
ENERGY-EFFICIENT PHOTONIC ARCHITECTURES FOR LARGE-SCALE DATA

ANALYTICS

A Dissertation

by

DHARANIDHAR DANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Rabi N. Mahapatra
Committee Members, Duncan M. Walker

Eun Jung Kim
Samuel Palermo

Head of Department, Dilma Da Silva

December 2018

Major Subject: Computer Engineering

Copyright 2018 Dharanidhar Dang

ABSTRACT

With silicon technology reaching its physical limit, conventional computing systems are inca-

pable of offering ever-increasing performance requirement with limited power budget. This has

propelled semiconductor community to seek for new computing paradigms that can offer high

energy-efficiency. Silicon photonics with its ultra-low power characteristics, inherent parallelism,

and large multiplexing capability, is one such promising paradigm. The goal of this research is to

utilize silicon photonics to design energy-efficient exascale computing architectures.

This study is established through research in a number of directions. First, we propose a non-

blocking, 5×5, low-cost on-chip photonic router. It incorporates mode-division-multiplexing in

addition to wavelength-division-multiplexing and time-division-multiplexing for high-throughput.

It is a first of its kind to the best of our knowledge. We use this router to design high-performance

2D and 3D mesh photonic network-on-chip (PNoC). Further, we introduce a novel laser-multiplexing

scheme to further enhance the energy-efficiency of our PNoC designs. Components in a photonic

system are highly susceptible to thermal variations. We propose IHDTM, a cross-layer dynamic

thermal management techinique which is a combination of device-level optimization and system-

level thread migration. After demonstrating a highly reliable energy-efficienct photonic system, we

intend to devise a high-performance photonic architecture for exascale data analytic applications.

Multicast data dissemination is a major performanec bottleneck for data analytic applications in

cluster computing, as terabytes of data need to be distributed frequently from a single data source

to hundreds of computing nodes. To overcome this bottleneck, we propose BiGNoC, a manycore

chip platform with a novel application-specific photonic on-chip network architecture. Finally,

we intend to utilize the exascale parallelism and ultrafast characteristics of silicon photonics to

extend the state of the art in deep learning accelerator architectures. Trainng a deep learning

network involves expensive computation overheads. As a result, most of the accelerators use pre-

trained weights and focus only on improving the design of inference phase. We propose a novel

photonic-based backpropagation accelerator for high performance deep learning training. In ad-

ii

dition, we present a design for convolutional neural network, BPLight-CNN, which incorporates

the novel photonic backpropagation accelerator. BPLight-CNN is a first-of-its-kind photonic and

memristor-based CNN architecture for end-to-end training and prediction.

iii

DEDICATION

To my parents.

iv

ACKNOWLEDGMENTS

First, I want to thank my advisor, Dr. Rabi N Mahapatra for his generosity wisdom, and

guidance throughout my graduate studies. He has continuosuly inspired and challenged me to

evolve as a resarcher. This dissertation would not have reached to its fruition without his advice.

I would also like to thank my thesis committee members, Dr. Duncan Walker, Dr. Eun Jung

Kim, and Dr. Samuel Palermo for agreeing to be on the committee and for providing valuable

suggestions and criticisms. I am grateful to Dr. Dilma Da Silva for her kindly advice. I am also

thankful to Dr. Vikram Kinra of Aerospace Department for offering me a teaching fellowship

which was beneficial to strengthen my teaching skill. The staff at Texas A&M’s Department of

Computer Science & Engineering have been very nice and helpful during the course of graduate

school. Special thanks to Mr. Bruce Veals for providing logistics in a timely fashion.

I am thankful to my collaborators Dr. S.V. R. Chittamuru of Micron, Dr. Martin Fiers of Luceda

Photonics, Dr. Karthik Swaminathan of IBM TJ Watson, Dr. Christopher Nitta of University of

California, Davis, for giving time and valuable ideas during my PhD. Special thanks to Dr. Sudeep

Pasricha of Colorado State University for his critical remarks. I would also like to thank my

amazing labmates Jyotikrishna Dass, Syed Ali Hasnain, Karl Ott, Jerry Yiu, Deam Ieong, Biplab

Patra for numerous priceless brainstorming sessions.

My work would not have been possible without the support of my family. My parents have

always been a continuous source of inspiration. I would also like to thank my younger brother,

Subrat Kumar Dang, for taking care of my family in my absense. Special thanks to my sisters

Pramodini, Tilottama, Meera, and Bidyutlata for their unconditional love and affection. I am

grateful to my mentor Dr. Debashis Sahoo of University of California, San Diego for inspiring and

supporting me throughut my stay in the U.S.

I am highly thankful to Texas A&M Cricket Club and Austin Cricket Club to provide me with

the opportunity to play cricket regularly. This was highly beneficial to maintain a good balance of

professional and personal endeavors.

v

Finally, I would like to thank my friends Rajarshi, Pulakesh, Abhijit, Hollie, Rushil, Atish,

Sanjeev, Roneet, Akash, and Matthew for making my stay in the U.S. an unforgettable journey.

Special thanks to Susovita, Artta, and Aurosmita for their affection and encouragement. During

time away from home, they have been a constant source of support, motivation, and happiness.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis (or) dissertation committee consisting of Professor Rabi N

Mahapatra [advisor], Professor Duncan H. Walker, and Professor Eun Jung Kim of the Department

of Computer Science & Engineering and Professor Samuel Palermo of the Department of the

Electrical & Computer Engineering.

The experimental analysis in chapter 4 was conducted in part by Dr.Sudeep Pasricha of Col-

orado State University.

All other work conducted for the thesis (or) dissertation was completed by the student inde-

pendently.

Funding Sources

Graduate study was supported by a teaching fellowship from College of Engineering, Texas

A&M University and graduate assistantships from the Department of Computer Science & Engi-

neering.

vii

NOMENCLATURE

MRR Microring Resonator

PNoC Photonic Network-on-Chip

CMP Chip Multiprocessor

SOC System-on-Chip

CNN Convolutional Neural Network

DWDM Dense Wavelength-division-multiplexing

TDM Time-division-multiplexing

ADC Analog to Digital Converter

DAC Digital to Analog Converter

SOA Semiconductor Optical Amplifier

viii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vii

NOMENCLATURE . viii

TABLE OF CONTENTS . ix

LIST OF FIGURES . xii

LIST OF TABLES. .xvii

1. INTRODUCTION. 1

1.1 High Performance Computing hits the wall! . 1
1.2 Advent of Silicon Photonics . 2
1.3 Silicon Photonic Basics . 2
1.4 Research Focus. 5
1.5 Contributions . 5
1.6 Organization. 7

2. ADAPTIVE MULTIPLEXING IN PHOTONIC NETWORK-ON-CHIP 8

2.1 Motivation . 8
2.2 Related Works . 9
2.3 Contributions . 11
2.4 Basics Of Silicon Photonics . 11

2.4.1 Silicon Photonic Components . 12
2.4.2 Multiplexing . 14

2.4.2.1 Wavelength-Division-Multiplexing . 14
2.4.2.2 Mode-Division-Multiplexing. 15

2.4.3 Proposed Adaptive Multiplexing . 16
2.5 Communication Flow . 16
2.6 Photonic Router . 17

2.6.1 Router Micro-architecture . 17
2.6.1.1 Switching Fabric . 19

ix

2.6.1.2 Network Interface. 22
2.7 Routing Algorithm . 24
2.8 Laser Multiplexing in 2D & 3D Photonic Network-on-Chip . 27

2.8.1 Mechanism and Control . 28
2.9 Experiments & Results . 29

2.9.1 Experimental Methodology. 29
2.9.1.1 Microarchitecture Simulation on IPKISS . 29

2.9.2 Microarchitecture validation under traffic . 30
2.9.3 Comparitive Analysis and Results . 31

2.9.3.1 Number of MRRs . 32
2.9.3.2 Photonic area Overhead . 33
2.9.3.3 Average Throughput . 34
2.9.3.4 Energy Consumption . 39
2.9.3.5 Optical Insertion loss . 45

2.10 Chapter Summary . 47

3. CROSS-LAYER DYNAMIC THERMAL MANAGEMENT IN PNOC 49

3.1 Why Thermal Management? . 49
3.2 Related Work . 50
3.3 IHDTM: Islands of Heater-based Dynamic Thermal Management . 51

3.3.1 Thermal Islands . 52
3.3.2 Temperature-Aware Thread Migration Scheme (TATM) . 55

3.4 Experiments, Results, and Analysis . 62
3.4.1 Experimental Setup . 62
3.4.2 Experimental Results . 64

3.5 Chapter Summary . 69

4. APPLICATION SPECIFIC PNOC FOR BIG DATA COMPUTING 71

4.1 Introduction . 71
4.2 Related Work . 73
4.3 Master-Servant Cluster Architecture . 78

4.3.1 MN-to-SN communication in MSNoC cluster . 78
4.3.2 SN-to-MN communication in MSNoC cluster . 84
4.3.3 SN-to-SN communication in MSNoC cluster . 85

4.4 Sensitivity analysis. 86
4.5 BiGNoC Architecture. 87

4.5.1 Homogeneous BiGNoC Architecture . 87
4.5.2 Heterogeneous BiGNoC architecture . 90
4.5.3 Application scheduling in BiGNoC . 91

4.6 Experiments . 92
4.6.1 Experimental Setup . 92
4.6.2 BigNoC: Sensitivity Analysis . 95
4.6.3 Experimental Results . 98

x

4.7 Chapter Summary . 102

5. NEUROMORPHIC COMPUTING USING SILICON PHOTONICS 103

5.1 Introduction . 103
5.2 Convolutional Neural Network: Overview . 105

5.2.1 Basics of Convolutional Neural Network . 105
5.2.2 Backpropagation Algorithm . 107

5.3 Overview: On-chip Photonic Components . 109
5.4 BPLight-CNN Architecture . 110

5.4.1 Feedforward CNN Architecture . 111
5.4.1.1 CONV Microarchitecture . 111
5.4.1.2 ReLU Microarchitecture . 115
5.4.1.3 POOL Microarchitecture . 115
5.4.1.4 FC Microarchitecture . 117

5.4.2 Backpropagation Architecture . 118
5.4.3 Weight Update and Peripheral Circuitry . 120

5.4.3.1 Weight-update circuitry . 120
5.4.3.2 Peripheral Circuitry . 121

5.5 BPLight-CNN Case Study. 122
5.6 Experimental Analysis . 125

5.6.1 CAD for BPLight-CNN . 125
5.6.1.1 Power and Area Models . 125
5.6.1.2 Performance Models . 125
5.6.1.3 Benchmarks and Datasets . 126

5.6.2 Sensitivity Analysis with Prediction Accuracy . 127
5.6.3 Performance Analysis. 130
5.6.4 Energy Savings . 132

5.7 Chapter Summary . 134

6. CONCLUSIONS & FUTURE DIRECTIONS. 135

6.1 Conclusions . 135
6.2 Future Directions. 137

REFERENCES . 138

xi

LIST OF FIGURES

FIGURE Page

1.1 Comparison of (a) delay of metallic interconnects & gate, and (b) energy-consumption
of metallic interconnects & compute core, w.r.t. technology scaling. 1

1.2 Communication flow in Silicon Photonics. 5

2.1 Selective coupling of the single-mode microrings to a specific spatial mode in mul-
timodal waveguide. Reprinted with permission from [1] . 16

2.2 Communication flow in Silicon Photonics. 17

2.3 2D PNoC architecture . 18

2.4 MRR Switching. Reprinted with permission from [2] . 19

2.5 Logical layout of 5× 5 photonic router. Reprinted with permission from [2] 21

2.6 MDM integrated Network-Interface . 22

2.7 Modelocked laser employing MDM .. 23

2.8 Black pulse=TE0 of λ0, red pulse=TE1 of λ0, green pulse=TE0 of λ1, blue pulse=TE1

of λ1 Timing diagram of TDM integrated Mode-Division-Multiplexing 24

2.9 Illustrating adaptive X-Y routing between ’Source’,’Destination 1’, ’Destination
2’ and ’Destination 3’. 26

2.10 Multilayer PNoC with Laser Multiplexing. Reprinted with permission from [3] 28

2.11 MRR Switching . 31

2.12 Comparing number of MRRs/Router for different PNoC architectures; LR=λ-Router
CR=Columbian Router, CB=Crossbar Router, JR= Ji-router, PR=Proposed Router.
Reprinted with permission from [2] . 32

2.13 Area overhead of different PNoC architectures with varying sizes. 34

2.14 Comparison of Average Throughput between Electrical noC and Proposed PNoC
with various synthetic traffics . 35

2.15 Comparison of Average Throughput between Electrical noC and Proposed PNoC
with PARSEC benchmark . 36

xii

2.16 Throughput(Synthetic Traffic): METEOR NoC vs Proposed PNoC 38

2.17 Throughput(PARSEC Benchmark): METEOR NoC vs Proposed PNoC 38

2.18 Bandwidth/Photonic area(Meteor PNoC vs Proposed PNoC) . 39

2.19 Energy Consumption(Synthetic Traffic): Electrical noC vs Proposed PNoC 42

2.20 Normalized Energy Consumption(PARSEC Benchmark): Electrical noC vs Pro-
posed PNoC . 43

2.21 Comparison of average energy consumption per optical path, in fJ/bit. Reprinted
with permission from [2] . 44

2.22 Comparison of energy consumption per router in fJ/bit. Reprinted with permission
from [2] . 45

2.23 Average energy per Path for different PNoC sizes. Reprinted with permission from
[2] . 46

2.24 Insertion loss per router in dB. Reprinted with permission from [2] 47

3.1 Impact of thermal variations on MRRs. Reprinted with permission from [4] 49

3.2 Thermal Distribution: (a) a 64-core CMP, (b) Peak thermal gradient across a
64-core chip running 48-threaded PARSEC [5] and SPLASH-2 [6] benchmarks.
Reprinted with permission from [4] . 51

3.3 IHDTM framework with device-level thermal islands and system-level temperature-
aware thread migration mechanism (TATM). Reprinted with permission from [4] 52

3.4 (a) MRR with adaptive heater (b) Thermal tuning of MRR. Reprinted with permis-
sion from [7] . 53

3.5 Actual and predicted maximum temperature variation with execution time for (a)
fluidanimate (FA) and (b) radiosity (RD) benchmarks run on a 64-core platform
executing 32-threads. Reprinted with permission from [4] . 59

3.6 Overview of TATM technique with support vector regression (SVR) based temper-
ature prediction model. Reprinted with permission from [4] . 61

3.7 Maximum temperature comparison of IHDTM with RATM and PDTM for (a) 48
(b) 32 threaded PARSEC and SPLASH-2 benchmarks executed on 64-core multi-
core system with Corona PNoC. Reprinted with permission from [4]. 65

xiii

3.8 Normalized power (Laser Power (LP), Trimming and tuning power (TP) and mod-
ulating and detecting Power (MDP)) comparison of IHDTM with RATM and PDTM
for (a) 48 and (b) 32 threaded applications of PARSEC and SPLASH-2 suites ex-
ecuted on Corona PNoC architectures for a 64-core multicore system. Results
shown are normalized w.r.t RATM. Reprinted with permission from [4] 66

3.9 Normalized average power (Laser Power (LP), Trimming and tuning power (TP)
and modulating and detecting Power (MDP)) comparison of IHDTM with RATM
and PDTM for (a) 48 and (b) 32 threaded applications of PARSEC and SPLASH-2
suites executed on Flexishare PNoC architectures for a 64-core multicore system.
Power results are normalized wrt RATM results. Bars represent mean values of
power dissipation; confidence intervals show variation in power dissipation across
PARSEC and SPLASH-2 benchmarks. Reprinted with permission from [4] 67

3.10 Normalized execution time comparison of IHDTM with RATM and PDTM for
Corona PNoC running (a) 48; and (b) 32 threaded applications from PARSEC and
SPLASH-2 suites executed on 64-core system. Results shown are normalized wrt
RATM. Reprinted with permission from [4] . 68

3.11 Normalized average execution time comparison of IHDTM with RATM and PDTM
for Flexishare PNoC running (a) 48; and (b) 32 threaded applications from PAR-
SEC and SPLASH-2 suites executed on 64-core system. Power results are normal-
ized wrt RATM results. Bars represent mean values of power dissipation; confi-
dence intervals show variation in power dissipation across PARSEC and SPLASH-
2 benchmarks. Reprinted with permission from [4] . 69

4.1 MapReduce (a) multicast phase, (b) shuffle phase, and (c) aggregation phase of
communication while executing iterative machine learning algorithms for large-
scale data analytics applications. MN: Master Node; SN: Servant Node 72

4.2 (a) MSNoC layout with SWMR, MWSR, and power waveguides (b) master gate-
way interface (MGI) (c) servant gateway interface (SGI). Reprinted with permis-
sion from [8] . 76

4.3 Distribution of reservation cycle and data cycle slots within SWMR waveguide to
enable MN-to-SN communication. Reprinted with permission from [8] 80

4.4 (a) Transmission of unicast data from an MN to SN8 in MSNoC, which shows
receiver selection wavelength λ8 in RCS of the SWMR waveguide; (b) Multicast
of data from an MN to multiple SNs SN8, SN10, SN12, and SN15 in MSNoC,
which shows respective receiver selection wavelengths λ8, λ10, λ12, and λ15 in
RCS of the SWMR waveguide. Reprinted with permission from [8] 82

4.5 Variation of average packet latency in MSNoC cluster with (a) 32 nodes (b) 16
nodes, and (c) 8 nodes having different MWSR waveguide groups (each group has
4 waveguides) across three big data applications. Reprinted with permission from [8] 85

xiv

4.6 (a) Homogeneous BiGNoC with four uniform clusters C0, C1, C2, C3, with each
cluster having 16 nodes, (b) Heterogeneous BiGNoC with four clusters C0, C1,
C2, and C3 having 32, 16, 8, and 8 nodes, respectively. Reprinted with permission
from [8] . 88

4.7 Average packet latency comparison for (a) BiGNoC-HOM and (b) BiG-NoC-HET
in a 256-core CMP with different buffer depths (8-40). Reprinted with permission
from [8] . 97

4.8 (a) Normalized throughput, (b) normalized EPB comparison of BiG-NoC-HOM
with BiGNoC-HET for 256-core CMP. Results are shown for multi-application
workloads and normalized w.r.t. BiGNoC-HET. Reprinted with permission from [8] 99

4.9 Normalized (a) throughput (b) latency (c) EPB comparison of BiG-NoC-HET with
other architectures for a 256-core CMP. Results are for multi-application work-
loads and normalized w.r.t. EMesh. Reprinted with permission from [8] 100

5.1 Overview of CNN with two hidden layers and an FC layer. Each hidden layer
comprises of [CONV-POOL] . 106

5.2 Overview of BPLight-CNN Architecture . 110

5.3 Microarchitecture of Feature Extractor (FE) in BPLight-CNN . 111

5.4 Memristive convolution in a CONV layer. Reprinted with permission from [9] 113

5.5 (a) Cascaded optical comparator in POOL, (b) Fully Connected Layer (FC). Reprinted
with permission from [9] . 116

5.6 Backpropagation architecture in BPLight-CNN which presents the backpropaga-
tion between the final layer l = L and penultimate layer l = L− 1 118

5.7 Weight Update Circuitry for any layer l . 121

5.8 (a) VGG-A implemented on BPLight-CNN (b) Pipelined dataflow in feedforward
operation in BPLight-CNN . 123

5.9 CNN Benchmark Configuration for VGG & LeNeT. 127

5.10 (a) MRM Q-factor (b) MRM Finesse (c) average prediction accuracy w.r.t propa-
gation loss in photonic components diameter (assuming a 32-bit weight resolution). 128

5.11 BPLight-CNN average prediction accuracy comparison with PipeLayer [10] and
GPU-based execution across different weight resolutions varying from 2-bit to 32-
bit. 129

5.12 (a) Normalized speedup (throughput) comparison across accelerators, (b) Speedup
of BPLight-CNN w.r.t. weight resolution. 131

xv

5.13 Normalized computational efficiency of BPLight-CNN compared to state-of-the-art. 132

5.14 (a) Normalized energy efficiency across accelerators, (b) Energy efficiency of BPLight-
CNN w.r.t. weight resolution . 133

xvi

LIST OF TABLES

TABLE Page

2.1 Design parameters for experimental setup. Reprinted with permission from [2] 30

2.2 Microring resonator requirement for a 8X8 CMP . 37

2.3 Optical losses. Reprinted with permission from [2] . 41

3.1 List of TATM parameters and their definitions. Reprinted with permission from [4]. . 56

3.2 Properties of materials used by 3D-ICE tool. Reprinted with permission from [4] 62

4.1 Micro-architectural parameters for MSNoC cluster. Reprinted with permission
from [8] . 79

4.2 Big data application benchmarks, with three variations each, based on their Master-
Servant requirements [11], [12]-[13]. Reprinted with permission from [8] 94

4.3 Energy and losses for photonic devices [14], [15], [16]. Reprinted with permission
from [8] . 96

4.4 Phototnic hardware comparison. Reprinted with permission from [8] 101

5.1 BPLight-CNN parameter details . 126

xvii

1. INTRODUCTION

1.1 High Performance Computing hits the wall!

The trend of integrating several computing cores into a single die has seen exemplary rise in

the last decade. If the same trend continues we may find more than 200 cores in a single chip by

2025. With the rise in core-density in chip-multiprocessors, the on-chip communication fabric,

commonly known as Network-on-Chip (NoC), has become a power and performance bottleneck.

This is solely due to the technological limitations of metallic interconnects to scale energy and

delay at the same rate as that of a core. As illustrated in Fig.1.1(a), the gap between metallic

interconnect delay and gate delay rises rapidly as transistor size shrinks [17]. In addition to that,

the scaling in energy consumption of metallic interconnects is very low compared to the scaling

in computing core as shown in Fig.1.1(b). The metallic interconnect latency could be reduced by

using repeaters; however, that incurs high energy consumption.

(a) (b)

Figure 1.1: Comparison of (a) delay of metallic interconnects & gate, and (b) energy-consumption
of metallic interconnects & compute core, w.r.t. technology scaling

The speed of metallic interconnects is thus limited by power budget as a result of which further

scaling of chip multiprocessors is detrimental. Therefore, it is a general consensus that metallic

1

interconnects alone will not be able to satisfy the power and performance demands of future many-

core processors. This has propelled the research community to explore more efficient interconnect

technologies. Silicon photonics with its low-power characteristics and inherent parallism is one

such technology.

1.2 Advent of Silicon Photonics

On-chip photonic links, enabled by breakthrough in silicon photonics, provide several advan-

tages over traditional metallic counterparts, such as near light speed data transfer, higher band-

width density, and low power dissipation. Moreover, photonic links have several times lower data-

dependent energy consumption compared to electrical wires, enabling the design of high-radix

networks that are easier to program. Silicon photonics is thus becoming an exciting new option for

on-chip communication, and has catalyzed much research in the area of photonic NoCs (PNoCs)

for manycore systems. Silicon photonics could be fabricated monolithically on the same die or on

a separate layer through 3D integration, thus forming the foundation of combining electronic and

photonic devices in next-generation chip designs.

Establishing silicon photonics as an ideal alternative to electrical interconnect technologies

would require strong cases in support of photonics’s superiority in terms of both power consump-

tion and performance. This calls for novel photonic on-chip network designs that efficiently utilize

photonic links, advances in photonic devices, and automatic CAD tools to assist engineers in the

designing process.

1.3 Silicon Photonic Basics

Photonic interconnects and routers are the building blocks of photonic NoCs. A photonic router

consists of high-speed microring resonator(MRR) based switches and extremely low-latency pho-

tonic waveguides to provide photonic NoC as an alternative to electrical NoCs. Before diving into

the details it is better to be familiar with some of the photonic components which are used and to

have a understanding of how a simple communication takes place between two cores in a PNoC.

2

Silicon Photonic Waveguide:- Silicon photonic waveguide is the building block of several pho-

tonic components and lays the foundation for integrating photonics with a Silicon substrate. They

are the basis of many optical devices such as MRRs, Directional Couplers, Multiplexers and De-

multiplexers, communication channel etc. It basically consists of a Si core having an extremely

small cross-section sorrounded by SiO2 cladding material. Due to the difference in refractive in-

dex of the core and the cladding the light travels being confined within the waveguide due to total

internal reflection.

MRR:- Micro-ring resonator is one of the priniciple components of a photonic network-on-chip. As

quoted in the Laser and Photoics Reviews, A generic Ring Resonator consists of an optical waveg-

uide which is looped back on itself, such that a resonance occurs when the optical path length

of the resonator is exactly a whole number of wavelengths. So in this way a MRR is capable of

supporting multiple resonances which have a gap equal to the free spectral range(FSR) which in

turn depends on the resonator length. The practical application of the MRR is always along with

a coupler which is necessary for it to interact with the outside world. It is basically an accessing

mechanism. When in the loop the round trip phase shift equals the integer times 2π , resonance

occurs and the wave is coupled successfully to or from the MRR.

Silicon photonic Laser:- Laser sources can be of different types depending upon the need of trans-

mission. In the proposed design we have used Mode-Locked Lasers which will be described in the

upcoming sections. The important fact is that they are the major source of power in a PNoC.

Photo-detector:- At the reciever end, the light passing through the silicon waveguide must be

detected in order to reconvert the modulated data into electronic form. Photodetectors contain

PIN photodiodes to convert optical powerinto electric current. Recently graphene is said to be a

promising material for ultra-broadband photodetectors[18].

3

Silicon Optical Modulator:- It is used to modulate a light beam propagating in the optical waveg-

uide with electrical data signals. The most common method of achieving modulation in silicon

devices so far has been to exploit the plasma dispersion effect, in which the concentration of free

charges in silicon changes the real and imaginary parts of the refractive index[19]. Micro-Ring

modulators has been widely explored due to its compact footprint and low drive voltage. The

nature resonant frequency of a micro-ring can be shifted by an index change and thus a large mod-

ulation depth occurs near the resonance.

Optical coupler:- Its a challenge in silicon photonics to obtain efficient coupling between highly

confined mode in a waveguide and the large diamter mode in optical fibre to couple light in and

out of the chip. Recently several solutions like surface gratings and tapers in which the thickness

and width of silicon layer are increased are proposed.

Silicon photonic transmitter:- The silicon photonic transmitter comprises of the laser source, op-

tical modulator that modulates the light signal with electric signal data and the multiplexer that

multiplexes the signal light of multiple wavelengths or modes in this case to be transmitted on a

single transmission line.

The process of optical communication starts with the laser source producing the light which is

coupled into the waveguide on chip with the help of a silicon optical coupler. The Ring modulator

along with the multiplexer then modulates the electronic signal from the core on to the appropriate

channel. It is transmitted along the waveguide till the destination. The propogation path can be

changed or switched by appropriate photonic switches along the path made by the combination of

MRRs and waveguides. At the destination the light signal is detected by the photo-detector and

is demodulated to feed the information to the destination processor core. The whole process is

depicted in the following figure.

4

Figure 1.2: Communication flow in Silicon Photonics

1.4 Research Focus

This dissertation focuses on the efficient use of silicon photonics interconnects and devices to

design high-performance computing architectures. It begins with the design of a novel ultrafast

on-chip photonic router. Such a router is used to design efficient 2D and 3D photonic on-chip

network architecture. Further, the dissertation studies the impact of thermal variations in photonic

architectures to take necessary measures. In addition to high-throguhput photonic on-chip net-

work architectures, the dissertation also investigates in designing deep learning architectures using

photonic-based neuromorphic computing.

1.5 Contributions

The contributions of this dissertation are as follows:

Adaptive Multiplexing in Photonic Network-on-Chip:-In this work, we propose a non-blocking,

low power, low-cost, and high performance 5Œ5 photonic router design using silicon micror-

ing resonators(MRR). In this router, we introduce wavelength-division-multiplexing (WDM)

compatible mode-division-multiplexing (MDM) scheme for maximizing the aggregate band-

width. The proposed photonic router is utilized to design low-cost and energy-efficient 2D

and 3D photonic network-on-chip (PNoC). Laser is found to be the most power hungry el-

ement in a photonic system. The proposed PNoCs adopt a novel laser-multiplexing scheme

to enhance their energy-efficiency. Our PNoC demonstrates 50% lower energy consumption

and 25% lower area overhead compared to the state-of-the-art PNoC designs.

5

IHDTM: Islands of Heaters based Dynamic Thermal Management in Photonic Network-on-

Chip:-the operation of photonic NoCs (PNoCs) is very sensitive to temperature variations

that frequently occur on a chip. These variations can create significant reliability issues

for PNoCs. For example, microring resonators (MRRs) which are the building blocks of

PNoCs, may resonate at another wavelength instead of their designated wavelength due to

thermal variations, which can lead to bandwidth wastage and data corruption in PNoCs.

This paper proposes a novel run-time framework to overcome temperature-induced issues

in PNoCs. The framework consists of (i) a PID controlled heater mechanism to nullify the

thermal gradient across PNoCs, (ii) a device-level thermal island framework to distribute

MRRs across regions of temperatures; and (iii) a system-level proactive thread migration

technique to avoid on-chip thermal threshold violations and to reduce MRR tuningtrimming

power by migrating threads between cores.Our experimental results with 64-core Corona

and Flexishare PNoCs indicate that the proposed approach reliably satisfies on-chip thermal

thresholds and maintains high network bandwidth while reducing total power consumption

by up to 64.1%.

BigNoC: Application Specific Photonic Network-on-Chip Architecture Big Data Computing:-In

the era of big data, high performance data analytics applications are frequently executed on

large-scale cluster architectures to accomplish massive data-parallel computations. Often,

these applications involve iterative machine learning algorithms to extract information and

make predictions from large data sets. Multicast data dissemination is one of the major

performance bottlenecks for such data analytics applications in cluster computing, as ter-

abytes of data need to be distributed frequently from a single data source to hundreds of

computing nodes. To overcome this bottleneck for big data applications, we propose BiG-

NoC, a manycore chip platform with a novel application-specific photonic network-on-chip

(PNoC) fabric. BiGNoC is designed for big data computing and exploits multicasting in

photonic waveguides. For high performance data analytics applications, BiGNoC improves

throughput by up to 9.9Œ while reducing latency by up to 88% and energy-per-bit by up to

6

98% over two state-of-the-art PNoC architectures as well as a broadcast-optimized electrical

mesh NoC architecture, and a traditional electrical mesh NoC architecture.

Neuromorphic Photonic Architecture for Deep Learning:Training deep learning networks in-

volves continuous weight updates across the various layers of the deep network while us-

ing backpropagation algorithm (BP). This results in expensive computation overheads while

training. As a result, most of the accelerators use pre-trained weights and focus only on im-

proving the design of inference phase. However, the recent trend is to build a complete deep

learning accelerator by incorporating the training module. Such efforts require an ultrafast

architecture for executing the BP algorithm. In this paper, we propose a novel photonic-

based backpropagation accelerator for high performance deep learning training. In addition,

we present a design for convolutional neural network, BPLight-CNN, which incorporates

the novel photonic backpropagation accelerator. BPLight-CNN is a first-of-its-kind pho-

tonic and memristor-based CNN architecture for end-to-end training and prediction. We

simulate BPLight-CNN using a standard photonic-based CAD framework such as IPKISS

for benchmark models, namely, LeNet and VGG-Net. The proposed design achieves at least

35x acceleration in training in addition to 31x improvement in computational efficiency and

45x energy saving compared to the state-of-the-art designs, without any loss of accuracy.

1.6 Organization

The rest of the dissertation is organized as follows. Chapter 2 illustrates the detailed design

of an energy-efficient PNoC architecture with a novel multiplexign scheme. This is followed by

demonstration of a dynamic thermal management framework for PNoCs in Chapter 3. Chapter 4

presents an application specific PNoC architecture design for large-scale data analytics applica-

tions. Then, Chapter 5 illustrates the design of a complete deep learning accelerator using silicon

photonics. Finally, Chapter 6 concludes the dissertation with directions for future research.

7

2. ADAPTIVE MULTIPLEXING IN PHOTONIC NETWORK-ON-CHIP*

2.1 Motivation

1In the contemporary era, information is generated in abundance. In order to process those

information, various efforts have been made to increase the processor performance. According

to Moore’s law the processor performance doubles up every two years. But until 2000 according

to the law the processor speed kept on increasing. After that it was tough to increase the overall

performance by increasing the efficiency of a single processor. This limitation or in other words

constraint was overcome with the dawn of the era of chip multiprocessors(CMP). As was stated

in [20][21] performance gain was to be derived by increase in the number of processor cores on

chip. This approach has enhanced the throughput performance in CMPs by exploiting paralleilism

with less power requirements. Semiconductor roadmap[17] predicts that in the next decade feature

size will shrink to sub-10-nm regime. This leap in the process technology will scale the number of

cores and threads per devices rather than increase speed or complexity of an indivdual core. This

will result in faster processing with the help of thousands of threads running highly parallel codes.

But this paradigm shift in the computing world poses newer challenges and issues which needs to

be addressed.

Increasing density trend of CMPs involves considerable amount of interaction among the cores on

chip. The cores will need to access data from local and distant caches as well as off-chip memory.

As a result it requires higher bandwidth and a lower latency to support extensive communication

among a large number of cores. Semiconductor NoCs would not provide such a large bandwidth

while maintaining an acceptable level of power consumption[17]. The limitation of metallic inter-

connects in terms of loss, dispersion, cross-talk and speed are becoming increasingly obvious as

interconnect density rises. In order to address the growing communication requirements, alterna-

tive on-chip interconnect paradigms are required.

Recently, integrated photonic links are being adopted as reliable and attractive alternative to tra-

1Adapted with permission from [2] & [3]

8

ditional metallic interconnects [22]. They hold promise to higher rate data transfer with minimal

power dissipation [23]. Photonic links avoid capacitive, resistive and signal integrity constraints

and allow efficient realization of physical connectivity. Also, low loss in optical waveguides [22]

and bit rate transparency [24] are added advantages of photonic on-chip communication. The key

power savings rises from the fact that once a photonic path is established, the data are transmit-

ted end to end without the need for repeating, regenerating and buffering[25]. On the contrary

in electrical NoCs messages are buffered, regenerated and transmitted over several router links

en route to the destination. In addition to that over the past several years remarkable advances

and breakthroughs have been made in the field of silicon photonics. All these support for a high

performance, low power, and low cost photonic NoC (PNoC). PNoC is by far the most promising

archetype to meet the needs of the next generation on-chip communication.

2.2 Related Works

In recent years several Photonic NoC (PNoC) architectures have been proposed using topolo-

gies like mesh [23], torus [22], crossbar[26], and clos[27].

We can classify photonic NoC architectures into two major categories based on the communication

techniques used: (1) deterministic passive networks, and (2) dynamic switching networks. Wave-

length selective passive networks utilize deterministic switching in which a fixed routing pattern

is defined during the network design and the optical path between the source and destination is

established by dynamically selecting a specific wavelength at the source or the destination [27].

Passive networks offer limited scalability and complicated design[28]. Whereas optical networks

using dynamic switching are circuit switching networks, where the routing pattern is dynamically

set beforehand by an electronic controller [23][22]. It is imperative to combine microelectronic

control technology and photnic transmission as it is difficult to realize signal processing in photon-

ics.

Various crosbar topology based PNoC architecture has been examined by the researchers as in

[22][27] and [26]. They have proposed several channel sharing crossbar architectures called

Single-Write-Multiple-Read(SWMR) or Multiple-Write-Single-Read(MWSR) architectures. Bat-

9

ten et al[26] implemented an opto-electrical global crossbar between small groups of cores and

DRAM models[26]. Vantrease et al proposed Corona, a 3D MWSR channel sharing crossbar

architecture where there is a dedicated channel for listening for each node, but several nodes com-

pete to send messages on the same channel[29]. Pan et al also proposed a SWMR based crossbar

design[30]. Though these designs correctly addredssed the latency issues faced by several other

contenporary architectures they suffer from scalability as fully connected crossbars do not scale

well[31].

Shacham et al proposed a hybrid electrical-photonic NoC architecture[25]. They used a electrical

control circuit for arbitration and a photonic message transmission circuit. Though the use of a

hybrid architecture was a brilliant idea which we have also followed in our design, the placement

of MRRs as photnic switching elements involved turning on more number of MRRs. Though their

design provides a higher bandwidth than the electrical NoCs the average latency per throughput is

not significantly improved.

Hendry et all proposed a TDM based photonic arbitration circuit due to the absence of photonic

buffers which addressed the issue of average latency[32]. But the TDM based arbitration makes

the whole communication more deterministic rather than adaptive. Also it results in unnecessary

turning on of MRRs in setting up paths between a source and destination.

It is reported in [26] that the wavelength selective passive network exhibits low latency as the

wavelength selecting time is much shorter than the network configuration time. On the contrary,

switching networks offer higher aggregate bandwidth by adopting WDM technology. Also, circuit

switching in optical domain is more compact and it offers good scalability [33]. So among the

various architectures discussed above almost all of them prefer a hybrid opto-electronic network.

Router is a critical component of NoC. Several MRR based optical routers have been proposed

in the literature [33][23][25][34]. In [33], a low power, low cost, and non-blocking 5X5 optical

router has been proposed using 16 MRRs. The design appears to be non-scalable due to signifi-

cant power consumption when network size increases. In [25], the authors have proposed a 4 × 4

10

hybrid, blocking router using 8 MRRs. This design is complex and the aggregate bandwidth is

limited due to its blocking nature. M. Briere et al proposed the λ router[35]. It uses a passive

switching fabric and WDM technology. An N ×N λ-router requires N wavelengths and multiple

basic 2× 2 switching elements to realize non-blocking switching function. In order to fully utilize

all the components it prefers N to be even which may not be feasible in every case. The authors

in [34] proposed a 4 × 4 λ-router using passive switching fabric with 30 MRRs incorporating

Wave Division Multiplexing(WDM). Due to use of increasing number of waveguide crossings and

MRRs, such a design results in higher insertion loss rendering it non-scalable. A. W. Poon et al

proposed a 5× 5 optical router based on an optimized crossbar[36]. In this architecture each port

of the router is aligned to its corresponding direction to reduce the waveguide crossings around the

switching fabric. Therefore a high performance, low power, and low cost photonic router is highly

desirable for scalable NoC.

2.3 Contributions

In this chapter, we illustrate the following:-

(1) A novel 5×5 non-blocking photonic router design which incorporates mode-division-multiplexing

in conjunction with wavelength-division-multiplexing for high performance. The proposed ap-

proach is the first of its kind to the best of our knowledge. (2) A logical layout of the photonic

router. (3) Simulation of the proposed design with standard CAD tools which demonstrates 4×

higher throughput and up to 33% improvement in energy-saving compared to the best reported

result. (4) A novel laser-multiplexing scheme for energy-efficient 3D PNoC architectures based on

the proposed router.

2.4 Basics Of Silicon Photonics

Optical interconnects and routers are the building blocks of photonic NoCs. A photonic router

consists of high speed Microring Resonator(MRR) based switches and extremely low-latency op-

tical waveguides to provide photonic NoC as an alternative to electrical NoCs. Before diving into

11

the details it is better to be familiar with some of the photonic components which are the building

blocks of the proposed PNoC and the associated terminologies. It is also necessary to have an

understanding of how a simple communication takes place between two cores in a PNoC.

2.4.1 Silicon Photonic Components

Silicon Photonic Waveguide:- Silicon photonic waveguide is the building block of several pho-

tonic components and lays the foundation for integrating photonics with a Silicon substrate. They

are the basis of many optical devices such as MRRs, Directional Couplers, Multiplexers and De-

multiplexers, communication channel etc. It basically consists of a Si core having an extremely

small cross-section sorrounded by SiO2 cladding material. Due to the difference in refractive in-

dex of the core and the cladding the light travels being confined within the waveguide due to total

internal reflection.

MRR:- Micro-ring resonator is one of the principal components of a photonic network-on-chip.

As quoted in the Laser and Photoics Reviews[37], a generic ring resonator consists of an optical

waveguide which is looped back onto itself such that a resonance occurs when the optical path

length of the resonator is exactly a whole number of wavelengths. So in this way an MRR is ca-

pable of supporting multiple resonances with a gap equal to the free spectral range(FSR) which

in turn depends on the resonator length. The practical application of MRR is always along with

a coupler which is necessary for it to interact with the outside world. It is basically an accessing

mechanism. When in the loop the round trip phase shift equals the integer times 2π , resonance

occurs and the wave is coupled successfully to or from the MRR.

Silicon photonic Laser:- Laser sources can be of different types depending upon the need of trans-

mission. In the proposed design we have used Mode-Locked Lasers. The important fact is that

they are the major source of power consumption in a PNoC.

12

Photo-detector:- At the reciever end, the light passing through the silicon waveguide must be

detected in order to reconvert the modulated data into electronic form. Photodetectors contain

PIN photodiodes to convert optical power into electric current. Recently, graphene is said to be a

promising material for ultra-broadband photodetectors[18].

Silicon Optical Modulator:- It is used to modulate a light beam propagating in the optical waveg-

uide with electrical data signals. The most common method of achieving modulation in silicon

devices so far has been to exploit the plasma dispersion effect, in which the concentration of free

charges in silicon changes the real and imaginary parts of the refractive index[19]. Micro-Ring

modulators has been widely explored due to its compact footprint and low drive voltage. The

nature resonant frequency of a micro-ring can be shifted by an index change and thus a large mod-

ulation depth occurs near the resonance.

Optical coupler:- It is a challenge in silicon photonics to obtain efficient coupling between highly

confined mode in a waveguide and the large diamter mode in optical fibre to couple light in and

out of the chip. Recently several solutions like surface gratings and tapers are proposed in which

the thickness and width of silicon layer are increased.

Silicon photonic transmitter:- The silicon photonic transmitter comprises of a laser source, an

optical modulator that modulates the light signal with electric signal data and a multiplexer that

multiplexes the signal light of multiple wavelengths or modes to be transmitted on a single trans-

mission line.

Mode-Locked Laser:- Mode-locked-laser consists of an active laser resonator, and an optical mir-

ror. Laser resonator produces ultra fast optical pulse circulating around it. Each time the pulse

hits the optical mirror, a pulse is emitted out of the laser. As a result, an optical pulse train of

13

specific wavelength and time period is generated. This phenomenon is called mode-locking as all

the modes are trapped inside the laser resonator as a single pulse and hence the term mode-locked-

laser.

2.4.2 Multiplexing

As mentioned in the introduction, the advent of silicon photonics as an alternative to conven-

tional CMOS chips was imperative owing to its superior bandwidth capability and lower power

dissipation. In order to facilitate such a higher aggregate bandwidth several multiplexing tech-

niques have been proposed. The goal of multiplexing is to boost the aggregrate throughput by

utilising the existing communication infrastructure on a chip. Over the recent years, with the in-

crease in technical finesse of fabrication technology, researchers have been able to exploit unique

features of light to come up with several multiplexing techniques.

2.4.2.1 Wavelength-Division-Multiplexing

Wavelength-Division-Multiplexing(WDM) is the most commonly used technology to increase

the bandwidth of the optical communication system. In this scheme multiple wavelengths are

employed to carry optical signals from the source to destination. The data rate in optical commu-

nication is limited to the modulation speed but the overall bandwidth can be scaled with the no of

wavelengths used in a system acting as parallel communication channels.

Dense WDM(DWDM) technology has been used to enable tens of channels with varying carrier

wavelengths over single mode optical fibres in long optical networks. But due to its sensitivity

to temperature, the emission wavelengths of the laser need to be aligned and stabilized properly.

It makes the switching and routing in DWDM systems complicated, power hungry and expensive

rendering it unsuitable for on-chip communication[38]. The alternative is coarse WDM(CWDM)

which has less requirements in terms of alignment/control. A 4 -channel CWDM link with 400

14

GHz channel spacing has been used to realize 50 Gbps communication link between two chips[39].

2.4.2.2 Mode-Division-Multiplexing

A mode can be defined as an electromagnetic field distribution that satisfies the theoritical

requirements for propagation in a waveguide or oscillation in a cavity or in other words an elect-

tromagnetic wave travelling in a fiber. Exploiting spatial mode as an independent channel in con-

juction with WDM would increase the bandwidth density of an-chip interconnect by manifolds,

reduce the number of waveguide crossings and add an additional design degree of freedom in next

generation photonic networks. Earlier there have been efforts of implementing mode multiplexing

based on Mach-Zehnder interferometers[40][41], Multi-mode interference(MMI) couplers[42][43]

etc. But they had larger footprints and supported a limited number of optical modes.

In 2014 Luo et al came up with a micro-ring resonator based on-chip WDM-compatible mode-

division multiplexing (and demultiplexing scheme)[1]. They demonstrated the capability of the

design to be multiple co-propagating 10Gb/s high-speed communication signals reaching upto 60

Gb/s of aggregate bandwidth.

On the basis of propagation constant matching, an optical mode in a single mode waveguide can

be evanescently coupled to a specific spatial mode in an adjacent multimode waveguide, in which

the coupling strength to the node depends on the width of the multimode waveguide[1]. The prop-

agation constants of different spatial modes can vary significantly due to the high core-cladding

index contrast. In Fig.2.1 taken from [1], the arrangement of the ring resonators and waveguides

for facilitating mode multiplexing is shown.

The Ring resonators are formed from a 450-nm wide waveguide. They are designed to support only

the fundamental TE mode with effective refractive index(Reff) of 2.46. The multimodal transfer

waveguide is tapered at several places. When the waveguide width corresponds to 450 nm, 930

nm, or 1.41µ, the effective indices of TE0, TE1 or TE2 modes respectively, match the effective

index of TE0 mode of the microring to the TE0, TE1 or TE2 modes in the multimode waveguide.

By adjusting the coupling gap and coupler length between microrings and waveguides, the inser-

tion loss for the desired mode and the power coupled to other modes can be minimized. All these

15

Figure 2.1: Selective coupling of the single-mode microrings to a specific spatial mode in multi-
modal waveguide. Reprinted with permission from [1]

features along with an integrated heater on top of each microring to tune the Microring resonances

to align to the WDM channels optimizes the performance of the whole device.

Looking at the bigger picture, each microring resonator can support 87 WDM channels over the

entire C-band(1530-1565nm) keeping the channel spacing as 50GHz. Luo et al demonstrated that

tapering the multimode-waveguide upto 2.37µ, 5 spatial modes can be supported. With the above

setup, potentially an amazing 4.35Tbps aggregate data rate can be supported.

2.4.3 Proposed Adaptive Multiplexing

In our proposed design we adopt the aforementioned WDM-compatible MDM arrangement

to design a high throughput and low power consuming photonic router. For our experiments we

used two modes each of the two wavelengths we used for communication. The respective MRRs

are turned on with the help of an electrical controller whose functional algorithm will be properly

described in chapter 3.

2.5 Communication Flow

The process of optical communication starts with the laser source producing the light which is

coupled with the waveguide on chip with the help of a silicon optical coupler. The Ring modulator

16

modulates the electronic signal from the core on to the appropriate channel. The multiplexer’s

job is to couple the modulated signal onto the desired wavelength and mode in the multimodal

transmission fibre. Data is then transmitted along the waveguide till the destination. The propoga-

tion path can be changed or switched by appropriate photonic switches along the path made by

the combination of MRRs and waveguides. At the destination the light signal is detected by the

photo-detector and is demodulated to feed the information to the destination processor core. The

whole process is depicted as a symbolic diagram in the following figure.

Figure 2.2: Communication flow in Silicon Photonics

2.6 Photonic Router

The proposed photonic router is a fully non-blocking 5×5 photonic router for NoC design.

A photonic router in a PNoC consists of a number of I/O ports, a switching fabric connecting

the input ports to the output ports, and injection/ejection ports connected to the local IP core via

the network interface(NI). Fig.2.3 shows a 2D-mesh PNoC architecture consisting of five-port

photonic routers. We zeroed on using a 2D mesh topolgy due to the same reasons that made them

popular in electronic NoCs. Their appropriateness to handle a large variety of work-loads and their

good layout compatibility with a tiled CMP chip[44] apply in photonic NoCs too.

2.6.1 Router Micro-architecture

The hybrid photonic router consists of mainly two circuits :-

1- Photonic circuit switching circuit 2- Electronic packet switching circuit The PNoC microarchi-

17

Figure 2.3: 2D PNoC architecture

tecture adopts a hybrid design. It combines a photonic switching fabric for circuit-switched bulk

data transmission and an electronic packet-swicthed network for distributed control through con-

trol packet transmission. Hence the term ’hybrid’ refers to the concept of combining electronic

and photonic components as well as to the idea of combining a packet-switched network and a

circuit-switched network.

This takes advantage of both the technologies i.e. photonic and electronic. Photonic technology

provides superior advantages in terms of low power, large bandwidth and high speed communica-

tion. On the other hand, electronic control technology offers flexibility to adopt packet-switching.

Packet switching requires buffering which is difficult to implement with photonic components.

The main objective of employing a hybrid scheme is to address the higher power consumption in

electronic NoCs, that scales up with the bandwidth[21].

The photonic interconnection network consists of MRR and waveguide based routers and links

to communicate large data packets. The electronic control network, comprising of an eletrconic

controller integrated with each photonic router controls the operation of the photonic network. In

this research we mainly focus on the photonic router micro-architecture rather than the electronic

18

controller. In the following subsections we discuss the detailed switching elements and router lay-

out. We will go through the infrastructure responsible for boosting the performance of the photonic

router.

2.6.1.1 Switching Fabric

A switching element in a fabric is composed of MRRs and waveguides as shown in Fig.2.4.

The switching fabric consists of a set of parallel and rectangular 1×2 switching elements unlike

2×2 conventional electrical switches where each 1×2 switching element serves the purpose of

parallel or orthogonal routing using fewer MRRs. We introduce in brief the working principles of

1×2 switching elements used in router micro-architecture.

Basic 1×2 Switching Element using MRR :-

(a) Reverse Switch(OFF State) (b) Reverse Switch(ON State)

(c) Rectangular Switch(OFF State) (d) Rectangular Switch(ON State)

Figure 2.4: MRR Switching. Reprinted with permission from [2]

The basic switching element of a photonic router is a micro-ring resonator. A MRR is a circularly

coiled waveguide which has the property of rotating the optical signal in the clock-wise direction.

During ’OFF’ state of MRR, optical signal with wavelength λon propagates from the input port

to the straight port(refer: Fig.3.8a and Fig.2.4c). When turned ’ON’ it couples the resonating

optical signal (indicated by arrow) in waveguide A and transmits it by coupling it to waveguide

19

B as shown in Fig.3.8b and Fig.2.4d. One can see that, in Fig.2.4d as the waveguide B is placed

orthogonal to the waveguide A, the MRR helps in turning the optical signal in the rectangular

direction. However it involves crossing of the two waveguides which may lead to loss due to

cross-talk while passing multiple optical signals. It also results in higher insertion loss. To reverse

the direction of propagation of the optical signal, one has to use combination of two rectangular

switching circuits resulting in two waveguide crossing points. So, in order to decrease the number

of crossing points of waveguides and usage of MRRs, a reverse parallel switching arrangement

is made as shown in Fig.3.8b. In this arrangement when the MRR is ’ON’, it helps in coupling

the optical signal from waveguide A to waveguide B in reverse direction. This mechanism makes

MRR an 1×2 switching element. With the help of these two types of switching arrangements, we

were able to reduce the number of MRRs being used while reducing the no. of waveguide crossing

points.

In the proposed scheme, we have incorporated WDM. Hence optical signal of multiple wave-

lengths can be coupled together through MRR. This will enhance the overall bandwidth of the

network communication. The fundamental difference between the two basic 1×2 switches is the

position of the two waveguides. The reverse switching element does not have any waveguide

crossing unlike the rectangular-switching element. The insertion loss per waveguide crossing is

0.12dB[36]. MRR needs a DC current to switch ON and it consumes power less than 20µW [36].

In the OFF state, there is negligible power consumption by the MRR [35]. The switching time of

the MRR is very small and it is 10ps in our casef.

Router layout :-

The 5X5 router layout which is adapted from [23], has been depicted in Fig.2.5. This uses suitable

placement of 16 identical MRRs along with various waveguides.The router has five bi-directional

ports, viz. East, West, North, South, and NI port. East, West, North, and South ports are connected

with other routers to form a 2D NoC whereas the NI port is connected to the network interface.

Each photonic router has a controller within NI for selecting wavelength and mode for optical sig-

nal transmission.The router can operate on multiple wavelengths simultaneously using WDM with

20

wavelength spacing equal to the free spectrum range of the MRR. As shown in Fig.2.5, there are

optical paths for each of the input-output combination. Complex routing in a 2D photonic layer

Figure 2.5: Logical layout of 5× 5 photonic router. Reprinted with permission from [2]

is possible due to MRR based switches and waveguide crossings. However, waveguide crossing

incurs optical insertion loss. Hence it’s important to design an efficient layout of MRRs in a pho-

tonic router with least number of waveguide crossings. The proposed 5 × 5 non-blocking router

consists of 14 waveguide crossings and 16 MRRs as in Fig.2.5 resulting in an optimized design.

Apart from that, there are 2 more MRRs within network-interface to facilitate MDM which is ex-

plained in the later sections. Insertion loss and crosstalk limit the scalability of the photonic router

[45][46]. Analytical results on number of MRRs and various performance parameters of photonic

21

router are discussed in detail in the later sections.

2.6.1.2 Network Interface

Use of WDM in photonic circuits offers limited performance gain because of its comaparatively

higher power consumption [1]. MDM in conjuction with WDM and TDM can provide potentially

larger performance gains and higher aggregate bandwidth [1]. Use of MDM technology does not

require increasing the number of waveguides which leads to fewer wave-guide crossings. As men-

tioned in Mode-Division-Multiplexing in chapter 2 by tapering a 2.37µ multimodal waveguide

upto 5 spatial modes can be supported. It also uses least area on chip and power. In this design

the Network-interface [NI] is deployed with WDM compatible MDM (de)multiplexing technique

which provides higher aggregate band-width.

Figure 2.6: MDM integrated Network-Interface

The NI comprises of electrical to optical(E/O) and optical to electrical(O/E) converter, adaptive

multiplexer and an electronic controller(Fig.2.6). The E/O converter and the O/E converter are

simply ring based modulators and receivers. The Adaptive multiplexer includes the mode locked

laser along with the MRR and waveguide arrangement facilitating (Fig.2.7) mode division multi-

plexing [1]. We have shown two MRRs for MDM as we are using two modes per wavelength in

our experiments. As we have mentioned in the previous section the electronic controller controls

the adaptive multiplexing too. It controls which MRR need to turn on in the MDM arrangement

22

Figure 2.7: Modelocked laser employing MDM

to send the message along the preferred mode. The electrical controller works on the basis of

algorithm depicted in Algorithm 1. The algorithm controls the wavelength and mode selection

mechanism during message passing as follows. When the route to be followed is empty i.e it is not

occupied by any other optical signal, the controller switches on MRR0 which selects wavelength

λ0 and mode TE0 transmitted by mode-locked laser for communication. When the route is occu-

pied by certain mode of a specific wavelength then with the help of time-division-multiplexing a

certain amount of time lag is incorporated while transmitting the next signal in a different mode so

that it won’t interfere in the transmission of the previous optical signal occupying the route.

Fig.2.8 illustrates how signals of different modes are transmitted with a time lag as determined

by the algorithm, hence facilitating mode-wavelength-time division multiplexing. All the signals

are carried by the same multimodal transmission waveguide with modulated signals coming from

a common single mode fibre. So while selecting the appropriate combination of wavelength and

mode it provides a time delay in turning on the corresponding multiplexing MRR. In our proposed

design we have taken this time lag to be approx. 15ps as the switching delay of MRR is 5-10ps.

23

Algorithm 1 Controller Algorithm for adaptive mode division multiplexing
procedure CORE1 WANTS TO SEND DATA TO CORE2

N = no. of signals transmitting fully or partially along the path
Control packet checks for the shortest availale path using electrical routing
if (N=0) then

Switch ON MRR0 with λ0

Send signal from Mode-Locked Laser
if (N=1) and (mode = TE0) then

Switch ON MRR1 with λ0

Send signal from Mode-Locked Laser with a (τ+pulse-width) delay
if (N=2) then

Switch ON MRR0 with λ1

Send signal from Mode-Locked Laser with a 2(τ+pulse-width) delay
if (N=3) and (mode = TE0) then

Switch ON MRR1 with λ1

Send signal from Mode-Locked Laser with a 3(τ+pulse-width) delay

Figure 2.8: Black pulse=TE0 of λ0, red pulse=TE1 of λ0, green pulse=TE0 of λ1, blue pulse=TE1

of λ1

Timing diagram of TDM integrated Mode-Division-Multiplexing

2.7 Routing Algorithm

A packet switched 2D mesh electrical circuit acts as the control circuit for the photonic switch-

ing fabric. An electronic controller is the fundamental component of the 2D mesh electrical circuit.

24

There is one electronic controller corrsponding to each router in the photonic circuit. It has two

major functions. The first is to set up the path channel from source to destination before the mes-

sage is transmitted. Second is to configure the ring-resonators corresponding to the (de)modulator

and (de)multiplexers to facilitate adaptive multiplexing. Photonic transmission networks are cir-

cuit switched networks, so a dedicated communication channel needs to be established before the

actual communication takes place.

The electronic controller sets up the path between the source and the destnation nodes in the fol-

lowing way. As soon as the destination address of the message is known the source controller

sends a small control packet initially to the destination. The control packet is routed according to

the routing algorithm reserving the photonic path for the communication to follow. Among several

routing algorithms we chose the adaptive X-Y routing algorithm as the standard routing algorithm

for our experiments. Light always propagates in a straight line without any interference. In order to

change the direction of propagation by 90◦ or 180◦ we need to turn on the MRR acting as switches

as described previously. So we make sure that we transmit messages along a straight direction

as much as possible without turns. It ensures lesser power consumption during coommunication.

Hence, X-Y routing is the appropriate algorithm to be applied in a 2D mesh topology. When mes-

sage is redirected along the shortest X-Y or Y-X path, it requires turning on only one MRR for a

fraction of a second consuming less power during transmission.

25

Figure 2.9: Illustrating adaptive X-Y routing between ’Source’,’Destination 1’, ’Destination 2’ and
’Destination 3’

Fig 2.9 represents a 4×4 2D mesh. We can see that in order to transmit data from Source(Node

6) to Destination1(Node 4) & Destination3(Node 14), the direction of propagation is along Path1

and Path2 respectively. The Algorithm states that if the destination node is along a straight line

path from the source node(same x or y co-ordinate), then the controller must wait till any of the

channel along the straight line path to be free before transmiting. For other destination nodes

e.g Destination2(node 12) in Fig 2.9, Path3 or Path4 may be chosen according to availability as

it involves turning on one MRR for bending during propagation. In the most unlikely case of

unavailability of a mode channel along these two shortest paths, a random selection method is

applied to select a path with two turns and so on.

Using this algorithm, if the path(in our case a certain mode of a certain wavelength) is success-

fully set up, an acknowledgement packet is sent back to the source. Upon receiving the acknowl-

26

edgement the message transmission begins. After the message tramsmission ends, a control packet

is sent to free the reserved channel in order to be used by other messages. In case the path-setup

packet is not able to set up the whole path and is dropped owing to congestion. Another packet can

be sent in the reverse direction backtracking the path reserved by the prevous packet. It releases

the reserved hops on the path and notifies the source controller to look for an alternative channel.

2.8 Laser Multiplexing in 2D & 3D Photonic Network-on-Chip

The perviously discussed PNoC uses on-chip lasers. Each core is served by one on-chip laser.

However, Laser is found out to be a power hungry photonic component [25]. In fact laser power

consumption is up to 50% of total network power consumption in PNoC [25]. This motivates us to

design PNoC with reduced laser power. we propose a novel sandwich layered approach to design

a 3D PNoC architecture that is able to reduce no of hops, cross over points, and no of laser sources

using multiplexing techniques. The 3D hybrid PNoC uses our proposed high performance 5X5

photonic routers incorporating MDM along with WDM and TDM as explained in the previous

section. As shown in Fig.2.10, the multiple electronic and photonic layers for building a 3D ar-

chitecture are connected with each other by through-silicon-vias(TSVs). The proposed multilayer

sandwiched architecture uses TSVs for communication between the laser layer and the network

layers. TSVs have very small cross-sectional diameter(4um-10um) and extremely low delay(20 ps

for a 20 layer 3D stack) [47]. Both the top and the bottom layers are network layers and the middle

sandwiched layer is the Laser layer.

In the proposed multilayer design, each of the network layer consists of a 2D mesh network

of 16 cores interconnected by 16, 5X5 non-blocking photonic routers as described in section 2.2.

Apart from that therre are multimodal waveguides with two channels incorporating WDM and four

4X1 MUXs each dedicated to each of the 4 routers. The Laser layer consists of several waveguides

which act as channels to relay the information from the source router to the destination router

through the mode-locked laser in the same layer, selected by the corresponding 4X1 MUX in the

network layer. Each laser serves four routers contrary to one laser per router as in almost all

27

Figure 2.10: Multilayer PNoC with Laser Multiplexing. Reprinted with permission from [3]

Photonic NoC architectures recently proposed.

2.8.1 Mechanism and Control

If a source core ’s’ wants to send the message to the destination core ’d’, it first sends a READY

signal to the corresponding 4X1 multiplexer (MUX) to check its availability. As it follows the

circuit switching mechanism so the route to be followed from source to destination is figured out

as soon as the READY signal reaches the MUX. After receiving the acknowledgement from MUX,

the core sends the message to the mode locked laser through MUX via TSV. The mode locked laser

is controlled by the electronic controller present in the router. It adaptively selects the wavelength

and the mode on which the message is to be relayed until the destination core. The controller

works on the algorithm as depicted in Algorithm I. To relay messages from the top to the bottom

layer and vice versa we have one MRR in the laser layer corresponding to each router which helps

in tapping the message as it is relayed in the common waveguide channel from the corresponding

mode locked laser. Fom the above arrangement we can see that with only four lasers we are able

to serve 32 cores simultaneously.

28

2.9 Experiments & Results

2.9.1 Experimental Methodology

IPKISS [48] platform has been used for the design and simulation of the photonic router. The

tool allows the photonic component layout design, virtual fabrication of components in different

technologies, physical simulation of components, and optical circuit design and simulation. We

custom-designed some photonic components such as MRR, waveguide, mode-locked laser, tapered

waveguide, and photodiode required for the router. After checking the design rules, we proposed

the design of Photonic NoC in this work. In order to validate the proposed micro-architecture we

built a cycle accurate network simulator with required infrastructure to run both synthetic work-

loads and PARSEC benchmark traffic.

2.9.1.1 Microarchitecture Simulation on IPKISS

We optimized the desired parameters of the optical components and validated them prior to

using them in the experiments. The design parameters adopted to carry out various experiments

are depicted in TABLE 2.1. We restricted the width of the multimodal transmission waveguide

such as to support two optical modes TE0 and TE1 along with multiple wavelengths. Though

with varying width the wavwguide can support more no. of modes, but we’re considering modes

TE0 and TE1 as the proposed MDM scheme supports 2 modes (Fig.2.7).Using the fundamental

optical components, we built the router in IPKISS and performed the physical simulation.

29

Table 2.1: Design parameters for experimental setup. Reprinted with permission from [2]

Design Parameters Value

MRR diameter(D) 5µm

Waveguide(MRR) width 1.5µm

Photodetector Area(Adet) 20µm2

Refractive index Of waveguides 2.46

Pulse-width of Optical Signal 10ps

Frequency(mode-locked laser) 10GHz

Wavelength 1547.5nm and 1550nm

Virtual fabrication of various optical components e.g the MRR(Fig.2.11a) were done taking

into consideration the design rules. MRRs and waveguides were integrated to virtually fabricate

the router. After fabrication, we carried out simulation using CAMFR [48]. It provided the re-

fractive index profile and optical transmission profile of the fabricated design. Uniform refractive

index across the router is a must for ripple free photonic transmission. After testing the uniformity

of refractive index across the router, we simulated the router in CAPHE [48]. CAPHE is an op-

tical circuit simulator for time-domain and frequency-domain analysis. It is also used to evaluate

insertion loss in an optical circuit. The insertion loss in the MRR was found to be 0.12dB. Each

MRR can be tuned to multiple wavelengths. The proposed router takes into account the wave-

lengths of 1547.5nm and 1550nm(Fig.2.11b) for MRR switching as these are the most suitable

wavelengths(in terms of performance) for silicon photonic waveguides [49].

2.9.2 Microarchitecture validation under traffic

In order to validate the proposed router microarchitecture we built a systemC based cycle ac-

curate network simulator inspired from widely used Noxim simulator[50]. We implemented the

MDM+WDM+TDM based photonic router along with circuit switching scheme in the simulator

30

(a) Reverse Switch(OFF State) (b) Reverse Switch(ON State)

Figure 2.11: MRR Switching

called Photonoxim. We took 2D mesh as the network topology to study the behavior of the network

architecture under various kinds of synthetic traffics. We also validated our micro-architecture un-

der PARSEC benchmark traces. We fixed the PNoC chip frequency at 1GHz. We compared our

circuit-switched proposed PNoC with packet-switched 45nm electronic NoC in a 2D mesh topol-

ogy for same amount of simulation cycles under various kind of synthetic as well as benchmark

traffics.

2.9.3 Comparitive Analysis and Results

A comparative analysis of the proposed router with the most recent designs such as the λ-

router, crossbar router, cygnus router [23], and the columbian router [51] was carried out. We

analyzed important parameters of all these routers like the required number of MRRs, optical

insertion losses, and power consumptions. We adopted the information on crossbar router from

[23]. 2D topology based NoCs generally require 5×5 routers. But λ-router does not support odd

number of input and output ports. Hence we have considered a 6×6 λ-router in which one pair of

input output ports remain idle.

31

2.9.3.1 Number of MRRs

The number of MRRs used in a router microarchitecture determines the area overhead of router.

Reducing the number of MRRs will lower the chip area and also decrease the resultant energy

consumption. This will eventually reduce the chip cost. We compared the number of MRRs used

to design each of the photonic routers. The proposed router uses 18 MRRs [16 for routing and 2

LR CR CB JR PR

16

18

20

22

24

26

28

30

Figure 2.12: Comparing number of MRRs/Router for different PNoC architectures; LR=λ-Router
CR=Columbian Router, CB=Crossbar Router, JR= Ji-router, PR=Proposed Router. Reprinted with
permission from [2]

for MDM]. It is 40% lesser than the λ-router. Fig.2.12 represents the number of MRRs used in

each of the routers. We have denoted router proposed in [33] as Ji-router for simplicity. The graph

clearly shows that the proposed router outperforms all its counterparts except Ji-router in-terms of

number of MRRs. Though Ji-router uses fewer number of MRRs than the proposed architecture,

it is not scalable because of its higher insertion loss due to more no. of waveguide crossings and it

does not support higher throughput performance.

32

2.9.3.2 Photonic area Overhead

There are several optical components involved in silicon photonics NoC. These includes mod-

ulators, waveguides, switches, filters and photodetectors. The area occupancy of a given photonic

NoC can be calculated as the sum of the area of each of the individual component on the silicon

die. For our analysis we assume the following :-

1- All the ring resonators are of the same size

2- The ring modulators in the transmitter are made up of one active ring resonator

3- The (de)multiplexers consist of two active ring resonators(as for our experiments we have taken

two modes into consideration)

4- The reciever includes a passive ring resonator based filter and a photodetector.

We used the area overhead calculation formula proposed by Abadal et al in [52]. According to it

the area of a given PNoC architecture given the previous assumptions can be approximated as:

A ≈ NringAring +NdetAdet +
∑
i

Awg,i (2.1)

Here, A represents area of chip occupied by photonic components, Nring represents total number

of MRRs, Aring is the area of each MRR, Ndet is the total number of photodetector, Adet rep-

resents area of each photodetectors, and Awg is area of each waveguide. Aring can be calulated

using equation 2.2. We took the parameter values mentioned in Table.3.1 for calculating the area

overhead.

Aring =
πD2

4
(2.2)

Table 3.1 shows the design parameters used for this analysis. We have taken into account

ATAC[53], CORONA[29], DCOF[54] and P-MESH[22] along with the proposed design for area-

overhead analysis. Fig.2.13 shows the area footprint of each configuration evaluated as a function

of the number of cores. It has been normalized to the area of a 400 mm2 chip. From the graph, it is

clearly evident that the proposed PNoC architecture is the most scalable in terms of area evolution

33

50 100 150 200 250 300

0

1

2

3

4

No. of cores

A
re

a
no

rm
al

iz
ed

to
40

0
m

m
2

ATAC
CORONA

DCOF
P-MESH

Prop PNoC

Figure 2.13: Area overhead of different PNoC architectures with varying sizes

as compared to all others. The number of modes which we can support in a multimode fibre for

increasing the aggregate bandwidth depends on the width of the transmission waveguide. So with

increase in the no of modes, the area overhead increases too, but we can always make a trade off

between the area overhead and the performance we seek.

2.9.3.3 Average Throughput

Throughput is a parameter that measures the rate at which message traffic can be sent across a

communication network. According to [55] it is defined as:-

Average Throughput =
(number of messages transmitted) ∗ (message length)

(number of IP blocks) ∗ (total time)

(2.3)

In order to validate the performance of the proposed PNoC against other NoC architectures, we

simulated some synthetic traffics and PARSEC benchmark applications in Photonoxim.

Comparison between Electrical NoC and Proposed PNoC:-

34

Random
Traffic

Transpose1
Traffic

Transpose2
Traffic

Bitreversal
Traffic

Butterfly
Traffic

Shuffle
Traffic

0.2

0.4

0.6

0.8

1
A

ve
ra

ge
T

hr
ou

gh
pu

ti
n

te
rm

s
of

fli
ts

/c
yc

le
/c

or
e

Electrical Packet Switched NoC
Proposed PNoC

Figure 2.14: Comparison of Average Throughput between Electrical noC and Proposed PNoC with
various synthetic traffics

As mentioned before for transmission of messages we adopt WDM+MDM+TDM based circuit

switching photonic circuit. Since electrical signals are fundamentally limited with their bandwidth,

a larger capacity can be achieved only by increasing no of parallel wires between the source and

destination. With the help of mode division multiplexing in photonic circuits we can have multiple

channels with the help of multiple modes and wavelengths. From the analysis it is quite clear that

from the average throughput point of view electrical NoCs are easily trumped by Photonic circuits.

We still ran some synthetic traffics both through a packet switching 45nm electrical NoC and the

proposed PNoC. We kept the number of simulation cycles, packet injection rate and the no of cores

same for both experiments.

Fig.2.14 represents the average-throughput/cycle/core for different types of synthetic traffics.

From Fig.2.14 it is quite evident that the average throughput of proposed PNoC is about 4 times

better than that of electrical NoCs. It is not only for the fact that there are more parallel chan-

nels(modes) but also that the average latency of the proposed PNoC is less than the traditional

electrical NoC. For testing under some real world traffic we built the infrastructure in both NOXIM

and PHOTONOXIM to run some PARSEC benchmark applications. Fig.2.15 reiterates the fact that

35

bla
ck

sch
ole

s-s
im

lar
ge

bla
ck

sch
ole

s-

sim
med

ium

bla
ck

sch
ole

s-

sim
sm

all

bo
dy

tra
ck

-si
mlar

ge

ca
nn

ea
l-s

im
med

ium

de
du

p-s
im

med
ium

fer
ret

-si
mmed

ium

fluid
an

im
ate

-si
mlar

ge

fluid
an

im
ate

-

sim
med

ium

fluid
an

im
ate

-

sim
sm

all

sw
ap

tio
ns

-si
mlar

ge

vip
s-s

im
med

ium

x2
64

-si
mmed

ium

x2
64

-si
msm

all
0.2

0.4

0.6

0.8

1
A

ve
ra

ge
T

hr
ou

gh
pu

ti
n

te
rm

s
of

fli
ts

/c
yc

le
/c

or
e

Electrical Packet Switched NoC
Proposed PNoC

Figure 2.15: Comparison of Average Throughput between Electrical noC and Proposed PNoC with
PARSEC benchmark

we inferred from running synthetic traffics earlier. This proves Photonic NoCs to be the biggest

contenders in replacing electrical NoCs for high throughput on-chip communication.

Throughput Comparison of proposed PNoC architecture vs other PNoC architectures:-

Several PNoC architectures have been proposed in the recent past[22][27][26]. But none of them

have demonstrated detailed simulation results except [56].

The authors in [56] have shown significant improvements over other recently reported PNoC

architectures like CORONA[29], Firefly[30], [22]. Because of its detailed description on simu-

lation and analysis, we are taking into account [56] for a fair comparison. In [56] uses WDM

technology with a WDM degree1 of 32 and provides results for a 8 × 8 CMP. As Meteor is based

on crossbar architecture which is different from the proposed PNoC, we need to consider a differ-

ent throughput metric for a fair comparison. Crossbar architectures in general use more number of

photonic components (ref: Table 2.2) in order to provide higher bandwidth. But larger number of

36

photonic components leads to larger area over head.

Table 2.2: Microring resonator requirement for a 8X8 CMP

Component Meteor Corona Firefly Optical Mesh Proposed PNoC
Transmission 8192 262144 32768 294912 1408
Reservation 1024 2048 1024 6400 0
Arbitration 1024 2048 1024 6400 0

Clock 4 64 16 64 64
Total 10244 266208 34832 307776 1472

To have a fair analysis, we introduce two new metrices namely 1) Throughput/photonic-area

and 2) bandwidth/photonic-area.

Throughput/photonic-area comparison:-

We used normalized-throughput/photonic area-overhead as the metric for comparing the proposed

PNoC with Meteor architecture where,

Throughput =
Actual throughput

Ideal Throughput ∗ PhotonicArea
(2.4)

From Table.2.2(Courtesy:-[56]), we can get the MRR requirement of various 8 × 8 core photonic

architectures. We calculated the area overhead of different PNoC architectures from the MRR

requirement information as mentioned in Table.2.2 and normalised it for the plot to fit in. We

implemented some synthetic traffics and PARSEC benchmark traffics to evaluate the proposed

architecture against Meteor. From Fig.2.16 and Fig.2.17, it is clearly evident that the proposed

PNoC trumps Meteor in almost all the cases. The variations in throughput for various traffics are a

bit different depending on the type of application and traffic. But in each case the proposed PNoC

fares better than the Meteor PNoC.
1No of wavelengths acting as channel

37

Random
Traffic

Transpose
Traffic

Butterfly
Traffic

Shuffle
Traffic

0.2

0.4

0.6

0.8

1

T
hr

ou
gh

pu
t

Meteor NoC
Proposed PNoC

Figure 2.16: Throughput(Synthetic Traffic): METEOR NoC vs Proposed PNoC

bla
ck

sch
ole

s

bo
dy

tra
ck

ca
nn

ea
l

de
du

p
fer

ret

fluid
an

im
ate

sw
ap

tio
ns vip

s
x2

64

0.2

0.4

0.6

0.8

1

T
hr

ou
gh

pu
t

Meteor NoC
Proposed PNoC

Figure 2.17: Throughput(PARSEC Benchmark): METEOR NoC vs Proposed PNoC

38

Bandwidth/Photonic-area comparison:-

The comparison metric bandwidth/area-overhead quantifies the performance in terms of design

efficiency. The crossbar architecture performance can be boosted with an increase in the no. of

photonic components. But a high performance scalable architecture is necessary to cater to the

needs of future generation CMPs. The proposed PNoC architecture can provide multiple transmis-

sion channels within the same multimodal waveguide facilitating higher bandwidth with a smaller

footprint as compared to other proposed PNoC architectures.

Meteor
PNoC

Proposed
PNoC

1.6

1.8

2

2.2

Figure 2.18: Bandwidth/Photonic area(Meteor PNoC vs Proposed PNoC)

2.9.3.4 Energy Consumption

The total energy consumption in a PNoC architecture is the sum of power consumed by the

electrical controller and the power dissipated in the photonic switching fabric. The total power can

be expressed as follows:

EPNoC−total = EElectrical + EOptical (2.5)

The total optical energy over a full network can be governed by Equation 2.6.

39

EOptical = ELaser +
N∑
j=1

[(EE/Oi
+ EO/Ej

) +Ki × EM] (2.6)

Here, ELaser is the total laser energy consumption over the full network cycles, Ki denotes

total number of MRR switched on for packet ’i’, and EM represents energy consumed to swicth

on an MRR. ELaser and EM are given by Equations 2.7 and 2.8 respectively.

ELaser =
N∑
j=1

PLaserj × Tj (2.7)

EM = PM × TM (2.8)

Tj in Equation 2.7 refers to total ON time of Laserj whereas TM represents time to switch on

an MRR.

In order to compare different photonic routers we need to compare the energy consumption per

bit of communication. Followings are the assumption to determine the total power consumption :-

1) We take E/O and O/E conversion time as 50 ps. Though we can take a lesser time but they

will be bottlenecked by the electrical components of the control circuit. So we took a longer time

duration in order to compensate for that.

2) ON duration for Mode (de)multiplexing MRR: 20ps

3) ON duration for Switching MRR: 20ps

4) Energy consumption in E/O and O/E : 2*[50ps * 20µ W] = 2.0 fJ

5) One MRR turning on each for multiplexing and demultiplexing: 2* [20ps * 20µ W] = 0.8 fJ

6) One MRR switching in XY: 20ps * 20µ W = 0.4 fJ

7) Total energy consumption in communicating one bit of data: 2.0+0.4+0.4=3.2 fJ

Laser is the most significant power consuming unit in a PNoC architecture. While ensuring

the power of the laser we have to take into consideration all the losses that an optical signal incurs

40

while propagating from source to the destination. We have to ensure a reasonable strength of

the signal at the receiver end after signal degradation. The losses include on-chip coupling loss,

MRR coupling loss and pass loss and waveguide bending and propagation loss. The various loss

values and the photodetector sensitivity is given in Table 2.3. We won’t be considering waveguide

propagation loss as it is negligible.

Table 2.3: Optical losses. Reprinted with permission from [2]

Parameters Value Units

MRR drop loss 1 dB

MRR pass loss 0.01 dB

Waveguide bending loss 0.15 dB/bend

(De)modulation loss 3 dB

On-chip coupling loss 1 dB

Photodetector sensitivity -30 dBm

Laser efficiency 8 %

Loss in dB = 10 log
Pin

Pout

(2.9)

Pin = Pout ∗ 10
Loss in dB

10 (2.10)

For the whole trasmission path, in Equation.2.9 Pin is the laser power and Pout is the receiver

power. The photodetector sensitivity is -30 dBm = 1µ W. From the router layout, in the worst case

scenario on an optical path there will be 16 waveguide bendings, 3 drop MRRs, 42 pass MRRs(for

a 8×8 network), one MRR each for modulation and demodulation. After calculations and taking

into consideration the worst case scenario, in a 8×8 mesh network the laser power needed to trans-

41

Random
Traffic

Transpose1
Traffic

Transpose2
Traffic

Bitreversal
Traffic

Butterfly
Traffic

Shuffle
Traffic

0

20

40

60

80

100

E
ne

rg
y

C
on

su
m

pt
io

n(
in

tim
es

)
Electrical Packet Switched NoC

Proposed PNoC

Figure 2.19: Energy Consumption(Synthetic Traffic): Electrical noC vs Proposed PNoC

mit a signal from source to destination comes to 239.2875 µ W.

Enercy Consumption Comparison of Electrical NoC vs Proposed PNoC :

The electrical global control and data wires consume significant power during signal communi-

cation and arbitration. In comparison to components used in electrical NoC, optical components

consume significantly less power. As we haven’t taken into consideration the electrical arbitration

power consumption in our proposed PNoC, it was justified not to let consider the arbitration power

consumed in an electrical NoC while comparing the simulation results. We only measured the en-

ergy consumed during communication of the message packets. With a fixed packet injection rate

and simulation cycles, we ran several synthetic as well as PARSEC benchmark application traffic

through both electrical NoC and proposed PNoC. We plot the power consumed by the electrical

NoC normal to the power consumed in the proposed PNoC for all the traffics. From Fig.2.19 and

Fig.2.20 , it is clearly evident that the energy consumed in the proposed PNoC is about 55X-65X

less than the electrical NoC under most of the traffic conditions.

Energy Consumption Comparison of proposed PNoC architecture vs other PNoC architec-

tures:-

The other reported works on photonic router [23][33][51][34] lack details on electrical controller

42

bla
ck

sch
ole

s-s
im

lar
ge

bla
ck

sch
ole

s-

sim
med

ium

bla
ck

sch
ole

s-

sim
sm

all

bo
dy

tra
ck

-si
mlar

ge

ca
nn

ea
l-s

im
med

ium

de
du

p-s
im

med
ium

fer
ret

-si
mmed

ium

fluid
an

im
ate

-si
mlar

ge

fluid
an

im
ate

-

sim
med

ium

fluid
an

im
ate

-

sim
sm

all

sw
ap

tio
ns

-si
mlar

ge

vip
s-s

im
med

ium

x2
64

-si
mmed

ium

x2
64

-si
msm

all

0

20

40

60

80
E

ne
rg

y
C

on
su

m
pt

io
n(

in
tim

es
)

Electrical Packet Switched NoC
Proposed PNoC

Figure 2.20: Normalized Energy Consumption(PARSEC Benchmark): Electrical noC vs Proposed
PNoC

power analysis. Hence we have compared only the power consumption across the photonic switch-

ing fabric for a fair analysis. In the following, Prouter represents power consumed by the photonic

switching fabric. We are not considering the λ-router in the power analysis due to unavailablity of

data provided in the literature.

We analyzed the three other routers [23][33][51][34] as a part of 2D network and studied their

impacts at network level. We analytically determined the energy consumption of the stated three

photonic routers in a 8×8 2D mesh NoC using dimension order routing scheme. We evaluated the

average energy consumption per optical path in the network [Epath] and also the average energy

consumption per router [Erouter]. We calculated Epath using equation(1). Here Ej represents the

energy consumed on j-th path when the bandwidth is ’B’. ’P’ represents the total number of pho-

tonic paths in the NoC. Erouter is calculated using equation(2) where ’R’ is the average number of

photonic routers in all the optical paths.

Epath =

∑P
j=1Ej

P ×B
(2.11)

43

CR CB CY PR

4

6

8

10

Figure 2.21: Comparison of average energy consumption per optical path, in fJ/bit. Reprinted with
permission from [2]

Erouter =
Epath

R
(2.12)

Network-level analysis shows that the proposed router consumes the lowest average energy per

optical path, 3.2fJ/bit. It is 66.67% less than the crossbar router, 61.3% less than Columbian router

and 33.3% less than Cygnus router as shown in Fig.2.21. According to network level analysis

in[23], in the proposed router based 8 × 8 2D mesh network, the average no. of routers in an

optical path is 6.315. Then from equation Eq.2.12 the average router energy consumption comes to

be 0.51fJ/bit, which is 61.1% less than the crossbar router, 66.45% less than columbian router and

32.9% less than the cygnus router as shown in Fig.2.22. A deeper analysis shows that the maximum

energy consumption of the proposed router is also 3.2fJ/bit irrespective of network size. As with

dimension order routing the maximum no of MRRs to be turned on in order to transmit messsages

over a mesh network is closer to one. So the power consumption remains almost constant.

It was difficult to compare the simulation results of proposed PNoC architecture under synthetic

and real benchmark traffics with other PNoC architectures such as Meteor and Corona due to

lack of required information. As Meteor and Corona utilize electrical NoC both for local tranfers

and arbitration and the task distribution percentage is not mentioned in the corresponding papers

for different traffics, it was difficult to figure out the normalization criteria and the actual energy

consumption in photonic communication in each case.

44

CR CB CY PR

0.5

1

1.5

Figure 2.22: Comparison of energy consumption per router in fJ/bit. Reprinted with permission
from [2]

The maximum power consumption of the proposed router based network on a given optical path

is constant while using dimension order routing, regardless of the network size. The placement

of the MRRs in the router takes care of the fact that no MRR is turned ON to transmit a message

along a straight line. The router needs to switch on one MRR when a message enters the network

from the NI, turns from a row to a column (and vice-versa), or exits the network to the NI. In

the worst case, three MRRs need to be powered on to route a message in a network irrespective

of the network size. This makes the proposed PNoC highly scalable without worrying about the

power consumption in additional routers on a longer path. Fig.2.23 presents the average power

consumption per optical path in NoC of different sizes.

2.9.3.5 Optical Insertion loss

Insertion loss plays a significant role in the amount of power consumption in a PNoC. Three

major factors which contribute towards insertion loss are :-

1- Propagation loss- Signal power loss during propagation through waveguide.

2- Coupling Loss- It occurs during coupling of signals to and from MRRs.

3- Loss occuring due to waveguide crossing and bending.

Insertion loss of a router determines its feasibility and also the power required by the NI to

transmit, and receive optical singals. We took MRR coupling loss equals 0.5dB[57]. A single

45

4X4 6X6 8X8 10X10

2

4

6

8

10

12

NoC size(total no. of cores)

E
ne

rg
y/

Pa
th

in
fJ

/b
it

Proposed Router
Cygnus Router

Columbian Router
Crossbar Router

Figure 2.23: Average energy per Path for different PNoC sizes. Reprinted with permission from
[2]

waveguide crossing introduces an insertion loss of 0.12dB[23]. The waveguide propagation loss

is 0.17dB/mm. As the hop length is of the order of µ m, so it is negligible as compared to other

losses.

Insertion loss varies across input output pairs in a router. Hence we evaluated the best-case,

average-case, and the worst-case insertion losses in all the routers. The results are shown in

Fig. 2.24. It is clear from the figure that the proposed router has lowest insertion loss for all

other cases except Cygnus router for which the insertion loss is same due to similar router lay-

out. Compared to crossbar router, the proposed router has 61% lesser best-case loss, 43% lesser

average-case loss, and 28% lesser worst-case loss. As the layout is based on the cygnus router

layout, so the insertion loss for both the roters are same. In all the routers mentioned only loss dur-

ing communication is taken into consideration. Losses are also encountered while modulating and

multiplexing too. In mode division multiplexing the main cause of signal degradation is crosstalk.

46

Columbian
Router

Crossbar
Router

Ji-Router Cygnus
Router

Proposed
Router

0

2

4

6

8

10 Worst case
Average Case

Best Case

Figure 2.24: Insertion loss per router in dB. Reprinted with permission from [2]

To reduce crosstalk we have to increase the coupling gap between multiplexing MRRs and trans-

mission waveguide but it is done on the expense of performance. According to [1], it accounts for

a very low(<1.4dB) power penalty.

2.10 Chapter Summary

The rising density of cores in the chip-multiprocessors era has reached a stage where widespread

adoption of high performance PNoC is inevitable to facilitate the large demand for communication

band-widthwith with low power consumption. The thesis implements a novel scalable, low-power,

WDM- compatible mode division multiplexed, 5× 5 non-blocking high performance MRR based

photonic router.

We proposed a hybrid PNoC architecture which comprises of:-

1- a circuit switching photonic circuit for bulk data transmission

2- a packet switching based electronic control circuit for path set-up, (de)modulation and (de)multiplexing.

We designed a cycle accurate circuit switching simulator PHOTONOXIM, to validate the perfor-

mance of the proposed PNoC under various traffic patterns. This chapter broadens the field of

Silicon Photonic NoCs by introducing MDM along with WDM and TDM for the first time to in-

47

crease the bandwidth about four times than the previous best reported results. By using minimal

resources leading to a smaller footprint, it gives an insight into what the future NoC technologies

have in store. The proposed design overpowers the traditional 45nm electrical NoC in almost every

respect by providing a 4× boost in terms of bandwidth and a 55×-60× less power consumption

depending on the traffic. As compared to other Photonic routers, the proposed router provides

almost 3 times higher throughput. The proposed hybrid router consumes 33.3% less energy per

optical path and 32.9% less energy per router than the best reported results under uniform network

traffic.

Laser is the most power hungry component in a PNoC. We proposed a laser-multiplexing scheme

in a 3D PNoC approach to further enhance the energy savings.

As silicon photonic components are susceptible to temperature change, further research is required

to study the behavior of the PNoC under various traffics with respect to temperature variations on

chip. The next chapter introduces a novel scheme to address this challenge.

48

3. CROSS-LAYER DYNAMIC THERMAL MANAGEMENT IN PNOC*

3.1 Why Thermal Management?

1Microring resonators (MRRs) and waveguides are the basic building blocks of a PNoC. MRRs

are used as modulators/demodulators at the source/destination node. MRRs also perform photonic

switching operations to route an optical signal in PNoCs. However, photonic components and

especially MRRs are extremely susceptible to thermal fluctuations. Fig.3.1 depicts the impact of

thermal variation on MRRs. MRRs R1-Rn have been designed to resonate on wavelengthsn λ1-λn

respectively at temperature T1. As the temperature increases, due to the resulting variations in

refractive index, each MRR now resonates with a different wavelength towards the red end of the

visible spectrum (i.e., red-shift). This red-shift is shown in the figure where, at temperature T2,

MRR Ri will now be in resonance with λi−1. This phenomenon reduces transmission reliability

and results in wastage of available bandwidth, e.g., MRRs are unable to read or write to wavelength

λn at temperature T2.

Figure 3.1: Impact of thermal variations on MRRs. Reprinted with permission from [4]

Maintaining a uniform temperature across all the MRRs is a must for reliable data transmission

in PNoCs. But thermal fluctuations and gradients are common in CMPs. 3D-ICE[58] simulations

of PARSEC[5] and SPLASH-2[6] benchmarks indicate a 15-20K peak thermal gradient in a 64-

1Adapted with permission from [7] & [4]

49

core CMP as shown in Fig.3.2. Such a huge gradient causes a mismatch of resonant wavelengths

of MRRs, leading to unreliable data transmission and PNoC performance degradation.

3.2 Related Work

Recently, few techniques have been proposed to address thermal issues in PNoCs. At the

device-level, a trimming mechanism is proposed in [59] that induces a blue shift (decrease) in the

resonance wavelengths of MRRs using carrier injection. A tuning technique was demonstrated

in[60] where a redgshift (increase) in the resonance wavelengths is induced by using a localized

heater. Further several athermal photonic devices have been presented to reduce the localized

tuning/trimming power in MRRs. These design time solutions include using cladding to reduce

thermal sensitivity [61] and using heaters as well as temperature sensors for thermal control. While

these device-level techniques are promising, they either possess a high power overhead or require

costly changes in the manufacturing process (e.g., much larger device areas) that would decrease

network bandwidth density and area efficiency. At the system-level, a thread migration framework

was presented in[62] to avoid on-chip thermal threshold violations and also reduce trimming/tuning

power for MRs. In[63], a ring aware thread scheduling policy was proposed to reduce on-chip ther-

mal gradients in a PNoC. A proportional-integral-derivative (PID) heater mechanism was proposed

in[7] that minimizes the effect of thermal variation on PNoCs performance and power. However,

all these system-level techniques do not consider the impact of run-time workload variations and

also result in considerable power performance overheads.

Our goal in this paper is to minimize thermal variations with reduced localized thermal tuning

and trimming in PNoCs, thereby reducing key overheads and ultimately easing the adoption of

PNoCs for future CMP systems. We propose a novel low-power thermal management framework

that integrates an adaptive heater mechanism at the device-level and a dynamic thread migration

scheme at the system-level. This chapter makes the following contributions:

• A novel temperature island framework with adaptive heater based MRR to handle thermal

gradients across PNoC;

50

Figure 3.2: Thermal Distribution: (a) a 64-core CMP, (b) Peak thermal gradient across a 64-core
chip running 48-threaded PARSEC [5] and SPLASH-2 [6] benchmarks. Reprinted with permission
from [4]

• An island of heaters based dynamic thread migration (IHDTM) scheme in conjunction with a

support vector regression based temperature prediction mechanism. Such a scheme nullifies

on-chip thermal threshold violations and also reduces trimming/tuning power for MRRs;

• The evaluation of the proposed framework on a 64-core CMP with a system-level simula-

tor shows: (a) 70% improvement in trimming power dissipation over the most recent prior

work, (b) 64.1% improvement in total power dissipation compared to a state-of-the-art ther-

mal management technique, (c) 13.72K improvement in peak temperature, and (d) these

improvements are achieved while maintaining full network-bandwidth.

3.3 IHDTM: Islands of Heater-based Dynamic Thermal Management

The proposed IHDTM framework enables variation-aware thermal management by integrating

device-level and system-level enhancements. A high-level overview of the framework is shown in

Fig.3.3. At the device-level, the entire PNoC layer is divided into k regions or islands, namely:

TIS1-island, TIS2-island, TIS3-island, and so on. All MRRs in the TISi-island (i ≤ k) are designed

to operate at TISi; similarly, MRRs in the other islands are designed to operate at their respective

temperatures. We use our device-level technique to overcome small deviations (±10K) in TISi

whereas the system-level technique is used to adapt to larger variations (>±10K). The device-level

technique aims to adapt to the changing on-chip thermal profile, maintaining maximum bandwidth

51

and correct MRR operation while minimizing trimming and tuning power in the PNoC. At the

system-level, the dynamic thread migration scheme maintains acceptable core-temperatures for

each island. The following sections explain the proposed (i) device-level island framework and (ii)

system-level thread migration scheme in detail.

Figure 3.3: IHDTM framework with device-level thermal islands and system-level temperature-
aware thread migration mechanism (TATM). Reprinted with permission from [4]

3.3.1 Thermal Islands

The thermal distribution across a 64-core PNoC chip running PARSEC and SPLASH-2 bench-

marks (using 3D-ICE simulation) shows three major zones of temperature: 363K, 343K, and 323K.

Also, the average thermal gradient in the PNoC chip is found out to be approximately 15-20K. To

reduce this gradient, the proposed device-level framework adopts three islands (as shown in Fig.

3.3) each of which are maintained at a unique temperature by assigning TIS1, TIS2, and TIS3 to

363K, 343K, and 323K respectively. As mentioned in the previous section, MRRs in the 363K-

island (TIS1-island) are designed to operate at 363K with a variation range of±10K. MRRs employ

thermal tuning and electrical trimming when they are operated below and above their designed tem-

peratures respectively. Similarly, MRRs in other islands are designed to operate at the respective

52

temperatures. For PNoCs of other sizes (e.g. 16-core, 25-core, 36-core, 128-core, 256-core), there

can be slight variations in the number of islands and their respective temperature zones. Accord-

ingly, the numbers of islands and their temperatures can be fixed at design time.

Figure 3.4: (a) MRR with adaptive heater (b) Thermal tuning of MRR. Reprinted with permission
from [7]

To manage localized temperature variation below designed temperature, each MRR is inte-

grated with a PID controller based heater as shown in Fig.3.4(a). The PID controller is tuned with

proportional band Kp=50, integral cycle-time Ki=1 millisecond (ms), and derivative coefficient

Kd=0. An open source PID tuning software [64] is used to determine optimal values of Kp, Ki,

and Kd.

Algorithm.2 depicts the control algorithm for the heater in each MRR to stabilize thermal

variations. In the algorithm, T represents the temperature across an MRR as detected by the cor-

responding thermal sensor, Tisland is the fixed temperature of the island in which the MRR resides

(Tisland = TISi), PHeat is the heater power, iHeat represents heater current, and Heff stands for

the transfer function of the heater. With any local temperature change dT, there is an equivalent

shift in resonance for the MRR. To undo this resonance shift in an MRR, an equivalent amount of

heat must be radiated by the heater integrated with that MRR. As per the algorithm, the controller

collects temperature data T from the local thermal sensor as input. In step 1, the absolute value

53

Algorithm 2 Thermal management of MRR
1: Input:Temperature (T) around the MRR as detected by Thermal sensor Controller con-

verts T to appropriate heater current as follows:
2: dT = |Tisland - T|
3: PHeat = dT

ρ
×Heff

4: if (T ≤ Tisland) then
5: iHeat =iMax-

√
PHeat

RHeat

6: else
7: iHeat =iMax +

√
PHeat

RHeat

8: Delay of 1 milisecond
9: Go to step 1

10: Output: current (iHeat) to be fed to heater

of the difference between T and Tisland is calculated followed by determining the required heater

power PHeat in step 2. T is compared with Tisland in step 3 and accordingly the required heater

current iHeat is computed either in steps 3-4. The evaluated value of iHeat is fed to the heater coil.

This amount of current is needed by the heater to maintain the fixed temperature Tisland around

the MRR. Our analysis shows that a maximum of 1 ms of time is needed for the heater element to

bring the surrounding temperature to the desired value of Tisland. We account for this time delay

in our simulations. Fig.3.4(b) shows the tuning process of an MRR with injected heater current as

explained in the algorithm. The control algorithm is invoked after every 1ms for each MRR.

This heater-based technique helps to stabilize thermal fluctuations in each temperature island

with reduced tuning power. However, if the power footprint of a workload on a core associated

with a 363K-island is very low, its core temperature may fall below the lower thermal limit (i.e.

smaller than 353K). This thermal gradient can significantly increase tuning power consumption

of an associated MRR. Similarly, if the power footprint of a workload on a core associated with a

323K-island keeps increasing beyond a threshold, then its core temperature might reach beyond the

control of the MRR-trimmer (i.e. greater than 333K). This will in turn permanently shift the res-

onance of the MRR, inducing errors during communication. To address these issues, we propose

a system-level temperature-aware thread migration (TATM) technique that performs thread migra-

54

tion to idle cores to maintain temperatures of corresponding MRRs close to the design temperatures

of their respective islands. By intelligently migrating threads, this technique reduces device-level

tuning/trimming power in MRRs. TATM also aims to proactively reduce thermal hotspots, which

in turn will reduce instances of irrecoverable drift in MRRs.

3.3.2 Temperature-Aware Thread Migration Scheme (TATM)

• Objective: The primary goal with TATM is to maintain the temperature of all the cores in

an island on a die below a specified thermal threshold (Tt) and above a thermal limit (Tl),

i.e., for a core i in the TISj-island, Tlj ≤ Ti ≤ Ttj where Ti is the temperature of core i,

Ttj is threshold temperature of TISj-island, and Tlj is thermal limit of TISj-island. TATM

maintains the core temperatures such that the temperature of all the MRRs within an island

is close to their design temperature, to reduce tuning power consumption in adaptive heaters

as explained in the previous section.

We utilize support vector based regression (SVR) to predict the future temperature of a core.

This predicted temperature of a core is compared with the corresponding islands thermal

threshold (upper limit) and thermal limit (lower limit) to determine the potential for a thermal

emergency. If such a potential exists, then TATM initiates thread migration. Inter-island

thread migration (Inter-island cores (IEIC)) is preferred over intra-island thread migration

(Intra-island cores (IAIC)). This step has a two-fold benefit. Firstly, by moving the thread

away from a core that could suffer a thermal emergency, we avoid instances of irrecoverable

drift in the MRR groups of that core. Secondly, by moving the thread to a core in different

island, we ensure that the temperature of the island and its corresponding ring blocks remains

between the islands thermal threshold (Tt1, Tt2, and Tt3) and thermal limit (Tl1, Tl2, and Tl3)

to conserve trimming/tuning power. If a thermal emergency occurs due to exceeding the

thermal threshold, then it is preferred that the thread is migrated to a core in an island whose

MRR design temperature is higher. If a thermal emergency occurs due to temperature falling

below the thermal limit then it is preferred that the thread is migrated to a core in an island

whose MRR design temperature is lower. The parameters used to describe TATM in this

55

section are shown in Table 3.1.

Table 3.1: List of TATM parameters and their definitions. Reprinted with permission from [4]

Symbol Definition
IPCi Instruction per cycle of ith core
Ti Current temperature of ith core
TNi Average temperature of immediate neighboring cores of ith core;

if this core is on chip periphery and missing neighbors, then we
consider virtual neighbor cores at ambient temperature in lieu of
the missing cores

PTi Predicted temperature of ith core
Tt Thermal threshold
IEICj Inter-island cores for island-j
IAICj Intra-island cores for island-j
C Regularization parameter
W Weight vector for regression
xi and yi input and output in training and test data
β slack variable
ϵ Error function
b bias for cost function

• Temperature Prediction Model: We designed a support vector regression (SVR) based tem-

perature predictor that accepts input parameters reflecting the workload for a core i, in terms

of instructions per cycle (IPCi), temperature (Ti), and surrounding core temperatures (TNi),

and predicts the future temperature for core i.

Architecture: A typical SVR[65] relies on defining a prediction model that ignores errors

that are situated within the ϵ range of the true value. This type of a prediction model is

called an ϵ-insensitive prediction model. The variables (ξ and ϵ) measure the cost of the

errors on the training points. These are zero for all points that are inside the ϵ-insensitive

56

band. SVR is primarily designed to perform linear regression using a cost function (CF) as

depicted in equation 3.1.

CF = min
1

2
W T .W + C

n∑
i=1

(ξi + ξ∗i) (3.1)

Subject to:

yi −W Tϕ(xi)− b ≤ ϵ+ ξi(ξi ≥ 0, i = 1, 2, , n) (3.2)

W Tϕ(xi) + b− yi ≥ ϵ+ ξ∗i (ξ
∗
i ≥ 0, i = 1, 2, , n) (3.3)

κ(xi, xj) = ϕ(xi)
Tϕ(xj) (3.4)

SVR performs linear regression in this high-dimension space using ϵ-insensitive loss and,

at the same time, tries to reduce model complexity by minimizing W T .W . This can be

described by introducing (non-negative) slack variables ξi and ξ∗i (i = 1 to n), to measure

the deviation of training samples outside the ϵ-insensitive band. Thus SVR is formulated as

minimization of the cost function (CF) in equation 3.1 with constraints shown in equations

3.2 and 3.3.

To handle nonlinearity in data, SVR first maps the input xi onto an m-dimensional space

using some fixed (nonlinear) mapping denoted as ϕ, and then a linear model is constructed

in this high-dimensional space as shown in equations 3.2 and 3.3. This allows it to overcome

drawbacks of linear and logistic regression towards handling nonlinearity in data. This class

of SVRs is called kernel based SVRs which use kernel κ as shown in equation 3.4 for implicit

mapping of nonlinear training data into a higher dimensional space.

As on-chip temperature variation data is nonlinear in the original space, our SVR model

employs a kernel based regression which uses a Radial Basis Function (RBF)[66] as shown

57

in equation 3.5:

κ(xi, xj) = exp(−γ|xi − xj|2) (3.5)

The RBF kernel improves the accuracy of SVR when data has nonlinearity in the original

space. We performed a sensitivity analysis (SA) to determine regularization parameter (C)

and gamma (γ) values of the kernel based SVR (see Section 3.4.1 for chosen values). This

SA overcomes the possibility of over fitting of training data and improves accuracy further.

The definition of each of the variables used in equations 3.1 to 3.5 are mentioned in Table 3.1.

Training and Accuracy: We trained our SVR model using a set of multi-threaded applications

from the PARSEC[5] and SPLASH-2[6] benchmark suites, specifically: blackscholes (BS),

bodytrack (BT), vips (VI), facesim (FS), fluidanimate (FA), swaptions (SW), barnes (BA),

fft (FFT), radix (RX), radiosity (RD), and raytrace (RT) with different thread counts: 2, 4 and

8. We considered different combinations of thread mappings on a 9-core (3×3) floorplan,

to train our predictor to determine the temperature of the center (target) core. The threads

mapped to a 9-core floorplan represents a generic mapping and can be applied to 64-core,

128-core, and 256-core floorplans. As the future temperature of a target core is dependent on

the average temperature of its immediate neighboring cores, we trained our SVR model with

temperature inputs from the target core running a single thread, as well as its surrounding

cores running a variable number of threads. Simulations with various mappings of these

threads allowed us to obtain data to train our SVR model. This data included temperature

for the target core and its neighboring core temperatures, as well as instructions per cycle

(IPC) for the target core. IPC is very useful to determine if there is a phase change in an

application and plays a crucial role in maintaining future temperature prediction accuracy

especially when temperatures of a target core and its neighbors are similar at a given time.

Our training algorithm involved an iterative process that adjusts the weights and bias values

in the SVR (equations 3.1 to 3.3) to fit the training set.

We verified the accuracy of our SVR model for multi-threaded benchmark workloads (we

58

Figure 3.5: Actual and predicted maximum temperature variation with execution time for (a) flu-
idanimate (FA) and (b) radiosity (RD) benchmarks run on a 64-core platform executing 32-threads.
Reprinted with permission from [4]

considered 6000 floorplans, with 70% of input data for training and 30% for testing) and

found that it has an accuracy of over 95%. Fig.3.5(a) & (b) show actual and predicted on-

chip temperature variations for a 64-core platform executing 32 threads of the FA and RD

benchmarks. From these figures it can be seen that our temperature predictor tracks tem-

perature quite accurately. When predicted temperature is beneath thermal limit or exceeds

the thermal threshold our thread migration mechanism (which is discussed next) migrates

threads between cores to reduce tuning/trimming power and keep overall maximum temper-

ature below the threshold.

• Thermal Management Algorithm: Fig.3.6 illustrates the entire TATM technique. For each

core, we periodically monitor the IPC value from performance counters and temperature

from thermal sensors. If a thermal emergency is predicted for a core by the SVR predictor,

then TATM initiates a thread migration procedure, otherwise no action is taken. In this work

we have considered the thermal threshold of an island to be equal to maximum allowable

temperature in that island i.e. Ttj = TISj + 10K to avoid instances of irrevocable drift in

MRs and thermal limit of an island is minimum allowable temperature in that island i.e. Tlj

= TISj - 10K to reduce tuning power.

59

Algorithm 3 IHDTM thread migration algorithm
1: Inputs: Current core temperature (Ti), average neighboring core temperature (TNi),

current core IPC (IPCi)
2: for each core i do // Loop that predicts future temperature
3: PTi = SVR_predict_future_temperature (Ti, TNi, IPCi)
4: for each core i do // Loop that checks for free IAICs
5: j = Find island of Core(i)
6: if IPCi == 0 then
7: List_IAICi = Push i // add core to IAICi list
8: for core i do // Loop that performs thread migration
9: j = Find island of Core(i)

10: for each island k do // Loop that generates IEIC list for island-j
11: if k ̸= j then
12: IEICj = push IAICk

13: if PTi ≥ Ttj then
14: if List_IAICi ̸= {} then // Do intra-island thread migration
15: Migrated_core = min_temp_core(List_IAICj)
16: Thread_migration(core_i→Migrated_core)
17: List_IAICj = Pop Migrated_core
18: else if List_IEICj ̸= {} then
19: Migrated_core = min_temp_core(List_IEICj)
20: Thread_migration(core_i→Migrated_core)
21: n = island of Migrated_core
22: List_IAICn = Pop Migrated_core
23: Output: Thread migration to IAIC or IEIC cores

60

Figure 3.6: Overview of TATM technique with support vector regression (SVR) based temperature
prediction model. Reprinted with permission from [4]

Algorithm. 3 shows the pseudocode for the TATM thread migration procedure. Firstly,

future temperature (PTi) of the ith core is predicted using the SVR based predictor with

inputs:core temperature (Ti), core IPC (IPCi), and temperature of neighboring cores (TNi)

in steps 1-2. The list of available free cores (IAICj) in TISj-island (i.e., those that are not

currently executing any thread) is obtained in steps 3-5. In steps 6-9, a loop iterates over is-

lands to generate a list of free cores IEICtj and IEIClj in other islands whose TIS is higher

and lower than current island respectively. In step 10, a loop iterates over all cores to per-

form thread migration. Step 12 and 22 checks for possible thread migration conditions (i.e.,

thermal emergency cases where current core predicted temperature (PTi) in TISj-island is

greater than thermal threshold (Ttj) or smaller than thermal limit (Tlj)). If a thread migration

is required as PTi > Ttj , then in steps 13-21, we check for free IEICtj , and if they are avail-

able then we migrate the thread from the current core to the IEICtj core with the lowest TIS

(inter-island migration), else we migrate the thread to a free IAICj with the lowest temper-

ature (intra-island migration). On the other hand, if a thread migration is required as PTi <

Tlj , then in steps 23-31, we check for free IEIClj , and if they are available then we migrate

the thread from the current core to the IEIClj core with the highest TIS (inter-island migra-

tion), else we migrate the thread to a free IAICj with the lowest temperature (intra-island

61

migration). This TATM thread migration technique is invoked at every 1ms (epoch) and the

sample frequency of SVR is considered as 0.1 ms (10 times lower compared to the epoch

for thread migration). This sampling frequency is sufficient to monitor on-chip temperature

variations [20].

3.4 Experiments, Results, and Analysis

3.4.1 Experimental Setup

The IPKISS[48] tool was used for the design and simulation of heaters, MRRs, and other sili-

con photonic components. This tool allows photonic component layout design, virtual fabrication

of components in different technologies, physical simulation of components, and optical circuit

design and simulation. The circuit-level results obtained from IPKISS were used for system-level

simulation.

We target a 64-core CMP system for evaluation of our IHDTM framework. Each core has

a Nehalem x86[67] microarchitecture with 32 KB L1 instruction and data caches and a 256 KB

L2 cache, at 32nm and running at 5GHz. We evaluate our framework on two well-known PNoC

architectures: Corona[68] and Flexishare[69]. Corona uses a 64×64 multiple write single read

(MWSR) crossbar with token slot arbitration. Flexishare uses 32 multiple write multiple read

(MWMR) waveguide groups with a 2-pass token stream arbitration. Each MWSR waveguide in

Corona and each MWMR waveguide in Flexishare is capable of transferring 512 bits of data from

a source node to a destination node.

Table 3.2: Properties of materials used by 3D-ICE tool. Reprinted with permission from [4]

Material Thermal Conductivity Volumetric Heat Capacity
Silicon 1.30e-4 W/µm K 1.628e-12 J/µm3 K
Silicon Dioxide 1.46e-6 W/µm K 1.628e-12 J/µm3 K
BEOL 2.25e-6 W/µm K 2.175e-12 J/µm3 K
Copper 5.85e-4 W/µm K 3.45e-12 J/µm3 K

62

We modeled and simulated these architectures with the IHDTM framework for multi-threaded

applications from the PARSEC [5] and SPLASH-2[6] benchmark suites (Section 3.3.2). Simula-

tions were performed with an execution period of one billion cycles. Power and instruction traces

for the benchmark applications were generated using the Sniper 6.0[67] simulator and McPAT[70].

We used the 3D-ICE tool[58] for thermal analysis. We considered a three layered 3D-stacked CMP

system as advocated in existing PNoC architectures [68], [69] with a planar die area footprint of

400mm2, where the top layer is the core-cache layer, the middle layer is the analog electronic layer

[68] which contains control circuits for modulator and photodetector and also the trans-impedance

amplifiers of detectors, and the bottom layer is the photonic layer with MRRs, waveguides, ring

heaters, and ring trimmers for carrier injection. Some of the key materials used in the construction

of the 3D-stack in the 3D-ICE tool and their properties are shown in Table 3.2. We used a heat

sink adjacent to the core-cache layer for heat dissipation to the ambient environment.

The MRR thermal sensitivity was assumed to be 0.11nm/K[60]. For PNoCs, we considered

64 dense-wavelength-division-multiplexing (DWDM) waveguides sharing the working band 1530-

1625 nm. The MRR trimming power is set to 130ţW/nm[59] for current injection (blue shift) and

tuning power is set to 240µW/nm[60] for heating (red shift). To compute laser power, we consid-

ered detector responsivity as 0.8 A/W[71], MRR through loss as 0.02 dB, waveguide propagation

loss as 1 dB/cm, waveguide bending loss as 0.005 dB/900, and waveguide coupler/splitter loss as

0.5 dB[71]. We calculated photonic loss in components using these values, which sets the pho-

tonic laser power budget and correspondingly the electrical laser power. For energy consumption

of photonic devices, we adapt parameters from[65], with 0.42pJ/bit for every modulation and de-

tection event, and 0.18pJ/bit for modulator/detector driver circuits. The ambient temperature was

set to 303K for our analysis and the for TIS1-island, TIS2-island, and TIS3-island thermal thresh-

olds were set to 373K, 353K, and 333K respectively and the thermal limits were set to 353K,

333K, and 313K respectively. Based on our sensitivity analysis we get the best accuracy for our

SVR-based temperature predictor when parameters C and γ are set to 1000 and 0.1 respectively.

We also considered thread migration overhead in our simulations that ranged from 500-1000 cy-

63

cles to account for startup latency (extra cache misses, branch miss predictions) in the migrated

core. Further, in the simulation we considered a 250-500 cycles overhead towards migration of

threads for writing dirty cache lines from the write back caches, flushing the pipeline in the source

core, and also PNoC latency to transfer data from architectural registers from the source core to

the migrated core.

3.4.2 Experimental Results

We compared the performance of our IHDTM framework with two prior works on multicore

thermal management: a ring aware policy (RATM)[63] and a predictive dynamic thermal manage-

ment (PDTM) framework[72]. To compare these frameworks, we consider Corona and Flexishare

PNoC architectures. RATM distributes threads uniformly across cores that are closer to PNoC

nodes first and then distributes the remaining threads in a regular pattern from outer cores to in-

ner cores. PDTM uses a recursive least square based temperature predictor to determine if the

predicted temperature of a core exceeds a thermal threshold, and if so then thread migration is

performed from that core to the coolest free core.

Fig.3.7 shows the maximum temperature obtained with the three frameworks across eleven

applications from the PARSEC and SPLASH-2 benchmarks suites with 48 and 32 thread counts

executed on a 64-core system with the Corona PNoC architecture. From Fig. 3.7(a) it can be

observed that for the IHDTM framework the FFT application with 48 threads exceeds the threshold

(363K) by 0.4K as there are insufficient number of free cores in the 363K-island on the chip

whose temperature is below the thermal threshold to migrate threads. However, in Fig. 3.7(b) our

IHDTM framework avoids violating thermal thresholds for all the benchmark applications with 32

threads. On average, IHDTM has 13.27K and 13.72K lower maximum temperature compared to

the RATM policy for 48 and 32 threads, respectively. Along with local thermal stabilization by PID

controlled heaters, IHDTM migrates threads from hotter cores to cooler cores to control maximum

temperature, whereas RATM does a simple thread allocation that is unable to appropriately control

maximum temperature. For most of the cases, maximum temperatures with PDTM and IHDTM

are below the thermal threshold. On average, IHDTM has 2.37K and 1.56K lower maximum

64

(a)

(b)

Figure 3.7: Maximum temperature comparison of IHDTM with RATM and PDTM for (a) 48 (b)
32 threaded PARSEC and SPLASH-2 benchmarks executed on 64-core multicore system with
Corona PNoC. Reprinted with permission from [4]

temperature compared to the PDTM policy for 48 and 32 threads, respectively. IHDTM prefers to

migrate threads within islands (inter-island) of cores based on the power consumption of running

thread, which facilitates reduction in its peak temperature compared to PDTM.

Fig.3.8 and Fig.3.9 show the power consumption comparison for the three thermal-management

techniques across multiple 48-threaded and 32-threaded applications for the Corona and Flexishare

PNoC architectures, respectively. One of the main reasons why IHDTM has lower power con-

sumption than RATM and PDTM is that it more aggressively reduces thermal tuning and trimming

power in both Corona and Flexishare PNoCs. It is evident from Fig.3.8(a)-(b) that IHDTM run-

65

(a)

(b)

Figure 3.8: Normalized power (Laser Power (LP), Trimming and tuning power (TP) and modulat-
ing and detecting Power (MDP)) comparison of IHDTM with RATM and PDTM for (a) 48 and (b)
32 threaded applications of PARSEC and SPLASH-2 suites executed on Corona PNoC architec-
tures for a 64-core multicore system. Results shown are normalized w.r.t RATM. Reprinted with
permission from [4]

ning 48 threads has 61.6% and 62.5%; and IHDTM running 32 threads has 67.3% and 68.5% lower

thermal tuning and trimming power on average compared to RATM and PDTM for Corona PNoC

architecture respectively. Similarly, from Fig.3.9(a) and (b), it can be seen that IHDTM running 48

threads has 62.8% and 63.9%; and IHDTM running 32 threads has 68.5% and 70% lower tuning

and trimming power on average compared to RATM and PDTM for Flexishare PNoC.respectively.

The IHDTM framework intelligently conserves tuning/trimming power compared to RATM and

PDTM by performing intelligent intra-island and inter-island thread migration.

66

Figure 3.9: Normalized average power (Laser Power (LP), Trimming and tuning power (TP) and
modulating and detecting Power (MDP)) comparison of IHDTM with RATM and PDTM for (a) 48
and (b) 32 threaded applications of PARSEC and SPLASH-2 suites executed on Flexishare PNoC
architectures for a 64-core multicore system. Power results are normalized wrt RATM results.
Bars represent mean values of power dissipation; confidence intervals show variation in power
dissipation across PARSEC and SPLASH-2 benchmarks. Reprinted with permission from [4]

IHDTM saves considerable thermal tuning and trimming power to ultimately reduce total

power. From the power analysis in Fig.3.8 and Fig.3.9, it can be observed that IHDTM with

Corona running 48 threads has 45.5% and 46.8%; and IHDTM with Corona running 32 threads

has 51.6% and 52.3% lower total power consumption compared to Corona with RATM and PDTM

respectively. Further, Flexishare with IHDTM running 48 threads has 55.9% and 57.2%; and 32

threads has 63.5% and 64.1% lower power consumption compared to Flexishare with RATM and

PDTM respectively.

Fig.3.10 shows the average execution time comparison between the three frameworks across

the 11 48-threaded and 32-threaded applications from the PARSEC and SPLASH-2 suites, for

the Corona PNoC architectures respectively. From Fig.3.10(a) and (b) it can be seen that Corona

with IHDTM running 48 and 32 threads has 12.8% and 7.4% higher execution time respectively

compared to Corona with RATM. Corona with IHDTM needs extra execution time to migrate

threads between cores whereas the RATM policy simply schedules threads without any migration,

67

(a)

(b)

Figure 3.10: Normalized execution time comparison of IHDTM with RATM and PDTM for
Corona PNoC running (a) 48; and (b) 32 threaded applications from PARSEC and SPLASH-2
suites executed on 64-core system. Results shown are normalized wrt RATM. Reprinted with
permission from [4]

and thus does not possess such overheads. The execution time overhead of Corona with IHDTM

running 32 threads is lower compared to 48-threaded version, as it lowers traffic congestion in the

Corona PNoC which in turn reduces overall latency. Further, Corona with IHDTM running 48 and

32 threads has 2.6% and 4.3% higher execution time respectively compared to PDTM. IHDTM

has more number of thread migrations compared to the number of thread migrations in PDTM, as

IHDTM performs intra-island and inter-island thread migrations when the thermal emergencies are

predicted by the SVR predictor. Similarly, from Fig.3.11(a) and (b), the Flexishare with IHDTM

running 48 and 32 threads has 9% and 5.9% higher execution time compared to RATM and 3.4%

and 4.4% higher execution time compared to Flexishare with PDTM. From the execution time

results it can be seen that Flexishare has lower execution time overhead compared to Corona as it

68

Figure 3.11: Normalized average execution time comparison of IHDTM with RATM and PDTM
for Flexishare PNoC running (a) 48; and (b) 32 threaded applications from PARSEC and SPLASH-
2 suites executed on 64-core system. Power results are normalized wrt RATM results. Bars rep-
resent mean values of power dissipation; confidence intervals show variation in power dissipation
across PARSEC and SPLASH-2 benchmarks. Reprinted with permission from [4]

uses a faster MWMR crossbar instead of slower MWSR crossbar in Corona.

Lastly, from the power consumption and execution time results, we can obtain energy con-

sumption results for the three frameworks. On an average, for Corona, energy consumption of

IHDTM running 48 threads is 38.5% and 45.4% lower compared to RATM and PDTM, respec-

tively. Further energy consumption of Corona with IHDTM running 32 threads is 48.1% and 50.3%

lower compared to RATM and PDTM, respectively. On the Flexishare architecture, IHDTM run-

ning 48 threads has 52.2% and 56% lower energy consumption compared to RATM and PDTM

respectively; and IHDTM running 32 threads has 61.4% and 62.6% lower energy consumption

compared to RATM and PDTM, respectively. From the energy consumption results IHDTM has

better energy savings for the optimized Flexishare compared to the Corona.

3.5 Chapter Summary

We have presented the IHDTM framework that exploits device-level on-chip thermal islands

and system-level dynamic thread migration scheme TATM for the reduction of maximum on-chip

temperature and also conserves trimming and tuning power of MRRs in DWDM-based PNoC

architectures. The proactive thermal management scheme used in IHDTM results in interesting

69

trade-offs between performance and power/energy across two different state-of-the-art crossbar-

based PNoC architectures. Our experimental analysis on the well-known Corona and Flexishare

PNoC architectures has shown that IHDTM can notably conserve total power by up to 64.1% and

thermal tuning power by up to 70%.

70

4. APPLICATION SPECIFIC PNOC FOR BIG DATA COMPUTING*

4.1 Introduction

1Large-scale data analytics applications represent some of the most data-intensive workloads in

the emerging domain of big data computing. Most of the high-performance data analytics applica-

tions e.g., cancer genome analysis, stock market predictions, consumer product recommendations,

disaster forecasting, etc. involve iterative execution of various machine learning algorithms. These

iterative machine learning algorithms for large-scale data analytics tasks often run on a MapReduce

framework [73] implemented either in the cloud or on commodity clusters in datacenters.

Recently, Hadoop[74] and Spark[75] based distributed frameworks are being increasingly used

for MapReduce im-plementations on cloud services. However, wide-spread secu-rity exploits and

higher off-loading time with cloud compu-ting have driven several organizations to build their

own dat-acenters for big data processing[74][75]. Such datacenters are safer from intrusion with

lower off-loading time, but according to the Hamiltons cost model[76] the overheads due to power

dissipation, power distribution, and cooling in such datacenters with commodity processors can

be quite significant. A specialized manycore processor solution in which a large number of cores

are interconnected through an efficient on-chip network can reduce such overheads and lead to

improved system performance, comparted to commodity processors. This motivates us to design a

customized chip manycore processor (CMP) platform to more efficiently run the iterative machine

learning algorithms for big data processing.

The iterative algorithms in big data processing with MapReduce execute on multiple master

and servant cores and take thousands of iterations to produce the desired output. Each iteration

typically consists of three phases[77] (Fig.4.1). In the initial multicast phase (Fig.4.1(a)) a master

node (MN), which consists of one or more master cores, multicasts a large feature set of model

parameters to one or more servant nodes (SN; each with one or more servant cores) that perform

computations based on the parameters. While computing, these servant nodes may need to ex-

1Adapted with permission from [8]

71

change or shuffle data with other servant nodes. This phase is called the shuffle phase (Fig.

refmapreduce(b)). Lastly, in the aggregation phase (Fig.4.1(c)), all the servant nodes update and

send their partial results to the master node. The master node aggregates this partial data to produce

the multicasting data for the next iteration.

(a) (b) (c)

Figure 4.1: MapReduce (a) multicast phase, (b) shuffle phase, and (c) aggregation phase of com-
munication while executing iterative machine learning algorithms for large-scale data analytics
applications. MN: Master Node; SN: Servant Node

Multicasting is a performance bottleneck in executing large scale data analytics applications

that have large fanout, big data sizes, and take a large number of iterations to achieve convergence.

For example, the K-nearest neighbor algorithm for breast cancer prediction and prognosis[78] re-

quires multicasting of approximately 200 MB of sampled cancer genomic features in each iteration,

from 100 image samples, each of size 2MB. As the typical number of iterations is more than 1000,

the total multicasting data is in the order of hundreds of gigabytes. Another example is the alter-

nating least squares algorithm for Netflix movie rating prediction, which involves 385MB of data

being distributed to servant nodes per iteration, over hundreds of iterations[11]. This computation

thus involves tens of gigabytes of multicast data. These examples motivate the need for supporting

efficient multicasting for big data workload execution scenarios.

Recent developments in the fabrication of CMOS-compatible on-chip photonic interconnects

have opened up the possibility of redesigning emerging manycore processing architectures, espe-

cially for big data applications. On-chip photonic interconnects provide several prolific advan-

72

tages over their conventional metallic counterparts, including the ability to communicate at near

light speed, larger bandwidth density by using dense wavelength division multiplexing (DWDM),

and lower power dissipation[79]. These advantages motivate us to consider using photonic links

for inter-core communication in CMPs that run the iterative algorithms for big data processing.

Further, a few prior works[79]-[80] have emphasized the importance of multicasting in photonic

waveguides to improve data communication rates, and proposed photonic network-on-chip (PNoC)

architectures that enable inter-core communication with multicast-enabled waveguides. The mul-

ticasting capability of photonic interconnects further inspires us to use them in CMPs optimized

for big data processing.

We present a novel application-specific PNoC architecture for manycore chips, called BiG-

NoC, to execute large-scale data analytics applications with high throughput and ultralow latency.

To the best of our knowledge, this is the first work that attempts to design PNoCs to tackle iterative

machine learning algorithm based large-scale data analytics applications in CMPs. Our novel con-

tributions are: (1) We devise a master-servant cluster based communication fabric (MSNoC) with

dedicated channels for master-to-servant and servant-to-master communication; (2) We design a

hierarchical manycore BiGNoC architecture with multiple MSNoCs to execute any combination

of high performance large-scale data analytics applications; and (3) We evaluate BiGNoC by com-

paring it with two previously proposed PNoCs, as well as a broadcast optimized electrical mesh

NoC, and a traditional electrical mesh NoC for multiple real-world big data applications[12]-[13].

4.2 Related Work

Photonic interconnects utilize several photonic devices such as microring resonators (MRs) as

modulators, detectors, and switches; photonic waveguides; splitters, and transimpedance ampli-

fiers (TIAs). Each MR has a unique resonance wavelength in the utilized DWDM spectrum in a

waveguide (typically consisting of 64 or less wavelengths) that it can couple to and work correctly

with. This resonant nature of an MR allows it to be use as a filter or a switch. A filter MR is

used to filter and drop its resonance wavelength on to a photodetector, whereas a switch MR is

used to route the propagation of a resonant wavelength signal between two waveguides. Typically,

73

an MR can electro-optically be driven on and off resonance with its resonance wavelength, which

allows the MR to modulate 1s (when off-resonance) and 0s (when on-resonance) on its resonance

wavelength. The reader is directed to [16] for more discussion on these devices.

Several PNoC architectures have been proposed to date (e.g.,[81]-[82], [83]-[84]) that use on-

chip photonic interconnects with MR modulators to modulate electrical signals at the source node

on to photonic signals, which then travel through a photonic waveguide, and arrive at MR detec-

tors at the destination node where the photonic signals are detected and electrical signals recovered.

Several efforts have explored high throughput crossbar PNoCs that provide non-blocking connec-

tivity, e.g.,[81]-[82], [83] using different types of photonic waveguides such as Multiple-Write-

Single-Read (MWSR), Single-Write-Multiple-Read (SWMR), and Multiple-Write-Multiple-Read

(MWMR). Furthermore, multicasting in photonic waveguides enables simultaneous reception of

photonic signals in multiple destination nodes. These destination nodes partially detune their MR

detectors from their resonating wavelengths [8], such that a portion of the photonic energy in the

multicast-enabled waveguide continues to be absorbed in subsequent MR detectors of other des-

tination nodes. In the presence of on-chip multicast traffic (i.e., same message transfer from one

source node to multiple destination nodes), these multicast-enabled waveguides enable higher data

rates compared to ordinary photonic waveguides that inefficiently transfer a single multicast mes-

sage as multiple unicast messages. Only a few prior works exploit multicasting in SWMR[81] and

MWMR[80] waveguides, primarily to improve the performance of PNoC architectures with cache

coherence traffic (e.g., in the MOESI coherence protocol, when a shared block is invalidated,

an invalidate message must be multicast to all sharers). In addition, a photonic multistage NoC

was proposed in [85] that uses photonic-distributed arbitration and concurrent channel reservation

mechanisms. This multistage NoC uses an electrical router to interconnect multiple photonic sub-

networks and achieves lower latencies. A high-throughput hybrid photonic mesh-diagonal links

topology was proposed in [86] with a contention-aware adaptive routing function, and a paral-

lelized photonic channel allocation protocol, to reduce NoC latency. However, no prior work has

attempted to design PNoCs to optimize iterative machine learning algorithm-based large-scale data

74

analytics applications in CMPs.

Several architectures have been explored recently to address large-scale data analytics appli-

cations. A PENC manycore architecture consisting of 192 small processing cores was proposed

in [87], which can work as a coprocessor in tandem with a general-purpose CPU to accelerate big

data processing. A low-power manycore architecture for a modern big-data stream mining appli-

cations is proposed in [88] that is able to cope with the dynamic nature of the input data stream

while consuming limited power. A parallel CMP architecture called SpiNNaker based on a cus-

tomized electrical NoC to implement spiking neural networks was proposed in [89]. The cores in

this architecture are connected by a modified version of the torus topology, whereas the inter-chip

topology is a 2D triangular mesh with 6-port routers. A neural network architecture called EM-

BRACE is proposed in [90] which integrates a 2D array of interconnected neural tiles surrounded

by I/O blocks and adopts a hierarchical mesh-based topology to connect neural tiles. Furthermore,

it uses a regionbased routing scheme in each network layer to direct messages to destination nodes.

Some works have demonstrated reconfigurable neural networks on a broadcast-aware mesh NoC

architecture [91], [92]. A theoretical analysis for determining a preferred interconnect architec-

ture for general purpose configurable emulation of spiking neural networks is presented in [91]

and shows that mesh NoC using multicast is the most suitable architecture for a wide range of

neural network topologies. A cluster-based reconfigurable NoC architecture for neural networks

is presented in [92], which employs a reconfigurable communication fabric that efficiently han-

dles multicast communication. In [93], a CPU-GPU architecture was presented with an electrical

ring network to better execute large-scale data analytics applications, but this ring interconnect

is known to be inefficient for large-scale systems. A hybrid (wired+wireless) on-chip intercon-

nect based CPU-GPU architecture was proposed in [94] for large-scale data analytics applications.

The authors in [95] propose Melia, which is an FPGA-based MapReduce architecture. None of

the above mentioned prior works explore the impact of using photonic interconnects for big data

processing as part of the on-chip network. Our goal in this paper is to show, for the first time,

how PNoC architectures can be designed and customized for manycore chips, to meet the unique

75

communication requirements of big data analytics applications.

(a)

(b) (c)

Figure 4.2: (a) MSNoC layout with SWMR, MWSR, and power waveguides (b) master gateway
interface (MGI) (c) servant gateway interface (SGI). Reprinted with permission from [8]

High-performance data analytics applications use a set of iterative machine learning algorithms

for data predictions. A machine learning job may take hundreds or thousands of iterations to con-

verge to a solution. On a CMP, each iteration starts with the multicast of a big data set of model

parameters from a master core to all the servant cores. Then the servant cores sometimes ex-

76

change data among themselves while processing their received data, thus creating inter-servant

traffic. Lastly, each servant updates the model parameters partially and sends these model param-

eters to the master node. These partial results are aggregated at the master node to form the global

model parameters for the computations in the subsequent iteration. Thus, execution of large-scale

data-intensive applications requires dedicated hardware with master cores, servant cores, and an

interconnection fabric between the masters and servants. In this section, we describe the architec-

ture of a new master-servant cluster based communication fabric (MSNoC), in which master cores

are connected to servant cores via photonic communication channels.

In our MSNoC architecture, a node (N) is defined as an entity consisting of four cores. A node

can either be a master node (MN; with four master cores connected using an electrical concen-

trator) or a servant node (SN; with four servant cores connected using an electrical concentrator).

The buffer size of the electrical concentrator of an MN is larger compared to the buffer size of the

electrical concentrator of an SN, as the MN node is expected to receive more number of packets

compared to a servant node. Our simulation based analysis shows that the buffer size of the electri-

cal concentrator of an MN needs to be larger than the buffer size of the electrical concentrator of an

SN. More details about buffer sizes of MNs and SNs are presented in Table 4.1. Each master core

in an MN has a private L1 and L2 cache, whereas each servant core in an SN has only a private L1

cache. The L1 cache size of a master core in the MN is larger than the L1 cache size of a servant

core in the SN (see Table 4.1). As master cores access main memory more frequently compared

to servant cores, therefore, the larger L1 size of a master core boosts the MSNoCs performance.

Every MN and SN is attached to a gateway interface (GI) module that facilitates transfers between

the core-cache layer and the interconnection network layer. A detailed layout of the MSNoC is

shown in Fig.4.2(a), where 16 nodes are arranged in a 4×4 grid. Among these 16 nodes, a sin-

gle node is an MN and the remaining nodes are SNs (i.e., SN1 to SN15). The master GI (MGI)

and servant GI (SGI) are shown in figures 4.2(b) and 4.2(c), respectively, and discussed further in

Sections 3.1-3.3. Communication between cores within a node (MN or SN) uses a 5×5 on-chip

electrical router, where four of its input and output (I/O) ports are connected to four cores (mas-

77

ter or servant) and the fifth I/O port is connected to the GI module associated with the node. A

round-robin arbitration scheme is used within each node for communication between cores and the

GI.

Communication between SNs and MNs is accomplished using SWMR and MWSR waveg-

uides (Sections 3.1-3.3). There is also a power waveguide that runs in parallel with the SWMR and

MWSR waveguides. This power waveguide carries all the wavelengths used for data traversal in

the waveguides. A 1×2 splitter is used to split power from the power waveguide to SWMR waveg-

uides as shown in Fig. 4.2(a). In addition, a series of 1×2 splitters along the power waveguide

are used to supply power to the modulators that are used to write data on to the MWSR waveg-

uides. The splitting losses due to these splitters are considered in the laser power calculations of

MSNoC (see Section 4.6). Our MSNoC with a group of 16 nodes (with 64 cores) has dedicated

access to main memory via a memory controller at the MN. This is similar to the processor used

in Sunway TaihuLight [34], which has dedicated main memory access for every 64 cores. The

micro-architectural parameters of nodes and cores in an MSNoC cluster are summarized in Table

4.1. In addition. the functionalities of MNs and SNs are assumed to be correct in the MSNoC.

Therefore, this work does not consider the impact of mistakes from MNs and SNs.

In the following three subsections, we present more details about the interconnects that are

used to enable communication between the MNs and SNs of an MSNoC cluster.

4.3 Master-Servant Cluster Architecture

4.3.1 MN-to-SN communication in MSNoC cluster

As discussed earlier, the interconnection network between the master and servant cores plays

a crucial role towards achieving faster execution of large-scale data analytics applications on an

MSNoC cluster. As the communication from master cores to servant cores has significant periods

of multicast traffic, this motivates us to use multicast enabled photonic waveguides in our MSNoC

cluster, to enable faster master-servant communication. As shown in Fig.4.2(a), in an MSNoC clus-

ter we use a multicast enabled Single-Write-Multiple-Read (SWMR) waveguide group to enable

78

Table 4.1: Micro-architectural parameters for MSNoC cluster. Reprinted with permission from [8]

Number of nodes per cluster 16 (1 MN and 15 SNs)
Number of cores 64 (4 per node)

Servant Node (SN):
Number of servant cores 4

Buffer size of concentrator 10
Servant Core:

L1 I-Cache size/Associativity 16KB/Direct Mapped Cache
L1 D-Cache size/Associativity 16KB/Direct Mapped Cache

Master Node (MN):
Number of master cores 4

Buffer Size of concentrator 20
Master Core:

L1 I-Cache size/Associativity 32KB/Direct Mapped Cache
L1 D-Cache size/Associativity 32KB/Direct Mapped Cache
L2 Cache size/ Associativity 128KB/Direct Mapped Cache

L2 Coherence MOESI
Frequency 5 GHz

Issue Policy In-order
Memory controllers 1

Main memory 8GB; DDR4@30ns

communication from a single MN to multiple SNs, where each waveguide group has four SWMR

waveguides. The SWMR waveguide group in an MSNoC starts from an MN and passes through

all of the SNs (i.e., SN1-SN15) in the cluster (Fig.4.2(a)) to enable MN-to-SN communication.

An MN has the ability to write on the SWMR waveguide group using its ring modulators (see

Fig.4.2(b), which shows modulators of an MN on SWMR waveguide), and all the SNs are capable

of reading from the SWMR waveguide group using their ring detectors (see Fig. 4.2(c), which

shows detectors of an SN on SWMR waveguide). To power these SWMR waveguides, we use a

broadband off-chip laser source and a 1×4 splitter to split the laser power across the four SWMR

waveguides. We also use 64 DWDM wavelengths in each of the four SWMR waveguides of the

SWMR waveguide group. Therefore, in an SWMR waveguide group there are 256 modulators and

256 detectors in each MN and SN, respectively.

As all SNs are capable of receiving (reading) from an SWMR waveguide group during MN-

79

to-SN communication, there is a need for receiver selection between SNs to ensure that only the

designated receiver will receive data from the shared waveguide group. For receiver selection,

each SWMR waveguide group is divided into a fixed number of time slots, based on the time taken

by light to traverse the length of the waveguide on a die. Based on the geometric calculations

considering a 100mm2 chip area for a 64 core CMP at 22nm technology node, traversal of light

through an SWMR waveguide group takes 2 cycles (i.e., 0.4 ns) in an MSNoC cluster at 5GHz

clock frequency. Therefore, we divide the SWMR waveguide group into 2 time slots, and each

time slot is spread across 8 nodes (the node can either be an MN or SN), as shown in Fig.4.3.

These time slots are further classified into two types: reservation cycle slots (RCS), and data cycle

slots (DCS).

Figure 4.3: Distribution of reservation cycle and data cycle slots within SWMR waveguide to
enable MN-to-SN communication. Reprinted with permission from [8]

In our reservation assisted MN-to-SN communication pro-cess, MNs send data to SNs in two

cycles (Fig.4.3). In the reservation cycle, the MN reserves the SWMR waveguide group for an

SN. Once the reservation is done, the MN sends data to the selected SN in the next cycle (i.e.,

data cycle). To perform the reservation, the MN uses the first SWMR waveguide in the SWMR

waveguide group (this waveguide is shown in Fig.4.3). The remaining three SWMR waveguides in

the SWMR waveguide group are used only in the data cycle to transfer data. Each SNi is assigned

a receiver selection wavelength λi, that is available in the first SWMR waveguide of the SWMR

waveguide group. When an MN wants to send data to an SN, it gets access to the next RCS,

80

which initially has all of the receiver selection wavelengths from the power waveguide. In this

RCS, the MN uses its modulator bank to remove all of the receiver selection wavelengths except

the one corresponding to the SN of interest. Subsequently, in the next DCS, the MN modulates

data on the 256 wavelengths in four SWMR waveguides (as each SWMR waveguide uses 64

DWDM wavelengths (λj λj+64)) of each SWMR waveguide group assigned for data transfer.

Therefore, our receiver selection mechanism prudently reuses the same set of wavelengths in the

first SWMR waveguide of an SWMR waveguide group for reservation and data transmission. On

the receiving side of the SWMR waveguide group, whenever an RCS reaches an SNi, it only

switches on the detector which corresponds to its receiver selection wavelength λi located on the

first SWMR waveguide of the SWMR waveguide group. Whenever an SNi detects its receiver

selection wavelength in the RCS, it switches on its remaining detectors not only on the first SWMR

waveguide but also on the remaining three SWMR waveguides of the SWMR waveguide group to

receive data in the next DCS.

We illustrate this sending and receiving process with a simple example. In Fig.4.4(a), sup-

pose an MN needs to send data to SN8 that has a corresponding receiver selection wavelength

λ8. The MN modulates in the next RCS, such that only λ8 (the dedicated wavelength for receiver

selection of SN8) is made available by removing all of the wavelengths except λ8 (using its mod-

ulators) in the first SWMR waveguide of the SWMR waveguide group. On the receiving end, all

of the SNs which are in the RCS switch-on their detectors for the corresponding receiver selection

wavelengths (e.g., nodes SN8 to SN15 switch-on detectors with resonance wavelengths λ8 to λ15,

respectively) in the first SWMR waveguide of the SWMR waveguide group. Therefore, at SN8

only the detector for wavelength λ8 is switched on in the RCS. Once λ8 is detected, SN8 pre-

pares to receive data in the next DCS by switching on the remaining detectors not only on the first

SWMR waveguide but also on the remaining three SWMR waveguides in the SWMR waveguide

group in that node.

The receiver selection mechanism presented above can only transmit unicast messages, but

while executing big data applications the MN will send not only unicast messages to a single SN

81

Figure 4.4: (a) Transmission of unicast data from an MN to SN8 in MSNoC, which shows receiver
selection wavelength λ8 in RCS of the SWMR waveguide; (b) Multicast of data from an MN to
multiple SNs SN8, SN10, SN12, and SN15 in MSNoC, which shows respective receiver selection
wavelengths λ8, λ10, λ12, and λ15 in RCS of the SWMR waveguide. Reprinted with permission
from [8]

but also multicast messages to multiple SNs. One possible solution is to translate these multicast

messages into several unicast messages and send them to their respective SNs. But this can cause

network congestion and reduce network performance [96]. Therefore, for MN to multiple SN

communication in an MSNoC, we avoid such repeated unicast messages by providing multicasting

support in the MSNoCs SWMR waveguides.

Unlike Corona [80] and Firefly [81] PNoCs, where all multicast messages are broadcast and

transmitted to all nodes in the network, MSNoC enables multicasting to specific nodes in the

network. This is realized as follows: the MN in an MSNoC releases multiple receiver selec-

tion wavelengths into the first SWMR waveguide of the SWMR waveguide group (see Fig.4.4(b))

corresponding to multiple SNs in the next RCS. In the immediately following DCS, the MN mod-

ulates the data which needs to be multicast to different SNs on to four SWMR waveguides within

the SWMR waveguide group. To enable photonic multicast of data in SWMR waveguides, we

partially detune the ring detectors from their resonating wavelengths [79], such that a portion of

82

the photonic energy in the SWMR waveguide group continues to be absorbed in subsequent ring

detectors. Multicasting thus requires higher laser power compared to unicasting so as to maintain

sufficient photonic signal intensity for detection in the worst case, i.e., for the detectors of the last

receiving node which receives the multicast data.

Interestingly, the laser power injected in the SWMR waveguide group for multicasting in an

MSNoC does not change with the number of nodes that need to receive the multicast message. We

designed the laser source for the worst-case power loss, which occurs when all of the SNs receive

a multicast message (i.e., broadcast message) from an MN. We have considered this extra laser

power overhead when presenting energy-delay product and energy-per-bit results for the MSNoC

cluster in our experimental results section. In this work, we do not consider optimizing laser

power through a laser power management scheme. However, it is possible to integrate previously

proposed laser power management schemes [97], [98], as these works are orthogonal to our work.

Fig. 4.4(a) & (b) illustrate the difference between transmission of unicast and multicast mes-

sages in our MSNoC cluster. Suppose an MN needs to multicast data to SN8, SN10, SN12, and

SN15 whose corresponding receiver selection wavelengths are λ8, λ10, λ12, and λ15, respectively.

The MN modulates in the next RCS, such that only λ8, λ10, λ12, and λ15 are made available by

removing all the wavelengths except λ8, λ10, λ12, and λ15 (using the MNs modulators; Fig. 4.4(b))

from the first SWMR waveguide of SWMR waveguide group. At the receiver end at SN8, SN10,

SN12, and SN15, the detectors for wavelengths λ8, λ10, λ12, and λ15 respectively on the first

SWMR waveguide of the SWMR waveguide group are switched on when these SNs are in the

RCS. At SN8, once λ8 is detected in the receiver selection slot, the node prepares to receive data

from all of the four SWMR waveguides within the SWMR waveguide group in the next DCS by

partially detuning the ring detectors (partial detuning of ring resonators is employed to receive

both unicast and multicast data in SN8) from their corresponding resonating wavelengths in that

node. The partial detuning of ring detectors of SN8 will remove a portion of light available in

the SWMR waveguide, leaving the remaining portion of light for the other detectors to absorb.

Similarly, on detection of λ10, λ12, and λ15, nodes SN10, SN12, and SN15 respectively prepare to

83

receive data in the next DCS. Note that our architecture does not differentiate between unicast and

multicast transmissions, as it always employs partial detuning to receive both unicast and multicast

messages.

4.3.2 SN-to-MN communication in MSNoC cluster

All the SNs send data back to an MN in the aggregation phase, for which our MSNoC uses a

Multiple-Write-Single-Read (MWSR) waveguide group for SN-to-MN communication, with each

waveguide group having four MWSR waveguides. As shown in Fig. 4.2(a), this MWSR waveguide

group starts from the last SN (i.e., SN15) and traverses all of the remaining SNs (i.e., SN1-SN14)

and finally terminates at the MN. In contrast to the SWMR waveguide group, all SNs have the

ability to write on the MWSR waveguide group using their ring modulators (see Fig. 4.2(c) which

shows modulators of an SN on an MWSR waveguide) and the MN has the ability to read from the

MWSR waveguide group using its ring detectors (see Fig. 4.2(b) which shows detectors of an MN

on an MWSR waveguide).

As all SNs are capable of modulating (writing) in an MWSR waveguide group, there is a

need for arbitration between SNs to ensure that the data from different SNs does not destructively

overlap on the shared MWSR waveguide group. We use a centralized electrical arbiter to avoid

contention between SNs when writing to an MWSR waveguide group. This arbiter uses a round-

robin arbitration scheme. However, by virtue of being a centralized arbiter, it lacks scalability

beyond a certain cluster size. We address this drawback of the centralized arbiter in Section 4.5.

Furthermore, MSNoC exploits the centralized arbiter to enable flow control in the SN-to-MN com-

munication. We employ an Xon/Xoff flow control mechanism to control packet flow from an SN

to MN. Whenever, the receiving buffer in the MN is full then a signal is sent to the centralized

arbiter, such that this arbiter stops assigning MWSR waveguide groups to the SNs. Otherwise,

if the buffer is not full then the centralized arbiter allocates MWSR waveguide groups to SNs to

transmit packets to MNs. As per the explanation provide in Section 4.3, a power waveguide (see

Fig. 4.2(a)) that runs in parallel with the MWSR waveguide group uses a series of splitters to

supply photonic signals to the ring modulators to write data on to the MWSR waveguide group.

84

As each of four MWSR waveguides within this MWSR waveguide group carries 64 wavelengths,

therefore, each MWSR waveguide group requires 256 modulators and 256 detectors in the SN and

MN to write and read data, respectively. The total amount of photonic hardware required for the

MSNoC architecture is quantified in Section 4.6.

4.3.3 SN-to-SN communication in MSNoC cluster

SN-to-SN communication occurs in the MSNoC when the execution of high-performance data

analytics applications is in the shuffle phase. Our MSNoC enables SN-to-SN commu-nication via

the MN. We illustrate this SN-to-SN communication with a simple example. When SN15 wants to

send data to SN5, first SN15 sends data to the MN using an MWSR waveguide group, and then the

MN sends the received data to SN5 using an SWMR waveguide group. We show the SN15-to-SN5

communication path in Fig. 4.2(a) as a dotted line. This process thus involves two O/E (optical

to electrical) and two E/O (electrical to optical) conversions for each SN-to-SN transfer. The next

section presents a performance analysis for an MSNoC cluster with different SN counts. In Section

4.5, we describe how multiple MSNoC clusters are combined to form the BiGNoC architecture.

Figure 4.5: Variation of average packet latency in MSNoC cluster with (a) 32 nodes (b) 16 nodes,
and (c) 8 nodes having different MWSR waveguide groups (each group has 4 waveguides) across
three big data applications. Reprinted with permission from [8]

85

4.4 Sensitivity analysis

In an MSNoC cluster, with the increase in number of SNs, contention between SNs to access an

MWSR waveguide group increases. One possible solution to reduce this contention is to increase

the number of MWSR waveguide groups in the MSNoC cluster. To understand the impact of this

change, we performed a sensitivity analysis by varying the number of MWSR waveguide groups

within an MSNoC, for different cluster sizes (8, 16, 32 nodes; each cluster has 1 MN and the

remainder of the nodes are SNs). We modeled and simulated these variants of MSNoC at a cycle-

accurate granularity with a SystemC-based NoC simulator. We considered three applications: Text

Mining [12], Financial Time Series [99], and Airline Query Processing [100]. The goal with these

workloads was to emulate an environment with different intensities of MN-to-SN, SN-to-MN, and

SN-to-SN traffic with diverse bandwidth needs.

Fig. 4.5(a)g(c) show the variation of average packet latency with increase in number of MWSR

waveguide groups (x-axis) for the three sizes of the MSNoC cluster, across the three big data ap-

plications. It can be observed that for a specific MWSR waveguide group count within an MSNoC,

increase in cluster size (i.e., increase in node count) increases the average packet latency for all big

data applications. Increase in number of nodes within a cluster increases contention between SNs

to access the MWSR waveguide groups while sending data to an MN, which increases packet wait

time in the buffers of SNs and ultimately increases overall packet latency. From figures 5 (a)-(c),

it can also be seen that with the increase in MWSR waveguide groups, the average packet latency

first decreases until the waveguide group count reaches two. When MWSR waveguide group count

is increased beyond two, the latency starts increasing. Intuitively, increase in number of MWSR

waveguide groups from one to two increases the SN-to-MN data rate (as two MWSR waveguide

groups enable two packets to be sent simultaneously from two SNs to an MN), which decreases

packet waiting time in the buffers of SNs and reduces the average packet latency. Despite the

increase in data rate from SN-to-MN, with the increase in number of MWSR waveguide groups

beyond two, there is saturation in the data channel to the MN (as this data channel is capable of

sending only one packet per cycle from the concentrator to a master core). This increases the wait-

86

ing time of packets at the receiving buffers of MGIs and increases average packet latency across

all the big data applications.

Based on the analysis presented above, we optimally select two MWSR waveguide groups for

MSNoCs with cluster sizes of 32 and 16 nodes. Additionally, from the figures 5 (a)-(c) it can

also be seen that average latency for an MSNoC with 8 nodes remains constant for all MWSR

waveguide group counts across all the benchmark applications. From this result, it can be con-

cluded that in an MSNoC with 8 nodes, a single MWSR waveguide group is sufficient and optimal

for SN-to-MN communication. Furthermore, for these optimal MWSR waveguide group counts

used within MSNoC clusters the buffers in concentrators of MNs and SNs will seldom become

performance bottlenecks. We use these optimally determined MWSR waveguide group counts for

different cluster sizes in our homogeneous and heterogeneous master-servant multicluster archi-

tecture (BiGNoC) which we describe in detail in the next section.

4.5 BiGNoC Architecture

4.5.1 Homogeneous BiGNoC Architecture

In Section 4.3, we presented an MSNoC architecture that aims to effectively connect an MN

and many SNs within a master-servant cluster using MWSR and SWMR waveguide groups. Typ-

ically, large-scale data analytics applications require a greater number of servant cores than can

be accommodated in a single MSNoC cluster. There are two ways to address the requirement for

additional servant cores: increase the cluster size or use multiple interconnected clusters. We pre-

fer the latter solution as increase in cluster size leads to: (i) increase in power dissipation of the

SWMR and MWSR waveguide groups (see Table 4.2 later in the paper), (ii) increase in average

packet latency (see Fig. 4.5), and (iii) increase in MWSR waveguide group arbiter complexity.

These drawbacks suppress the power and performance benefits of photonic interconnects. More-

over, increase in cluster size limits the number of available masters within a cluster as the MSNoC

is designed to have only one master node. Therefore, we propose a homogeneous multicluster

architecture (BiGNoC-HOM) with four uniform clusters represented as C0, C1, C2, and C3, as

87

shown in Fig. 4.6(a), where each cluster has 16 nodes (i.e., 64 cores). Each 16-node cluster in the

(a)

(b)

Figure 4.6: (a) Homogeneous BiGNoC with four uniform clusters C0, C1, C2, C3, with each
cluster having 16 nodes, (b) Heterogeneous BiGNoC with four clusters C0, C1, C2, and C3 having
32, 16, 8, and 8 nodes, respectively. Reprinted with permission from [8]

88

BiGNoC-HOM architecture uses one SWMR waveguide group for MN-to-SN communication. As

explained in Section 4.3.1, each SWMR waveguide group is divided into two time slots to enable

receiver selection. Furthermore, based on the sensitivity analysis presented in the previous section,

we optimally select two MWSR waveguide groups in each cluster for SN-to-MN communication.

This architecture considers a single broadband laser source to power all of its SWMR and MWSR

waveguides and uses 64 wavelengths in each waveguide for data communication. We add three

more splitters to the power waveguide, to distribute laser power to the SWMR and MWSR waveg-

uide groups of the four clusters in BiGNoC-HOM. Each MN has a memory controller to send and

receive data from off-chip main memory with dedicated channels for communication. Therefore,

BigNoC-HOM uses four memory controllers, where each is associated with an MN within a clus-

ter. In addition, as shown in Fig. 4.6, all the four MNs within the four clusters of BiGNoC-HOM

are connected to a single 4×4 electrical router using their external electrical I/O ports (shown at

the top left of Fig. 4.2(a)). This electrical router is used for intercluster communication. We have

considered a four-stage pipelined electrical router with 4 I/O ports that are connected to four MNs

with the following pipeline stages: buffer write/route computation, region validation/switch allo-

cation, switch traversal, and link traversal. This router has an input and output queued crossbar and

uses double buffering with an 8-flit buffer size to more effectively cope with the higher photonic

path throughput. Each master node is provisioned with an additional buffer which receives and

stores packets from other clusters.

Intuitively, intercluster MN-to-MN communication occurs in one hop through the electrical

router. Intercluster MN-to-SN and SN-to-MN communication require two hops: inter-cluster

MN-to-SN communication requires MN-to-MN (inter-cluster) and MN-to-SN (intra-cluster) hops,

whereas intercluster SN-to-MN communication requires SN-to-MN (intra-cluster) and MN-to-MN

(intercluster) hops. Further, intercluster SN-to-SN communication requires three hops: SN-to-MN

(intra-cluster), MN-to-MN (inter-cluster), and MN-to-SN (intra-cluster). We illustrate the SNgto-

SN communication across different clusters with a simple example. If node N2 (i.e., SN) of C0

needs to send a packet to node N10 (i.e., SN) of cluster C1, then N2 of C0 first sends data to N0

89

(i.e., MN) of C0 using an MWSR waveguide group. Then from this node the packet is sent to N0

(i.e., MN) of C1 through the electrical router that enables intergcluster communication. Lastly, the

packet is sent to N10 of C1 using the SWMR waveguide group in that cluster. Thus, inter-cluster

SN-to-SN communication incurs minimal overhead with only two O/E and two E/O conversions,

which is similar to intra-cluster SN-to-SN communication.

4.5.2 Heterogeneous BiGNoC architecture

As explained in the previous subsection, BiGNoC-HOM with four uniform clusters can enable

inter-cluster communication between MNs and SNs. While executing applications with larger ser-

vant core count requirements, BiGNoC-HOM incurs higher inter-cluster traffic. This increase

in inter-cluster traffic via slower electrical links may reduce the performance of the proposed

BiGNoC-HOM architecture. This motivates us to design a heterogeneous version of BiGNoC

(BiGNoC-HET) with four clusters, but with different cluster sizes.

A larger cluster size with more number of SNs in BiGNoC always improves the performance

of a big data application requiring higher number of servant cores. This is because a larger cluster

size reduces the inter-cluster traffic through slower electrical links of the 4×4 electrical router. But

SWMR waveguides within a BiGNoC cluster cannot support multicasting beyond 32-nodes, due to

the limitations in receiver sensitive and TIA circuit bandwidth [79]. Therefore, we have considered

a cluster with a maximum of 32 nodes (with 128 cores) for BiGNoC-HET. Furthermore, after ana-

lyzing the master and servant core requirements of big data benchmark applications, we concluded

that these applications have different scales which require different cluster sizes. Therefore, to

execute medium and small applications, we have considered a 16-node cluster with 64 cores and

an 8-node cluster with 32 cores, respectively. Therefore, in BiGNoC-HET, we use clusters C0,

C1, C2, and C3 with 32, 16, 8, and 8 nodes, respectively, as shown Fig. 4.6(b).To enable receiver

selection in SWMR waveguide groups of these clusters, we divided the waveguides in clusters C0,

C1, C2, and C3 into 4, 2, 1, and 1 time slots respectively, based on the time taken by light to

traverse these waveguides on a die. Based on the sensitivity analysis presented in Section 4.4, we

use 2, 2, 1, and 1 MWSR waveguide groups for clusters C0, C1, C2, and C3 respectively. Similar

90

to BiGNoC-HOM, we use four memory controllers to control off-chip memory and an electrical

router to connect all four clusters of BiGNoC-HET.

In BiGNoC (especially BiGNoC-HET), scheduling of applications plays a crucial role in en-

hancing overall performance. For example, BiGNoC-HET can achieve better performance when

an application with a greater servant core requirement is scheduled to a cluster with more ser-

vant cores. In contrast, scheduling a larger application on multiple smaller clusters will increase

inter-cluster communication, which in turn may degrade performance. This motivates us to design

an application scheduling algorithm for BiGNoC which is presented in the next subsection. We

perform a detailed comparative study between BiGNoC-HOM and BiGNoC-HET in Section 4.6.3.

4.5.3 Application scheduling in BiGNoC

Algorithm 1 shows the pseudocode for the application scheduling procedure in BiGNoC. Our

scheduling algorithm will schedule a combination of applications if the total number of master and

servant cores within a BigNoC-HET architecture is more than or equal to the required number of

master and servant cores for these applications. Applications (APi) are assumed to have master

core (MAi) and servant core (SAi) requirements. The target BiGNoC platform is characterized by

its clusters (Cj), master cores (MCj), and servant cores (SCj). First, the applications and BiGNoC

platform clusters are sorted in the descending order of their SAi and SCj counts, respectively

(steps 1-2). In steps 3-4, the algorithm initializes the required number of master cores (NMAi)

and servant cores (NSAi) that are to be scheduled for each application, and also initializes the

number of available free master cores (FMCj) and free servant cores (FSCj) in each cluster

of BiGNoC, respectively. A nested loop iterates over all applications (APi) and clusters (Cj) in

steps 5-6. If FSCj are available in cluster Cj at step 7, then in steps 8-25, we assign master and

servant cores of BiGNoC to applications. We compare the number of available free servant cores

within a cluster with the number of servant cores required by an application. If the number of

free servant cores within a cluster are greater (steps 8-10), then we assign the required free servant

cores in the current cluster to the current application, else we assign all the free servant cores in

the current cluster to the current application (steps 17-19). For every free servant core assignment

91

to an application in a cluster, we also compare the number of available free master cores within the

cluster with the number of master cores required by an application. If the number of free master

coreswithin a cluster are greater (steps 11-13 and 20-22), then we assign the required free master

cores in the current cluster to the current application, else we assign all the free master cores in

current cluster to the current application (steps 17-19 and 23-25). The proposed algorithm is used

to schedule applications on both variants of BiGNoC.

4.6 Experiments

4.6.1 Experimental Setup

To evaluate the proposed BiGNoC architecture, we compared it with a traditional electrical

mesh NoC (EMesh) and a broadcast optimized electrical mesh NoC (BO-EMesh) [101] as well

as with two state-of-the-art photonic crossbar NoCs: Flexishare with token stream arbitration [82]

and Firefly with a reservation assisted SWMR (R-SWMR) waveguide groups [81]. We modeled

and simulated the NoC architectures at a cycle-accurate granularity with a SystemC-based NoC

simulator for a 256-core CMP platform. We used this NoC simulator to emulate the execution of

big data benchmarks across different architectures. In Flexishare, Firefly, BO-EMesh, and EMesh

architectures with 256-cores, we have considered 16 master cores (similar to the number of mas-

ter cores in BiGNoC; recall that BiGNoC has 4 MNs, which corresponds to 16 master cores) and

the remaining cores are considered as servant cores for a fair comparison with the BiGNoC archi-

tecture. We used five big data benchmarks [11], [12]-[13] (Table 4.2) to create multi-application

workloads. The goal with these workloads is to emulate an environment that executes future large-

scale data analytics applications having different master and servant combinations with diverse

bandwidth needs.

Table 4.2 shows the variants of big data benchmarks with different master-servant requirements

considered for our analysis. We created 12 multi-application workloads from these benchmarks.

Each workload combines 2 to 4 benchmarks, such that the summation of all the master cores and

servant cores within the multi-application workload is lower than the number of available cores

92

Algorithm 4 Application scheduling in BiGNoC
1: Inputs: Applications (APi) with master cores (MAi) and servant cores (SAi) require-

ments, and BiGNoC with clusters (Cj), master cores (MCj), and servant cores (SCj)
2: Sort APi (highest SA to lowest SA)
3: Sort BigNoC clusters (highest SC to lowest SC)
4: for all i do
5: NSAi = SAi

6: NMAi = MAi

7: for all j do
8: FSCj = SCj

9: FMCj = MCj

10: for APi do
11: for Cj do
12: if FSCj > 0 then // Checks for free cores in clusters
13: if F thenSCj NSAi 0
14: Do-Scheduling (APi→ NSAi servant cores of Cj) // Map servants
15: FSCj = FSCj - NSAi

16: NSAi = 0
17: if FMCj > 0 and FMCj NMAi ≥ 0 then
18: Do-Scheduling (APi→ NMAi master cores of Cj) // Map masters
19: FMCj = FMCj NMAi

20: NMAi = 0
21: else if FMCj > 0 and FMCj NMAi < 0 then
22: Do-Scheduling (APi→ (NMAi FMCj) master cores of Cj)
23: NMAi = NMAi FMCj

24: FMCj = 0
25: else
26: Do-Scheduling (APi→ (NSAi FSCj) servant cores of Cj)
27: NSAi = NSAi FSCj

28: FSCj = 0
29: if FMCj > 0 and FMCj NMAi ≥ 0 then
30: Do-Scheduling (APi→ NMAi master cores of Cj)
31: FMCj = FMCj NMAi

32: NMAi = 0
33: else if FMCj > 0 and FMCj NMAi < 0 then
34: Do-Scheduling (APi→ (NMAi FMCj) master cores of Cj)
35: NMAi = NMAi FMCj

36: FMCj = 0
37: Output: Scheduled master-servant cores of app onto clusters of BiGNoC

93

(i.e., 256) in the CMP. As an example, the T (1-40)-A (5-50)-F (2-100)-N (1-50) workload com-

bines variants of Text Mining with 1-master and 40-servants (T (1-40)), Airline Query Processing

with 5-masters and 50-servants (A (5-50)), Financial Time Series with 2-masters and 100-servants

(F (2-100)), and Netflix Movie Rating with 1-master and 50-servants (N (1-50)), and schedules

them to clusters C0, C1, C2, and C3 of BiGNoCgHOM and BiGNoC-HET using the application

scheduling algorithm presented in Section 4.5.3. We analyzed the actual execution characteristics

of the big data applications presented in Table 4.2 (such as the master processing time, servant

processing time, etc.) that are measured using an Amazons Elastic Compute Cloud (EC2) instance

[102], to generate traces that were fed into our network simulator. We set a warm-up period of 1M

cycles and executed the applications for 100M cycles.

Table 4.2: Big data application benchmarks, with three variations each, based on their Master-
Servant requirements [11], [12]-[13]. Reprinted with permission from [8]

Application Representation Application variants
Netflix Movie Rating N(Masters-Servants) N (1-50), N (1-70), N (1-100)

Text Mining T(Masters-Servants) T (1-40), T (1-60), T (1-80)
Gray Sort Contest G(Masters-Servants) G (5-200), G (7-200), G (10-200)

Financial Time Series F (Masters-Servants) F (2-100), F (3-110), F (4-120)
Airline Query Process A(Masters-Servants) A (5-50), A (5-60), A (5-70)

We targeted a 22nm process technology for the 256-core system. Based on geometric calcu-

lations of the waveguides for a 20mm×20mm chip dimension, we estimated the time needed for

light to travel in a photonic waveguide with a length of 12 cm from the first to the last node in a

single pass of the MWMR waveguide group in Flexishare as 8 cycles (i.e., 1.6ns) at 5 GHz clock

frequency. Throughout our analysis we use a flit size of 64 bits for BO-EMesh and EMesh and

a total packet size of 512 bits for all PNoC architectures. We consider data modulation at both

clock edges to enable simultaneous transfer of 512 bits in a single cycle, in the BiGNoC-HOM,

BiG-NoC-HET, Flexishare, and Firefly PNoCs. We considered an on-off switching time of 3.1 ps

94

for a ring modulator and ring detector [82], which is less than one clock cycle (i.e., 200ps) at 5GHz

frequency.

The static and dynamic energy consumption of the electrical routers is based on results obtained

from the DSENT tool [103]. Energy consumption of various photonic components for all the

photonic NoC architectures are adopted from photonic device characterizations in line with state-

of-the-art proposals [14], [15]-[16] and shown in Table 4.3. Here Edynamic is the energy per bit

for modulators and photodetectors and Elogicdyn is the energy per bit for the driver circuits of

modulators and photodetectors. PSWMRggFY and PMWMR-FX are the static power dissipation

of SWMR and MWMR waveguide groups in Firefly and Flexishare architectures, respectively.

Further, the PMWSR and PSWMR rows in Table 4.3 show static power dissipation of MWSR

and SWMR waveguide groups of clusters in BiGNoC with sizes 32, 16, and 8 nodes, respectively.

Also, we calculate power dissipation overheads of 75mW, 35mW, and 15mW in the electrical

circuits of the SWMR waveguide groups in clusters of BiGNoC with sizes 32, 16, and 8 nodes,

respectively, to realize partial detuning based on estimates from prior work [79]. All the static

power dissipation values for waveguides presented in Table 4.3 include the power overhead of MR

thermal tuning. We consider an MR heating power of 15 ţW per MR and detector responsivity of

0.8 A/W [15]. To compute laser power dissipation, we calculated photonic loss in components,

which sets the photonic laser power budget and correspondingly the electrical laser power. Lastly,

based on our gate-level analysis, we estimate area overheads of 0.0065mm2 and 0.008mm2, and

power overheads of 0.12W and 0.16W in the electrical arbiters for the MWSR waveguide groups

of BiGNoC-HOM and BiG-NoC-HET, respectively.

4.6.2 BigNoC: Sensitivity Analysis

Our first set of experiments presents a sensitivity analysis to explore the optimal buffer size of

the electrical router that is used for inter-cluster communication in two variants of our BiGNoC

architecture with 256 cores: BiGNoC-HOM and BiG-NoC-HET. BiGNoC-HOM has four homo-

geneous clusters with each cluster having 16 nodes; and BiGNoC-HET has four clusters with 32,

16, 8, and 8 nodes, respectively.

95

Table 4.3: Energy and losses for photonic devices [14], [15], [16]. Reprinted with permission from
[8]

Cluster-wise static power per waveguide group of BiGNoC
Waveguide
Type

32-Node
Power

16-Node
Power

8-Node
Power

PMWSR 1.54W 0.62 W 0.21W
PSWMR 5.72 W 2.69 W 1.26 W
Static power per waveguide group Power

PSWMR-FY 1.15 W
PMWMRgFX 3.73 W

Energy consumption type Energy
Edynamic 0.42 pJ/bit
Elogicdyn 0.18 pJ/bit

Photonic loss type Loss (in dB)
Microring through -0.005

Waveguide propagation per cm -0.274
Waveguide coupler/splitter -0.2

Waveguide bending loss 0.005 per 900

Fig.4.7(a) & (b) show the average packet latency for three multi-application big data workloads

on BiGNoC-HOM and BiGNoC-HET, with buffer depth of the electrical router varying from 8 to

40. The range of buffer depths (i.e., from 8 to 40) explored in this sensitivity analysis is decided

based on the buffer depths used in the prior works [81], [82]. In this analysis, to compute aver-

age packet latency we have considered the delay incurred by the packet to move from the source

node to the destination node along with the queuing delays in routers and interfaces. The three

workloads were chosen to possess high, medium, and low aggregate inter-cluster traffic, to ex-

plore the impact of application traffic on buffer depth. We characterized inter-cluster traffic of an

application by counting the number of transfers through the electrical router, which is used for

inter-cluster communication.

At a particular buffer depth for both BiGNoC-HOM and BiGNoC-HET, Fig.4.7 shows higher

average packet latency for workloads with higher inter-cluster traffic (i.e., G(10-200)-T(1-40))

compared to workloads with lower inter-cluster traffic (i.e., T(1-40)-A(5-50)-F(2-100)-N(1-50) for

BiGNoC-HOM and A(5-70)-F(4-120)-N(1-50) for BiGNoC-HET) as queuing of pack-ets occurs

96

Figure 4.7: Average packet latency comparison for (a) BiGNoC-HOM and (b) BiG-NoC-HET in
a 256-core CMP with different buffer depths (8-40). Reprinted with permission from [8]

at the master nodes for workloads with higher inter-cluster traffic, which increases their queueing

delay and average packet latency. Also, for all workloads executing on both BiGNoC-HOM and

BiGNoC-HET, a smaller buffer size should intuitively result in higher average packet latency, as

the buffer in the electrical router becomes more frequently full and creates back pressure on the

buffers in the MN of each cluster of BiGNoC-HOM and BiGNoC-HET. As a result, the centralized

arbiter within each cluster stops assigning MWSR waveguide groups to SNs (due to Xon/Xoff

flow control mechanism used within each cluster; for explanation see Section 4.3.2) in that cluster,

which are used to transfer packets to MN, which in turn increases packet queuing delay within

each SN and incurs higher average packet latency.

On the other hand, beyond a particular buffer depth in both BiGNoC-HOM and BiGNoC-

HET the average packet latency of all the applications saturate. After a particular buffer depth,

the buffer in the electrical router of both variants of BiGNoC seldom gets full, which is the main

reason for this saturation. A careful observation of the plots in Fig.4.7 shows that for workloads

with lower inter-cluster traffic (i.e., T(1-40)-A(5-50)-F(2-100)-N(1-50) for BiGNoC-HOM and

A(5-70)-F(4-120)-N(1-50) for BiGNoC-HET) latency saturation occurs at a small buffer depth,

whereas for workloads with higher inter-cluster traffic (i.e. G(10-200)-T(1-40) for both BiGNoC-

HOM and BiGNoC-HET) latency saturation occurs at a large buffer depth. However, as shown

in Fig. 7 (a) and (b), there is a region (light yellow shaded region) between saturation points of

97

low inter-cluster traffic application and high inter-cluster traffic application, where both BiGNoC-

HOM and BiGNoC-HET archive optimal performance. Therefore, we chose to use 21 and 26 as

the optimal buffer depth for BiGNoC-HOM and BiGNoC-HET, respectively, which are the highest

buffer depths of the optimal performance regions shown in Fig. 4.7(a) & (b). We use these optimal

buffer depths for BiGNoC-HOM and BiGNoC-HET in the rest of our analysis.

4.6.3 Experimental Results

Our next set of experiments presents a comparative study between BiGNoC-HOM and BiGNoC-

HET. We used the optimal buffer depth of 21 and 26 for BiGNoC-HOM and BiGNoC-HET, re-

spectively (determined as per the previous subsection) in this comparative study. Fig. 4.8(a) & (b)

present detailed simulation results that quantify the average throughput and energy-per-bit (EPB)

for BiGNoC-HOM and BiGNoC-HET, for twelve multi-application workloads. Results are nor-

malized with respect to the BiGNoC-HET results. From Fig.4.8(a) it can be seen that on an average

BiGNoC-HET has 30.4% higher average throughput compared to BiG-NoC-HOM. Variable clus-

ter sizes in BiGNoC-HET help reduce the inter-cluster traffic while executing big data workloads

involving different master-servant combinations. This decrease in inter-cluster traffic improves

utilization of MWSR and SWMR waveguides within a cluster and increases the throughput of

BiGNoC-HET compared to BiGNoC-HOM. Also, from Fig.4.8(b) it can be observed that on an

average BiGNoC-HET has 33.3% lower EPB compared to BiGNoC-HOM. The increase in data

rate and decrease in trimming energy (due to decrease in number of detectors) decreases the EPB

of BiG-NoC-HET compared to BiGNoC-HOM even though there is increase in laser energy for

BiGNoC-HET. From the average throughput and EPB results presented in Fig.4.8, we can summa-

rize that BiGNoC-HET achieves better performance with lower EPB compared to BiGNoC-HOM,

which highlights its viability for executing future large-scale data analytics applications. There-

fore, for our next set of experiments we have used only BiGNoC-HET to estimates benefits over

electrical and photonic NoC architectures from prior work. In the next set of experiments, we com-

pare network throughput, average packet latency, and energy-per-bit (EPB) of BiGNoC-HET with

the EMesh, BO-EMesh, Flexishare with token stream arbitration [82], and Firefly with R-SWMR

98

(a)

(b)

Figure 4.8: (a) Normalized throughput, (b) normalized EPB comparison of BiG-NoC-HOM with
BiGNoC-HET for 256-core CMP. Results are shown for multi-application workloads and normal-
ized w.r.t. BiGNoC-HET. Reprinted with permission from [8]

waveguide [81] architectures. Fig. 4.9 (a)-(c) show the results of this comparative analysis, where

all the results are normalized with respect to the EMesh results. From the throughput com-parison

in Fig. 4.9(a), it can be observed that, not surprisingly, BiGNoC-HET provides 8.7× and 7.2×

higher throughput than EMesh and BO-EMesh, respectively, due to the presence of higher band-

width photonic links for data communication. Furthermore, as shownin Fig.4.9 (a), throughput

improvements of BiGNoC-HET are significantly higher for most of the application combinations,

except the application combinations that have the Gray Sort Contest (G) application. As this single

large application utilizes a significant portion of the BiGNoC architecture (by utilizing 200 servant

cores) for which a major portion of the traffic traverses the 4×4 electrical routers (for inter-cluster

communi-cation), the bottlenecks at these routers limit BiGNoC-HET performance.

99

(a)

(b)

(c)

Figure 4.9: Normalized (a) throughput (b) latency (c) EPB comparison of BiG-NoC-HET with
other architectures for a 256-core CMP. Results are for multi-application workloads and normal-
ized w.r.t. EMesh. Reprinted with permission from [8]

BiGNoC-HET has nearly 9.9× greater throughput compared to Flexishare. Even though Flex-

ishare uses MWMR waveguides and time division multiplexing (TDM), its token stream arbitration

reduces its waveguide utilization and overall throughput compared to BiGNoC-HET. In Flexishare,

100

arbitration wavelengths corresponding to MWMR data waveguides are injected serially into the ar-

bitration waveguide and a node that grabs a token in the arbitration waveguide gets exclusive access

to the corresponding MWMR data waveguide, which limits Flexishares ability to perform simulta-

neous data transfers. In contrast, BiGNoC-HET has dedicated photonic paths (MWSR waveguide

group for SN-to-MN communication and SWMR waveguide group for MN-to-SN communica-

tion) between the master node and servant nodes within each cluster. This helps in increasing

simultaneous data transfers in BiGNoC-HET with increase in number of clusters. BiGNoC-HET

also facilitates efficient multicasting to improve throughput over Flexishare by using its SWMR

waveguide groups from MN to SNs, whereas in Flexishare, multiple unicast packets are sent from

the master core to servant cores instead of a single multicast packet. BiGNoC-HET has 4.4× higher

throughput compared to Firefly. This is due to the near light speed communications for a majority

of the path traversed by the data in BiGNoC-HET using photonic links, whereas Firefly being a

hybrid network, utilizes slower electrical links for a significant portion of the path traversed by the

data. These mechanisms also improve the average packet latency in BiGNoC-HET, as shown in

Fig.4.9 (b), by reducing the time spent waiting for access to the photonic waveguides. On average

BiGNoC-HET has 81%, 84%, 85%, and 88% lower average packet delay over Flexishare, Firefly,

BO-EMesh, and EMesh, respectively for the different multiapplication workloads.

Table 4.4: Phototnic hardware comparison. Reprinted with permission from [8]

Architecture Waveguides Modulators Detectors
BiGNoC-HOM 12 31,744 17,408
BiGNoC-HET 10 33,280 11,776

Flexishare 33 131,080 131,648
Firefly 64 4,096 28,672

Fig.4.9(c) shows the EPB comparison between the architectures. It can be observed that on

average BiGNoC-HET has 88%, 90%, 96%, and 98% lower EPB compared to Flexishare, Firefly,

BO-EMesh, and EMesh, respectively. BiGNoC-HET has lower EPB compared to BO-EMesh and

101

EMesh, as it uses energy efficient photonic links for data transfer instead of power hungry elec-

trical links. Most of the energy in the photonic architectures was consumed in the form of static

energy. Table 4.4 shows the photonic hardware comparison between the PNoC architectures. It

can be seen that BiGNoC-HET has 82% less photonic hardware compared to Flexishare. This re-

duction in photonic hardware reduces its overall static energy consumption and its EPB. Although

both BiGNoC-HET and Firefly use multicasting in their SWMR waveguides, the lower EPB of

BiGNoC-HET compared to Firefly is due to the higher energy consumption in the electrical net-

work of the Firefly architecture.

4.7 Chapter Summary

In this chapter, we presented a new application-specific BiGNoC architecture that features

master-servant clusters with efficient utilization of SWMR and MWSR waveguides to improve

performance while executing large-scale data analytics applications. BiGNoC exploits efficient

multicasting in photonic waveguides to achieve high data rates. In particular, we showed how

BiGNoC-HET, a variant of BiGNoC, improves performance due to improved photonic channel

utilization and its ability to adapt to time-varying application performance goals while co-running

multiple large-scale data analytics applications. BiGNoC-HET improves throughput by up to 9.9×,

packet latency by up to 88%, and energy-per-bit by up to 98% over traditional EMesh, broadcast

optimized EMesh, and state-of-the-art photonic NoC architectures (Flexishare and Firefly). These

results corroborate the excellent capabilities of our proposed BiGNoC architecture towards ex-

ecuting large-scale data analytics applications. BigNoc addresses the communication aspect of

large-scale computing. To address the computational challenges at a core-level, we envision to

propose a photonic computing machine design. The next chapter demonstrates our invention of a

large-scale deep learning photonic computer design.

102

5. NEUROMORPHIC COMPUTING USING SILICON PHOTONICS*

5.1 Introduction

1In today’s era of big data, the volume of data that computing systems process has been increas-

ing exponentially. Deep neural networks have become the state-of-the-art across a broad range of

big data applications such as speech processing, image recognition, financial predictions, etc. Con-

volutional neural networks (CNNs) are a popular deep learning framework with superior accuracy

on applications that deal with videos and images. However, CNNs are highly compute and mem-

ory intensive, requiring enormous computational resources. With Moores law coming to an end,

traditional Von Neuman computing systems such as heterogeneous CPU/GPU platforms cannot

address this high computational demand, within reasonable power and processing time limitations.

Therefore, several FPGA [104] and ASIC [105] approaches have been proposed to accomplish

large-scale deep learning acceleration.

A CNN comprises of two stages: training and inference (i.e., testing). Most hardware accel-

erators for CNNs in prior literature focus only on the inference stage. However, training a CNN

is several hundred times more compute intensive and power intensive than its inference [106].

Moreover, for many applications, training is not just a one-time activity, especially under changing

environmental and system conditions, where re-training of the CNN at regular intervals is essential

to maintaining prediction accuracy for the application over time.

Training a CNN in general, incorporates a backpropagation algorithm which involves no-

table memory locality and compute parallelism. Recently, a few resistive memory (memristor)

based training accelerators have been demonstrated for CNNs, e.g. ISAAC [105], PipeLayer [10].

ISAAC uses highly parallel memristor crossbar arrays to address the need for parallel compu-

tations in CNNs. In addition, ISAAC uses a very deep pipeline to improve system throughput.

However, this is only beneficial when a large number of consecutive images can be fed into the ar-

chitecture. Unfortunately, during training, in many cases, a limited number of consecutive images

1Part of this chapter is adapted with permission from [9]

103

need to be processed before weight updates. The deep pipeline in ISAAC also introduces frequent

pipeline bubbles. Compared to ISAAC, PipeLayer demonstrates an improved pipeline approach

to enhance throughput. However, both ISAAC and PipeLayer involve several analog-to-digital

(AD) and digital-to-analog (DA) conversions which become a performance bottleneck, in addition

to their large power consumption. Also, training in these accelerators involves sequential weight

updates from one layer to another. This incurs inter-layer waiting time for synchronization, which

reduces overall performance. This motivates an analog accelerator that can drastically reduce the

number of AD/DA conversions, and inter-layer waiting time.

It has been recently demonstrated that a completely analog matrix-vector multiplication is

100×more efficient than its digital counterpart implemented with an ASIC, FPGA, or GPU [107].

HP labs have showcased a memristor dot product engine that can achieve a speed-efficiency prod-

uct of 1000× compared to a digital ASIC [107]. Vandroome et al. in [108] have demonstrated

a small-scale efficient recurrent neural network using analog photonic computing. A few effi-

cient on-chip photonic inference accelerators have also been proposed in [109], [110]. However,

a full-fledged analog CNN accelerator that is capable of both training and inference has yet to be

demonstrated.

In this chapter, we propose a novel silicon photonics-based backpropagation accelerator for

training CNNs. We present the design of this novel CNN accelerator (BPLight-CNN) that inte-

grates the photonics-based backpropagation accelerator. BPLight-CNN is a first-of-its-kind memristor-

integrated silicon photonic CNN accelerator for end-to-end training and inference. It is intended

to perform highly energy efficient and ultrafast training for deep learning applications with state-

of-the-art prediction accuracy. The main contributions of this chapter are summarized as follows:

• We propose BPLight-CNN, a fully analog and scalable silicon photonics-based backprop-

agation accelerator in conjunction with a configurable memristor-integrated photonic CNN

accelerator design;

• We demonstrate a pipelined data distribution approach for high throughput training with

BPLight-CNN;

104

• We synthesize the BPLight-CNN architecture using a photonic CAD framework (IPKISS

[48]). The synthesized BPLight-CNN is used to execute four variants of VGG-Net and two

variants of LeNet, demonstrating at least 35×, 31×, and 45× improvements in throughput,

computation efficiency, and energy efficiency, respectively, compared to the state-of-the-art

CNN accelerators.

5.2 Convolutional Neural Network: Overview

5.2.1 Basics of Convolutional Neural Network

Convolutional neural networks (CNNs) are a class of feedforward neural networks commonly

used for analyzing visual imagery for image classification and object detection/prediction tasks.

CNNs comprise of a sequence of hidden layers where each layer is composed of neurons arranged

in three dimensions: width, height and number of channels. The neurons in a layer are connected

to a small region of the layer before it. This ensures that weights are shared among the neural

connections across adjacent layers, thereby reducing the number of parameters (weights) to be

learnt in the network. The final output layer in a CNN is a fully connected neural network that

transforms the full input image into a single vector of class scores arranged along the channel

dimension.

Fig.5.1 illustrates an overview of CNN architecture. In principle, three types of layers are

used to build a CNN: convolution layer (CONV), pooling layer (POOL) and a fully connected

layer (FC). Generally, CONV is accompanied with a nonlinear activation function, such as ReLU.

Depending on the sequence in which these layers are arranged, there are different CNN models,

such as AlexNet [111], VGG [112], LeNet [113], GoogLeNet [114] etc. Fig. 5.1 illustrates an

example of a CNN with [CONV-POOL]-[CONV-POOL]-[FC] i.e., 2 hidden layers each of which

comprises of [CONV-POOL]. LeNet has the configuration [CONV-POOL]-[CONV-POOL]-[2FC]

and VGG16 is built with [2CONV-POOL]-[2CONV-POOL]-[3CONV-POOL]-[3CONV-POOL]-

[3CONV-POOL]-[3FC].

The functional details of the various layers are as follows.

105

Figure 5.1: Overview of CNN with two hidden layers and an FC layer. Each hidden layer com-
prises of [CONV-POOL]

• Convolution layer (CONV) is used to extract features from the image using multiple filters.

An M × N CONV receives M features as input and produces N features as output. It uses

a set of M filters (or kernels), each of size F1 × F2. Each of these filters slides across a

corresponding feature with a stride of S1 × S2 to perform element-wise vector matrix mul-

tiplication. The resulting N output features can be represented using the following equation.

Out[n][p][q] =
M∑

m=0

F1∑
i=0

W (n, p, q) (5.1)

where,

W (n, p, q) =

F2∑
j=0

[W [n][m][i][j]× In[S1 × p+ i][S2 × q + j]] (5.2)

Here, n and m are kernel index, i and j are (x, y) values of a kernel, and p and q are (x, y)

values of input In.

• Neural activation layer performs a biological activation function such as a sigmoid, recti-

fied linear unit (ReLU), or tanh, on each feature of its previous layer. We utilize ReLU which

is a widely used nonlinear activation function with state-of-the-art performance [104], [107],

106

[111], which can be described as follows.

ReLU(x) = max(0, x) (5.3)

• Pooling layer (POOL) is used to obtain spatial invariance while scaling features from pre-

ceding layers. A "maximum/average of many features" approach is considered to scale down

extracted features. POOL maintains translational invariance, or in other words, it results in

a scaled-down feature map identical to its original version.

• Fully Connected Network layer (FC) performs the final classification or prediction in a

CNN. An FC takes the feature maps generated from previous layers and multiplies a weight

matrix following a dense matrix vector multiplication pattern. A few cascaded FC layers

carry out the same procedure to produce the final classification or prediction output. The

computation of an FC layer can be described by the following equation.

Out[p][q] =
N∑

m=0

[W [p][n]× In[n][q] (5.4)

5.2.2 Backpropagation Algorithm

A deep neural network such as a CNN has two stages: training and inference (testing). In

the training phase, the filter weights (and biases) in CONV and FC layers are learnt by using a

backpropagation (BP) algorithm. The BP algorithm involves a forward and a backward pass in the

deep network. Given a training sample x in the forward pass, the weighted input sum (convolution)

z is computed for neurons in each layer l with some initial filter weights w (and bias b) followed by

neural activation σ(z) (ReLU(z) in our work), and POOL. The final layer L computes the output

label of the overall network for every forward pass. This can be summarized as follows.

Forward pass: For each layer l,

107

zx,l ← wlax,l−1 + bl (5.5)

ax,l ← σ(zx,l) (5.6)

A cost function C is defined to quantitatively evaluate how well the output of a neural network

at the final layer L compares to the target class label. The optimization goal in training is to mini-

mize this cost function. The output error in the final prediction σx, L is a result of errors induced

by the neurons in each hidden layer during the forward pass. To compute the error contribution of

a neuron in the previous layer i.e., σ(x, l), the final error is back propagated through the network

starting from the output layer. This can be summarized as follows.

Output error: At the final layer L,

σx,L ← ∇aCx ⊙ σ
′
(zx,L) (5.7)

Backward pass: For each layer l,

σx,l ← ((wl+1)T × σx,l+1)⊙ σ
′
(zx,l) (5.8)

Here, ∇a is gradient of ax,l, and σ
′
(zx,L) is derivative of σ(zx,L). These error contributions

are necessary to update the filter weights w and biases b in the respective layers using a gradient

descent method. In gradient descent, the forward and backward pass happen iteratively until the

cost function is minimized and the network is trained. This can be summarized as follows.

Gradient Descent: For each layer l and m training samples with learning rate η,

wnew
l ← wl − η

m

∑
x

σx,l × (ax,l−1)T (5.9)

108

bnew
l ← bl − η

m

∑
x

σx,l (5.10)

Once the parameters of the model are learnt with the aid of the BP algorithm, recognizing an

object in an image involves a simple forward propagation of a test image through a sequence of

[CONV-POOL] hidden layers to extract the relevant features. Lastly, the feature maps flow through

the FC layer which activates certain neurons in this dense network, to recognize the object it is

trained for. Before discussing our proposed BPLight-CNN accelerator, the next section presents an

overview of on-chip photonic components, which are the building blocks of this accelerator.

5.3 Overview: On-chip Photonic Components

On-chip photonics components such as photonic waveguides, microring modulators (MRMs),

semiconductor-optical-amplifiers (SOAs), photodetectors and multi-wavelength laser sources are

used for on-chip photonic signaling [115]. An MRM is a circular shaped photonic structure with

a radius of 5 ţm which is used to modulate electronic signals onto a photonic signal at the trans-

mission source in a waveguide. MRMs are also used to couple/filter out light from the waveguide

at the destination. Each MRM modulates/couple light of a specific wavelength. The geometry of

the MRM determines its wavelength selectivity. We can also inject (remove) charge carriers to

(from) an MRM to alter its operating wavelength. An SOA is an optoelectronic device that under

suitable operating conditions can amplify photonic signals. A detailed description of the structure,

functionality, and modeling of SOAs is given in [116].

In a typical high bandwidth photonic link, an off-chip laser source (either on the board or on a

2.5D interposer) generates multiple wavelengths, which are coupled by an optical grating coupler

to an on-chip photonic waveguide. The use of multiple wavelengths (e.g., 32) to transmit multiple

streams of bits simultaneously is referred to as dense-wavelength-division-multiplexing (DWDM).

To enable processing of these photonic signals, the on-chip photonic waveguide guides the input

optical power of these DWDM photonic signals via a series of MRMs (where each MRM operates

on a photonic signal with specific wavelength) and SOAs. Finally, the photonic signals arrive at

109

the destination where they are coupled out of the waveguide by MRMs, which drop the photonic

signals onto photodetectors, to convert them back to electronic signals.

An important characteristic of photonic signal transmission in an on-chip photonic link is that

it is inherently lossy, i.e., the photonic signal is subject to losses such as insertion losses in MRMs,

active region losses in SOAs, detection losses in photo-detectors, and propagation and bending

losses in waveguides. In addition, there are splitting and coupling losses in grating couplers, split-

ters, and multiplexers. Higher laser power is needed to compensate for the losses, for reliable

photonic signal transmission. These photonic links are used to construct parts of our BPLight-

CNN architecture, as discussed next.

5.4 BPLight-CNN Architecture

In this section, we discuss the architecture of the proposed BPLight-CNN accelerator for end-

to-end training and testing. A high-level overview of proposed BPLight-CNN is shown in Fig.5.2.

As shown in this figure, BPLight-CNN comprises of three parts: feedforward CNN accelerator

architecture, backpropagation accelerator architecture, and weight update and peripheral circuitry.

The rest of this section describes these three parts of BPLight-CNN in detail.

Figure 5.2: Overview of BPLight-CNN Architecture

110

5.4.1 Feedforward CNN Architecture

We consider an image dataset as input data and its classification as the application to be exe-

cuted with BPLight-CNN. The CNN accelerator in the proposed BPLight-CNN architecture (see

Fig.5.2) is used for feedforward feature extraction (FE) and feature classification of input images.

The FE in the CNN architecture is carried out using multiple FE stages (FEi). After all of the

features are extracted, feature classification is performed using one or more fully-connected layers

(FC). Fig.5.3 illustrates the microarchitecture of an FE stage. Each FE stage comprises of multi-

ple memristor-based convolution layers (CONV), a semiconductor-optical amplifier (SOA)-based

ReLU layer, an optical comparator based max-pooling (POOL) layer, and an interface layer. The

detailed design is discussed in the following subsections.

Figure 5.3: Microarchitecture of Feature Extractor (FE) in BPLight-CNN

5.4.1.1 CONV Microarchitecture

CONV is the first step for FE. As shown in Fig.5.3, there are multiple CONV layers in each

FE. Each CONV layer has multiple weight memristor arrays (WMAs). The basic building block

111

of a WMA is a memristor. A memristor is a metal-oxide-based two-terminal electronic component

[117], whose conductance G can be varied by external current flux. A detailed discussion on the

operation of a WMA is presented in the following section. The first CONV layer receives analog

data from an SRAM register through a DAC array or from the previous FE stage. An efficient

pipelined approach is used to store input data (e.g., image pixels) in the SRAM, and this approach

is discussed in Section 5.5. Intermediate CONV layers receive data from previous CONV layer

and transfer data to the next CONV layer. Finally, an array of MRMs receives convolved data from

the last CONV layer and modulates that information on carrier wavelengths to transfer this data to

the ReLU layer (see Section 5.4.1.2) for further processing. In addition, FE process employs array

of mode-locked lasers to produce lightwave carriers with different wavelengths.

The FE process in the BPLight-CNN architecture can convolve 56× 56 image pixels in a com-

plete cycle. The 56× 56 input data is divided into 4 chunks of 28× 28 input pixels. As explained

earlier, before performing convolution, 28 × 28 input pixels stored in SRAM are converted to

analog data using a DAC array. Moreover, an SRAM is connected to the DAC array using eight

128-bit memory buses. To enable conversion of 784 pixels (or 28× 28), 13 64-channel DACs are

employed. Four WMAs are used are in each CONV layer to process the analog data, where each

WMA comprises of 38416 memristors. More information about performing convolution using

WMAs is presented in subsections5.4.1.1(i.e., WMA reconfiguration) and 5.4.1.1(i.e., memristive

convolution). Finally, FE utilizes 49 dense wavelength-division-multiplexing (DWDM) waveg-

uides each carrying 64 wavelengths. This ensures simultaneous traversal of 4 28 × 28 pixels in a

single cycle. In the following sections, the term waveguide group refers to the set of 49 DWDM

waveguides.

• WMA Reconfiguration: A CNN model can use filters of different sizes such as 1× 1, 2× 2,

3 × 3, 4 × 4, 5 × 5, and 7 × 7 etc. The WMA in CONV can be configured to support

filters of different sizes. Fig.5.4 demonstrates the WMA reconfiguration process to deploy

3 × 3 filters as an example. To configure a 3 × 3 memristor filter, memristors in a WMA

are divided into multiple 9-memristor based memristor banks. The input of a memristor

112

is either connected to an analog output of a DAC from the DAC-array or is grounded for

zero-padding which is required in the convolution. The output terminal of each memristor

is connected to two electronic switches p and q. Similarly, to configure a 7 × 7 memristor

bank, all the memristors in a WMA are divided into 784 memristor banks, each comprising

of 49 memristors. This novel reconfiguration approach makes the proposed BPLight-CNN

architecture flexible enough to emulate any CNN model.

Figure 5.4: Memristive convolution in a CONV layer. Reprinted with permission from [9]

• Convolution in CONV: Fig.5.4 demonstrates memristive convolution using a 3×3 memristor

bank as an example. Each memristor bank has 9 memristors with conductance GC
1 , GC

2 , GC
9 .

A memristor can be programmed to carry up to 1000 states or conductance values [118].

We chose the value of each conductance GC
i such that (WC

i = GC
i , i = 1, 2, 9), where WC

1 ,

WC
2 ,WC

9 are elements of a 3 × 3 kernel. The kernel elements are chosen randomly in the

beginning and then are updated by backpropagation during the training mechanism. The

weight update mechanism was explained in Section 5.2.2.

113

Convolution with a memristor bank works as follows. Each weight value WC
i can be a pos-

itive value or a negative value. As conductance of a memristor cannot be negative, a CMOS

switch is used in our design to store negative weight in a memristor. If WC
i is positive,

switch p of the corresponding memristor (i.e., GC
i) is set. If WC

i is negative, switch q is set

as shown in Fig. 5.4. Let the analog voltage inputs (i.e., input image pixels converted to ana-

log data) to memristors GC
1 , GC

2 , GC
9 of the first memristor bank be V1, V2,V9 respectively.

In Fig. 5.4, currents from memristors carrying positive weights are accumulated in terminal

A and currents from memristors carrying negative weights are accumulated in terminal B

(Kirchhoffs law). The convolved output can be written as (VA − VB) where VA is voltage at

A and VB is voltage at B:

Ck = VA − VB (5.11)

where Ck is the resulting voltage or the convolved output from the kth memristor bank,

(VA = Ip × R) and (VB = Iq × R), Ip is current accumulated from memristors through all

switches marked as p and Iq is the current accumulated from memristors through all switches

marked as q. The current values are:

Ip =
9∑

i=1

[I9∗k+i ×GC
i]forW

C
i > 0 (5.12)

Each convolved output Ck is fed to the peripheral circuit as it will be used by the backprop-

agation architecture later. Details of the peripheral circuit are discussed in the next section.

Apart from the peripheral circuit, each Ck is input to a microring modulator (MRM) for data

modulation. There are 784 MRMs each of which can modulate a lightwave in the DWDM

waveguide. A modulated photonic signal with wavelength λk in a photonic waveguide can

be expressed as:

Lk = Ck ∗ A sin(
2π

λk

t+ ϕ) (5.13)

where Lk is modulated lightwave with wavelength λk, carrying convoluted data Ck, A is the

114

amplitude of the kth lightwave before the data modulation phase. By setting A = 1,

Lk = Ck ∗ A sin(
2π

λk

t+ ϕ) (5.14)

After data modulation, all the lightwaves Lk (k = 1, 2, , 784) are decoupled from the DWDM

waveguide by a DWDM decoupler. After decoupling, each individual lightwave is fed to a

semiconductor-optical-amplifier (SOA) in the ReLU layer.

5.4.1.2 ReLU Microarchitecture

As discussed in Section 5.3, an SOA is a silicon photonic component used to amplify a photonic

signal. It has been demonstrated in [108] that an SOA can be used as a neural activation unit. An

SOA uses an electronic pumping mechanism to provide gain to an input photonic signal. The

electronic pump current to an SOA can be varied to set its total gain. The SOA characteristics

is almost linear when an SOAs gain is close to 1. This linear behavior is identical to ReLU (see

Eq.5.15) which is a widely used deep learning neural activation function. Therefore, we set the

gain of all the SOAs in our design to 1. There are 784 SOAs in a ReLU layer of BPLight-CNN as

shown in Fig.5.3. The kth SOA takes lightwave Lk as input and produces the following output.

ReLUk =


0 if Ck ≤ 0

Lk if Ck > 0

(5.15)

The outputs ReLUk of all SOAs are subsequently fed to the max-pooling layer, which is dis-

cussed next.

5.4.1.3 POOL Microarchitecture

The VGG [112] and LeNet [113] benchmarks that are used in this work operate on a 2×2 max-

pooling with a stride of 2. Therefore, for max-pooling we consider a 2× 2 window with a stride of

2. To facilitate 2× 2 max-pooling for 784 outputs from the ReLU layer, the photonic max-pooling

layer (POOL) uses 196 4-input max-pooling units such as P1, P2, P3, P196. Each max-pooling

115

(a)

(b)

Figure 5.5: (a) Cascaded optical comparator in POOL, (b) Fully Connected Layer (FC). Reprinted
with permission from [9]

unit consists of a cascaded optical comparator arrangement to perform max-pooling. As shown

in Fig.5.5(a), three 2-channel optical comparators are cascaded to form a 4-input max-pooling

unit. For benchmarks operating on higher order max-pool (e.g. 3 × 3), proportional number of

optical comparators can be integrated to design the desired max-pooling unit. We consider a high-

speed two-channel optical comparator identical to [119]. The 784 outputs from the ReLU layer

116

are bundled into 196 sets and each set j is fed to max-pooling unit Pj . Assuming ReLU1, ReLU2,

ReLU3, and ReLU4 belong to set 1 and are input to P1, the max-pooling output of unit Pj can be

written as:

MPj = max(ReLU4(j−1)+1, ReLU4(j−1)+2, ReLU4(j−1)+3, ReLU4(j−1)+4) (5.16)

5.4.1.4 FC Microarchitecture

After feature extraction is performed using the FE stages (by using the CONV, ReLU, and

POOL microarchitectures discussed in the previous subsections), features are sent to a feature

classification phase. In CNN, the feature classification segment can be viewed as a special case

of convolution, where each extracted feature map uses the largest possible kernel. In other words,

feature classification comprises of one or more fully-connected (FC) layers. All the layers dis-

cussed in the previous subsections are used for feature extraction, whereas the FC layer performs

feature classification.

BPLight-CNN employs a photonic matrix vector multiplication (P-MVM) based FC layer. The

working principle of P-MVM based FC is similar to that of memristive convolution. Fig.5.5(b)

illustrates a logical layout of a P-MVM based FC layer. When all the features from the feature

extraction stage are stored and available in the SRAM buffer, the features are fed to the DAC array

of the FC layer as depicted in the figure. As an example, we consider 512 features coming from

the feature extraction (FE) stages. VGG and LeNet operate on a 7 × 7 kernel in FC. Therefore,

each feature is a 7 × 7 matrix, e.g. the ith feature is Ei
1, E

i
2, E49

i. FC has 49 identical memristor

banks each of which has 512 memristors: GFC
1 , GFC

2 , GFC
512 . Each memristor GFC

i represents

an FC weight W FC
i which is obtained through offline training. After analog conversion, each

analog value of a feature is applied as voltage across a memristor of the FCs memristor bank.

For example, a voltage of Ei
1 is applied across GFC

1 , voltage of Ei
2 across GFC

2 , etc. Depending

on whether the weight W FC
i corresponding to memristor GFC

i is positive or negative, the p or q

switch is set respectively, (ref: Fig.5.4). The accumulated current from each memristor bank is

117

fed to the next FC stage until the final FC stage is reached. Also, outputs from each FC stage are

fed to the peripheral circuit to be used by the backpropagation architecture for weight update. The

outputs from the final FC stage are the classified outputs for a feedforward CNN. During training,

the classified outputs and target outputs are input to an analog subtraction unit, the result of which

is fed to the backpropagation architecture, as discussed next.

5.4.2 Backpropagation Architecture

The backpropagation (BP) architecture mainly involves computing matrix-vector multiplica-

tion in the backward pass. A photonic modulator can be used for analog amplitude modulation of

a light carrier. In its simplest term, analog amplitude modulation is the multiplication of a scalar

input with an analog signal. The authors in [115], [120] have demonstrated photonic modulator

based analog multipliers. Fig. 5.6 illustrates the microarchitecture of the proposed BP accelerator

design. It is based on photonic matrix-vector multiplication using MRMs (which were discussed

in Section 5.3). We use MRMs for their high accuracy and quality factor.

Figure 5.6: Backpropagation architecture in BPLight-CNN which presents the backpropagation
between the final layer l = L and penultimate layer l = L− 1

118

We now describe the operation of the proposed BP architecture. As discussed in Eq.5.7, the

error at the final layer (l = L) of BP is δx,L ← ∇aCx ⊙ σ′(zx,L). Here, ∇aCx is rate of change

of output w.r.t the output activation (i.e., difference of actual classified output from FC of CNN

architecture and the target output). σ′(zx,L) is the derivative of the ReLU function in the final FC

stage of the CNN architecture. Outputs from the final FC stage of the CNN architecture are fed to

an analog subtraction and multiplication unit to determine δx,L. Using Eq.5.8 and the computed

δx,L, we calculate error for the (L− 1)th layer using the following equation:

δx,L−1 ← ((wL)T × δx,L)⊙ σ′(zx,L−1) (5.17)

where, wL is weight matrix obtained from Lth layer of CNN architecture through the peripheral

circuit. The details of how the peripheral circuit is explained in the next subsection. Fig.5.6 shows

the backpropagation between the final layer l = L and its penultimate layer l = L−1. As illustrated

in the figure, there are N number of wavelength carriers coming from a mode-locked laser array.

The value of N for a layer equals to the output feature size for the corresponding layer in the CNN

architecture, e.g. N equals 49 (7 × 7) for the last layer. Each wavelength in layer l is modulated

with error δx,L by an MRM tuned to that wavelength. In Fig.5.6, the violet MRM is tuned to

modulate λ1. Now the jth MRMs output is MRMj = δx,Lj ∗A sin (2π
λj
t+ ϕ). Each MRMj is split

into two parts. The first part is sent to the weight-update circuitry (see Section 5.4.3) to update the

corresponding weights in the CNN architecture. The other part is fed to a WDM multiplexer. A

WDM multiplexer is used to combine multiple light wavelengths into a single multi-wavelength

carrier. After multiplexing, the combined optical signal is split into M parts where M equals the

number of neurons in layer L − 1. Each part is fed to a multi-wavelength waveguide. As a

result, in each waveguide there are N wavelengths each carrying data δx,Lj,n ∗B sin (2π
λj
t+ϕ), where

1 ≤ n ≤ N , B = A
2N

. Each weight wL
ij of the transpose of wL obtained from the peripheral circuit

is modulated to a light carrier. This results in:

119

Mi,n = wL
ij ∗ δ

x,L
j,n ∗ A sin (

2π

λj

t+ ϕ) (5.18)

Now, each Mi,n is modulated with aLn which is a derivative of the ReLU functions of layer

L− 1 (equal to σ′(zx,L−1) in Eq.5.17). Then, Mi,n becomes,

Mi,n = wL
ij ∗ δ

x,L
j,n ∗ aLn ∗ A sin (

2π

λj

t+ ϕ) (5.19)

Next, a photodiode is used to demodulate photonic data from each waveguide. The photodiode

demodulates the combined output M(i, n) for all wavelengths in a waveguide which is nothing

but the matrix-vector multiplication identical to Eq.5.17. The output of each photodiode is passed

through a signal conditioning and filtering circuit to remove unwanted noises. The output from the

signal conditioning circuit is:

δx,L−1 = ((wL)T × δx,L)⊙ aL (5.20)

where, δx,L−1 is the error to be propagated from layer (L − 1) to (L − 2). This procedure is

continued until the 1st layer is reached. While doing the backpropagation, the error value in each

layer is also fed to the corresponding weight-update circuit, which is discussed in more details in

the next section.

5.4.3 Weight Update and Peripheral Circuitry

5.4.3.1 Weight-update circuitry

For weight-update, each element of a weight kernel in any layer l of CNN architecture can

be written as wl
k,j . Each wl

k,j is stored in a memristor of a memristor bank in layer l as Gl
k,j (as

explained in Section 5.4.1.1). The weight-update equation for wl
k,j (or, Gl

k,j) can be written as per

Eq.5.9, as follows:

newGl
k,j ← oldGl

k,j −
η

m
× δlk ×Ol−1

j (5.21)

120

Figure 5.7: Weight Update Circuitry for any layer l

where, Ol−1
j is the jth output from the POOL of the (l − 1) layer of the CNN architecture.

Fig.5.7 illustrates the weight update circuitry for a layer l of BPLight-CNN. As shown in the figure,

δlk is obtained from the BP architecture as a photonic signal. Ol−1
j , which is collected from the

peripheral circuit, is used to modulate the light carrier carrying the error value δlk. The modulated

output is demodulated using a photodiode and then sent to a signal conditioning circuit. In the

signal conditioning circuit, first the analog signal is filtered (from noises) and passed through a

subtractor to obtain new Gl
k,j as depicted in Eq. (20). The previous conductance or weight value

oldGl
k,j is fed to the subtractor from the lth layer memristor bank. The new conductance value

newGl
k,j is now fed to the equivalent memristor control circuit to update its weight value. The

conditioning circuit as well as the memristor control circuit are inspired from [106].

5.4.3.2 Peripheral Circuitry

The output MPj from the POOL of a layer l can be written as MP l
j . During the feedforward

training phase, each MP l
j is stored as conductance in a memristor in the peripheral circuitry. This

is used in backpropagation as Ol
j , an output of the lth layer (as per Eq.5.21). Each MP l

j is sent to

a signal conditioning circuit and then a memristor control circuit. The resulting electronic signal

is used to update the conductance (or weight value) of the memristor.

121

5.5 BPLight-CNN Case Study

In this section, we demonstrate the working principle of a pipelined BPLight-CNN architecture

for a CNN benchmark VGG [112] on the ImageNet dataset [121]. We select a particular config-

uration, namely, VGG-A for the case study. However, we also experiment with all variants of the

VGG [112] and LeNet [113] benchmarks as shown in Fig. 5.9 and discussed in Section 5.6. Us-

ing microarchitectures of the convolution layer, ReLU layer, POOL layer, interface layer, and FC

layer as explained in Section , we configured BPLight-CNN as illustrated in Fig.5.8(a) for VGG-A

application with four FE stages. The details of it are as follows.

VGG for the ImageNet dataset operates on a 224×224 image input. As explained in Sec-

tion 5.4.1.1, BPLight-CNN can convolve 56 × 56 pixels at a time, i.e., one BPLight-CNN cycle.

Therefore, it requires 16 BPLight-CNN cycles to execute a 224×224 image. Please note that a

BPLight-CNN cycle is different from its clock cycle. Here, one BPLight-CNN cycle refers to the

complete feature extraction and feature classification of a 56×56 image. The SRAM register array

in BPLight-CNN is of size 2 KB to store the 56×56 input data. CONV performs feature extraction

on a 28 × 28 input data at a time in a pipelined manner. FE in BPLight-CNN is performed as

explained in the CONV architecture (Section 5.4.1.1).

Fig.5.8(b) demonstrates the pipelined dataflow of the feedforward operation in BPLight-CNN.

We consider a 2.5 GHz clock. Therefore, the clock cycle period Tsm = 400 ps. As shown in

Fig.5.8(b), at t = Tsm, the first set of 28 × 28 pixels from SRAM (i.e., A) are convolved (64

filters/features) and are stored in memristors in the peripheral circuit. The other three set of 28×28

pixels are namely, B, C, and D. Note that CONV convolves a 28 × 28 input in one clock cycle.

As FE-1 for VGG-A consists of one convolution layer (Fig. 5.9), convolved outputs of CONV-1

of FE-1 is directly sent to the modulation phase. In the modulation phase, each convolved output

is modulated by an MRR of a particular tuning wavelength to a light carrier of that wavelength in

the DWDM waveguide group. This means that it can accept 4 28× 28 features. The time required

for convolved data of one FE to arrive at the next FE, TFE = modulation time + ReLU time +

POOL time + interface time = 20 ps + 10 ps + 10 ps + 10 ps = 50 ps. From t = Tsm to t = 2Tsm,

122

(a)

(b)

Figure 5.8: (a) VGG-A implemented on BPLight-CNN (b) Pipelined dataflow in feedforward op-
eration in BPLight-CNN

CONV(A) outputs from the peripheral circuit of FE1 are modulated, ReLU and POOL’ed, and

then fed to FE2. There can be 8 such data movements as Tsm

TFE
= 8. In one data movement, 4

28 × 28 features can be processed. Therefore, at t = 2Tsm, 32 CONV(A) features arrive at FE2.

Also, at t = 2Tsm, B from SRAM is convolved and stored in the peripheral circuit of FE2. Similar

123

to CONV(A), from t = 2Tsm to t = 3Tsm, 32 CONV(B) features are convolved and stored in

the peripheral circuit of FE2. In this way, at t = 6Tsm, all the 64 CONV(A) features in FE1 are

convolved in FE2 (128 features) and stored in the memristors of its peripheral circuit. Similarly,

B, C, and D are convolved and stored (Fig.5.8(b)). Note that FE1 has 64 features, FE2 has 128

features, FE3 has 256 features, etc, as per the VGG-A configuration.

A, B, C, and D are convolved separately until t = 10Tsm when all of them arrive at FE3 as 256

7 × 7 features each. Now, all of these features are merged together to form 256 28 × 28 features.

Therefore, it will require another 8Tsm time (i.e., t = 10Tsm to t = 18Tsm) to send 256 28 × 28

features from FE3 and convolve them as 512 14 × 14 features at FE4. Similarly, convolution,

ReLU, and POOL are performed in FE4 and FE5. As illustrated in Fig.5.8(b), at t = 24Tsm, 512

features are obtained from FE5 for 56 × 56 pixels. As shown in Fig.5.8(a), features from FE5

are stored in SRAM until all the 224× 224 pixels are extracted. For 224× 224 pixels, it will take

16 × 24Tsm = 384Tsm = 153.6ns. After this, all the features are retrieved from SRAM and fed

to FC for feature classification. The first FC operation requires (Tsm + T) time as it is identical to

FE. The second FC operation requires T time as no more SRAM read is needed. This means that

BPLight-CNN requires 153.6ns (for FE) +Tsm + 2T = 154ns, for one forward pass.

After a forward pass, the FC output is sent to the BP architecture for backpropagation. Each

layer in BP requires Tb units of time where Tb = (error modulation to light carrier) + (split time) +

(WDM multiplexing time) + (split time) + (weight modulation time) + (ReLu function derivative

modulation time) + (photodiode time) = 10 ps + 10 ps + 10 ps + 10 ps + 10 ps + 10 ps +20 ps = 80

ps. It takes 6Tb units of time to complete one backward pass. In summary, BPLight-CNN requires

154 ns for one forward pass and 80 ps for a backward pass. The ultra-fast nature of photonic

interconnects allows for high-speed backpropagation in BPLight-CNN.

124

5.6 Experimental Analysis

5.6.1 CAD for BPLight-CNN

We use IPKISS [48], a commercial optoelectronic CAD tool, to design and synthesize all of the

photonic components of BPLight-CNN. All of the synthesized components are integrated together

to design BPLight-CNN. For all of the photonics components, we consider a 32nm IPKISS library.

The parametric details for BPLight-CNN are shown in Table 5.1. We use Caphe [48], a python-

based photonic system validation tool, to estimate power, area, and performance of BPLight-CNN

accelerator for several benchmarks.

5.6.1.1 Power and Area Models

The power and area of all BPLight-CNN components are summarized in Table 5.1. We use

Caphe [48] for modeling power and area of all photonic elements such as modulators, demodu-

lators, waveguides, lasers, etc. The energy and area parameters for memristors are adapted from

[118]. We use integration and fire mechanism-based DAC identical to PipeLayer [10] in our de-

sign. The power and area models are adapted accordingly from PipeLayer. We also use power and

area parameters from [106] for the ADC array used in the FC layer of BPLight-CNN.

5.6.1.2 Performance Models

We use Caffe [122], a deep learning framework, to train the datasets in conjunction with pho-

tonic component results from IPKISS. We manually map each of our benchmarks in waveguides,

max-pool, buffers, and FC of BPLight-CNN. This ensures zero pipeline hazards between any two

layers in BPLight-CNN. We determine computational efficiency, energy efficiency, throughput,

and prediction error rate to compare the performance of BPLight-CNN with a state-of-the-art CNN

accelerator, namely PipeLayer [10]. We also use GPU results (from [10]) as the baseline for

comparison. We evaluate for the following metrics: Computational efficiency represents the total

number of fixed point operations performed per unit area in one second (GOPS/s/mm2); Energy

efficiency refers to the number of fixed point operations performed per watt (Giga operations per

watt or GOPS/W); Throughput is the total number of operations per unit time (GOPS/s); and lastly,

125

Table 5.1: BPLight-CNN parameter details

Component Parameters Values Power (mW) Area (mm2)
SRAM Size 2KB 10 0.2

Count 16
DAC Resolution 8-bit

Frequency 1.2 Gbps
Channel 64
Count 208 4.374 0.000208

ADC Resolution 8-bit
Frequency 1.2 Gbps

Count 245 490 0.294
WMA in CONV Count 48 24.5 0.000514

WMA in FC Count 49 0.14 0.000003
Modulator Switch Time 20ps

Count 62720 140 0.0009
De-modulator Switch Time 20ps

Count 62720 140 0.0009
WDM Coupler Count 16 0 0.00028

WDM Decoupler Count 16 0 0.00028
Optical Comparator Response Time 60ps 0 0.0045
Mode-locked laser Wavelengths 64

Count 196 35000 0.384
Waveguide DWDM 64 channels

Width 450nm
Count 32 0 20

Prediction error rate is the percentage of error in inferring any datasets.

5.6.1.3 Benchmarks and Datasets

We use two widely used CNN benchmarks: VGG-Net [108] and LeNet [121]. We consider

four variants of the VGG benchmark: VGG-A, VGG-B, VGG-C, and VGG-D and two variations

of LeNet (LeNet-A and LeNet-B). The configuration of all stages of VGG and LeNet benchmarks

for these variants are depicted in Fig.5.9. In the table, CONV-I represents convolution stage I for a

benchmark model. M×M, K, N for a convolution stage means that the convolution stage comprises

of M×M filters, and N number of back-to-back convolution layers, with each convolution layer

having convolutional width K. The convolutional width is the number of convolutional filters in

126

a convolution layer. Furthermore, we do consider a unit size window stride for the benchmark

variants. For VGG, we use ImageNet dataset [121] having 224 × 224 images. For LeNet, we use

60,000 224 × 224 images of MNIST datasets [123] for training and 10,000 224 × 224 images for

testing.

Figure 5.9: CNN Benchmark Configuration for VGG & LeNeT

5.6.2 Sensitivity Analysis with Prediction Accuracy

MRMs are used extensively in the BPLight-CNN design, both in the feedforward and BP ar-

chitectures. The prediction accuracy of BPLight-CNN depends on losses encountered by the pho-

tonic signal when it traverses through the photonic waveguide, MRMs, and other photonic compo-

nents. These losses degrade photonic signal intensity before it reaches SOA (which acts as ReLu in

BPLight-CNN), and causes the SOA to operate in a non-linear region, reducing the overall predic-

tion accuracy. Among all of the losses, the MRMs insertion loss and waveguide propagation loss

are the major contributors to prediction error in BPLight-CNN. The MRMs insertion loss depends

on its Quality factor (Q-factor) and finesse. Q-factor is the number of photonic cycles taken by

a photonic signal before its intensity goes to zero in an MRM. Finesse is the number of photonic

cycles before a photonic signals intensity becomes 70.7% of its initial value. As both Q-factor and

127

finesse are determined by the MRM diameter, therefore, in this section we present a sensitivity

analysis to determine the optimal MRM diameter.

(a)

(b)

(c)

Figure 5.10: (a) MRM Q-factor (b) MRM Finesse (c) average prediction accuracy w.r.t propagation
loss in photonic components diameter (assuming a 32-bit weight resolution).

Fig.5.10(a) and (b) illustrate the MRMs Q-factor and finesse w.r.t. its diameter (in µm), respec-

128

tively. From Fig.5.10(a), it can be seen that increase in MRM diameter leads to higher Q-factor,

which ultimately leads to lower insertion loss. On the other hand, from Fig.5.10(b) it can be ob-

served that increase in MRM diameter decreases its finesse, and increases insertion loss. Therefore,

we select an optimal MRM of diameter of 10µm to minimize overall insertion loss. Considering

this MRM diameter, Fig.5.10(c) presents average prediction accuracy variation with increase in

waveguide propagation loss (in dB/cm) for all the applications discussed in Section 5.6.1.3. In this

analysis, we have considered photonic waveguide groups of fixed lengths in different parts of the

BPLight-CNN architecture, where each waveguide in a waveguide group is coupled with a fixed

number of MRMs with 10µm diameter. From this plot it can be seen that increase in photonic

waveguide propagation loss decreases prediction accuracy. An increase in waveguide propagation

loss decreases photonic signal integrity and decreases predication accuracy. In addition, increase

waveguide propagation loss also increases insertion losses of MRMs which increases overall losses

and worsens prediction accuracy further. Therefore, we have considered the lowest propagation

loss of 2.5 dB/cm [124] for the rest of our analysis.

Figure 5.11: BPLight-CNN average prediction accuracy comparison with PipeLayer [10] and
GPU-based execution across different weight resolutions varying from 2-bit to 32-bit.

129

There are other minor factors which affect the prediction accuracy of BPLight-CNN: (1) Each

memristor can have 1000 quantized states. The quantization error encountered due to limited

number of memristor states contributes up to 1.2% of Prediction Error (PER); (2) The signal-

to-noise ratio of SOA used in BPLight-CNN is 50 dB, which is adapted from [108]. The SOAs

contribution to the overall PER is 2.35%; (3) Each optical comparator in BPLight-CNN has an

SNR of 40 dB [112]. This accounts for a PER of 1%; and (4) the memristor-photonic interface

is noisy. The signals from memristors going to modulators encounter a noise with an SNR of 25

dB which leads to a PER of 1.45%. We obtained these numbers through detailed optoelectronic

synthesis using the IPKISS tool.

We conducted another sensitivity analysis to explore the impact of weight resolution on av-

erage prediction accuracy. Fig.5.11 compares the accuracy of the proposed BPLight-CNN with

PipeLayer [10] and GPU-based execution across different weight resolutions from 2-bit to 32-

bit. From this plot it can be seen that the accuracy of BPLight-CNN increases with increase in

weight resolution, due to the resulting reduction in quantization error across BPLight-CNN. Inter-

estingly, BPLight-CNN achieves a prediction accuracy of 95% (i.e., equal to state-of-the-art GPU

and PipeLayer design) when its weight resolution is 32-bit. Therefore, we use a 32-bit weight

resolution in our performance and energy analysis.

5.6.3 Performance Analysis

Fig.5.12(a) demonstrates normalized speedup (throughput) of BPLight-CNN and PipeLayer

[10] compared to the baseline GPU implementation results, also from [10], for four variations of

the VGG and two variants of the LeNet benchmarks. The GPU-based accelerator performs with

an average throughput of 310 GOPS/s. PipeLayer shows an average throughput of 87000 GOPS/s.

The proposed BPLight-CNN shows an average throughput of 2784000 GOPS/s. The superior per-

formance of BPLight-CNN is due to the intelligent integration of ultra-fast memristors and high

speed photonic components such as MRAs, SOAs, and comparators. The overall throughput of

PipeLayer is affected by inter-layer data conversion with relatively slow ADCs. Also, PipeLayer

spends most of its time in sequential weight updates during training. However, BPLight-CNN

130

(a)

(b)

Figure 5.12: (a) Normalized speedup (throughput) comparison across accelerators, (b) Speedup of
BPLight-CNN w.r.t. weight resolution.

has an inherent advantage due to its photonic parallel weight update mechanism. On average,

BPLight-CNN outperforms PipeLayer and GPU by 35× and 345× in terms of speedup, respec-

tively. Fig.5.12(b) illustrates the effects of weight resolution on overall speedup of BPLight-CNN.

With the rise in weight resolution, there is a very little degradation in speedup (5% lower for 32-bit

compared to 16-bit). This is due to the additional delay in storing 32-bit data in SRAM compared

to 16 or 8-bit data. However, data conversion is done either at the beginning or at the end of the

forward pass in BPLight-CNN. Therefore, the effect is very minimal.

Fig.5.13 illustrates the normalized computational efficiency (CE) (i.e., the total number of

fixed point operations performed per unit area in one second (GOPS/s/mm2)) comparison of the

proposed BPLight-CNN and memristor crossbar based PipeLayer [10] with respect to a baseline

131

Figure 5.13: Normalized computational efficiency of BPLight-CNN compared to state-of-the-art.

GPU based design. PipeLayer uses memristor crossbars for the bulk of its arithmetic operations.

Each memristor crossbar has a CE of 1707 GOPS. However, the overall CE of PipeLayer comes

down to 1485 GOPS due to its extensive usage of data conversions. Also, ReLU and POOL are

performed by a digital ALU in PipeLayer. This requires more memory to store intra-layer data

for synchronizing with its pipeline mechanism. The superiority of BPLight-CNN comes from the

fact that it is a completely analog accelerator. Therefore, BPLight-CNN does not involve inter-

layer data conversions or storage for synchronization. AD and DA conversions are done either

at the beginning or at the end of feature extraction in BPLight-CNN. In addition to the compute

efficient memristor, BPLight-CNN also uses high speed SOA as ReLU which has a CE in the order

of 50000 GOPS/s/mm2 [113]. As shown in Fig.5.13, BPLight-CNN has 31× and 320× higher

computational efficiency compared to PipeLayer and GPU, respectively. Weight resolution has a

negligible effect on computational efficiency of BPLight-CNN, therefore, we do not present that

result.

5.6.4 Energy Savings

We compare the energy efficiency of BPLight-CNN with PipeLayer and GPU as shown in

Fig.5.14(a). The average energy efficiency for PipeLayer is 142.9 GOPS/W/s which is 7.17×

higher than GPU based accelerator. BPLight-CNN works with an average energy efficiency of

132

(a)

(b)

Figure 5.14: (a) Normalized energy efficiency across accelerators, (b) Energy efficiency of
BPLight-CNN w.r.t. weight resolution

6432 GOPS/W/s. PipeLayer replicates its early feature extraction layers several times (close to

50K times) to maintain a balanced pipeline. This involves excessive use of high power consuming

data conversions. BPLight-CNN uses passive optical components such as waveguides and com-

parators, in addition to energy efficient components such as ring modulators/demodulators, SOAs,

and memristor. Also, BPLight-CNN uses very few ADCs/DACs compared to PipeLayer. As shown

in Fig.5.14(a), we obtain 45× and 360× improvements in energy efficiency for BPLight-CNN com-

pared to PipeLayer and GPU, respectively. Fig.5.14(b) shows the effects of weight resolution on

overall energy efficiency for all the benchmarks in BPLight-CNN. Due to its analog operation,

BPLight-CNN encounters very minimal effect (0.012%) of weight resolution on energy efficiency.

In summary, from the results presented in this section, it is apparent that our novel BPLight-

CNN accelerator outperforms previously proposed CNN accelerators by combining photonics-

133

based backpropagation accelerator with a configurable memristor-integrated photonic CNN ac-

celerator design. The excellent performance and energy gains compared to previous approaches

strongly motivate the use of BPLight-CNN to execute future CNN based workloads.

5.7 Chapter Summary

This work demonstrates a fully analog CNN accelerator called BPLight-CNN that integrates

compute-efficient memristors and ultra-fast photonic components. We introduce a reconfigurable

convolution design in each CNN layer to enable BPLight-CNN to emulate a range of sample CNN

models. We also use a novel approach to handle analog signed-weight arithmetic in the mem-

ristive convolution layers. Compared to PipeLayer [10] and GPU implementations, the proposed

BPLight-CNN architecture shows higher computational and energy efficiency due to the use of

energy efficient SOAs, optical comparators, and also due to its use of a fully analog feature ex-

traction method. We demonstrated that the proposed design has the potential to achieve up to 35×

acceleration in training in addition to 31× improvement in computational efficiency and 45× en-

ergy saving compared to the state-of-the-art PipeLayer accelerator with similar accuracy. Photonic

components have insertion losses which may slightly affect the overall accuracy when the number

of deep learning stages increases. Our future work will address that issue for a highly accurate

photonic-based deep learning accelerator.

134

6. CONCLUSIONS & FUTURE DIRECTIONS

6.1 Conclusions

This dissertation focuses the efficient use of silicon photonics interconnects and devices to

design high-performance computing architectures. It begins with the design of a novel ultrafast

on-chip photonic router. Such a router is used to design efficient 2D and 3D photonic on-chip

network architecture. Further, the dissertation studies the impact of thermal variations in photonic

architectures to take necessary measures. In addition to high-throguhput photonic on-chip net-

work architectures, the dissertation also investigates in designing deep learning architectures using

photonic-based neuromorphic computing.

In Chapter 2 we demonstrate a novel adaptive multiplexing scheme based energy-efficient pho-

tonic network-on-chip. In this work, we propose a non-blocking, low power, low-cost, and

high performance 5×5 photonic router design using silicon microring resonators(MRR).

In this router, we introduce wavelength-division-multiplexing (WDM) compatible mode-

division-multiplexing (MDM) scheme for maximizing the aggregate bandwidth. The pro-

posed photonic router is utilized to design low-cost and energy-efficient 2D and 3D photonic

network-on-chip (PNoC). Laser is found to be the most power hungry element in a photonic

system. The proposed PNoCs adopt a novel laser-multiplexing scheme to enhance their

energy-efficiency.

In Chapter 3, We present the IHDTM framework that exploits device-level on-chip thermal islands

and system-level dynamic thread migration scheme TATM for the reduction of maximum on-

chip temperature and also conserves trimming and tuning power of MRRs in DWDM-based

PNoC architectures. The proactive thermal management scheme used in IHDTM results in

interesting trade-offs between performance and power/energy across two different state-of-

the-art crossbar-based PNoC architectures. Our experimental analysis on the well-known

Corona and Flexishare PNoC architectures has shown that IHDTM can notably conserve

135

total power by up to 64.1% and thermal tuning power by up to 70%.

In Chapter 4, We demonstrate a new application-specific BiGNoC architecture that features

master-servant clusters with efficient utilization of SWMR and MWSR waveguides to im-

prove performance while executing large-scale data analytics applications. BiGNoC exploits

efficient multicasting in photonic waveguides to achieve high data rates. In particular, we

showed how BiGNoC-HET, a variant of BiGNoC, improves performance due to improved

photonic channel utilization and its ability to adapt to time-varying application performance

goals while co-running multiple large-scale data analytics applications. BiGNoC-HET im-

proves throughput by up to 9.9×, packet latency by up to 88%, and energy-per-bit by up

to 98% over traditional EMesh, broadcast optimized EMesh, and state-of-the-art photonic

NoC architectures (Flexishare and Firefly). These results corroborate the excellent capa-

bilities of our proposed BiGNoC architecture towards executing large-scale data analytics

applications.

In Chapter 5, we introduce a fully analog CNN accelerator called BPLight-CNN that integrates

compute-efficient memristors and ultrafast photonic components. We introduce a reconfig-

urable convolution design in each CNN layer to enable BPLight-CNN to emulate a range

of sample CNN models. We also use a novel approach to handle analog signed-weight

arithmetic in the memristive convolution layers. Compared to PipeLayer [4] and GPU im-

plementations, the proposed BPLight-CNN architecture shows higher computational and en-

ergy efficiency due to the use of energy efficient SOAs, optical comparators, and also due

to its use of a fully analog feature extraction method. We demonstrated that the proposed

design has the potential to achieve up to 35× acceleration in training in addition to 31× im-

provement in computational efficiency and 45× energy saving compared to the state-of-the-

art PipeLayer accelerator with similar accuracy Photonic components have insertion losses

which may slightly affect the overall accuracy when the number of deep learning stages in-

creases. Our future work will address that issue for a highly accurate photonic-based deep

136

learning accelerator.

6.2 Future Directions

Exascale distributed training in the future would require massively parallel and ultrafast archi-

tecture. Photonic deep learning is an ideal candidate for such a system design. However,

integrating multiple photonic deep learning chip together would require further investiga-

tions both in terms of signal integrity and scalability.

Photonic components bring reliability issues, e.g. thermal and process variations based faults.

This calls for a reliability aware design for future photonic computing systems.

In the future, the volume of data that computing systems process would grow astronomically.

Exascale deep neural networks will become the state-of-the-art for a broad range of teras-

cale data applications such as speech processing, image recognition, financial predictions,

etc. Convolutional neural networks (CNNs) are a popular deep learning framework with

superior accuracy on applications that deal with videos and images. However, CNNs are

highly compute and memory intensive, requiring enormous computational resources. With

Moores law coming to an end, traditional Von Neuman computing systems such as heteroge-

neous CPU/GPU platforms cannot address this high computational demand, within reason-

able power and processing time limitations. In addition to that, FPGA and GPU also bring

energy pitfalls to tackle these massive tasks. A fully photonic neuromorphic computing sys-

tem may be an ideal candidate due to its exascale parallelism, ultra-low power nature, and

lightspeed characteristics. To establish a photonic neuromorphic system at a commercial

level would require investigatios from device to system. This also calls for specific CAD

tools design. An efficient CAD framework in this area would accelerate research in this

domain.

137

REFERENCES

[1] L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson,

“Wdm-compatible mode-division multiplexing on a silicon chip,” Nature Communications,

vol. 5, pp. 3069 EP –, Jan 2014. Article.

[2] D. Dang, B. Patra, R. Mahapatra, and M. Fiers, “Mode-division-multiplexed photonic router

for high performance network-on-chip,” in 2015 28th International Conference on VLSI

Design, pp. 111–116, Jan 2015.

[3] D. Dang, B. Patra, and R. Mahapatra, “A 2-layer laser multiplexed photonic network-on-

chip,” in Sixteenth International Symposium on Quality Electronic Design, pp. 397–401,

March 2015.

[4] D. Dang, S. V. R. Chittamuru, R. Mahapatra, and S. Pasricha, “Islands of heaters: A novel

thermal management framework for photonic nocs,” in 2017 22nd Asia and South Pacific

Design Automation Conference (ASP-DAC), pp. 306–311, Jan 2017.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Characterization

and architectural implications,” in 2008 International Conference on Parallel Architectures

and Compilation Techniques (PACT), pp. 72–81, Oct 2008.

[6] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 programs: char-

acterization and methodological considerations,” in Proceedings 22nd Annual International

Symposium on Computer Architecture, pp. 24–36, June 1995.

[7] D. Dang, R. Mahapatra, and E. J. Kim, “Pid controlled thermal management in pho-

tonic network-on-chip,” in 2015 33rd IEEE International Conference on Computer Design

(ICCD), pp. 17–23, Oct 2015.

[8] S. V. R. Chittamuru, D. Dang, S. Pasricha, and R. Mahapatra, “Bignoc: Accelerating big

data computing with application-specific photonic network-on-chip architectures,” IEEE

138

Transactions on Parallel and Distributed Systems, vol. 29, pp. 2402–2415, Nov 2018.

[9] D. Dang, J. Dass, and R. Mahapatra, “Convlight: A convolutional accelerator with memris-

tor integrated photonic computing,” in 2017 IEEE 24th International Conference on High

Performance Computing (HiPC), pp. 114–123, Dec 2017.

[10] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based accelerator

for deep learning,” in 2017 IEEE International Symposium on High Performance Computer

Architecture (HPCA), pp. 541–552, Feb 2017.

[11] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing data transfers in

computer clusters with orchestra,” SIGCOMM Comput. Commun. Rev., vol. 41, pp. 98–109,

Aug. 2011.

[12] “Text mining datasets.” http://www.cs.umb.edu/~smimarog/textmining/

datasets/. Accessed: 2017-07-01.

[13] “Grey sorting.” http://sortbenchmark.org/. Accessed: 2017-07-03.

[14] L. H. K. Duong, M. Nikdast, S. L. Beux, J. Xu, X. Wu, Z. Wang, and P. Yang, “A case study

of signal-to-noise ratio in ring-based optical networks-on-chip,” IEEE Design Test, vol. 31,

pp. 55–65, Oct 2014.

[15] X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao,

P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley,

H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy,

“Ultra-efficient 10gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Ex-

press, vol. 19, pp. 5172–5186, Mar 2011.

[16] P. Grani and S. Bartolini, “Design options for optical ring interconnect in future client de-

vices,” J. Emerg. Technol. Comput. Syst., vol. 10, pp. 30:1–30:25, June 2014.

[17] “The international technology roadmap for semiconductors (itrs) 2011.” http://www.

itrs.net/Interconnections.

139

http://www.cs.umb.edu/~smimarog/textmining/datasets/
http://www.cs.umb.edu/~smimarog/textmining/datasets/
http://sortbenchmark.org/
http://www.itrs.net/Interconnections
http://www.itrs.net/Interconnections

[18] C.-H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-

broadband and high responsivity at room temperature,” Nature Nanotechnology, vol. 9,

pp. 273 EP –, Mar 2014.

[19] G. Reed and A. Knights, “Silicon photonics: An introduction, wiley,” pp. 97–103, 2004.

[20] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bernstein, “Scaling, power,

and the future of cmos,” in IEEE InternationalElectron Devices Meeting, 2005. IEDM Tech-

nical Digest., pp. 7 pp.–15, Dec 2005.

[21] T. Mudge, “Power: a first-class architectural design constraint,” Computer, vol. 34, pp. 52–

58, April 2001.

[22] A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future gener-

ations of chip multiprocessors,,” p. 12461260, 2008.

[23] H. Gu, K. H. Mo, J. Xu, and W. Zhang, “A low-power low-cost optical router for opti-

cal networks-on-chip in multiprocessor systems-on-chip,” in 2009 IEEE Computer Society

Annual Symposium on VLSI, pp. 19–24, May 2009.

[24] R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective. IEEE

Computer Society Annual Symposium on VlSI, 2002.

[25] A. Shacham, K. Bergman, and L. P. Carloni, “On the design of a photonic network-on-chip,”

in First International Symposium on Networks-on-Chip (NOCS’07), pp. 53–64, May 2007.

[26] C. Batten, A. Joshi, J. Orcutt, C. Holzwarth, M. Popovic, J. Hoyt, F. Kartner, R. Ram, V. Sto-

janovic, and K. Asanovic, “Building manycore processor-to-dram networks with monolithic

cmos silicon photonics,” IEEE Micro, pp. 1–1, 2018.

[27] A. Joshi, C. Batten, Y. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Sto-

janovic, “Silicon-photonic clos networks for global on-chip communication,” in 2009 3rd

ACM/IEEE International Symposium on Networks-on-Chip, pp. 124–133, May 2009.

140

[28] A. Kamierczak, E. Drouard, M. Ere, P. Rojo-Romeo, X. Letartre, I. OConnor, F. Gaffiot,

and Z. Lisik, “Optimization of an integrated optical crossbar in SOI technology for optical

networks on chip, journal of telecommunications & information technology, vol. 2007 issue

3, pp 109-114,” pp. 109–114, 2007.

[29] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino,

A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, “Corona: System implications of

emerging nanophotonic technology,” in 2008 International Symposium on Computer Archi-

tecture, pp. 153–164, June 2008.

[30] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary, “Firefly: Illuminating fu-

ture network-on-chip with nanophotonics,” in Proceedings of the 36th Annual International

Symposium on Computer Architecture, ISCA ’09, (New York, NY, USA), pp. 429–440,

ACM, 2009.

[31] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shu-

bin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,”

Proceedings of the IEEE, vol. 97, pp. 1337–1361, July 2009.

[32] G. Hendry, E. Robinson, V. Gleyzer, J. Chan, L. P. Carloni, N. Bliss, and K. Bergman,

“Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-

performance chip multiprocessors,” Journal of Parallel and Distributed Computing, vol. 71,

no. 5, pp. 641 – 650, 2011. Networks-on-Chip.

[33] R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Five-port

optical router for photonic networks-on-chip,” Opt. Express, vol. 19, pp. 20258–20268, Oct

2011.

[34] G. Fan, R. Orobtchouk, and J.-M. Fedeli, “Highly integrated optical 8x8 lambda-router in

silicon-on-insulator technology: comparison between the ring and racetrack configuration,”

Proceedings of SPIE - The International Society for Optical Engineering, pp. 10–, 04 2010.

141

[35] M. Briere, B. Girodias, Y. Bouchebaba, G. Nicolescu, F. Mieyeville, F. Gaffiot, and

I. O’Connor, “System level assessment of an optical noc in an mpsoc platform,” in 2007

Design, Automation Test in Europe Conference Exhibition, pp. 1–6, April 2007.

[36] A. W. Poon, F. Xu, and X. Luo, “Cascaded active silicon microresonator array cross-connect

circuits for wdm networks-on-chip,” 2008.

[37] W. Bogaerts and a. et., “Silicon microring resonators, laser & photonics reviews 6, no. 1, pp

47-73,” pp. 47–73, 2012.

[38] D. Dai, “Silicon nanophotonic integrated devices for on-chip multiplexing and switching,”

J. Lightwave Technol., vol. 35, pp. 572–587, Feb 2017.

[39] A. Alduino, “Demonstration of a high speed 4-channel integrated silicon photonics wdm

link with hybrid silicon lasers,” in 2010 IEEE Hot Chips 22 Symposium (HCS), pp. 1–29,

Aug 2010.

[40] S. Bagheri and W. M. J. Green, “Silicon-on-insulator mode-selective add-drop unit for on-

chip mode-division multiplexing,” in 2009 6th IEEE International Conference on Group IV

Photonics, pp. 166–168, Sep. 2009.

[41] Y. Huang, G. Xu, and S. Ho, “An ultracompact optical mode order converter,” IEEE Pho-

tonics Technology Letters, vol. 18, pp. 2281–2283, Nov 2006.

[42] Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using mul-

timode interference couplers,” Electronics Letters, vol. 38, pp. 1701–1702, Dec 2002.

[43] J. Leuthold, R. Hess, J. Eckner, P. A. Besse, and H. Melchior, “Spatial mode filters realized

with multimode interference couplers,” Opt. Lett., vol. 21, pp. 836–838, Jun 1996.

[44] W. J. Dally and B. Towles, “Route packets, not wires: on-chip interconnection networks,”

in Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232),

pp. 684–689, June 2001.

142

[45] A. Bianco, D. Cuda, R. Gaudino, G. Gavilanes, F. Neri, and M. Petracca, “Scalability of

optical interconnects based on microring resonators,” IEEE Photonics Technology Letters,

vol. 22, pp. 1081–1083, Aug 2010.

[46] Y. Xie, M. Nikdast, J. Xu, W. Zhang, Q. Li, X. Wu, Y. Ye, X. Wang, and W. Liu, “Crosstalk

noise and bit error rate analysis for optical network-on-chip,” in Design Automation Confer-

ence, pp. 657–660, June 2010.

[47] D. Dang, B. Patra, and R. Mahapatra, “A multilayered design approach for efficient hybrid

3d photonics network-on-chip,” in Proceedings of the 25th Edition on Great Lakes Sympo-

sium on VLSI, GLSVLSI ’15, (New York, NY, USA), pp. 121–126, ACM, 2015.

[48] “Ipkiss - a generic and modular software framework for parametric design.” https://

www.lucedaphotonics.com/en.

[49] G. Z. Mashanovich, M. Milosevic, P. Matavulj, S. Stankovic, B. Timotijevic, P. Y. Yang,

E. J. Teo, M. B. H. Breese, A. A. Bettiol, and G. T. Reed, “Silicon photonic waveguides

for different wavelength regions,” Semiconductor Science and Technology, vol. 23, no. 6,

p. 064002, 2008.

[50] “A network simulator.” http://noxim.sourceforge.net/. Accessed: 2014-07-02.

[51] A. Shacham, B. G. Lee, A. Biberman, K. Bergman, and L. P. Carloni, “Photonic noc for

dma communications in chip multiprocessors,” in 15th Annual IEEE Symposium on High-

Performance Interconnects (HOTI 2007), pp. 29–38, Aug 2007.

[52] S. Abadal, A. Cabellos-Aparicio, J. A. Lázaro, M. Nemirovsky, E. Alarcón, and J. Solé-

Pareta, “Area and laser power scalability analysis in photonic networks-on-chip,” in 2013

17th International Conference on Optical Networking Design and Modeling (ONDM),

pp. 131–136, April 2013.

[53] G. Kurian, J. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. Kimerling, and A. Agarwal,

“ATAC: A 1000-Core Cache-Coherent Processor with On-Chip Optical Network, 19th inter-

143

https://www.lucedaphotonics.com/en
https://www.lucedaphotonics.com/en
http://noxim.sourceforge.net/

national conference on parallel architectures and compilation techniques, acm, pp. 477488,”

p. 477488, 2010.

[54] C. Nitta, M. Farrens, and V. Akella, “DCOFAn Arbitration Free Directly Connected Optical

Fabric, ieee journal on emerging and selected topics in circuits and systems, vol.2, no.2,

pp.169,182,” pp. 169–182, 2012.

[55] P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance Evaluation and Design

Trade-Offs for Network-on-Chip Interconnect Architectures, ieee transaction on computers,

vol. 54, no. 8,” 2005.

[56] S. bahirat & Sudeep Pasricha, “METEOR: Hybrid photonic ring-mesh network-on-chip for

multicore architectures,acm transactions on embedded computing systems (tecs) - special

issue on design challenges for many-core processors, vol 13 issue 3s, march 2014 article no.

116,” 2014.

[57] S. Xiao, M. Khan, H. Shen, and Q. M., “Multiple channel silicon micro-resonator based

filters for WDM application,optics express vol 15 pp. 7489-7498,” pp. 7489–7498, 2007.

[58] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza, “3d-ice: Fast com-

pact transient thermal modeling for 3d ics with inter-tier liquid cooling,” in 2010 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pp. 463–470, Nov 2010.

[59] J. Ahn et al., “Devices and architectures for photonic chip-scale integration, in Applied

Physics A: MSP, 95:989-997,” June 2009.

[60] C. Nitta, M. Farrens, and V. Akella, “Addressing system-level trimming issues in on-chip

nanophotonic networks,” in 2011 IEEE 17th International Symposium on High Performance

Computer Architecture, pp. 122–131, Feb 2011.

[61] S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and

S. J. B. Yoo, “Cmos-compatible, athermal silicon ring modulators clad with titanium diox-

ide,” Opt. Express, vol. 21, pp. 13958–13968, Jun 2013.

144

[62] S. V. R. Chittamuru and S. Pasricha, “Spectra: A framework for thermal reliability manage-

ment in silicon-photonic networks-on-chip,” in 2016 29th International Conference on VLSI

Design and 2016 15th International Conference on Embedded Systems (VLSID), pp. 86–91,

Jan 2016.

[63] T. Zhang, J. L. Abellán, A. Joshi, and A. K. Coskun, “Thermal management of manycore

systems with silicon-photonic networks,” in 2014 Design, Automation Test in Europe Con-

ference Exhibition (DATE), pp. 1–6, March 2014.

[64] “Pid lab.” http://www.pidlab.com/en/.

[65] S. V. R. Chittamuru, I. G. Thakkar, and S. Pasricha, “Pico: Mitigating heterodyne crosstalk

due to process variations and intermodulation effects in photonic nocs,” in 2016 53nd

ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2016.

[66] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin clas-

sifiers,” in Proceedings of the Fifth Annual Workshop on Computational Learning Theory,

COLT ’92, (New York, NY, USA), pp. 144–152, ACM, 1992.

[67] T. E. Carlson, W. Heirmant, and L. Eeckhout, “Sniper: Exploring the level of abstraction for

scalable and accurate parallel multi-core simulation,” in SC ’11: Proceedings of 2011 Inter-

national Conference for High Performance Computing, Networking, Storage and Analysis,

pp. 1–12, Nov 2011.

[68] D. Vantrease, N. Binkert, R. Schreiber, and M. H. Lipasti, “Light speed arbitration and flow

control for nanophotonic interconnects,” in 2009 42nd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 304–315, Dec 2009.

[69] Y. Pan, J. Kim, and G. Memik, “Flexishare: Channel sharing for an energy-efficient

nanophotonic crossbar,” in HPCA - 16 2010 The Sixteenth International Symposium on

High-Performance Computer Architecture, pp. 1–12, Jan 2010.

[70] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “Mcpat: An

integrated power, area, and timing modeling framework for multicore and manycore archi-

145

http://www.pidlab.com/en/

tectures,” in 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pp. 469–480, Dec 2009.

[71] S. V. R. Chittamuru, S. Desai, and S. Pasricha, “Reconfigurable silicon-photonic network

with improved channel sharing for multicore architectures,” in Proceedings of the 25th Edi-

tion on Great Lakes Symposium on VLSI, GLSVLSI ’15, (New York, NY, USA), pp. 63–68,

ACM, 2015.

[72] I. Yeo, C. C. Liu, and E. J. Kim, “Predictive dynamic thermal management for multicore

systems,” in 2008 45th ACM/IEEE Design Automation Conference, pp. 734–739, June 2008.

[73] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,” Com-

mun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[74] “Hadoop.” https://hadoop.apache.org. Accessed: 2017-07-15.

[75] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster

computing with working sets,” in Proceedings of the 2Nd USENIX Conference on Hot Topics

in Cloud Computing, HotCloud’10, (Berkeley, CA, USA), pp. 10–10, USENIX Association,

2010.

[76] J. Hamilton, “Cooperative expendable micro-slice servers (cems): Low cost, low power

servers for internet-scale services,” 2009.

[77] Y. Xia, T. S. E. Ng, and X. S. Sun, “Blast: Accelerating high-performance data analytics

applications by optical multicast,” in 2015 IEEE Conference on Computer Communications

(INFOCOM), pp. 1930–1938, April 2015.

[78] “Refining knn.” https://www3.nd.edu/~steve/computing_with_data/17_

Refining_kNN/refining_knn.html. Accessed: 2017-08-05.

[79] C. Li, M. Browning, P. V. Gratz, and S. Palermo, “Energy-efficient optical broadcast for

nanophotonic networks-on-chip,” in 2012 Optical Interconnects Conference, pp. 64–65,

May 2012.

146

https://hadoop.apache.org
https://www3.nd.edu/~steve/computing_with_data/17_Refining_kNN/refining_knn.html
https://www3.nd.edu/~steve/computing_with_data/17_Refining_kNN/refining_knn.html

[80] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino,

A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, “Corona: System implications of

emerging nanophotonic technology,” in 2008 International Symposium on Computer Archi-

tecture, pp. 153–164, June 2008.

[81] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary, “Firefly: Illuminat-

ing future network-on-chip with nanophotonics,” SIGARCH Comput. Archit. News, vol. 37,

pp. 429–440, June 2009.

[82] Y. Pan, J. Kim, and G. Memik, “Flexishare: Channel sharing for an energy-efficient

nanophotonic crossbar,” in HPCA - 16 2010 The Sixteenth International Symposium on

High-Performance Computer Architecture, pp. 1–12, Jan 2010.

[83] R. W. M. Jr. and A. K. Kodi, “Power-efficient and high-performance multi-level hybrid

nanophotonic interconnect for multicores,” in 2010 Fourth ACM/IEEE International Sym-

posium on Networks-on-Chip, pp. 207–214, May 2010.

[84] E. Fusella, J. Flich, and A. Cilardo, “Path setup for hybrid noc architectures exploiting

flooding and standby,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,

pp. 1403–1416, May 2017.

[85] C. Li, M. Browning, P. V. Gratz, and S. Palermo, “Luminoc: A power-efficient, high-

performance, photonic network-on-chip,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 33, pp. 826–838, June 2014.

[86] E. Kakoulli, V. Soteriou, C. Koutsides, and K. Kalli, “Design of high-performance, power-

efficient optical nocs using silica-embedded silicon nanophotonics,” in 2015 33rd IEEE

International Conference on Computer Design (ICCD), pp. 1–8, Oct 2015.

[87] A. Kulkarni, T. Abtahi, E. Smith, and T. Mohsenin, “Low energy sketching engines on

many-core platform for big data acceleration,” in Proceedings of the 26th Edition on Great

Lakes Symposium on VLSI, GLSVLSI ’16, (New York, NY, USA), pp. 57–62, ACM, 2016.

147

[88] K. Kanoun, M. Ruggiero, D. Atienza, and M. v. d. Schaar, “Low power and scalable many-

core architecture for big-data stream computing,” in 2014 IEEE Computer Society Annual

Symposium on VLSI, pp. 468–473, July 2014.

[89] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R. Lester, A. D.

Brown, and S. B. Furber, “Spinnaker: A 1-w 18-core system-on-chip for massively-parallel

neural network simulation,” IEEE Journal of Solid-State Circuits, vol. 48, pp. 1943–1953,

Aug 2013.

[90] S. Carrillo, J. Harkin, L. J. McDaid, F. Morgan, S. Pande, S. Cawley, and B. McGin-

ley, “Scalable hierarchical network-on-chip architecture for spiking neural network hard-

ware implementations,” IEEE Transactions on Parallel and Distributed Systems, vol. 24,

pp. 2451–2461, Dec 2013.

[91] D. Vainbrand and R. Ginosar, “Network-on-chip architectures for neural networks,” in

2010 Fourth ACM/IEEE International Symposium on Networks-on-Chip, pp. 135–144, May

2010.

[92] A. Firuzan, M. Modarressi, and M. Daneshtalab, “Reconfigurable communication fabric

for efficient implementation of neural networks,” in 2015 10th International Symposium on

Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–8, June 2015.

[93] J. Lee, S. Li, H. Kim, and S. Yalamanchili, “Design space exploration of on-chip ring inter-

connection for a cpu-gpu heterogeneous architecture,” J. Parallel Distrib. Comput., vol. 73,

pp. 1525–1538, Dec. 2013.

[94] W. Choi, K. Duraisamy, R. G. Kim, J. R. Doppa, P. P. Pande, R. Marculescu, and D. Mar-

culescu, “Hybrid network-on-chip architectures for accelerating deep learning kernels on

heterogeneous manycore platforms,” in 2016 International Conference on Compliers, Ar-

chitectures, and Sythesis of Embedded Systems (CASES), pp. 1–10, Oct 2016.

[95] Z. Wang, S. Zhang, B. He, and W. Zhang, “Melia: A mapreduce framework on opencl-based

fpgas,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, pp. 3547–3560, Dec

148

2016.

[96] N. E. Jerger, L. Peh, and M. Lipasti, “Virtual circuit tree multicasting: A case for on-chip

hardware multicast support,” in 2008 International Symposium on Computer Architecture,

pp. 229–240, June 2008.

[97] I. G. Thakkar, S. V. R. Chittamuru, and S. Pasricha, “Run-time laser power management

in photonic nocs with on-chip semiconductor optical amplifiers,” in 2016 Tenth IEEE/ACM

International Symposium on Networks-on-Chip (NOCS), pp. 1–4, Aug 2016.

[98] C. Chen and A. Joshi, “Runtime management of laser power in silicon-photonic multi-

bus noc architecture,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19,

pp. 3700713–3700713, March 2013.

[99] R. S. Tsay, Analysis of Financial Time Series. John Wiley & Sons, Inc., ISBN 0-471-41544-

8, 2002.

[100] “Airline query processing.” http://www.stat.purdue.edu/~sguha/rhipe/

doc/html/airline.html. Accessed: 2017-07-05.

[101] T. Krishna, L.-S. Peh, B. M. Beckmann, and S. K. Reinhardt, “Towards the ideal on-chip

fabric for 1-to-many and many-to-1 communication,” in Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO-44, (New York, NY,

USA), pp. 71–82, ACM, 2011.

[102] “Amazon elastic cloud computer.” http://aws.amazon.com/ec2. Accessed: 2017-

07-06.

[103] C. Sun, C. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. Peh, and V. Sto-

janovic, “Dsent - a tool connecting emerging photonics with electronics for opto-electronic

networks-on-chip modeling,” in 2012 IEEE/ACM Sixth International Symposium on

Networks-on-Chip, pp. 201–210, May 2012.

149

http://www.stat.purdue.edu/~sguha/rhipe/doc/html/airline.html
http://www.stat.purdue.edu/~sguha/rhipe/doc/html/airline.html
http://aws.amazon.com/ec2

[104] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards uniformed repre-

sentation and acceleration for deep convolutional neural networks,” in 2016 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pp. 1–8, Nov 2016.

[105] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S.

Williams, and V. Srikumar, “Isaac: A convolutional neural network accelerator with in-situ

analog arithmetic in crossbars,” in 2016 ACM/IEEE 43rd Annual International Symposium

on Computer Architecture (ISCA), pp. 14–26, June 2016.

[106] T. Gokmen and Y. Vlasov, “Acceleration of deep neural network training with resistive

cross-point devices: Design considerations,” Frontiers in Neuroscience, vol. 10, p. 333,

2016.

[107] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam, N. Ge, J. J.

Yang, and R. S. Williams, “Dot-product engine for neuromorphic computing: Programming

1t1m crossbar to accelerate matrix-vector multiplication,” in 2016 53nd ACM/EDAC/IEEE

Design Automation Conference (DAC), pp. 1–6, June 2016.

[108] K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel reser-

voir computing using optical amplifiers,” IEEE Transactions on Neural Networks, vol. 22,

pp. 1469–1481, Sep. 2011.

[109] Y. Shen, N. C. Harris, D. Englund, and M. SoljaCiC, “Deep learning with coherent nanopho-

tonic circuits,” in 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems

Steep Transistors Workshop (E3S), pp. 1–2, Oct 2017.

[110] D. Dang, J. Dass, and R. Mahapatra, “Convlight: A convolutional accelerator with memris-

tor integrated photonic computing,” in 2017 IEEE 24th International Conference on High

Performance Computing (HiPC), pp. 114–123, Dec 2017.

[111] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” Commun. ACM, vol. 60, pp. 84–90, May 2017.

150

[112] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” CoRR, vol. abs/1409.1556, 2014.

[113] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-

ment recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, Nov 1998.

[114] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015.

[115] Y. Long, L. Zhou, and J. Wang, “Photonic-assisted microwave signal multiplication and

modulation using a silicon mach-zehnder modulator,” Scientific Reports, vol. 6, pp. 20215

EP –, Feb 2016. Article.

[116] M. J. Connelly, “Reflective semiconductor optical amplifier pulse propagation model,” IEEE

Photonics Technology Letters, vol. 24, pp. 95–97, Jan 2012.

[117] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor

found,” Nature, vol. 453, pp. 80 EP –, May 2008.

[118] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Nature

Nanotechnology, vol. 8, Dec 2012. Review Article.

[119] P. Li, X. Yi, X. Liu, D. Zhao, Y. Zhao, and Y. Wang, “All-optical analog comparator,”

Scientific Reports, vol. 6, pp. 31903 EP –, Aug 2016. Article.

[120] T. Fujita, Y. Toba, Y. Miyoshi, and M. Ohashi, “Optical analog multiplier based on phase

sensitive amplification,” in 2013 18th OptoElectronics and Communications Conference

held jointly with 2013 International Conference on Photonics in Switching (OECC/PS),

pp. 1–2, June 2013.

[121] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Imagenet large scale visual recogni-

tion challenge,” Int. J. Comput. Vision, vol. 115, pp. 211–252, Dec. 2015.

151

[122] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and

T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proceedings

of the 22Nd ACM International Conference on Multimedia, MM ’14, (New York, NY, USA),

pp. 675–678, ACM, 2014.

[123] “MNIST Database by yann lecun.” http://yann.lecun.com/exdb/mnist/. Ac-

cessed: 2018-08-01.

[124] J. M. Ramirez, Q. Liu, V. Vakarin, J. Frigerio, A. Ballabio, X. L. Roux, D. Bouville,

L. Vivien, G. Isella, and D. Marris-Morini, “Graded sige waveguides with broadband low-

loss propagation in the mid infrared,” Opt. Express, vol. 26, pp. 870–877, Jan 2018.

152

http://yann.lecun.com/exdb/mnist/

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	High Performance Computing hits the wall!
	Advent of Silicon Photonics
	Silicon Photonic Basics
	Research Focus
	Contributions
	Organization

	ADAPTIVE MULTIPLEXING IN PHOTONIC NETWORK-ON-CHIP*
	Motivation
	Related Works
	Contributions
	Basics Of Silicon Photonics
	Silicon Photonic Components
	Multiplexing
	Wavelength-Division-Multiplexing
	Mode-Division-Multiplexing

	Proposed Adaptive Multiplexing

	Communication Flow
	Photonic Router
	Router Micro-architecture
	Switching Fabric
	Network Interface

	Routing Algorithm
	Laser Multiplexing in 2D & 3D Photonic Network-on-Chip
	Mechanism and Control

	Experiments & Results
	Experimental Methodology
	Microarchitecture Simulation on IPKISS

	Microarchitecture validation under traffic
	Comparitive Analysis and Results
	Number of MRRs
	Photonic area Overhead
	Average Throughput
	Energy Consumption
	Optical Insertion loss

	Chapter Summary

	CROSS-LAYER DYNAMIC THERMAL MANAGEMENT IN PNOC*
	Why Thermal Management?
	Related Work
	IHDTM: Islands of Heater-based Dynamic Thermal Management
	Thermal Islands
	Temperature-Aware Thread Migration Scheme (TATM)

	Experiments, Results, and Analysis
	Experimental Setup
	Experimental Results

	Chapter Summary

	APPLICATION SPECIFIC PNOC FOR BIG DATA COMPUTING*
	Introduction
	Related Work
	Master-Servant Cluster Architecture
	MN-to-SN communication in MSNoC cluster
	SN-to-MN communication in MSNoC cluster
	SN-to-SN communication in MSNoC cluster

	Sensitivity analysis
	BiGNoC Architecture
	Homogeneous BiGNoC Architecture
	Heterogeneous BiGNoC architecture
	Application scheduling in BiGNoC

	Experiments
	Experimental Setup
	BigNoC: Sensitivity Analysis
	Experimental Results

	Chapter Summary

	NEUROMORPHIC COMPUTING USING SILICON PHOTONICS*
	Introduction
	Convolutional Neural Network: Overview
	Basics of Convolutional Neural Network
	Backpropagation Algorithm

	Overview: On-chip Photonic Components
	BPLight-CNN Architecture
	Feedforward CNN Architecture
	CONV Microarchitecture
	ReLU Microarchitecture
	POOL Microarchitecture
	FC Microarchitecture

	Backpropagation Architecture
	Weight Update and Peripheral Circuitry
	Weight-update circuitry
	Peripheral Circuitry

	BPLight-CNN Case Study
	Experimental Analysis
	CAD for BPLight-CNN
	Power and Area Models
	Performance Models
	Benchmarks and Datasets

	Sensitivity Analysis with Prediction Accuracy
	Performance Analysis
	Energy Savings

	Chapter Summary

	Conclusions & Future Directions
	Conclusions
	Future Directions

	REFERENCES

