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ABSTRACT

This thesis provides a framework for estimating the location-scale parameters in random

effects models. A secondary goal, which is necessary to efficiently achieve the main goal, is

to estimate the joint density of the location-scale parameters.

The main setting considered here is having a large number of small data sets whose

locations and scales vary randomly but have a common joint distribution. The goal is to

estimate the location-scale parameters and their joint density assuming the scaled error

density is standard normal. This thesis relaxes the assumption that location and scale are

independent and introduces a Bayesian semi-parametric approach based on a mixture of

normal-inverse gamma densities. Also, this thesis further relaxes the assumption that the

scaled error density is standard normal, instead allowing any known scaled error density.

The joint density of location and scale is estimated by a bivariate histogram. Estimation

algorithms are proposed and their usefulness is illustrated with both simulated and real data.
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NOMENCLATURE

µi Unobserved variable of interest, the mean of the ith data,
i = . . . , q.

σ2
i Unobserved variable of interest, the variance of the ith

data, i = . . . , q.

µ Vector of true means, (µ1, . . . , µq)
T

D Diagonal variance matrix where ith diagonal element is
σ2
i .

εij Unobserved scaled error for ith data, jth replicate.

Xij jth replicate of the unobserved µi, can be written as µi +
σiεij, j = 1 . . . , n, i = . . . , q.

Xi· Vector of length n, (Xi1, . . . , Xin)T .

X·j Vector of length q, (X1j, . . . , Xqj)
T .

X All q × n observations, X1·, . . . ,Xq·.

X̄i· ith sample mean, n−1
∑n

j=1 Xij.

S2
i· ith sample variance, (n− 1)−1∑n

j=1 (Xij − X̄i·)
2.

Xi(1) Sample minimum of ith data, Xi·.

Xi(n) Sample maximum of ith data, Xi·.

X Vector of sample means, (X̄1·, . . . , X̄q·)
T .

S2 Vector of sample variances, (S2
1·, . . . , S

2
q·)

T .

IQR(y) Interquartile range of vector y = (y1, . . . , yk)
T .

min(y) Minimum of vector y = (y1, . . . , yk)
T .

max(y) Maximum of vector y = (y1, . . . , yk)
T .

δ, µ̂ Vector estimate of the true mean vector, µ.
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D̂ Matrix estimate of the true variance matrix, D.

‖y‖2 Squared Euclidean norm of vector y = (y1, . . . , yk)
T ,∑k

l=1 y
2
l .

L(δ,µ) Average loss of estimating µ with δ, q−1‖δ − µ‖2, This is
function of µ,X, and D.

R(δ,µ) Average risk of estimating µ with δ, EµL(δ,µ), This is
function of µ and D.

I Identity matrix of appropriate order.

fε Probability density function for random variable ε.

fµ Probability density function for random variable µ.

fσ2 Probability density function for random variable σ2.

fµ,σ2 Joint probability density function for random variable
(µ, σ2).

U(a, b) Uniform density between a and b.

N(a, b) Normal density with mean a and variance b.

Nq(µ,Σ) q-dimensional Normal density with mean vector µ and
variance Σ.

G(a, b) Gamma density with shape parameter a and rate param-
eter b.

IG(a, b) Inverse-gamma density with shape parameter a and rate
parameter b.

D(α) Dirichlet distribution with concentration parameter α.

NΓ−1(m,λ, a, b) Normal-inverse gamma density function with parameters
(m,λ, a, b).

χ2
k Chi-square density with degree of freedom k.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Estimating the Mean and Variance of a Multivariate Normal Distribution

An old and simple problem in statistics involves estimating the mean of a normal dis-

tribution. A somewhat newer and more complex problem is that of estimating the means

of many normal distributions simultaneously when we observe independent samples from

these distributions. We consider a version of the latter problem in which Xi1, . . . , Xin are

observations from a normal distribution with mean µi and σ2
i , for i = 1, . . . , q. This can be

written as

Xij ∼ N(µi, σ
2
i ), j = 1, . . . , n, i = 1, . . . , q, (1.1)

where N(a, b) denotes a normal density with mean a and variance b. The main goal is to

estimate (µi, σ
2
i ), i = 1, . . . , q, from Xij, j = 1, . . . , n, i = 1, . . . , q.

If σ2
1, . . . , σ

2
q are known, to estimate µi, n can be as small as 1. We may assume n = 1,

in which case model (1.1) reduces to

Xi1 ∼ N(µi, σ
2
i ), i = 1, . . . , q. (1.2)

In this case, we observe the pairs (Xi1, σ
2
i ), i = 1, . . . , q, and the main goal is to estimate the

unknown parameters µi, i = 1, . . . , q.

In multivariate notation,X·j=(X1j, . . . , Xqj)
T , j = 1, . . . , n, are n observations from a q-

variate normal distribution with mean µ = (µ1, . . . , µq)
T and varianceD = Diag(σ2

1, . . . , σ
2
q ),

denoted by Nq(µ,D).

In one-dimensional framework, i.e. q = 1, the sample mean, X̄1· = n−1
∑n

j=1 X1j, and

(n + 1)−1
∑n

i=1(X1j − X̄1·)
2 are optimal mean squared error estimators of the population

mean and variance, respectively. However, this result does not extend to high-dimensions,
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as Stein [1956] showed that the sample means are inadmissible when q ≥ 3. The seminal

work of James and Stein [1961] showed that shrinkage estimators of the means perform better

than sample means in terms of mean squared error when q ≥ 3 and σ2
1, . . . , σ

2
q are all the

same (the homoscedastic case) and known. A nice introduction of this class of estimators

can be found in the book of Efron [2012]. Efron and Morris [1973] gave an empirical Bayes

interpretation of this shrinkage estimator and developed several competing estimators. They

noted that even when all σ2
i are known, the James-Stein estimator cannot be extended under

heteroscedasticity by simply using the transformation σ−1
i Xij. This is because the shrinkage

factor remains constant under the transformation, as opposed to what intuition entails,

namely that more shrinkage should be applied to the components with larger σ2
i . They

assumed a hierarchical normal model in which µi
i.i.d∼ N(0, A), and estimated the variance A

from the marginal density of Xij. As noted by Efron and Morris [1973], such a hierarchical

model is a “Bayesian statement of belief that the µi are of comparable magnitude,” a belief

which is not always realistic.

There is a large literature on estimating the means of a multivariate normal distribu-

tion under homoscedasticity, using both frequentist and Bayesian approaches. For example,

Baranchik [1970] derived the general form of a minimax estimator for the homoscedastic case.

Brown [1971] derived a general condition for Bayes estimators to be admissible in terms of

mean squared error. Using these conditions, Berger and Strawderman [1996] showed that

some common choices of improper prior on hyperparameters lead to inadmissible estimators,

and encouraged the use of a proper prior on hyperparameters. Brown and Greenshtein [2009]

proposed a nonparametric empirical Bayes solution for estimating the mean.

In contrast, the literature on the heteroscedastic case is scant. Berger [1976] provided

a minimax estimator when the covariance matrix D is known under general quadratic loss.

However, this estimator exhibits the counter-intuitive behavior mentioned before. Recently,

there have been a few articles addressing this issue. Xie et al. [2012] assumed that D is

known and estimated the mean vector µ using Stein’s unbiased risk estimator (SURE).
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They showed that the empirical Bayes maximum likelihood estimator (EBMLE) and SURE

do not provide the same solution as in the homoscedastic case and proved a few results about

the consistency of the SURE. By not limiting the prior on the normal density, they explored

a semiparametric option which we will discuss in detail later. Jing et al. [2016] further

extended the work of Xie et al. [2012] in the heteroscedastic case when D is unknown by

modifying the loss function and assuming a gamma prior on the precision parameter, the

inverse of the variance parameter.

Theorem 5.7 of Lehmann and Casella [2006] provided a condition for which the shrinkage

estimator becomes a minimax estimator under squared error loss. However, the family of

estimators that were considered applies constant shrinkage to all coordinates, as opposed to

the common intuition referred to before. Tan et al. [2015] proposed a minimax estimator

when the covariance matrix D is known under arbitrary quadratic loss, where the shrinking

direction is open to specification and the shrinking factor is determined. This minimax esti-

mator is similar to the estimator arising from the assumption that µ1, . . . , µq are independent

with µi ∼ N(0, Ai), i = 1, . . . , q. Zhang and Bhattacharya [2017] developed an empirical

Bayes method to estimate a sparse normal mean. Weinstein et al. [2018] developed an em-

pirical Bayes estimator assuming that σ2
1, . . . , σ

2
q are part of the random observations. They

binned the pairs (Xi, σ
2
i ) on the basis of σ2

i and applied a spherically symmetric estimator

separately in each group. Even though we also assume that (µi, σ
2
i ) come from a joint distri-

bution, fµ,σ2 , our method is based on modeling the bivariate density of (µ, σ2) with a flexible

mixture of normal-inverse gamma densities and then estimating µ and D.

1.1.1 Motivation for a New Estimator

1.1.1.1 Homoscedastic Case

Consider (1.1), where σ2
i = σ2, for i = 1, . . . , q, and σ2 is known. We will discuss

some existing approaches to estimating µ in this setting and also how our methodology is

related to these approaches. LetX be the q-vector whose ith component is the sample mean
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X̄i· = n−1
∑n

j=1 Xij, i = 1, . . . , q. ThenX is distributed as Nq (µ, n−1σ2I).

James and Stein [1961] considered a class of estimators indexed by c, which are written

as

δJSc (X) =

1− σ2

n

c∥∥∥X∥∥∥2

X,

where
∥∥∥X∥∥∥2

= X
T
X and the ith element of δ, δi, is an estimator of µi. The average loss,

defined by L(δ,µ) = q−1‖δ − µ‖2, is used to compare different estimates. James and Stein

[1961] showed that the constant c = q−2 minimizes the risk, R(δ,µ) = EµL(δ,µ), for every

µ if q ≥ 3. We shall call the estimator δJSq−2 simply δJS. James and Stein [1961] showed that

if q ≥ 3, δJS dominates the MLE,X, in terms of R(δ,µ) for every choice of µ.

Baranchik [1970] considered the following more general family of estimators:

δJSr (X) =

1− σ2

n

r

(∥∥∥X∥∥∥2
)

∥∥∥X∥∥∥2

X,
and showed that the estimator is minimax if r(·) is monotone, non-decreasing, and such that

0 ≤ r(·) ≤ 2(q − 2). Chapter 5 of Lehmann and Casella [2006] discusses risk properties

of these estimators in detail. Another minimax estimator is a version of the James-Stein

estimator with non-negative multiplier:

δJS+(X) = max

0, 1− σ2

n

q − 2∥∥∥X∥∥∥2

X.
This estimator dominates the usual James-Stein estimator in terms of R(δ,µ). All of these

shrinkage estimators shrink each coordinate towards 0.

Efron and Morris [1973] showed an empirical Bayes connection with the James-Stein

estimator by assuming a prior of the form µi
i.i.d∼ N(m,λ), i = 1, . . . , q, where m and
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λ are unknown hyperparameters. From Bayes rule, we have µ1, . . . , µq are independent

conditioning on X̄1·, . . . , X̄q·,m, λ with

µi ∼ N

(
λ

λ+ σ2

n

X̄i· +
σ2

n

λ+ σ2

n

m,
1

λ−1 + n
σ2

)
, i = 1, . . . , q, (1.3)

which leads to the shrinkage estimator

µ̂ =X−
σ2

n

λ+ σ2

n

(
X−m

)
.

This estimator is a function of the unknowns m and λ. These parameters may be estimated

using the marginal density

X̄i·|m,λ
i.i.d∼ N

(
m,λ+

σ2

n

)
, i = 1, . . . , q,

from which one may obtain the maximum likelihood estimator (MLE) or method of moments

estimator (MOM) of (m,λ).

1.1.1.2 Heteroscedastic Case

When σ2
1, . . . , σ

2
q are not all the same but known, we can modify the James-Stein estimator

by using the transformation σ−1
i Xij, which produces homoscedastic data. Then the James-

Stein estimate of µ is

δJS(X) =

1− q − 2

n
∑q

i=1

(
X̄i·
σi

)2

X.
As discussed in Efron and Morris [1973], this estimate is not intuitive as we should shrink

more those coordinates with larger σ2
i .

When σ2
1, . . . , σ

2
q are not all the same but known, then by assuming the same normal
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prior that leads to (1.3) we obtain

µi|X̄i·,m, λ ∼ N

(
λ

λ+
σ2
i

n

X̄i· +

σ2
i

n

λ+
σ2
i

n

m,
1

λ−1 + n
σ2
i

)
, i = 1, . . . , q, (1.4)

which leads to the shrinkage estimatorX− S
(
X−m

)
, where S is a diagonal matrix with

ith diagonal element equal to σ2
i

n

(
λ+

σ2
i

n

)−1

. To estimate the unknown hyperparameters m

and λ, we may use the marginal density,

Xij|m,λ ∼ N
(
m,λ+ σ2

i

)
, independently, for j = 1, . . . , n, i = 1. . . . , q.

However, unlike the homoscedastic case, we cannot estimate λ consistently from this marginal

density (with n fixed), which impairs the traditional empirical Bayes approach.

Xie et al. [2012] addressed this issue and used the SURE, which finds a solution of m and

λ by minimizing an unbiased estimator of the risk R(δ,µ). They showed that the SURE

are optimal in an asymptotic sense compared to EBMLE or EBMOM. To generalize the

estimate, they developed a novel semiparametric approach by not assuming a normal-normal

hierarchical model. The semiparametric SURE shrinkage estimation which was discussed in

Xie et al. [2012] assumed that

µ̂SMi = (1− bi)X̄i· + bim, i = 1, . . . , q. (1.5)

The unbiased estimator of the risk for this estimator is

SURESM(b,m) = q−1

q∑
i=1

(
b2
i

(
X̄i· −m

)2
+ (1− 2bi)

σ2
i

n

)
,

where b = (b1, · · · , bq). The estimator of b and m is

(b̂, m̂) = arg min
b,m

SURESM(b,m),
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subject to

0 ≤ bi ≤ 1, i = 1, . . . , q, and bi ≤ bj for any i and j such that
σ2
i

n
≤
σ2
j

n
.

In principle, all of b1, . . . , bq can be distinct if σ2
i /n ≤ (X̄i·−m)2, i = 1, . . . , q, and σ2

i

n(X̄i·−m)
2 ≤

σ2
j

n(X̄j.−m)
2 in all cases where σ2

i

n
≤ σ2

j

n
. If these conditions do not hold, the number of distinct

bi reduces. In practice, the number of distinct bi is very low compared to q since

Prob
(
σ2
i (X̄j. −m)2 > σ2

j (X̄i· −m)2
)

is often relatively large even if σ2
i < σ2

j . A natural extension of SURE minimization where all

of m1, . . . ,mq are distinct is not possible because the solution will be mi = X̄i·, i.e. bi = 0,

leading to a non-shrinkage estimator.

The approach of Xie et al. [2012] is tantamount to assuming that µ1, . . . , µq are drawn

from a mixture of normals that are all centered at m but have different variances. This is

less general than the approach considered in the current paper where we consider a mixture

distribution whose components can have different means and variances.

Weinstein et al. [2018] proposed a group-linear empirical Bayes method, which treats

known variances as part of the random observations and applies a spherically symmetric

estimator to each group separately. This shrinks X̄1·, . . . , X̄q· in different directions, but

their clustering mechanism only depends on σ2
i . This is unrealistic as the shrinkage directions

should depend on the modes of the distributions of the unobserved µi, and the shrinkage

factors should depend on the known σ2
i . If µi is a smooth function of σ2

i , group linear

algorithms perform well as the clustering by similar log(σ2
i ) means unobserved values of

µi in the same cluster are also similar. However, if µi and σ2
i are independent, clustering

by group linear algorithms is not effective, resulting in poor estimates compared to SURE

methods.

Weinstein et al. [2018] obtained results for the heteroscedastic case where σ2
1, . . . , σ

2
q are
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i.i.d. Likewise, our proposed method assumes that σ2
1, . . . , σ

2
q are i.i.d., but it has at least two

practical advantages over that of Weinstein et al. [2018]. First of all, we need not assume that

σ2
1, . . . , σ

2
q are known, and secondly no binning of σ2

1, . . . , σ
2
q (with the attendant problem of

choosing the number of bins) is required. We model the joint density of (µi, σ
2
i ) by a flexible

mixture of normal-inverse gamma distributions. As we will show later, our estimators of

µi are similar in form to the SURE estimates in (1.5), but, when appropriate, they shrink

X̄i· towards the mean of a mixture component rather than towards the overall mean. This

has the potential of producing better estimates of µ1, . . . , µq when the distribution of µi is

different from normal.

Jing et al. [2016] extended the result from Xie et al. [2012] to the case where σ2
1, . . . , σ

2
q are

unknown. They used a different risk function, q−1
∑q

i=1 Eµ,D

(
(µ̂i − µi)2 + n−2(σ̂2

i − σ2
i )

2
)
,

and then minimized unbiased estimators of it by shrinking sample mean and sample variance,

X̄i· and S2
i· respectively, towards appropriate direction, where S2

i· = (n− 1)−1∑n
j=1(Xij

−X̄i·)
2. However, they used constant shrinkage factors for estimating each of µi and σ2

i . Our

method naturally extends to the case where σ1, . . . , σ
2
q are unknown.

In Chapter 2, µ and D will be estimated using a NΓ−1mixture, which is a more flexible

prior than using a single normal. Each NΓ−1component has a different mean and we shrink

each µi in an appropriate direction rather than one general direction, which was a main

drawback in all previous works.

1.2 Location-Scale Density Estimation in a Random Effects Model

Another common problem in modern statistics is estimating the density of a random

variable that is observed with error. Suppose that one observes a few replicates of the

true variable with additive measurement error having an unknown density. In principle,

the measurement error densities for different sets of replicates could differ in an arbitrary

manner. It is reasonable however to assume that the measurement error densities have some

degree of commonality. We assume that the measurement error densities are normal with

scales that vary with the values of the true variable. A possible model for such data follows:
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We observe Xij, the jth replicate of the unobserved variable value µi, where

Xij = µi + σiεij, i = 1, . . . , q, j = 1, . . . , n,

εij ∼ fε i = 1, . . . , q, j = 1, . . . , n.

(1.6)

The following assumptions are made:

(i) The unknown pairs (µi, σ
2
i ), i = 1, . . . , q, are independent and identically distributed

and follow an unknown absolutely continuous distribution with density fµ,σ2 .

(ii) The unobserved errors εij, i = 1, . . . , q, j = 1, . . . , n, are independent and identically

distributed as fε, which is a known density with mean 0 and variance 1.

(iii) The parameters (µi, σ
2
i ), i = 1, . . . , q, are independent of εij, i = 1, . . . , q, j = 1, . . . , n.

One goal of this dissertation is to explore different ways of estimating the unknown density

fµ,σ2 .

We refer to model (1.6) as the location-scale random effects (LSRE) model. If σ2
i = σ2,

for i = 1, . . . , q, then (1.6) reduces to the location random effects (LRE) model. Such

models have been used in microarray analyses where Xij is the expression (or log-expression)

level for the ith gene of the jth individual. In the LSRE model, the distributions of the

small datasets differ only with respect to location and scale. If n is fixed and q → ∞, a

bivariate kernel density estimator using (X̄i·, S
2
i·), i = 1, . . . , q, where X̄i· = n−1

∑n
j=1Xij and

S2
i· = (n− 1)−1∑n

j=1 (Xij − X̄i·)
2, is an inconsistent estimator of fµ,σ2 . This thesis proposes

a Bayesian semiparametric approach for robust estimation of the density fµ,σ2 , which to our

knowledge has not been previously considered.

Literature on the density deconvolution problem dates back at least to 1950. Reiersøl

[1950] and Wolfowitz [1957] together proved that, under some general conditions, in the LRE

model fµ and fε are both nonparametrically estimable when n ≥ 2. Most of the early liter-

ature on density deconvolution used Fourier transform methods to deal with non-replicated
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measurements and assumed that measurement errors are independently and identically dis-

tributed with known density and constant variance (LRE model). Not much work had been

done on the LRE model when both fµ and fε are unknown. Much of this literature is ref-

erenced by Carroll and Hall [2004]. Of course, in reality a known fε and constant variance

are both very strong assumptions and violation of these assumptions may create bias in the

estimation. More recent literature relaxed assumptions on the error density and considers

replicated observations. This literature includes the articles Horowitz and Markatou [1996],

Li and Vuong [1998], Carroll and Hall [2004], Lin and Carroll [2006], Delaigle et al. [2008],

McIntyre and Stefanski [2011], and Hart and Cañette [2011], all of which assumed that fε

is known and used replicated observations in the LRE model. Many of these articles, in-

cluding Horowitz and Markatou [1996], Carroll and Hall [2004], Lin and Carroll [2006], and

Hall and Ma [2007], assumed that fε is symmetric. Delaigle and Hall [2016] worked with

non-replicated observations in the LRE model and assumed that the shape of fε is unknown

but symmetric and then estimated the densities fµ and fε nonparametrically.

All the literature mentioned above focuses mainly on the LRE model. Relatively little

work had been done on the heteroscedastic error (LSRE model). Staudenmayer et al. [2008]

relaxed the assumption of homoscedasticity and worked with the LSRE model. They used

Bayesian methodology and modeled σi2 with a variance function that depends on µi using a

penalized positive mixture of normalized quadratic B-splines. The scaled measurement errors

were assumed to be normally distributed. Hart and Cañette [2011] proposed a minimum

distance estimator to obtain nonparametric estimates of the distributions without assuming

that fε is symmetric in the LSRE model. They also formulated a distribution-free rank test

of the LRE model against the LSRE model when n ≥ 4. Sarkar et al. [2014] used Bayesian

methods to model fµ by a location-scale mixture of normals induced by a Dirichlet process.

The scaled error distribution fε is more flexible and in our approach will be modeled by an

infinite mixture model induced by a Dirichlet process.

In Chapter 3, fµ,σ2 will be estimated using a NΓ−1mixture. However, in this chapter

10



we assume that fε be a standard normal. In Chapter 4, fµ,σ2 will be estimated using a

bivariate histogram when the scaled error distribution, fε, is any known density with mean

0 and variance 1. We do not assume any functional dependency between µ and σ2 in both

chapters.
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2. ESTIMATING THE MEAN AND VARIANCE OF A NORMAL VECTOR

As mentioned in Section 1.1, the main focus of this chapter is to estimate µ and D in

model (1.1) and (1.2). To achieve that first we need to estimate the joint density of (µ, σ2),

fµ,σ2 , using NΓ−1mixture which we will discuss in Section 2.1 and 2.2.

2.1 Modeling the Joint Distribution of Location-Scale

We define gamma and inverse-gamma densities as

G(x|a, b) =
ba

Γ(a)
xa−1e−bxI(0,∞)(x)and IG(x|a, b) =

ba

Γ(a)
x−a−1e−b/xI(0,∞)(x), (2.1)

respectively, where Γ is the gamma function and IA is the indicator function defined as

IA(x) =


1, if x ∈ A

0, otherwise.

Though it is more common to use a mixture of normal densities, σ2 has support only

on the positive side of the real line, and hence using a mixture of bivariate normals seems

unreasonable. An easy way to get around the problem of positive support is to estimate the

density of log(σ2) using a mixture of normals. However, if we assume fε is standard normal,

then a mixture of bivariate normals for the joint density of (µ, log(σ2)) is not a conjugate

prior. A mixture of normal-inverse-gamma (NΓ−1) densities leads to a posterior density

belonging to a known family of densities. A NΓ−1(m,λ, α, β) density has two components,

normal and inverse-gamma, and is defined by

g(µ, σ2|m,λ, α, β) = N(µ|m,σ2/λ)IG(σ2|α, β).

The density fµ,σ2 is defined to be a mixture of NΓ−1 densities induced by a Dirichlet
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process with concentration parameter γ. Let π denote the vector of random mixture weights.

Sethuraman [1994] describes the stick-breaking process, a method to construct π = {πk}∞k=1

so that
∑∞

k=1 πk = 1. For r = 1, 2, . . ., the process is such that

πr = sr

r−1∏
j=1

(1− sj), s1, s2, . . .
i.i.d∼ Beta(1, γ),

which we denote D(γ). The quantities m, λ, α, and β are the vectors of parameters of the

NΓ−1 densities that make up the mixture. Let Θ = [m,λ,α,β] be a matrix of four columns

whose rth row, Θr, contains parameters for the rth component of the mixture. The Dirichlet

process mixture model (DPMM), denoted DP (γ,G0) with concentration parameter γ, base

measure G0 and NΓ−1 mixture components, is specified as

fµ,σ2(µ, σ2|Θ,π) =
∞∑
r=1

πrg(µ, σ2|Θr), Θr
i.i.d∼ G0( · |ΘH), π ∼ D(γ).

The distribution G0( · |ΘH) depending on parameters ΘH = (m0, ζ
2, aλ, bλ, aα, bα, aβ, bβ) is

the prior for the component parameters and is taken to be as follows: mr, λr, αr, and βr are

independent with

mr ∼ N(m0, ζ
2), λr ∼ G(aλ, bλ), αr ∼ G(aα, bα), βr ∼ G(aβ, bβ).

Even though the mixture model theoretically has a countably infinite number of compo-

nents, given a data set, one can only use a mixture model with a finite number of components.

Indeed, in practice, a finite number of components is adequate. Ishwaran and James [2001]

constructed a useful class of truncated Dirichlet processes, denoted DPk(γ,G0), by apply-

ing truncation to standard Dirichlet processes, where the number of components is fixed

at k. The truncation is applied by assuming πk+1 = πk+2 = · · · = 0 and replacing πk by

1−
∑k−1

r=1 πr. They showed that the expected sum of moments of discarded random weights

decreases exponentially fast in k, and thus, for a moderate k, we should be able to achieve
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an accurate approximation. We shall use DPk(γ,G0) in order to model the density fµ,σ2 .

Since we have measurement error, we do not observe the pair (µi, σ
2
i ) directly. Instead,

we observe {Xij}nj=1, which will be referred to as Xi·, a vector of observed replications of

the true unobserved variable µi. As we already assumed the error density to be standard

normal, the joint density of Xi· given µi and σ2
i is

f(Xi·|µi, σ2
i ) =

n∏
j=1

1

σi
fε

(
Xij − µi

σi

)
=

n∏
j=1

1

σi
√

2π
e
− 1

2σ2
i

(Xij−µi)2

.

Let Zi be a latent variable indicating the component of the mixture distribution from which

the pair (µi, σ
2
i ) was drawn. The conditional joint density of (µi, σ

2
i ) is

f(µi, σ
2
i |Θ, Zi = zi) = g(µi, σ

2
i |Θzi).

The prior probability mass function (p.m.f.) of the latent variable Zi is

Prob(Zi = zi|π) = πzi .

Let U ⊥⊥ V |W denotes that two random variables U and V are independent conditional

on W . Let Ur = {i : Zi = r} and cr be the cardinality of Ur. Let X denotes the all q × n

observations, X1·, . . . ,Xq·. We make the following assumptions:

(i) X ⊥⊥ Z1, . . . , Zq,Θ,π|µ,D,

(ii) The conditional distribution of µ,D given Θ,π, Z1 = z1, . . . , Zq = zq is

q∏
i=1

g(µi, σ
2
i |Θzi),

(iii) Z1, . . . , Zq ⊥⊥ Θ|π,

(iv) Θ ⊥⊥ π.
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The posterior is proportional to

f(X|µ,D, z1, . . . , zq,Θ,π)f(µ,D, z1, . . . , zq,Θ,π)

=

q∏
i=1

f(Xi·|µi, σ2
i )

q∏
i=1

g(µi, σ
2
i |Θzi)

k∏
r=1

πr
cr

k∏
r=1

G0(Θr|ΘH)D(π|γ).

We may reparametrize αr and βr in terms of location and scale parameters. If δr denotes a

point between the mean and mode of the IG(αr, βr), then we can rewrite the rate param-

eter βr as δrαr. The quantities δr and αr can be treated as location and scale parameters

respectively. Since δr is the location parameter of a density with positive support, we can

use a gamma prior on δr just as we did for βr with shape parameter aδ and scale parameter

bδ.

2.2 Algorithm to Estimate Unknown Parameters

We will find estimates of the parameters (Θ,π) by using an MCMC algorithm to ap-

proximate their posterior density. In the notation that follows, θ|· stands for the conditional

distribution of θ given the data and all unknowns besides θ. The full conditional poste-

rior densities of µi and σ2
i are normal and inverse-gamma, respectively, with the following

parameters:

µi|· ∼ N
(
nX̄i· +mziλzi

n+ λzi
,

σ2
i

n+ λzi

)
,

σ2
i |· ∼ IG

n+ 1

2
+ αzi ,

1

2

n∑
j=1

(Xij − µi)2 +
λzi
2

(µi −mzi)
2

+ βzi

 , i = 1, . . . , q.

(2.2)

Letting Prob(z|·) denote the posterior p.m.f. of the latent variable Zi given the data and all

other unknowns, we have

Prob(Zi = zi|·) =
πzig (µi, σ

2
i |mzi , λzi , αzi , βzi)∑k

r=1 πrg (µi, σ2
i |mr, λr, αr, βr)

i = 1, . . . , q.

15



From expression (2.2) we can interpret λzi as a shrinkage parameter. If λzi tends to 0 then

the posterior density of µi is centered at the sample mean. The quantity λzi controls the

amount of shrinkage towards the mean of the mixture component.

The full conditional posterior densities of the mixture components, (Θ,π), are given by

mr|· ∼ N

(
m0ζ

−2 + λr
∑
i∈Ur µiσ

−2
i

ζ−2 + λr
∑
i∈Ur σ

−2
i

,
1

ζ−2 + λr
∑
i∈Ur σ

−2
i

)
, λr|· ∼ G

(
cr
2

+ aλ,
∑
i∈Ur

(µi −mr)
2

2σ2
i

+ bλ

)
,

αr|· ∼
bα
aα

Γ(aα)
αr

aα−1e−bλαr
∏
i∈Ur

βr
αr

Γ(αr)
(σ2
i )
−αr−1

e−βrσ
−2
i , π|· ∼ D

(
c1 +

γ

k
, . . . , ck +

γ

k

)
,

βr|· ∼
bβ
aβ

Γ(aβ)
βr
aβ−1e−bββr

∏
i∈Ur

(βr)
αr

Γ(αr)
(σ2
i )
−αr−1

e−βrσ
−2
i , r = 1, . . . , k.

The full conditional posterior densities of mr, λr, and π follow normal, gamma, and Dirichlet

densities, respectively. The parameters, αr and βr do not have a standard density. We

therefore use a Metropolis-Hastings algorithm to sample from these densities.

Denote our estimate of µ by µ̂DPMM , where DPMM stands for the Dirichlet process

mixture model. The ith component of µ̂DPMM , µ̂DPMM
i , approximates E(µi|data). Defining

µ̂(zi,mzi , λzi) = (nX̄i· +mziλzi)/(n+ λzi),

expression (2.2) and iterated expectation imply that

E(µi|data) = E [µ̂(zi,mzi , λzi)|data] .

Letting bi = λzi/(n+ λzi), we have

µ̂(zi,mzi , λzi) = (1− bi)X̄i· + bimzi ,

and so for each choice of the unknown parameters (zi,mzi , λzi), µ̂(zi,mzi , λzi) is a shrinkage

estimate having the same form as the SURE in (1.5). The actual estimate of µi, E(µi|data),

is simply the posterior mean of all these shrinkage estimates. In the event that µi comes
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from, say, component 1 with high probability

µ̂DPMM
i ≈ nE((n+ λ1)−1|data, Zi = 1)X̄i· + E(m1λ1(n+ λ1)−1|data, Zi = 1),

and hence X̄i· shrinks towards the posterior mean of m1 rather than the overall mean.

Certainly in cases where the distribution of µi is multimodal with widely separated modes

this scheme should produce much better estimates of µ than does equation (1.5), a claim

confirmed by simulations in Sections 2.4.1-2.4.2.

From equation (2.2) the posterior mean of σ2
i is

E(σ2
i |data) = E

{
(n− 1)σ̃2

i + 2αzi(βzi/αzi)

n− 1 + 2αzi

∣∣∣∣∣data
}
, (2.3)

where

σ̃2
i = (n− 1)−1

[
(n− 1)S2

i· + n(X̄i· − µi)2 + λzi(µi −mzi)
2
]
.

So, E(σ2
i |data) has an interpretation analogous to that of E(µi|data). The quantity βzi/αzi

may be regarded as a location parameter of the inverse-gamma component as it lies be-

tween the mode and the mean, and therefore E(σ2
i |data) is the posterior mean of shrinkage

estimates each of which shrinks the variance estimate σ̃2
i towards βzi/αzi .

2.3 Choice of Prior Parameters

We can run a fully Bayes approach using a prespecified value of ΘH and a non-informative

prior on Θ, or take an empirical Bayes approach to estimate ΘH from the data. Even

though we do not observe (µi, σ
2
i ) directly, we can perceive the problem as one of clustering

the (µi, σ
2
i ) pairs, where each cluster has a different NΓ−1 density. The parameter mr

denotes the mean of all µi that belong to the rth cluster. The parameters m0 and ζ2 are the

mean and variance of each mr. Let ¯̄X = (nq)−1∑q
i=1

∑n
j=1Xij denote the grand mean and

S2 = (nq − 1)−1∑q
i=1

∑n
j=1(Xij − ¯̄X)2 the grand variance. It is reasonable to estimate m0
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with its unbiased estimator, the grand mean ¯̄X. Note that

E(Xij |Θ,π) = E(E(Xij |µi, σ2
i )|Θ,π) = E(µi|Θ,π) =

k∑
r=1

πrmr,

E(Xij |ΘH , γ) = E(E(Xij |Θ,π)|ΘH , γ) = E

(
k∑
r=1

πrmr|ΘH , γ

)
= m0.

On the other hand, estimating ζ2 is more difficult as the conditional variance of the sample

means depends on ζ2 and many other parameters. Note that

var(X̄i·|Zi = r,Θ) =var(E(X̄i·|µi, σ2
i )|Zi = r,Θ) + E(var(X̄i·|µi, σ2

i )|Zi = r,Θ)

=var(µi|Zi = r,Θ) + n−1E(σ2
i |Zi = r,Θ)

=
βr

λr(αr − 1)
+

βr
n(αr − 1)

=
βr

(αr − 1)

(
1

n
+

1

λr

)
,

var(X̄i·|Θ,π) =var(E(X̄i·|Zi = r,Θr)|Θ,π) + E(var(X̄i·|Zi = r,Θr)|Θ,π)

=var(mr|Θ,π) + E

(
βr

(αr − 1)

(
1

n
+

1

λr

)
|Θ,π

)

=

k∑
r=1

πrm
2
r −

(
k∑
r=1

πrmr

)2

+

k∑
r=1

πrβr
(αr − 1)

(
1

n
+

1

λr

)
,

var(X̄i·|ΘH , γ) =var(E(X̄i·|Θ,π)|ΘH , γ) + E(var(X̄i·|Θ,π)|ΘH , γ)

>var

(
k∑
r=1

mrπr|ΘH , γ

)
=

2m2
0γ(k − 1)

γ + 1
+
ζ2(kγ + 1)

γ + 1
≥ ζ2.

(2.4)

The inequality in the last line of (2.4) is intuitively clear as ζ2 can be seen as the between

group variance of µi, which must be less than the total variance of µi. We will use S2
X̄

=

q−1
∑q

i=1 (X̄i· − ¯̄X)
2
as our choice of ζ2 in the prior formr. Doing so is somewhat informative,

but not too informative since S2
X̄

estimates var(X̄i·|ΘH , γ), which is larger than ζ2.

An important parameter of the NΓ−1 mixtures is λr, whose prior has two hyperparame-

ters, aλ and bλ. We have

E(σ2
i |Zi = r,Θr)

var(µi|Zi = r,Θr)
= λr,
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which means that λr may be regarded as a noise to signal ratio. In many, if not most, cases

one anticipates that noise to signal ratios will be smaller than 1, which motivates choosing

aλ and bλ to produce values of λr that are smaller than 1 with fairly high probability.

Similarly, aα, bα, aβ, and bβ are the hyperparameters of αr and βr, the scale and rate

parameters of the inverse-gamma distributions comprising the mixture. We may choose the

hyperparameters in such a way that the prior for αr and βr has low information.

The prior on mixing probabilities π is a Dirichlet density with parameter γ. Ferguson

[1983] discussed in detail two independent interpretations of the Dirichlet process parameter

γ. The first one concerns the relative size of πr and the second one concerns prior information.

A smaller value of γ means there are big differences in πr values and also that we mistrust

our prior. So, posterior estimates will be strongly influenced by the data.

2.4 Simulation Study

In this section, we conduct a number of simulations to compare different methods of

estimating µ and D. We simulated data from either (1.1) or (1.2) using a number of

different choices for fµ,σ2 . To evaluate an estimator µ̂ of µ, we approximate the following

version of mean squared error:

MSE(µ̂,µ) = E

[
1

q

q∑
i=1

(µ̂i − µi)2

]
,

where the expectation is taken with respect to the joint distribution of X1·, . . . ,Xq· given

Θ,π. In using this risk function we are taking into account randomness due to (µi, σ
2
i ),

i = 1, . . . , q. In our simulation study, each new data set is obtained by generating new

values (µi, σ
2
i , εi·), i = 1, . . . , q, where εi· = (εi1, . . . , εin). The risk MSE(µ̂,µ) is then

approximated by M̂SE(µ̂,µ), the average of
∑q

i=1(µ̂i − µi)2/q over all data sets. Similarly,

we define MSE(D̂,D) and M̂SE(D̂,D) when we are estimating D.
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2.4.1 Comparing Different Estimators when Variances are Known

In this section, data are generated from model (1.2) and it is assumed that σ2
1, . . . , σ

2
q are

known. Table 2.1 compares MSE(µ̂,µ) for the methods discussed in Xie et al. [2012] and

Weinstein et al. [2018] with our method, denoted NΓ−1. The estimators of Xie et al. [2012]

defined by their expressions (7.1), (7.2), (7.3), (4.2), (5.1), (6.3), and (6.2) will be called

EBMLE.XKB, EBMOM.XKB, JS.XKB, SURE.G.XKB, SURE.M.XKB, SURE.SG.XKB,

and SURE.SM.XKB, respectively. Weinstein et al. [2018] developed group-linear and dy-

namic group-linear algorithms, which are referred to here as GL.WMBZ and DGL.WMBZ,

respectively. We also consider Oracle.XKB, which, although not an estimate as described

in section 7 of Xie et al. [2012], provides a sensible lower bound on a risk estimator with

given parametric form. Our estimator does not belong to this class of estimators because

the sample means are not shrunk towards a single value, as discussed in Section 2.2.

Examples 1-6 of this section were taken from Xie et al. [2012] and also used by Weinstein

et al. [2018]. We simulated data from model (1.2) for different choices of fµ,σ2 . The exper-

iment was repeated 1000 times for each of q = 20, 60, 100, . . . , 500. The resulting values of

M̂SE(µ̂,µ) are shown in Table (2.1) for all q and each of the methods mentioned above.

Example 1. The density fµ,σ2 is such that µ and σ2 are independent with µ ∼ N(0, 1) and

σ2 ∼ U(0.1, 1), where U(a, b) denotes the uniform distribution on the interval (a, b). Here and

in Examples 2-5, 7, and 8 we take ε ∼ N(0, 1). Figure 2.1 shows that SURE.M.XKB performs

better than SURE.SG.XKB, GL.WMBZ and NΓ−1 (the only methods plotted) since the gen-

erated data conform with the parametric form with equation (1.4) upon which SURE.M.XKB

is based. Likewise equation SURE.G.XKB, EBMLE.XKB, and EBMOM.XKB assume that

µ has the parametric form of (1.4), and hence these methods outperform the other methods.

Our results (some of which are not given in figure (2.1) or table (2.1)) show that, except for

JS.XKB and DGL.WMBZ, all estimated risks converge to the oracle risk. JS.XKB, which

applies constant shrinkage for every coordinate results in an inefficient estimator. Interest-

ingly, even though the distribution of σ2 is uniform, the case where group linear algorithms
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should perform well because of their use of binning, the NΓ−1 method outperforms the group

linear algorithms for small q.

Example 2. The density fµ,σ2 is such that µ and σ2 are independent with µ ∼ U(0, 1) and

σ2 ∼ U(0.1, 1). This example is quite similar to example 1, and shows that the parametric

form (1.4) is not necessarily important as long as µ and σ2 are independent. The estimated

risks of EBMLE.XKB, EBMOM.XKB and SURE.M.XKB all converge to the risk of Ora-

cle.XKB. Figure 2.1 shows that SURE.M.XKB and SURE.SG.XKB perform better than the

other two methods. The fact that the normal-inverse gamma mixture allows for a depen-

dency between µ and σ2 may explain why NΓ−1 does not perform as well as the SURE-based

methods. However, NΓ−1 performs better than GL.WMBZ.

Example 3. Here the joint distribution of µ and σ2 is singular, with σ2 ∼ U(0.1, 1) and

µ = σ2. Rather than being independent, as in examples 1 and 2, µ and σ2 are highly

dependent in this case. Even though the SURE.M.XKB and SURE.SG.XKB risks converge

to the Oracle.XKB risk, the Oracle.XKB risk is actually larger than that of GL.WBMZ and

NΓ−1. When µ and σ2 are dependent, SURE-based methods tend to perform poorly compared

to group linear algorithms and NΓ−1. GL.WBMZ is based on clustering log(σ2), and if µ is

a function of σ2 then group linear algorithms will usually cluster the µis correctly, regardless

of the distribution of µ. So in this example, group linear methods outperform all the other

methods.

Example 4. Again the joint distribution of µ and σ2 is singular with µ = σ2, but now

1
σ2 ∼ χ2

10. The risks of SURE.M.XKB and SURE.SG.XKB converge to that of Oracle.XKB

as q increases. The NΓ−1 method performs better than GL.WMBZ for lower values of q,

but as q increases performance of both of these algorithms improves and approaches that of

Oracle.XKB.

Example 5. In this example, the distribution of σ2 is discrete and such that σ2 is either 0.1 or

0.5, each with probability 1/2, while µ|(σ2 = 0.1) ∼ N(2, 0.1) and µ|(σ2 = 0.5) ∼ N(0, 0.5).
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Obviously, µ and σ2 are not independent in this case, and there are two distinct groups

of data. Both GL.WBMZ and NΓ−1 effectively treat the two groups separately, whereas

SURE.M.XKB and SURE.SG.XKB shrink all means in the same direction, as does Ora-

cle.XKB. For each q, GL.WMBZ and NΓ−1 greatly outperform the SURE-based methods.

Example 6. Here the setting is the same as in example 3 except that ε ∼ U(−
√

3,
√

3). As

in example 5, for any q, GL.WMBZ and NΓ−1 outperform the SURE-based methods and

GL.WMBZ performs better than NΓ−1 since µ is a function of σ2.

Example 7. The density fµ,σ2 is such that µ and σ2 are independent with σ2 ∼ U(0.1, 1)

and µ ∼ 0.5N(0, 0.1) + 0.5N(3, 0.1). Here the distribution of µ is bimodal. This is a case

where algorithms based on clustering σ2 fail, and NΓ−1 does very well. SURE-based methods

shrink all Xi in the same direction, towards 1.5, whereas NΓ−1 shrinks Xi towards either 0

or 3 after identifying the cluster to which µi is likely to belong. Group linear methods end

up having the same defect in this case as the SURE-based methods. Since clustering is based

on log(σ2
i ) and µi is independent of σ2

i , each group linear cluster will contain roughly equal

numbers of µis from the two components. It follows that the group linear algorithms will also

shrink Xi towards 1.5.

Example 8. The distribution of (µ, σ2) is such that (µ, σ2) ∼ NΓ−1(2, 2, 5, 2) with probabil-

ity 0.6 and NΓ−1(10, 4, 3, 3) with probability 0.4. In this example, the underlying distribution

of (µ, σ2) is a mixture of normal-inverse gammas, and so, as expected, NΓ−1 method outper-

forms all the others. As the marginal distribution of µ is bimodal, SURE-based and group

linear methods do not perform well for the same reason as in Example 7.

2.4.2 Comparing Different Estimators when Variances are Unknown

Tables 2.2 and 2.3 compare the different methods discussed in Xie et al. [2012], Weinstein

et al. [2018] and Jing et al. [2016]. The method referred to as SURE.M.Double can be found

in (11)-(12) of Jing et al. [2016]. Although Jing et al. [2016] discussed a few different double

shrinkage algorithms, we have found the performance of those algorithms to be very similar
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Figure 2.1: M̂SE(µ̂,µ) vs. dimension q of normal vector for Examples 1-8 of Section 2.4.1. The dimension sizes are q =
20, 60, . . . , 500 and results are based on 1000 replications at each q.
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to each other, and therefore report results only for the algorithm in expression (16) of Jing

et al. [2016], which we refer to as SURE.M.Double. As Xie et al. [2012] and Weinstein et al.

[2018] assumed that σ2
1, . . . , σ

2
q were known, we do as they suggested and replace σ2

i by S2
i·

when implementing their algorithms.

We simulated data from model (1.1) for different choices of fµ,σ2 . In all the examples of

this section ε ∼ N(0, 1). For each (µi, σ
2
i ) pair there are n = 4 replications. We only observe

Xij, for i = 1, . . . , q, j = 1, . . . , n, and not σ2
1, . . . , σ

2
q . We repeat the experiment 1000 times

for each q, and M̂SE(µ̂,µ) and M̂SE(D̂,D) were determined. Tables 2.2 and 2.3 provide

estimated risks averaged over all q, and Figure 2.2 shows how our method compares with

the two SURE methods discussed in Xie et al. [2012] and with the group linear algorithms

discussed in Weinstein et al. [2018]. Figure 2.3 shows how our method of estimating D

compares with the SURE.M.Double discussed in Jing et al. [2016].

Example 9. The density fµ,σ2 is such that µ and σ2 are independent with µ ∼ N(0, 3) and

σ2 ∼ IG(5, 2). Figure 2.2 shows that our method outperforms the other three when estimat-

ing µi. Table 2.2 shows that NΓ−1 performs similarly to the double shrinkage algorithms

discussed in Jing et al. [2016]. As the latter algorithms and NΓ−1 are based on the normal-

inverse gamma distribution, and the (µi, σ
2
i ) distribution, in this case, is normal-inverse

gamma, it is not surprising that these methods outperform the others here. Table 2.3 and

Figure 2.3 show that the SURE.M.Double method slightly outperforms NΓ−1 in estimating

D.

Example 10. The density fµ,σ2 is such that µ and σ2 are independent with µ ∼ N(0, 3) and

σ2 ∼ G(9, 3). This case is similar to Example 7, and likewise the results are similar.

Example 11. Here (µ, σ2) ∼ 0.95NΓ−1(2, 2, 5, 2) + 0.05NΓ−1(10, 4, 3, 3), the same mixture

distribution considered in Example 8. This is a case where µ and σ2 are dependent and their

distribution is bimodal. Our algorithm outperforms all other methods in terms of both µ and

D estimation, as seen in Figures 2.2-2.3 and Tables 2.2-2.3.
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Example 12. In this case µ and σ2 are independent with µ ∼ 0.5U(1, 2) + 0.5U(4, 5) and

σ2

n
∼ U(0.1, 1). This is a case where µ and σ2 are independent and have a bimodal distri-

bution. As in Example 11, the NΓ−1 method outperforms all other methods with respect to

estimating µ. However, presumably because of the distribution of σ2 is unimodal, SURE-based

methods do better in terms of estimating σ2.

Example 13. The distribution of (µ, σ2) is such that µ ∼ N(3, 12) and σ2|µ ∼ U(max(µ−

1, 0.1),max(µ + 1, 1)). Here, µ and σ2 are dependent, which is a case where SURE-based

methods do not perform well. The NΓ−1 method outperforms the other methods in terms of

M̂SE(µ̂,µ) and in terms of M̂SE(D̂,D) for larger q.

Example 14. The distribution of (µ, σ2) is such that µ ∼ N(3, 12) and σ2|µ ∼ max(N( |µ|
3
,

( |µ|
3

+ 1)
2
), 0.1). Again, since µ and σ2 are dependent, the SURE-based methods do not

perform well. The group-linear algorithms lose efficiency as σ2
i is replaced by S2

i·, and the

NΓ−1 method outperforms all other methods in terms of both M̂SE(µ̂,µ) and M̂SE(D̂,D).

2.5 Real Data Example when Variance Matrix is Known

In this section, we consider a baseball data example as a test case for our mixture model

method. This data set has been used in the articles of Brown [2008], Xie et al. [2012],

Jing et al. [2016], and Weinstein et al. [2018]. The data consist of the entire season batting

records for all major league baseball players in 2005 season. The goal is to estimate batting

averages of individual players in the second half of the season by observing only the first

half averages. Following the other articles, only players with at least 11 at-bats in the first

half of the season were considered in the estimation process and only players with at least

11 at-bats in each of the two halves of the season were considered in the validation process.

Let Hij denote the number of hits and Nij the number of at-bats for player i in period

j. The subscript j indicates either the first or second half of the season. The quantity pi

25



Table 2.1: Averages of M̂SE(µ̂,µ) over all q = 20, 60, . . . , 500 in model (1.2) for Examples 1-8 of Section (2.4.1). For a given
q, M̂SE(µ̂,µ) is an average over 1000 replications.

Different
Methods Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8
Sample Statistics 0.5504 0.5496 0.5506 0.1248 0.3008 0.5502 0.5506 0.8976
EBMLE.XKB 0.3410 0.0762 0.0833 0.0071 0.2524 0.0814 0.4311 0.8448
EBMOM.XKB 0.3412 0.0832 0.0906 0.0086 0.2467 0.0822 0.4313 0.8423
JS.XKB 0.3675 0.0837 0.0885 0.0075 0.2616 0.085 0.4523 0.8563
Oracle.XKB 0.3328 0.0691 0.0535 0.0051 0.1936 0.0535 0.4258 0.7602
SURE.G.XKB 0.3424 0.0792 0.0645 0.0072 0.2365 0.0613 0.4327 0.8393
SURE.M.XKB 0.3433 0.0795 0.0639 0.0072 0.1988 0.0608 0.4334 0.7811
SURE.SG.XKB 0.3526 0.086 0.0699 0.0088 0.3068 0.0621 0.4561 0.8824
SURE.SM.XKB 0.3557 0.0877 0.0698 0.0091 0.1877 0.0628 0.4569 0.6829
GL.WMBZ 0.3512 0.098 0.0373 0.0141 0.1578 0.0306 0.4387 0.7401
GL.SURE.WMBZ 0.3534 0.0974 0.0473 0.0127 0.1578 0.0368 0.4415 0.7249
DGL.WMBZ 0.3714 0.1155 0.1044 0.0158 0.2496 0.0937 0.4523 0.8525
NΓ−1mixture 0.3471 0.0894 0.0548 0.0102 0.1560 0.0532 0.2787 0.2639

Table 2.2: Averages of M̂SE(µ̂,µ) over all q = 20, 60, . . . , 500 in model (1.1) for Examples 9-14 of Section (2.4.2). For a given
q, M̂SE(µ̂,µ) is an average over 1000 replications.

Different
Methods Example 9 Example 10 Example 11 Example 12 Example 13 Example 14
Sample Statistics 0.1247 0.7484 0.1376 0.5520 0.7525 0.3570
EBMLE.XKB 0.1217 0.6369 0.1795 0.4681 0.4925 0.2432
EBMOM.XKB 0.1217 0.6381 0.1710 0.4690 0.4881 0.2430
JS.XKB 0.1222 0.6637 0.1328 0.5023 0.5997 0.3416
Oracle.XKB 0.1214 0.6350 0.1362 0.4670 0.4491 0.2342
SURE.G.XKB 0.1223 0.6479 0.1373 0.4765 0.4704 0.2428
SURE.M.XKB 0.1224 0.6483 0.1371 0.4769 0.4513 0.2384
SURE.SG.XKB 0.1249 0.6927 0.1343 0.5215 0.5461 0.2662
SURE.SM.XKB 0.1252 0.6954 0.1343 0.5228 0.5289 0.2638
GL.WMBZ 0.1216 0.6644 0.1317 0.4882 0.4958 0.2544
GL.SURE.WMBZ 0.1220 0.6720 0.1310 0.4965 0.5020 0.2589
DGL.WMBZ 0.1200 0.6045 0.1312 0.4538 0.4430 0.2679
SURE.M.Double 0.1199 0.5995 0.1319 0.4493 0.4340 0.2649
NΓ−1 mixture 0.1198 0.5995 0.0911 0.2849 0.4176 0.2333

Table 2.3: Averages of M̂SE(D̂,D) over all q = 20, 60, . . . , 500 in model 1.1 for Examples 9-14 of Section (2.4.2). For a given
q, M̂SE(D̂,D) is an average over 1000 replications.

Different
Methods Example 9 Example 10 Example 11 Example 12 Example 13 Example 14
Sample Statistics 0.2206 6.6980 0.3836 3.9425 1.1918 2.9284
SURE.M.Double 0.0626 0.9160 0.1548 0.8692 0.2873 1.3108
NΓ−1 0.0689 1.0065 0.1283 0.9630 0.3072 1.0025
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Figure 2.2: M̂SE(µ̂,µ) vs. dimension q of normal vector for Examples 9-14 of Section 2.4.2. The dimension sizes are q =
20, 60, . . . , 500 and results are based on 1000 replications at each q.
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Figure 2.3: M̂SE(D̂,D) vs. dimension q of normal vector for Examples 9-14 of Section 2.4.2. The dimension sizes are
q = 20, 60, . . . , 500 and results are based on 1000 replications at each q.
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denotes the probability of a hit for player i. Then we assume that

Hij ∼ bin(Nij, pi), for j = 1, 2, i = 1, . . . , q.

Without doing any variance-stabilizing transformation, Jing et al. [2016] worked with the

sample proportion Xi1 = Hi1/Ni1 and the estimated variance, S2
i1 = (Xi1(1 − Xi1))/Ni1,

of Xi1. However, this contradicts their initial assumption that Xi1 and S2
i1 are indepen-

dently distributed. Also, without the transformation there is no reason to believe that Xi1 is

normally distributed and S2
i1 follows a chi-square distribution. So, we will follow the trans-

formation of Brown [2008], which was also used in Xie et al. [2012] and Weinstein et al.

[2018], and define

Xij = arcsin

√
Hij + 0.25

Nij + 0.5
,

resulting in

Xij∼̇N(µi, σ
2
ij), µi = arcsin(pi), σ2

ij = (4Nij)
−1.

The measure of error that was used in all these papers, denoted TSE, is used to compare

different methods:

TSE(µ̂) =

∑
i (Xi2 − µ̂i)2 −

∑
i (4Ni2)−1∑

i (Xi2 −Xi1)2 −
∑

i (4Ni2)−1 .

The transformed data are consistent with model (1.2) as all σ2
i are known. The MCMC

algorithm described in Section 2.5 is modified here by simply removing the step of updating

σ2
i . Table 2.4 is the table from Weinstein et al. [2018] with our method added in the bottom

row.
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Table 2.4: Average Prediction error for transformed batting averages. TSE(µ̂) was computed for the entire data set, and
separately for pitchers and non-pitchers from Weinstein et al. [2018].

Different Data sets

Methods All Pitchers Non-pitchers

Naive 1 1 1

Grand mean 0.852 0.127 0.378

Nonparametric EB 0.508 0.212 0.372

Binomial mixture 0.588 0.156 0.314

Weighted Least Squares 1.07 0.127 0.468

Weighted nonparametric MLE 0.306 0.173 0.326

Weighted Least Squares (AB) 0.537 0.087 0.29

Weighted nonparametric MLE (AB) 0.301 0.141 0.261

JS.XKB 0.535 0.165 0.348

SURE.M.XKB 0.421 0.123 0.289

SURE.SG.XKB 0.408 0.091 0.261

GL.WMBZ 0.302 0.178 0.325

DGL.WMBZ 0.288 0.168 0.349

NΓ−1 mixture 0.361 0.161 0.292

The naive estimator simply uses Xi1 to predict Xi2 and has TSE equal to 1. The grand

mean uses the average of all Xi1 to predict any Xi2. The nonparametric EB method of

Brown and Greenshtein [2009], the binomial mixture of Muralidharan [2010], the weighted

least squares estimator, the weighted least squares estimator (AB) (with number of at-bats

as covariate), the weighted nonparametric MLE and the weighted nonparametric MLE (AB)

(with number of at-bats as covariate) of Jiang et al. [2009] are also included in Table 2.4.

Weinstein et al. [2018] presented an analysis under permutations, where each permutation

is the order in which successful hits appear throughout the entire season. For each player

they draw the number of hits in Ni1 at bats from a hypergeometric distribution, HG(Ni1 +

Ni2, Hi1 + Hi2, Ni1). We compare our method with several other methods with respect to

1000 different permutations of the baseball data and average TSE.

As discussed in Weinstein et al. [2018], group linear algorithms tend to perform well

compared to SURE-based methods as µi and σ2
i1 are not independent, owing to the fact that
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players with higher batting averages tend to play more. Also, non-pitchers tend to have

higher batting averages than pitchers, so it is possible that the underlying density of µ is

bimodal. This may be the reason that empirical Bayes estimators that assume a normal-

normal model tend to perform poorly. Group linear estimates outperform the other methods

because they can accommodate these features exhibited by the baseball data. SURE-based

methods work well when we analyze the pitchers and non-pitchers separately. Table 2.4

shows that, in the combined data, the NΓ−1 method does not perform as well as group

linear algorithms, but it performs better than SURE-based methods. However, when the

pitchers and non-pitchers are considered separately, NΓ−1 performs better than the group

linear algorithms. In both the original data and the permuted data, NΓ−1 performs better

than the group linear algorithms for both pitchers and non-pitchers. When pitchers and

non-pitchers are combined, group linear methods outperform all other methods in both the

original and permuted data. This is reasonable as the association between µ and σ2 is weaker

when the data are separated into smaller groups, and group linear algorithms work well in

the presence of strong association. In contrast, the NΓ−1 method works reasonably well µ

and σ2 are either strongly or weakly dependent.

Table 2.5: Average Prediction error for 1000 permutations of transformed batting averages data. Average TSE(µ̂) was computed
for the entire data set, and separately for pitchers and non-pitchers.

Different Data sets

Methods All Pitchers Non-pitchers

Grand mean 0.9222 0.3127 0.2951

James-Stein 0.5465 0.2490 0.2304

SURE.M.XKB 0.4852 0.2227 0.2602

SURE.SG.XKB 0.4693 0.1759 0.2148

GL.WMBZ(bins = q1/3) 0.2798 0.2438 0.1731

GL.SURE.WMBZ 0.3032 0.2838 0.1949

DGL.WMBZ 0.4751 0.2193 0.2250

NΓ−1 mixture 0.3535 0.2377 0.1698
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2.6 Real Data Example when Variance Matrix is Unknown

In this section, we will apply the NΓ−1 method and other estimators to the prostate data

from the book of Efron [2012]. The data can be downloaded from the book website:

https://statweb.stanford.edu/ ckirby/brad/LSI/datasets-and-programs/datasets.html.

The prostate data consist of gene expression levels for q = 6033 genes obtained from 102

men, 50 normal control and 52 prostate cancer patients. We only use the control data, which

means that we have a 6033 × 50 matrix. Here Xij denotes the expression level for gene i

of patient j, i = 1, . . . , 6033, j = 1, . . . , 50. Since 50 is a relatively large number, we will

assume that the control group constitutes the population of interest, in which case

µi =
1

50

50∑
j=1

Xij and σ2
i =

1

50

50∑
j=1

(Xij − µi)2, i = 1, . . . , 6033.

As a test of the various methods, we randomly select three subjects from the control group

and use their data to estimate µi and σ2
i .

To better understand the nature of the data we provide the scatterplots in Figures 2.4-2.5.

We also compared our method with the sample means and variances from three columns.

To compare different methods we randomly chose 500 rows and 3 columns, computed

estimates of means and variances using the various methods, and replicated this process 100

times. Average squared error for each method was computed as in our simulation study.

Table 2.6 shows that, except for the SURE-based Double shrinkage estimators, all methods

were outperformed by NΓ−1. Figure 2.6 shows that the densities of µi and σ2
i are well-

approximated by normal and inverse gamma densities, respectively. When we force the

mixture of normal-inverse gammas to select only one component, then this method performs

comparably to SURE.M.Double for estimating both µ and D. For the other algorithms,

replacing the unknown σ2
i with S2

i· result in a loss in accuracy of those methods.
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Figure 2.4: Scatterplots for prostate data. The upper left plot is S2
i· vs. X̄i· for columns 6, 30 and 31 of the data matrix, the

upper right plot is σ2
i vs. µi and the lower left plot is σ̂2

i,DPMM vs. µ̂DPMM
i based on columns 6, 30 and 31.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

0
2

4
6

8
1

0

sample mean
     and Variance based on 3 columns

Xi(3)

S
i(3

)
2

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

● ●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

0
2

4
6

8
1

0

sample mean and Variance based on 50 columns

Xi(50)

S
i(5

0
)

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●●●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

0
2

4
6

8
1

0

Estimated 
     mean and Variance

µ̂i

σ
i^
2

Figure 2.5: Scatterplots for prostate data based 3 columns 6, 30 and 31 of the data matrix. The upper left plot is X̄i· vs. µi,
the upper right plot is µ̂DPMM

i vs. µi based on columns 6, 30 and 31. The lower left plot is S̄2
i· vs. σ

2
i , the lower right plot is

σ̂2
i,DPMM vs. σ2

i based on columns 6, 30 and 31.
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Table 2.6: Estimated average squared loss for µ and D for different estimation methods from prostate-control data. Each table
value is an average over 100 replications. Each replication consists of 500 randomly chosen rows and 3 randomly chosen columns
from the original 6033× 50 data matrix.

Different Different measures

Methods Error in estimating µi Error in estimating σ2
i

Sample Statistics 0.2919 1.1695

EBMLE.XKB 0.1486 -

EBMOM.XKB 0.1446 -

JS.XKB 0.2787 -

Oracle.XKB 0.1108 -

SURE.G.XKB 0.1071 -

SURE.M.XKB 0.1175 -

SURE.SG.XKB 0.1445 -

SURE.SM.XKB 0.1682 -

GL.WMBZ 0.1694 -

GL.SURE.WMBZ 0.1802 -

DGL.WMBZ 0.0690 -

SURE.M.Double 0.0644 0.1458

NΓ−1 mixture 0.1081 0.2284

NΓ−1 one component 0.0683 0.1653
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Figure 2.6: Marginal kernel density estimates computed from µi and σ2
i based on all 50 columns of the data matrix.
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3. LOCATION-SCALE DENSITY ESTIMATION USING MIXTURE

As mentioned in Section 1.2, the main focus of this chapter is a semiparametric estimation

of the joint density of µ and σ2 in the LSRE model. In this section, we discuss a method of

estimating the density fµ,σ2 when fε is standard normal.

3.1 Density Estimation for the LSRE Model with Normal Error Density

To estimate the distribution of the bivariate density fµ,σ2 nonparametrically, it is reason-

able to use a mixture of bivariate densities, which underlies most mainstream approaches

of density estimation, including kernel techniques (Silverman [1986]), nonparametric maxi-

mum likelihood (Lindsay et al. [1983]), and Bayesian approaches using mixtures induced by

a Dirichlet process (Ferguson [1983] and Escobar and West [1995]). Here, we assume fµ,σ2 is

a mixture of normal-inverse gamma densities, and we are trying to estimate the parameters

of the mixture distribution.

3.1.1 Identifiability of the Joint Distribution of Location-Scale Parameters

The seminal paper of Reiersøl [1950] showed that in the LRE model, both fµ and fε are

identifiable from the joint distribution of (Xi1, Xi2). Hart and Cañette [2011] showed that,

in the LSRE model, under some regularity conditions, if n ≥ 4 then the log(σi), εij, and µi

distributions are all identifiable from the joint distribution of (Xi1, Xi2, Xi3, Xi4). Beran and

Millar [1994] showed that fµ,σ2 is identifiable from the joint distribution of (X, ε). In our

case ε is not observed, and hence we initially assume that the density of ε is normal. Teicher

[1960] showed that if fε is normal, fµ and fσ2 are not both identifiable from the density of

Xi1.

Suppressing dependency on i, when all σ2s are known and fε is standard normal, in

model (1.6) with n = 1, then fµ,σ2 is identifiable from the joint density of (X1, σ
2), fX1,σ2 .

We can write X1 = µ+ e1, where, e1 = σε1. From fX1,σ2 , we know the marginal density fσ2

and the conditional density fX1|σ2 . Conditional on σ2, µ and e are independent and they
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add up to X1. The characteristic function of X1|σ2, φX1|σ2(t) =
∫
R e

itxfX|σ2(x)dx, equals

φµ|σ2(t)φe|σ2(t), for all t. As the characteristic function of e|σ2, φe|σ2 , is known and never

vanishes, we can uniquely identify φµ|σ2 from φX1|σ2 . From uniqueness of the characteristic

function, fµ|σ2 identifiable. So, we can uniquely identify fµ,σ2 from fX1,σ2 .

When σ2s are unknown, then we need n = 2 to identify fµ,σ2 from model (1.6). Let

(X1, X2) follow model (1.6) with n = 2. Let Fµ,σ2 be the bivariate cumulative distribution

function (c.d.f.) of random variable (µ, σ2). When fε is standard normal, the joint density

of (X1, X2), fX1,X2 , is

fX1,X2(x, y) =

∫
R+

∫
R

1

v
fε

(
x−m√

v

)
fε

(
y −m√

v

)
dFµ,σ2(m, v)

=

∫
R+

∫
R

1

2πv
e−

1
2v ((x−m)2+(y−m)2)dFµ,σ2(m, v).

(3.1)

Let a finite probability measure be a discrete probability distribution with a finite number

of atoms. It has been shown by Teicher [1960] that if Fµ,σ2 is restricted to the class of

finite probability measures, Fµ,σ2 is identifiable from the marginal density of fX1 . If Fµ,σ2

is unrestricted, then it is not identifiable from the marginal density of fX1 . It will now be

shown that if we restrict Fµ,σ2 to the class of absolutely continuous probability measures,

then the solution Fµ,σ2 of (3.1) is unique.

Theorem 1. If fε is a standard normal density and fσ2 is a bounded and continuous density

on (0,∞), then fµ,σ2 is identifiable from fX1,X2.
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Proof 1. The characteristic function of the joint density for (X1, X2) is

φX1,X2(t1, t2) =

∫
R+

∫
R

∫
R

∫
R
eit1X1+it2X2fε(e1)fε(e2)de1de2dFµ,σ2(m, v)

=

∫
R+

∫
R

∫
R

∫
R
eim(t1+t2)+i

√
v(t1e1+t2e2)fε(e1)fε(e2)de1de2fµ,σ2(m, v)dmdv

= E(eiµ(t1+t2)+iσ(t1ε1+t2ε2)) = Eσ2(E(eiµ(t1+t2)|σ2)E(eiσ(t1ε1+t2ε2)|σ2))

=

∫
R+

∫
R
e−

1
2

(t21+t22)vei(t1+t2)mfµ|σ2=v(m)dmfσ2(v)dv

=

∫
R+

e−
1
2

(t21+t22)v

(∫
R
ei(t1+t2)mfµ,σ2(m, v)dm

)
dv.

Without loss of generality, we may assume that t1 < t2 as φX1,X2(t1, t2) = φX1,X2(t2, t1). We

may define u1 and u2 as t1 + t2 and (t21 + t22)/2 > 0, respectively and rewrite t1 and t2 as

(u1 −
√

4u2 − u1
2)/2 and (u1 +

√
4u2 − u1

2)/2, respectively. Then for any u2 > u1
2/4, the

function φX1,X2(t1, t2) can be written as a function of u1 and u2

φX1,X2(u1, u2) =

∫
R+

e−u2v

(∫
R
eiu1mfµ,σ2(m, v)dm

)
dv = L(f1(v|u1))(u2),

where f1(v|u1) =
∫
R e

iu1mfµ,σ2(m, v)dm = fσ2(v)φµ|σ2(u1|v) and φµ|σ2 denotes the character-

istic function of the random variable µ conditional on σ2. The characteristic function φX1,X2

is the (unilateral) Laplace transform of the inside integral f1(v|u1). Suppose that the joint

densities fµ,σ2 and gµ,σ2 have the same characteristic function φX1,X2. We will now prove

that fµ,σ2 ≡ gµ,σ2. Let us define g1(v|u1) =
∫
R e

iu1mgµ,σ2(m, v)dm and from the uniqueness

of the Laplace transformation we have f1(v|u1) = g1(v|u1) if fσ2 is bounded and continuous.
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For every u1 < 2
√
u2,

∫
R
eiu1mfµ,σ2(m, v)dm =

∫
R
eiu1mgµ,σ2(m, v)dm, ∀v

or,

∫
R+

eiw1v

∫
R
eiu1mfµ,σ2(m, v)dmdv =

∫
R+

eiw1v

∫
R
eiu1mgµ,σ2(m, v)dmdv, ∀(w1, u1)

or, φf (u1, w1) = φg(u1, w1).

From the uniqueness of the characteristic function it follows that fµ,σ2 = gµ,σ2.

The fact that the characteristic function of a normal distribution never vanishes makes

it easier to prove that fµ,σ2 is identifiable. The necessary and sufficient conditions that are

needed on fε for the identifiability of Fµ,σ2 in (3.1) is still an open question.

3.2 Modeling the Joint Distribution of Location-Scale by a Bivariate Mixture

In Section 2.1 and 2.2, a MCMC algorithm is proposed to estimate location-scale pa-

rameters. Furthermore, at every MCMC iteration we may obtain estimates of (Θr,πr) for

r = 1, . . . , k, from which we can calculate values of the mixture density over a grid. Averaging

density values over all iterations leads to an estimate of fµ,σ2 .

3.3 Simulation Study

The mean integrated squared error (MISE) measures the overall accuracy of estimating

fµ,σ2 by f̂µ,σ2 . We can estimate MISE using Monte Carlo methods and B simulated datasets.

Letting f̂ bµ,σ2 denote the density estimate from the bth set of simulated data, the MISE and

its estimate are defined as

MISE(f̂µ,σ2 , fµ,σ2) =

∫
R+

∫
R
E
(
fµ,σ2(m, v)− f̂µ,σ2(m, v)

)2

dmdv

≈ 1

B

B∑
b=1

N∑
i=1

N∑
j=1

(
fµ,σ2(mi, vj)− f̂ bµ,σ2(mi, vj)

)2

|mi −mi−1||vj − vj−1|,
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where {mi, vj}(N,N)
(i,j)=(0,0) are grid points that are evenly spaced in each direction over the

support of fµ,σ2 . We will use MISE to measure the performance of different methods for

several choices of fµ,σ2 . Similarly, using the same grid points, we may compute the MISE

when estimating the marginal densities, fµ and fσ2 .

3.3.1 Comparing the Density Estimate with Other Density Estimators

To our knowledge there exist no competitors in the literature for our method of estimating

the density of fµ,σ2 . As mentioned previously, Staudenmayer et al. [2008] and Sarkar et al.

[2014] took an alternative Bayesian approach in which µ is a random effect, the variance is

a function of µ and the scaled error density is standard normal. Sarkar et al. [2014] also

relaxed the normality assumption on the scaled error density and estimated the scaled error

density with a mixture of normal densities. The code for the methodology of Staudenmayer

et al. [2008] was not available, however, we were able to compare our method with that of

Sarkar et al. [2014], which we refer to here as DPMM.SMSPC. The model of DPMM.SMSPC

entails that the distribution of (µ, σ2) is singular, and hence implicitly provides an estimate

of this singular distribution.

A possible means of estimating fµ,σ2 would be to estimate (µi, σ
2
i ), i = 1, . . . , q, and

to then compute a kernel density estimator (KDE) from the estimates as if they were the

true values of (µi, σ
2
i ). We will call such estimates “plug-in KDE” There are a few articles,

including Xie et al. [2012] andWeinstein et al. [2018], which address the problem of estimating

µi when σ2
i is known. Jing et al. [2016] further extended the work of Xie et al. [2012] and

estimated both µi and σ2
i . The estimators of Xie et al. [2012] defined by their expressions

(7.1), (7.2), (7.3), (4.2), (5.1), (6.3), and (6.2) will be called EBMLE.XKB, EBMOM.XKB,

JS.XKB, SURE.G.XKB, SURE.M.XKB, SURE.SG.XKB, and SURE.SM.XKB, respectively.

The methods which were referred to as SURE.M.Double can be found in expressions (11-12)

of Jing et al. [2016]. Weinstein et al. [2018] developed group-linear and dynamic group-linear

algorithms, which are referred to here as GL.WMBZ and DGL.WMBZ, respectively. We also

consider Oracle.XKB, which, although not an estimate as described in section 7 of Xie et al.
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[2012], provides a sensible lower bound on a mean squared risk estimator of given parametric

form.

We simulated data from model (1.6) for different choices of fµ,σ2 . For each (µi, σ
2
i )

pair there are n = 4 replications. Importantly, only the observations Xij, i = 1, . . . , q,

j = 1, . . . , n, are used to define estimates of fµ,σ2 . Let y = (y1, . . . , yk)
T , then IQR(y),

min(y), and max(y) denote the interquartile range, minimum, and maximum of observa-

tions y1, . . . , yk, respectively. Also, define X = (X̄1·, . . . , X̄q·)
T and S2 = (S2

1·, . . . , S
2
q·)

T .

Then for each data set, we divided the range [min(X) − IQR(X),max(X) + IQR(X)] ×

[max(min(S2) − IQR(S2), 0.001),max(S2) + IQR(S2)] into 100 × 100 equally spaced grid

points and calculated, for each of the different methods, the approximate MISEs for esti-

mates of both joint and marginal distributions. The ensuing tables compare the MISEs of

various methods. Our method based on the mixture of normal-inverse gamma distributions

is denoted NΓ−1. This method produces estimates of all (µi, σ
2
i ) pairs, and hence we may

compute a plug-in estimate using these estimates. This method is referred to as NΓ−1 KDE.

We also consider plug-in estimates based on the methods of Xie et al. [2012], Jing et al. [2016],

and Weinstein et al. [2018]. Since Xie et al. [2012] and Weinstein et al. [2018] assumed that

σ2
1, . . . , σ

2
q are known, we use S2

1·, . . . , S
2
q· in our plug-in estimates for these methods. As the

support of σ2 is (0,∞), the kernel density estimator exhibits boundary bias near σ2 = 0.

To eliminate most of this bias, we reflect the data points around σ2 = 0, and then compute

the kernel density estimator using the resulting 2q observations and the default bandwidth

in the R command density from base R and kde2d from library MASS for univariate and

bivariate density estimation, respectively. We repeated the experiment B times for each q

and plotted estimated MISEs for each q.

Example 15. The density fµ,σ2 is such that µ and σ2 are independent with µ ∼ N(0, 3) and

σ2 ∼ IG(5, 2). Here and in all other examples, we take ε ∼ N(0, 1). In this example, as the

underlying true model is normal and inverse-gamma, the NΓ−1 method performs better than

the others. Figures 3.1 and 3.3 show that NΓ−1 KDE outperforms the other plug-in methods
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when estimating the bivariate density and the marginal density of σ2. When estimating the

marginal density of µ, DPMM.SMSPC slightly outperforms the mixture of normal-inverse

gamma densities since it is also based on a mixture of normals.

Example 16. The density fµ,σ2 is such that µ and σ2 are independent with µ ∼ N(0, 3) and

σ2 ∼ G(9, 3). This example is quite similar to Example 15. All methods work well in estimat-

ing the joint density fµ,σ2. As in Example 15, NΓ−1 has lower MISE compared to the other

methods. NΓ−1 KDE performs similarly to SURE.M.Double as NΓ−1 successfully indentifies

only one component. When estimating the marginal density fµ, both DPMM.SMSPC and

NΓ−1 perform better than the other methods.

Example 17. Here fµ,σ2 is such that (µ, σ2) ∼ 0.95NΓ−1(2, 2, 5, 2) + 0.05NΓ−1(10, 4, 3, 3).

As our method is based on a NΓ−1 mixture, it performs better than the other methods for

estimating all three densities, fµ,σ2, fµ, and fσ2.

Example 18. The density fµ,σ2 is such that µ and σ2 are independent with µ ∼ 0.5U(1, 2)+

0.5U(4, 5) and σ2/n ∼ U(0.1, 1), where U(a, b) denotes the uniform distribution on the in-

terval (a, b). In this example fµ is bimodal, and NΓ−1 and NΓ−1 KDE estimate the densities

better than the other methods. SURE based and group-linear methods shrink all observations

towards the grand mean, resulting in poor KDEs compared to NΓ−1 KDE. In contrast, the

NΓ−1 estimate of µi tends to shrink towards the mean of the component from which µi came,

leading to better performance of the kernel estimate.

Example 19. The density fµ,σ2 is such that µ ∼ Inv − χ2
4 and log(σ2)|µ ∼ N(log(µ), 0.52).

Inv − χ4
2 denotes an inverse-chi square distribution with four degrees of freedom. In this

example, σ2 is not independent of µ, and NΓ−1 and NΓ−1 KDE estimate the densities better

than the other methods.

Example 20. The density fµ,σ2 is such that µ ∼ Γ(1, 0.5) and σ2|µ ∼ χ2
µ + 0.1, where χµ2

denotes a chi-square density with µ degrees of freedom. Here also σ2 is not independent of

µ, and NΓ−1 and NΓ−1 KDE perform better than the plug-in estimators when estimating
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fµ. Since DPMM.SMSPC assumes that σ2 is fixed by µ, and here the conditional variance

of σ2 increases with µ, a poor estimate of fµ results from using the DPMM.SMSPC method.

Table 3.1: Estimated MISE(f̂µ,σ2 , fµ,σ2 ) averaged over values of q. The data were generated from (1.6) with n = 4 and fµ,σ2

defined by Examples 15-20 of Section 3.3.1. At a given q, MISE is estimated by averaging over 100 replications, and then a
table value is obtained by averaging over q = 100, 200, . . . , 1000.

Different MISE of fµ,σ2

Methods Example 15 Example 16 Example 17 Example 18 Example 19 Example 20
Sample Statistics 0.1438 0.0311 0.5639 0.1067 3.7866 0.2685
EBMLE.XKB 0.1424 0.0298 0.5581 0.1041 3.4922 0.2655
EBMOM.XKB 0.1424 0.0297 0.5587 0.1041 3.6907 0.2661
JS.XKB 0.1433 0.0306 0.5588 0.1055 3.5760 0.2665
Oracle.XKB 0.1424 0.0297 0.5624 0.1041 3.7854 0.2685
SURE.G.XKB 0.1423 0.0295 0.5625 0.1042 3.7656 0.2676
SURE.M.XKB 0.1423 0.0295 0.5623 0.1042 3.7856 0.2684
SURE.SG.XKB 0.1424 0.0298 0.5571 0.1046 3.6578 0.2661
SURE.SM.XKB 0.1425 0.0298 0.5576 0.1046 3.7274 0.2688
GL.WMBZ 0.1424 0.0297 0.5552 0.1044 3.4789 0.2666
GL.SURE.WMBZ 0.1424 0.0298 0.5533 0.1045 3.4745 0.2666
DGL.WMBZ 0.1424 0.0298 0.5556 0.1045 3.6647 0.2618
SURE.M.Double 0.0813 0.0115 0.4121 0.0946 3.9727 0.3374
NΓ−1 mixture 0.0117 0.0046 0.032 0.0682 2.1160 0.3105
NΓ−1 KDE 0.0789 0.0125 0.3162 0.0776 2.8536 0.6678

3.3.2 Analysis of Prostate Cancer Data

We will apply our method along with other estimators to the prostate data from the book

of Efron [2012]. The data can be downloaded from the book website:

https://statweb.stanford.edu/ ckirby/brad/LSI/datasets-and-programs/datasets.html.

The prostate data consist of gene expression levels for q = 6033 genes obtained from 102

men, 50 normal control and 52 prostate cancer patients.

We use only the control data, which means that we have a 6033× 50 matrix. Here, Xij

denotes the expression level for gene i on patient j, i = 1, . . . , 6033, j = 1, . . . , 50. Since 50 is

a relatively large number, we will assume that the control group constitutes the population
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Figure 3.1: Estimated MISE(f̂µ,σ2 , fµ,σ2 ) vs. dimension q for Examples 15-20 of Section 3.3.1. Dimension size is q =
100, 200, . . . , 1000 and number of replications is 100 for each q.
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Table 3.2: Estimated MISE(f̂µ, fµ) averaged over values of q. The data were generated from (1.6) with n = 4 and fµ,σ2

defined by Examples 15-20 of Section 3.3.1. At a given q, MISE is estimated by averaging over 100 replications, and then a
table value is obtained by averaging over q = 100, 200, . . . , 1000.

Different MISE of fµ
Methods Example 15 Example 16 Example 17 Example 18 Example 19 Example 20
Sample Statistics 0.0016 0.0035 0.0238 0.237 0.3733 0.0170
EBMLE.XKB 0.0014 0.0022 0.0191 0.2325 0.2837 0.0176
EBMOM.XKB 0.0014 0.0024 0.0195 0.2337 0.3207 0.0172
JS.XKB 0.0015 0.0019 0.02 0.2283 0.2684 0.0157
Oracle.XKB 0.0014 0.0023 0.0227 0.2329 0.3876 0.0212
SURE.G.XKB 0.0014 0.0035 0.0226 0.2412 0.3626 0.0169
SURE.M.XKB 0.0014 0.0036 0.0227 0.2412 0.3943 0.0220
SURE.SG.XKB 0.0014 0.0043 0.0191 0.2492 0.3082 0.0177
SURE.SM.XKB 0.0014 0.0044 0.0195 0.2482 0.3633 0.0216
GL.WMBZ 0.0014 0.0031 0.0182 0.2396 0.2847 0.0197
GL.SURE.WMBZ 0.0014 0.0033 0.0173 0.2416 0.2966 0.0198
DGL.WMBZ 0.0014 0.0024 0.018 0.2291 0.2957 0.0220
SURE.M.Double 0.0014 0.0027 0.0185 0.2301 0.2925 0.0234
DPMM.SMSPC 0.0006 0.0016 0.0072 0.0881 0.2352 0.0414
NΓ−1 mixture 0.0009 0.0008 0.0033 0.117 0.1653 0.0144
NΓ−1 KDE 0.0014 0.0026 0.0196 0.1228 0.1479 0.0192

Table 3.3: Estimated MISE(f̂σ2 , fσ2 ) averaged over values of q. The data were generated from (1.6) with n = 4 and fµ,σ2

defined by Examples 15-20 of Section 3.3.1. At a given q, MISE is estimated by averaging over 100 replications, and then a
table value is obtained by averaging over q = 100, 200, . . . , 1000.

Different MISE of fσ2

Methods Example 15 Example 16 Example 17 Example 18 Example 19 Example 20
Sample Statistics 0.8664 0.1845 0.7887 0.1403 0.0493 0.0312
SURE.M.Double 0.4786 0.0695 0.4839 0.114 0.1263 0.2224
NΓ−1 mixture 0.032 0.0166 0.0348 0.096 0.6236 0.1346
NΓ−1 KDE 0.4826 0.0758 0.469 0.1009 0.282075 0.0906
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Figure 3.2: Estimated MISE(f̂µ, fµ) vs. dimension q of normal vector for Examples 15-20 of Section 3.3.1. Dimension size is
q = 100, 200, . . . , 1000 and number of replications is 100 for each q.
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Figure 3.3: Estimated MISE(f̂σ2 , fσ2 ) vs. dimension q of normal vector for Examples 15-20 of Section 3.3.1. Dimension size
is q = 100, 200, . . . , 1000 and number of replications is 100 for each q.
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of interest, in which case

µi =
1

50

50∑
j=1

Xij and σ2
i =

1

50

50∑
j=1

(Xij − µi)2, i = 1, . . . , 6033.

As a test of the various methods, we randomly select four subjects from the control group

and use their data to estimate µi and σ2
i .

To better understand the nature of the data we provide density plots in Figure 3.4. We

selected columns 6, 30, 31, and 48 and used our method to estimate fµ and fσ2 . The “true”

distribution of µ and σ2 was generated from the density command in R with the default

bandwidth.

To compare different methods we randomly chose all rows and 4 columns, computed the

MISEs of various estimates of the three densities, and replicated this process 100 times. The

MISE for each method was computed as in our simulation study. Table 3.4 shows that all

methods were outperformed by NΓ−1. This is not too surprising considering that Figure 3.4

shows that the densities of µi and σ2
i are well-approximated by normal and inverse gamma

densities, respectively. For all algorithms, except SURE.M.Double, we replace the unknown

σ2
i with S2

i·, which results in a loss of accuracy for those methods.

In Table 3.5 we provide results from a simulation in which we randomly selected only

1000 genes and 4 subjects. Here also the NΓ−1 method performs better than the other

methods.
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Table 3.4: Estimates of MISE for the prostate data. Each table value is an average of 100 replications. In each run 4 of 50
subjects were randomly selected and all 6033 genes were used. The total number of components used in a mixture was k = 10.

Different

Methods MISE(f̂µ,σ2 , fµ,σ2 ) MISE(f̂µ, fµ) MISE(f̂σ2 , fσ2 )

Sample Statistics 0.6433 0.2863 0.4160

EBMLE.XKB 0.4684 0.0629 0.4160

EBMOM.XKB 0.5809 0.3640 0.4160

JS.XKB 0.6390 0.2781 0.4160

Oracle.XKB 0.7164 0.4049 0.4160

SURE.G.XKB 0.9946 0.8624 0.4160

SURE.M.XKB 1.2171 0.8844 0.4160

SURE.SG.XKB 1.9519 3.2717 0.4160

SURE.SM.XKB 1.7600 2.6570 0.4160

SURE.M.Double 4.9595 0.9289 0.7561

NΓ−1 mixture 0.4040 0.1624 0.0738

Table 3.5: Estimates of MISE for the prostate data. Each table value is an average of 1000 replications. In each run 4 of 50
subjects were randomly selected and 1000 genes were randomly selected from all 6033 genes. The total number of components
used in a mixture was k = 10.

Different

Methods MISE(f̂µ,σ2 , fµ,σ2 ) MISE(f̂µ, fµ) MISE(f̂σ2 , fσ2 )

Sample Statistics 0.5841 0.2791 0.3862

EBMLE.XKB 0.4173 0.0681 0.3862

EBMOM.XKB 0.5232 0.3848 0.3862

JS.XKB 0.5785 0.2696 0.3862

Oracle.XKB 0.5847 0.3628 0.3862

SURE.G.XKB 0.8362 0.8405 0.3862

SURE.M.XKB 0.9958 0.8349 0.3862

SURE.SG.XKB 1.4758 2.4118 0.3862

SURE.SM.XKB 1.4807 2.4301 0.3862

SURE.M.Double 4.8824 1.1655 0.7390

NΓ−1 mixture 0.1962 0.0286 0.0349
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Figure 3.4: True vs. estimated marginal densities. The estimated marginal density of µ and σ2 is based on NΓ−1 method using
only columns 6, 30, 31, and 48
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4. LOCATION-SCALE DENSITY ESTIMATION USING HISTOGRAM

As mentioned in Section 1.2, the main focus of this chapter is semiparametric estimation

of the joint density of µ and σ2 in model (1.6). In this section, we discuss the method of

estimating the density fµ,σ2 using a bivariate histogram when fε is any known density with

mean 0 and variance 1. This approach is semiparametric in nature as we assume the error

density is known but fµ,σ2 is unknown.

4.1 Location-Scale Density Estimation with Known Error Density

In this section, we will discuss the method of estimating fµ,σ2 using a bivariate histogram

for a few known choices of fε. In Section 4.1.1, we discuss a general method of estimating

fµ,σ2 using a bivariate histogram.

4.1.1 Modeling the Distribution of Location-Scale with a Histogram

If we assume that fε is known, with mean 0 and variance 1, then our problem boils down

to estimating the joint distribution of (µi, σ
2
i ). Choosing the best fε is not an easy task but

for the moment we assume that it is known. To estimate the distribution of fµ,σ2 we will use

a histogram representation. Let IA(x) be defined as

IA(x) =


1, if x ∈ A

0, otherwise.

Then, the histogram approximation to the joint distribution of (µi, σ
2
i ) can be written as

fµ,σ2(m, v|pk, k) =
∑k

r=1
pr,k
Ar
IRr(m, v),

where R1, . . . , Rk are k bins, and Ar is the area of Rr. It can be shown that the support of

(µ, σ2) is contained in the support of (X̄i·, S
2
i·) where X̄i· = n−1

∑n
j=1 Xij is the sample mean

and S2
i· = (n− 1)−1∑n

j=1(Xij − X̄i·)
2 is the sample variance of the ith dataset. The quantity

pr,k is the probability that (µi, σ
2
i ) belongs to the rth bin when the total number of bins is k.
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Let Xi· = (Xi1, . . . , Xin)T be the vector of observed replications of the true unobserved

variable µi. Let Jir be defined as

Jir =

∫ ∫
Rr

n∏
j=1

1√
v
fε

(
Xij −m√

v

)
dmdv.

Then the likelihood for the ith dataset can be written as

Li(pk) = f(Xi·|pk, fε, k) =
k∑
r=1

pr,k
Ar

Jir.

Let X denotes the all q×n observations,X1·, . . . ,Xq·. Then the complete data log-likelihood

for all q datasets can be written as

l(pk) = log(f(X|pk, fε, k)) =

q∑
i=1

log (Li(pk)) .

Our objective is to maximize the posterior distribution

h(pk)
def
= f(pk|X, fε, k) ∝

q∏
i=1

Li(pk)π(pk|α), (4.1)

where π(pk|α) is the prior for pk, which we take to be a non-informative Dirichlet prior with

α = (1/2, . . . , 1/2).

Since the Dirichlet is not a conjugate prior, we need to use the Metropolis-Hastings algorithm

to approximate the posterior distribution of pk.

4.1.2 Different Choices for the Distribution of Scaled Error

The method described in Section 4.1.1 is similar for any choice of a scaled error distribu-

tion. The only thing that varies is the form of Jir. In this section, we compute Jir for a few

popular distributions.
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4.1.2.1 Standard Normal Scaled Error Distribution

As mentioned before, in most of the early literature on measurement error it was assumed

that the error density was normal. Carroll and Hall [1988], Fan [1991], and Fan [1992]

assumed normality of error. In the more recent work of Staudenmayer et al. [2008], normality

of the error density was also assumed. Sarkar et al. [2014] used the normal distribution as

one of the possible choices for the scaled error density in the LSRE model.

If fε is standard normal and Rr is the rectangle [as−1, as]× [bt−1, bt], then

Jir = (2π)−n/2
∫ bt

bt−1

∫ as

as−1

v−n/2e−(n−1)S2
i·/2v−n(X̄i·−m)2/2vdmdv

=
1√

n(2π)n−1

∫ bt

bt−1

e−(n−1)S2
i·/2v

1

v(n−1)/2

[
Φ

(
as − X̄i·√

v/n

)
− Φ

(
as−1 − X̄i·√

v/n

)]
dv.

This integration does not have a closed form solution and we need numerical integration to

calculate Jir.

4.1.2.2 Uniform Scaled Error Distribution

The uniform distribution could be used in the case where we know that the scaled error

density is short-tailed. As discussed in Hart and Cañette(2012), using a long-tailed density

in such cases could potentially lead to improper estimation of the density of interest, fµ,σ2 .

Let fε be a uniform density between −c and c. If c =
√

3, then the variance of fε is 1. In

this case

Jir =

∫ bt

bt−1

∫ as

as−1

(2c
√
v)−nI(Xi(n)−

√
vc,Xi(1)+

√
vc)(m)dmdv

=

∫ √bt
√
bt−1

∫ as

as−1

(2cs)−nI(Xi(n)−sc,Xi(1)+sc)(m)(2s)dmds (where s =
√
v)

= 2−n+1c−n
∫ √bt
√
bt−1

∫ as

as−1

s−n+1I(Xi(n)−sc,Xi(1)+sc)(m)dmds.
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Let the maximum and minimum of the ith dataset be Xi(n) and Xi(1), respectively. Geo-

metrically, we can visualize this as a 2-D plane of (m, s). Jir is 0 for any rectangle if it lies

entirely below either of the lines s = (m−Xi(1))/c or s = (Xi(n) −m)/c.

How two lines intersect with a rectangle creates a number of subcases. In this case,

though, we do not need numerical integration. Instead, we need to consider the subcases

separately. In Appendix A we considered all possible cases to compute the integral Jir.

4.1.2.3 Other Possible Scaled Error Distributions

We can likewise compute Jir for any known fε that has mean 0 and standard deviation 1.

If we need a long-tailed error density with tails heavier than the normal then we could choose

Student’s t-distribution with appropriate degrees of freedom. The t-distribution simply needs

to be scaled to have variance 1 and the degrees of freedom have to be greater than 2 to ensure

finite variance. For this reason, we can not use the Cauchy distribution as fε directly, unless

we change the basic assumption about fε to have median 0 and IQR 1. A mixture of normal

densities is also a possible candidate in case we need a multimodal scaled error distribution.

Though it is possible to estimate error density parameters such as the degrees of freedom

in the case of the t-distribution or the mixing probabilities in the case of a mixture of normal

densities, we try to avoid this since then we need to compute Jir in each iteration of MCMC,

and this quantity involves q × k numerical integrations. This significantly slows down the

estimation algorithm. So, instead of trying to estimate error density parameters, we will try

to estimate the error density nonparametrically, as discussed in Section 4.2.

4.1.3 Algorithm to Estimate the Bin Probabilities

We wish to find the maximum likelihood estimate of pk in order to have a starting value

for our MCMC procedure. Once we calculate Jir for each rectangular bin, we can write

down the likelihood. Now, to find the MLE of pk we need to maximize l(pk) subject to the

constraints pk ≥ 0 and
∑k

r=1 pr,k = 1. By reparameterizing as follows we can automatically

ensure the constraints. pr,k = ear/
∑k

s=1 e
as , r = 1, . . . , k.

54



To ensure identifiability, we set a1 = 0. Now, we can rewrite the likelihood as a function of

a2, . . . , ak, which is easy to maximize using the Newton-Raphson method. The log-likelihood

as a function of a = (a1, . . . , ak) is

l(a) =

q∑
i=1

{
log

(
k∑
r=1

earAr
−1Jir

)
− log

(
k∑
r=1

eas

)}
.

Derivatives of the log-likelihoods are

∂l(a)

∂am
=

q∑
i=1

{
Am
−1Jime

am∑k
r=1Ar

−1Jirear

}
− q eam∑k

r=1 e
ar
,

∂2l(a)

∂a2
m

=

q∑
i=1


∑

r∈{1,...,k}\{m}Ar
−1Am

−1JirJime
aream(∑k

r=1Ar
−1Jirear

)2

− q
∑

r∈{1,...,k}\{m} e
aream(∑k

r=1 e
ar

)2 ,

for m = 2, . . . , k,

∂2l(a)

∂am∂as
=

q∑
i=1

−Am
−1As

−1JimJise
ameas(∑k

r=1Ar
−1Jirear

)2

+ q
eameas(∑k
r=1 e

ar

)2

for m, s = 2, . . . , k, and m 6= s.

After starting with a reasonable initial value a(0), the Newton-Raphson iterates converge

to a value that we call aMLE. Define a(0) = log(0.9pk
naive + 0.1(1/k, . . . , 1/k)), where,

pk
naive are the bivariate histogram probabilities of (X̄i, S

2
i ), i = 1, . . . , q. The iterates of the

Newton-Raphson scheme are

a(t) = a(t−1) −
{
∂2l(a)

∂a2

}−1

a=a(t−1)

{
∂l(a)

∂a

}
a=a(t−1)

, t = 1, 2, . . . .

After maximizing the log-likelihood with respect to the ar’s for r = 2, . . . , k, we find

aMLE or pkMLE, which we will use as a starting value in performing MCMC. The posterior

density h(pk) is defined by (4.1). Let k and s denote the length of the probability vector
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and the number of MCMC iterations respectively. Let f be a proposal density with support

(0,∞). The conditional density qr is defined by

qr(p̃k|pk) =


f
(
p̃r,k

1−pr,k
1−p̃r,k

)
(1−pr,k)

(1−p̃r,k)2 , p̃t,k =
pt,k(1−p̃r,k)

(1−pr,k)
for t ∈ {1, . . . , k} \ {r}

0 otherwise.

Algorithm 1 MCMC algorithm

1: Initialize l = 0 and start the MCMC chain with p(0) = pk
MLE .

2: Initialize r = 1.
3: Generate Q from proposal density f with mean pr,k. Then define p̃r,k = Q

(1−pr,k+Q) and p̃t,k =
pt,k

(1−pr,k+Q) for t ∈ {1, . . . , k} \ {r}.

4: Set pk(l+1) = p̃k with probability min
(

1, h(p̃k)qr(pk|p̃k)
h(pk)qr(p̃k|pk)

)
, and otherwise set pk(l+1) = pk

(l).
5: r = r + 1 and if r < k goto step 3.
6: l = l + 1 and if l < s goto step 2.

The proportion qr(p̃k|pk)
qr(pk|p̃k)

is always positive if we start from a feasible pk that satisfies all

constraints. Here, we are not trying to update pk all at once. Since the dimension of pk is

large, updating with the Metropolis-Hastings algorithm all at once is difficult. So, we are

updating pk componentwise. Finally, we calculate p̂k by taking the average of all iterations,

where p̂k denotes estimated bin probabilities with the number of bins equal to k.

4.1.4 Model Selection

There are a few issues we need to address before fitting the model:

(i) Selecting the support of the histogram.

(ii) Selecting the appropriate error density.

(iii) Selecting the number of bins.
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4.1.4.1 Selecting the Support of the Histogram

As we already discussed, the support of (µ, σ2) is contained in the support of (X̄i·, S
2
i·),

but in reality, using the latter support is quite conservative. This means that most of the

bin probabilities will be 0. To overcome this problem, we will use a two-step procedure. In

the first step we run the algorithm on
[
min(X),max(X)

]
× [min(S2),max(S2)]. The min

and max is defined in Section 3.3.1. Then we get rid of those bins where the estimated

probability is less than some small positive quantity. During the second step we further

divide the bins that have bigger probabilities. There are many ways to define bins that are

rectangular boxes, and it is not clear how to do this in an optimal fashion. A simple solution

is to divide the range of X̄i· into k1 equal parts and the range of S2
i· into k2 equal parts. So,

k = k1 × k2 and the sides of any rectangle are parallel to the axes. For simplicity we choose

k1 = k2.

4.1.4.2 Selecting an Error Density and Number of Bins

As we discussed before, selecting the correct error density is not easy. In this section,

we propose using a Bayes factor to select the error density and the optimum number of

bins for a given error density. Let M(k,fε) denote the model under consideration for a given

combination of k and fε. The quantity pk is the vector of probabilities of length k. As a

prior on k given that the error model is fε we use π(k|fε) ∝ 1/k. The prior on the model

M(k,fε) is π(M(k,fε)) = π(k|fε)π(fε), and we assume that π(fε) is the same for all fε. Let

m(k,fε) denote the marginal of the model M(k,fε) which is defined as

m(k,fε) =

∫
[0,1]k∩

∑k
r=1 pr,k=1

f(X|pk, k, fε)π(pk|k, fε)dpk

and

π(pk, k, fε|X) ∝ f(X|pk, k, fε)π(pk|k, fε)π(k|fε)π(fε).
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Let π(M(k,fε)|X) be the posterior probability of model M(k,fε) is defined as

π(M(k,fε)|X) ∝ m(k,fε)π(M(k,fε)).

The posterior probability of normal error density is

π(fε = N(0, 1)|X) =
∑
k∈N2

π(M(k,fε=N(0,1))|X).

To compare two candidates for the error model, say normal vs. uniform, we can compute

the following posterior odds ratio as

π(fε = N(0, 1)|X)

π(fε = U(−
√

3,
√

3)|X)
.

Now, we can select the error density, denoted by f̃ε, that maximizes π(fε|X). The posterior

distribution of k given the selected error density is

π(k|X, f̃ε) =
m(k,f̃ε)

π(k|f̃ε)∑
r∈N2 m(r,f̃ε)

π(r|f̃ε)
.

Let k̂ denote the optimum k that maximizes the posterior distribution of k given f̃ε. Then

k̂ = arg max
k

(
logm(k,f̃ε)

− log k
)
.

Also, we can find an optimum k using criteria such as AIC or BIC. These are defined by

k̂AIC = arg max
k

(l(p̂k)− k)

k̂BIC = arg max
k

(
l(p̂k)−

k

2
log(q)

)
.
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To calculate m(k,fε) we can use Laplace approximation or importance sampling. The

Laplace approximation is

log(m(k,fε)) ≈ log(f(X|p̆k, k, fε)) + log(π(p̆k|k)) + (k/2) log(2π)− (1/2) log |Σ|

−(k/2) log(q),

where,

p̆k = arg max
pk

log(h(pk)) and Σ =

∂
2
{
−1
q

log(h(pk))
}

∂pk2


pk=p̆k

.

Another way to estimate m(k,fε) is importance sampling. We have

m(k,fε) =

∫
[0,1]k∩

∑k
r=1 prk=1

f(X|pk, k, fε)π(pk|k)dpk

=

∫
[0,1]k∩

∑k
r=1 pr,k=1

f(X|pk, k, fε)
π(pk|k)

g(pk|k)
g(pk|k)dpk

≈ 1

N

N∑
l=1

f(X|p(l)
k , k, fε)

π(p
(l)
k |k)

g(p
(l)
k |k)

,

where, pk(1), . . .pk
(N) are random draws from g(pk|k).

The choice of g(pk|k) is tricky. We choose a k − 1 dimensional multivariate normal with

posterior mean and posterior variance calculated from MCMC iterations. We randomly

choose a number t ∈ {1, . . . , k} at each simulation and then for r ∈ {1, . . . , k} \ {t}, pr,k

follows a univariate normal with mean p̂r,k and standard deviation calculated from all MCMC

iterations. Then define ptk = 1−
∑

r∈{1,...,k}\{t} pr,k. We will accept the simulated pk if pk ≥ 0.

After generatingN simulations of pk we can estimatem(k,fε). The distribution g for randomly
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selected t is

gt(pk|k) =



∏
r∈{1,...,k}\{t}

1
sd(pr,k)

ϕ
(
pr,k−p̂r,k
sd(pr,k)

)
, pt,k = 1−

∑
r∈{1,...,k}\{t} pr,k,

p1,k, . . . , pk,k ≥ 0

0 otherwise,

where ϕ is the standard normal density, and p̂r,k and sd(pr,k) denote the mean and standard

deviation, respectively of the posterior density of pr,k calculated from MCMC iterations.

Here, instead of using one single proposal density g for importance sampling we use a

combination of proposal densities g1, . . . , gk and in each iteration we are choosing one of

them randomly.

4.2 Nonparametric Method for Estimating the Error Density in LSRE Model

To perhaps better infer the error density we can take a non-parametric approach. Con-

sider data Xij, i = 1, . . . , q, j = 1, . . . , n, and suppose that

Xij = µi + σiεij, i = 1, . . . , q, j = 1, . . . , n.

We can rewrite this equation if n ≥ 4. For j 6= l

log(|Xij −Xil|) = log(σi) + log(|εij − εil|).

Suppose, E(log |ε1 − ε2|) = c. Then for j 6= l we have

log(|Xij −Xil|) = log(σi) + c+ (log(|εij − εil|)− c).

This is an LRE model, and Hart and Cañette [2011] describe a way to consistently estimate

the density of εij under very general conditions. Let us call this minimum distance estimator

f̂ε. We can substitute f̂ε for fε in the methodology described in Section 4.2 and therefore
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find an estimate of fµ,σ2 .

4.3 Simulation Study

The mean integrated squared error (MISE) measures the overall accuracy of estimating

fµ,σ2 with a bivariate histogram and we can estimate the MISE based on a Monte Carlo

method using B simulated datasets. MISE and its estimate are defined as

MISE(f̂µ,σ2 , fµ,σ2) =

∫
R+

∫
R
E
(
fµ,σ2(m, v)− f̂µ,σ2(m, v)

)2

dmdv

≈B−1

B∑
b=1

k∑
r=1

1

Ar

(∫
Rr

∫
fµ,σ2(m, v)dmdv −

∫
Rr

∫
f̂ bµ,σ2(m, v)dmdv

)2

,

where Rr, r = 1, . . . , k, denotes the bivariate class-intervals which was used to estimate fµ,σ2

and f̂ bµ,σ2 denotes the estimated density of fµ,σ2 based on the bth simulated dataset. We will

use MISE to measure performance of this method for a wide variety of choices for fµ,σ2 .

To our knowledge there exist no competitors in the literature for our method of estimating

the density of fµ,σ2 . A possible means of estimating fµ,σ2 would be to estimate (µi, σ
2
i ),

i = 1, . . . , q, and to then compute a histogram estimator from the estimates as if they were the

true values of (µi, σ
2
i ). We will call such estimates “plug-in histogram estimates.” For these

“plug-in histogram estimates,”
∫
Rr

∫
f̂µ,σ2(m, v)dmdv is simply the proportion of estimated

mean and variance pairs that lie in the rectangle Rr. There are a few articles, including Xie

et al. [2012] and Weinstein et al. [2018], which address the problem of estimating µi when

σ2
i is known. Jing et al. [2016] further extended the work of Xie et al. [2012] and estimated

both µi and σ2
i . The estimators of Xie et al. [2012] defined by their expressions (7.1), (7.2),

(7.3), (4.2), and (5.1) will be called EBMLE.XKB, EBMOM.XKB, JS.XKB, SURE.G.XKB,

and SURE.M.XKB, respectively. The methods which were referred to as SURE.M.Double

can be found in expressions (11-12) of Jing et al. [2016]. Weinstein et al. [2018] developed

the group-linear algorithm, which is referred to here as GL.WMBZ. All the above estimates

assume that fε is standard normal.

We simulated data from model (1.6) for different choices of fµ,σ2 . For each (µi, σ
2
i ) pair,
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there are n = 4 replications. Only the observations Xij, i = 1, . . . , q, j = 1, . . . , n, are used to

find the estimates of fµ,σ2 . The ensuing tables compare the approximated MISEs of various

methods. We also consider “plug-in histogram estimates” based on the methods of Xie et al.

[2012], Jing et al. [2016], and Weinstein et al. [2018]. Since Xie et al. [2012] and Weinstein

et al. [2018] assumed that σ2
1, . . . , σ

2
q are known, we use S2

1·, . . . , S
2
q· in our “plug-in histogram

estimates” for these methods. We may construct a “plug-in histogram estimate” based on

the true (µi, σ
2
i ) pairs, which we call the true empirical histogram estimate.

4.3.1 Performance of Histogram Estimate for Normal and Uniform Error

In this section, data are generated from model (1.6). For each example it is assumed that

fε is either standard normal, N(0, 1) (Case 1) or a uniform density between −
√

3 and
√

3,

U(−
√

3,
√

3) (Case 2).

Example 21. The density fµ,σ2 is such that µ and σ2 are independent with µ ∼ N(0, 3)

and σ2 ∼ IG(5, 2). When fε ∼ N(0, 1), Figure 4.1 shows SURE.M.Double performs better

than the other methods as it assumes a normal density for µ and Inverse-gamma density for

σ2, which is the true model. The bivariate histogram method does not perform better than

the other methods in both cases as all other "plug-in histogram estimates" assume that µ is

normal. In Figure 4.4, SURE.M.Double does not perform well when fε is uniform.

Example 22. The density fµ,σ2 is such that µ and σ2 are independent with µ ∼ N(0, 3) and

σ2 ∼ G(9, 3). This example is quite similar to Example 21. Except for SURE.M.Double,

the other methods perform similarly in estimating the joint density fµ,σ2 in both cases.

SURE.M.Double outperforms other methods when fε is standard normal but performs poorly

compared to other methods when fε is standard uniform. The bivariate histogram also does

not performs better than other "plug-in histogram estimates" as the true µ distribution is

normal.

Example 23. The density fµ,σ2 is such that µ and σ2 are independent and follow a bivariate

histogram with class boundaries (−2,−1.2,−0.4, 0.4, 1.2, 2)T and (0.01, 0.8, 1.6, 2.4, 3.2, 4)T
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for µ and σ2, respectively. The probability vector pk is drawn from a Dirichlet distribution

with parameter 25−1125, where 125 denotes a vector of 1s of length 25. In this case, the true

underlying model is a histogram, which is not a smooth distribution, and hence our histogram

estimates perform better than all other methods in both cases for estimating fµ,σ2, fµ, and

fσ2.

Example 24. The density fµ,σ2 is such that µ and σ2 are independent with µ ∼ 0.5U(1, 2)+

0.5U(4, 5) and σ2/n ∼ U(0.1, 1). In this example, the distribution of fµ is bimodal. The

histogram estimate outperforms other methods in both cases as other "plug-in estimates"

discussed in Xie et al. [2012] and Jing et al. [2016] work well only for unimodal densities

and the group-linear algorithms discussed in Weinstein et al. [2018] do not perform well when

µ and σ2 are independent.

Example 25. The density fµ,σ2 is such that µ ∼ Inv − χ2
4 and log(σ2)|µ ∼ N(log(µ), 0.52).

Inv− χ4
2 denotes an inverse-chi square distribution with four degrees of freedom. As µ and

σ2 are not independent, SURE based methods do not perform well compared to histogram

and group-linear methods.

Example 26. The density fµ,σ2 is such that µ ∼ Γ(1, 0.5) and σ2|µ ∼ χ2
µ + 0.1, where χµ2

denotes a chi-square density with µ degrees of freedom. Like Example 25, µ and σ2 are not

independent, so the histogram and group-linear methods perform better than other SURE

methods.
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Figure 4.1: Estimated MISE(f̂µ,σ2 , fµ,σ2 ) vs. dimension q for Examples 21-26 of Section 4.3.1 when fε is standard normal.
Dimension size is q = 1000, 2000, . . . , 5000 and number of replications is 100 for each q.
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Table 4.1: Estimated MISE(f̂µ,σ2 , fµ,σ2 ) averaged over values of q. The data were generated from (1.6) with n = 4, fε ∼
N(0, 1), and fµ,σ2 defined by Examples 21-26 of Section 4.3.1. At a given q, MISE is estimated by averaging over 100 replications,
and then a table value is obtained by averaging over q = 1000, 2000, . . . , 5000.

Different MISE of fµ,σ2

Methods Example 21 Example 22 Example 23 Example 24 Example 25 Example 26
True empirical 0.0013 0.0002 0.0005 0.0003 0.0140 0.0016
Sample Statistics 0.0879 0.0191 0.3885 0.0348 1.4554 0.1312
EBMLE.XKB 0.0868 0.0176 0.3741 0.0327 1.2453 0.1300
EBMOM.XKB 0.0868 0.0176 0.3740 0.0327 1.4032 0.1303
JS.XKB 0.0881 0.0191 0.3832 0.0348 1.3821 0.1273
SURE.G.XKB 0.0867 0.0174 0.3757 0.0330 1.4537 0.1310
SURE.M.XKB 0.0867 0.0174 0.3781 0.0330 1.4619 0.1315
GL.WMBZ 0.0868 0.0175 0.3739 0.0329 1.2268 0.1271
SURE.M.Double 0.0384 0.0074 0.2668 0.0353 1.8150 0.4839
Histogram 0.0967 0.0181 0.1761 0.0262 1.2736 0.0952
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Figure 4.2: EstimatedMISE(f̂µ, fµ) vs. dimension q for Examples 21-26 of Section 4.3.1 when fε is standard normal. Dimension
size is q = 1000, 2000, . . . , 5000 and number of replications is 100 for each q.
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Table 4.2: Estimated MISE(f̂µ, fµ) averaged over values of q. The data were generated from (1.6) with n = 4, fε ∼ N(0, 1),
and fµ,σ2 defined by Examples 21-26 of Section 4.3.1. At a given q, MISE is estimated by averaging over 100 replications, and
then a table value is obtained by averaging over q = 1000, 2000, . . . , 5000.

Different MISE of fµ
Methods Example 21 Example 22 Example 23 Example 24 Example 25 Example 26
True empirical 0.0002 0.0002 0.0003 0.0003 0.0018 0.0004
Sample Statistics 0.0003 0.0013 0.2119 0.0752 0.1782 0.0025
EBMLE.XKB 0.0003 0.0011 0.1927 0.0763 0.1127 0.0037
EBMOM.XKB 0.0003 0.0013 0.1968 0.0772 0.1483 0.0032
JS.XKB 0.0003 0.0004 0.1883 0.0697 0.1046 0.0019
SURE.G.XKB 0.0003 0.0022 0.2129 0.0832 0.1767 0.0025
SURE.M.XKB 0.0003 0.0022 0.2254 0.0833 0.1813 0.0045
GL.WMBZ 0.0003 0.0021 0.2479 0.0868 0.1044 0.0036
SURE.M.Double 0.0003 0.0016 0.1817 0.0707 0.1150 0.0122
Histogram 0.0004 0.0016 0.0251 0.0579 0.1478 0.0019
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Figure 4.3: Estimated MISE(f̂σ2 , fσ2 ) vs. dimension q for Examples 21-26 of Section 4.3.1 when fε is standard normal.
Dimension size is q = 1000, 2000, . . . , 5000 and number of replications is 100 for each q.
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Table 4.3: Estimated MISE(f̂σ2 , fσ2 ) averaged over values of q. The data were generated from (1.6) with n = 4, fε ∼ N(0, 1),
and fµ,σ2 defined by Examples 21-26 of Section 4.3.1. At a given q, MISE is estimated by averaging over 100 replications, and
then a table value is obtained by averaging over q = 1000, 2000, . . . , 5000.

Different MISE of fσ2

Methods Example 21 Example 22 Example 23 Example 24 Example 25 Example 26
True empirical 0.0014 0.0002 0.0003 0.0003 0.0019 0.0009
Sample Statistics 0.6368 0.1350 0.4244 0.0860 0.3564 0.0768
SURE.M.Double 1.2293 0.2243 1.4563 0.4646 2.0387 0.5927
Histogram 0.9330 0.1269 0.2553 0.1317 0.1317 0.1685
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Figure 4.4: Estimated MISE(f̂µ,σ2 , fµ,σ2 ) vs. dimension q for Examples 21-26 of Section 4.3.1 when fε is uniform. Dimension
size is q = 1000, 2000, . . . , 5000 and number of replications is 100 for each q.
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Table 4.4: Estimated MISE(f̂µ,σ2 , fµ,σ2 ) averaged over values of q. The data were generated from (1.6) with n = 4, fε ∼
U(−
√

3,
√

3), and fµ,σ2 defined by Examples 21-26 of section 4.3.1. At a given q, MISE is estimated by averaging over 100
replications, and then a table value is obtained by averaging over q = 1000, 2000, . . . , 5000.

Different MISE of fµ,σ2

Methods Example 21 Example 22 Example 23 Example 24 Example 25 Example 26
True empirical 0.0014 0.0002 0.0004 0.0004 0.0139 0.0017
Sample Statistics 0.0553 0.0132 0.4050 0.0284 1.0958 0.1022
EBMLE.XKB 0.0541 0.0115 0.3785 0.0257 0.8234 0.1002
EBMOM.XKB 0.0541 0.0115 0.3756 0.0257 1.0226 0.1006
JS.XKB 0.0552 0.0128 0.3975 0.0274 0.9674 0.0969
SURE.G.XKB 0.0540 0.0112 0.3720 0.0262 1.0932 0.1018
SURE.M.XKB 0.0540 0.0112 0.3748 0.0262 1.0895 0.1015
GL.WMBZ 0.0540 0.0113 0.3594 0.0263 0.7325 0.0961
SURE.M.Double 0.1461 0.0732 0.4838 0.0977 2.0861 0.5094
Histogram 0.0595 0.0162 0.0054 0.0209 0.5777 0.0524
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Figure 4.5: Estimated MISE(f̂µ, fµ) vs. dimension q for Examples 21-26 of Section 4.3.1 when fε is uniform. Dimension size
is q = 1000, 2000, . . . , 5000 and number of replications is 100 for each q.
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Table 4.5: Estimated MISE(f̂µ, fµ) averaged over values of q. The data were generated from (1.6) with n = 4, fε ∼
U(−
√

3,
√

3), and fµ,σ2 defined by Examples 21-26 of Section 4.3.1. At a given q, MISE is estimated by averaging over 100
replications, and then a table value is obtained by averaging over q = 1000, 2000, . . . , 5000.

Different MISE of fµ
Methods Example 21 Example 22 Example 23 Example 24 Example 25 Example 26
True empirical 0.0002 0.0002 0.0003 0.0003 0.0018 0.0004
Sample Statistics 0.0003 0.0013 0.0545 0.0759 0.1841 0.0026
EBMLE.XKB 0.0003 0.0012 0.0363 0.0765 0.1166 0.0040
EBMOM.XKB 0.0003 0.0014 0.0381 0.0781 0.1525 0.0033
JS.XKB 0.0002 0.0004 0.0423 0.0702 0.1221 0.0018
SURE.G.XKB 0.0003 0.0026 0.0502 0.0875 0.1828 0.0026
SURE.M.XKB 0.0003 0.0026 0.0630 0.0875 0.1896 0.0049
GL.WMBZ 0.0003 0.0025 0.0651 0.0944 0.1296 0.0039
SURE.M.Double 0.0003 0.0015 0.0333 0.0707 0.1199 0.0121
Histogram 0.0003 0.0022 0.0015 0.0558 0.0892 0.0087
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Figure 4.6: Estimated MISE(f̂σ2 , fσ2 ) vs. dimension q for Examples 21-26 of Section 4.3.1 when fε is uniform. Dimension size
is q = 1000, 2000, . . . , 5000 and number of replications is 100 for each q.
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Table 4.6: Estimated MISE(f̂σ2 , fσ2 ) averaged over values of q. The data were generated from (1.6) with n = 4, fε ∼
U(−
√

3,
√

3), and fµ,σ2 defined by Examples 21-26 of Section 4.3.1. At a given q, MISE is estimated by averaging over 100
replications, and then a table value is obtained by averaging over q = 1000, 2000, . . . , 5000.

Different MISE of fσ2

Methods Example 21 Example 22 Example 23 Example 24 Example 25 Example 26
True empirical 0.0016 0.0002 0.0003 0.0003 0.0019 0.0009
Sample Statistics 0.4007 0.0941 0.2703 0.0537 0.1891 0.0628
SURE.M.Double 1.5473 0.6829 1.4851 0.6934 1.8773 0.6111
Histogram 0.7447 0.5357 0.0968 0.1076 0.1076 0.0881
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5. SUMMARY AND CONCLUSIONS

Since Stein’s work (Stein [1956]), there has been much progress in using shrinkage esti-

mators of the mean of a high-dimensional normal vector. However, all of the previous work

focuses on estimating µi and σ2
i by minimizing quadratic loss rather than estimating their

bivariate density using a mixture that shrinks the sample means in the appropriate direction.

We have developed a very general algorithm which does not rely on the belief that all µi

are of the same magnitude. Our method uses a mixture of normal-inverse gamma densities

to estimate the bivariate density, fµ,σ2 . This method effectively clusters sample means into

different groups and then shrinks an individual mean towards its corresponding group mean.

Our algorithm outperforms SURE methods in terms of squared error loss when µi and σ2
i

are dependent, and outperforms group linear algorithms in terms of squared error loss when

µi and σ2
i are independent. When µi has a multimodal distribution or when σ2

i is unknown,

our method based on mixtures of normal-inverse gamma distributions performed better than

all the other methods with which it was compared.

Also, our approach allows us to estimate the joint density of (µi, σ
2
i ), a problem which

seems not to have been previously addressed. Our algorithm outperforms SURE methods

when we plug estimated µi and σ2
i into kernel density estimators. In some extreme cases

where our NΓ−1 mixture does not perform well, NΓ−1 KDE always outperforms the other

plug-in estimators.

When fε is not normal then we may not use NΓ−1 mixture to estimate the joint density

of (µ, σ2). We develop an algorithm based on a bivariate histogram which can estimate the

density fµ,σ2 for any known fε. This algorithm outperforms other methods which are based

on “plug-in KDE” when the true density of (µ, σ2) is not smooth. We find that when fµ,σ2 is

smooth, “plug-in KDE” is better estimates of the density fµ,σ2 compare to bivariate histogram

as the bivariate histogram is not smooth. However, bivariate histogram outperforms “plug-in

histogram estimates” in most situations.
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APPENDIX A

COMPUTATIONS FOR UNIFORM SCALED ERROR

In Section 4.1.2.2 we discussed how to compute the integral Jir for all cases. There are

a total of 6 different cases for how two lines can intersect a box in the plane of (m, s).

Case 1: Rectangle entirely outside the region m < Xi(1) + sc and m > Xi(n) − sc.

Case 2: Rectangle entirely inside the region m < Xi(1) + sc and m > Xi(n) − sc.

Case 3: Rectangle intersects m = Xi(n) − sc but not m = Xi(1) + sc. (4 subcases)

Case 4: Rectangle intersects m = Xi(1) + sc but not m = Xi(n) − sc. (4 subcases)

Case 5: Rectangle intersects both lines and intersection is inside rectangle. (4 subcases)

Case 6: Rectangle intersects both lines and intersection is outside rectangle. (4 subcases)

Figure A.1: 4 different subcases of Case 2 and Case 3 when estimating fµ,σ2 using a histogram and
fε is uniform as discussed in Section 4.1.2.2.

Let Tir = 2n−1cnJir and d = n− 1
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Figure A.2: 8 different subcases of Case 5 when estimating fµ,σ2 using a histogram and fε is uniform
as discussed in Section 4.1.2.2.

Tir =

∫ √bt
√
bt−1

∫ as

as−1

(s)−dI(Xi(n)−sc,Xi(1)+sc)(m)dmds

Case 1:

When aj < Xi(n) − c
√
bt or aj−1 > Xi(1) + c

√
bt or

√
bt < (Xi(n) −Xi(1))/(2c) then

Tir = 0

Case 2:

When aj−1 > Xi(n) − c
√
bt−1 and aj < Xi(1) + c

√
bt−1 then

Tir =

∫ √bt
√
bt−1

∫ aj

aj−1

s−ddmds = (aj − aj−1)/(d− 1)[(
√
bt−1)−d+1 − (

√
bt)
−d+1]

Case 3:

When aj−1 < Xi(n) − c
√
bt−1 and aj > Xi(n) − c

√
bt and (aj < (Xi(1) +Xi(n))/2 or

aj < Xi(1) + c
√
bt−1) then

Subcase 1
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Tir =

∫ √bt
√
bt−1

∫ aj

max(aj−1,Xi(n)−sc)
s−ddmds

= (Xi(n) − aj)/(d− 1)[((Xi(n) − aj−1)/c)−d+1 − (
√
bt−1)−d+1]−

c/(d− 2)[((Xi(n) − aj−1)/c)−d+2 − (
√
bt−1)−d+2]+

(aj − aj−1)/(−d+ 1)[(
√
bt)
−d+1 − ((Xi(n) − aj−1)/c)−d+1]

Subcase 2

Tir =

∫ √bt
√
bt−1

∫ aj

Xi(n)−sc
s−ddmds = (Xi(n) − aj)/(d− 1)[(

√
bt)
−d+1 − (

√
bt−1)−d+1]−

c/(d− 2)[(
√
bt)
−d+2 − (

√
bt−1)−d+2]

Subcase 3

Tir =

∫ aj

aj−1

∫ √bt
(Xi(n)−m)/c

s−ddsdm

= (aj − aj−1)/(d− 1)[((Xi(n) − aj−1)/c)−d+1 − (
√
bt)
−d+1]+

(Xi(n) − aj)/(d− 1)[((Xi(n) − aj−1)/c)−d+1−

((Xi(n) − aj)/c)−d+1)] + c/(d− 2)[((Xi(n) − aj)/c)−d+2 − ((Xi(n) − aj−1)/c)−d+2]

Subcase 4

Tir =

∫ √bt
(Xi(n)−sc

∫ aj

Xi(n)−sc
s−ddmds

= (Xi(n) − aj)/(d− 1)[(
√
bt)
−d+1 − ((Xi(n) − aj)/c)−d+1]−

c/(d− 2)[((Xi(n) − aj)/c)−d+2 − ((Xi(n) − aj−1)/c)−d+2]
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Case 4:

When aj−1 < Xi(1) + bkc and aj > Xi(1) + c
√
bt−1 and (aj−1 > (Xi(1) +Xi(n))/2 or

aj−1 > Xi(n) − c
√
bt−1) then

Subcase 1

Tir =

∫ √bt
(aj−1−Xi(1))/c

∫ Xi(1)+sc

aj−1

s−ddmds

= (aj−1 −Xi(1))/(d− 1)[(
√
bt)
−d+1) − ((aj−1 −Xi(1))/c)

−d+1]−

c/(d− 2)[(
√
bt)
−d+2 − ((aj−1 −Xi(1))/c)

−d+2]

Subcase 2

Tir =

∫ √bt
√
bt−1

∫ Xi(1)+sc

aj−1

s−ddmds

= (aj−1 −Xi(1))/(d− 1)[(
√
bt)
−d+1 − (

√
bt−1)−d+1]−

c/(d− 2)[(
√
bt)
−d+2 − (

√
bt−1)−d+2]

Subcase 3

Tir =

∫ aj

aj−1

∫ √bt
(m−Xi(1))/c

s−ddsdm

= (aj−1 −Xi(1))/(d− 1)[((aj −Xi(1))/c)
−d+1 − ((aj−1 −Xi(1))/c)

−d+1]−

c/(d− 2)[((aj −Xi(1))/c)
−d+2 − ((aj−1 −Xi(1))/c)

−d+2]+

(aj − aj−1)/(d− 1)[((aj −Xi(1))/c)
−d+1 − (

√
bt)
−d+1]

78



Subcase 4

Tir =

∫ √bt
√
bt−1

∫ min(Xi(1)+sc,aj)

aj−1

s−ddmds

=

∫ (aj−Xi(1))/c

√
bt−1

∫ Xi(1)+sc

aj−1

s−ddmds+

∫ √bt
(aj−Xi(1))/c

∫ aj

aj−1

s−ddmds

= (aj − aj−1)/(d− 1)[((aj −Xi(1))/c)
−d+1 − (

√
bt)
−d+1]+

(Xi(1) − aj−1)/(d− 1)[(
√
bt−1)−d+1 − ((aj −Xi(1))/c)

−d+1]−

c/(d− 2)[((aj −Xi(1))/c)
−d+2 − (

√
bt−1)−d+2]

Case 5:

When (Xi(n) −Xi(1))/(2c) > (
√
bt−1) and (Xi(n) −Xi(1))/(2c) < (

√
bt) and

(Xi(n) +Xi(1))/2 > aj−1 and (Xi(n) +Xi(1))/2 < aj then

Subcase 1

Tir =

∫ √bt
(Xi(n)−Xi(1))/(2c)

∫ Xi(1)+sc

Xi(n)−sc
s−ddmds

= (Xi(n) −Xi(1))/(d− 1)[(
√
bt)
−d+1 − ((Xi(n) −Xi(1))/(2c))

−d+1]−

2c/(d− 2)[(
√
bt)
−d+2 − ((Xi(n) −Xi(1))/(2c))

−d+2]

Subcase 2

Tir =

∫ √bt
(Xi(n)−Xi(1))/(2c)

∫ Xi(1)+sc

Xi(n)−sc
s−ddmds+

∫ √bt
(Xi(n)−aj−1)/c

∫ Xi(1)+sc

aj−1

s−ddmds

= (Xi(n) −Xi(1))/(d− 1)[(Xi(n) − aj−1)/c)−d+1 − ((Xi(n) −Xi(1))/(2c))
−d+1]+

2c/(−d+ 2)[((Xi(n) − aj−1)/c)−d+2 − ((Xi(n) −Xi(1))/(2c))
−d+2]+

(Xi(1) − aj−1)/(−d+ 1)[(
√
bt)
−d+1 − ((Xi(n) − aj−1)/c)−d+1]−

c/(d− 2)[(
√
bt)
−d+2 − ((Xi(n) − aj−1)/c)−d+2]
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Subcase 3

Tir =

∫ (aj−1−Xi(1))/c

(Xi(n)−Xi(1))/(2c)

∫ Xi(1)+sc

Xi(n)−sc
s−ddmds+

∫ √bt
(Xi(n)−aj−1)/c

∫ aj

Xi(n)−sc
s−ddmds

= (Xi(n) −Xi(1))/(d− 1)[(Xi(n) − aj−1)/c)−d+1 − ((Xi(n) −Xi(1))/(2c))
−d+1]+

2c/(−d+ 2)[((Xi(n) − aj−1)/c)−d+2 − ((Xi(n) −Xi(1))/(2c))
−d+2]+

(Xi(1) − aj−1)/(−d+ 1)[(
√
bt)
−d+1 − ((Xi(n) − aj−1)/c)−d+1]−

c/(d− 2)[(
√
bt)
−d+2 − ((Xi(n) − aj−1)/c)−d+2]

Subcase 4

Tir =

∫ aj

aj−1

∫ √bt
max((Xi(n)−m)/c,(m−Xi(1))/c)

s−ddsdm

= I((aj−1 + aj) < (Xi(1) +Xi(n))){
(Xi(n) −Xi(1))/(d− 1)[((Xi(n) − aj−1)/c)−d+1 − ((Xi(n) −Xi(1))/(2c))

−d+1]+

2c/(−d+ 2)[((Xi(n) − aj−1)/c)−d+2 − ((Xi(n) −Xi(1))/(2c))
−d+2]+

(Xi(1) − aj−1)/(−d+ 1)[((aj −Xi(1))/c)
−d+1 − ((Xi(n) − aj−1)/c)−d+1]+

c/(−d+ 2)[((aj −Xi(1))/c)
−d+2 − ((Xi(n) − aj−1)/c)−d+2]+

(aj − aj−1)/(−d+ 1)[(
√
bt)
−d+1 − ((aj −Xi(1))/c)

−d+1] +
}

I((aj−1 + aj) > (Xi(1) +Xi(n))){
(Xi(n) −Xi(1))/(d− 1)[((aj −Xi(1))/c)

−d+1 − ((Xi(n) −Xi(1))/(2c))
−d+1]+

2c/(−d+ 2)[((aj −Xi(1))/c)
−d+2 − ((Xi(n) −Xi(1))/(2c))

−d+2]+

(Xi(1) − aj − 1)/(−d+ 1)[((Xi(n) − aj−1)/c)−d+1 − ((aj −Xi(1))/c)
−d+1]+

c/(−d+ 2)[((Xi(n) − aj−1)/c)−d+2 − ((aj −Xi(1))/c)
−d+2]+

(aj − aj−1)/(−d+ 1)[(
√
bt)
−d+1 − ((Xi(n) − aj−1)/c)−d+1]

}

Case 6:
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When (
√
bt−1) > (Xi(n) −Xi(1))/(2c) and aj−1 < Xi(n) − c

√
bt−1 and aj > Xi(n) − c

√
bt and

aj−1 < Xi(1) + c
√
bt and aj > Xi(1) + c

√
bt−1 then

Subcase 1

Tir =

∫ √bt
√
bt−1

∫ Xi(1)+s/c

Xi(n)−s/c
s−ddmds

= (Xi(n) −Xi(1))/(d− 1)[(
√
bt)
−d+1 − (

√
bt−1)−d+1]−

2c/(d− 2)[(
√
bt)
−d+2 − (

√
bt−1)−d+2]

Subcase 2

Tir =

∫ √bt
√
bt−1

∫ Xi(1)+s/c

Xi(n)−s/c
s−ddmds

= (Xi(n) −Xi(1))/(d− 1)[(
√
bt)
−d+1 − (

√
bt−1)−d+1]−

2c/(d− 2)[(
√
bt)
−d+2 − (

√
bt−1)−d+2]

Subcase 3

Tir =

∫ Xi(1)+sc

max(aj−1,Xi(n)−sc)

∫ √bt
√
bt−1

s−ddsdm

= (Xi(n) −Xi(1))/(d− 1)[((Xi(n) − aj−1)/c)−d+1 − (
√
bt−1)−d+1]

+ 2c/(−d+ 2)[((Xi(n) − aj−1)/c)−d+2 − (
√
bt−1)−d+2]

+ (aj−1 −Xi(1))/(d− 1)[(
√
bt)
−d+1 − ((Xi(n) − aj−1)/c)−d+1]

+ c/(−d+ 2)[(
√
bt)
−d+2 − ((Xi(n) − aj−1)/c)−d+2]
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Subcase 4

Tir =

∫ aj

aj−1

∫ √bt
max((Xi(n)−m)/c,(m−Xi(1))/c,(

√
bt−1))

s−ddsdm

= I((aj−1 + aj) < (Xi(1) +Xi(n))){
(Xi(n) −Xi(1))/(d− 1)[((Xi(n) − aj−1)/c)−d+1 − (

√
bt−1)−d+1]

+ 2c/(−d+ 2)[((Xi(n) − aj−1)/c)−d+2 − (
√
bt−1)−d+2]

+ (aj−1 −Xi(1))/(d− 1)[((aj −Xi(1))/c)
−d+1 − ((Xi(n) − aj−1)/c)−d+1]

+ c/(−d+ 2)[((aj −Xi(1))/c)
−d+2 − ((Xi(n) − aj−1)/c)−d+2]

+ (aj − aj−1)/(−d+ 1)[(
√
bt)
−d+1 − ((aj −Xi(1))/c)

−d+1]
}

+ I((aj−1 + aj) > (Xi(1) +Xi(n))){
(Xi(n) −Xi(1))/(d− 1)[((aj −Xi(1))/c)

−d+1 − (
√
bt−1)−d+1]

+ 2c/(−d+ 2)[((aj −Xi(1))/c)
−d+2 − (

√
bt−1)−d+2]

+ (Xi(n) − aj)/(d− 1)[((Xi(n) − aj−1)/c)−d+1 − ((aj −Xi(1))/c)
−d+1]

+ c/(−d+ 2)[((Xi(n) − aj−1)/c)−d+2 − ((aj −Xi(1))/c)
−d+2]

+ (aj − aj−1)/(−d+ 1)[(
√
bt)
−d+1 − ((Xi(n) − aj−1)/c)−d+1]

}
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