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ABSTRACT 

 

West Nile virus (WNV) is a zoonotic vector-borne virus that infects avian and mammal 

hosts. In Texas, WNV was first reported in 2002 in Harris County and has since been reported 

annually throughout the state. With variable funding available for mosquito surveillance in 

Texas, predictive modeling is an economical method for mosquito control, but has not been 

parameterized for major metropolitan areas of central and southeast Texas. Thus, this dissertation 

uses historical databases to create predictive models that are specifically tailored for major cities 

in Texas. 

 To investigate the 2012 WNV epidemic in Dallas County, TX, logistic regression models 

identified an index of urbanization (composed of greater population density, lower normalized 

difference vegetation index, higher coverage of urban land types, and more impervious surfaces), 

lower elevation, and older populations as key factors in predicting the risk of WNV in Culex 

quinquefasciatus. Our model was then extrapolated as a risk map, which highlighted north and 

central Dallas County as areas of high risk for WNV-positive mosquitoes. 

 A similar study for Harris County was conducted, where the best-fit model found that 

areas with higher elevation, more impervious surfaces, greater median income, and 

predominantly Hispanic populations will have higher vector indexes, which measure the average 

number of WNV-infected female Culex mosquitoes collected per trap night. The predictive map 

based on this model emphasized high-risk areas in central and north Harris County. 

 Harris County’s long-term database was also used to investigate temporal patterns 

between vector abundance, WNV infection in Cx. quinquefasciatus, and weather patterns. A 

time-series analysis revealed correlations between abundance and environmental variability 
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measurements, following our hypothesis of Schmalhausen’s law that states organisms are 

susceptible to mean (average) temperature and precipitation measurements as well as extreme or 

variability in weather. The infection rate model identified temperature with an 8-month lag as a 

significant covariate for WNV infection rates, highlighting the importance of overwintering 

temperatures preceding the WNV season. 

These models (landscape, demographic, and meteorological conditions) can be used by 

local mosquito control agencies to predict WNV infection in Cx. quinquefasciatus for proactive 

and effective control efforts. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 West Nile Virus Distribution And Epidemiology 

West Nile Virus (WNV) was first discovered in 1937 in Uganda, spreading to Egypt, 

India, and Israel by the 1950’s (Bernkopf et al. 1953, Work et al. 1953). The virus had reached 

Europe by the 1970’s (Mouchet et al. 1970, Karabatsos 1985, Hayes and Monath 1989) and more 

recently, China, Japan, and South Korea found their first patients positive for WNV in 2004, 

2005, and 2012, respectively (Takasaki 2007, Li et al. 2013, Hwang et al. 2015). Since its 

introduction to the New World in Queens, New York in 1999, WNV has spread throughout 

much of North America, including Canada in 2004 and is now spreading to Central and South 

America (Nasci et al. 2001b, Reisen and Brault 2007, Artsob et al. 2009). With one of the largest 

distributions, WNV has now been detected on every continent except for Antarctica (Chancey et 

al. 2015). The virus is now considered endemic in Europe, Asia, Africa, and North America, 

where the avian population is capable of maintaining the virus and human cases of WNV have 

been reported every year (Rappole et al. 2000, Peterson et al. 2004, Petersen et al. 2007, Pollock 

2008, Paz and Semenza 2013). 

Since its introduction into the United States (U.S.), the Centers for Disease Control and 

Prevention (CDC) has reported 46,086 cases of WNV, with 46.8% of the cases classified as the 

more severe form of WNV, West Nile neuroinvasive disease (WNND) (CDC 2016a). WNV has 

a case-fatality rate of 4% in the U.S. according to the cumulative data from the CDC, with 2,017 

deaths reported since 1999 (CDC 2016a). Most cases of WNV are not clinically apparent and 

often go unrecognized, which may result in underreporting of the disease (Petersen et al. 2013a). 
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According to Petersen et al. (2013b), the actual numbers for illnesses and resulting WNV cases 

from 1999-2010 may be closer to 3 million and 780,000, respectively. 

The U.S. witnessed the largest outbreak of WNV in 2012. In total, the U.S. and the 

District of Columbia reported 5,674 total cases of WNV with 2,873 of WNND cases and 286 

deaths (CDC 2016b). The majority of cases and deaths during this epidemic occurred in Texas. 

Texas alone reported a total of 1,868 cases of WNV with 844 cases of WNND and 89 deaths 

throughout the state (Murray et al. 2013). During this epidemic, Texas accounted for 33% of the 

total cases, 29% of the WNND cases, and 31% of the total deaths reported in 2012. 

The first human case of WNV in Texas occurred in 2002 in Harris County, TX and cases 

have consistently been reported annually throughout Texas since then (Nolan et al. 2013). Texas 

reported 5,277 cases of WNV to the CDC between 1999-2016 and over 60% of the cases were 

classified as the WNND form (CDC 2016a). Texas also has the second-highest number of total 

reported WNV cases in the continental U.S., following California which reported 6,031 cases in 

the same time period (CDC 2016a). In comparison, 2,150 WNV disease cases were reported 

from 46 states and the District of Columbia in 2016, and the majority of the cases (61%) were 

classified as the neuroinvasive form (CDC 2016b, Burakoff et al. 2018). Given that Texas has 

been the site of some of the largest numbers of WNF and WNND cases coupled with minimal 

prior work focusing solely on Texas, this dissertation will focus on WNV transmission dynamics 

and patterns occurring in Texas. 

 

1.2 West Nile Virus Taxonomy 

 WNV is a flavivirus from family Flaviviridae, which includes four genera containing 

over 60 species. This family is most well-known for the type virus the yellow fever virus (YFV) 
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(Simmonds et al. 2017). The majority of the viruses in this family are arthropod-borne and the 

host range spans birds and mammals of all genera (Simmonds et al. 2017). WNV belongs to the 

Flavivirus genus, which also includes YFV, Dengue virus, and Zika virus (Simmonds et al. 

2017). Specifically, WNV is part of the Japanese Encephalitis (JE) complex and serologically 

cross-reacts with the three other virus species in the complex including JE, St. Louis encephalitis 

(SLEV), and Murray Valley encephalitis viruses (Mackenzie et al. 2002). The members of the JE 

complex are responsible for causing many arthropod-borne diseases in humans (Schweitzer et al. 

2009). 

 Previously, phylogenetic analyses have found two distinct lineages of WNV: Lineage 1 

and Lineage 2. Lineage 1 has a diverse geographical distribution and can be found in Australia, 

the U.S., Africa, Europe, the Middle East, India, and Russia (Lanciotti et al. 2002). Whereas 

Lineage 2 is predominantly found in sub-Saharan Africa and Madagascar (Lanciotti et al. 2002). 

The original WNV strain in New York, the other strains found in the U.S., and strains from Israel 

form a unique clade within Lineage 1 (Lanciotti et al. 2002). Due to the high genomic 

similarities between the U.S. and Israel viruses, researchers hypothesized that WNV was likely 

introduced into the U.S. from the Middle East and more specifically Israel (Lanciotti et al. 1999). 

 Since the identification of the first two lineages, three more lineages have emerged. 

Lineage 3 is comprised of the Rabensburg virus which was isolated from mosquitoes found in 

South Moravia, Czech Republic (Bakonyi et al. 2005). Lineage 4 is comprised of a strain from a 

Dermacentor spp. tick originating from the Russian Cacasus region (Prilipov et al. 2002, Brault 

2009). Lineage 5 encompasses a unique WNV lineage originally isolated from mosquitoes in 

India (Bondre et al. 2007). Curiously, while the strains were found in distinct environments 

around the world, the distribution of the lineages does not correlate with host preference or 
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geographical location, but instead with the patterns of migrating birds (Berthet et al. 1997, Brault 

2009). 

 

1.3 West Nile Virus Ecology And Transmission Cycle 

WNV is a zoonotic disease involving avian hosts in the enzootic period of the virus 

(Figure 1). During the enzootic period of the transmission cycle, the mosquito infected with 

WNV feeds and transmits the virus to the avian host (Weaver and Reisen 2010). The virus 

amplifies within the avian host and the avian host then maintains a sufficient viremia to infect 

other mosquitoes, which can infect dead-end hosts, such as horses and humans. The species 

responsible for WNV transmission will differ depending on the predominant species in the area 

(Turell et al. 2005). Furthermore, characteristics of the vector such as ornithophilic feeding may 

make some vectors more efficient than others in maintaining the virus in nature (Turell et al. 

2005). Some mosquitoes such as Cx. quinquefasciatus and Cx. tarsalis are considered 

opportunistic feeders and will change their host preference depending on the season, making 

them excellent maintenance and bridge vectors. Both mosquitoes are ornithophilic feeders in the 

early summer, which allow the virus to be “maintained” in the nature. These mosquitoes will 

then switch their feeding preferences to mammals later in the summer, allowing spillover of 

WNV into mammal populations (Tempelis et al. 1965, Molaei et al. 2007, Andreadis 2012). 
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Figure 1 West Nile virus cycle. An infected mosquito feeds on an avian host, which then amplifies the 
virus and maintains a sufficient viremia to infect other mosquitoes. Infected mosquitoes can pass the virus 
to dead-end hosts such as humans and horses. 

 

Vertical transmission of WNV is another possible mechanism for mosquito vectors to 

acquire the virus as studies have demonstrated effective vertical transmission of WNV from 

female mosquitoes to their offspring. Baqar et al. (1993) first reported vertical transmission of 

WNV in Aedes albopictus, Ae. aegypti, and Cx. taeniorhynchus F1 offspring by parenterally 

infecting the parental strains in a laboratory setting. Another study in California looked at 

whether three wild-caught Culex species could vertically transmit WNV to their offspring. They 

found variability in Cx. tarsalis’ ability to vertically transmit WNV (Goddard et al. 2003). Cx. 

tarsalis from Yolo County were able to transmit the virus to their offspring; however, the same 

species from Riverside County reported no positive mosquitoes among the F1 progeny (Goddard 

et al. 2003). The authors reported positive progeny for Cx. quinquefasciatus, but not for Cx. 

pipiens (Goddard et al. 2003). Another group intrathoracically inoculated Cx. pipiens and Ae. 
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albopictus with WNV and found positive F1 progeny from Cx. pipiens only (Dohm et al. 2002a). 

The ability of multiple species to overwinter may contribute to maintenance of WNV in nature 

during colder temperatures, specifically where females can enter diapause or quiescence (a 

period of low or absent reproductive activity) during the winter and then start vertical and 

horizontal transmission the following spring (Goddard et al. 2003, Unlu et al. 2010). Ultimately, 

while vertical transmission is possible, it occurs at very low levels (<1%) (Goddard et al. 2003). 

Human and animal hosts are most commonly exposed to WNV through the bite of an 

infected mosquito, but Gould and Fikrig (2004) reviewed other ways humans may become 

infected with WNV. Although rare, humans can become exposed to WNV in an occupational 

setting (CDC 2002c, 2003), blood transfusion and organ donation (Iwamoto et al. 2003, Pealer et 

al. 2003, Desalvo et al. 2004, Kumar et al. 2004, Stanley et al. 2009), and in utero or breast 

feeding from mother to baby (CDC 2002a, b). While humans can potentially infect other humans 

through these alternative routes, humans cannot pass on the virus to an uninfected mosquito thus 

ending the WNV transmission cycle.  

 

1.3.1 Vectors of WNV 

Culex mosquitoes are the primary enzootic vectors of WNV (Turell et al. 2001, Turell et 

al. 2005, Weaver and Reisen 2010), as well as capable bridge vectors to humans due to their 

opportunistic and generalist feeding behaviors on avian and mammal hosts (Hribar et al. 2001, 

Turell et al. 2001, Kilpatrick et al. 2005b, Hamer et al. 2008b). More specifically, Cx. pipiens, 

Cx. restuans, Cx. quinquefasciatus, and Cx. tarsalis are the principal vectors for WNV in the 

U.S., but other species may be competent vectors with lower transmission rates (Turell et al. 

2001). Cx. pipiens is the most important vector for the northeast, northcentral, and mid-Atlantic 
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U.S., but Cx. restuans may play a role in the WNV transmission cycle to a lesser extent 

(Apperson et al. 2002, Turell et al. 2002, Ebel et al. 2005, Kilpatrick et al. 2006, Kramer et al. 

2008). Among the midwestern and western states, Cx. tarsalis is considered the main vector of 

WNV since it has the greatest abundance in those areas, can maintain and amplify similar viruses 

in the JE complex, and is an efficient laboratory vector of WNV (Goddard et al. 2002, Bell et al. 

2005, Turell et al. 2005, DiMenna et al. 2006, Nielsen et al. 2008, Brault 2009). Furthermore, 

Cx. pipiens is considered the major WNV vector in the northeastern states based on their 

ornithophilic feeding preferences, predominant abundance in the northeast, and high infection 

rates associated with WNV (Turell et al. 2000, Bernard et al. 2001, Kilpatrick et al. 2005b). 

In the southern U.S., including Texas, Cx. quinquefasciatus is the most relevant mosquito 

species involved in the transmission cycle, exhibiting an opportunistic feeding behavior and high 

abundance during the WNV transmission season (summer through early fall) (Gibbs et al. 2006, 

Molaei et al. 2007, Reisen et al. 2008b, Andreadis 2012). Molaei et al. (2007) reported feeding 

preference shifts for Cx. quinquefasciatus mosquitoes in Harris County, TX throughout the 

WNV season. The authors found a pronounced shift in the sources of blood meals, shifting from 

avian hosts to mammalian hosts later in the summer and early fall between September and 

November (Molaei et al. 2007). While feeding behaviors and general phenology of Cx. 

quinquefasciatus has been studied, but how the surrounding environment and conditions affect 

the mosquito are still largely unknown for Texas. Given the accepted role of Cx. 

quinquefasciatus as the main vector of WNV in Texas, this dissertation will mainly focus on the 

ecology of this mosquito species and how its life cycle can change based on external pressures. 
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1.3.2 Reservoirs and Hosts of WNV 

 Birds, humans, and horses are the most well-known hosts for WNV. Birds serve as major 

amplifying hosts of the virus. Some species of birds are capable of tolerating the virus and 

producing high enough viremic titers to infect mosquitoes that feed on them, but other species 

may die as a consequence of infection. In the U.S., over 300 species of dead birds have tested 

positive for WNV (CDC 2017). When WNV first arrived in North America, Canada geese 

(Branta canadensis), domestic geese (Anser spp.), chickens (Gallus gallus), house sparrows 

(Passer domesticus), and rock doves (Columba livia) had high seroprevalences (Komar et al. 

2001). After the experimental infection of 25 bird species with WNV, the most competent 

species for WNV consisted of passerines: blue jays (Cyanocitta cristata), common grackles 

(Quiscalus quiscula), house finches (Carpodacus mexicanus), American crows (Corvus 

brachyrhynchos), and house sparrows (Komar et al. 2003). Passerine birds are competent 

amplifying hosts and will produce sufficient concentrations of the virus to efficiently infect 

mosquitoes feeding on them to continue the enzootic cycle. Members of the Corvidae family 

have also demonstrated severe illness and subsequent high mortality rates from WNV infection 

(Reed et al. 2003). While birds are typically infected through mosquito feeding, birds may also 

be infected through ingestion of an aqueous solution containing the virus or an infected mosquito 

(Komar et al. 2003). Oral ingestion of WNV may have important implications for scavenging 

birds of prey such as vultures, hawks, or eagles that may eat infected prey or carrion and 

warrants further research (Marra et al. 2004a). 

 Migratory birds may have played a significant role in bringing WNV to the New World 

and the consequent distribution of WNV throughout North America. For example, Rappole et al. 

(2000) suggested how the Eurasian Wigeon (Anas Penelope) and its international migration 
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patterns might have introduced WNV into North America. The bird is commonly found in 

Iceland but travels to temperate and tropical zones in the Old World for the winter, where it 

could come into contact with mosquitoes carrying WNV (Edgell 1984). There is also evidence 

that Eurasian Wigeons can also travel to the Eastern seaboard of North America, which could 

have served as an entry point for WNV into the Western hemisphere (Edgell 1984). The 

migratory patterns of various bird species may have also contributed to the spread of WNV 

throughout the country in a short amount of time. WNV expanded throughout North America 

along the Atlantic seaboard, which aligns with the Atlantic flyway migration route taken by 

many bird species (Rappole et al. 2000). After expanding to new regions, WNV can establish the 

zoonotic cycle in the new environment and remain active year-round, which is true for 

subtropical climates that are home to avian reservoirs of WNV (Reed et al. 2003). The rapid 

spread of WNV westward in North America could be contributed to the elliptical migration 

pattern of bird species such as the Connecticut warbler (Oporornis agilis) (Reed et al. 2003). 

Furthermore, simulations of the spread of WNV follows closely with mosquito and migratory 

bird movement, where migratory birds serve as critical long-distance transport agents (Peterson 

et al. 2003). The high viremic titers in migratory birds further support the hypothesis that 

migratory birds play a major role in WNV distribution (Roehrig et al. 2002). 

Experimental and natural infection of WNV in various animals has demonstrated the 

virus’ ability to adapt to a wide range of hosts. WNV antigen and antibodies can be found in 

various vertebrates including bats (Constantine 1970, Paul et al. 1970, Davis et al. 2005), 

domestic cats, dogs, and rabbits (Odelola and Oduye 1977, Komar 2000, Marfin et al. 2001, 

Austgen et al. 2004), peridomestic animals (cotton-tailed rabbits, raccoons, opossums, 

chipmunks, squirrels, skunks) (Marfin et al. 2001, Tiawsirisup et al. 2005, Bentler et al. 2007, 
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Platt et al. 2007, Blitvich et al. 2009), frogs (Kostyukov et al. 1985, Kostyukov et al. 1986, 

Klenk and Komar 2003), alligators (Miller et al. 2003), and crocodiles (Steinman et al. 2003, 

Machain-Williams et al. 2013). The movement of these widely-varied animals, whether through 

natural migration or human-mediated movement, could potentially introduce WNV into regions 

with previously no or low prevalence of the virus. 

Finally, humans and horses also serve as a host for WNV, but to a much lesser extent 

compared to birds. Humans and horses are known as dead-end or incidental hosts, where they 

may exhibit symptoms and die, but are not able to produce a sufficient viremia to infect another 

mosquito. While humans cannot infect another mosquito, they can potentially infect other 

humans through blood-to-blood or blood-to-mucous membrane contact such as organ or blood 

donations, occupational/laboratory settings, or from mother to child (Gould and Fikrig 2004). 

 

1.4 Drivers of WNV Transmission 

WNV is considered the arbovirus with the largest geographic distribution in the world 

(Kramer et al. 2008). Although WNV has been introduced into diverse landscapes around the 

world, WNV does not act consistently in these different environments. The ability of WNV to 

become established in the enzootic cycle, amplify to high levels, and occasionally spillover to 

human hosts is highly variable in space over large geographic areas (Murray et al. 2010, Petersen 

et al. 2013a). Even at small spatial scales, there is substantial heterogeneity in mosquito, bird, 

and human infections (Ruiz et al. 2004). WNV is also highly variable temporally, with each 

season having variable degrees of transmission intensity and seasonal activity (Ruiz et al. 2010). 

In the last 15 years, there has been substantial progress in understanding the biotic and abiotic 
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drivers of WNV transmission (Randolph and Rogers 2010). In this section, we will review the 

major drivers of WNV transmission that have been identified thus far in the literature. 

 

1.4.1 Temperature 

 Temperature has direct and indirect impacts on mosquito populations and the virus. 

Ambient temperature affects the rate of development and abundance of vector populations 

(Rueda et al. 1990, Paz and Albersheim 2008) and changes the seasonal phenology of mosquito 

and host populations (Reisen et al. 2010, Mirski et al. 2012). Furthermore, ambient temperatures 

may determine the spatial and temporal variation in human case incidence, mosquito acquisition 

of the virus, and reservoir presence (Reisen et al. 2006a, Mirski et al. 2012). Additionally, 

increasing temperatures decrease the extrinsic incubation period—the time interval between an 

infectious blood meal until the mosquito is capable of transmitting the virus—and accelerate the 

rate of virus evolution (Smith 1987, Kilpatrick et al. 2008). Ambient temperature has direct 

impacts on the WNV cycle. Warmer temperatures increase mosquito productivity, increase the 

growth rate of mosquito populations by shortening the time of development for Culex vectors, 

and decrease the gonotrophic interval by increasing biting rates (Meyer et al. 1990, Shaman et al. 

2005, Kilpatrick et al. 2008, Paz and Albersheim 2008, Ruiz et al. 2010, Paz et al. 2013, Paz and 

Semenza 2013). 

 Ambient temperature is a leading risk factor for mosquito development and transmission 

efficiency. Experimentally, higher incubation temperatures of Cx. pipiens resulted in higher 

infection rates with disseminated infections reported as early as 4 days post-infection at 30°C 

(Dohm et al. 2002b, Reisen et al. 2008b). Furthermore, transmission accelerates nonlinearly with 

the extrinsic incubation temperature, rendering higher temperatures an important risk factor in 
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WNV transmission (Kilpatrick et al. 2008). Ruiz et al. (2010) reported a significant positive 

association between temperature on the timing and location of increased mosquito infection in 

Chicago, IL. As a result, increased temperature has a strong effect on increasing the minimum 

infection rate (MIR) within a week (Ruiz et al. 2010).  

This strong positive association between temperature and WNV has also been found in 

other regions (Chuang et al. 2011, Chung et al. 2013, Degroote et al. 2014). In South Dakota, 

higher temperature in the current and two weeks prior to a trapping event in combination with 

higher precipitation 3-4 weeks prior shows a positive influence on Cx. tarsalis abundance 

(Chuang et al. 2011). Degroote et al. (2014) concluded that higher than average winter 

temperatures from the previous year and higher than average spring and early summer 

temperatures were associated with higher WNV ratings throughout various regions of the U.S. 

during the 2012 WNV epidemic. 

More locally in Texas, a study investigating factors that led to the 2012 WNV outbreak in 

Dallas looked at previous winter temperatures and discovered an inverse association between the 

number of WNND cases and the number of freezing temperature days below 28°C (Chung et al. 

2013). Furthermore, the same study found that another large outbreak in Dallas took place in 

2006 and experienced a similarly large number of outliers in regards to temperature, rainfall, and 

summer heat (Chung et al. 2013). The group concluded that higher temperatures combined with 

an earlier spring increased amplification of WNV activity within the enzootic cycle and, thusly, 

increased transmission in humans (Chung et al. 2013). 

 While temperature’s positive relationship with mosquito abundance and WNV 

occurrence is currently accepted, higher temperatures can also have a negative effect on these 

outcomes. For example, Brault (2009) concluded that temperature negatively correlates with the 
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longevity of mosquitoes, but higher temperatures may increase transmission efficiency. 

Likewise, mosquitoes begin to slow their activity at extremely high temperatures (Reisen 1995, 

Reisen et al. 2006a). Regardless, temperature remains to be a significant risk factor for mosquito 

survival, successful virus transmission, and the maintenance of WNV in reservoirs and vectors as 

concluded by the various aforementioned studies. 

 

1.4.2 Precipitation 

Precipitation is known to have important consequences on mosquito production and 

abundance by providing habitats for the larval and pupal stages of mosquitoes, which also has an 

impact on rates of WNV transmission. However, the influence of prior precipitation on WNV 

transmission is complex and no clear patterns have emerged from multiple studies. Major 

reasons for differences over large geographic areas could be due to the different predominant 

mosquito vectors of WNV in certain areas and their specific ecologies. 

Above-average precipitation and the resulting pools of standing water can increase the 

abundance of mosquitoes and, therefore, lead to increased incidences of mosquito-borne diseases 

such as WNV (Takeda et al. 2003, Soverow et al. 2009). However, other studies have 

demonstrated that heavy rainfall can disturb Culex larval habitats by washing away the ditches 

and drainage channels these mosquitoes prefer, with the greater degrees of washouts determined 

by longer rain exposure (Shaman et al. 2002b, Koenraadt and Harrington 2008). Storm sewer 

catch basins, ditches, and organic waste sites are ideal habitats for Cx. quinquefasciatus since 

these locations are polluted with a high density of organic material. Therefore, we would expect 

a decrease in the abundance of this species if the larval habitats are constantly washed away 

(Molaei et al. 2007). 
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While rainfall can be a driver of WNV activity, the lack of rain may also be just as 

important. Drought conditions disrupt the aquatic ecosystem of predators and competitors that 

serve to limit mosquito larval activity, allowing larvae to fully develop and emerge as adults 

(Chase and Knight 2003). In southern Florida, droughts can cause fragmentation in surface pools 

and the remaining stagnant water will become enriched with organic materials, as well as draw 

avian hosts and mosquitoes closer to limited water sources, increasing the interactions between 

the reservoir and vector to facilitate the enzootic cycling and amplification of WNV (Shaman et 

al. 2002b, Shaman et al. 2005). SLEV, which has a similar transmission cycle to WNV and has 

since been outcompeted by WNV, follows similar conditions for increased risk of SLEV 

transmission to humans where birds and Culex mosquitoes congregate together during droughts 

(Shaman et al. 2002a). In Dallas, TX, the 2012 WNV epidemic was attributed to drought 

conditions that reduced water movement, created stagnant water pools, and accumulated high 

organic content ideal for Culex and other vector mosquitoes to breed (Roehr 2012, Chung et al. 

2013), but perhaps increased bird and Culex mosquito congregation played a role as well. 

The timing and location of precipitation is also important, given its interactions with 

other abiotic factors such as temperature, slope, and the landscape of the local area. A study in 

Chicago, IL investigated the role of temperature, precipitation, and landscape features on MIR, 

where Ruiz et al. (2010) concluded that lower precipitation in the spring followed by increased 

precipitation preceded increases in MIR, but this was not true for all years. Overall, lower 

precipitation was considered the leading predictor for high MIR’s (Ruiz et al. 2010). 

Furthermore, the authors also suggested that lower elevations and more impervious surfaces will 

allow water to collect at low-lying elevations and produce resources needed for mosquito 

survival (Ruiz et al. 2010). 
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Rainfall was a significant factor in prediction models for the 2012 WNV epidemic 

throughout the U.S., as shown by Degroote et al. (2014), where large amounts of precipitation 

early in the year and drought conditions later in the year were associated with higher WNV 

activity. Winter to spring precipitation had a positive association with higher WNV activity in 

the following summer, but summer precipitation was inversely associated with WNV activity 

(Degroote et al. 2014). This suggests that early winter and spring precipitation will accumulate 

water on the surface for mosquitoes to breed and coupled with high temperatures, will facilitate 

high mosquito abundances early in the season (Degroote et al. 2014). The standing water will 

further become enriched the longer it stays in the environment and provide excellent larval 

habitats for Cx. quinquefasciatus (Degroote et al. 2014). Precipitation from the previous year 

may be a significant driver of virus transmission in subtropical areas, but this is limited by the 

geographic heterogeneity and may not be true outside of subtropical areas (Uejio et al. 2012). 

Landesman et al. (2007) showed that there are inconsistent precipitation patterns when looking at 

different regions of the U.S. due to the inherent geographic heterogeneity. The authors found 

precipitation to have a positive effect on human incidence of WNV on the East coast of the U.S. 

and a negative effect along the west coast (Landesman et al. 2007). The opposite relationships in 

the pattern of human WNV patterns along the eastern and western U.S. could be due to the 

ecological differences of the predominant WNV vectors in their corresponding region, Cx. 

pipiens and Cx. tarsalis, respectively (Landesman et al. 2007). 

 The mechanisms involving precipitation and its effects on WNV transmission dynamics 

are complex and have resulted in highly variable results. Regardless, precipitation is an 

important factor to consider due to its indirect roles in the WNV cycle and its interactions with 

abiotic and biotic conditions. While precipitation may not directly affect the WNV cycle, rainfall 
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interacts with other factors such as the landscape and temperature to create favorable conditions 

for mosquito productivity and can thusly mediate WNV transmission.  

 

1.4.3 Landscape 

In addition to weather influencing the spatial and temporal patterns of WNV 

transmission, many other physical features of the landscape are known to have significant 

associations with WNV transmission. Specifically, the landscape can determine the available 

microhabitats required for the survival of immature mosquitoes. The interactions between the 

landscape and climate allow localized increases in the abundance of certain species of 

mosquitoes that emerge as the predominant vectors of WNV in addition to their competency for 

amplifying the virus. For example, Cx. quinquefasciatus prefer water habitats with high organic 

content that is characteristic of human-modified urban and peridomestic areas, but Cx. tarsalis is 

most abundant in rural landscapes dominated by grasslands, pasture, and hay (Hribar et al. 2001, 

Bolling et al. 2005, Gibbs et al. 2006, Molaei et al. 2007, Nielsen et al. 2008, Reisen et al. 2008c, 

Winters et al. 2008, Reisen et al. 2009, Eisen et al. 2010, Chuang et al. 2011, Hahn et al. 2015). 

The most common features of the environment that have been studied and are capable of 

influencing mosquito and bird communities include vegetation/Normalized Difference 

Vegetation Index (NDVI), elevation, land type/land use, development/urbanization, and 

impervious surfaces (Ruiz et al. 2004, Bian et al. 2006, Cooke et al. 2006, Gibbs et al. 2006, 

Ozdenerol et al. 2008, Chuang et al. 2011, DeGroote and Sugumaran 2012, Degroote et al. 

2014). Given their potential roles in the WNV transmission cycle based on the following studies, 

these factors will be considered in the dissertation. 
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Vegetation provides potential habitats for the mosquito and avian populations and is 

commonly measured by NDVI. NDVI is a normalized ratio of red and near infrared wavelengths 

to produce a metric of vegetation density (Lillesand et al. 2014). Brownstein et al. (2002) and 

Ruiz et al. (2004) concluded that the presence or increased coverage with vegetation (higher 

NDVI) are important risk factors for the incidence of WNV cases in which greater amounts of 

vegetation is required for avian host and mosquito habitats. Similarly, NDVI may be used to 

predict foci of WNV transmission to horses (Ward et al. 2005). However, a study in Iowa 

identified NDVI as a negative predictor of human WNV cases (DeGroote et al. 2008). Another 

study focused on Amherst, NY found a negative relationship between NDVI and Cx. pipiens-

restuans abundance, but NDVI was not a significant predictor of Aedes vexans abundance 

(Trawinski and Mackay 2010). The differences in results from the various studies could be 

attributed to the varying preferences in habitats for each mosquito species and the ability for 

vegetation to mediate climatic factors based on the amount of vegetation available. 

In combination with other physiographic elements, higher elevation may limit WNV 

transmission. Higher elevations will have lower temperatures, subsequent smaller mosquito 

abundances, and diversity in avian species composition compared to counterparts at lower 

elevations (Gibbs et al. 2006). Ruiz et al. (2010) found that elevation was a moderate predictor in 

determining the MIR of WNV in Cx. pipiens in Chicago, IL and suggested that elevation could 

mediate the effect of precipitation by collecting water at lower elevations to enrich with organic 

materials needed for mosquito population survival. Similarly, a study in North Dakota found an 

inverse relationship between the incidence of WNV in horses and elevation (Mongoh et al. 

2007). In South Dakota, elevation had a negative relationship with human WNV risk, citing the 
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main vector’s (Cx. tarsalis) inability to survive colder temperatures found at higher elevations as 

the reasoning for the decreased odds of human WNV disease (Chuang et al. 2012). 

The land surface types and amount of urbanization or development may also mediate the 

mosquito population and human cases. Even though the literature examining the effect of land 

type and urbanization on Cx. quinquefasciatus development and WNV has been limited, 

extensive work has been conducted to identify the landscape factors involved in the development 

of Cx. pipiens, the northern WNV vector, and a species that can produce hybrid offspring with 

Cx. quinquefasciatus due to their similar biologies and ecologies (Farajollahi et al. 2011). In the 

northeastern U.S., WNV activity in mosquitoes and humans typically occurs in urban areas 

(Andreadis et al. 2004). The land types that impact the mosquito life cycle and transmission of 

the virus is dependent on the preference of the prominent mosquito species in the region. The Cx. 

pipiens complex dominates in the northeastern and southern U.S., while Cx. tarsalis is the 

suggested WNV vector in the western U.S., which could explain why human disease incidence 

of WNV is positively correlated with urban areas in the northeast and agricultural land in the 

west (Bowden et al. 2011). Furthermore, Cx. quinquefasciatus breed in urban areas, particularly 

near human habitations, urban catch basins, and storm drains (Molaei et al. 2007, Andreadis 

2012). However, Cx. tarsalis prefer agricultural and rural landscapes (Reisen and Reeves 1990, 

Chuang et al. 2011, Andreadis 2012). The differences in the preferred habitats for multiple 

species of mosquitoes could also be due to the presence of unique primary hosts that are 

preferred by various species of mosquitoes, different survival rates against competitors, 

oviposition preferences for certain attractants that indicate the kind of organic material in aquatic 

habitats, or predilections for certain climates that allow a species to survive and become the 

dominant WNV vector in its region (Du and Millar 1999, Walton et al. 2009).  
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The association between urban landscapes and human cases indicates land use as a 

capable environment for enzootic and bridge transmission. Furthermore, some mosquitoes such 

as those in the Cx. pipiens complex have adapted to human-altered environments, thereby 

increasing exposure and transmission of medically-relevant pathogens to human and 

peridomestic animal populations (Farajollahi et al. 2011). Urbanization is a risk factor for human 

WNV incidence in the northeastern U.S. since case rates are significantly higher in urban 

classifications (Ruiz et al. 2007, Brown et al. 2008b), and it is likely this is also true in the 

southern U.S. given the similarities in habitat preferences between the main vectors of WNV in 

the northeastern (Cx. pipiens) and southern U.S. (Cx. quinquefasciatus) (Molaei et al. 2007, 

Andreadis 2012). In a comparison study between Detroit, MI and Chicago, IL, the rate of human 

WNV cases was higher in urban areas with moderate population density (Ruiz et al. 2007). 

Elsewhere, increased urbanization has been linked to increased WNV activity such as in 

California (Harrigan et al. 2010). Other measures of urbanization related to greater WNV human 

risk may include greater road density, less forested areas, or more built-up area/impervious 

surfaces (Brown et al. 2008b, LaBeaud et al. 2008). 

In addition to urban land cover as a risk factor for WNV activity, another measurement of 

anthropogenic activity is impervious surfaces. Impervious surfaces represent the amount of 

human-made materials, which can be used to estimate the degree of artificial structures and 

urban land use (Arnold Jr and Gibbons 1996). A study in Wisconsin found that impervious 

surfaces may contribute to the collection of water in catch basins since these surfaces cannot 

absorb water, which may lead to greater abundances of mosquito larval habitats (Kronenwetter-

Koepel et al. 2005). Two studies in Chicago, IL found conflicting results regarding impervious 

surfaces. Ruiz et al. (2010) reported impervious surfaces as a moderate predictor of WNV MIR, 
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but Messina et al. (2011) did not find a significant relationship between impervious surfaces and 

human cases of WNV for the same area. The differences between these two studies for the same 

area could be attributed to the differences in their outcome variables. The former used the 

mosquito MIR as the outcome measurement, while the latter study used human cases. Therefore, 

the differences in the conclusions from both of these studies could be due to the uncoupling 

between mosquito infection and the appearance of human infection with WNV.  

Other landscape factors with a positive association with WNV cases include: soil water 

availability/poor soil drainage, pastures, surface water, slow-moving water sources, urban catch 

basins, roadside ditches, sewage treatment lagoons, the presence of manmade containers around 

the house, rural areas with wetlands, woodlands and arid shrubland, and availability of open 

water (Epstein 2001, Anderson et al. 2006, Ruiz et al. 2007, DeGroote and Sugumaran 2012, 

Nolan et al. 2012, Degroote et al. 2014). These factors play a role in the Culex mosquito 

development cycle or serve to attract avian hosts for resting and nesting periods, which 

establishes the enzootic cycle and amplifies viremic activity (Marra et al. 2004b). 

 

1.4.4 Demographics 

Social demographic predictors of human infection include socioeconomic 

status/education level, median age of the population, and race (Brownstein et al. 2002, Ruiz et al. 

2004, Diuk-Wasser et al. 2006, Rios et al. 2006, Reisen et al. 2008a, Bisanzio et al. 2011, 

Rochlin et al. 2011). Demographic and social factors may indirectly affect the mosquito life 

cycle due to environmental factors or certain behaviors related to specific populations of people 

that may put them at higher risk for exposure (Ruiz et al. 2004). 
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Socioeconomic status (SES) is a single measurement that combines income, education, 

and occupation to compare the relative economic and social position of one person or family. 

Socioeconomic status and the individual components of SES are considered risk factors for 

different measures of WNV. For example, low income may affect someone’s ability to get 

diagnosed and treated for WNV or poor housing may create unintentional habitats for Culex 

mosquitoes. The condition of the neighborhood is indicative of SES and may be an indicator of 

WNV prevalence. That is, low-income areas may have less upkeep of properties, which may 

create microhabitats for vectors and hosts to accumulate, or have different human behavioral 

responses to WNV due to different education levels compared to higher-income areas (Harrigan 

et al. 2010). In Tennessee, areas with low income, a high percentage of rental occupations, and 

more vacant housing were identified as social drivers of WNV transmission (Ozdenerol et al. 

2008). When observing mosquito abundances, a lower SES was not a significant predictor 

(Dowling et al. 2013). However, the potential for larval mosquito habitats exists in areas with 

lower SES since there are greater numbers of containers capable of forming mosquito habitats 

and these homes are less likely to be maintained by homeowners (i.e., remove or apply 

treatments to standing water) (Dowling et al. 2013). 

While low SES may be associated with higher WNV prevalence, not all areas have 

reported similar results. During the 2002 WNV outbreak in Chicago IL, higher median incomes 

were more likely to be found in tracts inside clusters of human WNV cases (Ruiz et al. 2004). 

Nearby in Ohio, higher-income areas were also associated with greater risk of human infection 

(LaBeaud et al. 2008). In a national study looking at the 2012 WNV outbreak, median income 

was positively associated with their binary county WNV rating (higher/lower rate in the county 

compared to the regional 2012 rate) in the northcentral and northeastern regions of the U.S., but 
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the percentage of those in poverty (another type of income measurement) was negatively 

associated with the WNV ratings in the southeast region that encompasses major metropolitan 

areas such as Dallas, Harris, Bexar, and Travis Counties (Degroote et al. 2014). The difference in 

significant predictors in various regions could be due to landscape heterogeneity and the 

variations in the ecology of the predominant mosquito vector. 

Changes in the economy should also be taken into account when looking at the status of 

high- and low-income areas in relation to WNV levels. Census tracts with higher income and a 

greater number of unoccupied houses were associated with greater WNV occurrence during the 

2012 Dallas County outbreak (Chung et al. 2013). Unoccupied houses or foreclosed houses as a 

result of the economic downturn in the 2000’s may have contributed to unmaintained swimming 

pools that could form potential habitats for Culex mosquitoes by collecting stagnant rainwater 

(Reisen et al. 2008a, Chung et al. 2013). 

Education is positively correlated with income and can measure another aspect of SES 

(Milligan et al. 2004). Those with higher education levels are more likely to be more politically 

engaged and involved in community issues (Milligan et al. 2004). Demanding mosquito control, 

maintaining homes to prevent mosquito habitation, or having the willingness to educate 

themselves on mosquito control and prevention may reduce mosquito abundance and WNV 

infection in homes (Harrigan et al. 2010). However, the negative correlation between WNV 

activity and education, income, or SES is not consistent everywhere. Education level as a 

measurement of SES has also been positively linked to WNV human risk in New York, where 

higher education levels were associated with greater WNV human risk (Rochlin et al. 2011). 

These populations of educated people may be more apt to act on their symptoms or have more 

access to medical services, both of which may have biased the number of reported cases towards 
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those with higher education levels (Rochlin et al. 2011). Other obstacles in preventing and 

controlling WNV in areas with higher education, income, or SES include active protesting of 

mosquito control efforts or living in gated communities that may not allow proper mosquito 

spraying at night. 

In Houston, TX, there were no significant relationships between arbovirus activity and 

various SES measurements such as education level, median household income, and families 

living below the poverty level during the WNV outbreak in 2002 (Rios et al. 2006). Yet, when 

spatially comparing communities that did and did not have WNV activity, the authors concluded 

that 73% of the census tracts with arbovirus activity were located in areas with lower SES levels 

measured by lower educational attainment and greater poverty levels (Rios et al. 2006). While 

the study did not find significant relationships between the presence of WNV and SES, it should 

be noted that the authors focused on activity within the I-610 highway loop, which is heavily 

populated and was the focus of mosquito surveillance when WNV first appeared in the city. 

Few studies have delved into the relationship between median age of the human 

population and WNV occurrence measured by the presence in mosquito populations, but 

clinically, WNV is known to affect older populations. In 2016, WNV affected older populations 

with a median age of 57 among the cases reported to the CDC (Burakoff et al. 2018). During the 

2002 outbreak of WNV in Chicago, IL, a study found that older ages were associated with 

clusters of WNV incidence in humans and dead birds (Ruiz et al. 2004). Specific age groups may 

have higher incidences of WNV depending on certain behaviors that might put these groups at 

higher risk. For example, practices that older people may participate in such as yard work or 

constructing yard structures that collect water may contribute to greater mosquito abundances 

and bring competent hosts together to circulate WNV. Outdoor activities that are frequent among 
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older populations such as gardening will more likely expose them to mosquitoes and WNV 

(Blaine et al. 2010). Alternatively, another study looked at WNV on a broader scope and 

investigated relationships between WNV incidence rates throughout the U.S. and found 

inconsistent results depending on the region (DeGroote and Sugumaran 2012). They found a 

significant positive relationship between median age and WNV incidence in the Great Plains 

region and a significant negative relationship in the northwest region (DeGroote and Sugumaran 

2012). In the southeast region, which includes Harris County, TX, median age also had a 

significant negative relationship, where younger populations reported higher incidence rates 

(DeGroote and Sugumaran 2012). For the remaining regions, median age did not have a 

significant relationship with WNV incidence rates (DeGroote and Sugumaran 2012). 

Race and ethnicity is yet another demographic variable related to the occurrence of 

WNV. In Chicago, IL and Shelby, TN, greater percentages of black populations were associated 

with greater MIR and human risk of WNV, respectively (Ozdenerol et al. 2008, Ruiz et al. 

2010). Other studies from Chicago, IL have found that higher risk of human WNV incidence 

rather than mosquito infection rates were associated with greater percentages of whites (Ruiz et 

al. 2004, Messina et al. 2011). Like other demographic factors, the associated culture and 

behaviors, as well as the environmental context mediate the associations between race and 

ethnicity with WNV occurrence. 

White and black populations have been used as the reference population in many studies, 

but studies focused on Texas also need to account for the large percentage of Hispanics given the 

state’s close proximity to Central and South America. A national study investigated the role of 

landscape and demography on incidence of human WNV cases between 2002-2009 (DeGroote 

and Sugumaran 2012). Their study concluded that the percentage of Hispanics was a significant 
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factor in WNV human incidence in the northwest and southeast regions, but these regions had 

positive and negative associations, respectively (DeGroote and Sugumaran 2012). While few 

studies have analyzed the relationship between Hispanic populations and WNV occurrence, 

studies investigating the association between Hispanics and Dengue have contributed to the 

understanding of the Hispanic population’s role in the transmission of mosquito-borne viruses. A 

study in north Texas found that Hispanic populations were associated with higher numbers of 

containers, which can provide artificial habitats for Dengue vectors Ae. aegypti and Ae. 

albopictus (Lee et al. 2009). Cx. quinquefasciatus may also use similar habitats if stagnant 

rainwater collect and enrich in the containers. Furthermore, avian populations may seek this 

collected water as a source of hydration. The resulting interactions between avian hosts and 

mosquitoes at man-made water sources can circulate WNV in a localized area. Previously in 

Houston, TX, a study found that the greater number of artificial containers that can collect water 

was only suggestive of mosquito density, but was a significant predictor for WNV and SLE virus 

activity within virus-positive census tracts (Rios et al. 2006). 

Much research has already been conducted on the abiotic factors involved in the 

transmission cycle of WNV but many of these attempts have not been focused on Texas or the 

main vector of WNV in the southern U.S. After the 2012 WNV epidemic with Dallas as the 

epicenter of this event, it is crucial for Texas to follow the steps of other states and utilize 

quantitative metrics to define when and where to initiate mosquito control tactics. 

 

1.5 Quantitative Surveillance Measurements of West Nile Virus in Mosquitoes 

Studies investigating determinants of WNV transmission often use human incidence as 

the measure of infection (Ruiz et al. 2004, DeGroote et al. 2008, DeGroote and Sugumaran 2012, 
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Chung et al. 2013, Murray et al. 2013, Degroote et al. 2014). As a reportable disease in the U.S., 

WNV human case data is readily available and organized by the CDC on ArboNET and other 

servers. However, transmission of arboviruses in the enzootic cycle between mosquitoes and 

wild amplification hosts does not always correlate with human disease (Eldridge, 1995). In this 

regard, there are likely diverse mechanisms for the uncoupling of human disease from the 

enzootic cycle. For example, reporting biases may be a non-biological factor with different 

demographics having a variable propensity to get tested (Bustamante and Lord 2010, Ruiz et al. 

2010). Changes in case definition and reporting practices, limitations in finding the location of 

exposure, and the absence of information about the enzootic cycle are other challenges that 

should be considered when using epidemiological data for WNV (Eisen and Eisen 2008). Given 

that a component of arbovirus management aims to conduct mosquito abatement to minimize 

vector populations and dampen virus transmission in the enzootic cycle, it is critical to have an 

in-depth understanding of how biotic and abiotic factors relate to the enzootic cycle of WNV, in 

which the abundance of the vector, mosquito infection rate, and vector index are examples of 

such metrics. In addition, virus activity in mosquitoes and birds precedes human exposure 

(Hamer et al. 2008b), thereby offering an early warning system to allow intervention strategies to 

protect public health (Andreadis et al. 2004). Therefore, mosquito data becomes a useful and 

more neutral measure in determining the risk of WNV infection in humans (Brownstein et al. 

2002, Ruiz et al. 2010). Several measurements estimating mosquito species abundance and 

infection status exist and are recommended by the CDC. Specifically, our studies will focus on 

three main measurements: abundance of vectors, infection rates, and the vector index. 
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Vector abundance refers to the number of mosquitoes collected over the number of nights 

used for trapping and is expressed as the number of mosquitoes per trap night (CDC 2013). 

Vector abundances can be determined by the following: 

 

!! =  !!
!!

               (1.1) 

 

where N is the abundance of species i, m is the number of mosquitoes trapped, and n is the 

number of successful trap nights. Trap malfunctions are not included in the denominator of this 

calculation. A large vector abundance can act as a threshold to begin vector control and monitor 

vector control efforts. However, high abundances of mosquitoes may occur without the presence 

of virus amplification, indicating a lag between the time WNV first appears in the mosquito 

population and a detectable level of WNV. The virus first needs to circulate through the avian 

population to create a high enough viremia to infect subsequent mosquitoes. Several studies have 

utilized the vector abundance as an outcome variable to identify likely mosquito habitats, relate 

landscape and demographic variables to vector abundance, and predict where mosquito 

populations may appear in a neighboring district (Diuk-Wasser et al. 2006, Reiter and LaPointe 

2007, Walsh et al. 2007, Deichmeister and Telang 2010, Trawinski and Mackay 2010, Chuang et 

al. 2011, Karki et al. 2016). Calculating the vector abundance is useful to relate mosquito 

presence in an area based on a set of criteria, but the abundance does not consider WNV 

presence. The abundance is therefore limited in the breadth of conclusions regarding the WNV 

presence because the abundance of vectors is not always equivalent to the amount of WNV 

circulating in a population of mosquitoes. 
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Infection rates estimate the number of WNV-positive mosquitoes in a population (CDC 

2013). The infection rate can be measured in two different ways: MIR or maximum likelihood 

estimate (MLE). The MIR is calculated as the following: 

 

!!"# = !
!  × 1,000              (1.2) 

 

where X represents the number of positive pools and y represents the total number of mosquitoes 

tested (Condotta et al. 2004). This measurement assumes that only one mosquito is positive in a 

positive pool (CDC 2013). This assumption is 99% likely when MIRs < 3 for mosquito pools of 

50, but MIRs > 3 may result in underestimates of the true prevalence of WNV in mosquito pools 

(Bernard et al. 2001, Kilpatrick et al. 2005a). Conversely, the MLE does not make the 

assumption of one positive mosquito per positive pool and is the preferred measurement during 

outbreaks (Gu et al. 2008, CDC 2013). The MLE is calculated as: 

 

!!"# = 1− (! −  !!)
!
!              (1.3) 

  

where p represents the number of pools tested, X is the number of positive pools, and q is the 

pool size (Condotta et al. 2004). Regardless of which measurement is used, the infection rate 

provides a quantitative basis for comparing WNV outcomes across time, space, and population 

size. Unlike the vector abundance, the infection rate can be used to relate vector infection to 

human risk (Nasci et al. 2001b, Bell et al. 2005). Ruiz et al. (2010) used the MIR to measure the 

presence of WNV in Chicago, IL because of possible demographic biases related to human case 

reporting. They were also interested in climate, environmental, and demographic patterns that 
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relate to the ecology of Cx. pipiens and the temporal heterogeneity of WNV (Ruiz et al. 2010). 

The infection rate becomes valuable when sampling data are incomplete or spatially unequal 

since the calculations only require data about pooled mosquitoes instead of the complete 

population collected during surveillance activities. Consequently, conclusions cannot be inferred 

regarding the abundance of a vector if they only had laboratory/testing data and the calculated 

infection rates. The infection rate may also be over- or under-estimated for some species of 

mosquitoes if multiple species are combined into one pool, which is problematic when 

calculating infection rates for certain Culex species (Nasci et al. 2001b). Some species of Culex 

mosquitoes such as Cx. restuans or those in the Cx. pipiens complex are morphologically 

indistinguishable and have similar distributions in the U.S., making separation of the species into 

different pools difficult and therefore producing inaccurate infection rates (Harrington and 

Poulson 2008). Depending on the species, the calculated infection rates may underestimate the 

true infection rate if the species is commonly found in the study area or vice versa. 

 The vector index (VI) is another measurement of WNV relating the vector to the presence 

of WNV. Simply, the VI takes into account species composition, population density, and 

infection rate to form a single measurement of the amount of infected mosquitoes that are 

collected per trap night (Nasci et al. 2005, Gujral et al. 2007). The infection rate and the 

abundance of vectors are then multiplied to form the VI for each species and then the VI’s are 

summed for all species present to form a single estimate of the abundance of infected vectors, 

making it especially useful when there is more than one dominant vector for WNV in an area 

(CDC 2013). The VI can be expressed as the following: 

 

!" = Σ!!!!!               (1.4) 
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where N is the abundance of mosquito species i (calculated from equation 1.1), and P represents 

the estimated IR for a mosquito species. The VI has previously been used to relate human 

incidence of WNV and has demonstrated greater predictive ability than the individual parts of 

the index (Bolling et al. 2009a, Bolling et al. 2009b, Jones et al. 2011, Kwan et al. 2012, Colborn 

et al. 2013). Furthermore, this measurement is currently used in public health and vector control 

programs such as the 2018 Arboviral Response Plan in Colorado (Colorado Department of 

Public Health and Environment 2018). To use the VI, the infection rate and vector abundance 

must be available. However, if the data from either of these measurements were compromised or 

a level of uncertainty exists in the data quality, then the VI should not be used. Regardless, the 

VI will determine the level of WNV infection in the population of mosquitoes instead of being 

restricted to the population of mosquitoes that were tested in the laboratory like the infection 

rate. 

Differences in the type of outcome variable make it difficult to compare studies across 

different regions of the U.S., including studies that were mentioned and compared throughout 

this review. Interpretation and comparison of the conclusions from multiple studies should 

proceed with caution regarding the outcome measurement. For example, using the mosquito 

abundance as the outcome variable is a valid method; however, one cannot interpret high 

abundances as an equivalent for increased numbers of cases of WNV. 

 Nevertheless, mosquito surveillance data can easily be transformed into quantitative 

measures of WNV activity. Choosing the appropriate quantitative measurement is based on the 

quality of the dataset itself, how the data were collected, and the purposes for using these values. 

Each of the quantifiable measurements of WNV in mosquitoes have unique weaknesses; 
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however, the overall utility of these surveillance tools allow vector control programs to fully 

utilize their surveillance data in order to develop quantifiable thresholds and aid in administrative 

decisions for proactive and effective vector control. 

 

1.6 Project Rationale 

Without an available vaccine for humans, efficient mosquito control and public 

awareness campaigns are currently the most effective ways to prevent and/or minimize WNV 

human cases. Understanding the ecology of WNV dynamics with the mosquito, climate, 

landscape, and social demographics plays a key role in effective intervention campaigns. 

Furthermore, predicting when and where WNV may occur will provide an early warning system 

and the opportunity to control mosquitoes before bridge transmission to humans, as well as alert 

the public with the appropriate messages to reduce the risk of exposure. 

Given the progress of understanding the relationships between meteorological, 

environmental, and demographic features of the landscape and WNV transmission, several 

studies have utilized these variables into surveillance strategies to predict future transmission 

potential. Predictive models are powerful tools because they can inform management decisions 

to be as efficient as possible with limited resources. Furthermore, predictive models are most 

cost-effective in comparison to blanket or prophylactic mosquito control measures, making 

predictive models a key component of surveillance and prevention programs (Reisen 2010). 

Several states have surveillance systems using a combination of meteorological and surveillance 

data to guide quantitative decision thresholds (Brown 2012, Geographic Information Science and 

Spatial Epidemiology 2015). 
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Although surveillance systems based on quantitative models to establish decision 

thresholds exist in certain regions of the U.S., these predictive models need to be parameterized 

with historic data from the same geographic region. While Texas has several mosquito and 

mosquito-borne disease surveillance and control programs, the data generated have not been 

optimally utilized to fully understand the abiotic and biotic factors influencing the spatial and 

temporal variation in WNV transmission in Texas (Chung et al. 2013). Furthermore, the 

predictors of WNV transmission have not been developed into predictive models catered for 

Texas. The goal of this dissertation is to fill this void and utilize historic mosquito and mosquito 

WNV infection data to build a predictive model relevant to Texas based on climate, landscape, 

and demographic features. 

Once these significant factors are identified, local mosquito control agencies in Texas can 

integrate these models into their surveillance program or develop their own models based on the 

procedures described in this dissertation. Texas has fallen behind in mosquito surveillance and 

control compared to other states such as California and Illinois, which currently use models and 

quantitative thresholds as the foundation for decisions regarding mosquito control. Furthermore, 

Texas is a potential hotspot for new arboviruses due to the adjacency of Latin and South 

America, where many vector-borne diseases may be more prevalent. Because of the lack of 

research on WNV modeling in Texas and the potential risk for new arboviruses to establish in 

Texas, developing the models relevant to major metropolitan areas in Texas will put the state 

closer to the forefront of mosquito management and prepare the state against new threats. 
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1.7 Objectives 

We collaborated with county and municipal public health agencies to utilize historic 

mosquito trapping and infection data to investigate spatial and temporal patterns of WNV 

infection as well as the meteorological, environmental, and demographic determinants of WNV. 

This dissertation has three objectives: 

1. Describe the landscape and demographic determinants affecting WNV dynamics 

during the 2012 WNV epidemic in Dallas County, Texas. 

2. Investigate socioeconomic and environmental landscapes affecting WNV spatial 

patterns in Harris County, Texas. 

3. Identify associations between prior weather and WNV infection in Cx. 

quinquefasciatus mosquitoes in Harris County, Texas. 

We identified significant factors related to how WNV spatially and temporally differs 

from year to year in Texas. The predictive models created from this project will ideally estimate 

and anticipate the risk of WNV transmission in real-time. 
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CHAPTER II  

LANDSCAPE AND DEMOGRAPHIC DETERMINANTS OF CULEX (DIPTERA: 

CULICIDAE) INFECTION WITH WEST NILE VIRUS DURING THE 2012 EPIDEMIC IN 

DALLAS COUNTY, TEXAS 

 

2.1 Synopsis 

In 2012, the U.S. experienced the largest outbreak of West Nile virus (WNV), with the 

majority of cases and deaths occurring in Texas. Texas reported 1,024 cases of WNV fever, 844 

cases of WNV neuroinvasive disease, and 89 deaths throughout the state, with the majority of 

incidents occurring in Dallas, TX and surrounding areas. Previous studies explored relationships 

between human cases of WNV and demographic and landscape variables; however, the infection 

of mosquitoes may better reflect spatial variation in transmission intensity than human cases. In 

this study, we identified associations between features of the landscape and human population 

and Culex quinquefasciatus infection with WNV during the 2012 WNV epidemic in Dallas 

County. Using logistic linear mixed models, we modeled the infection rate of WNV in Cx. 

quinquefasciatus based on environmental variables and social demographics. During this 

epidemic, 25,917 female mosquitoes were organized into pools of < 50 mosquitoes each and 

tested for WNV, of which 22,156 Cx. quinquefasciatus mosquitoes were identified. Out of 1,634 

pools containing at least one Cx. quinquefasciatus mosquito, 256 pools (15.7%) tested positive 

for WNV. Cx. quinquefasciatus pools accounted for 96% of the positive pools in 2012. Major 

mosquito and WNV activity occurred between May and September, with a peak in the infection 

rate during the third week of July (47.7 per 1,000). We found increased probabilities for WNV-

positive mosquitoes in north and central Dallas County. Based on the best-fit model, the most 
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significant predictors of the presence of WNV in Cx. quinquefasciatus pools were increased 

urbanization (based on an index composed of greater population density, lower normalized 

difference vegetation index, higher coverage of urban land types, and more impervious surfaces), 

lower elevation, and older populations. The best-fit model identifies key environmental and 

demographic factors that play a role in the mosquito’s life cycle and the ability to obtain the 

virus during the 2012 WNV epidemic in Dallas County, TX. These relationships between the 

landscape and risk of enzootic transmission help to identify spatial regions of the landscape with 

highest risk of spillover to human disease. 

 

2.2 Introduction 

West Nile virus (WNV) is a zoonotic disease that circulates in an enzootic cycle between 

avian hosts and mosquitoes (Weaver and Reisen 2010). The virus amplifies within the avian host 

that maintains a sufficient viremia to infect other mosquitoes. Occasionally, WNV is transmitted 

outside this enzootic cycle to dead-end hosts like horses and humans. Culex mosquitoes are the 

primary enzootic vectors for WNV in North America (Turell et al. 2005, Colton and Nasci 2006, 

Weaver and Reisen 2010), as well as capable bridge vectors to humans (Hribar et al. 2001, 

Kilpatrick et al. 2005b, Hamer et al. 2008b). In the southeast U.S., including Texas, Culex 

quinquefasciatus is the major mosquito vector in the transmission cycle (Lillibridge et al. 2004, 

Molaei et al. 2007, Andreadis 2012). Cx. quinquefasciatus is an opportunistic feeder that 

primarily feeds on birds, but also takes frequent blood meals from humans and other mammals 

and has a high abundance during the WNV transmission season (summer through early fall) 

(Savage and Miller 1995, Gibbs et al. 2006, Molaei et al. 2007, Richards et al. 2007, Reisen et al. 

2008b). Cx. quinquefasciatus prefer water habitats with high organic content, which is 
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characteristic of human-modified urban and peridomestic areas (Reisen et al. 1992, Hribar et al. 

2001, Bolling et al. 2005, Gibbs et al. 2006, Reiter and LaPointe 2007, Reisen et al. 2008c, 

Hongoh et al. 2009, Hahn et al. 2015). 

The occurrence and distribution of WNV depends on the presence of competent mosquito 

vectors, available susceptible avian hosts, and their potential interactions, all of which are 

influenced by various aspects in the landscape and anthropogenic behaviors (Epstein and 

Defilippo 2001, Ruiz et al. 2004, Kuhn et al. 2005, DeGroote and Sugumaran 2012, Degroote et 

al. 2014). The features of the environment capable of influencing mosquito and bird 

communities include elevation, vegetation (Normalized Difference Vegetation Index [NDVI]), 

and impervious surfaces. Physical features of the landscape mediate climate events to provide 

potential habitats for immature development of Cx. quinquefasciatus. For example, water may 

pool at lower elevations following rain events where impervious surfaces are present and 

consequently water cannot be absorbed (Ruiz et al. 2010). Furthermore, runoff may collect in 

underground storm drains after a rain event, leading to greater numbers of Culex populations in 

underground storm drains, which are common in urban areas such as Orange County, CA (Su et 

al. 2003). Urbanization can alter the climate within cities to form “heat islands,” where 

temperatures increase in areas with higher urbanization leading to enrichment of standing water 

to promote the life cycle of the mosquito (Reisen 2010). Social demographic predictors of human 

WNV infection include median age of the population, race, socioeconomic status, and age of the 

neighborhood (Brownstein et al. 2002, Ruiz et al. 2004, Diuk-Wasser et al. 2006, Bisanzio et al. 

2011).  These factors and behaviors associated with certain populations may additionally 

contribute to potential habitats for mosquitoes and avian hosts. 
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The magnitude of the 2012 WNV epidemic was unexpected given that the original 

introduction of WNV into the region occurred a decade previously and WNV activity was 

generally low leading up to the epidemic. In 2012, the U.S. reported 5,674 human cases, 627 

equine cases, and 286 human deaths (CDC 2014, United States Department of Agriculture 

Animal and Plant Health Inspection Service 2018). Texas reported a total of 1,868 human cases, 

120 equine cases, and 89 human deaths (CDC 2014, United States Department of Agriculture 

Animal and Plant Health Inspection Service 2018). The epidemic was centered in Dallas County, 

which reported 396 human cases, 3 equine cases, and 19 deaths (CDC 2014, United States 

Department of Agriculture Animal and Plant Health Inspection Service 2018). The total 

economic cost was approximately $47.6 million for vector control and hospital management in 

Texas (Chung et al. 2013, Murray et al. 2013). Dallas County was an outlier in 2012, reporting 

the greatest number of cases in one of the largest epidemics of WNV after an extended period of 

moderate activity for reported human WNV cases. 

Previous studies have explored the relationships between demographic and 

environmental variables with human WNV cases (DeGroote et al. 2008, Chuang et al. 2012, 

Degroote et al. 2014), but relatively few studies have explored these factors as they relate to 

WNV infection in Culex mosquitoes, especially in the southern U.S. Virus infection in 

mosquitoes is more reflective of the WNV enzootic cycle and is inherently less biased than 

human case data given artifacts from reporting and diagnosis biases (Eisen and Eisen 2008). 

Accordingly, understanding spatial patterns of mosquito infection provides an opportunity to 

identify predictors of spatial variation in the amount of virus in the WNV enzootic cycle (Eisen 

and Eisen 2008). While spatial heterogeneity of WNV infection in mosquitoes has been studied 

previously in other states such as Illinois and California, this topic remains unexplored in the 
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state of Texas, especially with regard to the local epidemic in 2012 (Ruiz et al. 2004, Reisen et 

al. 2008a). 

Given the progress of understanding the relationships between environmental and 

demographic features of the landscape and WNV transmission, several studies have incorporated 

these variables into surveillance strategies to predict future transmission potential (Ruiz et al. 

2004, Ruiz et al. 2007, Reisen et al. 2008a, Degroote et al. 2014, Shand et al. 2016). Predictive 

models are powerful tools because they can inform management decisions to be as efficient as 

possible with limited resources. Furthermore, predictive models are most cost-effective in 

comparison to mosquito control measures, making predictive models a key component of 

surveillance and prevention programs (Reisen 2010). Several states have surveillance systems 

using a combination of meteorological, environmental, and surveillance data to guide 

quantitative decision thresholds (Brown 2012, Geographic Information Science and Spatial 

Epidemiology 2015). 

Although surveillance systems based on quantitative models to establish decision 

thresholds exist in certain regions of the U.S., these predictive models need to be parameterized 

with historic data from the same geographic region. While Texas has several mosquito and 

mosquito-borne disease surveillance and control programs, the data generated have not been 

utilized to fully understand the abiotic and biotic factors influencing the spatial and temporal 

variation in WNV transmission in Texas. Additionally, the predictors of WNV transmission have 

not been developed into predictive models catered for Texas. Studies that have focused on the 

2012 WNV epidemic have not focused on Dallas County, TX as the center of their research. For 

example, Degroote et al. (2014) investigated associations between human incidence of WNV 

during the 2012 outbreak and factors of the landscape, climate, and human population across the 
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coterminous U.S. to understand outbreak dynamics across varying ecological environments. The 

authors divided the U.S. into regions based on the distributions of the suspected major WNV 

vectors in their respective region (Degroote et al. 2014). They found significant associations 

between human incidence and the risk factors, but these associations differed depending on the 

region and the ecologies of the dominant vector in the region (Degroote et al. 2014). Because the 

study undertook the task of conducting a national study, many of the findings were generalized 

for the encompassed region, which may underestimate the true association for counties that have 

higher incidences and have surrounding counties with low incidences. 

Alternatively, other studies have concentrated on the clinical aspect of WNV rather than 

the features that might affect the enzootic cycle prior to human infection. Chung et al. (2013) 

focused on the epidemiology of human cases during the epidemic and how mosquito surveillance 

data (the vector index) could be used to predict the number of West Nile neuroinvasive disease 

(WNND). Clusters of WNND were located in areas with high housing density and the vector 

index followed a similar geospatial pattern (Chung et al. 2013). Furthermore, a hot-spot analysis 

on the WNND cases suggested that there were major hot-spots in the northern half of the county, 

a similar pattern that was seen during the 2002 and 2006 WNV outbreaks (Chung et al. 2013). 

This study investigated the vector index, a measurement derived from mosquito data, but the 

objective for using the vector index was to measure its predictive capability for human cases 

instead of identifying predictors for the vector index. 

These two studies contributed to the general understanding of the 2012 WNV epidemic, 

but our objective in this study is to better understand the static landscape and demographic 

factors that might have played a role in the ecology of the mosquito vector during this epidemic 

in Dallas County, TX. Therefore, this study aims to describe the landscape and demographic 
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determinants affecting WNV dynamics during the 2012 WNV epidemic in Dallas County, Texas 

with a focus on the WNV enzootic vector Cx. quinquefasciatus. The models developed in this 

study can be integrated into mosquito surveillance programs as a cost-effective strategy for more 

directed control of WNV vectors and improved predictive capabilities of WNV outbreaks in 

Dallas County. 

 

2.3 Methods 

2.3.1 Mosquito Data 

We compiled data from multiple entities in Dallas County (Figure 2). Mosquito trapping 

occurred weekly throughout Dallas County, using one gravid trap per location. A total of 506 

unique trap locations were set throughout Dallas County in 2012 (Figure 2). Some trap locations 

had data for only one trap night and other trap locations were visited repeatedly up to 34 total 

visits between May and December. After the traps were collected, the mosquitoes were identified 

according to species and sex and then sorted into pools of < 50 mosquitoes. Dallas County 

Health and Human Services and the Texas Department of State Health Services (DSHS) tested 

female mosquito pools for WNV using quantitative reverse-transcriptase polymerase chain 

reaction (qRT-PCR) and/or cell culture isolation. Dallas County performed qRT-PCR tests only. 

DSHS conducted qRT-PCR to detect WNV in the pool with a confirmation test using cell culture 

isolation. 

To determine the temporal distribution of WNV throughout the epidemic, the infection 

rate (IR) per week was calculated using the Biggerstaff Pooled Infection Rate Excel add-in 

developed by the Centers for Disease Control and Prevention (Biggerstaff 2009). To investigate 
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the spatial distribution of the WNV IR for each trap location throughout the county, the IR per 

unique trap identification number was calculated using the same Excel add-in. 

 

 
Figure 2 Map of Dallas County, TX and gravid trap locations within Dallas County. Point locations 
of the 506 trap locations in 2012 are shown with an infection rate (IR) estimated for each trap. The 
infection rate was summarized per trap location for 2012. Higher infection rates are located throughout 
central and north Dallas County. 
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2.3.2 Layer Processing 

Mosquito trap data and landscape layers were organized and processed using ArcMap 

10.2.2 (Esri, Redlands, CA). All layers were projected to NAD 1983 State Plane Texas North 

Central FIPS 4202 Feet. The raster layers were resampled to a resolution size of 250 m x 250 m. 

Predictors from national and local databases were utilized to describe the environmental 

and socioeconomic landscapes (Table 1). These landscape and demographic variables have been 

previously investigated in prior studies (Ruiz et al. 2004, Cooke et al. 2006, Mongoh et al. 2007, 

Ruiz et al. 2007, DeGroote et al. 2008, Reisen et al. 2008a, Deichmeister and Telang 2010, 

Chuang et al. 2012, Chuang and Wimberly 2012, DeGroote and Sugumaran 2012, Degroote et 

al. 2014). 

Landscape variables of interest included elevation, impervious surfaces, land cover, 

NDVI, and distance to water bodies. The land cover datasets were obtained from the Multi-

Resolution Land Characteristics Consortium and the land cover classes were reclassified into 

developed land (urban, classes 21-24) versus non-developed (non-urban) land cover types. From 

this reclassification, a percentage of urban land cover within the buffer was used to represent the 

level of developed land around each trap. The dataset describing the water bodies in Dallas 

County, TX was gathered from the North Central Texas Council of Governments. Distance to 

water bodies describes the distance between center of the trap locations and the nearest water 

body. Demographic variables from the 2012 American Community Survey were measured at the 

census block group level. Demographic layers included median age, median income, and 

population density (Table 1). 

A 750-m buffer was applied around each trap location to capture the physical and 

socioeconomic landscape around each trap. This buffer represents the approximate flight range 
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of Cx. quinquefasciatus mosquitoes (Medeiros et al. 2017). Information describing the 

environment and demographics within the buffer were extracted using ArcGIS. 

 

Table 1 Predictor variables used in the model creation steps. We used variables in our model that 
describe the landscape and demographic of the population in Dallas County. The data for each variable 
were collected from their respective sources listed on the right. 
 
Variables Source 
Digital elevation model (DEM) 
 

National Elevation Database 

Impervious surfaces 
Land cover 
 

Multi-Resolution Land Characteristics 
Consortium (MRLC) (2011) 

Normalized difference vegetation index 
(NDVI) 
 

eMODIS (2012) 

Distance to water bodies 
 

North Central Texas Council of Governments 

Demographic (census block groups) 
Median age 
Median income 
Population density 

American Community Survey (2012) 

 

2.3.3 Model Creation 

A principal component analysis (PCA) was conducted due to an a priori prediction that 

many of the variables in Table 1 would be autocorrelated. To mitigate the risk of collinearity, a 

PCA approach was used to ensure that the different variables in the model were orthogonal. We 

created a PCA group called “urbanization” (PC1) that included variables related to the urban 

landscape: land cover, impervious surfaces, NDVI, and population density. The variables that 

comprise this PCA have individually been investigated as risk factors for WNV and Culex 

abundance (Cooke et al. 2006, DeGroote et al. 2008). Median population age and income were 

additionally included as demographic variables in the models, which have been previously 
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explored in relation to WNV (Ruiz et al. 2004, Degroote et al. 2014). Variables about the 

physical landscape such as distance to water bodies and elevation were included in the models as 

independent variables (Eisen et al. 2008, Nolan et al. 2012). 

Logistic mixed models were used to model the probability of infection of mosquito pools. 

Trap week was included as a random effect to control for seasonal effects across the data. To 

correct for spatial autocorrelation, we used a nested random effect structure. Smaller blocks (4.60 

km x 5.07 km per block) were nested within larger blocks (18.40 km x 20.29 km per block) 

across the study area (~ 3364.74 km2), such that there were 4x4 small blocks in each large block 

and 3x3 large blocks encompassed the study area. Each trap location was given a unique group 

number within the large block and another unique group number representing the small block 

nested in the large block. This nested random effect structure is a blocking scheme that assumes 

the data points within the small blocks in the same large block are more similar to one another 

overall and that individuals from two different large blocks are less similar from one another, 

independent of the fixed effects across the landscape. Since the pools had a variable pool size of 

1-50, an offset function was added to the model to control for the variance in pool size. The 

outcome variable for our models was the probability of a positive mosquito pool with a negative 

pool designated as 0 and a positive pool designated as 1. The dataset includes data during the 

peak season for Cx. quinquefasciatus mosquito and WNV activities in 2012, which corresponds 

to weeks 20-37 (Figure 3). 
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Figure 3 WNV infection rate in Dallas County, TX in 2012. Weeks 20-37 (May – September 2012) 
represent the time period with the majority of high WNV activity. The peak infection rate occurred in 
week 29 (July 16-22) with an infection rate of 47.66. The solid arrow represents the first aerial spraying 
for mosquitoes during week 33 (August 16-20) followed by a second spraying event (dashed arrow) in 
week 34 (August 22-23) in Dallas County.  

 

Akaike’s Information Criterion (AIC) corrected for small sample size and was used to 

distinguish a best-fit model from other candidate models, with the smallest AIC value 

representing a model with better fit. The AIC measures the relative quality of models for a given 

set of data to determine which model(s) fit the data best (Bozdogan 1987). Models were created 

using the lme4 package in program R (Bates et al. 2015). A bootstrapping method was used to 

calculate 95% confidence intervals for each predictor estimate in the best-fitting model.  

To generate a risk map describing the probability of finding a WNV-positive pool based 

on the coefficients of the best-fit model, the log link functions were entered into ArcGIS. We 
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derived the log-odds from the logistic regression using the following logit link (Diuk-Wasser et 

al. 2006, Peper et al. 2018): 

 

ln ! = !! + !!!! +  !!!! +⋯+  !!!!       (2.1) 

 

where ! represents whether a pool tested positive (! = 1) or negative (! = 0), !! represents the 

intercept (or when ln(x) = 0), !!…  !! are the coefficients for each predictor variable, !!…  !!, 

where a unit increase in x results in the multiplicative effect on the probability of a positive 

mosquito pool (!). 

 The final model was transformed into the probability of a mosquito pool testing positive 

for WNV by the binomial function: 

 

! =  !"# (!)
!!!"# (!)               (2.2) 

 

where ! represents the log-link function from equation 2.1. 

 

2.4 Results 

In 2012, 25,917 total individual female mosquitoes were organized into pools of < 50 

mosquitoes and tested for WNV. The majority of the mosquitoes (88%) that were pooled and 

tested were identified as Cx. quinquefasciatus (22,156 mosquitoes). A total of 2,642 pools were 

tested and 267 pools (10.1%) tested positive for WNV. 1,634 pools containing at least 1 Cx. 

quinquefasciatus mosquito were tested for WNV and 256 of these pools (15.7%) tested positive 

for WNV. Cx. quinquefasciatus pools accounted for the majority of the WNV-positive pools in 
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2012 (96%). During the 2012 season, 175 unique trap locations had at least one mosquito pool 

test positive (Figure 2). 

Spatially, the highest infection rates occurred in north and central Dallas County (Figure 

2). WNV activity was highest between May and September between weeks 20-37 (Figure 3). 

The county experienced the highest infection rate during the week of July 16-22 (week 29), with 

a peak of 47.66 for the infection rate. The first major aerial spraying across the county occurred 

during the week of August 16-20 (Week 33), which had an infection rate of 14.28 (Figure 3, 

solid arrow) (Ruktanonchai et al. 2014). The second major aerial spraying in Dallas County 

occurred during the week of August 22-23 (week 34), which had an infection rate of 9.36 (Figure 

3, dashed arrow). 

To represent the amount of development or urbanization, loadings from PC1 were chosen 

as they explained 66% of the variance (Table 2). PC1 consisted of positive loadings of land 

cover, impervious surfaces, and population density and a negative loading of NDVI. 

 

Table 2 Principal Component Analysis (PCA) loadings for variables listed in the urbanization 
group (PC1). PC1 explained the greatest amount of variance (66%), therefore, the loadings form PC1 
were chosen to represent the amount of urbanization around a trap location. 
 
Variables LoadingsPC1 
Land cover 
 

0.514 

Impervious surfaces 
 

0.573 

NDVI 
 

-0.465 

Population density 0.438 
 

The best-fit model included urbanization (PC1 score), median age, and elevation (Table 

3). Urbanization (Estimate: 0.436, 95% CI (0.232, 0.659)) and median age (Estimate: 0.272, 95% 
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CI (0.089, 0.508)) had positive associations with the probability of a pool being infected with 

WNV, while elevation (Estimate: -0.220, 95% CI (-0.438, -0.019)) had a negative association. 

The AIC of the best-fit model is fairly distinguishable in fit compared to the next-best models, 

where the AIC is > 2.0 (Table 4). 

 

Table 3 Best-fit model estimates with 95% confidence intervals (CI). Urbanization, median age, and 
elevation were significant predictors of the 2012 WNV epidemic in Dallas County, TX. Urbanization and 
median age have positive associations with the probability of finding a positive mosquito pool while 
elevation had a negative relationship with the outcome.  
 
Variable Estimate 95% CI 
Urbanization 
 

0.436 (0.232, 0.659) 

Median age 
 

0.272 (0.089, 0.508) 

Elevation 
 

-0.220 (-0.438, -0.019) 

Intercept -4.463 (-5.297, -3.713) 
 

Table 4 Model comparisons between the best-fit model (bold) and similar models. The AIC of the 
best-fit model is fairly distinguishable in fit compared to the next-best model (> 2.0). A total of 64 models 
were compared in this study. This table does not display an exhaustive list of all the models that were 
compared. 
 
Fixed Effects AIC Weight 
Urbanization, median age, DEM 
 

0.0 0.316 

Urbanization, median age, median income, DEM 
 

2.0 0.118 

Urbanization, median age, distance to water, DEM 
 

2.0 0.115 

Urbanization, median age 
 

2.7 0.083 

Intercept 15.1 <0.001 
 

 



 

 49 

The following log-link function based on equation 2.1 is derived from the logistic 

regression using the estimates from the best-fit model, corrected for the offsets, and scaled by the 

mean divided by the variates: 

 

ln (!) = −2.19+ 0.43 ×  !"!!.!" + 0.30 ×  !"# !"#!!".!!
!.!" + −0.20  ×  !"#!!"!.!"!".!" + 0.94 ×

 !"!!".!"!".!"                (2.3) 

 

where PC1 represents the urbanization principal component group, MedAge represents the 

median age of the population, and DEM represents elevation. The final equation that was used to 

produce the map was transformed into the binomial function using equation 2.2. 

The final risk map highlights areas that had greater probabilities of detecting a WNV-

positive mosquito pool based on the significant factors identified from our models (Figure 4). 

The risk of WNV-positive Cx. quinquefasciatus ranged from 0.28% to 85.3%, with the greatest 

risk detected around the city of Carrollton in north Dallas County and within the city of Dallas. 

The southern region of Dallas County had lower probabilities compared to the northern 

counterpart. Based on these results, we can draw conclusions about the landscape and population 

demographics that were associated with WNV-infected mosquitoes during the 2012 epidemic. 
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Figure 4 The probability of finding WNV-positive Cx. quinquefasciatus during the 2012 epidemic of 
WNV in Dallas, TX. The darker red colors represent areas of higher risk based on greater levels of 
urbanization, larger populations of elderly individuals, and lower elevations. 
 

2.5 Discussion 

This study investigated landscape and demographic factors related to the probability of 

finding a WNV-positive mosquito pool during the 2012 WNV epidemic in Dallas County, TX. 

Our study found an increased probability of WNV-positive mosquito pools in areas with higher 

urbanization, older populations, and lower elevations. Each of the factors from our model play an 

important role in the life cycle of the mosquito as well as the interactions between the vector and 

avian hosts that allow WNV to circulate in the enzootic cycle. 

The urbanization index (PC1) had the largest effect on the probability of finding a 

positive mosquito pool, with the amount of urbanized land cover having the greatest influence 

within the principal component. The variables in PC1 included positive loadings for land cover, 



 

 51 

impervious surfaces, and population density and negative loadings for NDVI. NDVI measures 

the amount of vegetation present, therefore with increasing impervious surfaces and developed 

land and higher population density, we expected NDVI to decrease. These components directly 

affect the life cycle of Cx. quinquefasciatus because this species of mosquito prefers breeding 

habitats in urban areas particularly near human habitations, urban catch basins, and storm drains 

(Molaei et al. 2007, Andreadis 2012). Urban and peridomestic environments may form habitats 

containing water with high organic content, which are characteristic breeding grounds for Cx. 

quinquefasciatus. Furthermore, urban catch basins and storm drains provide shelter for Cx. 

quinquefasciatus for daytime resting and overwintering in quiescence during cold periods since 

this species does not enter diapause (Reisen et al. 1986, Su et al. 2003, Tesh et al. 2004a, Molaei 

et al. 2007). Other studies have yielded similar results, concluding that WNV and its vectors are 

found in urban environments (Hribar et al. 2001, Bolling et al. 2005, Cooke et al. 2006, Gibbs et 

al. 2006, Bowden et al. 2011). Cx. pipiens, the main WNV vector in the northeast U.S. and a 

close relative of Cx. quinquefasciatus, has also been positively linked to urbanization and the 

amount of development in Connecticut (Andreadis et al. 2004). 

Avian reservoir populations are also affected by urbanization. Urbanization and 

development cause fragmentations in the landscape and create adjacent ecotones, which can also 

alter bird populations and thusly, the transmission dynamics and dispersal of WNV across the 

landscape (Wiens 1995, Coppedge et al. 2001, Marzluff 2001, Reisen 2010). As the landscape 

becomes more fragmented, adjacent bird populations may congregate in the same area because 

of increased habitat loss and overall reduce WNV transmission if these birds have low reservoir 

competence or alternatively increase WNV transmission if the bird populations are capable of 

producing high viremias of WNV (Allan et al. 2009). The overuse of certain avian hosts in urban 
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areas such as the American robin (Turdus migratorius), which is considered a superspreader of 

WNV, and concurrent underuse of other species with lower reservoir competence such as the 

great-tailed grackle (Quiscalus mexicanus) or European starling (Sturnus vulgaris) also alter the 

transmission dynamics of WNV (Hamer et al. 2009, Komar et al. 2018). The effects of urbanized 

cities on the avian community structure and resulting WNV transmission dynamics during the 

2012 epidemic warrant further investigation. 

Similarly, median age of the population had a positive correlation with the probability of 

finding a WNV-positive pool. Overall, the relationship between the median age of the population 

and Cx. quinquefasciatus populations has not been studied thoroughly in Texas. Certain 

behaviors associated with age can mediate Cx. quinquefasciatus habitats, the resulting 

abundances, and their interactions with avian hosts. These interactions will lead to greater 

amplification of WNV in the enzootic cycle and eventual spillover to human populations. 

Another study examining the 2002 outbreak of WNV in Chicago, IL found that older ages were 

associated within clusters of WNV incidence in humans and dead birds (Ruiz et al. 2004). 

Behaviors and activities of the older population may put them at higher risk for WNV infection if 

they contribute to certain aspects of WNV ecology, such as the interface at which mosquitoes 

and birds come into contact for enzootic transmission of the virus. Outdoor activities common 

among older populations, such as yard work or development of yard structures that collect water 

or food, can contribute to mosquito abundance and bring competent hosts together (Ruiz et al. 

2004, Blaine et al. 2010). A nationwide study investigating various landscape, demographic, and 

climatic associations with high/low WNV ratings during the 2012 epidemic did not find a 

significant relationship between median age and the WNV ratings in the southeast region, which 

included Dallas County, Texas (Degroote et al. 2014). The southeast region included counties 
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that had low WNV ratings, which may have diluted the relationships between some variables and 

WNV activity present in this region (Degroote et al. 2014). 

The best-fit model suggested a negative association between elevation and Culex spp. 

WNV infection rate, which is consistent with observations in prior studies (Mongoh et al. 2007, 

Ruiz et al. 2010, Bisanzio et al. 2011, Chuang et al. 2012). In combination with other 

physiographic elements, elevation may limit WNV transmission in Georgia where higher 

elevations have lower temperatures, subsequent smaller mosquito abundances, and diversity in 

avian species composition (Gibbs et al. 2006). Similarly, Ruiz et al. (2010) found that elevation 

also negatively affected minimum infection rates of WNV in Cx. pipiens in Chicago, IL and 

suggested that elevation could mediate the effect of precipitation by collecting water at lower 

elevations to enrich with organic materials needed for mosquito population survival. Further 

west, two more studies arrived at the same conclusions regarding elevation. A study in North 

Dakota found an inverse relationship between the incidence of WNV in horses and elevation 

(Mongoh et al. 2007). In South Dakota, elevation had a negative relationship with human WNV 

risk, citing the main vector’s (Cx. tarsalis) inability to survive at colder temperatures found at 

higher elevations as the reasoning for the decreased odds of human WNV disease (Chuang et al. 

2012). Elevation by itself may not play a significant role in Dallas and surrounding areas since 

there is a < 100 m difference between the highest and lowest points. Instead, lower elevation and 

increased urbanization are likely mediating the effects of precipitation, similar to what was found 

in Chicago, IL. 

Aerial spraying occurred late in the season starting at week 33, which corresponds to the 

time period when the infection rate was already decreasing (Figure 3). The peak in infection rate 

occurred in week 29 (July 16-July 22). The first aerial spraying occurred during the decline in 
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the infection rate at week 33 (August 16-20) and covered northern and central Dallas County 

(Ruktanonchai et al. 2014). A second spraying occurred the following week (week 34, August 

22-23) for eastern and southern Dallas County (Ruktanonchai et al. 2014). Each of the spraying 

events cost about $1 million, and the total costs for both spraying events in Dallas County likely 

exceeded $1.6 million (Roehr 2012, Chung et al. 2013). The WNV season in mosquitoes had 

already dramatically decreased by the time spraying events occurred, making it difficult to 

discern if the aerial spraying was truly effective in reducing the infection rate of WNV or if the 

infection rate decreased due to seasonality of Cx. quinquefasciatus. However, spraying events 

later in the season highlight the significance of this unique dataset in that the results recorded 

during this period of limited vector control reduces the risk of introducing artifacts into the 

analysis due to control activities (Figure 3). 

Studies on the effects of aerial spraying on Cx. quinquefasciatus abundance is limited for 

this event, but one study analyzed the effects of aerial adulticide application on human WNV 

incidence (Ruktanonchai et al. 2014). Here, aerial spraying in the county was associated with an 

overall reduction in WNND in the county, but disease incidence decreased in both treated and 

untreated areas with a greater difference seen in aerial-sprayed areas (Ruktanonchai et al. 2014). 

The number of cases during this time was expected to decrease given how late the aerial 

application of adulticides was conducted (Ruktanonchai et al. 2014). 

Without an available vaccine for humans, mosquito control and public awareness 

campaigns are currently the most effective way to prevent and/or minimize WNV human cases. 

Understanding the ecology of WNV dynamics with the mosquito, environment, and social 

demographics plays a key role in effective intervention campaigns. Furthermore, predicting 

when and where WNV in mosquitoes occurs may provide an early warning system giving an 
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opportunity to control mosquitoes before bridge transmission to humans and to alert the public 

with the appropriate messages to reduce the risk of exposure. This study provides one of the first 

efforts to model Culex infection during the 2012 WNV epidemic for Dallas County, TX. Future 

efforts should concentrate on establishing long-term mosquito surveillance databases, modeling 

WNV for early detection in other major metropolitan areas of Texas, and utilizing quantitative 

measurements to identify a threshold for early control protocols. While this study only focused 

on one year, these findings provide the first steps to understanding the ecology of WNV in Cx. 

quinquefasciatus mosquitoes during the 2012 epidemic in the hopes of preventing another 

devastating event in a major city such as Dallas, TX. 
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CHAPTER III  

THE EFFECTS OF LANDSCAPE AND DEMOGRAPHIC FACTORS ON WEST NILE 

VIRUS INFECTION IN CULEX QUINQUEFASCIATUS SAY (DIPTERA: CULICIDAE) IN 

HARRIS COUNTY, TEXAS 

 

3.1 Synopsis 

West Nile virus (WNV) was first introduced in the U.S. in 1999 and is now considered 

endemic with outbreaks reported in every state in the contiguous U.S. Previous work has 

revealed that environmental and landscape determinants of WNV transmission are heterogeneous 

across the U.S. Texas has experienced several WNV epidemics, and now that circulation has 

occurred for nearly two decades, we aim to exploit the natural spatio-temporal variation in WNV 

to identify factors driving these patterns. We analyzed Harris County’s surveillance data from 

2005-2015, focusing on the primary mosquito vector, Culex quinquefasciatus Say, to identify 

landscape and demographic predictors related to a high WNV vector index (VI), which estimates 

the average number of WNV-infected female Culex mosquitoes collected per trap night. During 

this period, 4,326,487 Cx. quinquefasciatus mosquitoes were identified, pooled, and tested for 

WNV. Out of 135,692 pools of mosquitoes, 4,717 pools tested positive for WNV (3.5%). Using 

linear mixed models, the best-fit model that explained higher VI’s included higher elevation, 

more impervious surfaces, higher median income, and a predominantly Hispanic population. The 

resulting model was used to create a predictive map that highlights high-risk areas of Harris 

County for WNV-infected Culex mosquitoes, with the highest predicted VI’s located in central 

and north Harris County. Our study provides one of the first modeling attempts to delineate the 
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relationship between WNV and the landscape in Texas to build a more efficient early warning 

system for WNV. 

 

3.2 Introduction 

West Nile virus (WNV) was first introduced to the U.S. in 1999 and has since spread 

throughout the continental U.S. Since its introduction, 46,086 cases of WNV have been reported, 

and 2,017 deaths have been recorded as of 2016 (CDC 2016b). In 2012, the U.S. witnessed the 

largest outbreak of WNV with the majority of the cases and deaths occurring in Texas (Murray et 

al. 2013). Texas alone reported a total of 1,868 cases of WNV, with 844 cases of West Nile virus 

neuroinvasive disease (WNND) and 89 deaths throughout the state from the 2012 mosquito 

season, with the majority of the incidents in Dallas, TX or the surrounding area (Murray et al. 

2013). 

WNV is a zoonotic disease with an enzootic cycle involving avian amplification hosts 

and mosquito vectors (Weaver and Reisen 2010). Once the avian host amplifies the virus and is 

fed on by mosquitoes, bridge transmission (e.g. spillover) occurs to other “dead-end hosts,” such 

as horses and humans. Culex mosquitoes are the primary enzootic vectors (Turell et al. 2005, 

Weaver and Reisen 2010) and serve as bridge vectors to humans (Kilpatrick et al. 2005a, Hamer 

et al. 2008b). In central and southeast Texas, Culex quinquefasciatus is the most relevant 

mosquito species involved in the transmission cycle (Strickman and Lang 1986, Lillibridge et al. 

2004, Molaei et al. 2007). 

Differences in breeding habitats and host-seeking behaviors of various mosquito species 

have been linked to the geographic distribution of land cover types. Cx. quinquefasciatus 

abundance has been linked to characteristics associated with urban landscapes, such as combined 
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sewage overflows, water storm drains, and water sources rich in organic matter (Beehler et al. 

1993, Bolling et al. 2005, Calhoun et al. 2007, Chaves et al. 2009, Gleiser and Zalazar 2010). 

Furthermore, Cx. quinquefasciatus takes advantage of manmade water sources for breeding sites 

including roadside ditches, sewage treatment sites, household containers, and low places with 

poor drainage (Hribar et al. 2001, Ruiz et al. 2004, Reisen et al. 2008c). Anthropogenic 

modification of habitats can cause increased transmission of WNV through the creation of 

adequate habitats for vectors, which may increase avian-vector contact (Hamer et al. 2008b). 

Environmental and demographic features of the landscape are known to have significant 

associations with WNV transmission (Epstein and Defilippo 2001, Kuhn et al. 2005, DeGroote 

and Sugumaran 2012, Degroote et al. 2014). The features of the environment capable of 

influencing mosquito and bird communities include elevation, water sources, and impervious 

surfaces. Social demographic predictors of human infection include median age of the 

population, race, median income, and age and status of the neighborhood (Brownstein et al. 

2002, Ruiz et al. 2004, Diuk-Wasser et al. 2006, Reisen et al. 2008a, Bisanzio et al. 2011). 

Given that a component of arbovirus management aims to conduct mosquito abatement to 

minimize vector populations and dampen virus transmission in the enzootic cycle, it is critical to 

have an in-depth understanding of how biotic and abiotic factors relate to the enzootic cycle of 

WNV, in which the vector index is one such metric. In addition, virus activity in mosquitoes and 

birds precede human exposure (Hamer et al. 2008b), thereby offering an early warning system to 

allow intervention strategies to protect public health (Andreadis et al. 2004). Therefore, mosquito 

infection data is a valuable parameter in determining the risk of WNV infection to humans 

(Brownstein et al. 2002, Eisen and Eisen 2008, Ruiz et al. 2010). 



 

 59 

Currently, WNV has one of the largest geographic distributions of any zoonotic 

mosquito-borne virus due to its global expansion to all continents except for Antarctica (Kramer 

et al. 2008). Accordingly, WNV has adapted to many landscapes, mosquito vectors, and avian 

amplification hosts. This plasticity has resulted in many discrepancies in how the landscape and 

demographic features relate to WNV transmission intensity (Ruiz et al. 2004, Ruiz et al. 2007, 

DeGroote et al. 2008, Degroote et al. 2014) and emphasizes how results from one geographic 

region are unlikely to inform a different geographic region. This study focuses on Harris County, 

TX and the extensive mosquito surveillance program focused on Culex spp. mosquitoes that 

began due to St. Louis Encephalitis (SLE) in 1965 (Lillibridge et al. 2004). We evaluate the 

spatial variation of WNV infection in Cx. quinquefasciatus in Harris County and identify 

landscape (elevation, impervious surfaces, and distances to water sources) and demographic 

(median age of the population, race/ethnicity, gender, median income, and population density) 

determinants of the variation. Furthermore, we aim to develop a predictive map that may be used 

to predict locations of Cx. quinquefasciatus infection with WNV based on environmental and 

socioeconomic differences in Harris County, TX. 

 

3.3 Methods 

3.3.1 Mosquito Data 

Annually, Harris County Public Health Mosquito and Vector Control (HCPH) places 489 

mosquito traps throughout 268 operational areas (Figure 5) of the county (Nava and Debboun 

2016, Randle et al. 2016). HCPH conducted mosquito surveillance on a weekly basis between 

2002-2015. For this study, we used data starting in 2005, which was when consistent trapping 

throughout the county was established. During this 11-year period, HCPH conducted 99,066 trap 
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surveys/visits. Trap locations were visited at least once a year with an average of 29 weekly 

visits per trap per year. 

 

 

Figure 5 Operational areas in Harris County, TX. Harris County divides the county into “operational 
areas” for surveillance, inspection, surveying, and control purposes. 
 

HCPH used a combination of storm sewer (SS), gravid (GV), under house, and BG traps, 

but only SS and GV traps will be considered in this study because of their ubiquitous usage 
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throughout the county during the entire study period (Figure 6). SS traps are modified CDC 

Light Traps that are baited with dry ice and attached to man hole covers underground. GV traps 

are baited with hay infusion water and placed in residential yards, usually under vegetation. The 

hay infusion is composed of mixing 1.3 kg of Coastal bermudagrass, Cynodon dactylon (L.), 

with 42 gallons of water and then aged for 10-14 days (Dennett et al. 2007a). SS traps capture 

females underground in storm sewers, while GV traps are used to trap gravid females above 

ground (Dennett et al. 2007a, Curtis et al. 2014). 

 

 



 

 62 

 

Figure 6 Gravid (GV) and storm-sewer (SS) trap locations in operational areas throughout Harris 
County between 2005-2015. GV traps are placed in residential yards with permission from homeowners. 
They are baited hay-infused water to attract female mosquitoes. SS traps are attached to man-hole covers 
and suspended into storm sewer systems. These traps are baited with carbon dioxide to attract female 
mosquitoes. 

 

The mosquito collection protocol from Harris County has been previously described 

(Molaei et al. 2007, Curtis et al. 2014). In summary, traps are placed in the afternoon between 

1:30 PM-5:00 PM and then collected the following morning between 7:30 AM-10:30 AM. Traps 

are placed into “operational areas,” lines that divide the county for surveillance, inspection, 

surveying, and control purposes (Figure 5) (Hunt and Hacker 1984). The 268 operational areas 
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are based on municipal, district, and zip code lines. After the traps were visited, mosquitoes were 

identified by species and sex on a chill table to preserve the presence of the virus and then sorted 

into pools of < 50 mosquitoes, with a maximum of 3 pools per trap. Harris County tested for 

WNV antigen in mosquito pools using an enzyme-linked immunosorbent assay (ELISA) and 

positive results were confirmed with a Rapid Analyte Measurement Platform (RAMP) test 

(Lillibridge et al. 2004, Randle et al. 2016). To be considered a positive pool, the mosquito pool 

must test positive on both the ELISA and RAMP test. A positive pool is a mosquito pool that 

contains at least one Cx. quinquefasciatus mosquito positive for WNV. 

 

3.3.2 Landscape and Demographic Variables 

We used a variety of landscape and demographic variables for this study (Table 5). To 

calculate the shortest distance of traps from water bodies, we gathered water body data from the 

National Hydrography Dataset for the state of Texas, which is part of the U.S. Geological Survey 

(USGS) National Map Program (United States Geological Survey 2018b). This dataset includes 

information about rivers and streams, ponds and lakes, springs, canals, wetlands, and shorelines. 

In ArcGIS 10.4 (Redlands, CA), we calculated the shortest distance (in meters, m) between the 

center of a trap and the nearest water body. 

 

Table 5 Predictor variables used in the model creation steps. We used variables in our model that 
describe the landscape and demographic of the population in Harris County. The data for each variable 
were collected from their respective sources listed on the right. 
 
Variables Sources 

Distance to water bodies U.S. Geological Survey 

Impervious surface National Land Cover Database 
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Table 5 (continued)  

Variables Sources 

Elevation National Elevation Database 

Demographic (census tracts) 
Median income 
Median age 
Percentage of males 
Percentage of Hispanics 
Percentage of African-
Americans 
Percentage of Caucasians 
Population density 

U.S. Census Bureau (2000 and 2010 
Census) 

 

Demographic variables measured at the census tract level were obtained from the U.S. 

Census Bureau (United States Census Bureau 2018) for years 2005-2015. The demographic 

variables were represented as estimates of median income, median age, percentage of males, 

percentage of black residents, percentage of white residents, and percentage of Hispanic 

residents per census tract. We used both the official 2000 and 2010 decennial censuses to capture 

changes in the population during our study period. The 2000 Census was used to represent 

demographic data from 2005-2009 and the 2010 Census was used to represent demographic data 

for 2010-2015. We used the official census datasets because Congress officially recognizes these 

datasets and they have previously been used in other WNV studies (Andreadis et al. 2004, Ruiz 

et al. 2004, Allan et al. 2009). In addition, we calculated population density by dividing the 

population size by the area (m2) of the census tract. The census tract level was used because it 

was the highest resolution that included all of the variables of interest. 

 We used the percentage of impervious surface coverage to represent the amount of 

manmade structures and development. Impervious surface data were obtained from the Multi-
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resolution Land Characteristics Consortium (Multi-Resolution Land Characteristics Consortium 

2018) of the National Land Cover Database. Finally, elevation data were extracted from the 

USGS National Elevation Dataset (United States Geological Survey 2018a). Elevation data were 

then converted to slope and aspect data in ArcGIS. 

 To extract demographic, impervious surface, elevation, slope, and aspect data, we placed 

a 750-m buffer around each trap and used ArcGIS to calculate the average or percentage estimate 

of each variable. This buffer represents the estimated dispersal distance of Cx. quinquefasciatus 

(Medeiros et al. 2017). For alignment purposes, the map layers in ArcGIS used the GCS North 

American 1983 coordinate system and the Lambert Conformal Conic projection. 

 

3.3.3 Statistical Model 

For modeling purposes, we used data collected as mosquito pools of ≤ 50 mosquitoes per 

pool; such that for observations at operational area i during visit j, if a mosquito pool is WNV 

positive, it receives a value of 1; and when a mosquito pool does not test positive, it receives a 

value of 0. The infection rate (IR) was calculated using the Biggerstaff Pooled Infection Rate 

Excel Add-in, which was developed by the Center for Disease Control and Prevention 

(Biggerstaff 2009). Mosquito population density was calculated as a relative abundance of 

mosquito species detected in terms of trapping effort by operational area and by year (Bolling et 

al. 2009a). We combined the abundance of the mosquito population with the IR to create the 

vector index (VI) to adequately express arbovirus transmission risk posed by a vector population 

(Gujral et al. 2007). The VI incorporates the vector species abundance and the vector species 

infection rate to quantify the risk into a single value to estimate the number of infected 
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mosquitoes collected per trap night for a given species (Gujral et al. 2007).  The VI is expressed 

by: 

 

!" = Σ!!!!!               (3.1) 

 

where N is the average abundance of mosquito species i (number of female mosquitoes per trap 

night) and P represents the estimated IR for mosquito species i. The resulting VI was then used 

as our final response variable in our models. To capture the peak season of WNV in Harris 

County, we focused primarily on weeks 20-40 for our calculations and analyses. 

We selected 12 predictors that were expected to affect aspects of the WNV cycle and 

therefore, the WNV VI in mosquitoes in Harris County. Our covariates for the model include the 

proximity to water, elevation, slope, aspect, percentage of impervious surfaces, median age, 

percentage of males, median income, and percentage of white, black, and Hispanic populations 

as covariates in our model because these variables have been previously associated with WNV 

spatial patterns (Deichmeister and Telang 2010, DeGroote and Sugumaran 2012, Degroote et al. 

2014). We selected 2005-2015 as our period of interest because the program did not consistently 

start trapping in all operational areas of the county until 2005. 

  All covariates were normalized to improve predictive accuracy and to prevent covariates 

with large numeric value ranges from impacting the prediction process. To evaluate the 

predictors on the WNV vector index, we used a linear mixed effect model, with a restricted 

maximum likelihood (REML) method, a variant of the maximum likelihood method (Bates et al. 

2015). We used the R statistical software and the lme4 package to fit the model with the function 

lmer (Bates et al. 2015). The model was fit in the following parameterization: 
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VIij = α0 + α1xj + β0i + β1ixj + ………+ εij               (3.2) 

 

where VIij is the WNV vector index in ith operational areas at xj year, the α0 and α1 are the fixed 

intercept and slope respectively, β0i and β1i are the random intercept and slope, respectively, and 

εij is the residual. The assumptions for the random effects β0i, β1i and residuals are: 

 

(β0i, β1i)T ~ N(0,0)T, G) and εij ~ Normal (0, σ2)              (3.3) 

 

We assessed convergence of the model parameters using the REML criterion. We used a 

backward elimination process and Akaike’s Information Criterion (AIC) to choose the best 

model, with the smallest AIC values representing the model of best-fit. The AIC measures the 

relative quality of models for a given number of parameters and models goodness of fit, aiming 

to minimize the number of parameters (Bozdogan 1987, Hlavac 2015). 

To create a predictive map, the best-fit model outputs were mathematically combined 

using ArcGIS (Rochlin et al., 2011). The variables and their estimates of the best-fit model were 

used to model the predictive map. To validate our model we calculated the VI for each of the GV 

and SS traps in each operational area used in 2016-2017 (“observed”), which resulted in 403 and 

370 records collected in 2016 and 2017, respectively. These records were imported into ArcGIS, 

where we extracted the “expected” data from the predictive map. Then, we compared the 

observed and expected values from 2016-2017 using an R2 calculation. 

Data collection protocols in 2016-2017 were similar to the protocols that were set in 

2002, however, collection and testing evolved to include more Aedes spp.-specific surveillance 
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with the possibility of Zika virus arriving in Texas. This included more BG traps, testing more 

Aedes spp. for various arboviruses, and testing fewer Culex spp. pools for WNV and SLE. 

 

3.4 Results 

We analyzed 11 years of mosquito surveillance data in Harris County (2005-2015). Of 

the 489 mosquito traps, 268 were GV and 221 were SS mosquito traps (Figure 6). Each 

operational area has between 1 and 4 trap locations; the average number of traps per operational 

area is 1.6 (+ 0.79 S.D.) GV traps and 1.1 (+ 0.37 S.D.) SS traps. During this period, 4,236,487 

female Cx. quinquefasciatus mosquitoes were identified, pooled, and tested for WNV. A total of 

135,692 mosquito pools containing ≤ 50 individual mosquitoes were tested during the 11 years. 

Of the total number of mosquito pools, 4,717 pools tested positive for WNV, which represent 

3.5% of the mosquito pools tested. 

The highest WNV VI in Harris County (average between GV and SS traps) occurred in 

2014 (554.87 ± 78.27), 2011 (232.49 ± 29.63), and 2012 (176.63 ± 24.78) (Figure 7). The years 

with the lowest WNV VI’s in mosquitoes were in 2008 (4.96 ± 1.92), 2007 (13.21 ±3 .12), and 

2013 (48.35 ± 9.64) (Figure 7). The highest mean VI’s calculated from GV traps were found in 

operational areas in north and central Harris County (Figure 8). The highest mean VI’s 

calculated from SS traps were found in areas in central Harris County with a few areas in 

northwest Harris County (Figure 9). 
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Figure 7 Comparison of WNV vector index (VI) by year and trap type. The vector index is the 
product of the abundance of female Cx. quinquefasciatus mosquitoes and the infection rate. The VI varies 
per year, with 2014 having the greatest VI and 2008 having the lowest VI. While the VI varies per year, 
the amount of variability of VI’s measured per trap type was minimal. 
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Figure 8 Mean WNV VI for GV traps by operational area in Harris County for years 2005-2015. 
The VI was calculated based on weeks 20-40, which represents the peak WNV season. The highest VI 
occurs in central and northern Harris County. 
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Figure 9 Mean WNV VI for SS traps by operational area in Harris County for years 2005-2015. 
The VI was calculated based on weeks 20-40, which represents the peak WNV season. Gray represents 
operational areas that did not have a VI, due to missing calculations for the abundance or infection rate. 
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The best-fit model (equation 3.4) that explained the WNV VI in Harris County included 

the following predictors: elevation with an estimate of 44.82 (95% CI: 21.08, 68.56), impervious 

surfaces with an estimate of 31.37 (95 % CI: 7.76, 54.98), median income with an estimate of 

37.83 (95 % CI: 5.75, 69.92), and percent of Hispanic populations with an estimate of 43.38 (95 

% CI: 7.31, 79.45) (Table 6). All predictors showed positive associations with the VI. Our best-

fit model included operational area, frequency of trap visits/surveys, sampling year, population 

density, and trap type nested in the operational area as random factors in our model because their 

variation in the study area was due to stochasticity (Table 6) (Bates et al. 2015). 

 

y = meanVI + (DEM * 44.82) + (impervious surface * 31.37) + (median income * 37.83) + 

(percent Hispanic * 43.38)             (3.4) 

 

When we extrapolated the best-fit model as our predictive map (Figure 10), we found 

high probabilities of high vector indexes mainly in central and north Harris County with elevated 

VI’s in west Harris County as well. In central Harris County, cities and regions such as Bellaire, 

Houston, Hunters Creek Village, Jersey Village, and Spring Valley contained operational areas 

with the highest predicted VI’s. In the north, Cypress, Spring, and Tomball also predicted high 

VI’s. Pasadena, which is located in southeast Harris County, was also predicted to have high 

VI’s. The map also highlighted areas with low VI’s throughout most of east Harris County. 

Our model validation showed that our best-fit model could predict VI’s with 38% 

accuracy and 26% accuracy when using 2016-2017 GV or SS trap data, respectively (Figure 11).
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Table 6 Model Comparisons. Comparisons of models using a backwards elimination process. Covariate estimates are given with 95% confidence 
intervals in ( ). Random effects and their standard deviations for each model are listed below. The best-fit model is model (6), which is 
characterized with the lowest AIC and is bolded. 

Models 
Covariates                       (1)                      (2)                      (3)                     (4)                        (5)                        (6)                          (7)                           (8)  

proximity water              1.23                    2.76                                                                                                        
                               (-17.24, 19.70)    (-17.14, 22.66)                                                                                                  
median age                     6.00                    5.04                    5.33                                                                                        
                                (-15.67, 27.68)   (-17.54, 27.62)   (-17.14, 27.79)                                                                                  
percentage males            2.49                    0.63                     0.49                  0.73                                                                        
                               (-14.17, 19.15)    (-16.64, 17.89)   (-16.72, 17.69)   (-16.44, 17.90)       
population density         7.11                     7.11                   7.18                    6.57                    6.55                                                        
                                (-9.18, 23.40)      (-9.54, 23.76)    (-9.45, 23.82)     (-9.86, 23.00)       (-9.87, 22.98)  
slope %                      -10.33                  -10.62                 -10.87                 -10.94                 -10.97                  -13.01                                      
                              (-26.19, 5.54)         (-27.88, 6.64)    (-28.01, 6.27)     (-28.06, 6.19)        (-28.08, 6.13)      (-32.87, 6.84)   
aspect                         4.27                       1.80                     1.83                  1.82                      1.76                    -0.08                      -0.70                      
                              (-10.92, 19.46)       (-14.73, 18.33)   (-14.69, 18.34)   (-14.68, 18.33)     (-14.67, 18.20)    (-18.89, 18.73)     (-19.52, 18.12)                                  
                                                            
median income             30.32*                  30.86*                30.89*               31.89*               31.84*                37.83*                     38.45*                    38.45*      
                                (4.64, 56.00)       (4.14, 57.59)     (4.19, 57.59)       (5.53, 58.24)        (5.52, 58.17)          (5.75, 69.92)        (6.33, 70.57)          (6.35, 70.55)   
elevation                      33.95***              36.11***           35.91***             34.90***            34.89***           44.82***                 43.93***                43.91***     
                                (15.80, 52.11)     (16.61, 55.60)    (16.49, 55.34)     (15.99, 53.81)      (16.00, 53.78)       (21.08, 68.56)      (20.15, 67.71)         (20.16, 67.66)  
impervious surface       31.97**               32.10**             33.22***             33.83***           33.90***            31.37**                  30.78*                    30.77*      
                                (12.29, 51.65)      (10.91, 53.28)    (13.64, 52.80)     (14.42, 53.24)     (14.57, 53.24)       (7.76, 54.98)         (7.12, 54.44)           (7.14, 54.40) 
percent white                 28.94                 29.42                   30.24                 30.68                   30.87                 31.09                     36.17                     36.18      
                                (-16.52, 74.39)     (-17.46, 76.31)   (-16.29, 76.76)   (-15.79, 77.15)    (-15.43, 77.17)      (-24.33, 86.50)    (-18.74, 91.09)       (-18.70, 91.06) 
percent black                 43.71                 43.79                    44.95                44.69                   44.72                 50.28                     55.73                    55.74      
                               (-5.95, 93.37)        (-7.79, 95.37)    (-5.96, 95.86)      (-6.16, 95.54)      (-6.11, 95.55)       (-10.51, 111.07)    (-4.55, 116.02)      (-4.51, 115.98) 
percent Hispanic          41.62**              41.40*                 41.81*                38.69*                  38.86*              43.38*                   46.50*                  46.52*      
                              (9.99, 73.25)          (8.24, 74.57)     (8.80, 74.82)       (8.49, 68.90)         (8.91, 68.81)        (7.31, 79.45)         (10.67, 82.32)        (10.72, 82.32)  
Constant                  145.77**                148.19**            148.31**           148.42**              148.37**            140.79**                140.60**              140.61**     
                               (53.11, 238.43)    (55.25, 241.13)    (55.37, 241.25)    (55.34, 241.49)   (55.33, 241.40)   (49.74, 231.84)     (49.73, 231.48)    (49.74, 231.47) 
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Table 6 Continued 
 

Models 
                        (1)                      (2)                           (3)                       (4)                       (5)                         (6)                          (7)                       (8)  
 
Observations                3838                     3838                     3838                      3838                   3838                       3838                     3838                    3838       
Log Likelihood        -28765.48             -28758.19             -28761.46             -28764.92           -28768.02               -28704.84             -28708.89           -28712.08    
Akaike Inf. Crit.       57566.97               57552.37              57556.92               57561.85             57566.03               57439.67              57443.79             57450.13     
Bayesian Inf. Crit.    57679.52               57664.92              57663.22               57661.89             57659.82               57533.46             57533.31             57531.42 
Note:                                                                                                                  *p<0.05; **p<0.01; ***p<0.001 
 

 

Standard Deviations of Random Effects 

Models 
Random Effects         (1)                             (2)                              (3)                        (4)                        (5)                         (6)                        (7)                       (8)  
area                   78.64          54.68  54.69  54.16  53.95  17.15  20.87  20.99 

trap visits              27.20          28.91  29.29  29.63  29.53    5.73   9.65  9.87 

year                151.43         151.38  151.32  151.51  151.47  149.56  149.32  149.32 

trap type               0.00 

area: trap type           97.52  97.07  97.06  96.99  148.99  149.30  148.91 

Pop Den             319.97  319.76  319.73 

Residual             432.28        425.96  425.96  425.95  425.92  303.23  303.20  303.2
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Figure 10 Predictive map of the best-fit model. The predictive map was generated based on equation 
3.4 in ArcGIS. The model measured the probability of detecting a high WNV VI throughout Harris 
County, with darker red regions representing operational areas that have greater risk of high VI’s based 
on higher median income, greater elevation, more impervious surfaces, and a predominantly Hispanic 
population. 
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Figure 11 Model Validation Results. The model validation step includes comparing the calculated 
vector indexes from the 2016-2017 data (“observed values”) and the extracted vector indexes from the 
map (“predicted values”). The R2 for each trap type is given. GV = gravid traps (pink), SS = storm-sewer 
traps (teal). 
 

3.5 Discussion 

 This study identified significant landscape and socioeconomic factors related to Cx. 

quinquefasciatus abundance and infection with WNV in Harris County, TX, including elevation, 

impervious surfaces, median income, and percentage of Hispanics in a census tract (Table 6). 

Landscape determinants were shown to be important factors in the infection of WNV in Cx. 

quinquefasciatus mosquitoes. Elevation had the greatest influence on the model, with an estimate 

of 44.82 (p < 0.001). Harris County’s elevation ranges between 0-310 feet above sea level 

(Lillibridge et al. 2004). Elevation increases in the northwest direction and decreases when 

approaching the coastline in the southeast (Figure S3). This gradual increasing elevation in the 
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northwest direction generally aligns with our model and final risk map (Figure 10). In general, 

our results for elevation disagree with previous studies from Georgia, Illinois, North Dakota, and 

South Dakota, where all studies concluded inverse relationships between lower elevation and 

higher WNV transmission and intensity. In combination with other physiographic elements, 

higher elevation limits WNV transmission in Georgia where higher elevations have lower 

temperatures, subsequent smaller mosquito abundances, and greater diversity in avian species 

composition (Gibbs et al. 2006). Ruiz et al. (2010) found that elevation was a moderate predictor 

in determining the minimum infection rates of WNV in Cx. pipiens in Chicago, IL and suggested 

that lower elevation could mediate the effect of precipitation by collecting water at lower 

elevations to allow enrichment of organic materials needed for mosquito population survival. A 

study in North Dakota found an inverse relationship between the incidence of WNV in horses 

and elevation (Mongoh et al. 2007). In South Dakota, elevation had a negative relationship with 

human WNV risk, citing the main vector’s (Cx. tarsalis) inability to survive at colder 

temperatures found at higher elevations as the reasoning for the decreased odds of human WNV 

disease (Chuang et al. 2012). 

 The differences in our elevation results compared to other studies led us to believe that 

the extensive flood control systems and storm drains, which follow the elevation gradient may 

contribute to localized higher vector indexes throughout Harris County. This county is prone to 

periodic flooding because of its location along the Gulf Coast, abundant rainfall, and relatively 

low elevation. The county constructed flood control systems comprised of six major bayous and 

an aging system of storm sewers and underground tunnels to capture floodwaters. The flood 

control systems may serve as breeding grounds for Cx. quinquefasciatus, where stagnant water 

may collect and become enriched with organic nutrients required for mosquito breeding and 
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larval development (Lillibridge et al. 2004, Molaei et al. 2007, Curtis et al. 2014). Furthermore, 

living near bayous was significantly associated with greater odds of human infection with WNV 

in Harris County (Nolan et al. 2012). This study identified that the highest WNV vector indexes 

were predicted to occur near White Oak Bayou, Buffalo Bayou and Brays Bayou. The bayous 

are heavily urbanized and are prone to flooding due to their flat topography. With the amount of 

heavy urbanization and manmade structures, water cannot be fully absorbed and will pool in the 

bayous, creating suitable habitats for immature stages of mosquitoes after flooding events. The 

contribution from flood control systems on WNV transmission intensity warrants further 

research for Texas.  

 Impervious surfaces can be used to quantify the degree of urban land use (Arnold Jr and 

Gibbons 1996). Impervious surfaces represent the amount of human-made materials, which can 

be used to estimate the extent of artificial structures. Our model found that areas around 

mosquito traps with greater percentages of impervious surfaces resulted in higher vector indexes. 

Impervious surfaces prevent rainfall from absorbing into the ground, thereby allowing the 

accumulation of water and the potential for mosquito habitats (Ruiz et al. 2010). A similar 

phenomenon was seen in Wisconsin when researchers found that impervious surfaces may 

contribute to the collection of water in catch basins since these surfaces cannot absorb the water, 

leading to stagnant water pools and greater abundances of mosquito larvae (Kronenwetter-

Koepel et al. 2005). In Chicago, Ruiz et al. (2010) found a relationship between IR and 

impervious surfaces, where these surfaces can collect stagnant water in low-lying areas and 

create habitats that are characteristic for Culex mosquitoes. Conversely, another study in the 

same area did not identify impervious surfaces as an important predictor of human WNV illness 
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(Messina et al. 2011). The differences in their results could be attributed to the uncoupling 

between mosquito infection and the appearance of human WNV infection. 

Notably, socioeconomic factors also emerged as key determinants related to WNV VI’s. 

Median income in Harris County showed a positive association with the WNV VI, with an 

estimate of 37.83 in our model. According to our study, areas of higher income may have higher 

vector indexes than areas with lower income possibly due to larger properties that may have 

more potential mosquito larval habitats, landscapes with abundant container habitats, or yards 

that may be watered more frequently than lower-income areas, contributing potential larval 

habitats. In Chicago, people with higher median incomes were more likely to be in clusters of 

high WNV incidence than those in lower median income areas during the 2002 WNV epidemic 

(Ruiz et al. 2004). In another study investigating the 2012 WNV outbreak across the country, 

Degroote et al. (2014) found that higher median income were associated with high WNV ratings 

in the northcentral and northeast regions. While the authors did not find a significant relationship 

specifically with median income and WNV incidence in the southeast region, which contains 

Harris County, another variation of income was significant. Their study found that greater 

percentages of people living in poverty in the southeast region of the U.S. were associated with 

more cases of WNV in humans, which contradicts our results (Degroote et al. 2014). It should be 

noted that socioeconomic status is a single measurement that is conceptualized as a combination 

of income, education, and occupation to compare the relative economic and social position of 

one person or family (Green 1970, Mueller and Parcel 1981). Previous studies have used 

different variations of socioeconomic status, such as the number of foreclosures in an area, 

abandoned houses, and the type of housing occupation, as predictors for the risk of WNV 

(Ozdenerol et al. 2008, Reisen et al. 2008a, Chung et al. 2013). 
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 The percentage of Hispanics within a census tract was another significant demographic 

measurement in our model. Harris County has a high proportion of Hispanics present in the 

population, with approximately 42.4% of the population in the county identifying themselves 

with Hispanic origins (United States Census Bureau 2018). Our models identified a significantly 

positive relationship between higher percentages of the Hispanic population and the WNV VI 

with an estimate of 43.38. Other studies tasked with identifying demographic variables often 

utilized the percentage of white and black populations, however, very few studies have 

specifically included Hispanic populations in their modeling efforts. Therefore, the behaviors of 

Hispanic populations related to the proliferation and subsequent infection of Cx. 

quinquefasciatus mosquitoes with WNV have yet to be elucidated. Nevertheless, studies 

investigating associations between the Hispanic population and dengue have contributed to the 

understanding of the Hispanic population’s role in the transmission of mosquito-borne viruses. 

For example, a study found that Hispanic populations were associated with the higher numbers 

of containers in North Texas, which can provide habitats for dengue vectors Ae. aegypti and Ae. 

albopictus (Lee et al. 2009). Cx. quinquefasciatus may also use similar habitats if stagnant water 

is present in containers. 

 Harris County used two different trap types consistently during the study period (2005-

2015). SS and GV traps did not reveal major differences when calculating the VI (Figure 7). That 

is, operational areas with high a VI for one trap type often had a high VI in the same area for the 

other trap type. Both trap types specifically target Cx. quinquefasciatus mosquitoes, but they 

differ in that GV traps are likely to capture gravid female mosquitoes that are ready to lay their 

eggs and that SS traps are likely to capture female mosquitoes that might not have had a blood 

meal yet or are in search of a blood meal (Williams and Gingrich 2007). Since female 



 

 81 

mosquitoes trapped in the GV trap have already taken a blood meal, they are more likely to be 

infected with WNV, whereas females from SS traps might not have taken a blood meal and 

thusly remain uninfected. A comparison of light, gravid, and resting traps were compared for 

various locations in Delaware and New Jersey, and the authors concluded that the overall 

infection rate for WNV was 33 times greater for gravid traps compared to the infection rate for 

light traps (Williams and Gingrich 2007). In addition, the traps differ in their placement. The GV 

traps are often placed in bushy, shaded areas, while SS traps are placed underground in storm 

sewers where Cx. quinquefasciatus mosquitoes may be found. Despite the differences in how 

and where the traps are placed, both trap types still produced similar VI’s per year (Figure 7).  

This 11-year dataset over a large and diverse county yielded several landscape parameters 

that contributed to the variation in VI, although the fit was low and suggests that our model was 

not inclusive of additional factors explaining the number of infected Culex mosquitoes in the 

landscape. During our validation step, our best-fit model for the vector index predicted with an 

accuracy of 20-40%, which could be due to the ubiquitous vector control throughout the county, 

the ethnic diversity within households and block groups, and the changes in surveillance 

protocols starting in 2016. In response to WNV-positive mosquito pools, Harris County regularly 

performs ultra-low volume adulticide spraying by truck in neighborhoods where mosquito pools 

tested positive for WNV. This mosquito control and occasional aerial applications of adulticides 

were not considered by the current study. Further research should evaluate the effects of 

adulticide spraying on the patterns of WNV in Harris County. 

In addition, our study did not consider Hispanic populations as a separate race, according 

to the Census Bureau, but instead the term “Hispanic” is referred to as an ethnicity. That is, 

individuals can report that they have Hispanic origins in addition to race. The overlap of races 
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and Hispanic origin in the data resulted in percentages that were sometimes more than 100%. 

Future work should focus on finding resources that can account for this overlap. 

After the threat of Zika found in a traveler from Harris County, TX in 2016, surveillance 

shifted towards Aedes spp. sampling and testing (McCarthy 2016). The majority of the study 

period biased their sampling methods towards Culex spp. collections using GV and SS traps and 

testing for SLE and WNV. In 2016, however, more BG traps were introduced to sample more 

Aedes spp. mosquitoes and WNV testing was restricted to one pool per trapping event instead of 

a maximum of three pools, which was the standard prior to 2016. 

While not necessarily weaknesses or limitations in our study, the temporal and spatial 

scales for our covariate layers may have affected the predictive capabilities for 2016-2017. We 

used data from the 2000 and 2010 Census, which may lose accuracy over time as we move 

further away from the official census year. While official U.S. Census Bureau data were used, 

other resources such as the American Community Survey develop yearly estimates for various 

demographic variables and may serve as a resource for demographic variables for future studies. 

Our spatial scales for our covariates were also restricted to the census tract level for our 

demographic variables, which might not necessarily reflect the nuances of local mosquito 

population dynamics at smaller scales. 

Harris County Public Health Mosquito and Vector Control has been an integral program 

in monitoring and controlling WNV mosquito populations since the arrival of this new arbovirus 

in 2002 in the third most populous county in the U.S. The extensive surveillance and 

organizational capacity allowed this long-term spatial analysis of mosquito abundance and 

infection with WNV. This study highlights features of the landscape and social demographics 

where WNV is more likely to circulate in vector populations, which will inform future vector 
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intervention campaigns in this region. Without an available vaccine for humans, mosquito 

control programs and public awareness campaigns are currently the most effective way to 

prevent and/or minimize WNV human cases. Understanding the ecology of WNV dynamics with 

the mosquito, environment, and social demographics plays a key role in effective intervention 

campaigns. Furthermore, predicting when and where WNV will occur may provide an early 

warning system, offering an opportunity to control mosquitoes and alert the public with the 

appropriate messages to reduce the risk of exposure before bridge transmission to humans. 
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CHAPTER IV  

THE ROLE OF WEATHER ON THE TEMPORAL ABUNDANCE AND WEST NILE VIRUS 

INFECTION PATTERNS IN CULEX QUINQUEFASCIATUS SAY (DIPTERA: CULICIDAE) 

IN HARRIS COUNTY, TEXAS 

 

4.1 Synopsis 

Early warning systems for vector borne disease (VBD) prediction are an ecological 

application where data from the interface of several environmental components can be used to 

predict future VBD transmission. In general, models for early warning systems tend to only 

consider average environmental conditions ignoring variation in weather variables, despite the 

prediction from Schmalhausen’s law about the importance of environmental variability for 

biological systems. Here, we present results from a long-term mosquito surveillance program 

from Harris County, Texas, USA, where we use time series analysis techniques to study the 

abundance and West Nile virus (WNV) infection patterns in the primary vector, Culex 

quinquefasciatus Say. We found that, as predicted by Schmalhausen’s law, mosquito abundance 

was associated with the standard deviation and kurtosis of environmental variables. By contrast, 

WNV infection rates were associated with 8-month lagged temperature, suggesting 

environmental conditions during overwintering might be key for WNV amplification during 

summer outbreaks. Finally, model validation showed that seasonal autoregressive models 

successfully predicted mosquito WNV infection rates up to 2 months ahead, but did rather poorly 

at predicting mosquito abundance, a result that might reflect impacts of vector control for 

mosquito population reduction, geographic scale, and trap location change artifacts. 
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4.2 Introduction 

Early warning systems of vector-borne diseases (VBDs) are crucial to the effective and 

efficient control of the disease prior to the appearance of human infections. To develop early 

warning systems, a complete understanding of the ecology of the disease system and its extrinsic 

environmental drivers is necessary. Early warning systems have used a variety of methods and 

data sources such as vegetation and weather in combination with geographic information 

systems/remote sensing to predict various VBDs including malaria in Africa, American 

Cutaneous Leishmaniansis in Costa Rica, dengue in Brazil, and West Nile virus (WNV) in the 

U.S., among many other VBDs (Connor et al. 1999, Craig et al. 1999, Thomson and Connor 

2000, Rogers and Randolph 2003, Kuhn et al. 2005, Shaman and Day 2005, Thomson et al. 

2006, Chaves and Pascual 2007, Ruiz et al. 2010, Lowe et al. 2013, Manore et al. 2014, Shand et 

al. 2016). 

Most models used in the development of early warning systems for disease prediction 

have used mean (average) environmental variables as inputs for model development. However, 

studies suggest that models could be improved by including measurements of environmental 

variability. For example, it has been observed that higher order statistical moments of 

environmental variability in weather, such as kurtosis or standard deviation, allow more accurate 

prediction of abundance in several mosquito species (Hayes and Downs 1980, Shaman and Day 

2007, Chaves et al. 2011, Chaves et al. 2012, Chaves 2016, Ng et al. 2018). This prediction 

follows Schmalhausen’s law, the ecological principle stating that organisms are sensitive to not 

only average patterns, but also to variability patterns (Lewontin and Levins 2000, Chaves and 

Koenraadt 2010). For instance, organisms are susceptible to variability in their environment 

when stressed by any single environmental component (Lewontin and Levins 2000, Chaves and 
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Koenraadt 2010). In principle, environmental variability can be measured by higher order 

statistical moments, such as the variance, which measures a variable’s dispersion around its 

mean (Figure A1A). Another example is kurtosis, which measures whether a variable is more 

unpredictable on the extremes of a distribution with respect to the mean, generating a leptokurtic 

distribution, or if an environmental variable is more unpredictable around the mean, generating a 

platykurtic distribution (Figure A1B) (Chaves et al. 2011). In general, it will be expected that 

biological systems are more sensitive to platykurtic environmental components, provided that 

there is more uncertainty regarding values around a mean, than in a leptokurtic environment, 

where there is relatively low variability when the environment fluctuates around the mean 

(Levins 1968). Due to their complex biology, VBDs are excellent model systems to test the 

hypothesis around Schmalhausen’s law, given the confluence of many different organisms that 

have different degrees of autonomy and interactions with changing environments in both their 

life cycles and the ecological interactions leading to pathogen transmission (Chaves 2017). 

VBDs patterns of interaction with the changing environment might be one of the key 

components to explain the emergence of new diseases and their successful establishment in new 

habitats (Levins et al. 1994). Among VBDs, WNV, is a zoonotic disease with an enzootic cycle 

involving avian amplification hosts and mosquito vectors that recently invaded North America 

(Weaver and Reisen 2010). Despite the abundance of studies looking at its association with 

environmental variables (Reisen 1995, Chase and Knight 2003, Reisen et al. 2006b, Reisen et al. 

2006a, Brown et al. 2008b, Reisen et al. 2008b, Randolph and Rogers 2010, Reisen et al. 2010, 

Ruiz et al. 2010, Degroote et al. 2014, Shand et al. 2016), little to no studies inquire about the 

impacts of environmental variability on its transmission. 
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WNV is a pathogen that was first introduced to the United States in 1999, and has since 

spread throughout much of North America. Since its introduction, 46,086 cases of WNV have 

been reported and 2,017 deaths have been recorded as of 2016 (CDC 2016b). WNV transmission 

biology consists of avian hosts that amplify virus acquired via infected mosquito bites, and then 

can infect bloodsucking mosquitoes that can continue transmission among avian hosts or bridge 

transmission to “dead-end hosts,” such as horses and humans, which are not likely to infect 

mosquitoes (Weaver and Reisen 2010). Culex spp. mosquitoes are the primary enzootic vectors 

(Turell et al. 2005, Weaver and Reisen 2010), where these mosquitoes serve as a “bridge” 

between animal and human transmission of WNV (Kilpatrick et al. 2005a, Hamer et al. 2008a, 

Hamer et al. 2008b).  

WNV amplification is highly heterogeneous each season, with periodic outbreak years 

mixed with low levels of virus transmission, and weather is the suggested key factor driving 

these patterns (Ruiz et al. 2010, Chung et al. 2013). For example, weather plays a vital role in the 

abundance of mosquito populations and subsequent pathogen transmission (Chaves 2017). 

Increasing ambient temperature, up to a point, will increase the rate of development, 

productivity, and abundance of mosquito populations and decrease the extrinsic incubation 

period, the time interval between an infectious blood meal until the mosquito is capable of 

transmitting the virus (Smith 1987, Rueda et al. 1990, Dohm et al. 2002b, Reisen et al. 2006a). 

In addition, precipitation is known to have important consequences on mosquito 

productivity and abundance (Ruiz et al. 2010, Chuang et al. 2011, Degroote et al. 2014), which 

also influences WNV transmission. However, the influence of prior precipitation on WNV 

transmission is complex and no clear patterns have emerged from multiple studies (Landesman 

et al. 2007, Chuang et al. 2012, Chung et al. 2013, Paz and Semenza 2013). Precipitation creates 
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small pools of water that become enriched, creating suitable oviposition habitats for gravid 

female mosquitoes (Takeda et al. 2003, Soverow et al. 2009). However, heavy rainfall can flush 

larval habitats and reduce adult mosquito productivity (Shaman et al. 2002b, Koenraadt and 

Harrington 2008). Furthermore, drought conditions disrupt the aquatic ecosystem of predators 

and competitors that serve to limit mosquito larval activity, allowing larvae to fully develop and 

emerge as adults (Chase and Knight 2003). 

Temperature and precipitation can affect the amount of vegetation present. Vegetation 

can serve as resting habitats for adult mosquitoes, roosting sites for avian hosts that female 

mosquitoes utilize for a blood meal, and sources of nutrition during the development cycle of the 

immature stages of mosquitoes (Ward et al. 2005, Brown et al. 2008a, Gardner et al. 2013). 

Understanding the ecology of WNV transmission dynamics plays a key role for effective 

intervention strategies. In central and southeast Texas, the southern house mosquito Culex 

quinquefasciatus Say (Diptera: Culicidae) is the most relevant mosquito species involved in the 

transmission cycle (Strickman and Lang 1986, Lillibridge et al. 2004, Molaei et al. 2007). 

Quantitative predictive models as part of an early warning system for WNV transmission 

have been developed for certain regions of the U.S., but these types of models have not been 

parameterized for Texas. Being able to predict when and where WNV may occur in Texas, a 

hotspot for WNV and other VBDs in the U.S., provides an early warning system and the 

opportunity to control mosquitoes before bridge transmission to humans and alert the public with 

the appropriate messages to reduce WNV exposure risk. 

Utilizing historical data from Harris County, TX, we examine the influence of weather 

patterns, including mean conditions and higher order statistical moments like standard deviation 

(SD) and kurtosis, on the abundance and WNV infection of Cx. quinquefasciatus the main WNV 
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vector in southeast Texas. We hypothesize that annual and seasonal weather patterns affect 

mosquito biology and WNV transmission dynamics, which contribute to the temporal 

heterogeneity in the abundance and WNV infection rates of Cx. quinquefasciatus. We also 

expect that previous winter temperatures, which set the conditions for mosquito overwintering 

(Dohm and Turell 2001, Reisen et al. 2006b, Chung et al. 2013, Chaves et al. 2018), might 

influence Cx. quinquefasciatus WNV infection rates in the subsequent summer, thus creating the 

expectation of long delays in the association between temperature and WNV infection rates in 

Cx. quinquefasciatus. 

 

4.3 Methods 

4.3.1 Study Area 

Harris County, TX includes the metropolitan city of Houston and has a population of 

4,092,459 according to the 2010 U.S. Census, making it the most populated county in Texas and 

the third most populated county in the U.S. (United States Census Bureau 2016). The county is 

located along the Gulf of Mexico, making it an ideal location for international import and export 

systems for ships, mosquitoes, and vector-borne diseases (Reiter 1998). Its unique location along 

the Gulf makes the county prone to severe weather such as hurricanes, which result in major 

flooding events. To counteract flooding events, Harris County has a large flood control system 

comprised of several different water containment parts, such as bayous, channels, storm drains, 

and sewers, many of which are aging and rich with organic materials suitable for mosquito 

breeding (Molaei et al., 2007). Following outbreaks of St. Louis Encephalitis (SLE) virus, a 

similar arbovirus to WNV, which amplifies in Culex mosquitoes and birds with spillover 

transmission to humans, Harris County first began its mosquito surveillance program in 1965. 
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Since then, the surveillance program has generated considerable mosquito disease research, 

expanded their surveillance to include WNV, Dengue virus, and Zika virus, and generated 

substantial historic records of mosquito trap data (Dennett and Debboun 2017). Other 

publications have focused on the most populous areas within the I-610 highway loop, which 

mainly comprises Houston (Rios et al. 2006, Dennett et al. 2007b, Curtis et al. 2014), however, 

this study will analyze data from the entire county. 

 

4.3.2 Mosquito Data 

Harris County Public Health Mosquito and Vector Control (HCPH) conducted mosquito 

surveillance on a weekly basis between 2002-2016. HCPH consistently used a combination of 

storm sewer (SS) and gravid (GV) traps for WNV surveillance throughout the county (Figure 

12). SS traps are modified CDC Light Traps baited with dry ice and attached to man hole covers 

underground (Molaei et al. 2007). GV traps are baited with hay infusion water and placed in 

residential yards, usually under vegetation. The hay infusion is composed of mixing 1.3 kg of 

Coastal bermudagrass, Cynodon dactylon (L.), with 42 gallons of water and then aged for 10-14 

days (Dennett et al. 2007a, White et al. 2009). Other trap types were used by HCPH, but only SS 

and GV traps were analyzed given their ubiquitous usage throughout the study period and the 

county. 
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Figure 12 Map of Harris County, weather stations and trap locations. The background map is 
courtesy of Google Earth - Harris County is highlighted, and the location of mosquito traps, gravid (GV) 
and storm sewer (SS) traps are indicated with different symbols. Weather stations are color coded 
according to whether they recorded temperature, rainfall, or both.  For details about symbols and color 
codes, please refer to the inset legend. 
 

 

The mosquito collection protocol from Harris County has been described in detail 

elsewhere (Molaei et al. 2007, Curtis et al. 2014). Briefly, traps are placed in the afternoon 

between 1:30 PM-5:00 PM and then collected the following morning between 7:30 AM-10:30 

AM. Traps are placed into “operational areas,” lines that divide the county for surveillance, 

inspection, surveying, and control purposes (Hunt and Hacker 1984). The 268 operational areas 

are based on municipal, district, and zip code lines. Live mosquitoes are brought back to the lab 

and then frozen at -70°C. Mosquitoes are then identified by species and sex on a chill table to 

preserve the presence of the virus and then sorted into pools of < 50 mosquitoes, with a 

maximum of three pools per trap. HCPH tested for WNV antigen in mosquito pools using an 

enzyme-linked immunosorbent assay (ELISA) and positive results were confirmed with a Rapid 

Analyte Measurement Platform (RAMP) test (Lillibridge et al. 2004, Randle et al. 2016). To be 
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considered a positive pool, the mosquito pool must test positive on both the ELISA and RAMP 

test. A positive pool is a mosquito pool that contains at least one Cx. quinquefasciatus mosquito 

positive for WNV. Using data from all the pools tested we estimated monthly infection rates, 

under the assumption that the diagnostic methods have a sensitivity near 1, using a maximum 

likelihood estimation method for unequal pool size that is fit with a log link generalized linear 

model (Farrington 1992) and confidence intervals that are estimated by inverting a likelihood 

ratio test (Speybroeck et al. 2012). 

When generating the time series, we needed to input missing values for December 2003 

and January 2004, when no traps were deployed by HCPH, which was done via interpolation 

using a loess regression as described by Ng et al. (2018). 

 

4.3.3 Weather and Vegetation Data 

For this study, we acquired data for global climatic indices and local weather for Harris 

County, TX. To evaluate the impact of global climatic phenomena on Cx. quinquefasciatus 

abundance and its WNV infection rate, we downloaded monthly data for the El Niño 3.4 index 

from the U.S. National Oceanic and Atmospheric Administration (NOAA) Climate Prediction 

Center (NOAA). The El Niño 3.4 index is associated with interannual rainfall dynamics in Texas 

(Li and Kafatos 2000), is based on the Extended Reconstructed Sea Surface Temperature (Huang 

et al. 2017), and corresponds to sea surface temperatures measured in the area delimited by 5°N–

5°S and 170°W–120°W of the Pacific Ocean. 

To evaluate the impact of local climatic indices in our data, we used data from weather 

stations located inside Harris County or neighboring counties (Figure 12). We used the Climate 

Data Explorer from the Royal Netherlands Meteorological Institute (KNMI) to download daily 
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weather data, looking for stations that had at least 10 years of data. We specifically selected the 

following weather stations (coordinates and Global Historical Climatological Network Code) 

(Figure 12): Baytown (29.91°N, -94.99°E, USC00410586), Clover Field (29.52°N, -95.24°E, 

USW00012975), Hobby Airport (29.64°N, -95.28°E, USW00012918), Houston Intercontinental 

Airport (29.98°N, -95.36°E, USW00012960), Hooks Airport (30.07°N, -95.56°E, 

USW00053910), and Sugarland (29.62°N, -95.66°E, USW00012977), which had both 

temperature and rainfall records for our study period. Stations that had data for only rainfall 

included: Cypress (30.02°N, -95.71°E, USC00412206), New Caney (30.14°N, -95.18°E, 

USC00416280), North Houston (29.87°N, -95.53°E, USC00414327), Richmond (29.58°N, -

95.76°E, USC00417594), and Westbury (29.66°N, -95.63°E, USC00414325). Data for only 

temperature was available at Dayton (30.10°N, -94.93°E, USR0000TDAY). 

We processed the daily data to generate monthly time series for the study period. We 

specifically computed the monthly mean, SD, and kurtosis for temperature and rainfall in Harris 

County. For comparison we also downloaded gridded weather data from GHCN/CAMS 2 m 

(temperature) (NOAA) and GPCP (rainfall) (NOAA), with resolutions of 0.5° and 0.25°, 

respectively. 

We downloaded monthly images for vegetation indices with a 1-km resolution vegetation 

(M*D13A3) product (Didan 2015). We specifically downloaded images for the normalized 

difference (NDVI) and enhanced (EVI) vegetation indices, which are proxies for vegetation 

growth (Pettorelli et al. 2005). The images, which are courtesy of the NASA Land Processes 

Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and 

Science (EROS) Center (Sioux Falls, South Dakota), were downloaded from the server 

(NASALPDAAC) using the package MODIStsp for the software R (Busetto and Ranghetti 
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2016). Each image was then clipped to the surface of Harris County, and then stacked into a 

geotiff using the package raster for R (Brunsdon and Comber 2015). Then for each monthly 

image we estimated the mean, SD and kurtosis for NDVI and EVI during the study period. 

 

4.3.4 Statistical Analysis 

4.3.4.1 Seasonality 

Seasonal profiles for all the mosquito time series, vegetation, and weather variables were 

built using monthly boxplots (Venables and Ripley 2002). 

 

4.3.4.2 Non-Stationary Patterns of Association in the Time Series 

We studied the association of cycles in the time series using a cross wavelet coherence 

analysis to identify non-stationary association patterns (i.e., changes through time) and the 

association between cycles in the time series, or coherence, whose period might be variable and 

not repetitive or seasonal (Chaves and Pascual 2006, Cazelles et al. 2007). We used this 

technique to study the association between mosquito abundance and infection with the El Niño 

3.4 index, NDVI, EVI, temperature and rainfall. 

 

4.3.4.3 Time Series Modeling 

To fit and select variables for monthly time series models of mosquito abundance and 

WNV infections in pools we used a standard protocol for the time series analysis (Hurtado et al. 

2014, Hurtado et al. 2018). The first step consists of assessing the correlation of each time series 

with itself by inspecting the autocorrelation function (ACF) as well as the correlation of 

consecutive time lags using a partial autocorrelation function (PACF) (Shumway and Stoffer 
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2011). Information from the ACF and PACF will identify a null model that considers the 

autocorrelation structure of the focal time series. This null model was then used to pre-whiten the 

times series with the Kalman filter. Pre-whitening is a process to remove a common 

autocorrelative structure that can generate spurious correlations from the climate, weather and 

vegetation indices (Shumway and Stoffer 2011). Then residuals from the autonomous model and 

the pre-whitened time series were used to estimate cross correlation functions (CCFs), which 

show the correlation between two time series as a function of fixed time lags (Hoshi et al. 2014). 

Once we identified significant lags of the covariates between 1 and 12 months (P < 0.05), the 

lags were then used to fit full models of mosquito abundance and mosquito WNV infection. 

Models were simplified by model selection through backward elimination (Kuhn and Johnson 

2013), following the minimization of the Akaike information criterion (AIC) (Faraway 2016). 

This process allows model selection among models with similar parameter numbers (Faraway 

2016). For the best models we further tested if variables, whose parameters were not significant, 

could be eliminated using likelihood ratio tests (Faraway 2016), and the resulting models are 

reported as the best models in the Results section. For the best models, we verified time series 

model assumptions using standard procedures for the time series analysis (Shumway and Stoffer 

2011). 

 

4.3.4.4 Time Series Model Validation 

We validated the time series models by leaving one year of observations, 2016, out of 

model fitting and then forecasting mosquito abundance and WNV infection rates at time steps of 

1, 2, 3, 4, 6 and 12 months, and then estimating the predictive R2 (Chaves and Pascual 2007), 

which is defined as the variance normalized mean square error of the prediction, in other words: 
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PredR2=1–(mean square error/variance of the series).          (4.1) 

 

The predictive R2 has a straightforward interpretation, where a PredR2 of 1 indicates perfect 

forecasts, but negative values, or near 0, indicate a poor predictive ability (Chaves and Pascual 

2007). 

 

4.4 Results 

Data time series are presented in Figure 13, where color codes are used to represent the 

phases of the El Niño Southern Oscillation (ENSO). During the study period, the most extreme 

ENSO event occurred in 2016, as shown by the El Niño 3.4 index time series (Figure 13A). 
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Figure 13 Monthly Time Series. (A) Sea Surface Temperature in the El Niño 3.4 region, (B) Average 
number of mosquito per trap, (C) West Nile virus mosquito infection rate, (D) Vegetation indices, 
including the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index 
(EVI), (E) Average temperature, (F) Average rainfall, (G) Standard Deviation (SD) of NDVI and EVI, 
(H) SD of temperature, (I) SD of rainfall, (J) Kurtosis (K) of NDVI and EVI, (K) K of Temperature, (L) 
K of Rainfall. In all panels ENSO phases are highlighted by colors, for details, see inset legend of panel 
A. Panels B and C are based on combined data from gravid and storm sewer traps. In panels D, G and J 
NDVI and EVI are differentiated by color, see inset legend of panel D for details. 
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A total of 686 and 476 locations for GV and SS traps were used throughout Harris 

County, respectively. During the study period, 15 GV traps were deployed over 450 times at the 

same location and 24 SS traps were deployed over 500 times at the same location (Figure 12).  A 

total of 10,533,033 female Cx. quinquefasciatus were collected using GV (5,371,840 

mosquitoes, 51% of the samples) and SS (5,161,193 mosquitoes, 49%) traps. The total sampling 

effort was 130,567 trap-nights, with 55% of the sampling effort coming from GV traps (71,849 

trap-nights) and the remaining 45% coming from SS traps (58,718 trap nights). Monthly 

mosquito abundance, based on combined GV and SS trap collections, was highly variable 

(Figure 13B), having an average (± SD) of 74.84 ± 47.89. Mosquito abundance peaks were 

observed when ENSO was not going through its extreme hot and cold phases, a pattern also 

observed for the time series based on GV (Figure A2A) and SS (Figure A2B) traps. 

Even though WNV infections in humans were first detected in 2002, WNV infections in 

mosquito pools (Figure 13C) were first detected in Texas in 2004. The monthly average WNV 

infection rate (± SD), estimated only for months with positive pools, was 1.58 ± 2.35, per 1,000 

mosquitoes. As observed with mosquito abundance, WNV infection peaks were observed at 

times when ENSO activity did not go through its cold and hot extremes, but overall, tended to 

follow cold ENSO peaks (Figure 13C). Unlike what was observed for mosquito abundance, 

temporal patterns of mosquito infection were nearly identical when comparing infection 

estimates from GV (Figure A2C) and SS (Figure A2D) traps. For this reason, we used the WNV 

infection time series based on GV and SS traps for subsequent analyses. NDVI and EVI had 

similar temporal patterns during the study period (Figure 13D), with data suggesting that 

vegetation growth at Harris County slows down during the cold ENSO phase. Meanwhile, 

temperature (Figure 13E) is higher during the cold ENSO phase, and the estimate using station 
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data was very similar to the data from the gridded database (Figure A2E). Rainfall peaked during 

the hot ENSO phase followed by the cold phase (Figure 13F), but this temporal pattern was not 

so clear for the gridded rainfall (Figure A2F). Given the more apparent patterns of ENSO 

impacts on the weather observed from weather stations, we used this data for subsequent 

analyses. 

The SD of the vegetation indices (Figure 13G) were similar to the mean time series of the 

vegetation indices. By contrast, the SD of temperature (Figure 13H) and rainfall (Figure 13I) 

reached maximum values during the hot ENSO phase, followed by the cold phase. The 

vegetation indices (Figure 13J) and temperature (Figure 13K) were more leptokurtic during the 

ENSO hot and cold phases, meaning that most of the variability occurred around the mean value 

than in the extremes, and more platykurtic when ENSO was not passing through an extreme 

phase. In contrast, rainfall (Figure 13L) was most leptokurtic during the ENSO cold phase and 

most platykurtic during the ENSO hot phase. 

 Seasonal patterns of mosquito abundance for Cx. quinquefasciatus, based on both GV 

and SS traps, (Figure 14A) were bimodal having a large peak in May and a second smaller peak 

in November. When separating the abundance by trap type, this bimodal pattern was not 

observed in GV traps, which had a single peak in May (Figure A3A). However, the bimodal 

seasonality was observed in SS traps (Figure A3B), which had peaks in May and November. 

Given these marked differences in abundance between GV and SS traps, we decided to perform 

time series analyses of the combined abundance time series, but also of mosquito abundance 

based on GV and SS traps separately. 
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Figure 14 Seasonal Monthly Boxplots. (A) Average number of mosquitoes per trap,  (B) West Nile 
virus mosquito infection rate, (C) Normalized Difference Vegetation Index (NDVI), (D) Enhanced 
Vegetation Index (EVI), (E) Average temperature (F) Average rainfall. Panels A and B are based on 
combined data from gravid and storm sewer traps. 

 

Seasonal WNV infection patterns were unimodal with a seasonal peak in August (Figure 

14B), a pattern also observed separately for GV (Figure A3C) and SS (Figure A3D) traps. NDVI 

has a seasonal peak from April to August (Figure 14C), while EVI (Figure 14D) has a unique 

peak in May. Temperature also had a unimodal pattern (Figure 14E), with a peak in August, 

which was also observed in the gridded temperature data (Figure A3E). Rainfall had two 

seasons, one relatively dry from January to April, and a wet season for the rest of the year, with 

August being consistently the driest month during the wet season (Figure 14F), a similar pattern 

was also observed in the gridded data (Figure A3F). 

 The cross wavelet coherence analyses show that interannual cycles, with a period 

between 3 and 4 years, of mosquito abundance (Figure 15A) and WNV mosquito infection rates 
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(Figure 15B) were coherent with those observed in ENSO. Meanwhile, NDVI and EVI had 

seasonal cycles, with periods of 1 year, associated with mosquito abundance (Figure 15C, 15E) 

and WNV infection rate (Figure 15D, 15F). Temperature cycles were both seasonal and 

interannual, with cycles of 2 to 4 years, coherent with mosquito abundance (Figure 15G) and 

WNV infection rates (Figure 15H). Meanwhile rainfall cycles were associated at an interannual 

scale, with cycles of 3 to 4 years, with cycles of mosquito abundance, which between 2002 and 

2010 were also highly coherent at the seasonal scale with rainfall, (Figure 15I) and with WNV 

infection rates (Figure 15J). 
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Figure 15 Cross Wavelet Coherence Analysis. Coherence between Sea Surface Temperature 3.4 and 
(A) Monthly average mosquito abundance per trap (MAMAPT), (B) West Nile virus mosquito infection 
rate (WNVMIR). Normalized Difference Vegetation Index (NDVI) and (C) MAMAPT, (D) WNVMIR. 
Enhanced Vegetation Index, EVI and (E) MAMAPT, (F) WNVMIR. Temperature and (G) MAMAPT, 
(H) WNVMIR. Rainfall and (I) MAMAPT, (J) WNVMIR. In all plots, the y-axis represents the scale, or 
period measured in years, at which two time series are coherent, while the x-axis represents time. A guide 
for coherence values is presented to the right of each panel. Coherence goes from zero (blue) to one (red). 
Red regions in the plots indicate frequencies and times for which the two series share power (i.e., 
variability). The cone of influence (where results are not influenced by the edges of the data) and 
significantly coherent (p<0.05) scales through time are indicated by solid lines. MAMAPT and WNVMIR 
are based on combined data from gravid and storm sewer traps. 
 



 

 104 

 
 



 

 105 

 The autocorrelation functions of mosquito abundance (Figure 16A) and WNV infection 

rates (Figure 16B) suggested that both time series were at most second order, i.e., autocorrelated 

up to the second lag, and seasonal, i.e., being significantly correlated at lag 12 months, meaning 

time series were autocorrelated at any time lag with itself 12 months before. That autocorrelation 

structure was observed using the partial autocorrelation function of both mosquito abundance 

(Figure 16C) and WNV infection rates (Figure 16D). 
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Figure 16 Auto-Correlation Functions (ACF). (A) Monthly average mosquito abundance per trap, 
MAMAPT and (B) West Nile virus mosquito infection rate, WNVMIR. Partial Auto-Correlation 
Functions (PACF) of (C) MAMAPT and (D) WNVMIR. Cross-Correlation Functions (CCF) of the 
average value of environmental variables with (E) MAMAPT and (F) WNVMIR. CCF of the Standard 
Deviation (SD) of environmental variables with (G) MAMAPT and (H) WNVMIR. CCF of the Kurtosis 
(K) of environmental variables with (I) MAMAPT and (J) WNVMIR. In panels E to J, environmental 
variables are color coded, for details, please refer to the inset legend of panel D. MAMAPT and 
WNVMIR are based on combined data from gravid and storm sewer traps. 
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With this information, a seasonal autoregressive model was fitted as the null model with 

the following form: 

 

!! = ! + !!!!!! + !!!!!! + !!"!!!!"-!!!!"!!!!"-!!!!"!!!!"+!!       (4.2) 

 

where ! is the mean of the time series !! = !! − !, where !! is either monthly mosquito 

abundance or WNV infection rates, t indicates time, and !! is a normally and identically 

distributed error. Model selection for mosquito abundance, the model presented in (4.2), 

suggested that the following model: 

 

!! = ! + !!!!!! + !!"!!!!"-!!!!"!!!!"+!!          (4.3) 

 

was the best null model for abundance estimates based on the combined SS and GV data. This 

null model was used to pre-whiten the time series of the weather and vegetation covariates, 

which were then used to estimate cross-correlation functions between the average values of the 

covariates with mosquito abundance (Figure 16E) and WNV infection rate (Figure 16F), the SD 

of the covariates with mosquito abundance (Figure 16G) and WNV infection rate (Figure 16H), 

and the kurtosis of the covariates with mosquito abundance (Figure 16I) and WNV infection rate 

(Figure 16J). We also estimated the ACF and PACF of mosquito abundance with GV (Figure 

A4A, A4C) and SS traps (Figure A4B, A4D), and the cross-correlation function of mean, SD, 

and kurtosis of the covariates with GV (Figure A4E, A4G, A4I) and SS (Figure A4F, A4H, A4J) 

traps. 
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The variables that were significantly associated with mosquito abundance were then 

considered in a full model: 

 

!! = ! + !!!!!! + !!"!!!!"-!!!!"!!!!"+ !"#!!!+!!         (4.4) 

 

that included covariates (cov) with time lags j ≥ 0. The process of model selection for the 

mosquito abundance model is presented in Table S1, and the process for model selection of 

mosquito abundance model based only on GV traps in Table S2, and for the model based only on 

SS traps in Table S3. 

Parameter estimates for the best mosquito abundance model are presented in Table 7. 

Parameters included a positive association with the standard deviation of NDVI (2-month lag) 

and temperature kurtosis (9-month lag). Meanwhile abundance was negatively associated with 

rainfall (no time lag), NDVI kurtosis (12-month lag) and EVI kurtosis (1-month lag). Significant 

parameters in the best models for mosquito abundance based on GV and SS traps separately  

(Table S4) had similarities with the model for data from both traps (Table 7). Both of those 

models did not have a significant seasonal autoregressive parameter, i.e., both time series were 

not significantly autocorrelated with themselves with a 12-month lag. Interestingly, both of these 

models (Table S4) were associated with EVI kurtosis with 1 month of lag, the association being 

negative like in the model of Table 7. Other parameters shared with the model presented in Table 

7 also had the same sign such as the kurtosis of NDVI with a 12-month lag and a 9-month lag 

temperature kurtosis for the model based on SS traps (Table S4). Other parameters included 

variables that were not included in the best model presented in Table 7, and included both mean, 

SD, and kurtosis parameters (Table S4).  
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Table 7 Parameter estimates for the best time series model explaining changes in Culex 
quinquefasciatus abundance sampled with gravid and storm-sewer traps in Harris County, TX. For 
parameters, Intercept represents the mean value of the time series, AR = autoregressive term, SAR = 
seasonal autoregressive term, Rainfall = average rainfall, NDVI = Normalized Difference Vegetation 
Index, EVI = Enhanced Vegetation Index, SD = standard deviation, Temperature = average temperature, 
K = kurtosis. Lags are in months. σ2 is the variance of the time series. 
 
Parameters (lag) Estimates Standard Error 
Intercept 
 

74.1795 6.3822 

AR (1) 
 

0.3873 0.0790 

SAR (12) 
 

0.3414 0.0822 

Rainfall (0) 
 

-2.6398 1.0384 

NDVI SD (2) 
 

792.7775 379.7516 

NDVI K (12) 
 

-14.7881 4.8280 

EVI K (1) 
 

-8.8210 3.7416 

Temperature K (9) 7.78873 2.4330 
σ2 = 1045; Log likelihood = -705.7; AIC = 1429.4 

 

The best model for mosquito WNV infection rates (Table 8) was a second order seasonal 

autoregressive model, i.e., with an autoregressive component similar to the one described in 

equation 4.2, with mean temperature at an 8-month lag as a significant covariate. The process of 

model selection is presented in Table S5. 
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Table 8 Parameter estimates for the best time series model explaining changes in West Nile virus 
infection rate of Culex quinquefasciatus in Harris County, TX. For parameters, Intercept represents 
the mean value of the time series, AR = autoregressive term, SAR = seasonal autoregressive term, 
Temperature = average temperature. Lags are in months. σ2 is the variance of the time series. 
 
Parameters (lag) Estimates Standard Error 
Intercept 
 

0.0008 0.0001 

AR (1) 
 

0.7620 0.0787 

AR (2) 
 

-0.3199 0.0797 

SAR (12) 
 

0.4757 0.0946 

Temperature (8) 0.0003 0.0001 
σ2 = 1.37e-6; Log likelihood = 765.73; AIC = -1519.47 

 

 Finally, the process of model validation suggested the predictive ability of the mosquito 

abundance model was overall low (Figure 17A), a pattern shared with the models based on GV 

(Figure A5A) and SS (Figure A5B) traps separately, which nevertheless outperformed the model 

combining the data from both types of traps. By contrast, the predictive accuracy of the WNV 

infection rate (Figure 17B) model was high for 1 (80%) and 2 (60%) months, negative at 3 

months, and overall decreased as the prediction step increased the number of months predicted at 

once. 
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Figure 17 Predictive R2. Predictive capability of models selected as best to explain (A) Monthly average 
mosquito abundance per trap (B) West Nile Virus mosquito infection rate. 
 

4.5 Discussion 

Our study found significant weather factors and measurements of their variability were 

significantly associated with Cx. quinquefasciatus abundance and WNV infection rates during 

the study period (2002-2016) in Harris County, TX. Mosquito abundance generally peaked 

following the ENSO cold phases when ENSO activity did not go through extreme hot or cold 

phases (Figure 13B). During the hot ENSO phase, we generally saw peaks in rainfall and greater 

variation in temperature and rainfall (Figure 13). On the other hand, the cold ENSO phases were 

characterized by hotter temperature peaks and less rainfall, which resulted in less vegetation 

growth in Harris County (Figure 13). During these extreme hot and cold ENSO phases, we found 

lower Cx. quinquefasciatus abundance, which could be due to the excess rainfall and higher 

temperatures/low vegetation in the hot and cold phases, respectively. The increased amount of 

precipitation during the hot ENSO phase might wash out larval habitats for Cx. quinquefasciatus 

above- and belowground (Shaman et al. 2002b, Koenraadt and Harrington 2008). This 

phenomenon was true for Cx. quinquefasciatus in the U.S. as observed in California (Heft and 
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Walton 2008) and Georgia (Chaves and Kitron 2011, Nguyen et al. 2012) and Cx. pipiens in 

Illinois (Hamer et al. 2011). Extremely high temperatures are known to decrease the life span of 

the mosquito and prematurely kill mosquitoes before they are able to transmit the virus to a new 

host (Reisen 1995, Reisen et al. 2006a, Brault 2009). Vegetation is required for larval 

development of Cx. quinquefasciatus as it provides a source of organic matter and nutrients. The 

importance of vegetation has been investigated in other areas of the U.S. such as the cities of 

New York, Chicago and Houston, where the presence of vegetation was positively associated 

with human risk for WNV (Brownstein et al. 2002, Ruiz et al. 2004, Nolan et al. 2012). 

Our results demonstrate that increased variability in both temperature and rainfall result 

in higher abundances of mosquitoes. Measurements of variability were significant covariates in 

the abundance models (Table 7). The significant covariates in the abundance model further 

highlight the importance in including measurements of environmental variability to investigate 

association patterns between mosquito abundance dynamics and the weather. The covariates for 

the best mosquito abundance model that combined mosquito counts from both GV and SS traps 

included positive associations with the standard deviation of NDVI with a 2-month lag and the 

kurtosis of temperature with a 9-month lag. Rainfall with no lag, NDVI kurtosis with a 12-month 

lag, and EVI kurtosis with a 1-month lag had a negative association with mosquito abundance. 

The phenomenon emphasizing the importance of significant variation in weather and vegetation 

on mosquito abundance follows Schmalhausen’s Law, the biological principle stating that 

organisms are sensitive to both average environmental conditions and environmental variability, 

which has been previously reported for Cx. quinquefasciatus and other vectors of disease (Hayes 

1975, Hayes and Hsi 1975, Hayes and Downs 1980, Chaves and Koenraadt 2010, Ng et al. 
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2018). Therefore, the more neutral conditions seen when ENSO is not going through extreme hot 

and cold phases may allow for greater abundances of Cx. quinquefasciatus. 

Interestingly, our study did not include temperature within the same summer season as a 

significant variable, which other studies have found among other mosquito species (Degaetano 

2005, Chuang et al. 2011). Rather, temperature with an 8-month lag was a significantly positive 

covariate in our WNV infection rate model (Table 8). Given that infection rates generally peak 

around August in Harris County (Figure 14B), warmer temperatures during the winter are 

expected to increase the infection rates the following summer. In general, warmer winter seasons 

preceding a WNV season has been a significant factor of interest in other studies using various 

measurements of WNV, including mosquito abundance of different Culex species, infection 

rates/vector indexes, and human cases (Reisen et al. 2010, Chung et al. 2013, Degroote et al. 

2014, Wimberly et al. 2014). 

One mechanism for increased infection rates in the summer following a mild winter is 

that warmer temperatures in the winter allow Cx. quinquefasciatus to remain active 

gonotrophically and maintain their populations. Alternatively, Cx. quinquefasciatus can survive 

through the winter by entering quiescence when temperatures drop, but can become active once 

temperatures increase again (Eldridge 1968, Reisen et al. 1986, Diniz et al. 2017). Quiescence is 

a period of non-seasonal dormancy characterized by slowed metabolism in response to 

environmental stimuli (Clements 1992). Since Cx. quinquefasciatus do not enter diapause and 

are not hormonally-controlled to enter a state of dormancy, physiological activity can be restored 

once the stimulus that induces quiescence ceases (Vinogradova 2007, Denlinger and Armbruster 

2014, Lacour et al. 2015, Diniz et al. 2017). The sustained activity in mosquito populations 

through warmer winter temperatures also permit the dissemination of WNV throughout the 
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vector and consequently vertically transmit WNV to their progeny, thereby maintaining the virus 

in the vector population (Dohm and Turell 2001, Nasci et al. 2001a, Goddard et al. 2003, Nelms 

et al. 2013). For example, when Cx. pipiens is inoculated with WNV and held at reduced 

temperatures (10°C) for 21-42 days, the virus is not fully disseminated. Once the mosquito is 

transferred to an incubation temperature of 26°C, the dissemination rates increased (Dohm and 

Turell 2001). Studies on the effects of overwintering in Cx. quinquefasciatus and WNV infection 

in Texas are worth investigating. 

Another mechanism for increased WNV infection rates during a warm winter relates to 

the opportunistic feeding patterns of Cx. quinquefasciatus, which more frequently feed on avian 

hosts (Molaei et al. 2007). Warmer winter temperatures can signal the arrival of an early spring, 

allowing birds to initiate recruitment of young earlier (Forchhammer et al. 1998, Walther et al. 

2002). Consequently, increased populations of susceptible juvenile birds are known to fuel the 

amplification of WNV (Hamer et al. 2008b). Mosquito feeding may coincide with warmer 

temperatures in the winter, allowing mosquitoes to become infected even during periods of 

expected low activity since birds may still be viremic or become infected from exposure to feces 

containing WNV (Eldridge 1968, Dawson et al. 2007, Hinton et al. 2015). 

An interesting observation was the difference in mosquito abundance between GV and 

SS traps. GV traps exhibited a unimodal abundance distribution, however, SS traps showed a 

bimodal distribution (Figure A2). The second peak in abundance of Cx. quinquefasciatus trapped 

in SS traps during November could be attributed to the life history of this mosquito species. SS 

traps are placed underground in storm sewers and baited to capture host-seeking mosquitoes. 

However, Cx. quinquefasciatus will also use storm sewers as hibernacula or shelter during cooler 

months to overwinter into the next spring season (Strickman and Lang 1986). With this in mind, 
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the second peak in the abundance in November could be attributed to the mosquito’s retreat into 

underground storm sewers to avoid harsh winter conditions since this species does not enter 

diapause, but instead undergoes quiescence when retreating to storm drains (Reisen et al. 1986, 

Strickman and Lang 1986, Strickman 1988, Tesh et al. 2004b, Reisen et al. 2010, Nguyen et al. 

2012, Reisen 2012, Nelms et al. 2013). These dissection studies investigating overwintering 

techniques in California have demonstrated that Cx. quinquefasciatus mosquitoes undergo 

quiescence rather than diapause, which is seen in Cx. pipiens and Cx. tarsalis. However, this type 

of study, to the best of our knowledge, has not been performed in Texas and warrants further 

consideration to elucidate overwintering patterns for mosquitoes found in storm drains. 

The abundance models for this study performed poorly (Figure 17A), but the infection 

rate model performed well when predicting between 1-2 months ahead (Figure 17B). The low 

predictive ability of the abundance model can be attributed to unavoidable logistical constraints 

that emerge in large-scale vector surveillance systems such as in Harris County, TX. For 

example, our model did not take into account the mosquito control efforts by HCPH that may 

have affected local mosquito populations. Mosquito control in Harris County consists of 

aboveground-based ultra-low volume (ULV) adulticiding in response to a positive pool. Within 

the same week of detecting a positive pool, ULV adulticiding will occur in the operational area 

(Fredregill et al. 2011). During peak seasons, spraying may occur more than once a week, which 

may affect the abundance of mosquitoes trapped by SS and GV traps that target adult 

mosquitoes. 

Another challenge is related to the temporal and spatial scales of our study. Given the 

long temporal range of our data, we used a monthly scale for the time series analysis. Having a 

temporal scale of weekly data would better reflect the finer nuances in mosquito abundance and 
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improve model predictive ability (Chaves et al. 2013, Chuang et al. 2017). Spatial scale is also an 

important factor when considering infection data since results and conclusions may differ 

depending on the scale chosen for the study (Winters et al. 2010). We summarized data over a 

large spatial scale, with Harris County covering 4,600 km2. At smaller spatial scales, we might 

have been able to better capture local population dynamics, as observed in more finely grained 

studies on mosquito population dynamics (Chaves et al. 2013, Ng et al. 2018). 

Another factor to consider when explaining the low predictive ability of our mosquito 

abundance models is the movement of trap locations throughout the county during the study 

period. A total of 686 and 476 trap locations were used for GV and SS traps, respectively. 

Throughout the study period, only 15 GV traps and 24 SS traps remained in the same location. In 

contrast, 392 GV traps and 324 SS traps were deployed less than 50 times at the same location, 

which demonstrates the lack of consistency in trap locations throughout the study period (Figure 

A6). Inconsistencies from trapping may lead to artifacts and biases that do not necessarily reflect 

local population dynamics of the previous trap locations. The location of the trap influences the 

mosquito abundance estimates, which may explain the low predictive capability of the 

abundance models given that many of these traps moved throughout the study period (Brown et 

al. 2008c). 

Finally, our study demonstrates the importance of long-term systematic sampling of 

mosquitoes to build a predictive model as part of an early warning system. This is the first study 

in Texas, and overall the southwestern U.S., to use a long-term dataset to examine weather 

factors and variability to explain WNV vector abundance and WNV infection rates. We 

developed and validated models that can accurately predict WNV infection rates in response to 

weather phenomena. After one of the largest epidemics of WNV in 2012, which was centered in 
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Dallas County, TX, Harris County can integrate these models into a proactive system to initiate 

interventions and allocate resources for vector control and disease prevention before the 

appearance of human cases in order to prevent another devastating epidemic.  
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CHAPTER V  

SUMMARY AND FUTURE RESEARCH 

 West Nile virus (WNV) is a characterized by an enzootic cycle, involving avian hosts and 

mosquito vectors, as well as limited spillover into humans and horses. The temporal and spatial 

heterogeneity of WNV is complicated given the specific ecologies of the host and vector and 

generalizations from one region that may not necessarily be true for other regions. This 

dissertation provides information on how the ecologies related to the landscape, 

sociodemographics, and weather play a role in WNV transmission dynamics in Texas. 

Specifically, I used two datasets from Dallas and Harris Counties to identify significant factors 

that are related to the abundance, infection rate, or vector index of WNV. 

 We identified increased urbanization (based on an index composed of greater population 

density, lower normalized difference vegetation index, higher coverage of urban land types, and 

more impervious surfaces), lower elevation, and older populations as significant predictors of the 

presence of WNV in Cx. quinquefasciatus during the 2012 WNV epidemic in Dallas County. 

The relationships identified between the landscape, social demographics, and WNV infection 

help to identify regions of Dallas County with the highest risk for positive mosquito pools. While 

other studies have identified factors related to human WNV incidence, this is the only project 

that identified landscape and social demographic variables related to the vector of WNV during 

this epidemic. 

 We conducted a similar study for Harris County, TX, which includes the metropolitan 

city of Houston. We used Harris County Public Health Mosquito and Vector Control’s 

surveillance dataset, which first started its surveillance for WNV in 2002. The best-fit model 

found that higher vector indexes are related to greater elevation, more impervious surfaces, 
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higher median income, and a predominantly Hispanic population. This model was then used to 

create a predictive map, which highlighted north and central Harris County as areas predicted to 

have high vector indexes. When we validated the predictive map with 2016-2017 trap data, we 

found that the map predicted with 38% accuracy for gravid traps and 26% accuracy for storm-

sewer traps. The low validation measurements could be due to continuous vector control efforts 

throughout the county that were not taken into account for this study, the unclear nature of 

Hispanics as an ethnic group rather than race, changes in surveillance practice starting in 2016, 

and the spatial and temporal scale of the covariates. 

 Finally, this dissertation uncovered correlations between weather events and WNV vector 

abundance and infection rates in Harris County, TX. Using a time series analysis, our abundance 

model included measurements of variability for temperature, rainfall, and vegetation (normalized 

difference vegetation index and enhanced vegetation index). The abundance model follows 

Schmalhausen’s law, which states that organisms are not only affected by the mean (average) of 

environmental variables, but also the variability and extremes of their environment. The WNV 

infection rates were associated with an 8-month lag of mean temperature, suggesting that 

ambient temperature during the winter might be key for WNV amplification during summer 

outbreaks. Model validation showed that the WNV infection rate model successfully predicted 

infection rates up to two months ahead (80% accuracy for 1 month ahead and 60% accuracy for 

2 months ahead), but the abundance model performed poorly when predicting mosquito 

abundance. The low predictive accuracy of the abundance model reflects the effects of vector 

control, spatial and temporal scale of our time series, and trap location artifacts. 

 The landscape analyses for Dallas and Harris Counties resulted in a similar finding 

regarding urbanization and the built environment. The models for Dallas and Harris Counties 
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emphasized a positive association with WNV infection in Cx. quinquefasciatus, with an index of 

urbanization and impervious surfaces, respectively. However, even within the same state, these 

two major metropolitan counties in Texas emphasized different variables responsible for WNV 

infection in Cx. quinquefasciatus. For example, the models for both counties highlighted 

elevation as a significant variable, but they had opposite effects, with a negative association 

found in Dallas County and a positive association found in Harris County. In addition, there were 

differences in the demographic variables that were important in their respective counties such as 

median age in Dallas County and median income and percentage of Hispanics in Harris County. 

While there were differences in the final models for each county, it should be noted that 

the availability of data drove our choices in the landscape/demographic covariates and the 

outcome variables entering the models. When developing the models for Dallas County, we 

found that race and ethnicity did not play a significant role in the models (i.e., did not explain a 

large proportion of variance), however, these factors were more apparent in the study for Harris 

County. Furthermore, the abundance data from Dallas County during the epidemic were 

considered unreliable given the lack of systematic sampling in 2012, therefore, we relied on the 

binary results for WNV testing as the outcome in our model. Since Harris County had an 

extensive database, relying on the binary result for each WNV test was not practical. Therefore, 

we summarized the data and calculated the vector index as a measurement of WNV-infected 

mosquitoes in Harris County. On the other hand, we were also able to analyze long-term patterns 

in the weather and WNV because of the extensive database from Harris County, but this was not 

possible with Dallas County since we only had data for a single year (2012). Regardless, the 

models for both counties revealed important relationships between WNV-infected mosquitoes 

and the environment that will be useful in constructing an early-warning system. 
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 While this dissertation established the foundations for WNV patterns based on landscape, 

sociodemographic, and weather parameters for Texas, future work to build an early warning 

system is still warranted. For Dallas County, an analysis comparing the entomological risk map 

developed here with an epidemiological risk map utilizing human case data would inform us of 

human WNV risk and whether a high-risk area for WNV-positive mosquitoes equates to a high-

risk area for WNV human cases. In addition, long-term surveillance data for Dallas County is 

needed to identify long-term patterns of WNV. Future directions for the dataset from Harris 

County, TX include investigations of population composition and phenology of various mosquito 

species known to vector diseases, effects of adulticide spraying on WNV vector abundance and 

infection, and outcomes based on weekly weather conditions compared to monthly conditions. 

Data gathered from these studies will add to the current knowledge of WNV and vectors of 

disease in Texas, which has largely remained underinvestigated compared to other states such as 

California and Illinois. Overall, we hope to bring these important variables to the forefront 

against WNV by creating a tool that will use weather, landscape, and sociodemographic 

parameters to predict WNV and track the intensity of the oncoming WNV season or give real-

time forecasts of the risk of WNV infection in vectors. This kind of tool is currently unavailable 

for Texas, but these models can be used as parameters for the first early warning system in the 

state. 

 While vector data are important in understanding the biology and ecology of WNV 

transmission, we are also interested in data involving the hosts for WNV, including avian and 

human data, to fully understand the drivers of the disease cycle. For example, Harris County has 

an extensive avian database, which includes active mist-netting activities, passive surveillance of 

dead birds that citizens can report, and results of WNV testing in the bird samples. This avian 
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database could be used to further inform us of the enzootic cycle that precedes human infection 

with WNV. Finally, human case data will indicate if infected vectors and avian reservoirs align 

with WNV-positive human cases spatially and temporally, which have important implications for 

creating a proactive mosquito abatement program such as when and where to apply control 

methods using quantitative thresholds for vector infection with WNV. However, this process 

brings into question the ethics of initiating control measures based on quantitative thresholds for 

vector control. That is, a decision needs to be made regarding vector control when a situation 

arises where human cases exist, but the overall abundance/infection rate/vector index is low. The 

decision will change depending on the disease, but will ultimately rely on things such as the 

transmission cycle of the disease (humans as a reservoir vs. accidental host) and if the 

geographic location is in a high-risk area for the disease. 

 Early warning systems for WNV have been developed and parameterized for different 

regions of the U.S., but no such system exists for Texas even though the state is considered a hot 

spot for vector-borne diseases. The research presented here adds to the accumulating knowledge 

of the determinants of spatial and temporal differences of WNV transmission dynamics, with a 

focus on WNV in Texas and the major vector of WNV in the region Cx. quinquefasciatus. While 

we expect to see differences between our results and other studies, we find that even between 

two major cities in Texas, there are still large differences in the findings, exemplifying the 

complexities in the local interactions between the landscape, sociodemographics, weather, and 

the ecology of the vector. Furthermore, this dissertation emphasizes the importance of systematic 

sampling for WNV vectors in that we can draw conclusions about the spatial and temporal 

patterns and how they relate to various measures of WNV. Finally, we hope to use the significant 

factors identified in these studies to build early-warning systems specifically for Texas to prevent 
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another devastating event such as the major national WNV outbreak in 2012, which was centered 

in Dallas County, TX. With these results, we can predict when and where WNV outbreaks may 

happen within a county based on environmental parameters, which will ultimately save time, 

money, resources, and human lives. 
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APPENDIX 

 
Figure A1 Variance and kurtosis distributions (A) Distributions with different variance: high=1, 
low=0.25. These distributions were obtained simulating 1000 replicates from a normal distribution with 
mean 0 using R.  (B) Distributions with different kurtosis: leptokurtic=178.8; platykurtic=115.2. Here is 
worth highlighting how the leptokurtic variable has low variability within the 2nd to 3rd quartile and how 
such variability is wider in the platykurtic distribution. These distributions were obtained simulating 1000 
replicates from T-student distributions using R, with 3 and 1 degrees of freedom, respectively, for the 
leptokurtic and platykurtic distributions. Both distributions have variance of 1, and mean 0.   
  



 

 163 

 

Figure A2 Additional Monthly Time Series. (A) Monthly average mosquito abundance per gravid trap 
and (B) Monthly average mosquito abundance per storm sewer trap. (C) West Nile Virus mosquito 
infection rate based on gravid traps. (D) West Nile Virus mosquito infection rate based on storm sewer 
traps (E) Gridded temperature. (F) Gridded rainfall. In all panels ENSO phases are highlighted by colors, 
for details, see inset legend of panel A. 
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Figure A3 Additional Seasonal Monthly Boxplots. (A) Monthly average mosquito abundance per 
gravid trap and (B) Monthly average mosquito abundance per storm sewer trap. (C) West Nile Virus 
mosquito infection rate based on gravid traps. (D) West Nile Virus mosquito infection rate based on storm 
sewer traps. (E) Gridded temperature. (F) Gridded rainfall. 
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Figure A4 Correlation Functions. Auto-Correlation function (ACF) of (A) Monthly average mosquito 
abundance per gravid trap (MAMAPGT) and (B) Monthly average mosquito abundance per storm sewer 
trap (MAMAPSST). Partial Auto-Correlation Function (PACF) of (C) MAMAPGT and (D) 
MAMAPSST. Cross-Correlation Functions (CCF) of the average value of environmental variables with 
(E) MAMAPGT and (F) MAMAPSST. CCF of the Standard Deviation (SD) of environmental variables 
with (G) MAMAPGT and (H) MAMAPSST. CCF of the Kurtosis (K) of environmental variables with (I) 
MAMAPGT and (J) MAMAPSST. In panels E to J environmental variables are color coded, for details, 
please refer to the inset legend of panel D. 
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Figure A5 Predictive R2. Predictive capability for models selected as best to explain (left) Monthly 
average mosquito abundance per gravid trap (right) Monthly average mosquito abundance per storm 
sewer trap. 
 

 

 
 
Figure A6 Trapping Consistency. Percentage of the number of times a trap was visited at the same 
location. The x-axis represents the number of times a trap was deployed at the same location and the y-
axis represents the percentage of times the trap was deployed at the same location. 
 

Additional supplementary maps (Figures S1-S6) for Chapter III are included as separate files. 

Supplementary tables (Tables S1-S5, Chapter IV) for Chapter IV are included as separate files. 


