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ABSTRACT 

 

 Plants benefit from interactions with symbiotic microorganisms, with enhancements 

ranging from improved growth to activation of induced systemic resistance (ISR) against a broad 

range of pathogens. While pathogen-triggered systemic acquired resistance (SAR) is well 

understood with multiple signal molecules identified, ISR mobile signals remain unknown. 

Jasmonic acid (JA), a 13-lipoxygenase (LOX)-derived oxylipin, and ethylene (ET) have long 

been established as the main phytohormone regulators of ISR, although conclusive evidence for 

these two molecules as ISR mobile signals is lacking. However, there is increasing evidence that 

other oxylipin signals, especially those derived from 9-LOX activity, have roles in ISR. For 

instance, the maize 9-LOX, LOX3, has been identified as a negative regulator of ISR, with lox3 

mutants displaying constitutive ISR against a broad range of pathogens. The objective of this 

study is to identify oxylipin biosynthesis genes and specific molecules that govern ISR. Maize 

wild-type and near-isogenic mutants disrupted for several LOX, JA biosynthesis, and ET 

biosynthesis and ISR-positive and -negative mutants of the beneficial fungus Trichoderma virens 

were used to identify key oxylipin regulators of ISR by metabolite and transcriptome profiling. 

Both the JA-producing 13-LOX, LOX10, and the 9-LOX, LOX12, were overexpressed in lox3 

roots and found to be required for T. virens-induced ISR. T. virens-colonized lox10 and lox12 

mutants became more susceptible to infection by Colletotrichum graminicola, causal agent of 

anthracnose leaf blight, leading to an induced systemic susceptibility (ISS) phenotype. Oxylipin 

profiling of xylem sap from maize exhibiting different defense responses after treatment with 

mutant or WT T. virens identified JA precursor, 12-oxo-phytodienoic acid (12-OPDA), and a 9-

LOX-derived α-ketol, 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (KODA) as 
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molecular signals involved in induction of ISR. Treatment with 12-OPDA or KODA enhanced 

resistance against infection in a dose-dependent effect, confirming signaling roles. Surprisingly, 

T. virens-induced ISR in either JA- or ET-deficient mutants, suggesting neither were required for 

ISR. Transcriptome analysis of T. virens-treated maize revealed upregulation of 12-OPDA 

biosynthesis and response genes, but downregulation of subsequent JA biosynthesis genes and 

JA response genes. These results show that OPDA and KODA, but not JA, are required for 

activation of T. virens-induced ISR in maize.  
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CHAPTER I 

 INTRODUCTION  

 

The advances in large-scale transcriptomics, proteomics, and genomics have driven 

microbiome studies with the goal of improving crop productivity by utilizing beneficial microbes 

to enhance plant growth and resistance to biotic and abiotic stresses. Manipulating and 

engineering the plant microbiome could revolutionize the field of medicine and agriculture 

(Mueller and Sachs, 2015). The rhizosphere of plants offers a diverse microbiome that ranges 

from pathogens to beneficial microbes. This area of diverse and heightened activity has been 

termed the rhizobiome. Plants interact with microbes within the rhizobiome through the secretion 

of plant exudates and signaling compounds to promote mutualistic relationships (Mendes et al., 

2013). Many of these beneficial microbes can be characterized as plant growth promoting 

rhizobacteria/fungi (PGPR/PGPF), as they can enhance growth and development of the plant 

hosts they interact with. In addition to growth, these PGPR/PGPF can also heighten host 

systemic resistance against a broad range of pathogens and pests by a mechanism called induced 

systemic resistance (ISR) (Pieterse et al., 2014a). Upon induction of ISR, plants undergo 

transcriptomic and metabolomic reprogramming to prime defense responses to respond rapidly 

and robustly against pathogen infection (Wang et al., 2005; Conrath et al., 2006; Pieterse et al., 

2014b).  

The ISR pathway is poorly understood compared to the well-characterized systemic 

acquired resistance (SAR) pathway (Pieterse et al., 2014a). SAR is activated by prior infection 

by pathogens and is regulated by salicylic acid (SA) signaling, while ISR occurs upon root 

colonization by beneficial microbes and is long believed to be regulated by jasmonic acid (JA) 
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and ethylene (ET) signaling (Pieterse et al., 2014b). SAR signaling requires activation of 

Nonexpressor of pathogenesis-related genes 1 (NPR1), which monomerizes and moves to the 

nucleus to activate the TGACG (TGA) motif-binding family of transcriptional factors to promote 

expression of SA-responsive defense genes (Vlot et al., 2009; Pieterse et al., 2012). Interestingly, 

several long-distance signals for SAR have been identified and include azelaic acid (AzA), 

pipecolic acid (Pip), methyl salicylate (MeSA), glycerol-3-phosphate (G3P), and 

dehydroabietinal (DA), but not SA itself (Klessig et al., 2018; Shan and He, 2018). Much less is 

known about the ISR signaling pathway; however, NPR1 activity in the cytoplasm is required 

(Pieterse et al., 1998; Pieterse et al., 2012).  

Among the fungal members of the rhizobiome, Trichoderma spp., which include the 

agriculturally relevant T. virens and T. harzianum, have been identified as prominent PGPF from 

many soil environments (Lorito et al., 2010; Harman, 2011; Hermosa et al., 2012; Mukherjee et 

al., 2013). Their benefits to host plants include growth promotion, biocontrol activity through 

antibiosis and mycoparasitism, and triggering ISR (Yedidia et al., 1999; Howell et al., 2000; 

Druzhinina et al., 2011). Several species of Trichoderma interact with a diverse species of plants, 

such as Arabidopsis, cotton, tomato, and maize, resulting in ISR against a wide array of 

pathogens (Djonovic et al., 2006; Djonovic et al., 2007; Shoresh et al., 2010; Contreras-Cornejo 

et al., 2011).  

 The process of communication between Trichoderma and its plant host is pivotal for 

providing eventual plant benefits. However, even before root colonization or contact, various 

secreted fungal elicitors contribute to form compatible interactions. One elicitor in particular is 

Sm1, a small secreted cysteine-rich protein (SSCP) from T. virens that is required for induction 

of ISR in host plants (Djonovic et al., 2006; Djonovic et al., 2007). Expression of SM1 was 
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greatly induced when T. virens grew in the presence of plants compared to when grown alone 

(Djonovic et al., 2007; Moran-Diez et al., 2015). Presence of Sm1 induced maize defense genes 

locally in roots and systemically, while the knockout mutant Δsm1 lost the ability to induce ISR 

completely. T. atroviride Epl1, a homolog of T. virens Sm1, is required for ISR in tomato and 

improves plant resistance against necrotrophic pathogens such as Alternaria solani and Botrytis 

cinerea or the biotroph Pseudomonas syringae pv. tomato (Pst DC3000) (Salas-Marina et al., 

2015). In addition to Sm1, T. virens also secretes many other SSCPs, some of which act as 

negative regulators of ISR and reduce plant defense response (Lamdan et al., 2015). Knockout 

mutant of protein ID 77560, now named Suppressor of Induced Resistance 1 (Sir1), induced 

enhanced ISR in maize against a necrotroph Cochliobolus heterostrophus compared to wild-type 

T. virens. Importantly, during T. virens colonization of maize, expression of a 9-lipoxygenase 

(LOX) gene, LOX3, was suppressed in a Sm1-dependent manner, and lox3 knockout mutant 

displayed constitutively active ISR  (Constantino et al., 2013), prompting the need to better 

understand the role of plant oxylipins and their role in regulating ISR.  

 Plant oxylipins are involved in cross-kingdom signal communication and play major 

roles in regulating many aspects of plant physiology, such as growth and development and 

defense responses to pathogens, herbivores, and abiotic stresses (Feussner and Wasternack, 

2002; Christensen and Kolomiets, 2011; Borrego and Kolomiets, 2016). Oxylipins are produced 

through enzymatic or nonenzymatic oxygenation of polyunsaturated fatty acids such as linoleic 

acid (C18:2, LA) and linolenic acid (C18:3, α-LeA) in plants and arachidonic acid (C20:4) in 

mammals. Human oxylipins, such as prostaglandins, leukotrienes, and thromboxanes, have been 

well characterized as hormone regulators of various developmental, physiological, and 

pathological processes (Funk, 2001). Compared to mammalian oxylipins, plant oxylipins are 
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poorly characterized, with only JA and its derivatives as the exceptions. The LOX pathway is the 

enzymatic pathway for oxylipin biosynthesis, which begins with 9- or 13-LOX enzymes 

oxygenating polyunsaturated fatty acids (PUFAs) at carbon position 9 or 13, respectively 

(Feussner and Wasternack, 2002; Andreou et al., 2009; Kachroo and Kachroo, 2009). The 

products of LOXs are immediately fed into seven different branches of the LOX pathway. One 

such branch is the 13-allene oxide synthase (13-AOS) pathway, which produces JA-precursor, 

12-oxo-phytodienoic acid (12-OPDA), and the hormone JA-Ile,  and other JA derivatives from 

13-hydroperoxy octadecatrienoic acid (13-HPOTE), and the hydroperoxide lyase (HPL) 

pathway, which converts 13-HPOTE to several short chain C6-compounds called green leaf 

volatiles (GLVs) in maize (Matsui, 2006; Christensen et al., 2013). GLVs attract parasitoid 

wasps in response to herbivory (Whitman and Eller, 1990; Christensen et al., 2013), regulate 

plant-plant communications (Engelberth et al., 2004), and enhance JA response against herbivory 

(Farag and Pare, 2002). 

Aside from JA, over 650 other oxylipins have been identified in plants with largely 

unknown functions, especially the 9-oxylipins derived from 9-LOX activity (Borrego and 

Kolomiets, 2016). While JA and its derivatives are derived from linolenic acid and produced by 

13-LOX activity through the 13-AOS branch, products of the 9-AOS pathway include death 

acids (Christensen et al., 2015), which can trigger potent programmed cell death, and 9-oxylipin 

ketols including 9-hydroxy-10-oxo-12(Z), 15(Z)-octadecadienoic acid (KODA), the function of 

which is not clearly established (Vick and Zimmerman, 1984). The 9-oxylipins have been mostly 

characterized for their roles in regulating germination, root growth, and defense against infection 

and herbivory (Vellosillo et al., 2007; Nalam et al., 2012). Maize 9-LOXs, LOX4 and LOX5, 

share ~95% amino acid sequence identity, but are expressed in different tissue and in response to 
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different stimuli (Park et al., 2010). LOX4 expression is detected in below-ground tissue and in 

response to JA, while LOX5 expression is detected in above-ground tissue and in response to JA, 

SA, wounding, and insect herbivory. Furthermore, lox4 mutants were significantly more 

susceptible to Colletotrichum graminicola, causal agent of anthracnose stalk rot and leaf blight, 

while lox5 mutants were more resistant (Park, 2012; Damarwinasis, 2018). Another maize 9-

LOX, LOX12, is expressed in below-ground tissue and greatly induced upon infection by 

Fusarium verticillioides (Christensen et al., 2014). Furthermore, lox12 mutants are more 

susceptible to F. verticillioides infection due to reduced accumulation of 12-OPDA and JA 

(Christensen et al., 2014; Battilani et al., 2018). The specific 9-oxylipin product of LOX12 has 

not been yet identified. 

While 13-LOXs in plants are better characterized because of their involvement in JA 

biosynthesis, the 9-LOXs and their products are poorly understood. Most work with 9-oxylipins 

focus on growth and development, and defense against infection and herbivory (Vellosillo et al., 

2007; Gao et al., 2008; Nalam et al., 2012; Christensen et al., 2014). However, there is increasing 

evidence that 9-oxylipins also have major roles in regulating ISR. For example, disruption of 

maize LOX3, a root-specific 9-LOX, resulted in dramatic increase in systemic resistance against 

a variety of seed, stalk, root, and foliar pathogens, such as C. heterostrophus, Exserohilum 

pedicellatum, Fusarium verticillioides, and C. graminicola (Gao et al., 2007; Isakeit et al., 

2007). The lox3 mutant roots constitutively overexpressed genes involved in biosynthesis of 

GLVs and JA (HPL1 and LOX10) and defense phytohormones SA, and ET, and over-

accumulated those hormones even in the absence of pathogen infection (Gao et al., 2008). 

Because LOX3 gene is not expressed in leaf tissue even when infected with pathogens and 

transfusion of xylem sap collected from lox3 mutants conferred increased systemic resistance 
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to receiver wild-type (WT) plants to levels comparable to ISR phenotype of T. virens-treated 

WT plants, it was concluded that lox3 mutant produces potent xylem-sap resident ISR signal 

and thus, displays constitutively active ISR (Constantino et al., 2013). As previously 

mentioned, expression of LOX3 in WT plant roots was suppressed by T. virens colonization in 

a Sm1-dependent manner, suggesting that LOX3 is a negative regulator of ISR. Additionally, 

recent studies demonstrated that as-yet-unidentified 9-LOX derivatives are involved in plant-

arbuscular mycorrhizal (AM) fungus interactions that result in mycorrhizae-induced resistance 

(MIR) akin to ISR (León-Morcillo et al., 2012; Morcillo et al., 2016). 

The focus of this project is to elucidate the major oxylipin biosynthesis genes and their 

metabolites as signals for ISR induction upon maize root colonization by T. virens. The main 

objectives of this project are: 1) Identify specific oxylipin biosynthesis genes responsible for 

activation of ISR; and 2) identity specific oxylipin signals required for ISR induction in response 

to T. virens colonization of roots.  
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CHAPTER II 

 MATERIALS AND METHODS  

 

Plant and Fungal Material 

 

The maize inbred lines B73, W438, and Tx714 and mutator transposon knockout mutants 

lox3-4 (Gao et al., 2007), lox10-2, lox10-3 (Christensen, 2011), and double mutants opr7opr8 

(Yan et al., 2012) and acs2acs6 were used in this study. The double mutant of lox3lox10 was 

generated in this study by conventional breeding. The mutant maize lines are all near-isogenic 

(NILs) at the backcross seven (BC7) genetic stage in the B73 background. Strains Gv29-8 

(TvWT) (Baek and Kenerley, 1998), Δsm1 (Djonovic et al., 2006), and Δsir1 (formerly Δ77560) 

(Lamdan et al., 2015) of T. virens were grown on Potato Dextrose Agar (PDA, Difco 

Laboratories, Detroit) at 27°C from stock glycerol cultures maintained at -80 C. Chlamydospores 

of T. virens were obtained from cultures grown in molasses-yeast extract medium (Mukherjee 

and Kenerley, 2010). After 2 weeks, the incubated cultures were vacuum filtered, air dried, and 

the mycelial mat containing chlamydospores was ground to fine powder. Colletotrichum 

graminicola (1.001 strain) on PDA and Cochliobolus heterostrophus on complete medium with 

xylose (substituted for glucose to improve conidiation) were grown at room temperature (21-

23°C) under fluorescent lights. (Tzeng et al., 1992). 
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Soil Growth Conditions 

 

Maize seeds were surface sterilized with 70% EtOH wash for 5 min, followed with a 

0.6% sodium hypochlorite wash for 5 min, and then rinsed 3-5 times with sterile water. The 

seeds were planted in sterilized MetroMix 366 soil (steam sterilized for 1 hour, cooled overnight, 

and sterilized again for 1 hour) in long conical tubes (20.5 x 4 cm conetainers, Stewe and Sons). 

 

ISR Assay 

 

Infection with C. graminicola and C. heterostrophus was performed in this study as 

described by (Gao et al., 2007). Seven days after maize seeds were planted, and similarly 

developed seedlings that germinated were either left untreated (control) or treated with 0.1 g of 

T. virens chlamydospore (added to the soil at a depth of 4-5 cm). When the plants reached 

vegetative stage four (V4), the third true leaves were infected with C. graminicola or C. 

heterostrophus. Briefly, the plants were placed in trays (78.5 cm x 63 cm x 7 cm) lined with 

paper towels with the third leaves taped down flat facing up. Sterile distilled water (SDW) was 

added to C. graminicola or C. heterostrophus plates, which were then scraped with an 

inoculating loop to free the conidia. The suspension was then filtered through sterile cheesecloth 

into a 50 mL Falcon tube to remove mycelia. The conidial suspension was centrifuged twice at 

3000 rpm for 3 minutes, with the water being replaced each time with fresh SDW. The initial 

conidia concentration was determined using a hemocytometer. The suspension was finally 

diluted to a concentration of 1 × 106 spores per mL. The spores were used immediately after 

preparation, as they lose viability after 2 hr in room temperature. Ten μL of the spore 
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suspensions (10,000 spores) were inoculated to 6 individual areas of the center of the leaf 

without contacting the midvein. Paper towels were moistened with sterile water, which were then 

covered with GLAD Press’n’Seal (The Glad Products Company, Oakland, CA, U.S.A) to create 

a humid chamber. The humidity chambers were placed in darkness for 24 hours at 25°C. The 

plants were then positioned upright and allowed to continue to grow under 14:10 light:dark 

photoperiod at room temperature (21-23°C). Leaves were scanned 4 days after inoculation, and 

lesion area was determined using the ImageJ software (https://imagej.nih.gov/ij/). Data were 

analyzed by ANOVA and Tukey’s HSD test (p < 0.05).  

 

Xylem-Enriched Sap Collection 

 

Xylem-enriched sap was collected from B73, lox3-4, and lox10-3 plants at V4-stage 

treated with WT or Δsm1 strains of T. virens or left untreated. One day before sap collection, the 

plants were placed on light shelves (150 μmol m−2 s−1 (Quantum Meter; Apogee Instruments, 

Logan, UT, USA) and kept well-watered (Constantino et al., 2013). The following day the plants 

were watered until the soil was saturated, and then decapitated by a diagonal cut with a scalpel 

above the first leaf. The first droplet of sap was discarded to avoid collecting any wounding 

signals. The droplets after that were collected for 8 hours and stored on ice. The plants were also 

periodically recut when sap flow declined, with the first new droplet being discarded. The final 

sap collections were stored in -80°C until needed for experiments.  
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Xylem Sap Transfusion Assay 

 

Xylem-enriched root sap was collected from a donor plant and introduced into a small cut 

along the pseudo-stem below the first true leaf of the receiver plants (B73 or Tx714) at the V4 

stage (Constantino et al., 2013). Receiver plants were allowed to reach V4 stage and placed on 

their sides in trays lined with paper towels with the third true leaves taped down flat. One 

incision was made with a scalpel between the first and second leaves, and 10 μL H2O or 1:1 

diluted plant sap was added into each incision. For assays that transfuse 12-OPDA, KODA, or 

JA-Ile, the protocol for xylem sap transfusion assay was slightly modified. Xylem sap from 

untreated B73 was diluted 1:1 with either water for control or a concentration of the 

phytohormone to achieve the desired final concentrations. After 3 hours, plant leaves were 

inoculated with C. graminicola. Lesions were measured as an indication of plant resistance as 

described in the ISR assay section. 

 

Quantification of Plant Sap Hormones and Metabolites 

 

Xylem-enriched sap and fresh maize tissue hormones and metabolites were quantified 

using LC-MS/MS. For xylem-enriched sap, 90 μL of a 1:1 diluted sap solution was mixed with 

10 μL of 5 μM internal standards (d-ABA ([2 H6](+)-cis,trans-ABA; [Olchem]), d-IAA ([2 H5] 

indole-3- acetic acid, Olchem) and d-JA (2,4,4-d3; acetyl-2,2-d2 JA; CDN Isotopes), and d-SA 

(d6-SA, Sigma)). For fresh tissue, hormones and metabolites were extracted via extraction, 

methylation, vapor-phase extraction, and liquid chromatography mass spectrometry-based 

quantification. Briefly, 0.1 g tissue was ground and mixed with 10 μL of 5 μM internal standards 
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(d-ABA ([2 H6](+)-cis,trans-ABA; [Olchem]), d-IAA ([2 H5] indole-3- acetic acid, Olchem) and 

d-JA (2,4,4-d3; acetyl-2,2-d2 JA; CDN Isotopes), and d-SA (d6-SA, Sigma)) and 500 μL 

phytohormone extraction buffer (1-propanol/water/HCl [2:1:0.002 vol/vol/vol]). The samples 

were agitated for 30 minutes at 4°C under darkness, and 500 μL dichloromethane was added to 

each sample. The samples were agitated again for 30 minutes at 4°C under darkness and then 

centrifuged at 13,000 × g for 5 minutes. The lower layer of each sample was transferred to a 

glass vial for evaporation under a nitrogen gas stream. They were resuspended in 150 μL 

methanol, transferred to a 1.5 mL microcentrifuge tube, and centrifuged at 14,000 × g for 2 

minutes to pellet any debris. Supernatant (100uL) of each sample was transferred into 

autosampler vials to feed into the LC-MS/MS. The samples were transferred into autosampler 

vials with glass inserts, and a 15 μL aliquot was injected directly into an API 3200 LC-MS/MS 

on negative electrospray ionization mode with multiple reactions mentoring (MRM). The 

simultaneous detection of several hormones utilized methods by Muller and associates (2013) 

with modifications. The chromatography was performed with an Ascentis Express C-18 Column 

(3 cm × 2.1 mm, 2.7 µm). The mobile phase was set at 400 mL/minute consisting of Solution A 

(0.05% acetic acid in water) and Solution B (0.05% acetic acid in acetonitrile) with a gradient 

consisting of (time in minutes – %B): 0.3 – 1%, 2 – 45%, 5 – 100%, 8 – 100%, 9 – 1%, 11 – 

stop. 

 

Hydroponic Growth Conditions for RNA-Seq 

 

To study the effects of colonization by T. virens on maize roots, a hydroponic system as 

described by Djonovic et al., 2007 was used to prevent contamination and minimize mechanical 
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damage. Maize B73 seeds were surface sterilized with a 70% ethanol wash for 5 minutes, rinsed 

with sterile water, washed with 10% hydrogen peroxide for 2 hours, and finally rinsed with 

sterile water. The seeds were plated on Luria-Bertani (LB) (Difco Laboratories, Detroit) agar 

plates and incubated at 28°C in humidity chambers (boxes with wet paper towels lining the 

bottom with plates separated by glass petri plates). The seeds were checked every day for signs 

of bacterial or fungal contamination, and clean seeds were carefully moved to fresh LB plates. 

After 7 days, clean and uniformly germinated seeds were selected and placed in hydroponic 

units, which consist of wide mouth 16 oz mason jars (Ball wide mouth canning jar 16 oz) with a 

125mL shaker clamp (Thermo Scientific™ MaxQ™ Shaker Universal Clamps, model 30153) 

supporting a plastic mesh stage, and filled with 200-225 mL of half strength Murashige and 

Skoog media with Gamborg vitamins (pH = 5.6, Sigma-Aldrich, St. Louis, MO, U.S.A). Each jar 

contained five seedlings positioned so that the tap roots of each seedling were threaded through 

the mesh and partly submerged in the MS media. The jars were then capped with the bottom of 

sterile plastic petri plates (100 x 15mm) and placed on shakers (50 rpm) at 25-27°C with a 16:8 

light:dark photoperiod. Twenty-four hours before treatment, TvWT was cultured in 1L potato 

dextrose broth (PDB) in a Fernbach flask at a concentration of 1 x 105 spores/mL. After 24 

hours, mycelia were collected by filtration with sterile nylon and washed with sterile water. One 

gram of fresh weight of the mycelial inoculum was added to the jars, after which a second mason 

jar (24oz Ball wide mouth canning jar) was placed atop the first jar and held in place with 

parafilm. This design allowed continued unimpeded shoot growth.  
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Tissue Harvesting 

 

Plant root tissue was harvested 6, 30, and 54 hours after adding inoculation of the 

hydroponic jars with T. virens. The shoot tissue included all parts above the maize mesocotyl, 

while the root tissue included the radicle root and the lateral seminal roots. The roots were not 

rinsed with water when collected, especially at 30 and 54 hours when the T. virens tissue was 

inextricable from maize root tissue. At 6, 30, and 54 hours, the T. virens biomass not associated 

with maize roots was collected by filtering the MS medium through nylon filters and gently 

rinsing with sterile water. All the tissue samples collected were immediately flash frozen in 

liquid nitrogen and preserved at -80°C until RNA extraction.  

 

RNA Extraction 

 

Plant shoot and root tissue and fungal biomass were harvested and stored in -80°C. RNA 

was extracted from root and biomass of T. virens using a modified method for the Qiagen 

RNeasy Plant Mini Kit. The tissue samples were first ground in liquid nitrogen, and 1 μg of the 

tissue was aliquoted for RNA extraction. While the samples were still chilled in liquid nitrogen, 

1 mL TRI reagent (Molecular Research Center Inc, Cat. TR118) was added to each sample and 

mixed well. The samples were then left at room temperature for 5 minutes before 200 μL 

chloroform was added and mixed well. The samples were stored at room temperature for 10 

minutes before being centrifuged at 13,000 × g at 4°C for 15 minutes. The supernatant was 

transferred to a new tube containing 500 μL isopropanol. The samples were gently mixed and 
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stored at room temperature for 10 minutes prior to transfer into the Qiagen RNeasy spin 

columns. The samples were then processed following the manufacturer’s instructions.  

 

RNA-Sequencing 

 

RNA was submitted to the Texas A&M AgriLife Genomics and Bioinformatics Service 

as total genomic RNA. For the 30 hr TvWT-treated maize, the submitted RNA comprised both 

maize and T. virens RNA. Preliminary sequencing determined that the ratio between 

maize:fungal RNA was roughly 2:8 maize to fungus in origin. The 6 hr samples were 

subsequently recombined in a 2:8 fungus:maize ratio to allow for sufficient coverage of maize 

genome. The cDNA libraries were created with the NEXTflex® Rapid Illumina Directional 

RNA-Seq Library Prep Kit. Sequencing parameters were 50 bp paired end reads, to a depth of 

250 million reads, on a NovaSeq 6000.  

 

RNA-Seq Data Analysis 

 

 Base-calling, quality checking, and removal of adaptor sequences was performed by the 

Texas A&M AgriLife Genomic and Bioinformatics Service as per their standard operating 

procedure. Raw, paired end, 50bp reads were then aligned back to the B73 reference genome 

sequence (AGPv4 release 38) via the TopHat2 v2.1.0 pipeline (Kim et al., 2013). Alignment 

rates varied depending on whether the samples were comprised of only maize RNA or a mixture 

of maize:fungal RNA. Uniquely aligned reads were counted with the HT-Seq 0.6.1 pipeline 

(Anders et al., 2015) using the Ensembl GCA_000005005.6 Zm-B73-REFERENCE-
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GRAMENE-4.0 for annotation. The FPKM (Fragments Per Kilobase of exon model per Million 

mapped reads) values were determined using the Ballgown (v2.10.0) pipeline.  

 

qRT-PCR Analysis 

 

RNA-seq results were validated with real time quantitative PCR (qRT-PCR) using RNA 

extracted from samples not submitted for RNA-seq. The qRT-PCR reactions were set up using 

the Verso 1-step RT-qPCR Kit, SYBR Green, ROX (ThermoFisher Scientific) following 

manufacturer’s procedure with 10 µL volume reactions and were run in the StepOne™ Real-

Time PCR System (Applied Biosystems) using the following conditions: 48°C for 30 minutes, 

95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds, 54°C for 30 seconds, 72°C 

for 30 seconds. Melt curve conditions were 95°C for 15 seconds, 60°C for 1 minute, 95°C for 15 

seconds. Relative expression was determined between control plants (untreated B73) and TvWT 

treatment using the 2-ΔΔCT method using maize α-TUBULIN as the reference gene (Czechowski et 

al., 2005; Xia et al., 2014). Expression of LOX10 in B73 roots in response to treatment with 

TvWT, Δsm1, or Δsir1 was performed in a similar manner, with all three treatments being 

compared to control plants.  

 

GUS Staining 

  

Transgenic Arabidopsis plants expressing β-glucuronidase (GUS) controlled by maize 

LOX12 promoter (pLOX12::GUS) were developed and utilized to determine induction and 

localization of LOX12 by T. virens. Two-week-old transgenic Arabidopsis plants were 

https://www.lifetechnologies.com/order/catalog/product/4376357
https://www.lifetechnologies.com/order/catalog/product/4376357
https://www.lifetechnologies.com/order/catalog/product/4376357
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germinated on solid MS medium, then transferred to new solid MS medium and inoculated 10 

μL 10×103 WT T.virens spores on roots for 4 days. For high-resolution GUS staining, plant were 

incubated at 37℃ for 4 h in a solution containing 2 mM 5-bromo-4-chloro-4-3-indolyl 

glucuronide, 5 mM K3Fe(CN)6 , 5 mM K4Fe(CN)6, 100 mM sodium phosphate buffer (pH 7.0), 

and 0.1% Triton X-100. After GUS staining, plants were observed and photographed under a 

dissecting microscope.  
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CHAPTER III 

 JA PRECURSOR, 12-OPDA, AND α-KETOL KODA, NOT JASMONIC ACID, ARE 

REQUIRED FOR INDUCED SYSTEMIC RESISTANCE (ISR) TRIGGERED BY 

TRICHODERMA VIRENS COLONIZATION OF MAIZE ROOTS 

 

INTRODUCTION 

 

Plants are sessile organisms and must constantly contend with various microorganisms 

that range from beneficial to harmful. Within the rhizosphere, plant roots interact with the ever-

present microbes. Through these interactions, plants must discern beneficial microbes such as 

plant growth promoting rhizobacteria/fungi (PGPR/PGPF) from pathogens and respond 

accordingly by either dampening host defenses when colonized by beneficial microbes or 

heightening defenses against pathogens. For these reasons, plants have evolved sophisticated 

mechanisms to recognize friends from foes, and specifically tailor their responses (Heil and 

Bostock, 2002; Katagiri and Tsuda, 2010). One such response to beneficial microorganisms is 

heightened resistance to a wide range of pathogens termed induced systemic resistance (ISR). 

ISR is triggered following root colonization by PGPR and/or PGPF, and results in priming rapid 

and robust defense responses against future pathogen infections (Pieterse et al., 2014a). While 

the primed plants display strong systemic resistance upon infection, they display little to no 

discernable changes in their defense status in the absence of pathogens (Wang et al., 2005; 

Conrath et al., 2006; Pieterse et al., 2014b). The mechanisms by which these PGPR/PGPF 

enhance both plant growth and defenses remain a mystery, since allocation of resources to 

growth means loss of limited resources for defense (Havko et al., 2016).  
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The specific signaling mechanisms of ISR are much less understood compared to the 

pathogen-triggered systemic acquired resistance (SAR). While SAR relies mostly on salicylic 

acid (SA) signaling, SA itself is not the long-distance signal (Pieterse et al., 2014a). Several of 

the signals, which include azelaic acid (AzA), pipecolic acid (Pip), methyl salicylate (MeSA), 

glycerol-3-phosphate (G3P), and dehydroabietinal (DA), have been identified as the signals 

involved with SAR (Klessig et al., 2018; Shan and He, 2018). SAR signaling occurs with 

activation of Nonexpressor of PR genes 1 (NPR1), which is monomerized and moves from the 

cytoplasm to the nucleus, where it interacts with TGA family of transcriptional factors to 

promote expression of SA-responsive defense genes (Vlot et al., 2009; Pieterse et al., 2012). ISR 

induction is postulated to require jasmonic acid (JA) and ethylene (ET) in a SA-independent 

manner (Pieterse et al., 2014b). In Arabidopsis, several JA-signaling mutants, such as jar1 and 

jin1, and ET-signaling mutants, such as etr1 and ein2, lacked the capacity for ISR (Knoester et 

al., 1999; Korolev et al., 2008; Pozo et al., 2008). Furthermore, treating cucumber roots with the 

JA-biosynthesis inhibitor diethyldithiocarbamic acid (DIECA) blocked T. asperellum-triggered 

ISR (Shoresh et al., 2005). Tomato mutant spr2 (Suppressor of prosystemin-mediated responses 

2), impaired in wound-induced JA biosynthesis and defense signaling, could not establish 

Funneliformis mosseae (an arbuscular mycorrhiza)-primed disease resistance against Alternaria 

solani (Song et al., 2015). Interestingly, establishment of ISR also requires NPR1 activity, which 

occurs without induction of PR genes (Pieterse et al., 1998). Unlike during SAR, NPR1 activity 

relevant to ISR does not occur in the nucleus, but rather in the cytoplasm (Pieterse et al., 2012).  

 Trichoderma spp. are soil-borne filamentous fungi found ubiquitously around the world, 

including agriculturally relevant T. virens and T. harzianum. They have been studied extensively 

for their beneficial effects on plants, such as enhancing growth and development of shoots and 
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roots, directing attacks against harmful soil-borne pathogens through antibiosis and 

mycoparasitism, and triggering ISR (Yedidia et al., 1999; Howell et al., 2000; Lorito et al., 2010; 

Druzhinina et al., 2011; Hermosa et al., 2012). T. virens-induced ISR against diverse pathogens 

was demonstrated in several plant species including Arabidopsis, cotton, tomato, and maize 

(Djonovic et al., 2006; Djonovic et al., 2007; Contreras-Cornejo et al., 2011).  

The signal communications between Trichoderma and host plants that result in ISR is 

poorly understood; however, a plethora of fungal molecules has been identified that trigger ISR 

in plants. Sm1, a small secreted cysteine-rich protein (SSCP) from T. virens, plays an integral 

role in ISR signaling. The deletion mutant Δsm1 can no longer trigger ISR in either maize or 

cotton, while the mutants over-expressing SM1 enhanced plant resistance against pathogens to 

levels greater than wild-type T. virens (Djonovic et al., 2006; Djonovic et al., 2007). Similarly, 

Epl1, a homolog of Sm1 in T. atroviride, induces ISR in tomato and improves resistance against 

necrotrophic pathogens such as Alternaria solani, Pseudomonas syringae pv. tomato (Pst 

DC3000), and B. cinerea (Salas-Marina et al., 2015). T. virens also produces several other 

SSCPs, some of which can be characterized as negative regulators of ISR. For example, deletion 

of several SSCPs (protein IDs 111486, 92810, 71692, or 77560) greatly enhanced ISR of maize 

against Cochliobolus heterostrophus, a necrotrophic pathogen and causal agent of Southern corn 

leaf blight (Lamdan et al., 2015). The specific mechanisms of SSCPs in regulating ISR remain 

unknown. Recent evidence suggests that one function of Sm1 is to regulate synthesis of 

oxylipins with signaling properties (Constantino et al., 2013).  

Oxylipins are a large group of oxidized lipid signals that include, among others, 

jasmonates, which regulate many aspects of plant physiology, such as growth and development, 

defense responses to pathogens and herbivores and abiotic stresses (Borrego and Kolomiets, 



 

20 

 

 

 

2016). They are mainly produced through enzymatic oxygenation of polyunsaturated fatty acids, 

linoleic acid (C18:2), and linolenic acid (C18:3) at carbon position 9 or 13, by 9- or 13-

lipoxygenases (LOX), respectively (Feussner and Wasternack, 2002; Andreou et al., 2009). 

These products are fed into the seven sub-branches, which include the allene oxide synthase 

(AOS) pathway that produces JA and the hydroperoxide lyase (HPL) pathway, which converts 

13-hydroperoxy octadecatrienoic acid (13-HPOTE) to several C6 compounds called green leaf 

volatiles (GLVs) in maize (Matsui, 2006; Christensen et al., 2013). GLVs attract parasitoid 

wasps in response to herbivory (Whitman and Eller, 1990; Christensen et al., 2013), regulate 

plant-plant communications (Engelberth et al., 2004), and enhance JA response against herbivory 

(Farag and Pare, 2002). 

JA is produced by 13-LOX action through the 13-AOS branch, while the products of 9-

AOS include death acids (Christensen et al., 2015) and 9-oxylipin ketols including 9-hydroxy-

10-oxo-12(Z), 15(Z)-octadecadienoic acid (KODA), the function of which is not clearly 

established (Vick and Zimmerman, 1984). JA biosynthesis begins in plastids, where 13-LOX 

activity converts linolenic acid (18:3) to 13-hydroperoxy octadecatrienoic acid (13-HPOT) 

(Borrego and Kolomiets, 2016). Allene oxide synthase (AOS) activity converts 13-HPOT to 12, 

13-epoxy octadecatrienoic acid (12, 13-EOT), which is then converted by allene oxide cyclase 

(AOC) to 12-oxo-phytodienoic acid (12-OPDA). 12-OPDA moves to the peroxisome, where it is 

catalyzed to 3-oxo-2-(2′(Z)-pentenyl)-cyclopentane-1 octanoic acid (OPC-8:0) by OPDA 

reductase (OPR). The OPC-8:0 undergoes three rounds of β-oxidation by acyl-coenzyme A 

oxidase (ACX), multi-functional protein (MFP), and ketoacyl-coenzyme A thiolase (KAT), 

resulting in JA. Finally, JAR1 (jasmonate resistant 1) activity in the cytoplasm conjugates 

isoleucine to JA to produce JA-Ile, the biologically active jasmonate required for JA signaling. 
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JA signaling occurs when JA-Ile binds to coronatine insensitive 1 (COI1), an F-box protein and 

part of the E3 ubiquitin-ligase Skip-Cullin-F-box complex (SCFCOI1) (Song et al., 2013). This 

activates the SCF complex, which targets Jasmonate-ZIM domain (JAZ) repressor proteins, 

transcriptional repressors of JA signaling, for degradation via proteasome and allows 

transcription of various JA-responsive genes such as MYC and WRKY transcription factors. 

Undoubtedly, the best characterized oxylipin in terms of relevance to ISR is JA.  

In addition to jasmonates, plants produce an estimated 650 oxylipins, the functions of 

which are largely unknown (Borrego and Kolomiets, 2016). Silencing bean PvLOX2, a 9-LOX 

not involved with JA biosynthesis, resulted in the abolishment of mycorrhizae-induced resistance 

against the foliar pathogen Sclerotinia sclerotiorum (Mora-Romero et al., 2015a; Mora-Romero 

et al., 2015b). Additionally, the negative role of 9-LOX activity in regulating ISR has recently 

been demonstrated with maize LOX3, a non-JA-producing LOX. The LOX3-deficient mutants 

demonstrated increased resistance against various seed, stalk, root, and foliar pathogens (Gao et 

al., 2007; Isakeit et al., 2007) due to constitutive production of unknown systemic signals 

derived from the roots (Constantino et al., 2013). Expression of LOX3 has been observed 

exclusively in maize roots, with expression being suppressed by T. virens in a Sm1-dependent 

manner (Constantino et al., 2013). Roots of lox3 mutants over-accumulated defense hormones 

JA, ET, and SA, and over-expressed many defense genes involved with biosynthesis and 

signaling of JA, ET, SA, and green leaf volatiles (GLV) (Gao et al., 2008). Furthermore, stem 

transfusion of xylem sap derived from lox3-4 roots to wild-type maize confers systemic 

resistance against Colletotrichum graminicola infection, proving that systemic resistance 

signal(s) originate from the roots and travel systemically along the xylem (Constantino et al., 

2013). Because LOX3-deficient mutants over-express several JA biosynthesis genes including 
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LOX10, in this study we have tested our central hypothesis that constitutively active ISR in the 

lox3 mutant is due to overexpression of LOX10 and overproduction of JA or other jasmonates. 

Maize knock-out lox10 mutants are GLV-deficient and accumulated significantly lower wound-

induced levels of 12-OPDA and JA in leaves (Christensen et al., 2013).  

 In support of this hypothesis, we showed that LOX10 function is indeed required to 

establish proper ISR, as instead of increased resistance to leaf pathogens, colonization of lox10 

mutant roots by T. virens resulted in increased susceptibility. Oxylipin and hormone profiling of 

xylem sap from B73 wild-type and lox3 and lox10 mutants treated with either wild-type or ISR-

perturbed T. virens mutants along with pharmacological treatments indicated that 12-OPDA 

produced by LOX10 and KODA produced by an unknown 9-LOX are major ISR long-distance 

signals. Unexpectedly, the JA-deficient opr7opr8 double mutant displayed normal ISR response 

induced by T. virens, suggesting that JA is not required for ISR signaling in maize. Moreover, 

analyses of the transcriptome response of maize roots to colonization by T. virens indicated that 

while the genes for OPDA synthesis are induced by this symbiont, the genes for conversion of 

12-OPDA to JA-Ile were not altered. Taken together, our results present evidence that the JA 

precursor, 12-OPDA, and KODA, but not JA, are required for ISR induction in maize.  
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RESULTS 

 

T. virens induces LOX10 expression at the early stages of the interaction 

 

To assess the involvement of LOX10 in maize-T. virens interactions, B73 maize 

seedlings were grown in hydroponic conditions and subsequently treated with WT, Δsm1, or 

Δsir1 mutant strain, formerly designated as Δ77560 (Lamdan et al., 2015). These three strains are 

contrasted in their ability to induce ISR in maize. Compared to wild-type T. virens (TvWT), 

Δsm1 is unable to induce ISR (Djonovic et al., 2007), whereas Δsir1 induces exceptionally strong 

ISR to leaf fungal pathogens including Cochliobolus heterostrophus, a necrotrophic pathogen 

and causal agent of Southern corn leaf blight (Lamdan et al., 2015). Treatment with TvWT strain 

resulted in upregulation of LOX10 expression as early as 2, 3, and 6 hours ranging between 3- 

and 4- fold induction compared to untreated controls (Fig. 1A). This effect was diminished by 9 

hours, suggesting that LOX10 induction is transient. Interestingly, Δsir1 induced LOX10 1 hour 

earlier than TvWT, with a peak at 3 hours. In contrast, Δsm1 strain was unable to induce LOX10 

transcript accumulation of LOX10 at all time points, suggesting that LOX10 expression in the 

host is dependent on the functional Sm1 protein in the fungus. Together, these results suggested 

that LOX10 expression was induced at both transcript and protein level and that induction is 

positively regulated by ISR-promoting secreted protein Sm1, but negatively by another secreted 

protein Sir1. To determine whether the more robust induction of LOX10 expression by Δsir1 was 

due to altered expression of SM1, transcript accumulation of SM1 and SIR1 was measured in 

TvWT and both mutants. Expression of SM1 was 3-fold greater in Δsir1 mutant compared to 

TvWT, whereas SIR1 expression in Δsm1 was not altered (Fig. 1C). These results indicate that 
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the most likely reason for Δsir1 being more effective in induction of LOX10 is due to increased 

expression of SM1 in this mutant and confirming that LOX10 is indeed one host target positively 

regulated by Sm1 peptide to promote ISR.  

 

 

 

 
 

 

FIGURE 1. LOX10 expression is induced by T. virens in a Sm1-dependent manner.  

(A) Expression of LOX10 via qPCR was determined in B73 seedling roots after treatment 

with T. virens (WT, ISR-deficient strain Δsm1, or ISR-enhancing strain Δsir1) at 1, 2, 3, 

6, and 9 hours after treatment compared to untreated control plants. Relative expression 

was calculated from cycle threshold values using the 2−ΔΔCt method. Values represent 

means ± standard deviation SD (n=3) relative to control plants and were normalized to 

transcript levels of α-Tubulin (α-TUB). Statistical significance (* represents p < 0.05) was 

determined with Tukey’s HSD test compared to control.  

(B) Expression of SM1 and SIR1 via qPCR was determined in T. virens hyphal tissue grown 

in MS media for 6 hours. Expression of SM1 in Δsm1 mutant and expression of SIR1 in 

Δsir1 mutant were not tested, as the mutants were previously shown to not express the 

respective genes. Relative expression was calculated from cycle threshold values using 

the 2−ΔΔCt method. Values represent means ± standard deviation SD (n=3) relative to 

control plants and were normalized to transcript levels of β-Tubulin (β-TUB). Statistical 

significance (* represents p < 0.05) was determined with Tukey’s HSD test.  
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FIGURE 1. Continued 
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LOX10 is required for T. virens-mediated ISR  

 

To further define the role of LOX10 in regulating maize-T. virens interactions, the B73 

inbred line and near-isogenic lox10 mutant alleles were treated with TvWT. As expected, TvWT-

treated B73 displayed a characteristic ISR response, as evidenced by significantly reduced lesion 

areas and chlorosis caused by C. graminicola (Fig. 2A and 2B). As previously reported, both 

untreated lox10-3 and lox10-2 mutant alleles were significantly more resistant to C. graminicola 

(Christensen, 2011). Surprisingly, instead of ISR observed in B73, T. virens treatment of both 

mutant alleles resulted in significantly increased susceptibility, which we termed induced 

systemic susceptibility (ISS) (Fig. 2C and 2D). To test if the ISS phenotype can be observed in a 

different maize inbred line, W438 inbred line and lox10-3 mutant in the W438 genetic 

background were treated with TvWT and challenged with C. graminicola. The results reflected 

those observed in B73; specifically, untreated lox10-3 was more resistant than untreated W438, 

but TvWT-treated lox10-3 became more susceptible (Fig. 2E and 2F). TvWT-treated lox10-3 

plants still had increased shoot and root dry weight compared to untreated plants, inferring that 

T. virens plant growth and development promotion occurred independently from ISR promotion 

(Fig. 3). To test whether the overexpression of LOX10 was responsible for constitutive ISR in 

lox3 mutant, we created lox3lox10 double mutant at the BC7 stage. ISR response between B73 

and single/double mutants was compared. The untreated double mutant was more susceptible 

compared to either single mutant, but still more resistant compared to B73, suggesting that 

deleting LOX10 in lox3 mutant only partially reduced the constitutive ISR phenotype of lox3 

mutant (Fig. 4). The striking phenotype of TvWT-treated lox3lox10 was a total loss of ISS 



 

27 

 

 

 

phenotype observed in TvWT-treated lox10-3, suggesting that ISS in lox10 mutants was 

completely dependent on LOX3 function.  

ISR is effective against a broad range of pathogens. Because C. graminicola is a 

hemibiotroph, we tested whether LOX10 is required for ISR against a pathogen with a reported 

necrotrophic lifestyle. For this, B73 and both lox10 mutant alleles were treated with TvWT and 

infected with C. heterostrophus, a necrotrophic causal agent of Southern corn leaf blight. Similar 

to C. graminicola, disease severity caused by C. heterostrophus was reduced in T. virens-

colonized B73 and untreated lox10-3 and lox10-2 (Fig. 5A, 5B, 5C, and 5D). Furthermore, 

TvWT-treated lox10-3 and lox10-2 mutants became more susceptible to C. heterostrophus 

infection, as evidenced by significantly larger lesions compared to untreated controls. Increased 

susceptibility phenotype was also observed in the W438 background, as TvWT-treated lox10-3 

mutant in the W438 genetic background displayed larger lesions and greater chlorosis compared 

to untreated mutant (Fig. 5E and 5F). These results suggest that LOX10 plays an essential 

positive regulatory role in T. virens-triggered ISR against pathogens regardless of their lifestyle. 

To test the role of the fungal peptide regulators of ISR, Sm1 and Sir1, in the ISS 

phenotype of lox10-3 mutants, B73 and lox10-3 mutants were treated with TvWT, Δsm1, or 

Δsir1 and subsequently challenged with C. graminicola. While B73 exhibited ISR in response to 

TvWT, there was no increased resistance observed with Δsm1 treatment (Fig. 6), consistent with 

previous reports (Djonovic et al., 2007). Root colonization by Δsir1 conferred enhanced 

resistance against C. graminicola in WT maize to greater levels than TvWT, supporting a 

previous report of enhanced ISR by Δsir1 against C. heterostrophus (Lamdan et al., 2015). While 

both TvWT and Δsm1 treatments resulted in increased susceptibility in lox10-3, Δsir1 had no 

such effect. Because lesions on Sm1-treated lox10-3 were moderately but significantly smaller 
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than those on TvWT-treated lox10-3, we concluded that a functional Sm1 is partially responsible 

for the ISS phenotype observed. The loss of ISS triggered by Δsir1, on the other hand, suggests 

that functional Sir1 in T. virens is the primary elicitor of ISS in lox10-3 mutant.  

 

 

 

 
 

FIGURE 2. LOX10 acts as a positive regulator of T. virens-triggered ISR against 

hemibiotrophic pathogen C. graminicola.  

(A) Lesions developed on 3rd leaves of untreated or TvWT-treated B73 inbred line and lox10-

3 mutant plants infected with C. graminicola. 

(B) Measurements of lesion area caused by C. graminicola infection on leaves of untreated 

and TvWT-treated B73 and lox10-3 mutant plants. Values represent means ± standard 

deviation SD (n=5), with letters indicating significant differences between treatments 

(Tukey’s HSD test, p < 0.05). 

(C) Lesions developed on 3rd leaves of untreated or TvWT-treated B73 inbred line and lox10-

2 mutant plants infected with C. graminicola. 

(D) Measurements of lesion area caused by C. graminicola infection on leaves of untreated 

and TvWT-treated B73 and lox10-2 mutant plants. Values represent means ± standard 

deviation SD (n=5), with letters indicating significant differences between treatments 

(Tukey’s HSD test, p < 0.05). 

(E) Lesions developed on 3rd leaves of untreated or TvWT-treated W438 inbred line and 

lox10-3 mutant plants infected with C. graminicola. 

(F) Measurements of lesion area caused by C. graminicola infection on leaves of untreated 

and TvWT-treated W438 and lox10-3 mutant plants. Values represent means ± standard 

deviation SD (n=5), with letters indicating significant differences between treatments 

(Tukey’s HSD test, p < 0.05). 
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FIGURE 2. Continued 
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FIGURE 3. TvWT promotes plant growth and development independently from ISR. 

Measurements of average shoot and root tissue dry weight of untreated and TvWT-

treated B73 and lox10-3 plants. Values represent means ± standard deviation SD (n=5), 

with letters indicating significant differences between treatments (Tukey’s HSD test, p < 

0.05). 
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FIGURE 4. Loss of LOX3 function in lox10-3 results in loss of ISS phenotype. 

Measurements of lesion area caused by C. graminicola infection on leaves of untreated 

and TvWT-treated B73, lox3-4, lox10-3, and lox3lox10 double mutant plants. Values 

represent means ± standard deviation SD (n=5), with letters indicating significant 

differences between treatments (Tukey’s HSD test, p < 0.05). 
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FIGURE 5. LOX10 acts as a positive regulator of T. virens-triggered ISR against 

necrotrophic pathogen Cochliobolus heterostrophus.  

(A) Lesions developed on 3rd leaves of untreated or TvWT-treated B73 inbred line and lox10-

3 mutant plants infected with C. heterostrophus. 

(B) Measurements of lesion area caused by C. heterostrophus infection on leaves of untreated 

and TvWT-treated B73 and lox10-3 mutant plants. Values represent means ± standard 

deviation SD (n=5), with letters indicating significant differences between treatments 

(Tukey’s HSD test, p < 0.05). 

(C) Lesions developed on 3rd leaves of untreated or TvWT-treated B73 inbred line and lox10-

2 mutant plants infected with C. heterostrophus. 

(D) Measurements of lesion area caused by C. heterostrophus infection on leaves of untreated 

and TvWT-treated B73 and lox10-2 mutant plants. Values represent means ± standard 

deviation SD (n=5), with letters indicating significant differences between treatments 

(Tukey’s HSD test, p < 0.05). 

(E) Lesions developed on 3rd leaves of untreated or TvWT-treated W438 inbred line and 

lox10-3 mutant plants infected with C. heterostrophus. 

(F) Measurements of lesion area caused by C. heterostrophus infection on leaves of untreated 

and TvWT-treated W438 and lox10-3 mutant plants. Values represent means ± standard 

deviation SD (n=5), with letters indicating significant differences between treatments 

(Tukey’s HSD test, p < 0.05). 
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FIGURE 5. Continued 
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FIGURE 6. T. virens role of SSCPs Sm1 and Sir1 in regulating T. virens-triggered ISR.  

(A) Lesions developed on 3rd leaves of untreated or TvWT-, Δsm1-, and Δsir1-treated B73 

and lox10-3 mutants plants infected with C. graminicola. 

(B) Measurements of lesion area caused by C. graminicola infection on untreated or TvWT-, 

Δsm1-, and Δsir1-treated B73 and lox10-3 leaves. Infected leaves were scanned and 

measured using ImageJ software to determine mean lesion area. Values represent means 

± standard deviation SD (n=5), with letters indicating significant differences between 

treatments (Tukey’s HSD test, p < 0.05).  
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Metabolite profiling of xylem sap identifies 12-OPDA and KODA as potential ISR signals 

 

A previous study of lox3 mutant revealed that the mutant constitutive systemic resistance 

could be conferred using xylem sap collected from the mutant (Constantino et al., 2013). To 

determine whether lox10 mutant sap is altered in its ability to enhance resistance, we have taken 

advantage of the sap transfusion methodology developed by Constantino et al., 2013 to 

circumvent the inability to graft monocots. Xylem sap was collected from untreated or TvWT-

treated B73, lox3-4, and lox10-3. 10µL aliquots of the diluted sap were transfused into untreated 

B73 receiver plants prior to infection with C. graminicola. Corroborating efficacy of the 

transfusion method, plants treated with sap collected from TvWT-treated B73 showed enhanced 

systemic resistance, as lesions were significantly smaller compared to those that developed on 

control plants treated with sap from untreated B73 (Fig. 7A). Importantly, increase in resistance 

due to TvWT-treated B73 sap treatment resembles TvWT-triggered ISR in B73. Transfusion 

with xylem sap from untreated or TvWT-treated lox3-4 plants also resulted in significantly 

enhanced resistance, consistent with previous study (Constantino et al., 2013). While transfusion 

with sap from untreated lox10-3 led to enhanced resistance, sap from TvWT-treated lox10-3 

resulted in lack of ISR compared to untreated B73 sap, but increased susceptibility compared to 

untreated lox10-3 sap, mirroring the ISS phenotype of TvWT-treated lox10-3 mutants (Fig. 2 and 

5). In order to better understand how sap of untreated lox10-3 could confer resistance to receiver 

plants, the sap samples were analyzed by liquid chromatography tandem mass spectrometry (LC-

MS/MS), which revealed significantly higher levels of 10-oxo-11-phytoenoic acid (10-OPEA) in 

sap of untreated lox3-4 and lox10-3 mutants (Fig. 8). The 9-LOX-derived oxylipin was found to 

have antimicrobial and anti-herbivory properties and accumulated locally in response to fungal 
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and insect attack (Christensen et al., 2016), and exogenous application of 10-OPEA led to 

programmed cell death (Christensen et al., 2015). The sap transfusion results were not restricted 

to B73, as Tx714 inbred line also displayed phenotypes that resemble those seen in B73 (Fig. 

7B). These results confirm that the ISR signal(s) are root-derived, transported along the xylem to 

above-ground organs to confer systemic resistance, and require functional LOX10. Interestingly, 

xylem sap from TvWT-treated lox10-3 conferred ISS to lox10-3 receiver plants, suggesting that 

sap from TvWT-treated lox10-3 contains as-yet unknown signal(s) responsible for ISS (Fig. 7C). 

Unfortunately, among the metabolites measured in the xylem sap (Supplemental Table 1), none 

unambiguously correlated with increased susceptibility.  

To determine whether xylem sap carries ISR signals from plants colonized by Δsm1 or 

Δsir1, saps were collected from Δsm1- and Δsir1-treated B73, lox3-4, and lox10-3 plants and 

transfused into B73 receiver plants. The results showed that sap from Δsir1-treated B73 and 

Δsir1-treated lox10-3 conferred resistance to C. graminicola; however, sap from Δsir1-treated 

lox3-4 and all Δsm1-treated plants did not (Fig. 9). These results, together with results described 

in Fig. 7, pointed out that TvWT- and Δsir1-treated B73 and untreated and TvWT-treated lox3-4 

sap samples were enriched with ISR positive signal and therefore, were ideal for metabolite 

profiling in our search for ISR long-distance signal. This analysis also identified saps lacking 

ISR activity, which include untreated and Δsm1-treated B73 and Δsm1- and Δsir1-treated lox3-4.  

The collected xylem saps were analyzed by LC-MS/MS using quantification standards 

for approximately 60 diverse oxylipins and several phytohormones (Table 1). To reduce the 

number of ISR-relevant candidate metabolites, the following criteria were used for selection of 

an ISR signal candidate. This molecule(s) had to accumulate at: 1) increased levels in sap from 

TvWT- and Δsir1-treated B73 and untreated and TvWT-treated lox3-4, 2) reduced levels in 
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untreated and Δsm1-treated B73 and Δsm1- and Δsir1-treated lox3-4, and 3) statistically lower 

levels in lox10-3 plants regardless of treatment compared to TvWT-treated B73. Out of the 

oxylipins and phytohormones screened, only 12-OPDA and KODA, a 9-LOX- and 9-AOS-

derived α-ketol (Vick and Zimmerman, 1984), met all three criteria. Though the function of 

KODA remains obscure, these data suggest that it plays a role in ISR. Specifically, both were 

enriched in saps with potent ISR activity, which include TvWT- and Δsir1-treated B73 and 

untreated and TvWT-treated lox3-4 (Fig. 10A and 10B). Xylem sap from plants not displaying 

ISR, which consist of untreated B73, Δsm1-treated B73, and Δsm1- and Δsir1-treated lox3-4, 

accumulated 12-OPDA and KODA at much lower levels. Surprisingly, neither JA nor JA-Ile met 

the three criteria, as their levels did not correlate with sap ISR activity. Specifically, JA levels 

were significantly elevated in B73 when treated with all three strains of T. virens, including 

Δsm1, which is unable to induce ISR (Fig. 10C). Interestingly, JA-Ile levels were not elevated in 

TvWT-treated B73 and untreated lox3-4 (Fig. 10D). Not surprisingly, low levels of 12-OPDA, 

KODA, JA, and JA-Ile were detected in all lox10-3 plants regardless of treatment (Fig. 10), 

consistent with previous reports that lox10 mutants were unable to accumulate both compounds 

(Christensen et al., 2013). Because traumatic acid synthesis requires functional LOX10 in leaves 

(Christensen et al., 2013), this molecule was considered a potential ISR signal; however, 

traumatic acid content was reduced in B73 treated with all T. virens strains (Fig. 10E). Lastly, 

SA levels had no patterns that correlated with resistance, and levels were not greatly altered 

between the different treatments (Fig. 10F). This data suggests that out of all the LOX10 

products, only 12-OPDA appears to be relevant for ISR. Levels of KODA, a 9-LOX product, 

appears to be influenced by, but not directly produced by LOX10.  

  



 

38 

 

 

 

 
 

FIGURE 7. Xylem-derived sap from T. virens-treated plants contains ISR signals. 

(A) Measurements of lesion area caused by C. graminicola infection on B73 inbred line 

receiver plants transfused with xylem sap from untreated or TvWT-treated B73, lox3-4, 

and lox10-3 plants. Values represent means ± standard deviation SD (n=5), with letters 

indicating significant differences between treatments (Tukey’s HSD test, p < 0.05).  

(B) Measurements of lesion area caused by C. graminicola infection on Tx714 inbred line 

receiver plants transfused with xylem sap from untreated or TvWT-treated B73 and 

lox10-3 plants. Values represent means ± standard deviation SD (n=5), with letters 

indicating significant differences between treatments (Tukey’s HSD test, p < 0.05). 

(C) Measurements of lesion area caused by C. graminicola infection on lox10-3 receiver 

plants transfused with xylem sap from untreated or TvWT-treated B73, lox3-4, and 

lox10-3 plants. Values represent means ± standard deviation SD (n=5), with letters 

indicating significant differences between treatments (Tukey’s HSD test, p < 0.05). 

 



 

39 

 

 

 

 
 

Figure 7. Continued 
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FIGURE 8. 10-OPEA levels decrease significantly with T. virens root colonization.  

LC-MS/MS measurement of 10-OPEA levels in xylem sap collected from B73, lox3-4, 

and lox10-3 treated with TvWT. Values represent means ± standard deviation SD (n=5), 

with letters indicating significant differences between treatments (Tukey’s HSD test, p < 

0.05).  
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FIGURE 9. Xylem-derived sap from T. virens-treated plants contain ISR signals. 

Measurements of lesion area caused by C. graminicola infection on B73 inbred line 

receiver plants transfused with xylem sap from untreated or TvWT-, Δsm1-, or Δsir1-

treated B73, lox3-4, and lox10-3 plants. Values represent means ± standard deviation SD 

(n=5), with letters indicating significant differences between treatments (Tukey’s HSD 

test, p < 0.05).  
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FIGURE 10. Metabolite analysis identified 12-OPDA and KODA as potential ISR signals.  

(A) LC-MS/MS measurement of 12-OPDA levels in xylem sap collected from untreated, 

TvWT-, Δsm1-, or Δsir1-treated B73, lox3-4, and lox10-3 plants. Values represent means 

± standard deviation SD (n=5), with letters indicating significant differences between 

treatments (Tukey’s HSD test, p < 0.05).  

(B) LC-MS/MS measurement of KODA levels in xylem sap collected from untreated, 

TvWT-, Δsm1-, or Δsir1-treated B73, lox3-4, and lox10-3 plants. Values represent means 

± standard deviation SD (n=5), with letters indicating significant differences between 

treatments (Tukey’s HSD test, p < 0.05).  

(C) LC-MS/MS measurement of JA levels in xylem sap collected from untreated, TvWT-, 

Δsm1-, or Δsir1-treated B73, lox3-4, and lox10-3 plants. Values represent means ± 

standard deviation SD (n=5), with letters indicating significant differences between 

treatments (Tukey’s HSD test, p < 0.05).  

(D) LC-MS/MS measurement of JA-Ile levels in xylem sap collected from untreated, TvWT-, 

Δsm1-, or Δsir1-treated B73, lox3-4, and lox10-3 plants. Values represent means ± 

standard deviation SD (n=5), with letters indicating significant differences between 

treatments (Tukey’s HSD test, p < 0.05).  

(E) LC-MS/MS measurement of traumatin levels in xylem sap collected from untreated, 

TvWT-, Δsm1-, or Δsir1-treated B73, lox3-4, and lox10-3 plants. Values represent means 

± standard deviation SD (n=5), with letters indicating significant differences between 

treatments (Tukey’s HSD test, p < 0.05).  

(F) LC-MS/MS measurement of SA in xylem sap collected from untreated, TvWT-, Δsm1-, 

or Δsir1-treated B73, lox3-4, and lox10-3 plants. Values represent means ± standard 

deviation SD (n=5), with letters indicating significant differences between treatments 

(Tukey’s HSD test, p < 0.05).  
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Figure 10. Continued 
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  B73 lox3-4 lox10-3 

Metabolite Untreated TvWT Δsm1 Δsir1 Untreated TvWT Δsm1 Δsir1 Untreated TvWT Δsm1 Δsir1 

nM p10HOD 0.8±0.2 1.2±0.6 0.7±0.2 1.3±0.3 1.0±0.3 0.8±0.2 0.6±0.2 0.9±0.2 1.1±0.4 1.2±0.1 0.8±0.2 1.3±0.6 

nM 12,13-diHOM 45.1±3.3 32.2±4.6 28.9±1.4 29.4±2.3 36.0±1.5 34.7±2.5 41.3±5.5 31.7±1.5 27.3±3.1 35.8±6.6 23.9±3.4 127.4±92.7 

nM 12,13-EpOM 3.7±0.7 2.3±0.7 1.7±0.2 1.3±0.2 4.2±0.8 3.4±0.9 3.1±0.5 1.7±0.5 3.2±0.5 4.1±0.6 2.3±0.7 2.8±0.7 

nM 12OH-JA 17.6±1.1 19.1±1.4 21.6±2.2 19.1±0.2 18.5±1.0 82.6±27.4 25.9±5.2 12.1±0.8 11.4±0.4 16.5±5.9 17.6±5.3 258.4±245.2 

nM 12OH-JA-Ile 27.4±7.8 30.8±7.6 58.6±17.7 99.8±34.2 47.2±17.9 110.2±50.1 12.4±2.3 10.1±2.1 21.2±3.2 24.5±12.8 27.6±18.8 13.2±3.3 

nM 13HOD 31.0±10.9 17.1±5.6 11.8±5.0 15.5±4.2 34.4±4.5 24.3±3.1 16.8±4.5 8.3±0.6 44.8±18.2 20.0±3.0 12.1±2.8 12.1±4.7 

nM 13HOT 6.7±2.4 7.6±1.2 3.9±1.1 7.8±1.6 7.2±2.1 6.7±1.5 7.1±2.1 4.3±0.7 7.0±2.1 6.3±0.9 2.4±0.8 4.7±2.2 

nM 13OH-12KOM 10.8±3.2 11.3±5.8 8.4±4.6 21.9±4.8 69.8±11.1 48.9±22.4 18.0±3.7 6.3±1.4 32.6±14.5 18.4±7.9 3.8±1.5 2.1±0.7 

nM 9,10,13-THOM 1472.6±278.0 912.1±187.4 1186.1±250.9 2408.9±112.8 1108.9±140.8 680.2±171.6 932.5±194.5 676.5±74.2 1156.4±360.5 670.7±64.0 671.9±162.9 1006.6±257.4 

nM 9,10-EpOM 54.9±13.8 37.5±13.3 22.8±6.0 24.7±4.1 74.6±14.6 55.9±10.2 62.9±12.2 27.9±9.9 55.1±16.7 57.0±10.1 18.7±7.2 36.3±13.4 

nM 9,12,13-THOM 723.1±101.9 598.8±73.0 789.5±84.3 1075.2±121.7 628.0±80.7 542.5±141.0 881.2±73.9 687.1±45.0 384.1±102.5 527.6±76.6 302.5±78.9 438.2±235.5 

nM 9HOD 39.0±10.4 20.6±4.5 17.6±1.9 24.5±3.8 18.1±1.1 12.3±1.3 8.0±1.6 6.4±0.8 43.1±16.1 19.7±1.8 14.8±6.0 20.1±3.6 

nM 9HOT 6.3±1.7 6.3±1.1 6.3±1.4 7.5±1.1 4.4±0.5 4.9±1.4 4.7±0.5 3.9±0.9 4.1±1.0 5.1±0.5 3.2±2.1 4.5±0.7 

nM 9OH-10KOM 1880.4±127.2 1769.1±85.7 1588.4±54.9 1406.2±57.3 1342.4±24.4 818.9±147.1 610.2±136.8 889.4±24.1 958.9±81.4 1084.5±298.4 531.3±61.8 4192.1±3416.9 

nM 9OH-12KOM 115.4±29.5 65.3±15.7 46.4±9.9 53.7±21.9 77.4±10.2 84.6±20.5 71.6±10.6 40.9±13.8 137.0±30.8 56.1±15.4 24.5±13.5 34.0±16.8 

nM ABA 3.8±0.4 3.4±0.7 7.0±1.0 5.7±2.2 2.6±0.6 13.5±5.0 4.7±1.1 2.5±0.6 3.4±0.9 3.7±1.2 3.9±0.4 8.3±2.1 

nM Azelaic acid 20.0±4.9 12.3±3.6 10.8±1.6 19.9±7.8 14.3±1.2 6.8±1.5 5.3±0.3 6.8±1.4 27.8±18.4 10.5±2.6 22.6±11.5 54.5±45.3 

nM Benzoate 33.5±5.2 32.6±1.4 39.3±2.2 92.2±46.1 41.4±5.0 40.5±2.9 36.9±2.3 55.3±21.7 38.3±5.7 45.8±7.8 88.9±11.1 119.5±35.8 

nM CA 4.1±3.6 0.9±0.4 1.5±0.1 3.9±3.0 19.3±17.1 0.7±0.1 3.0±2.5 22.5±20.9 2.5±0.8 1.0±0.3 260.6±156.1 18.4±7.5 

nM IAA 1.7±0.2 2.8±0.8 3.4±2.1 3.4±0.2 2.2±0.7 2.2±0.9 2.9±0.4 41.1±38.1 1.6±0.3 1.8±0.4 92.9±31.2 9.3±4.6 

 

Table 1. Detected metabolites and phytohormones in collected xylem sap samples.  

LC-MS/MS measurement of metabolite and phytohormone levels in xylem sap collected from untreated or TvWT-, Δsm1-, and Δsir1-treated B73, lox3-4, and lox10-3. Values represent means ± standard deviation SD. 
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12-OPDA and KODA, but not JA, increases plant resistance in a dose-dependent manner  

 

To directly test the effect of 12-OPDA and KODA, B73 plants were transfused with 

different concentrations of 12-OPDA or KODA to identify its effects on maize systemic 

resistance in a dose-dependent manner. To mimic the sap transfusion methods used previously, 

12-OPDA or KODA was added to sap from untreated B73 plants and transfused to B73 receiver 

plants. Positive control for ISR activity was transfusion with sap from TvWT-treated B73 plants, 

while negative control was transfusion with sap from untreated B73. After transfusion with 12-

OPDA, the leaves of treated B73 plants were subsequently challenged with C. graminicola 

infection. Sap transfusion with 12-OPDA enhanced B73 resistance against C. graminicola in a 

dose-dependent manner, with 25 nM 12-OPDA moderately increasing resistance, peaking at 100 

nM (Fig. 11A and 11B). Further increases in 12-OPDA concentration, including 1000 nM and 

beyond, had no additional enhancement in resistance (data not shown). Similarly, transfusion 

with KODA also showed a dose-dependent effect on enhancing plant resistance against C. 

graminicola, with the strongest effect occurring with 1000 nM (Fig. 11C and 11D). Further 

increases in KODA concentration had no additional effect on plant resistance (data not shown). 

Furthermore, B73 transfused with low concentrations of 12-OPDA and KODA simultaneously 

displayed better resistance than single treatments, suggesting an additive or synergistic effect 

(Fig. 12).  

Because JA-Ile has been implicated in ISR regulation in other species, sap transfusion 

experiments were also carried out with JA-Ile within the same range of concentrations. JA-Ile 

concentrations from 1 to 100 nM had no impact on lesion area. Unexpectedly, addition of JA-Ile 

at 1000 nM led to enhanced susceptibility (Fig. 11E and 11F). Furthermore, transfusion with JA-
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Ile precursor, JA, at 1000 nM concentration also led to the same increased susceptibility (data 

not shown). Taken together, these results suggest that 12-OPDA, not JA or JA-Ile, is an oxylipin 

signal that positively regulates ISR effect at physiologically relevant nM concentrations.  

To test whether ISR-deficiency of Δsm1-treated B73 is due to low 12-OPDA content, we 

supplemented the sap samples from untreated B73 (no ISR signal) and Δsm1-treated B73 (no 

ISR signal) with 12-OPDA. Both untreated B73 and Δsm1-treated B73 displayed significantly 

increased resistance to C. graminicola when supplemented with 12-OPDA (Fig. 13A and 13B). 

These results suggest that 12-OPDA can complement the lack of ISR activity in both ISR-

negative saps. To test if 12-OPDA can reverse the ISS phenotype of TvWT-colonized lox10-3, 

sap samples from untreated and TvWT-treated lox10-3 were supplemented with 12-OPDA and 

transfused into untreated lox10-3 and TvWT-treated lox10-3. The results showed that 12-OPDA 

supplementation complemented lox10-3 inability to induce ISR, as evidenced by significantly 

decreased lesion area (Fig. 13C and 13D), suggesting that LOX10-dependent ISR requires 12-

OPDA signaling. 
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FIGURE 11. Transfusion of 12-OPDA or KODA increased resistance in a dose-dependent 

manner, while transfusion with of JA-Ile increases susceptibility.  

(A) Lesions developed on 3rd leaves of 12-OPDA-transfused B73 receiver plants and infected 

with C. graminicola. Positive control treatment was transfusion with TvWT-treated B73 

sap, while negative control treatment was transfusion with untreated B73 sap. 

(B) Measurements of lesion area caused by C. graminicola infection on 12-OPDA-transfused 

B73. Infected leaves were scanned and measured using ImageJ software to determine 

mean lesion area. Values represent means ± standard deviation SD (n=5), with letters 

indicating significant differences between treatments (Tukey’s HSD test, p < 0.05).  

(C) Lesions developed on 3rd leaves of KODA-transfused B73 receiver plants and infected 

with C. graminicola. Positive control treatment was transfusion with TvWT-treated B73 

sap, while negative control treatment was transfusion with untreated B73 sap. 

(D) Measurements of lesion area caused by C. graminicola infection on KODA-transfused 

B73. Infected leaves were scanned and measured using ImageJ software to determine 

mean lesion area. Values represent means ± standard deviation SD (n=5), with letters 

indicating significant differences between treatments (Tukey’s HSD test, p < 0.05).  

(E) Lesions developed on 3rd leaves of JA-Ile-transfused B73 receiver plants and infected 

with C. graminicola. Positive control treatment was transfusion with TvWT-treated B73 

sap, while negative control treatment was transfusion with untreated B73 sap. 

(F) Measurements of lesion area caused by C. graminicola infection on JA-Ile-transfused 

B73. Infected leaves were scanned and measured using ImageJ software to determine 

mean lesion area. Values represent means ± standard deviation SD (n=5), with letters 

indicating significant differences between treatments (Tukey’s HSD test, p < 0.05).  
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Figure 11. Continued 
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FIGURE 12. Transfusion of 12-OPDA and KODA displayed additive effect on plant 

resistance.  

Measurements of lesion area caused by C. graminicola infection on B73 transfused with 

12-OPDA (10 nM), KODA (10 nM), or both. Controls were transfusion with untreated 

B73 sap and TvWT-treated B73 sap without 12-OPDA or KODA added. Infected leaves 

were scanned and measured using ImageJ software to determine mean lesion area. Values 

represent means ± standard deviation SD (n=5), with letters indicating significant 

differences between treatments (Tukey’s HSD test, p < 0.05).  
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FIGURE 13. Transfusion of 12-OPDA enhanced resistance in B73 and rescued 

susceptibility of Δsm1-treated B73 and TvWT-treated lox10-3.  

(A) Lesions developed on 3rd leaves of 12-OPDA-transfused untreated and Δsm1-treated B73 

receiver plants and infected with C. graminicola. Control plants were transfused with 

untreated B73 sap or Δsm1-treated B73 sap without 12-OPDA added. 

(B) Measurements of lesion area caused by C. graminicola infection on 12-OPDA-transfused 

untreated and Δsm1-treated B73. Infected leaves were scanned and measured using 

ImageJ software to determine mean lesion area. Values represent means ± standard 

deviation SD (n=5), with letters indicating significant differences between treatments 

(Tukey’s HSD test, p < 0.05).  

(C) Lesions developed on 3rd leaves of 12-OPDA-transfused untreated and TvWT-treated 

lox10-3 receiver plants and infected with C. graminicola. Control plants were transfusion 

with untreated lox10-3 sap or TvWT-treated lox10-3 sap without 12-OPDA added. 

(D) Measurements of lesion area caused by C. graminicola infection on 12-OPDA-transfused 

untreated or TvWT-treated lox10-3. Infected leaves were scanned and measured using 

ImageJ software to determine mean lesion area. Values represent means ± standard 

deviation SD (n=5), with letters indicating significant differences between treatments 

(Tukey’s HSD test, p < 0.05).  
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Phytohormones JA and ET are not required for T. virens-mediated ISR in maize 

 

The unexpected results from JA-Ile-enriched sap transfusion poised the question of JA-

Ile relevance to ISR. To directly address this question and test whether JA is important for ISR in 

maize, we utilized the JA-deficient opr7opr8 double mutant, which is devoid of JA-biosynthesis 

in every organ tested, but produces normal levels of 12-OPDA (Yan et al., 2012). This mutant 

was treated with TvWT and subsequently infected with C. graminicola. As previously reported, 

the untreated opr7opr8 mutants were significantly more resistant to anthracnose leaf blight than 

untreated B73 plants (Gorman et al., 2017). Surprisingly, in response to TvWT-colonization, 

lesion area significantly decreased not only on B73 leaves, but also on opr7opr8 leaves, 

indicating that the JA-deficient mutant was still capable of ISR (Fig. 14A and 14B). This was in 

stark contrast to lox3-4 plants, whose resistance did not benefit further with TvWT treatment 

(Constantino et al., 2013). These results provide strong genetic evidence that JA is not required 

for ISR induction in maize.  

This striking finding prompted the hypothesis that ET may have greater significance for 

ISR in maize compared to JA. ET has been widely implicated for ISR signaling (Pieterse et al., 

2014a; Pieterse et al., 2014b) alongside JA. To test the role of ET in regulating T. virens-

triggered ISR in maize, we have tested the ET-deficient acs2acs6 double mutant for T. virens-

triggered ISR response. The TvWT-treated acs2acs6 double mutants displayed ISR phenotype 

similar to TvWT-treated B73 (Fig. 14C and 14D). Furthermore, the metabolite analysis of xylem 

sap samples detected that levels of 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor 

for ET biosynthesis, were reduced significantly in saps from TvWT-treated plants regardless of 

maize genotype (Fig. 15). ACC functions not only as a precursor for ET biosynthesis, but can 
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also function as a mobile signal independent of ET, as evidenced by its release into the 

rhizosphere to attract PGPRs (Penrose et al., 2001). Furthermore, knocking out multiple 

Arabidopsis ACS genes, which produce ACC, resulted in lethality, which did not occur with ET 

signaling mutants (Tsuchisaka et al., 2009). These results suggest that ET may not play an 

integral role in regulating T. virens-triggered ISR.  

 

 

 

 
 

FIGURE 14. T. virens conferred ISR to JA-deficient mutant opr7opr8 and ET-deficient 

mutant acs2acs6.  

(A) Lesions developed on 3rd leaves of untreated or TvWT-treated B73 inbred line and 

opr7opr8 double mutant plants infected with C. graminicola. 

(B) Measurements of lesion area caused by C. graminicola infection on leaves of untreated or 

TvWT-treated B73 and opr7opr8 double mutant plants. Values represent means ± 

standard deviation SD (n=5), with letters indicating significant differences between 

treatments (Tukey’s HSD test, p < 0.05). 

(C) Lesions developed on 3rd leaves of untreated or TvWT-treated B73 inbred line and 

acs2acs6 double mutant plants infected with C. graminicola. 

(D) Measurements of lesion area caused by C. graminicola infection on leaves of untreated or 

TvWT-treated B73 and acs2acs6 double mutant plants. Values represent means ± 

standard deviation SD (n=5), with letters indicating significant differences between 

treatments (Tukey’s HSD test, p < 0.05). 
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Figure 14. Continued 
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FIGURE 15. ACC levels decrease significantly with T. virens root colonization.  

LC-MS/MS measurement of ACC levels in xylem sap collected from B73, lox3-4, and 

lox10-3 treated with TvWT. Values represent means ± standard deviation SD (n=5), with 

letters indicating significant differences between treatments (Tukey’s HSD test, p < 0.05).  
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Transcriptomic analysis reveals induction of genes involved in 12-OPDA, but not JA, 

biosynthesis 

 

The data above showing that 12-OPDA, but not JA, is required for T. virens-mediated 

ISR in maize prompted the hypothesis that JA biosynthesis and 12-OPDA biosynthesis genes 

may be regulated differently by T. virens colonization. We tested this hypothesis by performing 

RNA-seq analysis on B73 seedlings grown in hydroponic conditions and treated with TvWT at 6 

and 54 hr. The time points represented fungal recognition at 6 hr and advanced colonization at 54 

hr (data not shown). Importantly, the 54 hr time point reflects 2 days after initial recognition 

stage at 6 hr to avoid any transcriptome changes associated with the circadian clock. The genes 

involved in JA-biosynthesis in the AOS branch of the LOX pathway, perception, and 

downstream JA response have been previously identified (Borrego and Kolomiets, 2016), with 

12-OPDA biosynthesis occurring in plastids and involving 13-LOX, 13-AOS, and 13-AOC. The 

JA biosynthesis portion of the AOS branch occurs in peroxisome and cytoplasm, with OPRs, β-

oxidation enzymes, and cytoplasmic JAR1.  

 12-OPDA biosynthesis begins in the plastid with 13-LOX (LOX7, LOX8, LOX9, LOX10, 

LOX11, and LOX13) activity, which converts linolenic acid to 13-HPOT (Fig. 16A). As 

measured by FPKM (Fragments Per Kilobase of transcript per Million mapped reads), only 

LOX10 expression was induced in response to TvWT recognition, with ~6-fold increase in 

transcript abundance compared to untreated controls, consistent with earlier qPCR results (Fig. 

1A). LOX7 and LOX13 transcripts were not detected in any samples. LOX8 and LOX9 were 

expressed only in untreated control plants, but were suppressed by TvWT at both time points. 

While expression of LOX11 was unchanged between control and TvWT-treated B73 at 6 hr, its 
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expression was downregulated at 54 hr. These data point to LOX10 as the sole 13-LOX that was 

rapidly induced by TvWT even before root colonization took place, supporting the previous data 

that LOX10 is induced by secreted peptide Sm1 (Fig. 1A). The next steps occur with AOS 

conversion of 13-HPOT to 12,13-EOT, which is further converted by AOC to 12-OPDA. 

Expression of AOS1a, AOS1b, AOS1c, and AOC1 were upregulated after advanced TvWT-

colonization at 54 hr. AOC2 expression, on the other hand, was suppressed by TvWT. Several 

OPDA-specific response genes (ORGs) were differentially regulated in response to TvWT 

treatment (Fig. 16B). More specifically, a glycosyl hydrolase (GH9B8), known to be 

downregulated in response to 12-OPDA, was repressed in maize roots at both 6 and 54 hr after 

TvWT treatment. Expression of several other genes known to be upregulated by 12-OPDA, such 

as Calcium-binding EF-hand family protein (CML41), zinc finger transcription factor (ZBF4), 

ABC transporter (PDR11), and glutathione transferase (GST5), were all induced by TvWT at 

both 6 and 54 hr.  

After 12-OPDA is transported to the peroxisome, the next step in JA biosynthesis is the 

conversion of 12-OPDA to OPC-8:0 by OPR7 and OPR8 (Yan et al., 2012). Expression of both 

OPR7 and OPR8 were downregulated steadily upon recognition and were completely 

undetectable during advanced colonization (Fig. 16A). OPC-8:0 undergoes three rounds of β-

oxidation by ACX, MFP, and KAT activities to produce JA. Remarkably, expression of most of 

these genes were downregulated, with all ACX genes, MFP, and KAT2 transcripts completely 

undetectable at 54 hr. Lastly, among the 5 JAR1 maize homologs responsible for the conjugation 

of isoleucine to JA, JAR1b, closest maize homolog to AtJAR1 (Borrego and Kolomiets, 2016) 

was expressed in the roots. Expression of JAR1b steadily decreased upon recognition and was 

undetectable at 54 hr. Taken together, these results suggested that genes responsible for 12-



 

57 

 

 

 

OPDA biosynthesis were upregulated in response to TvWT colonization, but the expression of 

genes responsible for converting 12-OPDA to JA-Ile were downregulated. qPCR validation of 

AOS1c, AOC1, OPR7, and JAR1b was in agreement with RNA-seq data, though the degree of 

increase or decrease were not conserved (Fig. 17).  

JA-Ile interaction with COI1-JAZ co-receptor complex results in activation of SCF 

complex, which results in degradation of JAZ proteins to allow transcriptional activation of 

MYC and WRKY that eventually lead to JA downstream signaling (Song et al., 2013). To 

determine if genes downstream of JA-Ile were differentially regulated with TvWT root 

colonization, we measured expression of JA signaling and response genes. Of the 5 detected 

COI1 genes out of 6 that exist in maize, three were rapidly induced upon recognition of TvWT, 

but all five were substantially downregulated by 54 hr (Fig. 16B). Of the JAZ genes expressed in 

roots, JAZ5, JAZ6, and JAZ8 transcripts steadily increased upon recognition and increased ~4-, 

7-, and 11-fold, respectively, at 54 hr. This is in contrast to JAZ1, JAZ2, and JAZ11, which were 

induced at 6 hr but suppressed at 54 hr. Expression of transcription factors MYC7, WRKY14, and 

WRKY46, implicated in positive regulation of JA-responsive genes, steadily decreased at 6 hr 

and was completely repressed at 54 hr. In agreement with repression of transcription factors, 

expression of most JA-dependent genes, which include 9-LOX genes (LOX1 and LOX5), OPR 

genes (OPR2, OPR3, and OPR5), and lipase PLC (Yan et al., 2012), were downregulated at 54 

hr. The notable exceptions were LOX4, a 9-LOX, and MPI, a JA-responsive proteinase inhibitor 

which were both upregulated at 6 hr and 54 hr. qPCR validation of MYC7 and LOX1 expression 

was in agreement with the RNA-seq results, showing that both transcripts decreased over time 

(Fig. 17). Overall, upregulation of several JAZ genes and downregulation of JA-dependent genes 

suggest that T. virens colonization results in early suppression of JA responses.  
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 In agreement with observed suppression of JA signaling, SA biosynthesis and signaling 

appear to be significantly upregulated at the time of colonization, likely due to well documented 

SA-JA antagonism. Specifically, expression of all phenylalanine ammonia lyase (PAL) genes 

were strongly upregulated at 54 hr, with the exception of PAL4 (Fig. 17). Corroborating SA 

biosynthesis genes, expression of SA-responsive genes, PR1, PR5, and PR10, were significantly 

upregulated at 54 hr, displaying ~63-, 225-, and 68-fold increases in transcript levels, 

respectively. qPCR validation of PR1 and PR5 expression was in agreement with RNA-seq 

results, showing that both transcripts were increased incrementally from 6 to 54 hr (Fig. 18). 

Both NPR1 and TGA2, components of SAR signaling, were upregulated at 6 hr, but only TGA2 

expression stayed upregulated at 54 hr. Overall, the results point to upregulation of SA 

biosynthesis and downstream signaling gene by TvWT treatment, which may be explained by the 

negative cross-talk between SA and JA signaling (Pieterse et al., 2012).  
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FIGURE 16. Maize-T. virens interactions induce biosynthesis of 12-OPDA, but not JA-Ile or JA downstream signaling. 

(A) Schematic of the AOS branch genes, with heat maps representing Z-score transformed FPKM. Values in each block representing raw FPKM, with asterisks (*) denoting significant differences (Tukey’s HSD test, p < 

0.05). Treatments comprised of untreated B73 plants (n=4), and TvWT-treated plants (n=10) at 6 hr and 54 hr.  

(B) Schematic of 12-OPDA-responsive genes and the JA downstream signaling genes, with heat maps representing Z-score transformed FPKM. Values in each block representing raw FPKM, with asterisks (*) denoting 

significant differences (Tukey’s HSD test, p < 0.05). Treatments comprised of untreated B73 plants (n=4), and TvWT-treated plants (n=10) at 6 hr and 54 hr. 
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FIGURE 17. Maize-T. virens interactions induce SA biosynthesis and response genes. 

Schematic of the SA biosynthesis and response, with heat maps representing Z-score 

transformed FPKM. Values in each block representing raw FPKM, with asterisks (*) 

denoting significant differences (Tukey’s HSD test, p < 0.05). Treatments comprised of 

untreated B73 plants (n=4), and TvWT-treated plants (n=10) at 6 hr and 54 hr. 
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FIGURE 18. qPCR confirmation of RNA-seq transcriptomic analysis. 

Expression of select JA and SA genes via qPCR was determined in TvWT-treated B73 

seedling roots at 6, 30, and 54 hours after treatment compared to untreated control plants. 

Relative expression was calculated from cycle threshold values using the 2−ΔΔCt method. 

Values represent means ± standard deviation SD (n=3) relative to control plants and were 

normalized to transcript levels of α-Tubulin (α-TUB). Statistical significance (* 

represents p < 0.05) was determined with Tukey’s HSD test.  
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DISCUSSION 

 

12-OPDA signaling is distinct from JA and is required for ISR 

 

Multiple long-distance signaling molecules that regulate SAR have been identified 

(Klessig et al., 2018; Shan and He, 2018). In contrast, long-distance signals responsible for 

establishing ISR remain less characterized, with most bodies of work pointing to JA and ET as 

the two main signals (Pieterse et al., 2014a). In this study, we utilized genetic, biochemical, and 

pharmacological approaches with ISR-positive and -negative mutants of both T. virens (Δsm1 

and Δsir1) and maize (lox3 and lox10) to identify the JA precursor, 12-OPDA, as the major 

signal responsible for regulating T. virens-triggered ISR in maize. The lox10 mutants, reduced in 

12-OPDA content (Christensen et al., 2013), lost the capacity for T. virens-induced ISR, as seen 

with ISS phenotype in response to infections by both hemibiotrophic and necrotrophic pathogens 

(Fig. 2 and 3). Moreover, the mutant became significantly more susceptible when colonized by 

this symbiont, a response coined ISS. In agreement with the major role of 12-OPDA in ISR 

signaling, lox3 mutants, displaying constitutive ISR, or WT plants colonized by TvWT or Δsir1 

mutant accumulated significantly greater amounts of 12-OPDA in xylem sap (Fig. 10A). In 

contrast, xylem saps of ISR-negative B73 WT plants, whether untreated or treated with Δsm1, 

contained much lower levels of 12-OPDA. Transfusion with xylem sap supplemented with nM 

concentrations of 12-OPDA conferred robust ISR phenotype, with 100 nM showing strongest 

effect (Fig. 11A and 11B). This provides proof that OPDA has signaling properties in ISR, as we 

showed that OPDA transfusion with increasing nM range concentrations induced ISR in a dose-

dependent manner, as has been shown for JA-like compounds (Blechert et al., 1999; Miersch et 
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al., 1999). Importantly, OPDA transfusion into TvWT-treated lox10-3 rescued ISR phenotype to 

the levels observed with TvWT-treated WT plants (Fig. 13), indicating that OPDA-deficiency is 

the reason for lack of ISR in lox10 mutants. Surprisingly, JA and JA-Ile levels in xylem sap did 

not correlate with ISR phenotype; furthermore, transfusion with supplemented JA-Ile at 

concentrations comparable to OPDA resulted in enhanced susceptibility (Fig. 11E and 11F). 

These results prompted the question of whether JA is actually required for inducing ISR. 

Analysis of ISR competency of JA-deficient mutant opr7opr8 (Yan et al., 2012) showed that 

they were still capable of mounting ISR response with TvWT (Fig. 14A). Moreover, 

transcriptome analysis of TvWT-treated B73 plants showed upregulation of plastid-localized 12-

OPDA biosynthesis genes (LOX10, AOS1a, b, c, and AOC1) and several ORGs (marker genes 

induced by 12-OPDA, but not JA), but gradual downregulation of JA biosynthesis genes 

downstream of 12-OPDA (OPR7, 8, β-oxidation genes, and JAR1) during colonization (Fig. 

16).Finally, several JAZ genes were significantly upregulated, signifying suppression of JA 

signaling upon TvWT colonization. Taken together, these results implicate 12-OPDA, not JA, as 

the major signal required for ISR induction in maize.  

These results raise the question of why previous research has not identified 12-OPDA, 

rather than JA, as a major ISR signal. While 12-OPDA is a precursor of JA biosynthesis, there is 

growing evidence that it also functions as a signal with functions vastly different than that of JA 

(Maynard et al., 2018). Microarray analysis of Arabidopsis treated with 12-OPDA, JA, or 

methyl-JA (MeJA) revealed a set of genes, which included many genes involved with signaling, 

transcriptional factors, and stress responses, that responded only to 12-OPDA in a COI1-

independent manner (Taki et al., 2005; Mueller et al., 2008). Recent studies revealed that there 

exists OPDA-Ile conjugate, lending credence to 12-OPDA being an independent signal in the 
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same manner as JA (Floková et al., 2016). Additionally, Arabidopsis resistance to root-knot 

nematodes was reliant on the accumulation of 12-OPDA, not JA, as mutants deficient in 

production of 12-OPDA and JA were hyper-susceptible, but mutants deficient in JA only were as 

resistant as wild-type plants (Gleason et al., 2016). OPR3-silenced tomato mutants showed 

dramatically lower levels of 12-OPDA and downstream JA products and biosynthesis genes; 

however, treatment with 12-OPDA, not JA, had significant effects in restoring plant basal 

resistance against Botrytis cinerea (Scalschi et al., 2015). In AOC over-expresser lines of rice, 

higher accumulation of 12-OPDA led to significant resistance against brown planthoppers 

(BPH), a piercing-sucking insect (Guo et al., 2014). Additionally, treatment with 12-OPDA, but 

not JA or JA-Ile, led to enhanced resistance to BPH in rice. Supporting our findings, tomato def1 

mutant lost the capacity for ISR against Fusarium infection when treated with T. virens (Jogaiah 

et al., 2018). While the authors assigned the lack of ISR to loss of JA in def1, the authors did not 

examine whether OPDA may have been responsible for the loss of ISR, as the mutant was 

determined to be disrupted in both 12-OPDA and JA biosynthesis (Howe et al., 1996). Increase 

in OPDA, but not JA, content also correlated with tendril coiling (Stelmach et al., 1998; Blechert 

et al., 1999). Interestingly, liverwort Marchantia polymorpha, a non-vascular plant considered to 

be one of the earliest land plants still existing, accumulated 12-OPDA in response to wounding, 

but not JA (Yamamoto et al., 2015). Similarly, moss Physcomitrella patens was found to lack the 

enzymes that convert 12-OPDA to JA, but still maintained the components for JA perception and 

signaling (Stumpe et al., 2010; Ponce De Leon et al., 2012). Furthermore, a recent study found 

that M. polymorpha COI1 was functionally conserved with AtCOI1, but recognized dinor-OPDA 

(dn-OPDA) as ligands rather than JA-Ile (Monte et al., 2018). A single amino acid substitution 

between MpCOI1 and AtCOI1 was responsible for the switch in ligand specificity, suggesting 
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that OPDA is the more ancient jasmonate signal and that JA-Ile arose later on. These revelations 

on COI1 also raise the possibility that, unlike the single COI1 in Arabidopsis, some of the 6 

distinct COI1 proteins of maize may also recognize oxylipins other than JA-Ile.  

An additional potential reason for discrepancy between our results and the reports 

implicating JA in ISR responses is that studies on the role of JA in regulating ISR have typically 

been performed on dicots such as Arabidopsis and tomato. One possible reason for the 

discrepancy is that JA was considered to be the primary functional outcome of the AOS branch 

pathway. For example, mutants used in some studies were JA-signaling mutants and not those 

disrupted in biosynthesis of JA (Pozo et al., 2008). Pseudomonas fluorescens WCS417r, a 

nonpathogenic and biocontrol bacterium, could no longer induce ISR in jin1, a JA-insensitive 

mutant disrupted in MYC2. Since JA downstream signaling also results in a positive feedback 

loop for JA biosynthesis (Wasternack, 2007), JA-insensitive mutants would lack that positive 

feedback and be unable to trigger upregulation of both JA and 12-OPDA biosynthesis. Tomato 

spr2, the mutant reported to be impaired in wound-induced JA biosynthesis and defense 

signaling and unable to establish mycorrhiza induced resistance (MIR) (Song et al., 2015), has 

also been shown to have over 90% decreased 18:3 content in leaves (Li et al., 2003). The 

decrease in 18:3 content results in a decrease of not only JA, but also 12-OPDA. The 

mechanisms behind spr2MIR-deficient phenotype cannot be unequivocally assigned to only JA, 

and may instead be due to increased 12-OPDA content.  
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KODA signaling is also required for ISR 

 

 Another key finding of this study is the identification of KODA as another potential ISR 

signal. The function of KODA has not been extensively studied, with several reports indicating 

that KODA has flowering-promotion effects in Lemna paucicostata (duckweed), apple trees, and 

Japanese pears (Yokoyama et al., 2000; Kittikorn et al., 2010; Sakamoto et al., 2010). KODA 

was also reported to accumulate at high levels in duckweed after exposure to abiotic stresses 

such as drought, heat, or osmotic stresses (Yokoyama et al., 2000). Wheat treated with KODA 

displayed enhanced abiotic stress tolerance by promoting root elongation at normal and high pH 

conditions, increasing germination rate and seedling growth, and improving drought tolerance 

(Haque et al., 2016). One study demonstrated that exogenous application of KODA enhanced 

grape resistance against Glomerella cingulate (Wang et al., 2016). Interestingly, KODA 

treatment induced high levels of LOX and AOS expression, which may indicate that KODA 

induces OPDA biosynthesis as well. While JA and OPDA have been reported to inhibit root 

growth, increased KODA production in response to T. virens may shed some light behind 

simultaneous growth promotion and ISR induction. While transfusion with concentrations of 

KODA and 12-OPDA alone were more effective at >100 nM, co-transfusion with 12-OPDA and 

KODA at 10 nM each resulted in enhanced resistance, suggesting an additive effect (Fig. 12).  

 

In contrast to JA pathway, SA pathway is upregulated during colonization 

 

In agreement with our data showing the downregulation of JA biosynthesis and signaling 

pathway, transcriptome analysis revealed the upregulation of SA biosynthesis and signaling 
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pathway, likely due to the SA-JA antagonism well documented in many different plants (Pena-

Cortés et al., 1993; Pieterse et al., 2012; Thaler et al., 2012). Genes involved with SA 

biosynthesis (PAL1, PAL2, PAL3, PAL5, PAL6, PAL8, and PAL9) and SA responsive genes 

(PR1, PR5, and PR10) were mostly upregulated at both 6 and 54 hr (Fig. 17). Recent studies 

have shown that induction of SA defense is necessary to limit Trichoderma colonization of roots 

to apoplast and excluded from the vascular tissue (Alonso-Ramirez et al., 2014; Martinez-

Medina et al., 2017). T. atroviride was also demonstrated to induce in Arabidopsis defense 

response genes of both SA and JA/ET pathways during induction of ISR against both 

hemibiotrophic and necrotrophic pathogens (Salas-Marina et al., 2011).   

It is unlikely that SA is the long-distance signal in our study, as we did not observe 

induction of SA in TvWT-treated plant xylem sap that correlated with ISR, with levels of SA 

staying relatively unchanged between the different mutants and treatments (Fig. 10F). Our study 

cannot exclude that SA is not required for ISR, as SA deficient plants were not available for this 

study. However, it is possible that, similar to its role in SAR (Vernooij et al., 1994; Klessig et al., 

2018), SA may be required locally for activation of ISR, but is not the mobile signal. 

Interestingly, our transcriptome data clearly demonstrated simultaneous upregulation of 12-

OPDA and SA biosynthesis and response genes during TvWT root colonization. This raises a 

question of whether the two pathways are synergistic rather than antagonistic like the well-

documented interaction between SA and JA. In support of this idea, studies have shown that 

genes uniquely regulated by 12-OPDA require activation by bZIP motif-binding transcription 

factors TGA2, TGA5, and TGA6 (Stotz et al., 2013), all of which interact with NPR1 in SA-

mediated defense responses (Zhang et al., 2003). A recent finding showed that both 12-OPDA 

and SA levels correlated with resistance against C. graminicola, with susceptible mutants 
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accumulating significantly decreased levels of both metabolites (Huang, 2017). Several studies 

also showed that treatment with either OPDA or SA resulted in increased glutathione (GSH) 

levels and enhanced cellular reduction potential (Koornneef et al., 2008; Park et al., 2013). 

Specifically, 12-OPDA binding to cyclophilin 20-3 (CYP20-3) resulted in increased biosynthesis 

of cysteine and accumulation of GSH, which in turn increased cellular reduction potential, 

driving expression of several OPDA-responsive genes (Park et al., 2013). Other studies showed 

that GSH also functioned as a signal for SA-mediated defenses acting through NPR1 (Ghanta et 

al., 2011), and was required for activation of SA signaling through the accumulation of H2O2 

(Han et al., 2013). In support of the synergy between OPDA and SA, treatment of Arabidopsis 

rosettes with SA  increased AOS activity and OPDA accumulation, while JA levels remained the 

same (Laudert and Weiler, 1998). The relevance of potential OPDA-SA synergism for ISR 

induction remains to be studied.  

 

ISR requires functional LOX10 and T. virens peptide signal Sm1 

 

As reported in this study, LOX10 transcriptional activation as early as 2 to 6 hr during 

interaction between maize roots and T. virens required functional peptide signal Sm1 (Fig. 1A). 

Such early activation is consistent with a previous report showing Sm1 is constitutively 

expressed and secreted continuously by fungal hyphae even in the absence of a host (Djonovic et 

al., 2006). Previous studies showed that expression of LOX10 was overexpressed in the roots of 

constitutively ISR-active lox3 mutants (Gao et al., 2008; Constantino et al., 2013). Importantly, 

expression of LOX3 in maize roots was suppressed by TvWT in a Sm1-dependent manner 

(Constantino et al., 2013). These results imply that Sm1-mediated induction of ISR involves 
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suppression of LOX3, the negative regulator of ISR response, resulting in the transcriptional 

activation and accumulation of LOX10, which in turn produces 12-OPDA as a xylem resident 

mobile signal for ISR induction. Remarkably, the inability of Δsm1 to induce ISR was also due 

to the inability to induce OPDA accumulation, since complementation with OPDA of xylem sap 

Δsm1-treated B73 rescued TvWT-induced levels of ISR (Fig. 13). The exact mode of action on 

plant cells by Sm1 remains to be further explored. Here we provide additional evidence that Sm1 

is a major peptide signal for ISR by demonstrating that the enhanced ISR activation of Δsir1 

mutant is likely due to a 3-fold greater expression of SM1 (Fig. 1C). The antagonistic 

interactions between 2 different SSCPs, Sm1 and Sir1, indicate that the individual peptides 

secreted by T. virens may be responsible for different aspects of regulating maize-fungal 

symbiosis. 

A surprising finding of this study is that while TvWT-treated lox10 mutants displayed 

ISS phenotype, this phenotype was lost in lox3lox10 double mutants (Fig. 4). This result implies 

that functional LOX3 is the major reason behind ISS phenotype in lox10 mutant plants, again 

reinforcing the previously reported LOX3 negative role in ISR regulation. Unfortunately, our 

metabolite profiling of xylem sap from different plant and fungal genotype combinations did not 

yield any candidates responsible for ISS thus far. The concept of ISS is not a new, as a recent 

study reported that different accessions of A. thaliana treated with different strains of P. 

fluorescens led to either ISR or ISS against bacterial pathogens (Haney et al., 2015). Their 

findings and our results emphasize the importance of both plant and symbiont genotypes in 

shaping the outcomes of their interaction.  
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Is ethylene required for ISR? 

 

Unexpectedly, our study found that treatment of ET-deficient mutant acs2acs6 with 

TvWT still induced ISR (Fig. 14C and 14D), suggesting that ET may not be as important for ISR 

induction. In support of this notion, TvWT colonization of B73, lox10, and lox3 resulted in 

significantly decreased levels of ET precursor, ACC, content in xylem sap (Fig. 15). The 

decrease in ACC may be attributed to fungal ACC deaminase (ACCD) activity, which breaks 

ACC down to ammonia and α-ketobutyrate (Glick et al., 1994), as putative ACCD genes were 

identified in Trichoderma genomes (Kubicek et al., 2011). The reduction of ET results in 

increased gibberellin (GA) and IAA signaling and improved plant growth (Glick et al., 2007; 

Hermosa et al., 2012). Pea plants treated with Variovorax paradoxus, a rhizobacterium that 

encodes ACCD, also resulted in enhanced plant growth and yield compared to pea plants treated 

with mutants disrupted in ACCD activity (Belimov et al., 2009). ACCD silenced mutants of T. 

asperellum lost the ability to enhance root elongation in canola (Viterbo et al., 2010) and could 

no longer improve salt tolerance (Brotman et al., 2013).  

Our results appear to contradict previous studies on ET role in ISR. For example, 

Arabidopsis ET-insensitive mutants, which include etr1 and ein2 through ein7, treated with P. 

fluorescens WCS417r displayed loss of ISR against Pseudomonas syringae pv. tomato (Pst), but 

retained the ability to trigger SAR (Knoester et al., 1999). Similar to our results, induction of ISR 

with WCS417r was not associated with increased ET levels or upregulation of ET biosynthesis 

genes ACC synthase (ACS) and ACC oxidase (ACO). Interestingly, while the mutant eir1 was 

only ET insensitive in the roots, WCS417r could still induce ISR when introduced to plant 

leaves, suggesting that the ET response pathway must remain intact for induction of ISR. Taken 
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together, our findings indicate that the loss of ET biosynthesis may have no bearing on whether 

ISR can still occur as long as ET response components stay functional.  

 

Does the balance between TvWT-induced growth promotion and ISR involve differential 

regulation of 12-OPDA and JA?  

 

In the field of symbiont-host interactions, one of the mysteries that remains to be 

explored is the mechanism by which PGPR/PGPF induce ISR defense and promote plant growth 

simultaneously. Plant growth and defense tradeoff can occur depending on environmental cues, 

prompting the plant to devote more resources towards defense responses or towards growth in 

the absence of stresses (Huot et al., 2014). In maize, improper balancing between plant growth 

and defense could be best observed with lox3 mutants, which overproduces defense hormones 

SA, JA, and ET in the roots and displays constitutive ISR, but has reduced germination rate, 

reduced height by ~25-30%, and premature senescence (Gao et al., 2008). Our results showed 

that T. virens enhanced growth of treated lox10 plants, suggesting that growth promotion and 

ISR are distinct pathways (Fig. 3). Interestingly, while the T. virens mutant Δsm1 provided 

moderately better growth promotion effect than TvWT on B73, inferring that without the Sm1-

dependent induction of ISR, more plant resources are diverted to growth instead.  

There is overwhelming evidence that increased JA and ET content results in impaired 

plant growth and development (Wasternack and Hause, 2013; Huang et al., 2017; Dubois et al., 

2018). Exogenous JA treatment resulted in reduced root growth, leaf expansion, and hypocotyl 

growth in seedling plants (Wasternack and Hause, 2013). Most recently, overexpression of 

plastid lipase (PLIP) genes was shown to result in significantly higher accumulation of JA, 
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reducing vegetative growth even when Arabidopsis was grown in nutrient rich media (Wang et 

al., 2018). Arabidopsis mutants with constitutive ET response displayed dwarfism, sterility, and 

premature senescence (Qu et al., 2007), while tobacco mutants with decreased ET sensitivity 

displayed enhanced growth (Tao et al., 2015).  

If JA and ET are major signals for ISR induction by beneficial microorganisms, but both 

inhibit growth, then it remains unclear how the symbionts could also promote plant growth. The 

identification of 12-OPDA, rather than JA or ET, as an ISR signal provides an intriguing venue 

to explore how this widely reported growth-defense balance by T. virens is achieved. Currently, 

studies on the effect of 12-OPDA on plant growth suggest an inhibitory role like JA, though the 

concentrations used in those studies may not have been biologically relevant. Addition of 25 and 

50 μM 12-OPDA to growth media inhibited M. polymorpha growth; however, the concentrations 

used were much higher than those used in our study (Yamamoto et al., 2015). While 12-OPDA 

was shown to promote Arabidopsis (Col-0 and Ws backgrounds) seed dormancy, their study also 

used much higher concentrations (10 and 50 μM) in the growth media (Dave et al., 2011). In our 

study, it is possible that by upregulation of 12-OPDA biosynthesis and downregulation of JA 

biosynthesis and response may be one strategy by which T. virens and perhaps other beneficial 

microorganisms can achieve this balance. This idea warrants further investigation, but has not 

been part of this study.  

 

Hypothetical model of oxylipin regulation of ISR response 

 

A summary of the maize ISR process induced by T. virens is presented (Fig. 19). T. 

virens root colonization results in the suppression of LOX3 (negative regulator of ISR) in a Sm1-
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dependent manner, which allows the upregulation of LOX10. Upregulation of LOX10 and the 12-

OPDA biosynthesis genes (AOS1a, b, c, and AOC1) drives the biosynthesis of 12-OPDA. The 

downregulation of JA biosynthesis and signaling genes results in the accumulation of 12-OPDA, 

which can be transported along the xylem to confer systemic resistance throughout the rest of the 

plant.  
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FIGURE 19. Hypothetical model of T. virens-triggered ISR in maize. 

The below-ground interactions between maize roots and T. virens result in the 

transcriptional and metabolic reprogramming of the roots that leads to synthesis of long-

distance ISR signal(s) that travel systemically along the xylem to confer resistance 

throughout the plant against a broad range of pathogen infection. The fungus suppresses 

LOX3 and induces LOX10 expression, either sequentially or concurrently, in a Sm1-

dependent manner. One ISR signal, 12-OPDA, is able to significantly improve systemic 

resistance and rescue susceptibility.  

  



 

75 

 

 

 

CHAPTER IV 

9-LIPOXYGENASE LOX12 IS A POSITIVE REGULATOR OF TRICHODERMA 

VIRENS TRIGGERED INDUCED SYSTEMIC RESISTANCE (ISR) AND GROWTH 

 

INTRODUCTION 

 

 The plant rhizosphere contains many diverse microorganisms ranging from harmful 

pathogens to plant growth promoting rhizobacteria/fungus (PGPR/PGPF), which provide various 

benefits to host plants. Among the PGPF, Trichoderma spp. are soil-borne fungi found 

ubiquitously and studied extensively for their ability to impart agriculturally relevant traits, such 

as enhancing plant growth, mycoparasitism and antibiosis against harmful soilborne pathogens, 

and triggering induced systemic resistance (ISR) in host plants (Yedidia et al., 1999; Howell et 

al., 2000; Lorito et al., 2010; Druzhinina et al., 2011; Hermosa et al., 2012). ISR induction by 

Trichoderma spp. is modulated by small secreted peptide elicitors. The small secreted peptide 

Sm1 from T. virens is required to induce ISR in cotton and maize, as the knockout mutant Δsm1 

could no longer induce ISR in treated plants  (Djonovic et al., 2006; Djonovic et al., 2007; 

Constantino et al., 2013). Another peptide elicitor is Suppressor of Induced Resistance, Sir1, 

formerly known as protein ID 77560 (Joint Genome Institute, T. virens version 2), which acts as 

a negative regulator of ISR (Lamdan et al., 2015). Treatment of maize with the knockout mutant 

Δsir1 of T. virens resulted in enhanced resistance against the necrotrophic pathogen Cochliobolus 

heterostrophus as compared to treatment with wild-type (WT) T. virens. ISR occurs upon root 

colonization by the beneficial microbes, which are capable of priming of plant defenses to allow 

rapid and robust responses against systemic pathogen infection (Pieterse et al., 2014a). While no 
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long-distance signal required for ISR has been identified, in general, Jasmonic acid (JA) and 

ethylene (ET) have been implicated as the primary plant hormones that mediate the ISR 

response, at least, in local tissues colonized by symbionts  (Pieterse et al., 2014b). Interestingly, 

the eir1 mutant of Arabidopsis thaliana, insensitive to ET only in the roots, still retained capacity 

for ISR when treated with Pseudomonas fluorescens WCS417r in the plant leaves, suggesting 

that the ET response pathway must remain intact for local induction of ISR (Knoester et al., 

1999). Induction of ISR by WCS417r also had no effect on ET levels or expression of ET 

biosynthesis genes ACC synthase (ACS) and ACC oxidase (ACO) in Arabidopsis. Additionally, 

our work presented in Chapter 3 show that JA and ET are not essential for ISR induction, as JA-

deficient opr7opr8 double mutant and ET-deficient acs2acs6 double mutant both retained the 

capacity for T. virens-induced ISR. Therefore, the actual long-distance signals for ISR have yet 

to be identified. In contrast to ISR, another distinct pathway for plant systemic resistance is 

systemic acquired resistance (SAR), which occurs in response to a prior pathogen infection, 

mediated by salicylic acid (SA) instead, and better characterized (Pieterse et al., 2014a). Several 

SAR long-distance signals have been identified, including azelaic acid (AzA), pipecolic acid 

(Pip), methyl salicylate (MeSA), glycerol-3-phosphate (G3P), and dehydroabietinal (DA) 

(Klessig et al., 2018; Shan and He, 2018). 

 Along with JA and JA-like derivatives, plants produce an estimated 650 different 

oxylipins (Borrego and Kolomiets, 2016). Recent studies have shown that induction of ISR 

involves oxylipins other than JA (Constantino et al., 2013). Oxylipins make up a group of 

oxidized lipid signals that regulate many aspects of plant physiology, which include root growth 

and development, reproductive organ development, acclimation to abiotic stresses, and defense 

responses against pathogens and herbivores (Howe and Jander, 2008; Wasternack and Hause, 
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2013). Oxylipin synthesis is initiated by lipoxygenase (LOX) enzymes, which catalyze the 

oxygenation of polyunsaturated fatty acids linoleic acid (C18:2) and linolenic acid (C18:3) at 

position C-9 or C-13 (Feussner and Wasternack, 2002; Andreou et al., 2009). The carbon 

position determines whether the LOX is identified as a 9-LOX or 13-LOX. The products of LOX 

enzymes are fed into seven different branches, which include the allene oxide synthase (AOS) 

branch, which produces JA and other jasmonates, and hydroperoxide lyase (HPL) branch, which 

produces six carbon (C6) compounds called green leaf volatiles (GLVs) (Matsui, 2006). The 13-

LOX products, which include JA and GLVs, are better characterized, while 9-LOX products are 

largely unexplored.  

While 9-LOX pathway has been linked to several plant functions, such as germination, 

growth and development, and defense against infection and herbivory (Vellosillo et al., 2007; 

Nalam et al., 2012), the specific functions of the majority of 9-oxylipins remain elusive. For 

example, LOX1 in pepper (Capsicum annuum) and Arabidopsis has been demonstrated to 

positively regulate plant defense against several pathogens, as the lox1 mutants accumulated less 

reactive oxygen species (ROS) and SA and expressed defense response genes at lower levels 

(Hwang and Hwang, 2010). Another study showed that activity from both 9-LOX and α-

dioxygenase (α-DOX), another fatty acid oxygenase, were required for both local defense and 

activation of SAR in Arabidopsis (Vicente et al., 2012). The mutants lox1, dox1, and lox1 dox1 

were all impaired in their response to Pseudomonas syringae pv tomato (Pst) infection. The lox1 

dox1 double mutant displayed reduced levels of 9-ketooctadecatrienoic acid (9-KOT), which was 

found to demonstrate strong antimicrobial activity in vitro against several pathogens, including 

Botrytis cinerea, Phytophthora infestans, and Fusarium oxysporum (Prost et al., 2005), regulate 

plant hormone homeostasis. Several 9-LOX derived 10-oxo-11-phytoenoic acid (10-OPEA) and 



 

78 

 

 

 

other cyclopentanones and cyclopentenones were detected at high levels in maize in response to 

infection by C. heterostrophus and insect herbivory (Christensen et al., 2015; Christensen et al., 

2016). Pathogenic fungi Aspergillus flavus and Fusarium verticillioides grown in media 

containing 10-OPEA were inhibited in growth, while corn earworm (Helicoverpa zea) that fed 

on 10-OPEA-treated leaves were stunted in growth. Furthermore, these 9-LOX products were 

collectively called “Death Acids,” as exogenous application induced expression of a unique set 

of defense response genes, increased cysteine protease activity, and resulted in potent 

programmed cell death. 

 Among the 13 different maize LOXs, LOX3, LOX4, LOX5, and LOX12 are 9-LOXs, 

while LOX1 and LOX2 have both 9-LOX and 13-LOX activity (Borrego and Kolomiets, 2016; 

Ogunola et al., 2017). The maize LOX3 plays an important role in regulating defense, as lox3 

mutants displayed robust constitutive systemic resistance against a variety of seed, foliar, root, 

and stalk pathogens, including the hemibiotrophic foliar and stalk pathogen Colletotrichum 

graminicola, necrotrophic foliar pathogen C. heterostrophus, and root pathogen Exserohilum 

pedicellatum (Gao et al., 2007; Isakeit et al., 2007; Constantino et al., 2013). Expression of 

LOX3 was detected exclusively in maize roots, with no expression detected in leaves even 

when infected with C. graminicola (Constantino et al., 2013). Roots of lox3 mutants 

accumulated significantly higher levels of defense phytohormones jasmonic acid (JA), 

salicylic acid (SA), and ethylene (ET), and overexpressed genes involved with biosynthesis of 

those phytohormones (Gao et al., 2008). LOX3 was also shown as a negative regulator of T. 

virens-triggered ISR, as expression of LOX3 was suppressed in response to root colonization 

with T. virens (Constantino et al., 2013). Furthermore, transfusion of xylem sap collected from 

untreated lox3 mutants conferred strong systemic resistance in receiver WT (B73) plants, 
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suggesting that sap contained root-derived molecule(s) with potent defense signaling activity. 

Taken together, these findings provided evidence that LOX3 is a root-exclusive negative 

regulator of T. virens-induced ISR.  

 Of the maize 9-LOXs, LOX4 and LOX5 share ~95% amino acid sequence identity and 

are differentially expressed spatially and in response to different stimuli (Park et al., 2010). 

Specifically, LOX4 was expressed predominantly in below-ground tissue and in response to JA 

treatment, while LOX5 expression was mainly in above-ground tissue and in response to JA, SA, 

wounding, and herbivory. These data suggest that LOX5 has important functions in plant 

defense, especially against insect herbivory, and is evidenced by lox5 mutants being significantly 

more susceptible to insect herbivory (Park, 2012). The roles of LOX4 as a defense gene and 

LOX5 as a susceptibility gene in maize interactions with C. graminicola has been well 

established (Park, 2012; Constantino, 2017; Damarwinasis, 2018). LOX4 and LOX5 have 

opposing functions, as lox4 mutants display enhanced susceptibility to Colletotrichum 

graminicola, causal agent of anthracnose stalk rot and leaf blight, while lox5 mutants exhibited 

increased resistance against C. graminicola (Park, 2012; Damarwinasis, 2018). A recent study 

found that GLVs released by C. graminicola-infected plants influenced neighbor plants into 

greater susceptibility to infection by hemibiotrophic and necrotrophic pathogens and greater 

expression of LOX5 and LOX12 (Constantino, 2017). Interestingly, LOX5 expression was 

recently found to be overexpressed in lox4 mutants under drought conditions (Huang, 2017). 

These studies suggest that LOX5 and LOX12 may act as susceptibility factors, with increased 

LOX5 expression being the reason behind increased susceptibility of lox4 mutants. Expression of 

the other 9-LOX, LOX12, is found in below-ground tissue with highest expression measured in 

the mesocotyl tissue (Christensen et al., 2014). Furthermore, LOX12 expression was also greatly 
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induced in response to infection by Fusarium verticillioides, with the lox12 mutants displaying 

increased susceptibility to F. verticillioides infection due to decreased accumulation of 12-OPDA 

(JA precursor) and JA, and attenuated expression of JA biosynthesis genes (Christensen et al., 

2014).  

In Chapter 3, metabolite and phytohormone analysis identified a 9-LOX derived α-ketol, 

9-hydroxy-10-oxo-12(Z), 15(Z)-octadecadienoic acid (KODA) that accumulated at higher levels 

in xylem sap of plants displaying robust ISR response, such as WT T. virens (TvWT)-treated 

B73 and untreated and TvWT-treated lox3. Transfusion of KODA at concentrations of 100 nM 

and above at 10 µL volumes significantly enhanced receiver plant resistance against C. 

graminicola infection in a dose-dependent manner. Transcriptome analysis also revealed 

overexpression of 9-LOX genes LOX4, LOX5, and LOX12 in lox3 mutant roots, suggesting that 

the 9-LOX derived oxylipins from these three 9-LOXs play a major role in regulating T. virens-

induced ISR in maize. To test this hypothesis, we screened several 9-LOX maize mutants and 

showed that function of LOX12, but not LOX4 or LOX5, is required to establish T. virens-

induced ISR. Instead of ISR, T. virens-colonized lox12 mutants became more susceptible to 

pathogen infection, thus displaying an induced systemic susceptibility (ISS) phenotype. The ISS 

phenotype was also independent of two of T. virens peptide elicitors, as treatment with either T. 

virens ISR-deficient mutant Δsm1 or ISR-enhancing mutant Δsir1 resulted in ISS.  
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RESULTS 

 

Overexpression of 9-LOX genes in lox3 mutant roots identify positive ISR regulator 

candidates 

 

 Previous studies have established maize LOX3 as a key negative regulator of plant 

defense, with lox3 mutants over-accumulating defense phytohormones and displaying 

constitutive ISR (Gao et al., 2007; Gao et al., 2008; Constantino et al., 2013). Expression levels 

of the different 9-LOX, 13-LOX, and JA biosynthesis genes in lox3 roots were determined 

compared to wild-type (WT) B73 inbred through qPCR analysis to identify genes that may be 

responsible for increased synthesis of OPDA and KODA and resulting constitutive ISR 

phenotype of lox3 mutant. (Table 2). Of the 13-LOXs tested, expression of LOX10 was 

significantly overexpressed in lox3 roots compared to B73 roots by ~11-fold. LOX10 provides 

hydroperoxy fatty acid substrate for both the13-AOS pathway for wound-induced biosynthesis of 

12-OPDA and JA, and for the HPL pathway for GLV biosynthesis (Christensen et al., 2013). 

Expression of the other 13-LOXs, which include LOX7 and LOX8, were not statistically different 

between lox3 and B73 roots. Among the genes that comprise the AOS branch for JA 

biosynthesis, AOS1c, AOC, and OPR7 were significantly upregulated in lox3 mutant roots, with 

expression increased up to ~3-, 48-, and 11-fold higher than in B73 roots, respectively. Of the 9-

LOX genes screened, LOX4, LOX5, and LOX12 were expressed to higher levels in lox3 mutant 

roots, with ~20-, 6-, and 8-fold increases compared to B73, respectively. These data suggest that 

the upregulated 9-LOX genes may act as positive regulators of ISR in maize.  
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TABLE 2: Fold induction of expression of selected LOX genes in lox3 mutant roots as 

compared to WT roots by using qPCR.  
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The 9-LOXs, LOX4 or LOX5, are not required for T. virens-mediated ISR 

 

After establishing that 9-LOXs, LOX4, 5 and 12, were overexpressed in lox3 mutant roots 

and were good candidates for production of KODA as an ISR long-distance signal, I screened the 

respective mutants for any alteration in T. virens-induced ISR. To test if LOX4 and LOX5 

played a role in regulating T. virens-induced ISR, untreated and WT T. virens (TvWT)-treated 

B73 inbred (the recurrent WT parent line for the mutants tested in this study) and knock-out 

mutants, lox4-7, lox5-3, and lox4-7 lox5-3 double mutant (lox4lox5) were infected with 

Colletotrichum graminicola, the causal agent of anthracnose leaf blight. Lesion areas were 

compared across the different maize lines and T. virens treatments to assess disease progression. 

Untreated B73 were susceptible, while TvWT-treated B73 displayed the expected ISR 

phenotype, with significantly smaller lesions developing on the infected leaves (Fig. 20). 

Consistent with previous reports (Park, 2012; Damarwinasis, 2018), untreated lox4-7 plants were 

significantly more susceptible than B73, with larger lesions developing on lox4-7 leaves 

compared to untreated B73 leaves, while untreated lox5-3 mutant leaves developed significantly 

smaller lesions than on untreated B73 leaves. In the absence of T. virens, lesions on lox4lox5 

double mutant were similar to those observed with lox5-3 mutant, suggesting that the lack of the 

susceptibility gene, LOX5, overrides the effect of disruption of the defense gene, LOX4. When 

treated with TvWT, however, lox4-7 mutants developed significantly smaller lesions in response 

to C. graminicola infection than untreated lox4-7, which were comparable to TvWT-treated B73 

lesions. The smaller lesions of TvWT-treated lox4-7 suggest that the capacity for ISR remained 

intact and that LOX4 function is not important in establishing ISR. TvWT-treated lox5-3 

remained unchanged from untreated lox5-3, with significantly smaller lesions comparable to 



 

84 

 

 

 

TvWT-treated B73 and untreated lox5-3. This, along with TvWT-treated lox4lox5 behaving the 

exact same way as lox5-3, strongly confirmed that LOX5, not LOX4, is the main reason behind 

the observed resistance of the double mutant. Furthermore, TvWT treatment had no additional 

effects on lox5-3 and lox4lox5 resistance, suggesting that while lox3 mutant overexpressed LOX4 

and LOX5, these 9-LOXs were not the positive regulators of ISR, at least in response to T. 

virens-induced ISR in maize.  

To confirm that both LOX4 and LOX5 are not involved in ISR, we further screened how 

T. virens secreted peptide elicitors of ISR, Sm1 and Sir1, affected lox4 and lox5 mutants and 

their responses to C. graminicola infection. The lox4-7, lox5-3, and lox4lox5 mutants and B73 

were treated with Δsm1, an ISR-negative mutant (Djonovic et al., 2007), and Δsir1, an ISR-

enhancing mutant previously known as Δ77560 (Lamdan et al., 2015), and subsequently infected 

with C. graminicola. Consistent with previous reports, Δsm1-treated B73 no longer displayed 

ISR (Djonovic et al., 2007), while Δsir1-treated B73 exhibited enhanced ISR compared to 

TvWT-treated B73 (Fig. 21). Interestingly, treatment of lox4-7 with either Δsm1 or Δsir1 resulted 

in significantly enhanced resistance similar to TvWT-treated lox4-7. This surprising finding 

suggests that the ISR phenotype observed with lox4-7 was not Sm1-dependent as it was for B73. 

Rather, LOX4 may play a role in only allowing ISR to occur in the presence of T. virens Sm1. 

Similar to what was previously observed, both lox5-3 and lox4lox5 remained resistant against C. 

graminicola infection when treated with either Δsm1 or Δsir1. These data suggest that the 

resistance observed with lox5-3 and lox4lox5 mutants occur regardless of presence or absence of 

T. virens and that LOX5 may in fact be a susceptibility gene to C. graminicola infection, that 

may function only at local site of infection. Altogether, while LOX4 is clearly not required for 
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ISR induction, the function of LOX5 as the susceptibility gene in locally infected tissue is clear, 

however, its relevance to ISR will have to be elucidated further.  

 

 

 

 
 

FIGURE 20. LOX4 does not play any major roles in regulation of T. virens-triggered ISR 

against hemibiotrophic pathogen C. graminicola.  

(A) Lesions developed on 3rd leaves of untreated or TvWT-treated B73 inbred line, lox4-7, 

lox5-3, and lox4lox5 double mutant plants infected with C. graminicola. 

(B) Measurements of lesion area caused by C. graminicola infection on leaves of untreated or 

TvWT-treated B73 inbred line, lox4-7, lox5-3, and lox4lox5 double mutant plants. Values 

represent means ± standard deviation SD (n=5), with letters indicating significant 

differences between treatments (Tukey’s HSD test, p < 0.05).   
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FIGURE 21. LOX4 and LOX5 are not impacted by T. virens fungal elicitors Sm1 or Sir1.  

Measurements of lesion area caused by C. graminicola infection on leaves of untreated or 

TvWT-, Δsm1-, and Δsir1-treated B73 inbred line, lox4-7, lox5-3, and lox4lox5 double 

mutant plants. Values represent means ± standard deviation SD (n=5), with letters 

indicating significant differences between treatments (Tukey’s HSD test, p < 0.05).  
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LOX12 is a positive regulator of T. virens-mediated ISR 

 

 In order to test the role of the only other predominant 9-LOX in the maize genome, 

LOX12, in regulating T. virens-induced ISR, I utilized the same approach used to test lox4 and 

lox5 mutants as described above B73 and lox12-1 mutant in the B73 background and at BC7 

stage were either untreated or treated with TvWT and subsequently challenged with C. 

graminicola foliar infection. Surprisingly, untreated lox12-1 leaves developed smaller lesions in 

response to C. graminicola infection compared to untreated B73 (Fig. 22A). This resistance, 

however, was lost when lox12-1 mutants were treated with TvWT. Rather, leaves of TvWT-

treated lox12-1 developed significantly larger lesions compared to untreated lox12-1, displaying 

ISS phenotype. In the absence of T. virens colonization, another independent mutant allele of 

LOX12, lox12-2, in the B73 background and at BC5 stage, also displayed heightened resistance 

compared to untreated near-isogenic WT against C. graminicola infection (Fig. 22B). Similar to 

lox12-1 allele, TvWT-treated lox12-2 displayed ISS, with significantly larger lesions developing 

on infected leaves compared to untreated lox12-2 mutants. Altogether, these results suggest that 

LOX12 function is required for establishing T. virens-induced ISR. Interestingly, in addition to 

the lack of ISR phenotype of TvWT-treated lox12 mutants, lox12-1 also lost shoot growth 

promotion due to TvWT root colonization, suggesting that LOX12 acts as a positive regulator of 

above-ground growth (Fig. 23). This is in sharp contrast to lox10 mutants reported in Chapter 3, 

which retained T. virens growth promotion effect but displayed ISS instead of ISR when treated 

with TvWT.  

LOX12 expression was upregulated by T. virens treatment, as qPCR analysis revealed 

that TvWT treatment induced expression of LOX12 in B73 roots under hydroponic conditions 
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across all time points tested, with the highest induction occurring at 12 and 48 hr after treatment 

(Fig. 24A). Furthermore, transgenic Arabidopsis mutants expressing β-glucuronidase (GUS) 

under the control of maize LOX12 promoter (pLOX12::GUS) displayed strong GUS activity 

upon treatment with TvWT (Fig. 24B). Interestingly, GUS staining was strongest not in the 

roots, but in the vasculature tissue of coleoptiles and in the above-ground organs. Vasculature-

centered expression pattern is indicative to the potential signaling properties of the LOX12 

oxylipin product(s). Overall, these findings show that expression of LOX12 is induced in 

response to TvWT treatment and reinforces the conclusion that LOX12 functions as a positive 

regulator of ISR.  

  



 

89 

 

 

 

 
 

FIGURE 22. LOX12 acts as a positive regulator of T. virens-triggered ISR against 

hemibiotrophic pathogen C. graminicola.  

(A) Measurements of lesion area caused by C. graminicola infection on leaves of untreated or 

TvWT-treated B73 inbred line and lox12-1 mutant plants. Values represent means ± 

standard deviation SD (n=5), with letters indicating significant differences between 

treatments (Tukey’s HSD test, p < 0.05).  

(B) Measurements of lesion area caused by C. graminicola infection on leaves of untreated or 

TvWT-treated B73 inbred line and lox12-2 mutant plants. Values represent means ± 

standard deviation SD (n=5), with letters indicating significant differences between 

treatments (Tukey’s HSD test, p < 0.05).  
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FIGURE 23. LOX12 is required for T. virens shoot growth promotion.  

Measurements of average shoot and root tissue dry weight of untreated and TvWT-

treated B73 and lox12-1 plants. Values represent means ± standard deviation SD (n=5), 

with letters indicating significant differences between treatments (Tukey’s HSD test, p < 

0.05). 
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FIGURE 24. LOX12 expression is induced by T. virens.  

(A) Expression of LOX12 via qPCR was determined in B73 seedling roots after treatment 

with TvWT at 6, 12, 24, and 48 hours after treatment compared to untreated control 

plants. Relative expression was calculated from cycle threshold values using the 

2−ΔΔCt method. Values represent means ± standard deviation SD (n=3) relative to control 

plants and were normalized to transcript levels of α-Tubulin (α-TUB). Statistical 

significance (* represents p < 0.05) was determined with Tukey’s HSD test compared to 

control.  

(B) Transgenic Arabidopsis expressing β-glucuronidase (GUS) under control of maize 

LOX12 promoter (pLOX12::GUS) were treated with TvWT and stained for GUS activity.  
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lox12 ISS phenotype may be due to the loss of LOX10 induction 

 

 The maize LOX3 has been established as a negative regulator of ISR (Constantino et al., 

2013), so one possible reason behind the ISS phenotype observed with lox12 mutants is aberrant 

expression of LOX3. To test this hypothesis, I measured expression of LOX3 in B73 and lox12-1 

seedlings grown in hydroponic conditions at 6 and 30 hr after treatment with TvWT. The time 

points 6 hr and 30 hr represented recognition between maize and T. virens and initial T. virens 

colonization of maize roots, respectively. The untreated lox12-1 mutants expressed LOX3 at 

levels ~2-fold greater than untreated B73 at both 6 and 30 hr (Fig. 25). Surprisingly, LOX3 

transcript accumulation in TvWT-treated lox12-1 was induced 30-fold higher than TvWT-treated 

B73 at 6 hr and 2-fold higher at 30 hr after treatment. This abnormal upregulation of LOX3 

transcripts suggests that LOX3 overexpression may be the primary reason behind the ISS 

phenotype of TvWT-treated lox12 mutants. To test this idea, I generated lox3-4 lox12-1 double 

mutant (lox3lox12) to observe interactions with T. virens and test for capacity for ISR. Untreated 

and TvWT-, Δsm1-, and Δsir1-treated B73, the single mutants lox3-4 and lox12-1, and lox3lox12 

were challenged with C. graminicola, and lesion area was measured and compared across maize 

mutants and treatments. As was previously reported (Constantino et al., 2013), untreated and 

TvWT-treated lox3-4 displayed constitutive ISR, with TvWT treatment having no additive 

effects on lox3-4 resistance (Fig. 26). Surprisingly, lox12-1 retained the ISS phenotype when 

treated with either Δsm1 or Δsir1, suggesting that these T. virens peptide elicitors had no bearing 

on lox12 ISS phenotype. Untreated by T. virens lox3lox12double mutant displayed increased 

resistance similar to that observed with lox12-1 single mutant. Interestingly, as with lox12-1, 

lox3lox12 also displayed ISS phenotype when treated with TvWT, Δsm1, or Δsir1. These results 
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suggest that loss of LOX3 was insufficient to prevent the ISS phenotype in lox12 mutants and 

that overexpression of LOX3 in lox12 mutant is not the reason for ISS. Conversely, the 

constitutive ISR phenotype of lox3 mutants could be attributed to a overexpression of LOX12.  

 If abnormal upregulation of LOX3 in lox12 mutants was not the reason behind the ISS, 

then perhaps the loss of induction of a positive regulator of ISR may be the reason instead. In 

Chapter 3, we established that the LOX10 acts as a positive regulator of ISR through direct 

production of 12-OPDA and promotion of 9-LOX-derived KODA biosynthesis. To determine 

whether disruption of lox12 results in altered expression of LOX10, we extracted RNA from 

roots of lox12-1 and lox3lox12 grown in hydroponic conditions and treated with TvWT at 6 and 

30 hr and performed qPCR. The analyses revealed that, as reported in Chapter 3, expression of 

LOX10 was induced in B73 roots 6 hr after TvWT treatment (Fig. 27A). Interestingly, LOX10 

was not induced in either lox12-1 or lox3lox12 roots at 6 hr after TvWT treatment. These results 

suggest that LOX10 may contribute to the ISS phenotype of both lox12-1 and lox3lox12 mutants. 

On the other hand, LOX12 expression remained relatively unchanged in both lox10-3 and 

lox3lox10 mutants (Fig. 27B). These findings suggest that LOX10 and LOX12 do not 

reciprocally regulate each other, with LOX12 acting upstream of T. virens-induced LOX10 

expression. Altogether, these findings place LOX12 as acting downstream of LOX3 and 

upstream of LOX10 in regulating ISR. 
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FIGURE 25. LOX3 expression in lox12-1 mutant is strongly induced by T. virens.  

Expression of LOX3 via qPCR was determined in B73 and lox12-1 seedling roots after 

treatment with TvWT at 6 and 30 hours after treatment compared to untreated control 

plants. Relative expression was calculated from cycle threshold values using the 

2−ΔΔCt method. Values represent means ± standard deviation SD (n=3) relative to control 

plants and were normalized to transcript levels of α-Tubulin (α-TUB). Statistical 

significance (* represents p < 0.05) was determined with Tukey’s HSD test.  
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FIGURE 26. Loss of LOX12 function in lox3 mutant is the cause for ISS phenotype.  

Measurements of lesion area caused by C. graminicola infection on leaves of untreated or 

TvWT-, Δsm1-, and Δsir1-treated B73 inbred line, lox3-4, lox12-1, and lox3lox12 double 

mutant plants. Values represent means ± standard deviation SD (n=5), with letters 

indicating significant differences between treatments (Tukey’s HSD test, p < 0.05).  
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FIGURE 27. LOX10 induction by T. virens requires functional LOX12.  

(A) Expression of LOX10 via qPCR was determined in B73, lox12-1, and lox3lox12 seedling 

roots after treatment with TvWT at 6 and 30 hours after treatment compared to untreated 

control plants. Relative expression was calculated from cycle threshold values using the 

2−ΔΔCt method. Values represent means ± standard deviation SD (n=3) relative to control 

plants and were normalized to transcript levels of α-Tubulin (α-TUB).  

(B) Expression of LOX12 via qPCR was determined in B73, lox10-3, and lox3lox10 seedling 

roots after treatment with TvWT at 6 and 30 hours after treatment compared to untreated 

control plants. Relative expression was calculated from cycle threshold values using the 

2−ΔΔCt method. Values represent means ± standard deviation SD (n=3) relative to control 

plants and were normalized to transcript levels of α-Tubulin (α-TUB). 
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DISCUSSION 

 

The maize 9-LOX, LOX12, plays a major role as a positive regulator of ISR 

 

 In this study, we sought to determine if 9-LOX derived oxylipins have a role in the 

positive regulation of ISR in T. virens-colonized maize plants. The signaling pathways of JA and 

ET have long been proposed as the key components in regulating ISR signaling in plants 

(Pieterse et al., 2014a). Chapter 3 describes our results that shows that JA precursor, 12-OPDA, 

and not JA itself is a likely long-distance signal for ISR.  Recent evidence suggests that 9-LOX-

derived oxylipins also play major roles in regulating both local and systemic resistance against 

pathogen infection. Maize 9-LOX, LOX3, acts as a negative regulator of ISR, as lox3 mutants 

display strong, constitutive systemic resistance against a variety of pathogens (Gao et al., 2007; 

Isakeit et al., 2007; Constantino et al., 2013). In Chapter 3, I screened oxylipin content in xylem 

sap of ISR-positive and negative plants and identified the α-ketol, KODA, as an ISR signal that 

could enhance resistance against pathogen infection in a dose-dependent effect at extremely low 

nM concentrations. Maize mutants disrupted in LOX10, a 13-LOX, displayed ISS phenotype and 

had lower levels of KODA. KODA itself, however, is produced through 9-LOX and 9-AOS 

activity, implying that there must be a 9-LOX responsible for KODA biosynthesis. Therefore, I 

screened available 9-LOX mutants to test whether any 9-LOX gene is involved induction of ISR 

by T. virens. I reasoned that such a 9-LOX may be overexpressed in the roots of lox3 mutant that 

displays strong ISR response even in the absence of T. virens colonization. Table 2 shows that 

those 9-LOX genes are LOX4, LOX5, and LOX12. Interestingly, a recent study revealed that 

lox3 mutant kernels, which are resistant against Fusarium verticillioides, overexpress these 
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three genes as well in response to Fusarium infection and that these mutants displayed increased 

susceptibility to Fusarium infection (Battilani et al., 2018). That study validated these 9-LOX 

genes as vital to maize resistance and potential regulators of ISR. ISR tests of the 9-LOX 

knockout mutants revealed that LOX4 is not required for ISR induction by T. virens. lox4 

mutants responded to T. virens by displaying strong ISR against C. graminicola, implying that 

this gene is not required for ISR (Fig. 20). The function of LOX5 in ISR could not be established 

conclusively as LOX5 is a susceptibility gene to C. graminicola in locally infected leaf tissue 

(Constantino, 2017; Damarwinasis, 2018). lox5 mutants were resistant to infection regardless of 

T. virens treatment. To test for the role of this gene in Trichoderma-colonized roots would 

require use of grafting approaches, which is impossible in monocot species.     

 A key finding in this Chapter was that among the 9-LOXs tested, LOX12 was identified 

as a positive regulator of T. virens-induced ISR, as lox12 mutants lost ISR response and 

exhibited increased susceptibility to C. graminicola infection in response to root colonization by 

T. virens (Fig. 22). Additionally, expression of LOX12 was strongly induced in B73 roots treated 

with T. virens (Fig. 24A), and transgenic Arabidopsis expressing pLOX12::GUS accumulated 

high levels of GUS in the vasculature tissues of coleoptile and above-ground organs in response 

to T. virens treatment (Fig. 24B). The ISS phenotype of lox12 and the induction of LOX12 

expression in response to T. virens suggests that LOX12 function is required for T. virens-

induced ISR. These results support the hypothesis that 9-oxylipins play a major role in ISR 

signaling. A role for 9-LOXs in ISR was also proposed in recent studies that showed silencing 

the 9-LOX, PvLOX2, by RNA interference (RNAi) in beans resulted in loss of mycorrhizae-

induced resistance (MIR) against the foliar pathogen Sclerotinia sclerotiorum (Mora-Romero et 

al., 2015a; Mora-Romero et al., 2015b). AM fungal colonization of tomato roots resulted in 
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strong induction of LOXA and AOS3, which are directly associated with biosynthesis of 9-LOX 

derived oxylipin (Garrido et al., 2010; López-Ráez et al., 2010). Aside from regulating ISR, 9-

oxylipins also appear to regulate SAR, as Arabidopsis 9-LOX mutant, lox1, α-DOX mutant dox1, 

and lox1 dox1 double mutant were all impaired in local defense and SAR activation against Pst 

infection (Vicente et al., 2012). Altogether, these studies demonstrated the defensive activity of 

9-LOX derived oxylipins (Vellosillo et al., 2007; Mosblech et al., 2009). While the specific 9-

LOX derived oxylipins responsible for ISR or SAR were not identified in any of these studies, 

we have provided additional evidence of the importance of the 9-LOX products in regulating 

plant-symbiont interactions. 

 

lox12 ISS phenotype is not associated with overexpression of LOX3 but may be due to loss 

of LOX10 induction by T. virens 

 

 Interestingly, treatment of lox12 mutants with both ISR-deficient mutant Δsm1 (Djonovic 

et al., 2007) and ISR-enhancing mutant Δsir1 (Lamdan et al., 2015) resulted in increased 

susceptibility, a phenomenon called (ISS) (Fig. 26). I showed that lox12 ISS is unaffected by 

either of the T. virens secreted peptide elicitors. As LOX3 is an established negative regulator of 

ISR and a target by T. virens for suppression in maize roots (Constantino et al., 2013), the likely 

explanation for lox12 ISS phenotype was an upregulation of LOX3 in roots. Supporting this 

hypothesis, qPCR analysis showed that lox12 mutants overexpressed LOX3 ~30-fold higher than 

B73 when treated with WT T. virens (Fig. 25). Contradicting this hypothesis, though, is that the 

double mutant lox3lox12 also displayed ISS phenotype when treated with T. virens (Fig. 26). 

This finding confirms that the lox3 mutant constitutive ISR phenotype required LOX12 function 
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and that LOX3 is not the driver of ISS. In Chapter 3, we established that LOX10, a 13-LOX, is a 

positive regulator for ISR, with expression in roots upregulated transiently in response to T. 

virens treatment. qPCR analysis revealed that neither lox12 nor lox3lox12 mutant responded to T. 

virens by induction of LOX10 (Fig. 27A), confirming the hypothesis that LOX10 is the reason 

behind lox12 ISS. These results also support the notion that 9-LOX pathway and 9-oxylipin 

signals (such as KODA) must precede the 13-LOX pathway and 13-oxylipin signals (such as 12-

OPDA) for induction of ISR.  

Maize 9-LOXs, LOX3 and LOX12, appear to play opposing roles, with LOX3 acting as a 

negative regulator and LOX12 as a positive regulator of T. virens-induced ISR. While lox3 

mutant roots accumulate higher levels of 12-OPDA and JA, lox12 mutants accumulate less, 

leading to increased susceptibility to Fusarium infection (Christensen et al., 2014). Several 

studies on arbuscular mycorrhizae (AM) fungi and plant 9-LOXs also demonstrate contrasting 

roles of 9-LOXs with regards to MIR. Silencing of the 9-LOX, LOX2, in beans resulted in loss of 

MIR and decreased expression of LOX6, the 13-LOX responsible for JA biosynthesis (Mora-

Romero et al., 2015b). The bean LOX2 activity is reminiscent of maize LOX12, as loss of either 

resulted in decreased JA biosynthesis and loss of ISR/MIR. Another study showed that potato 9-

LOX, AOS3, was upregulated in response to AM fungal colonization, resulting in higher 

accumulation of KODA and other 9-oxylipins in the roots (Morcillo et al., 2016). This 

corroborates data in Chapter 3, where increased KODA levels in xylem sap strongly correlated 

with ISR, while decreased levels of KODA, especially in lox10 mutants correlated with lack of 

resistance and ISS phenotype. RNA-mediated silencing of AOS3 resulted in increased 13-LOX 

and JA biosynthesis genes, JA, and root colonization by AM fungus. While not a 9-LOX, potato 

AOS3 appears to function in a similar manner to maize LOX3 as negative regulators of JA 
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biosynthesis. Unfortunately, outside of root colonization and JA biosynthesis, no data were 

provided on whether over-colonization resulted in hindering plant growth or improved MIR, 

making a comparison difficult.  

There is also evidence that both 9- and 13-LOX pathways are required for establishing 

ISR. Upregulation of tomato 9-LOX, LOXA, and 9-AOS, AOS3, genes were limited to the AM 

fungus-colonized parts of the roots and required the activation of JA pathway (León-Morcillo et 

al., 2012). Another study showed that JA perception was required to regulate AM colonization in 

tomato roots, as jasmonic acid deficient mutant 1 (jai1) was over-colonized, while exogenous 

foliar treatment with methyl-JA (MeJA) resulted in decreased root colonization by AM fungus 

(Herrera-Medina et al., 2008). Taken together, these studies infer that 9- and 13-LOX pathway 

crosstalk is required to both control colonization and MIR. This clearly supports my results in 

Chapter 3 and this chapter, as both the 13-LOX, LOX10, and 9-LOX, LOX12, are required for T. 

virens-induced ISR.  

 

Conclusion 

 

This study built upon the findings from Chapter 3 and identified LOX12, a 9-LOX, as a 

positive regulator of ISR that acts in concert with LOX10. Like lox10 mutants, lox12 mutants 

also displayed increased susceptibility in response to T. virens root colonization. The exact 9-

oxylipin produced by LOX12 has yet to be identified, but the likely candidate is KODA, a 9-

LOX derived α-ketol, since it has been demonstrated to positively affect ISR. Based on 

expression patterns of lox10 and lox12 mutants, we also conclude that LOX12 acts upstream of 

LOX10, with LOX12 activity required for T. virens induction of LOX10 expression in maize 
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roots. The exact hierarchy of LOX10 and LOX12 in positive regulation of ISR will require 

construction of lox10lox12 double and lox3lox10lox12 triple mutants currently underway in our 

laboratory.  
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CHAPTER V 

SUMMARY 

 

 

 Major agricultural advances must occur to contend with the increasing global population 

and the increasing demand for food and resources without increasing pollution or environmental 

damage through the overuse of fertilizer and chemical pesticides. The study of plant-microbe 

interactions is one potential avenue to meet these demands, as many of these microbes can 

provide benefits for plant hosts, such as enhanced growth, better nutrient uptake, abiotic stress 

tolerance, and improved resistance against pathogen infection and herbivory. One form of 

enhanced plant resistance is induced systemic resistance (ISR), which primes plant defenses for 

rapid and robust responses against infections locally and systemically. One beneficial microbe, 

Trichoderma virens, is well documented for its ability to enhance plant growth and trigger ISR in 

host plants. The main objectives of this project were to identify important genes and signal 

molecules that regulate T. virens-induced ISR in maize 

 Maize LOX10, a 13-LOX involved in wound-induced jasmonic acid (JA) biosynthesis, 

was both induced in B73 inbred wild-type maize roots in response to the beneficial fungus T. 

virens and overexpressed in constitutive ISR lox3 mutant roots. Treating lox10 mutants with T. 

virens resulted in increased susceptibility against infection by the foliar hemibiotrophic pathogen 

Colletotrichum graminicola. We have called this phenotype induced systemic susceptibility 

(ISS). Metabolite profiling of xylem sap collected from untreated or T. virens-treated B73, lox3, 

and lox10 identified 12-OPDA, 13-LOX and 13-AOS derived precursor of JA biosynthesis, and 

9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (KODA), 9-LOX and 9-AOS derived α-
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ketol, as two oxylipins whose accumulation corresponded to ISR-positive plants. Demonstrating 

signaling roles, low volume transfusion of OPDA or KODA in biologically relevant (nM) 

concentrations enhanced receiver plant resistance in a dose-dependent manner, while JA-Ile 

transfusion resulted in increased susceptibility. Surprisingly, both JA-deficient mutant opr7opr8 

and ethylene (ET)-deficient mutant acs2acs6 retained the capacity for T. virens-induced ISR, 

suggesting that neither phytohormone is required. Transcriptome analysis of T. virens-treated 

B73 revealed that genes for 12-OPDA biosynthesis (LOX10, AOS1a, b, c, and AOC1) were 

upregulated in response to T. virens, but subsequent genes for JA biosynthesis and signaling 

were downregulated. Altogether, these results portray 12-OPDA and KODA, rather than JA or 

ET, as the key regulators of T. virens ISR. 

  In addition to LOX10, lox3 roots overexpressed three 9-LOX genes, LOX4, LOX5, and 

LOX12, suggesting that 9-oxylipins also play a role in regulating ISR. Screening T. virens-treated 

lox4, lox5, and lox12 for ISR phenotype revealed that LOX12 acts as a positive regulator of ISR, 

as lox12 mutants displayed ISS phenotype in response to T. virens colonization. Furthermore, 

lox3lox12 double mutant displayed ISS phenotype as well in response to T. virens, demonstrating 

that the constitutive ISR of lox3 is contingent on LOX12 function. Interestingly, both lox12 and 

lox3lox12 mutant roots lack the induction of LOX10 expression in response to T. virens, 

suggesting that LOX12 activity is required for the initiation of ISR. Altogether, these results 

place LOX12 upstream of LOX10 and downstream of LOX3 and portrays ISR as a complex 

pathway that requires both 9- and 13-oxylipins to operate.  
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