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ABSTRACT 

 

This dissertation focuses on the development of advanced synthetic methodologies to 

afford well-defined polyphosphoramidates (PPAs) containing acid-labile backbone linkages 

(phosphoramidate).  By applying these methodologies, a library of monomers and corresponding 

polymers could be produced with various functionalities, hydrophilicities, and degradation rates.  

Further, PPA-based pH-responsive drug delivery systems were developed and exhibited 

accelerated drug release profiles under acidic conditions compared to neutral conditions, which 

was demonstrated to enhance the efficacy of an anticancer drug. 

In the first study, highly water-soluble PPAs with acid-labile backbone linkages were 

prepared readily under basic conditions via organobase-catalyzed ring-opening polymerization 

(ROP) of a five-membered-ring monomer.  The ROP kinetics were explored, demonstrating these 

polymerizations proceeded in a controlled manner under basic conditions via the selective 

cleavage of P−O bonds during the ROP.  Degradation studies demonstrated these PPAs underwent 

rapid backbone degradation under acidic conditions through the cleavage of P−N bonds, yielding 

oligomers within several days at pH 5 (17.5% P−N bond cleavage after 3 d, DPn = 90).  Compared 

to months required for their polyphosphoester analogs, which share the same structures except for 

the P-N linkages, PPAs exhibited significantly faster degradation under acidic conditions.  

In the second study, the methodology to afford PPAs was advanced to allow for the 

preparation of well-defined functional PPA-based block copolymers that co-assembled with the 

anticancer drug camptothecin (CPT) to achieve well-dispersed nanotherapeutics.  The 

nanotherapeutics allowed the aqueous suspension of CPT at concentrations up to 1600× higher 

than the aqueous solubility of the drug.  Encapsulation of CPT by the polymer inhibited premature 



 

iii 

 

hydrolysis of CPT at pH 7.4 and enabled accelerated CPT release at pH 5.0 (4× faster than at pH 

7.4).  The performance of CPT-loaded nanotherapeutics was evaluated in vitro and revealed 

enhanced efficacy relative to free CPT in cancer cells and similar toxicity in healthy cells.  

In the third study, the synthesis towards α-amino acid-based PPAs via ROP was carefully 

evaluated.  The hydrolytic degradation of the resulted highly water-soluble PPAs was studied, 

which revealed a faster degradation rate compared to its analogs without methyl carboxylate 

groups.  Furthermore, the introduction of methyl carboxylate groups endowed the amino acid-

based PPAs with intumescence, which made it a potential candidate for advanced coatings.   
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DCM Dichloromethane 

DCTB Trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propylidene]malonitrile 

Dh(number) Number-average hydrodynamic diameter 

DLS  Dynamic light scattering  

DMF N,N-Dimethylformamide 

DNA Deoxyribonucleic acid 

DPn Degree of polymerization 

DSC  Differential scanning calorimetry 



 

x 

 

EOMP (4S)-2-ethoxy-4-methyl-1,3,2-oxazaphospholidine 2-oxide 

ESI-MS Electrospray ionization mass spectrometry 

FT-IR (ATR) Fourier-transform infrared (attenuated total reflection) 

HPLC High performance liquid chromatography 

HRMS High resolution mass spectrometry 

IC50 Half maximal inhibitory concentration 

KTFA Potassium trifluoroacetate 

[M]0/[I]0 Monomer/initiator feed ratio 

MALDI-Tof MS  Matrix-assisted laser desorption ionization time-of-flight mass 

spectrometry  

MEOPC  Methyl (4S)-2-ethoxy-1,3,2-oxazaphospholidine-4-carboxylate 2-oxide 

MLS Methyl L-serinate 

MLS·HCl Methyl L-serinate hydrochloride 

Mn Number average molar mass 

Mn, NMR Number average molar mass determined by end group analysis by 1H NMR 

spectroscopy of the polymer 

Mw Weight average molar mass  

MS/MS  tandem mass spectrometry 

MWCO Molecular weight cutoff 

NCAs  N-carboxyanhydrides 

NEt3 Triethylamine 

NMR Nuclear magnetic resonance 

PBS Phosphate buffered saline 
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PPE Polyphosphoester 

ROMP Ring-opening metathesis polymerization 

ROP Ring-opening polymerization 

SEC  Size exclusion chromatography 
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TEM Transmission electron microscopy 

Tg Glass transition temperature 
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CHAPTER I  

INTRODUCTION 

 

Polymeric materials have enabled many of the major technological advances of the last 50 

years.  Polymers are used in a variety of important applications including electronics, engineering 

materials, transportation, biomedical devices, and packaging.  Polymers are probably the most 

widely used materials, which can be found in almost every circumstance of our daily life.  

Recently, there has been considerable interest in the development of synthetic polymers that share 

similar compositions and architectures with those of polymers found in Nature.1-3  These synthetic 

analogs are expected to possess the ability for natural clearance mechanisms, and explored for 

their biological and environmental applications, for instance, tissue engineering,4 regenerative 

medicine,5 gene therapy,6 controlled drug delivery7 etc.   

Genetic information of all living organisms is stored on RNA and DNA, which are 

polyphosphodiesters made from phosphoric acid and ribose/deoxyribose.  Synthetic 

polyphosphoesters (PPEs), which share similar structures with RNA and DNA (Figure I-1), have 

received significant attention due to their good biocompatibility and biodegradability, among other 

favorable characteristics.8  By taking advantage of the pentavalent phosphorus atom, reactive 

pendent groups such as alkene, alkyne, hydroxyl, and carboxyl groups can be easily introduced as 

side-chain functionalities.8, 9  The mechanical and chemical properties of PPEs can be manipulated 

in a straightforward manner by alteration of the backbone or the side chains, giving them 

extraordinary structural versatility and making them promising candidates in biomedical 

applications.10 



 

2 

 

 

Figure I-1.  Structures of DNA, RNA and PPEs. 
 
 
 

PPEs could be prepared by various polymerization techniques.  In the early stage of the 

development, PPEs were mainly prepared by condensation polymerization, which had little control 

over the polymerization and resulted in polymers with broad dispersity (Ð).11-13  In addition, harsh 

reaction conditions (high temperatures, acidic side products, etc.) are often necessary for 

condensation polymerization to yield polymers with high molar mass, which limit the introduction 

of functional groups and impede many applications for PPEs.   

Efficient and controlled polymerization techniques are needed to precisely construct the 

architectures of PPEs and adjust the characteristics of the polymer to match specific applications. 

During the past decades, controlled ring-opening polymerization (ROP) has been developed to 

allow the selective introduction of functional groups in the α- or ω- position with precise control 

over the polymer microstructure.  Many different types of polymers could be synthesized via ROP, 

including polyesters, polyamides, polyethers, polycarbonates, polyacetals, etc.14  In general, a 

cyclic monomer with high ring strain is required for ROP.  Six-membered cyclic phosphoester 

were found to yield only PPE with low molar mass and oligomers due to the low ring strain.  In 

comparison, the high ring strain (15-30 kJ·mol-1) makes five-membered cyclic phosphoester 

suitable monomers for ROP.8   
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Figure I-2.  a) Reported synthetic approach for PPEs via tin (II) 2-ethylhexanoate.  b) Reported 
synthetic approach for PPEs via an organobase catalyst DBU. 
 
 
 

Metal catalysts, for example, tin (II) 2-ethylhexanoate, have proven to be among the most 

efficient catalysts for ROP by an insertion mechanism.  PPEs were achieved with a narrow Ð and 

a controlled molar mass by the catalysis of tin (II) 2-ethylhexanoate (Figure I-2a).15  However, the 

toxicity of metal-based catalysts raised concern for this kind of materials to be used in biomedical 

applications.  Organobase catalysts, e.g., 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5‐

diazabicyclo[5.4.0]undec-5-ene (TBD), showed excellent control in the ROP of lactide and other 

cyclic monomers, were considered as promising candidates for the ROP of cyclic phosphoester 

(Figure I-2b). 16-22  They were firstly investigated by Iwasaki and Yamaguchi to afford PPEs.23  

The ultrafast organobase-catalyzed ROP offered great control over the molar mass, Ð, 

compositions, and structures of PPEs, and also eliminates the usage of metal compounds, to fulfill 

the requirements of biomedical and environmental applications.24  Later, Clément et al. found that 

the performance of DBU can be improved by the addition of a thiourea co-catalyst.25   

The hydrolytic degradation of PPEs has been studied by many researchers, which reveal 

that PPEs can be very stable under acidic conditions but degrade fast in the presence of a base.26   
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Figure I-3.  The structure of poly(methyl ethylene phosphate) and the half-life of its hydrolytic 
degradation under different conditions. 
 
 
 
A typical water-soluble example is poly(methyl ethylene phosphate).  As shown in Figure I-3, the 

half-life of both the side chain and backbone cleavage is much smaller under basic conditions than 

that under neutral and acidic conditions.27  These observations are likely due to the stability of 

phosphoester bond under acidic conditions.  In addition, under basic conditions, the side chain and 

backbone cleave at similar rates, while the side chains cleavage is more preferred, however with a 

much slower rate, under acidic condition.  Meanwhile, phosphoramidate bonds are acid-labile,28 

and switching the side chain linkages from phosphoester bonds to phosphoramidates results in 

polyphosphoramidates (PPAs), which is expected to have further accelerated side chain cleavage 

under acidic conditions.  This unique degradation mechanism could be exploited to achieve pH-

responsive systems, such as drug carriers with acid-triggered release. 

As reported previously, PPAs are conventionally prepared by the polymerization of 4-

methyl-2-oxo-2-hydro-1,3,2-dioxaphospholane in the presence of metal catalyst 

triisobutylaluminum, followed by the modification of the resulting poly(1,2-propylene H-

phosphonate) using amines via an Atherton-Todd reaction (Figure I-4a).29  After the development 

of this method toward PPAs, a family of PPAs with different pendant amino groups was  
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Figure I-4.  a) Reported synthetic approach for PPAs via Atherton-Todd reaction.  b) 
Polymerization of cyclic phosphoramidate monomer via organobase-catalyzed ROP and cleavage 
of the side-chain moieties to afford polyphosphate. 
 
 
 
synthesized and applied for the delivery of nucleic acids.30-34  Because of the limited reactivity of 

the Atherton-Todd reaction, at least 25% of the PH groups were converted into phosphates rather 

than phosphoramidate bonds, which resulted in a random copolymer.33  The lack of a simple and 

reliable synthetic route to functional PPA constitutes a significant barrier to the widespread 

application of this degradable polymer platform.  

We took advantage of the state-of-the-art ROP technique to afford PPEs and expanded the 

synthetic methodology to the direct synthesis of acid-labile PPAs (Figure I-4b).9  The achieved 

PPAs could undergo selective cleavage of the side-chains and afford polyphosphates.  However, 

the response of the achieved PPAs to pH was only mild, only 20% of the side-chain moieties could 

be cleaved at pH 3 after 5 d.  Fully cleavage of the side chain moieties could be only achieved at 

harsh conditions (pH 1), which left room for further improvement.  This study inspired us to 

explore the possibility of synthesizing PPAs with acid-labile backbone linkages.  The introduction 

of acid-labile linkages along the polymer backbone could lead to rapid degradation of the polymer  
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Figure I-5.  Polymerization of (4S)-2-ethoxy-4-methyl-1,3,2-oxazaphospholidine 2-oxide to 
afford polymers bearing phosphoramidate linkages along the backbone and its hydrolytic 
degradation under acidic conditions. 
 
 
 
under acidic conditions and a sharp decrease in molar mass even with partial conversion of the 

linkages.  Till today, few examples with well-defined polymers containing acid-labile backbone 

linkages have been reported,35 and it will be advantageous to achieve well-defined PPAs with acid-

labile backbone linkages due to their good biocompatibility, biodegradability, and versatility to 

incorporate functionalities. 

This dissertation is focused on the design and development of PPAs with backbone acid-

labile linkages.  In Chapter II, the synthetic methodologies to directly synthesize PPAs with acid-

labile backbone linkages are reported, together with a demonstration of their hydrolytic 

degradability, evaluated under acidic conditions (Figure I-5).  The introduction of acid-labile 

linkages along the polymer backbone led to rapid degradation of the polymer backbone upon the 

environmental stimuli.  An oxazaphospholidine monomer bearing a phosphoramidate linkage was 

designed and synthesized to afford the PPAs via organobase-catalyzed ROP in a controlled 

manner.  The hydrolytic degradation of the PPAs was studied, revealing the breakdown of the 

polymer backbone through cleavage of the phosphoramidate linkages under acidic conditions.  

In Chapter III, fundamental synthetic methodology was advanced to allow for the 

preparation of well-defined functional PPA-based block copolymers that co-assembled with  



 

7 

 

 

Figure I-6.  Co-assembly of PPAs with CPT to afford nanotherapeutics, and its distinct release 
mechanism under different pH values. 
 
 
 
Camptothecin (CPT) into nanoparticles, which underwent coincident acid-triggered polymer 

backbone degradation, nanoparticle disassembly and CPT release (Figure I-6).  CPT is a promising 

anticancer drug, yet its therapeutic potential has been limited by poor water solubility and facile 

hydrolysis of the lactone form into an inactive carboxylate form at neutral pH.  Encapsulation of 

CPT by the PPA polymer inhibited premature hydrolysis of CPT at pH 7.4 and enabled accelerated 

CPT release at pH 5.0 (ca. 4× faster than at pH 7.4).  Two degradable oxazaphospholidine 

monomers, with one carrying an alkyne group, were synthesized to access well-defined block 

PPAs (dispersity, Đ, < 1.2) via sequential organobase-catalyzed ROP.  The resulting amphiphilic 

block copolymers were physically loaded with CPT to achieve well-dispersed nanotherapeutics, 

which allowed the aqueous suspension of CPT at concentrations up to 3.2 mg/mL, significantly 

exceeding the aqueous solubility of the drug (< 2.0 μg/mL at 37 °C).  Cytotoxicity studies revealed 

enhanced efficacy of the CPT-loaded nanoparticles over free CPT in cancer cells and similar 

toxicity in normal cells. 
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In Chapter IV, the development of α-amino acid-based PPAs with acid-triggered backbone 

degradation was explored.  Compared to the β-amino alcohol used in Chapter II and III, the 

carboxylate group of α-amino acid, particularly methyl carboxylate of methyl L-serinate, 

complicated the annulation to achieve cyclic monomers (Figure I-7).  The cyclic phosphoramidate 

monomer, which was afforded via a state-of-the-art one-step synthesis directly from methyl L-

serinate hydrochloride, could be controlled polymerized to afford well-defined PPAs based on α-

amino acids.  The resulted PPAs were highly water-soluble, the hydrolytic degradation of which 

was studied, revealing a faster degradation rate compared to analogs without methyl carboxylate 

groups.  Furthermore, the introduction of methyl carboxylate groups endowed PPAs with 

intumescence, which made it a potential candidate for advanced coatings.   

 
 
 

 
Figure I-7.  ROP to afford α-amino acid-based PPAs and its hydrolytic degradation. 
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CHAPTER II  

POLYPHOSPHORAMIDATES THAT UNDERGO ACID-TRIGGERED BACKBONE 

DEGRADATION1 

 

2.1 Introduction  

Polymeric systems with the ability to degrade under acidic conditions, while being stable 

under neutral pH, hold great promise for biomedical applications, for instance, the triggered release 

of therapeutics in cancer and inflammation, among other diseased tissues.36-38  The key to such 

acid-labile polymeric systems is the cleavage of acid-labile bonds, including but not limited to 

orthoesters,39 acetals/ketals,40 hydrazones41 and phosphoramidates.42  Furthermore, the 

introduction of acid-labile linkages along the entire polymer backbone could lead to rapid 

degradation of the polymer backbone, and partial degradation of the backbone linkages could 

result in a sharp decrease in molecular weights.43  The majority of studies on polymers with acid-

degradable backbones have focused on acetals/ketals44-46 and orthoesters,43, 47, 48 with a few others 

on hydrazone linkages.49, 50  However, the labilities of those linkages have limited the choice of 

polymerization methods, with polycondensation used in most of these reported polymers, resulting 

in broad molecular weight distributions (Ð) and potentially impeding their applications.  Besides 

polycondensation, polyacetals have also been achieved by acid-catalyzed acetal metathesis (Ð 

ranging from 1.23-2.88, varied by polymer)51 and cationic ring-opening polymerization (ROP) (Ð  

                                                 

1Adapted with permission from “Polyphosphoramidates That Undergo Acid-Triggered Backbone Degradation” by 
Wang, H.; Su, L.; Li, R.; Zhang, S.; Fan, J.; Zhang, F.; Nguyen, T. P.; Wooley, K. L., ACS Macro Lett., 2017, 6 (3), 
219-223.  Copyright 2018 American Chemical Society 
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Figure II-1.  Synthesis and polymerization of (4S)-2-ethoxy-4-methyl-1,3,2-oxazaphospholidine 
2-oxide (EOMP), 1, to afford polymers (PEOMP) bearing phosphoramidate linkages along the 
backbone, 2. 
 
 
 
ranging from 1.3-2.0, varied by polymer).52  Few examples with well-defined polymers containing 

acid-labile backbone linkages have been reported, including polyacetals achieved by acyclic diene 

metathesis polymerization,53 and polyesteracetals achieved by cationic ROP.54   

We perceived that the intrinsic basic reaction conditions of organobase-catalyzed ROP 

made it especially suitable for polymerization of monomers containing acid-labile linkages.  In an 

earlier study, we had demonstrated that phosphoramidate side chain functionalities along the 

backbone of a polyphosphoester underwent selective side chain cleavage under acidic conditions.9  

Herein, we report the design and synthesis of an oxazaphospholidine monomer bearing a 

phosphoramidate within the cyclic structure to then place that acid-labile linkage along the 

backbone upon controlled organo-catalyzed ROP to afford well-defined PPAs (Figure II-1).   

 

2.2 Experimental Section 

2.2.1 Materials 

All chemicals and reagents were used as received from Sigma-Aldrich Co. unless otherwise 

noted.  Tetrahydrofuran (THF), and dichloromethane (DCM) were purified by passage through a 
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solvent purification system (JC Meyer Solvent Systems).  4-Methylbenzyl alcohol and 1,5,7-

triazabicyclo[4.4.0]dec-5-ene (TBD) were dried over CaH2 in THF, then vacuum dried and stored 

in a glovebox under Ar atmosphere.  1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) was dried over 

CaH2, distilled, degassed, and stored in a glovebox under Ar atmosphere. 

2.2.2 Instrumentation 

1H NMR, 31P NMR and 13C NMR spectra were recorded on Varian Inova 500 spectrometer 

(Varian, Inc., Palo Alto, CA) interfaced to a UNIX computer using VnmrJ software.  Chemical 

shifts for 1H NMR and 13C NMR signals were referenced to the solvent resonance frequencies.  

Chemical shifts for 31P NMR signals were referenced to a sealed capillary containing 85% H3PO4 

placed in the sample solution. 

IR spectra were recorded on an IR Prestige 21 system (Shimadzu Corp., Japan), equipped 

with an ATR accessory, and analyzed using IRsolution v.1.40 software.  

Size exclusion chromatography (SEC) eluting with pre-filtered DMF containing 0.05 M 

LiBr was conducted on a Waters Chromatography, Inc. (Milford, MA) system equipped with an 

isocratic pump model 1515, a differential refractometer model 2414, and a four-column set 

including a 5 μm Guard column (50 × 7.5 mm), a Styragel HR 4 5 μm DMF column (300 × 7.5 

mm), a Styragel HR 4E 5 μm DMF column (300 × 7.5 mm), and a Styragel HR 2 5 μm DMF 

column (300 × 7.5 mm).  The system was operated at 70 °C with a flow rate of 1.00 mL/min.  

Polymer solutions were prepared at a concentration of ca. 3 mg/mL and an injection volume of 

200 μL was used.  Data collection and analysis were performed with Discovery32 v. 1.039.000 

software (Precesion Detectors, Inc., Bellingham, MA).  The system was calibrated with S3 

polystyrene standards (Polymer Laboratories, Amherst, MA) ranging from 615 to 442800 Da.   
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Glass transition temperatures (Tg) were measured by differential scanning calorimetry 

(DSC) on a Mettler-Toledo DSC822 (Mettler-Toledo, Inc., Columbus, OH) under N2. 

Measurements of Tg were performed with a heating rate of 5 °C/min and analyzed using Mettler-

Toledo STARe v. 10.00 software.  The Tg was taken as the midpoint of the inflection tangent of 

the third heating scan.   

Thermogravimetric analysis (TGA) was performed under N2 atmosphere using a Mettler-

Toledo TGA/SDTA851e, with a heating rate of 5 °C /min.  Measurements were analyzed by using 

Mettler-Toledo STARe v. 10.00 software.  

Matrix-assisted laser desorption ionization-time of flight (MALDI-Tof) mass spectrometry 

was performed on an Applied Biosystems Voyager-DE STR (Thermo Fisher Scientific, Inc., 

Waltham, MA) in reflector ion mode by use of laser pulses at 337 nm.  Trans-2-[3-(4-tert-

butylphenyl)-2-methyl-2-propylidene]malonitrile (DCTB) was used as a matrix.   

Electrospray ionization mass spectrometry (ESI-MS) experiments were performed using a 

Bruker amaZon SL instrument (Bruker Corp., Billerica, MA).  The sample was directly infused at 

a flow rate of 10 µL/min.  The spray voltage was set at 4.5 kV, nebulizer was set at 29 psi and dry 

gas flow was 10 L/min, respectively.  Dry temperature was held at 250 °C.  Tandem mass 

spectrometry (MS/MS) experiments were performed on the same instrument.  Bruker Compass 

DataAnalysis v. 4.2.383.1 software was used for data acquisition and processing. 

2.2.3 Synthesis 

Synthesis of (4S)-2-ethoxy-4-methyl-1,3,2-oxazaphospholidine 2-oxide (EOMP)   

A solution of (S)-(+)-2-amino-1-propanol (2.31 g, 30.8 mmol) with triethylamine (6.53 g, 

64.7 mmol) in 50 mL of anhydrous THF and a solution of ethyl dichlorophosphate (5.02 g, 30.8 
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mmol) in 50 mL of anhydrous THF were simultaneously added to a stirred solution of 200 mL of 

neat anhydrous THF at 0 °C with a rate of 12 mL/h for each solution; then the reaction mixture 

was allowed to stir for 12 h.  After complete conversion of ethyl dichlorophosphate, as confirmed 

by thin-layer chromatography, the reaction mixture was filtered and the filtrate was concentrated.  

The concentrated filtrate was passed through a silica gel plug of pure THF, and then concentrated 

to obtain the pure product (3.68 g, 22.3 mmol, 72.6% yield).  1H NMR (500 MHz, CDCl3) δ ppm 

(see assignments in Figure II-2), 4.38-4.28 (m, 1H), 4.11-3.96 (m, 4H), 3.94–3.86 (m, 1H), 3.85-

3.61 (m, 5H), 1.37-1.20 (m, 9H), 1.20-1.09 (m, 3H); 13C NMR (126 MHz, CDCl3) δ ppm, 72.90-

72.75 (d, Jp-c = 3.3 Hz), 72.51-72.36 (d, Jp-c = 3.0 Hz), 63.69-63.55 (d, Jp-c = 6.4 Hz), 63.52-63.36 

(d, Jp-c = 6.6 Hz), 50.34-49.89 (d, Jp-c = 9.5 Hz), 49.89-49.50 (d, Jp-c = 9.7 Hz), 20.97-20.62 (d, Jp-

c = 7.8 Hz), 20.44-20.15 (d, Jp-c = 6.7 Hz), 16.49-15.97 (d, Jp-c = 6.8 Hz; d, Jp-c = 7.1 Hz); 31P NMR 

(202 MHz, CDCl3) δ ppm, 25.97, 25.20; FT-IR (ATR) (Figure II-3) 3476-3079, 3012-2847, 1452, 

1404, 1296, 12360, 1147, 1099, 1051, 997, 957, 903, 866, 831, 763 cm-1; HRMS C5H12NO3PH+ 

166.0633, found (M+H+) 166.0619. 

 

General procedure for the organobase-catalyzed ROP of EOMP to afford PEOMP 

All polymerizations were carried out using standard glovebox and Schlenk line techniques.  

EOMP was vacuum dried over P2O5 for 0.5 day before transferring to a glovebox for storage under 

an inert atmosphere.  All the reagents were weighed inside a glovebox and the reactions were 

conducted in a fume hood.  EOMP was distributed into flame-dried 5-mL shell vials equipped with 

rubber septa and stir bars (ca. 0.200 g, 1.21 mmol for each).  A solution of a given amount of 4-

methylbenzyl alcohol (0.0121 mmol to 0.0242 mmol) in anhydrous DCM (210 μL) was transferred 

via syringe into the shell vial while stirring.  Organocatalyst TBD or DBU (2 mol%   
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Figure II-2.  COSY spectrum of EMOP in CDCl3.  Protons at the same position but belonging to 
different isomers were assigned as Hx1 and Hx2, Hc1 and Hc2 for example.  If signals of the 
protons labelled as Hx1 and Hx2 overlapped with each other and were not distinguishable, Hx 
would be used as the assignment, Hb for example.  Enantiotopic protons were assigned as Hc1 
and Hc1’ and Hc2 and Hc2’.  Signals of the protons labelled as Hf were overlapped with those of 
protons labelled as Hc2’, Hd2 and Hc1’. 
 

 

Figure II-3.  FT-IR spectra of EOMP and PEOMP (DPn = 90).  
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relative to monomer, 0.0242 mmol) in anhydrous DCM (210 μL) was transferred via syringe into 

the shell vial with stirring at -78 °C, while being maintained under a nitrogen gas atmosphere.  

After stirring for a certain period of time (2 min to 60 min), the reaction vial was unstoppered and 

quenched by addition of Amberlyst 15 H-form resin (20 mg) and 2 mL of DCM.  The reaction 

mixture was then removed from resin, purified by precipitation from DCM into diethyl ether (3x) 

and vacuum dried to give an average yield of 85%.  1H NMR (500 MHz, CDCl3) δ ppm 7.25 (d, J 

= 7.5 Hz, 2H, Ar), 7.15 (d, J = 7.5 Hz, 2H, Ar), 4.96 (m, 2H, OCH2Ar), 4.57-3.68 (m, 5nH), 3.63-

3.16 (m, nH), 2.33 (s, 3H, CH3Ar), 1.53-0.98 (m, 6nH); 13C NMR (126 MHz, CDCl3) δ ppm, 

129.30, 127.95, 70.46, 62.58, 47.64, 21.32, 19.53, 16.54-16.10 (d, Jp-c = 7.2 Hz); 31P NMR (202 

MHz, CDCl3) δ ppm, 10.26; FT-IR (ATR) 3600-3035, 3015-2853, 1647, 1442, 1392, 1368, 1227, 

1160, 1129, 1006, 959, 902, 827 (Figure II-3); Tg = 32-36 °C (DPn = 20-93); TGA in Ar, 201-500 

°C, 60% weight loss (Figure II-4). 

 

Model reaction for the ring opening of EOMP with [M]0/[I]0 of 1 

To a shell vial equipped with a rubber septum and a stir bar containing EOMP (0.100 g, 

0.606 mmol), a solution of 4-methylbenzyl alcohol (0.606 mmol) in anhydrous DCM (105 μL) 

was transferred via syringe into the shell vial while stirring.  TBD (2 mol% to monomer, 0.0121 

mmol) in anhydrous DCM (105 μL) was then transferred via syringe into the shell vial with stirring 

at 0 °C, while being maintained under a nitrogen gas atmosphere.  After stirring for 5 min, the 

reaction vial was unstoppered and quenched by addition of Amberlyst 15 H-form resin (10 mg) 

and 1 mL of CDCl3.  The reaction mixture was then removed from the resin and directly analyzed 

by 31P NMR spectroscopy without purification.  31P NMR (202 MHz, CDCl3) δ ppm, 9.72, 9.57, 

8.54 (Figure II-5).  
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Figure II-4.  TGA trace of PEOMP (DPn = 90). 
 

 

Figure II-5.  31P NMR spectrum of the model reaction mixture for the ring opening of EOMP 
with [M]0/[I]0 of 1, at a monomer concentration of 2.2 M (same as the polymerization) after 5 
min.  
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Kinetic study of the organobase-catalyzed ROP of EOMP  

To a shell vial equipped with a rubber septum and a stir bar containing EOMP (0.400 g, 

2.42 mmol), a solution of 4-methylbenzyl alcohol (0.0242 mmol) in anhydrous DCM (420 μL) 

was transferred via syringe into the shell vial while stirring.  TBD (2 mol% to monomer, 0.0484 

mmol) in anhydrous DCM (420 μL) was then transferred via syringe into the shell vial with stirring 

at -78 °C, while being maintained under a nitrogen gas atmosphere.  At 2, 5, 8, 15, 30, 45 and 60 

min, 150 μL of the reaction mixture was removed and quenched over Amberlyst 15 H-form resin 

in CDCl3 (10 mg in 1 mL CDCl3).  The reaction mixture at each time point was removed from the 

resin and directly analyzed by 31P NMR spectroscopy without purification.  The reaction mixture 

was then purified by precipitation into diethyl ether (3x) and vacuum dried, which was further 

characterized by DMF SEC and 1H NMR spectroscopy.  The kinetic study was triplicated. 

 

Chain extension of PEOMP 

Follow the kinetic study procedure for ROP of EOMP, 0.401 g EOMP was polymerized 

with 2.25 mol% TBD and 2 mol% 4-methylbenzyl alcohol under -78 °C. After 40 min, an aliquot 

taken from the reaction mixture was analyzed by 31P NMR and DMF SEC and 1H NMR 

spectroscopy, which confirmed the conversion to be 95%.  Another 0.399 g EOMP dissolved in 

210 μL DCM was added to the reaction mixture via syringe at the 40 min time point, and the 

reaction was allowed to stirred for another 40 min.  The reaction mixture was then analyzed 31P 

NMR and DMF SEC and 1H NMR spectroscopy.  The SEC traces were shown in Figure II-6.  
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Figure II-6.  SEC traces of the chain extension experiment of EOMP.  Initial PEOMP achieved 
with [M]0/[I]0 of 50, at a monomer concentration of 2.2 M.  Extended PEOMP achieved with 
addition of EOMP with [M]0/[I]0 of 50, at a monomer concentration of 1.5 M. 
 
 
 
Kinetic study of the backbone cleavage of PEOMP in aqueous solution by 31P NMR 

spectroscopy 

In a typical backbone cleavage experiment, PEOMP (DPn = 90, 5.0 mg) was dissolved into 

1 mL of buffer solutions (100 mM citric acid - sodium citrate buffer solutions at pH 3.0 and pH 

5.0, and 10 mM 3-(N-morpholino)propanesulfonic acid (MOPS) buffer solution at pH 7.4), and 

10 vol% of D2O (0.1 mL) was added to the buffer solutions.  The solutions were incubated at 37 

°C allowing for the degradation.  The 31P chemical shifts were monitored by 31P NMR 

spectroscopy during the degradation study.  Each degradation study was triplicated. 
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Preparation and identification of the degradation products of PEOMP under acidic 

conditions 

PEOMP (DPn = 90, 5.0 mg) was dissolved into 1 mL of hydrochloric acid (1.1 mM), and 

10 vol% of D2O (0.1 mL) was added to the solution.  The solution was incubated at 37 °C allowing 

for the degradation.  The 31P chemical shifts were monitored by 31P NMR spectroscopy during the 

degradation.  After the degradation reached a certain degree, 100 μL of the reaction mixture was 

removed, diluted by 1 mL of methanol and directly analyzed by ESI-MS.  Peaks showed at certain 

m/z were further analyzed by MS/MS.  To the rest of the reaction mixture was added a trace 

amount of trimethylamine to adjust the pH value to 7.4, and the reaction mixture was further 

lyophilized into a powder, followed by analysis by DMF SEC. 

Note:  

Since ESI-MS is sensitive to salts (buffers) and to eliminate undesired buffer signals, 

hydrochloric acid was used instead of buffer solutions in this experiment. 

2.3 Results and Discussion 

The monomer, (4S)-2-ethoxy-4-methyl-1,3,2-oxazaphospholidine 2-oxide (EOMP), was 

synthesized by annulation of ethyl dichlorophosphate with (S)-(+)-2-amino-1-propanol in the 

presence of trimethylamine (Figure II-1).  The annulation reaction was highly efficient, as 

evidenced by only the EOMP peak being observed in the 31P NMR spectrum of the crude product.  

Purification was then accomplished simply by filtration through a silica gel plug to remove the 

slight excess amount of trimethylamine to give pure EOMP as a highly viscous colorless liquid 

after concentration.  The purity of the monomer was confirmed by mass spectrometry.  The 31P 

NMR spectrum of EOMP exhibited resonances at 25.97 and 25.20 ppm (Figure II-7c), similar to 
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the 31P chemical shift values of reported cyclic phospholane amidate structures.9  The two distinct 

resonances were attributed to possible geometric isomers arising from the 2-position ethoxy and 

4-position methyl groups.  The 1H NMR and 13C NMR spectra (Figure II-7a and b) of the monomer 

also showed two sets of resonances belonging to those two isomers.  Resonances in the 1HNMR 

spectrum were able to be distinguished through homonuclear correlation spectroscopy (COSY) 

(Figure II-2), and the intensities of the resonances revealed the two isomers to be roughly at 

proportions of 1:1 in the mixture.   

 
 
 

 
Figure II-7.  NMR spectra of EOMP in CDCl3 (ppm): a) 1H NMR (500 MHz) (see detailed 
assignments in Fig. S1.), b) 13C NMR (126 MHz), c) 31P NMR (202 MHz).  NMR spectra of 
PEOMP in CDCl3 (ppm): d) 1H NMR (500 MHz), e) 13C NMR (126 MHz), f) 31P NMR (202 
MHz). 
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Table II-1.  Polymerization of EOMP Catalyzed by TBD under Different Conditionsa 

 
aThe initiator was 4-methylbenzyl alcohol, the solvent was anhydrous dichloromethane, the 
monomer concentration was 2.2 M, and catalyst was 2 mol % to monomer for all entries. 
bConversions (conv.) were obtained from 31P NMR spectra on aliquots taken from the 
polymerization mixtures.  cMn, NMR was calculated from the monomer to initiator ratio based on 
1H NMR of final polymer products. dĐ was measured by DMF SEC calibrated using polystyrene 
standards. 
 
 
 

Two organocatalysts, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5,7-

triazabicyclo[4.4.0]dec-5-ene (TBD), which had previously shown excellent control in the ROP of 

several cyclic phosphorus- containing monomers,9, 24, 55-57 were used to test the ROP of EOMP 

(Figure II-1, Table II-1).  Initially, DBU was employed as the organocatalyst for the 

polymerization of EOMP, initiated by 4-methylbenzyl alcohol at room temperature.  However, 

these conditions failed to convert EOMP into its polymer form (PEOMP), even at a relatively high 

catalyst-to-monomer ratio of 10 mol%.  Therefore, DBU was replaced by the stronger catalyst 

TBD, which has dual activation effects: simultaneously serving as a hydrogen-bond donor to the 

monomer via the N−H site and also as a hydrogen-bond acceptor to the hydroxyl proton of the 

propagating alcohol chain end.23, 25, 58  In the presence of TBD, EMOP polymerization proceeded 

within 10 min at 0 °C (entries 1-3, Table II-1).  However, broadening of Ð (1.2-1.3) was observed 

after the conversion reached greater than 70%, indicating the occurrence of adverse backbiting or 

transesterification reactions.  Therefore, the reaction temperature was decreased to -78 °C (entries 
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4-6, Table II-1).  At this reduced temperature, the polymerization remained sufficiently fast to 

reach over 90% conversion within 1 h, and a narrower Ð (1.08-1.15) was achieved over all 

conversions from 10% to 94%, indicating the side reactions were successfully avoided.   

Unlike most cyclic phospholane ester monomers or reported phosphoramidate monomers,9, 

25 EMOP has two distinct directions to open the oxazaphospholidine ring during the 

polymerization, where either the P-O bond or P-N bond would be cleaved.  Since the pKa of an 

amine (ca. 38) is significantly larger than that of an alcohol (ca. 16), it was hypothesized that the 

P-O bond cleavage would be more preferable.  A model reaction was carried out at the same 

condition of the polymerization, while the monomer/initiator feed ratio ([M]0/[I]0) was set to be 1.  

The 31P NMR spectrum of the reaction mixture exhibited resonances at 9.72, 9.57 and 8.54 ppm 

(Figure II-5), which correlated to the phosphoramidate and were consistent with the 31P chemical 

shift values of PEOMP (10.26 ppm) (Figure II-7f).  Furthermore, the 31P NMR spectrum showed 

no resonance at ca. 12 ppm, corresponding to the phosphordiamidate; or ca. 0 ppm, corresponding 

to the phosphoester, respectively.  These data provided evidence that EOMP had underwent 

selective cleavage of the P-O bond during the ROP.   

The kinetics of EOMP ROP were studied using [M]0/[I]0 of 100 in dichloromethane with 

4-methylbenzyl alcohol as the initiator and TBD as the organocatalyst to monitor the monomer 

conversions and the growth of polymer chains as a function of time.  Monomer conversions were 

obtained from 31P NMR spectra on aliquots taken from the polymerization mixtures.  

Subsequently, number-average molecular weights (Mn) were calculated using 1H NMR spectra 

after isolation of the polymer samples by precipitation, with comparison of the intensities of the 

three 4-methyl protons originating from the initiator on the α-chain end resonating at 2.33 ppm, 

with the six protons of the two methyl groups on the repeating units resonating at 0.98-1.53 ppm.  
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The linearity of Mn vs monomer conversion (Figure II-8a) suggested that the numbers of 

macromolecules in the reactions remained constant during the polymerizations.  The size exclusion 

chromatography (SEC) traces (Figure II-8c) showed unimodal peaks during the reactions, which 

shifted toward shorter elution times as polymerization progressed while maintaining narrow Ð,  

 
 
 

 
Figure II-8.  a) Plot of Mn and Ð vs monomer conversion for the polymerization of EOMP using 
TBD as the catalyst and 4-methylbenzyl alcohol as the initiator, obtained from a combination of 
SEC, 1H NMR and 31P NMR spectroscopic analyses.  The ratio of monomer : initiator : TBD was 
100 : 1 : 2.  b) Plots of monomer conversion (ln([M]0/[M])) vs time obtained from 31P NMR spectra.  
c) SEC traces (DMF as eluent, 1 mL/min) of the ROP of EMOP vs time.  d) MALDI-Tof MS 
spectrum of PEMOP (DPn = 10).  
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below 1.15.  Plots of ln([M]0/[M]) vs time (Figure II-8b) showed that the polymerization exhibited 

first order kinetics, also suggesting the characteristics of a controlled polymerization of the EOMP 

ROP.  Further analysis by matrix-assisted laser desorption ionization time-of-flight mass 

spectrometry (MALDI-Tof MS) (Figure II-8d) of a polymer (DPn = 10 by 1H NMR spectroscopy), 

which had undergone termination by treatment with Amberlyst 15 H-form resin and purification 

by only one time of precipitation into diethyl ether, revealed two populations, each with a spacing 

of 165.1 m/z, equal to that of the expected monomer repeat unit.  Structurally, these two sets of 

signals were related to the same populations initiated by 4-methylbenzyl alcohol with distinct 

ionizations.  The main peak in the major population at m/z = 1811.1 corresponded to a potassium-

charged polymer chain of DPn = 10 that had been initiated by 4-methylbenzyl alcohol and 

terminated by protonation, further confirming the controlled nature of the polymerization.  

Meanwhile, the main peak in the minor population at m/z = 1912.2 was in agreement with a proton-

charged polymer chain of DPn = 10 having 4-methylbenzyl oxy and protonated α- and ω-end 

groups, respectively, and one equivalent of TBD, indicating the strong interaction of TBD with 

the monomer and the polymer, as well as a possible explanation for the distinct catalytic activity 

differences between TBD and DBU for the ROP of EOMP.  To further investigate the living nature 

of the polymerization, chain extension of PEOMP polymers was carried out with addition of 

EOMP, SEC traces (Figure II-6) revealed a shift of the starting PEOMP towards shorter elution 

time, while maintaining narrow Ð, below 1.15. 

By controlling the initial ratio of monomer to initiator, [M]0/[I]0, as well as the reaction 

time, a series of PEOMPs with different molecular weights was synthesized.  31P NMR spectra 

clearly showed only one phosphorus environment at a chemical shift of 10.26 ppm (Figure II-7f), 

and 1H NMR and 13C NMR spectra (Figure II-7d and e) also confirmed the structure of PEOMP.  
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PEOMP appeared as a white to pale yellow powder at room temperature, which was attributed to 

the glass transition temperature (Tg) of 32-36 °C (DPn = 20-93).  Compared to the reported 

polyphosphoester PEMEP (DPn = 16-52, Tg = -40 to -37 °C)55 and polyphosphoramidate PMOEPA 

(DPn = 17-52, Tg = -27 to -19 °C) analogs,9 the Tg of PEOMP was significantly higher, which was 

attributed to the phosphoramidate linkages along the polymer backbone.  PEOMP was highly 

hygroscopic and would quickly transform from powder to tacky material within minutes and form 

a viscous solution within hours, if stored open to the air.  Furthermore, PEOMP was highly water-

soluble, likely attributed to the phosphoramidate backbone linkages and short pendant ethyl 

groups, with over 800 mg polymer (DPn = 90) easily dissolved into 1.00 mL of nanopure water 

within minutes at room temperature. 

The phosphoramidate linkages along the polymer backbone also endowed PEOMP with 

acid-lability.  The kinetics of the backbone cleavage of PEOMP (DPn = 90) in aqueous solution 

was studied in three aqueous buffer solutions with different pH values of 3.0, 5.0 and 7.4.  Cleavage 

of the phosphoramidate linkage, having a 31P resonance at 10.26 ppm, would generate phosphates 

with distinct 31P chemical shifts at ca. 0 ppm, allowing for convenient monitoring of the percentage 

conversion of backbone cleavage by 31P NMR spectroscopy.  At pH 7.4 (Figure II-9a), the PEOMP 

was found to be stable for 12.5 d with negligible changes as expected.  In the acidic environment, 

pH 5.0 (Figure II-9a), ca. 27 % of the phosphoramidate bonds were cleaved over 12.5 d, and the 

cleavage reaction reached a plateau at ca. 8.3 d.  At pH 3.0 (Figure II-9a), the backbone cleavage 

was accelerated and ca. 90% of the phosphoramidate bonds were cleaved within 8-9 d, reaching a 

plateau at ca. 9.9 d and ca. 94% conversion of phosphoramidate-to-phosphate 31P resonance 

frequencies over 12.5 d.  The resonance patterns at each frequency of ca. 10 and 0 ppm also 

revealed the progress of backbone cleavage and further breakdown of initial phosphates.  As shown 
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in Figure II-9b, at pH 3.0, over a time range of 4 h to 9.9 d, the conversion increased from 5% to 

94% with gradually decreased intensity for the 31P resonance at 10.26 ppm, demonstrating the 

disappearance of the polymer.  Over the same time period, sharp resonance signals appeared at 

10.53, 10.39, 10.29 and 10.20 ppm with their intensities first increased then decreased, indicating 

the formation of oligomers and their further degradation into small molecules.  The decrease in 

overall intensity for the combined signals resonating at ca. 10 ppm was coincident with the  

 
 
 

 

Figure II-9.  a) Kinetics of PEOMP degradation at different pH values, as monitored by 31P NMR 
spectroscopy.  b) Transition of 31P NMR resonances of PEOMP over a period of conversion at pH 
3.0.  c) Progress of the degradation of PEOMP at pH 3.0, as monitored by SEC. 
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appearance of new resonances at 0.67, 0.63, 0.40, 0.29, 0.13 and -0.11 ppm, and their combined 

growth in intensities over time, suggesting the formation of phosphates.  When monitored by SEC 

(Figure II-9c), broadening of the peak with increased intensity at longer elution time appeared at 

3.2% conversion, while the peak molecular weight (Mp) remained the same, suggesting only a 

portion of the polymer molecules had been cleaved at this stage.  At 7.8% conversion, the Mp 

shifted to longer elution time with detection of small molecular species, confirming cleavage of a 

majority of the polymer molecules.  At 13.1% conversion, full disappearance of the polymer peak 

further demonstrated that partial degradation of the backbone linkages resulted in a sharp decrease 

in molecular weights.  Complicating this analysis, however, is the increased affinity to the SEC 

column for the charged degradation products, relative to the starting PPA. 

Therefore, to better understand the molecular weight of the polymer degradation products 

as a function of % conversion of phosphoramidate backbone linkages, degradation products at 

different time points were further analyzed by electrospray ionization mass spectrometry (ESI-

MS).  As shown in Figure II-10b, at 40% conversion, ESI-MS revealed one major population with 

a spacing of 165 m/z equal to that of a monomer, related to the oligomer series Eb (Ionized form 

of 4), which resulted directly from the cleavage of phosphoramidate bonds during degradation 

(Figure II-10a).  The main peak in the major population at m/z = 512 corresponding to a trimer 

was further analyzed by tandem mass spectrometry (MS/MS), and the fragment pattern confirmed 

the predicted structure (Figure II-11).  For the whole series of Eb, the major peaks E1, E2 and E3 

further supported the decrease in molecular weights during backbone degradation, as expected.  At 

62% conversion (Figure II-10c), the signals of series Eb were still dominant, with intensities 

increased for E0 and E1 (relative to E2) and decreased for higher molecular weight oligomers.  In 

addition, signal intensities of another two populations increased and became more observable, each 
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Figure II-10.  a) Scheme of hydrolytic degradation of homopolymer 2.  ESI-MS analysis (negative 
ion mode, tested m/z range 50-2000) of the degradation products of 2 under different conversions, 
b) 40%, c) 62% and d) 94%, obtained from 31P NMR spectra. 
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Figure II-11.  MS/MS spectrum of E2 (positive ion mode). 
 
 
 
with a spacing of 165 m/z equal to that of a monomer, corresponding to the oligomer series Fc and 

Gb.  A possible route that could derive series Fc was the hydrolysis of one equivalence of ethyl 

phosphoester bonds from 5 (Figure II-10a), the ω-end counterparts of 4 during the cleavage of the 

phosphoramidate bond.  Unfortunately, signals for the series of 5 were not detected, probably due 

to their difficulty to be ionized as anions under acidic conditions.  Similarly, hydrolysis of one 

equivalence of ethyl phosphoester bonds from series Eb would result in series Gb (Figure II-10a).  

At 94% conversion (Figure II-10d), the signals of series Eb were still dominant, with the major 

peaks shifted from E1 to E0, while for series Fc and Gb, only F0 and G0 were observable, coincident 

with the high conversion.  Furthermore, there was a new series H, observed at 365, 530, 548, 713, 

and 731 m/z, attributed to ion clusters formed by E0 with E1 or E0 itself (Figure II-12, 13), probably 

due to the zwitterionic nature of E0 and E1.  Series Ia and Ia’, derived from 3 (Figure II-10a),   
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Figure II-12.  Analysis of series H in Figure II-10c (negative ion mode). 
 

 

 
Figure II-13.  a) MS/MS spectrum of H1 (positive ion mode).  b) MS/MS spectrum of H5 
(positive ion mode). 
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Figure II-14.  Analysis of series I and I’ (negative ion mode). 
 
 
 
the α-end counterparts of 4, were also detected (Figure II-14); however, the intensities of the 

signals were relatively low, while some signals of the Ia and Ia’ overlapped with those of H.  

Since the signal intensities of series Eb were dominant over all conversions, while no notable 

signal from product of phosphoester bond cleavage besides series Fc and Gb were observed, the 

phosphoramidate bonds were demonstrated to be cleaved much faster than the phosphoester 

bonds under acidic conditions. 

 

2.4 Conclusions 
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Phosphoramidate polymers having the acid-labile phosphoramidate linkage within the 

backbone are interesting materials that were shown to be prepared readily under basic condition 

and then undergo selective backbone cleavage reactions under acidic condition. A unique type of 

stable oxazaphospholidine monomer was synthesized and its organobase-catalyzed ROP kinetics 

were explored, showing a controlled manner and selective cleavage of P−O bonds during ROP.  

The resulting highly water-soluble polymers exhibited much higher Tg than their polyphosphoester 

analogs.  Furthermore, the acid-labile phosphoramidate bonds cleaved much faster than the 

phosphoester bonds under acidic conditions, which enabled the polymer backbone to breakdown 

rapidly through the cleavage of P−N bonds under acidic conditions.  Future studies, including 

synthesis of acid-labile nanostructured materials, as well as controlling the acidolysis rate of the 

polymer, are being actively pursued. 

.  
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CHAPTER III   

ACID-TRIGGERED POLYMER BACKBONE DEGRADATION AND DISASSEMBLY TO 

ACHIEVE RELEASE OF CAMPTOTHECIN FROM FUNCTIONAL 

POLYPHOSPHORAMIDATE NANOPARTICLES 2 

 

3.1 Introduction 

Polymeric systems with the ability to respond to external stimuli, including pH,59, 60 light,61 

temperature,61-64 redox,65 electric fields,66 etc., have great potential for biomedical applications.  

By taking advantage of such systems, strategies are being pursued to achieve triggered drug release 

preferentially at pathological sites to lead to higher accumulation of drug in the targeted disease 

sites and, thus, enhanced efficacy and decreased side effects.67  For instance, the higher 

concentration of glutathione in cancer cells has been extensively exploited to achieve triggered 

release of therapeutics from reduction-responsive carriers.68-73  Similarly, the lower pH of cancer 

and inflammation microenvironments has led to numerous elegant pH-responsive systems.71, 72, 74-

78 

Camptothecin (CPT), a topoisomerase II inhibitor discovered from the Chinese tree 

Camptotheca acuminate over half a century ago, would benefit greatly from such systems, due to 

the facile hydrolysis of its therapeutically active lactone form into an inactive carboxylate form at 

physiological pH (Figure III-1a) and low aqueous solubility (< 2.0 μg/mL at 37 °C).79, 80  In the 

                                                 

2Adapted with permission from “Acid-Triggered Polymer Backbone Degradation and Disassembly to Achieve 
Release of Camptothecin from Functional Polyphosphoramidate Nanoparticles” by Wang, H.; Dong, M.; Khan, S; Su, 
L.; Li, R.; Song, Y.; Lin, Y.-N.; Kang, N.; Komatsu, H., C.; Elsabahy, M.; Wooley, K. L., ACS Macro Lett. 2018, 7 
(7) 783-788.  Copyright 2018 American Chemical Society 
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past several decades, a variety of responsive polymeric systems have been developed to improve 

the therapeutic efficacy of CPT, among which two major strategies were applied:  1) conjugation 

of CPT onto polymeric systems through acid/reduction-labile linkages,81-87 and 2) physical 

encapsulation of CPT into an acid/reduction-responsive polymeric system.88, 89  Generally, the first 

strategy requires more synthetic steps and has less versatility for adaption to other therapeutics, 

nevertheless it effectively inhibits the premature release and hydrolysis of CPT.  In contrast, the 

second strategy requires less synthetic effort and is more versatile, however, the premature release 

of CPT is often unavoidable.  As such, highly responsive systems are desired to facilitate cancer 

cell-specific delivery of therapeutically-active CPT. 

Introduction of acid-labile linkages along a polymer backbone is anticipated to lead to rapid 

acid-triggered degradation, given that even slight degradation of the backbone would markedly 

decrease molar mass.43  In an earlier study, we demonstrated that the polyphosphoramidate (PPA)  

poly(4S-2-ethoxy-4-methyl-1,3,2-oxazaphospholidine 2-oxide) (PEOMP, 1) was highly water 

soluble (> 800 mg dissolved in 1 mL of water) and that it was able to undergo accelerated 

degradation under acidic conditions, due to the presence of acid-labile phosphoramidate linkages 

along the backbone (Figure III-1b).90  With an interest in expanding this PPA backbone chemistry 

to hydrophobic polymer blocks and amphiphilic block copolymers that also carry reactive 

functionalities, we developed a synthetic route to a well-defined amphiphilic diblock copolymer, 

PEOMP-b-PBYOMP, 2, with acid-labile linkages along the backbone.  This block copolymer was 

afforded via a novel oxazaphospholidine monomer bearing a side-chain alkyne functionality upon 

controlled one-pot sequential organo-catalyzed ring-opening polymerizations (ROPs), and 

required no further chemical modification to exhibit amphiphilic character (Figure III-1d).  Co-

assembly of 2 with CPT in aqueous solutions yielded nanotherapeutics, which were evaluated in 



 

35 

 

vitro and revealed enhanced efficacy over free CPT in cancer cells and similar toxicity in normal 

cells. 

 

3.2 Experimental Section 

3.2.1 Materials 

Camptothecin (CPT) was purchased from Ark Pharm, Inc.  (4S)-2-Ethoxy-4-methyl-1,3,2-

oxazaphospholidine 2-oxide (EOMP) was synthesized according to the previously reported 

procedure in Chapter II.90  Tetrahydrofuran (THF) and dichloromethane (DCM) were purified by 

passage through a solvent purification system (JC Meyer Solvent Systems).  4-Methylbenzyl  

 
 
 

 

Figure III-1.  a) Hydrolysis of CPT.  b) Polymerization of EOMP, 5, to afford PEOMP, 1, with 
acid-triggered backbone degradation.  c) Synthesis, and polymerization of BYOMP, 3, to afford 
alkyne-functionalized polyphosphoramidates, PBYOMP, 6.  d) One-pot sequential polymerization 
of 5 and 3 to afford the amphiphilic diblock copolymer PEOMP-b-PBYOMP, 2.  
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alcohol and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) were dried over CaH2 in THF, and then 

vacuum-dried and stored in a glovebox under Ar atmosphere.  All other chemicals and reagents 

were used as received from Sigma-Aldrich Co. unless otherwise noted.   

3.2.2 Instrumentation 

1H NMR, 31P NMR, and 13C NMR spectra were recorded on Varian Inova 500 spectrometer 

(Varian, Inc., Palo Alto, CA) interfaced to a UNIX computer using the VnmrJ software.  Chemical 

shifts for 1H NMR and 13C NMR signals were referenced to the solvent resonance frequencies.  

Chemical shifts for 31P NMR signals were referenced to a sealed capillary containing 85% H3PO4 

placed in the sample solution. 

IR spectra were recorded on an IR Prestige 21 system (Shimadzu Corp., Japan), equipped 

with an ATR accessory, and analyzed using IRsolution v.1.40 software.  

Size exclusion chromatography (SEC) eluting with pre-filtered DMF containing 0.05 M 

LiBr was conducted on a Waters Chromatography, Inc. (Milford, MA) system equipped with an 

isocratic pump (model 1515), a differential refractometer (model 2414), and a four-column set 

including a 5 μm Guard column (50 × 7.5 mm), a Styragel HR 4 5 μm DMF column (300 × 7.5 

mm), a Styragel HR 4E 5 μm DMF column (300 × 7.5 mm), and a Styragel HR 2 5 μm DMF 

column (300 × 7.5 mm).  The system was operated at 70 °C with a flow rate of 1.00 mL/min.  

Polymer solutions were prepared at ca. 3 mg/mL, and an injection volume of 200 μL was used.  

Data collection and analysis were performed with Discovery32 v. 1.039.000 software (Precision 

Detectors, Inc., Bellingham, MA).  The system was calibrated with S3 polystyrene standards 

(Polymer Laboratories, Amherst, MA) ranging from 615 to 442800 Da.   
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Glass transition temperatures (Tg) were measured by differential scanning calorimetry 

(DSC) on a Mettler-Toledo DSC3/700/1190 (Mettler-Toledo, Inc., Columbus, OH) under a 

nitrogen gas atmosphere.  Measurements were performed with a heating rate of 5 °C/min and the 

data were analyzed using Mettler-Toledo STARe v. 15.00a software.  The Tg was taken as the 

midpoint of the inflection tangent of the second heating scan.   

Thermogravimetric analysis (TGA) was performed under Ar atmosphere using a Mettler-

Toledo TGA2/1100/464, with a heating rate of 10 °C/min.  Data were analyzed using Mettler-

Toledo STARe v. 15.00a software.  

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-Tof 

MS) was performed on a microflex™ LRF mass spectrometer (Bruker Corporation, Billerica, MA) 

in positive linear mode.  Ions were generated by a pulsed nitrogen laser (337 nm, 25 kV) and 100 

laser pulses were used per spectrum.  Trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propylidene]malonitrile (DCTB) and potassium trifluoroacetate (KTFA) were used as a matrix and 

cationization reagent, respectively.  The sample and matrix were prepared at 1 and 26 mg/mL, 

respectively, in chloroform, and KTFA was prepared at 1 mg/mL in acetone.  The sample solution 

was mixed with the matrix and KTFA at a volumetric ratio of 2:5:1, and 1 µL of the mixture was 

deposited onto a stainless-steel sample holder and dried in air prior to the measurement. 

Transmission electron microscopy (TEM) images were collected on a JEOL 1200EX 

operated at 100 kV, and micrographs were recorded using an SIA-15C CCD camera.  Samples for 

TEM were prepared as follows:  10 μL of polymer solution in nanopure water (1 mg/mL) was 

deposited onto a carbon-coated copper grid, and after 1 min, excess solution was quickly wicked 

away by a piece of filter paper.  The samples were then negatively stained with a 1 wt% 

phosphotungstic acid (PTA) aqueous solution (10 µL).  After 30 s, excess staining solution was 
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quickly wicked away by a piece of filter paper and the samples were left to dry under ambient 

conditions prior to imaging.   

Dynamic light scattering (DLS) measurements were conducted using a Delsa Nano C 

instrument from Beckman Coulter, Inc. (Fullerton, CA) equipped with a laser diode operating at 

658 nm.  Scattered light was detected at 165° and analyzed using a log correlator over 70 

accumulations for a 0.5 mL sample in a quartz size cell (0.9 mL capacity).  The photomultiplier 

aperture and attenuator were adjusted automatically to obtain a photon count rate of ca. 10 kcps.  

Number-, volume-, and intensity-based particle size distributions and average diameters were 

calculated using CONTIN particle size distribution analysis routines in Delsa Nano 2.31 software.  

All measurements were repeated 10 times.   

Loading and release studies were conducted by measuring the concentration of CPT by 

high-performance liquid chromatography (HPLC) on a Shimadzu Prominence system equipped 

with an SPD-20AV prominence UV-Vis detector set to 370 and 438 nm, and a Waters X Bridge 

C8 column (4.6 × 150 mm, 5 µM, 100 Å) eluting in 72% water, 27% acetonitrile and 1% 20 mM 

ammonium acetate buffer in isocratic mode.  The flow rate was set to 1 mL/min with a run time 

of 20 min, and the column temperature was set to 40 °C.  The HPLC method employed an external 

CPT concentration calibration.   

All experiments were performed according to institutional guidelines provided by Texas 

A&M's Environmental Health and Safety committee.  Experiments involving OVCAR-3, SJSA-

1, RAW264.7 and MC3T3 cell lines were performed according to guidelines provided by Texas 

A&M's Institutional Biosafety Committee for biosafety level 2 organisms (Protocol Approval 

Number IBC2014-075). 
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3.2.3 Synthesis 

Synthesis of but-3-yn-1-yl phosphorodichloridate (BYPC) 

A solution of but-3-yn-1-ol (2.26 g, 32.2 mmol) with triethylamine (3.41 g, 33.8 mmol) in 

anhydrous THF (200 mL) was added to a stirred solution of phosphorus(V) oxychloride (4.94 g, 

32.2 mmol) in anhydrous THF (200 mL) in an ice bath.  The reaction mixture was allowed to stir 

at ca. 0 °C for 12 h and then warmed to room temperature.  After complete conversion of 

phosphorus(V) oxychloride, as indicated by thin-layer chromatography, the reaction mixture was 

filtered and the filtrate was concentrated under reduced pressure.  The concentrated filtrate was a 

clear pale-yellow liquid, which was used in the monomer synthesis (described next) without 

further purification.  1H NMR (500 MHz, CDCl3) δ ppm, 4.38 (dt, 4JP-H = 17 Hz, 3JH-H = 11.5 Hz, 

2H, POCH2CH2C≡CH), 2.68 (tdd, 3JH-H = 11.5 Hz, 4JH-H = 4.5 Hz, 5JP-H =1 Hz, 2H, 

POCH2CH2C≡CH), 2.08 (t, 4JH-H = 4.5 Hz, 1H, POCH2CH2C≡CH); 13C NMR (126 MHz, CDCl3) 

δ ppm, 77.8 (s), 70.9 (s), 69.0 (d, Jp-c = 9.1 Hz), 20.1 (d, Jp-c = 9.9 Hz); 31P NMR (202 MHz, 

CDCl3) δ ppm, 7.55. 

 

Synthesis of (4S)-2-(but-3-yn-1-yloxy)-4-methyl-1,3,2-oxazaphospholidine 2-oxide (BYOMP) 

A solution of (S)-(+)-2-amino-1-propanol (2.42 g, 32.2 mmol) with triethylamine (6.83 g, 

67.6 mmol) in anhydrous THF (50 mL) and a solution of BYPC (6.02 g, 32.2 mmol) in anhydrous 

THF (50 mL) were simultaneously added to stirred neat anhydrous THF (200 mL) at 0 °C using a 

syringe pump at a rate of 10 mL/h.  The reaction mixture was allowed to stir for 12 h and was then 

warmed to room temperature.  After complete conversion of but-3-yn-1-yl phosphorodichloridate, 

as indicated by thin-layer chromatography, the reaction mixture was filtered and the filtrate was  
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Figure III-2.  COSY spectrum of BYOMP in CDCl3.  Protons at the same position but belonging 
to different isomers were assigned as Hx1 and Hx2, Hf1 and Hf2 for example.  If signals of the protons 
labeled as Hx1 and Hx2 overlapped with each other and were not distinguishable, Hx would be used 
as the assignment, Hb and Hc for example.  Enantiotopic protons were assigned as Hd1 and Hd1’ 
and Hd2 and Hd2’.  Signals of the protons labeled as Hg were overlapped with those of protons 
labeled as Hd2, He2, and Hd1. 
 
 
 
concentrated under reduced pressure.  The concentrated filtrate was passed through a silica gel 

plug eluting in THF, and then concentrated to obtain the pure product as a clear pale-yellow liquid 

(4.25 g, 22.5 mmol, 69.9% yield).  1H NMR (500 MHz, CDCl3) δ ppm (Figure III-2), 4.46-4.24 

(m, 1H), 4.18-4.03 (m, 2H), 3.99–3.73 (m, 3H), 2.70-2.53 (m, 2H), 2.02 (t, 4JH-H = 4.5 Hz), 1.29 

(dd, 4JH-H = 6 Hz, 5JP-H = 0.5 Hz, 0.55 H), 1.23 (m, (dd, , 4JH-H = 6 Hz, 5JP-H=0.5 Hz, 0.45 H); 13C 

NMR (126 MHz, CDCl3) δ ppm, 79.9 (s), 79.8 (s), 72.9 (d, Jp-c = 5.1 Hz), 72.5 (d, Jp-c = 5.3 Hz),  
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Figure III-3.  FT-IR spectra of BYOMP, PBYOMP, PEOMP-b-PBYOMP, and PEOMP. 
 
 
 

70.3 (s), 65.2 (d, Jp-c = 9.9 Hz), 65.1 (d, Jp-c = 9.9 Hz), 50.2 (d, Jp-c = 15.4 Hz), 49.8 (d, Jp-c = 15.6 

Hz), 20.8 (d, Jp-c = 4.0 Hz), 20.5 (d, Jp-c = 4.0 Hz); 31P NMR (202 MHz, CDCl3) δ ppm, 25.62, 

24.85; FT-IR (ATR) 3450-3059, 3037-2738, 1454, 1398, 1298, 1240, 1146, 1072, 1047, 995, 937, 

864, 795, 764 cm-1 (Figure III-3); HRMS C7H12NO3PH+ 190.0628, found (M+H+) 190.0599.  
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General procedure for the organobase-catalyzed ring-opening polymerization (ROP) of 

BYOMP to afford PBYOMP 

All polymerizations were carried out using standard glovebox and Schlenk line techniques.  

BYOMP was vacuum dried over P2O5 for 12 h before transferring to a glovebox for storage under 

an inert Ar atmosphere.  All reagents were weighed in the glovebox and the reactions were 

conducted on a Schlenk line in a fume hood.  BYOMP (ca. 0.200 g, 1.06 mmol in each vial) was 

distributed into flame-dried 5-mL shell vials equipped with rubber septa and stir bars.  A solution 

of a given amount of 4-methylbenzyl alcohol (0.0106-0.0212 mmol) in anhydrous DCM (210 μL) 

was transferred via syringe into the shell vial of BYOMP while stirring.  Organocatalyst TBD (2 

mol% relative to monomer, 0.0242 mmol) in anhydrous DCM (210 μL) was transferred via syringe 

into the shell vial with stirring at -78 °C under a nitrogen gas atmosphere.  After stirring for a 

predetermined time (2 to 40 min), the reaction vial was unstoppered and quenched by addition of 

Amberlyst 15 H-form resin (10 mg) in DCM (1 mL).  The reaction solution was then removed 

from the resin by pipet, and the polymer was isolated by precipitation from DCM into diethyl ether 

(3x) and dried in vacuo to give the polymer as a viscous yellow liquid, with an average yield of 

85%.  1H NMR (500 MHz, CDCl3) δ ppm, 7.25 (½ABq, J = 8 Hz, 2H, Ar), 7.15 (½ABq, J = 8 Hz, 

2H, Ar), 4.96 (m, 2H, OCH2Ar), 4.77-3.71 (m, 5nH, POCH2CH2C≡CH, POCH2CHNH, 

POCH2CHNH), 3.69-3.11 (m, nH, POCH2CHNH), 2.79-2.51 (m, 2nH, POCH2CH2C≡CH), 2.34 

(s, 3H, CH3Ar), 2.19-1.91 (m, nH, POCH2CH2C≡CH), 1.44-1.04 (m, 3nH, POCH2CHCH3); 13C 

NMR (126 MHz, CDCl3) δ ppm, 151.8, 129.30, 128.0, 80.1, 70.5, 70.1, 64.3, 47.8, 38.0, 21.3, 

20.9, 19.5, 15.4, 15.1; 31P NMR (202 MHz, CDCl3) δ ppm, 9.88, 9.04; FT-IR (ATR) 3606-3037, 

3015-2779, 1639, 1440, 1390, 1227, 1163, 1122, 997, 939, 850, 764 cm-1 (Figure III-3); Tg = -12 
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to -8 °C (DPn = 20 to 98); TGA in Ar, 25-194 °C, 10% weight loss, 194-500 °C, 68% weight loss 

(Figure III-4). 

 

Kinetic study of the organobase-catalyzed ROP of BYOMP 

To a shell vial equipped with a rubber septum and a stir bar containing BYOMP (0.400 g, 

2.12 mmol), a solution of 4-methylbenzyl alcohol (0.0212 mmol) in anhydrous DCM (420 μL) 

was transferred via syringe into the shell vial while stirring.  TBD (2 mol% to monomer, 0.0424 

mmol) in anhydrous DCM (420 μL) was then transferred via syringe into the shell vial with 

stirring at -78 °C, while being maintained under a nitrogen gas atmosphere.  At 1, 2.5, 5, 10, 20, 

 
 
 

 

Figure III-4.  TGA traces of PEOMP, PBYOMP, and PEOMP-b-PBYOMP. 
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30, and 40 min, 150 μL of the reaction mixture was removed and quenched over Amberlyst 15 H-

form resin in CDCl3 (10 mg in 1 mL CDCl3).  The reaction mixture at each time point was removed 

from the resin and directly analyzed by 31P NMR spectroscopy without purification.  The reaction 

mixture was then purified by precipitation into diethyl ether (3x) and vacuum dried, which was 

further characterized by DMF SEC and 1H NMR spectroscopy.  The kinetic study was triplicated. 

 

General procedure for the organobase-catalyzed sequential ROP of EOMP and BYOMP to 

afford PEOMPx-b-PBYOMPy 

All polymerizations were carried out using standard glovebox and Schlenk line techniques.  

EOMP was vacuum dried over P2O5 for 12 h before transferring to a glovebox for storage under 

an inert Ar atmosphere.  All reagents were weighed in the glovebox and the reactions were 

conducted on a Schlenk line in a fume hood.  EOMP was distributed into flame-dried 5-mL shell 

vials equipped with rubber septa and stir bars (ca. 0.200 g, 1.21 mmol in each vial).  A solution of 

a given amount of 4-methylbenzyl alcohol (0.0242 mmol) in anhydrous DCM (210 μL) was 

transferred via syringe into the shell vial of EOMP while stirring.  Organocatalyst TBD (2 mol% 

relative to monomer, 0.0242 mmol) in anhydrous DCM (210 μL) was transferred via syringe into 

the shell vial with stirring at -78 °C while being maintained under a nitrogen gas atmosphere.  After 

stirring for 45 min, a solution of a given amount of BYOMP (0.458 g, 2.42 mmol) in anhydrous 

DCM (420 μL) was transferred via syringe into the shell vial while stirring at -78 °C.  After stirring 

for 60 min, the reaction vial was unstoppered and quenched by addition of Amberlyst 15 H-form 

resin (20 mg) in DCM (2 mL).  The reaction solution was then removed from the resin by pipet, 

and the polymer was isolated by precipitation from DCM into diethyl ether (3x) and dried in vacuo 

to give PEOMPx-b-PBYOMPy as a yellow tacky material, with an average yield of 87%.  1H NMR 
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(500 MHz, CDCl3) δ ppm, 7.24 (½ABq, J = 8 Hz, 2H, Ar), 7.15 (½ABq, J = 8 Hz, 2H, Ar), 4.96 

(m, 2H, OCH2Ar), 4.77-3.71 (m, 5xH+5yH, yPOCH2CH2C≡CH, (x+y) POCH2CHNH, (x+y) 

POCH2CHNH, xPOCH2CH3), 3.69-3.11 (m, xH+yH, POCH2CHNH), 2.69-2.50 (m, 2yH, 

POCH2CH2C≡CH), 2.34 (s, 3H, CH3Ar), 2.17-1.96 (m, yH, POCH2CH2C≡CH), 1.54-1.06 (m, 

6xH+3yH, (x+y) POCH2CHCH3, xPOCH2CH3); 13C NMR (126 MHz, CDCl3) δ ppm, 129.30, 

128.0, 80.1, 70.5, 70.1, 64.4, 62.6, 47.8, 38.0, 21.3, 20.8, 19.3, 16.31, 15.0; 31P NMR (202 MHz, 

CDCl3) δ ppm, 10.32, 9.89, 9.03; FT-IR (ATR) 3600-3037, 3015-2696, 1643, 1440, 1393, 1371, 

1225, 1163, 1134, 999, 943, 906, 846, 761 cm-1 (Figure III-3); Tg = 17 °C (PEOMP49-b-

PBYOMP98); TGA in Ar, 205-500 °C, 67% weight loss (Figure III-4). 

 

CPT loading into PEOMP49-b-PBYOMP98 micelles to afford CPT@PPA 

To a solution of PEOMP49-b-PBYOMP98 in ethanol (4 mL, 4 mg/mL), a predetermined 

amount of CPT solution in ethanol (1.6 to 6.4 mL, 1 mg/mL) was added.  The vial was shaken 

vigorously to mix the solution, and then ethanol was removed in vacuo.  Subsequently, the 

polymer/CPT solid mixture was resuspended in 2.0 mL of nanopure water and sonicated 10 min 

to obtain a well-dispersed suspension of nanoparticles (CPT@PPA).  DLS and TEM were used to 

characterize these CPT-loaded nanoparticles, and HPLC was used to determine CPT loading 

relative to a CPT calibration curve. 

 

CPT release from CPT@PPA 

Release profiles of the CPT@PPA were obtained by monitoring the decrease of CPT 

concentration over time in dialysis cassettes by HPLC.  In a typical experiment, a prepared solution 

of CPT@PPA (2.0 mL, 8 mg/mL polymer and 0.8 mg/mL CPT) was transferred into a presoaked 
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dialysis cassette (Slide-A-Lyzer, 10 kDa MWCO, Pierce Biotechnology, Rockford IL).  The 

cassette was allowed to stir in a beaker containing 3 L phosphate buffered saline buffer (PBS, pH 

7.4) or 3 L citric acid – Na2HPO4 buffer (pH 5.0) at 37 °C.  Aliquots (0.1 mL) were taken at pre-

determined times, diluted to a 1-mL volume with acetonitrile, and analyzed by HPLC.  

 

Cytotoxicity study of CPT@PPA 

SJSA human osteosarcoma (5 x 103 cells/well) and MC3T3-E1 mouse osteoblast precursor 

cells (5 x 103 cells/well) were plated in 96-well plates in DMEM and MEMα medium, respectively 

(10% fetal bovine serum, and 1% penicillin/streptomycin).  OVCAR-3 human ovarian 

adenocarcinoma cells (5 x 103 cells/well) and RAW 264.7 mouse leukemic monocyte-macrophage 

cells (5 x 103 cells/well) were plated in 96-well plates in RPMI and DMEM-high glucose medium, 

respectively (10% fetal bovine serum, and 1% penicillin/streptomycin).  Cells were incubated at 

37 °C in a humidified atmosphere containing 5% CO2 for 48 h to adhere.  The samples (CPT, 

CPT@PPA and polymer micelles) were dissolved in PBS to achieve a desired concentration.  

Then, the medium was replaced with a fresh medium 1 h prior to the addition of stock solutions of 

the samples to 100 µL of the medium (final concentrations ranged from 0.02-50 µM).  The cells 

were incubated with the formulations for 72 h and then the medium was replaced with 100 μL of 

fresh medium prior to the addition of 20 μL MTS combined reagent to each well (Cell Titer 96® 

Aqueous Non-Radioactive Cell Proliferation Assay, Promega Co., Madison, WI).  The cells were 

incubated with the reagent for 2 h at 37 °C in a humidified atmosphere containing 5% CO2 

protected from light.  Absorbance was measured at 490 nm using SpectraMax M5 (Molecular 

Devices Co., Sunnyvale, CA).  The cell viability was calculated based on the relative absorbance 

to the control-untreated cells.  The statistical analysis was performed using GraphPad Prism four-
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parameter fit, considering the 0% and 100% cell viabilities were for the control medium (no cells) 

and cells with no treatment, respectively.  

3.3 Results and Discussion 

Based on our interest in the development of well-defined poly(glucose carbonate)s, The 

monomer, (4S)-2-(but-3-yn-1-yloxy)-4-methyl-1,3,2-oxazaphospholidine 2-oxide (BYOMP, 3), 

was synthesized by annulation of but-3-yn-1-yl phosphorodichloridate (BYPC, 4) with (S)-(+)-2-

amino-1-propanol in the presence of triethylamine (Figure III-1c).  Addition of but-3-yn-1-ol to 

phosphorus(V) oxychloride yielded 4, which was initially purified by vacuum distillation prior to 

use in monomer synthesis.  However, given that the reaction proceeded quantitively, as evidenced 

by only the peak of 4 at 7.55 ppm being observed in the 31P NMR spectrum, annulation reactions 

were then conducted with crude 4.  Notably, the use of crude 4 afforded little reduction of the yield 

of 3, and substantially increased the overall yield of the two reactions from 29% to 70%.  The 

annulation reaction was highly efficient, and purification was accomplished simply by filtration 

through a silica gel plug to remove the slight excess of triethylamine to give 3 as a highly viscous 

colorless liquid.  The purity of 3 was confirmed by mass spectrometry.  The 31P NMR spectrum of 

3 showed resonances at 25.62 and 24.85 ppm, similar to the 31P chemical shift values reported for 

EOMP (25.97 and 25.20 ppm), 5,90 and other cyclic phospholane amidate structures.9, 91  The two 

distinct resonances were attributed to diastereomers formed during the annulation.  The 1H and 13C 

NMR spectra of the monomer also showed two sets of resonance frequencies corresponding to the 

two diastereomers.  Resonances in the 1H NMR spectrum were able to be distinguished through 

homonuclear correlation spectroscopy (COSY) (Figure III-2), and the intensities of the 4-methyl 
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proton resonances at 1.23 and 1.29 ppm, respectively, revealed the two diastereomers to be present 

at roughly equal proportions in the mixture (45:55).   

Conditions to allow for controlled ROP of 3 were then investigated.  Initially, the 

polymerization was conducted in the presence of the organocatalyst 1,8-diazabicyclo[5.4.0]undec-

7-ene (DBU), which had previously provided excellent control of the ROP of cyclic carbonate and 

cyclic phosphotriester monomers.56, 92, 93  However, similarly as observed in the ROP of 5,90 DBU 

failed to yield appreciable conversion of 3 to polymer in dichloromethane (DCM), even at 

relatively high catalyst loadings (10 mol% relative to monomer).  Thus, DBU was replaced by the 

more active catalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), which has successfully mediated 

the controlled ROP of several cyclic phosphorus-containing monomers.90, 56, 94, 95  Using a TBD 

loading of 2 mol% with respect to monomer and 4-methylbenzyl alcohol as the initiator, ROP of 

3 in DCM was studied, monitoring monomer conversion and the growth of polymer chains as a 

function of time by NMR spectroscopy and N,N-dimethylformamide size exclusion 

chromatography (DMF SEC).  Monomer conversions were obtained from 31P NMR spectra on 

aliquots taken from the polymerization mixtures.  Subsequently, number-average molar masses 

(Mn) were calculated from the 1H NMR spectra after isolation of the polymers by precipitation 

from dichloromethane into diethyl ether, by comparison of the intensities of the 4-methyl protons 

originating from the initiator on the α-chain end resonating at 2.34 ppm with the methylene protons 

adjacent to the alkyne on the repeating units resonating at 2.58 ppm.  Molar mass distribution 

(dispersity, Đ) was measured by DMF SEC calibrated using polystyrene standards.  At 0 °C, the 

polymerization proceeded to 94% conversion within 5 min (entries 1-3, Table III-1).  However, 

broadening of Ð (1.2-1.3) was observed at conversions exceeding 75%, indicating the occurrence 

of adverse backbiting or transesterification reactions.  Hence, the reaction temperature was  
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Table III-1.  Polymerization of BYOMP catalyzed by TBD under different conditionsa 

 

aPolymerizations were conducted with 4-methylbenzyl alcohol as the initiator and TBD as the 
catalyst in anhydrous dichloromethane at a monomer concentration of 2.0 M.  bConversions 
(conv.) were obtained from 31P NMR spectra of aliquots taken from the polymerization mixtures.  
cMn, NMR was determined by end group analysis by 1H NMR spectroscopy of the polymer.  dĐ was 
measured by DMF SEC calibrated using polystyrene standards.  
 
 
 
decreased to -78 °C (entries 4-6, Table III-1).  At this reduced temperature, the polymerization 

reached > 90% conversion within 30 min, and a narrow Ð (1.1-1.2) was achieved at monomer 

conversions from 15 to 98%, indicating successful restriction of the side reactions.   

The kinetics of polymerization were then studied in detail under these optimized conditions 

at -78 ° C in the presence of 2 mol% TBD with a monomer concentration of 2.0 M in DCM and a 

monomer/initiator feed ratio ([M]0/[I]0) of 100.  The linearity of Mn vs monomer conversion 

(Figure III-5a) suggested that the numbers of growing macromolecules in the reactions remained 

constant during the polymerizations.  Plots of ln([M]0/[M]) vs time (Figure III-5b) showed that the 

polymerization exhibited first order kinetics, also suggesting the characteristics of a controlled 

polymerization.  Further analysis by matrix-assisted laser desorption ionization time-of-flight mass 

spectrometry (MALDI-Tof MS) of 6 (DPn = 8 by 1H NMR spectroscopy, Figure III-6), revealed 

two populations, each with a spacing of 189 m/z, equal to that of the expected monomer repeat 

unit.  Structurally, these two sets of signals were assigned to populations having the same end   
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Figure III-5.  a) Plot of Mn and Ð vs monomer conversion for the polymerization of BYOMP 
using TBD as the catalyst and 4-methylbenzyl alcohol as the initiator, obtained from a combination 
of SEC, 1H NMR and 31P NMR spectroscopic analyses.  The ratio of monomer : initiator : TBD 
was 100 : 1 : 2.  b) Plots of monomer conversion (ln([M]0/[M])) vs time obtained from 31P NMR 
spectra. 
 

 

Figure III-6.  MALDI-Tof MS spectrum of PBYOMP (DPn = 8). 
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groups but distinct ionizations.  The main peak in the major population at m/z = 1673 corresponded 

to a potassium-charged polymer chain of DPn = 8 that had been initiated by 4-methylbenzyl alcohol 

and terminated by protonation, further confirming the controlled nature of the polymerization.  

Meanwhile, the main peak in the minor population at m/z = 1444 was in agreement with a proton-

charged polymer chain of DPn = 7 having 4-methylbenzyl oxy and protonated α- and ω-end groups, 

respectively.  

By controlling the [M]0/[I]0 and the reaction time, a series of 6 with different molar masses 

was synthesized (ca. 2-to-18 kg/mol, Table III-1 and Figure III5a).  Across this range of molar 

masses, the polymers were soluble in common organic solvents but did not display water 

solubility.  31P NMR spectra clearly indicated two chemically-distinct phosphorus environments, 

resonating at 9.88 and 9.04 ppm, corresponding to the chiral phosphorous atoms.  1H NMR and 

13C NMR spectra further confirmed the structure of 6.  Polymer 6 was a pale-yellow viscous liquid 

at room temperature, and exhibited a glass transition temperature (Tg) of -12 to -8 °C (DPn = 20-

98).  Compared to the Tg of -35 °C reported for an analogous polyphosphoester with alkyne side 

chains (DPn = 50),56 the Tg of 6 was higher, which was attributed to the phosphoramidate linkages 

along the polymer backbone.  Yet, the Tg of 6 was significantly lower than that of 1 (DPn = 20-93, 

Tg = 32-36 °C),90 likely due to the increased free volume provided by the larger butynyl side chains.   

Having demonstrated that both 5 and 3 could undergo controlled ROPs under similar 

conditions to afford hydrophilic 1 and hydrophobic 6, respectively, we then designed a synthetic 

route to produce amphiphilic diblock copolymers that would serve as acid-labile hosts for CPT in 

water.  Given the high water solubility and hydrophilicity of 1, it was expected that hydrophobic 

chain segments derived from 3 should be of greater relative length, to provide sufficient 

hydrophobicity to drive the assembly process and create a hydrophobic domain to maintain 
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packaging of the drug molecules.  After testing different block ratios, a 1:2 block ratio of PEOMP 

to PBYOMP was determined to yield aqueous assembly.  The amphiphilic diblock copolymer 2, 

was obtained via one-pot sequential ROP of 5 and 3, in which the sequence of the polymerization 

was the key to success (Figure III-1d).  Due to the dilution of the solution mixture of the first block, 

the decreased concentration of the second monomer would likely result in a slower polymerization 

rate and lower polymerization conversion.  The two-fold amount of 3 used compared to 5 at this 

block ratio was also able to compensate for the dilution and be polymerized at the concentration 

of 2.0 M.  Therefore, 3 was selected as the monomer for the second block, the higher activity of 

which further benefited these polymerizations.  In contrast, selection of 5 as the second monomer 

suffered from dilution effects and resulted in lower than expected conversion (ca. 40%).  Using an 

initially-prepared 1 as a macroinitiator maintained as a reaction mixture at -78 °C, addition of 3 as 

a solution in DCM to afford a concentration of 3 at 2.0 M, resulted in chain extension as observed 

by the peak in the SEC trace shifting towards shorter elution time relative to 1 (Figure III-7).  The 

increased molar mass as measured by SEC was consistent with the increased degree of 

polymerization determined by 1H NMR spectroscopy.  Although the molar mass distribution 

remained narrow (Ð < 1.2), indicative of a well-controlled polymerization, there was consistently 

a minor high molecular weight shoulder with several synthetic runs, which may be due to mixing 

complications because of the high viscosity of the polymerization mixture.  To limit the breadth 

of the molar mass distribution and the presence of high molar mass impurities, the solution of 

monomer 3 was pre-cooled to 0 °C and added as quickly as possible.  This one-pot sequential 

synthesis of well-defined diblock PPAs provides several advantages over chain extension from 

purified macroinitiators, with fewer steps, shorter experimental time, and higher yields. 
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Figure III-7.  SEC traces of PEOMP and PEOMP49-b-PBYOMP98.  PEOMP was synthesized with 
[M]0/[I]0 = 50 at [M] = 2.2 M.  Chain extension of BYOMP from PEOMP macroinitiator at 
[M]0/[I]0 = 100 at [M] = 2.0 M yielded PEOMP-b-PBYOMP. 
 
 
 

Aided by the hydrophilic PEOMP block, 2 dispersed readily into aqueous solution, while 

the alkynyl side chain groups on the hydrophobic PBYOMP block promoted assembly into 

nanostructures.  The size and morphology of the nanostructures were characterized by dynamic 

light scattering (DLS) and transmission electron microscopy (TEM).  DLS showed unimodal size 

distributions of the PPA nanoparticles, with a number-average hydrodynamic diameter (Dh(number)) 

of 15 ± 4 nm (Figure III-8b).  TEM images of PPA nanoparticles showed circular structures, with 

an average diameter (Dav) of 22 ± 4 nm (counting > 50 nanoparticles, Figure III-8a) suggesting the 

formation of core-shell micelles.  CPT-loaded PPA nanoparticles (CPT@PPA) were prepared in 

a facile manner (Figure III-9a), by dissolution of the polymer and CPT in ethanol, followed by  
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Figure III-8.  a) TEM images of PPA micelles negatively stained by 1 wt% phosphotungstic 
acid aqueous solution (10 μL) with an average diameter (Dav) of 22 ± 4 nm (counting > 50 
nanoparticles).  b) Number-, volume- and intensity-based hydrodynamic diameter of PPA 
micelles in nanopure water measured by DLS.   
 

 

Figure III-9.  a) Schematic representation of the formation of CPT@PPA by physical 
encapsulation of CPT into PPA .  b) Number-, intensity- and volume-based hydrodynamic 
diameter distributions of CPT@PPA in nanopure water measured by DLS.  c) TEM images of 
CPT@PPA negatively stained by 1 wt% phosphotungstic acid aqueous solution (10 μL), Dav = 
24 ± 4 nm (counting > 50 nanoparticles).  The dark spots are artifacts from phosphotungstic acid. 
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removal of ethanol in vacuo and resuspension in nanopure water with sonication.  The CPT 

concentration and loading capacity were optimized by tuning CPT and polymer concentrations.  

CPT loading was determined using high-performance liquid chromatography (HPLC), while the 

size and morphology of the loaded nanostructures were characterized by DLS and TEM.  

Preliminary experiments showed loading of CPT in the PPA nanoparticles of up to ca. 40 wt%, 

while for optimized stability of the system and inhibition of premature hydrolysis of CPT, a 

loading of 10 wt% was selected for morphological and biological characterization.  DLS showed 

unimodal size distributions of the CPT@PPA nanocarriers, with a number-average hydrodynamic 

diameter (Dh(number)) of 17 ± 5 nm (Figure III-9b).  TEM images of CPT@PPA showed circular 

structures, with an average diameter (Dav) of 24 ± 4 nm (counting > 50 nanoparticles, Figure III-

9c) suggesting the formation of micelles.  The low Tg of PBYOMP (DPn = 20-98, Tg = −12 to -8 

°C) promoted flattening of the micellar structures in the dry state on TEM grids, leading to larger 

dry state diameters than those observed in solution.   

The drug release profiles of CPT from CPT@PPA were measured in phosphate buffered 

saline (PBS, pH 7.4) and citric acid – Na2HPO4 (pH 5.0) at 37 °C over 2.5 d.  As depicted in Figure 

III-9a, at pH 7.4, sustained release of CPT was observed over 2.5 d, while at pH 5.0, burst release 

of CPT was observed, with 98% of CPT released within 8 h.  These distinct release profiles at 

different pH values are consistent with the acid-triggered degradation of the PPA backbone.90   

The in vitro cytotoxicities of drug-equivalent loading CPT@PPA were investigated in 

three cancer and one non- cancer cell lines, and compared to cell viabilities for free CPT as a 

positive control with each cell line (Figure III-9b, c and Table III-2).  The polymer micelles of 2 

were found to be nontoxic at all concentrations tested (up to 175 µg/mL).  In human osteosarcoma 

cells (SJSA-1), CPT@PPA exhibited a lower IC50 (2.2 μM) compared to free CPT (4.6 μM), 
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Figure III-10.  a) Release of CPT from CPT@PPA (10 wt%) at pH 5.0 and pH 7.4, that studied 
by a dialysis method over 2.5 d at 37 °C in citric acid – Na2HPO4 and PBS buffers, respectively, 
measured in triplicates.  Cytotoxicity of CPT, PPA micelles, and CPT@PPA in (b) SJSA-1 and 
(c) MC3T3 cells. Cell viabilities are reported as an average of three measurements. 
 
 
 
potentially indicating a protection against hydrolysis of CPT into the open, inactive carboxylate 

form.  In addition, similarly lower IC50 values were observed for CPT@PPA in comparison to 

free CPT in human ovarian adenocarcinoma cells (OVCAR-3) and mouse leukemic monocyte-

macrophage cells (RAW 264.7).  In contrast, in mouse osteoblast precursor cells (MC3T3), IC50   
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Table III-2.  Comparison of the IC50 values of CPT, PPA micelles and CPT@PPA in OVCAR-
3, RAW264.7, and SJSA-1 cell lines. 

 IC50 (μM) 

 OVCAR-3 RAW264.7 SJSA-1 

CPT 3.4 4.2 4.6 

PPA N/A N/A N/A 

CPT@PPA 1.5 3.1 2.2 

 

 

 

values were not calculable up to the concentrations of CPT in both the CPT@PPA and free CPT 

formulations that had led to the cancer cell killing.  Taken together, these studies demonstrate the 

advantages of CPT@PPA as anticancer agents, highlighting the potential for reduced side effects 

in healthy cells without sacrificing efficacy in cancer cells.  

3.4 Conclusions 

In summary, polymeric nanotherapeutics that display acid-triggered release were 

successfully obtained via the coassembly of PPA-based diblock copolymers and CPT into 

degradable, functional nanocarriers.  An alkyne-functionalized oxazaphospholidine monomer was 

synthesized and polymerized in a controlled manner by its organobase-catalyzed ROP.  One-pot 

sequential ROP yielded well-defined amphiphilic diblock polymers with acid-labile linkages along 

the backbone, good biocompatibility, and functionality.  The alkyne-functionalized block provided 

both hydrophobicity to promote aqueous solution assembly and versatile reactive groups that allow 

for future manipulations, such as attachment of a dye and/or crosslinking of the core.  Well-

dispersed CPT-loaded nanoparticles with a Dh(number) of 17 ± 5 nm were achieved through co-
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assembly of the diblock copolymer with CPT, which exhibited sustained release of CPT at pH 7.4 

and burst release at pH 5.0.  Cytotoxicity assays demonstrated the biocompatibility of the polymer 

and enhanced efficacy of the CPT-loaded nanoparticles towards cancer cells, with minimal toxicity 

towards healthy cells.  Future studies, including further modification of the polymer via alkyne 

groups and preparation of PPA-based nanoparticles loaded with different drugs, are underway. 
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CHAPTER IV  

CONSTRUCTION OF POLYPHOSPHORAMIDATES WITH ACID-TRIGGERED 

BACKBONE DEGRADATION USING α-AMINO ACIDS AS BUILDING BLOCKS 

4.1 Introduction 

Biodegradable polymers are of great interest due to their great potential in a wide range of 

applications, such as drug delivery, gene transfer, tissue engineering, and regenerative 

medicine.1-6  The most important criteria for their use as biomedical materials are great 

biocompatibility, suitable degradation rate in particular applications, and nontoxic degradation 

products.  α-Amino acids, based on their wide bioavailability, inherent biocompatibility are 

attractive starting materials for the development of novel synthetic biodegradable polymers.  In 

addition, the introduction of α-amino acids may endow the polymer with additional advantages.96  

Interactions of the polymer with bioactive molecules, such as proteins and genes, introduced by 

α-amino acids may lead to desirable biological properties of the material, including cell 

adhesion, enzyme inhibition, and enzymatic degradability.97  The strong intermolecular 

hydrogen-bond interactions may also enhance the mechanical and thermal properties of the 

polymers.  Furthermore, the high chemical functionalities of α-amino acids enable easy post-

polymerization modification of the polymer for applications like targeting, cell imaging, etc.98  

The origination from renewable feedstocks also increases the value of polymers containing α-

amino acids for environmental purposes. 

In the past decades, different synthetic approaches, including condensation 

polymerization,99-101 ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs),102 and 

ROP of cyclic depsipeptides (morpholine-2,5-dione derivatives),103 have been explored for the 
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synthesis of biodegradable polymers containing α-amino acids with varying structures and 

properties.  For example, Zhong et al. reported the synthesis of enzymatically and reductively 

degradable poly(ester amide)s derived from L-phenylalanine via solution polycondensation, which 

was demonstrated with excellent cell compatibility and great potential as a drug carrier.104  Fu et 

al. reported an unusual micelle-to-vesicle transformation of cholesterol-decorated poly(L-cysteine) 

copolymer assemblies, afforded by ROP of NCAs, in response to reactive oxygen species.105  The 

interesting morphological transition correlates with the alteration in conformations from β-sheet 

to α-helix, which grants an attractive “on−off” switch for triggered release and cellular interaction.  

Recently, Schubert et al. reported the controlled ROP of alkyl-substituted morpholine-2,5-dione 

derivatives to afford well-defined polydepsipeptides derived from valine, leucine, and isoleucine. 

Among those approaches, controlled ROP of NCAs and depsipeptides are widely exploited due to 

the great control over the molar mass, molar mass distribution (dispersity, Đ), molecular structures 

of the polymers.106  However, besides these two categories, ROP of NCAs and cyclic 

depsipeptides, other approaches to achieve polymers containing α-amino acids via a controlled 

polymerization have rarely been reported. 

Introduction of acid-labile linkages along a polymer backbone is anticipated to lead to rapid 

acid-triggered degradation, given that even slight degradation of the backbone would markedly 

decrease molar mass.  In an earlier study, as shown in Figure IV-1a, we demonstrated that well-

defined polyphosphoramides (PPAs) were achieved through ROP of cyclic monomers derived 

from a β-amino alcohol and that they were able to undergo accelerated degradation under acidic 

conditions, due to the presence of acid-labile phosphoramidate linkages along the backbone.90  

Inspired by this research, we perceived that α-amino acids with β-amino alcohol moiety in their   
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Figure IV-1.  a) Well-defined PPAs achieved through ROP of cyclic monomers derived from a β-
amino alcohol, which were able to undergo accelerated degradation under acidic conditions.  b) 
ROP of a novel cyclic monomer derived from methyl L-serinate to afford well-defined PPAs with 
acid-labile linkages along the backbone. 
 
 
 
structures, such as L-serine and L-threonine, could be adapted to the developed synthetic 

methodology to afford well-defined PPAs based on α-amino acids, which could undergo 

accelerated degradation under acidic conditions with nontoxic phosphates and α-amino acids as 

the degradation products.  Herein, we report the design and synthesis of a novel 

oxazaphospholidine monomer based on methyl L-serinate (MLS) bearing a phosphoramidate 

within the cyclic structure to then place that acid-labile linkage along the backbone upon controlled 

organo-catalyzed ROP to afford well-defined PPAs containing α-amino acids (Figure IV-1b). 

 

4.2 Experimental Section 

4.2.1 Materials 

All chemicals and reagents were used as received from Sigma-Aldrich Co. unless otherwise 

noted.  Tetrahydrofuran (THF), and dichloromethane (DCM) were purified by passage through a 
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solvent purification system (JC Meyer Solvent Systems).  4-Methylbenzyl alcohol and 1,5,7-

triazabicyclo[4.4.0]dec-5-ene (TBD) were dried over CaH2 in THF, then vacuum dried and stored 

in a glovebox under Ar atmosphere.  1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) was dried over 

CaH2, distilled, degassed, and stored in a glovebox under Ar atmosphere. 

4.2.2 Instrumentation 

1H NMR, 31P NMR, and 13C NMR spectra were recorded on Varian Inova 500 spectrometer 

(Varian, Inc., Palo Alto, CA) interfaced to a UNIX computer using the VnmrJ software.  Chemical 

shifts for 1H NMR and 13C NMR signals were referenced to the solvent resonance frequencies.  

Chemical shifts for 31P NMR signals were referenced to a sealed capillary containing 85% H3PO4 

placed in the sample solution. 

Size exclusion chromatography (SEC) eluting with pre-filtered DMF containing 0.05 M 

LiBr was conducted on a Waters Chromatography, Inc. (Milford, MA) system equipped with an 

isocratic pump (model 1515), a differential refractometer (model 2414), and a four-column set 

including a 5 μm Guard column (50 × 7.5 mm), a Styragel HR 4 5 μm DMF column (300 × 7.5 

mm), a Styragel HR 4E 5 μm DMF column (300 × 7.5 mm), and a Styragel HR 2 5 μm DMF 

column (300 × 7.5 mm).  The system was operated at 70 °C with a flow rate of 1.00 mL/min.  

Polymer solutions were prepared at ca. 3 mg/mL, and an injection volume of 200 μL was used.  

Data collection and analysis were performed with Discovery32 v. 1.039.000 software (Precision 

Detectors, Inc., Bellingham, MA).  The system was calibrated with S3 polystyrene standards 

(Polymer Laboratories, Amherst, MA) ranging from 615 to 442800 Da.   

Glass transition temperatures (Tg) were measured by differential scanning calorimetry 

(DSC) on a Mettler-Toledo DSC3/700/1190 (Mettler-Toledo, Inc., Columbus, OH) under a 
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nitrogen gas atmosphere.  Measurements were performed with a heating rate of 5 °C/min and the 

data were analyzed using Mettler-Toledo STARe v. 15.00a software.  The Tg was taken as the 

midpoint of the inflection tangent of the second heating scan.   

Thermogravimetric analysis (TGA) was performed under Ar atmosphere using a Mettler-

Toledo TGA2/1100/464, with a heating rate of 10 °C/min.  Data were analyzed using Mettler-

Toledo STARe v. 15.00a software.  

4.2.3 Synthesis 

Two-step trial synthesis of methyl (4S)-2-ethoxy-1,3,2-oxazaphospholidine-4-carboxylate 2-

oxide (MEOPC) 

MLS·HCl (3.00 g, 19.3 mmol) was added to 100 mL of anhydrous THF and formed a suspension, 

followed by the dropwise addition of triethylamine (6.14 g, 60.8 mmol) in anhydrous THF (50 

mL) at room temperature.  The reaction mixture was allowed to stir for 12 h and was then filtered.  

The filtrate was concentrated under reduced pressure to less than 50 mL.  The concentrated filtrate 

was then transferred into a syringe, and neat anhydrous THF was used to adjust the total solution 

volume to 50 ml.  This solution, together with another solution of ethyl dichlorophosphate (3.14 

g, 19.3 mmol) in anhydrous THF (50 mL) were simultaneously added to stirred neat anhydrous 

THF (200 mL) at 0 °C using a syringe pump at a rate of 10 mL/h.  The reaction mixture was 

allowed to stir for 12 h and was then warmed to room temperature.  After complete conversion of 

ethyl phosphorodichloridate, as indicated by 31P NMR, the reaction mixture was filtered, and the 

filtrate was concentrated under reduced pressure.  The concentrated filtrate was passed through a 

silica gel plug eluting in THF and then concentrated to obtain the crude product as a clear yellow 

liquid.  31P NMR (202 MHz, CDCl3) δ ppm (Figure IV-2), 24.08, 23.85, 8.90-7.20, 6.58, -0.70. 
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Figure IV-2.  31P NMR (202 MHz, CDCl3) of the crude products achieved by the two-step trial 
synthesis.  Representative structures of impurities and the product are labeled to the corresponding 
peaks. 
 
 
 
One-step synthesis of MEOPC 

MLS·HCl (3.00 g, 19.3 mmol) was added to a solution of ethyl dichlorophosphate (3.14 g, 

19.3 mmol) in anhydrous THF (300 mL) and formed a suspension with vigorous stirring, followed 

by the dropwise addition of a solution of triethylamine (6.14 g, 60.8 mmol) in anhydrous THF (50 

mL) at 0 °C with a rate of 6 mL/h.  The reaction mixture was allowed to stir for 12 h and was then 

warmed to room temperature.  After complete conversion of ethyl phosphorodichloridate, as 

indicated by 31P NMR, the reaction mixture was filtered and the filtrate was concentrated under 
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reduced pressure.  The concentrated filtrate was passed through a silica gel plug eluting in THF, 

and then concentrated to obtain the pure product as a clear colorless to pale-yellow liquid (2.34 g, 

11.2 mmol, 58.0% yield).  1H NMR (500 MHz, CDCl3) δ ppm, 4.56-4.48 (m, 1H), 4.43-4.13 (m, 

7H), 4.13–3.98 (m, 4H), 3.77-3.70 (m, 6H), 1.32-1.24 (m, 6H); 13C NMR (126 MHz, CDCl3) δ 

ppm, 171.29-171.07 (d, Jp-c = 6.9 Hz), 170.96-170.73 (d, Jp-c = 5.5 Hz), 67.39-67.21 (d, Jp-c = 2.0 

Hz), 67.07-66.90 (d, Jp-c = 2.0 Hz), 64.23-64.09 (d, Jp-c = 6.7 Hz), 64.00-63.84 (d, Jp-c = 6.2 Hz), 

55.33-55.10 (d, Jp-c = 11.2 Hz), 54.79-54.53 (d, Jp-c = 12.0 Hz), 53.09, 52.77, 16.31-16.06 (d, Jp-c 

= 7.7 Hz; d, Jp-c = 7.7 Hz); 31P NMR (202 MHz, CDCl3) δ ppm, 24.08, 23.85; HRMS 

C6H13NO5PH+ 210.0526, found (M+H+) 210.0706. 

 

General procedure for the organobase-catalyzed ROP of MEOPC to afford PMEOPC 

All polymerizations were carried out using standard glovebox and Schlenk line techniques.  

MEOPC was vacuum dried over P2O5 for 0.5 d before transferring to a glovebox for storage under 

an inert atmosphere.  All the reagents were weighed inside a glovebox, and the reactions were 

conducted in a fume hood.  MEOPC was distributed into flame-dried 5-mL shell vials equipped 

with rubber septa and stir bars (ca. 0.200 g, 0.956 mmol for each).  A solution of a given amount 

of 4-methylbenzyl alcohol (0.00956 mmol to 0.0191 mmol) in anhydrous DCM (210 μL) was 

transferred via syringe into the shell vial while stirring.  Organocatalyst TBD (3 mol% relative to 

monomer, 0.0287 mmol) in anhydrous DCM (210 μL) was transferred via syringe into the shell 

vial with stirring at -78 °C while being maintained under a nitrogen gas atmosphere.  After stirring 

for a certain period of time (2 min to 35 min), the reaction vial was unstoppered and quenched by 

addition of Amberlyst 15 H-form resin (10 mg) and 1 mL of DCM.  The reaction mixture was then 

removed from resin, purified by precipitation from DCM into diethyl ether (3x) and vacuum dried 
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to give an average yield of 58%.  1H NMR (500 MHz, CDCl3) δ ppm, 7.22 (b, J = 8.5 Hz, 2H, Ar), 

7.11 (b, J = 8.0 Hz, 2H, Ar), 5.39-3.99 (m, 6nH+2H (OCH2Ar)), 3.88-3.66 (m, 3nH, COOCH3), 

2.29 (s, 3H, CH3Ar), 1.34-1.12 (m, 3nH); 13C NMR (126 MHz, CDCl3) δ ppm, 170.93, 129.17, 

127.92, 67.65, 63.14, 54.82, 52.68, 21.23, 16.09; 31P NMR (202 MHz, CDCl3) δ ppm, 8.37, 7.44, 

5.59; Tg = 15 °C (DPn = 69); TGA in Ar (Figure IV-2), 25-130, 5% total weight loss, 130-300 °C, 

63% total weight loss., 300-500 °C, 74% total weight loss.  

 

Kinetic study of the organobase-catalyzed ROP of MEOPC  

To a shell vial equipped with a rubber septum and a stir bar containing MEOPC (0.400 g, 1.91 

mmol), a solution of 4-methylbenzyl alcohol (0.0191 mmol) in anhydrous DCM (420 μL) was  

 
 
 

 

Figure IV-3.  TGA trace of PMEOPC69.  
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transferred via syringe into the shell vial while stirring.  TBD (3 mol% to monomer, 0.0574 mmol) 

in anhydrous DCM (420 μL) was then transferred via syringe into the shell vial with stirring at -

78 °C, while being maintained under a nitrogen gas atmosphere.  At 2, 4, 8, 12, 15, 25 and 35min, 

150 μL of the reaction mixture was removed and quenched over Amberlyst 15 H-form resin in 

CDCl3 (10 mg in 1 mL CDCl3).  The reaction mixture at each time point was removed from the 

resin and directly analyzed by 31P NMR spectroscopy without purification.  The reaction mixture 

was then purified by precipitation into diethyl ether (3x) and vacuum dried, which was further 

characterized by DMF SEC and 1H NMR spectroscopy.   

 

Kinetic study of the backbone cleavage of PMEOPC in aqueous solution by 31P NMR 

spectroscopy 

PMEOPC (DPn = 69, 5.0 mg) was dissolved into 1 mL of buffer solutions (100 mM citric 

acid - sodium citrate buffer solutions at pH 3.0, and 10 mM 3-(N-morpholino)propanesulfonic acid 

(MOPS) buffer solution at pH 7.4), and 10 vol% of D2O (0.1 mL) was added to the buffer solutions.  

The solutions were incubated at 37 °C allowing for the degradation.  The 31P chemical shifts were 

monitored by 31P NMR spectroscopy during the degradation study.   

 

4.3 Results and Discussion 

Based on our efforts to achieve PPAs with acid-triggered backbone degradation,90, 107 the 

monomer MEOPC was designed to be synthesized by annulation of ethyl dichlorophosphate with 

methyl L-serinate (MLS) in the presence of trimethylamine (Figure IV-1a).  Unlike (S)-(+)-2-
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amino-1-propanol used in our previous studies, MLS is often sold in its salt form, MLS·HCl.  Thus, 

a two-step synthesis was designed to transform MLS·HCl into MLS first, followed by the 

annulation reaction.  MLS·HCl is only soluble in polar protic solvents like water, methanol, and 

ethanol due to its ionic nature.  The neutralization of MLS·HCl was carried out successfully in 

methanol with sodium hydroxide or sodium methoxide as the base.  Protic solvents like methanol 

would cause severe side reactions with ethyl dichlorophosphate in the annulation reaction and thus 

needed to be completely removed.  However, after the removal of methanol, the achieved MLS 

could no longer be re-dissolved into polar aprotic solvents like dichloromethane (DCM), 

tetrahydrofuran (THF), N,N-dimethylformamide (DMF), etc., which was likely due to the strong 

hydrogen bond interactions between MLS molecules.  In addition, due to the relatively high boiling 

point of methanol and its strong hydrogen bond interaction with MLS, there was always a peak of 

methanol contamination observed from the 1H NMR spectra of crude products.   

Therefore, a new two-step route was designed to achieve MLS via a heterogeneous reaction 

(Figure IV-4a), in which 3 equivalence of triethylamine was added to a suspension of MLS·HCl 

in THF.  Although MLS·HCl was barely dissolved in THF, the trace amount of the dissolved salt 

could react with triethylamine and generate soluble MLS, which drove the reaction to completion.  

The annulation was then conducted on the achieved MLS solution.  In our previous studies, when 

(S)-(+)-2-amino-1-propanol was applied, the annulation reaction was highly efficient, as evidenced 

by only the cyclic monomer peaks being observed in the 31P NMR spectra of the crude products.90, 

107  When MLS was applied, as shown in Figure IV-2, the peaks of MEOPC at 24.08 and 23.85 

ppm were observed in the 31P NMR spectrum, similar to the 31P chemical shift values of reported 

cyclic phosphoramidate structures.90, 107  The two distinct resonances were attributed to possible 

geometric isomers arising from the 2-position ethoxy and 4-position methyl carboxylate groups.   
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Figure IV-4.  a) Two-step trial synthesis of MEOPC form MLS·HCl salt.  b) One-step synthesis 
of MEOPC from MLS·HCl salt with proposed reaction process and intermediates. 
 
 
 
However, there was ca. 12% impurity observed at 5.2 to 8.6 ppm, indicating the formation of non-

cyclic phosphoramidates.  Furthermore, there was another ca. 9% impurity observed at -0.9 to -

0.2 ppm, suggesting the formation of non-cyclic phosphoresters.  Combing these observations, the 

switch from methyl to methyl carboxylate complicated the ring-closure process and increased 

intermolecular reactions, likely due to the increased steric hindrance.  Multiple purification 

methods, including column chromatography, recrystallization, precipitation, were applied but 

failed to sufficiently purify the product due to the hygroscopic and prone to hydrolysis nature of 

MEOPC.   

We perceived that the inhibition of the intermolecular reactions was key to success and 

finally designed a one-step synthesis method.  In this method, MLS·HCl was premixed with ethyl 

dichlorophosphate in THF to form a suspension, followed by the addition of triethylamine in THF 

at a very slow speed (7.2 mmol/h) at 0 °C.  When triethylamine was added to the suspension, it 
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drove the esterification of MLS·HCl with ethyl dichlorophosphate, neutralization of MLS·HCl, 

and amidation of MLS with ethyl dichlorophosphate.  Due to the pKa difference, with the addition 

of triethylamine at a slow speed (7.2 mmol/h) at 0 °C, these reactions could be performed stepwise, 

and this process was proposed in Figure IV-4b.  Due to the low solubility of MLS·HCl in THF, 

during the reaction time, the concentration of MLS·HCl in solution was low, which further inhibit 

the intermolecular side reactions.  Under this condition, the reaction proceeded quantitively, as 

evidenced by only the peak of MEOPC at 24.08 and 23.85 ppm being observed in the 31P NMR 

spectrum (Figure IV-5).  Purification was then accomplished simply by filtration through a silica 

gel plug to remove the slight excess amount of trimethylamine to give pure MEOPC as a highly 

viscous colorless to pale yellow liquid after concentration.  The 1H NMR and 13C NMR spectra 

(Figure IV-6b and 7b) of MEOPC also showed two sets of resonances belonging to the two 

isomers.   

 
 
 

 
Figure IV-5.  31P NMR (202 MHz, CDCl3) of the crude products achieved by the one-step 
synthesis.  
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Figure IV-6.  a) 1H NMR (500 MHz, CDCl3) of PMEOPC.  b) 1H NMR (500 MHz, CDCl3) of 
MEOPC. 
 

 
Figure IV-7.  a) 13C NMR (126 MHz, CDCl3) of PMEOPC.  b) 13C NMR (126 MHz, CDCl3) of 
MEOPC. 
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Table IV-1.  Polymerization of MEOPC catalyzed by TBD under different conditionsa 
Entry T (°C) [Cat.]/[M] conv.b Mn NMR 

(kDa)c 
Đd Time 

(min) 
1 0 2% 12% N. A. N. A. 30 
2 0 2% 14% N. A. N. A. 60 
3 0 2% 14% N. A. N. A. 120 
4 0 3% 42% 8.4 1.22 2 
5 0 3% 53% 10.5 1.28 3 
6 0 3% 68% 13.7 1.39 5 
7 -78 3% 65% 13.2 1.24 12 
8 -78 3% 74% 14.6 1.31 15 
9 -78 3% 91% 18.3 1.35 35 

aPolymerizations were conducted with 4-methylbenzyl alcohol as the initiator and TBD as the 
catalyst in anhydrous dichloromethane at a monomer concentration of 1.9 M.  bConversions 
(conv.) were obtained from 31P NMR spectra of aliquots taken from the polymerization mixtures.  
cMn, NMR was determined by end group analysis by 1H NMR spectroscopy of the polymer, with a 
comparison of the intensities of the three 4-methyl protons originating from the initiator on the α-
chain end resonating at 2.29 ppm, with the six protons of the two methyl groups on the repeating 
units resonating at 1.34-1.12 ppm.  dĐ was measured by DMF SEC calibrated using polystyrene 
standards.  
 
 
 

Two organocatalysts, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5,7-

triazabicyclo[4.4.0]dec-5-ene (TBD), which had previously shown excellent control in the ROP of 

several cyclic phosphorus-containing monomers,9, 24, 55-57 were used to test the ROP of MEOPC  

 (Figure IV-1, Table IV-1).  Similar to what we have found for other oxazaphospholidine analogs 

of MEOPC, DBU was not able to polymerize MEOPC at room temperature even at a relatively 

high catalyst-to-monomer ratio of 10 mol%.  Therefore, the stronger catalyst TBD, which has dual 

activation effects: simultaneously serving as a hydrogen-bond donor to the monomer via the N−H 

site and also as a hydrogen-bond acceptor to the hydroxyl proton of the propagating alcohol chain 

end, was applied.23, 25, 58  In the presence of TBD, at the previously successful catalyst-to-monomer 

ratio of 2 mol%, MEOPC polymerization proceeded at 0 °C.  However, only relatively low 
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conversions (<15%) were achieved (entries 1-3, Table IV-1), which might be attributed to two 

possible reasons: 1) compared to previously reported oxazaphospholidine analogs, the bulkier 

methyl carboxylate group of MEOPC might lead to weaker binding interactions of TBD with the 

monomer; 2) The synthetic challenge in the annulation step could lead to more than expected 

impurities.  Thus, the catalyst-to-monomer ratio was increased to 3%, which allow the 

polymerization to proceed rapidly within 10 min (entries 4-6, Table IV-1).  However, for all the 

polymers achieved, Ð was over 1.2, and broadening of Ð (> 1.3) was observed after the conversion 

reached greater than ca. 50%, indicating the occurrence of adverse backbiting or transesterification 

reactions.  Compared to previously reported analogs, the broader Ð and broadening of Ð at rather 

an early stage of the polymerization could be attributed to the increased amount of catalyst used, 

which decreased the control over the ROP.  Another possible reason might be the 

transesterification with the methyl carboxylate group, which required further study to be 

confirmed.  To minimize side relations, the reaction temperature was decreased to -78 °C.  At this 

reduced temperature, the polymerization remained sufficiently fast to reach over 90% conversion 

within 35 min, and a relatively narrow Ð (<1.3) was achieved under ca. 70% conversion, indicating 

the side reactions were successfully inhibited (entries 7-9, Table IV-1).  However, compared to 

our previously developed PPA systems, ROP of MEOPC was more prone to backbiting or 

transesterification at higher conversions. 

The kinetics of MEOPC ROP were studied using [M]0/[I]0 of 100 in dichloromethane with 

4-methylbenzyl alcohol as the initiator and TBD as the organocatalyst to monitor the monomer 

conversions and the growth of polymer chains as a function of time.  Monomer conversions were 

obtained from 31P NMR spectra on aliquots taken from the polymerization mixtures.  Plots of 

ln([M]0/[M]) vs time (Figure IV-8) showed that the polymerization exhibited first-order kinetics,  
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Figure IV-8. Plots of monomer conversion (ln([M]0/[M])) vs time obtained from 31P NMR spectra. 
 

 
Figure IV-9. 31P NMR (202 MHz, CDCl3) of the crude products achieved by the one-step 
synthesis.  
 
 
 
especially at <70% conversions, suggesting the characteristics of a controlled polymerization of 

the MEOPC ROP.  

By controlling the initial ratio of monomer to initiator, [M]0/[I]0, as well as the reaction 

time, a series of PMEOPCs with different molar mass was synthesized.  31P NMR spectra 

showed broad peaks with chemical shifts of 8.37, 7.44, 5.59 ppm (Figure IV-9), and 1H NMR 

and 13C NMR spectra (Figure IV-6a and 7a) also confirmed the structure of PMEOPC.  



 

75 

 

PMEOPC appeared as a viscous pale-yellow liquid at room temperature, which was attributed to 

the glass transition temperature (Tg) of 15 °C (DPn = 69).  Compared to the reported PPA analog 

PEOMP (Tg = 32-36 °C, DPn = 20-93), 90, 107  which shared the same structure with PMEOPC 

except switching the 4-methyl carboxylate of the MEOPC to a simple methyl, the Tg of 

PMEOPC was lower.  This was likely due to the increased free volume provided by the larger 

methyl carboxylate chains.  Furthermore, the introduction of methyl carboxylate groups endowed 

PMEOPC with intumescence.  As shown in Figure IV-10, during the thermal degradation under 

argon, PMEOPC swelled into foam-like structures with dramatically increase in volume, which 

made it a promising material for fire-retardant coatings.  

The phosphoramidate linkages along the polymer backbone and short side chains also 

endowed PMEOPC with acid-lability.  The kinetics of the backbone cleavage of PMEOPC (DPn 

= 69) in aqueous solution was studied in aqueous buffer solutions with different pH values of 3.0  

 
 
 

 

Figure IV-10. A piece of char of PMEOPC after TGA. 
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Figure IV-11.  Kinetics of PMEOPC degradation at different pH values, as monitored by 31P NMR 
spectroscopy. 
 
 
 
and 7.4.  Cleavage of the phosphoramidate linkage, having a 31P resonance at 8.37, 7.44 and 5.59 

ppm, would generate phosphates with distinct 31P chemical shifts at ca. 0 ppm, allowing for 

convenient monitoring of the percentage conversion of backbone cleavage by 31P NMR 

spectroscopy.  At pH 7.4 (Figure IV-11), the P MEOPC was found to be stable for 14 d with 

negligible changes as expected.  In the acidic environment, pH 3.0 (Figure IV-11), ca. 90% of the 

phosphoramidate bonds were cleaved within 5 d, reaching a plateau at ca. 8 d and ca. 96% 

conversion of phosphoramidate-to-phosphate 31P resonance frequencies over 14 d.  Compared to 

the reported PPA analog PEOMP (8-9 d to achieve 90% conversion at pH 3.0),90 the degradation 

rate of PMEOPC was slightly accelerated.  These observations correlated well with previously 

reported studies on the degradation of phosphoramidate linkages on small molecules, where the 

neighboring carboxylic acid, methyl carboxylate, and other groups were found to accelerate the 

cleavage of phosphoramidate linkage. 
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4.4 Conclusions 

Cyclic phosphoramidate monomer MEOPC was achieved via a one-step synthesis directly from 

an α-amino acid derivative (methyl L-serinate hydrochloride), which could be controlled 

polymerized to afford PPAs with acid-triggered backbone degradation.  The hydrolytic 

degradation of the resulting highly water-soluble polymer PMEOPC was studied, which revealed 

a faster degradation rate of PMEOPC compared to analogs without methyl carboxylate groups.  

Furthermore, the introduction of methyl carboxylate groups endowed PMEOPC with 

intumescence, which made it a potential candidate for advanced coatings.  Future studies, 

including constructing pH-responsive hydrogels based on PMEOPC, are being actively pursued. 
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CHAPTER V  

CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

This dissertation has presented the design, synthesis, and characterization of a range of 

unique PPAs with acid-triggered backbone degradation and their application as drug carriers to 

improve the efficacy of an anticancer drug.  Polymers with acid-labile linkage along the backbone 

is of great interest as their ability to rapidly degrade into small molecules under acidic conditions 

even at the early stage of the degradation.  This work has provided a set of synthetic methodologies 

to achieve cyclic monomers bearing acid-labile phosphoramidate linkages and their corresponding 

polymers.  Polymer properties, including hydrophilicity/hydrophobicity, functionality, 

degradation rate, were able to be controlled through the manipulation of the monomer structures.  

Chapter II focused on the synthesis of a highly water-soluble PPA with a detailed study of 

its degradation mechanism under aqueous acid conditions.  In this chapter, we developed a 

methodology in which PPAs were prepared readily under basic conditions via ROP, during which 

P-O bonds were cleaved to afford the polymer.  Under acidic conditions, the acid-labile 

phosphoramidate bonds cleaved much faster than the phosphoester bonds, which enabled the 

polymer backbone to breakdown rapidly through the cleavage of P−N bonds under acidic 

conditions.  Degradation study in aqueous solution demonstrated PPAs underwent rapid backbone 

degradation under acidic conditions, yielding oligomers within days compared to months required 

for polyphosphoester analogs. 
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In Chapter III, the synthetic methodology developed in Chapter II was advanced to afford 

well-defined amphiphilic diblock copolymer. PPA nanoparticles were prepared through the self-

assembly of amphiphilic diblock PPA, which had large hydrophobic cores for drug loading and 

pendant alkyne groups for future modification.  To further demonstrate the applicability of this 

system, an anticancer drug CPT was selected as a model drug.  CPT is a promising anticancer 

drug, yet its therapeutic potential has been limited by poor water solubility and facile hydrolysis 

of the active lactone form into an inactive carboxylate form at neutral pH.  Encapsulation of CPT 

into PPA nanoparticles achieved CPT-loaded nanotherapeutics, which inhibited the premature 

hydrolysis of CPT under neutral pH and enabled accelerated CPT release when lower pH of the 

cancer microenvironment was encountered.  The encapsulation also achieved the aqueous 

suspension of CPT at concentrations up to 3.2 mg/mL, which was more than 1600× higher than 

the aqueous solubility of free CPT.  The performance of CPT-loaded nanotherapeutics was 

evaluated in vivo and revealed enhanced efficacy relative to free CPT in cancer cells and similar 

toxicity in normal cells.  This system is versatile for adoption to other drugs, and the presence of 

pendant reactive functionality provides a powerful platform for future manipulations, such as 

conjugation of drugs or imaging agents. 

Chapter IV explored the development of α-amino acid-based PPAs with acid-triggered 

backbone degradation.  However, compared to the β-amino alcohol used in Chapter II and III, the 

carboxylate group of α-amino acid, particularly methyl carboxylate of MLS, complicated the 

annulation to achieve cyclic monomers.  A state-of-the-art experimental design successfully 

afforded cyclic phosphoramidate monomer MEOPC via a one-step synthesis directly from 

MLS·HCl, which could be controlled polymerized to afford well-defined PPAs based on α-amino 

acids.  The hydrolytic degradation of the resulted highly water-soluble polymer PMEOPC was 
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studied, which revealed a faster degradation rate of PMEOPC compared to analogs without methyl 

carboxylate groups.  Furthermore, the introduction of methyl carboxylate groups endowed 

PMEOPC with intumescence, which made it a potential candidate for advanced coatings.   

 

5.2 Future Work 

There is significant potential for developing novel monomers and polymers based on the 

synthetic methodologies developed in this dissertation.  For example, by switching the starting 

material from dichlorophosphate to phosphonic dichloride, phosphonamidate linkage will be 

generated instead of phosphoramidate (Figure V-1a).  The switch of the substitution group on the 

phosphorous has huge impact on the hydrolysis rate of the P-N bond, giving that a factor of 103 

rate enhancement has been reported by Haake et al.108  The resulted cyclic monomer may be 

polymerized to afford polyphosphonamidates, which are expected to be much more acid-sensitive.  

Similarly, by switching the starting material from dichlorophosphate to phosphoramidic 

dichloride, two phosphoramidate linkages will be generated upon annulation (Figure V-1b).  The  
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Figure V-1.  a) Proposed route to achieve polyphosphonamidates.  b) Proposed route to achieve 
polyphosphordiamidates.    
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resulted cyclic monomer may be polymerized to afford polyphosphordiamidates, which have the 

ability to cleave both the backbone and side chains under acidic conditions.   

Meanwhile, there is huge potential to be exploited from the developed PPA systems.  In 

Chapter III, different hydrophilic to hydrophobic ratio, side-chains of the polymers could be tuned 

to study the self-assembly behavior of PPAs.  The pendant alkyne side-chain groups could also be 

used to crosslink the core of the nanoparticle, which is expected to further distinguish the release 

behavior of PPA-based nanotherapeutics under neutral and acidic conditions.  In addition, the 

alkyne groups could be used to conjugate drugs or imaging agents (Figure V-2).  

 

Figure V-2.  a) Drug conjugation for PPAs via thiol-ene reaction.  b) Dye conjugation for PPAs 
via CuAAC. 
 
 
 

The α-amino acid-based PPAs of Chapter IV are currently the least explored from this 

dissertation.  Further studies including conducting kinetics of the polymerizations and the 

degradation in triplicate are necessary.  The achieved PMEOPC is water soluble, upon switching 

the initiator to 1,3-propanediol.  PMEOPC diols are expected to be achieved, which could be 

further modified and crosslinked by a photo-initiator to form pH-responsive hydrogels (Figure 
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V-3).  Drugs, for example. an anti-cancer drug doxorubicin could be further loaded into the PPA 

hydrogels. The drug-loaded PPA hydrogels are expected to be degraded rapidly under acidic 

conditions. 

Besides, there are also other polymerization methods that is compatible with the 

developed PPA system and could be utilized to construct complex polymer structures.  For 

example, ring-opening metathesis polymerization (ROMP), could be adapted to afford PPA-

based brush copolymers. 

 
 
 

 

Figure V-3.  Schematic synthesis and degradation of PPA hydrogels based on an α-amino acid. 
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