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ABSTRACT 

 

The theory of groundwater flow in a sloping aquifer is indispensable to understand 

water exchange among atmosphere, surface water and an aquifer. However, for various 

reasons, the theory of groundwater flow in a sloping aquifer is still not understood 

clearly.  In the past decades, several researchers have studied groundwater flow in a 

sloping aquifer using analytical and numerical methods and laboratory experiments. The 

purpose of this dissertation is to advance the hydrodynamics of transient groundwater 

flow in a sloping aquifer with surface water-groundwater interaction. A few new models 

and their semi-analytical and numerical solutions are developed to study the water table 

fluctuations and river-aquifer fluxes in the presence of an unconfined sloping aquifer. 

The first model is built for a sloping aquifer with a river on left side and infinite extent on 

the other side. The second model is built for a sloping aquifer with two parallel rivers. 

The two models both provide general considerations about the less permeable 

sedimentary layer (or clogging layer) between an aquifer and surface water, the time-

dependent river stages, and responses of time-dependent recharge by infiltration. Special 

attention has been paid to the impact of sloping feature, among other parameters, on the 

evolution of the water table profile and the river-aquifer fluxes. The analytical solutions 

are developed using a linearized Boussinesq equation modified for a sloping aquifer, and 

they are compared with a finite element COMSOL program for the same linearized 

Boussinesq equation. Excellent agreement was found between the analytical solution and 

the COMSOL program. The analytical solution is subsequently compared with a full 

scale numerical model using HydroGeoSphere to consider coupled unsaturated-saturated 
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flow process. The result indicates that the linearized analytical solution can serve as a 

reliable surrogate of the full scale numerical model when the sloping angle is less than 10 

degrees. The flow character of a sloping aquifer is quite different from that of a 

horizontal aquifer, and the variations of river stages will cause much more variations of 

water table heights and river-aquifer fluxes in a sloping aquifer. In particular, the water 

table profile in a sloping aquifer shows some unique features that have never been seen in 

a horizontal aquifer, as the water table profile may evolve from a straight line parallel 

with the sloping bed at the beginning to a convex shape, even without any 

recharge/evaporation.  Another new model acknowledging the realistic initial conditions 

and river stage variation is proposed with the help of sequential Sigmoid functions for 

describing the river stage. One benefit of using the Sigmoid functions is that it allows 

enough time for the system to reach its pseudo-steady state before the rapid rising or 

falling of the river stage. Therefore, this avoids the idealized (and often unrealistic) initial 

condition of a constant water table height above the impermeable base as was assumed by 

many previous investigations. Finally, the limitations of the study and future work are 

outlined. 
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CHAPTER 1                                                                                                 

INTRODUCTION 

 

The conventional theories concerning groundwater flow in aquifers often assume that 

aquifers are horizontally oriented (Bear, 1972; Fetter, 1999; Domenico and Schwartz, 

1998). However, under certain geological settings, aquifers could be sloping instead of 

horizontal. Sloping aquifers are widely discovered in regions with volcanic activities 

(Cabrera and Custodio, 2004; Join et al., 2005), karstic formations (Plan et al., 2009; 

Sauro et al., 2013), anticline and syncline structures (Ashjari and Raeisi, 2006), coal 

seams (Zhang and Shen, 2004; Sun and Miao, 2017; Wang et al., 2017), and coastal 

formations (Dutton et al., 2003; Cabrera and Custodio, 2004). For instance, Join et al. 

(2005) pointed out that the sloping geological structure of an the active shield volcano in 

the Piton de la Fournaise volcano provided sufficient hydrological conditions to produce 

a high water table (as much as 1800 m above sea level) in the interior of the island.  This 

finding bears similarity with the study of Cabrera and Custodio (2004) for the Teide 

volcano in Canary Islands, Spain, but contrasts with the conventional Hawaiian 

conceptual models in which the occurrence of high water levels near the volcanos was 

thought to be caused by groundwater flow barriers such as dikes or other local 

impervious layers, as observed in Kilauea of Hawaii (Ingebritsen and Scholl, 1993). 

Ashjari and Raeisi (2006) studied the influences of anticlinal structure on regional flow in 

Carbonate Karstic formations of Zagros of Iran and showed that regional groundwater 

flow patterns are closely controlled by the anticlinal structure of aquifers and geometry of 

bedrock.  
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Among other features, the inclined angle of a sloping aquifer is one of the most 

important factors controlling the groundwater dynamics in such an aquifer.  Plan et al. 

(2009) and Sauro et al. (2013) presented case studies of inclined strata in a karstic area in 

Austria and northeast Italy, respectively, where the inclination of the strata can be as high 

as 15 to 45 degrees. Wang et al. (2017) studied the CO2 geological storage in a sloping 

saline aquifer in Qinshui Basin of China and noticed that the inclined angles of strata 

angles ranged from 0 to 16 degrees. The CO2 geological storage is an effective way for 

CO2 emission reduction. Wang et al. (2017) studied the influences of sloping angle to the 

effective storage space for CO2. Their results show that the greater the dip angle, the 

greater the effective reservoir space reduces. Sun and Miao (2017) studied the inclined 

coal seam and stated that the slope angle generally ranged from 0 to 45 degrees. They 

state that if research based on the horizontal and near-horizontal seams are applied to 

predict water inrush from an inclined coal seam floor, serious errors may occur, resulting 

in safety hazards. The Carrizo-Wilcox aquifer underneath central Texas is an aquifer 

inclining towards Gulf of Mexico with a sloping angle from 0.25º to 2º (Dutton et al., 

2003).  

Despite the wide distribution of sloping aquifers around the globe, groundwater 

dynamics in such a ubiquitous system is still poorly understood, particularly when 

surface water and groundwater interaction is also involved. For instance, it is generally 

unclear if the conventional theories developed for groundwater flow under the horizontal 

aquifer assumption are still valid within sloping aquifers. One specific question is: under 

what slope angles will the horizontal flow theory may be acceptable as an approximation 

for sloping aquifers, when surface water and groundwater interaction is involved? To 
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answer this question, we will conduct a brief literature review on groundwater dynamics 

concerning sloping aquifers under the influence of surface water level fluctuations in the 

following section and then outline the specific objective of this study, which is to fill a 

knowledge gap on the sloping aquifer flow concerning surface water and groundwater 

interaction. 

Previous investigations by a number of scientists have formulated and developed 

corresponding mathematical models to describe water table fluctuations caused by 

dynamic water exchange between surface water and an unconfined aquifer overlying a 

horizontal bed, based on the Boussinesq equation (Bouwer, 2002; Ghosh et al., 2015; 

Glover and Balmer, 1954; Hantush, 1967; Manglik et al., 1997; Mustafa, 1987; 

Polubarinova and Kochina, 1962; Rai and Singh, 1992; Rai and Singh, 1995; Ram et al., 

1994; Schmid and Luthin, 1964; Theis, 1941; Workman et al., 1997). The nonlinear 

nature of the Boussinesq equation often requires a numerical model to approximate the 

solution, but approximate analytical solution of the Boussinesq equation is also popular 

and highly valuable for gaining physical insights into the physical processes involved 

(Koussis and Lien, 1982; Koussis et al., 1998; Upadhyaya and Chauhan, 1998). 

 Boussinesq (1877) made the assumption that when the lateral extent of an aquifer is 

much larger than its thickness, then groundwater flows primarily along the direction of 

the bedding slope. Many subsequent investigations showed that the Boussinesq 

assumption was accurate in cases with sloping aquifers (Chauhan et al., 1968; Childs, 

1971; Marei and Towner, 1975; Wooding and Chapman, 1966), and this assumption was 

commonly used to study the sloping aquifer with the modified Darcy’s Law (Brutsaert, 

1994; Chapman, 1980; Childs, 1971). As a result, most analytical studies concerning the 
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sloping aquifer were based on this Boussinesq assumption. Shukla et al. (1990) obtained 

a finite-difference solution of the Boussinesq equation for a sloping aquifer and compared 

the results with an earlier steady-state analytical solution of Schmid and Luthin (1964) 

and experiments of Luthin and Guitjens (1967). Shukla et al. (1990) claimed that when 

the sloping angle was less than 16.7º, the Boussinesq equation can be used to characterize 

the groundwater table. Verhoest and Troch (2000) developed an analytical solution of the 

linearized Boussinesq equation with recharge by infiltration for a sloping aquifer, and 

they focused on the response of groundwater table at the onset of rainfall storm in a 

hillslope system. Zissis et al. (2001) presented an analytical solution of seepage from a 

stream with a dynamic stream stage into an adjacent sloping unconfined aquifer of semi-

infinite extent, considering the effects of recharge from infiltration. They found an 

excellent agreement between their analytical solution and a properly crafted numerical 

solution. 

Upadhyaya and Chauhan (2002) developed analytical solutions of the linearized 

Boussinesq equation for a system with an unconfined sloping aquifer with two canals and 

constant recharge, but did not consider the changes of canal river stages and the effects of 

a thin less permeable sedimentary layer lining the bottom and side of the canals. 

Upadhyaya and Chauhan (2002) compared their analytical solution with a fully implicit 

finite-difference numerical solution of the Boussinesq equation for various sloping angles 

of 0º, 2.86º, 5.71º and the solution of Mustafa (1987) for a horizontal aquifer. They found 

that the point of minimum water table height tended to shift from the middle region 

toward the lower canal when the sloping angle increased. They also noticed that 

linearization of the Boussinesq equation resulted in overestimation of the water table 
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height, a conclusion held true for both sloping and horizontal aquifers. Akylas and 

Koussis (2007) studied groundwater flow in a sloping aquifer considering a step function 

increase (or decrease) in stream stage and an impervious boundary on one side, with a 

mild sloping angle varying within ±3º. They provided a host of analytical solutions for 

various possible cases that may be seen in the field. Bansal et al. (2016) combined the 

effects of bed slope, clogging layer, and variable stream stages on one side of a sloping 

aquifer, and then developed analytical solutions to quantify the interaction of surface 

water and groundwater, but this article is problematic in treating the boundary condition 

associated with the vertical clogging layer. Detailed discussion about this issue will be 

provided later. Troch et al. (2003) studied the influence of the hillslope shape for 

groundwater flow and interaction of surface water and groundwater, and they discussed 

different behaviors of hillslope drainage under a number of hillslope types (uniform, 

convergent, divergent) and hillslope angles. 

A careful examination of the above referenced studies suggests that there is still not a 

general analytical model that considers the most important factors of governing 

groundwater dynamics in a sloping aquifer is still lacking. These factors include: 1) 

clogging layers between bounding river and the aquifer; 2) variable vertical recharge; 3) 

variable river stage.  Furthermore, none of the analytical models developed so far have 

been compared with numerical models incorporating coupled saturated-unsaturated flow 

processes. Therefore, the overarching objective of this study is to develop a general 

purpose model that simulates these important processes governing groundwater flow in a 

dynamically fluctuating, sloped aquifer, under the influence of a dynamically fluctuating 

river. Specifically, the following objectives will be achieved. First, to develop a general 
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analytical model to study water table heights and water exchanges in an unconfined 

sloping aquifer which is connected to a time-dependent river (through a clogging layer). 

Second, to study different responses of water table fluctuations and lateral fluxes between 

the aquifer and a river with variable stage, combined with time-dependent infiltrated 

recharge across the top of a sloping aquifer. Third, to compare the differences of results 

between the newly developed analytical model and two new numerical models. The first 

numerical model was a linearized one-dimensional (1D) Boussinesq equation using 

COMSOL Multiphysics. The second numerical model was a solution to the two-

dimensional (2D) Boussinesq equation using HydroGeoSphere (Therrien et al., 2006). A 

point to note is that the 2D HydroGeoSphere program considers both the saturated and 

unsaturated flow processes, while the analytical model and the 1D COMSOL program 

only consider the saturated flow process. Fourth, to investigate the differences in water 

table heights and river-aquifer fluxes from the newly developed analytical model in 

section 2 and Bansal’s analytical solution. Fifth, to develop a general analytical model to 

study water table heights and water exchanges between two rivers and the unconfined 

sloping aquifer (through the clogging layers). Sixth, to compare the water table 

fluctuations and river-aquifer fluxes in an unconfined sloping aquifer with two rivers 

from the developed analytical solution, the numerical solution by COMSOL, and the 

numerical solution including the saturated and unsaturated processes by 

HydroGeoSphere. Finally, to develop a new method to fill a gap of analytical models in a 

sloping aquifer. Such a new method can use a new function to describe a realistic river 

stage. In the study of building ground water model, when an initial water table heights are 

unknown, identical initial water table heights and initial boundary heads are set in the 
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horizontal aquifer and sloping aquifer. In the sloping aquifer, the identical initial water 

table heights and initial boundary heads are not steady-state. The water table may change 

rapidly at the beginning of time. That function can reconcile the initial condition problem 

for transient groundwater flow in a sloping aquifer. 
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CHAPTER 2                                                                                                   

TRANSIENT GROUNDWATER FLOW IN A SLOPING AQUIFER WITH ONE 

RIVER 

 

2.1 Introduction 

A river connected to an unconfined aquifer is a very general phenomenon in the 

hydrological cycle. The impermeable beds defining the lower boundary of unconfined 

aquifers are commonly gently inclined. In Chapter 1, we have mentioned that an 

unconfined aquifer with a connected river on one side and semi-infinite on the other side 

was studied by Zissis et al. (2001) and Bansal et al. (2016). Zissis et al. (2001) considered 

the influences of recharges from the various river stages and precipitation, but they did 

not consider the influences of a river bed clogging layer between river and aquifer. 

Bansal et al. (2016) considered the influences of the varying river stage of river and the 

clogging layer between river and aquifer, but they did not consider the vertical recharge. 

Furthermore, the boundary condition Bansal et al. used for treating the clogging layer 

was erroneous. The questions we try to answer are: 1) Will all these factors (e.g., vertical 

recharge, river bed clogging layer, varying river stage) affect water table fluctuations and 

river-aquifer fluxes equally? 2) Is Bansal’s solution valid or not for studying groundwater 

flow in a sloping unconfined aquifer? 3) Is the unsaturated zone process (capillary 

retention) affect groundwater table significantly or not in a sloping aquifer? In this 

chapter, we will develop a new analytical model explicitly considering all these factors. 

The specific tasks to achieve this goal follows. First, we will compare the newly 

developed analytical solution using a finite element model based on a COMSOL 
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program. Second, we will study the influences of unsaturated zone process using the 

coupled unsaturated-saturated flow and transport model of HydroGeoSphere (Therrien et 

al., 2006). Third, our new analytical solution improves Bansal’s boundary condition 

(Bansal et al. ignored an important term in their boundary condition), and we will check 

the effects of Bansal’s boundary condition by comparing our new analytical solution with 

the Bansal’s solution. Finally, we will investigate the influences of several factors on the 

aquifer hydrodynamics, such as hydraulic conductivity of the aquifer, hydraulic 

resistance of the clogging layer, specific yield of the aquifer, infiltration-induced 

recharge, the variational stage of river, the slope angle and direction of the aquifer 

(downward or upward). 

2.2 Mathematical model 

A sloping aquifer with a river on left side and semi-infinite on the other side with 

recharge infiltrating across the upper surface of the aquifer is schematically shown in Fig. 

2-1. The river fully penetrates the aquifer and its stage can vary with time. The aquifer is 

homogeneous. A thin vertical low-permeability (clogging) layer separates the river from 

the aquifer. The thicknesses of vertical clogging layer is b, and the hydraulic 

conductivities of the clogging layer is k. The clogging layer consists of fine sediments 

such as clay, silt, and fine sand rich materials and its permeability is assumed to be much 

smaller (at least one order of magnitude smaller) than that of the aquifer. The sloping 

aquifer bed can be downward or upward from left to right. In this study, downward slope 

angles are positive while upward slopes are negative. The origin of the coordinate system 

is at the intercept of the clogging layer with the base of the aquifer. The x-axis is 

horizontal, increasing to the right, and the z-axis is upward vertical. The unconfined 
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aquifer is assumed to extend infinitely along the y-axis (or the direction perpendicular to 

the xz plane). The vertical recharge can vary with time, but is assumed to be uniform 

along the x axis. The horizontal length of aquifer is infinite on one side (right side in Fig. 

2-1). The sloping angle is 𝜃. 

We should point out that this conceptual model of a river-aquifer system is consistent 

with many previous investigations concerning a horizontal aquifer (Ram et al., 1994; 

Liang and Zhang, 2012; Moutsopoulos, 2013). However, it is different from some recent 

investigations of a river-aquifer system that honors the importance of bank storage in 

supplying baseflow. For instance, Rhodes et al. (2017) showed that the river is well 

connected to bank storage zones on each side of the river, but poorly connected from the 

broader alluvial aquifer when studying the Brazos River near College Station, Texas. 

 

Fig. 2-1 The diagram of the sloping aquifer adjoining with one river with a vertical 

clogging layer. 

 

Nevertheless, based on the extended Dupuit-Forchheimer assumption or the 

Boussinesq assumption (1877), the streamlines are considered parallel to the sloping 

impermeable bed. The modified Darcy’s law for such a sloping aquifer is (Chapman, 

1980):  
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𝑞(𝑥, 𝑡) = −𝐾ℎ (
𝜕ℎ

𝜕𝑥
− 𝑡𝑎𝑛𝜃) 𝑐𝑜𝑠2𝜃       (2-1)  

where q is the discharge over the entire unconfined aquifer per unit width; K is the 

hydraulic conductivity along the bedding (sloping) direction; x is horizontal coordinate; 

h=h(x, t) is water table height measured in the vertical direction from the sloping 

impervious base. The modified Darcy’s law is derived in Appendix D. Be aware that h(x, 

t) here is not the hydraulic head as it is not measured against a fixed horizontal reference, 

rather, it is measured against a sloping base. It is also obvious that if the sloping angle 

drops to zero, Eq. (2-1) then becomes the standard Darcy’s law for horizontal flow in an 

unconfined aquifer. According to the mass-balance principle, the equation of 

groundwater flow for a sloping aquifer without any vertical recharge can be expressed as 

following:  

𝜕𝑞

𝜕𝑥
+ 𝑆𝑦

𝜕(ℎ−𝑥𝑡𝑎𝑛𝜃)

𝜕𝑡
= 0         (2-2)  

where 𝑆𝑦 is specific yield of the aquifer. Substituting Eq. (2-1) into Eq. (2-2) and adding 

a time-dependent infiltration-induced recharge of W(t), one has     

𝑊(𝑡)

𝐾𝑐𝑜𝑠2𝜃
+

𝜕

𝜕𝑥
(ℎ

𝜕ℎ

𝜕𝑥
) − 𝑡𝑎𝑛𝜃

𝜕ℎ

𝜕𝑥
=

𝑆𝑦

𝐾𝑐𝑜𝑠2𝜃

𝜕ℎ

𝜕𝑡
      (2-3)  

Eq. (2-3) is the governing equation of flow in an unconfined sloping aquifer with 

recharge, and it may be regarded as the modified Boussinesq equation for a sloping 

aquifer. The nonlinear nature of Eq. (2-3) is difficult to solve analytically except for a 

few special cases, similar to the problem of dealing with the Boussinesq equation for an 

unconfined aquifer with a horizontal base. However, after linearization of Eq. (2-3), we 

will show that a robust analytical model can be obtained. To proceed, we replace the term 
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h associated with ∂h/∂x in the first bracket of the left side of Eq. (2-3) by a prescribed 

average saturated depth ha as below.   

𝑊(𝑡)

𝐾ℎ𝑎𝑐𝑜𝑠2𝜃
+

𝜕2ℎ

𝜕𝑥2
−

𝑡𝑎𝑛𝜃

ℎ𝑎

𝜕ℎ

𝜕𝑥
=

𝑆𝑦

𝐾ℎ𝑎𝑐𝑜𝑠2𝜃

𝜕ℎ

𝜕𝑡
      (2-4) 

The flow rate includes a linearized parameter ha is follows. 

𝑞(𝑥, 𝑡) = −𝐾 (ℎ𝑎
𝜕ℎ

𝜕𝑥
− ℎ𝑡𝑎𝑛𝜃) 𝑐𝑜𝑠2𝜃      (2-5) 

Rivers commonly have dynamic stages because of rainfall, snowmelt, base flow 

(Mahoney and Rood, 1998) and human activities like periodic dam releases and 

sedimentary changes (Chen et al., 2001). A rigorous approach for dealing with a river-

aquifer system is to incorporate coupled open-channel flow in the river channel and 

groundwater flow in the aquifer with water flux exchange between the rivers and aquifer. 

Such a fully coupled approach is beyond the scope of this investigation and will be 

pursued later. To simplify the problem, the river stage is assumed to vary with time, 

following a prescribed function. As suggested by Teloglou and Bansal (2012) and others, 

an exponential function using to describe the river stage will be chosen here as an 

example. A hydrograph after the pass of a flood wave consists of a rising limb, followed 

by a falling limb until it reaches the baseflow recession. The base flow recession curves 

are often described as an exponentially decayed function of time, and the rising branch of 

a hydrograph may also be approximated by an exponential function of time (Teloglou 

and Bansal, 2012). We need to point out that other types of river stage functions can also 

be used if they are shown to match the river stage measurements. Nevertheless, the time-

independent river stage is given by the following Eq. (2-6), where ℎ𝑠(𝑡) is the time-
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varying stages for river, ℎ𝑓 is the final stage value for river,  ℎ𝑖 is the initial stage for river 

at t=0; λ is the rate of change used for the exponential functions for river. 

ℎ𝑠(𝑡) = ℎ𝑓 − (ℎ𝑓 − ℎ𝑖)𝑒−𝜆t        (2-6) 

The following Eq. (2-7a) is the initial water table height, designated as hi. Such an 

initial condition has been used in many previous investigations such as Bansal (2016) and 

others. However, despite its wide use in previous studies, caution must be taken for its 

use in a sloping aquifer because of a few considerations. First, the use of this initial 

condition is primarily for the sake of simplifying the analytical model, not because it is 

commonly seen in real settings. In fact, it is very unlikely to see a uniform water table 

height above the impermeable base in a sloping aquifer unless there is some sources of 

water supply (either from recharge or a constant-head boundary in an upper elevation) to 

sustain the down-gradient flow along the sloping bed. A non-uniform distribution of the 

water table height cross the domain of interest is mostly like to occur in a real-world 

setting. Such an issue will be specifically studied in Chapter 4. 

 Moutsopoulos (2013) developed a linear approximation method for Robin boundary 

condition, and assumed that the head loss in the vertical clogging layer is much less than 

the water table height, thus one has ℎ(𝑥 = 0+, 𝑡) + ℎ𝑠(𝑡) ≈ 2ℎ(𝑥 = 0+, 𝑡) in the vertical 

clogging layer. The Robin boundary condition is also called as the third boundary 

condition. It describes head-dependent flux and it is usually used to study a leakage 

process, such as vertical leakage through basal sediments. Based on this approximation 

and modified Darcy’s law for a sloping aquifer, the boundary condition at interface 

between the vertical clogging layer and aquifer is obtained in Eq. (2-7b). The right side of 
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Eq. (2-7b) represents the flow rates in the clogging layer. The left side of Eq. (2-7b) 

represents the flow rate at the interface between the clogging layer and aquifer. Bansal et 

al. (2016) used a similar method to deal with the boundary condition of the vertical 

clogging layer. But they ignored the term of –tan(θ) on the left side, which is included in 

the left bracket of Eq. (2-7b). This term is important in a sloping aquifer and it reflects 

the driving force associated with the sloping bed. In section 2.3.2, we will rigorously 

investigate whether this term can be ignored in an unconfined sloping aquifer or not. Eq. 

(2-7c) represents the condition that the water table heights do not vary with the horizontal 

distance in a very long distance from the left boundary L. 

ℎ(𝑥, 𝑡 = 0) = ℎ𝑖         (2-7a) 

−𝐾ℎ(𝑥 = 0+, 𝑡)[(
𝜕ℎ

𝜕𝑥
)𝑥=0 − 𝑡𝑎𝑛𝜃] = −𝑘ℎ(𝑥 = 0+, 𝑡)

ℎ(𝑥=0+,𝑡)−ℎ𝑠(𝑡)

𝑏
  (2-7b) 

𝜕ℎ

𝜕𝑥𝑥=𝐿
= 0          (2-7c) 

Defining the following dimensionless terms,  ℎ𝐷 =
ℎ−ℎ𝑖

ℎ𝑓−ℎ𝑖
, 𝑥𝐷 =

𝑥

𝐿
, 𝑡𝐷 =

𝐾ℎ𝑎𝑐𝑜𝑠2𝜃𝑡

𝑆𝑦𝐿2 , 𝛼 =

𝐿𝑡𝑎𝑛𝜃

ℎ𝑎
, 𝑊(𝑡𝐷) =

𝐿2𝑊(𝑡)

(ℎ𝑓−ℎ𝑖)𝐾ℎ𝑎𝑐𝑜𝑠2𝜃
, 𝑅 =

𝐾𝑏

𝑘𝐿
, 𝜆𝐷 =

𝑆𝑦𝐿2𝜆

𝐾ha𝑐𝑜𝑠2𝜃
, 𝑚 =

𝐾𝑏𝑡𝑎𝑛𝜃

𝑘(ℎ𝑓−ℎ𝑖)
, the dimensionless 

forms of Eq. (2-4) and Eqs. (2-7a) to (2-7c) are presented as below. 

𝜕2ℎ𝐷

𝜕𝑥𝐷
2 − 𝛼

𝜕ℎ𝐷

𝜕𝑥𝐷
+ 𝑊(𝑡𝐷) =

𝜕ℎ𝐷

𝜕𝑡𝐷
         (2-8) 

ℎ𝐷(𝑥𝐷 , 𝑡𝐷 = 0) = 0         (2-9a) 

𝑅(
𝜕ℎ𝐷

𝜕𝑥𝐷
)𝑥𝐷=0 = ℎ𝐷(𝑥𝐷 = 0+, 𝑡𝐷) + 𝑒−𝜆𝐷𝑡𝐷 − 1 + 𝑚     (2-9b) 

(
𝜕ℎ

𝜕𝑥𝐷
)𝑥𝐷=1 = 0          (2-9c) 
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Define a new parameter 𝜑 = ℎ𝐷𝑒−
𝛼𝑥𝐷

2 , above four equations are changed to 

𝜕2𝜑

𝜕𝑥𝐷
2 −

𝛼2𝜑

4
+ 𝑒−

𝛼𝑥𝐷
2 𝑊(𝑡𝐷) =

𝜕𝜑

𝜕𝑡𝐷
       (2-10a) 

𝜑(𝑥𝐷 , 𝑡𝐷 = 0) = 0         (2-10b) 

[𝑅
𝜕𝜑

𝜕𝑥𝐷
+ (

𝑅𝛼

2
− 1) 𝜑]|𝑥𝐷=0 = 𝑒−𝜆𝐷𝑡𝐷 − 1 + 𝑚     (2-10c) 

(
𝜕𝜑

𝜕𝑥𝐷
+

𝛼

2
𝜑)|𝑥𝐷=1 = 0         (2-10d) 

The partial different equation (PDE) Eq. (2-10a) can be transformed into an ordinary 

different equation (ODE) by eliminating the x terms using an Integral transform method. 

The Integral transform of 𝜑(𝑥𝐷 , 𝑡𝐷) is defined as Eq. (2-11a) and the corresponding 

inversion formula is defined as Eq. (2-11b). 

𝜑̅(𝜔𝑛, 𝑡𝐷) = ∫ 𝜑(𝑥𝐷 , 𝑡𝐷)
1

0
𝐾(𝜔𝑛, 𝑥𝐷)𝑑𝑥𝐷      (2-11a) 

𝜑(𝑥𝐷 , 𝑡𝐷) = ∑ 𝐾(𝜔𝑛, 𝑥𝐷)∞
𝑛=0 𝜑̅(𝜔𝑛, 𝑡𝐷)      (2-11b) 

where 𝐾(𝜔𝑛, 𝑥𝐷) and 𝜔𝑛 are transform kernel and eigenvalue, respectively, the overbar 

means the variable in frequency-domain hereinafter. The kernel 𝐾(𝜔𝑛, 𝑥𝐷) is the 

normalized eigenfunction of the following eigenvalue problem. 

𝑑2𝑘

𝑑𝑥𝐷
2

+ 𝜔𝑛
2𝑘 = 0         (2-12a) 

[
𝜕𝑘

𝜕𝑥𝐷
+ (

𝛼

2
−

1

𝑅
) 𝑘] |𝑥𝐷=0 = 0        (2-13a) 

(
𝜕𝑘

𝜕𝑥𝐷
+

𝛼

2
𝑘)|𝑥𝐷=1 = 0         (2-13b) 
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The kernel 𝐾(𝜔𝑛, 𝑥𝐷) is defined as  

𝐾(𝜔𝑛, 𝑥𝐷) = 𝐴𝑛𝑘(𝜔𝑛, 𝑥𝐷) = 𝐴𝑛[𝜔𝑛 cos(𝜔𝑛𝑥𝐷) + (
1

𝑅
−

𝛼

2
) sin(𝜔𝑛𝑥𝐷)]  (2-14) 

where 

𝐴𝑛 =
√2

√[𝜔𝑛
2 +(

1

𝑅
−

𝛼

2
 )2](1+

𝛼
2

𝜔𝑛
2 +

1
4

 𝛼2
)+

1

𝑅
−

𝛼

2

       (2-15) 

Taking integral transform on Eq. (2-10a) leads to 

∫ 𝐾(𝜔𝑛, 𝑥𝐷)𝑒−
𝛼𝑥𝐷

2 𝑊(𝑡𝐷)
1

0
𝑑𝑥𝐷 + ∫ 𝐾(𝜔𝑛, 𝑥𝐷)

1

0

𝜕2𝜑

𝜕𝑥𝐷
2 𝑑𝑥𝐷 = ∫ 𝐾(𝜔𝑛, 𝑥𝐷)

𝜕𝜑

𝜕𝑡𝐷

1

0
𝑑𝑥𝐷 +

𝛼2/4 ∫ 𝐾(𝜔𝑛, 𝑥𝐷)𝜑(𝑥𝐷 , 𝑡𝐷)
1

0
𝑑𝑥𝐷       (2-16) 

Based on Green’s function theorem, the left side of Eq. (2-16) can be written as: 

∫ 𝐾(𝜔𝑛, 𝑥𝐷)𝑒−
𝛼𝑥𝐷

2 𝑊(𝑡𝐷)
1

0
𝑑𝑥𝐷 + ∫ 𝐾(𝜔𝑛, 𝑥𝐷)

1

0

𝜕2𝜑

𝜕𝑥𝐷
2 𝑑𝑥𝐷 =

∫ 𝐾(𝜔𝑛, 𝑥𝐷)𝑒−
𝛼𝑥𝐷

2 𝑊(𝑡𝐷)
1

0
𝑑𝑥𝐷 − 𝜔𝑛

2𝜑̅ −
𝐾𝑥𝐷=0(𝑒−𝜆𝐷𝑡𝐷−1+𝑚)

𝑅
   (2-17) 

Substituting Eqs. (2-11a), (2-13a), (2-13b) and (2-17) into Eq. (2-16), defining 𝛽𝑛 =

𝜔𝑛
2 + 𝛼2/4, one has 

𝜕𝜑̅

𝜕𝑡𝐷
+ 𝛽𝑛𝜑̅ = −

𝐾𝑥𝐷=0(𝑒−𝜆𝐷𝑡𝐷−1+𝑚)

𝑅
+

𝐴𝑛

𝛽𝑛
𝑊(𝑡𝐷) {𝑒−

𝛼

2 [𝛽𝑛 sin(𝜔𝑛) −
1

𝑅
(

𝛼

2
sin(𝜔𝑛) +

𝜔𝑛 cos(𝜔𝑛))] +
𝜔𝑛

𝑅
}         (2-18a) 

𝜑̅(0) = 0          (2-18b) 

Rearranging Eq. (2-18a) yield as 
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𝜕𝜑̅

𝜕𝑡𝐷
+ 𝛽𝑛𝜑̅ = 𝐵(𝑡𝐷)         (2-19) 

where 

𝐵(𝑡𝐷) = −
𝐾𝑥𝐷=0(𝑒−𝜆𝐷𝑡𝐷−1+m)

𝑅
+

𝐴𝑛

𝛽𝑛
𝑊(𝑡𝐷) {𝑒−

𝛼

2 [𝛽𝑛 sin(𝜔𝑛) −
1

𝑅
(

𝛼

2
sin(𝜔𝑛) +

𝜔𝑛 cos(𝜔𝑛))] +
𝜔𝑛

𝑅
}  

The solution of Eq. (2-19) subject to Eq. (2-18b) can be obtained as 

𝜑̅(𝜔𝑛, 𝑡𝐷) = exp(−𝛽𝑛𝑡𝐷) ∫ 𝐵(𝑡) exp(𝛽𝑛𝑡) 𝑑𝑡
𝑡𝐷

0
     (2-20) 

Defining 𝜉1 = −
1−𝑚

𝛽𝑛
,     

𝜉2 =
1

𝛽𝑛−𝜆𝐷
,            

𝜉3 =
1−m

𝛽𝑛
−

1

𝛽𝑛−𝜆𝐷
,  

𝜉4 =
𝐴𝑛

𝛽𝑛
{𝑒−

𝛼
2 [𝛽𝑛 sin(𝜔𝑛) −

1

𝑅
(

𝛼

2
sin(𝜔𝑛) + 𝜔𝑛 cos(𝜔𝑛))] +

𝜔𝑛

𝑅
}, 

one obtains 

𝜑̅(𝜔𝑛, 𝑡𝐷) = −
𝐴𝑛𝜔𝑛

𝑅
[𝜉1 + 𝜉2 exp(−𝜆𝐷𝑡𝐷) + 𝜉3 exp(−𝛽𝑛𝑡𝐷)] −

𝜉4 exp(−𝛽𝑛𝑡𝐷) ∫ 𝑊(𝑡𝐷) exp(𝛽𝑛𝑡) 𝑑𝑡
𝑡𝐷

0
       (2-21) 

Substituting Eq. (2-21) into Eq. (2-11b), it has 

𝜑(𝑥𝐷 , 𝑡𝐷) = ∑ 𝐾(𝜔𝑛, 𝑥𝐷)∞
𝑛=0 {−

𝐴𝑛𝜔𝑛

𝑅
[𝜉1 + 𝜉2 exp(−𝜆𝐷𝑡𝐷) + 𝜉3 exp(−𝛽𝑛𝑡𝐷)] −

𝜉4 exp(−𝛽𝑛𝑡𝐷) ∫ 𝑊(𝑡𝐷) exp(𝛽𝑛𝑡) 𝑑𝑡
𝑡𝐷

0
}       (2-22) 
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The final solution (in dimensionless form) can be obtained by transformation. 

ℎ𝐷(𝑥𝐷 , 𝑡𝐷) = 𝜑(𝑥𝐷 , 𝑡𝐷) exp(𝛼𝑥𝐷/2)         (2-23) 

Eq. (2-23) serves as the working equation for computing the water table heights above 

the impermeable base at any given location and time. When this is obtained, the river-

aquifer flux can be computed using the modified Darcy’s law for a sloping aquifer (Eq. 

(2-1)) at the interface of the clogging layer and the aquifer. The MATLAB code to obtain 

the solution of Eq. (2-23) is presented in Appendix A. 

 

2.3 Results and discussion 

2.3.1 Comparison of analytical solution with numerical solutions 

In this section, we will check the new analytical solution developed above by 

comparing with two sets of numerical solutions. The first set of numerical solution 

concerns a linearized modified Boussinesq equation for a sloping aquifer using a finite-

element COMSOL program (Li et al., 2009). The second set of numerical solution 

concerns the coupled unsaturated and saturated flow process for a sloping aquifer using 

HydroGeoSphere (Therrien et al., 2006). We use these two sets of numerical solutions to 

simulate the groundwater table fluctuations and lateral flux along the sloping bed.  As a 

reference, we also include the results of a horizontal aquifer as a special case to illustrate 

the impact of sloping feature on the overall hydrodynamics of a river-sloping aquifer 

system. The setting up of the numerical models are as follows. 
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The thickness of the clogging layer is set as 1 m, and the hydraulic conductivity of the 

clogging layer is set as 0.248 m/d. The hydraulic conductivity of the aquifer along the 

sloping bed is set as 2.5 m/d, the specific yield the aquifer material is set as 0.25 and the 

initial water table height of aquifer is set as 5 m. The vertical recharge is set as zero for 

the sake of illustration. The chosen parameters of the clogging layers are similar to those 

used in previous studies (Bansal et al., 2016). However, we should also point out the 

clogging layer in actual field condition could be much more complex than the simple 

model used here (Sebok et al., 2015). For instance, the clogging layer could be highly 

heterogeneous with different thickness and hydraulic conductivity, and they could be 

even missing in certain locations of the river banks, thus leaving “windows” for 

preferential flows to occur (Calver, 2001; Leek et al., 2009; Tang et al., 2017). For 

instance, Calver (2001) and Leek et al. (2009) has stated that the riverbed hydraulic 

conductivity can vary over several orders of magnitude within a single river reach, and 

such riverbed heterogeneity imposes significant impact on river-aquifer exchange fluxes. 

It is our hope that the baseline research established in this study can serve as an important 

step stone for investigating a complex river-aquifer system with heterogeneous clogging 

layers and a sloping aquifer base in the near future. Chen (2000) described  a 

measurement method of streambed hydraulic conductivity, and Chen (2004) presented a 

range of vertical hydraulic conductivity values for the silt and clay bed which was tested 

in streambed based on the method of Chen (2000).  Chen (2004) stated that the values of 

vertical hydraulic conductivity ranged from 0.8 m/d to 2.9 m/d. Furthermore, he 

presented two cases for the thickness of the silt/clay layer in streambed. In one case, the 

thickness of the silt/clay layer was 1.4 m. In the other case, the thickness of the silt/clay 
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layer was 3.5 m. Sebok et al. (2015) presented the field test values of horizontal hydraulic 

conductivity and vertical hydraulic conductivity at 40 individual test locations in 

streambed using slug tests, and the range of field tested horizontal hydraulic conductivity 

values are from 0.19 m/day to 80.46 m/day. It is seen that the setup of our study conforms 

to the realistic values of hydrological parameters. The initial and final stages for river are 

set as 5 and 10 m, respectively, and λ = 0.1 d-1. For the coupled unsaturated and saturated 

flow process in HydroGeoSphere, the unsaturated zone properties are assumed to follow 

the Van Genuchten (1980) model without loss of generality. Specifically, the so-called 

alpha and beta values of the aquifer are 12.4 m-1 and 2.68, respectively; and the alpha and 

beta values of the clogging layer are 3.6 m-1 and 2.68, respectively. Alpha [L-1] is relative 

to the inverse of the air-entry pressure head and beta [dimensionless] is the pore-size 

distribution index. Such values are reflective of the sand-rich materials of aquifer and 

clay-rich materials of the clogging layer. The porosity of aquifer is 0.41 and the porosity 

clogging layer is 0.43. The residual saturation value of the aquifer is set as 0.16 and the 

residual saturation the clogging layer is set as 0.078. The parameters of Van Genuchten 

model are refer to the classical values from Carsel and Parrish (1988). The alpha and 

porosity values of the aquifer and the clogging layer are similar to those of loamy sand 

and loam, respectively. The reason to choose these values is that the hydraulic 

conductivities of loamy sand and loam in the study of Carsel and Parrish (1988) 

approximate the assigned values of aquifer and the clogging layer. We choose different 

beta values of aquifer and the clogging layer in this study. The reason is that when we 

used the beta values of loamy sand and loam in the study of Carsel and Parrish (1988), 

the numerical program of HydroGeoSphere could not be convergent for no obvious 
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reasons. Through a few tests, the beta value (2.68) of sand in the study of Carsel and 

Parrish (1988) is the best replacement for the numerical program of HydroGeoSphere. 

The residual saturation value of the clogging layer is similar to the values of loam. The 

residual saturation value of aquifer is different from that of the clogging layer. In general, 

residual saturation value (or called the undrainable porosity by some scholars) is regarded 

as close to the difference of the total porosity and the specific yield (or called drainable 

porosity by some scholars). 

The design of COMSOL program is briefly illustrated as follows. For the purpose of 

comparison, we generate three sets of hypothetical aquifers here: a horizontal aquifer as a 

reference of comparison, a sloping aquifer with a 5° sloping angle, and a sloping aquifer 

with a 10° sloping angle. The horizontal length of the aquifer is 1000 m. We need point 

out that 1000 m is long enough in this study. In this chapter, we focus on studying water 

table heights from x=0 m to x=150 m, because this is the region that the water table varies 

mostly.  We set up a similar COMSOL model with a horizontal length of 2000 m. The 

results show that water table heights and river-aquifer fluxes are identical between the 

horizontal lengths of 1000 m and 2000 m, meaning that the use of 1000 m here is suffix 

for approximating a semi-infinite extent. The horizontal grid space is 0.1 m.  An analysis 

of grid convergence was carried out in three cases of COMSOL model, and it showed 

that the grid spacing did not affect the results of water table heights and river-aquifer 

fluxes. It means the grid spacing dependence is not a concern in the simulations of 

COMSOL model. The actual values of parameter are calculated by Eq. (2-7) for three 

types of aquifers. 
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The design of the model developed within HydroGeoSphere is briefly outlined as 

follows. We generate three sets of hypothetical aquifers: a horizontal aquifer as a 

reference of comparison, a sloping aquifer with a 5° sloping angle, and sloping aquifer 

with a 10° sloping angle. The horizontal length of the aquifer is 1000 m. The horizontal 

grid space in the clogging layer is 0.1 m, the horizontal grid space in the aquifer from x=0 

m to x=200m is 0.5 m and the horizontal grid space in the aquifer from x=200 m to 

x=1000 m is 2 m. The vertical grid space for both the aquifer and clogging layers is set at 

0.25 m.  For the same reason, we only study the water table height from x=0 m to x=150 

m and the river-aquifer flux at x=0 m. The horizontal grid space setting (2 m) from x=200 

m to x=1000 m does not affect our results in this study. The river edge is located at x=0 m 

and the clogging layer is located from x=0 m to x=1m. The initial water table heights of 

the river, the clogging layer and the aquifer are all 5 m. The specified heads of river are 

set as the sums of base elevations and the stages of river with a time step of 0.1 day. The 

base elevations of river are different for three aquifers. The values are calculated by 

tan(θ) times the length of aquifer. The specified head of aquifer at x=1001 m is set as 5 m 

and the base elevation is set as 0 m. Similarly, an analysis of grid convergence is carried 

out in three cases of HydroGeoSphere model, and it shows that the grid spacing does not 

affect the results of water table heights and river-aquifer fluxes.  

An important step to obtain the approximate analytical solution of transient flow in a 

river-aquifer system is to linearize h using ha in the Boussinesq equation, where ha is the 

spatially averaged thickness of the unconfined aquifer. Liang and Zhang (2012) 

investigated how to determine the value of ha for a horizontal aquifer, and they 

recommended to use the average value of the initial heads at the left and right boundaries. 
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We adopt the suggestion of Liang and Zhang (2012) for the determination of ha , and 

obtain ha =5 m which is the average of the initial heads at the left and right boundary. The 

value of ha is used in the analytical model and COMSOL simulation. The objective is to 

validate the new analytical solution for a rapidly rising river stage. 

Fig. 2-2 describes the water table heights at x=0 m, x=50 m and x=100 m in a period 

of t=0 to 50 d, and Fig. 2-3 describes the water table height distribution at t=10, 30 and 

t=50 d. The results are obtained from analytical solution, and separate numerical 

simulations by COMSOL and numerical simulation by HydroGeoSphere. From these two 

figures, we find that the results of analytical solution fit very well with the results of 

COMSOL solution. As the analytical solution and the COMSOL numerical solution both 

deal with the same linearized modified Boussinesq equation, the excellent agreement of 

both solutions provides evidence that the developed new analytical solution is reliable. 

The maximum difference of water table heights between the results of two methods is 11 

mm. The average difference in water table heights between the results of two methods is 

7.1 mm. Such minor differences between analytical solution and COMSOL solution 

stems from the numerical errors that are probably associated with the time step used in 

the COMSOL simulation. The following results are discussed: 1) water table heights at 

x=0, 20, 50, 80, 100 and 150 m from 0.1 day to 50 days with a time step of 0.1 days; 2) 

water table heights at t=10, 20, 30, 40 and 50 d from 0 m to 150 m.  

When the time is from 30th day to 50th day, the discrepancy of water table between the 

analytical model and the HydroGeoSphere model is small but noticeable for the 

horizontal aquifer case. The results of HydroGeoSphere agree with the results of 

analytical solution very well for a sloping aquifer with a 5° sloping angle. When the slope 
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angle increases from 0º to 10º, the discrepancy between the analytical solution and the 

HydroGeoSphere solution slightly increases in a range from x=70 m to x=150 m.  

Fig. 2-4 shows the river-aquifer flux at the interface of vertical clogging layer and 

aquifer. Similarly, the results of analytical solution fit greatly with the results of 

COMSOL model. When the sloping angle increases from 0º to 10º, the discrepancy 

between the analytical solution and the HydroGeoSphere solution slightly increases in a 

range from 0.1 day to 25 day.  

2.3.2 Comparison of analytical solution with the Bansal’s (2016) solution 

In section 2.2.2, we mentioned that Bansal et al. (2016) used a similar method to deal 

with the boundary condition of a vertical clogging layer in a sloping aquifer and ignored 

an important term of –tan(θ) which is included in the equation of boundary condition for 

the clogging layer in this study. The analytical solution of Bansal (2016) is called the 

Bansal’s solution hereinafter. One objective of our analytical solution is an improvement 

to study the river-aquifer system with a clogging layer in a sloping aquifer. This section 

compares the results of our new analytical solution and the Bansal’s solution to check 

whether the “–tan(θ)” term can be ignored or not. The setting of model is the same as in 

section 2.3.1.  

After obtaining the analytical and the numerical solutions for 0°, 5° and 10°, Fig. 2-5 

describes the water table heights with time at x=0, 50 and 100 m, Fig. 2-6 describes the 

water table height distribution at t=10, 30 and 50 d, Fig. 2-7 describes river-aquifer fluxes 

a the logging layer-aquifer interface. The solid line A represents the results of our 

solution, the dashed line B represents the results of the Bansal’s solution. The results of 
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our analytical solution fits greatly with the results of Bansal’s solution for a horizontal 

aquifer. When the sloping angle increases from 0º to 10º, the discrepancy between our 

analytical solution and the Bansal’s solution increases significantly. In a range of x=0 m 

to =150 m of the sloping aquifers, the discrepancy between our analytical solution and 

the Bansal’s solution decreases when moving away from the river. The boundary 

condition of Eq. (7b) represents water-balance at the interface between aquifer and 

clogging layer. The neglect of the “–tan(θ)” term will overestimate water table height and 

river-aquifer flux. 

2.3.3 Analysis of parameter impacts on the river-aquifer system 

In this section, we will investigate the influences of water table fluctuation and river-

aquifer flux in the presence of a sloping bed with different hydraulic parameters. Based 

on Eq. (2-8) to Eq. (2-9c), it is easy to see that hydraulic parameters b, k, K, Sy affect 

hydrodynamics of the river-aquifer system. River stage is described by Eq. (2-6) with 

λ=0.1 d-1 and hi=5 m and hf=10 m. Consistent with the previous discussion, the base 

model has K=2.5 m/d, Sy=0.25, L=1000 m, k=0.248 m/d and b1 =1 m. In the first set of 

analyses, the value of b/k is doubled from 4.03 d to 8.06 d, while holding the other 

parameters constant. In the second set of analyses, the value of K is doubled from 2.5 m/d 

to 5 m/d while holding the other parameters constant. In the third set of analyses, the Sy 

value is increased from 0.25 to 0.35 while holding the other parameters constant.  

Fig 2-8 and Fig 2-9 presents the water table heights between at t=10 d and t=30 d 

respectively. Fig 2-10 displays river-aquifer fluxes for three types of aquifers. A few 

observations are evident. First, when the value of hydraulic resistance of the clogging 
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layer, b/k, is doubled, the river-aquifer flux decreases and the hydraulic gradient in 

aquifer decreases. The flow rates in aquifers also decrease, and the water table heights 

decline. Second, when the value of K is doubled, the flow rates in aquifers increase 

significantly, and the river-aquifer fluxes increase remarkably. The water table heights 

increase in a range of x=50 m to x=100 m for 0° and 5°. The sloping beds increase the 

flow rates in aquifer, thus the flow rates in a sloping aquifer with a 10° sloping angle are 

significantly greater than the other two types of aquifer. When the Sy value increases from 

0.25 to 0.35, the unsaturated zone could uphold much more water, thus the variational 

rate of water table height versus time slows down. 

2.3.4 Upward sloping bed 

When studying river-aquifer interaction, the direction of slope matters greatly. The 

purpose of this section is to investigate the groundwater flow in an unconfined sloping 

aquifer with an upward sloping angle and the presence of a dynamic river stage at the 

left. The setting of this section is exactly the same as in previous sections except that the 

impermeable base of the unconfined aquifer has an upward slope. Fig. 2-11 displays 

water table heights at t=10, 30 and 50 d for sloping aquifers with 5° and 10° upward 

sloping angles, with a rising river. The initial and final stages for river are set as 5 m and 

10 m, respectively, and λ = 0.1 d-1. The water table heights for such sloping cases are 

higher than their counterparts of a horizontal aquifer, as evidence in Fig. 2-3. Fig. 2-12 

displays river-aquifer fluxes for 5° and 10° sloping aquifers with a rising river. The solid 

line represents downward sloping aquifer (as a reference of comparison). The dashed line 

represents upward sloping aquifer. For the upward sloping aquifer, the direction of river-
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aquifer fluxes is from right to left at the beginning, because the initial hydraulic gradient 

drives water flow to the left (as the initial water table profile is assumed to be parallel 

with the sloping base). As the stage of river increases rapidly after a few days, the 

direction of river-aquifer fluxes reverses its direction. 

Fig. 2-13 presents water table heights at t=10, 30 and 50 d for sloping aquifers with 

upward 5° and 10° sloping angles with a constant river stage of 5 m. The water table 

heights increase with time in regions near the left river for the upward sloping aquifers, 

and decrease with time for the downward sloping aquifers. Fig. 2-14 displays river-

aquifer fluxes for the upward 5° and 10° sloping aquifers with a constant river stage at 5 

m. The flow rates for both downward and upward sloping aquifers increase with time. 

The flow directions for the downward sloping aquifers are towards the right and the flow 

directions for the upward sloping aquifers are towards the left.  

2.3.5 Responses of recharge to groundwater table and river-aquifer fluxes  

In this section, we study the influences of infiltrated recharge on water table height 

and river-aquifer fluxes for downward sloping aquifers. The analytical solution 

developed in section 2.2.2 considered the factor of recharge to groundwater on the top. 

For the sake of illustration, we will use a sequence of piecewise functions here. 

Specifically, during a period from t1 to tn, where n is a positive integer number 

representing the number of piecewise steps, the recharge change from W1 to Wn. The 

model setup is exactly the same as in section 2.3.1 except that recharge is included here.  

As an example, we simulate two recharge events, and each event lasts 1 day. The 

values of recharge are 20 mm/day on the 10th day and 40 mm/day on the 20th day, and 
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zeros for the rest time. We have to point out that such sporadic recharge events could be 

used to represent the extreme but short precipitation events in arid and semi-arid regions, 

but may not be representative of precipitation events in humid regions in which longer-

term, sustained recharge will occur. Fig. 2-15, Fig 2-16 and Fig. 2-17 present water table 

heights change with time at x=0, 50 and x=100 m for three types of aquifers. The figures 

show that the sloping angles hardly affect the response of water table heights. The 

responses of recharge to water table heights at x=0 m is slightly less than the responses of 

recharge to water table heights at x=100 m. This is consistent with the phenomenon in 

Fig. 2-18. When the aquifers obtain recharge on the top, the river-aquifer fluxes will 

slightly decrease and the region close to the river will obtain less recharge from the river. 

However, when the recharge rate increases, the responses to water table heights increase 

too. The discrepancy in water table heights for different spatial distance from the river 

will be evident, when the aquifers obtain more recharge on the top. Once again, the 

relatively minor impact from the recharge is mostly because the short term recharge 

events which do not bring in sufficient amount of the water into the unconfined aquifer to 

alter the hydrodynamics. The story could be very different if long-term sustainable 

recharge events occur over the time of interest.  
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Fig. 2-2 Comparison of water table heights with time at x=0, 50 and 100 m in a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer among analytical solution, 

numerical solutions of COMSOL and HydroGeoSphere.  
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Fig. 2-3 Comparison of water table heights above the impermeable bed at t=10, 30 and 50 

d for a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer among 

analytical solution, numerical solutions of COMSOL and HydroGeoSphere. 
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Fig. 2-4 Comparison of river-aquifer fluxes at the vertical clogging layer in a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer among analytical solution, 

numerical solutions of COMSOL and HydroGeoSphere. 
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Fig. 2-5 Comparison of water table heights with time at x=0, 50 and 100 m in a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer between our analytical solution 

(A) and the Bansal’s solution (B). 
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Fig. 2-6 Comparison of water table heights above he impermeable bed at t=10, 30 and 50 

d for a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer between our 

analytical solution (A) and the Bansal’s solution (B). 
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Fig. 2-7 Comparison of river-aquifer fluxes at the left and right rivers in a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer between our analytical solution 

(A) and the Bansal’s solution (B).. 
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Fig. 2-8 Analysis of parameter impacts on water table heights above the impermeable bed 

in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer at t=10 d. 
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Fig. 2-9 Analysis of parameter impacts on water table heights above the impermeable bed 

in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer at t=30 d. 
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Fig. 2-10 Analysis of parameter impacts on river-aquifer fluxes at the left and right rivers 

in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer. 
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Fig. 2-11 Comparison of water table heights above the impermeable bed t=10, 30 and 50 

d in a 5° upward sloping aquifer, and a 10° upward sloping aquifer with a rising stage of 

river. 
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Fig. 2-12 Comparison of river-aquifer fluxes at the vertical clogging layer in a 5° upward 

sloping aquifer, a 5° downward sloping aquifer, a 10° upward sloping aquifer and a 10° 

downward sloping aquifer with a rising stage of river. 
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Fig. 2-13 Comparison of water table heights above the impermeable bed at t=10, 30 and 

50 d in a 5° upward sloping aquifer, a 5° downward sloping aquifer, a 10° upward 

sloping aquifer, and a 10° downward sloping aquifer with a constant stage of river. 
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Fig. 2-14 Comparison of River-aquifer fluxes at the vertical clogging layer in a 5° 

upward sloping aquifer, a 5° downward sloping aquifer, a 10° upward sloping aquifer and 

a 10° downward sloping aquifer with a constant stage of river. 
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Fig. 2-15 Impact of infiltrated recharge on water table heights above the impermeable 

base at x=0 m in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer. 
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Fig. 2-16 Impact of infiltrated recharge on water table heights above the impermeable 

base at x=50 m in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer. 
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Fig. 2-17 Impact of infiltrated recharge on water table heights above the impermeable 

base at x=100 m in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer. 
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Fig. 2-18 Impact of infiltrated recharges on river-aquifer fluxes at the river in a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer. 
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2.4 Conclusions 

In this chapter, an unconfined sloping aquifer bounded by a river with a low 

permeability vertical clogging layer is considered. Special attention has been paid to the 

impact of sloping feature on the water table variation and the river-aquifer flux. An 

approximate analytical solution is developed based on the linearized Boussinesq equation 

to study groundwater flow in such a sloping aquifer. The solution could deal with the 

time-dependent river stage and time-dependent vertical infiltrated recharge. The 

analytical solution is compared with numerical solutions of COMSOL and 

HydroGeoSphere. The results of numerical solution based on the same linearized 

modified Boussinesq equation as the analytical solution using the finite element method 

by COMSOL fit very well with the results of analytical solution. The numerical model of 

HydroGeoSphere couples the saturated process and the unsaturated process. Our 

analytical solution does not specifically consider the unsaturated process, as commonly 

done in most analytical model of unconfined flow, instead, simplifying the unconfined 

flow process into a water table boundary with the use of the specific yield concept. The 

unsaturated process and the linearized approximation cause a few discrepancies between 

our analytical solution and numerical solution of HydroGeoSphere.  

We have compared our solution with the Bansal’s solution. Bansal et al. (2016) 

developed an analytical solution for the river-aquifer system with the presence of a 

sloping aquifer. They ignored an important term of boundary condition in their study 

without explanation. Bansal et al. (2016) verified their solution by numerical method, but 

the numerical method is based on the linearized modified Boussinesq equation, which 

also ignored that same term in the treatment of boundary condition. The results of 



 

47 
 
 

 

comparison between our solution and Bansal’s solution display that the Bansal’s solution 

overestimates the water table heights and river-aquifer flux. 

We have compared the downward sloping bed case and the upward sloping bed case. 

The features of two cases are similar. However, the flow directions coming from the 

sloping bed driving forces are opposite for these two cases. The sloping bed provides an 

additional flow driving force, in addition to the gradient of water table heights above the 

impermeable base of the aquifer.   

We have also compared the response of sporadic (short-term) recharge events on the 

top to groundwater table and river-aquifer flux. The results display that the sloping angle 

affect the responses of such recharge events barely. The recharge on the top will increase 

the groundwater table and decrease the flux recharged from river. 
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CHAPTER 3                                                                                               

TRANSIENT GROUNDWATER FLOW IN A SLOPING AQUIFER WITH TWO 

PARALLEL RIVERS 

 

3.1 Introduction 

Chapter 2 discusses the interaction of one river with a sloping aquifer. This chapter 

concerns the interaction of two rivers with a sloping aquifer. There are a number of 

reasons to necessitate the study of this chapter. First, because of the nonlinear nature of 

flow in an unconfined sloping aquifer, the presence of two rivers cannot be regarded as a 

simple superposition of one river. It is also unclear if the analytical model developed 

under a linearization process of the modified Boussinesq equation for an unconfined 

sloping aquifer is good approximation or not of the nonlinear flow process there. Second, 

it is also interest to see the interference of river-aquifer interactions with the presence of 

two rivers in the sloping aquifer framework. Third, the study of unconfined flow in a 

sloping aquifer bounded by two rivers whose stages can independently vary with time has 

received much less attention in comparison with the single river-aquifer system. Thus 

much needed knowledge gap has to be filled. Fourth, the interaction of two rivers with a 

sloping aquifer could be very different from that in a horizontal aquifer, as the rivers 

located on the down-gradient and up-gradient sides of the sloping aquifer could play 

drastically different roles in terms affecting the evolution of water table profile and the 

river-aquifer fluxes. Fifth, the two river-aquifer scenarios may be seen in a few actual 

field settings. One example is to study transmitting water between two parallel rivers 

through a sloping unconfined aquifer. The other example is to study influence of seawater 
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tidal fluctuation in a coastal sloping aquifer in a peninsula setting (Sedghi and Zhan, 

2016). 

An unconfined sloping aquifer between two parallel rivers was studied by Upadhyaya 

and Chauhan (2002), but with a large room for advancement. For instance, Upadhyaya 

and Chauhan (2002) did not consider the influences of clogging layers between rivers and 

aquifer and the various stages of rivers. The authors also only obtained a steady-state 

solution rather than a transient state solution for the sloping aquifer. Such issues will be 

resolved in this chapter. By including two clogging layers at the river-aquifer interface 

and considering flow transiency, the newly developed model can deal with a much broad 

range of problems. In this section, we will develop a general analytical model to deal 

with the unconfined sloping aquifer with two rivers. The vertical clogging layers, variable 

infiltrated recharge, variable river stages and the sloping angle are concerned. Based on 

the numerical model of HydroGeoSphere which is capable of handling coupled saturated 

and unsaturated flow processes, we can investigate the influences of unsaturated flow 

process on the hydrodynamics of unconfined aquifer, specifically the evolution of the 

water table height and the river-aquifer fluxes. 

3.2 Mathematical model 

A schematic sloping aquifer between two parallel rivers with water infiltrated 

recharge is presented in Fig. 3-1. Similarly, both rivers fully penetrate the aquifer. The 

two rivers are located in two sides of the homogeneous aquifer in the x direction with two 

thin clogging layers between aquifer and rivers respectively. The thicknesses of the left 

and right clogging layers are b1 and b2, respectively; the hydraulic conductivities of the 

left and right clogging layers are k1 and k2, respectively. The aquifer is downward sloping 
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from left to right. Similar to section 2.2, the origin of the coordinate system is at the 

intercept of the left clogging layer with the base of the aquifer, the x-axis is horizontal, 

pointing to the right, and the positive direction of z-axis is upward vertical. The two river 

stages can vary with time independently, and the vertical recharge can also vary with 

time. The horizontal distance between two rivers is L and the sloping angle is 𝜃. A river-

aquifer system with a horizontal base is a standard model in many textbooks (Bear, 1972; 

Fetter, 1999; Domenico and Schwartz, 1998) and is used as a reference of comparison. In 

contrast to the river-aquifer with a horizontal base, a river-aquifer system with a sloping 

base has not been fully understood with many unanswered questions, which will be 

addressed in this study. A minor point to note is that the two parallel rivers here may be 

replaced with some other surface water features such as two parallel canals or drains, if 

they operate similarly as rivers. The system studied here is also applicable for a coastal 

sloping aquifer bounded on both sides by oceans whose water level can fluctuate with 

time. This scenario can be seen in peninsula settings or long-strip islands (Sedghi and 

Zhan, 2016).  

 

Fig. 3-1 The diagram of the sloping aquifer adjoining with two rivers by thin sedimentary 

layers. 

The details of the modified Darcy’s law, the linearized Boussinesq equation and the 

corresponding assumptions for a sloping aquifer were discussed in Eqs. (2-1) to (2-5) in 
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section 2.2 and will not be repeated here. The method and procedure are similar to 

section 2.2 except the boundary condition of river 2. However, the procedure of 

analytical model is necessary to be intact and strict for a check. We need to present the 

details for the sake of completeness. 

The time-independent river stages are also described by the suggested exponential 

functions of Teloglou and Bansal (2012), which are given by the following Eqs. (3-1a) 

and (3-1b), where ℎ𝑠1
(𝑡) and ℎ𝑠2

(t) are the time-varying stages for rivers 1 (left river) 

and river 2 (right river), respectively; ℎ𝑓1
and ℎ𝑓2

 are the final stage values for rivers 1 and 

2, respectively;  ℎ𝑖 is the initial (identical) stage for rivers 1 and 2 at t=0; λ1 and λ2 are the 

rates of change used for the exponential functions for rivers 1 and 2, respectively. 

ℎ𝑠1
(𝑡) = ℎ𝑓1

− (ℎ𝑓1
− ℎ𝑖)𝑒−𝜆1t       (3-1a) 

ℎ𝑠2
(𝑡) = ℎ𝑓2

− (ℎ𝑓2
− ℎ𝑖)𝑒−𝜆2t       (3-1b) 

The initial condition is the same as that in chapter 2 (Eq. (3-2a)). Based on the 

modified Darcy’s law used in sloping aquifers and a linear approximation of the Robin 

boundary condition by Moutsopoulos (2013), a mass balance principle can be used at the 

interface of the clogging layer and the aquifer, and the associated boundary conditions are 

obtained in Eqs. (3-2b) and (3-2c). The right sides of Eqs. (3-2b) and (3-2c) represent the 

flow rates in the clogging layers. The left sides of Eqs. (3-2b) and (3-2c) represent the 

flow rates at the interface between the clogging layers and aquifer. 

ℎ(𝑥, 𝑡 = 0) = ℎ𝑖         (3-2a) 

−𝐾ℎ(𝑥 = 0+, 𝑡)[(
𝜕ℎ

𝜕𝑥
)𝑥=0 − 𝑡𝑎𝑛𝜃] = −𝑘1ℎ(𝑥 = 0+, 𝑡)

ℎ(𝑥=0+,𝑡)−ℎ𝑠1(𝑡)

𝑏1
  (3-2b) 
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−𝐾ℎ(𝑥 = 𝐿−, 𝑡)[(
𝜕ℎ

𝜕𝑥
)𝑥=𝐿 − 𝑡𝑎𝑛𝜃] = 𝑘2ℎ(𝑥 = 𝐿−, 𝑡)

ℎ(𝑥=𝐿−,𝑡)−ℎ𝑠2(𝑡)

𝑏2
  (3-2c) 

Defining the following dimensionless terms, ℎ𝐷 =
ℎ−ℎ𝑖

ℎ𝑓1−ℎ𝑖
, 𝑥𝐷 =

𝑥

𝐿
, 𝑡𝐷 =

𝐾ℎ𝑎𝑐𝑜𝑠2𝜃𝑡

𝑆𝑦𝐿2 , 𝛼 =
𝐿𝑡𝑎𝑛𝜃

ℎ𝑎
, 𝑊(𝑡𝐷) =

𝐿𝑊(𝑡)

𝐾ℎ𝑎𝑐𝑜𝑠2𝜃
, 𝑅1 =

𝐾𝑏1

𝑘1𝐿
, 𝑅2 =

𝐾𝑏2

𝑘2𝐿
, 𝜇 =

ℎ𝑓2−ℎ𝑖

ℎ𝑓1−ℎ𝑖
, 𝜆1𝐷 =

𝑆𝑦𝐿2𝜆1

𝐾ha𝑐𝑜𝑠2𝜃
, 𝜆2𝐷 =

𝑆𝑦𝐿2𝜆2

𝐾ha𝑐𝑜𝑠2𝜃
, 𝑚1 =

𝐾𝑏1𝑡𝑎𝑛𝜃

𝑘1(ℎ𝑓1−ℎ𝑖)
, 𝑚2 =

𝐾𝑏2𝑡𝑎𝑛𝜃

𝑘2(ℎ𝑓1−ℎ𝑖)
, the dimensionless forms of 

Eq. (2-4) and Eqs. (3-2a) to (3-2c) are presented as below. 

𝜕2ℎ𝐷

𝜕𝑥𝐷
2 − 𝛼

𝜕ℎ𝐷

𝜕𝑥𝐷
+ 𝑊(𝑡𝐷) =

𝜕ℎ𝐷

𝜕𝑡𝐷
         (3-3) 

ℎ𝐷(𝑥𝐷 , 𝑡𝐷 = 0) = 0         (3-4a) 

𝑅1(
𝜕ℎ𝐷

𝜕𝑥𝐷
)𝑥𝐷=0 = ℎ𝐷(𝑥𝐷 = 0+, 𝑡𝐷) + 𝑒−𝜆1𝐷𝑡𝐷 − 1 + 𝑚1    (3-4b) 

𝑅2(
𝜕ℎ𝐷

𝜕𝑥𝐷
)𝑥𝐷=1 = −ℎ𝐷(𝑥𝐷 = 1−, 𝑡𝐷) − 𝜇𝑒−𝜆2𝐷𝑡𝐷 + 𝜇 + 𝑚2    (3-4c) 

Similar to section 2.2, we define a new parameter 𝜑 = ℎ𝐷𝑒−
𝛼𝑥𝐷

2 , above four equations 

are changed to 

𝜕2𝜑

𝜕𝑥𝐷
2 −

𝛼2𝜑

4
+ 𝑒−

𝛼𝑥𝐷
2 𝑊(𝑡𝐷) =

𝜕𝜑

𝜕𝑡𝐷
       (3-5a) 

𝜑(𝑥𝐷 , 𝑡𝐷 = 0) = 0         (3-5b) 

[𝑅1
𝜕𝜑

𝜕𝑥𝐷
+ (𝑅1𝛼/2 − 1)𝜑] |𝑥𝐷=0 = 𝑒−𝜆1𝐷𝑡𝐷 − 1 + 𝑚1    (3-5c) 

[𝑅2
𝜕𝜑

𝜕𝑥𝐷
+ (𝑅2𝛼/2 + 1)𝜑] |𝑥𝐷=1 = 𝑒−

𝛼

2[−𝜇(𝑒−𝜆2𝐷𝑡𝐷 − 1) + 𝑚2]   (3-5d) 

The PDE of Eq. (3-5a) can be transformed into an ordinary different equation by 

eliminating the x terms using an Integral transform method. The Integral transform of 
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𝜑(𝑥𝐷 , 𝑡𝐷) is defined as Eq. (3-6a) and the corresponding inversion formula is defined as 

Eq. (3-6b). 

𝜑̅(𝜔𝑛, 𝑡𝐷) = ∫ 𝜑(𝑥𝐷 , 𝑡𝐷)
1

0
𝐾(𝜔𝑛, 𝑥𝐷)𝑑𝑥𝐷      (3-6a) 

𝜑(𝑥𝐷 , 𝑡𝐷) = ∑ 𝐾(𝜔𝑛, 𝑥𝐷)∞
𝑛=0 𝜑̅(𝜔𝑛, 𝑡𝐷)      (3-6b) 

where 𝐾(𝜔𝑛, 𝑥𝐷) and 𝜔𝑛 are transform kernel and eigenvalue, respectively. The kernel 

𝐾(𝜔𝑛, 𝑥𝐷) is a normalized eigenfunction of the following eigenvalue problem. 

𝑑2𝑘

𝑑𝑥𝐷
2 + 𝜔𝑛

2𝑘 = 0         (3-7a) 

[
𝜕𝑘

𝜕𝑥𝐷
+ (

𝛼

2
−

1

𝑅1
) 𝑘] |𝑥𝐷=0 = 0        (3-8a) 

[
𝜕𝑘

𝜕𝑥𝐷
+ (

𝛼

2
+

1

𝑅2
) 𝑘] |𝑥𝐷=1 = 0        (3-8b) 

The kernel 𝐾(𝜔𝑛, 𝑥𝐷) is defined as  

𝐾(𝜔𝑛, 𝑥𝐷) = 𝐴𝑛𝑘(𝜔𝑛, 𝑥𝐷) = 𝐴𝑛[𝜔𝑛 cos(𝜔𝑛𝑥𝐷) + (
1

𝑅1
−

𝛼

2
) sin(𝜔𝑛𝑥𝐷)]  (3-9) 

where 

𝐴𝑛 =
√2

√[𝜔𝑛
2 +(𝛼/2−1/𝑅1 )2][1+

𝛼
2

+
1

𝑅2
𝜔𝑛

2 +(𝛼/2+1/𝑅2 )2]+
1

𝑅1
−

𝛼

2

     (3-10) 

Be aware that Eq. (3-10) of 𝐴𝑛 is different from Eq. (2-15). Taking integral transform on 

Eq. (3-5a) leads to 

∫ 𝐾(𝜔𝑛, 𝑥𝐷)𝑒−
𝛼𝑥𝐷

2 𝑊(𝑡𝐷)
1

0
𝑑𝑥𝐷 + ∫ 𝐾(𝜔𝑛, 𝑥𝐷)

1

0

𝜕2𝜑

𝜕𝑥𝐷
2 𝑑𝑥𝐷 = ∫ 𝐾(𝜔𝑛, 𝑥𝐷)

𝜕𝜑

𝜕𝑡𝐷

1

0
𝑑𝑥𝐷 +

𝛼2/4 ∫ 𝐾(𝜔𝑛, 𝑥𝐷)𝜑(𝑥𝐷 , 𝑡𝐷)
1

0
𝑑𝑥𝐷       (3-11) 
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Based on Green’s function theorem, the left side of Eq. (3-11) can be written as: 

∫ 𝐾(𝜔𝑛, 𝑥𝐷)𝑒−
𝛼𝑥𝐷

2 𝑊(𝑡𝐷)
1

0
𝑑𝑥𝐷 + ∫ 𝐾(𝜔𝑛, 𝑥𝐷)

1

0

𝜕2𝜑

𝜕𝑥𝐷
2 𝑑𝑥𝐷 =

∫ 𝐾(𝜔𝑛, 𝑥𝐷)𝑒−
𝛼𝑥𝐷

2 𝑊(𝑡𝐷)
1

0
𝑑𝑥𝐷 − 𝜔𝑛

2𝜑̅ +
𝐾𝑥𝐷=1(𝜇−𝜇𝑒−𝜆2𝐷𝑡𝐷+𝑚2)

𝑅2 exp(𝛼/2)
−

𝐾𝑥𝐷=0(𝑒−𝜆1𝐷𝑡𝐷−1+𝑚1)

𝑅1
 

           (3-12) 

Substituting Eqs. (3-6a), (3-8a), (3-8b) and (3-12) into Eq. (3-11), and defining 𝛽𝑛 =

𝜔𝑛
2 + 𝛼2/4, one has 

𝜕𝜑̅

𝜕𝑡𝐷
+ 𝛽𝑛𝜑̅ =

𝐾𝑥𝐷=1(𝜇−𝜇𝑒−𝜆2𝐷𝑡𝐷+𝑚2)

𝑅2 exp(𝛼/2)
−

𝐾𝑥𝐷=0(𝑒−𝜆1𝐷𝑡𝐷−1+𝑚1)

𝑅1
+

𝐴𝑛

𝛽𝑛
𝑊(𝑡𝐷) {𝑒−

𝛼

2 [𝛽𝑛 sin(𝜔𝑛) −
1

𝑅1
(

𝛼

2
sin(𝜔𝑛) + 𝜔𝑛 cos(𝜔𝑛))] +

𝜔𝑛

𝑅1
}  (3-13a) 

𝜑̅(0) = 0          (3-13b) 

Rearranging Eq. (3-13a) yield as 

𝜕𝜑̅

𝜕𝑡𝐷
+ 𝛽𝑛𝜑̅ = 𝐵(𝑡𝐷)         (3-14) 

where 

𝐵(𝑡𝐷) =
𝐾𝑥𝐷=1(𝜇−𝜇𝑒−𝜆2𝐷𝑡𝐷+𝑚2)

𝑅2 exp(𝛼/2)
−

𝐾𝑥𝐷=0(𝑒−𝜆1𝐷𝑡𝐷−1+𝑚1)

𝑅1
+

𝐴𝑛

𝛽𝑛
𝑊(𝑡𝐷) {𝑒−

𝛼

2 [𝛽𝑛 sin(𝜔𝑛) −

1

𝑅1
(

𝛼

2
sin(𝜔𝑛) + 𝜔𝑛 cos(𝜔𝑛))] +

𝜔𝑛

𝑅1
}  

The solution of Eq. (3-14) subject to Eq. (3-13b) can be straightway obtained as 

𝜑̅(𝜔𝑛, 𝑡𝐷) = exp(−𝛽𝑛𝑡𝐷) ∫ 𝐵(𝑡) exp(𝛽𝑛𝑡) 𝑑𝑡
𝑡𝐷

0
     (3-15) 

Defining 𝜉1 = 𝐴𝑛

𝜔𝑛𝑅2 exp(𝛼/2)(1−𝑚1)+(𝜇+𝑚2)𝑅1[𝜔𝑛 cos(𝜔𝑛)+(
1

𝑅1
−

𝛼

2
) sin(𝜔𝑛)]

𝑅1𝑅2𝛽𝑛 exp(𝛼/2)
,    
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𝜉2 = 𝐴𝑛
𝜔𝑛/𝑅1

𝛽𝑛−𝜆1𝐷
,          

𝜉3 = 𝐴𝑛

𝜇[𝜔𝑛 cos(𝜔𝑛)+(
1

𝑅1
−

𝛼

2
) sin(𝜔𝑛)]

(𝛽𝑛−𝜆2𝐷)𝑅2 exp(𝛼/2)
,       

𝜉4 =

𝐴𝑛

𝑅2[𝜆1𝐷+𝑚1(𝛽𝑛−𝜆1𝐷)]𝜔𝑛(𝛽𝑛−𝜆2𝐷) exp(
𝛼

2
)+𝑅1[𝜇𝜆2𝐷−𝑚2(𝛽𝑛−𝜆2𝐷)](𝛽𝑛−𝜆1𝐷)[𝜔𝑛 cos(𝜔𝑛)+(

1

𝑅1
−

𝛼

2
) sin(𝜔𝑛)]

𝛽𝑛𝑅1𝑅2(𝛽𝑛−𝜆1𝐷)(𝛽𝑛−𝜆2𝐷) exp(𝛼/2)

,  

𝜉5 =
𝐴𝑛

𝛽𝑛
{𝑒−

𝛼
2 [𝛽𝑛 sin(𝜔𝑛) −

1

𝑅1
(

𝛼

2
sin(𝜔𝑛) + 𝜔𝑛 cos(𝜔𝑛))] +

𝜔𝑛

𝑅1
}, 

one obtains 

𝜑̅(𝜔𝑛, 𝑡𝐷) = 𝜉1 − 𝜉2 exp(−𝜆1𝐷𝑡𝐷) − 𝜉3 exp(−𝜆2𝐷𝑡𝐷) + 𝜉4 exp(−𝛽𝑛𝑡𝐷) −

𝜉5 exp(−𝛽𝑛𝑡𝐷) ∫ 𝑊(𝑡𝐷) exp(𝛽𝑛𝑡) 𝑑𝑡
𝑡𝐷

0
       (3-16) 

Substituting Eq. (3-16) into Eq. (3-6b) leads to 

𝜑(𝑥𝐷 , 𝑡𝐷) = ∑ 𝐾(𝜔𝑛, 𝑥𝐷)[∞
𝑛=0 𝜉1 − 𝜉2 exp(−𝜆1𝐷𝑡𝐷) − 𝜉3 exp(−𝜆2𝐷𝑡𝐷) +

𝜉4 exp(−𝛽𝑛𝑡𝐷) − 𝜉5 exp(−𝛽𝑛𝑡𝐷) ∫ 𝑊(𝑡) exp(𝛽𝑛𝑡) 𝑑𝑡
𝑡𝐷

0
]     (3-17) 

The final solution (in dimensionless form) can be obtained as 

ℎ𝐷(𝑥𝐷 , 𝑡𝐷) = 𝜑(𝑥𝐷 , 𝑡𝐷) exp(𝛼𝑥𝐷/2)         (3-18) 

Eq. (3-18) serves as the working equation for computing the water table heights above 

the impermeable base at any given location and time. When this is obtained, the river-

aquifer flux can be computed using the modified Darcy’s law for a sloping aquifer (Eq. 

(2-1)) at the interface of the two clogging layers and the aquifer. If allowing the distance 

between the two rivers to be infinitely large and the hydraulic conductivity of the right 
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vertical clogging layer to be identical with K of aquifer, the system investigated here 

degenerated to the single river chase of chapter 2. The MATLAB code to obtain the 

solution of Eq. (3-18) is presented in Appendix B. 

 

3.3 Results and Discussion 

3.3.1 Comparison of analytical solution with numerical solutions 

In this section, the new analytical solution developed above will be compared with 

COMSOL program and HydroGeoSphere. Similarly, we also present the results for a 

horizontal aquifer, a sloping aquifer with 5º sloping angle and a sloping aquifer with 10º 

sloping angle. The setting up of the numerical models are as follows. 

The thickness of two clogging layers are both set as 1 m, and the hydraulic 

conductivities of those clogging layers are identical and set as 0.248 m/d. The 

hydrological parameters of material and the initial head in the aquifer are same as that set 

in section 2.3.1. The vertical recharge is set as zero for the sake of illustration. The initial 

and final stages for river 1 are set as 5 and 10 m, respectively, and λ1 = 0.1 d-1. The 

constant stage of 5 m is set for river 2 over the entire time of interest (or λ2 = 0 d-1). We 

need to point out the reason to set only one rising or declining river here and after. 

Though we obtain the water table heights and river-aquifer fluxes under two fluctuant 

rivers, it is difficult to separate the influences by the fluctuations of the stages. 
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The hydrological parameters for unsaturated zone in HydroGeoSphere are same as 

that set in section 2.3.1. Discussion of these parameters have been presented in chapter 2 

and will not repeat here. 

The design of COMSOL program is briefly illustrated as follows. The horizontal 

length of the aquifer is 100 m. Once again, the use of a relatively small aquifer length 

here is for the purpose of visual inspection, and the conclusions hold when aquifer 

lengths are longer (such as 1000 m or even longer). The horizontal grid space is 0.01 m. 

The boundary conditions of river 1 and river 2 are set by Eq. (3-2b) and Eq. (3-2c). The 

actual values of parameters are calculated by Eqs. (3-2b) and (3-2c) for three aquifers.  

The design of HydroGeoSphere is briefly outlined as follows. The horizontal length 

of the aquifer is 100 m. The horizontal lengths of the clogging layers are both 1 m. The 

horizontal grid space in the clogging layers is 0.1 m, and the horizontal grid space in the 

aquifer is 0.5 m. The vertical grid space for both the aquifer and clogging layers is set at 

0.25 m. River 1 is located at x=0 m and river 2 is located at x=102 m. The base 

elevations, specific heads of two rivers with time are similar to section 2.3.1.  

An analysis of grid convergence was carried out in three cases of COMSOL model 

and HydroGeoSphere, and it showed that the grid spacing did not affect the results of 

water table heights and river-aquifer fluxes. 

Be aware that we did not use the method of Liang and Zhang (2012) to set the 

linearized parameter ha. We use the average value of initial heads and final heads at the 

left and right boundaries and have ha =6.25 m in the analytical model and COMSOL 

simulation. The reason is that the stage of river 1 increase rapidly and the average 
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thickness of aquifer increase remarkably in this case. If we use the average value of initial 

heads at the left and right boundaries as ha, the solution may be underestimated. Here we 

find the average thickness value of aquifer may cause remarkable discrepancies between 

analytical solution and HydroGeoSphere, when the stage of river rise or decline in a high 

range. It implies researchers should consider the issue of accuracy in analytical solution 

for a great range of river stage. 

Fig. 3-2 and Fig. 3-3 compare the water table heights by analytical solution, 

COMSOL program and HydroGeoSphere. The two figures show that the results of 

COMSOL agree with the results of analytical solution very well. The results of 

HydroGeoSphere also fit well with the results of analytical solution for t=10 d. But when 

the time is around 30 days and the horizontal distance to river 1 is around 60 meters, the 

discrepancy of water table between the analytical model and the HydroGeoSphere model 

is relatively large. This could be because of a few reasons. First, the HydroGeoSphere 

model does not involves any linearization process, and the analytical model does. 

Second, the HydroGeoSphere model considered the coupled unsaturated and saturated 

flow process while the analytical model only concerns the saturated flow process. When 

the sloping angle increases from 0º to 10º, the discrepancy between the analytical solution 

and the HydroGeoSphere solution increase as well. More remarkable, such a discrepancy 

at 30th day is larger than that at 50th day in a range from x=40 m to x=80 m. Fig. 3-4 

displays the river-aquifer fluxes at the river 1 and river 2, where Q1 and Q2 represent the 

river-aquifer flux (per unit width) at the left and right rivers. Similar observations as 

those observed in Figs. 3-2 and 3-3 are also seen here. First, the results of the analytical 

model fit greatly with the results of COMSOL model. Second, when the sloping angle 
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increases, the discrepancy between the analytical model and the HydroGeoSphere model 

increases. Third, the discrepancy of fluxes between the analytical model and the 

HydroGeoSphere model for river 1 (at x=0 m) is considerably larger than that at river 2, 

due to the fact the water stage at river 1 changes rapidly with time while the water stage 

at river 2 remains the same all the time. 

To quantify the differences between analytical and numerical solutions, a 

dimensionless index called the relative percentage difference (RPD) is defined as 

follows: 

RPD =
ℎ𝑛𝑢𝑚−ℎ𝑎𝑛𝑎

ℎ𝑛𝑢𝑚
∗ 100%        (24) 

where hana is the water table height computed using the newly developed analytical 

solution, and hnum is the water table height computed with either COMSOL or 

HydroGeoSphere. The ranges of RPD values are shown in Table 1. Similar RPD is also 

calculated for the river-aquifer fluxes for both rivers 1 and 2 and the results are also 

summarized in Table 1. The data calculated for RPD values include: 1) water table 

heights at x=0, 20, 50, 80 and 100 m from 0.1 day to 50 days with a time step of 0.1 days; 

2) water table heights at t=10, 20, 30, 40 and 50 d from 0 m to 100 m; 3) river-aquifer 

fluxes at river 1 and river 2 from 0.1 days to 50 days with a time step of 0.1 days.  

A few observations can be seen from Table 1. First, the RPD values for the pair of 

analytical and COMSOL models for three different sloping angles are less than 0.1%. 

Second, the variational range of RPD for the river-aquifer flux is greater than that for the 

water table height. Third, the range of RPDs for both water table heights and river-aquifer 

flux increases when the sloping angle increases. Fourth, the RPD for the pair of the 
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analytical and COMSOL models are universally smaller than that for the pair of the 

analytical and HydroGeoSphere models. Specifically, when the sloping angle is 10º, the 

RPD of water table height for the pair of the analytical and HydroGeoSphere models 

ranges from -5.07% to 2.71%, while the RPD of river-aquifer flux for the same pair 

ranges from -14.05% to 12.71%. This finding indicates that the potential errors associated 

with the analytical solution which involves a linearization process of the nonlinear 

Boussinesq equation and omits the unsaturated zone flow process may become 

considerably large to disqualify the use of such an analytical model, particularly when the 

river-aquifer flux is of the primary concern. On the other hand, the analytical model 

serves as a reasonably good approximation to compute both the water table height and 

river-aquifer flux when the sloping angle is less than is 10º. In fact, a careful inspection 

of the flow field generated by the HydroGeoSphere model suggests that flow does not 

always follow the direction of the sloping bed, as assumed in the analytical model, 

particularly in the regions close to two rivers. Such a deviation of flow direction from the 

“assumed” sloping bed direction becomes worse when the sloping angle becomes greater. 

In fact, the direction of flow near river 1 changes gradually from horizontal to the sloping 

direction, while the direction of flow near river 2 changes gradually from the sloping 

direction to horizontal.  Although the scales for such flow transitions to occur are 

relatively small as compared to the entire flow distance, they do become larger when the 

sloping angle increases. An interesting point to note is that when the water stage of river 

1 rises with a slower rate (with a smaller λ1 value), the corresponding RPDs for the pair 

of the analytical and HydroGeoSphere models get smaller (results not shown in Table 1).  
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Table 1. Range of Relative Percentage Difference (RPD) between analytical and numerical 

solutions in three aquifers. 

Sloping angles 

COMSOL RPD (%) HydroGeoSphere RPD (%) 

Water table 

height 

River-aquifer 

flux 

Water table 

height 

River-aquifer 

flux 

0º -0.043 to 0.018 -0.040 to 0.025 -3.20 to 1.56 -2.39 to 16.79 

5º -0.068 to 0.098 -0.060 to 0.086 -4.67 to 1.57 -5.65 to 10.08 

10º -0.078 to 0.061 -0.051 to 0.046 -5.07 to 2.71 -14.05 to 12.71 

 

3.3.2 Analysis of parameter impacts on the river-aquifer system 

We will study the influences of hydraulic parameters on the water table heights and 

river-aquifer fluxes again for the case of a sloping aquifer connecting with two rivers. 

Similarly, b1/k1, b2/k2, K, Sy affect the hydrodynamics of the river-aquifer system 

independently. Without loss of generality, we allow the hydraulic resistances of two 

clogging layers, b1/k1, b2/k2, to be identical in the following analysis. Different hydraulic 

resistances of these two clogging layers can be used, not will not change the primary 

findings. The corresponding hydraulic parameters of aquifer and clogging layers for base 

model and matched models are same as that in section 2.3.3 and will not be repeated 

here. 

 Fig. 3-5, Fig. 3-6 and Fig. 3-7 show water table heights and river-aquifer fluxes for 

aquifers with three different sloping angles of 0°, 5° and 10°, where Q1 and Q2 represent 

the river-aquifer flux (per unit width) at the left and right rivers, respectively. The stage 
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of river 1 is described by Eq. (3-1a) with λ1=0.1 d-1 and hi=5 m and hf1=10 m. The stage 

of river 2 remains constant at 5 m. 

A few interesting observations can be made from Fig. 3-5 and Fig. 3-6. First, for the 

special case of a horizontal aquifer (or a sloping angle of 0°), the water table heights 

declines from left to right over the entire domain of interest. This is caused by a rapidly 

rising river stage on the left. However, for the case of a sloping aquifer, the water table 

height declines first from left to right, and then rise again, generating a convex shape. 

Furthermore, the convex shape of the water table height become more visible when the 

sloping angle becomes larger. Similar convex shape has also been observed in Fig. 3-3. 

The appearance of convex shape of water table height is a unique feature of a sloping 

aquifer and it is impossible to occur in a horizontal aquifer when evaporation is omitted. 

This is due to the fact that the water table height is measured against the sloping bed, not 

a fixed horizontal reference plane. This observation can be understood as follows. For the 

problem investigated here, flow is always from left to right when the left river stage rises 

and the right river stage remains the same when vertical recharge/evaporation is absent, 

thus the hydraulic head declines continuously over the entire domain. For a horizontal 

aquifer, the slope of the water table height represents the hydraulic gradient itself when 

the Dupuit (or horizontal flow) assumption is invoked, thus the water table height must 

decline with distance from left to right. However, for a sloping aquifer case, the hydraulic 

gradient consists of two contributions: 1) the gradient of water table height; 2) the slope 

of the bed. Therefore, when the slope of the bed becomes greater than the magnitude of 

the hydraulic gradient, the gradient of water table height can reverse its direction to 

become opposite of the sloping direction. In another word, when the slope is dipping 
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from left to right, the water table height can actually increase from left to right. This is 

exactly what happens for regions close to the right river in Figs. 3-3, 3-5 and 3-6. 

Second, we also see from Figs. 3-3, 3-5 and 3-6 that the convex shape of the water 

table height for a sloping aquifer becomes less visible when time gets longer. This is 

because the river stage at the left increases with time, so the overall hydraulic gradient 

increases with time as well. The increase of hydraulic gradient will make it less likely for 

the slope of bed to surpass the hydraulic gradient, thus reducing the likelihood of reverse 

water table height gradient, leading to a less visible convex shape of the water table 

height. If the left river rises sufficiently high and the hydraulic gradient becomes 

sufficiently large, then the slope of bed probably will never surpass the hydraulic 

gradient, and the convex shape of the water table height will disappear entirely. 

The river-aquifer fluxes shown in Fig. 3-7 also has a few interesting points to note. 

First, for the special case of a horizontal aquifer, rise of the left river stage will result in a 

rapid increase of river-aquifer flux there (Q1) at the beginning, due to a significant 

hydraulic gradient over the clogging layer. However, as the rate of river stage rise slows 

down (because of the exponential function of Eq. (3-1a)), the hydraulic gradient over the 

clogging layer at the left river declines, resulting in the drop of the river-aquifer flux Q1 

after reaching a maximum value. The river-aquifer flux at the right (Q2), however, 

increases from zero at the beginning over the time interval of discussion in Fig. 3-7.  The 

increase of Q2 over the time interval of interest is also evident in Figs. 3-5 and 3-6, as one 

can see that the water table gradient (which equal to the hydraulic gradient for a 

horizontal aquifer) near the right river becomes larger when time is longer. 
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Second, when the aquifer becomes sloping instead of horizontal, the river-aquifer flux 

is aided with the help of the sloping bed, beside the rise of left river. The contribution of 

such a sloping bed to Q1 will lead to a less dramatic increase of Q1 with time at the early 

stage and also a less dramatic decrease of Q1 with time at the late stage after reaching its 

peak value. When the sloping angle becomes greater enough (for instance, 10°), the 

decline trend of Q1 with time may disappear completely. The variational feature of Q2 is a 

little more complex for the sloping cases. It appears that Q2 typically experiences an 

increase period first, followed by a relatively flat or stable flux during the intermediate 

stage, and then a slightly greater rate of increase at late stage. The variational trend of Q2 

is understandable if considering the following factors. First, as the initial water table 

height is arbitrarily set to be 5 m over the entire domain, the hydraulic gradient driven by 

the sloping angle will immediately initiate flow from left to right and results in a rise of 

water table heights near the right river at the early times, as also observed in Fig. 3-5 for 

at time of 10 days. This will induce a relatively rapid increase of river-aquifer flux at the 

right river. The change of water table heights near the right river will eventually slow 

down, leading to a relatively flat segment of Q2-time distribution at the intermediate 

times. At later time, the rise of river stage at the left will propagate through the aquifer 

and reach the right river, resulting a relatively steady increase of Q2 at later times.  

Besides above observations, it is also worthwhile to see the influences of different 

parameters on the shape of the water table height and river-aquifer fluxes. First, from 

Figs. 3-5, 3-6 and 3-7, one can see that for the special case of a horizontal aquifer (or a 

sloping angle of 0°), increasing the value of b1/k1 or b2/k2 reduces the water table height 

over most portion of the aquifer. This is because increasing the hydraulic resistance of the 
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two clogging layers will reduce the river-aquifer fluxes, thus reduce the water table 

height. Specifically, the reduction of water table heights decreases from the left to right. 

One can clearly see from Fig. 3-7 that the river-aquifer flux decreases remarkablely at 

x=0 m.  For the two sloping aquifers (with sloping angles of 5° and 10°), it is easy to see 

from Figs. 3-5 and 3-6 that the water table height drops in most part of aquifer, and only 

rises in a narrow region near river 2. 

The increase of K value augments the flow rate in the aquifer, and consequently the 

river-aquifer fluxes increase significantly in all three aquifers. The river-aquifer flux 

increases more when the sloping angle becomes greater. The discharge to river 2 for the 

10° sloping bed shows remarkable fluctuations over the 30 days period. Such a discharge 

declines gently from 8th day to 15th day, and then rises from 16th day.  

The influence of specific yield is relatively minor when compared to other 

hydrological parameters when the recharge/evaporation is absent. When the specific yield 

increases, the capacity of aquifer releasing or storing water due to water table dropping or 

rising becomes stronger, thus the variation of water table heights becomes less dramatic.  

3.3.3 Different characters of horizontal and sloping aquifers 

Fig. 3-8 presents water table heights distributions for the same three sloping angles 

discussed in section 3.3.2, but with a constant river stage on the left river and a rising 

river stage on the right river. Specifically, the stage of left river (river 1) is set at 5 m 

above the aquifer, and the stage of right river (river 2) is described by Eq. (3-1b) with 

λ2=0.1 d-1, hi=5 m, and hf2=10 m. When the aquifer is horizontal, the rise of river stage on 

the right river leads to a flow condition that is exactly the same as that generated by a rise 



 

66 
 
 

 

of river stage on the left (provided that the rise of river stage follow the same function) 

except that the flow direction is reversed. However, when the aquifer is sloping, then the 

flow condition generated by a rise of river stage on the right river is considerably 

different from that generated by a rise of river stage on the left, even the rise of river 

stage follow exactly the same function.  

A few interesting observations can be made about Fig. 3-8 and Fig. 3-9. First, when a 

sloping bed is presented and the initial water table heights are 5 m over the entire domain, 

if the right river stages start to rise following the exponential function of Eq. (3-1b), the 

water table heights close to the right river will start to rise rapidly as well at the early 

time. Interesting enough, the water table heights near the left river actually will drop 

below the initial 5 m because it cannot sustain the flow driven by the sloping angle. 

Consequently, an uprising curve of water table height distribution from left to right will 

be seen. The greater the sloping angle, the more dramatic uprising curve will be seen for 

the water table height distribution. Second, for the horizontal aquifer case, the river-

aquifer flux at the left river (Q1) starts at 0 and then becomes negative (meaning that flow 

is from right to left), due to the rise of river stage on the right. However, for the sloping 

aquifer cases, a finite positive Q1 exists because of the driving force of the sloping angle 

when the initial water table heights are the same (5 m). At the early times, as the water 

table heights near the left river will drop quite rapidly (as seen in Fig. 3-8), a greater 

hydraulic gradient is generated near the left river, resulting a raid rise of Q1 at early times. 

Such a rise of Q1 cannot sustain too long as the rise of river stage at the right river will 

offset the sloping driving flow, leading to a relatively stable Q1 for the rest of times. 

Third, the river-aquifer flux at the right river (Q2) shows some interesting features. 
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Similar to Q1 at the beginning, the initial flow is driven by the sloping angle, so Q2 will 

have the same positive value as Q1 at t=0. When time is greater than zero, the water table 

heights near the right river will start to rise. Such a water table rise plus the rise of water 

stage on the right river will substantially offset the sloping driven flow, resulting a rapid 

decline of Q2 and eventually a reversal of flow direction, i.e., Q2 will change from 

positive to negative at a particular moment during the early stage flow. After that, the 

continuous rise of right river stage and the rise of water table heights near the right river 

will allow Q2 to reach its maximum in magnitude. After that moment, as both the rise of 

right river stage and the rise of water table heights slows down with time, the magnitude 

of Q2 will start to drop. However, if the sloping angle is greater enough (such as 10°), the 

sloping driven flow is so strong that the rise of right river stage and the rise of water table 

heights near the right river is not greater enough to offset the sloping driven flow, thus Q2 

will remain positive (meaning that flow is from left to right) for a considerable period of 

time, as evident in Fig. 3-9 (the bottom figure). 
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Fig. 3-2 Comparison of water table heights with time at x=0, 50 and 100 m in a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer among analytical solution, 

numerical solutions of COMSOL and HydroGeoSphere.  



 

69 
 
 

 

 

Fig. 3-3 Comparison of water table heights above he impermeable bed at t=10, 30 and 50 

d for a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer among 

analytical solution, numerical solutions of COMSOL and HydroGeoSphere. 
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Fig. 3-4 Comparison of river-aquifer fluxes at the left and right rivers in a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer among analytical solution, 

numerical solutions of COMSOL and HydroGeoSphere. 
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Fig. 3-5 Analysis of parameter impacts on water table heights above the impermeable bed 

in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer at t=10 d. 
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Fig. 3-6 Analysis of parameter impacts on water table heights above the impermeable bed 

in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer at t=30 d. 
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Fig. 3-7 Analysis of parameter impacts on river-aquifer fluxes at the left and right rivers 

in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer. 
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Fig. 3-8 Comparison of water table heights above the impermeable bed at t=10, 20, 30, 

40 and 50 d in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer with a 

constant stage of left river (river 1) and a rising stage of right river (river 2). 



 

75 
 
 

 

 

Fig. 3-9 Comparison of river-aquifer fluxes at the left and right rivers in a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer with a constant stage of left river 

(river 1) and a rising stage of right river (river 2). 
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3.3.4 Responses of recharge to groundwater table and river-aquifer fluxes  

In this section, we will investigate the influences of infiltrated recharge (or recharge 

for simplicity), W(t), on water table height and river-aquifer flux for sloping aquifers with 

different sloping angles of 0°, 5°, and 10°. The analytical model developed in this study 

allow the recharge to change with time using any prescribed functions. The model setup 

is exactly the same as in section 3.31 with the recharges of 20 mm/day on the 10th day 

and 40 mm/day on the 20th day. Fig. 3-10 and Fig. 3-11 present the responses of water 

table heights at x=20, 50 and 80 m, and river-aquifer fluxes for three different aquifers 

with sloping angles of  0°, 5°, and 10°. The results without recharge events (the base 

model) are also included as references in Fig. 3-10 and Fig. 3-11. A few observations can 

be made from Fig. 3-10 and Fig. 3-11. 

First, in general, the two recharge events have relatively minor impacts on both the 

water table heights and river-aquifer fluxes. They will generate a minor and temporary 

jump of water table heights during the recharge period, but will not affect the overall 

water table distribution. Such a temporary jump of water table heights will result in a 

small (but noticeable) and temporary drop of the river-aquifer flux at the left river (Q1) 

and a small and noticeable temporary increase of the river-aquifer flux at the right river 

(Q2). Second, the impact of recharge on the overall behavior of water table heights and 

river-aquifer fluxes appears to be less sensitive to the sloping angle. This is very different 

from what has been seen in sections 3.3.1 and 3.3.2, in which the degree of sloping 

affects the hydrodynamic behavior quite significantly. Third, the impacts of the first 

recharge event (20 mm/day on the 10th day) are barely noticeable in Fig. 3-10 and Fig. 3-

11, as compared to the stronger recharge event of 40 mm/day. This also implies that 
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sporadic and relatively low strength recharge event will play a much minor role in the 

system investigated here. However, long-term and sustainable recharge events will affect 

both water table profile and river-aquifer fluxes to much greater extent.  

 

Fig. 3-10 Impact of infiltrated recharge on water table heights above the impermeable 

base at x=50 m in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer. 
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Fig. 3-11 Impact of infiltrated recharges on river-aquifer fluxes at the left and right rivers 

in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer. 
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3.4 Conclusions 

In this chapter, groundwater flow in an unconfined sloping aquifer bounded by two 

parallel rivers with the presence of two less permeable river beds (or clogging layers) is 

studied in some great details. The analytical solution is first compared with a finite-

element program of COMSOL for various cases, also based on the same linearized 

modified Boussinesq equation as the analytical solution. We conclude the analytical 

solution agrees very well with the COMSOL solution, thus provides evidence for the 

reliability of the new analytical solutions. After this test, the analytical solution is 

compared with a full scale numerical model using HydroGeoSphere which considers the 

coupled unsaturated and saturated flow process. Such a comparison is aimed at checking 

the robustness of the linearization of the Boussinesq equation modified for a sloping 

aquifer and also the problem of neglecting the unsaturated flow process. Out results show 

that the linearized analytical solution can serve as a reliable and reasonably well 

approximation if the sloping angle is less than 10°. 

The flow character of a sloping aquifer is quite different from that of a horizontal 

aquifer. The variations of river stages (either on the left or right boundary of the aquifer) 

will cause much more variations of water table heights and river-aquifer fluxes in a 

sloping aquifer. In particular, the water table profile in a sloping aquifer shows some 

unique features that has never been seen in a horizontal aquifer. For instance, the water 

table profile may evolve from a straight line parallel with the sloping bed at the beginning 

to a convex shape, even without any recharge/evaporation.  

Different hydraulic parameters may cause different influences on water table 

evolution and river-aquifer fluxes in a sloping aquifer, and such influences are more 



 

80 
 
 

 

complex in a sloping aquifer than those observed in a horizontal aquifer. The increased 

hydraulic conductivity of aquifer will increase river-aquifer fluxes, and it will increase 

the water table heights near the down-slope river and decrease the water table height on 

up-slope river. The impact from increased hydraulic conductivity gets stronger when the 

sloping angle becomes larger.  

The increased hydraulic resistance (or the inverse of hydraulic conductance) of the 

clogging layer will suppress the river-aquifer fluxes and water table evolution. 

Sporadic recharge events only create short-term minor jump on the water table 

profile, and in general does not affect the overall evolution of water table profile and 

river-aquifer fluxes. The influence of sporadic recharge events also does not appear to be 

sensitive to the sloping angle of aquifer. However, such a conclusion may not hold for 

long-term recharge events with significant amount of recharge. 
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CHAPTER 4                                                                                                                  

A NEW METHOD OF TRANSIENT GROUNDWATER FLOW IN A SLOPING 

AQUIFER 

 

4.1 Introduction 

In chapters 2 and 3, we have investigated transient groundwater flow in a sloping 

aquifer with a fully penetrating river in presence of a vertical clogging layer. We have 

studied the water table heights fluctuation and river-aquifer flux with a constant stage in 

section 2.3.4. The results show that the initial condition used is probably unsustainable 

(albeit it is convenient for the analytical modeling), as the water table heights change 

rapidly at the beginning of time. In a real river-aquifer environment, when the stage of 

river does not fluctuate, and there no precipitation over a long period of time and without 

human activity, it is impossible to have the initial condition as that used in chapters 2 and 

3 (i.e. a constant water table height above the impermeable base of a sloping aquifer). For 

such a case, the water table usually approximates its steady state. This implies that the 

general setting of initial condition in chapters 2 and 3 is too ideal to deal with the realistic 

problem. Now the question is: what is the realistic initial condition to use in a sloping 

unconfined aquifer?  In this chapter, we will develop a new method to investigate resolve 

the initial condition issue and also discuss its application. A key of this new method is to 

simulate a river stage variation that includes two phases: 1) a phase with a relatively long 

time of nearly stable river stage to allow the system of investigated reaches its pseudo-

steady state; 2) a rapidly rising phase to simulate the rise of the river. A third phase that 

describes the declining of the river stage can also add into the analysis after the second 
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phase, if necessary. The third phase can be straightforwardly handled on the basis of the 

first and second phases.  

4.2 Mathematical model 

The coordinate system and the basic model is the same as that in section 2.2. We 

study a sloping aquifer with a river on one side and semi-infinite on the other side with 

water infiltrated recharge in Fig. 2-1.  

First, to mimic the time-series of river stages, we need to search for a suitable 

function to describe it. Based on a trial-and-error process for fitting the realistic water 

stage data collected by U.S. Geological Survey (USGS) at a number of sites (with details 

given below), we find that sigmoid functions are suitable candidates to describe the stage 

of river. The sigmoid function is usually used in artificial neural networks in hydrology 

(Imrie et al., 2000). Other functions of river stages used in previous investigations include 

harmonic functions and exponential functions (Teloglou and Bansal, 2012; Van Der 

Valk, 2005). Although these two types of functions can describe the stage of river in a 

few special cases, they are incapable of describing the phase 1 and phase 2 outlined 

above in the introduction, thus are not recommended for this study. Nevertheless, the 

river stage in this chapter consists of the summations of a sequence of sigmoid functions 

ℎ𝑠(𝑡) = ℎ𝑓 − (ℎ𝑓 − ℎ𝑖)(∑
𝑝𝑘

(1+exp(𝑎𝑘(𝑡−𝑐𝑘)))

𝑛
𝑘=1 )     (4-1) 

where ℎ𝑠(t) is the time-varying stage for river, ℎ𝑓 is the highest stage value of river in the 

studied period, ℎ𝑖 is the initial stage for river. In Eq. (4-1), ak [T
-1], pk [dimensionless] 

and ck [T] are all fitting parameters. The parameter n is a number relate to the stage of 

river.  The range of a basic sigmoid function f(x) =1/(1+exp(-x)) is from 0 to 1. By 
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adjusting the values of ak, pk and ck, Eq. (4-1) can simulate a wide range of possible river 

stages encountered in real-world setting. For instance, Fig. 4-1 and Fig. 4-2 present two 

comparisons between the fitted curves by Eq. (4-1) and real stages for a river and a lake. 

The locations of lake and river are Clear Lake in Lakeport, CA (USGS database, site 

numbers of 11450000) and Braden River in Lakewood Ranch, FL (USGS database, site 

numbers of 02300033), respectively. The period of 0 day to 72 days is corresponding to 

the date of 10/18/2012 to 12/29/2012 in Fig. 4-1. The period of 0 day to 23 days is 

corresponding to the date of 05/02/2018 to 05/25/2018 in Fig. 4-2. It is easy to see that 

Eq. (4-1) can describe the stage of surface water greatly. The curve function of Fig. 4-1 is 

ℎ𝑠 = 1.731 − 1.341 ∗ {0.516/[1 + exp(0.603(𝑡 − 45))] + 0.5/[1 + exp(𝑡 − 66)]}. 

The determination of coefficient R2 for the fitting using above function is 0.997. The 

curve function of Fig. 4-2 is ℎ𝑠 = 6.197 − 3 ∗ {
0.167

[1+exp(𝑡−12)]
+

0.833

[1+exp(5(𝑡−17.8))]
+

0.377/[1 + exp(−9(𝑡 − 19.5))] + 0.355/[1 + exp(−5(𝑡 − 2))]}. The determination of 

coefficient R2 for the fitting using above function is 0.961. The values of R2 for both 

cases are close to 1.0, suggesting the satisfactory of fitting. 
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Fig. 4-1 A comparison of observed stages and simulated curve by Eq. (1) of Clear Lake 

in Lakeport, CA. 
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Fig. 4-2 A comparison of observed stages and simulated curve by Eq. (1) of Braden River 

in Lakewood Ranch, FL 

When we study water flow in a sloping aquifer, we can set the stage of river constant 

at the beginning. After the groundwater reaches its pseudo-steady state after a long period 

of time, the stage of river stage starts to rise or fall. We can then investigate the water 

table response of such a rising or falling river stage. For this purpose, we may only need 

one sigmoid function in above Eq. (4-1) by allowing n=1 and p1=1, and then adjust the 

values of a1 and c1 to fit the rising (or falling) river stage. An example is shown in Fig. 4-
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3 below.

 

Fig. 4-3 The stage of river changes by Eq. (4-1) with a1=1 d-1, n=1, p1=1 and c1=59 d. 

 

In Fig. 4-3, we set a1=1 d-1, n=1, p1=1 and c1=59 d. The stage of river is constant at 5 

m from t=0 d to t=50 d, and then increases from 5 m to 7 m in a period of t=50 d to t=66 

d. Be aware that the vertical axis in Fig. 4-3 starts from 5 m (not zero), and the stage of 

river at t=50 d is 5.002 m, the stage of river at t=66 d is 6.998 m. The time from t=0 d to 

t=50 d (with almost no change of river stage) in Fig. 4-3 is mostly for the system of 

investigated to reach its pseudo-steady state.   

Based on Eqs. (2-1) to (2-5) in section 2.2 and Eq. (4-1), Eqs. (4-2a) to (4-2c) are 

obtained below. 
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ℎ(𝑥, 𝑡 = 0) = ℎ𝑖         (4-2a) 

−𝐾ℎ(𝑥 = 0+, 𝑡)[(
𝜕ℎ

𝜕𝑥
)𝑥=0 − 𝑡𝑎𝑛𝜃] = −𝑘ℎ(𝑥 = 0+, 𝑡)

ℎ(𝑥=0+,𝑡)−ℎ𝑠(𝑡)

𝑏
  (4-2b) 

𝜕ℎ

𝜕𝑥𝑥=𝐿
= 0          (4-2c) 

The Eq. (4-2a) represents the initial water table heights are hi. The equation of the 

boundary condition at interface between the vertical clogging layer and aquifer is 

obtained in Eq. (4-2b). The right side of Eq. (4-2b) represents the flow rates in the 

clogging layers. The left sides of Eq. (4-2b) represents the flow rate at the interface 

between the clogging layer and aquifer. The Eq. (4-2c) means that the water table heights 

do not vary with the horizontal distance at the very long location x=L m. 

Defining the following dimensionless terms,  ℎ𝐷 =
ℎ−ℎ𝑖

ℎ𝑓−ℎ𝑖
, 𝑥𝐷 =

𝑥

𝐿
, 𝑡𝐷 =

𝐾ℎ𝑎𝑐𝑜𝑠2𝜃𝑡

𝑆𝑦𝐿2 , 𝛼 =

𝐿𝑡𝑎𝑛𝜃

ℎ𝑎
, 𝑊(𝑡𝐷) =

𝐿2𝑊(𝑡)

(ℎ𝑓−ℎ𝑖)𝐾ℎ𝑎𝑐𝑜𝑠2𝜃
, 𝑅 =

𝐾𝑏

𝑘𝐿
, 𝑎𝑘𝐷 =

𝑆𝑦𝐿2𝑎𝑘

𝐾ha𝑐𝑜𝑠2𝜃
, 𝑐𝑘𝐷 =

𝐾ℎ𝑎𝑐𝑜𝑠2𝜃𝑐𝑘

𝑆𝑦𝐿2 , 𝑚 =
𝐾𝑏𝑡𝑎𝑛𝜃

(ℎ𝑓−ℎ𝑖)
, 

𝑓𝑛 = ∑
𝑝𝑘

(1+exp(𝑎𝑘𝐷(𝑡𝐷−𝑐𝑘𝐷)))

𝑛
𝑘=1 , the dimensionless forms of Eq. (2-4) and Eqs. (4-2a) to 

(4-2c) are presented as below. 

𝜕2ℎ𝐷

𝜕𝑥𝐷
2 − 𝛼

𝜕ℎ𝐷

𝜕𝑥𝐷
+ 𝑊(𝑡𝐷) =

𝜕ℎ𝐷

𝜕𝑡𝐷
         (4-3) 

ℎ𝐷(𝑥𝐷 , 𝑡𝐷 = 0) = 0         (4-4a) 

𝑅(
𝜕ℎ𝐷

𝜕𝑥𝐷
)𝑥𝐷=0 = ℎ𝐷(𝑥𝐷 = 0+, 𝑡𝐷) + 𝑓𝑛 − 1 + 𝑚     (4-4b) 

(
𝜕ℎ

𝜕𝑥𝐷
)𝑥𝐷=1 = 0          (4-4c) 

Define a new parameter 𝜑 = ℎ𝐷𝑒−
𝛼𝑥𝐷

2 , above four equations are changed to 
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𝜕2𝜑

𝜕𝑥𝐷
2

−
𝛼2𝜑

4
+ 𝑒−

𝛼𝑥𝐷
2 𝑊(𝑡𝐷) =

𝜕𝜑

𝜕𝑡𝐷
       (4-5a) 

𝜑(𝑥𝐷 , 𝑡𝐷 = 0) = 0         (4-5b) 

[𝑅1
𝜕𝜑

𝜕𝑥𝐷
+ (

𝑅𝛼

2
− 1) 𝜑]|𝑥𝐷=0 = 𝑓𝑛 − 1 + 𝑚      (4-5c) 

(
𝜕𝜑

𝜕𝑥𝐷
+

𝛼

2
𝜑)|𝑥𝐷=1 = 0         (4-5d) 

We need to point out that the derived procedures from Eq. (4-6a) to Eq. (18) is similar 

to those in section 2.2. However, as a very different equation is used to describe the more 

realistic river stage here, we like to document the derivation details in the following for 

the sake of completeness. The PDE of Eq. (4-5a) can be transformed into an ordinary 

different equation (ODE) by eliminating the x terms using an Integral transform method. 

The Integral transform of 𝜑(𝑥𝐷 , 𝑡𝐷) is defined as Eq. (4-6a) and the corresponding 

inversion formula is defined as Eq. (4-6b). 

𝜑̅(𝜔𝑛, 𝑡𝐷) = ∫ 𝜑(𝑥𝐷 , 𝑡𝐷)
1

0
𝐾(𝜔𝑛, 𝑥𝐷)𝑑𝑥𝐷      (4-6a) 

𝜑(𝑥𝐷 , 𝑡𝐷) = ∑ 𝐾(𝜔𝑛, 𝑥𝐷)∞
𝑛=0 𝜑̅(𝜔𝑛, 𝑡𝐷)      (4-6b) 

where 𝐾(𝜔𝑛, 𝑥𝐷) and 𝜔𝑛 are transform kernel and eigenvalue, respectively. The kernel 

𝐾(𝜔𝑛, 𝑥𝐷) is the normalized eigenfunction of the following eigenvalue problem. 

𝑑2𝑘

𝑑𝑥𝐷
2 + 𝜔𝑛

2𝑘 = 0         (4-7) 

[
𝜕𝑘

𝜕𝑥𝐷
+ (

𝛼

2
−

1

𝑅1
) 𝑘] |𝑥𝐷=0 = 0        (4-8a) 

(
𝜕𝑘

𝜕𝑥𝐷
+

𝛼

2
𝑘)|𝑥𝐷=1 = 0         (4-8b) 
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The kernel 𝐾(𝜔𝑛, 𝑥𝐷) is defined as  

𝐾(𝜔𝑛, 𝑥𝐷) = 𝐴𝑛𝑘(𝜔𝑛, 𝑥𝐷) = 𝐴𝑛[𝜔𝑛 cos(𝜔𝑛𝑥𝐷) + (
1

𝑅
−

𝛼

2
) sin(𝜔𝑛𝑥𝐷)]  (4-9) 

where it has 

𝐴𝑛 =
√2

√[𝜔𝑛
2 +(

1

𝑅
−

𝛼

2
 )2](1+

𝛼
2

𝜔𝑛
2 +

1
4

 𝛼2
)+

1

𝑅
−

𝛼

2

       (4-10) 

Taking integral transform on Eq. (4-5a) leads to 

∫ 𝐾(𝜔𝑛, 𝑥𝐷)𝑒−
𝛼𝑥𝐷

2 𝑊(𝑡𝐷)
1

0
𝑑𝑥𝐷 + ∫ 𝐾(𝜔𝑛, 𝑥𝐷)

1

0

𝜕2𝜑

𝜕𝑥𝐷
2 𝑑𝑥𝐷 = ∫ 𝐾(𝜔𝑛, 𝑥𝐷)

𝜕𝜑

𝜕𝑡𝐷

1

0
𝑑𝑥𝐷 +

𝛼2/4 ∫ 𝐾(𝜔𝑛, 𝑥𝐷)𝜑(𝑥𝐷 , 𝑡𝐷)
1

0
𝑑𝑥𝐷       (4-11) 

Based on function Green’s theorem, the left side of Eq. (4-11) can be written as: 

∫ 𝐾(𝜔𝑛, 𝑥𝐷)𝑒−
𝛼𝑥𝐷

2 𝑊(𝑡𝐷)
1

0
𝑑𝑥𝐷 + ∫ 𝐾(𝜔𝑛, 𝑥𝐷)

1

0

𝜕2𝜑

𝜕𝑥𝐷
2 𝑑𝑥𝐷 =

∫ 𝐾(𝜔𝑛, 𝑥𝐷)𝑒−
𝛼𝑥𝐷

2 𝑊(𝑡𝐷)
1

0
𝑑𝑥𝐷 − 𝜔𝑛

2𝜑̅ −
𝐾𝑥𝐷=0(𝑓𝑛−1+𝑚)

𝑅
    (4-12) 

Substituting Eqs. (4-6a), (4-8a), (4-8b) and (4-12) into Eq. (4-11), defining 𝛽𝑛 = 𝜔𝑛
2 +

𝛼2/4, one has 

𝜕𝜑̅

𝜕𝑡𝐷
+ 𝛽𝑛𝜑̅ = −

𝐾𝑥𝐷=0(𝑓𝑛−1+𝑚)

𝑅
+

𝐴𝑛

𝛽𝑛
𝑊(𝑡𝐷) {𝑒−

𝛼

2 [𝛽𝑛 sin(𝜔𝑛) −
1

𝑅
(

𝛼

2
sin(𝜔𝑛) +

𝜔𝑛 cos(𝜔𝑛))] +
𝜔𝑛

𝑅
}         (4-13a) 

𝜑̅(0) = 0          (4-13b) 

Rearranging Eq. (4-13a) yield as 
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𝜕𝜑̅

𝜕𝑡𝐷
+ 𝛽𝑛𝜑̅ = 𝐵(𝑡𝐷)         (4-14) 

where 

𝐵(𝑡𝐷) = −
𝐾𝑥𝐷=0(𝑓𝑛−1+m)

𝑅
+

𝐴𝑛

𝛽𝑛
𝑊(𝑡𝐷) {𝑒−

𝛼

2 [𝛽𝑛 sin(𝜔𝑛) −
1

𝑅1
(

𝛼

2
sin(𝜔𝑛) +

𝜔𝑛 cos(𝜔𝑛))] +
𝜔𝑛

𝑅
}  

The solution of Eq. (19) subject to Eq. (18b) can be straightway obtained as 

𝜑̅(𝜔𝑛, 𝑡𝐷) = exp(−𝛽𝑛𝑡𝐷) ∫ 𝐵(𝑡) exp(𝛽𝑛𝑡) 𝑑𝑡
𝑡𝐷

0
     (4-15) 

Defining 𝜉1 = −
1−𝑚

𝛽𝑛
,           

𝜉2 =
1−m

𝛽𝑛
,  

𝜉3 =
𝐴𝑛

𝛽𝑛
{𝑒−

𝛼
2 [𝛽𝑛 sin(𝜔𝑛) −

1

𝑅
(

𝛼

2
sin(𝜔𝑛) + 𝜔𝑛 cos(𝜔𝑛))] +

𝜔𝑛

𝑅
}, 

one obtains 

𝜑̅(𝜔𝑛, 𝑡𝐷) = −
𝐴𝑛𝜔𝑛

𝑅
[ 1 + 𝜉2 exp(−𝛽𝑛𝑡𝐷) + ∫ exp(𝛽𝑛(𝑡 − 𝑡𝐷))𝑓𝑛 𝑑𝑡

𝑡𝐷

0
] −

𝜉3 exp(−𝛽𝑛𝑡𝐷) ∫ 𝑊(𝑡𝐷) exp(𝛽𝑛𝑡) 𝑑𝑡
𝑡𝐷

0
       (4-16) 

Substituting Eq. (4-16) into Eq. (11b), it has 

𝜑(𝑥𝐷 , 𝑡𝐷) = ∑ 𝐾(𝜔𝑛, 𝑥𝐷)∞
𝑛=0 {−

𝐴𝑛𝜔𝑛

𝑅
[𝜉1 + 𝜉2 exp(−𝛽𝑛𝑡𝐷) + ∫ exp(𝛽𝑛(𝑡 −

𝑡𝐷

0

𝑡𝐷))𝑓𝑛 𝑑𝑡] − 𝜉3 exp(−𝛽𝑛𝑡𝐷) ∫ 𝑊(𝑡𝐷) exp(𝛽𝑛𝑡) 𝑑𝑡
𝑡𝐷

0
}     (4-17) 

The final solution (in dimensionless form) can be obtained by transformation. 
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ℎ𝐷(𝑥𝐷 , 𝑡𝐷) = 𝜑(𝑥𝐷 , 𝑡𝐷) exp(𝛼𝑥𝐷/2)         (4-18) 

Eq. (4-18) serves as the working equation for computing the water table heights above 

the impermeable base at any given location and time with the more realistic river stage 

function. When the water table height is obtained, the river-aquifer flux can be computed 

using the modified Darcy’s law for a sloping aquifer straightforwardly. We need to point 

out that the " ∫ exp(𝛽𝑛(𝑡 − 𝑡𝐷))𝑓𝑛 𝑑𝑡
𝑡𝐷

0
" part in Eq. (17) is impossibly integral by an 

analytical method. A numerical method for integral is necessary and the codes are 

presented in Appendix C. 

 

4.3 Results and Discussion 

4.3.1 Comparison of the new analytical solution with numerical solutions 

In this section, we will compare the new analytical solution using COMSOL 

numerical solution. The COMSOL program is built basing on a linearized modified 

Boussinesq equation as Eq. (2-4), an initial condition as Eq. (4-2a), the Boundary 

conditions as Eq. (4-2b) and (4-2c). The hydrological setting of analytical and numerical 

model are shown in the following. The stage of river is same to the stage in Fig. 4-3 with 

hf=7 m, hi=5 m, n=1, a1=1 d-1, n=1, p1=1 and c1=59 d. The thickness of the clogging layer 

is set as 1 m, and the hydraulic conductivity of the clogging layer is set as 0.248 m/d. The 

hydraulic conductivity of the aquifer along the sloping bed is set as 2.5 m/d, the specific 

yield of material in aquifer is set as 0.25 and the initial water head height of aquifer is set 

as 5 m. The vertical recharge is set as zero for the sake of illustration. Be consistent with 
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previous study in section 2.3.1, a horizontal aquifer is included as a reference of 

comparison, a sloping aquifer with a 5° sloping angle and a sloping aquifer with a 10° 

sloping angle are built. The time period is 100 days.  

The design of COMSOL program is briefly illustrated as follows. The boundary 

condition is set by Eq. (4-2b) with the setting of a1=1 d-1, n=1, p1=1 and c1=59 d. The 

horizontal length L of the aquifer is 1000 m. The horizontal grid space is 0.1 m. We need 

to point out that we set a similar model with L=2000 m. The water table heights are 

identical with L=1000 m in a range of x=0 m to x=150 m. In this section, our focus is to 

investigate water head heights near the river from x=0 m to x=150 m. An analysis of grid 

convergence is carried out in three cases of COMSOL model, and it shows that the grid 

spacing does not affect the results of water head heights and river-aquifer fluxes. 

 Fig. 4-4 presents the water table heights at x=0, 50, 100 and 150 m with a period 

ranging from 0 d to 100 d. It is easy to see that the results of COMSOL program agree 

excellently with our analytical solution. The minor difference of water table heights 

between analytical solution and numerical solution is from 2 mm to 6 mm, and the RPD 

values between the analytical solution and COMSOL numerical solution are less than 

0.15%.  
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Fig. 4-4 Water table heights fluctuate with time at x=0, 50, 100 and 150 m in a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer with a river changing by Eq. (4-1) 

with a1=1 d-1 , n=1, p1=1 and c1=59 d. 
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4.3.2 Comparison of the analytical solutions with transient initial condition and 

steady-state initial condition 

In section 4.3.1., Fig. 4-4 displays that water tables of the two sloping aquifers have 

not yet reach their steady-state at t=50 d. Indeed, water table height at x=150 m needs a 

long time to arrive at its steady state. With an attempt to obtain a steady state 

groundwater table in a range of x=0 m to x =150 m, we set the fitting parameter a1=1 d-1, 

n=1, p1=1, c1=1009 d and L=2000 m. These values of a1 and c1 will result in a much 

longer of time during which the river stage barely increases, thus provide more time for 

the system investigated to reach its pseudo-steady state. Specially, the use of a1=1 d-1, 

and c1 =1009 d here represents a situation that river stage will not increase substantially 

until the 1000th day. This is much different from the previous situation of a1=1 d-1 and 

c1=59 d in which river stage will not increase substantially only until the 50th day. The 

initial and final stages of river are the same as in section 4.3.1. Fig. 4-5 presents water 

table heights at x=0, 50, 100 and 150 m over a 2000 days period. The stage of river is 

constant at 5 m in a period of t=0 d to t=1000 d, then the stage rises to 7 m from t=1000 d 

to t=1016 d. We need to point out that a similar model with a different aquifer length 

L=3000 m has been tested, the results display that the differences of water table heights at 

x=0 m to x=150 m are less than 2 mm between the setting of L=2000 m and L=3000 m in 

2000 day period. Thus the length of 2000 m is long enough for the purpose here.  

A few interesting observations can be made from Fig. (4-3). First, the water table 

heights are nearly identical at different locations in steady state for the two sloping 

aquifer cases. Second, when the sloping angle becomes smaller, the water table will 

requires longer time to reach steady state after variation of the river stage.  
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In dealing with the issue of river-aquifer system in a presence of a sloping bed, the 

analytical solutions in chapters 2 and 3 are limited. Figs. (4-6) to (4-9) compare water 

table heights obtained by a river rising at the identical groundwater initial condition hi=5 

m and at the steady-state initial condition which is similar to the water table heads in Fig. 

4-5 at t=1000 d in a range of x=0 m to x=150 m at t=0, 10, 50 and 100 d. The legend A 

represents the results of hi=5 m and the legend B represents the results of the steady-state 

initial condition. We call the result of hi=5 m as case A and the result of the steady-state 

initial condition as case B. The hydrological parameters of aquifer and vertical layer are 

set as same as section 4.3.1. The stage of river with case B is set by Eq. (4-1) with a1=1 d-

1, n=1, p1=1, c1=9 d, hi=5 m, hf=7 m. The water table heights in Fig. 4-5 reaches its 

pseudo-steady state at t=1000 d with the river stage of 5 m. The river stage increases 

quite rapidly from t=1000 d to t=1016 d. Fig. 4-6 displays the water table heights for 

cases A and B. Without surprise, the water table heights for cases A and B are identical 

for a horizontal aquifer. However, for a sloping aquifer with a 15º sloping angle, the 

water table height for case B is about 0.87 m higher than that for case A.  For a sloping 

aquifer with a 10º sloping angle, the water table height for case B is about 1.72 m higher 

than that for case A.  

Fig. 4-7 presents water table heights at t=10 d in a range of x=0 m to x=150 m. Water 

table heights of case A increase with the rise of river in a range of x=0 m to x=40 m for 

sloping aquifers. Water table heights of case B decrease with the rise of river in a range 

of x=0 m to x=70 m for sloping aquifers. It is seen that water table heights of case A 

fluctuate more rapidly than case B. The differences of water table heights between case A 

and case B are from 0.16 m to 0.87 m for a sloping aquifer with a 5º sloping angle. The 
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differences of water table heights between case A and case B are from 0.16 m to 0.87 m 

for a sloping aquifer with 5º sloping angle. The differences of water table heights 

between case A and case B are from 0.25 m to 1.72 m for a sloping aquifer with 10º 

sloping angle. 

Fig 4-8 displays water table heights at t=50 d in a range of x=0 m to x=150 m. The 

differences of water table heights between case A and case B are from 0.05 m to 0.80 m 

for a sloping aquifer with 5º sloping angle. The differences of water table heights 

between case A and case B are from 0.04 m to 1.37 m for a sloping aquifer with 10º 

sloping angle. Fig 4-9 displays water table heights at t=100 d in a range of x=0 m to 

x=150 m. The differences of water table heights between case A and case B are from 0.02 

m to 0.57 m for a sloping aquifer with 5º sloping angle. The differences of water table 

heights between case A and case B are from 0.01 m to 0.60 m for a sloping aquifer with 

10º sloping angle. 

Fig. 4-10 presents water table heights at x=0 m with time. Water table heights of case 

A and case B move closely with time and becomes essentially indistinguishable after 

t=40 d. Fig. 4-11 presents water table heights at x=50 m with time. After short transient 

stage, water table heights of case A increase at t=10 d. The period of transient stage at 

x=100 m is about twenty days and the period of transient stage at x=150m is about forty 

days in Figs. 4-12 and 4-13. It is seen that in general, the ground water table takes time to 

achieve steady state. 

The comparison between case A and B implies that cautions should be taken for using 

an idealized constant initial water table heights above the impermeable base when 
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studying groundwater flow in an unconfined sloping aquifer. In section 4.3.4 we will 

discuss how to use our new method to predict ground water table in a sloping aquifer.  

4.3.3 Response of peak flow to groundwater table and river-aquifer fluxes 

In this section, we will investigate the influences of peak flow in a river on 

groundwater table height and river-aquifer flux for sloping aquifers with different sloping 

angles of 0°, 5°, and 10°. A river stage may vary over time after a precipitation event.  

Fig. 4-14 is an example of a peak flow in a river. We will use Eq. (4-1) to describe a river 

stage which is relatively stable from t=0 d to t=1005 d, and then rises sharply at t=1005 d 

to reach a peak value of hs=10 m at t=1010 d, followed by a sharp decline limb (see Fig. 

4-14). After such a spike, the river stage falls back to previous stable value after t=1015 

d. Fig. 4-15 and Fig. 4-16 present the water table heights at x=0, 50, 100 and 150 m for a 

horizontal aquifer and sloping aquifers with 5º and 10º sloping angles in a period of 

t=1000 d to t=1150 d, respectively. Before the arrival of the river stage spike, the 

groundwater flow system reach its steady-state at t=1005 d at least for the near river 

region of x between 0 and 150 m. When the river spike arrives, we can see that the water 

table height at x=0 m increases about 3 meters. When the distance to river becomes 

larger, the response time of water table height to the river spike becomes longer. It is 

interesting to note that when the distance to river becomes larger, although the magnitude 

of water table response to the river spike becomes smaller, the duration of such a 

response becomes longer. This is caused by the propagation and hydraulic diffusivity of 

the river spike signal in the aquifer.  
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When the sloping angle increases from 0º to 10º, the water table heights increase 

remarkably for x=50, 100 and 150 m. Fig. 4-17 displays the influences of peak flow on 

the river-aquifer fluxes for a horizontal aquifer and sloping aquifers with 5º and 10º 

sloping angles. The positive values of river-aquifer fluxes represent that river recharges 

the aquifer, and the negative values of river-aquifer fluxes represent that aquifer 

recharges the river. When the river stage increases, the river-aquifer fluxes increase as 

well. The river-aquifer fluxes for 5° sloping aquifer are complex. First, the groundwater 

is recharged by the river before the arrival of the river stage spike. Second, the 

groundwater recharge from the river increases rapidly with the arrival of the river stage 

spike. Such a recharge rate decreases when the river stage falls back. Third, after the river 

stage spike, the recharge rate from river to the aquifer gradually drops to zero, the flow 

direction is reversed and the aquifer starts to recharge the river. A few days later, the flow 

direction is reversed again and river starts to recharge the aquifer.  

These observations can be understood as follows. The river-aquifer flux is driven by 

two forces: one is the sloping bed which tends to drive flow down-gradient (away from 

the river to the aquifer), and the other is the rise of river stage. The former (or first) 

driving force is presented all the time while the later (or second) driving force is 

temporary and depends on the magnitude and duration of the river stage spike. Before the 

arrival of the river stage spike, the first driving force prevails and the second driving 

force is absent, thus flow is from river to aquifer. When the arrival of the river stage 

spike, the second driving force is dominating, leading to a spike of river recharge to the 

aquifer. Right after the river stage spike, the river stage drops quickly, but the drop of 

groundwater level in the aquifer is not as fast as the drop of river stage, thus leading to a 
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situation that the water table in the aquifer near the river is greater than the river stage, 

thus generating flow from the aquifer to the river. However, such a situation cannot last 

much longer as the water table in the aquifer continuously declines, resulting to the 

declining flow from the aquifer to the river. Eventually, the water table declines so much 

that the first driving force starts to become the dominating factor again, resulting in flow 

from river to the aquifer again. 

Similar observations have been made for the 10° sloping aquifer, except that the flow 

direction has not been reversed with the arrival of river stage spike (see Fig. 4-17). This is 

because the first driving force (i.e., the sloping bed) is so strong that the second driving 

force (i.e., the rise of the river stage) is not strong enough to affect the flow direction. If 

one wants to compute the baseflow to a certain reach of the river, one can simply 

multiplying the discharge of flow from aquifer to the river per unit length by the total 

length of the river. 

 

 

 



 

100 
 
 

 

 

Fig. 4-5 Water table heights fluctuate with time at x=0, 50, 100 and 150 m in a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer with a river changing by Eq. (4-1) 

with a=1 d-1 , n=1, p1=1and c1=1009 d. 
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Fig. 4-6 Comparison of water table heights above the impermeable bed at t=0 d for a 

horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer between a classical 

initial head (B)  and a steady state initial head (A). 
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Fig. 4-7 Comparison of water table heights above the impermeable bed at t=10 d for a 

horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer between a general 

initial head (B) and a steady state initial head (A). 
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Fig. 4-8 Comparison of water table heights above the impermeable bed at t=50 d for a 

horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer between a general 

initial head (B) and a steady state initial head (A). 
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Fig. 4-9 Comparison of water table heights above the impermeable bed at t=100 d for a 

horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer between a general 

initial head (B) and a steady state initial head (A). 
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Fig. 4-10 Comparison of water table heights with time at x=0 m for a horizontal aquifer, a 

5° sloping aquifer, and a 10° sloping aquifer between a general initial head (B) and a 

steady state initial head (A). 
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Fig. 4-11 Comparison of water table heights with time at x=50 m for a horizontal aquifer, 

a 5° sloping aquifer, and a 10° sloping aquifer between a general initial head (B) and a 

steady state initial head (A). 
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Fig. 4-12 Comparison of water table heights with time at x=100 m for a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer between a general initial head (B) 

and a steady state initial head (A). 
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Fig. 4-13 Comparison of water table heights with time at x=150 m for a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer between a general initial head (B) 

and a steady state initial head (A).    
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Fig. 4-14 The stage of river with a peak flow described by Eq. (4-1).  
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Fig. 4-15 The water table heights with time at x=0 m in a horizontal aquifer, a 5° sloping 

aquifer, and a 10° sloping aquifer for a river with a peak flow. 
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Fig. 4-16 The water table heights with time at x=50, 100 and 150 m in a horizontal 

aquifer, a 5° sloping aquifer, and a 10° sloping aquifer for a river with a peak flow. 
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Fig. 4-17 The river-aquifer fluxes with time at the interface between vertical clay and 

aquifer in a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer for a river 

with a peak flow. 
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4.3.4 Analysis of the ha impact 

In our analytical method, we use the average thickness of aquifer ha instead of h in 

Eq. (2-4) to linearize the problem. This approximation is widely adopted in analytical 

solutions to a linearized Boussinesq equation for horizontal aquifers before (Marino, 

1973; Liang and Zhang, 2012). The most common methods to select the value of ha for 

horizontal aquifers are to let ha=hi or let ha equal to the average value of the initial heads 

at the left and right boundaries. However, those methods do not consider a rapidly varied 

river stage. They also do not consider a sloping bed. In this section, we will investigate 

the influences of water table fluctuation in the presence of a sloping bed and a changing 

river stage with different ha values. 

We have computed the arithmetic averaged thicknesses of aquifer based on Fig. 2-3 

for horizontal, 5º sloping and 10º sloping aquifers using the analytical solution. Such 

averaged thicknesses are 5.25, 5.89 and 6.37 m for t=10, 30 and 50 d, respectively for the 

horizontal aquifer; such averaged thicknesses are 5.17, 5.92 and 6.57 m for t=10, 30 and 

50 d, respectively for the 5º sloping aquifer; such averaged thicknesses are 5.05, 5.81 and 

6.57 m for t=10, 30 and 50 d, respectively for the10º sloping aquifer. The average 

thicknesses of aquifers are estimated basing on ha=5 m for the linearized analytical 

solution. The results show that the values of ha are underestimated, when the river stage 

rises with time. Furthermore, the range of change of the averaged thickness becomes 

greater when the sloping angle gets larger. 

Recognizing that the averaged aquifer thickness is underestimated for setting ha=5 m, 

we then change ha=6 m and repeat above computation of the water table heights. We find 
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that the averaged thicknesses of the horizontal aquifer are 5.28, 6.00 and 6.51 m for t=10, 

30 and 50 d, respectively; the averaged thicknesses of the 5º sloping aquifer are 5.19, 

6.00 and 6.67 m for t=10, 30 and 50 d, respectively; the averaged thicknesses of the10º 

sloping aquifer are 5.05, 5.86 and 6.63 m for t=10, 30 and 50 d, respectively. The 

computed water table heights for three aquifers for two different ha values (5 m and 6 m) 

with a rising river stage are shown in Fig. 4-18. It is shown that when the sloping angle 

increases, the influences of ha to water table heights decrease. When the river stage 

increases from 5 to 10 m, the discrepancies of water table heights between ha=5 m and ha 

=6 m for three aquifers range from 0.008 to 0.14 m. 

Above analysis concerns a rising river stage, now we will discuss a falling river stage. 

The river stage decreases from 5 to 3 m with λ=0.1 d-1. The initial water table heights is 5 

m, the average thickness of aquifer is 5 m, and the hydraulic parameters of aquifer and 

vertical clogging layer are same as their counterparts in section 2.3.1. For such a falling 

river stage, the averaged thicknesses of the horizontal aquifer are 4.90, 4.64 and 4.45 m 

for t=10, 30 and 50 d, respectively; the averaged thicknesses of the 5º sloping aquifer are 

4.75, 4.23 and 3.80 m for t=10, 30 and 50 d, respectively; the averaged thicknesses of the 

10º sloping aquifer are 4.55, 3.62 and 2.83 m for t=10, 30 and 50 d, respectively. The 

results show that the values of ha are overestimated when the river stage declines with 

time.  

After above analysis, the value of ha is dropped from 5 to 4 m for the case of a falling 

river stage. When the river stage decreases from 5 to 3 m with λ=0.1 d-1 and other 

parameters remaining the same as the model above, the averaged thicknesses of the 

horizontal aquifer are 4.91, 4.69 and 4.52 m for t=10, 30 and 50 d, respectively; the 
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averaged thicknesses of the 5º sloping aquifer are 4.78, 4.30 and 3.89 m for t=10, 30 and 

50 d, respectively; the averaged thicknesses of the 10º sloping aquifer are 4.59, 3.70 and 

2.89 m for t=10, 30 and 50 d, respectively. The water table heights for three aquifers for 

two different ha values (5 m and 4 m) with a falling river stage are shown in Fig. 4-19. 

When the river stage decreases from 5 to 3 m, the discrepancies of water table heights 

between ha=5 m and ha =4 m for three aquifers range from 0.014 m to 0.083 m. 

In section 4.3.2, we obtained water table heights in a period of 2000 days for three 

aquifers at x=0, 50, 100 and 150 m. The average thicknesses of sloping aquifers are less 

than 5 m in the period of t=0 d to t=1000 d. In this case, we use ha=5 m and obtained the 

steady state water table heights 4.12 m and 3.22 m for 5º sloping aquifer and 10º sloping 

aquifer respectively. The steady state water table heights are not affected by the values of 

ha. A demonstrate is shown in the following. 

From Figs. 4-18 and 4-19, one can see that the use of different ha values does not 

appear to affect the overall water table heights greatly. Therefore, we recommend to 

choose the value of ha based on the average of the initial heads on the left and right 

boundaries. 

The steady-state water table heights can be estimated by Eq. (2-4). When the 

infiltrated recharge is zero and the river stage is constant, one can have the steady-state 

governing equation of flow as: 

𝜕2ℎ

𝜕𝑥2 −
𝑡𝑎𝑛𝜃

ℎ𝑎

𝜕ℎ

𝜕𝑥
= 0.         (4-19) 

The general solution of Eq. (4-19) can be obtained straightforwardly as 
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ℎ = 𝐶1 𝑒𝑥𝑝 (
𝑡𝑎𝑛𝜃

ℎ𝑎
𝑥) + 𝐶2 .       (4-20) 

where C1 and C2 are two constants to be determined. Basing on the boundary condition of 

Eqs. (2-7b) and (2-7c), we can obtain C1=0 and C2=hs-(K/k1)*tanθ.  

It is easily seen that the steady-state water table heights in a sloping aquifer are not 

related to the value of ha. Furthermore, such steady-state water table heights are 

independent of x, meaning that they are uniform over the domain of interest. Specifically, 

the steady-state water table heights of the 5º sloping aquifer and the 10º sloping aquifer 

are 4.12 m and 3.22 m, respectively, which are the same as the steady-state water table 

heights in Fig. 4-5.  

From Fig. 4-5, one can see that it takes approximately 250 days for water table to 

approach its steady state at x=150 m when the sloping angle is 10º. Such an observation 

is consistent with a quantitative analysis using the concept of hydraulic diffusivity (D) 

defined as: 

𝐷 =
𝐾ℎ𝑎

𝑆𝑦
          (4-21) 

Based on such a hydraulic diffusivity, one may recall the following equation to 

estimate the characteristic time (T) for dissipating a pore pressure (or hydraulic head) 

anomaly (Bear, 1972): 

𝑇 =
𝑥2

2𝐷
           (4-22) 

Such a characteristic time should be in the same order of magnitude with the time 

required to approximate the steady-state. Given the values of K=2.5 m/day, ha=3.22 m 
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(see the steady-state ha above for the 10º sloping aquifer), Sy=0.25, and x=150 m, one will 

obtain T=349 days for the 10º sloping aquifer. Such an estimated characteristic time is 

within the same order of magnitude as the time of approaching the steady state observed 

from Fig. 4-5, which is 250 days.  

4.3.5 Application of new analytical solution 

In section 4.3.2, we compare water table heights calculated using an idealized initial 

condition, and we find that the system requires a long time to achieve steady state, 

especially in a horizontal aquifer. In this section, we will discuss how to use our solution 

to estimate ground water table and river-aquifer flux for a variable river stage in a sloping 

aquifer. We need to point out that this method only works for a special case below, i.e., 

the river stage is nearly constant for an extensive period of time before start to rise 

relatively rapidly. 

Before predicting the ground water table, some field works are necessary to gather the 

necessary information. For instance, we need several pressure transducers and an 

observation well near the river to record the stage of river and the elevation of water table 

at the observation well. The hydraulic conductivities of the clogging layer may be tested 

using a slug test, and the aquifer hydraulic conductivity may be obtained using a pumping 

test or a slug test. The porosity and specific yield of the aquifer may be obtained from 

laboratory test using samples taken from the aquifer investigated. The thickness of the 

clogging layer can be obtained from coring, and the inclined angle of the impermeable 

base can be obtained using geological map or geophysical survey.  



 

118 
 
 

 

Assuming that the stage of river stays on a level of hi1 for a known period of time and 

then rises rapidly to hf1 in a short period of time (for instance by flood, snowmelt or 

precipitation in the upstream). The stage curve of river is recorded by sensor. We can fit 

the stage curve of river by Eq. (4-1) and obtain the value of fitting parameter a1. For 

instance, if the stage of river increases from 5 m to 7 m in 2, 5 and 10 d, the 

corresponding parameter of a can be set as 1.4, 2.8 and 7 d-1. The stage curves are shown 

in Fig. 4-20.   

At first, we set a great value of fitting parameter c1 (meaning that the system has 

experienced a long period of time with a nearly constant river stage, thus has already 

reach its pseudo-steady state) and use Eq. (4-1) and our solution to calculate water table 

height distribution at the location of the observation well. The initial value of river and 

water table heights in aquifer are set by the value of hi. Second, we can calibrate the value 

of hi by comparing the observed water table height h1 at the observation well with the 

calculated pseudo-steady state water table height at the observation well. After this step, 

we can calculate the water table by our solution with the calibrated initial value hi of river 

stage for all the following times.  

For instance, the stage of river stays on 5 m for a long time and the distance between 

river and an observation well is 50 m. The hydrological parameters of model are the same 

as in the 5º sloping angle case in section 4.3.2.  If we observe the water table height is 

4.30 m at the observation well, the corresponding time can be found in Fig. 4-21. We can 

describe the ground water table at the beginning time of river rise by the results at t=97 

days. If the stage of river rises from 5 m to 7 m in 5 days, a new equation will be built as 

below: ℎ𝑠(𝑡) = 7 − 2/(1 + 𝑒2.8t−106)      (4-19) 
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We can obtain groundwater table with time using Eq. (4-19). The part of t=0 d to 

t=97 d is use to obtain the ground water table at the beginning time of river rise. The part 

of t>97 d can be used to predict the water table fluctuation after river rise. 

The attempt here is to simulate a realistic river stage function when studying a river-

aquifer system in a sloping aquifer framework. However, we have to point out that above 

discussion is still limited to a relatively simple scenario of the river stage variation, i.e., a 

relatively long period of time of relatively stable river stage, followed by a rapid rise of 

the river stage. The methodology established here is important and it can be used to 

simulate more realistic river stage fluctuation functions. For instance, if a falling river 

stage also exists after the rising phase, then another sigmoid function can be added into 

the river stage function, i.e., there are two terms in the summation of Eq. (4-1). The rest 

derivation procedures are nearly identical to what has been presented in this chapter 

except that the formula will get more complex. Furthermore, if the river stage fluctuates 

with a number of rising limbs and falling limbs, a sequential sigmoid functions can be 

used to mimic the shape of the river stage fluctuation, and the rest derivation procedures 

are straightforward (albeit a little bit tedious). In this way, we can essentially derive the 

analytical model for a wide range of possible river stage fluctuations. 
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Fig. 4-18 Comparison of water table heights above the impermeable bed at t=10, 30 and 

50 d for a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer with a rising 

river stage between ha=5 m and ha=6 m. 
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Fig. 4-19 Comparison of water table heights above the impermeable bed at t=10, 30 and 

50 d for a horizontal aquifer, a 5° sloping aquifer, and a 10° sloping aquifer with a 

declining river stage between ha=5 m and ha=4 m. 
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Fig. 4-20 the curves of river stage increase from 5 m to 7 m in 2, 5 and 10 d. 
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Fig. 4-21 Water table height fluctuates at x=50 m with a constant stage of river. 

 

4.4 Conclusion 

A new semi-analytical solution is developed to estimate the ground water table 

distribution in a sloping aquifer with one water interacted river and potential time-

dependent recharge from infiltration on the top. The semi-analytical solution is derived 

by a new method to describe the realistic river stage variations using a sequential sigmoid 

functions. The new method allows the stage of river changes as an “S” shaped curve and 

this important feature can be used to overcome the problem of using an idealized and 
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likely unrealistic initial condition of a constant water table heights above the sloping base 

in previous numerous studies. 

We compare our new semi-analytical solution with a 1D finite-element numerical 

model developed in COMSOL and find that our analytical solution agrees greatly with 

COMSOL simulations. The water table heights simulated from above mentioned 

idealized initial head would change rapidly at the beginning of simulation, and requires a 

long period of time to reach its pseudo-state state status. 

The unique feature of the proposed new sigmoid functions for describing the river 

stage will allow system to reach its pre-rising pseudo-steady state condition, thus is more 

close to what happens in an actual river-aquifer system when the river stage remains 

nearly the same level for a long period of time before rising. We investigate the response 

of peak flow to groundwater table and river-aquifer flux. We investigate the influences of 

ha to the groundwater table in a sloping aquifer with a river and semi-infinite extent by 

the analytical method. 

The developed analytical solution of this chapter is expected to be more realistic to 

describe the river-aquifer system in a sloping aquifer framework, and it can be used as an 

important base for investigating other complex river stage variations in the future. 
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CHAPTER 5                                                                                                              

SUMMARY AND CONCLUSIONS 

 

5.1 Summary and conclusions 

In this dissertation, we have investigated the influences of sloping bed, dynamic river 

stage, the vertical clogging layer and time-dependent infiltration recharge on the 

groundwater table fluctuations and river-aquifer flux under various hydrological 

conditions. 

Hydrodynamics in an unconfined sloping aquifer has been a concern among several 

previous researchers. But the previous studies have several problems in multiple aspects 

such as treatment of the boundary condition associated with the clogging layer, exclusion 

of the infiltration recharge in the Boussinesq equation, etc. To advance the science of 

hydrodynamics in a sloping unconfined aquifer, a new semi-analytical solution was 

developed by setting the dynamic river stage and infiltration recharge on the top. The 

comparison displays that the analytical solution of previous study by Bansal et al. (2016) 

is not suited for describing the hydrodynamics in an unconfined sloping aquifer. 

The new analytical solution was compared with the finite element method of 

numerical simulations by COMSOL program and HydroGeoSphere. The COMSOL 

program was built by the same linearized Boussinesq equation and it fits greatly with the 

analytical solution. The HydroGeoSphere program couples the flow processes in the 

unsaturated zone and the saturated zone. The results display that the accuracy of 

analytical solution will decrease with the increase of sloping angles. The responses of 

infiltration recharge to water table fluctuations and river-aquifer flux demonstrate that 
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sporadic recharge events (possibly occurring in arid and semi-arid regions) do not play an 

important role in affecting the response of water table and river-aquifer flux, when 

compared to the river stage variations and sloping angles. 

Water flow in an unconfined sloping aquifer between two parallel rivers with water 

infiltrated recharge has also been studied in a few limited previous studies. But the 

previous studies did not consider the influences of 1) the clogging layer between river 

and aquifer, 2) the various stages of rivers, and 3) infiltrated recharge on the top. An 

analytical solution included these factors has been developed in this dissertation based on 

the linearized Boussinesq equation.  Similarly, for such a two river and one aquifer 

system, the water table heights and river-aquifer fluxes obtained by the analytical 

solution, and two numerical programs of COMSOL and HydroGeoSphere are compared. 

Our results show the analytical solution agree greatly with COMSOL program. The 

comparison displays that the factors of the unsaturated zone process and the linearized 

approach used in the analytical solution may cause negligible errors for a sloping aquifer 

with a 10º sloping angle. Greater discrepancy will be resulted when the sloping angle 

becomes larger. 

The variations of water profile in an unconfined aquifer is much different from the 

variations of water profile in a horizontal aquifer, especially in an unconfined aquifer 

with two parallel rivers. The water table profile can evolve from a straight line parallel 

with the sloping at the beginning to a convex shape without any recharge or evaporation 

on the top of aquifer. 
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The different hydraulic parameters may cause different influences on water table 

fluctuations and river-aquifer fluxes in an unconfined sloping aquifer. The influences of 

hydraulic parameters for an unconfined sloping aquifer with one river or two river are 

similar but different in some extents. 

The previous studies of the analytical solutions in an unconfined sloping aquifer are 

limited by the idealized initial condition. We have developed a new method to avoid the 

limitation of idealized initial condition by using a sequential sigmoid functions to 

describe the river stage variations. The benefit of using the sigmoid functions permits the 

system to reach its pseudo-steady state after a long period of stable river stage before the 

rapid rise of the river stage, thus avoid the difficulty of selecting the proper initial 

condition, which is often complex and unknown for a sloping aquifer. We find that when 

the sloping angle becomes greater, the water table will achieve steady state more quickly. 

5.2 Future work 

Up to now, most of studies on the water flow in an unconfined sloping aquifer only 

consider the influences of saturated zone. We build a model with unsaturated zone and 

saturated zone by HydroGeoSphere, but that the unsaturated zone processes have not 

been fully explored in great details. For instance, how are the different soil types, water 

table depth, and surface infiltration going to affect the overall hydrodynamics of flow in 

an unconfined sloping aquifer?  

The recharge events discussed in this dissertation are sporadic, which is suitable for 

dealing with extreme precipitation events in arid and semi-arid regions, but may not be 
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suitable for more humid environment in which a sustainable recharge event can last for a 

long period of time. This issue should also explored in details in the future. 

To align with previous studies, this dissertation primarily focus on single rising or 

falling limb of the river stage, although the proposed sequential sigmoid functions is 

capable of dealing with complex river stage fluctuations. In the future, it will be nice to 

explore the variation of water table and surface water-groundwater interaction when the 

river stage rises and falls in more realistic patterns observed in real world. 

The aquifer heterogeneity has not been considered in this study and should be 

explored in the future. For instance, multiple sedimentary layers with vastly different 

hydraulic properties may exist in the field. It will be interesting to find out how is such 

layering feature will impact the hydrodynamics in a sloping aquifer framework. 

The investigation conducted is a two-dimensional cross-section approach. It means 

that we have not considered the river stage variation along the river channel. A three-

dimensional approach honoring river stage variation not only with time but also along the 

river channel will be very valuable for assessing the interaction of river with a sloping 

angles.  

The assumption adopted in this study is that the river stage can be described using a 

prescribed function of time. In reality, one may have to incorporate the open channel flow 

in the river and the groundwater flow in the sloping aquifer into an integrated system. 

The single river case discussed here assumes that the river is straight at least with the 

domain of interest. In reality, the river channel is meandering. The two rivers discussed 

are assumed to be parallel with each in this study. In reality, the two rivers may be in any 
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geometrical setting (parallel or not). Therefore, the interaction of a sloping aquifer with 

two non-parallel rivers will be the concern. 

The clogging layer morphology discussed here is highly idealized. In the future, more 

realistic river bed clogging layer should be considered. Furthermore, such a clogging 

layer may even vary with space and time continuously (because of the periodic flooding 

events in the river channel). It is worthwhile to explore the interaction of river with a 

sloping aquifer with the presence of such clogging layers. 

The rivers are fully penetrating in this dissertation. In the future, partially penetrating 

rivers should be investigated, particularly for river in the down-gradient site where a 

greater depth to the impermeable bed is seen. 

This study does not consider any pumping or injection wells in the sloping aquifer. In 

reality, those wells may be functioned, and their influence will be checked. For instance, 

it will be interesting to find out what is the difference for river bank pumping in a sloping 

aquifer from that in a horizontal aquifer? Is the stream depleting rate the same in a 

sloping aquifer as that in a horizontal aquifer when one or multiple river bank pumping 

wells are installed. 

Despite the long list of unexplored problems outlined above, this dissertation provides 

some fundamental knowledge and analytical solutions that are easy to use. The solution 

has been tested and the conditions for the use of those solutions have also been explained. 

With this in mind, we believe that this body of work represents a significant advancement 

in hydrodynamics of sloping unconfined aquifers.  
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APPENDIX A                                                                                                                   

MATLAB SCRIPT FILES FOR COMPUTING THE WATER TABLE HEIGHTS IN 

SECTION 2.2  

 

%Part 1 This part is to prepare the input of the corresponding parameters, to 

obtain the values of hD (hh1 for horizontal, hh2 for 3 deg angle, hh3 for 5 deg angle, 

hh4 for 10 deg angle) and to calculate the values of water table heights hhhh1 and 

hydraulic heads hhh1. 

clear; 

  

W1=[2.0153, 0, 0.20153, 0.020153, 1.00765, 2.0153]; 

W2=[2.0153, 0, 0.20153, 0.020153, 1.00765, 2.0153]; 

W3=[2.0153, 0, 0.20153, 0.020153, 1.00765, 2.0153]; 

W4=[2.0153, 0, 0.20153, 0.020153, 1.00765, 2.0153]; 

W5=[2.0153, 0, 0.20153, 0.020153, 1.00765, 2.0153]; 

  

t1=0.0025*0.2; 

t2=0.0025*0.4; 

t3=0.0025*0.6; 

t4=0.0025*0.8; 

t5=0.0025; 

  

t21=0.00248100969*0.2; 

t22=0.00248100969*0.4; 

t23=0.00248100969*0.6; 

t24=0.00248100969*0.8; 

t25=0.00248100969; 

  

t31=0.00242461578*0.2; 

t32=0.00242461578*0.4; 

t33=0.00242461578*0.6; 

t34=0.00242461578*0.8; 

t35=0.00242461578; 

  

x=[0, 0.02, 0.05, 0.08, 0.1, 0.15]; 

tt1=0:0.0025*0.002:t5; 

tt2=0:0.00248100969*0.002:t25; 

tt3=0:0.00242461578*0.002:t35; 

%  

% tt1=[t1 t2 t3 t4 t5]; 

% tt2=[t21 t22 t23 t24 t25]; 

% tt3=[t31 t32 t33 t34 t35]; 
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x=0:0.001:0.15; 

% t=[t1 t2 t3 t4 t5]; 

R1=[0.01008, 0.01005, 0.01000, 0.00978]; 

% R1=[0.02016, 0.02011, 0.02001, 0.01955]; 

t=0:1:50; 

  

alpha=[0, 10.4816, 17.4977, 35.2654]; 

% alpha=[0, 10.4816, -17.4977, -35.2654]; 

  

lambda1=[2000, 2005.49, 2015.31, 2062.18]; 

  

hf1=[10, 3]; 

hi=5; 

ha=5; 

Ka=2.5; 

L=1000; 

theta=[0 3 5 10]*pi/180; 

  

m1=[0 0.10537 0.17639 0.3555]; 

  

for i=1:length(tt1) 

for j=1:length(x) 

    

hh1(i,j)=h1(x(j),tt1(i),R1(1),alpha(1),lambda1(1),t1,t2,t3,t4,t5,m1(1),W1(2),W2(2),W3(2)

,W4(2),W5(2)); 

    hhh1(i,j)=hh1(i,j)*(hf1(1)-hi)+hi+tan(theta(1))*100*(1-x(j)); 

    hhhh1(i,j)=hh1(i,j)*(hf1(1)-hi)+hi; 

  

end 

end 

  

for i=1:length(tt2) 

  

for j=1:length(x) 

 

hh3(i,j)=h1(x(j),tt2(i),R1(1),alpha(3),lambda1(3),t21,t22,t23,t24,t25,m1(3),W1(2),W2(2),

W3(2),W4(2),W5(2)); 

    hhh3(i,j)=hh3(i,j)*(hf1(1)-hi)+hi+tan(theta(3))*100*(1-x(j)); 

    hhhh3(i,j)=hh3(i,j)*(hf1(1)-hi)+hi; 

  

end 

end 

  

for i=1:length(tt3) 
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for j=1:length(x) 

hh4(i,j)=h1(x(j),tt3(i),R1(1),alpha(4),lambda1(4),t31,t32,t33,t34,t35,m1(4),W1(2),W2(2),

W3(2),W4(2),W5(2)); 

    hhh4(i,j)=hh4(i,j)*(hf1(1)-hi)+hi+tan(theta(4))*100*(1-x(j)); 

    hhhh4(i,j)=hh4(i,j)*(hf1(1)-hi)+hi; 

  

end 

end 

  

  

Part 2 

This part is a subroutine program to obtain the values of hd and ωn. 

 

function [ val ] = h1(x,t,R1,alpha,lambda1,t1,t2,t3,t4,t5,m1,W1,W2,W3,W4,W5) 

  

N=3000; 

omega=get_omega(R1,alpha,N); 

omega_n=omega(2:N); 

  

beta_n=omega_n.^2+alpha^2/4; 

An=(2./((omega_n.^2+(alpha/2-1/R1)^2).*(1+(alpha/2)./(omega_n.^2+(alpha/2)^2))-

alpha/2+1/R1)).^0.5;%%revised 

xix=-An.*omega_n./R1; 

  

xi1=-(1-m1)./beta_n; 

  

xi2=1./(beta_n-lambda1); 

 

xi4=-1./(beta_n-lambda1)+(1-m1)./beta_n; 

  

xi5=(An./beta_n).*(exp(-alpha/2)*(beta_n.*sin(omega_n)-

(1/R1)*((alpha/2)*sin(omega_n)+omega_n.*cos(omega_n)))+(1/R1)*omega_n); 

  

if (t<=t5) && (t>t4) 

    Iwt=W5.*(exp(beta_n*(t-t))-exp(beta_n*(t4-t)))+W4.*(exp(beta_n*(t4-t))-

exp(beta_n*(t3-t)))+W3.*(exp(beta_n*(t3-t))-exp(beta_n*(t2-t)))+W2.*(exp(beta_n*(t2-

t))-exp(beta_n*(t1-t)))+W1.*(exp(beta_n*(t1-t))-exp(beta_n*(0-t))); 

  %  Iwt(isnan(Iwt))=0; 

elseif  (t<=t4) && (t>t3) 

    Iwt=W4.*(exp(beta_n*(t-t))-exp(beta_n*(t3-t)))+W3.*(exp(beta_n*(t3-t))-

exp(beta_n*(t2-t)))+W2.*(exp(beta_n*(t2-t))-exp(beta_n*(t1-t)))+W1.*(exp(beta_n*(t1-

t))-exp(beta_n*(0-t))); 

   % Iwt(isnan(Iwt))=0; 

elseif (t<=t3 && t>t2) 

    Iwt=W3.*(exp(beta_n*(t-t))-exp(beta_n*(t2-t)))+W2.*(exp(beta_n*(t2-t))-

exp(beta_n*(t1-t)))+W1.*(exp(beta_n*(t1-t))-exp(beta_n*(0-t))); 
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      %  Iwt(isnan(Iwt))=0; 

elseif (t<=t2 && t>t1) 

    Iwt=W2.*(exp(beta_n*(t-t))-exp(beta_n*(t1-t)))+W1.*(exp(beta_n*(t1-t))-

exp(beta_n*(0-t))); 

       % Iwt(isnan(Iwt))=0; 

elseif (t<=t1 && t>=0) 

    Iwt=W1.*(exp(beta_n*(t-t))-exp(beta_n*(0-t))); 

      

end 

phi=xix.*(xi1+xi2*exp(-lambda1*t)+xi4.*exp(-

beta_n*t))+(xi5./beta_n).*Iwt;%(W3.*(exp(beta_n*(0.5-t))-exp(beta_n*(0.3-

t)))+W2.*(exp(beta_n*(0.3-t))-exp(beta_n*(0.1-t)))+W1.*(exp(beta_n*(0.1-t))-

exp(beta_n*(0-t)))); 

K=An.*(omega_n.*cos(omega_n*x)+(-alpha/2+1/R1)*sin(omega_n*x));%%revised 

temp=K.*phi; 

val=exp(x*alpha/2)*sum(temp); 

end 

% test=(xi5./beta_n).*(W3.*(exp(beta_n*(0.5-t))-exp(beta_n*(0.3-

t)))+W2.*(exp(beta_n*(0.3-t))-exp(beta_n*(0.1-t)))+W1.*(exp(beta_n*(0.1-t))-

exp(beta_n*(0-t)))); 

% test1=W3*(exp(beta_n*t)); 

% %disp(test); 

  

function [val]=get_omega(R1,alpha,N) 

% syms p_o R1 R2 alpha 

% f=tan(p_o)-p_o*(1/R1+1/R2)/(p_o^2+(alpha/2-1/R1)*(alpha/2+1/R2)); 

% p_n=p_o-f/diff(f,p_o) 

sing=sqrt(-(alpha/2-1/R1)*(alpha/2)); 

va=[0 0]; 

for ii=1:N 

     

    if sing<(ii-1)*pi+pi/2 && sing>(ii-1)*pi-pi/2 

        va=singular(ii,R1,alpha,sing); 

        val(ii)=va(1); 

        NN=ii; 

        ii=ii+1; 

    end 

    p_o=pi*(ii-1)+eps; 

    tol=1e-12; 

    for kk=1:100 

        p_n =p_o - (tan(p_o) - (p_o*(1/R1))/((alpha/2 - 1/R1)*(alpha/2) + 

p_o^2))/(tan(p_o)^2 - 1/(R1*(p_o^2 + (alpha*(alpha/2 - 1/R1))/2)) + 

(2*p_o^2)/(R1*(p_o^2 + (alpha*(alpha/2 - 1/R1))/2)^2) + 1); 

        err=abs(p_n-p_o); 

        %giving constraint 

        if p_n>=(ii-1)*pi+pi/2 
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            p_n=(ii-1)*pi+pi/2-10000000*eps; 

        end 

        if p_n<=(ii-1)*pi-pi/2 

            p_n=(ii-1)*pi-pi/2+10000000*eps; 

        end 

        p_o=p_n; 

        if (err<tol) 

            break; 

        end 

    end 

    %break point 

    val(ii)=p_o; 

end 

if va(2)~=0 

    val=[val(1:NN),va(2),val(NN+1:end)]; 

end 

end 

  

%calculate omeiga at signular point 

function va= singular(ii,R1,alpha,sing) 

%first point 

p_o=(sing+pi*(ii-1)-pi/2)/2; 

tol=1e-12; 

for kk=1:100 

    p_n =p_o - (tan(p_o) - (p_o*(1/R1))/((alpha/2 - 1/R1)*(alpha/2) + p_o^2))/(tan(p_o)^2 

- 1/(R1*(p_o^2 + (alpha*(alpha/2 - 1/R1))/2)) + (2*p_o^2)/(R1*(p_o^2 + 

(alpha*(alpha/2 - 1/R1))/2)^2) + 1); 

    err=abs(p_n-p_o); 

    %giving constraint 

    if p_n>=sing 

        p_n=sing-10000000*eps; 

    end 

    if p_n<=(ii-1)*pi-pi/2 

        p_n=(ii-1)*pi-pi/2+10000000*eps; 

    end 

    p_o=p_n; 

    if (err<tol) 

        break; 

    end 

end 

va(1)=p_o; 

  

%second point 

p_o=(sing+pi*(ii-1)+pi/2)/2; 

tol=1e-12; 

for kk=1:100 
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    p_n =p_o - (tan(p_o) - (p_o*(1/R1))/((alpha/2 - 1/R1)*(alpha/2) + p_o^2))/(tan(p_o)^2 

- 1/(R1*(p_o^2 + (alpha*(alpha/2 - 1/R1))/2)) + (2*p_o^2)/(R1*(p_o^2 + 

(alpha*(alpha/2 - 1/R1))/2)^2) + 1); 

    err=abs(p_n-p_o); 

    %giving constraint 

    if p_n<=sing 

        p_n=sing+10000000*eps; 

    end 

    if p_n>=(ii-1)*pi+pi/2 

        p_n=(ii-1)*pi+pi/2-10000000*eps; 

    end 

    p_o=p_n; 

    if (err<tol) 

        break; 

    end 

end 

va(2)=p_o; 

end 
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APPENDIX B                                                                                                                  

MATLAB SCRIPT FILES FOR COMPUTING THE WATER TABLE HEIGHTS IN 

SECTION 3.2 

 

%Part 1 This part is to prepare the input of corresponding parameters, to obtain 

the values of hD (hh1 for horizontal, hh2 for 3 deg angle, hh3 for 5 deg angle, hh4 for 

10 deg angle) and to calculate the values of water table heights hhhh1 and hydraulic 

heads hhh1. 

clear; 

clc 

  

W1=[2.0153, 0, 2.0153, 0.020153, 1.00765, 2.0153]; 

W2=[2.0153, 0, 2.0153, 0.020153, 1.00765, 2.0153]; 

W3=[2.0153, 0, 2.0153, 0.020153, 1.00765, 2.0153]; 

W4=[2.0153, 0, 2.0153, 0.020153, 1.00765, 2.0153]; 

W5=[2.0153, 0, 2.0153, 0.020153, 1.00765, 2.0153]; 

t1=0.0606153944; 

t2=0.06667693; 

t3=0.121230789; 

t4=0.127292328; 

t5=0.303076972; 

  

x=0:0.01:1; 

t=[t1, t2, t3, t4, t5]; 

  

R1=[0.10081, 0.10053, 0.00992, 0.09777, 0.1]; 

R2=[0.10081, 0.10053, 0.00992, 0.09777, 0.1]; 

  

% alpha=[0, 1.04816, 1.74977, 3.52654, 1.80001];  % ha=5m 

alpha=[0, 0.83852, 1.399818616, 2.82123, 1.44001];  % ha=6.25m 

  

mu=[1, -0.18421]; 

  

lambda1=[16, 16.0439, 16.12246826, 16.4975];  % ha=6.25m 

  

hf1=[10, 5]; 

hi=5; 

ha=6.25; 

L=100; 

theta=[0 3 5 10 5.1428]*pi/180; 

  

m1=[0 0.10537 0.17639 0.3555 0.17999]; 
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m2=[0 0.10537 0.17639 0.3555 0.17999]; 

  

for i=1:length(t) 

%     for i=1:length(theta) 

for j=1:length(x) 

    

hh1(i,j)=h(x(j),t(i),R1(1),R2(1),alpha(1),mu(1),lambda1(1),0,t1,t2,t3,t4,t5,m1(1),m2(1),

W1(2),W2(2),W3(2),W4(2),W5(2)); 

    hhh1(i,j)=hh1(i,j)*(hf1(1)-hi)+hi+tan(theta(1))*100*(1-x(j)); 

    hhhh1(i,j)=hh1(i,j)*(hf1(1)-hi)+hi; 

end 

end 

  

for i=1:length(t) 

%     for i=1:length(theta) 

for j=1:length(x) 

    %     xD, hhh 

    

hh2(i,j)=h(x(j),t(i),R1(1),R2(1),alpha(2),mu(1),lambda1(2),0,t1,t2,t3,t4,t5,m1(2),m2(2),

W1(2),W2(2),W3(2),W4(2),W5(2)); 

    hhh2(i,j)=hh2(i,j)*(hf1(1)-hi)+hi+tan(theta(2))*100*(1-x(j)); 

    hhhh2(i,j)=hh2(i,j)*(hf1(1)-hi)+hi; 

%     +tan(theta(3))*100*(1-x(j)); 

    tt(i)=t(i)*100.765; 

  

end 

end 

  

for i=1:length(t) 

%     for i=1:length(theta) 

for j=1:length(x) 

    %     xD, hhh 

    

hh3(i,j)=h(x(j),t(i),R1(1),R2(1),alpha(3),mu(1),lambda1(3),0,t1,t2,t3,t4,t5,m1(3),m2(3),

W1(2),W2(2),W3(2),W4(2),W5(2)); 

    hhh3(i,j)=hh3(i,j)*(hf1(1)-hi)+hi+tan(theta(3))*100*(1-x(j)); 

    hhhh3(i,j)=hh3(i,j)*(hf1(1)-hi)+hi; 

%     +tan(theta(3))*100*(1-x(j)); 

    tt(i)=t(i)*100.765; 

  

end 

end 

  

for i=1:length(t) 

%     for i=1:length(theta) 

for j=1:length(x) 
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    %     xD, hhh 

    

hh4(i,j)=h(x(j),t(i),R1(1),R2(1),alpha(4),mu(1),lambda1(4),0,t1,t2,t3,t4,t5,m1(4),m2(4),

W1(2),W2(2),W3(2),W4(2),W5(2)); 

    hhh4(i,j)=hh4(i,j)*(hf1(1)-hi)+hi+tan(theta(4))*100*(1-x(j)); 

    hhhh4(i,j)=hh4(i,j)*(hf1(1)-hi)+hi; 

%     +tan(theta(3))*100*(1-x(j)); 

    tt(i)=t(i)*100.765; 

  

end 

end 
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%Part 2  

This part is a subroutine program to obtain the values of hd and ωn. 

 

function [ val ] = 

h(x,t,R1,R2,alpha,mu,lambda1,lambda2,t1,t2,t3,t4,t5,m1,m2,W1,W2,W3,W4,W5) 

  

N=3000; 

omega=get_omega(R1,R2,alpha,N); 

omega_n=omega(2:N); 

  

beta_n=omega_n.^2+alpha^2/4; 

An=(2./((omega_n.^2+(alpha/2-

1/R1)^2).*(1+(alpha/2+1/R2)./(omega_n.^2+(alpha/2+1/R2)^2))-

alpha/2+1/R1)).^0.5;%%revised 

  

a=omega_n.*R2*exp(alpha/2)*(1-m1)+(mu+m2)*R1*(omega_n.*cos(omega_n)+(-

alpha/2+1/R1)*sin(omega_n));%%revised 

b=R1*R2*beta_n*exp(alpha/2); 

xi1=a./b; 

  

xi2=omega_n./(R1*(beta_n-lambda1)); 

  

a=mu*(omega_n.*cos(omega_n)+(-alpha/2+1/R1)*sin(omega_n));%%revised 

b=(beta_n-lambda2)*R2*exp(alpha/2); 

xi3=a./b; 

  

a=R2*(lambda1+m1.*(beta_n-lambda1)).*omega_n.*(beta_n-

lambda2)*exp(alpha/2)+R1*(mu.*lambda2-m2.*(beta_n-lambda2)).*(beta_n-

lambda1).*(omega_n.*cos(omega_n)+(-alpha/2+1/R1)*sin(omega_n));%%revised 

b=beta_n*R1*R2.*(beta_n-lambda1).*(beta_n-lambda2)*exp(alpha/2); 

xi4=a./b; 

  

xi5=(An./beta_n).*(exp(-alpha/2)*(beta_n.*sin(omega_n)-

(1/R1)*((alpha/2)*sin(omega_n)+omega_n.*cos(omega_n)))+(1/R1)*omega_n); 

  

if (t<=t5) && (t>t4) 

    Iwt=W5.*(exp(beta_n*(t-t))-exp(beta_n*(t4-t)))+W4.*(exp(beta_n*(t4-t))-

exp(beta_n*(t3-t)))+W3.*(exp(beta_n*(t3-t))-exp(beta_n*(t2-t)))+W2.*(exp(beta_n*(t2-

t))-exp(beta_n*(t1-t)))+W1.*(exp(beta_n*(t1-t))-exp(beta_n*(0-t))); 

elseif  (t<=t4) && (t>t3) 

    Iwt=W4.*(exp(beta_n*(t-t))-exp(beta_n*(t3-t)))+W3.*(exp(beta_n*(t3-t))-

exp(beta_n*(t2-t)))+W2.*(exp(beta_n*(t2-t))-exp(beta_n*(t1-t)))+W1.*(exp(beta_n*(t1-

t))-exp(beta_n*(0-t))); 

elseif (t<=t3 && t>t2) 
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    Iwt=W3.*(exp(beta_n*(t-t))-exp(beta_n*(t2-t)))+W2.*(exp(beta_n*(t2-t))-

exp(beta_n*(t1-t)))+W1.*(exp(beta_n*(t1-t))-exp(beta_n*(0-t))); 

      %  Iwt(isnan(Iwt))=0; 

elseif (t<=t2 && t>t1) 

    Iwt=W2.*(exp(beta_n*(t-t))-exp(beta_n*(t1-t)))+W1.*(exp(beta_n*(t1-t))-

exp(beta_n*(0-t))); 

       % Iwt(isnan(Iwt))=0; 

elseif (t<=t1 && t>=0) 

    Iwt=W1.*(exp(beta_n*(t-t))-exp(beta_n*(0-t))); 

        

end 

phi=An.*(xi1-xi2*exp(-lambda1*t)-xi3*exp(-lambda2*t)+xi4.*exp(-

beta_n*t))+(xi5./beta_n).*Iwt;%(W3.*(exp(beta_n*(0.5-t))-exp(beta_n*(0.3-

t)))+W2.*(exp(beta_n*(0.3-t))-exp(beta_n*(0.1-t)))+W1.*(exp(beta_n*(0.1-t))-

exp(beta_n*(0-t)))); 

K=An.*(omega_n.*cos(omega_n*x)+(-alpha/2+1/R1)*sin(omega_n*x));%%revised 

temp=K.*phi; 

val=exp(x*alpha/2)*sum(temp); 

end 

  

function [val]=get_omega(R1,R2,alpha,N) 

  

sing=sqrt(-(alpha/2-1/R1)*(alpha/2+1/R2)); 

va=[0 0]; 

for ii=1:N 

     

    if sing<(ii-1)*pi+pi/2 && sing>(ii-1)*pi-pi/2 

        va=singular(ii,R1,R2,alpha,sing); 

        val(ii)=va(1); 

        NN=ii; 

        ii=ii+1; 

    end 

    p_o=pi*(ii-1)+eps; 

    tol=1e-12; 

     

    for kk=1:100 

        p_n =p_o - (tan(p_o) - (p_o*(1/R1 + 1/R2))/((alpha/2 - 1/R1)*(alpha/2 + 1/R2) + 

p_o^2))/(tan(p_o)^2 - (1/R1 + 1/R2)/((alpha/2 - 1/R1)*(alpha/2 + 1/R2) + p_o^2) + 

(2*p_o^2*(1/R1 + 1/R2))/(p_o^2 + (alpha/2 - 1/R1)*(alpha/2 + 1/R2))^2 + 1); 

        err=abs(p_n-p_o); 

        %giving constraint 

        if p_n>=(ii-1)*pi+pi/2 

            p_n=(ii-1)*pi+pi/2-10000000*eps; 

        end 

        if p_n<=(ii-1)*pi-pi/2 

            p_n=(ii-1)*pi-pi/2+10000000*eps; 
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        end 

        p_o=p_n; 

        if (err<tol) 

            break; 

        end 

    end 

    %break point 

    val(ii)=p_o; 

end 

if va(2)~=0 

    val=[val(1:NN),va(2),val(NN+1:end)]; 

end 

end 

  

%calculate omeiga at signular point 

function va= singular(ii,R1,R2,alpha,sing) 

%first point 

p_o=(sing+pi*(ii-1)-pi/2)/2; 

tol=1e-12; 

for kk=1:100 

    p_n =p_o - (tan(p_o) - (p_o*(1/R1 + 1/R2))/((alpha/2 - 1/R1)*(alpha/2 + 1/R2) + 

p_o^2))/(tan(p_o)^2 - (1/R1 + 1/R2)/((alpha/2 - 1/R1)*(alpha/2 + 1/R2) + p_o^2) + 

(2*p_o^2*(1/R1 + 1/R2))/(p_o^2 + (alpha/2 - 1/R1)*(alpha/2 + 1/R2))^2 + 1); 

    err=abs(p_n-p_o); 

    %giving constraint 

    if p_n>=sing 

        p_n=sing-10000000*eps; 

    end 

    if p_n<=(ii-1)*pi-pi/2 

        p_n=(ii-1)*pi-pi/2+10000000*eps; 

    end 

    p_o=p_n; 

    if (err<tol) 

        break; 

    end 

end 

va(1)=p_o; 

  

%second point 

p_o=(sing+pi*(ii-1)+pi/2)/2; 

tol=1e-12; 

for kk=1:100 

    p_n =p_o - (tan(p_o) - (p_o*(1/R1 + 1/R2))/((alpha/2 - 1/R1)*(alpha/2 + 1/R2) + 

p_o^2))/(tan(p_o)^2 - (1/R1 + 1/R2)/((alpha/2 - 1/R1)*(alpha/2 + 1/R2) + p_o^2) + 

(2*p_o^2*(1/R1 + 1/R2))/(p_o^2 + (alpha/2 - 1/R1)*(alpha/2 + 1/R2))^2 + 1); 

    err=abs(p_n-p_o); 
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    %giving constraint 

    if p_n<=sing 

        p_n=sing+10000000*eps; 

    end 

    if p_n>=(ii-1)*pi+pi/2 

        p_n=(ii-1)*pi+pi/2-10000000*eps; 

    end 

    p_o=p_n; 

    if (err<tol) 

        break; 

    end 

end 

va(2)=p_o; 

end 

  

% %get Wt 

% function [val]=get_Wt(t) 

% if (t>=0&t<0.1) 

%     val=3.1; 

% elseif(t>=0.1&t<0.3) 

%     val=6.2; 

% else(t>=0.3&t<=0.5) 

%     val=0; 

% end 

% end 
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APPENDIX C                                                                                                           

MATLAB SCRIPT FILES FOR COMPUTING THE WATER TABLE HEIGHTS IN 

SECTION 4.2  

 

%Part 1 This part is to prepare the input of corresponding parameters, to obtain 

the values of hD (hh1 for horizontal, hh2 for 3 deg angle, hh3 for 5 deg angle, hh4 for 

10 deg angle) and to calculate the values of water table heights hhhh1 and hydraulic 

heads hhh1. 

clear; 

  

W1=[2.0153, 0, 0.20153, 0.020153, 1.00765, 2.0153]; 

W2=[2.0153, 0, 0.20153, 0.020153, 1.00765, 2.0153]; 

W3=[2.0153, 0, 0.20153, 0.020153, 1.00765, 2.0153]; 

W4=[2.0153, 0, 0.20153, 0.020153, 1.00765, 2.0153]; 

W5=[2.0153, 0, 0.20153, 0.020153, 1.00765, 2.0153]; 

  

t1=0.0025*0.2; 

t2=0.0025*0.4; 

t3=0.0025*0.6; 

t4=0.0025*0.8; 

t5=0.0025*2; 

  

t21=0.00248100969*0.2; 

t22=0.00248100969*0.4; 

t23=0.00248100969*0.6; 

t24=0.00248100969*0.8; 

t25=0.00248100969*2; 

  

% t31=0.00242461578*0.2; 

% t32=0.00242461578*0.4; 

% t33=0.00242461578*0.6; 

% t34=0.00242461578*0.8; 

% t35=0.00242461578*1; 

  

t31=0.00026940175*0.2; 

t32=0.00026940175*0.4; 

t33=0.00026940175*0.6; 

t34=0.00026940175*0.8; 

t35=0.00026940175*2; %L=3000m 

  

% x=[0, 0.025, 0.05, 0.075]; 

x=[0, 0.05, 0.1, 0.15]; 
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% x=[0, 0.01666667, 0.0333333, 0.05]; 

  

% x=0:0.0005:0.075; 

tt1=0:0.0025*0.02:t5; 

tt2=0:0.00248100969*0.02:t25; 

tt3=0:0.00242461578*0.02:t35; 

  

% tt1=0:0.0025*0.02:t5; 

% tt2=0:0.00248100969*0.02:t25; 

% tt3=0:0.00026940175*0.02:t35; 

  

% % 2000m 

% tt1=0:0.000625*0.002:t5; 

% tt2=0:0.00062025242*0.002:t25; 

% tt3=0:0.00060615394*0.002:t35; 

  

% tt1=[t1 t2 t3 t4 t5]; 

% tt2=[t21 t22 t23 t24 t25]; 

% tt3=[t31 t32 t33 t34 t35]; 

  

t=0:1:1000; 

% x=0:0.001:0.15; 

% t=[t1 t2 t3 t4 t5]; 

% t=0.025; 

R1=[0.01008, 0.01005, 0.01000, 0.00978]; 

% R1=[0.02016, 0.02011, 0.02001, 0.01955]; 

% R1=[0.00504, 0.00503, 0.005, 0.00489]; % L=2000m 

% R1=[0.00326, 0.01005, 0.01000, 0.00978];% L=3000m 

  

  

%  

alpha=[0, 10.4816, 17.4977, 35.2654]; 

% alpha=[0, 10.4816, -17.4977, -35.2654]; 

% alpha=[0, 20.96311171, 34.99546541, 70.53079228]; %L=2000m 

% alpha=[0, 10.4816, 17.4977, 105.796]; 

  

% lambda1=[2000, 2005.49, 2015.31, 2062.18]; 

% lambda1=[0, 0, 0, 0]; 

% lambda1=[1000, 1002.75, 1007.65, 1031.09]; 

% lambda1=[2800, 1002.75, 2821.43, 2887.06]; 

 

hf1=[7, 3]; 

hi=5; 

ha=5; 

Ka=2.5; 

L=1000; 
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theta=[0 3 5 10]*pi/180; 

% a=[20000, 20054.9, 20153.1, 20621.8]; 

% a=[80000, 80219.7, 80612, 82487]; 

a=[20000, 20054.9, 20153.1, 20621.8]; 

% c=-1009; 

c=-59; 

% theta=[0 3 -5 -10]*pi/180; 

  

% m1=[0 0.10537 0.175049 0.34478]; 

% m1=[0 0.10537 -0.175049 -0.34478]; 

% m1=[0 0.21074 0.350097 0.68956]; 

% m1=[0 0.10537  0.43762   0.86195]; 

% m2=[0 0.10537 -0.43762 -0.86195]; 

m1=[0 0.10537  0.44097   0.8887]; 

 

for i=1:length(tt1) 

%     for i=1:length(theta) 

for j=1:length(x) 

    %     xD, hhh 

    

hh1(i,j)=h2(x(j),tt1(i),R1(1),alpha(1),t1,t2,t3,t4,t5,m1(1),W1(2),W2(2),W3(2),W4(2),W5

(2),a(1),c); 

     

    hhh1(i,j)=hh1(i,j)*(hf1(1)-hi)+hi+tan(theta(1))*1000*(1-x(j)); 

    hhhh1(i,j)=hh1(i,j)*(hf1(1)-hi)+hi; 

 

end 

end 

  

for i=1:length(tt2) 

  

for j=1:length(x) 

    

hh3(i,j)=h2(x(j),tt2(i),R1(1),alpha(3),t21,t22,t23,t24,t25,m1(3),W1(2),W2(2),W3(2),W4(

2),W5(2),a(3),c); 

    hhh3(i,j)=hh3(i,j)*(hf1(1)-hi)+hi+tan(theta(3))*1000*(1-x(j)); 

    hhhh3(i,j)=hh3(i,j)*(hf1(1)-hi)+hi; 

  

end 

end 

  

for i=1:length(tt3) 

  

for j=1:length(x) 

hh4(i,j)=h2(x(j),tt3(i),R1(1),alpha(4),t31,t32,t33,t34,t35,m1(4),W1(2),W2(2),W3(2),W4(

2),W5(2),a(4),c); 
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    hhh4(i,j)=hh4(i,j)*(hf1(1)-hi)+hi+tan(theta(4))*1000*(1-x(j)); 

    hhhh4(i,j)=hh4(i,j)*(hf1(1)-hi)+hi; 

  

end 

end 

   

 %Part 2 

This part is a subroutine program to obtain the values of hd and ωn. 

 

function [ val ] = h2(x,t,R1,alpha,t1,t2,t3,t4,t5,m1,W1,W2,W3,W4,W5,a,c) 

  

N=3000; 

omega=get_omega(R1,alpha,N); 

omega_n=omega(2:N); 

  

beta_n=omega_n.^2+alpha^2/4; 

An=(2./((omega_n.^2+(alpha/2-1/R1)^2).*(1+(alpha/2)./(omega_n.^2+(alpha/2)^2))-

alpha/2+1/R1)).^0.5;%%revised 

xix=-An.*omega_n./R1; 

  

xi1=-(1-m1)./beta_n; 

  

% for kkk=1:length(t) 

fun = @(x) exp(beta_n.*(x-t))./(1+exp(a*x+c)); 

  

xi2=integral(fun,0,t,'ArrayValued',true); 

  

xi4=(1-m1)./beta_n; 

  

xi5=(An./beta_n).*(exp(-alpha/2)*(beta_n.*sin(omega_n)-

(1/R1)*((alpha/2)*sin(omega_n)+omega_n.*cos(omega_n)))+(1/R1)*omega_n); 

  

if (t<=t5) && (t>t4) 

    Iwt=W5.*(exp(beta_n*(t-t))-exp(beta_n*(t4-t)))+W4.*(exp(beta_n*(t4-t))-

exp(beta_n*(t3-t)))+W3.*(exp(beta_n*(t3-t))-exp(beta_n*(t2-t)))+W2.*(exp(beta_n*(t2-

t))-exp(beta_n*(t1-t)))+W1.*(exp(beta_n*(t1-t))-exp(beta_n*(0-t))); 

  %  Iwt(isnan(Iwt))=0; 

elseif  (t<=t4) && (t>t3) 

    Iwt=W4.*(exp(beta_n*(t-t))-exp(beta_n*(t3-t)))+W3.*(exp(beta_n*(t3-t))-

exp(beta_n*(t2-t)))+W2.*(exp(beta_n*(t2-t))-exp(beta_n*(t1-t)))+W1.*(exp(beta_n*(t1-

t))-exp(beta_n*(0-t))); 

   % Iwt(isnan(Iwt))=0; 

elseif (t<=t3 && t>t2) 

    Iwt=W3.*(exp(beta_n*(t-t))-exp(beta_n*(t2-t)))+W2.*(exp(beta_n*(t2-t))-

exp(beta_n*(t1-t)))+W1.*(exp(beta_n*(t1-t))-exp(beta_n*(0-t))); 

      %  Iwt(isnan(Iwt))=0; 
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elseif (t<=t2 && t>t1) 

    Iwt=W2.*(exp(beta_n*(t-t))-exp(beta_n*(t1-t)))+W1.*(exp(beta_n*(t1-t))-

exp(beta_n*(0-t))); 

       % Iwt(isnan(Iwt))=0; 

elseif (t<=t1 && t>=0) 

    Iwt=W1.*(exp(beta_n*(t-t))-exp(beta_n*(0-t))); 

        %Iwt(isnan(Iwt))=0; 

         

end 

phi=xix.*(xi1+xi2+xi4.*exp(-beta_n*t))+(xi5./beta_n).*Iwt; 

%(W3.*(exp(beta_n*(0.5-t))-exp(beta_n*(0.3-t)))+W2.*(exp(beta_n*(0.3-t))-

exp(beta_n*(0.1-t)))+W1.*(exp(beta_n*(0.1-t))-exp(beta_n*(0-t)))); 

K=An.*(omega_n.*cos(omega_n*x)+(-alpha/2+1/R1)*sin(omega_n*x));%%revised 

temp=K.*phi; 

val=exp(x*alpha/2)*sum(temp); 

end 

  

function [val]=get_omega(R1,alpha,N) 

% syms p_o R1 R2 alpha 

% f=tan(p_o)-p_o*(1/R1+1/R2)/(p_o^2+(alpha/2-1/R1)*(alpha/2+1/R2)); 

% p_n=p_o-f/diff(f,p_o) 

sing=sqrt(-(alpha/2-1/R1)*(alpha/2)); 

va=[0 0]; 

for ii=1:N 

     

    if sing<(ii-1)*pi+pi/2 && sing>(ii-1)*pi-pi/2 

        va=singular(ii,R1,alpha,sing); 

        val(ii)=va(1); 

        NN=ii; 

        ii=ii+1; 

    end 

    p_o=pi*(ii-1)+eps; 

    tol=1e-12; 

     

    for kk=1:100 

        p_n =p_o - (tan(p_o) - (p_o*(1/R1))/((alpha/2 - 1/R1)*(alpha/2) + 

p_o^2))/(tan(p_o)^2 - 1/(R1*(p_o^2 + (alpha*(alpha/2 - 1/R1))/2)) + 

(2*p_o^2)/(R1*(p_o^2 + (alpha*(alpha/2 - 1/R1))/2)^2) + 1); 

        err=abs(p_n-p_o); 

        %giving constraint 

        if p_n>=(ii-1)*pi+pi/2 

            p_n=(ii-1)*pi+pi/2-10000000*eps; 

        end 

        if p_n<=(ii-1)*pi-pi/2 

            p_n=(ii-1)*pi-pi/2+10000000*eps; 

        end 
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        p_o=p_n; 

        if (err<tol) 

            break; 

        end 

    end 

    %break point 

    val(ii)=p_o; 

end 

if va(2)~=0 

    val=[val(1:NN),va(2),val(NN+1:end)]; 

end 

end 

  

%calculate omeiga at signular point 

function va= singular(ii,R1,alpha,sing) 

%first point 

p_o=(sing+pi*(ii-1)-pi/2)/2; 

tol=1e-12; 

for kk=1:100 

    p_n =p_o - (tan(p_o) - (p_o*(1/R1))/((alpha/2 - 1/R1)*(alpha/2) + p_o^2))/(tan(p_o)^2 

- 1/(R1*(p_o^2 + (alpha*(alpha/2 - 1/R1))/2)) + (2*p_o^2)/(R1*(p_o^2 + 

(alpha*(alpha/2 - 1/R1))/2)^2) + 1); 

    err=abs(p_n-p_o); 

    %giving constraint 

    if p_n>=sing 

        p_n=sing-10000000*eps; 

    end 

    if p_n<=(ii-1)*pi-pi/2 

        p_n=(ii-1)*pi-pi/2+10000000*eps; 

    end 

    p_o=p_n; 

    if (err<tol) 

        break; 

    end 

end 

va(1)=p_o; 

  

%second point 

p_o=(sing+pi*(ii-1)+pi/2)/2; 

tol=1e-12; 

for kk=1:100 

    p_n =p_o - (tan(p_o) - (p_o*(1/R1))/((alpha/2 - 1/R1)*(alpha/2) + p_o^2))/(tan(p_o)^2 

- 1/(R1*(p_o^2 + (alpha*(alpha/2 - 1/R1))/2)) + (2*p_o^2)/(R1*(p_o^2 + 

(alpha*(alpha/2 - 1/R1))/2)^2) + 1); 

    err=abs(p_n-p_o); 

    %giving constraint 
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    if p_n<=sing 

        p_n=sing+10000000*eps; 

    end 

    if p_n>=(ii-1)*pi+pi/2 

        p_n=(ii-1)*pi+pi/2-10000000*eps; 

    end 

    p_o=p_n; 

    if (err<tol) 

        break; 

    end 

end 

va(2)=p_o; 

end 
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APPENDIX D                                                                                                             

DERIVATION OF MODIFIED DARCY’S LAW FOR A SLOPING AQUIFER  

 

 

 
Fig. A-1 A diagram of water flow in an unconfined aquifer. 

 

Fig. A-1 is the schematic diagram showing groundwater flow in a sloping aquifer. 

The coordinate system setup in Fig. A-1 and the symbols are the same as in section 2.2. 

The flow direction in an unconfined sloping aquifer is parallel to the sloping bed. In this 

part, q is the discharge over the entire unconfined aquifer per unit width. The parameter 

“h” represents water table height and the parameter “H” represent hydraulic head. The 

subscripts 1 and 2 represent a down-gradient point (point 1) and an up-gradient point 

(point 2) that are very close with each other with a small horizontal interval of 𝛥𝑥 = 𝑥1 −

𝑥2, where x1 and x2 are the horizontal coordinates of point 1 and 2, respectively. 

Water flows through a cross section, and the aquifer saturated thickness perpendicular 

to the flow direction (which is parallel to the sloping bed) is ℎ𝑐𝑜𝑠𝜃. The hydraulic 

gradient in the direction of the sloping bed is 
𝑑𝐻

𝑑𝑥/𝑐𝑜𝑠𝜃
, where the term of “dx/cos𝜃” is the 

difference of length in the direction of the sloping bed. The Darcy’s law in a sloping 

aquifer can be expressed as below: 
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𝑞(𝑥, 𝑡) = −𝐾ℎ𝑐𝑜𝑠𝜃
𝐻2−𝐻1

(𝑥2−𝑥1)/𝑐𝑜𝑠𝜃
.       (A-1) 

The hydraulic head can be described by water table height and the sloping angle in 

the following. 

H=h+(L-x)tan𝜃          (A-2) 

Substituting Eq. (A-2) into Eq. (A-1), one has 

𝑞(𝑥, 𝑡) = −𝐾ℎ𝑐𝑜𝑠𝜃
ℎ2+(𝐿−𝑥2)𝑡𝑎𝑛𝜃−[ℎ1+(𝐿−𝑥1)𝑡𝑎𝑛𝜃]

(𝑥2−𝑥1)/𝑐𝑜𝑠𝜃
     (A-3) 

Eq. (A-3) can be simplified easily in the following. 

𝑞(𝑥, 𝑡) = −𝐾ℎ𝑐𝑜𝑠2𝜃(
ℎ2−ℎ1

𝑥2−𝑥1
− 𝑡𝑎𝑛𝜃)       (A-4) 

where the term of 
ℎ2−ℎ1

𝑥2−𝑥1
 can be expressed as 

𝜕ℎ

𝜕𝑥
, and the modified Darcy’s law for a 

sloping aquifer is obtained below: 

𝑞(𝑥, 𝑡) = −𝐾ℎ (
𝜕ℎ

𝜕𝑥
− 𝑡𝑎𝑛𝜃) 𝑐𝑜𝑠2𝜃       (A-5) 

 


