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ABSTRACT

Statistical analysis of high-dimensional biological data is the central component of “personal-

ized medicine” and “translational bioinformatics.” Two major barriers limit the application of the

extracted information in clinical studies. These barriers are small sample size and lack of biological

interpretability due to the complex classification boundaries of current algorithms.

Motivated in removing these barriers, we focus in this dissertation to introduce novel statistical

analysis algorithms of high-dimensional biological data. We first introduce a novel predictive

model. In particular, we extend the top-scoring pair algorithm to a Bayesian setting. We test the

performance on several real datasets and various simulated data scenarios and show the proposed

method has the best overall performance. Besides having high accuracy rates on real and simulated

data sets, the proposed algorithm has the potential to discover gene markers that may be missed

via other algorithms.

We also suggested the Bayesian Top-Scoring Pair (BTSP) as a feature selection method. We

compared the proposed algorithm with many well-known feature selection methods by combining

the feature selection methods with different well-known classifiers. We checked the performance

of all feature selection methods for different data sets and for different numbers of genes. The

proposed BTSP algorithm has the best overall accuracy rates.

Finally, we introduce a novel biological pathway data-based algorithm (BTSPP). This algo-

rithm uses all pairwise interactions in the gene level and pathway level. We apply the proposed

method and well-known pathway data-based algorithms to different real data sets and check per-

formances in terms of accurately classifying independent test sets and show the proposed algorithm

superiority. We also checked the ability to find the biologically validated pathways related with

diseases of these pathway data-based algorithms, over-representation analysis (ORA), and gene

set enrichment analysis (GSEA). The proposed pathway analysis method has the potential to find

the biologically validated pathways, whereas the others cannot detect the biologically validated

pathways.
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1. INTRODUCTION

A new medicine trend is approaching for reducing the treatment costs and improving individ-

ual health via personalized medicine [1]. With this new perspective, two individuals may receive

different treatments for the same disease regarding their different backgrounds. In order to play a

proactive role, this new medicine approach needs to have predictive and preventive skills. These

skills have been fueled by the high-throughput biological data and computational biological algo-

rithms that extract meaningful patterns from these datasets.

New algorithms for analyzing high-dimensional biological data sets in a more accurate and

meaningful way are expected to play an important role in personalized medicine. This dissertation

focuses on the main topics in the analysis of high-dimensional biological data sets, namely: clas-

sification, feature selection, and pathway analysis. More specifically, we focus on gene expression

analysis by using Bayesian approaches of ranking models. In this chapter, we first present the

motivations of this dissertation, then introduce some biological background, provide an outline of

the dissertation, and finally summarize the main contributions.

1.1 Motivation

Statistical methods that analyze high-dimensional biological datasets help discover a great deal

of information in listing "marker genes" associated with cancers [2, 3, 4, 5] and explain biological

processes. Although there are many proposed algorithms to find patterns in high-dimensional bio-

logical data, they do not offer a high degree of interpretability to medical researchers [6]. Authors

[7] claim there are three barriers that should be handled before discovered biomarkers can be used

in clinical research: technological, mathematical, and translational barriers.

The first problem concerning the technological side is the quality of high-dimensional data ac-

quired by high-throughput technologies. There are two main problems that affect the quality of

biological datasets: batch effects and lab effects. One can determine which lab created the data

by finding patterns from previous datasets. It turns out that samples are not identically distributed

1



from different labs [8]. Since there is fast-paced progress in technology and getting data with

higher quality, data quality of high throughput technologies is expected to become less problem-

atic; however, batch and lab effects are still considerable problems. Most machine learning meth-

ods exhibit big performance changes due to pre-processing techniques and batch effects. Along

with these problems, one should keep in mind that rank-based approaches, analyzing genomic data,

are invariant under a monotonic transformation and reduce the batch effect.

Small sample size and a large number of features create the mathematical barrier. In contrast

to many other applications of statistical learning, in most applications in medicine there are plenty

of features/genes (∼ 10.000) but very small sample sizes (∼ 10). One cannot solve the problem

by just lowering the cost of high-throughput technologies as there are many diseases with very

low frequencies. This troublesome ratio between the number of features and samples is known as

“small n large d” in statistics [9]. The proposed statistical method to analyze high-dimensional

biological data should take this barrier into consideration in order to extract useful information.

There is an obvious need for a reductionist approach to investigate high-dimensional datasets.

While we are trying to extract the small informative portion of the full data, like in the definition

of reductionism, we should not neglect the interactions between different pieces of the system.

The third and very important barrier is translational. In applications involving images or

sounds, there is no need for transparency; however, in genomic studies, we should interpret the

computational results from a biological perspective. Establishing a solid link with potential mech-

anisms is a must for drug development and clinical diagnosis [10]. Many causes of cancers, in-

herited or nonhereditary, can be discovered through biologically interpretable results of modern

machine learning techniques. Unfortunately, the complex classification boundaries of the off-the-

shelf algorithms, often used in genomic studies, make it hard to interpret the results. Examples

of such predictive algorithms are: support vector machines [11, 12], neural networks[13, 3, 2],

multiple decision trees [14, 15], and boosting [16, 17]. Most bioinformatics research areas suffer

from the black-box approach of these predictive algorithms.

There are many ongoing research studies for the analysis of different kinds of high-dimensional
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biological datasets, but this analysis is not an easy task as all of the different platforms may have

different data types (continuous, discrete) and different scales. Rank-based methods have the po-

tential to analyze different datasets, coming from different platforms regardless of the data type

and range. Rank-based methods are also robust to deal with outliers.

Regarding the problems mentioned above, the proposed algorithm to analyze high-dimensional

data should:

• Reduce the batch and lab effects.

• Lead to biological interpretations.

• Demonstrate that the proposed method can compete with other well-known statistical methods

in terms of accuracy rates.

• Deal with the curse of dimensionality.

• Have the ability to hard-wire prior biological knowledge.

The proposed algorithms in this dissertation address these items. This dissertation considers the

lack of interactions between genes or biological pathways and limitations of biological interpreta-

tions. We use biological switches between two genes or biological pathways in the simplest form,

which allow for biological interpretation and use interactions to find the marker genes/pathways.

The statistical methods that we propose deal with lab and batch effects, the curse of dimensionality,

and transparency.

1.2 Biological Background

Deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein are essential for eukaryotic

cells. DNA has the genetic instructions to regulate protein synthesis. DNA has its own alphabet to

encode these genetic instructions: Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). All

eukaryotic cells have almost the same DNA in the same living entity, which may be non-trivial to

understand as different cells at different locations in the body exhibit different functionality.
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RNA plays an important role in functional differentiation among cells. One can think of DNA

as the whole instruction book where different cells use different chapters of this book. Encodable

parts in this book are called genes. The amount of times that these encodable parts are used in a cell

is called gene expression. RNA copies a small part of the whole DNA and leaves the nucleus. This

process is called transcription and the copied unstable single-stranded RNA is called messenger

RNA (mRNA). The alphabet of mRNA is Adenine (A), Cytosine (C), Guanine (G), and Uracil

(U).

After leaving the nucleus, these messenger RNAs are translated into proteins. The alphabet for

proteins is amino acids. Proteins are crucial for life as they are part of every process in cells. The

whole process, starting with DNA and ending with proteins, is called Central Dogma. Proteins

interact with each other and sometimes bind and create more complex structures. Analyzing the

complex structures of the proteins is a whole different research area, which uses many optimization

algorithms to find the optimum structure. The graphs that show interactions between proteins, are

also well used in computational biology and are called protein-protein interaction (PPI) networks.

To understand the factors contributing to a disease or to diagnose an existing disease: blood

tests, imaging techniques (MRI, CT, and PET), and body temperature readings/records are widely

used. The most effective use of these biomarkers is to detect a severe disease at an early stage for

an effective treatment/prevention. It is vital to be aware of risks before a tumor spreads, especially

for cancers. Under the preventive medicine umbrella, biomarkers are great tools for risk indicators.

They can help to prevent the onset of a disease.

Along with these conventional biomarkers, we can count gene expression levels, protein inter-

actions with DNA or enzymes as molecular biomarkers. Analyzing molecular biomarkers presents

great potential to tailor the treatment plan from a personalized medicine perspective. Analyzing

molecular biomarkers is the only way for an early detection of some disease, like rheumatoid

arthritis and Alzheimer’s, as they have no symptom-phase in the early stage [18].

Besides using existing indicators of diseases, we have to discover new biomarker genes for

many diseases and develop the drugs targeting these biomarker genes. There is no doubt high
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dimensional biological data analysis will be the best choice for this task. Statistical bioinformatics

methods, analyzing genomics, proteomics and transcriptomics have the potential to accelerate the

discovery of new biomarkers. With the technological improvements, measuring tens of thousands

of genes expression levels has raised hopes to obtain a more comprehensive understanding of the

molecular mechanism, particularly under cancer conditions.

There are two main groups of genetic disorders: single gene disorders and polygenic disorders.

For the first one, a mutation in a single gene causes the disease and for the latter one, a combined

action of multiple genes causes the diseases. We need algorithms to analyze the genomic datasets

and reveal which gene or genes are responsible for different diseases.

1.3 Dissertation Outline

This chapter covers the main motivations for analyzing high-dimensional biological data sets,

biological backgrounds, and the main contributions of proposed algorithms. This dissertation is

structured as follows:

In Chapter 2, we examine rank-based gene expression classifiers. The Top-Scoring Pair (TSP)

algorithm and its well-known k-TSP extension. Mathematical equations and visual representations

for TSP and k-TSP algorithms are provided.

In Chapter 3, we introduce a novel Bayesian rank-based gene expression algorithm. We provide

a generalization of the proposed algorithm. We illustrate the interpretability and higher accuracy

rates of the proposed algorithm with real and simulated datasets. We also discuss its consistency

and ability to find cancer-related genes that cannot be detected with traditional approaches.

In Chapter 4, we covered the feature selection topic in high-dimensional biological datasets.

We propose an algorithm as a feature selection method and compared its performance with well-

known feature selection methods used in computational biology. We combined all feature selection

methods with three well-known classifiers for a different number of genes, selected by those al-

gorithms. We demonstrate the consistency, efficiency, and higher accuracy rates in the proposed

algorithm.

Chapter 5 introduces a novel biological pathway data-based algorithm to predict a given test
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sample. This novel method has the potential to discover new pathways related to diseases. We

study its performance on real data sets and compare it with the proposed pathway based data

analysis methods and show its superiority.

Finally, Chapter 6 discusses the dissertation’s overall findings and concludes with future re-

search directions.

1.4 Summary of Main Contributions

In brief, this dissertation brings forth the following novel research advancements:

• We propose the Bayesian Top-Scoring Pair (BTSP) Algorithm and define the BTSP score.

• The proposed algorithm takes all pairwise interactions of genes into consideration and cre-

ates interpretable results.

• Despite its simplicity in our experiments, the proposed algorithm obtains higher accuracy

rates than the standard k-TSP, support vector machine, decision tree, k-nearest neighbor, and

naive Bayes algorithms.

• We propose the application of the BTSP algorithm and its generalization k-BTSP as a fea-

ture selection method. We compared the performance of k-BTSP with other well-known

feature selection methods, such as SVM-RFE, Gain Ratio, ReliefF, Information Gain, χ2,

combined with several classification algorithms. Most of the time the highest accuracy rates

are provided by the k-BTSP algorithm.

• We propose a biological pathway data-based algorithm. This algorithm takes all interac-

tions in the gene level and pathway level into consideration. We compare the proposed

pathway data-based analysis method with well-known Log-Likelihood Ratio (LLR), Top-

Scoring Pathways Pairs (TSPP), Pathway Variance (PathVar), Gene Expression Deviation

(GED), and Ranking Log-Likelihood Ratio (R-LLR) algorithms, showing the introduced

algorithm has higher performance and is more consistent.
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• Future work considers extensions of the Bayesian approach to other rank-based classifiers,

such as TST [19] and TSM [20].
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2. TOP SCORING PAIRS ALGORITHMS

One of the core challenges in bioinformatics is to predict the phenotype (i.e., detecting cancer

from normal samples) from a gene expression data. There are many statistical methods, proposed

as predictive models in computational biology; however, very few of them are being used for

clinical utility. The main problem for most of these decision rules is that they are too complex to

allow for biological interpretations.

In order to solve these problems, Dr. Geman and his collaborators [21] proposed the Top-

Scoring Pair (TSP) algorithm that tries to explain a disease with low complexity mechanistically.

The algorithm takes rank into consideration and ignores raw expression values. It seeks rank

switches across the phenotypes/labels. Its main advantage is to produce interpretable results by

using few genes, yet resulting in powerful classification accuracy rates. This algorithm was used

in many research studies, trying to find informative genes related to phenotypes [5, 22, 23, 24, 25].

2.1 TSP

Let X be a matrix representation of the gene expression profile and denote dimension by P

x N, which stands for P genes and N profiles. Xi represents the ith gene expression values. The

probability of ith gene expression values be less than jth gene expression values in a class, pij(c) =

P (Xi < Xj | C = c), is the quantity of interest that we calculate for each pair. We will assume

the class label set as c = {0, 1}, for the sake of simplicity. The score that the TSP classifier seeks

to maximize is:

∆̂ij = |p̂ij(0)− p̂ij(1)|, (2.1)

where p̂ij is the sample estimate of pij . TSP classifier calculates scores (2.1) for each pair of genes

and takes the pair with the highest score to classify the given new sample. If there are several pairs,

having the same best score, there is a second rank score to break the tie and get only one pair. The

second score is:
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Γ̂ij = |µ̂ij(0)− µ̂ij(1)|, (2.2)

µ̂ij(c) =

∑
n∈c (Ri,n −Rj,n)

|c|
, c = 0, 1, (2.3)

where Ri,n is the rank of the ith gene in sample n and |c| is the number of samples of that class.

Eventually, TSP classifier uses only one pair of genes to classify new samples. Let’s assume that

ith and jth gene present the highest TSP score and p̂ij(0) > p̂ij(1); the TSP algorithm predicts a

given test set according to the following criteria:

hTSP (xnew) =


C0, if xnew,i∗ < xnew,j∗ ,

C1, otherwise.
(2.4)

C0 and C1 are flipped for the decision rule if we have p̂i∗j∗(0) ≤ p̂i∗j∗(1).

Figure 2.1: Gene expression values of a pair selected by the TSP algorithm. The training set has
15 normal samples and 15 cancer samples.
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For a better understanding of the TSP algorithm, an illustration is provided. Let’s assume we

have 100 samples - 40 from class 0 (C0) and 60 from class 1 (C1). The contingency table (Table

2.1), showing the ith gene expression is less than the jth gene expression or vice versa is:

Xi ≤ Xj Xi > Xj Total

C0 36 4 40

C1 3 57 60

Table 2.1: Contingency table for two genes ranking among two classes.

The discrimination score ∆̂ij can be calculated as:

∆̂ij = |p̂ij(0)− p̂ij(1)|,

= |36

40
− 3

60
| = 0.85

(2.5)

Let’s assume we applied this process for all pairs and this is the highest score. The TSP

classifier uses ith and jth genes for classification. Since p̂ij(0) is greater than p̂ij(1), the TSP

classifier labels the given test sample as C0 if Xi < Xj or C1 if Xi ≥ Xj for the given test sample.

An example of a TSP pair was illustrated in Figure 2.1. Each point on the x-axis represents

a sample and gene expression values on the y-axis. It is clear we have a “reversal” ordering for

different phenotypes.

2.2 k-TSP

The k-TSP classifier [26] is the most cited and applied extension of the TSP algorithm. The

k-TSP classifier is a trivial generalization of TSP classifier, it uses k disjoint pairs, selected by TSP

scores. Usually, an odd number k is selected and k-TSP performs the unweighted majority voting

to classify the given data point:

10



hkTSP (xnew) = arg max
C∈{C0,C1}

k∑
r=1

I(hr(xnew) = C) , (2.6)

where hr(·) is the TSP classifier based on the pair r, for r = 1, . . . , k.

If we take the previous example, after choosing ith and jth genes the k-TSP classifier searches

for the second highest score, which doesn’t include either ith or jth genes and uses the pair as the

second one and keeps adding till it reaches k pairs.

A demonstration is provided in Figure 2.2. After applying TSP score (2.1) for each pair of

genes, 9 disjoint pairs were selected (k = 9). Let I = i1, i2, ...i9 and J = j1, j2, ..., j9 represent these

9 pairs. The number of times I > J and J > I present a reversal attitude between phenotypes.

Figure 2.2: The number of votes for each class among k = 9 pairs selected by k-TSP algorithm.
The training set has 15 normal samples and 15 cancer samples.

2.2.1 Selecting k in k-TSP

Selecting the number of pairs used in the k-TSP algorithm is an important problem. The number

of informative genes for each training set is unknown and needs to be well defined. If we use fewer
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genes than the true number, we may miss the pattern or if we use more genes than the classifier

needs we may add noisy genes, causing worse performance. Two different approaches have been

proposed to select k in k-TSP algorithm.

2.2.1.1 Cross Validation

The optimum k is defined by cross-validation [26]. If there are N samples with the given

training set, the authors use m fold cross-validation where m = N / 3. k’s with the given range are

used in each time and the k with best-averaged accuracy is chosen.

2.2.1.2 Variance Optimization

In this approach, the optimum k is defined by the one which maximizes the τ score. The score

was defined in [20].

τ̂kTSP =
δ̂kTSP ((i∗1, j

∗
1), . . . , (i∗k, j

∗
k))

σ̂kTSP ((i∗1, j
∗
1), . . . , (i∗k, j

∗
k))

=

∑k
r=1 ∆̂i∗rj

∗
r√

V̂ ar(
∑k

r=1 [I(Xi∗r < Xj∗r )]|Y = 0) + V̂ ar(
∑k

r=1 [I(Xi∗r < Xj∗r )]|Y = 1)
,

(2.7)

where δ̂kTSP is the sum of top k-TSP scores and σ̂kTSP is the measure of the variances of these top

k-TSP scores. This approach is much faster than the cross-validation approach.
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3. BAYESIAN TOP SCORING PAIRS CLASSIFIER

With the ability of high-throughput technologies, high-dimensional biological data generation

has been a common practice. Statistical analyzing methods, which deal with high-dimensional

data, permeate the literature. Many studies analyzing high-dimensional gene expression data,

helped to build predictive models by extracting compelling information from the data [27, 28, 29,

30, 31, 32, 23, 33]. From an expert point of view, it is crucial to identify informative/discriminative

genes among thousands of candidates. Finding the optimal gene set is an N-P hard problem as there

are 2p possibilities for the given p genes, which are mostly thousands or even tens of thousands.

Most of the conventional classification algorithms are designed to analyze image/speech data

or text mining but not for analyzing genomic datasets. These off-the-shelf methods (e.g., neural

networks [13, 3], support vector machines (SVM) [11, 12], k-nearest neighbors (kNN) [34, 35],

boosting [16], and naive Bayes (NB) [34]) when applied to biological datasets use non-linear

functions to analyze the given data. These algorithms and their complex classification boundaries

obstruct biological interpretations. There is not much hope in terms of biological interpretability

and additional validations by experts due to the "black-box" approach employed by these non-

linear functions.

The main problem with genomic datasets is that the number of features/genes greatly exceeds

the number of samples. This problem is also known as the curse of dimensionality. Using all

or many features of the data will cause overfitting, which results in worse classification accuracy

for independent test data. Because of a large number of genes, it is not an easy task to remove

irrelevant and redundant genes.

Ignoring the interactions between genes may cause the loss of inheritability [36]. In recent

years, several methods have been proposed to find informative genes and classify cancers according

to interactions between genes, such as Top-Scoring Pair classifier [21], doublets [37], binary matrix

shuffling filter (BMSF) [38], etc.

The aim of this study is to design a novel classification method that presents high classification
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accuracy rates for small samples, yet the decision rule allows us to make biological interpreta-

tions. We extend the TSP classification approach to a Bayesian setting. We use the Bradley-Terry

model’s [39] Bayesian extension proposed by Caron and Doucet [40] to rank data. The skill pa-

rameters that we get via the Bayesian Bradley-Terry model are used in the Bayesian TSP score that

we define. We select an informative pair of genes according to this Bayesian TSP score and define

the Bayesian TSP classifier.

We compared the accuracy of the proposed algorithm with TSP family classifiers and well-

known machine learning methods used to analyze genomic datasets. 10 gene-expression datasets

from various studies and synthetic data with different scenarios were used. The algorithm that we

proposed shows the best overall accuracy rates, both for real and simulated data.

3.1 Bradley-Terry Model

Ranked data analysis is being used in many different research areas, such as marketing, psy-

chology, behavioral studies, evaluating players’ and teams’ performances in different sports, politi-

cal surveys, etc. A wide variety of methods have been proposed in paired comparisons to rank data.

A bibliography about paired comparisons mentions more than a hundred entries as early as 1976

[41]. The Bradley-Terry (BT) Model is one of the most well-known and fundamental methods to

rank data via paired comparisons. It has been introduced by Ralph Bradley and Milton Terry [39].

The worth or merit of a unit is measured through paired comparisons. Let i and j be 2 individuals

from a group, Bradley and Terry [39] introduced the following model:

πij = Pr(i beats j | ϑi, ϑj) =
ϑi

ϑi + ϑj
, (3.1)

where parameter ϑi is a positive-valued skill/strength of individual i. It is trivial that πij + πji = 1.

A nonlinear representation of the skill parameters, ϑi = eβi , allows for a logistic representation of

the BT Model:

πij =
1

1 + e−(βi−βj)
= η(βi − βj) (3.2)
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where η(.) represents the inverse-logit function [42]. Various applications leverage the BT model.

For instance, Chess and GO players ranking by international federations, multiclass classification

based on binary classifiers [43], influence rankings of journals and many more use the BT model.

Let wij represent number i ranks higher than j, wi is the total number of “wins” of i against

all other individuals, and nij denotes total number of times individual i compared with individual

j, nij = wij + wji. We can leverage defined statistics to estimate unobserved individual skill

parameters, {ϑi}. The log-likelihood function of the BT model is:

`(ϑ) =
∑

1≤i 6=j≤M

[wij log ϑi − wij log(ϑi + ϑj)]

=
M∑
i=1

wi log ϑi −
∑

1≤i<j≤M

nij log(ϑi + ϑj) .

(3.3)

Hunter [44] proposed Minorization-Maximization (MM) algorithms to perform ML estimator

for the BT Model:

ϑ
(k+1)
i = wi

(∑
i 6=j

nij

ϑ
(k)
i + ϑ

(k)
j

)−1
, i = 1, . . . ,M, (3.4)

which is repeated until convergence. Caron and Doucet [40] showed that the MM algorithm is

indeed a special case of Expectation-Maximization (EM) algorithms. The main problem with the

frequentist approach is its strong assumption that no player or group of players may win or lose all

the times against others.

3.2 Bayesian Approach for BT Model

There have been some studies, performing Bayesian inference for generalized BT Models, in

order to overcome the difficulties of the frequentist approach to estimate skill parameters. The

posterior density is not tractable most of the time, and it needs to be approximated. Hussain and

Aslam [45] offered a Bayesian approach for the log-linear version of the BT Model via Jeffreys

Prior. An Expectation-Propagation (EP) algorithm was proposed by Guiver and Snelson [46]. It
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uses a functional approximation of the posterior; however, it is not clear about its convergence

properties. Metropolis-Hasting (MH) algorithms have been proposed by Adams [47] and Gormley

and Murphy [48].

Caron and Doucet [40] suggested a Gibbs sampler method to estimate the parameters {ϑi}.

They assumed the prior for ϑ as independent Gamma distribution, like in [49, 46]:

p(ϑ) =
M∏
i=1

Gamma(ϑi; b, d) , (3.5)

where b and d are the shape and rate hyperparameters.

The BT model enjoys the following “Thustonian” interpretation. Consider two independent

exponential variables, Uli ∼ Exp(ϑi) and Ulj ∼ Exp(ϑj), for each individual pair, i and j, where

l = 1, 2, ...,M represents every single comparison between these two individuals. The probability

of Uli is less than Ulj depends only on rate parameters:

P (Uli < Ulj) =
ϑi

ϑi + ϑj
. (3.6)

Instead of using these latent variables, Caron and Doucet introduced a new latent variable for

each individual pair, i and j, to infer a simpler log-likelihood:

Zij =

nij∑
l=1

min{Ulj, Uli} . (3.7)

These latent variables make it easy to obtain a complete log-likelihood. Since min{Ulj, Uli} ∼

Exp(ϑi + ϑj) and an exponential family property claims that summation of identically distributed

exponential variables are Gamma distributed, we conclude that Zij ∼ Gamma(nij, ϑi+ϑj). Shape

and rate parameters of this Gamma distribution are nij and ϑi + ϑj , respectively. The resulting

density of the latent variables, Z, conditional upon the data, D, and skill parameters, ϑ, is:

p(z | D,ϑ) =
∏

1≤i<j≤M
s.t. nij>0

Gamma(zij;nij, ϑi + ϑj) (3.8)
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which we can use to obtain the complete log-likelihood:

`c(ϑ) =
∑

1≤i 6=j≤M
s.t. wij>0

wi log(ϑi)−
∑

1≤i<j≤M
s.t. nij>0

[(ϑi + ϑj)zij − (nij − 1) log zij + log Γ(nij)] (3.9)

where Γ(.) is the gamma function.

A Gibbs sampling strategy was proposed in [40] for sampling from the posterior p(ϑ,Z | D).

Updating latent variables, Z, conditional upon skill parameters, ϑ, can be carried out by using

(3.8):

Zt+1
ij | D,ϑ

t ∼ Gamma(nij, ϑ
t
i + ϑtj) (3.10)

It is easy to sample the skill parameters, ϑ, from the conditional probability p(ϑ | Z,D) ∝

p(ϑ)`(ϑ, z), as it can be expressed easily with the conjugate prior for the complete likelihood:

ϑt+1
i | D,Zt+1 ∼ Gamma

b+ wi, d+
∑
i<j

s.t. nij>0

zt+1
ij +

∑
i>j

s.t. nij>0

zt+1
ji

 . (3.11)

There are other generalizations of the Bayesian BT Model in the paper [40] such as: models

taking home advantages into consideration, and models with ties and group comparisons to rank

individuals. We will not mention about these generalizations as we are using the previous Gibbs

sampler model. We also tried the model with ties; however, we did not see much improvement in

the classification performance.

3.3 Bayesian Top Scoring Pairs

We use the Bayesian BT model to design a top scoring pairs classifier. ϑ0 represent skills

sampled from the posterior distribution of genes in class 0, and ϑ1 denote skills sampled from the

posterior distribution of genes in class 1. The probabilities of the ith gene expression being greater

than the jth gene expression in class 0 and class 1 are:
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π0
ij =

ϑ0
i

ϑ0
i + ϑ0

j

and π1
ij =

ϑ1
i

ϑ1
i + ϑ1

j

(3.12)

The main goal is to find the most informative/discriminative genes among different phenotypes.

For this purpose, one should find the biggest flip of the probability of the ith gene expression being

greater than the jth between classes. We introduce the Bayesian Top-Scoring Pair (BTSP) score to

answer this question:

Ωij =
∣∣π0
ij < π1

ij

∣∣ =

∣∣∣∣ ϑ0
i

ϑ0
i + ϑ0

j

− ϑ1
i

ϑ1
i + ϑ1

j

∣∣∣∣ , (3.13)

and choose the pair maximizing the BTSP score,

(i∗, j∗) = arg max
(i,j)∈P

Ωij (3.14)

where P represents the whole gene space. If π0
i∗j∗ < π1

i∗j∗ , the (BTSP) classifier predicts a given

test sample as:

hBTSP (xnew) =


C0, if xnew,i∗ < xnew,j∗ ,

C1, otw.

(3.15)

If π0
i∗j∗ ≥ π1

i∗j∗ , the (BTSP) classifier predicts a given test sample as:

hBTSP (xnew) =


C0, if xnew,i∗ > xnew,j∗ ,

C1, otw.

(3.16)

Figure 3.1 summarizes the BTSP algorithm.
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Figure 3.1: Overview of the BTSP algorithm. Gene expression values are used to estimate skill
parameters for each gene in different biological phenotypes. BTSP scores are calculated for each
pair of genes via estimated skill parameters. The pair having the highest BTSP score is used to
estimate the given test sample.

3.4 k-BTSP

The BTSP classification rule can be extended by choosing more than one pair. We choose an

odd number k of disjoint top scoring pairs according to Ωij and define a classifier as in (2.6). hr(·)

denotes the BTSP classifier based on pair r, for r = 1, . . . , k. We call this the k-BTSP classifier.
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Dataset Number of Genes Class I Size Class II Size References

Colon 2000 22 40 Alon et al. (1999) [50]
Leukemia1 7129 25 47 Golub et al. (1999) [27]

DLBCL 7129 58 19 Shipp et al. (2002) [28]
Lung 12,533 150 31 Gordon et al. (2002) [29]

Breast1 22,283 62 42 Chowdary et al. (2006) [30]
Leukemia2 12,564 24 24 Armstrong et al. (2002) [31]
Squamous 12,625 22 22 Kuriakose, Chen et al. (2004) [32]

CNS 7129 25 9 Pomeroy et al. (2002) [51]
Myeloma 12,625 137 36 Tian et al. (2003) [52]
Breast2 22215 43 75 Chin et al. [53]

Table 3.1: The datasets: Ten datasets involving two disease-related phenotypes, illustrating the
“small n, large d” situation. The samples sizes for the two classes and the number of features/genes
are shown in the table.

3.5 Results

3.5.1 Real Data

10 genomic datasets (Table 4.1) from different studies are used to compare the proposed classi-

fier’s performance against the conventional TSP family classifiers and other off-the-shelf machine

learning methods, which are used in analyzing genomic datasets. We first employ the variance

filter in order to reduce the number of genes to 2000 for all datasets.

Since we investigate the small sample size performances of all classifiers, a small part of the

data was used as a training set while the rest was used as the test set. 20% of each data is used to

train classifiers and performances of these classifiers are tested in the remaining 80% of each data.

We repeat this procedure 100 times and record the average accuracy for all classifiers.

Estimated classification accuracy rates are presented in Table 3.2. The proposed Bayesian-

based Top Scoring Pair approach and its generalization are shown in BTSP and k-BTSP columns

accordingly. TSP and k-TSP represent the Top Scoring Pair and its generalization to top disjoint k

pairs. We applied Decision Tree (DT), Naive Bayes (NB), Support Vector Machine (SVM) and k

Nearest Neighbor (kNN) algorithms as predictive models.

One should compute the skill parameters of all genes before applying BTSP and k-BTSP algo-
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Dataset TSP k-TSP DT BTSP k-BTSP NB SVM k-NN

Leukemia1 0.881 0.8968 0.7862 0.8713 0.9222 0.8305 0.89 0.7989
Colon 0.714 0.746 0.6586 0.7446 0.8072 0.657 0.7506 0.7366

DLBCL 0.7783 0.8429 0.7508 0.7714 0.8682 0.7798 0.8771 0.7601
Lung 0.9504 0.971 0.9299 0.9368 0.979 0.9626 0.985 0.9518

Breast1 0.9297 0.9457 0.8692 0.9359 0.974 0.9192 0.9301 0.9256
Leukemia2 0.8884 0.9315 0.8328 0.8711 0.9582 0.8744 0.9531 0.9468
Squamous 0.8042 0.8085 0.7122 0.7505 0.8454 0.6362 0.8768 0.7977

CNS 0.6992 0.7251 0.5966 0.6796 0.7522 0.7215 0.7114 0.7070
Myeloma 0.6695 0.7318 0.6903 0.6793 0.749 0.7878 0.7592 0.7885
Breast2 0.7829 0.8313 0.7468 0.7731 0.8672 0.8495 0.8442 0.8524

Average 0.8098 0.8431 0.7573 0.8014 0.8722 0.8019 0.8559 0.8265

Table 3.2: Comparison classification accuracy rates on real data. The highest accuracy for each
dataset is highlighted in boldface.

rithms. We run 1700 iterations, with 400 burn-in iterations, in (3.10, 3.11) . To construct the prior

(3.5) for skills, we tried fixed hyperparameters and a Metropolis-Hasting algorithm; however, in

both cases, the accuracies did not change much.

Choosing k for the k-TSP algorithm is another important point. We applied both variance

optimization [20] and cross validation [54] methods to choose optimum k in the k-TSP algorithm.

The k-TSP column is created by choosing the maximum accuracy of variance optimization, cross-

validation, and fixed 9 pairs methods in Table 3.2. Even though the k-TSP classifier has the freedom

to choose optimum k up to 9, we fixed k to 9 in the k-BTSP classifier. If one fixes the k to 9 in k-

TSP the average accuracy rate for the k-TSP column will be 2% less. The SVM [55] classifier uses

the top 100 genes selected by the recursive feature elimination (RFE) method. If we use around 20

genes as we do for the k-BTSP classifier, the average accuracy rate for SVM drops around 2-3%.

kNN uses three neigbours and NB uses all genes. The algorithm we proposed, k-BTSP, has the

highest average accuracy rate. k-BTSP has the highest accuracy rate six times out of ten data sets

and the second highest accuracy rate three times out of ten data sets.

Using individual gene ranking [56] does not guarantee to have the most informative genes

as it does not take redundancy and interactions into consideration. As a consequence of these
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approaches, selected features may have low power. An example is shown in Table 3.3. The k-BTSP

classifier is trained by 20% of the Colon data [50]. Three pairs of genes, having highest BTSP

scores, are represented in Table 3.3. Four out of six genes fail to reject the null hypothesis that

different class samples’ means are the same at the default 5% significance level. So an individual

gene ranking method does not take these 4 genes into consideration as there is not much change

between classes. On the other hand, the k-BTSP classifier detects these genes and gets a high

accuracy rate for the given new samples. The gene with a 0.8752 p-value is GH1 and it is shown

that this gene is related to colon cancer [57, 58].

Entrez ID p-value

493 0.0457

576 0.2198

1727 0.8752

1102 0.3321

1791 0.3986

251 0.0042

Table 3.3: P-values of three pairs of genes, having highest BTSP scores.

The k-BTSP algorithm preserves the k-TSP’s advantages. A remarkable advantage is to prevent

experimental system differences, such as batch effects and background deviations. One of the

main advantage of the k-BTSP algorithm compared to k-TSP is that k-TSP checks just pairwise

interactions to calculate TSP scores while k-BTSP checks all pairwise interactions to get skill

parameters for each gene and calculate BTSP scores.

If we have few samples, the TSP score (2.1) to select pairs in the k-TSP classifier does not have

high resolution where the BTSP score (3.13) has better resolutions. Table 3.4 shows the highest

9 TSP and BTSP scores of disjoint pairs. Since there are many pairs having the same TSP score

the k-TSP algorithm checks for the second score for many pairs. One may think to use the second
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BTSP Score TSP Score

0.9013 1

0.8742 1

0.8711 1

0.8707 1

0.8628 1

0.8362 1

0.8327 1

0.8269 1

0.8241 1

Table 3.4: The comparison of BTSP and TSP scores for top nine disjoint pairs. The resolution
of TSP scores is low, so k-TSP has to use the second score as a tie breaker, which lowers the
performance.

TSP score (2.2) first instead of the first TSP score (2.1). This practice will lower the accuracy rates

of classification of the independent test sets. So deciding pairs based on the second score is not a

good choice compared to the first score; however, the TSP algorithm has to use the second score

most of the time as the resolution of the score is low.

We also compared the consistency of k-TSP and k-BTSP algorithms. It is important to check

if the proposed algorithm uses very different genes for every different training set selected from

the same data. For this reason, we checked the total number of different genes that k-TSP and

k-BTSP are using to classify the Colon data [50]. We again used 20% of the data as the training

set and repeated the procedure 100 times. The k-BTSP algorithm uses 332 different genes out of

2000 genes while the k-TSP algorithm uses 488 different genes out of 2000 genes. So the k-TSP

algorithm uses 50% more genes than k-BTSP.

3.5.2 Synthetic Data

In order to understand the accuracy trends in synthetic data, we follow the settings in [59] that

considers four feature/gene types in constructing the synthetic data. As Figure 3.7 shows, global

markers differ between classes, heterogeneous markers change within a class and a bigger part of
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Figure 3.2: Classification accuracy rates for colon data. The box plots show the distribution of the
100 runs for each classifier. Red starts are mean of the 100 runs.

Figure 3.3: Classification accuracy rates for leukemia1 data. The box plots show the distribution
of the 100 runs for each classifier. Red starts are mean of the 100 runs.

the data contains high-variance and low variance non-markers. As it can be seen from the Figure

3.7, the majority of genes are low-variance and high-variance non-markers in the simulated data

setup. We used 3 different scenarios to choose the numbers of global and heterogenous markers:

• Dgm = 10 / Dhm = 45

• Dgm = 20 / Dhm = 40

• Dgm = 30 / Dhm = 35

where Dgm represents the number of global marker genes and Dhm represents the number of
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Figure 3.4: Classification accuracy rates for breast1 data. The box plots show the distribution of
the 100 runs for each classifier. Red starts are mean of the 100 runs.

Figure 3.5: Classification accuracy rates for leukemia2 data. The box plots show the distribution
of the 100 runs for each classifier. Red starts are mean of the 100 runs.

heterogenous markers. We selected 3900 high-variance non-markers and 16000 low-variance non-

markers.

We applied the same procedure that we followed for the real data. A variance filter is applied

first and we used top 2000 genes for all classifiers. The k-TSP algorithm has the freedom to choose

up to nine pairs. The k-TSP accuracy rates represent the highest value of variance optimization,

cross-validation and fixed k = 9. If we use the fixed k = 9 like we do in the k-BTSP, the accu-

racy rates of k-TSP will drop around 2%. SVM uses top 20 genes selected by recursive feature

elimination method. k-NN uses three nearest neighbors and Naive Bayes uses all genes.
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Figure 3.6: Classification accuracy rates for breast2 data. The box plots show the distribution of
the 100 runs for each classifier. Red starts are mean of the 100 runs.
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Figure 3.7: A demonstration of four gene types’ distribution in constructing the synthetic data.

Variance pairs, σ1, σ2, define how hard it is to differentiate two phenotypes. If they are small,

it is easier to differentiate two phenotypes, whereas it becomes more difficult to find the true label

for bigger variance pairs. We combine four different variance pair distributions, σ1/σ2, with three

different global marker choices for different training sample sizes. 100 test samples generated with

the same parameters of training sets and accuracy rates calculated on these test sets. The procedure
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Distributions Global Markers TSP k-TSP DT BTSP k-BTSP NB SVM k-NN

σ1 = 0.3
σ2 = 0.5

10 0.5979 0.7062 0.6166 0.6039 0.7194 0.5230 0.6160 0.6135
20 0.6199 0.7560 0.6635 0.6111 0.7618 0.5531 0.7130 0.6750
30 0.6327 0.8034 0.6918 0.6298 0.8174 0.5614 0.7539 0.7561

σ1 = 0.5
σ2 = 0.5

10 0.5614 0.6426 0.5729 0.5580 0.6472 0.5157 0.5948 0.6307
20 0.6004 0.6945 0.6043 0.5998 0.7191 0.5250 0.6704 0.6795
30 0.6652 0.7434 0.6451 0.6428 0.7714 0.5477 0.6976 0.7370

σ1 = 0.7
σ2 = 0.7

10 0.5516 0.5776 0.5233 0.5362 0.5880 0.5058 0.5494 0.5645
20 0.5682 0.6136 0.5377 0.5594 0.6214 0.5106 0.5768 0.5993
30 0.5688 0.6458 0.5612 0.5667 0.6489 0.5257 0.5902 0.6272

σ1 = 0.5
σ2 = 0.8

10 0.5341 0.5696 0.5244 0.5437 0.5838 0.5109 0.5300 0.5482
20 0.5640 0.6008 0.5550 0.5662 0.6234 0.5261 0.5633 0.5717
30 0.5993 0.6686 0.5847 0.5929 0.6821 0.5400 0.5937 0.6098

Table 3.5: Estimated classification accuracy for simulated datasets. Training sample size is 10.
Distributions show different variance pair distributions. It is harder to differentiate higher variance
pairs. The highest accuracy for each dataset is highlighted in boldface.

was repeated 100 times and the average accuracy rates are presented in Tables 3.5, 3.6, 3.7 and 3.8.

The results show for all different global marker numbers, variance pair distributions and train-

ing sample sizes, the average accuracy rates of k-BTSP algorithm beat all the others. The larger

variance we use, it becomes harder to differentiate between the different phenotypes. Results show

the algorithm we proposed is a clear winner most of the times, especially for larger variance pairs.

3.5.3 Conclusion

Main problems with analyzing high-dimensional biological datasets are their small sample

sizes, compared to feature/gene set and interpretable results of predictive models. We proposed a

novel Bayesian rank based classifier to overcome these problems. We compared the performance

of the proposed algorithm with popular rank based algorithms and off-the-shelf methods. The

results on real datasets and simulated datasets show that the algorithm we propose presents the

highest overall performance. Besides its high performance, the simplicity of the proposed decision

rule provides links with biological understanding. The k-BTSP algorithm promises to investigate

important mutations and marker genes.

27



Distributions Global Markers TSP k-TSP DT BTSP k-BTSP NB SVM k-NN

σ1 = 0.3
σ2 = 0.5

10 0.6952 0.7382 0.7516 0.6938 0.8315 0.6460 0.8140 0.6760
20 0.7130 0.8070 0.8364 0.7092 0.8899 0.6946 0.8823 0.7460
30 0.7218 0.8174 0.8593 0.7201 0.9069 0.7239 0.8957 0.8167

σ1 = 0.5
σ2 = 0.5

10 0.6657 0.7012 0.7397 0.6554 0.7823 0.6291 0.7431 0.7272
20 0.6817 0.7604 0.7834 0.6747 0.8380 0.6306 0.8212 0.7778
30 0.6958 0.8122 0.7946 0.7033 0.8500 0.6636 0.8442 0.8230

σ1 = 0.7
σ2 = 0.7

10 0.6018 0.6254 0.6162 0.5909 0.6835 0.5353 0.6175 0.6445
20 0.6085 0.666 0.6543 0.6361 0.7286 0.5718 0.6740 0.6672
30 0.6410 0.6815 0.6953 0.6393 0.7586 0.5740 0.7240 0.6982

σ1 = 0.5
σ2 = 0.8

10 0.5936 0.6137 0.6178 0.6201 0.6950 0.5321 0.6019 0.5716
20 0.6279 0.6554 0.6795 0.6259 0.7422 0.5572 0.6810 0.5993
30 0.6366 0.7059 0.7154 0.6428 0.7671 0.5969 0.7343 0.6570

Table 3.6: Estimated classification accuracy for simulated datasets. Training sample size is 20.
Distributions show different variance pair distributions. It is harder to differentiate higher variance
pairs. The highest accuracy for each dataset is highlighted in boldface.

Distributions Global Markers TSP k-TSP DT BTSP k-BTSP NB SVM k-NN

σ1 = 0.3
σ2 = 0.5

10 0.7163 0.8312 0.7128 0.8453 0.8810 0.7402 0.8780 0.7050
20 0.7209 0.8543 0.8526 0.7244 0.9062 0.8310 0.9215 0.7704
30 0.7265 0.8579 0.8572 0.7408 0.9330 0.8516 0.9438 0.8382

σ1 = 0.5
σ2 = 0.5

10 0.6797 0.7971 0.7837 0.6946 0.8320 0.7271 0.8260 0.7629
20 0.7093 0.8226 0.8107 0.7025 0.8708 0.7696 0.8890 0.8101
30 0.7122 0.8361 0.8185 0.7181 0.9031 0.8370 0.9230 0.8480

σ1 = 0.7
σ2 = 0.7

10 0.6279 0.7025 0.6535 0.6186 0.7162 0.6044 0.6870 0.6618
20 0.6296 0.7375 0.6782 0.6503 0.7564 0.6425 0.7515 0.6950
30 0.6580 0.7635 0.7000 0.6597 0.8043 0.6809 0.7908 0.7387

σ1 = 0.5
σ2 = 0.8

10 0.6348 0.6930 0.6930 0.6481 0.7059 0.5741 0.6683 0.5770
20 0.6493 0.7524 0.7403 0.6635 0.7721 0.6332 0.7570 0.6247
30 0.6660 0.7766 0.7588 0.6826 0.8387 0.6907 0.8141 0.6679

Table 3.7: Estimated classification accuracy for simulated datasets. Training sample size is 30.
Distributions show different variance pair distributions. It is harder to differentiate higher variance
pairs. The highest accuracy for each dataset is highlighted in boldface.
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Distributions Global Markers TSP k-TSP DT BTSP k-BTSP NB SVM k-NN

σ1 = 0.3
σ2 = 0.5

10 0.7182 0.8601 0.8687 0.7304 0.8890 0.8481 0.9040 0.7049
20 0.7291 0.8831 0.8815 0.7404 0.9109 0.8838 0.9326 0.8050
30 0.7273 0.8884 0.8913 0.7573 0.9426 0.891 0.9547 0.8660

σ1 = 0.5
σ2 = 0.5

10 0.7008 0.8232 0.8118 0.7061 0.8523 0.846 0.8617 0.7387
20 0.7096 0.8470 0.8243 0.7246 0.882 0.8567 0.9038 0.835
30 0.7143 0.8689 0.8298 0.7321 0.9096 0.8677 0.9382 0.8632

σ1 = 0.7
σ2 = 0.7

10 0.6437 0.7183 0.6737 0.6499 0.7398 0.6626 0.7066 0.6786
20 0.6638 0.7811 0.7077 0.6724 0.8081 0.7184 0.7865 0.7030
30 0.6714 0.7960 0.7234 0.6833 0.8195 0.7520 0.7978 0.7479

σ1 = 0.5
σ2 = 0.8

10 0.6511 0.7283 0.7156 0.6605 0.7471 0.6235 0.7027 0.5859
20 0.6727 0.7768 0.7572 0.6889 0.7983 0.6886 0.7922 0.6364
30 0.6715 0.8020 0.7737 0.6905 0.8350 0.7386 0.8302 0.6815

Table 3.8: Estimated classification accuracy for simulated datasets. Training sample size is 40.
Distributions show different variance pair distributions. It is harder to differentiate higher variance
pairs. The highest accuracy for each dataset is highlighted in boldface.
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4. BTSP AS A FEATURE SELECTION METHOD ∗

Stephens [60] compared domains of big data in terms of storage and showed that Twitter

requires 1-17 petabytes, YouTube needs 1-2 exabyte, whereas Genomics requires 2-40 exabytes

of space to store its yearly data. From an expert point of view, it is crucial to identify informative

genes among thousands of them. It is, therefore, no surprise that feature selection has become an

indispensable tool for researchers and scientists in computational biology.

Furthermore, the number of genes (on the order of tens of thousands) in high-dimensional

biological datasets greatly exceeds the number of samples (on the order of tens), and there are

many irrelevant or redundant genes in a given set. Irrelevant or redundant genes can make it very

difficult to identify relevant genes [61]. In addition, without a dimensionality reduction step, most

classification rules will overfit the data.

We propose a novel feature selection approach based on the Bayesian Top Scoring Pair cri-

terion [62], which is itself based on the TSP algorithm proposed by Geman and collaborators

[21]. We conduct a detailed numerical experiment comparing its performance against that of

well-known state-of-the-art feature selection algorithms using different classification rules and real

gene-expression datasets. One may categorize approaches to reduce data dimensionality into two

groups: feature extraction and feature selection. Feature extraction algorithms create new features

by using existing ones; these approaches restrain biological interpretations as they do not preserve

the original features (genes).

4.1 Feature Selection

Feature selection methods simply choose a subset of genes without any transformation, dis-

carding redundant, noisy genes. Feature selection methods play a critical role in enhancing the

performance of classification and facilitating biological interpretation by producing small panels

∗Part of this section is reprinted with permission from “Bayesian Top Scoring Pairs for Feature Selection,” by
Emre Arslan and Ulisses Braga-Neto, 2017, 51th Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, October-November 2017.
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of biomarkers. However, exhaustive feature selection (i.e., searching all possible feature subsets of

a given size) is impossible for high-dimensional biological data as the computational load increases

exponentially. Indeed, exhaustive feature selection is an NP-hard problem [63].

One can further categorize feature selection methods into three main groups:

• Filter methods: A score is calculated for each gene and genes with higher scores are selected.

These approaches are independent of the classification rule used on the selected feature set,

which minimizes overfitting. Due to the high-dimensionality of the data, the computational

efficiency of these methods makes them popular. Filter methods are divided into univariate

and multivariate methods. Univariate methods consider each gene as independent, whereas

multivariate methods take relationships among genes into consideration.

• Wrapper methods: These approaches use a classification rule to validate selected genes per-

formance and then employ the same rule on the final selected feature set. Wrapper methods

tend to have better performance as they “match” selected genes to the classification rule.

However, the major disadvantage of wrapper methods is their computational complexity.

• Embedded methods: These approaches combine feature selection and classifier construction.

4.1.1 Recursive Feature Elimination (RFE)

Guyon et al. [55] proposed a Support Vector Machine (SVM)-based recursive feature elimina-

tion method. The following weighting factor is calculated for all genes:

|wj| =

∣∣∣∣∣
n∑
i=1

αiyixij

∣∣∣∣∣ (4.1)

where xij is the jth gene expression of the ith sample point, yi is the label of ith sample point and αi

is the Lagrange multiplier for the i-th sample point, which is obtained by quadratic programming

optimization in SVM training. After calculating expression (4.1) for all genes, one selects the genes

with the largest values. This method has displayed very good performance in different fields, for

instance, proteomics [64], metabolomics [65], genomics [66], and more.
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4.1.2 χ2-Statistics

Another widely used feature selection method is the χ2 method. The χ2 statistic is used to

test whether two events are independent. First, gene expression values are discretized into several

intervals and then we calculate χ2 values for each gene:

χ2 =
m∑
i=1

1∑
j=0

(Oij − Eij)2

Eij
(4.2)

where m is the number of intervals, Oij is the frequency of patterns in the ith interval and jth class,

and Eij is the expected frequency of Oij . We use the FSelector package [67] in R to perform χ2

feature selection by ranking the genes according to their χ2 values.

Study Number of Genes Class 1 Size Class 2 Size Reference
Colon 2000 22 40 Alon et al. [50]

Leukemia 7129 25 47 Golub et al. [27]
Breast 22,283 62 42 Chowdary et al. [30]
Lung 12,533 150 31 Gordon et al. [29]

Table 4.1: Gene expression data sets

4.1.3 Relief-F

Relief-F [68] is an extension of the Relief algorithm [69]. A sample of the data is chosen

randomly. The algorithm searches for k nearest neighbors from the same class called “nearHits,”

and k nearest neighbor from the other class called “nearMisses.” ReliefF evaluates the quality for

each gene using the following equation:

W (i) = W (i)− diff(i, n, nearHit) + diff(i, n, nearMiss), (4.3)

where W (i) represents the quality of estimation of the ith gene, diff(i, n, nearHit) is the average

difference between the ith gene expression and among the selected sample points, and the nearHit
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sample and diff(i, n, nearMiss) is the average difference of the ith gene expression among the

selected sample points and nearMiss sample points. diff(i, n, nearMiss) rewards the distance be-

tween different classes and penalizes the distance within the same class. This process is repeated

M times, where M is defined by the user.

4.1.4 Information Gain

The information Gain (IG) of the ith gene over class Y is the uncertainty reduction if we know

the value of gene expression Xi of the ith gene,

IG(Xi) = H(Y )−H(Y | Xi) (4.4)

where H denotes the information-theoretic entropy. Entropy-based discretization is the first step

to calculate IG for gene expression as IG can be calculated for discrete values. IG is a filter feature

selection method. We use the FSelector package [67] in R to perform IG feature selection method.

4.1.5 Gain Ratio

Gain Ratio (GR) feature selection methods were proposed to deal with the symmetric measure-

ment bias of IG. GR normalizes IG by the entropy of Xi:

GR =
IG

H(Xi)
(4.5)

where GR = 1 indicates that the knowledge of Xi completely predicts class Y .

4.2 BTSP as a Feature Selection Method

We use the Bayesian interpretation of the BT Model in [40] to get skill parameters of each

gene by using W matrix. A cell in the W represents how many times a gene expression value is

greater than the other one, i.e. Wij represents how many times ith gene is greater than jth gene. It

is trivial that all diagonal elements are 0 andWij +Wji represent how many times ith and jth genes

are compared, which is the sample size if we don’t have a missing value in either of these genes.

After we get the skill parameters of each gene we calculate the BTSP score (eq.4.7) for each pair
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of genes with the probability of ith gene expression is greater than jth gene expression within a

given class.

π0
ij =

λ0i
λ0i + λ0j

and π1
ij =

λ1i
λ1i + λ1j

(4.6)

Ωij =
∣∣π0
ij − π1

ij

∣∣ (4.7)

One can easily generalize the BTSP algorithm by selecting the top k disjoint pairs. This gener-

alization is called k-BTSP [62].

4.3 Results

We investigated the well-known feature selection methods defined in the previous section under

the Linear Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), with a cross-validated

choice of k, and Naive Bayes (NB) classification rules, in order to assess their performance on real

genomic data sets, listed in Table 4.1.

We employed a variance filter in order to reduce the number of genes to 2000 for all datasets.

We used 20% of the data as the training data and the rest as the test data in order to mimic the small

sample size problem. We repeated this procedure 100 times and computed the average accuracy

rates. To investigate the feature selection performance, we selected 20, 40, 60, 80 and 100 genes.

We can observe in Figures 4.1 to 4.4 that the k-BTSP algorithm produced better classifica-

tion accuracy rates with different classifiers, different number of features/genes and in different

datasets, most of the time.

Accurate feature selection is needed to analyze high-dimensional biological data sets. We pro-

posed here a novel feature selection method, based on the Bayesian TSP method, and compared

its performance against well-known feature selection methods under SVM, k-NN and NB classi-

fication rules, using real genomic data sets. The results indicate the promise of the k-BTSP in the

analysis of high-dimensional biological data.
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Figure 4.1: Comparison between accuracy rates of the feature selection methods on colon data

Figure 4.2: Comparison between accuracy rates of the feature selection methods on leukemia data

Figure 4.3: Comparison between accuracy rates of the feature selection methods on lung data
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Figure 4.4: Comparison between accuracy rates of the feature selection methods on breast data
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5. A BAYESIAN PATHWAY DATA BASED CLASSIFIER

Pathway analysis can help us understand the signaling mechanisms which are responsible for

initiating and advancing a particular disease. Pathway analysis helps automate the traditional ap-

proach that checks each gene manually, look up each gene in the literature, and try to learn about

genes’ involvement in a particular biological process.

Some benefits of pathway analysis are:

• Easy biological interpretation

• Prediction of new roles of genes

• Finding possible mechanisms related to diseases

• Integration of multiple data types

• Comparibility

There are two factors that make analyzing genomic dataset at the functional level very valuable.

First, using sets/pathways instead of genes reduce the dimension significantly. Second, identifying

pathways related to the phenotypes may have more explanatory power. Pathway analysis also

increases the statistical power in two ways: one, it collects small count into a big count which

makes it easier to define a pattern related to a phenotype and two, it reduces the number of tests. It

has been shown that analyzing the genomic data set in a “modular” level creates more reproducible

results [70, 71].

One of the problems with pathway analysis methods is that the marker pathways are often

selected via their stand-alone score and no interaction is taken into consideration. Therefore, se-

lected pathways may have redundant information which affects the performance of the analysis.

We can alleviate the aforementioned problem by using a method that doesn’t analyze each pathway

independently.
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There have been significant amount of studies on finding differentially expressed genes, but

there are not that many studies for pathway analysis. It is a challenging problem to take interactions

and sets of genes and analyze the high-dimensional genomic data.

In this chapter, we propose a novel algorithm, Bayesian Top Scoring Pathway Pair (BTSPP),

which analyzes genomic data at the level of pathways instead of gene level. Briefly, we find

skill parameters for each gene by using (5.1, 5.2), define scores for each pathway in different

phenotypes, and find the pair of pathways that have the biggest Bradley-Terry probability flips

between phenotypes.

The algorithm we proposed identifies discriminative pairs of pathways by using summarized

statistics of pathways. The BTSPP is designed with the following benefits:

• Revealing new biological insights in the pathway level

• Offering interpretable decision rules for predictive models

• Minimizing the technological differences, such as different platforms, to compare/combine

different datasets

• Reducing the dimensionality of the data from thousands to tens by summarizing the expres-

sion values

We apply the proposed algorithm to eight real data sets and demonstrate it achieves higher

accuracy rates compared to several pathway data-based algorithms. We also compared the pro-

posed algorithm ability to find biologically validated pathways for different phenotypes with other

algorithms, Over-Representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA).

5.1 Bayesian Top Scoring Pathway Pairs

The aim of this approach is to identify pathway markers by taking ranking and pairwise inter-

actions into consideration, and use these pathway markers in a predictive model. The proposed

algorithm is motivated by the great performance of BTSP algorithm as a classifier [72], [62] and
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feature selection [73] method. The Bayesian Top Scoring Pathway Pair (BTSPP) algorithm classi-

fies a given test sample according to the following four-step procedure:

5.1.1 Skill Parameter Estimation of Genes

Let X represent the gene expression matrix with p x n, where p represents number of genes

and n represents number of samples. For the sake of simplicity, we will assume there are two

classes/phenotypes. We are treating every gene as individuals, competing with each other and

trying to estimate their skill parameters. We will leverage the following Gibbs sampling approach

proposed in [40].

Zt+1
ij | D,λ

t ∼ Gamma(nij, λ
t
i + λtj) ; (5.1)

λt+1
i | D,Zt+1 ∼ Gamma

a+ wi, b+
∑
i<j

s.t. nij>0

zt+1
ij +

∑
i>j

s.t. nij>0

zt+1
ji

 . (5.2)

where λ represents the skill parameters of each gene, D is data and Z is a latent variable. Detailed

explanation of the sampling approach was given in Chapter 3.

5.1.2 Pathway Mapping

Public databases (KEGG, MSigDB) were used to extract the gene set information representing

cellular pathways. Assignments to the pathways are computed for all genes in the data. Some

genes are removed if there is no pathway to cover them. There are some genes, having the same

Entrez ID, we selected the gene having the highest variance between phenotypes. We will have skill

parameters for all genes in class 0 (normal/drug treatment) as λ0 and class 1 (cancer/no treatment)

as λ1.

5.1.3 Scoring of Pathway Pairs

In order to score each pathway, we are using the individual skill parameters of genes. Let’s

assume we have g genes in a pathway. The pathway score is calculated as the average skill of these

39



g genes in that pathway.

λpi =

∑
i∈Gi

λi

|Gi|
(5.3)

where Gi represents genes in the ith pathway and |Gi| is the number of genes in this pathway. We

have to find skills of pathways for each class, so we will have λp0i and λp1i .

5.1.4 Identification of Pathway Pairs & Classification Rule

According to the Bradley-Terry Model, the probability of individual i beats individual j is

P (i > j|λi, λj) =
λi

λi + λj
(5.4)

where λi represents the skill of individual i. We will use calculated skill parameters for each

pathway in phenotypes to find the biggest flip in terms of the probability of one pathway beating

the other between classes. We define the following score with this aim:

Ψi,j =

∣∣∣∣∣ λp
0
i

λp
0
i + λp

0
j

−
λp

1
i

λp
1
i + λp

1
j

∣∣∣∣∣ (5.5)

We calculate the score for each pair of pathways and select the pair with the highest score. An

exhaustive search to check for all pairs should be feasible as the number of pathways is not that

many when compared with the number of genes.

After we select the pair, having the highest pathway score, we compare the mean of these 2

pathways for a given test sample. Let’s assume we choose ith and jth pathways and λp0i > λp
1
i ; the

classifier is defined for a test sample as:

hBTSPP (xnew) =


C0, if

∑
`∈Gi

x`
|Gi| <

∑
`∈Gj

x`
|Gj | ,

C1, otw.

(5.6)
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5.2 Alternative Pathway-Based Algorithms

Pathway-based algorithms have become more popular to analyze the high-dimensional bio-

logical data sets. For further comparison, we implemente six pathway based algorithms: Log-

Likelihood Ratio (LLR) [70], Ranking Log-Likelihood Ratio (R-LLR) [74], Top Scoring Pathway

Pair (TSPP) [75], Gene Expression Deviation (GED) [76], and Pathway Variance (PathVar) [77].

5.2.1 LLR

Su et al. [70] proposed a method, log-likelihood ratio (LLR), that estimates pathway activi-

ties based on the log-likelihood ratio between different phenotypes. This method assumes each

gene has a Gaussian distribution. Mean and standard deviation of each gene is estimated and the

conditional probability density function (PDF) is calculated by using these statistics.

Gene expression matrices for each pathway are transformed to LLR matrices by using esti-

mated conditional PDFs. The LLR of the jth sample and ith gene is:

λi(x
i
j) = log

(
f 1
i (xij)

f 2
i (xij)

)
(5.7)

where f 1
i (x) represents the conditional probability function of gene i in the first class and f 2

i (x)

is the conditional probability density function in class 2. The LLR is a matrix with the number of

genes in a pathway by the number of samples. LLR matrices are calculated for every pathway. The

next step is to normalize the LLR matrix according to the following formula:

λ̂(xij) =
λi(x

i
j)− µ(λi)

σ(λi)
(5.8)

where λi = λi1, λi2, ..., λiN is the ith row of the LLR matrix with N samples, µ(λi) and σ(λi)

denote the mean and standard deviation of that row.

The defined pathway activity score combines every gene for a sample in a pathway. Authors

estimate the pathway activity, aj , as:
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aj =
n∑
i=1

λi
(
xij
)

(5.9)

Authors apply t-test statistics on pathway activity vector for each pathway and sort pathways

according to p-values. They used some part of the training set as the marker-evaluation set and

remaining as feature-selection to decide the number of pathways to be used when constructing the

LDA classifier.

5.2.2 R-LLR

In [74], Khunlertgit and Yoon proposed pathway activity inference method based on the rank-

ing of genes within a sample. First, they create a pathway matrix with each row represents genes

and columns as samples. Let’s assume we have n genes in a given pathway with m0 and m1 sam-

ples representing two classes’ sample sizes. So the total sample size is m = m0 + m1. This n x

m pathway matrix is converted into a gene ranking binary matrix. Each row of this gene ranking

matrix represents a pairwise comparison beginning with (1,2) and ends with (n-1,n). So the size of

this matrix is n(n− 1)/2 x m. The comparison between ith and jth gene in the kth sample of this

ranking matrix is ri,jk . By using the following equation, the binary gene ranking matrix is filled for

each pathway.

ri,jk =


1, if xik < xjk

0, otw.

(5.10)

The ranking profile of a sample is:

rk =
(
ri,jk |1 ≤ i < j ≤ n

)
. (5.11)

Unlike the LLR algorithm, this method tries to estimate the conditional probability mass func-

tion (PMF). f ci′j(r) represents the conditional PMF of the ranking of the expression level of gene

i and gene j under phenotype c. The ranking log-likelihood ratio, λi,j(r
i,j
k ), is calculated by using

the estimated PMFs for each phenotypes. The ranking LLR is defined as:
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λi,j(r
i,j
k ) = log

(
f 1
i,j(r

i,j
k )

f 2
i,j(r

i,j
k )

)
. (5.12)

The ranking LLR matrix has the same dimension as the gene ranking matrix. It is not easy to

estimate the PMFs in a small sample size area. In order to overcome this problem authors used the

normalization idea, like in the LLR algorithm.

λ̂i,j(r
i,j
k ) =

λi,j(r
i,j
k − µ(λi,j)

σ(λi,j)
, (5.13)

where µ(λi,j) and σ(λi,j) are the mean and standard deviation of ith and jth genes row in the

R-LLR matrix.

They followed the same strategy to assess the pathway activity level like in LLR. The pathway

activity level, ak, is the sum of the column of R-LLR matrix:

aj =
n∑
i=1

λi,j
(
ri,jk
)
. (5.14)

The discriminative power of a pathway is checked with the t-test statistic score pathway activity

levels:

t(a) =
µ1 − µ2√
σ1
K1

+ σ2
K2

, (5.15)

where a is the vector of inferred pathway activity levels. µc is the mean of class c samples activity

levels mean, σc is the standard deviation of pathway activity levels of class c, and Kc is the number

of samples in class c.

After applying the t-test for all pathways, pathway markers were sorted according to their t-

scores. R-LLR algorithm followed the similar setup to choose the number of pathways used for

the classification and LDA as the classifier.

The main difference between R-LLR and LLR is the previous approach takes the ranking in or-

der to estimate the probabilistic evidence by each gene whereas the second one uses the expression
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values.

5.2.3 TSPP

Glaab et al. proposed Top Scoring Pathway Pair, TSPP, in [75]. The algorithm is a method-

ological extension of TSP algorithm.

The “Rank Matrix” R is created from the gene expression matrix by sorting genes within each

sample. R matrix contains each genes position index within a sample. Each row in this R matrix

represents genes and columns represent samples. If a gene cannot be assigned to any pathway, the

row corresponding to that gene is removed. A pathway submatrix is extracted from the big R rank

matrix for each phenotype. For sake of the simplicity, let’s assume we have two classes. Each

pathway has R1 and R2 matrices representing two classes. These matrices are reduced to r1 and r2

vectors by taking the median rank for each sample/column.

Partial Score1 =
∑
i∈S1

1(r1i ≥ r2i) +
∑
i∈S2

1(r1i < r2i) (5.16)

Partial Score2 =
∑
i∈S1

1(r1i < r2i) +
∑
i∈S2

1(r1i ≥ r2i) (5.17)

score =
max(Partial Score1, Partial Score2)

|S1|+ |S2|
(5.18)

where 1 denotes the indicator function. An exhaustive search is applied for all pairs to get the

score. The TSPP has a simple decision to predict a given test sample by checking the median rank

of the selected pair of pathways.

5.2.4 Gene Expression Deviation

Gene Expression Deviation algorithm proposed by Young and Craft [76]. This algorithm uses

over and under-expression of genes within a pathway. There are two parameters estimated for each

pathway and each sample, namely: overexpression score and underexpression score. A preselec-

tion method is applied according to the Kolmogorov-Smirnov test. If a gene in a pathway passes
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that test, which means there is a significant difference between phenotypes and it will be used for

further steps.

Let epg represent the expression level of gene g in sample p, the differential-score is defined as:

∆pg =
epg − µNg
σNg

, (5.19)

where µNg is the mean of gene g in normal/reference class and σNg is the standard deviation across

normal/reference samples. The positive differential-scores and the negative ones are summed for

each sample. Pathway scores are aggregated by sample under-representation and over-representation

scores.

Authors proposed another method called normal tissue centroid (NTC) [76]. This method

represents each sample in a g (number of genes in that pathway) dimensional space and aggregates

these locations in normal class to find the normal tissue centroid. We implemented this method as

well; however, results are not competitive at all, so we decided not to use the NTC as a benchmark

method.

The original implementations of NTC and GED have several other steps like weighting samples

via silhouette; however, these steps are not related to the pathway analysis. So to be consistent with

all other methods, we did not use these tuning steps.

5.2.5 PathVar

Unlike the common approach that compares the mean or median across the difference between

biological phenotypes, the Pathway Variance (PathVar) [77] compares the change of the variance

across classes.

PathVar has a freely available website http://pathvar.embl.de which provides easy access to

analyze the genomic data in terms of pathway variance difference. It has a tutorial and sample

datasets to introduce the use of the algorithm.
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5.3 Results

In order to compare the predictive performance of the proposed BTSPP algorithm with other

pathway data-based algorithms, we use eight real datasets: GSE19728 [78], GSE16515 [79],

GSE781 [80], GSE21354 [78], GSE8671 [81], GSE9348 [82], GSE15852 [83], and GSE9574

[84].

We use Kyoto Encyclopedia of Genes and Genomes (KEGG) and Molecular Signatures Database

(MSigDB) databases to obtain the set of biological pathways. For each data set, we identify genes

in pathways and use these sets by removing the genes that are not represented in that dataset. We

use pathways having at least ten genes to aggregate meaningful statistics for all methods.

The small sample size is a major problem to analyze high-dimensional biological datasets. It

has been argued in [85] and showed that over 57% of GEO datasets’ sample size is less than 12. In

order to simulate the small sample size problem, we use 50% of each dataset as a training set and

evaluate the predictive accuracy on the other 50% of the data. We repeat this procedure 100 times

for each dataset and take the average as the predictive performance.

The BTSPP algorithm uses the same procedure to estimate the skill parameters mentioned in

[62]. We apply 1500 iterations with 300 burn-in part to estimate the skill parameters of each gene.

We apply a variance filter and use the top 2000 genes to reduce the computational complexity of

evaluating genes’ skill parameters, whereas we use all genes for other pathway based algorithms.

If we apply the same procedure and use the top 2000 genes selected via variance filter for other

algorithms as well, these pathway based algorithms will have lower accuracy rates.

We implemented LLR, R-LLR, and GED as we summarized in the previous section. LLR and

R-LLR choose the number of pathways by using some part of the training data as the marker-

evaluation set and the rest of the training data as the feature-selection set, whereas GED uses all

pathways. We implement the TSPP with an exhaustive search and find the pair having the highest

TSPP score. The TSPP algorithm uses one pair of pathways like BTSPP.

The classification accuracy rates for each algorithm applied to different datasets are presented

in Tables 5.1 and 5.2. The proposed algorithm, BTSPP, has the best average accuracy rate and for
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Datasets BTSPP TSPP R-LLR LLR GED PathVar

GSE 19728 0.9 0.731 0.891 0.854 0.879 0.887
GSE 21354 0.963 0.7934 0.9362 0.9387 0.8457 0.95
GSE 16515 0.7556 0.7191 0.6972 0.7306 0.6976 0.7461
GSE 781 0.7569 0.6075 0.65 0.6325 0.685 0.69

GSE 8671 0.9966 0.9225 0.9916 0.9912 0.9944 0.9875
GSE 9348 1 0.9461 0.9361 0.9765 0.9753 0.9789

GSE 15852 0.838 0.6744 0.7542 0.8416 0.8414 0.7749
GSE 9574 0.6777 0.5 0.5236 0.5378 0.57 0.5936

Average 0.8610 0.7367 0.7974 0.8129 0.8111 0.8259

Table 5.1: Estimated classification accuracy for eight real datasets. (KEGG database)

Datasets BTSPP TSPP R-LLR LLR GED PathVar

GSE 19728 0.9395 0.7775 0.8693 0.84 0.8816 0.905
GSE 21354 0.9146 0.67 0.8654 0.9038 0.875 0.9231
GSE 16515 0.7746 0.7705 0.7229 0.8 0.7729 0.7538

GSE 781 0.7771 0.61 0.69 0.665 0.685 0.615
GSE 8671 0.9967 0.914 0.9981 0.9856 1 1
GSE 9348 0.9836 0.8913 0.9683 0.9791 0.994 0.995

GSE 15852 0.8695 0.699 0.7958 0.8553 0.8609 0.8623
GSE 9574 0.7264 0.5714 0.5271 0.6035 0.7021 0.7857
Average 0.8727 0.7376 0.8082 0.8290 0.8471 0.8555

Table 5.2: Estimated classification accuracy for eight real datasets. (MsigDB database)

most of the datasets, it provides the highest accuracy rates, despite it using only two pathways to

classify the given test sample.

Guo et al. [86] use the mean and median expression values to derive the pathway activity

score. Lee et al. [87] use a subset of a pathway, namely condition-responsive genes (CORGs), to

find informative pathways. It has been shown in [70] and [74] that LLR and R-LLR algorithms

outperform CORG, mean, and median pathway analysis methods. So we didn’t implement these

methods as we were already having better performances than LLR and R-LLR.

It seems BTSPP is a good candidate as a predictive method based on biological pathway data.
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Pathway1 Pathway2 Score

hsa04931 Insulin resistance hsa04657 IL-17 signaling pathway 0.9712
hsa04910 Insulin signaling pathway hsa04668 TNF signaling pathway 0.9498
hsa04152 AMPK signaling pathway hsa05225 Hepatocellular carcinoma 0.9424
hsa00980 Drug metabolism - cytochrome P450 hsa05213 Endometrial cancer 0.9185
hsa00982 Drug metabolism - cytochrome P450 hsa05210 Colorectal cancer 0.9006

Table 5.3: Top ten-ranked pathways for the GSE8671 data according to BTSPP score. The boldface
pathway is the target pathway.

Further, we check if the proposed algorithm can detect biologically validated pathway for a disease.

We choose GSE8671 and GSE9348 datasets, as classification accuracies for both datasets are high

for most algorithms. We use whole data as the training set and check for top ten pathways for each

algorithm.

GSE8671 has 64 samples with two phenotypes (Normal/Colorectal Cancer). We apply LLR,

R-LLR, PathVar, GED, and TSPP on GSE8671. None of them have the target hsa05012 pathway

in the top ten pathway lists. We also check the proposed BTSPP algorithm and top ten pathways

are listed in Table 5.3. BTSPP detects the target pathway in top ten lists. We use clusterProfiler

package [88] to apply ORA and GSEA.

We apply the Over-Representation Analysis (ORA) on GSE8671 and investigate its ability to

find the target hsa05012 pathway. This pathway is not included in the top 10 pathways found by

ORA. The p-value of the hsa05012 according to ORA is 0.7966 and the q-value is 0.7833. So

ORA cannot detect the target pathway by using whole GSE8671 data.

Gene Set Enrichment Analysis (GSEA) is another way to find the informative pathway related

to the phenotypes. We apply the log ratio ranking and check if GSEA can detect the hsa05012.

The GSEA cannot detect the target pathway as well. Figure 5.1 shows enrichment analysis for the

hsa05012. The enrichment score is around 0.3 whereas top pathways found by GSEA are around

0.6. The target pathway is not in the top ten of the list of GSEA.

GSE9348 has 82 samples with two phenotypes (Normal/Colorectal Cancer). We apply LLR,

R-LLR, PathVar, GED, and TSPP on GSE9348. None of them has the target hsa05012 pathway in
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Figure 5.1: Gene set enrichment analysis of hsa05012 on GSE8671 data.

top ten pathway list. We also check the proposed BTSPP algorithm and top ten pathways are listed

in Table 5.4. BTSPP detects the target pathway in top ten list.

We applied the Over-Representation Analysis (ORA) on GSE9348 and investigated its ability

to find the target hsa05012 pathway. This pathway is not included in the top ten pathways found by

the ORA. The p-value of the hsa05012 according to the ORA is 0.2478 and the q-value is 0.3411.

So the ORA can not detect the target pathway by using whole GSE9348 data.

Gene Set Enrichment Analysis (GSEA) is another way to find the informative pathway related

to the phenotypes. We apply the log ratio ranking and check if the GSEA can detect the hsa05012.

The GSEA cannot detect the target pathway as well. Figure 5.2 shows enrichment analysis for the

hsa05012. The enrichment score is around 0.3 whereas top pathways found by GSEA are around

0.6. The target pathway is not in the top ten of the list of the GSEA.

5.4 Conclusion

We proposed a pathway analysis method which can be used to find robust, reproducible and

interpretable results. The proposed method leverages from two effective strategies namely, the
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Pathway1 Pathway2 Score

hsa00830 Retinol metabolism hsa05210 Colorectal cancer 0.9569
hsa00980 Metabolism of xenobiotics by cytochrome P450 hsa05224 Breast cancer 0.9347
hsa00040 Pentose and glucuronate interconversions hsa05219 Bladder cancer 0.9269
hsa00982 Drug metabolism - cytochrome P450 hsa04512 ECM-receptor interaction 0.9184
hsa05032 Morphine addiction hsa04120 Apoptosis 0.9079

Table 5.4: Top ten-ranked pathways for the GSE9348 data according to BTSPP score. The boldface
pathway is the target pathway.

Figure 5.2: Gene set enrichment analysis of hsa05012 on GSE9348 data.

pairwise interactions between genes and ranking-based gene expression analysis. Experimental

results on real datasets show our method finds more informative pathway markers to predict a test

sample.
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6. SUMMARY AND FUTURE DIRECTIONS

The small sample size of training sets and lack of biological interpretations due to the complex

classification boundaries of algorithms are two major barriers before computational biology. It has

been shown in [85] that the small sample size problem remains for studies of recent years. 34%

of GEO datasets’ sample size is less than 6, and over 57% of GEO datasets’ sample size is less

than 12. The complex classification boundaries make it impossible for biological interpretations.

In this dissertation, we offered a classifier, a feature selection method, and a pathway analysis to

overcome these two barriers.

The proposed classifier is a Bayesian extension of the TSP algorithm. We have investigated the

classification accuracy rates on independent test sets. We use real datasets and simulated datasets

with many different scenarios. Results show that the proposed algorithm is a clear winner over

current algorithms in the overall accuracy rate and for most of the individual cases.

The BTSP algorithm is introduced as a feature selection method. We compare the performance

of the BTSP algorithm with many well-known feature selection algorithms. We combine each

feature selection method with SVM, kNN, and NB, and check their performances for different

numbers of features/genes on different datasets. Results show that the BTSP algorithm has the

best accuracy rates for many scenarios.

We also proposed a novel biological pathway data-based algorithm which takes all pairwise

interactions in the gene level and pathway level. Discriminative performance of the proposed

algorithm is compared with Log-Likelihood Ratio (LLR) [70], Ranking Log-Likelihood Ratio (R-

LLR) [74], Top Scoring Pathway Pair (TSPP) [75], Gene Expression Deviation (GED) [76], and

Pathway Variance (PathVar) [77]. It has been shown that the proposed algorithm has the best

overall performance. We also check the ability to find the biologically validated pathway of the

proposed algorithms, along with all algorithms mentioned above, Over-Representation Analysis

(ORA), and Gene Set Enrichment Analysis (GSEA). The proposed algorithm was able to find the

target pathway within the top ten pathways it selected; however, any other method could not.
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We believe the proposed algorithm will have great contributions to find informative/discriminative

genes and pathways related to different phenotypes/diseases.

There are many extensions of the TSP algorithm such as TST [22], TSM [20], TSN [89],

TSG [19], etc. The BTSP algorithm can assume each of these extensions, and we will try these

extensions with the BTSP algorithm.

We can also extend the proposed pathway analysis method to check the variance change of skill

parameters within a pathway, like in PathVar. We are also planning to extend the R-LLR algorithm

from a Bayesian ranking perspective.
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