chillicothe, 12CH, 2012 Chillicothe; 14CH, 2014 Chillicothe; 17CVI, 2017 Clovis irrigated; 11EP1, 2011 Etter 0% ET; 11EP2, 2011 Etter 40% ET; 11EP3, 2011 Etter 60% ET; 11EP4, 2011 Etter 75% ET; 11EP5, 2011 Etter 100% ET; 12EP1, 2012 Etter 0% ET; 12EP2, 2012 Etter 40% ET; 12EP3, 2012 Etter 60% ET; 13EP2, 2013 Etter 40% ET; 13EP3, 2013 Etter 60% ET; 13EP4, 2013 Etter 75% ET; 13EP5, 2013 Etter 100% ET; 14EP4, 2014 Etter 75% ET; 14EP5, 2014 Etter 100% ET; 17EI, 2017 Etter 100% ET; 12UVLD, 2012 Uvalde dryland; 12UV5, 2012 Uvalde 50% ET; 12UV7, 2012 Uvalde 70% ET; 12UVL, 2012 Uvalde irrigated; 13UVL, 2013 Uvalde irrigated; 13UVLD, 2013 Uvalde dryland

[§] IWGSC RefSeq v1.0 pseudomolecule position in mega base pair (Mbp)

[¶]Logarithm of odds

[#] Phenotypic variance explained by each QTL

^{††} Additive effect of each QTL, negative additive effects indicate high value allele (HAV) from TAM 111, positive values correspond to HVA from TAM 112

^{‡‡} M-E, multi-environment QTL analysis; Y, QTL was also detected in multi-environment analysis; N, QTL was detected only in individual environment analysis

Traits [†]	QTL Name	QTL ID	Peak (cM)	Mbp [‡]	Peak SNP	LOD§	$\mathbb{R}^{2\P}$	\mathbb{R}^2	\mathbb{R}^2	A ^{‡‡}	AE ^{§§}	I-E¶¶
		τ.		1				(A) #	$(A \times E)^{\dagger\dagger}$			
HD	Qhd.tamu.1A.1	1	0	1.2	IWA974	9.2	3.2	2.3112	0.8818	0.3	0.01 - (-0.3)	Ν
HD	Qhd.tamu.1A.1	1	9	11.8	IWB46642	8.6	3.1	2.0789	0.9987	0.3	-0.01 - 0.3	Ν
HD	Qhd.tamu.1A.2	2	19	224.2	3932290_1al_708	9.8	3.4	2.4612	0.9683	0.3	-0.02 - (-0.3)	Ν
HD	Qhd.tamu.1A.2	2	23	238.3	3975622_1al_1296	9.4	3.3	2.3501	0.9597	0.3	0-0.3	Ν
HD	Qhd.tamu.1A.3	3	30	294.7	3915571_1al_4855	9.6	3.7	2.4099	1.291	0.3	0.01 - 0.35	Ν
HD	Qhd.tamu.1D.12	12	114	486.8	IWB41436	41.3	6.9	3.2428	3.6474	0.4	0.07 - 0.73	Y
HD	Qhd.tamu.2A.15	15	71	533.5	IWB24910	9.9	3.5	2.9102	0.6053	-0.3	-0.01 - (-0.38)	Ν
HD	Qhd.tamu.2A.16	16	82	635.6	IWB68780	9.0	3.3	2.2262	1.0935	-0.3	0 – (-0.41)	Ν
HD	Qhd.tamu.2D.21	21	29	16.0	IWB8481	11.6	4.7	2.2471	2.4654	0.3	0 - 0.81	Y
HD	Qhd.tamu.4B.34	34	92	657.2	IWB4448	8.8	2.4	1.7016	0.6852	0.3	0.04 - 0.28	Y
HD	Qhd.tamu.4B.34	34	94	659.2	IWA27	12.4	7.2	2.9689	4.2658	0.3	0.06 - 1.2	Y
HD	Qhd.tamu.7B.59	59	24	15.6	IWA1089	8.7	2.2	1.6068	0.6017	0.2	0.01 - 0.25	Y
HD	Qhd.tamu.7D.63	63	81	64.3	3950120_7ds_5316	64.9	16.5	14.091	2.4389	-0.7	0.01 - 0.47	Y
HT	Qht.tamu.1A.3	3	33	296.2	3888483_1al_4013	14.5	4.6	1.4407	3.1119	-0.2	-0.01 - 0.76	Y
HT	Qht.tamu.1B.9	9	118	642.8	3915619_1bl_1936	11.7	7.6	4.3392	3.2858	-0.4	0.12 – (-0.71)	Ν
HT	Qht.tamu.1D.12	12	118	492.2	IWA3764	9.4	17.1	6.6893	10.4564	0.5	-0.03 - 1.78	Y
HT	Qht.tamu.4D.35	35	0	20.6	IWB15038	8.8	4.9	1.1922	3.6798	0.2	0.04 - 0.9	Y
HT	Qht.tamu.6A.48	48	16	7.6	IWB11242	8.6	3.9	2.1859	1.7627	0.3	0.04 - 0.53	Y
HT	Qht.tamu.7D.62	62	47	21.1	3916420_7ds_3323	8.5	4.5	1.0147	3.5229	0.2	-0.08 - 0.82	Y
HT	Qht.tamu.7D.63	63	80	64.3	3950120_7ds_5316	13.2	19.6	4.6483	14.9664	-0.4	-0.15 - (-1.51)	Y
TW	Qtw.tamu.1A.1	1	9	11.8	IWB46642	11.3	0.0	0	0	-0.2	0 – (-0.26)	Ν
TW	Qtw.tamu.1A.1	1	13	21.0	IWB21788	12.5	0.0	0	0	-0.2	-0.01 – (-0.31)	Ν
TW	Qtw.tamu.1A.1	1	15	25.5	3310348_1as_2438	11.9	0.0	0	0	-0.2	-0.01 - (-0.3)	Ν
TW	Qtw.tamu.1A.2	2	22	232.6	3877153_1al_1567	12.2	0.0	0	0	-0.2	-0.01 - (-0.29)	Ν
TW	Qtw.tamu.1A.3	3	29	290.7	3909230_1al_1823	12.8	0.0	0	0	-0.2	0 – (-0.31)	Ν
TW	Qtw.tamu.1A.3	3	34	304.1	3916820_1al_4455	12.5	0.0	0	0	-0.2	-0.01 - (-0.31)	Ν
TW	Qtw.tamu.1A.3	3	39	339.4	3895363_1al_1924	12.6	0.0	0	0	-0.2	0 - (-0.29)	Ν
TW	Qtw.tamu.1A.4	4	44	358.8	3944816_1al_8842	11.9	0.0	0	0	-0.2	0.02 - (-0.23)	Ν
TW	Qtw.tamu.1A.4	4	51	380.7	3916130_1al_8063	13.4	0.0	0	0	-0.2	0 - 0.24	Ν
TW	Qtw.tamu.1A.4	4	53	390.1	IWB31924	12.9	0.0	0	0	-0.2	0 – (-0.27)	Ν
TW	Qtw.tamu.1A.5	5	64	485.2	3894604_1al_116	16.4	0.0	0	0	-0.2	0 - (-0.21)	Y
TW	Qtw.tamu.1D.11	11	46	375.4	2263785_1dl_1257	13.1	0.0	0	0	0.1	0 – (-0.37)	Y
TW	Qtw.tamu.1D.11	11	69	421.8	2237051_1dl_3543	20.0	0.0	0	0	0.2	0.01 - 0.34	Y
TW	Qtw.tamu.1D.12	12	117	489.7	IWB17626	11.8	0.0	0	0	0.2	-0.01 - 0.92	Ν
TW	Qtw.tamu.2B.20	20	124	708.7	8055466_2bl_812	20.5	0.0	0	0	0.1	0 – (-1.25)	Y
TW	Qtw.tamu.2D.22	22	103	82.0	5329935_2ds_3804	18.9	0.0	0	0	0.2	0 - 0.98	Y
TW	Qtw.tamu.2D.23	23	115	533.0	9842271_2dl_198	13.0	0.0	0	0	0.2	-0.03 - 0.93	Ν
TW	Qtw.tamu.3B.28	28	27	507.0	10680128_3b_818	13.0	0.0	0	0	-0.1	-0.03 - (-0.25)	Ν
TW	Qtw.tamu.3D.30	30	53	548.6	6926803_3dl_1308	15.6	0.0	0	0	-0.2	-0.02 - (-0.87)	Ν

Table 4.4. Significant QTLs, additive effects and additive-by-environment interaction effects from single trait-multi environment analysis

114

Table 4.4 Continued

Traits [†]	QTL Name	QTL ID	Peak (cM)	Mbp [‡]	Peak SNP	LOD§	$\mathbb{R}^{2\P}$	\mathbb{R}^2	\mathbb{R}^2	A ^{‡‡}	AE ^{§§}	I-E¶¶
	-	-		-				(A) #	$(A \times E)^{\dagger\dagger}$			
TW	Qtw.tamu.3D.30	30	58	554.7	6956616_3dl_71	16.0	0.0	0	0	-0.2	0 - (-0.89)	Ν
TW	Qtw.tamu.3D.30	30	63	562.7	IWB8129	13.9	0.0	0	0	-0.2	0 - (-0.82)	Ν
TW	Qtw.tamu.4D.35	35	11	62.8	2305880_4ds_1018	35.7	0.0	0	0	0.3	0 - 0.54	Y
TW	Qtw.tamu.5A.39	39	40	73.8	IWB2928	13.9	0.0	0	0	0.2	0 – (-0.26)	Ν
TW	Qtw.tamu.5A.40	40	43	157.3	1500192_5as_1232	13.1	0.0	0	0	0.2	0 - (-0.25)	Ν
TW	Qtw.tamu.5A.44	44	194	702.0	IWB28861	13.5	0.0	0	0	0.1	0 – (-0.76)	Ν
TW	Qtw.tamu.5B.45	45	75	589.4	IWB26282	14.6	0.0	0	0	-0.2	0 – (-0.27)	Ν
TW	Qtw.tamu.5B.45	45	94	646.0	10851545_5bl_762	14.0	0.0	0	0	-0.2	0 – (-0.82)	Ν
TW	Qtw.tamu.6A.48	48	12	7.2	4348240_6as_16935	14.6	0.0	0	0	0.2	0 - 0.29	Y
TW	Qtw.tamu.6A.48	48	17	9.9	4426950_6as_3288	13.1	0.0	0	0	0.1	0 – (-0.74)	Y
TW	Qtw.tamu.6A.48	48	20	12.4	4344525_6as_6773	17.0	0.0	0	0	0.1	0 – (-0.75)	Y
TW	Qtw.tamu.6A.49	49	134	603.3	IWB11675	24.7	0.0	0	0	-0.1	0 - 1.34	Y
TW	Qtw.tamu.6A.49	49	139	608.5	IWB45148	13.9	0.0	0	0	-0.2	-0.02 - (-0.24)	Y
TW	Qtw.tamu.6A.49	49	143	611.6	IWB67460	14.4	0.0	0	0	-0.2	0 – (-0.34)	Y
TW	Qtw.tamu.6B.50	50	1	130.3	IWB38972	14.3	0.0	0	0	0.2	0.06 - 0.75	Y
TW	Qtw.tamu.6B.51	51	7	466.0	4352366_6bl_1112	22.8	0.0	0	0	0.2	0.07 - 0.74	Y
TW	Qtw.tamu.6D.56	56	97	459.2	IWB24926	18.6	0.0	0	0	-0.2	-0.01 - (-0.35)	Y
TW	Qtw.tamu.6D.56	56	99	459.2	IWB24926	17.1	0.0	0	0	-0.2	0.01 - 0.23	Y
TW	Qtw.tamu.7B.59	59	19	8.5	IWB6455	17.2	0.0	0	0	-0.1	0 - 0.45	Ν
TW	Qtw.tamu.7B.59	59	48	64.5	3136917_7bs_1218	12.3	0.0	0	0	-0.1	0 - 0.37	Ν
TW	Qtw.tamu.7B.61	61	1	707.4	6728417_7bl_5629	13.3	0.0	0	0	0.2	-0.02 - 0.79	Ν
TW	Qtw.tamu.7D.63	63	79	60.6	IWB35446	26.6	0.0	0	0	0.2	0 - 0.47	Y
YLD	Qyld.tamu.1B.8	8	85	556.3	3859439_1bl_2195	14.7	22.5	10.6996	11.8119	25.9	2.6 - (-66.81)	Ν
YLD	Qyld.tamu.1D.11	11	69	421.8	2237051_1dl_3543	17.0	19.4	5.5049	13.8567	18.6	-1.97 - 70.82	Y
YLD	Qyld.tamu.3A.24	24	8	9.6	IWB7693	16.2	24.8	0.2719	24.4824	-4.2	-2.54 - (-80.56)	Ν
YLD	Qyld.tamu.4B.33	33	39	266.8	4883984_4bs_7910	28.1	97.0	0.2736	96.7129	4.2	-0.31 - (-378.28)	Y
YLD	Qyld.tamu.4D.36	36	13	109.8	2279925_4ds_1008	18.0	63.1	4.2978	58.8142	-16.4	1.66 - (-262.41)	Y
YLD	Qyld.tamu.4D.38	38	28	445.5	IWB3336	21.2	19.8	0.3519	19.4101	-4.7	0.62 - (-110.06)	Y
YLD	Qyld.tamu.7D.63	63	79	60.6	IWB35446	22.1	30.7	2.4349	28.2264	12.4	-0.47 - 97.84	Y
YLD	Qyld.tamu.7D.63	63	97	84.3	3938880_7ds_2029	17.0	44.1	0	44.0885	0.0	0.73 - (-202.97)	Y

[†]HD, heading date; HT, plant height; TW, test weight; YLD, grain yield

[‡]IWGSC RefSeq v1.0 pseudomolecule position in Mega base pair (Mbp)

[§]Logarithm of odds

[¶] total Phenotypic variance explained by each QTL

phenotypic variance explained by additive effect
phenotypic variance explained by additive by environmental effect
Additive effect of each QTL, negative additive effects indicate high value allele (HAV) from TAM 111, positive values correspond to HVA from TAM 112

^{§§} AE, additive-by-environment interaction effect, Negative value indicates the additive-by-environment reduced the trait, positive value increased the trait

Table 4.4 Continued [¶]I-E, Individual environment analysis; Y, corresponding QTL was also detected in individual-environment analysis; N, corresponding QTL was detected only in multi-environment analysis

Additional QTLs were detected on chromosome 1A (*Qyld.tamu.1A.4* at 411.7 Mb), 2A (*Qyld.tamu.2A.17* at 734.5 Mb), 3B (*Qyld.tamu.3B.27* at 48.6 Mb), 4B (*Qyld.tamu.4B.34* at 659.2-660.9 Mb), 4D (*Qyld.tamu.4D.35* at 20.6 Mb), 6A (*Qyld.tamu.6A.48* at 12.4 Mb), 6D (*Qyld.tamu.6D.54* at 19.6 Mb), 7B (*Qyld.tamu.7B.59* at 15.6 Mb and *Qyld.tamu.7B.60* at 617 Mb) and 7D (*Qyld.tamu.7D.65* at 591.2-598.6 Mb) by individual environment QTL analysis (Table 4.3). Similarly, multi-environment QTL analysis detected two additional QTLs on chromosome 1B (*Qyld.tamu.1B.8* at 556 Mb) and on 3A (*Qyld.tamu.3A.24* at 9.6 Mb) (Table 4.4).

QTL for plant height

For plant height, QTLs on chromosome 1A (*Qht.tamu.1A.3* at 296.2 Mb), 1D (*Qht.tamu.1D.12* at 492.2 Mb), 4D (*Qht.tamu.4D.35* at 20.6 Mb), 6A (*Qht.tamu.6A.48* at 7.6 Mb) and 7D (*Qht.tamu.7D.62* at 21.7 Mb and *Qht.tamu.7D.63* at 64.3 Mb) were identified both in individual environment and multi-environment QTL analysis (Table 4.3 and 4.4). Additional QTLs were detected on chromosome 1A (*Qht.tamu.1A.5* at 520.4 Mb), 7A (*Qht.tamu.7A.57* at 85.8 Mb) and 7D (*Qht.tamu.7D.64* at 123.3 Mb) from individual environment QTL analysis, and on chromosome 1B (*Qht.tamu.1B.9* at 643 Mb) from multi-environment QTL analysis (Table 4.4). QTLs on chromosome 1A (296.2 Mb), 1B, and 7D (60.6-64.3 Mb) received high value allele from TAM 111 with these alleles explaining up to 17.0 % of the variation present in plant height in 12BD. AE for QTL on 7D (64.3 Mb) explained up to 14.9% of the phenotypic variance with the corresponding reduction of 1.36 cm in plant height (Table 4.4).

QTL for heading date

Individual environment QTL analysis detected QTL for plant heading date on chromosome 1D (*Qhd.tamu.1D.12* at 486.8 Mb), 2D (*Qhd.tamu.2D.21* at 16 Mb), 4B (*Qhd.tamu.4B.34* at 659.2 Mb) and 7D (*Qhd.tamu.7D.63* at 64.3 Mb) (Table 4.3). Presence of these QTLs was also confirmed by multi-environment QTL analysis (Table 4.4). Additional QTLs on chromosome 1D (*Qhd.tamu.1D.11* at 420.9 Mb), 2B (*Qhd.tamu.2B.18* at 39.2 Mb and *Qhd.tamu.2B.19* at 65.1 Mb), 3A (*Qhd.tamu.3A.25* at 507.5 Mb) were also detected by individual environment analysis. Multi-environment QTL analysis detected additional QTLs on chromosome 1A (*Qhd.tamu.1A.1* at 8.6-9.2 Mb, *Qhd.tamu.1A.2* at 224-238 Mb and *Qhd.tamu.1A.3* at 295 Mb) and 2A (Qhd.tamu.2A.15 at 534 Mb, Qhd.tamu.2A.16 at 636 Mb). High value alleles for heading date QTLs on chromosome 1A, 1D (at 486.8 Mb), 2B, 2D, 4B, 7B originated from TAM 112 with these alleles explaining up to 18.3% of the variation in heading date, as seen in 11EP2 (Table 4.3). HVA alleles coming from TAM 112 increasing heading date by 2 days in this environment. Compared to the main additive effect (A), AE contributed proportionally less variation, up to 4.3% of the variation in heading date (Table 4.4). HVA allele originating from TAM 111 explained up to 32 % of the variation in heading date as seen in 12BD with increase of a day in heading date (Table 4.3).

QTL for test weight

Test weight QTLs were detected by both individual environment and multienvironment QTL analysis on chromosome 1A (*Qtw.tamu.1A.5* at 485.2 Mb), 1D (*Qtw.tamu.1D.11* at 375.4-421.8 Mb), 2B (*Qtw.tamu.2B.20* at 745.9 Mb), 2D (Qtw.tamu.2D.22 at 82 Mb), 4D (Qtw.tamu.4D.35 at 29-62.8 Mb), 6A (Qtw.tamu.6A.48 at 12.4 Mb, *Qtw.tamu.6A.49* at 603.3-613.5 Mb), 6B (*Qtw.tamu.6B.51* at 466 Mb), 6D (Qtw.tamu.6D.56 at 458.5-459.2 Mb) and 7D (Qtw.tamu.7D.63 at 60.6 Mb) (Table 4.3 and 5.4). Additional QTLs were detected on chromosome 4B (Qtw.tamu.4B.32 at 17 Mb), 4D (*Qtw.tamu.4D.36* at 109.8 Mb, *Qtw.tamu.4D.37* at 366.6 Mb), 6B (Qtw.tamu.6B.52 at 559.2 Mb) and 7D (Qtw.tamu.7D.65 at 745.8 Mb) from individual environment QTL analysis (Table 4.3). Multi-environment QTL analysis detected extra QTLs on chromosome 1A (*Qtw.tamu.1A.1* at 11.8-25.5 Mb, *Qtw.tamu.1A.2* at 232.6 Mb, *Qtw.tamu.1A.3* at 304.1-339.4 Mb and *Qtw.tamu.1A.4* at 358.8-390.1 Mb), 1D (Qtw.tamu.1D.12 at 489.1 Mb), 2D (Qtw.tamu.2D.23 at 533 Mb), 3B (Qtw.tamu.3B.28 at 507 Mb), 3D (Qtw.tamu.3D.30 at 548.6-562.7 Mb), 5A (Qtw.tamu.5A.39 at 73.8 Mb, Qtw.tamu.5A.40 at 157.3 Mb and Qtw.tamu.5A.44 at 702 Mb), 5B (Qtw.tamu.5B.45 at 589.4-646 Mb) and 7B (Qtw.tamu.7B.59 at 8.5-64.5 Mb and Qtw.tamu.7B.61 at 707.4 Mb) (Table 4.4). QTL on chromosome 6B (Qtw.tamu.6B.50 at 130.3 Mb) in 12UVL explained up to 17.6% of the variation in test weight. For QTL on chromosome 6A (Qtw.tamu.6A.49 at 603.3 Mb), alleles contributed by TAM 112 increased test weight by 1.3 lb bu-1 (Table 4.3). For QTLs on chromosome 2B, 2D, 4D, 6B, 7D (60.6 Mb), high value allele was contributed by TAM 112. QTL on chromosome 6A (Qtw.tamu.6A.49 at 603.3-613.5 Mb) showed significant AE interaction as HAV switched from TAM 1112 in 12BD and 17UVL to TAM 111 in 13EP5 and 12CH.

QTL cluster and stable QTL

From individual or multi-environment analysis, five genomic regions were associated with more than a single trait (Table 4.5). These QTLs were identified as multi-trait QTL or QTL cluster (abbreviated as *Qmt.tamu.chromosome.QTL ID*). From individual environment analysis, five QTLs were detected in more than one environment for heading data, plant height, test weight and grain yield (Table 4.6). These QTLs were identified as stable QTLs or consistent QTL (abbreviated as Qcon.tamu.chromosme.QTL *ID*). QTL on chromosome 1D (395.4-421.8 Mb and 439.5-492.2 Mb), 4B (638.1-666.3 Mb), 4D (20.6-62.8 Mb), and on 7D (60.6-108.2 Mb) appeared to be consistent and harbored QTLs for multiple traits (Tables 4.3, 4.4 and 4.5). QTL on chromosome 1D (Qmt.tamu.1D at 375.4-421.8 Mb) controlled heading date, test weight and grain yield. This OTL explained R² up to 8.4% for heading date and up to 19.4% in grain yield. For this QTL, TAM 112 contributed 68.7 kg ha-1 increment, while TAM 112 imparted increase in heading date by a day (Table 4.5). QTL Qmt.tamu.1D on chromosome 1D at 439.5-492.2 Mb controlled heading date, plant height and test weight, for which TAM 112 contributed favorable allele to increase test weight. For QTL on chromosome 4B (Qmt.tamu.4B at 638.1-666.3 Mb), TAM 112 was contributing alleles for longer heading date and higher grain yield. Both parents contributed favorable allele for QTL cluster on chromosome 4D (Qmt.tamu.4D at 20.6-62.8 Mb) but for different traits.

Table 4.5. Multi-trait QTL (QTL clusters) for grain yield and agronomic traits detected from individual and multi-environment QTL analysis

QTL Name	QTL ID	Mbp [†]	Peak SNP	LOD range	R ^{2‡}	A§	HAV¶	Traits [#]
Qmt.tamu.1D	11	375.4-421.8	2237051_1dl_3543	3.8-17.0	8.4, 11.8, 19.4	-0.8, 0.5, 68.7	P2, P1, P1	HD, TW, YLD
Qmt.tamu.1D	12	439.5-492.2	IWB41436	3.6-41.3	29.9, 17.1, 0.0	0.7, 0.5, 0.2	P1, P1, P1	HD, HT, TW
Qmt.tamu.4B	34	638.1-666.3	IWA27	4.3-12.4	18.3, 11.9	1.5, 98.8	P1, P1	HD, YLD
Qmt.tamu.4D	35	20.6-62.8	2305880_4ds_1018	4.2-35.7	5.9, 15.2, 4.9	0.3, 0.8, -173.2	P1, P1, P2	HT, TW, YLD
Qmt.tamu.7D	63	60.6-108.2	3950120_7ds_5316	3.5-64.9	31.9, 19.6, 21.6, 12.5	-1.3, -1.6, 0.7, -218.0	P2, P2, P1, P1/P2	HD, HT, TW, YLD

[†] Position, IWGSC RefSeq v1.0 pseudomolecule position [‡] R², maximum phenotypic variance explained by additive effect to each trait [§] A, maximum additive effect corresponding to each trait [¶] HVA, high value allele corresponding to each trait; P1=TAM 112, P2=TAM 111

[#]Traits, HD, heading date; HT, plant height; TW, test weight; YLD, grain yield

QTL *Qmt.tamu.7D* at 60.6-108.2 Mb explained up to 31.9% variation in heading date, with TAM 111 allele increasing heading date by 1.3 days and plant height by 1.6 cm and could increase grain yield by 173.2 kg ha-1. The same QTL, however, received beneficial alleles from both parents depending on the environment, explaining up to 12.5% of the total variation for yield with the highest increase of 218.0 kg ha-1 from TAM 111 alleles (Table 4.5).

Consistent QTL for test weight on chromosome 1D (Qcon.tamu.1D at 375.4-421.8 Mb) were detected in 12EP3, 12CH and dry environment (Table 4.6). High value allele for this QTL originated form TAM 112, explaining up to 11.8% of the variation in test weight. For heading date and plant height, QTL Qcon.tamu.1D at 439.5-492.2 Mb was expressed in multiple environments. This QTL explained up to 29.9% of the phenotypic variation, and additive effect of a day increased by TAM 112 alleles in three environments (Table 4.6). The same QTL explained up to 11.1% of the variation in plant height and detected in 12BD and 11EP4. At this QTL TAM 112 allele contributed up to 2.3 cm increase in plant height. QTL on chromosome 4B (Qcon.tamu.4B at 638.1-666.3 Mb) explained up to 11.9% variation present in grain yield. This QTL was detected in 14EP4 and 12UVLD, with additive effect up to 98.5 kg ha-1 increase by TAM 1112. QTL for test weight on chromosome 4D (Qcon.tamu.4D at 20.6-62.8 Mb) was detected in seven environments as well as dry environment. High value allele for this QTL was originated from TAM 112 explaining up to 16.3% of the variation. QTL on chromosome 7D (Ocon.tamu.7D at 60.6-108.2 Mb) were also expressed in multiple environment for multiple traits.

Traits [†]	QTL Name	QTL ID	Mbp [‡]	Peak SNP	LOD range	$R^{2\S}$	A¶	HAV [#]	Environments ^{††}
HD	Qcon.tamu.1D	12	439.5-492.2	IWB41436	3.6-29.7	5.5-29.9	-0.4-1.1	P2, P1	12EP1, 12EP3, 17BD, DRY
									11BD, 11EP4, 11EP5, 12BD, 12EP1, 12EP2,
HD	Qcon.tamu.7D	63	60.6-108.2	3950120_7ds_5316	5.4-15.8	7.6-31.9	-0.6- (-1.9)	P2	12EP3, 17BD, 11EP1, DRY
HT	Qcon.tamu.1D	12	439.5-492.2	IWA3764	3.9-4.4	5.7-11.0	0.3-2.3	P1	12BD, 11EP4
HT	Qcon.tamu.7D	63	60.6-108.2	3950120_7ds_5316	3.3-3.8	8.1-13.5	-1.0- (-1.6)	P2	17EI, 11EP5
TW	Qcon.tamu.1D	11	375.4-421.8	2237051_1dl_3543	3.8-4.9	10.8-11.8	0.3-0.5	P1	12EP3, 12CH, DRY
									12UV7, 17BD, 12BD, 12EP1, 12EP3,
TW	Qcon.tamu.4D	35	20.6-62.8	2305880_4ds_1018	3.9-7.8	2.5-16.3	0.3-0.8	P1	13EP2,14CH, DRY
TW	Qcon.tamu.7D	63	60.6-108.2	IWB35446	4.0-9.2	11.9-21.6	0.4-0.7	P1	11EP5, 12CH
YLD	Qcon.tamu.4B	34	638.1-666.3	IWA27	3.6-4.3	9.8-11.9	96.5-98.5	P1	14EP4, 12UVLD
YLD	Qcon.tamu.7D	63	60.6-108.2	3950120_7ds_5316	3.5-6.9	2.7-12.5	42.4- (-218.0)	P1-P2	12UVLD, 12CH, 17BD, 14CH, 17BI, DRY

Table 4.6. Stable and consistent QTL for grain yield and agronomic traits detected from individual environment QTL analysis

[†] Traits, HARD, hardness index; GMOIST, grain moisture; DIAM, kernel diameter; SKW, single kernel weight; FYLD, flour yield %; FMOIST, flour moisture; PROT14, flour protein at 14% moisture basis; ASH14, flour ash content at 14% moisture; WABS, water absorption; MLPT, midline peak time; MLPW, midline peak width; MLPV, midline peak value; MLPI, midline peak integral; MLRS, midline right slope; MLRW, midline right width

[‡]Position, IWGSC RefSeq v1.0 pseudomolecule position

 R^2 , maximum Phenotypic variance explained by additive effect to each trait

[¶]A, maximum Additive effect corresponding to each trait

[#] HVA, high value allele corresponding to each trait; P1=TAM 112, P2=TAM 111; range of A is corresponding to range of HVA

^{††} Environments; 11BD, 2011 Bushland dryland; 12BD, 2012 Bushland dryland; 17BD, 2017 Bushland dryland; 17BI, 2017 Bushland irrigated; 11CH, 2011 Chillicothe, 12CH, 2012 Chillicothe; 14CH, 2014 Chillicothe; 17CVI, 2017 Clovis irrigated; 11EP1, 2011 Etter 0% ET; 11EP2, 2011 Etter 40% ET; 11EP3, 2011 Etter 60% ET; 11EP4, 2011 Etter 75% ET; 11EP5, 2011 Etter 100% ET; 12EP1, 2012 Etter 0% ET; 12EP2, 2012 Etter 40% ET; 12EP3, 2012 Etter 60% ET; 13EP4, 2013 Etter 75% ET; 13EP4, 2013 Etter 75% ET; 13EP5, 2013 Etter 100% ET; 14EP4, 2014 Etter 75% ET; 14EP5, 2014 Etter 100% ET; 17EI, 2017 Etter 100% ET; 12UVLD, 2012 Uvalde dryland; 12UV5, 2012 Uvalde 50% ET; 12UV7, 2012 Uvalde 70% ET; 12UVL, 2012 Uvalde irrigated; 13UVLD, 2013 Uvalde dryland; DRY, dry environments; IRR, irrigated environments; COMB, combined environment This QTL controlled heading date, plant height, test weight and grain yield on at least more than two environments. This QTL explained up to 31.9 %, 13.5%, 21.6%, and 12.5% of the variation in heading date, plant height, test weight and grain yield, respectively.

Epistasis

Significant epistasis AA and epistasis-by-environment AAE interactions were found for heading date, plant height, test weight and grain yield (Table 4.7). For heading date, AA epistatic explained up to 2.3% of the variation, and AAE interaction explaining up to 1.3% of the variation. However, the effect of AA and AAE interactions was very small. AA and AAE interaction explained up to 1.9% and 3.2% of the variation in plant height. These two interactions accounted for 0.63 cm and 2.7 cm in plan height, both of which received alleles from TAM 112. For test weight, up to 4.7% of the variation was explained by AA and AAE interaction. These interactions increased test weight by a maximum of 6.81 lb bu-1. Very small variation was explained by either of the interaction for grain yield. Maximum of 2.0% variation in grain yield were contributed by the AA and AAE interaction. Up to 150.03 kg ha-1 yield increment was due to epistatic and epistasis by environment interaction.

Traits	QTL 1 Name	Mbp 1 [†]	QTL	Peak SNP 1	QTL 2 Name	Mbp 2	QTL	Peak SNP 2	\mathbb{R}^2	\mathbb{R}^2	A*A¶	A*A*E#
			ID				ID		(A * A) [‡]	(AA*E)§		
			1				2					
HD	Qhd.tamu.6A.49	609.0	49	IWA6537	Qhd.tamu.7B.60	611.6	60	6680752_7bl_3474	2.2171	0.6275	-0.3836	0 - 0.4
HD	Qhd.tamu.1B.9	686.8	9	IWB4789	Qhd.tamu.2B.20	729.5	20	IWB59461	2.2987	0.4034	-0.3929	-0.01 - (-0.24)
HD	Qhd.tamu.2B.18	39.2	18	IWB22828	Qhd.tamu.3B.28	558.0	28	10446102_3b_9187	1.842	0.6425	0.344	-0.01 - 0.37
HD	Qhd.tamu.1A.6	587.8	6	3971039_1al_2867	Qhd.tamu.6A.48	7.6	48	IWB11242	1.8196	0.3586	0.3469	-0.01 - 0.38
HD	Qhd.tamu.6D.54	24.0	54	IWB6829	Qhd.tamu.7A.58	586.4	58	4445500_7al_1082	1.7579	1.3298	0.3394	0.01 - 0.89
HD	Qhd.tamu.2A.13	22.2	13	5237958_2as_10729	Qhd.tamu.5A.43	683.0	43	2805270_5al_2730	1.796	0.523	0.3472	0.05 - (-0.34)
HD	Qhd.tamu.2A.17	755.4	17	6337310_2al_1925	Qhd.tamu.6A.49	613.8	49	5800366_6al_6132	1.7552	0.6275	0.345	0 - 0.51
HD	Qhd.tamu.2B.19	69.0	19	IWB61862	Qhd.tamu.7D.65	593.5	65	3356799_7dl_7319	1.5859	0.6126	-0.3254	0 - (-0.49)
HT	Qht.tamu.3D.30	560.2	30	IWB32805	Qht.tamu.7B.59	1.3	59	6380245_2al_4723	1.8881	0.7332	0.5244	0.03 - 0.65
HT	Qht.tamu.1B.7	68.4	7	3432579_1bs_4957	Qht.tamu.5A.43	633.5	43	4541388_5dl_2248	1.5595	0.8486	0.4677	-0.03 - 0.93
HT	Qht.tamu.1A.5	465.5	5	IWB65944	Qht.tamu.6A.48	5.1	48	4427795_6as_12820	1.8685	0.6317	-0.5141	-0.01 - (-0.49)
HT	Qht.tamu.2A.17	759.1	17	6382018_2al_8250	Qht.tamu.7B.59	19.1	59	3096912_7bs_110	1.7778	1.0446	0.5142	-0.21 - 0.58
HT	Qht.tamu.4B.34	666.3	34	IWB55790	Qht.tamu.5A.41	430.2	41	IWB34498	1.6575	1.0586	-0.4876	0.02 – (-0.7)
HT	Qht.tamu.1B.8	570.3	8	IWA5160	Qht.tamu.3D.30	560.2	30	IWB32805	1.8095	1.2966	-0.507	0.23 – (-0.84)
HT	Qht.tamu.2A.16	674.2	16	IWB20877	Qht.tamu.5B.46	705.9	46	10827029_5bl_1233	1.7163	0.9116	0.4974	-0.13 - 0.72
HT	Qht.tamu.2A.17	734.5	17	6415190_2al_16820	Qht.tamu.7D.62	13.7	62	3933813_7ds_676	1.6246	1.1933	-0.4923	-0.14 - (-0.82)
HT	Qht.tamu.1D.10	12.3	10	IWB14343	Qht.tamu.2B.19	65.9	19	5174164_2bs_1900	1.5738	2.4532	0.4728	-0.02 - 1.38
HT	Qht.tamu.3B.29	771.4	29	10505374_3b_18831	Qht.tamu.7D.63	64.3	63	3950120_7ds_5316	1.6206	3.2476	0.4739	0.03 - 1.7
HT	Qht.tamu.4A.31	632.6	31	7156920_4al_5391	Qht.tamu.5D.47	349.9	47	IWA3429	1.5671	0.4252	0.4688	0.01 - (-0.43)
HT	Qht.tamu.2A.17	734.5	17	6415190_2al_16820	Qht.tamu.6A.48	6.7	48	4354844_6as_593	1.5063	1.6413	-0.4692	0.07 - 1.2
HT	Qht.tamu.3D.30	560.2	30	IWB32805	Qht.tamu.5B.46	693.4	46	10848805_5bl_3948	1.4057	1.5345	0.454	-0.04 - 0.88
HT	Qht.tamu.7B.59	47.3	59	3138767_7bs_7628	Qht.tamu.7D.63	108.2	63	3946880_7ds_1493	1.4331	1.0936	-0.4529	0.01 – (-0.95)
HT	Qht.tamu.5A.41	440.8	41	2774965_5al_1437	Qht.tamu.7D.65	-	65	Sec61	1.3149	1.3561	-0.4344	0.03 - (-0.8)
HT	Qht.tamu.2A.17	751.7	17	1023555_2al_3138	Qht.tamu.4B.34	638.1	34	IWA3040	1.2761	0.7174	0.4278	-0.06 - 0.69
HT	Qht.tamu.7B.61	707.4	61	6550874_7bl_349	Qht.tamu.7B.61	722.2	61	6666775_7bl_1452	0.3089	0	0.6317	-0.17 - 2.67
TW	Qtw.tamu.3A.26	711.7	26	4448357_3al_6941	Qtw.tamu.7D.62	13.7	62	3933813_7ds_676	2.0874	2.7422	0.367	0.02 - 1.95
TW	Qtw.tamu.2B.18	29.6	18	IWB47594	Qtw.tamu.4D.35	20.6	35	IWB15038	1.9997	1.6405	-0.3526	0 – (-1.27)
TW	Qtw.tamu.7D.62	13.7	62	3933813_7ds_676	Qtw.tamu.7D.62	15.3	62	IWB12582	0.0901	0	0.3241	0.01 - 4.69
TW	Qtw.tamu.2A.16	684.9	16	6437445_2al_5185	Qtw.tamu.2A.17	701.0	17	IWB11977	0.3581	0	0.4473	-0.09 - 6.81
YLD	Qyld.tamu.6D.55	350.4	55	3254329_6d1_5253	Qyld.tamu.7D.65	568.7	65	3388911_7dl_2689	0.0008	1.9167	-0.9427	0.67 – (-150.03)
YLD	Qyld.tamu.2D.21	0.2	21	5387977_2ds_265	Qyld.tamu.3B.29	777.0	29	10764714_3b_3097	0.0321	1.6496	5.8459	0.92 - 123.04
YLD	Qyld.tamu.5B.46	680.1	46	10875123_5bl_6505	Qyld.tamu.7D.63	72.9	63	IWA1247	0.5048	1.7305	23.3454	-5.47 - 118.25
YLD	Qyld.tamu.3A.26	702.6	26	4365353_3al_191	Qyld.tamu.6A.48	23.2	48	IWB28195	0.4024	1.1232	-20.8121	0.27 - 57.93
YLD	Qyld.tamu.4B.32	17.0	32	IWB49194	Qyld.tamu.4D.36	121.6	36	2298011_4ds_5609	0.1288	1.2149	11.6338	1.62 – (-69.21)
YLD	Qyld.tamu.1B.9	675.6	9	IWB73713	Qyld.tamu.6D.56	461.4	56	IWA1924	0.0633	2.0197	8.5023	-0.9 - 106.52
YLD	Qyld.tamu.1D.10	8.6	10	IWA1788	Qyld.tamu.7D.62	21.1	62	3916420_7ds_3323	0.1397	1.571	12.2372	-3.02 - (-95.65)
YLD	Qyld.tamu.1A.6	557.0	6	3882773_1al_4725	Qyld.tamu.2B.18	8.3	18	IWB9673	0.0157	1.4487	3.9326	1.09 - 109.64
YLD	Qyld.tamu.1B.9	686.8	9	IWB4789	Qyld.tamu.2B.20	734.4	20	7939581_2bl_9591	0.2144	1.4642	-15.2365	-0.47 – (-94.87)
YLD	Qyld.tamu.6B.53	688.3	53	IWB6854	Qyld.tamu.6D.54	33.7	54	4251907_7as_438	0.0291	1.2201	-5.4783	0.05 - 109.74

Table 4.7. Additive-by-additive epistatic interaction, and epistatic-by-environment interaction among significant loci

Table 4.7. Continued

[†]Position, IWGSC RefSeq v1.0 pseudomolecule position [‡]R²(A*A), phenotypic variance explained by epistasis (additive-by-additive) effect

 ${}^{\$}R^{2}$ (AA*E), phenotypic variance explained by epistasis-by-environment effect

[¶]A*A, additive-by-additive effect. Negative sign indicates the recombination of the parental alleles increased the traits, positive sign indicates parental allelic combination reduced the traits

[#] A*A*E, range of additive-by-additive-by-environment effect. Negative value indicates the epistasis-by-environment reduced the trait, positive value increased the trait

DISCUSSION

Traits that are highly heritable and repeatable are important to breeders. All the grain yield and agronomic traits analyzed in this study were highly heritable. From variance partitioning, the genotypic variance is apparently higher than the genotype-byenvironment interaction and residual variance. We have planted in all the range of stresses possible in this study, including diverse soil, precipitation and temperature. Our testing environment included location with day temperature >30 0C in southern Texas to location with day temperature <10 0C in the High Plains of Texas. These two environmental covariables significantly alters genotype expression across environments in wheat grain yield (Kuchel et al., 2007; Saini and Aspinall, 1982). Give all the possible environmental conditions of this study, observing significant environmental and genotype-by-environment interaction is expected. Higher heritability and higher genotypic variance indicated that these traits are genetically controlled, which makes it suitable for genetic gain from selection in a breeding program. Higher heritability of grain yield and agronomic traits is also reported by Zhang et al. (2018). Since yield is controlled by many genes with small effect and influenced by environment, it was unusual to see high heritability for grain yield (0.7) (Li et al., 2007). A plausible explanation of that could be a better experimental design that partitioned total error into environment, replication and incomplete block as employed in this study.

Global wheat benefitted from reduced height as it increased harvest index (HI), straw strength and grain yield (Slafer et al., 1996). Similar results were observed in this study. GY showed negative correlation with plant height, suggesting reduced plant

weight was linked to increased GY. It is also known that reduced height when accompanied with higher input level, imparted significant increase in yield (Borlaug, 1968). Our study indicated that GY showed positive correlation with plant height in dry environment, suggesting that tall plants performed better in dry environment. For irrigated environments, reduced height was associated with increased yield except for 11EP4 (Table A6). A severe drought, when accompanied by high temperatures, lowers yields in nearly all crops in water-limited production agriculture (Hossain et al., 2012). Our testing environments included location like Bushland (BD) and Chillicothe (CH) where moderate to severe drought is common and Uvalde (UV) with heat stress. However, plants utilize different drought tolerance mechanism to sustain yield under drought and heat stress. In dry environment early maturing cultivars (HD), were able to avoid drought and terminal heat stress, and maintained higher grain yield as seen by negative association between GY and heading date from this study. Also, late flowering genotypes were disadvantageous since there is less chance of setting florets and higher chance of sterile spikelet.

In this study, we identified 65 unique QTL region, as denoted by QTL ID, that expands within 50 Mb regions. Even though significant genotypic variance was present, parents were not differing significantly for grain yield, test weight and plant height. Despite no significant differences between parents, the number of QTLs detected in this study was surprisingly high. Smaller population size, 124 lines in this study, can lead to a severe bias in QTL detection (Beavis, 1998). We used predicted means (BLUP) of the genotypes to analyzed QTL even though predicted means underestimate the gene effects due to shrinkage of means towards zero. As seen with best linear unbiassed estimate (BLUE), where environments with lower heritability show large QTL effects, use of BLUP would be accurate information to present. To validate the QTL finding of this study, we looked for some phenological development genes with known effects on the traits measured in this study. Additionally, we have found phenological development gene independent QTL. For GY, we identified QTL Qyld.tamu.1A.6 at 587.0 Mb regions with peak marker IWB34513 explaining 25.4% variation in grain yield. At this locus, allele from TAM 112 increased grain yield up to 137.5 kg ha-1 in dry environments (Table 4.3). Position of peak marker for this QTL is very close to peak marker IWA1644 linked to early flowering gene Elf3 at 590 Mb (Alvarez et al., 2016; Zhang et al., 2018) (Table A7, A8). Early flowering is an escape mechanism adopted by some genotypes to avoid water stress. In the US Southern High Plains, it is common to moderate-to severe water stress and early flowering would be a helpful to cope with water stress. Another QTL Qyld.tamu.3B.27 for grain yield at 48.6 Mb was identified, explaining 9.9% variation. Assanga et al. (2017b) mapped grain yield QTL at 42.56 Mb region on this chromosome with peak marker IWA3983. However, location of this QTL is very close to Rht5 gene for reduced plant height (Ellis et al., 2005) (Table A9). We also identified morphological independent QTLs on chromosome 6D (Qyld.tamu.6D.54 at 19.6 Mb) and on 7D (Qyld.tamu.7D.63 at 60.6-84.3 Mb region). Presence of morphological independent QTL on 6D in study was also detected by Assanga et al. (2017b) (Table A7, A8). QTL Qyld.tamu.7D.63 at 60.4-84.3 Mb region was expressed in multiple environments irrespective of irrigation. However, this QTL received high value allele
from TAM 111 in irrigated environments, accounting for up to 218 kg ha-1, and from TAM 112 in dry environment, accounting for up to 64.5 kg ha-1 increase in dry env. Similar findings were observed by Thapa et al. (2018) in their glasshouse study using TAM 111 and TAM 112. TAM 112 was able to yield more grains that TAM 111 in dry environments, due to their gas exchange efficiency and other genetic differences.

Three of the QTLs identified for test weight in this study were very close to the phenological development genes Rht and Vrn-1. QTL Qtw.tamu.2B.20 on the long arm of chromosome 2B (708.7-745.9 Mb region) were very close to GY QTL identified by Assanga et al. (2017b). This QTL is also very close to *Rht4* gene, which is also located on the long arm of the chromosome 2B (Ellis et al., 2005) (Table A8). QTL Qtw.tamu.4B.32 at 17.0 Mb for test weight is also very close to Rht1 gene (Rht-B1b), which are the major loci that has been most widely used in breeding program after the green revolution (Borlaug, 1968; Rasheed et al., 2016). QTL Qtw.tamu.5B.45 at 589.4 Mb regions was very close to Vrn-B1 located on 573.8 Mb on the long arm of chromosome 5B (Rasheed et al., 2016; Worland et al., 1998). Zheng et al. (2018) detected QTL for spikelet number per spike (SPS) at this locus with flanking marker IWB6746 (Table A7, A8). Phenological development gene independent test weight QTLs were also identified on chromosome 4D (*Qtw.tamu.4D.35* at 62.8 Mb) and on 6B (*Qtw.tamu.6B.50* at 130.3 Mb). Both the QTLs explained higher phenotypic variance (16.3-17.6%) and high value alleles were contributed by TAM 112. The QTL *Otw.tamu.6B.50* was also collocated with grain yield QTL identified by Zhang et al. (2018) (Table A7, A8). For plant height, one of the QTL identified on chromosome 4D

(*Qht.tamu.4D.35* at 20.6 Mb) was 2.1 Mb away from another green revolution gene *Rht2* (*Rht-D1b*) (Rasheed et al., 2016; Worland et al., 1998). Other phenological gene independent genes were also identified on chromosome 1A (*Qht.tamu.1A.3* at 296.2 Mb) and on 1D (*Qht.tamu.1D.12* at 492.2 Mb), with latter QTL reducing plant height by up to 2.3 cM. QTL identified for heading date on chromosome 2B at 39.2 Mb, explaining 11.3% of the variation and additive effect of 1 day from TAM 112. This QTL is within 10 Mb regions from *Ppd-B1* gene (Rasheed et al., 2016). Other QTLs, independent of major phenology related genes, were identified on chromosome 1D (*Qhd.tamu.1D.12* at 486.8 Mb) explaining 29.9% of the variation with 1-day effect from TAM112, and on chromosome 7D (*Qhd.tamu.7D.63* at 64.3 Mb) explaining 31.9% of the variation with 1-day effect from TAM111.

Clustering of QTLs in certain genomic regions was observed. QTLs for traits with weaker or no correlation was also in the same cluster in some cases, such as QTLs for heading date, test weight and grain yield on long arm of chromosome 1D (*Qmt.tamu.1D* at 375.4-421.8 Mb and *Qmt.tamu.1D* at 439.5-492.2 Mb), QTLs for heading date and grain yield on long arm of chromosome 4B (*Qmt.tamu.4B*), and QTLs for plant height, test weight and grain yield on chromosome 4B (*Qmt.tamu.4D*) and 7D (*Qmt.tamu.7D*). For traits with weak or no correlation, it is possible to select traits with the combinations at opposite direction. It also avoids the undesirable effect of one QTL by selecting against it while improving another QTL. Stable expression of the same QTL in multiple environments is a way of confirming the worthiness of pursuing. However, it is common to detect a QTL in one environment and not in another environment. In this

study, we categorized 28 environments into either dry and irrigated environment to confirm stable expression of QTLs in different management conditions as well. Our results indicate that five QTLs corresponding to heading date, plant height, test weight and grain weight on chromosome 1D, 4B, 4D and 7D were detected in more than one environment with high value alleles contributed by same parent (Table 4.6). QTLs detected in individual environment analysis were not detected in either of DRY, IRR, and COMB analysis for plant height on chromosome 1D at 439.5-492.2 Mb, and 7D at 60.6-108.2 Mb, test weight on chromosome 7D at 60.6-108.2 Mb, grain yield on 4B at 638.1-666.3 Mb (Table 4.6). Similarly, QTLs for heading date, plant height, test weight and grain yield were expressed in only one environment (Table 4.3). Also, QTL analysis was carried out on phenotypic data collected from diverse environmental conditions, making QTL unable to express in multiple environments. These finding strongly imply the presence of $G \times E$ effects on grain yield and agronomic traits. We observed the shift in QTL peak for yield (Qyld.tamu.7D.63 at 60.6-84.3 Mb), test weight (Qtw.tamu.6A.49 at 603.3-613.5 Mb indicating that these traits are likely controlled by multiple genes expressed in different environments.

CONCLUSION

In conclusion, we had 124 recombinant inbred lines from hard red winter wheat crosses. This population was characterized for grain yield (GY), plant height (HT), heading date (HD) and test weight (TW) collected from 28 environments during five cropping seasons. All the traits had high heritability with most of the phenotypic variation due to genotypic value and environmental value. A total of 65 unique QTLs were detected from three different QTL analysis. Individual environment QTL analysis detected 84 QTLs and multi-environment QTL analysis detected 69 QTLs for the four traits analyzed with 60 QTLs in common. Phenological development gene dependent QTLs were identified on chromosome 1A, 3B for grain yield, and 2B, 4B and 5B for test weight. Phonological development gene independent QTLs were also identified on chromosome 6D, 7D for grain yield, and on 4D, 6B for test weight. We found five genomic regions on chromosome 1D, 4B, 4D and 7D that are related with more than a single trait analyzed. QTLs for grain yield, heading date, plant height and test weight on these clusters were consistently expressed in multiple environments. Because of the complex inheritance of these traits, it will be necessary to validate these QTL in different wheat background evaluated in similar growth conditions before developing markers for marker-assisted selection.

REFERENCES

- Addisu, M., J.W. Snape, J.R. Simmonds and M.J. Gooding. 2010. Effects of reduced height (Rht) and photoperiod insensitivity (Ppd) alleles on yield of wheat in contrasting production systems. Euphytica 172: 169-181. doi:10.1007/s10681-009-0025-2.
- Alvarado, G., M. López, M. Vargas, Á. Pacheco, F. Rodríguez, J. Burgueño, et al. 2018. META-R (Multi Environment Trail Analysis with R for Windows) Version 6.03. CIMMYT Research Data & Software Repository Network.
- Alvarez, M.A., G. Tranquilli, S. Lewis, N. Kippes and J. Dubcovsky. 2016. Genetic and physical mapping of the earliness per se locus Eps-A (m) 1 in Triticum monococcum identifies EARLY FLOWERING 3 (ELF3) as a candidate gene. Functional & Integrative Genomics 16: 365-382. doi:10.1007/s10142-016-0490-3.
- Assanga, S., G.R. Zhang, C.T. Tan, J.C. Rudd, A. Ibrahim, Q.W. Xue, et al. 2017a. Saturated Genetic Mapping of Wheat Streak Mosaic Virus Resistance Gene Wsm2 in Wheat. Crop Science 57: 332-339. doi:10.2135/cropsci2016.04.0233.
- Assanga, S.O., M. Fuentealba, G.R. Zhang, C. Tan, S. Dhakal, J.C. Rudd, et al. 2017b. Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs. Plos One 12. doi:ARTN e018966910.1371/journal.pone.0189669.
- Beavis, W. 1998. QTL analyses: Power, precision, and accuracy. In: A. H. Paterson, editor Molecular Dissection of Complex Traits. CRC Press, Boca Raton. p. 145-162.
- Borlaug, N.E. 1968. Wheat breeding and its impact on world food supply, Butterworths, Canberra, Australia.
- Consortium, I.W.G.S. 2014. A chromosome-based draft sequecne of the hexaploid bread wheat (*Triticum aestivum* L.) genome. Science 345: 1251788.
- Dhungana, P., K.M. Eskridge, P.S. Baenziger, B.T. Campbell, K.S. Gill and I. Dweikat. 2007. Analysis of genotype-by-environment interaction in wheat using a structural equation model and chromosome substitution lines. Crop Science 47: 477-484. doi:10.2135/cropsci2006.06.0425.
- Distelfeld, A., C. Li and J. Dubcovsky. 2009. Regulation of flowering in temperate cereals. Current Opinion in Plant Biology 12: 178-184. doi:10.1016/j.pbi.2008.12.010.

Doerge, R.W. 2002. Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews Genetics 3: 43-52. doi:DOI 10.1038/nrg703.

Doyle, J. and J. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15.

- Ellis, M.H., G.J. Rebetzke, F. Azanza, R.A. Richards and W. Spielmeyer. 2005. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111: 423-430. doi:10.1007/s00122-005-2008-6.
- Fehr, W.R., E.L. Fehr and H.J. Jessen. 1987. Principles of cultivar development.Macmillan, New York.
- Griffiths, S., J. Simmonds, M. Leverington, Y. Wang, L. Fish, L. Sayers, et al. 2009. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119: 383-395. doi:10.1007/s00122-009-1046-x.
- Hossain, A., J.A.T. da Silva, M.V. Lozovskaya and V.P. Zvolinsky. 2012. High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi J Biol Sci 19: 473-487. doi:10.1016/j.sjbs.2012.07.005.
- Kuchel, H., K. Williams, P. Langridge, H.A. Eagles and S.P. Jefferies. 2007. Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theor Appl Genet 115: 1015-1027. doi:10.1007/s00122-007-0628-8.
- Kusterer, B., J. Muminovic, H.F. Utz, H.P. Piepho, S. Barth, M. Heckenberger, et al. 2007. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics 175: 2009-2017. doi:10.1534/genetics.106.069005.
- Lazar, M.D., W.D. Worrall, G.L. Peterson, A.K. Fritz, D. Marshall, L.R. Nelson, et al. 2004. Registration of 'TAM 111' Wheat. Crop Science 44: 355-356. doi:10.2135/cropsci2004.3550.
- Li, S.S., J.Z. Jia, X.Y. Wei, X.C. Zhang, L.Z. Li, H.M. Chen, et al. 2007. A intervarietal genetic map and QTL analysis for yield traits in wheat. Molecular Breeding 20: 167-178. doi:10.1007/s11032-007-9080-3.
- Li, Z.K., S.B. Yu, H.R. Lafitte, N. Huang, B. Courtois, S. Hittalmani, et al. 2003. QTL x environment interactions in rice. I. Heading date and plant height. Theoretical and Applied Genetics 108: 141-153. doi:10.1007/s00122-003-1401-2.

- Liu, S., C.A. Griffey, M.D. Hall, A.L. McKendry, J. Chen, W.S. Brooks, et al. 2013. Molecular characterization of field resistance to Fusarium head blight in two US soft red winter wheat cultivars. Theor Appl Genet 126: 2485-2498. doi:10.1007/s00122-013-2149-y.
- Liu, S.Y., S.O. Assanga, S. Dhakal, X.K. Gu, C.T. Tan, Y. Yang, et al. 2016. Validation of Chromosomal Locations of 90K Array Single Nucleotide Polymorphisms in US Wheat. Crop Science 56: 364-373. doi:10.2135/cropsci2015.03.0194.
- McIntosh, R., Y. Yamazaki, K.M. Devos, J. Dubcovsky, W.J. Rogers and R. Appels. 2003. Catalogue of Gene Symbols for Wheat. USDA-ARS, Genomics and Gene Discovery Unit, Albany, CA.
- Peterson, B.K., J.N. Weber, E.H. Kay, H.S. Fisher and H.E. Hoekstra. 2012. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLOS ONE 7: e37135. doi:10.1371/journal.pone.0037135.
- Rasheed, A., W. Wen, F. Gao, S. Zhai, H. Jin, J. Liu, et al. 2016. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129: 1843-1860. doi:10.1007/s00122-016-2743-x.
- Reif, J.C., H.P. Maurer, V. Korzun, E. Ebmeyer, T. Miedaner and T. Wurschum. 2011. Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123: 283-292. doi:10.1007/s00122-011-1583-y.
- Rudd, J.C., R.N. Devkota, J.A. Baker, G.L. Peterson, M.D. Lazar, B. Bean, et al. 2014.
 'TAM 112' Wheat, Resistant to Greenbug and Wheat Curl Mite and Adapted to the Dryland Production System in the Southern High Plains. Journal of Plant Registrations 8: 291-297. doi:10.3198/jpr2014.03.0016crc.
- Saini, H.S. and D. Aspinall. 1982. Abnormal Sporogenesis in Wheat (Triticum-Aestivum L) Induced by Short Periods of High-Temperature. Annals of Botany 49: 835-846. doi:DOI 10.1093/oxfordjournals.aob.a086310.
- SAS Institute Inc. 2015. SAS/STAT 14.1 user's guide. Cary, NC: SAS Institute Inc.
- Scarth, R. and C.N. Law. 1984. The Control of the Day-Length Response in Wheat by the Group-2 Chromosomes. Z Pflanzenzucht 92: 140-150.
- Slafer, G.A., D.F. Calderini and D.J. Miralles. 1996. Yield components and compensation in wheat: opportunities for further increasing yield potentail. In:

M. P. Reynolds, S. Rajaram and A. McNab, editors, Increasing yield potential in wheat:breaking the barriers. Mexico, DF: CIMMYT. p. 101-134.

- Sourdille, P., J.W. Snape, T. Cadalen, G. Charmet, N. Nakata, S. Bernard, et al. 2000. Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43: 487-494. doi:DOI 10.1139/g00-013.
- Thapa, S., S.K. Reddy, M.P. Fuentealba, Q. Xue, J.C. Rudd, K.E. Jessup, et al. 2018. Physiological responses to water stress and yield of winter wheat cultivars differing in drought tolerance. Journal of Agronomy and Crop Science 204: 347-358. doi:doi:10.1111/jac.12263.
- Trethowan, R., M.P. Reynolds, I. Ortiz-Monasterio and R. Ortiz. 2007. The Genetic Basis of the Green Revolution in Wheat Production. Plant Breeding Reviews.
- Van Ooijen, J.W. 2006. JoinMap® 4.0: software for the calculation of genetic linkage maps in experimental population. In: Kyazma BV (ed) Wageningen, the Netherlands.
- Wang, J., H. LI, L. Zhang, L. Chunhui and M. Lei. 2016. QTL IciMapping: Integrated Software for Building Linkage Maps and Mapping Quantitative Trait Genes.
- Wang, S., D. Wong, K. Forrest, A. Allen, S. Chao, B.E. Huang, et al. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant biotechnology journal 12: 787-796. doi:10.1111/pbi.12183.
- Worland, A.J. 1996. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89: 49-57. doi:Doi 10.1007/Bf00015718.
- Worland, A.J., A. Borner, V. Korzun, W.M. Li, S. Petrovic and E.J. Sayers. 1998. The influence of photoperiod genes on the adaptability of European winter wheats (Reprinted from Wheat: Prospects for global improvement, 1998). Euphytica 100: 385-394. doi:Doi 10.1023/A:1018327700985.
- Xing, Y.Z. and Q.F. Zhang. 2010. Genetic and Molecular Bases of Rice Yield. Annual Review of Plant Biology, Vol 61 61: 421-442. doi:10.1146/annurev-arplant-042809-112209.
- Zhang, J.L., S.A. Gizaw, E. Bossolini, J. Hegarty, T. Howell, A.H. Carter, et al. 2018. Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. Theoretical and Applied Genetics 131: 1741-1759. doi:10.1007/s00122-018-3111-9.

CHAPTER V

SUMMARY AND CONCLUSION

This dissertation studied and dissected number traits using different QTL mapping approach. We utilized classical linkage mapping as well as association analysis to connect 90K and GBS SNPs with grain yield, agronomic traits and end-use quality traits. Grain yield is the major traits that determines the profitability and sustained production of wheat. However, grain yield affected by multiple developmental genes. End-use quality is also important target trait for wheat.

Chapter II of this dissertation studied end-use quality of synthetic derived wheat. With 76K GBS SNPs included in the study, association analysis found 727, 603 and 44 significant marker-trait association. Majority of the markers associated with hardness index were detected on the short arm of chromosome 5D. Hardness index decreased by 8.5% or increased up to 7.7% for a locus. These markers explained 10.2% - 32.5 % of the total variation present in the hardness index. Flour yield related markers were also clustered on the short arm of the chromosome 5D, most of them collocated with hardness index marker loci. Phenotypic variation in flour yield explained by these markers ranged from 9.8% - 27%. Depending upon the marker and alleles, mean flour yield reduced by 2.7% or increased by 1.94% for some locus. Markers for midline right width and midline tail width were collocated on the short arm of chromosome 1B. Depending on locations, these markers explained up to 13% of the variation for each trait, and corresponding increase or decrease in trait value up to 2.9 % for some locus. Chapter III of this dissertation studied end-use quality of bi-parental population from the cross of TAM1112/TAM 111 and genotyped with 90K and GBS SNPs. All the traits had moderate to high heritability with most of the phenotypic variation due to genotypic value. A total of 163 QTLs were detected from individual environment analysis, and 109 QTLs from multi-environment QTL analysis. As expected, most of mixograph traits were detected on chromosome 1A, 1B and 1D, with peak marker for QTL on 1D positioned on *Glu-D1* locus. For this locus, high value allele from TAM 112 increased mixograph parameters by up to 30.81 %, explaining 49.7% of the variation in midline peak integral. Due to a major gene effect, kernel hardness is found to influence mixograph traits. We found nine genomic regions on chromosome 1A, 1B, 1D, 2D, 4D and 7D that are related with more than a single trait analyzed. QTLs for hardness, grain moisture, midline peak time, and midline peak integral on these clusters were consistently expressed in multiple environments.

Chapter IV of this dissertation studied the same mapping population from chapter III and same SNPs set. This population was characterized for grain yield (GY), plant height (HT), heading date (HD) and test weight (TW) collected from 28 environments during five cropping seasons. All the traits had high heritability with most of the phenotypic variation due to genotypic value and environmental value. A total of 65 unique QTLs were detected from three different QTL analysis. Individual environment QTL analysis detected 84 QTLs and multi-environment QTL analysis detected 69 QTLs for the four traits analyzed with 60 QTLs in common. Phenological development gene dependent QTLs were identified on chromosome 1A, 3B for grain yield, and 2B, 4B and 5B for test weight. Phonological development gene independent QTLs were also identified on chromosome 6D, 7D for grain yield, and on 4D, 6B for test weight. We found five genomic regions on chromosome 1D, 4B, 4D and 7D that are related with more than a single trait analyzed. QTLs for grain yield, heading date, plant height and test weight on these clusters were consistently expressed in multiple environments.

The SNP associated with FYLD, HARD, MLRW, TAILW and PROT14 could be targeted in MAS for end-use quality traits and for future wheat breeding work. Due to the complex inheritance of these traits, it will be necessary to validate these QTL in different wheat background evaluated in similar growth conditions before developing markers for marker-assisted selection.

APPENDIX A

Figure A1: Description of mixograph traits analyzed in AMPSY population

Table A1

Trait_loc_Yr [†]	Marker	Chr	Pos	CHR^{\ddagger}	Mb [§]	QTL ID	A¶	R ^{2#}	-log10(p)
FYLD_CLI_16	3305478_1as_3640	1A	272	1A	12818706	1	0.17	0.13	7.88
FYLD_CLI_16	3980528_1al_5184	1A	2017	1A	301131835	3	-0.78	0.13	8.18
FYLD_CLI_16	3927067_1al_12869	1A	2977	1A	389827066	4	-0.37	0.13	7.99
FYLD_CLI_16	3902709_1al_1308	UKN	125576	1A	428210584	4	0.55	0.15	8.18
FYLD_CLI_16	3902709_1al_1318	UKN	125599	1A	428210594	4	-0.88	0.13	7.32
FYLD_CLI_16	2278844_5bs_1907	UKN	127357	1B	60609112	6	-0.31	0.15	7.91
FYLD_CLI_16	3466711_1bs_2061	1B	7872	1B	101628236	7	0.45	0.13	8.06
FYLD_CLI_16	3466711_1bs_2020	1B	7870	1B	101628277	7	-0.45	0.13	8.06
FYLD_BD_16	3852692_161_3809	IB	7220	IB	280279027	9	1.92	0.12	7.35
FYLD_CLI_16	3892149_101_1985	IB	9895	1B 1D	499635782	11	-0.29	0.13	7.92
FILD_CLI_10	3858550_101_14890 2282740_141_6802	10	10/35		3/0830209	12	-0.46	0.13	8.00
FILD_CLI_10	2282/49_101_0803	1D	13910	1D 1D	293007345	15	0.11	0.13	7.92
FILD_CLI_10	2282749_141_6811	1D	13018	10	293007352	15	-0.11	0.13	7.93
FYLD_CLI_16	2291838 1d1 7209	10	15068	10	293007333	15	-0.03	0.13	7.95
FYLD CLI 16	2291050_1dl_7209	UKN	137672	1D	471086338	17	0.05	0.13	7.07
FYLD CLI 16	2283167_1dl_17246	UKN	137673	1D 1D	471086355	17	-0.27	0.13	7.92
FYLD CLI 16	2283167 1dl 17277	UKN	137675	1D	471086367	17	-0.24	0.13	7.91
FYLD CLI 16	5309070 2as 1364	2A	20709	2A	78755910	19	-0.20	0.13	7.89
FYLD EP5 15	6435505 2al 8117	2A	19060	2A	347820702	21	0.02	0.16	9.29
FYLD EP5 15	6324590 2al 2660	2A	18530	2A	566862511	22	-2.24	0.18	10.60
FYLD_CLI_16	6404696_2al_13964	UKN	137364	2A	628677518	23	0.15	0.14	7.82
FYLD_EP5_15	2461981_2al_3009	2A	22054	2A	695467552	24	0.21	0.16	9.32
FYLD_EP5_15	5184318_2bs_5233	2B	25524	2B	50715027	27	-0.30	0.16	9.27
FYLD_EP5_15	5184318_2bs_5090	2B	25520	2B	50715170	27	-0.48	0.16	9.42
FYLD_CLI_16	8028072_2bl_3018	2B	28049	2B	411000857	28	-0.45	0.13	7.96
FYLD_BI_16	5388307_2ds_14921	2D	35320	2D	56254194	34	-0.83	0.14	8.07
FYLD_EP5_15	2260462_2ds_419	UKN	121754	2D	73286123	34	-0.19	0.18	9.21
FYLD_CLI_16	9909878_2d1_8779	2D	38355	2D	590338112	38	-0.81	0.13	8.24
FYLD_EP5_15	9910341_2d1_2006	UKN	127683	2D	641955809	38	-0.05	0.19	9.32
FYLD_EP5_15	3387459_3as_6843	3A	40273	3A	41627157	39	-0.14	0.16	9.31
FYLD_CLI_16	3413956_3as_889	3A	40791	3A	86403737	40	0.03	0.13	7.85
FYLD_CLI_16	4450272_3al_830	3A	43324	3A	715420289	44	0.14	0.16	9.79
FYLD_CLI_16	4450272_3al_835	3A 2 A	43325	3A 2 A	715420289	44	-0.14	0.16	9.79
FILD_CLI_10	4450272_581_1054	3A 2 A	43327	3A 2 A	715420483	44	-0.01	0.13	7.87
FILD_CLI_10 EVID_EP5_15	4297575_5al_507	JIKN	43/14	3R	20408546	44	-0.21	0.13	0.10
FYLD EP5 15	10683916 3b 2192	UKN	120545	3B	117555037	45	-0.01	0.16	9.10
FYLD FP5 15	10683916_3b_2192	UKN	128114	3B	117555062	47	-0.01	0.10	9.31
FYLD CLI 16	10461448 3b 557	3B	46111	3B	534828537	51	-0.03	0.13	7.85
FYLD CLI 16	10451971 3b 7480	UKN	135317	3B	602586559	52	-0.13	0.13	7.83
FYLD CLI 16	10451971 3b 7321	UKN	135222	3B	602586718	52	-0.54	0.14	8.11
FYLD CLI 16	6013263 4as v2 7346	4A	50154	4A	30155367	58	1.31	0.14	8.89
FYLD_EP5_15	7079348_4a1_382	UKN	121543	4A	637256685	62	0.22	0.19	9.39
FYLD_CLI_16	4057017_4al_591	4A	53762	4A	646117303	62	-0.62	0.13	8.09
FYLD_CLI_16	4057017_4al_596	4A	53763	4A	646117308	62	0.62	0.13	8.09
FYLD_CLI_16	4057017_4al_613	4A	53766	4A	646117325	62	-0.62	0.13	8.09
FYLD_EP5_15	7088979_4a1_3699	UKN	131312	4A	658897102	62	0.89	0.18	9.43
FYLD_EP5_15	7120458_4al_2339	4A	55123	4A	720204970	63	-0.25	0.16	9.33
FYLD_EP5_15	7120458_4al_2378	4A	55126	4A	720205009	63	-0.36	0.16	9.39
FYLD_EP5_15	7120458_4al_2392	4A	55129	4A	720205023	63	0.42	0.16	9.44
FYLD_CLI_16	7083149_4a1_7921	4A	55523	4A	725860581	63	0.29	0.13	7.93
FYLD_EP5_15	/039666_461_20663	4B	126144	4B 4D	5/0150846	6/	0.29	0.16	9.33
FILD_CLI_10	09/5/0/_4DI_1500		120144	4B 4D	0490/9401	08	0.01	0.14	1.15
FILD_CLI_10 EVID_EP5_15	1380443_4ds_2087 2300023_4ds_2070	4D 4D	62092	4D 4D	94203283	70	0.54 NA	0.14	8.8/
FVID IPP IPP	2309923_4ds_2070 2309923_4ds_2070	4D 4D	62838	4D 4D	164595145	71	NA	0.13	8.10
FYLD CLI 16	14304468 4d1 v2 1665	4D UKN	126557	4D	413041988	72	-0.06	0.12	9.24
FYLD IRR IRR	14304468 4d1 v2 1665	UKN	126557	4D	413041988	72	-0.19	0.14	8 20
FYLD EP5 15	1506586 5as 5534	UKN	133818	5A	10213724	74	-1.43	0.18	10.23
FYLD EP5 15	2476331 5al 1297	5A	63913	5A	279102105	75	-1.56	0.17	10.14
FYLD EP5 15	10905888 5b1 8545	5B	70646	5B	399777517	80	0.40	0.16	9.50
FYLD_EP5_15	10905888_5b1_8543	5B	70645	5B	399777519	80	-0.40	0.16	9.50
FYLD_EP5_15	10905888_5b1_8533	5B	70642	5B	399777529	80	-0.39	0.16	9.49
FYLD_EP5_15	10905888_5b1_8523	5B	70641	5B	399777539	80	-0.39	0.16	9.48
FYLD_EP5_15	10905888_5b1_8511	5B	70640	5B	399777551	80	0.39	0.16	9.49
FYLD_CLI_16	10906178_5b1_4128	5B	70984	5B	445444817	81	-0.21	0.13	7.90
FYLD CLI 16	10906178 5b1 4143	5B	70985	5B	445444832	81	-0.27	0.13	7.96

Significant marker trait association detected on individual environments, chromosome, position, effect for end-use quality traits in AMPSY population

Table A1 Continued

Trait_loc_Yr [†]	Marker	Chr	Pos	CHR^{\ddagger}	Mb [§]	QTL ID	A¶	R ^{2#}	-log10(p)
FYLD_CLI_16	10906178_5bl_4144	5B	70986	5B	445444833	81	-0.25	0.13	7.94
FYLD_CLI_16	10906178_5bl_4445	5B	70989	5B	445445134	81	0.26	0.13	7.95
FYLD_CLI_16	10807425_5bl_10093	5B	71312	5B	447844705	81	-0.56	0.13	8.07
FYLD_CLI_16	10847251_5bl_499	5B	71161	5B	463923822	81	0.15	0.12	7.09
FYLD_BD_16	10833329_5bl_3165	5B	73601	5B	595287398	83	-0.96	0.12	7.17
FYLD_BD_16	10833329_5bl_3193	5B	73603	5B	595287426	83	-1.03	0.12	7.33
FYLD_BD_16	10833329_5bl_3385	5B	73611	5B	595287618	83	-0.98	0.12	7.19
FYLD_BD_16	10833329_561_3390	5B	73613	5B	595287623	83	-1.03	0.12	7.33
FYLD_BD_16	10833329_561_3402	5B	73614	5B	595287635	83	-0.97	0.12	7.19
FYLD_EP5_15	10806569_561_2517	5B	74549	5B	636930195	83	-0.22	0.16	9.25
FYLD_EP5_15	10806569_561_2468	5B	74548	5B	636930244	83	-0.36	0.16	9.35
FYLD_EP5_15	10809422_561_3717	5B 5D	75382	5B 5D	684607248	84	-0.25	0.16	9.32
FILD_CLI_I0	10824/50_501_1805	5B 5D	15/52	5B 5D	703300388	84	-0.22 NIA	0.15	7.93
FILD_BD_10	1477005_5ds_2010	5D 5D	138/8	5D 5D	344579	85	NA	0.11	7.09
FILD_DI_10	1477005_5ds_2010	50	13010	5D	344379	85 85	NA	0.12	7.99
FILD_DKI_DKI	1477005_5ds_2010	50	13010	50	244579	63 95	NA	0.19	0.15
FILD_EPS_IS	1477005_5ds_2010	50	13010	5D	344379	85 85	NA	0.14	9.15
FILD_EF4_14	1477005_5ds_2010	50	75070	50	244579	85 85	NA	0.18	11.92
FILD_EF5_14	1477005_5ds_2010	5D	75878	50	344379	85	NA	0.20	8 55
EVID IDD IDD	1477005_5ds_2010	50	75070	50	244579	85 85	NA	0.13	0.33
EVID PI 16	2745572 5ds 2677	50	75078	50	554080	85 85	NA	0.18	7 27
FYLD CLL 16	2745572 54: 2677	5D	75078	50	554080	85	NA	0.11	9.26
FILD_CLI_IO	2745573_5ds_3677	5D	75078	50	554980	85	NA	0.12	0.30
FVLD EP3 15	2745573_5ds_3677	5D	75078	50	554980	85	NA	0.13	9.65
$FILD_EI5_15$	2745573_5ds_3677	5D	75078	50	554980	85	NA	0.14	9.00
$FTLD_EI = 14$ EVID EP5 14	2745573_5ds_3677	5D	75078	50	554980	85	NA	0.22	12 34
FVID IDD IDD	2745573_5ds_3677	5D	75078	50	554980	85	NA	0.17	12.54
FVLD BL 16	2745575_5ds_5077 2736392 5ds 5233	5D	75917	5D	934031	85	NΔ	0.17	8.90
FVLD CLL 16	2736392_5ds_5233	5D	75017	50	034031	85	NA	0.14	12 50
FYLD DRY DRY	2736392 54: 5233	5D	75917	5D	934031	85	NΔ	0.15	9.90
FVLD FP3 15	2736392_5ds_5233	5D	75917	5D	934031	85	NΔ	0.15	11.45
FYLD FP4 14	2736392 54 5233	5D	75917	5D	934031	85	NA	0.10	16.45
FYLD FP5 14	2736392 545 5233	5D	75917	5D	934031	85	NA	0.25	15.32
FYLD EP5 15	2736392_5ds_5233	5D	75917	5D	934031	85	NA	0.23	11.97
FYLD IRR IRR	2736392 5ds 5233	5D	75917	5D	934031	85	NA	0.27	15.96
FYLD DRY DRY	2773392 5ds 1412	5D	75911	5D	2220874	85	NA	0.17	11.10
FYLD EP3 15	2773392 5ds 1412	5D	75911	5D	2220874	85	NA	0.14	9.32
FYLD EP4 14	2773392 5ds 1412	5D	75911	5D	2220874	85	NA	0.19	12.42
FYLD EP5 14	2773392 5ds 1412	5D	75911	5D	2220874	85	NA	0.24	15.05
FYLD EP5 15	2773392 5ds 1412	5D	75911	5D	2220874	85	NA	0.16	10.74
FYLD IRR IRR	2773392 5ds 1412	5D	75911	5D	2220874	85	NA	0.17	10.94
FYLD BD 16	2773392 5ds 1238	5D	75910	5D	2221048	85	NA	0.11	7.78
FYLD_BI_16	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.11	7.64
FYLD DRY DRY	2773392 5ds 1238	5D	75910	5D	2221048	85	NA	0.19	12.47
FYLD_EP3_15	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.15	10.24
FYLD_EP4_14	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.20	12.85
FYLD_EP5_14	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.26	15.78
FYLD_EP5_15	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.13	8.78
FYLD_IRR_IRR	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.17	11.01
FYLD_DRY_DRY	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.17	11.10
FYLD_EP3_15	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.14	9.32
FYLD_EP4_14	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.19	12.42
FYLD_EP5_14	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.24	15.05
FYLD_EP5_15	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.16	10.74
FYLD_IRR_IRR	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.17	10.94
FYLD_EP4_14	2770151_5ds_4035	5D	75899	5D	7257066	85	NA	0.11	7.98
FYLD_EP5_14	2739337_5ds_2304	5D	75953	5D	7485266	85	NA	0.11	7.12
FYLD_EP4_14	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.10	7.15
FYLD_EP5_14	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.13	8.91
FYLD_EP4_14	2781025_5ds_24421	5D	76005	5D	8018756	85	NA	0.10	7.15
FYLD_EP5_14	2781025_5ds_24421	5D	76005	5D	8018756	85	NA	0.13	8.91
FYLD_CLI_16	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.10	7.23
FYLD_DRY_DRY	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.14	9.56
FYLD_EP3_15	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.14	9.44
FYLD_EP4_14	2774182_5ds_7304	5D	76010	50	8613963	85	NA	0.11	/.6/
FYLD_EP5_14	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.15	9.99
FTLD_EP5_15	21/4182_5ds_7304	5D	76010	50	8613963	85	NA	0.11	/.4/
FILD_IKK_IKK	27/4182_5ds_7304	50	/6010	50	8013963	85	NA	0.15	10.19
FILD_IKK_IKK	2/810/1_3ds_94/2	50	/ 399 /	50	9332000	85	INA	0.11	1.33

Table A1 Continued

Trait los Vr	Marker	Chr	Por	CIDİ	Mb§	OTL ID	٨٩	D 2 [#]	$\log 10(\mathbf{p})$
EVID ED4 14	2791671 54c 0461	50	75002	5D	0222011	Q1L1D	NA NA	N 10	-log10(p)
FILD_EP4_14	2/810/1_5ds_9401	50	75995	5D	9332011	85	NA	0.10	7.03
FILD_IKK_IKK	2/810/1_5ds_9401	5D	75002	5D	9332011	85	NA	0.10	7.12
FILD_EP4_14	2/816/1_5ds_9443	50	75992	5D	9332029	85	NA	0.10	7.03
FYLD_IKK_IKK	2/816/1_5ds_9443	5D	75992	5D	9332029	85	NA	0.10	7.12
FYLD_EP4_14	2/816/1_5ds_9235	5D	/5991	5D	9332237	85	NA	0.10	7.03
FYLD_IKK_IKK	2/816/1_5ds_9235	5D	/5991	5D	9332237	85	NA	0.10	7.12
FYLD_EP4_14	2/816/1_5ds_9219	5D	75989	5D	9332253	85	NA	0.10	7.03
FYLD_IRR_IRR	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.10	7.12
FYLD_EP4_14	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.10	7.03
FYLD_IRR_IRR	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.10	7.12
FYLD_EP5_15	2739401_5ds_20579	5D	76380	5D	11421190	85	-2.74	0.12	7.00
FYLD_CLI_16	2760386_5ds_1248	UKN	125360	5D	14719288	85	0.02	0.15	7.80
FYLD_CLI_16	2770949_5ds_845	5D	77116	5D	70819097	86	-0.35	0.13	7.94
FYLD_CLI_16	2783341_5ds_8399	5D	77064	5D	72551106	86	-0.16	0.13	7.88
FYLD_EP5_14	4599562_5d1_5399	5D	78574	5D	298137698	87	NA	0.10	7.22
FYLD_EP5_15	4590136_5dl_3635	5D	78026	5D	345935291	88	0.28	0.16	9.34
FYLD_CLI_16	4504942_5dl_1247	5D	78305	5D	346502034	88	-0.48	0.13	7.97
FYLD_EP5_15	4514657_5dl_1632	5D	79259	5D	385511140	88	-0.51	0.16	9.50
FYLD_CLI_16	4605319_5d1_3048	5D	79877	5D	434399580	89	0.11	0.13	7.87
FYLD_CLI_16	4544938_5dl_5497	5D	80179	5D	453882685	89	0.05	0.13	7.87
FYLD_CLI_16	4534695_5dl_15341	5D	81712	5D	526417202	90	0.13	0.13	7.89
FYLD_CLI_16	4412722_6as_11506	6A	82894	6A	1679610	92	0.01	0.13	7.87
FYLD_CLI_16	4429138_6as_4885	6A	84761	6A	81300931	93	0.33	0.13	7.95
FYLD_CLI_16	5779119_6al_30	6A	87072	6A	550280481	96	-0.28	0.13	7.95
FYLD_EP5_15	2104944_6ds_1907	6D	93021	6D	4373904	101	-0.41	0.16	9.43
FYLD_EP5_15	3241616_6dl_343	6D	95722	6D	225477162	102	-0.36	0.16	9.36
FYLD_CLI_16	4188922_7as_8493	UKN	136014	7A	32691576	104	-0.94	0.17	8.49
FYLD_EP5_15	4438480_7al_11172	7A	102537	7A	561615734	110	-0.02	0.16	9.29
FYLD_CLI_16	4556713_7al_3803	7A	102882	7A	581433764	110	0.36	0.13	7.94
FYLD_EP5_15	4466982_7al_4013	7A	105077	7A	733969740	111	0.00	0.16	9.28
FYLD_EP5_15	4466982_7al_4163	7A	105080	7A	733969890	111	-0.22	0.16	9.29
FYLD_CLI_16	3156753_7bs_820	7B	106579	7B	134714902	113	-0.09	0.13	7.87
FYLD_CLI_16	3856934_7ds_2095	7D	110002	7D	9376388	116	-0.54	0.13	8.00
FYLD_CLI_16	3856934_7ds_2056	7D	109998	7D	9376427	116	-0.20	0.12	7.68
FYLD_EP5_15	3898730_7ds_1216	7D	110209	7D	18207787	116	0.72	0.16	9.50
FYLD_EP5_15	5389722_2ds_5977	2D	34903	Un	24970654	33?	1.18	0.17	9.99
FYLD_CLI_16	3418003_3as_1194	3A	39385	Un	32236572	39?	-0.06	0.13	7.87
FYLD_CLI_16	5744793_6al_520	6A	88417	Un	75261141	92?	-0.23	0.13	7.91
FYLD_CLI_16	5744793_6al_542	6A	88418	Un	75261163	92?	0.11	0.13	7.87
HARD_BD_16	5176564_2bs_647	UKN	123039	2B	38620402	27	-0.70	0.12	7.11
HARD BD 16	5176564 2bs 662	UKN	123097	2B	38620417	27	0.82	0.12	7.18
HARD BD 16	1477005 5ds 2010	5D	75878	5D	344579	85	NA	0.18	11.70
HARD BI 16	1477005 5ds 2010	5D	75878	5D	344579	85	NA	0.16	10.37
HARD CH 14	1477005 5ds 2010	5D	75878	5D	344579	85	NA	0.17	11.09
HARD CLI 16	1477005 5ds 2010	5D	75878	5D	344579	85	NA	0.22	13.47
HARD DRY DRY	1477005 5ds 2010	5D	75878	5D	344579	85	NA	0.21	13.33
HARD EP3 15	1477005_5ds_2010	5D	75878	5D	344579	85	NA	0.23	13.87
HARD EP4 14	1477005_5ds_2010	5D	75878	5D	344579	85	NA	0.21	12.68
HARD EP4 15	1477005_5ds_2010	5D	75878	5D	344579	85	NA	0.25	15.19
HARD EP5 14	1477005 5ds 2010	5D	75878	5D	344579	85	NA	0.21	13.32
HARD EP5 15	1477005_5ds_2010	5D	75878	5D	344579	85	NA	0.24	14.63
HARD IRR IRR	1477005_5ds_2010	5D	75878	5D	344579	85	NA	0.23	13.97
HARD CLI 16	1477005_5ds_2278	5D	75884	5D	344847	85	7.63	0.13	7.83
HARD EP4 14	1477005_5ds_2278	5D	75884	5D	344847	85	NA	0.11	7 27
HARD BD 16	2745573 5ds 3677	5D	75978	5D	554980	85	NA	0.21	13.14
HARD BI 16	2745573 5ds 3677	5D	75978	5D	554980	85	NA	0.18	11.78
HARD CH 14	2745573 5ds 3677	5D	75978	5D	554980	85	NA	0.20	12 79
HARD CLI 16	2745573 5ds 3677	5D	75978	5D	554980	85	NΔ	0.25	15.23
HARD DRY DRY	2745573 5ds 3677	5D	75978	5D	554980	85	NΔ	0.25	16.44
HARD EP3 15	2745573 5ds 3677	5D	75978	5D	554980	85	NA	0.29	17.28
HARD EP4 14	2745573 5ds 3677	50	75978	5D	554980	85	NA	0.23	13 72
HARD $EP4$ 15	2745573 54 3677	50	75978	50	554980	85	NA	0.33	18.93
HARD EP5 14	2745573 540 3677	50	75078	5D	554980	85	NA	0.33	14.13
HARD EDS 15	2143313_3US_3011 2745573 540 2677	50	75070	5D	55/090	85	NA	0.23	16.77
HARD_EPS_IS	2145515_5US_5011 2745573 540 2677	50	75070	5D 5D	55/090	85 85	NA	0.28	16.77
HARD RD 16	2145515_5US_5011 2736302 540 5222	50	75017	5D 5D	03/021	85 85	NA	0.27	10.20
HARD_DU_10	2/30372_308_3233	50	75017	50	934031	0J 05	INA	0.20	13.31
IARD_BI_10	2/30392_308_3233	50	/391/	50	934031	85 95	INA	0.23	13.82
HARD_CH_14	2/30392_3d8_3233	50	/391/	50	934031	85	INA	0.24	14.78
IARD DBV DBV	2/30392_308_3233	50	/391/	50	934031	85 95	INA	0.26	15.40
ΠΑΚυ_υκι_υκι	2130392_308_3233	JD	13911	JD	934031	00	INA	0.31	17.32

Table A1 Continued

			no10 11		+		. •	2#	1 10()
Trait_loc_Yr	Marker	Chr	Pos	CHR	* Mb ^s	QTLID	A	\mathbb{R}^{2^n}	-log10(p)
HARD_EP3_15	2736392_5ds_5233	5D	75917	5D	934031	85	NA	0.31	17.83
HARD EP4 14	2736392 5ds 5233	5D	75917	5D	934031	85	NA	0.28	16.20
HAPD EP4 15	2736302_5ds_5233	5D	75017	5D	03/031	85	NA	0.32	18.23
HADD ED5 14	2736372_363_3233	5D	75017	50	024021	05	NIA	0.32	15.00
HARD_EP5_14	2/36392_5ds_5233	5D	/591/	5D	934031	85	NA	0.27	15.99
HARD_EP5_15	2736392_5ds_5233	5D	75917	5D	934031	85	NA	0.31	17.75
HARD_IRR_IRR	2736392_5ds_5233	5D	75917	5D	934031	85	NA	0.30	17.20
HARD EP3 15	2765676 5ds 2839	5D	75901	5D	1344429	85	-8.56	0.13	7.86
HARD BD 16	2773392 5ds 1412	5D	75911	5D	2220874	85	NΔ	0.24	14.88
HARD_DD_10	2773392_305_1412	5D	75911	50	2220074	05	NA NA	0.24	12.42
HARD_BI_16	2773392_5ds_1412	50	/5911	5D	2220874	85	NA	0.19	12.45
HARD_CH_14	2773392_5ds_1412	5D	75911	5D	2220874	85	NA	0.21	13.55
HARD_CLI_16	2773392_5ds_1412	5D	75911	5D	2220874	85	NA	0.27	16.09
HARD DRY DRY	2773392 5ds 1412	5D	75911	5D	2220874	85	NA	0.27	16.02
HARD FP3 15	2773392 54 1412	5D	75911	5D	2220874	85	NΔ	0.28	16.92
HARD ED4 14	2772202 54: 1412	50	75011	50	2220074	85	NIA	0.20	14.27
HARD_EF4_14	2773392_3ds_1412	50	75911	50	2220074	05	INA	0.24	14.27
HARD_EP4_15	2773392_5ds_1412	5D	75911	5D	2220874	85	NA	0.26	15.90
HARD_EP5_14	2773392_5ds_1412	5D	75911	5D	2220874	85	NA	0.24	14.56
HARD EP5 15	2773392 5ds 1412	5D	75911	5D	2220874	85	NA	0.28	16.86
HARD	2773392 5ds 1412	5D	75911	5D	2220874	85	NA	0.28	16 64
HARD RD 16	2772202 54: 1229	50	75010	50	2221048	85	NA	0.26	15.69
HARD_BD_10	2773392_305_1238	50	75910	50	2221048	85	NA	0.20	12.00
HARD_BI_16	2773392_5ds_1238	5D	/5910	5D	2221048	85	NA	0.20	13.02
HARD_CH_14	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.23	14.48
HARD_CLI_16	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.29	17.40
HARD DRY DRY	2773392 5ds 1238	5D	75910	5D	2221048	85	NA	0.29	17 10
HARD EP3 15	2773302_5ds_1238	5D	75010	5D	2221048	85	NA	0.30	17.84
HARD ED4 14	2772202 54: 1228	50	75010	50	2221040	85	NIA	0.30	14.57
HARD_EP4_14	2773392_5ds_1238	50	/5910	5D	2221048	85	NA	0.24	14.57
HARD_EP4_15	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.29	16.97
HARD_EP5_14	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.26	15.60
HARD EP5 15	2773392 5ds 1238	5D	75910	5D	2221048	85	NA	0.29	17.20
HARD IRR IRR	2773392 5ds 1238	5D	75910	5D	2221048	85	NA	0.29	17.22
HARD RD 16	2772202 54: 1206	50	75006	50	2221040	05	NIA	0.24	14.99
HARD_BD_10	2773392_3ds_1200	50	75900	50	2221080	85	NA	0.24	14.00
HARD_BI_16	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.19	12.43
HARD_CH_14	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.21	13.55
HARD_CLI_16	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.27	16.09
HARD DRY DRY	2773392 5ds 1206	5D	75906	5D	2221080	85	NA	0.27	16.02
HARD EP3 15	2773392 5ds 1206	5D	75906	5D	2221080	85	NΔ	0.28	16.92
HARD_EF5_15	2773392_54-1200	5D	75900	50	2221080	05	NA	0.20	14.27
HARD_EP4_14	2773392_5ds_1206	50	75906	50	2221080	85	NA	0.24	14.27
HARD_EP4_15	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.26	15.90
HARD_EP5_14	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.24	14.56
HARD_EP5_15	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.28	16.86
HARD IRR IRR	2773392 5ds 1206	5D	75906	5D	2221080	85	NA	0.28	16.64
HAPD DPV DPV	2770151 5ds 4035	5D	75800	5D	7257066	85	NΛ	0.12	8.00
HARD_DR1_DR1	2770151_505_4055	5D	75000	50	7257000	05	NA NA	0.12	3.00
HARD_EP3_15	2770151_5ds_4055	50	/5899	5D	/25/066	85	NA	0.11	/.00
HARD_BD_16	2739337_5ds_2304	5D	75953	5D	7485266	85	NA	0.10	7.10
HARD_BI_16	2739337_5ds_2304	5D	75953	5D	7485266	85	NA	0.11	7.70
HARD CLI 16	2739337 5ds 2304	5D	75953	5D	7485266	85	NA	0.14	8.80
HARD DRY DRY	2739337 5ds 2304	5D	75953	5D	7485266	85	NA	0.11	7.12
HADD ED2 15	2739337_343_2304	5D	75052	50	7405200	05	NIA	0.11	7.12
HARD_EP3_15	2739337_5ds_2304	50	/5955	50	7485200	85	NA	0.11	1.21
HARD_EP4_14	2739337_5ds_2304	5D	75953	5D	7485266	85	NA	0.12	7.71
HARD_EP4_15	2739337_5ds_2304	5D	75953	5D	7485266	85	NA	0.11	7.33
HARD EP5 15	2739337 5ds 2304	5D	75953	5D	7485266	85	NA	0.13	8.65
HARD	2739337 5ds 2304	5D	75953	5D	7485266	85	NA	0.15	9.60
HARD RD 16	2781025 54: 24425	50	76006	50	2012752	85	NA	0.15	0.86
HARD_BD_10	2781025_5ds_24425	50	70000	50	0010752	85	NA	0.15	9.00
HARD_BI_16	2781025_5ds_24425	5D	/6006	5D	8018/52	85	NA	0.15	10.03
HARD_CH_14	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.14	9.18
HARD_CLI_16	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.15	9.86
HARD DRY DRY	2781025 5ds 24425	5D	76006	5D	8018752	85	NA	0.16	10.13
HARD EP3 15	2781025 5ds 24425	5D	76006	5D	8018752	85	NΔ	0.16	10.09
HADD ED4 14	2781025_54-24425	5D	70000	50	0010752	05	NIA	0.14	10.07
nakd_eP4_14	2/81025_5ds_24425	50	/0006	50	8018/52	85	INA	0.14	8.91
HARD_EP4_15	2/81025_5ds_24425	5D	76006	5D	8018752	85	NA	0.15	9.69
HARD_EP5_14	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.12	8.19
HARD EP5 15	2781025 5ds 24425	5D	76006	5D	8018752	85	NA	0.18	11.58
HARD IRP IRP	2781025 5ds 24425	5D	76006	50	8018752	85	NA	0.18	11.50
UADD DD 16	2781025_54-24421	50	76005	50	2010752	95	NA	0.15	0.86
HAND_BD_10	2701025_51_24421	50	70005	50	0010/30	05	IN/A	0.15	2.00
HARD_B1_16	2/81025_5ds_24421	5D	76005	5D	8018756	85	NA	0.15	10.03
HARD_CH_14	2781025_5ds_24421	5D	76005	5D	8018756	85	NA	0.14	9.18
HARD_CLI_16	2781025_5ds_24421	5D	76005	5D	8018756	85	NA	0.15	9.86
HARD DRY DRY	2781025 5ds 24421	5D	76005	5D	8018756	85	NA	0.16	10.13
HARD EP3 15	2781025 54 24421	50	76005	50	8018756	85	NA	0.16	10.09
HARD_EF3_13	2701025_51_24421	50	70005	50	0010750	05	INTA NTA	0.10	10.03
HARD_EP4_14	2/81025_5ds_24421	5D	76005	5D	8018/56	85	NA	0.14	8.91
HARD_EP4_15	2781025_5ds_24421	5D	76005	5D	8018756	85	NA	0.15	9.69

Table A1 Continued

Trait los Vr	Markar	Chr	Pos		t Mb§	OTL ID	۸¶	D 2 [#]	log10(p)
	2781025 540 24421	50	76005	50	0010756	Q1L1D	NA NA	0.12	*10g10(p)
HARD_EP5_14	2781025_5ds_24421	50	76005	50	8018756	0 <i>3</i> 95	NA	0.12	0.19
HARD_EPS_IS	2781025_5ds_24421	5D	76005	5D	8018756	85 85	NA	0.18	11.50
HARD RD 16	2781025_5ds_24421 2745020_5ds_15344	5D	76053	5D	8419265	85	615	0.13	7 33
HARD DRY DRY	2745020_5ds_15344	5D	76053	5D	8419265	85	6.43	0.12	7.16
HARD EP3 15	2745020_5ds_15344	5D	76053	5D	8419265	85	7 39	0.12	7.10
HARD FP4 14	2745020_5ds_15344	5D	76053	5D	8419265	85	7.25	0.12	7.30
HARD EP4 15	2745020_5ds_15344	5D	76053	5D	8419265	85	7.23	0.13	8.01
HARD EP5 14	2745020_5ds_15344	5D	76053	5D	8419265	85	6.51	0.13	7.17
HARD BD 16	2745020_5ds_15346	5D	76055	5D	8419267	85	6.15	0.12	7 33
HARD DRY DRY	2745020_5ds_15346	5D	76054	5D	8419267	85	6.43	0.12	7.16
HARD EP3 15	2745020_5ds_15346	5D	76054	5D	8419267	85	7 39	0.12	7.36
HARD EP4 14	2745020 5ds 15346	5D	76054	5D	8419267	85	7.25	0.13	7.73
HARD EP4 15	2745020_5ds_15346	5D	76054	5D	8419267	85	7.74	0.13	8.01
HARD EP5 14	2745020 5ds 15346	5D	76054	5D	8419267	85	6.51	0.12	7.17
HARD BD 16	2774182 5ds 7304	5D	76010	5D	8613963	85	NA	0.13	8.71
HARD BI 16	2774182 5ds 7304	5D	76010	5D	8613963	85	NA	0.12	8.05
HARD CH 14	2774182 5ds 7304	5D	76010	5D	8613963	85	NA	0.12	8.08
HARD CLI 16	2774182 5ds 7304	5D	76010	5D	8613963	85	NA	0.15	9.89
HARD DRY DRY	2774182 5ds 7304	5D	76010	5D	8613963	85	NA	0.14	9.38
HARD EP3 15	2774182 5ds 7304	5D	76010	5D	8613963	85	NA	0.15	9.98
HARD EP4 14	2774182 5ds 7304	5D	76010	5D	8613963	85	NA	0.14	9.19
HARD EP4 15	2774182 5ds 7304	5D	76010	5D	8613963	85	NA	0.16	10.43
HARD EP5 14	2774182 5ds 7304	5D	76010	5D	8613963	85	NA	0.11	7.30
HARD EP5 15	2774182 5ds 7304	5D	76010	5D	8613963	85	NA	0.19	11.80
HARD IRR IRR	2774182 5ds 7304	5D	76010	5D	8613963	85	NA	0.16	10.58
HARD CLI 16	2781671 5ds 9472	5D	75997	5D	9332000	85	NA	0.11	7.47
HARD EP3 15	2781671 5ds 9472	5D	75997	5D	9332000	85	NA	0.11	7.43
HARD EP4 14	2781671 5ds 9472	5D	75997	5D	9332000	85	NA	0.11	7.33
HARD EP4 15	2781671 5ds 9472	5D	75997	5D	9332000	85	NA	0.13	8.49
HARD EP5 15	2781671 5ds 9472	5D	75997	5D	9332000	85	NA	0.13	8.94
HARD IRR IRR	2781671 5ds 9472	5D	75997	5D	9332000	85	NA	0.12	8.24
HARD BD 16	2781671 5ds 9461	5D	75993	5D	9332011	85	NA	0.11	7.34
HARD BI 16	2781671 5ds 9461	5D	75993	5D	9332011	85	NA	0.11	7.53
HARD_CH_14	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.11	7.43
HARD_CLI_16	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.12	8.04
HARD_DRY_DRY	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.11	7.54
HARD_EP3_15	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.12	8.01
HARD_EP4_14	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.13	8.42
HARD_EP4_15	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.14	9.20
HARD_EP5_14	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.11	7.39
HARD_EP5_15	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.14	9.30
HARD_IRR_IRR	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.13	8.85
HARD_BD_16	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.11	7.34
HARD_BI_16	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.11	7.53
HARD_CH_14	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.11	7.43
HARD_CLI_16	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.12	8.04
HARD_DRY_DRY	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.11	7.54
HARD_EP3_15	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.12	8.01
HARD_EP4_14	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.13	8.42
HARD_EP4_15	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.14	9.20
HARD_EP5_14	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.11	7.39
HARD_EP5_15	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.14	9.30
HARD_IRR_IRR	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.13	8.85
HARD_BD_16	2781671_5ds_9235	5D	75991	5D	9332237	85	NA	0.11	7.34
HARD_BI_16	2781671_5ds_9235	5D	75991	5D	9332237	85	NA	0.11	7.53
HARD_CH_14	2781671_5ds_9235	5D	75991	5D	9332237	85	NA	0.11	7.43
HARD_CLI_16	2781671_5ds_9235	5D	75991	5D	9332237	85	NA	0.12	8.04
HARD_DRY_DRY	2/816/1_5ds_9235	5D	75991	5D	9332237	85	NA	0.11	7.54
HARD_EP3_15	2/816/1_5ds_9235	5D	75991	5D	9332237	85	NA	0.12	8.01
HARD_EP4_14	2/816/1_5ds_9235	50	/5991	50	9332237	85	NA	0.13	8.42
HARD_EP4_15	2/816/1_5ds_9235	5D	75991	5D	9332237	85	NA	0.14	9.20
HARD_EP5_14	2/816/1_5ds_9235	5D	75991	5D	9332237	85	NA	0.11	7.39
HARD_EP5_15	2/816/1_5ds_9235	5D	75991	5D	9332237	85	NA	0.14	9.30
HARD_IKK_IKK	2/816/1_5ds_9235	5D	/5991	SD	9332237	85	NA	0.13	8.85
HARD_CLI_16	2/816/1_5ds_9223	5D	/5990	5D	9332249	85	NA	0.11	7.22
HARD_EP3_15	2/816/1_5ds_9223	5D	/5990	5D	9332249	85	NA	0.11	/.30
HARD_EP4_14	2/810/1_5d8_9223	50	75000	50	9352249	85 95	INA NA	0.11	/.38
HARD_EP4_15	2/810/1_5d8_9223	50	/3990	50	9332249	85 85	INA NA	0.13	0.41 9.25
TAKD_EP3_13	2/810/1_5d8_9223	50	/3990	50	9332249	83	INA	0.12	0.33

Table A1 Continued

Trait loc Vr [†]	Marker	Chr	Pos	CHR	Mh§	OTL ID	۸٩	P ^{2#}	-log10(p)
	2781671 5ds 0223	5D	75000	5D	0332240	85	NA NA	0.12	-10g10(p)
HARD_IKK_IKK	2781671_5ds_9225	5D	75080	50	9332249	85	NA	0.12	7.37
HARD BL 16	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.11	7.54
HARD CH 14	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.11	7.33
HARD CLI 16	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.12	8.04
HARD DRY DRY	2781671 5ds 9219	5D	75989	5D	9332253	85	NA	0.11	7.54
HARD EP3 15	2781671 5ds 9219	5D	75989	5D	9332253	85	NA	0.12	8.01
HARD EP4 14	2781671 5ds 9219	5D	75989	5D	9332253	85	NA	0.13	8.42
HARD_EP4_15	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.14	9.20
HARD_EP5_14	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.11	7.39
HARD_EP5_15	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.14	9.30
HARD_IRR_IRR	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.13	8.85
HARD_BD_16	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.11	7.34
HARD_BI_16	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.11	7.53
HARD_CH_14	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.11	7.43
HARD_CLI_16	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.12	8.04
HARD_DRY_DRY	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.11	7.54
HARD_EP3_15	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.12	8.01
HARD_EP4_14	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.13	8.42
HARD_EP4_15	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.14	9.20
HARD_EP5_14	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.11	7.39
HARD_EP5_15	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.14	9.30
HARD_IKR_IKK	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.13	8.85
HARD_CLI_16	2/816/1_5ds_915/	5D 5D	/5986	5D 5D	9332315	85	NA	0.11	7.22
HARD_EP3_15	2/816/1_5ds_915/	50	75980	50	9332315	85	NA	0.11	7.30
HAKD_EP4_14	2/816/1_50s_915/	50	75086	50	9332315	85 85	NA	0.11	7.38
HARD_EP4_15	2781671_5dc_0157	50	75086	50	9552515	85 85	NA	0.15	0.41 9.25
HARD_EPJ_13	2781671_5dc_0157	50	75086	50	9352515	85 85	NA	0.12	0.33 7.07
HARD_IKK_IKK	2739401 5ds 20579	5D	76380	50	11/21100	85	6.50	0.12	7.12
HARD FP4 15	2739401_5ds_20579 2242858 5ds 843	5D	76537	5D	21256151	85	-0.50 NA	0.12	7.12
HARD CH 14	2614662 5ds 579	5D	76397	5D	23058289	85	NA	0.11	7.50
HARD CLI 16	2614662_5ds_579	5D	76397	5D	23058289	85	NA	0.10	7.08
HARD EP4 14	2614662 5ds 579	5D	76397	5D	23058289	85	NA	0.11	7.64
HARD EP4 15	2614662 5ds 579	5D	76397	5D	23058289	85	NA	0.10	7.05
HARD EP5 15	2614662 5ds 579	5D	76397	5D	23058289	85	NA	0.11	7.38
HARD_IRR_IRR	2614662_5ds_579	5D	76397	5D	23058289	85	NA	0.12	7.90
HARD_CLI_16	2748871_5ds_2822	UKN	129709	5D	23346667	85	4.50	0.12	7.02
HARD_IRR_IRR	2748871_5ds_2822	UKN	129709	5D	23346667	85	4.47	0.12	7.03
HARD_BD_16	3169317_7bs_6045	7B	106340	7B	156437593	113	1.88	0.13	8.02
HARD_BI_16	3169317_7bs_6045	7B	106340	7B	156437593	113	2.85	0.15	8.81
HARD_EP5_15	3169317_7bs_6045	7B	106340	7B	156437593	113	2.60	0.12	7.28
HARD_IRR_IRR	3169317_7bs_6045	7B	106340	7B	156437593	113	2.89	0.13	7.80
MLPH_EP5_15	10560024_3b_8154	3B	46264	3B	626368663	52	-1.70	0.12	7.23
MLRS_EP5_14	3976624_1al_4871	UKN	133073	1A	563337674	5	0.16	0.15	8.06
MLRS_EP5_14	2755762_1bs_446	IB	6180	IB	15393391	6	-0.05	0.13	7.90
MLRS_EP4_14	2715434_2as_1190	UKN	125190	2A	163468275	20	0.15	0.15	8.81
MLRS_EP5_14	6416031_2a1_726	2A 2A	22559	2A 2A	089804023	24	-0.07	0.16	9.69
MLRS_EP4_14 MLPS_ED4_14	6415092_2al_1762	2A 2 A	21970	2A 2A	700980102	24	0.00	0.15	8.53
MLRS_EF4_14 MLPS_ED5_14	5246892 2bs 1581	2A 2B	21902	2R 2B	0127312	24	0.00	0.13	8.55
MLRS_EF5_14	5176564 2bs 847	LIKN	123971	2B 2B	38620602	20	-0.09	0.15	8.02
MLRS EP5 14	5192097 2bs 4621	2B	26002	2B	63820373	27	0.00	0.13	7.85
MLRS_BD_16	5244816 2bs 10170	2B	26109	2B	72938260	27	-0.14	0.15	7.05
MLRS EP4 14	8020386 2bl 973	2B	28014	2B	415059969	28	-0.05	0.15	8.64
MLRS EP4 14	8002564 2bl 4534	2B	32112	2B	656976741	31	-0.02	0.15	8.60
MLRS EP4 14	8002564 2b1 4533	2B	32111	2B	656976742	31	-0.04	0.15	8.63
MLRS EP5 14	7953703 2b1 4726	2B	31389	2B	657071400	31	0.10	0.13	8.00
MLRS_EP5_14	7953703_2b1_4718	2B	31387	2B	657071408	31	-0.02	0.13	7.89
MLRS_EP5_14	7953703_2b1_4692	2B	31384	2B	657071434	31	0.02	0.13	7.88
MLRS_EP5_14	8006724_2b1_4660	2B	33033	2B	735404943	32	0.04	0.13	7.91
MLRS_EP5_14	8088961_2b1_3997	2B	33671	2B	774682954	32	-0.13	0.13	8.04
MLRS_EP5_14	5388307_2ds_14890	2D	35318	2D	56254163	34	0.19	0.13	8.10
MLRS_EP5_14	5391007_2ds_4367	2D	36416	2D	116764802	35	-0.20	0.14	8.35
MLRS_EP5_14	9833177_2dl_16160	2D	35537	2D	527921804	37	-0.01	0.13	7.89
MLRS_EP5_14	9858970_2dl_3219	2D	38469	2D	601965671	38	0.03	0.13	7.89
MLRS_EP5_14	9858970_2dl_3228	2D	38473	2D	601965680	38	-0.09	0.13	8.04
MLRS_EP5_14	5531403_3as_17138	3A	40067	3A	28146043	39	-0.03	0.13	/.68
MLKS_EP4_14 MLRS_EP4_14	544/514_5as_343	5A	40651	3A	852/2189	40	-0.12	0.15	8.8/
MLKS_EP4_14	4320927_3al_462	зA	41057	зA	430939405	42	0.17	0.14	8.29

Table A1 Continued

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Trait loc Yr [†]	Marker	Chr	Pos	CHR [‡]	Mb§	OTL ID	Δ¶	R ^{2#}	-log10(p)
MIRS, EP5.14 10005157.36.753 38 44453 38 66887160 4.6 0.28 0.13 0.14 9.51 MIRS, EP5.14 10050756.36.4786 UKN 132947 38 405873511 54 0.018 0.14 8.16 MIRS, EP5.14 10050766.36.4223 310 477143 38 479524511 54 0.010 0.16 8.98 MIRS, EP5.14 206306.45.4.1335 310 47614 30 8562225 55 0.014 0.13 7.95 MIRS, EP5.14 601399.3.01.1165 3D 48858 3D 52622385 7 0.07 0.013 7.85 MIRS, EP5.14 7012970.46.1.241 4A 59809 48 52602326 6 0.012 0.13 7.90 MIRS, EP5.14 225454.44.1.1987 4D 6867156 4A 1681797 4D 1681797 4D 1681397 73 0.02 0.13 7.90 MIRS, EP5.14 2254717.544.1.9878 MIRS 1007 <td>MIPS EP5 14</td> <td>10762578 3b 6885</td> <td>UKN</td> <td>13/003</td> <td>3B</td> <td>2164045</td> <td>45</td> <td>0.27</td> <td>0.18</td> <td>8 58</td>	MIPS EP5 14	10762578 3b 6885	UKN	13/003	3B	2164045	45	0.27	0.18	8 58
MILRS, EP5.14 IOOSSYF, 3b., 125 3B 48387 3B 409529033 50 0.13 0.048 0.16 974 MILRS, EP5.14 IOOSSOF, 3b., 1256 3B 47797 3B 478148448 50 0.08 0.16 8.98 MILRS, EP5.14 IOOSGOE, 3b., 4213 3B 47289 3B 77828265 54 0.00 0.13 7.00 MILRS, EP5.14 IOOSGOE, 3b., 4213 3D 44584 3D S2622388 57 0.017 0.13 7.04 MILRS, EP5.14 IOOSGOE, 4b., 124, 000 4A 50690 4A 67414455 56 0.014 0.13 7.91 MILRS, EP5.14 ITSEOPLA MILS MILS 66 0.02 0.13 7.91 MILRS, EP5.14 2235871 MILS 665 0.02 0.13 7.90 MILRS, EP5.14 2235814, 441, 212104 HI 61637 4D 46613971 73 0.02 0.13 7.90 MILRS, EP5.14 22354	MIRS EP5 14	10705157 3b 753	3B	134993	3B	66887150	45	0.27	0.16	9.54
MILRS, EP5.14 IOSN0756.35.276 URN 132447 18 418744248 50 -0.08 0.10 0.16 9.78 MILRS, EP5.14 10025662.35.2428 3B 47739 3B 79520562 54 0.03 0.16 8.98 MILRS, EP5.14 0025903.341.1165 3D 48858 3D 328622385 57 0.07 0.13 7.98 MILRS, EP5.14 0025903.341.1165 3D 48858 3D 328622385 57 0.07 0.018 8.83 MILRS, EP5.14 1005979.441.2376 4A 51052 4A 476134651 60 0.03 0.15 8.83 MILRS, EP5.14 170597.441.2376 4A 51059 4B 7001012 60 0.00 0.13 7.03 729 MILRS, EP5.14 2235871.442.12910 4D 61837 4D 1681360 69 0.17 7.1 8.3 700 1.18 8.39 MILRS, EP5.14 14377344.41.42.2.1763 4D 643591 <td>MLRS_EP5_14</td> <td>10705197_3b_1425</td> <td>3B</td> <td>45387</td> <td>3B</td> <td>409529033</td> <td>50</td> <td>0.13</td> <td>0.10</td> <td>816</td>	MLRS_EP5_14	10705197_3b_1425	3B	45387	3B	409529033	50	0.13	0.10	816
MLRS, EP:1.4 10706053, 25, 2121 3B 47709 7B 709545611 54 -0.10 0.03 0.13 709 MLRS, EP:1.4 10025602, 35, 1228 35 30 38 79820862 54 -0.03 0.13 709 MLRS, EP:1.4 603390, 33, 1165 310 48858 30 52622388 57 -0.14 0.13 7.95 MLRS, EP:1.4 7110977, 441, 3258 4A 51632 4A 76143651 60 0.03 0.13 7.91 MLRS, EP:1.4 702500, 401, 1414 4B 5900 4B 5246306 67 4.02 0.13 7.91 MLRS, EP:1.4 225571, 441, 12970 4D 646877 4D 666876 67 4.02 0.13 7.89 MLRS, EP:1.4 1477340, 441, 21762 4D 64687 4D 46039363 73 0.02 0.13 7.90 MLRS, EP:1.4 1477340, 441, 21762 4D 64687 4D 46039363 73 0.02	MLRS_EP5_14	10580786 3b 4786	UKN	132947	3B	418748348	50	-0.08	0.14	974
MILRS, EP5.14 In025662_3D_2428 3B 47289 3B 798205862 54 0.03 0.14 0.13 7.90 MILRS, EP5.14 6053993_3d1_1165 3D 48614 3D 8561225 55 -0.07 0.13 7.95 MILRS, EP5.14 6013994_acv_2_000 4A 5005 4A 7414835 58 -0.07 0.13 7.95 MILRS, EP5.14 7110977_4d13757 4A 51052 4A 476154612 66 -0.02 0.13 7.91 MILRS, EP5.14 7022490_461_1414 4B 59980 4B 6080018 67 -0.02 0.13 7.90 MILRS, EP5.14 2235871_446_12917 4D 61357 4D 10613810 75 -0.02 0.13 7.90 MILRS, EP5.14 1237350_441_v2_27761 4D 64546 4D 49613974 73 0.02 0.13 7.90 MILRS, EP5.14 1237350_441_v2_2761 4D 64645 4D 496139761 73 0.	MLRS EP4 14	10760636 3b 4215	3B	47079	3B	769543611	54	-0.10	0.16	8 98
MLRS, EP5.14 2003046, 34, 133 3D 47614 5D 8661225 5S -0.14 0.07 0.13 7.98 MLRS, EP5.14 6012494, 4a, v.2.9009 4A 50695 4A 67414835 5S -0.07 0.13 7.98 MLRS, EP5.14 7114907, 4aL, 1928 4A 56499 4A 707246102 63 -0.04 0.13 7.91 MLRS, EP5.14 7124077, 4aL, 1928 4A 56499 4B 5240610 67 -0.12 0.13 8.05 MLRS, EP5.14 7022400, 4bL, 431 4B 59698 4B 5240610 69 0.17 0.14 8.73 MLRS, EP5.14 1237540, 4dL, v.2, 17679 4D 63464 4D 496139310 73 -0.02 0.13 7.39 MLRS, EP5.14 1437340, 4dL, v.2, 17679 4D 63464 4D 496139310 73 -0.02 0.13 7.39 MLRS, EP5.14 14377440, 4L, v.2, 17679 4D 63464 4D 496139367 7	MLRS EP5 14	10425662 3b 3428	3B	47289	3B	798205862	54	0.03	0.13	7 90
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS EP5 14	2603046 3ds 1335	3D	47614	3D	8561225	55	-0.14	0.13	8.04
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP5_14	6953993 3dl 1165	3D	48858	3D	528623288	57	-0.07	0.13	7.98
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS EP5 14	6012949 4as v2 9009	4A	50695	4A	67414835	58	-0.08	0.13	7.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MLRS EP4 14	7110987 4a1 3876	4A	51052	4A	476134651	60	0.03	0.15	8 58
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS EP5 14	7145077 4al 19258	4A	54649	4A	707246102	63	-0.04	0.13	7.91
$ \begin{array}{lllll} \begin{tabular}{l lllllllllllllllllllllllllllllllllll$	MLRS EP5 14	7022490 4b1 1414	4B	59890	4B	524603106	66	-0.02	0.13	7.90
$ \begin{array}{lllll} \begin{tabular}{l lllllllllllllllllllllllllllllllllll$	MLRS EP5 14	6965059 4b1 4331	4B	59698	4B	608056018	67	-0.12	0.13	8.05
MLRS, EP5_14 232587, 445, 12910 4D 61537 4D 16813690 69 0.71 0.14 8.37 MLRS, EP5_14 14377340, 41, V2, 17679 4D 63465 4D 496139310 73 0.02 0.13 7.90 MLRS, EP5_14 14377340, 41, V2, 17615 4D 63465 4D 496139374 73 0.02 0.13 7.90 MLRS, EP1_41 1432003, 41, V2, 2736 UKN 128971 5A 414046907 72 -0.03 0.17 8.33 MLRS, EP1_41 2257417, 5hs. 15958 5B 70106 5B 121185149 78 -010 0.14 8.12 MLRS, EP5_14 2257417, 5hs. 15958 5B 670105 5B 121185149 78 0.08 0.13 7.91 MLRS, EP5_14 1090228, 5b, 7379 UKN 135233 5B 52932468 2.033 0.15 7.84 MLRS, EP5_14 10910228, 5b, 1736 UKN 135242 5B 52932490 82 -0.03 <	MLRS EP5 14	2275446 4ds 19878	UKN	137738	4D	7096132	69	0.08	0.14	7.87
	MLRS EP5 14	2325871 4ds 12910	4D	61537	4D	16813690	69	0.17	0.14	8.37
	MLRS EP5 14	2316586 4ds 4113	4D	61687	4D	26205822	69	0.00	0.13	7.88
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MLRS EP5 14	14377340 4dl v2 17679	4D	63465	4D	496139310	73	-0.02	0.13	7.90
	MLRS_EP5_14	14377340_4d1_v2_17626	4D	63461	4D	496139363	73	0.02	0.13	7.90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MLRS_EP5_14	14377340_4d1_v2_17615	4D	63459	4D	496139374	73	0.02	0.13	7.90
	MLRS_EP4_14	14320034_4d1_v2_2527	UKN	128940	5A	414046997	72?	-0.03	0.17	8.53
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP4_14	14320034_4d1_v2_2536	UKN	128971	5A	414047006	72?	0.17	0.18	9.09
MLRS, EP5_14 2257417_5bs_15013 SB 70105 SB 121185150 78 0.00 0.14 8.12 MLRS, EP5_14 10925497_5b1_8503 SB 69123 SB 307003599 79 -0.23 0.13 7.02 MLRS, EP5_14 10910228_5b1_7379 UKN 135243 SB 559436778 79 0.03 0.15 7.84 MLRS, EP5_14 10910228_5b1_7366 UKN 135243 SB 523932476 82 -0.04 0.15 7.84 MLRS, EP5_14 10910228_5b1_7366 UKN 135242 SB 523932490 82 -0.04 0.15 7.84 MLRS, EP5_14 10910228_5b1_7366 UKN 135242 SB 523932492 82 -0.01 0.13 7.89 MLRS, EP5_14 1091938_5b1_1478 SB 7550 SB 666433886 84 0.01 0.13 7.89 MLRS, EP5_14 4489032_501_4410 SD 717180 SD 717186688 90 0.01	MLRS_EP5_14	2257417_5bs_15959	5B	70107	5B	121185149	78	-0.10	0.14	8.12
	MLRS_EP5_14	2257417_5bs_15958	5B	70106	5B	121185150	78	0.10	0.14	8.12
	MLRS_EP5_14	2257417_5bs_15913	5B	70105	5B	121185195	78	0.08	0.15	7.99
	MLRS_EP5_15	10925497_5b1_8503	5B	69123	5B	307003599	79	-0.23	0.13	7.02
	MLRS_EP5_14	10882853_5b1_3768	5B	67832	5B	359486768	79	0.05	0.13	7.91
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP5_14	10910228_5b1_7379	UKN	135253	5B	523932477	82	0.03	0.15	7.84
	MLRS_EP5_14	10910228_5b1_7370	UKN	135249	5B	523932486	82	-0.03	0.15	7.84
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP5_14	10910228_5bl_7366	UKN	135244	5B	523932490	82	-0.04	0.15	7.86
	MLRS_EP5_14	10910228_5bl_7364	UKN	135242	5B	523932492	82	-0.03	0.15	7.84
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_BD_16	10890478_5bl_16094	UKN	137597	5B	528563376	82	-0.33	0.16	9.11
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP5_14	10919338_5bl_1478	5B	75350	5B	686433888	84	0.01	0.13	7.89
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP5_14	10919338_5bl_1486	5B	75351	5B	686433896	84	0.11	0.13	7.97
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP4_14	4503898_5dl_1782	5D	77180	5D	276671889	87	-0.01	0.15	8.57
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP5_14	4488923_5dl_4410	5D	81451	5D	511948668	90	-0.21	0.14	8.25
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP5_14	4429106_6as_3390	6A	83059	6A	3705808	92	0.01	0.13	7.89
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP5_14	4429106_6as_3396	6A	83060	6A	3705814	92	-0.01	0.13	7.89
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP4_14	5806319_6al_1934	6A	85822	6A	442085721	95	0.20	0.16	9.10
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP4_14	5745805_6al_1075	6A	87221	6A	552828358	96	0.02	0.15	8.59
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP5_15	5692765_6al_1356	6A	87704	6A	594960290	96	-0.27	0.13	7.41
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP4_14	5819489_6al_18687	6A	87766	6A	595061050	96	0.01	0.15	8.57
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP5_14	5835370_6al_17148	6A	88223	6A	612113836	97	0.08	0.13	7.98
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP5_14	5835370_6al_17142	6A	88222	6A	612113842	97	0.22	0.12	7.05
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MLRS_EP4_14	2943095_6bs_552	6B	89018	6B	27126339	98	0.05	0.15	8.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MLRS_EP4_14	4345576_6b1_497	6B	92365	6B	681901174	100	0.03	0.12	7.28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MLRS_EP4_14	4345576_6b1_537	6B	92366	6B	681901214	100	0.03	0.12	7.28
MLRS_EP5_14 2116712_6ds_6275 6D 94035 6D 22182783 101 -0.04 0.13 7.91 MLRS_EP5_14 3124102_6ds_225 6D 94342 6D 60383430 101 -0.15 0.14 8.29 MLRS_EP5_14 3295766_6d1_4239 6D 97211 6D 453306987 103 0.04 0.13 7.92 MLRS_EP5_14 4190671_7as_2139 UKN 128032 7A 38749287 104 -0.04 0.17 8.52 MLRS_EP5_14 4047115_7as_639 7A 100568 7A 94913347 105 0.13 0.14 8.17 MLRS_EP5_14 4446000_7al_2731 7A 102510 7A 540909626 109 -0.08 0.13 7.97 MLRS_EP5_14 4455276_7al_1712 UKN 126707 7A 72338881 111 -0.23 0.14 8.42 MLRS_EP5_14 3919807_7ds_190 7D 111330 7D 461403554 120 0.10 0.13 8.02 MLRS_EP5_14 331448_7dl_1518 7D 113312 7	MLRS_EP4_14	4261361_6b1_2114	6B	92571	6B	706582549	100	-0.09	0.15	8.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MLRS_EP5_14	2116712_6ds_6275	6D	94035	6D	22182783	101	-0.04	0.13	7.91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MLRS_EP5_14	2124102_6ds_225	6D	94342	6D	60383430	101	-0.15	0.14	8.29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MLRS_EP5_14	3295766_6dl_4239	6D	9/211	6D	435306987	103	0.04	0.13	7.92
MLRS_EP5_14 404/115_ras_6.59 /A 100568 /A 94913347 105 0.1.4 8.17 MLRS_EP5_14 4446000_7al_2738 7A 102512 7A 540909569 109 -0.08 0.13 7.97 MLRS_EP5_14 4446000_7al_2729 7A 102510 7A 540909628 109 -0.08 0.13 7.97 MLRS_EP5_14 44450276_7al_1712 UKN 126707 7A 723388881 111 -0.23 0.14 8.42 MLRS_EP5_14 4455276_7al_1712 UKN 126707 7A 723388881 111 -0.23 0.14 8.42 MLRS_EP5_14 3919807_7ds_190 7D 111330 7D 60148204 116 0.02 0.13 7.90 MLRS_EP5_14 331448_7d_1711 7D 113312 7D 461403547 120 0.09 0.13 8.02 MLRS_EP5_14 331448_7d_1526 UKN 122449 7D 488050396 121 -0.01 0.16 8.46 MLRS_EP5_14 3331788_7dl_1409 7D 115946 7D	MLRS_EP4_14	41906/1_/as_2139	UKN	128032	7A 7	38/4928/	104	-0.04	0.17	8.52
MLRS_EP5_14 4446000_ral_2788 /A 102512 /A 540909509 109 -0.08 0.13 7.97 MLRS_EP5_14 4446000_ral_2729 /A 102511 /A 540909626 109 0.08 0.13 7.97 MLRS_EP5_14 4446000_ral_2729 /A 102510 /A 540909628 109 -0.08 0.13 7.97 MLRS_EP5_14 4455276_ral_1712 UKN 126707 /A 723388881 111 -0.23 0.14 8.42 MLRS_EP5_14 6670865_rbl_689 /7B 107934 7B 562992216 115 0.14 0.13 8.05 MLRS_EP5_14 331448_rdl_1711 /7D 113315 7D 461403554 120 0.10 0.13 8.02 MLRS_EP5_14 331448_rdl_1518 7D 113312 7D 461403747 120 0.09 0.13 8.02 MLRS_EP5_14 331788_rdl_1409 7D 115346 7D 547276474 122 -0.21 0.14 8.20 MLRS_EP5_14 3342062_rdl_680 UKN 123182	MLRS_EP5_14	404/115_/as_639	/A 7.4	100568	/A 7.	94913347	105	0.13	0.14	8.17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MLRS_EP5_14	4446000_7a1_2788	7A 7A	102512	7A 7	540909569	109	-0.08	0.13	7.97
MLRS_EP5_14 4446000_fal_2/29 /A 102510 /A 540909628 109 -0.08 0.15 7.97 MLRS_EP5_14 445002_f6_7al_1712 UKN 126707 7A 723388881 111 -0.23 0.14 8.42 MLRS_EP5_14 6670865_7bl_689 7B 107934 7B 562992216 115 0.14 0.13 8.05 MLRS_EP5_14 3919807_7ds_190 7D 111330 7D 60148204 116 0.02 0.13 7.90 MLRS_EP5_14 331448_7dl_1711 7D 113312 7D 461403747 120 0.09 0.13 8.06 MLRS_EP5_14 331448_7dl_1518 7D 113312 7D 461403747 120 0.09 0.13 8.02 MLRS_EP5_14 331788_7dl_1409 7D 115946 7D 547276474 122 -0.21 0.14 8.20 MLRS_EP5_14 339577_7dl_1102 UKN 124912 7D 594987964 123 0.04 0.16 7.99 MLRS_EP5_14 3348754_7dl_4968 7D 118998	MLKS_EP5_14 MLDS_ED5_14	4446000_7a1_2731	7A 7A	102511	7A 7A	540909626	109	0.08	0.13	7.97
MLRS_EP5_14 44352/6_r/al_112 OKN 12007 7A 72536861 111 -0.25 0.14 8.42 MLRS_EP5_14 6670865_r/bl_689 7B 107934 7B 562992216 115 0.14 0.13 8.05 MLRS_EP5_14 3919807_r/ds_190 7D 111330 7D 60148204 116 0.02 0.13 7.90 MLRS_EP5_14 3314448_r/dl_1518 7D 113315 7D 461403554 120 0.10 0.13 8.06 MLRS_EP5_14 3314448_r/dl_518 7D 113312 7D 461403747 120 0.09 0.13 8.02 MLRS_EP5_14 331788_rdl_1409 7D 115946 7D 547276474 122 -0.01 0.16 8.46 MLRS_EP5_14 3331787_rdl_1102 UKN 124912 7D 594987964 123 0.04 0.16 7.99 MLRS_EP5_14 3342062_rdl_680 UKN 123182 7D 615915739 123 -0.09 0.15 7.92 MLRS_EP5_14 3348754_rdl_4926 7D 118998	MLRS_EP5_14 MLDS_ED5_14	4446000_781_2729	/A	102310	7A 7A	7777200001	109	-0.08	0.15	1.91 8.42
MLRS_EP5_14 3070007_7ds_190 7D 107394 7D 502992210 113 0.14 0.13 8.05 MLRS_EP5_14 3919807_7ds_190 7D 11330 7D 60148204 116 0.02 0.13 7.90 MLRS_EP5_14 3314448_7d1_1711 7D 113315 7D 461403554 120 0.00 0.13 8.06 MLRS_EP5_14 3314448_7d1_518 7D 113312 7D 461403747 120 0.09 0.13 8.02 MLRS_EP5_14 331788_7d1_1409 7D 115946 7D 547276474 122 -0.01 0.16 8.46 MLRS_EP5_14 339577_7d1_1102 UKN 122449 7D 594987964 123 0.04 0.16 7.99 MLRS_EP5_14 3348754_7d1_4968 7D 118998 7D 623156542 123 0.04 0.16 7.90 MLRS_EP5_14 3348754_7d1_4926 7D 118996 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 334705_7d1_3503 7D 118996 7D	MLRS_EPS_14 MLPS_ED5_14	4433276_7a1_1712	UNN 7D	120707	7A 7D	562002216	111	-0.25	0.14	0.42 8.05
MLRS_EP5_14 3319607_18_190 7D 111305 7D 60142204 116 0.02 0.13 7.90 MLRS_EP5_14 331448_7dl_1711 7D 113315 7D 461403554 120 0.10 0.13 8.06 MLRS_EP5_14 331448_7dl_1518 7D 113312 7D 461403574 120 0.09 0.13 8.02 MLRS_EP5_14 331788_7dl_1409 7D 115946 7D 547276474 122 -0.21 0.14 8.20 MLRS_EP5_14 339577_7dl_102 UKN 122449 7D 594987964 123 0.04 0.16 7.99 MLRS_EP5_14 3342062_7dl_680 UKN 123182 7D 615915739 123 -0.09 0.15 7.90 MLRS_EP5_14 3348754_7dl_4968 7D 118998 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 334755_7dl_1367 7D 118688 7D 623156544 123 0.04 0.13	MLDS ED5 14	2010807 74- 100	7D 7D	111220	7D 7D	601492210	115	0.14	0.13	8.03 7.00
MLRS_EF5_14 3314448_7dl_1518 7D 113312 7D 401403344 120 0.09 0.13 8.00 MLRS_EP5_14 3314448_7dl_1518 7D 113312 7D 461403747 120 0.09 0.13 8.02 MLRS_EP5_14 331788_7dl_1409 7D 115946 7D 547276474 122 -0.01 0.16 8.46 MLRS_EP5_14 339577_7dl_1102 UKN 124912 7D 594987964 123 0.04 0.16 7.99 MLRS_EP5_14 3342062_7dl_680 UKN 123182 7D 615915739 123 -0.09 0.15 7.90 MLRS_EP5_14 3348754_7dl_4968 7D 118998 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 3348754_7dl_4926 7D 118996 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 334708_7dl_3503 7D 118688 7D 626231720 123 0.14 0.14 8.29 MLRS_EP5_14 7012446_4al_76 4A 52159 <td< td=""><td>MLRS_EF5_14 MLRS_ED5_14</td><td>2214448 741 1711</td><td>7D 7D</td><td>112215</td><td>7D 7D</td><td>461402554</td><td>120</td><td>0.02</td><td>0.13</td><td>8.06</td></td<>	MLRS_EF5_14 MLRS_ED5_14	2214448 741 1711	7D 7D	112215	7D 7D	461402554	120	0.02	0.13	8.06
MLRS_EP5_14 3314448_/dL_1518 7D 113512 7D 401405747 120 0.09 0.13 8.02 MLRS_EP5_14 331788_7dl_1409 7D 115946 7D 548050396 121 -0.01 0.16 8.46 MLRS_EP5_14 333777_dl_1102 UKN 124912 7D 594987964 122 -0.21 0.14 8.20 MLRS_EP5_14 339577_7dl_1102 UKN 124912 7D 594987964 123 0.04 0.16 7.99 MLRS_EP5_14 334754_7dl_4968 7D 118998 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 3348754_7dl_4926 7D 118996 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 334755_7dl_1367 7D 118688 7D 626231720 123 0.14 0.14 8.29 MLRS_EP5_14 334708_7dl_3503 7D 118491 7D 634376273 123 -0.16 0.14 8.24 MLRS_EP5_14 7012446_4al_76 4A 52159 U	MIDS ED5 14	2214448_741_1518	7D 7D	112212	7D 7D	401403554	120	0.10	0.13	8.00
MLRS_EP5_14 3331788_7d1_1409 7D 115946 7D 547276474 122 -0.21 0.16 8.40 MLRS_EP5_14 339577_7d1_1102 UKN 124912 7D 594987964 123 0.04 0.16 7.99 MLRS_EP5_14 3342062_7d1_680 UKN 123182 7D 615915739 123 -0.09 0.15 7.99 MLRS_EP5_14 3348754_7d1_4968 7D 118998 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 3348754_7d1_4968 7D 118998 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 334754_7d1_4926 7D 118996 7D 623156584 123 0.04 0.13 7.90 MLRS_EP5_14 334754_7d1_367 7D 118698 7D 626231720 123 0.14 8.29 MLRS_EP5_14 334705_7d1_3503 7D 118491 7D 634376273 123 -0.16 0.14 8.24 MLRS_EP5_14 7012446_4a1_76 4A 52159 Un 24	MLRS FP4 14	1277312 7d1 526	UKN	122449	7D	401403747	120	-0.09	0.15	8.02
MLRS_EP5_14 334754_7dl_1102 UKN 12970 7D 594987964 123 0.04 0.16 7.99 MLRS_EP5_14 3342062_7dl_680 UKN 123182 7D 615915739 123 -0.09 0.15 7.92 MLRS_EP5_14 3348754_7dl_4968 7D 118998 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 3348754_7dl_4926 7D 118996 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 3387155_7dl_1367 7D 118996 7D 623156584 123 0.04 0.13 7.90 MLRS_EP5_14 334706_7dl_3503 7D 118698 7D 626231720 123 0.14 0.14 8.29 MLRS_EP5_14 334708_7dl_3503 7D 118491 7D 634376273 123 -0.16 0.14 8.24 MLRS_EP5_14 7012446_4al_76 4A 52159 Un 244927138 60? 0.04 0.13	MLRS FP5 14	3331788 7d1 1409	70	115946	7D	547276474	122	-0.01	0.10	8 20
MLRS_EP5_14 3342062_7dI_680 UKN 123182 7D 615915739 123 -0.09 0.15 7.92 MLRS_EP5_14 3348754_7dI_4968 7D 118998 7D 615915739 123 -0.09 0.15 7.92 MLRS_EP5_14 3348754_7dI_4968 7D 118996 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 3348754_7dI_4926 7D 118996 7D 623156584 123 0.04 0.13 7.90 MLRS_EP5_14 3387155_7dI_1367 7D 118688 7D 626231720 123 0.14 0.14 8.29 MLRS_EP5_14 3334706_7dI_3503 7D 118491 7D 634376273 123 -0.16 0.14 8.24 MLRS_EP5_14 7012446_4a1_76 4A 52159 Un 244927138 60? 0.04 0.13 7.92 MLRW_IRR_IRR 3453826_1bs_3226 IB 5932 IB 17145962 6 -1.29 0.12	MLRS FP5 14	339577 7dl 1102	UKN	124012	7D	59498796/	122	0.04	0.14	7 99
MLRS_EP5_14 3348754_7dl_4968 7D 118998 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 3348754_7dl_4926 7D 118998 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 3348754_7dl_4926 7D 118996 7D 623156542 123 0.04 0.13 7.90 MLRS_EP5_14 3387155_7dl_1367 7D 118688 7D 626231720 123 0.14 0.14 8.29 MLRS_EP5_14 3334708_7dl_3503 7D 118491 7D 634376273 123 -0.16 0.14 8.24 MLRS_EP5_14 7012446_4al_76 4A 52159 Un 244927138 60? 0.04 0.13 7.92 MLRW_IRR_IRR 3453826_1bs_3226 1B 5932 1B 17145962 6 -1.29 0.12 7.57	MLRS FP5 14	3342062 7d1 680	UKN	123182	7D	615915730	123	-0.04	0.15	7.92
MLRS_EP5_14 3348754_7dl_4926 7D 118996 7D 623156584 123 0.04 0.13 7.90 MLRS_EP5_14 3387155_7dl_1367 7D 118996 7D 623156584 123 0.04 0.13 7.90 MLRS_EP5_14 3387155_7dl_1367 7D 118688 7D 626231720 123 0.14 0.14 8.29 MLRS_EP5_14 3334708_7dl_3503 7D 118491 7D 634376273 123 -0.16 0.14 8.24 MLRS_EP5_14 7012446_4al_76 4A 52159 Un 244927138 60? 0.04 0.13 7.92 MLRW_IRR_IRR 3453826_1bs_3226 1B 5932 1B 17145962 6 -1.29 0.12 7.57	MLRS EP5 14	3348754 7d1 4968	7D	118998	7D	623156542	123	0.03	0.13	7 90
MLRS_EP5_14 3387155_7dl_1367 7D 118688 7D 6221700 123 0.14 0.14 8.29 MLRS_EP5_14 3334708_7dl_3503 7D 118688 7D 6233720 123 0.14 0.14 8.29 MLRS_EP5_14 3334708_7dl_3503 7D 118491 7D 634376273 123 -0.16 0.14 8.24 MLRS_EP5_14 7012446_4al_76 4A 52159 Un 244927138 60? 0.04 0.13 7.92 MLRW_IRR_IRR 3453826_1bs_3226 1B 5932 1B 17145962 6 -1.29 0.12 7.57	MLRS EP5 14	3348754 7d1 4926	7D	118996	7D	623156584	123	0.04	0.13	7 90
MLRS_EP5_14 334708_7dL_3503 7D 118491 7D 634376273 123 -0.16 0.14 8.24 MLRS_EP5_14 7012446_4al_76 4A 52159 Un 244927138 60? 0.04 0.13 7.92 MLRW_IRR_IRR 3453826_1bs_3226 1B 5932 1B 17145962 6 -1.29 0.12 7.57	MLRS EP5 14	3387155 7d1 1367	7D	118688	7D	626231720	123	0.14	0.14	8 29
MLRS_EP5_14 7012446_4al_76 4A 52159 Un 244927138 60? 0.04 0.13 7.92 MLRW_IRR_IRR 3453826_1bs_3226 1B 5932 1B 17145962 6 -1.29 0.12 7.57	MLRS EP5 14	3334708 7d1 3503	7D	118491	7D	634376273	123	-0.16	0.14	8.24
MLRW IRR IRR 3453826 1bs 3226 1B 5932 1B 17145962 6 -1.29 0.12 7.57	MLRS EP5 14	7012446 4a1 76	4A	52159	Un	244927138	60?	0.04	0.13	7.92
	MLRW IRR IRR	3453826 1bs 3226	1B	5932	1B	17145962	6	-1.29	0.12	7.57

Table A1 Continued

Trait loc Yr [†]	Marker	Chr	Pos	CHR [‡]	Mb§	OTL ID	Δ¶	R ^{2#}	-log10(p)
MI DW IDD IDD	2452826 1bc 2042	10	5026	10	17146145	6	1.20	0.12	7.71
MIDW IDD IDD	2452826 1bc 2022	10	5022	10	17146165	6	1.30	0.13	7.71
MIRW BI 16	3451628 1bs 1524	1B 1R	6336	1B 1R	25800/08	6	3.15	0.13	7.71
MIDW DI 16	2451628_1bs_1476	10	6224	10	25800546	6	-5.15	0.12	7.04
MIRW PL 16	2451628_1bs_1470	10	6222	10	25899540	6	2.15	0.12	7.04
MLTW ED5 15	3431028_108_1473 2021054_1e1_1101	ID	124000	1.0	23899349	5	0.21	0.12	7.04
MLTW_EP5_15	3921934_181_1101	UKN	124909	1A	521991074	5	-0.51	0.12	7.35
MLIW_EP5_15	3921954_1a1_1141	UKN	125052	IA	521991114	5	0.06	0.12	7.40
MLTW_EP5_15	39/186/_1al_22696	IA	4680	IA	54/901//5	5	-0.37	0.19	12.05
MLTW_EP5_15	3869500_1al_16071	1A	4720	1A	564603615	5	-0.44	0.14	8.52
MLTW_EP5_15	3869500_1al_16060	1A	4718	1A	564603626	5	-0.44	0.14	8.52
MLTW_BI_16	3453826_1bs_3226	1B	5932	1B	17145962	6	-2.78	0.12	8.02
MLTW_BI_16	3453826_1bs_3043	1B	5926	1B	17146145	6	-2.71	0.11	7.70
MLTW_BI_16	3453826_1bs_3023	1B	5923	1B	17146165	6	2.69	0.12	8.01
MLTW_EP5_15	3482438_1bs_1714	1B	6425	1B	21367114	6	1.66	0.12	7.92
MLTW_BI_16	3451172_1bs_433	1B	6326	1B	21443789	6	NA	0.09	7.32
MLTW_EP5_15	3422647_1bs_7183	1B	6268	1B	22824562	6	-0.49	0.11	7.14
MLTW_BD_16	3434158_1bs_9081	1B	6314	1B	30403173	6	NA	0.12	8.25
MLTW_EP5_15	3475565_1bs_1037	UKN	124703	1B	32817045	6	-0.05	0.19	11.78
MLTW EP5 15	3470361 1bs 739	1B	8175	1B	171106182	8	-0.67	0.11	7.50
MLTW EP5 15	3433385 1bs 2429	1B	7694	1B	202758082	8	-0.57	0.19	12.09
MLTW EP5 15	3433385 1bs 2460	1B	7695	1B	202758113	8	-0.11	0.19	11.87
MLTW FP5 15	3895037 161 2485	1B	11987	1B	653081906	13	0.18	0.19	11.88
MLTW EP5_15	1910681 1ds 1845	1D	14416	1D	67443132	14	-1.04	0.11	7.09
MLTW EP5 15	2290615 141 3201	10	14205	1D	205402027	14	0.01	0.11	11.86
MLTW ED5 15	2290015_1d1_5201	10	14205	1D	462719121	17	0.01	0.15	0.42
MLTW ED5 15	2284405 141 7840	1D	15014	1D	402710121	17	-0.00	0.15	12.26
MLTW EP5_15	2284405_141_7824	1D	15914	1D	402/10133	17	-0.59	0.20	12.30
MLTW_EP5_15	2284405_101_7834	1D	15913	ID 1D	462/18159	17	-0.58	0.20	12.34
MLTW_EP5_15	2284405_1dl_7833	ID	15912	ID	462/18160	17	0.59	0.20	12.36
MLTW_EP5_15	2284405_1dl_7596	ID	15904	ID	462/1839/	17	-0.63	0.15	9.67
MLTW_EP5_15	2266038_1dl_884	1D	16428	1D	474983270	17	-0.22	0.19	11.90
MLTW_EP5_15	2266038_1dl_688	1D	16422	1D	474983466	17	0.39	0.19	12.01
MLTW_EP5_15	2266038_1dl_672	1D	16421	1D	474983482	17	-0.35	0.19	12.01
MLTW_EP5_15	5274853_2as_1597	2A	17595	2A	23497175	18	0.30	0.12	7.08
MLTW_EP5_15	5274853_2as_1583	2A	17593	2A	23497189	18	-0.30	0.12	7.08
MLTW_EP5_15	5197325_2as_765	2A	18383	2A	49884137	18	0.55	0.19	12.00
MLTW_EP5_15	6335763_2al_578	UKN	122745	2A	588215121	22	0.20	0.13	7.75
MLTW_EP5_15	6335763_2a1_574	UKN	122727	2A	588215125	22	-0.14	0.21	11.46
MLTW EP5 15	6434376 2al 9024	2A	19021	2A	597215006	22	0.20	0.19	11.88
MLTW EP5 15	6380908 2al 4964	2A	22895	2A	728813485	24	-0.68	0.20	12.37
MLTW EP5 15	6362950 2al 3896	2A	23459	2A	748682248	25	0.15	0.19	11.90
MLTW EP5 15	6362950 2a1 3887	2A	23457	2A	748682257	25	-0.36	0.19	11.95
MLTW EP5 15	8075293 261 9728	2B	28825	2B	436242677	28	0.00	0.19	11.91
MLTW EP5_15	7987244 2bl 3643	2D 2B	20023	2B 2B	436412383	28	0.51	0.11	7 22
MLTW EP5 15	8090690 261 14565	2D 2B	29636	2B 2B	524235209	20	-1.22	0.11	7.22
MLTW ED5 15	8050050_201_14505	LIVN	124480	20	557228802	29	0.28	0.11	7.00
MLTW ED5 15	6082720 2bl 1527	20	20299	20	502061276	29	0.56	0.11	11 77
MLTW ED5 15	7042088 251 2061	2D UEN	121690	20	667417901	21	-0.15	0.19	11.77
MLTW_EP5_15	/942088_201_3961		131089	2B 2D	60/41/891	31	-0.18	0.20	11.58
MLIW_EP5_15	8085346_201_8079	2B	32832	2B	699288270	31	0.30	0.12	8.04
MLTW_EP5_15	5372804_2ds_1471	UKN	126072	2D	44894650	33	0.05	0.19	11.73
MLTW_EP5_15	5331953_2ds_4427	2D	35468	2D	61024791	34	0.34	0.11	7.15
MLTW_EP5_15	5330991_2ds_5096	2D	35466	2D	73583923	34	-0.30	0.19	11.90
MLTW_EP5_15	5388470_2ds_592	2D	37758	2D	261987621	36	-0.30	0.11	7.05
MLTW_EP5_15	3284444_3as_3787	3A	40143	3A	23908087	39	0.68	0.11	7.17
MLTW_EP5_15	3439719_3as_124	3A	41188	3A	129893201	40	0.44	0.15	9.74
MLTW_EP5_15	3354266_3as_54	3A	41312	3A	135590589	40	-0.13	0.19	11.88
MLTW_EP5_15	3354266_3as_104	3A	41313	3A	135590592	40	0.13	0.19	11.88
MLTW_EP5_15	3441353_3as_768	UKN	123623	3A	212196873	41	-0.43	0.12	7.20
MLTW_EP5_15	4338188_3al_5343	3A	41475	3A	440027969	42	-0.80	0.11	7.29
MLTW_EP5_15	4343024_3al_33	UKN	119548	3A	684521615	44	0.13	0.20	11.70
MLTW_EP5_15	4343024_3a1_38	UKN	119567	3A	684521615	44	0.12	0.20	11.69
MLTW EP5 15	4233820 3al 4642	3A	43010	3A	706202437	44	0.02	0.19	11.86
MLTW EP5 15	4233820 3al 4641	3A	43009	3A	706202438	44	-0.56	0.19	12.19
MLTW EP5 15	4108010 3b 247	3B	45020	3B	245911025	48	-0.01	0.19	11.85
MLTW EP5 15	10751565 3b 2623	UKN	129207	3B	739339484	53	1.37	0.24	13.01
MLTW EP5 15	10774300 3b 13150	3B	47429	3B	815050498	54	0.35	0.19	12.05
MLTW FP5 15	10757127 3b 4836	UKN	133025	3B	821046179	54	-0.55	0.21	11 39
MLTW FP5 15	10757127 3b 4802	UKN	132073	3B	821046213	54	0.00	0.13	7 64
MITW FD5 15	6955423 341 274	3D	48120	3D	347562079	56	-0.11	0.15	11.80
MLTW ED5 15	6052453 341 47	30	40127	3D	105021615	57	0.11	0.19	12.07
MITW ED5 15	5808011 /og v2 1120	44	40J0/ 50560	14	475721015	50	0.00	0.19	12.13
WIL1 W_EP3_13	5070011_4d8_V2_1159	4A	20200	4/1	100008027	J7	0.23	0.19	11.92

Table A1 Continued

Trait loc Vr [†]	Marker	Chr	Pos	CHR	Mb§	OTL ID	٨٩	P ^{2#}	-log10(p)
MITW ED5 15	5027244 4oc v2 2109	4.4	50482	44	120240680	50	1.12	0.12	7.62
MLTW ED5 15	2022577 740 700	4A UZN	102059	4A	720442112	59	0.25	0.12	11.03
MLTW EP5_15	3922377_7ds_700	UKN	123236	4A 4A	729442112	63	0.55	0.23	11.64
MLTW_EP5_15	1922377_7ds_094		123233	4A 4D	117002427	63	-0.51	0.24	11.60
MLTW EP5_15	4804000_408_4800 4800458_4ba_2401	4D 4D	57580	4D 4D	11/092437	64	-0.24	0.19	11.92
MLIW_EP5_15 MLTW_ED5_15	4890458_408_5401	4B 4D	58666	4B 4D	10/3/3/04	04 65	-0.04	0.19	11.80
MLTW_EP5_15	488012/_4DS_10/8	4B	58000	4B	213097236	65	-0.22	0.19	11.90
MLIW_EP5_15	69/2/44_461_154	4B	59/36	4B	534660990	66	0.14	0.19	11.88
MLTW_EP5_15	6890178_4bl_557	UKN	122641	4B	615383932	67	0.18	0.12	7.55
MLTW_EP5_15	6890178_4b1_539	UKN	122521	4B	615383950	67	-0.15	0.13	8.00
MLTW_EP5_15	6890178_4b1_498	UKN	122270	4B	615383991	67	-0.15	0.13	8.00
MLTW_EP5_15	14381009_4dl_v2_287	UKN	120995	4D	401566773	72	-0.34	0.17	8.98
MLTW_EP5_15	14381009_4dl_v2_263	UKN	120834	4D	401566797	72	-0.35	0.17	8.99
MLTW_EP5_15	14381009_4dl_v2_248	UKN	120702	4D	401566812	72	-0.34	0.17	8.98
MLTW_EP5_15	1517889_5as_12083	5A	64145	5A	6627042	74	0.12	0.19	11.88
MLTW_EP5_15	1539578_5as_2723	UKN	129425	5A	12667826	74	-0.12	0.23	11.64
MLTW_EP5_15	2804003_5al_1159	5A	63879	5A	280524196	75	-0.64	0.20	12.28
MLTW_EP5_15	2805435_5al_10340	5A	65511	5A	606358734	76	0.21	0.19	11.91
MLTW_EP5_15	1615135_5bs_6987	5B	66703	5B	6601302	77	0.24	0.19	11.91
MLTW EP5 15	1615135 5bs 6996	5B	66705	5B	6601311	77	0.09	0.19	11.87
MLTW EP5 15	10925497 5b1 8503	5B	69123	5B	307003599	79	0.34	0.19	12.01
MLTW EP5 15	10918258 5bl 2861	5B	69038	5B	322877015	79	-0.69	0.20	12.36
MLTW FP5 15	10874919 561 19095	5B	70838	5B	473888733	81	-1.08	0.11	7 42
MLTW EP5_15	10789285 551 1125	5B	71348	5B	497845690	81	-0.04	0.19	11.86
MLTW EP5 15	10789285 551 1190	5B	71352	5B	497845755	81	0.63	0.19	12.18
MLTW EP5 15	10789285_561_1399	5B	71352	5B	497845964	81	0.05	0.19	11.84
MLTW ED5 15	1020240 51 742	50	71652	50	497045904	81	0.30	0.19	7.02
MLTW EP5_15	10820340_301_743	5D	71035	5D	49/903883	81 82	-0.55	0.11	12.27
MLTW_EP5_15	10/13906_501_3165	5B 5D	73131	5B 5D	580426190	83	-0.58	0.20	12.27
MLTW_EP5_15	108/8230_561_14895	5B 5D	73254	5B	58/120949	83	-0.12	0.19	11.87
MLTW_EP5_15	1088/191_561_/81	5B	73364	5B	590/3/126	83	0.13	0.19	11.88
MLTW_EP5_15	10840148_561_5172	5B	73954	5B	610369884	83	0.28	0.19	11.93
MLTW_EP5_15	1451356_5ds_1126	5D	76642	5D	34888016	85	-0.09	0.19	11.90
MLTW_EP5_15	4600039_5dl_719	UKN	123371	5D	375579358	88	0.40	0.22	11.68
MLTW_EP5_15	4600039_5dl_718	UKN	123364	5D	375579359	88	-0.10	0.21	11.44
MLTW_EP5_15	4590311_5dl_2239	5D	81195	5D	491845992	90	-0.18	0.19	11.88
MLTW_EP5_15	4350665_6as_530	6A	83308	6A	12213963	92	-0.39	0.19	11.97
MLTW_EP5_15	4377011_6as_2697	6A	84059	6A	39460963	92	0.35	0.13	8.47
MLTW_EP5_15	4385583_6as_630	6A	84811	6A	86383939	93	-0.48	0.19	12.07
MLTW_EP5_15	4352420_6as_2972	UKN	130086	6A	182664762	94	-0.12	0.20	11.87
MLTW EP5 15	5692765 6al 1356	6A	87704	6A	594960290	96	-0.56	0.12	7.57
MLTW EP5 15	5833404 6al 16346	6A	88286	6A	617804657	97	-0.58	0.11	7.43
MLTW EP5 15	5833404 6al 16345	6A	88285	6A	617804658	97	-0.39	0.11	7.13
MLTW EP5 15	4275962 6bl 1951	6B	91361	6B	511387953	99	-0.64	0.11	7.05
MLTW EP5 15	4291994 6bl 6847	6B	92430	6B	687299185	100	0.52	0.19	12.05
MLTW EP5 15	4291994 6bl 6839	6B	92429	6B	687299193	100	0.52	0.19	12.05
MLTW EP5 15	2122083 6ds 4026	UKN	131794	6D	45486337	101	0.14	0.22	11 71
MLTW EP5 15	2072646_6ds_14285	6D	94290	6D	46845804	101	0.02	0.19	11.63
MLTW ED5 15	2072040_003_14285	6D	04864	6D	160502240	101	0.02	0.19	12.08
MLTW ED5 15	2038228_008_3139	6D	07080	6D	109392240	102	-0.37	0.19	12.00
MLTW ED5 15	2201528 641 2427	60	97080	6D	410007700	103	-0.10	0.19	12.61
MLTW EP5_15	2291528_001_2457	6D	96550	6D	462275103	103	0.69	0.21	12.01
MLTW_EP5_15	3291328_001_2429	0D	98529	6D	402273113	103	0.50	0.20	12.27
MLTW_EP5_15	3291528_601_2425	6D	98528	6D	4622/511/	103	0.56	0.20	12.25
MLTW_EP5_15	3291528_601_2418	6D	98527	6D	462275124	103	0.54	0.20	12.22
MLIW_EP5_15	3291528_6d1_2417	6D	98526	6D	4622/5125	103	-0.69	0.21	12.61
MLTW_EP5_15	4249975_7as_1439	7A	100340	7A	65563625	104	-0.48	0.19	12.00
MLTW_EP5_15	4438833_7al_10700	UKN	136796	7A	428810677	108	-0.27	0.22	11.66
MLTW_EP5_15	4553164_7al_163	7A	101829	7A	501077934	109	0.50	0.11	7.09
MLTW_EP5_15	4536065_7al_716	7A	104347	7A	708435298	111	-0.76	0.11	7.42
MLTW_EP5_15	4551774_7al_1331	7A	104655	7A	725159844	111	-0.48	0.11	7.06
MLTW_EP5_15	3089883_7bs_247	UKN	120699	7B	131177775	113	-0.42	0.11	7.10
MLTW_EP5_15	3162004_7bs_1655	7B	106452	7B	182597172	113	-0.11	0.12	7.77
MLTW_EP5_15	3162004_7bs_1649	7B	106451	7B	182597178	113	0.18	0.19	11.89
MLTW_EP5_15	3922577_7ds_742	UKN	123507	7D	8746640	116	0.29	0.24	11.73
MLTW_EP5_15	3922577_7ds_748	UKN	123537	7D	8746646	116	0.29	0.24	11.80
MLTW_EP5 15	3922577_7ds_754	UKN	123561	7D	8746652	116	0.21	0.24	11.64
MLTW_EP5 15	3897318_7ds 1059	UKN	124771	7D	111274244	117	-0.06	0.19	11.58
MLTW EP5 15	3891832 7ds 3364	7D	112292	7D	126674519	117	0.42	0.19	12.05
MLTW EP5 15	2168702 7ds 2893	7D	112716	7D	213786834	118	-0.52	0.19	12.12
MLTW EP5 15	3348127 7d1 6011	7D	113727	7D	376956870	119	-0.37	0.19	11.96
MLTW EP5 15	1946986 7d1 869	7D	116130	7D	538370629	122	0.17	0.19	11.64
MLTW EP5 15	3393906 7d1 8792	7D	116543	7D	560913296	122	0.51	0.11	7.24

Table A1 Continued

Trait loc Vr [†]	Marker	Chr	Pos	CHR [‡]	Mb§	OTL ID	Δ¶	R ^{2#}	-log10(n)
	2202006 741 8550	7D	116541	7D	560012520	122	0.40	0.11	7.05
MLTW ED5 15	2281022 741 12240	7D 7D	116547	7D 7D	56240913329	122	0.40	0.11	11.08
MLTW ED5 15	2222227 741 1120	7D 7D	117276	7D 7D	585452840	122	0.55	0.19	7 27
MLTW ED5 15	2286255 741 826	7D 7D	117440	7D 7D	502405640	122	0.02	0.11	11.27
MLTW EP5_15	2201602 741 4288	7D 7D	11/440	7D 7D	595405049	125	-0.10	0.19	11.00
MLTW EP5_15	5391005_701_4388	/D UKN	118/40	/D Um	031094003	125	0.04	0.20	12.30
MLIW_EP5_I5	5240018_2as_725	UKN	120040	20	246550607	: 47	0.50	0.15	7.19
gMOIST_CLI_16	10530372_36_2952	UKN	130040	3B	149455112	47	-0.34	0.17	8.79
gMOIST_CLI_16	10530372_3b_2948	UKN	130028	3B	149455116	47	0.34	0.17	8.79
gMOIST_CLI_16	10530372_3b_2905	UKN	129931	3B	149455159	47	-0.34	0.17	8.79
gMOIST_CLI_16	10530372_3b_2902	UKN	129922	3B	149455162	47	0.34	0.17	8.79
gMOIST_CLI_16	10530372_3b_2898	UKN	129913	3B	149455166	47	-0.33	0.17	8.53
gMOIST_BD_16	7144776_4al_1620	4A	54019	4A	662542416	62	-0.28	0.10	7.02
gMOIST_EP5_14	2946616_6bs_1121	6B	89635	6B	79304656	98	-0.14	0.11	7.13
gMOIST_CLI_16	4245739_7as_2670	7A	101173	7A	206908324	107	-0.24	0.17	9.59
gMOIST_CLI_16	4245739_7as_2674	7A	101174	7A	206908328	107	-0.23	0.17	9.56
gMOIST_CLI_16	4245739_7as_2695	7A	101175	7A	206908349	107	0.24	0.17	9.59
gMOIST_CLI_16	4245739_7as_2700	7A	101176	7A	206908354	107	-0.19	0.17	9.72
gMOIST_CLI_16	4245739_7as_2705	7A	101177	7A	206908359	107	-0.24	0.17	9.61
gMOIST CLI 16	4245739 7as 2709	7A	101178	7A	206908363	107	-0.23	0.17	9.56
gMOIST CLI 16	4245739 7as 2715	7A	101179	7A	206908369	107	0.22	0.16	9.39
MOIST CLI 16	4245739 7as 2717	7A	101180	7A	206908371	107	0.23	0.17	9.58
MOIST CLI 16	4245739 7as 2726	7A	101181	7A	206908380	107	-0.23	0.17	9.56
MOIST CLI 16	4245739 7as 2727	7A	101182	7A	206908381	107	-0.23	0.17	9.56
MOIST CLI 16	4245739 7as 2738	74	101183	74	206908392	107	0.23	0.17	9.56
gMOIST_CLI_16	4245739 7as 2893	74	101187	74	206908547	107	-0.22	0.17	9.75
gMOIST_CLI_16	4245739_7as_2095	74	101189	7.4	206908571	107	0.22	0.17	8.46
gMOIST_CLI_10	3162666 7bs $3/1$	7R	106478	7R	200908571	114	0.21	0.14	8.40
MOIST_CLI_10	2162666 7bs 226	7B 7D	106478	7B 7D	220786547	114	0.27	0.10	0.70
MOIST_CLI_16	2162666 7bs 225	7D	106477	7D 7D	220786548	114	-0.55	0.20	10.77
MOIST_CLI_16	3162666_7bs_333	7D 7D	100470	7D 7D	329780348	114	0.52	0.20	10.65
gMOIST_CLI_16	3102000_/DS_32/	/B 7D	106475	/B 7D	329780330	114	0.33	0.20	10.56
gMOIST_CLI_16	3162666_/bs_156	/B	106466	/B	329786727	114	-0.32	0.21	11.63
gMOIST_CLI_16	3162666_7bs_96	7B	106462	7B	329786782	114	-0.32	0.21	11.63
gMOIST_CLI_16	3055451_7dl_3076	7D	116879	7D	574031608	122	-0.35	0.12	7.00
gMOIST_CLI_16	3055451_7dl_3085	7D	116880	7D	574031617	122	NA	0.12	7.82
PROT14_IRR_IRR	3957731_1al_521	1A	1726	1A	224099448	2	0.09	0.12	7.06
PROT14_IRR_IRR	3872634_1bl_556	1B	9410	1B	366084089	10	0.00	0.16	9.65
PROT14_IRR_IRR	3872634_1bl_716	1B	9412	1B	366084249	10	-0.01	0.17	9.70
PROT14_IRR_IRR	3872634_1b1_722	1B	9413	1B	366084255	10	-0.03	0.17	10.00
PROT14_IRR_IRR	3872634_1b1_741	1B	9414	1B	366084274	10	0.03	0.17	10.02
PROT14_IRR_IRR	3872634_1b1_743	1B	9415	1B	366084276	10	0.03	0.17	10.00
PROT14_IRR_IRR	3824183_1bl_13905	1B	11529	1B	642678416	13	0.06	0.17	10.17
PROT14_IRR_IRR	3861681_1b1_6499	1B	12232	1B	659767422	13	0.01	0.16	9.71
PROT14_IRR_IRR	2031440_1dl_6042	1D	15163	1D	376005634	16	-0.02	0.16	9.79
PROT14_IRR_IRR	2031440_1dl_6033	1D	15161	1D	376005643	16	-0.02	0.16	9.76
PROT14_IRR_IRR	2031440_1dl_6010	1D	15159	1D	376005666	16	0.00	0.16	9.67
PROT14_IRR_IRR	6339185_2al_5170	2A	22314	2A	700553145	24	0.00	0.16	9.67
PROT14_IRR_IRR	6437732_2al_18701	2A	23139	2A	745669800	25	0.02	0.16	9.72
PROT14_IRR_IRR	6411521_2al_3334	2A	23808	2A	775371134	25	0.04	0.17	9.95
PROT14_IRR_IRR	8065054_2b1_3492	2B	28185	2B	437819922	28	0.04	0.12	7.10
PROT14_IRR_IRR	7973556_2b1_11007	2B	29147	2B	485163993	29	0.00	0.16	9.67
PROT14_IRR_IRR	5331794_2ds_5579	2D	34398	2D	1521231	33	0.04	0.17	10.04
PROT14_IRR_IRR	5327449_2ds_374	2D	36548	2D	131074221	35	0.01	0.16	9.72
PROT14 IRR IRR	3354266 3as 265	3A	41314	3A	135590753	40	0.04	0.17	9.90
PROT14 IRR IRR	4262674 3al 3119	UKN	130379	3A	611951242	43	0.04	0.23	10.01
PROT14 IRR IRR	10566950 3b 3367	UKN	130804	3B	31786758	45	-0.05	0.19	9.74
PROT14 IRR IRR	10649627 3b 3458	UKN	130961	3B	34395499	45	-0.01	0.17	9 71
PROT14 IRR IRR	10649627 3b 3426	UKN	130917	3B	34395531	45	-0.02	0.17	9.75
PROT14 IRR IRR	10649627 3b 3420	UKN	130906	3B	34395537	45	-0.02	0.17	9.75
PROT14 IRR IRR	10396492 3b 4060	38	45233	3B	311134116	49	0.02	0.17	9.68
PROT14 IPP IPP	7845406 35 1559	UKN	126250	38	716205361	53	0.00	0.10	7.46
PROT14_IRR_IRR	7845406_3b_1572	UKN	126282	38	716295301	53	0.00	0.13	7.40
DDULLA IDD IDD	7845406 35 1596	UKIN	126212	38	716205200	53	0.00	0.13	7.40
DDULLA IDD IDD	7845400_30_1380	UKIN	120313	38	716205200	53	0.00	0.15	7.40
I KUI 14_IKK_IKK	10752922 21 12/20	UNIN	120348	20	110293399	55	0.00	0.15	7.40
FRUI14_IKK_IKK	10/32632_30_13028	UKN	13/32/	3D 2D	706901212	55 54	0.05	0.19	9.12
FRUI14_IKK_IKK	2/09939_30_2123		51102	3D 4 A	190891213	J4 61	0.01	0.21	9.30
rkU114_IKK_IKK	1085205_4al_5415	4A 4D	51195	4A 4D	331396331	01	-0.01	0.16	9.09
PROT14_IRR_IRR	4860661_4bs_1872	4B	57492	4B	134987855	64	0.07	0.18	10.50
PROT14_IRR_IRR	4882160_4bs_2646	4B	5///9	4B	1/39/4116	65	0.00	0.16	9.68
PROT14_IRR_IRR	4960895_4bs_15608	4B	56724	4B	503363917	66	0.10	0.12	7.05
PROT14_IRR_IRR	10865381_5bl_2065	5B	70662	5B	393756525	80	-0.09	0.12	7.05

Table A1 Continued

m : 1 w †	Maulaan	Chu	D	cunt	2018	OTLID	۱ ۹	D 2#	1
Irait_loc_Yr	Marker	Chr	POS	CHR*	Mb ³	QILID	A	R2.	-10g10(p)
PROT14_IRR_IRR	4465812_5dl_2083	5D	7/919	5D	300254563	87	-0.01	0.16	9.68
PROT14_IRR_IRR	4533345_5dl_2182	5D	80593	5D	470384525	89	-0.04	0.17	9.89
PROT14_IRR_IRR	4594956_5dl_12321	5D	82756	5D	560219491	91	0.02	0.16	9.76
PROT14_IRR_IRR	4404183_6as_16622	6A	83405	6A	17652228	92	0.03	0.16	9.78
PROT14_IRR_IRR	3043613_6bs_719	6B	89005	6B	22437432	98	0.02	0.16	9.73
PROT14_IRR_IRR	4207272_7as_784	7A	100028	7A	48022645	104	-0.06	0.17	9.93
PROT14_DRY_DRY	4245196_7as_594	7A	100749	7A	112440932	106	NA	0.12	8.04
PROT14_DRY_DRY	4245196_7as_363	7A	100745	7A	112441163	106	-0.18	0.12	7.25
PROT14_DRY_DRY	4245196_7as_362	7A	100744	7A	112441164	106	0.18	0.12	7.25
PROT14_DRY_DRY	4245196_7as_303	7A	100743	7A	112441223	106	NA	0.12	8.04
PROT14_DRY_DRY	4245196_7as_301	7A	100742	7A	112441225	106	NA	0.12	8.04
PROT14_IRR_IRR	4557449_7al_660	7A	102261	7A	511490747	109	0.00	0.16	9.67
PROT14_IRR_IRR	3114361_7bs_10026	7B	105832	7B	68562795	112	-0.01	0.16	9.69
PROT14_IRR_IRR	3114361_7bs_10024	7B	105830	7B	68562797	112	-0.01	0.16	9.69
PROT14_IRR_IRR	381629_7dl_243	7D	113799	7D	385718110	119	0.03	0.18	10.03
PROT14_IRR_IRR	381629_7dl_221	7D	113798	7D	385718132	119	-0.03	0.18	10.03
PROT14_IRR_IRR	381629_7dl_152	7D	113796	7D	385718201	119	-0.03	0.18	10.04
PROT14_IRR_IRR	3379317_7dl_441	7D	115141	7D	390630058	119	0.00	0.16	9.67
PROT14_IRR_IRR	3394453_7dl_9044	7D	114434	7D	419769167	119	NA	0.10	7.10
SKW_EP5_15	7130376_4al_8778	4A	53500	4A	672102841	62	NA	0.11	7.70
SKW_EP5_15	7130376_4al_8777	4A	53499	4A	672102842	62	NA	0.12	8.14
SKW_EP5_15	7130376_4al_8753	4A	53498	4A	672102866	62	NA	0.10	7.11
SKW_EP5_15	7130376_4al_8717	4A	53497	4A	672102902	62	NA	0.12	8.15
WABS_EP5_14	10770064_3b_7986	UKN	135705	3B	571455474	51	NA	0.13	7.45
WABS_DRY_DRY	4245196_7as_594	7A	100749	7A	112440932	106	NA	0.12	8.05
WABS_DRY_DRY	4245196_7as_363	7A	100745	7A	112441163	106	-0.27	0.12	7.25
WABS_DRY_DRY	4245196_7as_362	7A	100744	7A	112441164	106	0.27	0.12	7.25
WABS DRY DRY	4245196 7as 303	7A	100743	7A	112441223	106	NA	0.12	8.05
WABS_DRY_DRY	4245196_7as_301	7A	100742	7A	112441225	106	NA	0.12	8.05

[†] Trait_Location_year [‡] CHR, chromosomal location of marker in IWGSC RefSeq v1.0 [§] chromosomal position of marker in IWGSC RefSeq v1.0 [¶] Additive effect of the loci [#] phenotypic variance explained by corresponding marker loci

Table A2

Significant marker trait association detected on single traits combined across environments, chromosome, position, effect for end-use quality traits in AMPSY population

Trait_loc_Yr [†]	Marker	Chr	Pos	CHR^{\ddagger}	Mb [§]	QTL ID	A¶	R ^{2#}	-log10(p)
FYLD_CLI_16	3305478_1as_3640	1A	272	1A	12818706	1	0.17	0.13	7.88
FYLD_CLI_16	3980528_1al_5184	1A	2017	1A	301131835	3	-0.78	0.13	8.18
FYLD_CLI_16	3927067_1al_12869	1A	2977	1A	389827066	4	-0.37	0.13	7.99
FYLD_CLI_16	3902709_1al_1308	UKN	1E+05	1A	428210584	4	0.55	0.15	8.18
FYLD_CLI_16	3902709_1al_1318	UKN	1E+05	1A	428210594	4	-0.88	0.13	7.32
FYLD_CLI_16	2278844_5bs_1907	UKN	1E+05	1B	60609112	6	-0.31	0.15	7.91
FYLD_CLI_16	3466711_1bs_2061	1B	7872	1B	101628236	7	0.45	0.13	8.06
FYLD_CLI_16	3466711_1bs_2020	1B	7870	1B	101628277	7	-0.45	0.13	8.06
FYLD_BD_16	3852692_1bl_3809	1B	7220	1B	280279027	9	1.92	0.12	7.35
FYLD_CLI_16	3892149_16I_1985	18	9895	1B 1D	499635782	11	-0.29	0.13	7.92
FYLD_CLI_16	3858550_161_14890	IB	10/35	IB	570836269	12	-0.46	0.13	8.00
FYLD_CLI_16	2282749_101_6803	ID 1D	13916		293607345	15	0.11	0.13	7.92
FYLD_CLI_16	2282749_101_0810		13917		293007352	15	-0.11	0.13	7.93
FILD_CLI_10	2201828 141 7200		15918	10	293007333	15	-0.11	0.13	7.95
FILD_CLI_10	2291838_101_7209	IL	15008 1E+05	10	471086338	13	-0.03	0.13	7.07
FYLD CLI 16	2283167_1dl_17246	UKN	1E+05	1D	471086355	17	-0.27	0.13	7.92
FYLD CLI 16	2283167_1dl_17203	UKN	1E+05	1D	471086367	17	-0.27	0.13	7.92
FYLD CLI 16	5309070 2as 1364	2A	20709	2A	78755910	19	-0.20	0.13	7.89
FYLD EP5 15	6435505 2al 8117	2A	19060	2A	347820702	21	0.02	0.15	9.29
FYLD EP5 15	6324590 2al 2660	2A	18530	2A	566862511	22	-2.24	0.18	10.60
FYLD CLI 16	6404696 2al 13964	UKN	1E+05	2A	628677518	23	0.15	0.14	7.82
FYLD EP5 15	2461981 2al 3009	2A	22054	2A	695467552	24	0.21	0.16	9.32
FYLD_EP5_15	5184318_2bs_5233	2B	25524	2B	50715027	27	-0.30	0.16	9.27
FYLD_EP5_15	5184318_2bs_5090	2B	25520	2B	50715170	27	-0.48	0.16	9.42
FYLD_CLI_16	8028072_2b1_3018	2B	28049	2B	411000857	28	-0.45	0.13	7.96
FYLD_BI_16	5388307_2ds_14921	2D	35320	2D	56254194	34	-0.83	0.14	8.07
FYLD_EP5_15	2260462_2ds_419	UKN	1E+05	2D	73286123	34	-0.19	0.18	9.21
FYLD_CLI_16	9909878_2d1_8779	2D	38355	2D	590338112	38	-0.81	0.13	8.24
FYLD_EP5_15	9910341_2d1_2006	UKN	1E+05	2D	641955809	38	-0.05	0.19	9.32
FYLD_EP5_15	3387459_3as_6843	3A	40273	3A	41627157	39	-0.14	0.16	9.31
FYLD_CLI_16	3413956_3as_889	3A	40791	3A	86403737	40	0.03	0.13	7.85
FYLD_CLI_16	4450272_3al_830	3A	43324	3A	715420289	44	0.14	0.16	9.79
FYLD_CLI_16	4450272_3al_835	3A	43325	3A	715420289	44	-0.14	0.16	9.79
FYLD_CLI_16	4450272_3al_1054	3A	43327	3A	715420483	44	-0.01	0.13	7.87
FYLD_CLI_16	4297373_3al_307	3A	43/14	3A 2D	736099722	44	-0.21	0.13	7.89
FYLD_EP5_15	10605995_35_1664	UKN	1E+05	3B 2D	29498546	45	0.40	0.18	9.10
FYLD_EP5_15	10683916_36_2192	UKN	1E+05	3B 2D	11/55503/	47	-0.01	0.16	9.21
FILD_EP3_13	10085910_50_2107		1E+03	3D 2D	524929527	4/	-0.40	0.10	9.51
FILD_CLI_10	10401448_30_337 10451971_3b_7480	JIKN	40111 1E+05	3D 3D	554828557 602586559	52	-0.05	0.13	7.83
FYLD CLI 16	10451971_3b_7321	UKN	1E+05	3B	602586718	52	-0.13	0.13	8.11
FYLD CLI 16	6013263 4as v2 7346	44	50154	4A	30155367	58	1 31	0.14	8.89
FYLD EP5 15	7079348 4a1 382	UKN	1E+05	4A	637256685	62	0.22	0.19	9.39
FYLD CLI 16	4057017 4a1 591	4A	53762	4A	646117303	62	-0.62	0.13	8.09
FYLD CLI 16	4057017 4al 596	4A	53763	4A	646117308	62	0.62	0.13	8.09
FYLD_CLI_16	4057017_4al_613	4A	53766	4A	646117325	62	-0.62	0.13	8.09
FYLD_EP5_15	7088979_4al_3699	UKN	1E+05	4A	658897102	62	0.89	0.18	9.43
FYLD_EP5_15	7120458_4al_2339	4A	55123	4A	720204970	63	-0.25	0.16	9.33
FYLD_EP5_15	7120458_4al_2378	4A	55126	4A	720205009	63	-0.36	0.16	9.39
FYLD_EP5_15	7120458_4al_2392	4A	55129	4A	720205023	63	0.42	0.16	9.44
FYLD_CLI_16	7083149_4al_7921	4A	55523	4A	725860581	63	0.29	0.13	7.93
FYLD_EP5_15	7039666_4b1_20663	4B	60061	4B	570150846	67	0.29	0.16	9.33
FYLD_CLI_16	6975707_4b1_1506	UKN	1E+05	4B	649679461	68	0.01	0.14	7.75
FYLD_CLI_16	1380443_4ds_2087	4D	62092	4D	94263283	70	0.54	0.14	8.87
FYLD_EP5_15	2309923_4ds_2070	4D	62838	4D	164595143	71	NA	0.13	8.74
FYLD_CLI_16	14304468_4dl_v2_1665	UKN	1E+05	4D	413041988	72	-0.06	0.16	9.24
FYLD_EP5_15	1506586_5as_5534	UKN	1E+05	5A	10213724	74	-1.43	0.18	10.23
FILD_EP5_15	24/0331_38L_129/	JA 5D	03913	JA 5D	2/9102105	/5	-1.50	0.17	10.14
FILD_EP3_13	10903888_301_8343	5B 5D	70646	5B 5D	399777510	80	0.40	0.16	9.50
EVID EP5 15	10203000_301_0343	5B	70643	5B	300777520	00	-0.40	0.10	9.50
FYLD FP5_15	10905888 551 8523	5B	70642	5B	399777530	00 80	-0.39	0.10	9.49
FYLD FP5 15	10905888 551 8511	5B	70640	5B	399777551	80	0.39	0.10	9.40 Q /Q
FYLD CLI 16	10906178 561 4128	5B	70984	5B	445444817	81	-0.21	0.10	7 90
FYLD CLI 16	10906178 5b1 4143	5B	70985	5B	445444832	81	-0.27	0.13	7.96
FYLD CLI 16	10906178 5b1 4144	5B	70986	5B	445444833	81	-0.25	0.13	7.94
FYLD CLL 16	10906178 551 4445	5B	70989	5B	445445134	81	0.26	0.13	7.95

Table A2 Continued

Trait loc Vr [†]	Marker	Chr	Pos	CHR	Mb§	OTL ID	۸٩	P ^{2#}	$-\log 10(n)$
EVID CLL 16	10907425 551 10002	50	71212	50	447844705	<u>QILID</u> 81	0.56	0.12	* 0210(p)
EVID CIL 16	10807425_501_10095	50	71312	50	447044703	01	-0.30	0.13	7.00
FILD_CLI_10	1084/231_301_499	5D	72601	5D	403923622	01	0.13	0.12	7.09
FILD_BD_10	10833329_301_3103	50	73602	5D	505287326	82	-0.90	0.12	7.17
FILD_BD_10	10833329_301_3193	50	73003	50	505287618	82	-1.03	0.12	7.55
FILD_BD_10 EVID_BD_16	10833329 561 3390	5B	73613	5B	595287613	83	-0.98	0.12	7.19
FILD_BD_10	10833329_301_3390	50	73013	5D	505287625	82	-1.03	0.12	7.33
FILD_DD_10	10805529_301_3402	5D	73014	5D	595267055	63 92	-0.97	0.12	7.19
FILD_EP3_15	10806569_501_2517	5B 5D	74549	5B 5D	626020244	83	-0.22	0.16	9.25
FILD_EFJ_IJ	10800309_301_2408	3D 5D	74346	50	636930244	0.5	-0.56	0.16	9.55
FILD_EFJ_15	10809422_301_3717	50	13362	50	702206599	04	-0.23	0.10	9.52
FILD_CLI_10	10824730_301_1803	5D	13132	5D	244570	04 95	-0.22 NA	0.15	11.02
$\Gamma I LD_L F_4_14$ EVID_ED5_14	1477005_5ds_2010	50	75070	50	244579	05	INA NA	0.18	11.92
FILD_EP3_14	1477005_5ds_2010	50	13010	5D 5D	244379	63 85	NA	0.20	0.15
FILD_EF5_15	1477005_5ds_2010	50	75070	50	244579	05	INA NA	0.14	9.13
FILD_EF5_15	1477005_5ds_2010	50	75878	5D	344579	85	NA	0.13	8.55 7.69
FVLD BL 16	1477005_5ds_2010	5D	75878	5D	344570	85	NA	0.12	7.09
$FILD_BI_{10}$	2745573 5ds 3677	50	75078	5D	5549579	85	NA	0.12	14.13
$FTLD_ET4_14$ EVID EP5 14	2745573 548 3677	5D	75078	5D	554980	85	NA	0.22	12.34
FVLD EP3 15	2745573_5ds_3677	5D	75078	50	554080	85	NA	0.19	9.66
FUD BL 16	2745573 548 3677	5D	75078	5D	554980	85	NA	0.14	7 37
FVLD CLL 16	2745573_5ds_3677	5D	75078	50	554080	85	NA	0.11	836
FUD EP4 14	2745575_505_5077	5D	75917	5D	034031	85	NA	0.12	16.45
$FTLD_ET4_14$ $FVLD_EP5_14$	2736392_54s_5233	5D	75917	5D	934031	85	NΔ	0.27	15 32
FYLD FP3 15	2736392_5ds_5233	5D	75917	5D	934031	85	NA	0.18	11 45
FVLD EP5 15	2736392 54 5233	5D	75917	5D	934031	85	NΔ	0.10	11.45
FYLD BL 16	2736392_5ds_5233	5D	75917	5D	934031	85	NA	0.14	8 90
FVLD CLL 16	2736392 54 5233	5D	75917	5D	934031	85	NΔ	0.14	12 50
FYLD FP4 14	2773392 5ds 1412	5D	75911	5D	2220874	85	NA	0.19	12.50
FYLD EP5 14	2773392_5ds_1412	5D	75911	5D	2220874	85	NΔ	0.15	15.05
FYLD FP3 15	2773392 5ds 1412	5D	75911	5D	2220874	85	NA	0.14	9 32
FYLD FP5 15	2773392_5ds_1412	5D	75911	5D	2220874	85	NA	0.14	10.74
FYLD EP4 14	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.10	12.85
FYLD FP5 14	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.26	15.78
FYLD FP3 15	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.15	10.24
FYLD FP5 15	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.13	8 78
FYLD BD 16	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.13	7 78
FYLD BL 16	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.11	7.64
FYLD EP4 14	2773392 5ds 1206	5D	75906	5D	2221080	85	NA	0.19	12.42
FYLD EP5 14	2773392 5ds 1206	5D	75906	5D	2221080	85	NA	0.24	15.05
FYLD EP3 15	2773392 5ds 1206	5D	75906	5D	2221080	85	NA	0.14	9.32
FYLD EP5 15	2773392 5ds 1206	5D	75906	5D	2221080	85	NA	0.16	10.74
FYLD EP4 14	2770151 5ds 4035	5D	75899	5D	7257066	85	NA	0.11	7.98
FYLD EP5 14	2739337 5ds 2304	5D	75953	5D	7485266	85	NA	0.11	7.12
FYLD EP4 14	2781025 5ds 24425	5D	76006	5D	8018752	85	NA	0.10	7.15
FYLD_EP5_14	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.13	8.91
FYLD_EP4_14	2781025_5ds_24421	5D	76005	5D	8018756	85	NA	0.10	7.15
FYLD_EP5_14	2781025_5ds_24421	5D	76005	5D	8018756	85	NA	0.13	8.91
FYLD_EP4_14	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.11	7.67
FYLD_EP5_14	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.15	9.99
FYLD_EP3_15	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.14	9.44
FYLD_EP5_15	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.11	7.47
FYLD_CLI_16	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.10	7.23
FYLD_EP4_14	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.10	7.03
FYLD_EP4_14	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.10	7.03
FYLD_EP4_14	2781671_5ds_9235	5D	75991	5D	9332237	85	NA	0.10	7.03
FYLD_EP4_14	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.10	7.03
FYLD_EP4_14	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.10	7.03
FYLD_EP5_15	2739401_5ds_20579	5D	76380	5D	11421190	85	-2.74	0.12	7.00
FYLD_CLI_16	2760386_5ds_1248	UKN	1E+05	5D	14719288	85	0.02	0.15	7.80
FYLD_CLI_16	2770949_5ds_845	5D	77116	5D	70819097	86	-0.35	0.13	7.94
FYLD_CLI_16	2783341_5ds_8399	5D	77064	5D	72551106	86	-0.16	0.13	7.88
FYLD_EP5_14	4599562_5dl_5399	5D	78574	5D	298137698	87	NA	0.10	7.22
FYLD_EP5_15	4590136_5d1_3635	5D	78026	5D	345935291	88	0.28	0.16	9.34
FYLD_CLI_16	4504942_5dl_1247	5D	78305	5D	346502034	88	-0.48	0.13	7.97
FYLD_EP5_15	4514657_5dl_1632	5D	79259	5D	385511140	88	-0.51	0.16	9.50
FYLD_CLI_16	4605319_5dl_3048	5D	79877	5D	434399580	89	0.11	0.13	7.87
FYLD_CLI_16	4544938_5dl_5497	5D	80179	5D	453882685	89	0.05	0.13	7.87
FYLD_CLI_16	4534695_5dl_15341	5D	81712	5D	526417202	90	0.13	0.13	7.89
FYLD_CLI_16	4412722_6as_11506	6A	82894	6A	1679610	92	0.01	0.13	7.87
FYLD_CLI_16	4429138_6as_4885	6A	84761	6A	81300931	93	0.33	0.13	7.95
FYLD_CLI_16	5779119_6al_30	6A	8/0/2	6A	550280481	96	-0.28	0.13	7.95
FILD_EP3_13	2104944_0d8_1907	0D	93021	0D 6D	45/5904	101	-0.41	0.16	9.43
FYLD CU 16	4188922 7ac 8402	UKN	95722 1E±05	74	32601576	102	-0.50	0.10	9.50

Table A2 Continued

Trait loc Yr [†]	Marker	Chr	Pos	CHR [‡]	Mb§	OTL ID	A¶	R ^{2#}	-log10(p)
FYLD EP5 15	4438480 7al 11172	7A	1E+05	7A	561615734	110	-0.02	0.16	9.29
FYLD_CLI_16	4556713_7al_3803	7A	1E+05	7A	581433764	110	0.36	0.13	7.94
FYLD_EP5_15	4466982_7al_4013	7A	1E+05	7A	733969740	111	0.00	0.16	9.28
FYLD_EP5_15	4466982_7al_4163	7A	1E+05	7A	733969890	111	-0.22	0.16	9.29
FYLD_CLI_16	3156753_7bs_820	7B	1E+05	7B	134714902	113	-0.09	0.13	7.87
FYLD_CLI_16	3856934_7ds_2095	7D	1E+05	7D	9376388	116	-0.54	0.13	8.00
FYLD_CLI_16	3856934_7ds_2056	7D	1E+05	7D	9376427	116	-0.20	0.12	7.68
FYLD_EP5_15	3898730_7ds_1216	7D	1E+05	7D	18207787	116	0.72	0.16	9.50
FYLD_EP5_15	5389722_2ds_5977	2D	34903	Un	24970654	33?	1.18	0.17	9.99
FYLD_CLI_16	3418003_3as_1194	3A	39385	Un	32236572	39?	-0.06	0.13	7.87
FYLD_CLI_16	5744793_6al_520	6A	88417	Un	75261141	92?	-0.23	0.13	7.91
FILD_CLI_10	5/44/95_6al_542	0A UKN	88418 1E+05	Un 2D	/5201103	92?	0.11	0.13	7.8/
HARD BD 16	5176564_208_047	UKN	1E+05	2D 2B	38620402	27	-0.70	0.12	7.11
HARD_BD_10 HARD_CH_14	1477005 5ds 2010	5D	75878	2B 5D	344570	27	0.82 NA	0.12	11.00
HARD FP4 14	1477005_5ds_2010	5D	75878	5D	344579	85	NA	0.17	12.68
HARD EP5 14	1477005_5ds_2010	5D	75878	5D	344579	85	NA	0.21	13.32
HARD EP3 15	1477005_5ds_2010	5D	75878	5D	344579	85	NA	0.23	13.87
HARD EP4 15	1477005 5ds 2010	5D	75878	5D	344579	85	NA	0.25	15.19
HARD_EP5_15	1477005_5ds_2010	5D	75878	5D	344579	85	NA	0.24	14.63
HARD_BD_16	1477005_5ds_2010	5D	75878	5D	344579	85	NA	0.18	11.70
HARD_BI_16	1477005_5ds_2010	5D	75878	5D	344579	85	NA	0.16	10.37
HARD_CLI_16	1477005_5ds_2010	5D	75878	5D	344579	85	NA	0.22	13.47
HARD_EP4_14	1477005_5ds_2278	5D	75884	5D	344847	85	NA	0.11	7.27
HARD_CLI_16	1477005_5ds_2278	5D	75884	5D	344847	85	7.63	0.13	7.83
HARD_CH_14	2745573_5ds_3677	5D	75978	5D	554980	85	NA	0.20	12.79
HARD_EP4_14	2745573_5ds_3677	5D	75978	5D	554980	85	NA	0.23	13.72
HARD_EP5_14	2745573_5ds_3677	5D	75978	5D	554980	85	NA	0.23	14.13
HARD_EP3_15	2/455/3_5ds_36/7	5D	75978	5D	554980	85	NA	0.29	17.28
HARD_EP4_15	2/455/3_5ds_36//	5D	/59/8	5D	554980	85	NA	0.33	18.93
HARD_EP3_15	2/455/5_508_50// 2745572_54a_2677	5D	/59/8	50	554980	85 95	NA NA	0.28	10.//
HARD_BD_10	2745573_5ds_5077	5D	75978	5D 5D	554980	85 85	NA	0.21	13.14
HARD CII 16	2745573_5ds_3677	5D	75978	5D	554980	85	NA	0.18	15.23
HARD CH 14	2736392 5ds 5233	5D	75917	5D	934031	85	NA	0.23	14 78
HARD EP4 14	2736392_5ds_5233	5D	75917	5D	934031	85	NA	0.28	16.20
HARD EP5 14	2736392 5ds 5233	5D	75917	5D	934031	85	NA	0.27	15.99
HARD EP3 15	2736392 5ds 5233	5D	75917	5D	934031	85	NA	0.31	17.83
HARD_EP4_15	2736392_5ds_5233	5D	75917	5D	934031	85	NA	0.32	18.23
HARD_EP5_15	2736392_5ds_5233	5D	75917	5D	934031	85	NA	0.31	17.75
HARD_BD_16	2736392_5ds_5233	5D	75917	5D	934031	85	NA	0.26	15.51
HARD_BI_16	2736392_5ds_5233	5D	75917	5D	934031	85	NA	0.23	13.82
HARD_CLI_16	2736392_5ds_5233	5D	75917	5D	934031	85	NA	0.26	15.46
HARD_EP3_15	2765676_5ds_2839	5D	75901	5D	1344429	85	-8.56	0.13	7.86
HARD_CH_14	2773392_5ds_1412	5D	75911	5D	2220874	85	NA	0.21	13.55
HARD_EP4_14	2773392_5ds_1412	5D	75911	5D	2220874	85	NA	0.24	14.27
HARD_EP5_14	2773392_5ds_1412	5D	75911	50	2220874	85 95	INA NA	0.24	14.50
HARD_EP3_13	2772202 5ds 1412	3D 5D	75011	50	2220874	83 85	NA	0.28	16.92
HARD EP5 15	2773392_5ds_1412	5D	75911	5D 5D	2220874	85	NA	0.20	15.90
HARD BD 16	2773392_5ds_1412	5D	75911	5D	2220874	85	NA	0.20	14.88
HARD BI 16	2773392_5ds_1412	5D	75911	5D	2220874	85	NA	0.19	12.43
HARD CLI 16	2773392 5ds 1412	5D	75911	5D	2220874	85	NA	0.27	16.09
HARD_CH_14	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.23	14.48
HARD_EP4_14	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.24	14.57
HARD_EP5_14	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.26	15.60
HARD_EP3_15	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.30	17.84
HARD_EP4_15	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.29	16.97
HARD_EP5_15	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.29	17.20
HARD_BD_16	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.26	15.68
HARD_BI_16	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.20	13.02
HARD_CLI_16	2773392_5ds_1238	5D	75910	5D	2221048	85	NA	0.29	17.40
HARD_CH_14	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.21	13.55
HAKD_EP4_14	2773392_5ds_1206	5D	/5906	5D	2221080	85	NA NA	0.24	14.27
HARD EP3_14	2113392_308_1200 2773392_540_1206	5D	75006 75006	5D 5D	2221080	83 85	INA NA	0.24	14.30
HARD ED/ 15	2773392_3US_1200 2773392_540_1206	50	75006	5D 5D	2221080	0 <i>3</i> 85	NA NA	0.20	10.92
HARD $FP5$ 15	2773392_5ds_1206	5D	75906	5D	2221080	85	NA	0.20	16.86
HARD BD 16	2773392 5ds 1206	5D	75906	5D	2221080	85	NA	0.24	14.88
HARD BI 16	2773392 5ds 1206	5D	75906	5D	2221080	85	NA	0.19	12.43
HARD CLI 16	2773392 5ds 1206	5D	75906	5D	2221080	85	NA	0.27	16.09
HARD_EP3_15	2770151_5ds_4035	5D	75899	5D	7257066	85	NA	0.11	7.66
HARD_EP4_14	2739337_5ds_2304	5D	75953	5D	7485266	85	NA	0.12	7.71
HARD_EP3_15	2739337_5ds_2304	5D	75953	5D	7485266	85	NA	0.11	7.27
HARD EP4 15	2739337 5ds 2304	5D	75953	5D	7485266	85	NA	0.11	7 33

Table A2 Continued

Trait loc Yr [†]	Marker	Chr	Pos	CHR [‡]	Mb§	OTL ID	A¶	R ^{2#}	-log10(p)
HARD EP5 15	2739337 5ds 2304	5D	75953	5D	7485266	85	NA	0.13	8.65
HARD_BD_16	2739337_5ds_2304	5D	75953	5D	7485266	85	NA	0.10	7.10
HARD_BI_16	2739337_5ds_2304	5D	75953	5D	7485266	85	NA	0.11	7.70
HARD_CLI_16	2739337_5ds_2304	5D	75953	5D	7485266	85	NA	0.14	8.80
HARD_CH_14	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.14	9.18
HARD_EP4_14	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.14	8.91
HARD_EP5_14	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.12	8.19
HARD_EP3_15	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.16	10.09
HARD_EP4_15	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.15	9.69
HARD_EP5_15	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.18	11.58
HARD_BD_16	2781025_5ds_24425	5D	76006	5D	8018752	85	NA	0.15	9.86
HARD_BI_16	2781025_5ds_24425	5D	76006	5D 5D	8018752	85	NA	0.15	10.03
HARD_CLI_10	2781025_5ds_24425	5D	76006	5D	8018752	85 85	NA NA	0.15	9.80
HARD_CH_14	2781025_5ds_24421	3D 5D	76003	50	8018756	63 85	NA	0.14	9.18
HARD_EF4_14 HARD_EP5_14	2781025_5ds_24421	5D	76005	5D	8018756	85	NA	0.14	8 19
HARD EP3 15	2781025_5ds_24421	5D	76005	5D	8018756	85	NA	0.12	10.09
HARD EP4 15	2781025_5ds_24421	5D	76005	5D	8018756	85	NA	0.15	9.69
HARD EP5 15	2781025_5ds_24421	5D	76005	5D	8018756	85	NA	0.15	11.58
HARD BD 16	2781025_5ds_24421	5D	76005	5D	8018756	85	NA	0.15	9.86
HARD BI 16	2781025 5ds 24421	5D	76005	5D	8018756	85	NA	0.15	10.03
HARD CLI 16	2781025 5ds 24421	5D	76005	5D	8018756	85	NA	0.15	9.86
HARD_EP4_14	2745020_5ds_15344	5D	76053	5D	8419265	85	7.25	0.13	7.73
HARD_EP5_14	2745020_5ds_15344	5D	76053	5D	8419265	85	6.51	0.12	7.17
HARD_EP3_15	2745020_5ds_15344	5D	76053	5D	8419265	85	7.39	0.12	7.36
HARD_EP4_15	2745020_5ds_15344	5D	76053	5D	8419265	85	7.74	0.13	8.01
HARD_BD_16	2745020_5ds_15344	5D	76053	5D	8419265	85	6.15	0.12	7.33
HARD_EP4_14	2745020_5ds_15346	5D	76054	5D	8419267	85	7.25	0.13	7.73
HARD_EP5_14	2745020_5ds_15346	5D	76054	5D	8419267	85	6.51	0.12	7.17
HARD_EP3_15	2745020_5ds_15346	5D	76054	5D	8419267	85	7.39	0.12	7.36
HARD_EP4_15	2745020_5ds_15346	5D	76054	5D	8419267	85	7.74	0.13	8.01
HARD_BD_16	2745020_5ds_15346	5D	76054	5D	8419267	85	6.15	0.12	7.33
HARD_CH_14	27/4182_5ds_7304	5D	76010	5D	8613963	85	NA	0.12	8.08
HARD_EP4_14	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.14	9.19
HARD_EP5_14	2//4182_5ds_/304	5D	76010	50	8013903	85	NA	0.11	7.30
HARD_EP3_13	2774182_5ds_7304	3D 5D	76010	5D 5D	8613963	63 85	NA	0.15	9.96
HARD_EF4_15	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.10	11.80
HARD BD 16	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.13	8 71
HARD BI 16	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.12	8.05
HARD CLI 16	2774182_5ds_7304	5D	76010	5D	8613963	85	NA	0.15	9.89
HARD EP4 14	2781671 5ds 9472	5D	75997	5D	9332000	85	NA	0.11	7.33
HARD_EP3_15	2781671_5ds_9472	5D	75997	5D	9332000	85	NA	0.11	7.43
HARD_EP4_15	2781671_5ds_9472	5D	75997	5D	9332000	85	NA	0.13	8.49
HARD_EP5_15	2781671_5ds_9472	5D	75997	5D	9332000	85	NA	0.13	8.94
HARD_CLI_16	2781671_5ds_9472	5D	75997	5D	9332000	85	NA	0.11	7.47
HARD_CH_14	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.11	7.43
HARD_EP4_14	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.13	8.42
HARD_EP5_14	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.11	7.39
HARD_EP3_15	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.12	8.01
HARD_EP4_15	2781671_5ds_9461	5D	75993	5D	9332011	85	NA	0.14	9.20
HARD_EP5_15	2/816/1_5ds_9461	5D	/5993	5D	9332011	85	NA	0.14	9.30
HARD_DD_10	2781671_5ds_9461	3D 5D	75995	50	9552011	63 85	NA	0.11	7.54
HARD_DI_10	2781671_5ds_9401	5D	75993	5D	9332011	85	NA	0.11	7.55 8.04
HARD_CLI_10	2781671_5ds_9401	5D	75993	5D	9332011	85	NA	0.12	7.43
HARD FP4 14	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.11	8 42
HARD EP5 14	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.13	7 39
HARD EP3 15	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.12	8.01
HARD EP4 15	2781671 5ds 9443	5D	75992	5D	9332029	85	NA	0.14	9.20
HARD EP5 15	2781671 5ds 9443	5D	75992	5D	9332029	85	NA	0.14	9.30
HARD_BD_16	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.11	7.34
HARD_BI_16	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.11	7.53
HARD_CLI_16	2781671_5ds_9443	5D	75992	5D	9332029	85	NA	0.12	8.04
HARD_CH_14	2781671_5ds_9235	5D	75991	5D	9332237	85	NA	0.11	7.43
HARD_EP4_14	2781671_5ds_9235	5D	75991	5D	9332237	85	NA	0.13	8.42
HARD_EP5_14	2781671_5ds_9235	5D	75991	5D	9332237	85	NA	0.11	7.39
HARD_EP3_15	2781671_5ds_9235	5D	75991	5D	9332237	85	NA	0.12	8.01
HARD_EP4_15	2781671_5ds_9235	5D	75991	5D	9332237	85	NA	0.14	9.20
HARD_EP5_15	2/816/1_5ds_9235	5D	75991	5D	9332237	85	NA	0.14	9.30
HARD_BD_16	2/816/1_5ds_9235	5D	75991	5D	9332237	85	NA	0.11	7.34
HARD CLU 16	2/810/1_3ds_9233	5D	75001	5D	9332237	85	NA NA	0.11	1.53
	(1010) 108 9/31	11.7	11991	11.4	717//7/	~ 1	IN A	1117	A 1/4

Table A2 Continued

Trait_loc_Yr [†]	Marker	Chr	Pos	CHR^{\ddagger}	Mb [§]	QTL ID	A¶	R ^{2#}	-log10(p)
HARD_EP4_14	2781671_5ds_9223	5D	75990	5D	9332249	85	NA	0.11	7.38
HARD_EP3_15	2781671_5ds_9223	5D	75990	5D	9332249	85	NA	0.11	7.30
HARD_EP4_15	2781671_5ds_9223	5D	75990	5D	9332249	85	NA	0.13	8.41
HARD_EP5_15	2/81671_5ds_9223	5D	75990	5D 5D	9332249	85	NA	0.12	8.35
HARD_CLI_10	2781671_5ds_9225	5D	75990	5D	9552249	85 85	NA NA	0.11	7.22
HARD FP4 14	2781671_5ds_9219	5D	75989	5D 5D	9332253	85	NA	0.11	8 42
HARD EP5 14	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.11	7.39
HARD_EP3_15	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.12	8.01
HARD_EP4_15	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.14	9.20
HARD_EP5_15	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.14	9.30
HARD_BD_16	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.11	7.34
HARD_BI_16	2781671_5ds_9219	5D	75989	5D	9332253	85	NA	0.11	7.53
HARD_CLI_16	2781671_5ds_9219	5D	75989	5D 5D	9332253	85	NA	0.12	8.04
HARD EP4 14	2781671_5ds_9179	5D	75987	5D 5D	9552295	85 85	NΔ	0.11	7.45
HARD EP5 14	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.13	7 39
HARD EP3 15	2781671 5ds 9179	5D	75987	5D	9332293	85	NA	0.12	8.01
HARD_EP4_15	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.14	9.20
HARD_EP5_15	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.14	9.30
HARD_BD_16	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.11	7.34
HARD_BI_16	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.11	7.53
HARD_CLI_16	2781671_5ds_9179	5D	75987	5D	9332293	85	NA	0.12	8.04
HARD_EP4_14	2/816/1_5ds_915/	5D	/5986	5D 5D	9332315	85	NA	0.11	7.38
HARD EP3_15	2781671_5ds_9157	5D	75986	5D 5D	9332315	85 85	NΔ	0.11	7.50 8.41
HARD EP5 15	2781671_5ds_9157	5D	75986	5D	9332315	85	NA	0.13	8 35
HARD CLI 16	2781671 5ds 9157	5D	75986	5D	9332315	85	NA	0.11	7.22
HARD_EP3_15	2739401_5ds_20579	5D	76380	5D	11421190	85	-6.50	0.12	7.12
HARD_EP4_15	2242858_5ds_843	5D	76537	5D	21256151	85	NA	0.11	7.31
HARD_CH_14	2614662_5ds_579	5D	76397	5D	23058289	85	NA	0.11	7.50
HARD_EP4_14	2614662_5ds_579	5D	76397	5D	23058289	85	NA	0.11	7.64
HARD_EP4_15	2614662_5ds_579	5D	76397	5D 5D	23058289	85	NA	0.10	7.05
HARD_EP5_15	2014002_508_579 2614662_5ds_579	5D	76397	5D 5D	23058289	85 85	NA NA	0.11	7.38
HARD_CLI_16	2748871 5ds 2822	UKN	1E+05	5D	23346667	85	4 50	0.10	7.03
HARD EP5 15	3169317 7bs 6045	7B	1E+05	7B	156437593	113	2.60	0.12	7.28
HARD_BD_16	3169317_7bs_6045	7B	1E+05	7B	156437593	113	1.88	0.13	8.02
HARD_BI_16	3169317_7bs_6045	7B	1E+05	7B	156437593	113	2.85	0.15	8.81
MLPH_EP5_15	10560024_3b_8154	3B	46264	3B	626368663	52	-1.70	0.12	7.23
MLRS_EP5_14	3976624_1al_4871	UKN	1E+05	1A	563337674	5	0.16	0.15	8.06
MLRS_EP5_14	2755762_1bs_446	1B	6180	1B	15393391	6	-0.05	0.13	7.90
MLRS_EP4_14 MLPS_EP5_14	2/15434_2as_1190		1E+05 22550	2A 2A	163468275	20	0.15	0.15	8.81
MLRS_EP3_14 MLRS_EP4_14	6415092 2a1 1762	2A 2A	22339	2A 2 A	700980102	24	-0.07	0.16	9.09
MLRS_EP4_14 MLRS_EP4_14	6415092_2a1_1762	2A 2A	21970	2A 2A	700980102	24	0.00	0.15	8 53
MLRS EP5 14	5246892 2bs 1581	2B	24440	2B	9127312	26	-0.09	0.13	8.02
MLRS_EP5_14	5176564_2bs_847	UKN	1E+05	2B	38620602	27	-0.18	0.15	8.81
MLRS_EP5_14	5192097_2bs_4621	2B	26002	2B	63820373	27	0.00	0.13	7.85
MLRS_BD_16	5244816_2bs_10170	2B	26109	2B	72938260	27	-0.14	0.11	7.20
MLRS_EP4_14	8020386_2b1_973	2B	28014	2B	415059969	28	-0.05	0.15	8.64
MLRS_EP4_14	8002564_2bl_4534	2B	32112	2B 2D	656976741	31	-0.02	0.15	8.60
MLKS_EP4_14 MLRS_ED5_14	8002304_201_4533 7953703 261 4726	2B 2B	32111 31380	2B 2B	657071400	31 31	-0.04	0.15	8.63
MLRS FP5 14	7953703_201_4720 7953703_2b1_4718	210 213	31387	2.D 2.B	657071400	31	-0.02	0.15	8.00 7.89
MLRS_EP5_14	7953703_2bl_4692	2B 2B	31384	2B	657071434	31	0.02	0.13	7.88
MLRS_EP5_14	8006724_2b1_4660	2B	33033	2B	735404943	32	0.04	0.13	7.91
MLRS_EP5_14	8088961_2b1_3997	2B	33671	2B	774682954	32	-0.13	0.13	8.04
MLRS_EP5_14	5388307_2ds_14890	2D	35318	2D	56254163	34	0.19	0.13	8.10
MLRS_EP5_14	5391007_2ds_4367	2D	36416	2D	116764802	35	-0.20	0.14	8.35
MLRS_EP5_14	9833177_2dl_16160	2D	35537	2D	527921804	37	-0.01	0.13	7.89
MLRS_EP5_14	9858970_2dl_3219	2D 2D	38469	2D 2D	601965671	38	0.03	0.13	7.89
MIRS ED5 14	7030770_201_3228 3331403 300 17129	2D 3A	384/3 10067	2D 3A	28146042	58 20	-0.09	0.13	8.04 7.69
MLRS FP4 14	3331403_385_17138	3A 3A	40007	3A 3A	20140043	59 40	-0.03	0.15	7.08 8.87
MLRS EP4 14	4326927 3a1 462	3A	41057	3A	430959405	42	0.12	0.13	8.29
MLRS_EP5 14	10762578_3b_6885	UKN	1E+05	3B	2164045	45	0.27	0.18	8.58
MLRS_EP5_14	10705157_3b_753	3B	44454	3B	66887150	46	0.28	0.16	9.54
MLRS_EP5_14	10705597_3b_1425	3B	45387	3B	409529033	50	0.13	0.14	8.16
MLRS_EP5_14	10580786_3b_4786	UKN	1E+05	3B	418748348	50	-0.08	0.16	9.74
MLRS_EP4_14	10760636_3b_4215	3B	47079	3B	769543611	54	-0.10	0.16	8.98
MLRS_EP5_14	10425662_3b_3428	3B	47289	3B 2D	798205862	54	0.03	0.13	7.90
MLKS_EP5_14	2003040_308_1335 6052002_241_1165	3D 2D	4/614	3D 2D	8361225	55 57	-0.14	0.13	8.04
MIRS EP5_14	6012949 4as v2 0000	3D 4A	48838 50605	3D 4A	526025288	51 58	-0.07	0.13	7.98 7.05

Table A2 Continued

Trait_loc_Yr [†]	Marker	Chr	Pos	CHR [‡]	Mb§	QTL ID	A¶	R ^{2#}	-log10(p)
MLRS_EP4_14	7110987_4al_3876	4A	51052	4A	476134651	60	0.03	0.15	8.58
MLRS_EP5_14	7145077_4al_19258	4A	54649	4A	707246102	63	-0.04	0.13	7.91
MLRS_EP5_14	7022490_4b1_1414	4B	59890	4B	524603106	66	-0.02	0.13	7.90
MLRS_EP5_14	6965059_4b1_4331	4B	59698	4B	608056018	67	-0.12	0.13	8.05
MLRS_EP5_14	2275446_4ds_19878	UKN	1E+05	4D	7096132	69	0.08	0.14	7.87
MLRS_EP5_14 MLRS_ED5_14	23258/1_4ds_12910	4D 4D	61537	4D 4D	16813690	69	0.17	0.14	8.3/
MLRS_EP5_14 MLRS_ED5_14	2310380_{40s}_{4115}	4D 4D	63465	4D 4D	20203022	73	0.00	0.13	7.00
MLRS EP5 14	14377340 4dl v2 17626	4D	63461	4D	496139363	73	0.02	0.13	7.90
MLRS EP5 14	14377340 4dl v2 17615	4D	63459	4D	496139374	73	0.02	0.13	7.90
MLRS_EP4_14	14320034_4d1_v2_2527	UKN	1E+05	5A	414046997	72?	-0.03	0.17	8.53
MLRS_EP4_14	14320034_4dl_v2_2536	UKN	1E+05	5A	414047006	72?	0.17	0.18	9.09
MLRS_EP5_14	2257417_5bs_15959	5B	70107	5B	121185149	78	-0.10	0.14	8.12
MLRS_EP5_14	2257417_5bs_15958	5B	70106	5B	121185150	78	0.10	0.14	8.12
MLRS_EP5_14	2257417_5bs_15913	5B	70105	5B	121185195	78	0.08	0.15	7.99
MLRS_EP5_15 MLRS_ED5_14	10925497_501_8503	5B 5D	69123	5B 5D	30/003599	79	-0.23	0.13	7.02
MLRS_EP5_14 MLRS_EP5_14	10862855_501_5768	JE	07852 1E±05	5B	523932477	82	0.03	0.15	7.91
MLRS_EP5_14	10910228_5b1_7370	UKN	1E+05	5B	523932486	82	-0.03	0.15	7.84
MLRS EP5 14	10910228 5bl 7366	UKN	1E+05	5B	523932490	82	-0.04	0.15	7.86
MLRS_EP5_14	10910228_5b1_7364	UKN	1E+05	5B	523932492	82	-0.03	0.15	7.84
MLRS_BD_16	10890478_5b1_16094	UKN	1E+05	5B	528563376	82	-0.33	0.16	9.11
MLRS_EP5_14	10919338_5bl_1478	5B	75350	5B	686433888	84	0.01	0.13	7.89
MLRS_EP5_14	10919338_5bl_1486	5B	75351	5B	686433896	84	0.11	0.13	7.97
MLRS_EP4_14	4503898_5dl_1782	5D	77180	5D	276671889	87	-0.01	0.15	8.57
MLRS_EP5_14 MLRS_ED5_14	4488923_5dl_4410	5D	81451	5D	511948668	90	-0.21	0.14	8.25
MLRS_EP5_14 MLRS_ED5_14	4429106_6as_3390	6A	83059	6A	3705808	92	0.01	0.15	7.89
MLRS_EP4_14	5806319 6a1 1934	6A	85822	6A	442085721	95	0.01	0.15	9.10
MLRS EP4 14	5745805 6al 1075	6A	87221	6A	552828358	96	0.02	0.15	8.59
MLRS_EP5_15	5692765_6al_1356	6A	87704	6A	594960290	96	-0.27	0.13	7.41
MLRS_EP4_14	5819489_6al_18687	6A	87766	6A	595061050	96	0.01	0.15	8.57
MLRS_EP5_14	5835370_6al_17148	6A	88223	6A	612113836	97	0.08	0.13	7.98
MLRS_EP5_14	5835370_6al_17142	6A	88222	6A	612113842	97	0.22	0.12	7.05
MLRS_EP4_14	2943095_6bs_552	6B	89018	6B	27126339	98	0.05	0.15	8.64
MLRS_EP4_14	4345576_6b1_497	6B	92365	6B	681901174	100	0.03	0.12	7.28
MLRS_EP4_14 MLRS_ED4_14	4345576_001_557 4261361_651_2114	6B 6B	92300	0B 6P	081901214	100	0.05	0.12	7.28
MIRS FP5 14	2116712 6ds 6275	6D	94035	6D	22182783	100	-0.09	0.13	7 91
MLRS EP5 14	2124102 6ds 225	6D	94342	6D	60383430	101	-0.15	0.13	8.29
MLRS_EP5_14	3295766_6d1_4239	6D	97211	6D	435306987	103	0.04	0.13	7.92
MLRS_EP4_14	4190671_7as_2139	UKN	1E+05	7A	38749287	104	-0.04	0.17	8.52
MLRS_EP5_14	4047115_7as_639	7A	1E+05	7A	94913347	105	0.13	0.14	8.17
MLRS_EP5_14	4446000_7al_2788	7A	1E+05	7A	540909569	109	-0.08	0.13	7.97
MLRS_EP5_14	4446000_7al_2731	7A	1E+05	7A	540909626	109	0.08	0.13	7.97
MLRS_EP5_14	4446000_7al_2729	/A	1E+05	7A	540909628	109	-0.08	0.13	7.97
MLRS_EP5_14 MLRS_ED5_14	4455276_7al_1712	UKN 7D	1E+05	/A 7D	723388881	111	-0.23	0.14	8.42
MIRS EP5 14	3919807 7ds 190	7D	1E+05	7B 7D	60148204	115	0.14	0.13	7.90
MLRS EP5 14	3314448 7d1 1711	7D	1E+05	7D	461403554	120	0.10	0.13	8.06
MLRS EP5 14	3314448 7dl 1518	7D	1E+05	7D	461403747	120	0.09	0.13	8.02
MLRS_EP4_14	1277312_7d1_526	UKN	1E+05	7D	488050396	121	-0.01	0.16	8.46
MLRS_EP5_14	3331788_7d1_1409	7D	1E+05	7D	547276474	122	-0.21	0.14	8.20
MLRS_EP5_14	339577_7dl_1102	UKN	1E+05	7D	594987964	123	0.04	0.16	7.99
MLRS_EP5_14	3342062_7d1_680	UKN	1E+05	7D	615915739	123	-0.09	0.15	7.92
MLRS_EP5_14 MLRS_ED5_14	3348/54_/dl_4968	7D 7D	1E+05	7D 7D	623156542	123	0.04	0.13	7.90
MLRS_EP5_14 MLRS_ED5_14	3348/34_/dl_4920 2287155_741_1267	7D 7D	1E+05	7D 7D	626221720	123	0.04	0.15	7.90
MIRS FP5 14	3334708 7d1 3503	7D 7D	1E+05	7D 7D	634376273	123	-0.14	0.14	8.29
MLRS EP5 14	7012446 4al 76	4A	52159	Un	244927138	60?	0.04	0.13	7.92
MLRW_BI_16	3451628_1bs_1524	1B	6336	1B	25899498	6	-3.15	0.12	7.64
MLRW_BI_16	3451628_1bs_1476	1B	6334	1B	25899546	6	3.15	0.12	7.64
MLRW_BI_16	3451628_1bs_1473	1B	6333	1B	25899549	6	3.15	0.12	7.64
MLTW_EP5_15	3921954_1al_1101	UKN	1E+05	1A	521991074	5	-0.31	0.12	7.53
MLTW_EP5_15	3921954_1al_1141	UKN	1E+05	1A	521991114	5	0.06	0.12	7.40
MLTW_EP5_15	39/186/_1al_22696	IA 1 A	4680	IA 1 A	547901775	5	-0.37	0.19	12.05
MLIW_EP5_15	3869500_1a1_16071	1A 1 A	4720	1A 1 A	564603615	5	-0.44	0.14	8.52
MLTW RI 16	3453826 1bc 3226	1A 1B	4/18	1R	17145962	5	-0.44	0.14	8.02 8.02
MLTW BI 16	3453826 1bs 3043	1B	5926	1B	17145902	6	-2.78	0.12	8.02 7.70
MLTW BI 16	3453826 1bs 3023	1B	5923	1B	17146165	6	2.69	0.12	8.01
MLTW_EP5_15	3482438_1bs_1714	1B	6425	1B	21367114	6	1.66	0.12	7.92
MLTW_BI_16	3451172_1bs_433	1B	6326	1B	21443789	6	NA	0.09	7.32
MLTW_EP5_15	3422647_1bs_7183	1B	6268	1B	22824562	6	-0.49	0.11	7.14

Table A2 Continued

$Trait_loc_Yr^{\dagger}$	Marker	Chr	Pos	CHR^{\ddagger}	Mb§	QTL ID	A¶	R ^{2#}	-log10(p)
MLTW_BD_16	3434158_1bs_9081	1B	6314	1B	30403173	6	NA	0.12	8.25
MLTW_EP5_15	3475565_1bs_1037	UKN	1E+05	1B	32817045	6	-0.05	0.19	11.78
MLTW_EP5_15	3470361_1bs_739	1B	8175	1B	171106182	8	-0.67	0.11	7.50
MLTW_EP5_15	3433385_1bs_2429	1B 1D	7694	1B 1D	202758082	8	-0.57	0.19	12.09
MLTW EP5_15	3895037 161 2485	1B 1B	11987	1D 1B	202738113 653081906	0 13	-0.11	0.19	11.67
MLTW FP5 15	1910681 1ds 1845	1D 1D	14416	1D	67443132	13	-1.04	0.19	7.09
MLTW EP5 15	2290615 1dl 3201	1D	14205	1D	295402927	15	0.01	0.19	11.86
MLTW EP5 15	2284405 1dl 7872	1D	15917	1D	462718121	17	-0.66	0.15	9.43
MLTW_EP5_15	2284405_1dl_7840	1D	15914	1D	462718153	17	-0.59	0.20	12.36
MLTW_EP5_15	2284405_1dl_7834	1D	15913	1D	462718159	17	-0.58	0.20	12.34
MLTW_EP5_15	2284405_1dl_7833	1D	15912	1D	462718160	17	0.59	0.20	12.36
MLTW_EP5_15	2284405_1d1_7596	1D	15904	1D	462718397	17	-0.63	0.15	9.67
MLTW_EP5_15	2266038_1dl_884	1D	16428	1D	474983270	17	-0.22	0.19	11.90
MLTW_EP5_15	2266038_1dl_688	ID 1D	16422	ID 1D	474983466	17	0.39	0.19	12.01
MLTW EP5_15	2200038_101_072 5274853_2as_1597	24	10421	24	474965462	17	-0.55	0.19	7.08
MLTW FP5 15	5274853 2as 1583	2A 2A	17593	2A 2A	23497189	18	-0.30	0.12	7.08
MLTW EP5 15	5197325 2as 765	2A	18383	2A	49884137	18	0.55	0.12	12.00
MLTW EP5 15	6335763 2al 578	UKN	1E+05	2A	588215121	22	0.20	0.13	7.75
MLTW_EP5_15	6335763_2al_574	UKN	1E+05	2A	588215125	22	-0.14	0.21	11.46
MLTW_EP5_15	6434376_2al_9024	2A	19021	2A	597215006	22	0.20	0.19	11.88
MLTW_EP5_15	6380908_2al_4964	2A	22895	2A	728813485	24	-0.68	0.20	12.37
MLTW_EP5_15	6362950_2al_3896	2A	23459	2A	748682248	25	0.15	0.19	11.90
MLTW_EP5_15	6362950_2al_3887	2A	23457	2A	748682257	25	-0.36	0.19	11.95
MLTW_EP5_15	80/5293_2bl_9728	2B 2D	28825	2B 2D	436242677	28	0.00	0.19	11.91
MLTW EP5_15	2000600 2b1 14565	2D 2P	29223	2D 2D	430412363	28	1.22	0.11	7.22
MLTW FP5_15	8062742 2b1 977	2B UKN	1E+05	2B 2B	552338802	29	0.38	0.11	7.29
MLTW EP5 15	6983730 2bl 1537	2B	30388	2B	598961876	30	-0.15	0.11	11.77
MLTW EP5 15	7942088 2bl 3961	UKN	1E+05	2B	667417891	31	-0.18	0.20	11.58
MLTW_EP5_15	8085346_2b1_8079	2B	32832	2B	699288270	31	0.30	0.12	8.04
MLTW_EP5_15	5372804_2ds_1471	UKN	1E+05	2D	44894650	33	0.05	0.19	11.73
MLTW_EP5_15	5331953_2ds_4427	2D	35468	2D	61024791	34	0.34	0.11	7.15
MLTW_EP5_15	5330991_2ds_5096	2D	35466	2D	73583923	34	-0.30	0.19	11.90
MLTW_EP5_15	5388470_2ds_592	2D	37758	2D	261987621	36	-0.30	0.11	7.05
MLTW_EP5_15	3284444_3as_3787	3A	40143	3A	23908087	39	0.68	0.11	7.17
MLIW_EP5_15 MITW_EP5_15	3439719_3as_124 3354266_3as_54	3A 3A	41188	3A 3A	129893201	40	0.44	0.15	9.74
MLTW FP5_15	3354266 3as 104	34	41312	3A 3A	135590589	40	-0.13	0.19	11.88
MLTW EP5 15	3441353 3as 768	UKN	1E+05	3A	212196873	41	-0.43	0.12	7.20
MLTW EP5 15	4338188 3al 5343	3A	41475	3A	440027969	42	-0.80	0.11	7.29
MLTW_EP5_15	4343024_3al_33	UKN	1E+05	3A	684521615	44	0.13	0.20	11.70
MLTW_EP5_15	4343024_3al_38	UKN	1E+05	3A	684521615	44	0.12	0.20	11.69
MLTW_EP5_15	4233820_3al_4642	3A	43010	3A	706202437	44	0.02	0.19	11.86
MLTW_EP5_15	4233820_3al_4641	3A	43009	3A	706202438	44	-0.56	0.19	12.19
MLTW_EP5_15	4108010_3b_247	3B	45020	3B	245911025	48	-0.01	0.19	11.85
MLTW_EP5_15	10/51565_3b_2623	UKN 2D	1E+05	3B 2D	739339484	53	1.37	0.24	13.01
MLIW_EP5_15 MITW_EP5_15	1077127 3b 4836	2B 2B	47429 1E±05	3B 3B	815050498	54 54	0.55	0.19	12.05
MLTW EP5_15	10757127_3b_4802	UKN	1E+05	3B 3B	821040179	54	-0.55	0.21	7.64
MLTW EP5 15	6955423 3dl 274	3D	48129	3D	347562978	56	-0.11	0.19	11.89
MLTW EP5 15	6952453 3dl 47	3D	48587	3D	495921615	57	-0.60	0.19	12.13
MLTW_EP5_15	5898011_4as_v2_1139	4A	50560	4A	100668627	59	0.25	0.19	11.92
MLTW_EP5_15	5927344_4as_v2_3198	4A	50482	4A	120340689	59	1.13	0.12	7.63
MLTW_EP5_15	3922577_7ds_700	UKN	1E+05	4A	729442112	63	0.35	0.25	11.84
MLTW_EP5_15	3922577_7ds_694	UKN	1E+05	4A	729442116	63	-0.31	0.24	11.80
MLTW_EP5_15	4864066_4bs_4860	4B	57580	4B	117092437	64	-0.24	0.19	11.92
MLTW_EP5_15	4890458_4bs_3401	4B 4D	58888	4B 4D	16/3/3/04	64	-0.04	0.19	11.86
MLIW_EP5_15 MITW_EP5_15	4880127_4bs_1078	4B 4P	50726	4B 4P	213097236	65	-0.22	0.19	11.90
MLTW EP5_15	6972744_401_134 6890178_4b1_557	4D UKN	39730 1E+05	4D 4B	615383032	67	0.14	0.19	7 55
MLTW EP5 15	6890178 4hl 539	UKN	1E+05	4B	615383950	67	-0.15	0.12	7.55 8.00
MLTW EP5 15	6890178 4b1 498	UKN	1E+05	4B	615383991	67	-0.15	0.13	8.00
MLTW_EP5 15	14381009_4dl v2 287	UKN	1E+05	4D	401566773	72	-0.34	0.17	8.98
MLTW_EP5_15	14381009_4dl_v2_263	UKN	1E+05	4D	401566797	72	-0.35	0.17	8.99
MLTW_EP5_15	14381009_4dl_v2_248	UKN	1E+05	4D	401566812	72	-0.34	0.17	8.98
MLTW_EP5_15	1517889_5as_12083	5A	64145	5A	6627042	74	0.12	0.19	11.88
MLTW_EP5_15	1539578_5as_2723	UKN	1E+05	5A	12667826	74	-0.12	0.23	11.64
MLTW_EP5_15	2804003_5al_1159	5A	63879	5A	280524196	75	-0.64	0.20	12.28
MLTW_EP5_15	2805435_5al_10340	5A 5D	65511	5A	606358734	76	0.21	0.19	11.91
MLTW EP5_15	1013133_308_0987	2R 2B	66705	5B 5D	6601211	// רר	0.24	0.19	11.91
MLTW EP5_15	1013133_308_0990 10925497 5bl 8503	эд 5В	69123	эд 5В	307003599	79	0.09	0.19	11.87

Table A2 Continued

MLTW, EPS, 15 100 1057, 005 58 72387, 7015 79 0.66 0.01 1.7, 62 MLTW, EPS, 15 1067, 4015, 4019 58 71383, 58 107383, 58, 1129 58 71383, 58 107383, 58, 1129 108 108 107383, 58, 1129 108 108 107383, 58, 1129 108 108 107383, 58, 1129 108	Trait_loc_Yr [†]	Marker	Chr	Pos	CHR^{\ddagger}	Mb [§]	QTL ID	A¶	R ^{2#}	-log10(p)
MLTW, EP5, 15 0072919, Sh. 19905 58 71348 58 47388733 81 -1.08 0.04 0.19 1.18 MLTW, EP5, 15 0078925, Sh. 1103 58 71348 58 4738758 81 0.04 0.19 1.18 MLTW, EP5, 15 1078925, Sh. 1103 58 7131 58 49798558 11 0.033 0.11 7.743 MLTW, EP5, 15 1073205, Sh. 1455 58 77314 58 587712048 83 0.033 0.12 0.19 1.187 MLTW, EP5, 15 1087300, Sh. 1715 58 72344 51 5977126 83 0.12 0.19 1.183 MLTW, EP5, 15 1084144, Sh. 1712 58 72344 50 37357358 88 0.40 0.21 1.144 MLTW, EP5, 15 450011, 54, 2239 50 811805 50 37357358 88 0.40 0.21 1.144 MLTW, EP5, 15 453664, 64, 232 6A 83346043 92 0.33	MLTW_EP5_15	10918258_5b1_2861	5B	69038	5B	322877015	79	-0.69	0.20	12.36
MLTW, EP5, 15 1078282, SM, 1105 58 71382 58 497845690 81 -0.44 0.19 18.8 MLTW, EP5, 15 1078282, SM, 1399 58 71332 58 49784364 81 0.55 0.19 11.84 MLTW, EP5, 15 1078302, SM, 1395 58 77315 58 49784364 81 0.55 0.02 1227 MLTW, EP5, 15 10878719, SM, 7181 58 77324 58 597127640 83 -0.12 0.19 11.88 MLTW, EP5, 15 10887191, SM, 712 58 77364 58 610300841 83 0.28 0.19 11.91 MLTW, EP5, 15 10881791, SM, 712 58 77364 59 33384066 88 0.019 11.91 MLTW, EP5, 15 430056, Sm, 530 6A 83308 6A 121393 92 0.018 0.19 11.38 MLTW, EP5, 15 433420, Sm, 277 UKN 116105 6A 34600648 97 0.38 0.11 <	MLTW_EP5_15	10874919_5b1_19095	5B	70838	5B	473888733	81	-1.08	0.11	7.42
MLTW, EP5, 15 10789285, SM, 1100 5B 71352 5B 49784755 81 0.63 0.19 12.18 MLTW, EP5, 15 10078205, SM, 123 5B 71353 5B 49784764 81 0.43 0.19 11.84 MLTW, EP5, 15 10078205, SM, 124 5B 77313 5B 897812040 83 0.423 0.11 1.143 MLTW, EP5, 15 453054, 6.6.3 6.6 8306 6.4 120.07 0.13 8.47 0.13 8.47	MLTW_EP5_15	10789285_5bl_1125	5B	71348	5B	497845690	81	-0.04	0.19	11.86
MLTW, EP: 15 1079282.5b. 1399 3B 7165 SB 49784964 8I 0.55 0.19 11.84 MITW, EP: 15 1082340, 50.143 SB 7165 SB 49784964 8I 0.55 0.11 7.16 MITW, EP: 15 1082340, 50.1712 SB 7234 4B 59710049 8I -0.12 0.19 11.85 MLTW, EP: 15 1088719, 50.172 SB 7364 SB 5073573958 8I 0.03 0.19 11.80 MLTW, EP: 15 449305, 51.72 SD 76642 SD 735573958 8I 0.00 0.21 11.84 MLTW, EP: 15 449306, 51.72 SD 8119 SD 735573958 8I 0.00 2.21 1.64 MLTW, EP: 15 453361, 56.12 SD 8119 SD 735573958 8I 0.00 2.21 1.14 MLTW, EP: 15 453240, 66.22797 CKN E4405 SD 73557358 8I 0.01 1.34 MLTW, EP: 15 532404, 66.12445 6A 8349667 93 0.43 <t< td=""><td>MLTW_EP5_15</td><td>10789285_5bl_1190</td><td>5B</td><td>71352</td><td>5B</td><td>497845755</td><td>81</td><td>0.63</td><td>0.19</td><td>12.18</td></t<>	MLTW_EP5_15	10789285_5bl_1190	5B	71352	5B	497845755	81	0.63	0.19	12.18
NLLW DE-L5 108/03/02/08/2-98/2-43 38 10-05 38 49/90/885 81 4.0.3 0.11 .0.10 NLLW DE5 10097323 S0.199 S0.191 S0.11 S0.	MLTW_EP5_15	10789285_5bl_1399	5B	71353	5B	497845964	81	0.36	0.19	11.84
NILW, EP5. 15 100 (2000) 218 218 218 2001 (2000) 83 4.35 0.10 11.2 NILW, EP5. 15 1008710 (2011) 317 318 7354 48 50077126 83 0.03 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.12 1.16 MLTW, EP5. 15 100009.50L, 718 UKN 1E-05 5D 375579358 88 0.40 0.22 1.16 MLTW, EP5. 15 450065.60, 307 6A 83810 6A 221965 0.20 0.33 0.19 1.16 MLTW, EP5. 15 532366, 60, 1236 6A 83811 6A 8208672 0.40 0.12 0.17 1.13 MLTW, EP5. 15 532366, 60, 12435 6A 83811 6A 8481167 0.40 0.11 7.13 MLTW, EP5. 15 5333406, 60, 16346	MLTW_EP5_15	10820340_561_743	5B	71653	5B 5D	497905885	81	-0.35	0.11	7.03
NL1W_2E-1.5 108 1.2.2 36 201/375/2 83 1.1.6 0.10 11.68 NLTW_EE5.15 1080/04.8 1080/04.8 1080/04.8 1080/04.8 0.19 11.93 NLTW_EE5.15 1451/05.5 5/0 75757958 88 0.04 0.22 11.83 NLTW_EE5.15 4400039.50L.718 UKN 11.605 5D 37557958 88 0.04 0.221 11.48 NLTW_EE5.15 450005.6 6.3 84095 92 0.38 0.13 0.13 0.14 0.19 11.83 NLTW_EE5.15 453004.6 6.3 840951 92 0.38 0.11 7.37 NLTW_EE5.15 5833404.6 1.6454 6.4 88266 6.4 61784657 97 0.58 0.11 7.33 NLTW_EE5.15 5333404.6 1.6454 6.4 88226 6.4 61784667 97 0.58 0.11 7.33 NLTW_EE5.15 5321208.16.04237 6.8 92301	MLTW_EP5_15	10/13906_561_3165	5B 5D	73131	5B 5D	580426190	83	-0.58	0.20	12.27
NLTW_EP:15 1000000000000000000000000000000000000	MLTW EP5_15	108/8230_301_14893	5B 5P	73254	5B 5D	58/120949	83	-0.12	0.19	11.8/
NLTW, EP5.15 1451552, 56, 1126 5D 76672 5D 34888016 85 -0.09 0.19 11.60 NLTW, EP5.15 4600039, 50, 17.18 UKN 1E-05 5D 375579359 88 -0.10 0.21 11.48 NLTW, EP5.15 435066, 6a, 330 6A 88109 6A 3845992 90 -0.18 0.19 11.97 NLTW, EP5.15 435366, 6a, 330 6A 88109 6A 3460963 92 -0.39 0.11 7.37 NLTW, EP5.15 4338341, 6a, 16345 6A 88226 6A 617840570 9 -0.48 0.11 7.43 NLTW, EP5.15 5333404, 6a, 16345 6A 88226 6A 617840673 97 -0.38 0.11 7.43 NLTW, EP5.15 5333404, 6a, 16437 6B 924301 6B 637299185 100 0.52 0.19 12.05 NLTW, EP5.15 2429494, 6a, 1439 6D 94984 6D 46867399181 100 0.42	MLTW_EP5_15	1088/191_301_781	5B	73054	5B	610360884	83	0.13	0.19	11.00
ILTW_EP5:15 4600039 621.718 UKN 1E405 5D 375579358 88 0.40 0.22 11.68 MLTW_EP5:15 4600039 640.718 UKN 1E405 5D 375579358 88 0.40 0.22 11.64 MLTW_EP5:15 4530665 66.8308 6A 2213963 92 0.33 0.13 8.47 MLTW_EP5:15 4537011 66.82097 6A 84059 6A 39460603 92 0.33 0.13 8.47 MLTW_EP5:15 4533040 66.2977 UKN 1E405 6A 18264762 94 -0.12 0.20 11.87 MLTW_EP5:15 4533040 6A 87404020 90 -0.51 0.11 7.05 MLTW_EP5:15 4239404.66439 6B 9140 6B 667299185 100 0.52 0.19 12.05 MLTW_EP5:15 2230746.664.6423 6D 94290 6D 46485804 101 0.02 10.9 16.0	MLTW EP5 15	1451356 5ds 1126	5D	76642	5D	34888016	85	-0.09	0.19	11.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MLTW EP5 15	4600039 5dl 719	UKN	1E+05	5D	375579358	88	0.40	0.22	11.68
MLTW_EP5.15 49081_501_501_502 90 -0.18 0.19 11.88 MLTW_EP5.15 437001_666.2097 6A 84059 6A 3946063 92 0.39 0.13 8.47 MLTW_EP5.15 4352043_666.2097 6A 84059 6A 182664762 94 0.43 0.13 8.47 MLTW_EP5.15 533404_66.11636 6A 8704 6A 17804657 97 0.38 0.11 7.13 MLTW_EP5.15 533404_66.11645 6A 88286 6A 617804657 97 0.39 0.11 7.13 MLTW_EP5.15 5233404_66.16457 6A 88286 6A 617804657 97 0.39 0.11 7.13 MLTW_EP5.15 520356_66.1951 6B 92130 6B 651790453 90 0.44 0.12 0.11 7.15 MLTW_EP5.15 520356_66.14255 6D 94620 6D 4645804 01 0.022 0.19 1.16 MLTW_EP5.15 520357	MLTW EP5 15	4600039 5dl 718	UKN	1E+05	5D	375579359	88	-0.10	0.21	11.44
MLTW_EP5.15 4530665_dms.2607 6A 84308 6A 12213963 92 0.39 0.19 11.97 MLTW_EP5.15 438583 6ms.207 UKN 16-06 6A 8468199 93 0.48 0.19 12.07 MLTW_EP5.15 5832446_mcl.1646 6A 88286 6A 617844653 97 0.58 0.11 7.43 MLTW_EP5.15 5832444_mcl.1644 6A 88286 6A 617844653 97 0.53 0.11 7.13 MLTW_EP5.15 5832444_mcl.1644 6A 88286 6A 61784463 97 0.53 0.11 7.13 MLTW_EP5.15 2212085 6Ad-064 6B 92429 6B 667399193 100 0.52 0.19 12.05 MLTW_EP5.15 2212083 6Ad-5138 6D 94844 6D 16992240 101 0.44 0.22 1.17 MLTW_EP5.15 2391528_dCL247 6D 98523 6D 462275113 103	MLTW_EP5_15	4590311_5dl_2239	5D	81195	5D	491845992	90	-0.18	0.19	11.88
MLTW_EP5.15 437011_6s_2697 6A 84059 6A 39460903 92 0.25 0.13 8.47 MLTW_EP5.15 438533.6s_6.30 6A 84811 6A 85038939 93 -0.48 0.19 12.07 MLTW_EP5.15 543240_6s_2.372 UKN 1E-05 6A 8704 6A 85049 96 -0.56 0.12 7.57 MLTW_EP5.15 533404_6d.16345 6A 88286 6A 617846457 97 -0.38 0.11 7.13 MLTW_EP5.15 253902_60.1951 6B 91546 6B 511387953 90 64.4 0.11 7.16 MLTW_EP5.15 22083.64.406 UKN 16B 914844 101 0.02 0.19 1.16 MLTW_EP5.15 232817_64.41289 6D 94644 01 16939240 102 46448337 101 0.40 0.21 1.2.01 MLTW_EP5.15 232817_64.4293 6D 94627151 103 0.56 0.20	MLTW_EP5_15	4350665_6as_530	6A	83308	6A	12213963	92	-0.39	0.19	11.97
MLTW, EPS, 15 435828, 6.8, 972 UKN IE:05 6A 8683939 93 -0.48 0.19 12.07 MLTW, EPS, 15 5692765, 6.1, 1356 6A 87704 6A 594960290 96 -0.26 0.20 11.87 MLTW, EPS, 15 583344, 6.0, 1, 6345 6A 88285 6A 617804657 97 -0.38 0.11 7.43 MLTW, EPS, 15 283344, 6.0, 1, 6345 6A 88285 6A 617804678 97 -0.39 0.11 7.13 MLTW, EPS, 15 423194, 60, 6461 6B 92430 6B 667299185 100 0.52 0.12 2.2 11.0 MLTW, EPS, 15 2072646, 642, 1428 6D 94290 6D 464237110 103 0.69 0.22 11.2.61 MLTW, EPS, 15 207264, 642, 1423 6D 98529 6D 462275113 103 0.60 0.21 12.61 MLTW, EPS, 15 201528, 601, 24245 6D 462275113 103 0.56	MLTW_EP5_15	4377011_6as_2697	6A	84059	6A	39460963	92	0.35	0.13	8.47
MLTW_EP5.15 4352420_668_2972 UKN IE+05 6A 182664762 94 0.12 0.20 0.11 7.43 MLTW_EP5.15 583340_661_16345 6A 87204 6A 8729485 97 -0.38 0.11 7.43 MLTW_EP5.15 253504_661_16345 6A 88286 6A 617804637 97 -0.38 0.11 7.13 MLTW_EP5.15 221994_601_6847 6B 921304 6B 687291185 100 0.52 0.19 12.05 MLTW_EP5.15 212084_664_1429 6D 94294 6D 46458330 100 0.14 0.22 11.71 MLTW_EP5.15 231237_661_2437 6D 99830 0D 462275113 103 0.56 0.20 12.27 MLTW_EP5.15 231237_61_2439 6D 99850 0D 462275113 103 0.56 0.20 12.27 MLTW_EP5.15 2319126_61_2439 6D 98526 6D 462275114 103 0.54	MLTW_EP5_15	4385583_6as_630	6A	84811	6A	86383939	93	-0.48	0.19	12.07
MLIW, LPS, 15 369/765, 64, L1356 6A 87/74 6A 394960290 96 40.56 0.12 7.43 MLTW, LPS, 15 383340, 64, L16345 6A 88285 6A 617884657 97 40.88 0.111 7.13 MLTW, LPS, 15 423596, 60, L951 6B 9151 6B 6151 6B 617884657 99 4.04 0.11 7.05 MLTW, LPS, 15 423194, 60, L931 6B 92430 6B 62729183 100 0.52 0.10 12.0 MLTW, LPS, 15 423194, 60, L933 6D 94846 6D 169592240 102 -0.57 0.19 12.08 MLTW, LPS, 15 2391326, 64, L4325 6D 94520 6D 462275113 103 0.66 0.20 12.26 MLTW, LPS, 15 3291526, 61, L4325 6D 98529 6D 462275113 103 0.56 0.20 12.25 MLTW, LPS, 15 3291526, 61, L4365 6D 98527 6D 462275124	MLTW_EP5_15	4352420_6as_2972	UKN	1E+05	6A	182664762	94	-0.12	0.20	11.87
NLI, W PLP_15 5333440_401_[0345] 6A 88286 6A 6178404658 97 -0.38 0.11 7.43 MLTW PP_15 4291994_601_6047 6B 91361_68 6B 511387953 99 -0.64 0.11 7.03 MLTW_ PP_15 4291994_601_6047 6B 92430_6 6B 637291851 100 0.52 0.10 0.22 0.11 7.33 MLTW_ PP_15 2491994_601_6047 6B 92430_6 6B 637291851 101 0.02 0.12 12.05 MLTW_ PP_15 2075264_664_12325 6D 94694 6D 469592240 101 0.04 0.22 11_63 MLTW_ PP_15 3291528_601_2427 6D 98529 6D 462275113 103 0.56 0.20 12.27 MLTW_ PP_15 3291528_601_2425 6D 98526 6D 462275124 103 0.56 0.20 12.27 MLTW_ PP_15 3291528_601_2417 6D 98526 6D 462275124 103 0.56 </td <td>MLTW_EP5_15</td> <td>5692765_6al_1356</td> <td>6A</td> <td>87704</td> <td>6A</td> <td>594960290</td> <td>96</td> <td>-0.56</td> <td>0.12</td> <td>7.57</td>	MLTW_EP5_15	5692765_6al_1356	6A	87704	6A	594960290	96	-0.56	0.12	7.57
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MLTW_EP5_15	5833404_6al_16346	6A	88286	6A	61/80465/	97	-0.58	0.11	7.43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MLTW EP5_15	5855404_0a1_10545	0A 6P	88285	6P	01/804038 511287052	97	-0.39	0.11	7.13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MLTW_EP5_15	4273902_001_1931 4201004_6b1_6847	6B	91301	0D 6B	687200185	100	-0.04	0.11	12.05
MLTW_EPS_15 2122083_64_4026 UKN 1F.06 6D 45486337 01 0.14 0.22 11.71 MLTW_EPS_15 2058228, 6ds, 1339 6D 94804 6D 169592240 102 0.057 0.19 11.28 MLTW_EPS_15 324817, 6dl, 3035 6D 94884 6D 169592240 103 0.60 0.21 11.261 MLTW_EPS_15 3291528, 6dl, 2437 6D 98539 6D 462275113 103 0.56 0.20 12.257 MLTW_EPS_15 3291528, 6dl, 2413 6D 98529 6D 462275124 103 0.56 0.20 12.257 MLTW_EPS_15 3291528, 6dl, 2417 6D 98527 6D 462275124 103 0.54 0.20 12.25 MLTW_EPS_15 4249813, 7u_10700 UKN 1E-65 7A 458810677 108 -0.49 0.11 7.09 MLTW_EPS_15 4586065, 7m_1437 7A 1E-65 7A 7084352984 111 -0.46	MLTW_EP5_15	4291994_001_0847 4291994_6b1_6839	6B	92429	6B	687299193	100	0.52	0.19	12.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MLTW EP5 15	2122083 6ds 4026	UKN	1E+05	6D	45486337	100	0.14	0.22	11.71
MLTW_EP5_15 2058228, 6d_5139 6D 94864 6D 169592240 102 0.57 0.19 11.208 MLTW_EP5_15 3291528, 6d_12437 6D 98539 6D 462275113 103 0.66 0.21 12.61 MLTW_EP5_15 3291528, 6d_12435 6D 98529 6D 462275113 103 0.56 0.20 12.25 MLTW_EP5_15 3291528, 6d_12418 6D 98527 6D 462275125 103 0.66 0.21 12.61 MLTW_EP5_15 3291528, 6d_12417 7D 98526 6D 462275125 103 0.69 0.21 12.61 MLTW_EP5_15 3291528, 7d_1247 7A 1E+05 7A 428810677 108 0.27 0.22 11.66 MLTW_EP5_15 435837, 7d_174 7A 1E+05 7A 725159841 111 0.48 0.11 7.09 MLTW_EP5_15 3302067, 7d_5, 7d_8 VKN 1E+05 7B 1812597178 113 0.11	MLTW EP5 15	2072646 6ds 14285	6D	94290	6D	46845804	101	0.02	0.19	11.63
MLTW, EP5_15 3248171_edL.3095 6D 9708 6D 41887706 103 -0.10 0.19 11.87 MLTW, EP5_15 3291528_edL.2429 6D 98530 6D 462275113 103 0.56 0.20 12.25 MLTW, EP5_15 3291528_edL.2418 6D 98532 6D 462275125 103 0.54 0.20 12.25 MLTW, EP5_15 3291528_edL.2418 6D 98526 6D 462275125 103 0.54 0.20 12.25 MLTW, EP5_15 435337_AL_10700 UKN 1E-65 7A 6556625 104 -0.48 0.19 1.26 MLTW, EP5_15 4553164_7aL_183 7A 1E-65 7A 708135298 111 -0.66 0.11 7.49 MLTW, EP5_15 4553164_7aL_183 7A 1E+65 7A 708135298 111 -0.42 0.11 7.16 MLTW, EP5_15 316204_7b_1_7b_1_74_2133 7A 1E+65 7A 708135298 113 0.11	MLTW_EP5_15	2058228_6ds_5139	6D	94864	6D	169592240	102	-0.57	0.19	12.08
MLTW, EP5_15 3291528, coli, 2427 6D 98529 6D 462275103 103 0.69 0.21 12.61 MLTW, EP5_15 3291528, coli, 2425 6D 98527 6D 462275117 103 0.56 0.20 12.27 MLTW, EP5_15 3291528, coli, 2418 6D 98527 6D 462275124 103 0.69 0.21 12.21 MLTW, EP5_15 429977, Tax, 1439 7A 1E+05 7A 428810677 108 -0.27 0.22 11.66 MLTW, EP5_15 445987, Tax, 1433 7A 1E+05 7A 428810677 108 -0.27 0.22 11.66 MLTW, EP5_15 453067, Tax, 163 7B 1E+05 7B 1317775 113 -0.41 0.11 7.42 MLTW, EP5_15 3162004, Tbs, 1655 7B 1E+05 7B 182597172 113 -0.11 0.11 7.10 MLTW, EP5_15 3162004, Tbs, 1655 7B 1E+05 7D 8746664 116 0.29 <td>MLTW_EP5_15</td> <td>3248171_6dl_5095</td> <td>6D</td> <td>97080</td> <td>6D</td> <td>418887706</td> <td>103</td> <td>-0.10</td> <td>0.19</td> <td>11.87</td>	MLTW_EP5_15	3248171_6dl_5095	6D	97080	6D	418887706	103	-0.10	0.19	11.87
MLTW, EP5_15 3291528, cdil, 2429 6D 98528 6D 462275113 103 0.56 0.20 12.25 MLTW, EP5_15 3291528, cdil, 2418 6D 98528 6D 462275124 103 0.54 0.20 12.25 MLTW, EP5_15 3291528, cdil, 2417 6D 98526 6D 462275124 103 0.54 0.20 12.25 MLTW, EP5_15 435833, cdil, 2417 6D 98526 6D 462275125 103 -0.69 0.21 12.61 MLTW, EP5_15 4535164-7al, 1163 7A 1E+05 7A 50107934 109 0.50 0.11 7.09 MLTW, EP5_15 4551747, 7al, 1331 7A 1E+05 7B 133117775 113 -0.42 0.11 7.06 MLTW, EP5_15 3162004, 7bs, 1649 7B 1E+05 7B 182597172 113 -0.42 0.11 7.01 MLTW, EP5_15 3925977, 7ds, 744 UKN 1E+05 7D 8746640 116 0.29 </td <td>MLTW_EP5_15</td> <td>3291528_6dl_2437</td> <td>6D</td> <td>98530</td> <td>6D</td> <td>462275105</td> <td>103</td> <td>0.69</td> <td>0.21</td> <td>12.61</td>	MLTW_EP5_15	3291528_6dl_2437	6D	98530	6D	462275105	103	0.69	0.21	12.61
MLTW_EP5_15 3291528_6d1_2425 6D 98528 6D 462275112 103 0.56 0.20 12.25 MLTW_EP5_15 3291528_6d1_2417 6D 98526 6D 462275124 103 0.54 0.20 12.22 MLTW_EP5_15 4249757_ma_1439 7A 1E+05 7A 65563625 104 -0.48 0.19 12.00 MLTW_EP5_15 43530467_ma_1163 7A 1E+05 7A 428810677 108 -0.27 0.22 11.60 MLTW_EP5_15 4531747_47_a1_L1331 7A 1E+05 7A 725159844 111 -0.48 0.11 7.06 MLTW_EP5_15 3089883_7bs_247 UKN 1E+05 7B 131177775 113 -0.42 0.11 7.10 MLTW_EP5_15 302007_7bs_1424 UKN 1E+05 7B 182597178 113 0.18 0.19 1.89 MLTW_EP5_15 302577_7bs_754 UKN 1E+05 7D 8746646 116 0.29 0.24 <td>MLTW_EP5_15</td> <td>3291528_6dl_2429</td> <td>6D</td> <td>98529</td> <td>6D</td> <td>462275113</td> <td>103</td> <td>0.56</td> <td>0.20</td> <td>12.27</td>	MLTW_EP5_15	3291528_6dl_2429	6D	98529	6D	462275113	103	0.56	0.20	12.27
MLTW_EP5_15 3291528_6d1_2418 6D 98527 6D 462275125 103 0.64 0.20 12.26 MLTW_EP5_15 3291528_6d1_2417 6D 98526 6D 462275125 103 0.66 0.21 12.61 MLTW_EP5_15 438383 7a1_1070 UKN IE+05 7A 45810677 108 0.02 0.12 0.16 MLTW_EP5_15 435308_7b_2477 UKN IE+05 7A 79843598 111 -0.48 0.11 7.42 MLTW_EP5_15 308988_7b_2477 UKN IE+05 7A 725159844 111 -0.48 0.11 7.16 MLTW_EP5_15 3162004_7b_1669 7B IE+05 7B 131177775 113 -0.11 0.12 0.27 7.77 MLTW_EP5_15 3922577_7ds_748 UKN IE+05 7D 8746640 116 0.29 0.24 11.83 MLTW_EP5_15 3923577_7ds_748 UKN IE+05 7D 8746646 116 0.29 0.24 11.83 MLTW_EP5_15 39397318_7ds_1059 UKN IE+05<	MLTW_EP5_15	3291528_6dl_2425	6D	98528	6D	462275117	103	0.56	0.20	12.25
MLTW_EP5_15 329128_075_07_as_1439 7A 16-05 7A 65563625 103 -0.09 0.21 12.00 MLTW_EP5_15 4438833_7a_110700 UKN 1E+05 7A 45563625 104 -0.48 0.19 0.22 11.60 MLTW_EP5_15 4531647_7a_1133 7A 1E+05 7A 708435298 111 -0.76 0.11 7.09 MLTW_EP5_15 3089883_7bs_247 UKN 1E+05 7A 725159844 111 -0.64 0.11 7.06 MLTW_EP5_15 3162004_7bs_16655 7B 1E+05 7B 131177775 113 -0.42 0.11 7.10 MLTW_EP5_15 3162004_7bs_1669 7B 1E+05 7B 182597178 113 0.11 0.12 7.71 MLTW_EP5_15 3922577_7ds_742 UKN 1E+05 7D 8746646 116 0.29 0.24 11.89 MLTW_EP5_15 3922577_7ds_744 UKN 1E+05 7D 18746646 116 0.29 0.24 11.89 MLTW_EP5_15 39391832_74s_3364 7D	MLTW_EP5_15	3291528_6dl_2418	6D	98527	6D	462275124	103	0.54	0.20	12.22
MLTW_EP5_15 4249915_78_1439 /A 1E+05 /A 65565025 104 -0.48 0.19 12.00 MLTW_EP5_15 4358065_714_716 7A 1E+05 7A 501077934 108 -0.27 0.22 11.63 MLTW_EP5_15 4356065_714_716 7A 1E+05 7A 709435298 111 -0.76 0.11 7.09 MLTW_EP5_15 3089883_7bs_247 UKN 1E+05 7B 13117775 113 -0.42 0.11 7.10 MLTW_EP5_15 3162004_7bs_1655 7B 1E+05 7B 182597172 113 -0.11 0.12 7.71 MLTW_EP5_15 3162004_7bs_1649 7B 182597173 113 0.18 0.19 11.89 MLTW_EP5_15 3922577_7ds_742 UKN 1E+05 7D 8746640 116 0.29 0.24 11.80 MLTW_EP5_15 3922577_7ds_748 UKN 1E+05 7D 8746652 116 0.21 0.24 11.64 MLTW_EP5_15 3939306_7ds_3364 7D 1E+05 7D 8746652 11	MLTW_EP5_15	3291528_6d1_2417	6D	98526	6D	462275125	103	-0.69	0.21	12.61
Dill In [E73]:15 445363.2 /ml. 10700 OKN 1E-03 7.A 42681077 108 -0.27 0.22 11:00 MLTW_EP5.15 455174 7.16 7.A 1E+05 7.A 708435298 111 -0.76 0.11 7.42 MLTW_EP5.15 35000774 7.al, 131 7.A 1E+05 7.A 708435298 111 -0.76 0.11 7.42 MLTW_EP5.15 3089883.7bs.247 UKN 1E+05 7.B 13117775 113 -0.11 0.12 7.7.7 MLTW_EP5.15 3162004.7bs.1649 7.B 1E+05 7.B 182597178 113 0.18 0.19 11.89 MLTW_EP5.15 3922577.7ds.748 UKN 1E+05 7.D 8746640 116 0.29 0.24 11.80 MLTW_EP5.15 392577.7ds.748 UKN 1E+05 7.D 8746640 116 0.29 0.24 11.80 MLTW_EP5.15 393181, 7ds.1059 UKN 1E+05 7.D 876652 116 <td>MLTW_EP5_15</td> <td>4249975_7as_1439</td> <td>/A</td> <td>1E+05</td> <td>/A 7 A</td> <td>65563625</td> <td>104</td> <td>-0.48</td> <td>0.19</td> <td>12.00</td>	MLTW_EP5_15	4249975_7as_1439	/A	1E+05	/A 7 A	65563625	104	-0.48	0.19	12.00
MILTW_EP5_15 4556065_ral_716 7A 1EP05 7A 5007934 107 0.76 0.11 7.42 MILTW_EP5_15 4556065_ral_716 7A 1EP05 7A 72519844 111 0.48 0.11 7.42 MILTW_EP5_15 308983_7bs_247 UKN 1E405 7B 113 0.042 0.11 7.10 MILTW_EP5_15 3162004_7bs_1649 7B 1E405 7B 182597178 113 0.01 0.12 7.71 MILTW_EP5_15 3922577_7ds_742 UKN 1E405 7D 8746640 116 0.29 0.24 11.73 MILTW_EP5_15 3922577_7ds_744 UKN 1E405 7D 8746640 116 0.29 0.24 11.89 MILTW_EP5_15 3922577_7ds_754 UKN 1E405 7D 126674519 117 0.42 0.19 12.05 MILTW_EP5_15 388132_7ds_3364 7D 1E405 7D 213786834 118 -0.52 0.19 12.05 MILTW_EP5_15 3348127_7d146011 7D 1E405 7D 56091329	MLTW EP5_15	4456655_781_10700 4553164_791_163		1E+03	7A 7A	428810077	108	-0.27	0.22	7.00
MLTW_EP5_15 4551774_7aL_131 TA TE+05 TA 725159844 111 -0.48 0.11 7.06 MLTW_EP5_15 3089883_Tbs_247 UKN IE+05 7B 1317775 113 -0.42 0.11 7.10 MLTW_EP5_15 3162004_7bs_1645 7B IE405 7B 182597172 113 -0.11 0.12 7.77 MLTW_EP5_15 3922577.7ds_748 UKN IE405 7D 8746640 116 0.29 0.24 11.73 MLTW_EP5_15 3922577.7ds_754 UKN IE405 7D 8746646 116 0.29 0.24 11.80 MLTW_EP5_15 3922577.7ds_754 UKN IE405 7D 8746642 116 0.21 0.24 11.80 MLTW_EP5_15 3891832_7ds_3364 7D IE405 7D 126764519 117 0.42 0.19 12.12 MLTW_EP5_15 389105_701 180 7D IE405 7D 560913296 122 0.10 1	MLTW EP5 15	4536065 7al 716	7A 7A	1E+05	7A 7A	708435298	109	-0.76	0.11	7.09
MLTW_EP5_15 3089883_7bs_247 UKN IE+05 7B 131177775 113 -0.42 0.11 7.10 MLTW_EP5_15 3162004_7bs_1649 7B IE+05 7B 182597172 113 -0.11 0.12 7.77 MLTW_EP5_15 3922577_7ds_742 UKN IE+05 7D 8746640 116 0.29 0.24 11.39 MLTW_EP5_15 3922577_7ds_744 UKN IE+05 7D 8746646 116 0.29 0.24 11.89 MLTW_EP5_15 3922577_7ds_744 UKN IE+05 7D 8746652 116 0.21 0.24 11.64 MLTW_EP5_15 3891832_7ds_3364 7D IE+05 7D 1126674519 117 0.42 0.19 12.205 MLTW_EP5_15 3148172_7dl_6011 7D IE+05 7D 538370629 122 0.17 0.19 11.46 MLTW_EP5_15 3393906_7dl_859 7D IE+05 7D 560913529 122 0.10 17.24	MLTW EP5 15	4551774 7al 1331	7A	1E+05	7A	725159844	111	-0.48	0.11	7.42
MLTW_EP5_15 3162004_7bs_1649 7B IE+05 7B I82597172 113 -0.11 0.12 7.77 MLTW_EP5_15 3162004_7bs_1649 7B IE+05 7B 182597178 113 0.11 0.12 7.74 MLTW_EP5_15 3922577_7ds_742 UKN IE+05 7D 8746640 116 0.29 0.24 11.73 MLTW_EP5_15 3922577_7ds_745 UKN IE+05 7D 8746640 116 0.29 0.24 11.64 MLTW_EP5_15 3897318_7ds_1059 UKN IE+05 7D 111274244 117 -0.06 0.19 11.58 MLTW_EP5_15 3348127_7d1_6011 7D IE+05 7D 213786834 118 -0.52 0.19 11.64 MLTW_EP5_15 334966_7d1_859 7D IE+05 7D 563913296 122 0.17 0.19 11.64 MLTW_EP5_15 339306_7d1_8792 7D IE+05 7D 56240817 122 0.63 0.11	MLTW EP5 15	3089883 7bs 247	UKN	1E+05	7B	131177775	113	-0.42	0.11	7.10
MLTW_EP5_15 3162004_DNs_1649 7B IE+05 7B 182597178 113 0.18 0.19 11.89 MLTW_EP5_15 3922577_7ds_742 UKN IE+05 7D 8746646 116 0.29 0.24 11.73 MLTW_EP5_15 3922577_7ds_754 UKN IE+05 7D 8746645 116 0.21 0.24 11.64 MLTW_EP5_15 3891832_7ds_3364 7D IE+05 7D 1127424 117 -0.42 0.19 12.15 MLTW_EP5_15 348127_7dl_6011 7D IE+05 7D 376956870 119 -0.37 0.19 11.164 MLTW_EP5_15 3348127_7dl_61011 7D IE+05 7D 538370629 122 0.17 0.19 11.64 MLTW_EP5_15 339306_7dl_8559 7D IE+05 7D 560913296 122 0.41 0.11 7.24 MLTW_EP5_15 3381032_7dl_1129 7D IE+05 7D 56091329 122 0.40 0.11	MLTW_EP5_15	3162004_7bs_1655	7B	1E+05	7B	182597172	113	-0.11	0.12	7.77
MLTW_EP5_15 3922577_7ds_742 UKN IE+05 7D 8746640 116 0.29 0.24 11.73 MLTW_EP5_15 3922577_7ds_748 UKN IE+05 7D 8746645 116 0.21 0.24 11.80 MLTW_EP5_15 38922577_7ds_754 UKN IE+05 7D 8746652 116 0.21 0.24 11.80 MLTW_EP5_15 3881827ds_3364 7D IE+05 7D 126674519 117 0.42 0.19 12.12 MLTW_EP5_15 348127_701_6011 7D IE+05 7D 213786834 118 -0.52 0.19 12.12 MLTW_EP5_15 334906_7dL_869 7D IE+05 7D 538370629 122 0.51 0.11 7.24 MLTW_EP5_15 339306_7dL_8792 7D IE+05 7D 56091329 122 0.40 0.11 7.01 MLTW_EP5_15 3381023_7d_11249 7D IE+05 7D 552408177 122 0.33 0.19 11.86 MLTW_EP5_15 3381032_7d_123426 7D IE+05 7D	MLTW_EP5_15	3162004_7bs_1649	7B	1E+05	7B	182597178	113	0.18	0.19	11.89
MLTW_EP5_15 3922577_7ds_754 UKN IE+05 7D 8746646 116 0.29 0.24 11.80 MLTW_EP5_15 3897318_7ds_1059 UKN IE+05 7D 111274244 117 -0.06 0.19 11.58 MLTW_EP5_15 3891832_7ds_3364 7D IE+05 7D 1126674519 117 0.42 0.19 12.12 MLTW_EP5_15 2168702_7ds_2893 7D IE+05 7D 376956870 119 -0.37 0.19 11.96 MLTW_EP5_15 3348127_7dl_6011 7D IE+05 7D 376956870 122 0.17 0.19 11.96 MLTW_EP5_15 339306_7dl_8792 7D IE+05 7D 560913296 122 0.40 0.11 7.05 MLTW_EP5_15 3381023_7dl_12349 7D IE+05 7D 55408177 122 0.40 0.11 7.07 MLTW_EP5_15 332327_7dl_1129 7D IE+05 7D 5543840 122 0.62 0.11 7.27 MLTW_EP5_15 33280327_dl_288 7D IE+05 7D<	MLTW_EP5_15	3922577_7ds_742	UKN	1E+05	7D	8746640	116	0.29	0.24	11.73
MLTW_EP5_15 3922577_7ds_754 UKN IE+05 7D 8746652 116 0.21 0.24 11.64 MLTW_EP5_15 3897318_7ds_1059 UKN IE+05 7D 111274244 117 -0.06 0.19 11.58 MLTW_EP5_15 2168702_7ds_2893 7D IE+05 7D 213766334 118 -0.52 0.19 12.12 MLTW_EP5_15 3148127_7dl_6011 7D IE+05 7D 376956870 119 -0.37 0.19 11.64 MLTW_EP5_15 3393906_7dl_8792 7D IE+05 7D 560913296 122 0.51 0.11 7.04 MLTW_EP5_15 3393906_7dl_8559 7D IE+05 7D 560913296 122 0.40 0.11 7.05 MLTW_EP5_15 3332037_7dl_12349 7D IE+05 7D 5543843840 122 0.62 0.11 7.27 MLTW_EP5_15 3326357_7dl_4388 7D IE+05 7D 584433840 122 0.64 0.20 12.30 MLTW_EP5_15 53240618_2as_725 UKN IE+05	MLTW_EP5_15	3922577_7ds_748	UKN	1E+05	7D	8746646	116	0.29	0.24	11.80
MLTW_EP5_15 3897318_7ds_1059 UKN 1E+05 7D 111274244 117 -0.06 0.19 11.88 MLTW_EP5_15 3801382_7ds_3364 7D 1E+05 7D 213786334 118 -0.52 0.19 12.05 MLTW_EP5_15 34812_7ds_18011 7D 1E+05 7D 213786334 118 -0.52 0.19 12.12 MLTW_EP5_15 3449698_7d1_869 7D 1E+05 7D 53870629 122 0.17 0.19 11.64 MLTW_EP5_15 3393906_7d1_859 7D 1E+05 7D 560913529 122 0.40 0.11 7.03 MLTW_EP5_15 338102_37d1_12349 7D 1E+05 7D 560913529 122 0.40 0.11 7.03 MLTW_EP5_15 3323237_7d1_1129 7D 1E+05 7D 585453840 122 0.62 0.11 7.27 MLTW_EP5_15 33280357_2d1_826 7D 1E+05 7D 631694003 123 -0.16 0.19 11.88 MLTW_EP5_15 5240618_2as_725 UKN 1E+05 <t< td=""><td>MLTW_EP5_15</td><td>3922577_7ds_754</td><td>UKN</td><td>1E+05</td><td>7D</td><td>8746652</td><td>116</td><td>0.21</td><td>0.24</td><td>11.64</td></t<>	MLTW_EP5_15	3922577_7ds_754	UKN	1E+05	7D	8746652	116	0.21	0.24	11.64
MLTW_EP5_15 3891832_7ds_3564 //D 1E+05 7D 1266/4519 117 0.42 0.19 12.05 MLTW_EP5_15 3168702_7ds_2893 7D 1E+05 7D 213786834 118 -0.52 0.19 12.12 MLTW_EP5_15 3348127_7dl_6011 7D 1E+05 7D 538370629 122 0.17 0.19 11.64 MLTW_EP5_15 339306_7dl_8559 7D 1E+05 7D 560913296 122 0.51 0.11 7.24 MLTW_EP5_15 3381023_7dl_12349 7D 1E+05 7D 562408177 122 0.33 0.19 11.98 MLTW_EP5_15 332635_7dl_826 7D 1E+05 7D 58453840 122 0.62 0.11 7.27 MLTW_EP5_15 328655_7dl_826 7D 1E+05 7D 593405649 123 -0.16 0.19 11.86 MLTW_EP5_15 3286635_7dl_826 7D 1E+05 7D 631694003 123 0.64 0.20 12.30 MLTW_EP5_15 5240618_2as_725 UKN 1E+05 3B	MLTW_EP5_15	3897318_7ds_1059	UKN	1E+05	7D	111274244	117	-0.06	0.19	11.58
MLTW_EP5_15 3248127_71(a) 10 1E+05 7D 1213786834 118 -0.32 0.19 12.12 MLTW_EP5_15 3348127_71(a) 6011 7D 1E+05 7D 538370629 122 0.17 0.19 11.96 MLTW_EP5_15 339306_7dl_8599 7D 1E+05 7D 560913529 122 0.40 0.11 7.24 MLTW_EP5_15 3381023_7dl_12349 7D 1E+05 7D 560913529 122 0.40 0.11 7.05 MLTW_EP5_15 3381023_7dl_12349 7D 1E+05 7D 562408177 122 0.33 0.19 11.98 MLTW_EP5_15 3381033_7dl_4388 7D 1E+05 7D 585453840 123 0.64 0.20 11.73 MLTW_EP5_15 3391603_7dl_4388 7D 1E+05 7D 53169403 123 0.64 0.20 12.3 0.64 0.20 12.3 0.64 0.20 12.3 0.64 0.20 12.3 0.64 0.20 12.3 0.64 0.20 12.3 0.64 0.20 1	MLTW_EP5_15	3891832_/ds_3364	7D 7D	1E+05	/D 7D	1266/4519	11/	0.42	0.19	12.05
MLTW_EP5_15 334612-1d_0011 TD 1E+05 TD 516305070 112 0.17 0.19 11.64 MLTW_EP5_15 3393906_7d_8792 TD 1E+05 TD 560913296 122 0.17 0.19 11.64 MLTW_EP5_15 3393906_7d_8792 TD 1E+05 TD 560913296 122 0.10 0.11 7.24 MLTW_EP5_15 3381023_7d_112349 TD 1E+05 TD 562408177 122 0.33 0.19 11.86 MLTW_EP5_15 338102_7d_14129 TD 1E+05 TD 552408177 122 0.62 0.11 7.27 MLTW_EP5_15 332635_7d_1826 TD 1E+05 TD 593405649 123 -0.16 0.19 11.86 MLTW_EP5_15 3240618_2as_725 UKN 1E+05 TD 631694003 123 -0.16 0.13 7.19 gMOIST_CLL_16 10530372_3b_2942 UKN 1E+05 3B 149455116 47 0.34 0.17 8.79 gMOIST_CLL_16 10530372_3b_2940 UKN 1E+05	MLTW EP5_15	2108/02_/ds_2895 3348127_7d1_6011	7D 7D	1E+05 1E+05	7D 7D	213/80834	118	-0.52	0.19	12.12
Intruction 13430362/d128792 7D 1E103 7D 50070229 122 0.17 0.11 7.24 MLTW_EP5_15 339306_7d128792 7D 1E+05 7D 560913296 122 0.40 0.11 7.05 MLTW_EP5_15 338103_7d12349 7D 1E+05 7D 560913529 122 0.40 0.11 7.05 MLTW_EP5_15 338203_7d12129 7D 1E+05 7D 552408177 122 0.62 0.11 7.27 MLTW_EP5_15 328355_7d12826 7D 1E+05 7D 593405649 123 -0.16 0.19 11.86 MLTW_EP5_15 339106_7d14388 7D 1E+05 7D 631694003 123 -0.16 0.19 11.86 MLTW_EP5_15 3391063_7d14388 7D 1E+05 7D 631694003 123 -0.16 0.13 7.19 gMOIST_CLI_16 10530372_3b_2952 UKN 1E+05 3B 149455112 47 -0.34 0.17 8.79 gMOIST_CLI_16 10530372_3b_2902 UKN 1E+05 3B <td>MLTW_EP5_15</td> <td>1946986 7d1 869</td> <td>7D 7D</td> <td>1E+05 1E+05</td> <td>7D 7D</td> <td>538370629</td> <td>119</td> <td>-0.37</td> <td>0.19</td> <td>11.90</td>	MLTW_EP5_15	1946986 7d1 869	7D 7D	1E+05 1E+05	7D 7D	538370629	119	-0.37	0.19	11.90
MLTW_EP5_15 339306_7dL_8559 7D IE+05 7D 560913529 122 0.40 0.11 7.05 MLTW_EP5_15 3381023_7dL_12349 7D IE+05 7D 562408177 122 0.33 0.19 11.98 MLTW_EP5_15 3323237_7dL_1129 7D IE+05 7D 58453840 122 0.62 0.11 7.27 MLTW_EP5_15 3326357_7dL_826 7D IE+05 7D 631694003 123 0.64 0.20 12.30 MLTW_EP5_15 5240618_2as_725 UKN IE+05 3B 149455112 47 -0.34 0.17 8.79 gMOIST_CLI_16 10530372_3b_2952 UKN IE+05 3B 149455116 47 -0.34 0.17 8.79 gMOIST_CLI_16 10530372_3b_2902 UKN IE+05 3B 149455162 47 -0.34 0.17 8.79 gMOIST_CLI_16 10530372_3b_2898 UKN IE+05 3B 149455166 47 -0.33 0.17<	MLTW EP5 15	3393906 7dl 8792	7D	1E+05	7D	560913296	122	0.51	0.11	7.24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MLTW EP5 15	3393906 7dl 8559	7D	1E+05	7D	560913529	122	0.40	0.11	7.05
MLTW_EP5_153323237_7dl_11297D1E+057D5854538401220.620.117.27MLTW_EP5_153286355_7dl_8267D1E+057D631694003123-0.160.1911.86MLTW_EP5_153391603_7dl_43887D1E+057D6316940031230.640.2012.30MLTW_EP5_155240618_2as_725UKN1E+057D6316940031230.640.2012.30gMOIST_CLI_1610530372_3b_2952UKN1E+053B14945511247-0.340.178.79gMOIST_CLI_1610530372_3b_2948UKN1E+053B14945515947-0.340.178.79gMOIST_CLI_1610530372_3b_2905UKN1E+053B14945516247-0.340.178.79gMOIST_CLI_1610530372_3b_2902UKN1E+053B14945516247-0.340.178.79gMOIST_CLI_1610530372_3b_2902UKN1E+053B14945516247-0.340.178.79gMOIST_CLI_1610530372_3b_2898UKN1E+053B14945516647-0.330.178.53gMOIST_CLI_1610530372_3b_2898UKN1E+057A206908324107-0.240.179.99gMOIST_CLI_164245739_7as_26707A1E+057A206908324107-0.240.179.59gMOIST_CLI_164245739_7as_27007A1E+057A206908354 </td <td>MLTW_EP5_15</td> <td>3381023_7dl_12349</td> <td>7D</td> <td>1E+05</td> <td>7D</td> <td>562408177</td> <td>122</td> <td>0.33</td> <td>0.19</td> <td>11.98</td>	MLTW_EP5_15	3381023_7dl_12349	7D	1E+05	7D	562408177	122	0.33	0.19	11.98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MLTW_EP5_15	3323237_7dl_1129	7D	1E+05	7D	585453840	122	0.62	0.11	7.27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MLTW_EP5_15	3286355_7dl_826	7D	1E+05	7D	593405649	123	-0.16	0.19	11.86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MLTW_EP5_15	3391603_7dl_4388	7D	1E+05	7D	631694003	123	0.64	0.20	12.30
gMOIST_CLL_1610530372_3b_2952UKN1E+053B14945511247-0.340.178.79gMOIST_CLL_1610530372_3b_2905UKN1E+053B149455116470.340.178.79gMOIST_CL_1610530372_3b_2902UKN1E+053B149455162470.340.178.79gMOIST_CL_1610530372_3b_2902UKN1E+053B149455162470.340.178.79gMOIST_CL_1610530372_3b_2898UKN1E+053B14945516647-0.330.178.53gMOIST_ED_167144776_4a1_16204A540194A66254241662-0.280.107.02gMOIST_CL_164245739_7as_26707A1E+057A206908324107-0.240.179.59gMOIST_CL_164245739_7as_26747A1E+057A206908328107-0.230.179.56gMOIST_CL_164245739_7as_27057A1E+057A206908354107-0.240.179.59gMOIST_CL_164245739_7as_27057A1E+057A206908359107-0.240.179.56gMOIST_CL_164245739_7as_27057A1E+057A206908359107-0.240.179.61gMOIST_CL_164245739_7as_27057A1E+057A206908359107-0.240.179.61gMOIST_CL_164245739_7as_27077A1E+057A206908363	MLTW_EP5_15	5240618_2as_725	UKN	1E+05	Un	248330867	?	0.30	0.13	7.19
gMOIST_CLL_1610530372_3b_2948UKN1E+053B149455116470.340.178.79gMOIST_CLL_1610530372_3b_2905UKN1E+053B14945515947-0.340.178.79gMOIST_CLL_1610530372_3b_2898UKN1E+053B149455162470.340.178.79gMOIST_CL_1610530372_3b_2898UKN1E+053B14945516647-0.330.178.53gMOIST_BD_167144776_4al_16204A540194A66254241662-0.280.107.02gMOIST_CLL_164245739_7as_26707A1E+057A206908324107-0.240.179.59gMOIST_CLL_164245739_7as_26477A1E+057A206908328107-0.240.179.59gMOIST_CLL_164245739_7as_26957A1E+057A206908354107-0.240.179.59gMOIST_CLL_164245739_7as_27007A1E+057A206908354107-0.240.179.59gMOIST_CLL_164245739_7as_27057A1E+057A206908359107-0.240.179.56gMOIST_CLL_164245739_7as_27177A1E+057A206908363107-0.230.179.56gMOIST_CLL_164245739_7as_27177A1E+057A206908363107-0.230.179.56gMOIST_CLL_164245739_7as_27267A1E+057A20690836	gMOIST_CLI_16	10530372_3b_2952	UKN	1E+05	3B	149455112	47	-0.34	0.17	8.79
gMOIST_CLL_16 10530572_56_2905 UKN 1E+05 5B 149455159 47 -0.34 0.17 8.79 gMOIST_CLL_16 10530372_3b_2898 UKN 1E+05 3B 149455162 47 0.34 0.17 8.79 gMOIST_CLL_16 10530372_3b_2898 UKN 1E+05 3B 149455166 47 -0.33 0.17 8.53 gMOIST_BD_16 7144776_4al_1620 4A 54019 4A 662542416 62 -0.28 0.10 7.02 gMOIST_CLL_16 4245739_7as_2670 7A 1E+05 7A 206908324 107 -0.24 0.17 9.59 gMOIST_CLL_16 4245739_7as_2647 7A 1E+05 7A 206908324 107 -0.24 0.17 9.59 gMOIST_CLL_16 4245739_7as_2647 7A 1E+05 7A 206908324 107 -0.24 0.17 9.59 gMOIST_CLL_16 4245739_7as_2700 7A 1E+05 7A 206908354 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2705 7A 1E+	gMOIST_CLI_16	10530372_3b_2948	UKN	1E+05	3B 2D	149455116	47	0.34	0.17	8.79
gMOIST_CLL_16 10530372_3b_2802 0KN 1E+05 3B 149453162 47 0.34 0.17 8.73 gMOIST_CLL_16 10530372_3b_289 UKN 1E+05 3B 149453166 47 -0.33 0.17 8.53 gMOIST_BD_16 7144776_4al_1620 4A 54019 4A 662542416 62 -0.28 0.10 7.02 gMOIST_CLL_16 4245739_7as_2670 7A 1E+05 7A 206908324 107 -0.24 0.17 9.59 gMOIST_CLL_16 4245739_7as_2670 7A 1E+05 7A 206908324 107 -0.24 0.17 9.59 gMOIST_CLL_16 4245739_7as_2695 7A 1E+05 7A 206908324 107 -0.24 0.17 9.59 gMOIST_CLL_16 4245739_7as_2700 7A 1E+05 7A 206908354 107 -0.19 0.17 9.72 gMOIST_CLL_16 4245739_7as_2705 7A 1E+05 7A 206908353 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2715 7A 1E+0	gMOIST_CLI_16	10530572_50_2905 10520272_3b_2002	UKN	1E+03	20	149455159	47	-0.54	0.17	8.79 8.70
gMOIST_ELL_16 1053012_000 10476_41_1620 4A 54019 4A 662542416 62 -0.28 0.10 7.02 gMOIST_EP5_14 2946616_6bs_1121 6B 89635 6B 79304656 98 -0.14 0.11 7.13 gMOIST_CLL_16 4245739_7as_2670 7A 1E+05 7A 206908324 107 -0.23 0.17 9.59 gMOIST_CLL_16 4245739_7as_2674 7A 1E+05 7A 206908328 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2695 7A 1E+05 7A 206908354 107 -0.23 0.17 9.59 gMOIST_CLL_16 4245739_7as_2700 7A 1E+05 7A 206908354 107 -0.19 0.17 9.72 gMOIST_CLL_16 4245739_7as_2705 7A 1E+05 7A 206908354 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2715 7A 1E+05 7A 206908363 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2717 <	gMOIST_CLI_10	10530372_30_2902 10530372_3b_2898	UKN	1E+05 1E+05	3B 3B	149455166	47	-0.34	0.17	8.53
gMOIST_EP5_14 2946616_66bs_1121 6B 89635 6B 79304656 98 -0.14 0.11 7.13 gMOIST_CLL_16 4245739_7as_2670 7A 1E+05 7A 206908324 107 -0.24 0.17 9.59 gMOIST_CLL_16 4245739_7as_2674 7A 1E+05 7A 206908328 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2695 7A 1E+05 7A 206908328 107 -0.23 0.17 9.59 gMOIST_CLL_16 4245739_7as_2700 7A 1E+05 7A 206908354 107 -0.19 0.17 9.72 gMOIST_CLL_16 4245739_7as_2700 7A 1E+05 7A 206908354 107 -0.23 0.17 9.61 gMOIST_CLL_16 4245739_7as_2709 7A 1E+05 7A 206908359 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2715 7A 1E+05 7A 206908363 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2717 7A 1	MOIST BD 16	7144776 4a1 1620	44	54019	4A	662542416	62	-0.28	0.17	7.02
gMOIST_CLI_164245739_7as_26707A1E+057A206908324107-0.240.179.59gMOIST_CLI_164245739_7as_26747A1E+057A206908328107-0.230.179.56gMOIST_CLI_164245739_7as_26957A1E+057A206908324107-0.240.179.59gMOIST_CLI_164245739_7as_27007A1E+057A206908349107-0.240.179.59gMOIST_CLI_164245739_7as_27057A1E+057A206908354107-0.240.179.61gMOIST_CLI_164245739_7as_27097A1E+057A206908359107-0.240.179.56gMOIST_CLI_164245739_7as_27157A1E+057A206908363107-0.230.179.56gMOIST_CLI_164245739_7as_27177A1E+057A2069083691070.220.169.39gMOIST_CLI_164245739_7as_27267A1E+057A206908380107-0.230.179.58gMOIST_CLI_164245739_7as_27277A1E+057A206908380107-0.230.179.56gMOIST_CLI_164245739_7as_27277A1E+057A206908380107-0.230.179.56gMOIST_CLI_164245739_7as_27277A1E+057A206908381107-0.230.179.56	gMOIST EP5 14	2946616 6bs 1121	6B	89635	6B	79304656	98	-0.14	0.11	7.13
gMOIST_CLI_164245739_7as_26747A1E+057A206908328107-0.230.179.56gMOIST_CLI_164245739_7as_26957A1E+057A2069083491070.240.179.59gMOIST_CLI_164245739_7as_27007A1E+057A206908354107-0.190.179.72gMOIST_CLI_164245739_7as_27057A1E+057A206908359107-0.240.179.61gMOIST_CLI_164245739_7as_27097A1E+057A206908363107-0.230.179.66gMOIST_CLI_164245739_7as_27157A1E+057A206908363107-0.230.179.56gMOIST_CLI_164245739_7as_27157A1E+057A206908363107-0.230.179.56gMOIST_CLI_164245739_7as_27177A1E+057A2069083711070.230.179.58gMOIST_CLI_164245739_7as_27267A1E+057A206908380107-0.230.179.56gMOIST_CLI_164245739_7as_27277A1E+057A206908380107-0.230.179.56gMOIST_CLI_164245739_7as_27277A1E+057A206908381107-0.230.179.56	gMOIST CLI 16	4245739_7as 2670	7A	1E+05	7A	206908324	107	-0.24	0.17	9.59
gMOIST_CLI_164245739_7as_26957A1E+057A2069083491070.240.179.59gMOIST_CLI_164245739_7as_27007A1E+057A206908354107-0.190.179.72gMOIST_CLI_164245739_7as_27057A1E+057A206908359107-0.240.179.61gMOIST_CLI_164245739_7as_27097A1E+057A206908363107-0.230.179.56gMOIST_CLI_164245739_7as_27157A1E+057A206908363107-0.230.179.56gMOIST_CLI_164245739_7as_27177A1E+057A2069083711070.230.179.58gMOIST_CLI_164245739_7as_27267A1E+057A206908380107-0.230.179.56gMOIST_CLI_164245739_7as_27277A1E+057A206908381107-0.230.179.56gMOIST_CLI_164245739_7as_27277A1E+057A206908381107-0.230.179.56	gMOIST_CLI_16	4245739_7as_2674	7A	1E+05	7A	206908328	107	-0.23	0.17	9.56
gMOIST_CLI_164245739_7as_27007A1E+057A206908354107-0.190.179.72gMOIST_CLI_164245739_7as_27057A1E+057A206908359107-0.240.179.61gMOIST_CLI_164245739_7as_27097A1E+057A206908363107-0.230.179.56gMOIST_CLI_164245739_7as_27157A1E+057A2069083691070.220.169.39gMOIST_CLI_164245739_7as_27177A1E+057A2069083711070.230.179.58gMOIST_CLI_164245739_7as_27267A1E+057A206908380107-0.230.179.56gMOIST_CLI_164245739_7as_27277A1E+057A206908381107-0.230.179.56	gMOIST_CLI_16	4245739_7as_2695	7A	1E+05	7A	206908349	107	0.24	0.17	9.59
gMOIST_CLL_164245739_7as_27057A1E+057A206908359107-0.240.179.61gMOIST_CLL_164245739_7as_27097A1E+057A206908363107-0.230.179.56gMOIST_CLL_164245739_7as_27157A1E+057A2069083691070.220.169.39gMOIST_CLL_164245739_7as_27177A1E+057A2069083711070.230.179.58gMOIST_CLL_164245739_7as_27267A1E+057A206908380107-0.230.179.56gMOIST_CLL_164245739_7as_27277A1E+057A206908381107-0.230.179.56	gMOIST_CLI_16	4245739_7as_2700	7A	1E+05	7A	206908354	107	-0.19	0.17	9.72
gMOIST_CLL_16 4245739_7as_2709 7A 1E+05 7A 206908363 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2715 7A 1E+05 7A 206908363 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2717 7A 1E+05 7A 206908371 107 0.22 0.16 9.39 gMOIST_CLL_16 4245739_7as_2717 7A 1E+05 7A 206908371 107 0.23 0.17 9.58 gMOIST_CLL_16 4245739_7as_2726 7A 1E+05 7A 206908380 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2727 7A 1E+05 7A 206908381 107 -0.23 0.17 9.56	gMOIST_CLI_16	4245739_7as_2705	7A	1E+05	7A	206908359	107	-0.24	0.17	9.61
gMOIST_CLL_16 4245739_7as_2/15 7A 1E+05 7A 206908369 107 0.22 0.16 9.39 gMOIST_CLL_16 4245739_7as_2717 7A 1E+05 7A 206908369 107 0.22 0.16 9.39 gMOIST_CLL_16 4245739_7as_2717 7A 1E+05 7A 206908371 107 0.23 0.17 9.58 gMOIST_CLL_16 4245739_7as_2726 7A 1E+05 7A 206908380 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2727 7A 1E+05 7A 206908381 107 -0.23 0.17 9.56	gMOIST_CLI_16	4245739_7as_2709	7A	1E+05	7A	206908363	107	-0.23	0.17	9.56
gMOIS1_CLL_16 4245/39_/as_2/17 /A 1E+05 /A 206908371 107 0.23 0.17 9.58 gMOIST_CLL_16 4245739_7as_2726 7A 1E+05 7A 206908380 107 -0.23 0.17 9.56 gMOIST_CLL_16 4245739_7as_2727 7A 1E+05 7A 206908381 107 -0.23 0.17 9.56	gMOIST_CLI_16	4245739_7as_2715	7A 7A	1E+05	7A 7A	206908369	107	0.22	0.16	9.39
gMOIST_CLI_16 4245739_7as_2727 7A 1E+05 7A 206908381 107 -0.23 0.17 9.56	gMUIST_CLI_16	4245/39_7as_2717 4245730_7as_2726	/A 7 A	1E+05	/A 7 A	206908371	107	0.23	0.17	9.58
ENOIDI_CEA_10 T243/39_/40_2/2/ /A 1ET03 /A 200700301 10/ -0.23 0.1/ 9.30	gMOIST_CLI_16	4243139_185_2120 4245739 700 2727	7A 7A	1E+05	7Α 7Δ	200908380	107	-0.23	0.17	9.50
gMOIST_CLI_16 4245739_7as_2738 7A 1E+05 7A 206908392 107 0.23 0.17 9.56	gMOIST CLI 16	4245739_7as 2738	7A	1E+05	7A	206908392	107	0.23	0.17	9.56

Table A2 Continued

Trait_loc_Yr [†]	Marker	Chr	Pos	CHR^{\ddagger}	Mb§	QTL ID	A¶	R ^{2#}	-log10(p)
gMOIST_CLI_16	4245739_7as_2893	7A	1E+05	7A	206908547	107	-0.22	0.17	9.75
gMOIST_CLI_16	4245739_7as_2917	7A	1E+05	7A	206908571	107	0.21	0.14	8.46
gMOIST_CLI_16	3162666_7bs_341	7B	1E+05	7B	329786542	114	0.27	0.16	8.78
gMOIST_CLI_16	3162666_7bs_336	7B	1E+05	7B	329786547	114	-0.33	0.20	10.77
gMOIST_CLI_16	3162666_7bs_335	7B	1E+05	7B	329786548	114	0.32	0.20	10.65
gMOIST_CLI_16	3162666_7bs_327	7B	1E+05	7B	329786556	114	0.33	0.20	10.56
gMOIST_CLI_16	3162666_7bs_156	7B	1E+05	7B	329786727	114	-0.32	0.21	11.63
gMOIST_CLI_16	3162666_7bs_96	7B	1E+05	7B	329786782	114	-0.32	0.21	11.63
gMOIST_CLI_16	3055451_7dl_3076	7D	1E+05	7D	574031608	122	-0.35	0.12	7.00
gMOIST_CLI_16	3055451_7dl_3085	7D	1E+05	7D	574031617	122	NA	0.12	7.82
SKW_EP5_15	7130376_4al_8778	4A	53500	4A	672102841	62	NA	0.11	7.70
SKW_EP5_15	7130376_4al_8777	4A	53499	4A	672102842	62	NA	0.12	8.14
SKW_EP5_15	7130376_4al_8753	4A	53498	4A	672102866	62	NA	0.10	7.11
SKW_EP5_15	7130376_4al_8717	4A	53497	4A	672102902	62	NA	0.12	8.15
WABS_EP5_14	10770064_3b_7986	UKN	1E+05	3B	571455474	51	NA	0.13	7.45

[†] Trait_Location_year [‡] CHR, chromosomal location of marker in IWGSC RefSeq v1.0 [§] chromosomal position of marker in IWGSC RefSeq v1.0

[¶]Additive effect of the loci

[#]phenotypic variance explained by corresponding marker loci

Table A3

Significant marker trait association detected on multiple traits combined across
environments, chromosome, position, effect for end-use quality traits in AMPSY
population

Trait_loc_Yr [†]	Marker	Chr	Pos	CHR^{\ddagger}	Mb [§]	QTL ID	A¶	R ^{2#}	-log10(p)
MLRW_COMB_COMB	3453826_1bs_3226	2	5932	1B	17145962	6	-1.58	0.12	7.38
MLTW_COMB_COMB	3453826_1bs_3226	2	5932	1B	17145962	6	-1.83	0.13	8.19
MLRW_COMB_COMB	3453826_1bs_3043	2	5926	1B	17146145	6	-1.59	0.12	7.42
MLTW_COMB_COMB	3453826_1bs_3043	2	5926	1B	17146145	6	-1.79	0.12	7.78
MLTW_COMB_COMB	3453826_1bs_3023	2	5923	1B	17146165	6	1.62	0.11	7.10
MLTW_COMB_COMB	3434158_1bs_9081	2	6314	1B	30403173	6	NA	0.10	7.10
PROT14_COMB_COMB	4860661_4bs_1872	11	57492	4B	134987855	64	0.09	0.12	7.21
FYLD_COMB_COMB	1477005_5ds_2010	15	75878	5D	344579	85	NA	0.23	14.32
HARD_COMB_COMB	1477005_5ds_2010	15	75878	5D	344579	85	NA	0.22	13.69
FYLD_COMB_COMB	2745573_5ds_3677	15	75978	5D	554980	85	NA	0.21	13.18
HARD_COMB_COMB	2745573_5ds_3677	15	75978	5D	554980	85	NA	0.29	17.38
FYLD_COMB_COMB	2736392_5ds_5233	15	75917	5D	934031	85	NA	0.26	15.92
HARD_COMB_COMB	2736392_5ds_5233	15	75917	5D	934031	85	NA	0.31	17.78
HARD_COMB_COMB	2765676_5ds_2839	15	75901	5D	1344429	85	-7.56	0.12	7.48
FYLD_COMB_COMB	2773392_5ds_1412	15	75911	5D	2220874	85	NA	0.21	13.55
HARD_COMB_COMB	2773392_5ds_1412	15	75911	5D	2220874	85	NA	0.26	15.89
FYLD_COMB_COMB	2773392_5ds_1238	15	75910	5D	2221048	85	NA	0.23	14.40
HARD_COMB_COMB	2773392_5ds_1238	15	75910	5D	2221048	85	NA	0.29	17.20
FYLD_COMB_COMB	2773392_5ds_1206	15	75906	5D	2221080	85	NA	0.21	13.55
HARD_COMB_COMB	2773392_5ds_1206	15	75906	5D	2221080	85	NA	0.26	15.89
FYLD_COMB_COMB	2770151_5ds_4035	15	75899	5D	7257066	85	NA	0.10	7.03
HARD_COMB_COMB	2770151_5ds_4035	15	75899	5D	7257066	85	NA	0.12	8.10
FYLD_COMB_COMB	2739337_5ds_2304	15	75953	5D	7485266	85	NA	0.12	7.95
HARD_COMB_COMB	2739337_5ds_2304	15	75953	5D	7485266	85	NA	0.11	7.18
HARD_COMB_COMB	2781025_5ds_24425	15	76006	5D	8018752	85	NA	0.15	9.94
HARD_COMB_COMB	2781025_5ds_24421	15	76005	5D	8018756	85	NA	0.15	9.94
HARD_COMB_COMB	2745020_5ds_15344	15	76053	5D	8419265	85	6.79	0.12	7.45
HARD_COMB_COMB	2745020_5ds_15346	15	76054	5D	8419267	85	6.79	0.12	7.45
FYLD_COMB_COMB	2774182_5ds_7304	15	76010	5D	8613963	85	NA	0.16	10.61
HARD_COMB_COMB	2774182_5ds_7304	15	76010	5D	8613963	85	NA	0.16	10.52
FYLD_COMB_COMB	2781671_5ds_9472	15	75997	5D	9332000	85	NA	0.10	7.18
HARD_COMB_COMB	2781671_5ds_9472	15	75997	5D	9332000	85	NA	0.12	8.08
FYLD_COMB_COMB	2781671_5ds_9461	15	75993	5D	9332011	85	NA	0.10	7.21
HARD_COMB_COMB	2781671_5ds_9461	15	75993	5D	9332011	85	NA	0.13	8.71
FYLD_COMB_COMB	2781671_5ds_9443	15	75992	5D	9332029	85	NA	0.10	7.21
HARD_COMB_COMB	2781671_5ds_9443	15	75992	5D	9332029	85	NA	0.13	8.71
FYLD_COMB_COMB	2781671_5ds_9235	15	75991	5D	9332237	85	NA	0.10	7.21
HARD_COMB_COMB	2781671_5ds_9235	15	75991	5D	9332237	85	NA	0.13	8.71
HARD_COMB_COMB	2781671_5ds_9223	15	75990	5D	9332249	85	NA	0.12	7.84
FYLD_COMB_COMB	2781671_5ds_9219	15	75989	5D	9332253	85	NA	0.10	7.21
HARD_COMB_COMB	2781671_5ds_9219	15	75989	5D	9332253	85	NA	0.13	8.71
FYLD_COMB_COMB	2781671_5ds_9179	15	75987	5D	9332293	85	NA	0.10	7.21
HARD_COMB_COMB	2781671_5ds_9179	15	75987	5D	9332293	85	NA	0.13	8.71
HARD_COMB_COMB	2781671_5ds_9157	15	75986	5D	9332315	85	NA	0.12	7.84

[†] Trait_Location_year [‡] CHR, chromosomal location of marker in IWGSC RefSeq v1.0 [§] chromosomal position of marker in IWGSC RefSeq v1.0 [¶] Additive effect of the loci [#] phenotypic variance explained by corresponding marker loci

Trait [†]	P1	P2	RIL mean	Min	Max	Max-Min	P2-P1	Min-LP	Max-HP
HARD	68.15	63.17	64.66	39.5	87.5	48	4.99	23.67	19.35
GMOIST	11.74	11.61	11.63	10.7	12.3	1.6	0.13	0.91	0.56
DIAM	2.42	2.48	2.44	2.06	2.9	0.84	0.06	0.36	0.42
SKW	25.95	27.51	26.15	18.5	39.1	20.6	1.57	7.45	11.59
FYLD	68.76	69.15	68.44	56.88	78.88	22	0.39	11.88	9.73
FMOIST	11.74	11.61	13.6	12.47	14.53	2.06	0.13	0.86	2.79
PROT14	14.63	14.04	14.29	11.28	18.53	7.25	0.58	2.76	3.9
ASH14	0.47	0.45	0.45	0.36	0.62	0.26	0.01	0.09	0.15
WABS	65.38	64.72	65.02	60.52	71.4	10.88	0.66	4.2	6.02
MLPT	4.74	3.3	3.92	1.84	8	6.16	1.44	1.46	3.26
MLPW	23.21	25.18	24.9	10.18	43.3	33.12	1.97	13.03	18.12
MLPV	60.77	62.37	59.46	44.28	86.5	42.22	1.6	16.49	24.13
MLPI	197.96	137.02	160.81	62.92	294.79	231.87	60.94	74.1	96.83
MLRS	-2.43	-3.6	-3.14	-8.21	1.19	9.4	1.17	4.61	3.62
MLRW	15.76	13.67	16.32	4.4	53.81	49.41	2.09	9.27	38.05
MLTW	13.82	8.64	10.56	2.71	27.97	25.26	5.18	5.93	14.15

Table A4End-use quality average performance of the parents, RIL

Min., minimum; Max., maximum; LP, Low parent; HP, high parent

[†] HARD, hardness index; GMOIST, grain moisture; DIAM, kernel diameter; SKW, single kernel weight; FYLD, flour yield %; FMOIST, flour moisture; PROT14, flour protein at 14% moisture basis; ASH14, flour ash content at 14% moisture; WABS, water absorption; MLPT, midline peak time; MLPW, midline peak width; MLPV, midline peak value; MLPI, midline peak integral; MLRS, midline right slope; MLRW, midline right width; MLTW, midline tail width

Table A5
Additive-by-environment effects detected in multi-environment for single trait analysis

						LOD	PVE	AbyE	AbyE	AbyE	AbyE	AbyE	AbyE	AbyE
Traits [†]	QTL name	QTL ID	Position	Mbp [‡]	LeftMarker	(AbyE) §	(AbyE)¶	13EP2#	13EP3	13EP4	13EP5	14CH	14EP4	14EP5
HARD	Qhard.tamu.1A	1	10	13.8	IWB55537	15.40	16.95	-1.1497	-1.16	-1.07	-1.05	-0.98	2.56	2.85
HARD	Qhard.tamu.1A	4	55	393.8	3928641_1al_1202	8.10	1.95	-0.3101	-0.29	1.42	-0.23	-0.12	-0.30	-0.17
HARD	Qhard.tamu.1A	5	62	475.6	3974856_1al_3401	6.79	12.91	-0.7314	-0.67	-0.62	-0.52	3.66	-0.49	-0.62
HARD	Qhard.tamu.1B	7	3	0.6	3473141_1bs_756	5.51	2.53	1.3482	-0.32	-0.44	-0.44	0.66	-0.34	-0.46
HARD	Qhard.tamu.1B	7	6	7.2	3285535_1bs_1678	15.49	4.72	-1.9345	0.12	0.48	0.45	-0.62	0.75	0.75
HARD	Qhard.tamu.2B	18	14	16.9	IWA2303	43.35	43.08	-0.7603	-1.54	-1.21	6.67	-1.21	-0.94	-1.02
HARD	Qhard.tamu.2B	20	107	578.7	8086989_2bl_2189	0.15	0.45	-0.032	-0.11	-0.33	-0.16	0.56	-0.17	0.24
HARD	Qhard.tamu.2D	22	21	1.7	IWB34642	1.84	1.16	-0.3232	-0.08	-0.41	-0.58	0.23	0.75	0.41
HARD	Qhard.tamu.4D	39	11	62.8	2305880_4ds_1018	5.91	2.44	1.215	0.05	-0.73	-0.10	-0.01	-0.87	0.44
HARD	Qhard.tamu.4D	42	22	366.3	IWB10053	2.69	0.91	-0.4377	0.24	0.20	0.04	0.22	-0.74	0.48
HARD	Qhard.tamu.5A	48	187	688.3	IWA2947	0.30	0.35	0.1713	0.08	0.38	0.00	-0.38	0.05	-0.31
HARD	Qhard.tamu.7D	72	95	84.3	3938880_7ds_2029	4.47	4.58	1.1574	0.80	-0.11	0.67	-1.55	-0.13	-0.84
GMOIST	Qgmoist.tamu.1B	7	3	0.6	3473141_1bs_756	1.55	2.23	-0.0121	-0.02	0.00	0.03	0.03	0.00	-0.02
GMOIST	Qgmoist.tamu.4D	39	10	62.8	2305880_4ds_1018	10.33	12.45	-0.0306	0.00	-0.02	-0.03	0.09	0.04	-0.04
GMOIST	Qgmoist.tamu.7B	70	2	709.6	IWB5306	1.35	1.29	-0.004	-0.02	-0.01	0.00	0.03	0.01	-0.01
GMOIST	Qgmoist.tamu.7D	72	79	60.6	IWB35446	1.25	1.66	0.0035	0.00	0.00	0.02	0.02	-0.02	-0.02
DIAM	Qdiam.tamu.1A	1	1	3.4	IWB47522	1.43	0.11	-0.0021	0.00	0.00	0.01	0.00	0.00	0.00
DIAM	Qdiam.tamu.1A	1	9	11.8	IWB46642	1.27	0.12	-0.0011	0.00	0.00	0.01	0.00	0.00	0.00
DIAM	Qdiam.tamu.1A	1	11	13.8	IWB63611	1.30	0.11	-0.0011	0.00	0.00	0.01	0.00	0.00	0.00
DIAM	Qdiam.tamu.1A	2	22	232.6	3877153_1al_1567	1.33	0.12	-0.0012	0.00	0.00	0.01	0.00	0.00	0.00
DIAM	Qdiam.tamu.1A	2	26	263.5	846120_1al_517	1.30	0.12	-0.0009	0.00	0.00	0.01	0.00	0.00	0.00
DIAM	Odiam.tamu.1A	2	28	289.2	3968338 1al 936	1.20	0.12	-0.0007	0.00	0.00	0.01	0.00	0.00	0.00
DIAM	Qdiam.tamu.1A	3	34	304.1	3916820_1al_4455	1.27	0.12	-0.0007	0.00	0.00	0.01	0.00	0.00	0.00
DIAM	Qdiam.tamu.1A	3	37	316.6	3871107_1al_72	1.08	0.10	-0.0009	0.00	0.00	0.01	0.00	0.00	0.00
DIAM	Qdiam.tamu.1A	3	40	347.8	3871937_1al_2041	1.51	0.17	-0.0011	0.00	0.00	0.01	0.00	0.00	0.00
DIAM	Qdiam.tamu.1A	4	48	364.7	3976654_1al_3742	1.56	0.21	-0.0023	0.00	-0.01	0.01	0.00	-0.01	0.00
DIAM	Qdiam.tamu.1A	4	53	390.1	IWB31924	1.45	0.17	-0.0016	0.00	0.00	0.01	0.00	-0.01	0.00
DIAM	Qdiam.tamu.1A	5	59	458.4	IWB74868	1.31	0.23	-0.0023	0.00	0.00	0.01	0.00	-0.01	0.00
DIAM	Qdiam.tamu.1A	5	64	485.2	3894604_1al_116	0.91	0.13	0	0.00	0.00	0.01	0.00	-0.01	0.00
DIAM	Odiam.tamu.1D	11	26	12.3	IWB14343	0.73	0.22	-0.0015	0.00	-0.01	0.00	0.01	0.00	0.00
DIAM	Qdiam.tamu.2D	24	113	531.4	9852937_2d1_2983	2.89	0.61	0.0071	-0.01	0.01	0.01	-0.01	0.00	-0.01
DIAM	Odiam.tamu.4B	38	117	671.7	IWB9483	0.52	0.34	0.0018	0.01	0.00	0.00	0.00	-0.01	0.00
DIAM	Qdiam.tamu.4D	39	6	29.0	IWB30733	5.74	1.01	0.006	0.00	0.00	0.01	0.01	-0.02	-0.01
DIAM	Qdiam.tamu.5D	52	21	385.6	4522185_5dl_458	4.29	0.44	0.002	-0.01	0.00	0.00	0.00	0.01	0.00
DIAM	Qdiam.tamu.6A	54	87	104.4	IWB23452	4.09	0.47	-0.0001	-0.01	0.00	0.00	-0.01	0.01	0.00
DIAM	Qdiam.tamu.7D	71	65	38.5	IWB60795	0.44	0.13	-0.0016	-0.01	0.00	0.01	0.00	0.00	0.00
DIAM	Qdiam.tamu.7D	73	126	123.3	10396674_3b_3606	1.02	0.07	-0.002	0.00	0.00	0.00	0.00	0.00	0.00
SKW	Oskw.tamu.2D	24	114	531.4	9852937 2d1 2983	6.16	5.10	0.0229	-0.08	0.14	0.50	-0.37	0.04	-0.25
SKW	Oskw.tamu.4D	42	22	366.3	IWB10053	5.13	8.94	0.2145	0.33	0.15	0.15	0.21	-0.66	-0.40
SKW	Oskw.tamu.5B	51	153	704.8	IWB53784	1.87	3.25	-0.16	-0.20	-0.08	0.43	0.01	-0.16	0.16
SKW	Oskw.tamu.7D	71	59	38.5	IWB60795	1.19	1.34	-0.1231	-0.23	0.01	-0.02	0.03	0.17	0.16
SKW	Oskw.tamu.7D	72	91	78.5	IWB44453	1.90	3.37	-0.2612	-0.05	-0.20	-0.05	-0.01	0.16	0.42
FYLD	Ofvld.tamu.1A	6	88	533.4	IWA4536	2.67	6.06	-0.7939	0.25	0.15	0.19	0.05	0.23	-0.08
FYLD	Qfyld.tamu.1B	9	74	430.3	3884244_1a1_6978	3.08	2.61	0.2898	-0.26	0.08	-0.28	-0.03	0.31	-0.11

Table A5 Continued

						LOD	PVE	AbyE	AbvE	AbvE	AbvE	AbvE	AbvE	AbvE
Traits [†]	OTL name	OTL ID	Position	Mbp [‡]	LeftMarker	(AbvE) [§]	(AbvE) [¶]	13EP2#	13EP3	13EP4	13EP5	14CH	14EP4	14EP5
FYLD	Ofvld.tamu.2B	21	135	734.4	7939581 2b1 9591	1.25	1.17	0.0331	-0.03	0.24	-0.01	-0.30	-0.03	0.08
FYLD	Ofvld.tamu.4D	40	13	109.8	2279925 4ds 1008	7.52	22.05	0.2996	-0.38	-0.11	-0.37	1.47	-0.51	-0.40
FMOIST	Ofmoist.tamu.2D	23	103	82.0	5329935 2ds 3804	7.14	177.67	0.0553	0.03	-0.03	-0.01	-0.02	-0.01	-0.02
PROT14	Oprot14 tamu 4B	34	32	47.4	4962193 4bs 3020	0.92	0.39	-0.0039	-0.01	0.02	0.00	0.02	-0.05	0.03
PROT14	Oprot14 tamu 4B	35	36	181.4	4909258 4bs 448	0.72	0.46	-0.0089	0.00	0.02	-0.02	0.01	-0.04	0.05
PROT14	Oprot14 tamu 4B	37	51	404.0	7040005 4b1 5774	1.51	0.28	0.0102	0.01	0.00	0.03	0.01	0.00	-0.05
PROT14	Oprot14 tamu 4D	39	5	29.0	IWB30733	8.95	9 74	-0.139	-0.05	-0.02	-0.05	-0.06	0.29	0.03
PROT14	Oprot14 tamu 4D	40	13	109.8	2279925 4ds 1008	28.56	43.22	-0 1953	-0.11	-0.06	-0.13	-0.10	-0.04	0.65
PROT14	Oprot14 tamu 4D	41	18	182.6	2273804 4ds 1113	14.37	14 14	-0.0159	0.06	0.00	0.04	0.10	0.08	-0.36
PROT14	Oprot14 tamu 4D	41	28	102.0	IWB3336	0.10	6.42	0.0461	0.00	0.10	0.12	0.10	0.00	-0.50
PROT14	Oprot14 tamu 5B	4J 50	28	588.2	IWB36106	2.75	3 31	0.0283	-0.18	0.00	0.12	-0.10	0.08	0.07
ASH14	Oach14 tamu 2A	16	03	684.1	6337088 291 8303	2.75	1.04	0.0283	0.05	0.09	-0.03	0.00	0.00	-0.01
ASH14	Qash14.tamu.2A	22	55	572.6	6026842 2dl 1518	4.41	0.04	0.0022	0.00	0.00	0.00	-0.01	0.00	0.00
ASH14	Qash14.tamu.5D	52	20	662.2	2252764 641 2802	4.01	2.79	0.0020	0.00	0.00	0.00	0.00	0.00	0.00
WADE	Quality to any 4D	20	52	404.0	3232704_001_2803	4.91	3.78	0.0027	0.00	0.00	-0.01	0.01	-0.01	0.00
WADS	Qwabs.taiiu.4D	20	33	20.0	7040005_401_5774	2.01	0.93	0.0096	0.00	-0.01	0.07	0.00	0.05	-0.10
WADS	Qwabs.tailiu.4D	39	12	29.0	1WD30/33	7.70	14.97	-0.2133	-0.08	0.01	-0.09	-0.08	0.42	0.04
WABS	Qwabs.tamu.4D	40	13	109.8	22/9925_4ds_1008	28.74	00.91	-0.2922	-0.10	-0.09	-0.19	-0.15	-0.08	0.96
WABS	Qwabs.tamu.4D	41	18	182.0	22/3804_4ds_1115	14.97	22.55	-0.0311	0.09	0.10	0.00	0.14	0.12	-0.55
WABS	Qwabs.tamu.4D	43	28	445.5	IWB3330	8.62	9.77	-0.0887	-0.23	0.07	0.18	-0.17	0.15	0.09
MLPT	Qmipt.tamu.TA	1	12	14.4	IWB10932	1.49	0.00	-0.0323	-0.02	0.08	-0.10	0.11	-0.01	-0.04
MLPT	Qmipt.tamu.1A	2	22	232.6	38//153_1al_156/	1.69	0.00	-0.0314	-0.03	0.08	-0.10	0.13	-0.01	-0.03
MLPT	Qmlpt.tamu.1A	2	24	251.3	3923134_1al_161	1.74	0.00	-0.0309	-0.04	0.08	-0.11	0.13	-0.01	-0.03
MLPT	Qmlpt.tamu.1A	2	27	283.1	3922416_1al_1034	1.89	0.00	-0.0375	-0.04	0.08	-0.10	0.14	-0.01	-0.04
MLPT	Qmlpt.tamu.1A	3	34	304.1	3916820_1al_4455	1.66	0.00	-0.0319	-0.03	0.08	-0.10	0.13	-0.01	-0.04
MLPT	Qmlpt.tamu.1A	3	38	333.5	3939178_1al_9799	1.79	0.00	-0.0433	-0.03	0.08	-0.09	0.13	-0.01	-0.03
MLPT	Qmlpt.tamu.1A	3	43	357.6	3966094_1al_942	1.46	0.00	0.0017	0.02	0.14	-0.03	-0.19	0.03	0.03
MLPT	Qmlpt.tamu.1A	4	50	367.1	3900873_1al_350	2.32	0.00	-0.0495	-0.05	0.09	-0.08	0.14	-0.01	-0.04
MLPT	Qmlpt.tamu.1A	4	56	399.2	3920586_1al_9412	2.21	0.00	-0.0514	-0.04	0.09	-0.07	0.13	-0.02	-0.04
MLPT	Qmlpt.tamu.1A	5	60	465.5	IWB65944	2.27	0.00	-0.0394	-0.05	0.09	-0.07	0.13	-0.02	-0.05
MLPT	Qmlpt.tamu.1B	7	0	0.6	3473141_1bs_756	2.73	0.00	-0.1242	0.09	-0.12	0.16	0.10	-0.13	0.02
MLPT	Qmlpt.tamu.1B	7	4	1.4	3482114_1bs_10487	2.75	0.00	0.1184	0.06	-0.15	0.11	0.05	-0.16	-0.02
MLPT	Qmlpt.tamu.1B	7	6	7.2	3285535_1bs_1678	4.29	0.00	-0.1458	0.06	-0.17	0.10	0.05	0.13	-0.02
MLPT	Qmlpt.tamu.1B	10	90	570.3	IWA5160	0.72	0.00	0.0157	0.06	-0.11	0.03	0.08	-0.04	-0.03
MLPT	Qmlpt.tamu.1D	13	58	412.0	IWB58572	14.19	0.00	-0.1649	-0.15	-0.13	0.46	-0.19	0.34	-0.16
MLPT	Qmlpt.tamu.1D	13	60	413.2	2236927_1dl_656	19.96	0.00	-0.1838	0.50	-0.13	-0.18	-0.18	-0.17	0.36
MLPT	Qmlpt.tamu.5A	44	25	17.2	1514513_5as_10557	1.55	0.00	-0.0588	0.04	-0.17	0.11	0.01	0.00	0.07
MLPT	Qmlpt.tamu.7A	65	131	657.7	4557355_7al_14033	3.52	0.00	-0.0622	-0.01	0.13	0.06	0.02	-0.10	-0.04
MLPW	Qmlpw.tamu.1A	1	6	9.2	IWB33789	6.96	6.49	0.7851	0.17	0.37	-0.66	-1.56	0.52	0.38
MLPW	Omlpw.tamu.1A	5	64	485.2	3894604 1al 116	4.20	5.84	-1.5908	0.16	0.31	-0.46	0.48	0.63	0.47
MLPW	Omlpw.tamu.4B	34	32	47.4	4962193 4bs 3020	17.46	26.72	0.7086	-0.55	0.82	1.33	0.82	-3.59	0.46
MLPI	Omlpi.tamu.1A	3	43	357.6	3966094 1al 942	3.42	5.89	4.3258	-2.16	3.47	-4.74	-9.81	4.57	4.34
MLPI	Omlpi.tamu.1A	4	51	380.7	3916130 1al 8063	4.48	3.96	4.2068	-3.18	3.00	-5.35	4.10	-6.13	3.35
MLPI	Omlpi,tamu,1A	5	61	474.6	IWB44485	4.50	3.78	3.1679	-3.18	3.06	-5.66	4.53	3.53	-5.44
MLPI	Omlpi,tamu,1B	7	0	0.6	3473141 lbs 756	2.65	3.62	-5.1596	3.52	-4.55	4.14	5.32	-3.70	0.44
MLPI	Omlpi.tamu.1B	7	4	1.4	3482114 lbs 10487	4.65	3.94	6.9374	4.02	-5.21	2.23	-3.51	-4.61	0.14
		,												
Table A5 Continued

						Iuoie	10 001	nnaca						
						LOD	PVE	AbyE	AbyE	AbyE	AbyE	AbyE	AbyE	AbyE
Traits [†]	QTL name	QTL ID	Position	Mbp [‡]	LeftMarker	(AbyE) [§]	(AbyE)¶	13EP2#	13EP3	13EP4	13EP5	14CH	14EP4	14EP5
MLPI	Qmlpi.tamu.1D	13	58	412.0	IWB58572	18.63	23.65	-6.8134	-5.87	-5.06	18.52	-8.83	-6.39	14.44
MLPI	Qmlpi.tamu.1D	13	64	416.1	IWB35348	22.61	33.87	21.4995	18.25	-6.80	-7.67	-8.72	-8.11	-8.43
MLPI	Qmlpi.tamu.3A	26	65	595.8	4308065_3al_1951	0.65	2.57	0.854	-5.91	3.54	-4.35	0.01	3.41	2.44
MLPI	Qmlpi.tamu.4B	38	78	649.5	IWB53155	4.83	3.34	-8.7887	3.00	3.54	-1.42	2.96	0.19	0.51
MLPI	Qmlpi.tamu.4B	38	88	654.3	2804533_5al_4865	10.87	8.76	14.744	1.87	-3.22	-5.61	-0.70	-3.26	-3.83
MLPI	Qmlpi.tamu.4D	39	10	62.8	2305880_4ds_1018	3.78	2.00	-1.2784	-5.20	-3.24	2.33	1.16	2.57	3.66
MLPI	Qmlpi.tamu.5A	44	25	17.2	1514513_5as_10557	3.88	2.80	-3.4035	2.78	-6.99	3.40	-0.63	1.62	3.22
MLRS	Qmlrs.tamu.1A	2	20	227.9	3904015_1al_2374	2.39	2.87	0.173	-0.21	-0.17	-0.14	0.10	0.15	0.10
MLRS	Qmlrs.tamu.1B	7	6	7.2	3285535_1bs_1678	1.94	3.15	0.3269	0.02	-0.25	0.02	-0.05	-0.05	-0.01
MLRS	Qmlrs.tamu.1D	13	60	413.2	2236927_1dl_656	3.88	8.26	0.5557	-0.30	-0.24	-0.05	0.02	-0.03	0.04
MLRS	Qmlrs.tamu.1D	13	65	418.5	2252364_1dl_16749	3.28	4.70	-0.1956	0.41	-0.18	-0.11	0.05	-0.02	0.05
MLRW	Qmlrs.tamu.1A	1	12	14.4	IWB10932	7.30	1.41	1.0095	-0.03	0.45	-0.15	-0.17	-0.14	-0.97
MLRW	Qmlrw.tamu.1D	13	58	412.0	IWB58572	33.46	8.07	-0.4666	-0.82	-1.26	-0.11	-0.39	3.14	-0.09
MLRW	Qmlrs.tamu.1D	13	60	413.2	2236927_1dl_656	27.57	10.21	1.1184	0.26	0.00	1.11	1.02	-3.50	-0.01
MLTW	Qmltw.tamu.1B	7	4	1.4	3482114_1bs_10487	2.85	6.25	1.0248	0.55	-0.32	-0.50	-0.53	-0.09	-0.14
MLTW	Qmltw.tamu.1B	7	6	7.2	3285535_1bs_1678	3.24	8.36	-0.7288	0.35	-0.62	1.08	0.53	-0.29	-0.33
MLTW	Qmltw.tamu.1D	13	64	416.1	IWB35348	5.29	7.68	-0.2466	0.19	-0.21	-0.41	1.38	-0.31	-0.39
MLTW	Qmltw.tamu.1D	13	75	433.3	IWB49445	6.31	19.32	-0.6783	2.22	-0.17	-0.75	-0.32	-0.24	-0.06
MLTW	Qmltw.tamu.7D	74	181	591.204218	IWB10006	4.51	11.47	1.7428	-0.17	-0.51	-0.44	-0.12	-0.26	-0.24

[†]HARD, hardness index; GMOIST, grain moisture; DIAM, kernel diameter; SKW, single kernel weight; FYLD, flour yield %; FMOIST, flour moisture; PROT14, flour protein at 14% moisture basis; ASH14, flour ash content at 14% moisture; WABS, water absorption; MLPT, midline peak time; MLPW, midline peak width; MLPV, midline peak value; MLPI, midline peak integral; MLRS, midline right slope; MLRW, midline right width

[‡] Chromosomal position of the corresponding marker in the IWGSC RefSeq v1.0

[§]Logarithm of odds for additive-by-environment interaction

[¶]Phenotypic variance explained by additive-by-environment interaction

[#]Additive-by-environment interaction effect of individual environments

Table A6

Pearson Correlation between grain yield, test weight, heading date and plant height in dry, irrigated and individual environment.

a) Dry Environment

Traits	Yield	TW	HD
TW	0.30458***		
HD	-0.52285***	-0.14888	
HT	0.14928	0.09319	-0.22101*

b) Irrigated Environment

Traits	Yield	TW
TW	-0.0096	
HT	-0.29602***	0.0454

c) 2011 Bushland Dry (11BD)

Traits	Yield	HD
HD	-0.35227***	
HT	0.30986***	-0.15201

d) 2011 Etter pivot 1 (11EP1)

Traits	Yield	HD
HD	-0.05	
HT	0.52***	-0.058

e) 2011 Etter pivot 2 (11EP2)

Traits	Yield	HD
HD	-0.29**	
HT	0.58***	-0.34***

f) 2011 Etter pivot 3 (11EP3)

Traits	Yield	HD
HD	-0.17	
HT	0.68***	-0.28**

g) 2011 Etter pivot 4 (11EP4)

Traits	Yield	HD
HD	0.11	
HT	0.35***	0.31***

Table A6 Continued

h) 2102 Bushland Dry (12BD)

Traits	Yield	TW	HD
TW	0.26383**		
HD	-0.14112	0.17195	
HT	0.15093	0.11064	-0.29941***

i) 2012 Chillicothe (12CH)

Traits	Yield	TW
TW	0.53***	
HT	0.34***	0.23*

j) 2012 Etter pivot 1 (12EP1)

Traits	Yield	TW
TW	0.05	
HD	-0.18*	-0.3***

k) 2012 Etter pivot 2 (12EP2)

Traits	Yield	TW
TW	0.04	
HD	-0.07	-0.3***

1) 2012 Etter pivot 3 (12EP3)

Traits	Yield	TW
TW	0.11	
HD	-0.23**	-0.13

m) 2017 Bushland Dry (17BD)

Traits	Yield	TW	HD
TW	0.10898		
HD	-0.41242***	-0.07627	
HT	0.00672	-0.06172	0.19898*

n) 2011 Etter pivot 4 (11EP4)

Traits	Yield	HD
HD	0.1101	
HT	0.34532***	0.31443***

Table A6 Continued

0)	2011 E	tter pivot	5 (11EP5)
----	--------	------------	-----------

Traits	Yield	TW	HD
TW	0.1331		
HD	0.1153	-0.44201***	
НТ	0.0503	-0.42474***	0.49729***

p) 2017 Etter irrigated (17EI)

Traits	Yield	HD
TW	0.29449***	
HT	-0.22962*	-0.08325

q) 2017 Clovis irrigated (17CLI)

Traits	Yield
HT	-0.16

GY, Grain yield; HD, heading date; HT, plant height; TW, test weight *, **, *** significance level at 5, 1, 0.1% level

Table A7

QTLs detected by individual environment, multi-environment and epistasis analysis for heading date, plant height, test weight and grain yield

QTL	Trait	Trait [‡]	ENV§	QTL name 1	QT	LG‡	Chr	Pos	Pos	Peak SNP	Notes [¶]
Analysis [†]	ID				L	\$		cM	Mb ^{§§}		
	- 1	UD	1100	011. 10.11	ID	2	10	C 0	120.02	2226006 1 11 5640	
IND-ADD	1	HD	TIBD	Qhd.tamu.ID.II	11	3	ID 1D	68 70	420.92	2236906_1d1_5649	
IND-ADD	1	HD	DRY	Qhd.tamu.1D.12	12	3	1D	/8	439.48	2262/61_1d1_3962	
IND-ADD	1	HD	12EP1	Qhd.tamu.1D.12	12	3		114	486.76	IWB41436	
IND-ADD	1	HD	12EP3	Qhd.tamu.1D.12	12	3	1D	114	486.76	IWB41436	
IND-ADD	1	HD	1/BD	Qhd.tamu.1D.12	12	3	ID	114	486.76	IWB41436	
IND-ADD	1	HD	DRY	Qhd.tamu.2A.14	14	4	2A 2D	64	319.05	IWB10151	D 1 D1 - 22.05 M
IND-ADD	1	HD	TIEP5	Qhd.tamu.2B.18	18	ິ	2B	61	39.20	IWB22828	Ppd-B1 at 33.95 Mb
IND-ADD	1	HD	11EP1	Qna.tamu.2B.19	19	5	2B 2D	04	05.11	IWB/2841	D 1 D1 22 05 M
IND-ADD	1	HD	11EP1	Qhd.tamu.2D.21	21	6	2D	29	15.97	IWB8481	Ppd-D1, 33.95 Mb
IND-ADD	1	HD	TIEP2	Qhd.tamu.3A.25	25	10	3A	59	507.54	4285803_3a1_628	JZ, GY, IWB21182 AT 500.97 MB
IND-ADD	1	HD	TIEP2	Qhd.tamu.4B.34	54	12	4B 7D	94	659.16	IWA2/	
IND-ADD	1	HD	12EP3	Qhd.tamu./B.59	59	23	/B	21	8.52	IWB6455	
IND-ADD	1	HD	TIBD	Qhd.tamu.7D.63	63	25	7D	82	64.33	3950120_/ds_5316	
IND-ADD	1	HD	TIEP4	Qhd.tamu./D.63	63	25	7D	81	64.33	3950120_/ds_5316	
IND-ADD	1	HD	TIEP5	Qhd.tamu.7D.63	63	25	7D	82	64.33	3950120_/ds_5316	
IND-ADD	1	HD	12BD	Qhd.tamu./D.63	63	25	7D	82	64.33	3950120_/ds_5316	
IND-ADD	1	HD	12EP1	Qhd.tamu.7D.63	63	25	7D	81	64.33	3950120_7ds_5316	
IND-ADD	1	HD	12EP2	Qhd.tamu./D.63	63	25	7D	81	64.33	3950120_/ds_5316	
IND-ADD	1	HD	12EP3	Qht.tamu.7D.63	63	25	7D	81	64.33	3950120_7ds_5316	
IND-ADD	1	HD	17BD	Qyld.tamu.7D.63	63	25	7D	80	64.33	3950120_7ds_5316	
IND-ADD	1	HD	DRY	Qhd.tamu.7D.63	63	25	7D	81	64.33	3950120_7ds_5316	
IND-ADD	1	HD	11EP1	Qhd.tamu.7D.63	63	25	7D	89	78.50	IWB44453	
IND-ADD	2	HT	12BD	Qht.tamu.1A.3	3	1	1A	33	296.24	3888483_1al_4013	
IND-ADD	2	HT	12BD	Qht.tamu.1A.5	5	1	1A	77	520.36	3904706_1al_3369	
IND-ADD	2	HT	12BD	Qht.tamu.1D.12	12	3	1D	80	444.01	2285810_1dl_1627	
IND-ADD	2	HT	11EP4	Qht.tamu.1D.12	12	3	1D	118	492.17	IWA3764	
IND-ADD	2	HT	12BD	Qht.tamu.4D.35	35	13	4D	0	20.58	IWB15038	Rht-2 at 18.7 Mb
IND-ADD	2	HT	DRY	Qht.tamu.4D.35	35	13	4D	0	20.58	IWB15038	Rht-2 at 18.7 Mb
IND-ADD	2	HT	IRR	Qht.tamu.5A.42	42	14	5A	119	584.42	IWB52657	JZ, GY, IWA4276 AT 594.57 MB JZ, GY, IWB12366 AT 595.53 MB Vrn-1, at 588.5 Mb
IND-ADD	2	HT	12BD	Qht.tamu.6A.48	48	17	6A	16	7.60	IWB11242	
IND-ADD	2	HT	12BD	Qht.tamu.7A.57	57	21	7A	90	85.78	4219271_7as_2211	
IND-ADD	2	HT	12CH	Qht.tamu.7D.62	62	25	7D	50	21.68	IWB21023	
IND-ADD	2	HT	17EI	Qyld.tamu.7D.63	63	25	7D	79	60.60	IWB35446	
IND-ADD	2	HT	11EP5	Qhd.tamu.7D.63	63	25	7D	80	64.33	3950120_7ds_5316	
IND-ADD	2	HT	12BD	Qht.tamu.7D.64	64	25	7D	126	123.27	10396674_3b_3606	
IND-ADD	3	TW	13EP5	Qtw.tamu.1A.5	5	1	1A	64	485.18	3894604_1a1_116	
IND-ADD	3	TW	12EP3	Qtw.tamu.1D.11	11	3	1D	46	375.43	2263785_1dl_1257	
IND-ADD	3	TW	12CH	Qtw.tamu.1D.11	11	3	1D	69	421.85	2237051_1d1_3543	
IND-ADD	3	TW	DRY	Qtw.tamu.1D.11	11	3	1D	69	421.85	2237051_1d1_3543	
IND-ADD	3	TW	13EP5	Qtw.tamu.2B.20	20	5	2B	124	708.74	8055466_2b1_812	SOA, GY, IWB64246 AT 694.05 Mb Rht4?
IND-ADD	3	TW	12EP3	Qtw.tamu.2B.20	20	5	2B	141	745.86	8091350_2b1_6123	SOA, GY, IWB64246 AT 694.05 Mb Rht4?

								Table	A/ Col	nunuea		
QTL	Trait	Trait [‡]	ENV§	QTL name [¶]	QT	LG [‡]	Chr	Pos	Pos	Peak SNP	Notes	
Analysis [†]	ID				L	\$		cM	Mb ^{§§}			
					ID							
IND-ADD	3	TW	13EP5	Qtw.tamu.2D.22	22	6	2D	103	82.03	5329935_2ds_3804	Rht8?	
IND-ADD	3	TW	13EP4	Qtw.tamu.4B.32	32	12	4B	27	17.04	IWB49194	JZ, GY, IWB73353 AT 15.41 MB	Rht1 at 30.86 Mb
IND-ADD	3	TW	12UV7	Qtw.tamu.4D.35	35	13	4D	5	28.99	IWB30733		
IND-ADD	3	TW	17BD	Qtw.tamu.4D.35	35	13	4D	9	35.36	2305190_4ds_510		
IND-ADD	3	TW	13EP2	Qtw.tamu.4D.35	35	13	4D	11	62.80	2305880_4ds_1018		
IND-ADD	3	TW	14CH	Qtw.tamu.4D.35	35	13	4D	11	62.80	2305880_4ds_1018		
IND-ADD	3	TW	12EP1	Qtw.tamu.4D.35	35	13	4D	10	62.80	2305880_4ds_1018		
IND-ADD	3	TW	12EP3	Qtw.tamu.4D.35	35	13	4D	10	62.80	2305880_4ds_1018		
IND-ADD	3	TW	12BD	Qtw.tamu.4D.35	35	13	4D	10	62.80	2305880_4ds_1018		
IND-ADD	3	TW	DRY	Qtw.tamu.4D.35	35	13	4D	10	62.80	2305880_4ds_1018		
IND-ADD	3	TW	12UV5	Qtw.tamu.4D.36	36	13	4D	13	109.80	2279925_4ds_1008		
IND-ADD	3	TW	12UVL	Qtw.tamu.4D.37	37	13	4D	22	366.28	IWB10053		
IND-ADD	3	TW	12BD	Qtw.tamu.6A.48	48	17	6A	20	12.42	4344525_6as_6773		
IND-ADD	3	TW	12UV7	Qtw.tamu.6A.49	49	17	6A	134	603.28	IWB11675		
IND-ADD	3	TW	13EP5	Qtw.tamu.6A.49	49	17	6A	139	608.50	IWB45148		
IND-ADD	3	TW	12CH	Qtw.tamu.6A.49	49	17	6A	144	613.48	IWB42057		
IND-ADD	3	TW	12UVL	Qtw.tamu.6B.50	50	19	6B	1	130.30	IWB38972	JZ, GY, IWB59110 AT 122.96 MB	
IND-ADD	3	TW	14EP4	Qtw.tamu.6B.50	50	19	6B	0	130.30	IWB38972	JZ, GY, IWB59110 AT 122.96 MB	
IND-ADD	3	TW	13EP2	Qtw.tamu.6B.51	51	19	6B	7	465.95	4352366_6bl_1112		
IND-ADD	3	TW	14CH	Qtw.tamu.6B.51	51	19	6B	7	465.95	4352366_6b1_1112		
IND-ADD	3	TW	11EP5	Qtw.tamu.6B.51	51	19	6B	6	465.95	4352366_6bl_1112		
IND-ADD	3	TW	12BD	Qtw.tamu.6B.51	51	19	6B	7	465.95	4352366_6b1_1112		
IND-ADD	3	TW	17BD	Qtw.tamu.6B.51	51	19	6B	6	465.95	4352366_6b1_1112		
IND-ADD	3	TW	13EP5	Qtw.tamu.6B.52	52	19	6B	8	559.36	IWB14861		
IND-ADD	3	TW	IRR	Qtw.tamu.6B.52	52	19	6B	8	559.36	IWB14861		
IND-ADD	3	TW	12BD	Qtw.tamu.6D.56	56	20	6D	96	458.49	3290494_6d1_50		
IND-ADD	3	TW	DRY	Qtw.tamu.6D.56	56	20	6D	96	458.49	3290494_6d1_50		
IND-ADD	3	TW	12UV5	Qtw.tamu.6D.56	56	20	6D	97	459.24	IWB24926		
IND-ADD	3	TW	13EP5	Qtw.tamu.7D.62	62	25	7D	206	0.00	Ksud2		
IND-ADD	3	TW	12CH	Qtw.tamu.7D.63	63	25	7D	79	60.60	IWB35446		
IND-ADD	3	TW	11EP5	Qht.tamu.7D.63	63	25	7D	79	60.60	IWB35446		
IND-ADD	3	TW	13EP2	Qtw.tamu.7D.65	65	25	7D	188	745.86	Gb3P4y		
IND-ADD	4	YLD	17EI	Qyld.tamu.1A.4	4	1	1A	58	411.66	3975933_1al_3664		
IND-ADD	4	YLD	COMB	Qyld.tamu.1A.4	4	1	1A	58	411.66	3975933_1al_3664		
IND-ADD	4	YLD	DRY	Qyld.tamu.1A.6	6	1	1A	172	585.63	3977278_1al_1171		
IND-ADD	4	YLD	DRY	Qyld.tamu.1A.6	6	1	1A	174	586.95	IWB34513	JZ, HD, IWA1644 AT 590.00 Mb	Elf3/HD
IND-ADD	4	YLD	12CH	Qyld.tamu.1D.11	11	3	1D	69	421.85	2237051_1d1_3543		
IND-ADD	4	YLD	DRY	Qyld.tamu.1D.11	11	3	1D	69	421.85	2237051_1d1_3543		
IND-ADD	4	YLD	13EP3	Qyld.tamu.2A.17	17	4	2A	125	734.51	6415190_2al_16820		
IND-ADD	4	YLD	12UVL	Qyld.tamu.3B.27	27	8	3B	5	48.56	10435017_3b_750	SOA, GY, IWA3983 AT 42.56,	Rht5?
IND-ADD	4	YLD	17CVI	Qyld.tamu.4B.33	33	12	4B	39	266.83	4883984_4bs_7910		
IND-ADD	4	YLD	14EP4	Qyld.tamu.4B.34	34	12	4B	94	659.16	IWA27		
IND-ADD	4	YLD	12UVLD	Qyld.tamu.4B.34	34	12	4B	99	660.94	IWB32997		
IND-ADD	4	YLD	17CVI	Qyld.tamu.4D.35	35	13	4D	2	20.58	IWB15038	Rht-2 at 18.7 Mb	
IND-ADD	4	YLD	IRR	Ovld.tamu.4D.35	35	13	4D	0	20.58	IWB15038	Rht-2 at 18.7 Mb	

Table A7 Continued

Table A7 Continued

OTI	Trait	Trait‡	ENV §	OTL name 1	ОТ	I G [‡]	Chr	Pos	Pos	Peak SNP	Notes
Analysis†	ID	Tran	LINV	QTL name	U I	10.	CIII	105 oM	Mb ^{§§}	I Cak SINI	Notes
Anarysis	ID				ID			CIVI	IVID		
IND-ADD	4	YLD	17BI	Ovld.tamu.4D.36	36	13	4D	13	109.80	2279925 4ds 1008	
IND-ADD	4	YLD	14CH	Ovld.tamu.4D.38	38	13	4D	28	445.50	IWB3336	
IND-ADD	4	YLD	17BI	Ovld tamu 6A 48	48	17	6A	20	12.42	4344525 6as 6773	
IND-ADD	4	YLD	14CH	Ovld tamu 6D 54	54	20	6D	1	19 64	2080712 6ds 6490	SOA GY IWB31561 AT 5 13 MB
IND-ADD	4	VID	12CH	Ovld tamu 7B 50	59	23	7B	24	15 59	IW A 1089	5011, 01, 10 51001 11 5.15 MB
IND-ADD	4	VID	DRY	Ovld tamu 7B 50	59	23	7B	24	15.59	IWA1089	
	4	VID	12CH	Ovld tamu 7B 60	60	23	7B	100	616.96	6722360 751 819	
IND-ADD	4	VID	12UVLD	Otw tamu 7D 63	63	25	7D	79	60.60	IWB35446	
	4	VID	12CH	Obd tamy 7D 63	63	25	7D	80	64.33	3050120 7dc 5316	
	4	VID	12CH	Ovld tamu 7D 63	63	25	7D 7D	80	64.33	3950120_7ds_5316	
	4	VID		Ovld tamu 7D 63	63	25	7D 7D	80	64.33	3950120_7ds_5316	
	4	VID	14CH	Ovld tamu 7D.63	63	25	7D 7D	86	72.05	IW A 1247	
	4	VID	1401	Qyla.lamu.7D.03	62	25	7D 7D	07	24.24	2028880 74c 2020	
	4	VID	1200	Qyid.iamu.7D.05	65	25	7D 7D	197	501.20	5958880_708_2029	
IND-ADD	4	I LD VI D	1260	Qyia.iamu.7D.05	65	25	7D 7D	101	509.61	IWB10000	
IND-ADD	4	I LD	13EP4	Qyia.tamu./D.05	05	25	/D	198	598.01	IWB45562	
MET-ADD	1	HD	MET	Qna.tamu.1A.1	1	1	IA 1A	0	1.19	IWA9/4	17 CN 11142452 AT 12 C7 MI
MET-ADD	1		MET	Qna.iamu.IA.1	1	1	14	9	11.02	1W B40042	JZ, 01, IWA2452 A1 15.07 MD
MET-ADD	1	HD	MET	Qna.tamu.1A.2	2	1	IA 1A	19	224.21	3932290_1a1_708	
MET-ADD	1	HD	MEI	Qhd.tamu.IA.2	2	1	IA	23	238.31	3975622_1a1_1296	
MET-ADD	1	HD	MET	Qhd.tamu.IA.3	3	1	IA	30	294.73	39155/1_1al_4855	
MET-ADD	1	HD	MET	Qhd.tamu.1D.12	12	3	ID	114	486.76	IWB41436	
MET-ADD	1	HD	MET	Qhd.tamu.2A.15	15	4	2A	71	533.47	IWB24910	
MET-ADD	1	HD	MET	Qhd.tamu.2A.16	16	4	2A	82	635.58	IWB68780	
MET-ADD	1	HD	MET	Qhd.tamu.2D.21	21	6	2D	29	15.97	IWB8481	Ppd-D1, 33.95 Mb
MET-ADD	1	HD	MET	Qhd.tamu.4B.34	34	12	4B	92	657.17	IWB4448	
MET-ADD	1	HD	MET	Qhd.tamu.4B.34	34	12	4B	94	659.16	IWA27	
MET-ADD	1	HD	MET	Qhd.tamu.7B.59	59	23	7B	24	15.59	IWA1089	
MET-ADD	1	HD	MET	Qhd.tamu.7D.63	63	25	7D	81	64.33	3950120_7ds_5316	
MET-ADD	2	HT	MET	Qht.tamu.1A.3	3	1	1A	33	296.24	3888483_1al_4013	
MET-ADD	2	HT	MET	Qht.tamu.1B.9	9	2	1B	118	642.78	3915619_1bl_1936	
MET-ADD	2	HT	MET	Qht.tamu.1D.12	12	3	1D	118	492.17	IWA3764	
MET-ADD	2	HT	MET	Qht.tamu.4D.35	35	13	4D	0	20.58	IWB15038	Rht-2 at 18.7 Mb
MET-ADD	2	HT	MET	Qht.tamu.6A.48	48	17	6A	16	7.60	IWB11242	
MET-ADD	2	HT	MET	Qht.tamu.7D.62	62	25	7D	47	21.14	3916420_7ds_3323	
MET-ADD	2	HT	MET	Qht.tamu.7D.63	63	25	7D	80	64.33	3950120_7ds_5316	
MET-ADD	3	TW	MET	Qtw.tamu.1A.1	1	1	1A	9	11.82	IWB46642	JZ, GY, IWA2452 AT 13.67 Mb
MET-ADD	3	TW	MET	Qtw.tamu.1A.1	1	1	1A	13	21.04	IWB21788	
MET-ADD	3	TW	MET	Qtw.tamu.1A.1	1	1	1A	15	25.48	3310348_1as_2438	
MET-ADD	3	TW	MET	Qtw.tamu.1A.2	2	1	1A	22	232.64	3877153_1al_1567	
MET-ADD	3	TW	MET	Qtw.tamu.1A.3	3	1	1A	29	290.73	3909230_1al_1823	
MET-ADD	3	TW	MET	Qtw.tamu.1A.3	3	1	1A	34	304.11	3916820_1al_4455	
MET-ADD	3	TW	MET	Qtw.tamu.1A.3	3	1	1A	39	339.35	3895363_1al_1924	
MET-ADD	3	TW	MET	Qtw.tamu.1A.4	4	1	1A	44	358.77	3944816_1al_8842	JZ, GY, 355.32 IWB25391
MET-ADD	3	TW	MET	Qtw.tamu.1A.4	4	1	1A	51	380.65	3916130_1al_8063	
MET-ADD	3	TW	MET	Qtw.tamu.1A.4	4	1	1A	53	390.09	IWB31924	

Table A7 Continued

								1 000 10	11/ 00		
QTL	Trait	Trait [‡]	ENV§	QTL name [¶]	QT	LG‡	Chr	Pos	Pos	Peak SNP	Notes [¶]
Analysis [†]	ID				L	\$		cM	Mb ^{§§}		
					ID						
MET-ADD	3	TW	MET	Qtw.tamu.1A.5	5	1	1A	64	485.18	3894604_1al_116	
MET-ADD	3	TW	MET	Qtw.tamu.1D.11	11	3	1D	46	375.43	2263785_1dl_1257	
MET-ADD	3	TW	MET	Qtw.tamu.1D.11	11	3	1D	69	421.85	2237051_1dl_3543	
MET-ADD	3	TW	MET	Qtw.tamu.1D.12	12	3	1D	117	489.72	IWB17626	
MET-ADD	3	TW	MET	Qtw.tamu.2B.20	20	5	2B	124	708.74	8055466_2b1_812	SOA, GY, IWB64246 AT 694.05 Mb Rht4?,
MET-ADD	3	TW	MET	Qtw.tamu.2D.22	22	6	2D	103	82.03	5329935_2ds_3804	Rht8?
MET-ADD	3	TW	MET	Qtw.tamu.2D.23	23	6	2D	115	532.96	9842271_2d1_198	
MET-ADD	3	TW	MET	Qtw.tamu.3B.28	28	8	3B	27	506.97	10680128_3b_818	
MET-ADD	3	TW	MET	Qtw.tamu.3D.30	30	9	3D	53	548.57	6926803_3d1_1308	
MET-ADD	3	TW	MET	Qtw.tamu.3D.30	30	9	3D	58	554.69	6956616_3d1_71	
MET-ADD	3	TW	MET	Qtw.tamu.3D.30	30	9	3D	63	562.70	IWB8129	
MET-ADD	3	TW	MET	Otw.tamu.4D.35	35	13	4D	11	62.80	2305880 4ds 1018	
MET-ADD	3	TW	MET	Otw.tamu.5A.39	39	14	5A	40	73.83	IWB2928	
MET-ADD	3	TW	MET	Otw.tamu.5A.40	40	14	5A	43	157.32	1500192 5as 1232	
MET-ADD	3	TW	MET	Otw tamu 5A 44	44	14	5A	194	702.00	IWB28861	
MET-ADD	3	TW	MET	Otw tamu 5B 45	45	15	5B	75	589.37	IWB26282	IZ SPS IWB6746 AT 587 6 MB Vrn-1 at 573 8
MET-ADD	3	TW	MET	Otw tamu 5B 45	45	15	5B	94	645.98	10851545 5bl 762	
MET-ADD	3	TW	MET	Otw tamu 6A 48	48	17	6A	12	7 19	4348240 6as 16935	
MET-ADD	3	TW	MET	Otw tamu 6A 48	48	17	6A	17	9.89	4426950 6as 3288	
MET-ADD	3	TW	MET	Qtw tamu 64.48	48	17	64	20	12.42	4344525 6as 6773	
MET-ADD	3	TW	MET	Q_{1W} tamu 64 49	40	17	64	134	603 28	IWB11675	
MET ADD	3	TW	MET	$Q_{1}w.tamu.61.49$	10	17	64	130	608 50	IWB45148	
MET ADD	3	TW	MET	Q_{1w} . u_{1w} . $0A.49$	49	17	6A	1/3	611 57	IWB67460	
MET ADD	2	TW	MET	Q_{1w} tamu 6P 50	49 50	10	6P	145	120 20	IWD29072	17 GV IWP50110 AT 122.06 MP
MET ADD	2	TW	MET	Qiw.umu.0D.30	51	19	6D	7	465.05	1252266 6b1 1112	JZ, 01, 1wb39110 A1 122.90 Mb
MET ADD	2	TW	MET	Qiw.umu.0D.51 Otw.tamu.6D.56	56	20	6D	07	405.95	4352500_001_1112	
MET ADD	2	TW	MET	Qiw.umu.0D.30	50	20	60	97	459.24	IWB24920	
MET ADD	2	TW	MET	Q_{1w} tanue $7P_{2}$ 50	50	20	70	10	439.24	IWD 6455	
MET ADD	2	TW	MET	QIW.10mu.7B.59	59	23	/D 7D	19	6.32	1W D0433	
MET-ADD	3	IW	MET	Qtw.tamu.7B.59	59	23	/B 7D	48	04.47	513091/_/DS_1218	
MET-ADD	3	IW	MET	Qtw.tamu.7B.01	61	24	/B 7D	1	/0/.30	6/2841/_/01_5629	
MET-ADD	3	IW	MEI	Qtw.tamu.7D.62	62	25	/D 7D	206	0.00	Ksud2	
MET-ADD	3	IW	MEI	Qtw.tamu./D.63	63	25	/D	/9	60.60	IWB35446	
MET-ADD	4	YLD	MET	Qyld.tamu.1B.8	8	2	IB	85	556.29	3859439_161_2195	
MET-ADD	4	YLD	MET	Qyld.tamu.1D.11	11	3	ID	69	421.85	2237051_1dl_3543	
MET-ADD	4	YLD	MET	Qyld.tamu.3A.24	24	7	3A	8	9.60	IWB7693	
MET-ADD	4	YLD	MET	Qyld.tamu.4B.33	33	12	4B	39	266.83	4883984_4bs_7910	
MET-ADD	4	YLD	MET	Qyld.tamu.4D.36	36	13	4D	13	109.80	2279925_4ds_1008	
MET-ADD	4	YLD	MET	Qyld.tamu.4D.38	38	13	4D	28	445.50	IWB3336	
MET-ADD	4	YLD	MET	Qyld.tamu.7D.63	63	25	7D	79	60.60	IWB35446	
MET-ADD	4	YLD	MET	Qyld.tamu.7D.63	63	25	7D	97	84.34	3938880_7ds_2029	
MET-EPI1	1	HD	EPI	Qhd.tamu.1A.6	6	1	1A	175	587.83	3971039_1al_2867	JZ, HD, IWA1644 AT 590.00 Mb Elf3/HD
MET-EPI1	1	HD	EPI	Qhd.tamu.1B.9	9	2	1B	155	686.84	IWB4789	
MET-EPI1	1	HD	EPI	Qhd.tamu.2A.13	13	4	2A	0	22.19	5237958_2as_10729	Ppd-A1 at 36.9 Mb two Rht on short arm
MET-EPI1	1	HD	EPI	Qhd.tamu.2A.17	17	4	2A	155	755.40	6337310_2al_1925	
MET-EPI1	1	HD	EPI	Qhd.tamu.2B.18	18	5	2B	45	39.20	IWB22828	Ppd-B1? 17.3 Mb

QTL Trait[‡] **ENV**[§] QTL name QT LG[‡] Chr Pos Pos Peak SNP Notes Trait \$ $Mb^{\S\S}$ Analysis[†] ID cМ L ID MET-EPI1 HD EPI Ohd.tamu.2B.19 19 2B 70 69.02 IWB61862 JZ, SPS, IWB49277 AT 68.36 Mb 1 5 MET-EPI1 1 HD EPI Qhd.tamu.6A.49 49 17 6A 140 609.00 IWA6537 MET-EPI1 1 HD EPI Qhd.tamu.6D.54 54 20 6D 5 24.00 IWB6829 MET-EPI1 2 HT EPI Oht.tamu.1A.5 1 1A 60 465.51 IWB65944 5 MET-EPI1 2 HT EPI Qht.tamu.1B.7 2 1B 45 68.44 3432579_1bs_4957 7 MET-EPI1 2 HT EPI Oht.tamu.1B.8 8 2 1B90 570.28 IWA5160 MET-EPI1 2 HT EPI Oht.tamu.1D.10 10 3 1D 25 12.32 IWB14343 JZ, GY, IWB38400 AT 10.18 Mb 2 HT EPI 90 674.15 MET-EPI1 Oht.tamu.2A.16 16 4 2A IWB20877 6415190_2al_16820 MET-EPI1 2 HT EPI Qht.tamu.2A.17 17 4 2A 125 734.51 MET-EPI1 2 HT EPI Oht.tamu.2A.17 17 4 2A 125 734.51 6415190 2al 16820 MET-EPI1 2 HT EPI Qht.tamu.2A.17 17 4 2A 150 751.66 1023555_2al_3138 MET-EPI1 2 HT EPI Qht.tamu.2A.17 17 4 2A 160 759.10 6382018_2al_8250 MET-EPI1 2 HT EPI Qht.tamu.3B.29 29 8 3B 65 771.39 10505374_3b_18831 MET-EPI1 2 HT EPI Oht.tamu.3D.30 30 9 3D 60 560.23 IWB32805 MET-EPI1 2 HT EPI Oht.tamu.3D.30 30 9 3D 60 560.23 IWB32805 MET-EPI1 2 HT EPI Qht.tamu.4A.31 31 11 4A 0 632.63 7156920_4al_5391 MET-EPI1 2 HT EPI Oht.tamu.4B.34 34 12 4B 110 666.33 IWB55790 41 14 MET-EPI1 2 HT EPI Oht.tamu.5A.41 5A 80 440.77 2774965 5al 1437 JZ, KW, IWB1040 AT 437.2MB JZ, SPS, IWB44603 AT 438.26MB MET-EPI1 2 HT EPI Qht.tamu.7B.59 59 23 7B 45 47.29 3138767_7bs_7628 6550874_7bl_349 MET-EPI1 2 HT EPI 61 24 7B 0 707.35 Qht.tamu.7B.61 MET-EPI1 3 ΤW EPI 4 95 684.90 6437445_2al_5185 YY, KPS, AT 681.1 MB Qtw.tamu.2A.16 16 2A MET-EPI1 3 тw EPI Otw.tamu.2B.18 18 5 2B35 29.56 IWB47594 Ppd-B1? 17.3 Mb MET-EPI1 3 TW EPI Qtw.tamu.3A.26 26 7 3A 115 711.69 4448357 3al 6941 MET-EPI1 3 TW EPI Qtw.tamu.7D.62 62 25 7D 15 13.69 3933813 7ds 676 MET-EPI1 4 YLD EPI Oyld.tamu.1A.6 1 1A 130 556.96 3882773 1al 4725 6 MET-EPI1 4 EPI Ovld.tamu.1B.9 2 150 675.56 IWB73713 JZ, GY, IWB61210 AT 673.74 Mb YLD 9 1B MET-EPI1 4 EPI Ovld.tamu.1B.9 2 155 686.84 IWB4789 YLD 9 1B MET-EPI1 4 EPI Qyld.tamu.1D.10 10 3 JZ, GY, IWB38400 AT 10.18 Mb YLD 1D 10 8.61 IWA1788 MET-EPI1 4 YLD EPI Oyld.tamu.2D.21 21 6 2D 0 0.22 5387977 2ds 265 Ppd-D1, 33.95 Mb MET-EPI1 4 YLD EPI Qyld.tamu.3A.26 26 7 3A 110 702.61 4365353_3al_191 Qyld.tamu.4B.32 12 MET-EPI1 4 YLD EPI 32 4B 30 17.04 IWB49194 JZ, GY, IWB73353 AT 15.41 MB Rht1 at 30.86 Mb MET-EPI1 4 YLD EPI Qyld.tamu.5B.46 46 15 5B 125 680.08 10875123_5b1_6505 MET-EPI1 4 YLD EPI Oyld.tamu.6B.53 53 19 6B 45 688.30 IWB6854 MET-EPI1 4 YLD EPI Qyld.tamu.6D.55 55 20 6D 45 350.42 3254329_6d1_5253 MET-EPI2 1 HD EPI Qhd.tamu.6A.48 48 17 15 IWB11242 6A 7.60 MET-EPI2 1 HD EPI Ohd.tamu.2B.20 20 5 2B130 729.52 IWB59461 SOA, GY, IWB64246 AT 694.05 Mb Rht4?, MET-EPI2 HD EPI Ohd.tamu.5A.43 43 14 5A 185 682.96 2805270 5al 2730 1 MET-EPI2 HD EPI Qhd.tamu.6A.49 49 17 145 613.80 5800366_6al_6132 1 6A MET-EPI2 HD EPI Qhd.tamu.3B.28 28 8 3B 55 557.99 10446102_3b_9187 1 MET-EPI2 HD EPI Ohd.tamu.7D.65 65 25 7D 185 593.52 3356799_7d1_7319 1 HD EPI 60 23 7B 95 6680752_7b1_3474 MET-EPI2 Qhd.tamu.7B.60 611.62 1 21 4445500_7al_1082 MET-EPI2 1 HD EPI Qhd.tamu.7A.58 58 7A 115 586.42 MET-EPI2 2 HT EPI Qht.tamu.6A.48 48 17 6A 5 5.12 4427795_6as_12820 MET-EPI2 2 HT EPI Oht.tamu.5A.43 43 14 5A 160 633.46 4541388_5d1_2248 JZ, KW, IWB789 AT 625.73 MB MET-EPI2 2 HT EPI Oht.tamu.3D.30 30 9 3D 60 560.23 IWB32805

Table A7 Continued

Table A7 Continued												
QTL	Trait	Trait [‡]	ENV§	QTL name [¶]	QT	LG [‡]	Chr	Pos	Pos	Peak SNP	Notes [¶]	
Analysis [†]	ID				L	\$		cM	Mb ^{§§}			
					ID							
MET-EPI2	2	HT	EPI	Qht.tamu.2B.19	19	5	2B	65	65.86	5174164_2bs_1900		
MET-EPI2	2	HT	EPI	Qht.tamu.5B.46	46	15	5B	155	705.89	10827029_5bl_1233		
MET-EPI2	2	HT	EPI	Qht.tamu.7D.62	62	25	7D	15	13.69	3933813_7ds_676		
MET-EPI2	2	HT	EPI	Qht.tamu.6A.48	48	17	6A	10	6.73	4354844_6as_593		
MET-EPI2	2	HT	EPI	Qht.tamu.4B.34	34	12	4B	65	638.12	IWA3040		
MET-EPI2	2	HT	EPI	Qht.tamu.7B.59	59	23	7B	25	19.11	3096912_7bs_110		
MET-EPI2	2	HT	EPI	Qht.tamu.7D.63	63	25	7D	80	64.33	3950120_7ds_5316		
MET-EPI2	2	HT	EPI	Qht.tamu.7B.59	59	23	7B	0	1.34	6380245_2al_4723		
MET-EPI2	2	HT	EPI	Qht.tamu.5B.46	46	15	5B	150	693.40	10848805_5bl_3948		
MET-EPI2	2	HT	EPI	Qht.tamu.5D.47	47	16	5D	5	349.87	IWA3429		
MET-EPI2	2	HT	EPI	Qht.tamu.5A.41	41	14	5A	50	430.25	IWB34498	JZ, KW, IWB1040 AT 437.2MB JZ, SPS, IWB44603 AT 438.26MB	
MET-EPI2	2	HT	EPI	Qht.tamu.7D.65?	65?	25	7D	195	NA	Sec61		
MET-EPI2	2	HT	EPI	Qht.tamu.7D.63	63	25	7D	110	108.24	3946880_7ds_1493		
MET-EPI2	2	HT	EPI	Qht.tamu.7B.61	61	24	7B	10	722.20	6666775_7bl_1452		
MET-EPI2	3	TW	EPI	Qtw.tamu.2A.17	17	4	2A	100	700.96	IWB11977	YY, KPS AT 690.1 MB	
MET-EPI2	3	TW	EPI	Qtw.tamu.4D.35	35	13	4D	0	20.58	IWB15038	Rht-2 at 18.7 Mb	
MET-EPI2	3	TW	EPI	Qtw.tamu.7D.62	62	25	7D	15	13.69	3933813_7ds_676		
MET-EPI2	3	TW	EPI	Qtw.tamu.7D.62	62	25	7D	25	15.32	IWB12582		
MET-EPI2	4	YLD	EPI	Qyld.tamu.2B.18	18	5	2B	10	8.34	IWB9673	Ppd-B1? 17.3 Mb	
MET-EPI2	4	YLD	EPI	Qyld.tamu.6D.56	56	20	6D	105	461.36	IWA1924		
MET-EPI2	4	YLD	EPI	Qyld.tamu.2B.20	20	5	2B	135	734.41	7939581_2bl_9591	SOA, GY, IWB64246 AT 694.05 Mb Rht4?,	
MET-EPI2	4	YLD	EPI	Qyld.tamu.7D.62	62	25	7D	40	21.14	3916420_7ds_3323		
MET-EPI2	4	YLD	EPI	Qyld.tamu.3B.29	29	8	3B	70	776.95	10764714_3b_3097		
MET-EPI2	4	YLD	EPI	Qyld.tamu.6A.48	48	17	6A	70	23.20	IWB28195		
MET-EPI2	4	YLD	EPI	Qyld.tamu.4D.36	36	13	4D	15	121.61	2298011_4ds_5609		
MET-EPI2	4	YLD	EPI	Qyld.tamu.7D.63	63	25	7D	85	72.95	IWA1247		
MET-EPI2	4	YLD	EPI	Qyld.tamu.6D.54	54	20	6D	20	33.69	4251907_7as_438		
MET-EPI2	4	YLD	EPI	Qyld.tamu.7D.65	65	25	7D	160	568.68	3388911_7dl_2689		

[†] IND-ADD, individual environment QTL analysis; MET-ADD, multi-environment QTL analysis; MET-EPI1 and MET-EPI2, epistasis QTL analysis for position 1 and position 2, respectively

[‡] HD, heading date; HT, plant height; TW, test weight; YLD, grain yield

⁸ Env, environments; 11BD, 2011 Bushland dryland; 12BD, 2012 Bushland dryland; 17BD, 2017 Bushland dryland; 17BI, 2017 Bushland irrigated; 11CH, 2011 Chillicothe, 12CH, 2012 Chillicothe; 14CH, 2014 Chillicothe; 17CVI, 2017 Clovis irrigated; 11EP1, 2011 Etter 0% ET; 11EP2, 2011 Etter 40% ET; 11EP3, 2011 Etter 60% ET; 11EP4, 2011 Etter 75% ET; 11EP5, 2011 Etter 100% ET; 12EP1, 2012 Etter 0% ET; 12EP2, 2012 Etter 40% ET; 12EP3, 2012 Etter 60% ET; 13EP2, 2013 Etter 40% ET; 13EP3, 2013 Etter 60% ET; 13EP4, 2013 Etter 75% ET; 13EP4, 2013 Etter 75% ET; 13EP5, 2013 Etter 100% ET; 14EP4, 2014 Etter 75% ET; 14EP5, 2014 Etter 100% ET; 17EI, 2017 Etter 100% ET; 12UVLD, 2012 Uvalde dryland; 12UV5, 2012 Uvalde 50% ET; 12UV7, 2012 Uvalde 70% ET; 12UVL, 2012 Uvalde irrigated; 13UVLD, 2013 Uvalde dryland

[¶]QTLs highlighted in red text were also detected by individual or multi-environment QTL analysis

[#] QTLs that were stably expressed in more than a single environment

^{††} Multi-trait QTL cluster

Table A7 Continued

^{‡‡} LG, linkage group number

^{§§} Physical position of the peak marker (leftmarker) extracted from IWGSC RefSeq v 1.0; Blue text color corresponds to the peak marker previously identified presented on Notes column

[¶]JZ, Zhang et al., (2018); SOA, Assanga et al., (2018); YY, Yang et al., (2017); GY, grain yield; KW, kernel weight; HD, heading date; SPS, spikelets per spike, KPS, kernel per spike; Rht, height reducing gene; *Ppd*, photoperiod insensitive gene; Vrn, vernalization requirement gene, Elf3: early flowering gene Zhang et al., (2018)

Assanga et al., (2018)

Yang, Y. 2017. Characterization of yield and yield components using bi-parental and association mapping of Texas popular cultivars and synthetic wheat. PhD Diss. Texas A&M University, College Station, TX

Table A8
Peak markers, chromosome, physical position related to yield and related traits from different study

Author	Traits [†]	Peak marker	Chr [‡]	Mbp§	Aligned	Align	Notes¶
					length	similarity	
Zhang et al., (2018)	GY	IWA2452	chr1A	13.67076	113	99.12	
Zhang et al., (2018)	GY	IWB25391	chr1A	355.324349	102	99.02	
Zhang et al., (2018)	GY	IWB38367	chr1A	505.52378	102	99.02	
Zhang et al., (2018)	GY	IWB62751	chr1A	568.01277	84	98.81	
Zhang et al., (2018)	GY	IWB26466	chr1B	7.995497	102	99.02	
Zhang et al., (2018)	GY	IWB50944	chr1B	52.899773	102	99.02	
Zhang et al., (2018)	GY	IWB61210	chr1B	673.743486	102	99.02	
Zhang et al., (2018)	GY	IWB38400	chr1D	10.180432	102	99.02	
Zhang et al., (2018)	GY	IWB15693	chr1D	20.045042	251	99.6	
Zhang et al., (2018)	GY	IWB21128	chr3A	500.976955	102	99.02	
Zhang et al., (2018)	GY	IWB11049	chr3B	819.503122	102	99.02	
Zhang et al., (2018)	GY	IWB35371	chr4A	535.427992	202	99.5	
Zhang et al., (2018)	GY	IWB73353	chr4B	15.413202	66	98.48	
Zhang et al., (2018)	GY	IWA4276	chr5A	594.57672	202	99.5	
Zhang et al., (2018)	GY	IWB12366	chr5A	595.537652	102	99.02	
Zhang et al., (2018)	GY	IWB59110	chr6B	122.96789	102	99.02	
Zhang et al., (2018)	KPS	IWB6510	chr6B	625.379773	102	98.04	
Zhang et al., (2018)	KW	IWB25267	chr2A	42.402213	102	98.04	
Zhang et al., (2018)	KW	IWB45501	chr2A	115.140873	95	98.95	
Zhang et al., (2018)	KW	IWB35243	chr2B	214.590768	104	99.04	TaSUS-2B
Zhang et al., (2018)	KW	IWB29808	chr2B	189.619237	74	98.65	TaSUS-2B
Zhang et al., (2018)	KW	IWB1356	chr6A	403.507598	100	93	
Zhang et al., (2018)	KW	IWB1040	chr5A	437.208797	102	99.02	
Zhang et al., (2018)	KW	IWB789	chr5A	625.732671	102	99.02	
Zhang et al., (2018)	KW	IWB35964	chr5B	279.097478	121	99.17	
Zhang et al., (2018)	KW	IWB47942	chr6A	297.714551	102	99.02	GW2
Zhang et al., (2018)	KW	IWB63290	chr6A	563.131061	91	98.9	
Zhang et al., (2018)	KW	IWA2808	chr6D	157.321607	202	98.51	GW2
Zhang et al., (2018)	KW	IWA604	chr7D	266.388658	122	98.36	
Zhang et al., (2018)	SPS	IWB7717	chr1A	37.501036	102	99.02	

		Table A8 Continued					
Author	Traits [†]	Peak marker	Chr [‡]	Mbp [§]	Aligned	Align	Notes¶
				_	length	similarity	
Zhang et al., (2018)	SPS	IWA1191	chr1B	57.713254	202	99.5	
Zhang et al., (2018)	SPS	IWB49277	chr2B	68.365388	85	98.82	
Zhang et al., (2018)	SPS	IWB26631	chr2B	158.643806	102	98.04	
Zhang et al., (2018)	SPS	IWB64813	chr2B	464.290408	102	99.02	
Zhang et al., (2018)	SPS	IWB59779	chr2B	244.572527	82	98.78	
Zhang et al., (2018)	SPS	IWB75234	chr3B	816.599798	102	99.02	
Zhang et al., (2018)	SPS	IWB44603	chr5A	438.267529	102	99.02	
Zhang et al., (2018)	SPS	IWB56233	chr5A	504.873158	102	99.02	
Zhang et al., (2018)	SPS	IWA12	chr5A	556.683952	122	99.18	
Zhang et al., (2018)	SPS	IWA2257	chr5B	315.613541	202	99.5	
Zhang et al., (2018)	SPS	IWB6746	chr5B	587.600676	77	98.7	
Zhang et al., (2018)	SPS	IWA2017	chr2B	156.918623	136	94.85	
Zhang et al., (2018)	SPS	IWB7349	chr7A	34.539424	102	99.02	
Zhang et al., (2018)	SPS	IWA5912	chr7A	674.276749	202	98.02	
Zhang et al., (2018)	HD	IWA1644	chr1A	590.001502	143	99.3	Elf3/HD
Zhang et al., (2018)	HD	IWA989	chr2D	32.792768	202	99.5	Ppd-D1/HD
Zhang et al., (2018)	KW	IWB39422	chr1A	168.718422	108	87.04	GW2
<u>Assanga et al., (2018)</u>	GY	IWB70591	chr2B	640.986765	102	99.02	
<u>Assanga et al., (2018)</u>	GY	IWB64246	chr2B	694.056368	102	99.02	
<u>Assanga et al., (2018)</u>	GY	IWB23950	chr5B	554.820366	102	97.06	
<u>Assanga et al., (2018)</u>	GY	IWB52093	chr5B	52.00537	83	98.8	
Assanga et al., (2018)	GY	IWA3983	chr3B	42.564588	200	99	
Assanga et al., (2018)	GY	IWB31561	chr6D	5.19597	102	99.02	
Assanga et al., (2018)	GY	IWB11000	chr7A	617.687683	102	99.02	

[†] GY, grain yield; KW, kernel weight; HD, heading date; SPS, spikelets per spike, KPS, kernel per spike; *Rht*, height reducing gene; *Ppd*, photoperiod insensitive gene; *Vrn*, vernalization requirement gene, *Elf3*: early flowering gene [‡] Chromosome of the corresponding marker in IWGSC RefSeq v1.0

[§] position of the corresponding marker in IWGSC RefSeq v1.0

¹GY, grain yield; KW, kernel weight; HD, heading date; SPS, spikelets per spike, KPS, kernel per spike; *Rht*, height reducing gene; *Ppd*, photoperiod insensitive gene; Vrn, vernalization requirement gene, Elf3: early flowering gene

Zhang et al., (2018)

Assanga et al., (2018)

Table A8 Continued

Yang, Y. 2017. Characterization of yield and yield components using bi-parental and association mapping of Texas popular cultivars and synthetic wheat. PhD Diss. Texas A&M University, College Station, TX

Rht gene	Linked marker	Chromosome	IWGSC position (Mb)
Rht4	wmc317	2BL	783.89
Rht5	barc102	3BS	17.57
Rht8c	wmc503	2DS	19.63
Rht9	barc151	5AL	558.34
Rht12	wmc410	5AL	678.29
Rht13	wms577	7BL	711.23

Table A9Physical position of different height reducing gene (*Rht*) identified by Ellis et al., (2005)

Ellis et al., (2005)