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ABSTRACT 

 

For reliable performance assessment of unconventional reservoirs, we need to 

model the complex hydraulic fracture network that interacts with pre-existing/ induced 

fractures and reservoir rock, as well as the underlying physics such as gas desorption, 

Knudsen diffusion, phase behavior in nano-scale pores and stress-dependent fracture 

conductivity. Numerical simulation is a robust and versatile tool to incorporate relevant 

physics but the substantial computational time required can often be a bottleneck for the 

practical application.  

Recently, a rapid simulation approach based on the Fast Marching Method (FMM) 

has been proposed. The high frequency asymptotic solution of the diffusivity equation 

leads to the Eikonal equation, which can be efficiently solved by the FMM for the 

Diffusive Time-of-Flight (DTOF) that governs the pressure ‘front’ propagation. The key 

concept of the FMM-based simulation is to utilize the DTOF as a 1-D spatial coordinate 

embedding reservoir heterogeneity to transform an original 3-D reservoir model into an 

equivalent 1-D model, leading to orders-of-magnitude faster computation compared to the 

normal finite difference simulation.  

In this study, we first developed and validated the FMM-based blackoil simulation 

for multi-phase flow in unconventional reservoirs. We also present the field history 

matching example of Eagle Ford Shale to demonstrate the efficacy and utility of history 

matching workflow coupled with the FMM-based simulator, which assists in the 
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uncertainty assessment of reservoir and fracture properties as well as the production 

forecast.  

Second, we further extended the FMM-based simulation to the multi-component 

compositional simulation. We propose a robust optimization workflow for the gas 

injection EOR in unconventional reservoirs. Use of the rapid FMM-based simulation 

enables a large number of Huff-n-Puff simulations with a field-scale reservoir model in a 

practical timeframe, which also provides us with comprehensive understanding on how 

each operational parameter influences the displacement and recovery processes.  

Third, we adopted the FMM-based approach to multi-well simulations and 

optimization of the infill well spacing. The FMM-based simulation was extended to a 

multi-well scenario under the bottomhole pressure constraints. The computational 

efficiency of our approach enables extensive simulation runs to determine the point of 

diminishing return for additional well placement to obtain the optimal well spacing.  

Lastly, we further extended the FMM-based multi-well simulation to the scenario 

of constant rate production where the drainage volume partition associated with each well 

dynamically changes over time. We proposed and validated new methodologies to 

appropriately model such dynamic partition changes. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW* 

1.  

1.1 Introduction 

Unconventional reservoirs contribute to a significant share of the energy supply in 

the US and are predicted to keep increasing their production in the next 25 years (EIA 

2016). The economical exploitation from such ultra-low permeability formations has been 

achieved by the technology breakthrough of extended-reach horizontal drilling and multi-

stage hydraulic fracturing (Alexander et al. 2011; King 2010), leading to the complex 

fracture network that interacts with pre-existing/ induced fractures and reservoir rock. 

Furthermore, the fluid transport modelling used in conventional reservoirs has been found 

often inadequate for unconventional reservoirs due to the complicated underlying physics 

such as gas desorption, Knudsen diffusion, phase behavior in nano-scale pores and stress-

dependent fracture conductivity (Najabaei et al. 2013; Cho et al. 2013; Wang et al., 2015). 

Thus, the robust performance assessment of the unconventional reservoirs remains a 

                                                 

* Material adapted with permission from “Efficient Modeling and History Matching of Shale Oil Reservoirs 

Using the Fast Marching Method: Field Application and Validation” by Iino et al. 2017a: Paper SPE-

185719-MS Presented at the SPE Western Regional Meeting held in Bakersfield, California, USA, 23-27 

April 2017. Copyright 2017 Society of Petroleum Engineers. Further reproduction is prohibited without 

permission. 

 
* Material adapted with permission from “Optimizing CO2 and Field Gas Injection EOR in Unconventional 

Reservoirs Using the Fast Marching Method”  by Iino and Datta-Gupta 2018: Paper SPE-190304-MS 

Presented at SPE IOR Conference held in Tulsa, Oklahoma, USA, 14-18 April 2018. Copyright 2018, 

Society of Petroleum Engineers. Further reproduction is prohibited without permission. 
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technical challenge as it requires an integrated modelling of a hydraulic fracture network, 

reservoir heterogeneity and relevant physics. 

For performance assessment and prediction of unconventional reservoirs, 

empirical and analytical techniques have been widely used including decline curve 

analysis (Arps, 1945; Fetkovich 1980; Ilk et al. 2008; Valko 2009; Duong 2011) and 

pressure or rate transient analysis (Clarkson and Qanbari, 2015; Tabatabaie and Pooladi-

Darvish, 2016). However, such techniques are based on the absence or simplification of 

underlying physics such as reservoir heterogeneity, complex fracture geometry and multi-

phase and compositional effects, which may often lead to an unreliable or erroneous 

prediction.  Numerical simulation is a robust and versatile tool to evaluate the performance 

of multi-stage hydraulically fractured wells in unconventional reservoirs (Wang et al., 

2015). The advantage over the empirical and analytical approaches is the capability to 

incorporate the complex underlying physics (Du et al., 2009; Cipolla et al., 2010a, 2010b 

and 2011; Novlesky et al., 2011; Diaz de Souza et al., 2012; Kam et al., 2015). The 

challenge is the substantial computational time required that can often be a bottleneck for 

the practical application of the numerical simulation especially when high resolution 

models are involved to accurately describe the hydraulic fracture geometry and flow in 

the vicinity of the hydraulic fractures under multi-phase and compositional effects.  

Thus, there is an increasing need for a novel approach that offers high 

computational efficiency as well as the flexibility to incorporate the relevant physics.  

Recently, the Fast Marching Method (FMM)-based simulation has been proposed, which 

is a bridge between the two approaches discussed above: the analytical approach and full 



 

3 

 

3-D numerical simulation (Datta-Gupta et al., 2011; Xie et al., 2015a and 2015b; Zhang 

et al., 2016). The FMM-based simulation is based on a high frequency asymptotic solution 

of the diffusivity equation in heterogeneous and fractured reservoirs. The high frequency 

solution leads to the Eikonal equation which is solved for a ‘Diffusive Time-of-Flight’ 

(DTOF) that governs the propagation of the ‘pressure front’ in the reservoir (Vasco et al., 

2000; Kulkarni et al., 2001). The FMM is an efficient and robust algorithm to solve the 

Eikonal equation for the DTOF in a matter of seconds or minutes for million-scale high 

resolution models (Sethian, 1996). The key concept of the FMM-based simulation is to 

utilize the DTOF as a 1-D spatial coordinate which embeds geological heterogeneity in 

original 3-D space, leading to a rapid 1-D flow simulation that is equivalent to a 3-D flow 

simulation (Zhang et al., 2016).  

In this research, we develop a rapid and robust FMM-based simulator for multi-

phase and compositional flow in unconventional reservoirs. Most recently, an increasing 

interest has emerged in technologies and strategies to improve the recovery from 

unconventional reservoirs including gas injection EOR and infill well placement (Schmidt 

and Sekar, 2014; Jacobs, 2015a and 2015b; Todd and Evans, 2016; Alfarge 2017a; 

Rassenfos, 2017; Ranjan, 2015; Marongiu-Porcu et al., 2015; Miller et al., 2016; Rafiee 

and Grover, 2017; Lindsay et al., 2018). We also propose and validate efficient workflow 

using the FMM-based simulation not only for history matching but also for optimization 

of gas injection EOR and infill well spacing in unconventional reservoirs.  
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1.2 Literature Review 

In the following sections, we review literatures on the asymptotic approach, the 

Fast Marching Method and the FMM-based reservoir simulation.  

 

1.2.1 Asymptotic Approach and Diffusive Time-of-Flight 

In petroleum engineering, diffusion, multi-phase displacement and solute transport 

problems are common physical processes of interest to describe reservoir and fluid 

dynamics. At a first glance, it appears that there is little in common with wave-like 

propagation such as seismology and geometrical optics; however, analogies between such 

physical processes and wave propagation have been extensively explored to date.  

Several works in literature explicitly transform diffusion equations into wave 

equations. Wilson (1983) presented a transformation of inverse problem in pressure 

transient into an inverse scattering problem. Pierce (1986) developed a mathematical 

formulations for inverting coefficients in the diffusivity equation (e.g. porosity and 

permeability), which can be considered as a transformation to the corresponding wave 

problem. He concluded based on the stability analysis that the inversion might be unstable 

for noisy data. Kuchuk and Habashy (1992) developed analytical solutions for pressure in 

laterally composite reservoirs by transforming the diffusion equation into the 1-D 

Helmholtz equation that is solved with reflection-transmission method.  Oliver (1994) 

showed that the wave transform proposed by Bragg and Dettman (1968) resulted in 

simplified solutions to the problem of pressure transient testing in linear composite 
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reservoirs. The identified challenge was instability in the inverse wave transformation of 

measured pressure data into wave-like signals.  

More importantly, the asymptotic approach, which has been widely used in other 

fields such as electromagnetic and seismology (Kline and Kay, 1965; Cerveny et al., 

1978), has also proven to be a powerful and versatile tool for modeling fluid flow in porous 

media. One typical form of asymptotic solutions for the diffusion problem can be written 

as follows (Virieux et al, 1994; Vasco et al., 2000): 
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(1.1) 

where P: pressure in frequency domain, : frequency, An: amplitude terms associated with 

the various orders of (-i)-1/2 and (x): phase function which was named ‘Diffusive Time-

of-Flight’ (DTOF) by Kulkarni et al. (2001). The asymptotic solution consists of the 

summation of infinite numbers of ( ) ( )n

nA ix , however, it is known that only the first 

few terms have physical importance. The high frequency limit that represents the rapidly 

varying component in pressure leads to the Eikonal equation that governs the ‘phase’ 

function of the propagating wave (Vasco et al., 2000):  

 1
( )

( )



 x

x
,

 
(1.2) 

where  is diffusivity. Obviously, the R.H.S. of Eq. (1.2) physically indicates the slowness 

of the propagating pressure wave. Thus, depending on the physical processes that we 

describe and on the definition of the asymptotic solution (1.1), it may take different forms.  

For pressure diffusion, Eq. (1.2) is a generalized form of ‘radius of investigation’ proposed 
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by Lee (1982) to the heterogeneous reservoirs and arbitrary well completions as illustrated 

in Figure 1.1 (Datta-Gupta et al., 2011; Iino and Datta-Gupta, 2018).   

 

 

Figure 1.1 Examples of ‘phase’ function or DTOF for vertical well in homogeneous 

reservoirs (left), horizontal well in heterogeneous reservoirs (middle) and multi-

stage fractured well in heterogeneous reservoirs (right) (reprinted with permission 

from Iino and Datta-Gupta, 2018) 

 

 

The early applications of the asymptotic solutions to modeling fluid flow in porous 

media were often developed in conjunction with the method of characteristics, which 

involves ray tracing. Smith (1981) modeled contaminant convection and dispersion for the 

high Peclet-number laminar flow along the ray paths for transmission and reflection of 

concentration. Chapman et al. (1999) analyzed heat convection and diffusion with the 

existence of linear or circular obstacles using ray paths. Vasco and Datta-Gupta (1999) 
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proposed an efficient inversion approach that analytically computes tracer concentration 

sensitivity with respect to porosity, permeability and pressure gradient along ray paths. 

This inversion approach has been further extended to diffusion and two-phase 

displacement problems (Vasco et al., 2000; Vasco and Datta-Gupta, 2001; Vasco and 

Finsterle, 2004; Vasco 2008; Vasco 2009; Vasco 2011; Vasco and Datta-Gupta, 2016). It 

has also been proven that convective streamlines can be alternatively utilized for the 

sensitivity computation instead of ray trajectories (Kulkarni et al., 2001; He et al., 2004).  

 

1.2.2 Solution of Eikonal Equation: Fast Marching Method 

As stated in the previous section, one of the major solution techniques of the 

Eikonal equation for phase function is the method of characteristics that involves ray 

tracing (Courant and Hilbert, 1953; Cerveny et al., 1978; Um and Thurber, 1987). 

However, Vidale (1988) pointed out that there have been several difficulties recognized 

in the ray tracing approach: (1) non-unique ray paths that connect two points of interest if 

slowness strongly varies in space, (2) expensive computational costs to trace a large 

number of ray paths and (3) potential failure to find global minimum travel time in shadow 

zone.  

An alternative approach is a front tracking based on the finite difference 

approximation where no explicit ray trajectories are constructed. Vidale (1988 and 1990) 

proposed a finite difference scheme, which sequentially solves the local Eikonal equation 

for the phase function as tracking the wave front propagating outwards from sources. It 

successfully provided orders of magnitude faster computation compared to ray tracing, 
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however, the instability issue arose. Following his work, much effort has been devoted to 

improve the stability of the finite difference scheme (Van Trier and Symes, 1991; 

Schneider 1995).  

To tackle these challenges, a fast, accurate and unconditionally stable algorithm to 

solve 3-D Eikonal equation named ‘Fast Marching Method’ (FMM) was proposed 

(Sethian, 1996; Sethian, 1999; Sethian and Popovici, 1999). Analogous to the Dijkstra’s 

method (Dijkstra, 1959), the FMM is a one-pass algorithm but tracks a curvature or surface 

of the wave front rather than tracking only the single shortest path. The phase function 

will be solved from sources in an orderly one-pass fashion from smaller values of phase 

to larger values, leading to significant computational efficiency. The gradient of phase 

function in Eq. (1.2) is approximated by the entropy-satisfying upwind finite difference, 

and the accuracy of the solution depends on the number of stencils to be used for gradient 

calculations (Hassouna and Frag, 2007). To date, applicability of the FMM has been 

widely extended to the anisotropic slowness, multiple arrivals, corner point grids and 

unstructured grids, etc. (Sethian, 2002; Zhang et al., 2013; Yang et al., 2017a and 2017b).   

 

1.2.3 Reservoir Simulation using Diffusive Time-of-Flight as 1-D Spatial Coordinate 

As stated above, the application of asymptotic solutions and phase function to 

reservoir modeling and characterization had been mainly studied in conjunction with 

either ray paths or convective streamlines. In the last decade, a novel approach of reservoir 

simulation and characterization using the FMM and resulting DTOF has been developed 

and proposed.  Analogous to the streamline simulation (Datta-Gupta and King, 2007) but 
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without any necessity of explicit trajectories, the key idea is to utilize the DTOF as the 1-

D spatial coordinate embedding the reservoir heterogeneity to transform the 3-D problem 

into the equivalent 1-D problem. The approach is visually intuitive, in-between analytical 

and numerical methods, and computationally efficient.  

Datta-Gupta et al. (2011) presented a drainage volume propagation from the multi-

stage fractured well in heterogeneous unconventional reservoirs using the DTOF obtained 

from the FMM. Xie et al. (2015a and 2015b) developed an approximated pressure solution 

along the 1-D DTOF coordinate. Their approach consists of two decoupled steps: (1) 

computing the DTOF for entire reservoir domain by the FMM and generate correlation 

between drainage pore volume and physical time and (2) calculating pressures by the 

geometric approximation along the DTOF. Zhang et al. (2016) proposed a novel approach 

of rapid numerical simulation using the DTOF contours as 1-D grid blocks. Figure 1.2 

illustrates the analogy between the radial coordinate in homogeneous reservoirs and the 

DTOF as a spatial coordinate in heterogeneous reservoirs.  

 

 

Figure 1.2 Analogy between radial coordinate in homogenous reservoir and DTOF 

as spatial coordinate (Zhang et al., 2016) 
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For homogeneous reservoirs (Figure 1.2 left), pressure will propagate radially from the 

well (denoted by red star) and the radial diffusivity equation can be formulated as follows: 

 1
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(1.3) 

where viscosity and compressibility are assumed to be constant. On the other hand for 

heterogeneous reservoirs (Figure 1.2 left), the DTOF contours can be regarded as a 

‘twisted’ radial coordinate and the diffusion equation can be formulated along the DTOF 

(Zhang et al., 2016):  
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(1.4) 

King et al. (2016) and Wang (2018) discussed validity to use the DTOF as a 1-D spatial 

coordinate for pressure calculation. In Eq. (1.4), w() is defined as the derivative of 

drainage pore volume with respect to the DTOF:  

 d ( )
( )

d

pV
w





 .

 
(1.5) 

Comparing Eq. (1.4) with Eq. (1.3) indicates that w() function physically represents a 

surface area of propagating pressure front. In this research, we focus on w() function 

generated from the DTOF solutions using geological/ reservoir models. However, it can 

also be obtained by inverting the production data, which provides insight and 

interpretation on the hydraulic fracture properties and flow regime identification (Yang et 

al., 2015 and 2016; Xue et al, 2016).  
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Fujita et al. (2016) further extended the DTOF-based 1-D simulation to incorporate 

the complex flow physics in nano-porous shale gas such as gas adsorption, Knudsen 

diffusion and triple-continua system. Cui et al. (2016) and Zhang and Zhu (2017) applied 

the FMM-based approach for flow and temperature modeling of the multi-stage 

hydraulically fractured well. Yang et al. (2017a and 2017b) presented a DTOF-based 1-D 

simulation for unstructured grids that are typically involved to describe the complicated 

hydraulic fracture geometry in unconventional reservoirs. Extension to the multi-phase 

and multi-component flow was proposed by Fujita (2014). 

 

1.3 Dissertation Outline 

This research mainly focuses on development and validation of efficient workflow 

for history matching and optimization for unconventional reservoirs using the FMM-based 

simulation. The rest of this dissertation is organized by the following three major chapters 

and conclusions. The specific objectives of each chapter are outlined as follows:  

In Chapter II, we develop and validate the FMM-based blackoil simulation for the 

multi-phase flow in unconventional reservoirs. We also present the field history matching 

example of Eagle Ford Shale to demonstrate the efficacy and utility of history matching 

workflow coupled with the FMM-based simulator, leading to better understanding on 

uncertainties in estimations of reservoir and fracture properties as well as production 

forecast.  

In Chapter III, we further extend the FMM-based simulation to the multi-

component compositional simulation. We propose a robust optimization workflow for gas 
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injection EOR in unconventional reservoirs. Use of the rapid FMM-based simulation 

enables a large number of Huff-n-Puff simulations with a field-scale reservoir model in a 

practical timeframe, which also provides us with comprehensive understanding on how 

each operational parameter influence the displacement and recovery processes.  

In Chapter IV, we extend the FMM-based simulation to multiple well scenario 

under the bottomhole pressure constraints, aiming at the optimization of infill well spacing 

using the high resolution reservoir model. The computational efficiency of our approach 

enables extensive simulation runs to determine the point of diminishing return for 

additional well placement to obtain the optimal well spacing. We demonstrate that the 

FMM-based simulation can be incorporated with integrated workflow of infill well 

modeling in conjunction with simulations of the fracture propagation.  

In Chapter V, we further extend the FMM-based multi-well simulation to the 

scenario of constant rate production where the drainage volume partition associated with 

each well dynamically changes over time. We propose and validate new methodologies to 

appropriately model such dynamic partition changes.     
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CHAPTER II 

EFFICIENT MODELING AND HISTORY MATCHING OF SHALE OIL 

RESERVOIRS USING THE FAST MARCHING METHOD† 

2.  

2.1 Chapter Summary 

In this chapter, we develop and demonstrate a novel Fast Marching Method 

(FMM)-based multi-phase simulation for a rapid field-scale modeling of unconventional 

reservoirs. 

Modeling of unconventional reservoirs requires accurate characterization of 

complex flow mechanisms in multi-continua because of the interactions between reservoir 

rocks, microfractures and hydraulic fractures. It is also essential to account for the 

complicated geometry of well completion, the reservoir heterogeneity and multi-phase 

flow effects. Currently, such multi-phase numerical simulation for multi-continua 

reservoirs needs substantial computational time that hinders efficient history matching and 

uncertainty analysis. In this chapter, we propose an efficient approach for field scale 

application and performance assessment of shale reservoirs using rapid multi-phase 

simulation with the FMM. 

The key idea of the reservoir simulation using the FMM is to recast the 3-D flow 

equation into 1-D equation along the ‘diffusive time of flight’ (DTOF) coordinate, which 

                                                 

† Material adapted with permission from “Efficient Modeling and History Matching of Shale Oil Reservoirs 

Using the Fast Marching Method: Field Application and Validation” by Iino et al. 2017a: Paper SPE-

185719-MS Presented at the SPE Western Regional Meeting held in Bakersfield, California, USA, 23-27 

April 2017. Copyright 2017 Society of Petroleum Engineers. Further reproduction is prohibited without 

permission. 
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embeds the 3-D spatial heterogeneity. The DTOF is a representation of the travel time of 

pressure propagation in the reservoir. The pressure propagation is governed by the Eikonal 

equation which can be solved efficiently using the FMM. The 1-D formulation leads to 

orders of magnitude faster computation than the 3-D finite difference simulation. The use 

of FMM-based simulation also enables systematic history matching and uncertainty 

analysis using population-based techniques that require substantial simulation runs. 

We first validate the accuracy and computational efficiency of the FMM-based 

multi-phase simulation using synthetic reservoir models and comparison with a 

commercial finite-difference simulator. Next, we apply our proposed approach to a field 

example in Texas for a multi-stage hydraulically fractured horizontal well. The 3-D 

heterogeneous reservoir model was built and history matched for oil, gas and water 

production using the Genetic Algorithm with the FMM-based flow simulation. Multiple 

history-matched models were obtained to examine uncertainties in the production forecast 

associated with respect to the properties related to hydraulic fractures, microfractures and 

the matrix. 

 

2.2 Background 

Unconventional reservoirs contribute to a significant share of the energy supply in 

the US and are predicted to keep increasing their production in the next 25 years (EIA 

2016). The economical exploitation from such ultra-low permeability formations has been 

achieved by the technology breakthrough of extended-reach horizontal drilling and multi-

stage hydraulic fracturing (Alexander et al. 2011; King 2010), leading to the complex 
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fracture network that interacts with pre-existing/ induced fractures and reservoir rock. 

Furthermore, the fluid transport modelling used in conventional reservoirs has been found 

often inadequate for unconventional reservoirs due to the complicated underlying physics 

such as gas desorption, Knudsen diffusion, phase behavior in nano-scale pores and stress-

dependent fracture conductivity (Najabaei et al. 2013; Cho et al. 2013; Wang 2015). Thus, 

robust performance assessment of the unconventional reservoirs remains a technical 

challenge as it requires an integrated modelling of a hydraulic fracture network, reservoir 

heterogeneity and relevant physics. 

In the current industrial practice, various empirical and analytical techniques have 

been widely used to predict oil and gas production from unconventional reservoirs because 

of their simplicity. The commonly used approach among empirical methods is decline 

curve analysis. On the basis of the well-known Arps’ decline curve model, many 

researchers have developed empirical formulations to fit the time-rate history observed in 

unconventional reservoirs (Arps, 1945; Fetkovich 1980; Duong 2011; Valko 2009; Ilk et 

al. 2008). However, the reliability of the decline curve analysis depends on the quantity 

and quality of the available production data and may result in erroneous prediction of 

future performance due to the absence of underlying physical theory. On the other hand, 

analytical methods such as pressure transient analysis (PTA) and rate transient analysis 

(RTA) are based on the physical theory described by the diffusivity equation. In these 

approaches, the parameters in the well and reservoir models will be calibrated such that 

the model replicates the observed rate/ pressure history. However, the conventional PTA 

and RTA assumes single phase, homogenous reservoir properties, simple geometries of 
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reservoir boundary and planar hydraulic fractures. Although recent studies have 

incorporated the multi-phase effects (Clarkson and Qanbari 2015; Tabatabaie and Pooladi-

Darvish 2016), it still requires the assumption of homogeneous reservoir properties and 

simple planar geometry for the hydraulic fractures. In unconventional reservoirs, there is 

significant impact on the performance prediction due to the reservoir heterogeneity and 

complex geometry and network of multi-stage hydraulic fractures (Kam et al. 2015; 

Cipolla et al. 2010a; Cipolla et al. 2011).  

Numerical simulation is also widely used to evaluate the performance of multi-

stage hydraulically fractured wells in unconventional reservoirs (Wang et al. 2015). The 

advantage over the empirical and analytical approaches is the capability of incorporating 

complex underlying physics. Several recent studies have used reservoir simulation to 

model the geometry of hydraulic fractures, stress-dependent reservoir properties, reservoir 

heterogeneity and multi-phase effect (Cipolla et al. 2010b; Diaz de Souza et al. 2012; 

Novlesky et al. 2011; Du et al. 2009). However, the substantial computational time 

required is often a bottleneck for the practical application of the numerical simulation 

especially when high resolution models are involved to accurately describe the hydraulic 

fracture geometry, flow in the vicinity of the hydraulic fractures, reservoir heterogeneity 

and multiple continua. Thus, there is an increasing need for a novel approach that offers 

high computational efficiency as well as the flexibility to incorporate the relevant physics.   

In this chapter, the FMM-based 1-D simulation was extended to the three-phase 

flow problems in unconventional reservoirs with reservoir heterogeneity and multi-stage 

hydraulically fractured well. First, we will briefly describe the background of the FMM 
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and the 1-D simulation along the DTOF. Then we develop the 1-D mathematical 

formulation that accounts for the multi-phase flow. Synthetic examples will be presented 

to illustrate the validity and the computational efficiency of our proposed approach by 

comparison with the commercial finite difference simulator (FDSim). Finally, the field 

application demonstrates the power and utility of our proposed approach for efficient 

modeling and history matching of a multi-stage hydraulically fractured horizontal well in 

a shale oil reservoir.   

 

2.3 Mathematical Formulation 

In the previous chapter, we reviewed the asymptotic approach that leads to the 

Eikonal equation for the single-phase system. As discussed by Fujita (2014), we can 

extend this approach to the multi-phase system.  

 

2.3.1 Asymptotic Pressure Solution for Multi-phase System 

In the absence of gravity, capillarity and permeability anisotropy, the general mass 

balance equation for phase-j can be written as: 

     0j j j jS
t
 


 


u ,

 
(2.1) 

where : porosity, : density, S: saturation and u: Darcy velocity, respectively. The Darcy 

velocity is defined as a product of phase effective mobility and pressure gradient:  

 rj

j

j

kk
p


  u ,

 
(2.2) 
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where kr: relative permeability and : viscosity. By substituting Eq. (2.2) into Eq. (2.1), 

we obtain the mass balance equation with the following form:  

       2 0j j j j j jS k p k p
t
    


    


,

 
(2.3) 

where j is the phase mobility krj/j. By introducing the compressibility cr and cj for rock 

and fluid, respectively, Eq. (2.3) can be further rearranged as:  

     21
( ) 0

j

j r j j j j

j

Sp
S c c k p k p

t t
    




       

 
.

 
(2.4) 

Summing up Eq. (2.4) for three phases yields:  

 
 

, ,
21

0
o g w

t j j t

j j

p
c k p k p

t
   



 
      

   
 . (2.5) 

By assuming that 2( ) 0p   , the product of   aFnd p  will vanishes. Eq. (2.5) can 

be further rearranged as:  

 2( ) 0t t t

p
c k p k p

t
  


    


,

 
(2.6) 

where t is the total mobility that is a summation of mobility for three phases.  Now we 

apply the Fourier transformation to Eq. (2.6) and express the pressure in the frequency 

domain:  

 2( ) ( , ) ( ) ( , ) ( , ) 0t t tc i p k p k p           x x x ,

 
(2.7) 
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where i,  and x represent the imaginary unit, frequency and spatial location, respectively. 

With the same way for the single-phase case (Virieux et al, 1994; Vasco et al., 2000), the 

asymptotic solution for Eq. (2.7) is:  

 

 0

( )
( , ) exp ( ) n

n
n

A
p i

i

 






    
 




x
x x .

 
(2.8) 

The infinite series solution (2.8) was inspired from the Bessel’s solution for the radial 

diffusion problem. An are real functions relating to the amplitude of pressure wave, and  

is the phase function which we call the Diffusive Time-of-Flight (DTOF). Note that the 

DTOF has the dimension of square root of time. Substituting the asymptotic solution (2.8) 

into Eq. (2.7) yields: 

  
0

( ) n
t t n

n

A
i k c

i
    







   




0 0

( ) ( ) 2n n
t tn n

n n

A A
i k k

i i


   

 

 

 

  
     

   
 

0

( )
0t n

n
n

k A

i









 
 


 .

 

(2.9) 

 

2.3.2 Eikonal Equation for Multi-phase System 

Let us focus on the pressure wave with a high frequency that contributes to the 

early and rapid variations of pressure disturbance. With the high frequency limit, only the 

terms of higher order of i has a significant physical meaning in Eq. (2.9).  The terms with 
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the highest order of i can be found in the first term of Eq. (2.9) that corresponds to n = 

0:  

  2

0( ) 0t ti k c A      .

 
(2.10) 

Since A0 is a non-zero real function, the gradient of the DTOF must satisfy the following 

condition:  

 2 1

t tk c


 
  .

 
(2.11) 

Thus, we come up with the Eikonal equation for multi-phase system:  

 1

mp




  ,

 
(2.12) 

where the multi-phase diffusivity has been defined as:  

 t
mp

t

k

c





 .

 
(2.13) 

The Eikonal equation for anisotropic permeability can be also derived following Zhang et. 

al (2016). With the same manner as the single-phase, the multi-phase Eikonal equation 

can be efficiently solved for the DTOF  using the Fast Marching Method. Figure 2.1 

illustrates an example of diffusivity in a 2-D and two-phase reservoir with the 

homogeneous porosity and permeability and nonuniform initial water saturation. With the 

given distribution of water saturation as depicted in Figure 2.1a, the two-phase diffusivity 

was calculated as the summation of water and oil diffusivities (Figure 2.1b through Figure 

2.1d). The corresponding DTOFs were also calculated using the water, oil and two-phase 
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diffusivities (Figure 2.1e through Figure 2.1g). Since the propagation of the pressure front 

in the multi-phase system is controlled by the total mobility, Figure 2.1e and Figure 2.1f 

are obviously not the appropriate solutions for multi-phase flow. 

 

 

     (a)          (b)      (c)      (d) 

 

 

               (e)      (f)      (g) 

 

Figure 2.1 Initial water saturation, diffusivity and DTOFs (modified from Fujita 

(2014)) (a) Initial water saturation, (b) water diffusivity, (c) oil diffusivity, (d) two-

phase diffusivity, (e) water-phase DTOF, (f) oil-phase DTOF and (g) two-phase 

DTOF (reprinted with permission from Iino et al., 2017a) 

 

 

2.3.3 Coordinate Transformation from 3-D to 1-D along the DTOF 

In order to decouple the 3-D flow equations for fracture into 1-D equations along 

the DTOF, we also assumed that pressure changes are aligned with the DTOF contour:  
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 p
p 




  


.

 
(2.14) 

The Darcy velocity (2.2) can be rewritten as:  

 rj

j

j

kk p


 

   
        

u .

 
(2.15) 

Suppose d is the domain between two DTOF contours, we integrate Eq. (2.1) over this 

domain: 

      d d dj j j j j jS
t

    


      
  u u n ,

 
(2.16) 

where d  is the surface area of d. The unit vector n that is perpendicular to the DTOF 

can be represented by:  

 
| |









n .

 
(2.17) 

Substituting Eqs. (2.15) and (2.17) into (2.16) yields:  

 
  td d

| |

rj

j j j

j

kk p
S

t



  

  

    
             

  .

 
(2.18) 

Rearranging the Eikonal equation, permeability can be expressed by  

 
2

1

| |

t

t

c
k



 



.

 
(2.19) 

Remember the surface area  can be approximated by the derivative of  with respect 

to the infinitesimal distance s:  
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 d dd d
( )

d d d d

pt t
t

refref

V
w

s s


 

   

  
      

 
,

 
(2.20) 

With Eqs. (2.19) and (2.20), the R.H.S. of Eq. (2.18) becomes:  

  d
d ( )

| | | |

rj rjt
j j

j t jref

kk kkcp p
w


   

      

          
                             
   

( )
rjt

j

t jref

kc p
w  

   

    
             

,

 

(2.21) 

where subscript ref denotes the reference condition in which the DTOF was generated. On 

the other hand, the volume integration on L.H.S. in Eq. (2.18) can be rewritten as follows 

by assuming that every properties can be considered constant within the infinitesimal 

domain of : 

 
   d dj j j jS S

t t
  

 
  

   ,p ref j j

ref

V S
t






 
      

,

 
(2.22) 

where the integration d  gives the bulk volume that is equivalent to the pore volume 

divided by porosity. Equating the transfer term (2.21) with the accumulation term (2.22) 

yields the following form of mass conservation:  

 
 j jS

t





( )

( )

ref rjt
j

t jref

kc p
w

w


 

    

    
             

.

 
(2.23) 

 Finally, the coordinate transformation for flux term can be obtained by equating Eqs. (2.1) 

and (2.23):  
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  ( )

( )

ref rjt
j j j

t jref

kc p
w

w


  

    

    
              

u .

 
(2.24) 

By introducing the formation volume factor B, Eq.  (2.24) can be rewritten as: 

 
( )

( )

rj ref rjt

j j t j jref

k kc p
p w

B w B




     

     
                

k .

 
(2.25) 

 

2.3.4 Dual-porosity Formulation 

For modelling the shale reservoirs with the complicated flow mechanisms between 

multi-continua, the dual-porosity model (Warren and Root 1963) was used in this study. 

As illustrated in Figure 2.2, the dual-porosity system consists of two porous media with 

distinct reservoir properties: fracture and matrix. The fracture has a higher conductivity 

and plays a role of main flow path for fluid flow. The matrix, on the other hand, plays a 

role of a storage or sink/ source term communicating with fracture but no convective flow 

in-between. Thus, we assumed that propagation of high-frequency pressure wave only 

depends on the fracture properties and the DTOF calculation is involved only in the 

fracture domain (Fujita et al., 2016). 

 

 

Figure 2.2 Illustration of Dual-porosity and Single-permeability system  

(reprinted with permission from Iino et al., 2017a) 

Fracture Fracture Fracture

Matrix Matrix Matrix

Well

(Warren and Root 1963)

Main flow path

Sink/ source

Primary Pressure Propagation
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In the absence of gravity and capillary forces, the mass balance equations in the fracture 

medium of the dual-porosity system are written as the following equations (Kazemi et 

al., 1976; Gilman and Kazemi, 1983):  

 wf rwf w w
f f f

w w w w w

S k q
p

t B B B B




    
      

    
k ,

 
(2.26) 

 of rof o o
f f f

o o o o o

S k q
p

t B B B B




    
      

    
k , (2.27) 
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f s s f
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g go o
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g o g o

S S k k
R R p

t B B B B

q q
R R

B B B B


 

      
                       

    
         
   

k

, (2.28) 

where B: formation volume factor, Rs: solution gas-oil-ratio, q : flow rate per unit bulk 

volume and subscript f denotes fracture. The fluid transfer term j between the fracture 

and matrix is given by the following: 

 
( )

rj

j m f m

j

k
k p p



 
    

 

,

 
(2.29) 

where  is a shape factor dimensioned by square-inverse of length that represents the 

connectivity between the matrix block and the surrounding fracture network. The matrix 

only have fluid transfer with the fracture and there is no convective flow within the matrix:  
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 wm w
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w w

S

t B B

  

 
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,

 
(2.30) 
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S S
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t B B B B

    

         

, (2.31) 

 gm gom o
m s s

g o g o

S S
R R

t B B B B

    

         

, (2.32) 

where subscript m denotes the matrix. Now let us apply the coordinate transform to 

fracture to formulate the 1-D equations along the DTOF. By assuming that both the 

pressure and saturation changes are aligned with the DTOF contours, we apply Eq. (2.25) 

to Eqs. (2.26) through (2.28) and obtain the following 1-D equations for fracture:  

 ,
( ) ( )
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
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    
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(2.33) 
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(2.35) 

where the Dirac delta (wb) means that the sink/ source term only appears at the inner 

boundary of  = wb in the well grid. The validity of the assumption that the pressure and 

saturation contours are aligned with the DTOF contours will be discussed later. In the 
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discretized domain along the DTOF coordinate, the sink/ source term can be rewritten in 

terms of the bottomhole pressure as:  

 
,1( )

rj

j f w

j

k
q WI p p



 
   

 

. (2.36) 

Derivation of the well index WI defined in the -coordinate system will be presented later.  

 

2.4 Implementation 

In this section, we will describe how the mathematical formulations are discretized 

and implemented.  The well model specific to the DTOF coordinate will be introduced. 

Calculation of Vp and w(), which is the critical part of our proposed FMM-based 

approach, will be presented and validated.  

 

2.4.1 Simulation Workflow 

The simulation approach consists of two decoupled steps: calculating the DTOF 

on the original multi-dimensional grid and 1-D simulation on the DTOF coordinate. The 

workflow is illustrated in Figure 2.3. First, the multi-phase diffusivity is calculated for 

every grid block. The Eikonal equation is then solved by the FMM for the DTOF, followed 

by the calculation of the drainage pore volume Vp as a function of the DTOF. 

Subsequently, the drainage pore volume is discretized on 1-D DTOF coordinate and the 

w() function is calculated. The 1-D simulation will be finally performed using the pore 

volume, transmissibility and well index defined on the 1-D DTOF system. In Appendix 
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A, we describe how 1-D parameters defined on the DTOF coordinate can be incorporated 

with the existing reservoir simulators.  

It should be noted that the DTOF is calculated only at initial condition and not 

updated during the 1-D simulation. In theory, the DTOF contour keeps varying due to the 

pressure and saturation changes. However, we use the DTOF as a spatial variable for 

coordinate transformation. As long as the assumption behind the coordinate 

transformation is valid, the specific time chosen for DTOF should not matter. Further 

discussion can be seen in the section 2.7.  

 

 

 

Figure 2.3 Flow chart of multi-phase 1-D simulation based on the FMM (reprinted 

with permission from Iino et al., 2017a)  

1. Compute multi-phase

diffusivity in fracture on 3D grid

2. Compute DTOF in fracture

on grid block by FMM

3. Cum. pore vol. vs. DTOF

5. Calc w(), 1D transmissibility, PV & WI 4. Discretize on 

1D -coordinate

:sqrt(hr)






d

)(d
)(

pV
w 

Vp

DTOF ()

Vp

DTOF ()
0

1

2

3

4

5

6

0

200

400

600

800

1000

1200

0 100 200 300 400 500

O
il
 r

a
te

, 
s
tb

d

Day

6. Run 1D Simulation (FMMSim)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

W
a

te
r 

c
u

t

Day

Qo

GOR

WC

DTOF ()

w()
1D gridwell

0 10 20 30 40 50

kt/ct

Well Well



 

29 

 

2.4.2 Discretization 

In the FMM-based reservoir simulation, the discretized 1-D equations are solved 

for pressure and saturation with the fully implicit method. Let us present how we discretize 

the water mass balance equation of fracture for instance. We first multiply the bulk volume 

Vb to Eq. (2.33):  
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(2.37) 

where w() in front of the partial derivative with respect to  was approximated as Vbf,ref 

/.  The accumulation term on L.H.S. is discretized in time: 
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(2.38) 

where subscript i and superscript n denote the grid block index on 1-D DTOF space and 

time step level, respectively. The transfer term on the R.H.S. can be discretized as: 
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(2.39) 

Thus, the 1-D transmissibility T1D can be defined as: 
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(2.40) 

where C is a constant depending on the unit system (see Table 2.1 for detail).  

 

Table 2.1 Constant for transmissibility calculation 

Parameter Unit system-1  Unit system-2 

DTOF  ft×(mD×psi×cp-1)0.5  (day)0.5 

w() cuft×{ ft×(mD×psi×cp-1)-0.5}  cuft×(day)0.5 

ct psi-1  psi-1 

t cp-1  cp-1 

Tgeo bbl/day/psi×cp  bbl/day/psi×cp 

C 0.001127   0.1781 

 

 

Discretization of sink/source and matrix-fracture transfer terms are: 
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(2.41) 
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where C2 is 0.001127 for field unit when Vb enters as ft3.  

 Schematics of the 1-D DTOF grid blocks in xy-plane is illustrated in Figure 2.4. 

Pore volume and w() function defined on the 1-D DTOF grid blocks are basically 

computed from the FMM solution as discussed later, however, they need to be analytically 

calculated for the first cell in the vicinity of well which has the most significant impact on 
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the simulated well performances. Within a well grid block, the distance r from the 

wellbore can be translated by    and 4
x y    for the isotropic and anisotropic systems, 

respectively. Thus, the first cell should be defined within the well grid such that pore 

volume and w() can be analytically calculated with the following formulations:  

 2

1 3/2 ,wellgrid ,wellgridp x yV h     ,

 
(2.43) 

 
3/2 analytical 3/2 x,wellgrid y,wellgrid( ) 2w h     . (2.44) 

where similar expression can be applied for cases of yz- and xz-plane.  

 

 

Figure 2.4 Schematics of the 1-D DTOF grid blocks. Subscripts i and i+1/2 denote 

the cell-center and cell-interface, respectively  

 

  

w

3/2

Original grid

-grid x

y

kx > ky

・

・

・

P1

P2

P3

P4

・

9/2

7/2

5/2

well

1

2

3

4

1 2     3    4



 

32 

 

2.4.3 Well Model 

The well index WI specific to the coordinate system of the 1-D DTOF can be 

derived by the same way as the radial coordinate system.  Let us consider the steady-state 

radial flow in isotropic system of which the line-source solution is approximated by: 
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(2.45) 

The average pressure between the wellbore (rw) and the radius r is: 
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(2.46) 

By substituting Eq. (2.45) into Eq. (2.46) and carrying the integration out, we come up 

with the following equation:  
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(2.47) 

Since we define the first cell on the 1-D DTOF grid within the original well grid, the 

distance r can be replaced with the DTOF:  

 r



  (r: within isotropic well grid).

 
(2.48) 

The well index can be defined as: 
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where the constant C3 is 0.007081 for field unit. For anisotropic permeability, we can 

simply replace the permeability with the geometric mean between two directions 

perpendicular to the well:  

 3
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 (2.50) 

If the well is completed in multiple grid blocks in the original 3-D grid, the well index 

should be summed up for all the completions: 

 3 , ,

2

1 1

2 2

1 , ,

1
ln

( ) 2

cN
x l y l l

l

w l w l

C k k h
WI

 

  


 

    

 .

 (2.51) 

where Nc is the number of completions and subscript l is the completion index.  Note that 

1 needs to be defined such that the first 1-D grid is defined within all the completion cells.  

 

2.4.4 Calculation of Vp and w(tau) Function 

According to the discretization scheme of the FMM, two different options will be 

used to calculate the pore volume Vp and w() as a function of the DTOF. 

 The first option is based on the cell-center  where the DTOF solutions are mapped 

onto the cell center of each grid block:   
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Because the accumulation criteria for each grid block is simply based on the comparison 

between the cell-center ijk and , this option results in a stair-wise Vp(), leading to the 

non-smooth w() function that is calculated by the numerical derivative of Vp(). Thus, we 

use a smoothing technique that is typically used in the calculation of the welltest derivative 

(Horne, 1995):  
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(2.53) 

where the numerical derivative at point-i is calculated using the non-adjacent data located 

at i-j and i+j. The span size j is determined by the optimum span selection that gives a 

trade-off between bias and variance. Although bias is typically evaluated by the deviation 

between the model estimate and observed (true) data, we do not have true values of w() 

to be referred. Hence, we simply use the error in pore volume that is back-calculated from 

the smoothed w() as a representation of bias: 
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. (2.54) 

where N is the number of 1-D DTOF grid blocks. On the other hand, variance is evaluated 

by the root-mean-squared (RMS) of sum with moving linear regression:  
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where n is the number of DTOF nodes and f() is the linear regression within the moving 

window (Figure 2.5).  

 

 

Figure 2.5 Illustration of moving linear regression to evaluate variance of w(tau) 

function  

 

 

Figure 2.6 illustrates the w() function with different span sizes and bias-variance trade-

off calculated for 2-D homogeneous (41×41) model where the well is located at the center.  

The error in the pore volume and the RMS normalized by each maximum value clearly 

show the trade-off, indicating that the optimum span size is found at the span size of three 

(Figure 2.6d). The extreme span sizes of one and eleven show scattered and smeared w() 

functions (Figure 2.6a and Figure 2.6c), respectively, whereas the optimum span size 

shows a good matching with the analytical calculation (black line) in Figure 2.6b.   
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(a) w() (span size = 1) (b) w() (span size=3)         (c) w() (span size=11) 

 

(d) Bias-variance trade-off 

Figure 2.6 w(tau) with different span size (top) and bias-variance trade-off for 

optimum span size selection (bottom). The number of 1-D grid blocks is 200. Black 

line in top three plots denotes the w(tau) function that is analytically calculated 

 

 

The other option to calculate w() function is based on the 27-pt stencil FMM (Li, 

2018). In this approach, the DTOF is solved not only on the cell-center but also on vertices 

and midpoints of each segment of grid blocks, leading to the minimum and maximum 

DTOF values for each grid that represent the duration in which the pressure wave is 
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passing through. This enables us to calculate how much fraction of pore volumes of each 

grid block to be included in Vp() by the interpolation based on -value:  

 2
min,

0, ,2
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( ) min 1, min 1,max 0, ,
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   (2.56) 

where Nc: number of completion cells, N: cell count of the original 3-D model, Vp0: pore 

volume of the first  grid block lying within each completion cell, Vp: pore volume of 

each grid block. Note that special treatment will be made on completion cells as illustrated 

in Figure 2.7: the grid block is divided into the first -grid and the remaining part. In case 

that we calculate the pore volume for  less than 1, the quadratic interpolation will be 

used for the first -grid since the radial flow is expected. For the remaining part, the pore 

volume Vp is redefined as the pore volume of the grid block minus that of the first -grid, 

and min is set to be 1.   

 

 

Figure 2.7 Special treatment for well cells for pore volume calculation from 27pt-

stencil FMM solution 
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Thus, the obtained Vp() is no longer a stair-wise function. The smooth w() function can 

also be obtained from the following equation that does not involve any smoothing artifact:  

 ,
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ijk ijk ijk

V
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   

  
 . (2.57) 

Comparison of Vp and w() calculation between the cell-center and 27pt-setencil will be 

discussed later.  

 

2.4.5 Averaging Reservoir Properties 

In the FMM-based simulation, the pore volume and transmissibility in the 1-D 

DTOF domain are defined based on Vp() and w() functions as stated above. However, 

all the other properties such as rock types, matrix porosity and fracture/ matrix 

transmissibility coefficient Vbkm need to be averaged within the DTOF contour (Table 

2.2).  

 

 

Table 2.2 Averaging method for reservoir properties for FMM-based simulation 

Reservoir properties Averaging method 

Matrix porosity Volume-weighted average 

Fracture/ matrix transmissibility coefficient Volume-weighted geometric average 

Rock type for relative permeability Majority vote 

Rock type for rock compaction Majority vote 

Initial water saturation Pore volume-weighted average 

Initial pressure Pore volume-weighted average 
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Let us present an example of the fracture/ matrix transmissibility coefficient Vbkm.  

Suppose a group of matrix blocks of which size is lx× ly× lz lies in the bulk volume of 

xyz (Figure 2.8).  

 

   

Figure 2.8 Schematics of dual-porosity system  

 

 

The shape factor  is defined as follows (Gilman and Kazemi 1983):  
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(2.58) 

The contact area Ax between fracture and matrix and transfer rate in x-direction are: 
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where superscript up denotes the upstream continua. Substituting Eq. (2.59) into (2.60) 

and summing up the transfer rate in three directions yields:  
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, (2.61) 

The total transfer rate of the grid blocks which lie in the same DTOF contour is:  
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where ijk is the grid block index in the original 3-D grid system. Assuming the matrix 

pressure is uniform within each DTOF contour,  
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where subscript i denotes the grid block index in 1-D DTOF system. Eq. (2.63) indicates 

that shape factor  and matrix permeability km should be treated as a product in dual-

porosity formulation and it should be averaged in each DTOF contour being weighted by 

bulk volume. In this study, we employed the geometric average:  
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where Vbulk,ijk,i denotes the portion of the bulk volume of grid block ijk that lies within 

the i-th DTOF contour. Thus, as well as the pore volume, we need to accumulate Vbulk  
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and Vbulk log(km) as a function of the DTOF as illustrated in Figure 2.9.  The other 

properties listed in Table 2.2 can be calculated with the similar manner.  

 

 

Figure 2.9 Illustration of calculating average fracture/ matrix transmissibility 

coefficient in 1-D DTOF domain 

 

 

2.5 Validation 

We validated the proposed FMM-based simulation using synthetic reservoir 

models. We start from the single-phase case to illustrate validity of our basic formulation 

and implementation without any multi-phase effects. Subsequently, we present multi-

phase cases to show accuracy and computational efficiency of the FMM-based approach.  

  

 logbulk mV k 

bulkV

i

i

 , , log
countor

bulk ijk i m ijk
ijk

V k







, ,

countor

bulk ijk i

ijk

V
 







 
 , ,

, ,

log

log

countor

bulk ijk i m ijk
ijk

m countor
i

bulk ijk i

i

V k

k

V

























 

42 

 

2.5.1 Single-phase Case—Homogeneous Reservoir 

We first validate the FMM-based simulation approach using three cases in Table 

2.3. Single-phase fluid was assumed with the viscosity and compressibility of 1 cp and 10-

5 psi-1, respectively. Rock compressibility was neglected and well radius was set to be 

0.354 ft. For cases 1 and 2, the vertical wells were completed for the whole thickness at 

the center, whereas the horizontal well in case 3 was placed at the center with the lateral 

length of 754 ft. The storativity ratio  and inter-porosity coefficient  are defined as 

follows:   

  

   
t f

t tf m

c

c c




 
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
, (2.65) 

 2 m
w

f

k
r

k
  , 

(2.66) 

where reservoir parameters in Table 2.3 are equivalent to  of 0.1 and  of 2×10-5, 

respectively.  

 

 

Table 2.3 Single-phase validation cases 

Case 
1. Single-porosity 

& Vertical well 
2. Dual-porosity 
& Vertical well 

3. Single-porosity 
& Horizontal well 

Model size (ft3) 500×500×20 500×500×20 3000×3000×50 

Grid block numbers 501×501×1 501×501×1 501×501×21 

Porosity 0.2 
0.02 (Fracture) 
0.18 (Matrix) 

1 (Horizontal) 
0.1 (Vertical) 

Permeability (mD) 1 
1 (Fracture) 

0.001 (Matrix) 
1 

Shape factor (ft-2) - 0.15945 - 
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2.5.1.1 Comparison with analytical solutions 

For validation cases here, analytical pressure solutions are available (Lee et al., 

2003). Figure 2.10 shows the comparisons of log-log diagnostic plots from FMM-based 

simulations and analytical solutions for constant rate drawdown test. For all the three 

cases, the number of 1-D grid blocks was set to be 400 with logarithmic gridding around 

the well and w() function was calculated based on the cell-center DTOF and smoothing 

technique. The first two cases with a vertical well in the 2-D single-porosity (Case-1) and 

dual-porosity (Case-2) show excellent agreement between FMM-based simulations and 

analytical solutions (Figure 2.10a and Figure 2.10b). On the other hand in Case-3 with a 

horizontal well, matching is still reasonable but the minor deviation can be seen in the 

pressure derivative (Figure 2.10c). Deviation in the early time up to 2 hours is due to the 

wellbore storage-like effect by the pore volume of the well grid in the FMM-based 

simulation. Deviation in the mid-time (20-2000 hours) might be due to the boundary effect 

(Huang, 2017) since the distance between the well and vertical boundary is only 50 ft.   
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(a) Vertical producer in 2-D homogeneous single-porosity model 

 
(b) Vertical producer in 2-D homogeneous dual-porosity model 

 
(c) Horizontal producer in 3-D homogeneous single-porosity model 

Figure 2.10 Log-log diagnostic plot for three validation cases 
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In the above examples, we discretized the 1-D DTOF coordinate into 400 grid 

blocks and confirmed good agreement with the analytical solutions. Next, we need to 

address (1) if solutions converge with respect to numbers of 1-D grid blocks and (2) how 

many 1-D grid blocks should be used to reasonably approximate the original 3-D 

simulation.  

 

2.5.1.2 Convergence with respect to number of 1-D grid blocks 

Accuracy and stability of the FMM-based simulation depend on those of Vp() and 

w() from the FMM solutions as we can see in the discretized 1-D formulations (2.38), 

(2.39) and (2.41). Especially, too small numbers of the 1-D grid blocks can cause 

erroneous w() function if it is calculated by the cell-center  and smoothing technique, 

leading to inaccurate simulation results. Figure 2.11 illustrates the comparison of w() 

functions between different numbers of the 1-D grid blocks (n) where the 2-D 

homogeneous single-porosity model (Case-1) was used. For reference, the analytically 

calculated w() function is also plotted with black solid lines. Obviously, w() function 

with 40 grid blocks is underestimated compared to the analytical calculation (Figure 

2.11a). However, once we increase the 1-D grid block number to 100, the calculated w() 

gets closer to the analytical calculation but it is still underestimated in the near-well region. 

Further refinement with 400 and more grid blocks gives excellent matching with the 

analytical calculation as well as the convergence of w() function as seen in Figure 2.11c 

through Figure 2.11e.  

 



 

46 

 

      

 (a) n= 40       (b) n= 100     (c) n= 200 

       

(d) n= 400       (e) n= 2000     (f) n= 4000 

Figure 2.11 w(tau) function (line: analytical, symbol: numerical) for different 

numbers of 1-D grid blocks 
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different numbers of the 1-D grid blocks using w() functions in Figure 2.11. Figure 2.12 

shows comparisons of the bottomhole pressure between the FMM-based simulation and 

the analytical solution in the transient and pseudo-steady state period. As expected, the 
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100 grid blocks. For larger numbers of 1-D grid blocks, the solution converges to the 

analytical solution.  

 

  

  (a) Transient period         (b) Pseudo-steady state 

Figure 2.12 Bottomhole pressure for constant rate drawdown (10 stb/day) for 

different numbers of 1-D grid blocks 

 

 

2.5.1.3 Validating Number of 1-D Grid Blocks 

As we have seen the convergence of the 1-D simulation results with respect to 

numbers of 1-D grid blocks, there should be a point of diminishing improvement in 

simulation accuracy. We may utilize w() function to evaluate the optimum number of 1-

D grid blocks since the convergence of 1-D simulation results depends on that of w() 

function.  

Using the example of 2-D homogeneous single-porosity model (Case-1), we 

evaluated how w() function converges with increasing number of 1-D grid blocks based 
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function with 4,000 grid blocks as a reference solution. It can be clearly observed that the 

solution starts converging around 200-400 grid blocks, which is consistent with the visual 

inspection of the plots in Figure 2.11. Alternatively, we could use the w()  function with 

the less number of 1-D grid blocks e.g. 40 grid blocks as a true solution (red triangle) to 

avoid unnecessary calculations of w()  function with fine grids. Thus, we can assess the 

desired number of 1-D grid blocks based on the w() function without running 1-D 

simulations.  

 

 

Figure 2.13 RMS of w(tau) function for different numbers of 1-D grid blocks from 

cell-center FMM and smoothing 
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permeability is illustrated in Figure 2.14.  The reservoir is undersaturated with the solution 

gas-oil-ratio (GOR) of 1,345 scf/stb at the initial pressure of 6,000 psi whereas the bubble 

point pressure is 2,860 psi. The blackoil table depicted in Figure 2.15 was generated based 

on the Bakken fluid (Najabaei et al., 2013). The water compressibility and viscosity are 

10-6 psi-1 and 1 cp, respectively. The producer operating with the constant bottomhole 

pressure of 2,000 psi was placed at the center of the reservoir and completed vertically in 

all layers. 

 

Table 2.4 Simulation input for 3-D homogeneous and multi-phase example 

(reprinted with permission from Iino et al., 2017a) 

Items Fracture Matrix 

Reservoir Property 

Porosity 0.01 0.10 

Permeability (mD) 2 10-4 

kv/kh 0.1 - 

 Shape factor (ft-2) 0.15 ft-2 - 

 Rock compressibility (psi-1) 1.0×10-6 1.0×10-6 

Initial Condition Pressure (psi) 6000 6000 

 Water saturation 0.0 0.40 

 Solution GOR (scf/stb) 1345 1345 

Well Constraints Const. BHP (psi) 2000 - 
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  (a) Water-oil     (b) Gas-oil 

Figure 2.14 Relative permeability for 3-D homogeneous and multi-phase example 

 

 

  

 (a) Oil FVF and Solution GOR   (b) Oil viscosity 

  

  (c) Gas FVF     (d) Gas viscosity 

Figure 2.15 PVT data for 3-D homogeneous and multi-phase example 
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The DTOF, Vp and w() were computed as depicted in Figure 2.16 where the 

number of 1-D grid was set to be 200. As the producer is completed in entire thickness, 

the pressure front expands laterally in the absence of gravity and capillarity. The w() 

function shows a straight line until the DTOF of 28 hr-1/2, followed by the decrease towards 

zero. Again, the w() function physically implies the surface area of the pressure front and 

indicates flow regimes. The linear increase and subsequent decrease of the w() function 

indicate the radial flow regime and the boundary effect, respectively. 

 

 
    

(a) DTOF   (b) Drainage pore volume and w() function 

 

Figure 2.16 Calculated DTOF, drainage volume and w(tau) function for 3-D 

homogeneous and multi-phase example (reprinted with permission from Iino et al., 

2017a) 

 

 

Next, the 1-D simulation was performed on the DTOF coordinate. The oil rate, 

GOR and water rate simulated by the FMM-based approach are compared with a 

commercial FDSim in Figure 2.17. For all the three phases, the FMM-based simulation 

provides a close matching with the FDSim.  
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  (a) Oil rate and GOR    (b) Water rate 

Figure 2.17 Comparison between FMM (solid lines) and FDSim (symbols) for 3-D 

homogeneous and multi-phase example (reprinted with permission from Iino et al., 

2017a) 

 

 

2.5.3 Computation Time 

Computational efficiency of our proposed approach was also studied. Figure 2.18 

illustrates the CPU time comparison with the FDSim. The same dataset as the above multi-

phase example was used except the number of grid blocks; the reservoir domain was 

further refined into 101×101×10 (102,010) and 317×317×10 (1,004,890). The number of 

1-D grid was fixed to be 200 for all the cases, which was confirmed to be enough number 

based on the convergence check of w() function. As the number of original grid blocks 

increases, more significant improvement in computation efficiency can be seen in our 

proposed approach that is based on the 1-D formulation. At least two orders of magnitude 

faster computation in the FMM-based simulation is expected in simulation with millions 

of grid cells, as compared to the FDSim. 
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Figure 2.18 Comparison of CPU time (bottom) between commercial FDSim and 

FMM-based simulation and speed-up factor (top). Number of 1-D grid blocks and 

number of time steps are fixed to be 200 and 128, respectively (reprinted with 

permission from Iino et al., 2017a) 

 

 

In the CPU time comparison in Figure 2.18, we fixed the number of 1-D grid 
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CPU time in this case. Although CPU time for the optimum span selection increases for 

the larger number of 1-D grid blocks, the impact is not significant.  

 

 

(a) FDSim vs. FMM-based simulation for each number of 1-D grid blocks 

 

(b) Breakdown of CPU time 

Figure 2.19 Comparison of CPU time of FMM-based simulation for different 

number of 1-D grid blocks 
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There should be two different contributions to the speed up resulting from 

transforming the 3-D to 1-D problem: (1) reduction in cell counts for the flow simulation 

and (2) structural change in the Jacobian matrix by transforming the 3-D to 1-D equation. 

In order to distinguish the above two contributions, we compare the CPU time versus 

simulation cell counts between the 3-D and 1-D simulations (Figure 2.20). Note that CPU 

time in the 1-D simulation here only includes the 1-D flow simulation and neither include 

the Eikonal solver nor the 1-D transmissibility computation. We can observe the same 

trend between the 1-D and 3-D simulations, which indicates that structural change in 

Jacobian matrix has no or little impact on the computation time saving in the FMM-based 

simulation.  

 

 

Figure 2.20 Comparison of CPU time between 3-D simulation and 1-D simulation in 

terms of simulation cell counts 
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A tartan grid was used with 200×394×5 (0.394 million) grid blocks where the grid 

sizes are uniform in x- and z-directions (x=10’ and z=20’) and logarithmically resolved 

near the hydraulic fractures in y-direction (Figure 2.21). A horizontal well was completed 

with 40 transverse hydraulic fractures where the cluster and stage spacing were 60’ and 

200’, respectively. The individual hydraulic fracture was represented by the grid blocks 

with the dimension of 320’×1’×100’. Accounting for the fracture width of 1’ that is much 

larger than reality, the effective properties rather than intrinsic properties were assigned 

for hydraulic fractures as summarized in Table 2.5. The matrix was assumed to be 

homogeneous. The heterogeneous properties for natural fractures are illustrated in Figure 

2.22. In the simulation of shale reservoirs, the initial water saturation accounting for the 

completion fluids can be a key variable for the history matching (Diaz de Souza, 2012). 

In this example, the initial water saturations of 0.9 and 0.8 were assigned for hydraulic 

and natural fractures around the wellbore, respectively. The transmissibility reduction in 

the hydraulic and natural fractures due to the compaction was modeled as a function of 

pore pressure as depicted in Figure 2.23 (Wang, 2017). The relative permeability used 

here is illustrated in Figure 2.24. The reservoir was initially undersaturated at the pressure 

of 4,000 psi and the bubble point pressure of 2861 psi where the same PVT data was used 

in the previous example (Figure 2.15). The horizontal well was operated at the constant 

bottomhole pressure of 2,000 psi, neglecting the pressure loss in the wellbore. 
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Table 2.5 Simulation input for unconventional reservoir example (reprinted with 

permission from Iino et al., 2017a) 

 Hydraulic Fracture Matrix Fracture 

Porosity 0.076 0.076 Figure 2.22a 

Permeability (mD) 10.0 1×10-6 Figure 2.22b, c 

kv/kh 0.1 0.1 Figure 2.22b, c 

Rock compressibility (psi-1) 1.0×10-6 1.0×10-6 1.0×10-6 

Shape factor - - Figure 2.22d 

Initial water saturation 0.8 0.4 Figure 2.22e 

Initial pressure (psi)  4000  

Solution GOR (scf/stb)  1345  

Well constraints Const. BHP of 2000 psi 

 

 

 

   (a) 3-D view   (b) Top view of two stages 

Figure 2.21 Configuration of hydraulic fractures for 3D synthetic example 

(reprinted with permission from Iino et al., 2017a) 
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(a) Porosity     (b) Permeability (x-direction)   (c) Permeability (z-direction) 

 

   (d) Shape factor (e) Initial water saturation 

Figure 2.22 Reservoir properties and initial water saturation for the fracture in 

unconventional reservoir example (reprinted with permission from Iino et al., 

2017a) 

 

 

 

Figure 2.23 Rock compaction curves for fracture in unconventional reservoir 

example (reprinted with permission from Iino et al., 2017a) 
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  (a) Water-oil     (b) Gas-oil 

Figure 2.24 Relative permeability for 3-D homogeneous and multi-phase example 

 

 

The DTOF, drainage pore volume and w() function in the fracture system were 

computed as shown in Figure 2.25. Again, we can readily identify the expected flow 

regimes using w() function and the DTOF map. In this example, six (6) distinct flow 

regimes were identified as captioned (a) through (g) in Figure 2.25 and the corresponding 

DTOF maps were depicted in Figure 2.26. Because of the small contrast of diffusivities 

between the hydraulic and natural fractures, no clear indication can be found for linear 

flow around each hydraulic fracture. Instead, the sharp increase (a) in the beginning 

indicates the radial flow in vertical direction, followed by the boundary effect represented 

by the steep decrease at (b). After the interference between stages seen at (c), the formation 

linear flow in x-direction starts as indicated in the flow regime (d). When the pressure 

propagation felt the boundaries in x-direction, subsequent linear flow (e) in y-direction 

would start. Finally, the complete pseudo-steady state (f) will be established that leads to 

w() function towards zero. 
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Figure 2.25 Calculated DTOF (left), drainage pore volume and w(tau) function 

(right) for unconventional reservoir example (reprinted with permission from Iino 

et al., 2017a) 

 

 

 

Figure 2.26 DTOF maps corresponding to each flow regime (a) through (f) in 

Figure 2.25 (reprinted with permission from Iino et al., 2017a) 

 

 

The 1-D simulation was conducted using the DTOF as a spatial coordinate and the 

results were compared with the commercial FDSim. Figure 2.27 shows the simulated well 
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performance. It can be confirmed that the FMM-based simulation gives consistent results 

with the FDSim for all three phase productions. Initially, high water production rate was 

seen due to the high water saturation in and around the hydraulic fractures, followed by 

the stable rate that comes from the matrix (Figure 2.27c and Figure 2.27d). GOR keeps 

increasing as the bottomhole pressure (2,000 psi) is less than the bubble point pressure of 

2,830 psi. The run time by the FDSim was 1,150 seconds while the FMM only needed 134 

seconds, which offered an order of magnitude faster computation. Thus, our proposed 

approach is capable of efficient simulation with the high resolution heterogeneous models 

and multi-phase effects. 

 

  

(a) Oil rate and cumulative oil  (b) Gas rate and cumulative gas 

  

(c) Water rate and cumulative water  (d) GOR and water cut 

Figure 2.27 Comparisons of simulation results between the FMM and commercial 

FD simulator for unconventional reservoir example (reprinted with permission 

from Iino et al., 2017a) 

0

100

200

300

400

0

100

200

300

400

0 500 1000 1500 2000

C
u

m
. 

O
il
 (

M
s

tb
)

O
il
 R

a
te

, 
s
tb

/d

Days

FMM_Qo FDSim_Qo

FMM_CumOil FDsim_CumOil

0

200

400

600

800

1000

0

200

400

600

800

1000

0 500 1000 1500 2000

C
u

m
. 

G
a

s
 (

M
M

s
c

f)

G
a

s
 R

a
te

, 
M

s
c

f/
d

Days

FMM_Qg FDSim_Qg

FMM_CumGas FDsim_CumGas

0

50

100

150

200

250

0

500

1000

1500

2000

2500

0 500 1000 1500 2000

C
u

m
. 

W
a
te

r 
(M

s
tb

)

W
a
te

r 
R

a
te

, 
s
tw

b
/d

Days

FMM_Qw FDSim_Qw

FMM_CumWat Fdsim_CumWat

0

0.5

1

0

2

4

6

8

0 500 1000 1500 2000

W
a

te
r 

C
u

t 
(f

ra
c

ti
o

n
)

G
O

R
, 

M
s

c
f/

s
tb

Days

FMM_GOR FDSim_GOR

FMM_WC FDSim_WC



 

62 

 

 

2.6 Comparison between Cell-center FMM and 27pt-stencil FMM 

Thus far, we have used the cell-center FMM in conjunction with the smoothing 

technique to calculate w() function in the validation cases above. As presented in 2.4.4, 

Chen (2018) proposed an improved calculation of w() based on the 27pt-stencil FMM. 

In this section, we compare the two methods and discuss pros/ cons of each method.  

 

 

2.6.1 Accuracy, Stability and Convergence 

Using the single-phase example in 2.5.1 (Case-1), we calculated w() function by 

Eq.  (2.57) with the 27pt-stencil FMM as shown in Figure 2.28 where two different 

numbers of 1-D grid blocks of 40 and 100 were tested. Comparing with the w() function 

from the cell-center  and the smoothing technique (Figure 2.11), excellent matching with 

the analytical calculation can be confirmed even for the small number of 1-D grid blocks 

(n = 40). The resulting bottomhole pressure for the constant rate drawdown of 10 stb/day 

also shows good agreement with the analytical solution (Figure 2.29).  
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  (a) 40 grid blocks    (b) 200 grid blocks 

Figure 2.28 w(tau) function from 27pt-stencil FMM 

 

  

     (a) Log-log diagnostic plot   (b) Linear plot (transient plot) 

Figure 2.29 Bottomhole pressure for constant rate drawdown of 10 stb/day from 

FMM-based simulation with w(tau) function using 27pt-stencil FMM (2-D 

homogeneous reservoir) 
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the 27pt-stencil FMM (blue triangle) converges quickly, indicating that 40-100 grid blocks 

are sufficient numbers for the 1-D simulation. For comparison, the RMS of w() function 

from the cell-center FMM and the smoothing technique is also depicted (red circle), which 

requires 200-400 grid blocks for w() function  to converge and yields larger errors 

compared to the 27pt-stencil FMM. Thus, the 27pt-stencil FMM can provide more stable 

and accurate w() function than the cell-center FMM.  

 

 

(a) w() with 4,000 grid blocks as a reference solution 

 

(b) w() with 20 or 40 grid blocks as a reference solution 

Figure 2.30 Comparison of RMS of w(tau) function between 27pt-stencil FMM 

(blue triangle) and cell-center FMM with smoothing (red circle)  
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2.6.2 CPU Time 

As discussed above, w() function from the 27pt-stencil FMM is more robust in 

terms of accuracy and convergence compared to the one from the cell-center FMM and 

the smoothing technique. However, the challenge of the 27pt-stencil FMM is expensive 

computational costs because the number of solution nodes of the DTOF, which is 

(2*Nx+1)× (2*Ny+1)× (2*Nz+1) in the 27pt-stencil FMM, is larger than that of the cell-

center FMM (Nx×Ny×Nz). Figure 2.31 shows the comparison of CPU time for solving the 

Eikonal equation by the two methods. For high resolution models with millions of grid 

blocks, the 27pt-stencil FMM requires more computation time by 1-2 orders of magnitude 

compared to the cell-center FMM. Further details have been studied by Chen (2018). Thus, 

it is practically recommended to use the cell-center FMM in such cases that we validated 

in section 2.5.  

 

 

Figure 2.31 CPU time comparison for solving Eikonal equation between cell-center 

FMM (red) and 27pt-stencil FMM (blue) 
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2.6.3 Case Example That Requires 27pt-stencil FMM 

One of the cases where the 27pt-stencil FMM works better than the cell-center 

FMM is a fractured well with the extreme contrast in permeability between fractures and 

formation. To illustrate this, we set up a 2-D homogeneous single-porosity model 

completed by a single hydraulic fracture as illustrated in Figure 2.32. The reservoir 

domain of 2,970’×3,000’×100’ was gridded by 101×101×1 cells. The grid block width of 

hydraulic fracture cells was set to be 2’ and logarithmic gridding was used in the direction 

perpendicular to the fracture plane. Single-phase fluid was assumed with the constant 

viscosity of 1 cp and the total compressibility of 1×10-5 psi-1. There is an 8-order of 

magnitude difference in permeability between hydraulic fracture (1000 mD) and 

formation (50 nD).  

 

 

Figure 2.32 Single hydraulic fracture model in 2-D homogeneous reservoir and 

DTOF 
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We compared w() functions from the two methods in Figure 2.33 where 

significant difference can be seen in the DTF between 0.01-0.1, which corresponds to the 

interface between the hydraulic fracture and formation. w() function from the 27pt-stencil 

FMM (blue triangle) well captures a linear flow regime characterized by a flat line that 

continues until the DTOF of 10. On the other hand, w() function from the cell-center  

and the smoothing technique shows much less values around the fracture/ formation 

interface, which plays a role of transmissibility barrier that should not exist. We also 

carried out the FMM-based simulations using both w() functions and compared the 

results with the FDSim (Figure 2.34). As expected, the FMM-based simulation with w() 

function from the cell-center  and the smoothing shows steep depletion and deviates from 

the FDSim (black solid line), whereas simulation with the 27pt-stencil FMM (blue 

triangle) gives excellent agreement with the FDSim.  

 

 

Figure 2.33 Comparison of w(tau) functions from cell-center DTOF with smoothing 

(red) and 27pt-stencil FMM (blue) in 2-D homogeneous reservoir completed by 

single fracture 
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Figure 2.34 Bottomhole pressure for constant rate drawdown of 1 stb/ from cell-

center DTOF with smoothing (red) and 27pt-stencil FMM (blue) in 2-D 

homogeneous reservoir completed by single fracture 

 

 

The reason of this performance difference between the two methods is simply 

because of how the pore volume is accumulated as a function of the DTOF. Vp() becomes 

a stair-wise function by Eq. (2.52) when the cell-center FMM is used, whereas smooth 

Vp() can be obtained by Eq. (2.56) with the 27pt-stencil FMM. Figure 2.35 illustrates 

comparison of Vp() obtained from the two methods. Because of the lack of data in 

fracture/ formation interface (0.01<  <0.1), the cell-center FMM with smoothing fails to 

capture the slope of Vp() function, leading to underestimated w() function. On the other 

hand, the 27pt-stencil FMM can yield smooth transition from fracture to formation by the 
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in the cell-center FMM can be potentially mitigated by the adaptive selection of optimum 

span size or calculating Vp() and w() functions individually for the fracture and 

formation.  

  

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000

B
H

P
 (

p
s
i)

dt (hr)

FDSim

27pt-stencil

Cellcen & smoothing



 

69 

 

 

(a) Vp() for whole reservoir domain  (b) w() (top) and Vp() (bottom) around well 

Figure 2.35 Pore volume and w(tau) function from cell-center and 27pt-stencil 

FMM 
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2.7.1 Production Data 

The three-phase production and the wellhead pressure data are available for 380 

days as illustrated in Figure 2.36. The well opened at 1,300 bbl/d liquid rate and declined 

to 100 bbl/d during the observation period. High water cut during the early production was 

due to the recovery of completion fluid. The production GOR stayed constant of 2.1 

Mscf/stb for the first three months and then kept on increasing. This indicates that the 

reservoir was initially undersaturated and the liberation of solution gas started due to 

pressure depletion. 

 

 

Figure 2.36 Production data of 10-stage hydraulically fractured well in a shale oil 

reservoir: wellhead pressure and oil, gas and water rates (Top) and GOR and 

water cut (bottom) (reprinted with permission from Iino et al., 2017a) 
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2.7.2 Base Case Model 

The base case model was provided by the operating company. The modelled 

reservoir section is dimensioned 7,100’×2,500’×180’ and resolved into 71×25×13 

(23,075) grid blocks. The reservoir is undersaturated at the initial pressure of 3,953 psi 

against the bubble point pressure of 2,930 psi with the solution GOR of 2,100 scf/stb. A 

dual-porosity model is assumed. Three distinct regions were defined for the fracture as 

illustrated in Figure 2.37: hydraulic fractures, Stimulated Reservoir Volume (SRV) and 

non-SRV. Stages of the transverse hydraulic fractures are represented by the simulation 

grid blocks highlighted by red color. 

 

 

Figure 2.37 Definition of regions for base case model (reprinted with permission 

from Iino et al., 2017a) 

 

 

Matrix properties were derived from core and log interpretations. For the purpose 

of the study, average matrix reservoir properties have been used: porosity, permeability 

and initial water saturation were 0.08, 2.7×10-5 mD and 0.41, respectively. The reservoir 



 

72 

 

heterogeneity was accounted for the fracture as per the regions defined above and shown 

in Figure 2.38. Due to the lack of data such as micro-seismic that indicates the SRV extent 

and production logging data to characterize the contribution to the production from 

individual hydraulic fractures, the base case values for the fracture and dimensions of 

hydraulic fractures and SRV were determined by the operator’s prior experiences and to 

be calibrated in the history matching presented later. The reduction in pore volume and 

permeability due to the compaction was modelled as functions of pressure (Figure 2.39) 

and to be tuned as well during history matching. The PVT data is shown in Figure 2.40. 

The relative permeability of straight lines with no connect saturations is used for fracture, 

whereas Figure 2.41 is used for matrix. 

 

 

Figure 2.38 Reservoir properties of the base case model for fracture (reprinted with 

permission from Iino et al., 2017a) 
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(a) Pore volume multiplier  (b) Transmissibility multiplier 

Figure 2.39 Rock compaction curves for field application (reprinted with 

permission from Iino et al., 2017a) 

 

  

(a) Oil (saturated line only)    (b) Gas 

Figure 2.40 PVT data for field application 

 

 
(a) Water-oil    (b) Gas-oil 

Figure 2.41 Relative permeability of matrix for field application 
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2.7.3 Benchmarking with Commercial FD Simulator 

The base case simulation using our proposed approach was conducted for the 

history period of 380 days under the wellhead pressure constraint. The DTOF, Vp and w() 

functions for the base case model are illustrated in Figure 2.42. Again, the DTOF is 

calculated only for the fracture in the dual-porosity model. From the DTOF map and w() 

function, we can readily identify the four distinct flow regimes that imply the hydraulic 

fracture, SRV and Non-SRV. The Non-SRV region gives no significant contribution to 

the fracture drainage volume. 

 

 

Figure 2.42 Calculated DTOF (left), drainage pore volume and w(tau) function 

(right) for unconventional reservoir example (reprinted with permission from Iino 

et al., 2017a) 
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compared to the observed data where initial oil and water rate and the oil decline after 250 

days from the simulation deviates. In the history matching presented later, the FMM-based 

approach was used for the forward simulation and the model parameters were calibrated 

to replicate the historical data. The FMM offered a three times faster computation 

compared to the FDSim. 

 

 

(a) Oil rate     (b) Water rate 

 

(c) GOR   (d) Tubing head and bottomhole pressure 

Figure 2.43 Comparison between FMM and commercial FD simulator for base case 

simulation. Blue solid line: FMM, red dashed line: FDSim, symbols: observed data 

(reprinted with permission from Iino et al., 2017a) 

 

 

Days

O
il

ra
te

,
s

tb
d

0 100 200 300
0

500

1000

1500

HISTORY

FMM

FDSim

Days

W
a

te
r

ra
te

,
b

b
ld

0 100 200 300
0

500

1000

1500

HISTORY

FMM

FDSim

Days

G
O

R
,
M

s
c

f/
s

tb

0 100 200 300
0

2

4

6

8

FMM

FDSim

HISTORY

Days

T
H

P
o

r
B

H
P

,
p

s
i

0 100 200 300
0

1000

2000

3000

4000

HISTORY

FMM

FDSim



 

76 

 

2.7.4 Uncertain Parameters 

Due to the limited data availability, the significant uncertainty lies in the fracture 

properties and dimensions of hydraulic fractures and SRV. Table 2.6 lists the uncertain 

parameters with the base values and ranges used for the sensitivity study. The 

terminologies for the dimensions of hydraulic fractures and SRV were defined as 

illustrated in Figure 2.44. For the sensitivity and history matching purpose, the 10-stage 

hydraulic fractures and SRVs were divided into three groups that have uniform properties. 

The sensitivity of the rock compaction was investigated by providing different rock tables 

as illustrated in Figure 2.45. 
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Table 2.6 Parameter uncertainties for sensitivity and history matching (reprinted 

with permission from Iino et al., 2017a) 

Regions Uncertain parameters Base Low High 

Hydraulic 
Fracture 

Porosity (HF_poro1, HF_poro2, HF_poro3) 0.01 0.005 0.04 

Permeability (HF_perm1, HF_perm2, HF_perm3), mD 0.20 0.55 3.0 

Water saturation (HF_Swi) 0.4 0.2 0.95 

Shape factor (HF_sigma1, HF_sigma2, HF_sigma3), ft-2 5×10-3 5×10-4 0.5 

Compaction table (HF_comp) 2 2 12 

Fracture half length (HF_Xf1, HF_Xf2, HF_Xf3 ), ft 50 50 150 

Fracture height (HF_h1, HF_h2, HF_h3), ft 60 40 100 

SRV 

Porosity (SRV_poro1, SRV_poro2, SRV_poro3) 0.01 0.005 0.02 

Permeability (SRV_perm1, SRV_perm2, SRV_perm3 ), mD 0.1 0.01 0.2 

Water saturation (SRV_ Swi1, SRV_ Swi2, SRV_ Swi3 ) 0.175 0.35 0.7 

Compaction table (SRV_ comp ) 2 2 12 

Shape factor (SRV_ sigma1, SRV_ sigma2, SRV_ sigma3), ft-2 1.25×10-3 1.25×10-4 0.125 

SRV_Width (SRV_W1, SRV_W2, SRV_W3), ft 500 300 900 

Matrix 

Porosity (Mat_poro) 0.08 0.059 0.094 

Permeability (Mat_perm), mD 2.7×10-5 2.3×10-7 1.3×10-4 

Water saturation (Mat_Swi) 0.41 0.3 0.77 

Connate water saturation (Mat_Swc) 0.7*Swi 0.5*Swi 1.0*Swi 

 

 

Figure 2.44 Setup of geometric parameters (left) and groups (right) for sensitivity 

study and history matching (reprinted with permission from Iino et al., 2017a) 
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Figure 2.45 Rock compaction table used for sensitivity study. Greater table number 

represents more severe transmissibility reduction (reprinted with permission from 

Iino et al., 2017a) 

 

 

2.7.5 Sensitivity Analysis 

For the sensitivity study, the objective function was defined as the summation of misfits 

in the cumulative production for each of the three phases as: 

 
( ) ln Cum_oil ln Cum_water ln Cum_gasf      m , (2.67) 

where m is a set of reservoir parameters and  represents the misfit of the model estimates 

from the observed data:  

 2
sim obs1 tN

i i

it

y y y
N

   . (2.68) 

where Nt is the number of time steps at which the observed data is available and subscript 

i is the time step level. Figure 2.46 shows a tornado diagram of the objective function 

with respect to the parameters listed in Table 2.6. For hydraulic fractures, water saturation, 

shape factor and porosity have significant impact on the objective function. The half-
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length of hydraulic fractures is also influencing while the height and stage lengths are less 

sensitive. For SRV, the most impacting parameter is the shape factor but all the other 

parameters except compaction have significant impact as well. The matrix porosity is less 

sensitive as even the low case has enough volume within the history period, while the 

matrix permeability is a heavy hitter that directly relates to the pressure support from the 

matrix to the fracture. 

 

Figure 2.46 Sensitivity analysis for history matching example (first stage) 

 

 

2.7.6 First Stage History Matching 

The history matching was conducted by minimizing the objective function defined 

by Eq. (2.67). Due to a large number of parameters listed in Table 2.6, we used the two-
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stage and then introduces the additional parameters in the subsequent stage (Cheng et al., 

2008). Population size per generation was set to be 200.  

The first stage history matching was conducted with tuning parameters selected 

based on the sensitivity analysis as noted by the red line in Figure 2.46.  Figure 2.47 shows 

the objective function versus generation number where the reduction in objective function 

almost stabilized by tenth generation.  

 

 

Figure 2.47 Objective function versus generation number (first stage) 

 

 

Among all the population in the first stage, we selected the top 30% realizations (621 

realizations) based on the objective function to define the parameter ranges for the second 
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stage, which shows that the parameter ranges were significantly narrowed down for 

several parameters such as water saturation of hydraulic fractures, matrix permeability, 
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SRV porosity and shape factor. On the other hand, the half-length of hydraulic fractures 

for groups 1 and 2 collapsed to a single value. One of the reasons is that the half-length 

can take only two discrete values (50 or 150 ft) as the hydraulic fractures are represented 

by the simulation grid blocks with different properties from SRV. The other reason is that 

the flow characteristics is influenced by fracture surface area defined as SRV fk X , rather 

than individual half lengths. Therefore, the SRV permeability that has distributions in 

Figure 2.48 can partially play a role of the fracture half-length.  

 

 

(a) Hydraulic fracture property 

Figure 2.48 Parameter ranges of initial generation, top 30% realizations of firs 

stage 
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(b) SRV and matrix property 

Figure 2.48 Parameter ranges of initial generation, top 30% realizations of firs 

stage (cont’d) 
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Comparisons between the observed production data and the simulation results are 

illustrated in Figure 2.49. The top 30% realizations capture overall trend of the observed 

data but indicate overshoot in the mid to late time of the matching period (200– 300 days). 

Thus, the second stage matching was performed to further improve the matching quality.  

 

 

  (Initial generation)   (Top 30% among 10 generations) 

Figure 2.49 Comparisons between observed data and simulated cumulative 

production (first stage) 
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2.7.7 Second Stage History Matching 

We performed the sensitivity analysis again with the updated parameter ranges. 

The tornado chart Figure 2.50 shows more uniform sensitivity compared to that of the 

first stage (Figure 2.1) as we have already reduced the ranges of parameters used in the 

first stage. The second stage history matching involved all the parameters.  

 

 

Figure 2.50 Sensitivity analysis for history matching example (second stage) 

 

 

Figure 2.51 illustrates the objective function versus generation number in first and 
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   (a) First stage    (b) Second stage 

Figure 2.51 Objective function versus generation number (first and second stages) 

 

 

The well performances simulated with the selected 607 models were compared 

with the observed data as illustrated in Figure 2.52. The selected models showed a good 
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  (Initial)  (After 1st stage) (After 2nd stage) 

Figure 2.52 Comparisons between observed data and simulated well performances 

(second stage) 
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The model parameters are summarized in Figure 2.53. Although we narrowed 

down the ranges of parameters, model parameters were not perfectly constrained due to 

the non-uniqueness as expected. More physically, it is worth to see the combinations of 

parameters rather than individual parameters. Figure 2.54 illustrates the cumulative 

distributions of fracture surface area and fracture/ matrix transmissibility for each group. 

Different distributions can be observed among different groups, which confirms that all 

the hydraulic fracture stages and SRV regions may not equally contribute to the 

production. However, it should be noted that we cannot distinguish the properties and 

dimensions between groups in this example because of the lack of data to characterize the 

individual groups of hydraulic fractures and SRV. The better quantitative characterization 

would be enabled by acquiring and utilizing microseismic and production logging data.   
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(a) Hydraulic fracture property 

Figure 2.53 Parameter distribution after second stage history matching 
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(b) Hydraulic fracture geometry 

Figure 2.53 Parameter distribution after second stage history matching (cont’d) 
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(c) SRV property 

Figure 2.53 Parameter distribution after second stage history matching (cont’d) 
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(d) SRV geometry 

 

(e) Matrix property 

Figure 2.53 Parameter distribution after second stage history matching (cont’d) 
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(a) Fracture surface area  (b) Fracture/ matrix transmissibility 

Figure 2.54 Distributions of parameter combinations before and after history 

matching 

 

 

 

2.7.8 Production Forecast 

The production forecast was conducted for another 1620 days using the selected 
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2.55 shows the predicted cumulative production of three phases and the GOR. For all three 

phases, variations can be seen between the selected models, leading to the range of 

uncertainty in the remaining recovery. Finally, the CDF of the expected incremental 

recovery are also shown for oil and gas in Figure 2.56. Unlike the empirical or analytical 

methods, our proposed approach involves a prediction not only for oil but also for gas and 
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water that might influence the effective productivity and the vertical flow. Thus, the 

proposed workflow assists the robust and systematic uncertainty analysis that honors the 

underlying physics and the available production history. 

 

  
  (a) Cumulative oil    (b) Cumulative gas 

  
  (c) Cumulative water    (d) GOR 

(Colored symbol: observed data, lines: simulations) 

Figure 2.55 Production forecast using multiple history matched models 

 

 

  (a) Incremental oil    (b) Incremental gas 

Figure 2.56 Uncertainty assessment of production forecast 

--------
-------------
----------------
--------------
--------------------
-----------------------
----------------------
------------------
---------------------
-------------------------
-------------------------
--------------------------
---------------------------
--------------------------
---------------------------
---------------------------------
------------------------------------
---

----
-----

------
-------

---------
-----------

-------------
----------------

-------------------
----------------

Day

C
u

m
.
O

il
(M

s
tb

)

0 500 1000 1500 2000
0

120

80

40

20

60

100

Forecast

Incremental recovery 

evaluated

Day

C
u

m
.
G

a
s

(M
M

s
c

f)

0 500 1000 1500 2000
0

500

400

200

100

300

Forecast

Incremental recovery 

evaluated

----
----
------
-------
--------
-------------
------------
-------------------
-------------------------
------------------------
----------------------
---------------------------------
--------------------------------------
-------------------------------------------
---------------------------------------------

--------------------------------------------------------
-------------------------

-------
--------

----------
------------

--------------
----------------

------------------
--------------------

Day

C
u

m
.
W

a
te

r
(M

b
b

l)

0 500 1000 1500 2000
0

120

80

40

20

60

100

Forecast Forecast

0

0.2

0.4

0.6

0.8

1

36 38 40 42 44

C
u

m
. 
P

ro
b

a
b

il
it

y

Incr. Oil Recovery at 2000 days (Mstb)

0

0.2

0.4

0.6

0.8

1

210 220 230 240 250

C
u

m
. 

P
ro

b
a

b
il

it
y

Incr. Gas Recovery at 2000 days (MMscf)

P90=37.4 P10 =41.4 P90=221 P10=236



 

94 

 

 

2.8 Limitations 

For the single-phase flow, King et al. (2016) and Wang (2018) validated the use 

of the DTOF contours as a spatial coordinate for pressure changes. The FMM-based multi-

phase simulation proposed in this study has an additional assumption that the saturation 

change is aligned with the DTOF contours as well. In this section, we will validate this 

assumption and discuss limitations. In order to illustrate different physical processes, the 

following two cases were tested: (1) gas liberation and (2) waterflooding. Other special 

cases involving multiple rock types with extremely different relative permeability or 

compaction are discussed in Appendix-B.  

 

2.8.1 Gas Liberation Case 

Since the gas liberation is a pressure-dependent process, it is expected that the 

DTOF contours can be used as a spatial coordinate to describe the saturation change as 

well as the pressure change. In this section, we will validate the FMM-based multi-phase 

simulation for the gas liberation scenario.  

 

2.8.1.1 Case Setting 

We set up a 2-D reservoir model as summarized in Table 2.7. Three different 

levels of heterogeneity were tested as illustrated in Figure 2.57 with the Dykstra Parson’s 

coefficients of 0.3, 0.6 and 0.9, respectively. The same PVT data as Figure 2.15 was used. 

The bubble point pressure was set to be 2,860 psi against the initial pressure of 3,000 psi. 
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A vertical producer was placed at the center and operated with the constant BHP of 1,000 

psi, leading to immediate gas liberation around the well.  

 

Table 2.7 Input data for gas liberation case 

Item Value 

Model size (ft3) 11,000’×11,000’×10’ 

Grid block dimension 101×101×1 (10,201) 

Mean Permeability (mD) 1 

Dykstra Person’s coeff 0.3, 0.6, 0.9 

Porosity 0.046 

Initial water saturation (immobile) 0.30 

Rock compressibility (psi-1) 1.0×10-6 

Water compressibility (psi-1) 1.0×10-6 

Initial solution gas-oil ratio (Mscf/stb) 1.34 

Bubble point pressure (psi) 2,860 

Initial pressure (psi) 3,000 

Well bottomhole pressure (psi) 1,000 

 

 

 

  (a) Low  (b) Moderate   (c) High 

Figure 2.57 Permeability distribution with three different level of heterogeneity 
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Figure 2.58 shows the gas-oil relative permeability used in this example.  Once 

the gas liberation begins, increases in the total mobility and total compressibility are 

expected. However, in terms of changes in diffusivity kt/ct, increases in the total 

mobility and compressibility compensate each other. Figure 2.59a and b illustrate the 

total mobility and total compressibility according to the depletion of pressure and increase 

of gas saturation. In this particular example, increases in the total compressibility has the 

larger magnitude than the total mobility increase, leading to decreases in the diffusivity 

for less pressure as shown in Figure 2.59c.  

 

 

Figure 2.58 Gas-oil relative permeability for gas liberation case 
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 (a) Total mobility     (b) Total compressibility     (c) Diffusivity change 

Figure 2.59 Total mobility, total compressibility and diffusivity change as per 

pressure depletion and gas saturation increase 

 

 

2.8.1.2 Comparisons of Pressure and Saturation 

We run both the FDSim and FMM-based simulation for 100 days to obtain grid 

block pressures and saturations in order to see if the FMM-based simulation captures the 

trend of the FDSim. Figure 2.60 compares pressure and gas saturations at 5 days where 

no significant boundary effect has appeared. The cross-plots in Figure 2.60 show grid 

block pressures or gas saturations from the FMM-based simulation in the vertical axis and 

those from the FDSim in the horizontal axis. The cross-plots of both pressures and 

saturations show wider spread for higher heterogeneity, indicating that the FMM-based 

simulation gets less accurate with increasing heterogeneity. This is because the Eikonal 

equation was derived based on the assumption of the smoothly varying media and the 

reflection should be accounted for if there exists high permeability contrasts in the 

reservoir (King et al., 2016). Furthermore, if we compare the cross-plots between 

pressures and gas saturations, the wider spread i.e. less R2-values can be observed in that 
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of the gas saturation. This is because the saturation change can be more affected by the 

underlying heterogeneity than the pressure change that is a diffusive process. The gas 

saturation contour from the FDSim shows local high saturations for the high heterogeneity 

case (top-right in Figure 2.60b) whereas the FMM-based simulation yields the smooth 

saturation (middle-right in Figure 2.60b). Thus, the assumption that pressure and 

saturation changes are aligned with DTOF contours becomes less valid for the higher 

heterogeneity, however, the FMM-based simulation captures the overall trend of the 

FDSim even for the high heterogeneity case (Vdp = 0.9).  

Next, we compare the pressure and saturation at 100 days where significant 

boundary effects have appeared in the high heterogeneity case with Vdp of 0.9 (Figure 

2.61). Obviously, the wider spread in the cross-plots of both pressure and saturation can 

be confirmed compared to the early time (Figure 2.60). Account for the boundary 

reflection would provide better matching between the FDSim and FMM-based 

simulations (Huang et al, 2017).  
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(a) Pressure 

 

(b) Gas saturation 

Figure 2.60 Comparisons of pressure and saturation at 5 days between FDSim and 

FMM-based simulation for gas liberation case 
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(a) Pressure 

 

(b) Gas saturation 

Figure 2.61 Comparisons of pressure and saturation at 100 days between FDSim 

and FMM-based simulation for gas liberation case 
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2.8.1.3 Necessity of Updating DTOF 

Finally, we tested if updating the DTOF during the FMM-based simulation 

improves the matching with the FDSim. Figure 2.62 illustrates the workflow of the FMM-

based simulation incorporating the DTOF update. The map-back of the 1-D solutions from 

the FMM-based simulation is based on the method detailed in Appendix C that honors 

the mass conservation before and after the map-back.  

 

 

Figure 2.62 Workflow of FMM-based simulation incorporating DTOF update 
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Figure 2.63a and b show the cross-plots of grid block pressures and saturations at 

5 days for the high heterogeneity case (Vdp of 0.9) between the FDSim and the FMM-

based simulations which involve no DTOF update and the DTOF update every day (4 

times in total), respectively. It was confirmed that updating DTOF gives little 

improvement in R2 values (less than 1%) compared to the case with no update. Better 

improvement in R2 values (4-7%) can be seen in Figure 2.64 that illustrates the cross-

plots at 100 day where the DTOF was updated every 5 days (19 times in total) in the 

FMM-based simulation, however, the improvement seems not to be significant. Thus, we 

confirmed little necessity to update the DTOF during the simulation in this example.  

 

  

(a) FDSim vs. FMM-based simulation without updating DTOF 

  

(b) FDSim vs. FMM-based simulation with updating DTOF for 4 times 

Figure 2.63 Cross-plots of pressure (blue) and gas saturation (red) at 5 days 

between FDSim and FMM-based simulation with and without DTOF updates for 

gas liberation case 
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(a) FDSim vs. FMM-based simulation without updating DTOF 

  

(b) FDSim vs. FMM-based simulation with updating DTOF for 19 times 

Figure 2.64 Cross-plots of pressure (blue) and gas saturation (red) at 100 days 

between FDSim and FMM-based simulation with and without DTOF updates for 

gas liberation case 

 

 

2.8.2 Waterflooding Case 

Different from the gas liberation case in the previous section, saturation changes 

due to waterflood is considered to be less pressure dependent. Furthermore, the saturation 

profile may be significantly affected by not only the reservoir heterogeneity but also the 

mobility ratio that is evaluated at the end point (Dake, 1978). In this section, we will 

validate the FMM-based multi-phase simulation for the waterflood case.  
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2.8.2.1 Case Setting 

We used the same reservoir model as the previous gas liberation case. The water-

oil relative permeability used in this case is illustrated in Figure 2.65. In addition to the 

different level of heterogeneity with Vdp of 0.3, 0.6 and 0.9, we also tested different 

mobility ratio (M = 0.1, 1, 10 and 100) by assuming the water viscosity of from 0.0152 to 

15.2 cp. Changes in total compressibility, total mobility and diffusivity according to the 

water saturation increase are illustrated in Figure 2.66 where diffusivity changes are 

normalized by the reference diffusivity at the initial condition. Waterflooding was 

simulated for 100 day with an injector located at the center and controlled by the constant 

rate of 500 stbw/day.  

 

 

Figure 2.65 Relative permeability for waterflooding case 
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      (a) Total compressibility  (b) total mobility  (c) diffusivity change 

Figure 2.66 Total compressibility, total mobility and diffusivity change versus 

water saturation for waterflooding case 

 

 

2.8.2.2 Comparisons of Pressure and Saturation 

We first compare pressure and saturation distributions between the FMM-based 

simulation and the FDSim at 5 days where no boundary effect has appeared.  Figure 2.67 

illustrates pressure contours in line and saturation contours in color. The cross-plots of 

grid block pressures and saturations are also depicted in Figure 2.68. For the mobility 

ratio equal to and higher than 1, the pressure matching is excellent for the low and 

moderate heterogeneity. For the higher heterogeneity (Vdp = 0.9), the cross-plot shows 

wider spread than cases with less heterogeneity, however, the FMM-based simulation well 

captures the trend of the FDSim. The same trend can be seen in the cross-plots of 

saturations in Figure 2.68 because saturation changes due to waterflood can be more 

influenced by the reservoir heterogeneity than pressure changes. Since we use the identical 

DTOF contours to describe both pressure and saturation changes, it is difficult to 

distinguish the effects of heterogeneity on pressure and saturation.  
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Then let us discuss the effect of mobility ratio. For the low mobility ratio (M = 

0.1), pressure calculation of the FMM-based simulation gets less accurate compared to 

other cases as seen in the cross-plots in Figure 2.68. This is because of the saturations 

calculated along the DTOF contours in the FMM-based simulation. The higher mobility 

ratio facilitates the saturation contours to be more smeared, leading to more uniform 

saturation within the area where the injected water reached. It results in more uniform 

saturation within each pressure contour than cases with less mobility ratio. This can be 

more clearly seen in the contour maps at 100 days in Figure 2.69. In addition, because the 

magnitude of saturation changes is less for higher mobility ratio, the FMM-based can still 

capture the overall saturation changes of the FDSim. Hence, it is expected that the 

preferred condition for the FMM-based simulation is less heterogeneity and higher 

mobility ratio. Although the boundary effects seem to have appeared, the cross-plots of 

pressures and saturation at 100 days shows the consistent observation as seen in Figure 

2.70.  
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Figure 2.67 Comparison of pressure (line) and saturation contours (color) at 5 days 

between FMM-based simulation and FDSim for waterflooding case 
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(a) Pressure 

 

(b) Water saturation 

Figure 2.68 Cross-plots of grid block pressure and saturation at 5 days between 

FMM-based simulation (vertical axis) and FDSim (horizontal axis) for 

waterflooding case 
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Figure 2.69 Comparison of pressure (line) and saturation contours (color) at 100 

days between FMM-based simulation and FDSim for waterflooding case 
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(a) Pressure 

 

(b) Water saturation 

Figure 2.70 Cross plots of grid block pressure and saturation at 100 days between 

FMM-based simulation and FDSim for waterflooding case 
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2.8.2.3 Necessity of Updating DTOF 

Finally, we tested how the DTOF update influence the results of the FMM-based 

simulation. We used the case of the high heterogeneity (Vdp = 0.9) and the low mobility 

ratio (M = 0.1). Figure 2.71 illustrates the comparison of pressures and saturations at 100 

days between different frequencies of the DTOF update.  

It can be observed that there is little difference in the pressure contours (line 

contours in Figure 2.71) among the different frequencies of the DTOF update. In the cross-

plots of grid block pressures between the FMM-based simulation and the FDSim, the R2 

values calculated for the cases with the DTOF update (R2 = 0.715-0.732) are not 

significantly improved from the case with no DTOF update (R2 = 0.725). Thus, in terms 

of pressure, there is little necessity to update the DTOF during the FMM-based simulation.  

On the other hand, the saturation profile is more affected by the DTOF update than 

pressure. Although the R2 values in the saturation cross-plots are improved in the cases 

with the DTOF update compared to the case with no update, the saturation contours clearly 

shows that increasing the frequency of the DTOF update results in more smeared 

saturation profile. This is because the DTOF update involves mapping and mapping-back 

the solutions between the original grid blocks and the 1-D grid blocks, leading to the 

averaged saturation especially around the displacement front. Thus, updating the DTOF 

does not always improve the accuracy of the FMM-based simulation.  
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Figure 2.71 Comparisons of pressures and saturations at 100 days between 

different frequencies of DTOF update for waterflooding case (Vdp = 0.9 & M = 1)  
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2.9 Conclusions 

In this chapter, we have proposed a novel approach that is based on the FMM for 

rapid multi-phase simulation in unconventional reservoirs. Our proposed approach is a 

bridge between simplified analytical methods and full 3-D numerical simulation and offers 

rapid computation that incorporates reservoir heterogeneity, complicated completion 

geometry, three-phase flow and relevant physics. The conclusions arising from this study 

are the followings.  

 We have developed the mathematical formulation for the FMM-based 1-D 

simulation that involves three-phase flow and dual-porosity model. The 3-D flow 

equations were transformed into 1-D equation along the DTOF coordinate where 

the spatial heterogeneity has been reflected. 

 The workflow for multi-phase simulation using the FMM was proposed. We first 

generate the multi-phase DTOF on the original grid block system. Subsequently, 

the multi-phase simulation is carried out using the 1-D DTOF grid blocks. 

 The proposed approach was validated using synthetic 3-D examples incorporating 

multi-phase flow. It was confirmed that the FMM-based simulation shows a good 

accuracy and orders of magnitude faster computation at the field scale, as 

compared to the commercial finite difference simulator. Additional advantage of 

the FMM is flow visualization using the DTOF and w() function, which assists 

us to easily identify the flow regimes. 



 

114 

 

 The field application of history matching was studied for a multi-stage 

hydraulically fractured well in a shale oil field in Texas. It demonstrated that the 

rapid simulation by the FMM-based approach assists efficient history matching 

using the population-based technique that requires a large number of simulation 

runs. Multiple history matched models were generated and used for the assessment 

of uncertainty ranges in the reservoir properties and remaining recovery. 

 We discussed the validity to use the DTOF as a spatial coordinate to describe both 

saturation and pressure changes. For cases with the low to moderate heterogeneity 

e.g. Vdp less than 0.6, the FMM-based simulation can provide good matching with 

the finite difference simulation. Even for the case with the severe heterogeneity 

e.g. Vdp of 0.9, the FMM-based simulation can still capture the overall trend of the 

finite difference simulation. When water or gas flooding is simulated, less mobility 

ratio results in less matching quality between the FMM-based and the finite 

difference simulations. Updating the DTOF during the FMM-based simulation 

does not necessarily improve the accuracy.  
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CHAPTER III 

OPTIMIZING CO2 AND FIELD GAS INJECTION EOR IN UNCONVENTIONAL 

RESERVOIRS USING THE FAST MARCHING METHOD‡ 

3.  

3.1 Chapter Summary 

Recently there has been an increasing interest in Enhanced Oil Recovery (EOR) 

from shale oil reservoirs, including CO2 and field gas injection. For the performance 

assessment and optimization of CO2 and gas injection processes, compositional simulation 

is a powerful and versatile tool because of the capability to incorporate reservoir 

heterogeneity, complex fracture geometry, multi-phase and multi-component effects in 

nano-porous rocks. However, flow simulation accounting for such complex physics can 

be computationally expensive. In particular, field scale optimization studies requiring 

large number of high resolution compositional simulations can be challenging and 

sometimes computationally prohibitive. In this chapter, we present a rapid and efficient 

approach for optimization of CO2 and gas injection EOR in unconventional reservoirs 

using the Fast Marching Method (FMM)-based flow simulation.  

                                                 

‡ Material adapted with permission from “Rapid Compositional Simulation and History Matching of Shale 

Oil Reservoirs Using the Fast Marching Method” by Iino et al. 2017b: Paper URTeC-2693139-MS 

Presented at the Unconventional Resources Technology Conference held in Austin, Texas, USA, 25-27 July 

2017. Copyright 2017, Unconventional Resources Technology Conference. Further reproduction is 

prohibited without permission.   

 
‡ Material adapted with permission from “Optimizing CO2 and Field Gas Injection EOR in Unconventional 

Reservoirs Using the Fast Marching Method”  by Iino and Datta-Gupta 2018: Paper SPE-190304-MS 

Presented at SPE IOR Conference held in Tulsa, Oklahoma, USA, 14-18 April 2018. Copyright 2018, 

Society of Petroleum Engineers. Further reproduction is prohibited without permission. 
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The FMM-based simulation is analogous to streamline simulation and utilizes the 

concept of ‘Diffusive Time-of-Flight’ (DTOF). The DTOF is a representation of the travel 

time of pressure ‘front’ propagation and accounts for geological heterogeneity, well 

architecture and complex fracture geometry. The DTOF can be efficiently obtained by 

solving the Eikonal equation using the FMM. The 3-D flow equation is then decoupled 

into equivalent 1-D equation using the DTOF as a spatial coordinate, leading to orders of 

magnitude faster computation for high-resolution and compositional models as compared 

to full 3-D simulations. The speed of computation enables the use of robust population-

based optimization techniques such as genetic or evolutionary-based algorithm that 

typically require large number simulation runs to optimize the operational and process 

parameters. 

We demonstrated the efficiency and robustness of our proposed approach using 

synthetic and field scale examples. We first develop and validate the FMM-based 

compositional simulation using examples of simple homogeneous model and CO2 Huff-

n-Puff for a synthetic dual-porosity and heterogeneous model with a multi-stage 

hydraulically fractured well. In the field-scale application, we present an optimization of 

operating strategies for gas injection EOR for a depleted shale oil reservoir in the Eagle 

Ford formation. The rapid computation of the FMM-based approach enabled intensive 

simulation study involving high-resolution geological models with million cells resulting 

in a comprehensive evaluation of the EOR project including sensitivity studies, parameter 

importance analysis and optimal operating strategies.  
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This chapter shows the novelty and efficiency of the systematic optimization 

workflow incorporating the FMM-based compositional simulation for the field-scale 

modeling of CO2 and gas injection in shale oil reservoirs. Not only can it account for 

relevant physics such as reservoir heterogeneity, fracture geometry and fluid phase 

behavior but also lead to orders of magnitude saving in computational time over 

commercial finite difference simulators. 

 

3.2 Background 

Unconventional tight oil reservoirs contribute significantly to the oil production in 

the United States. However, due to ultra-low permeability and rapid production decline, 

the recovery factor remains low as estimated to be 7% on average that is far short 

compared to conventional reservoirs (Jacobs, 2015a). It has resulted in increasing interest 

in the application of Enhanced Oil Recovery (EOR) techniques, especially CO2 and gas 

injection EOR (Alfarge et al., 2017b).  

In the last decade several projects of pilot IOR/ EOR have been reported in the 

literature (Alfarge, 2017a; Jacobs, 2015a). Todd and Evans (2016) analyzed seven IOR 

pilot tests performed in the U.S. Bakken Shale during 2008-2014, which involved 

continuous injection and Huff-n-Puff using water, CO2 or natural gas. However, little or 

no incremental oil was confirmed in all these tests due to early breakthrough and possibly 

less reservoir sweep than expected. On the other hand, Schmidt and Sekar (2014) reported 

successful pilot in 2011 where dry natural gas was injected from a horizontal injector 

perpendicular to the toes and heels of the offset horizontal producers. It resulted in the 
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increase of oil production rate from 130 to 295 bbl/d, as well as reduction in the decline 

rate from 20% to 15%. Most recently, there has been a report of a successful gas injection 

pilot in the Eagle Ford Shale where significant increase in oil production from fifteen (15) 

wells were confirmed (Jacobs, 2015a). Thus, the industry has been pursuing the best 

practice for successful EOR for unconventional reservoirs and a lot of research and 

projects are ongoing for this purpose (Rassenfoss, 2017). 

Recent experimental work has shown the feasibility of EOR using CO2 and 

hydrocarbon gases for improved oil recovery from unconventional rock samples of ultra-

low permeability. Exposure to CO2 at reservoir condition makes it possible to recover 

more than 90% of hydrocarbon from the Middle Bakken rock samples (Hawthorne et al., 

2013; Jin et al., 2017). Using the CT scanning, Sun et al. (2016) visually confirmed that 

CO2 kept invading into cores during the exposition, indicating that molecular diffusion is 

the main mechanism of mass transfer. It has also been demonstrated that natural gas can 

be another option that can potentially recover as much oil as CO2 does (Jin et al., 2017).  

In addition, much effort has been devoted for simulation studies to investigate the recovery 

mechanisms and feasibility of CO2 and gas injection EOR in unconventional reservoirs 

(Alfarge et al, 2017b). Wan and Sheng (2015) used dual-permeability simulation to study 

gas injection in fractured shale oil reservoirs and demonstrated that matrix/ fracture and 

matrix/ matrix diffusion play an important role in the oil recovery process. Chen et al. 

(2014) investigated the effects of heterogeneity on CO2 Huff-n-Puff performance using a 

compositional reservoir simulator. Alfarge et al. (2017b) compared the performances of 

miscible Huff-n-Puff for the Bakken Shale using lean gas, rich gas and CO2 solvents. They 
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found that hydrocarbon gases could be a better option as it required less molecular 

diffusion effects to increase the recovery compared to CO2. However, the gap of recovery 

mechanisms between lab-scale and field-scale needs to be addressed. Alharthy et al. 

(2016) conducted a comprehensive study of CO2 EOR from laboratory to field scales. The 

CO2 solvent-soaking-experiments using the Bakken cores showed that molecular diffusion 

significantly contributes to the recovery, whereas the history-matched field scale model 

showed little effects of molecular diffusion on the incremental recovery. 

For such simulation studies, compositional simulation is widely used to account 

for relevant physics such as fluid phase behavior, complex fracture geometry, reservoir 

heterogeneity and multi-component effects, etc. However, substantial computational 

burden makes it challenging to use high-resolution field-scale models and to carry out 

large number of simulation runs. It sometimes leads to over-simplification of the 

simulation models that might mask important underlying physics.  

In this chapter, we develop and validate a rapid compositional simulator using the 

FMM and an efficient workflow for optimizing CO2 and gas Huff-n-Puff in 

unconventional reservoirs. The use of the rapid FMM-based approach enables us to 

incorporate compositional simulations using high-resolution reservoir models with 

population-based optimization algorithms. We first present the mathematical formulation 

of our FMM-based approach, followed by the validation using synthetic models. Next, we 

show the field-scale optimization of an Eagle Ford well to demonstrate the efficacy and 

robustness of our proposed workflow. 
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3.3 Mathematical Formulation 

In the previous chapter, we presented the FMM-based simulation for multi-phase 

system. We extended the method to multi-component system as discussed by Fujita 

(2014). 

 

3.3.1 Dual-porosity Compositional Formulation 

Based on the dual-porosity assumption, we have the governing equations for 

fracture as follows: 

    i o o i g g i o o i g g
f f

x S y S k x y p
t
      


      
   

 

   i o o i g g i o o i g gup up
x q y q x y         ,

 

(3.1) 

      w w w w w w w wupf f
S k p q

t
    


    


, (3.2) 

    L V

i if f
F F . (3.3) 

The above Eqs. (3.1), (3.2) and (3.3) represent hydrocarbon mole conservation, water mole 

conservation and hydrocarbon fugacity equilibrium between liquid and vapor phases, 

respectively. Fi is fugacity of component i (Firoozabadi, 1999),  is phase molar density, 

q   is volumetric flow rate per unit bulk volume, x and y are phase mole fraction in oil and 

gas phase. Subscripts m, f, i and up stand for matrix, fracture, i-th component and upstream 

that is either matrix or fracture, respectively. The fluid transfer  between the fracture and 

matrix is given by Eq. (2.29). Similar equations can be written for matrix:  
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  i o o i g g
m

x S y S
t
  


  
 

   i o o i g gup up
x y    ,

 
(3.4) 

    w w w wupm
S

t
 


 


, (3.5) 

    L V

i im m
F F . (3.6) 

By assuming that all the pressure, saturation and composition changes are aligned with the 

DTOF contour, we can apply the coordinate transformation (2.24) to Eqs. (3.1) and (3.2) 

to obtain 1-D formulation along the DTOF:  

  

 ,
( )

( )

i o o i g g
f

f ref t
i o o i g g

t ref f

x S y S
t

c p
w x y

w

  


    

   


 
 

    
     

     

     ( )i o o i g g wb i o o i g gup up
x q y q x y           ,

 

(3.7) 

 
 

 

,
( )

( )

                                                 ( )

f ref t
w w w wf

t ref

w w wb w wup

c p
S w

t w

q


   

   

   

     
     

      

  

. (3.8) 

 

3.3.2 Phase Equilibrium Calculation 

In this research, we will use Peng-Robinson’s cubic equation of state (EoS) in 

conjunction with Peneloux volume correction (Peng and Robinson, 1976; Robinson and 

Peng, 1978; Jhaveri and Youngren, 1988):  
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 ( )

( )( 2 ) ( )( )

RT a T
p

V b V c V c b b c V b
 

      
,

 
(3.9) 

 

where R, V and T and c denote universal gas constant, volume, temperature and volume 

shift or volume translation parameter, respectively. The parameters a and b are calculated 

with the following formulations: 

 ( ) ( )ca T a T ,

 
(3.10) 

 
2 2

0.45724 c
c

c

R T
a

P
 , (3.11) 

 
2

( ) 1 1
c

T
T m

T


  
     
   

, (3.12) 

 0.07780 c

c

RT
b

P
 , 

(3.13) 

where subscript c stands for the critical condition. The parameter m can be computed with 

the following two formulations as per the acentric factor :  

 
2

2 3

0.37464 1.54226 0.26992 if 0.490

0.379642 1.48503 0.164423 0.016666 if 0.490
m

  

   

   
 

   
.

 
(3.14) 

For Nc-component mixture,  

 
c cN N

i j ij

i j

a z z a , (3.15) 
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cN

i i

i

b z b , (3.16) 

 (1 )ij i j ija a a k  , (3.17) 

where zi and kij denote the mole fraction of component i and binary interaction coefficient 

between components i and j.  The following cubic equation for the Z-factor can be 

obtained by equating the Equation of State for real gas PV ZRT with Eq. (3.9):  

 
3 2 2( ) 0Z Z A B B Z AB      , (3.18) 

where 

 

 
2 2

( )a T p
A

R T
 , (3.19) 

 bp
B

RT
 . (3.20) 

For the phase equilibrium calculation, fugacity of component i is calculated below: 

 

2

1 2 1

2

ln ( 1) ln( ) ln
( )

cN

ij j

ji i i

i

a z
F b b Z m BA

Z Z B
z p b m m B a b Z m B

 
 

         
   
 
 


, (3.21) 

where constants m1 and m2 are 1 2  and1 2 , respectively. Note that parameters a and 

b must be computed for each liquid and vapor phase by substituting mole fraction in liquid 

phase xi or mole fraction yi into zi in Eqs. (3.15) and (3.16). Thus, all the resulting 

parameters A, B and Z and fugacity are different between liquid and vapor phase.  
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3.3.3 Phase Density, Compressibility and Viscosity 

The phase molar density in Eq. (3.1) can be computed based on the phase molar volume 

v as follows:  

 
cN

L
L i i

i

Z RT
v x c

p
  , (3.22) 

 
cN

V
V i i

i

Z RT
v y c

p
  , (3.23) 

 1
L

Lv
  , 

(3.24) 

 1
V

Vv
  . 

(3.25) 

The phase compressibility to be used in the Eikonal equation (2.17) can be calculated 

numerically by the derivatives of phase molar density with respect to pressure:  

 1 L
o

L

c
p









, 

(3.26) 

 1 V
g

V

c
p









, 

(3.27) 

For viscosity calculation, the Lohrenz-Bray-Clark (LBC) correlation was used 

(Lohrenz et al., 1964) which can be computed by the following equation:  

 
5

0.25
4 1

0

1

( ) 10 i

i r

i

d    



      , (3.28) 
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where d1: 0.10230, d2: 0.023364, d3: 0.058533, d4: -0.040758 and d5: 0.0093324. 0 is the 

low-pressure gas mixture viscosity, r is the reduced molar density /c, is the viscosity-

reducing parameter defined as follows:  

 
0,

0

c

c

N

i i i

i

N

i i

i

z M

z M



 



, (3.29) 
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i

i ci

T

M P
  , (3.32) 

where Mi and  Tri is the molecular weight and reduced temperature of component i.   

 

 

3.4 Validation using 3-D Homogeneous Case 

We validated our approach using 3-D synthetic reservoir models by comparisons 

with a commercial FDSim. We first present an example of primary depletion using a 

homogeneous reservoir model. The example demonstrates accuracy and computational 

efficiency of the FMM-based compositional simulation. 
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3.4.1 Model Setting 

The same model input was used as the example in the last chapter (Table 2.4) 

except the fluid model. The EoS model was generated based on the Bakken data (Najabaei 

et al., 2013) that shows a bubble point pressure of 2860 psi at the reservoir temperature of 

240 degF. Initial composition is listed in Table 3.1. A production well with the constant 

bottomhole pressure of 2,000 psi was placed at the center and completed vertically in all 

layers. The number of 1-D grid blocks was set to be 200.  

 

Table 3.1 Initial composition for 3-D homogeneous compositional case (reprinted 

with permission from Iino et al., 2017b) 

 C1 C2 C3 C4 C5-6 C7-12 C13-21 C22-80 

Initial Mole 
fraction 

0.367 0.149 0.093 0.058 0.064 0.159 0.073 0.037 

 

 

Figure 3.1a shows comparisons of gas-oil-ratio (GOR), oil and water rates between the 

FMM-based simulation and the FDSim. All the three-phase productions are in good 

agreement. Furthermore, mole fractions of intermediate components (C2-4) in produced 

oil and methane (C1) in produced gas are also illustrated in Figure 3.1b. FMM-based 

simulation correctly captures changes in mole fraction due to liberation of solution gas in 

the reservoir. 
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(a) Oil, gas and water rate  (b) Mole fraction in produced oil and gas  

Figure 3.1 Comparisons between FMM-based (lines) and FDSim (symbols) for 

homogeneous case (reprinted with permission from Iino et al., 2017b) 

 

 

3.4.2 CPU Time 

In order to study the computational efficiency of our approach, additional 

simulations were run using the same reservoir model with grid refinement. Figure 3.2 

shows comparisons of CPU time between the FMM-based simulaton and the FDSim. For 

all the cases, 200 grid blocks were used for 1-D simulation, which was confirmed to be a 

sufficient number based on the analysis of w() convergence discussed in 2.5.1.3. The 

results demonstrate that two to three orders of magnitude faster computation can be 

expected by the use of FMM-based simulation, particularly for large scale and high 

resolution models with millions of grid blocks.  
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Figure 3.2 CPU Time comparison (bottom) and speed-up factor (top) between 

FMM-based and FD simulations. Number of 1-D grid blocks and number of time 

steps are fixed to be 200 and 128, respectively (reprinted with permission from Iino 

et al., 2017b) 

 

 

Furthermore, the speed-up factors to the FDSim are compared between blackoil 

and compositional simulations in Figure 3.3. The speed-up is more significant in the 

compositional simulation by an order-of-magnitude. Since the compositional simulation 

requires additional 2×(Nc-1)× Nx × Ny × Nz  primary variables compared to the blackoil 

simulation, it leads to more significant reduction in the number of primary variables by 

the 1-D transformation. In addition, flash calculations in the compositional simulation can 

also be significantly reduced in the FMM-based simulation. For the case of 0.4 million 

grid blocks (201×201×10), flash calculations involved in the FDSim and the FMM-based 

simulation were 70.3 million and 35 thousands, respectively.  
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Figure 3.3 Comparison of speed-up factors between blackoil and compositional 

simulations 

 

 

3.5 Validation using CO2 Huff-n-Puff Example in Unconventional Reservoir 

We further validated our approach using an example of CO2 Huff-n-Puff in 

heterogeneous reservoir completed with multi-stage hydraulically fractured well. 

 

3.5.1 Model Setting 

A heterogeneous dual-porosity reservoir model completed with multi-stage 

hydraulically fractured well was set-up. A reservoir domain of 2000’×6000’×100’ was 

meshed by a tartan grid (200×394×5, 0.4 million cells) and 4-cluster×10-stage hydraulic 

fractures with the uniform geometry were placed (Figure 3.4). The properties of reservoir 

and hydraulic fractures are summarized in Table 3.2. Figure 3.5 illustrates the 

distributions of reservoir properties.  

 

1

10

100

1000

10000

10 100 1000 10000

S
p

e
e
d

-u
p

 F
a

c
to

r

Original Grid block number ( 103)

Blackoil

Compositional



 

130 

 

 

Figure 3.4 Geometry of multi-stage hydraulic fractures for CO2 Huff-n-Puff case 

(reprinted with permission from Iino and Datta-Gupta, 2018) 

 

 

Table 3.2 Reservoir properties and initial condition for CO2 Huff-n-Puff case 

(reprinted with permission from Iino and Datta-Gupta, 2018) 

 Hydraulic Fracture Fracture Matrix 

Porosity 0.076 Figure 3.5 0.076 

Permeability (mD) 10.0 Figure 3.5 1×10-6 

kv/kh 0.1 Figure 3.5 0.1 

Rock compressibility (psi-1) 1.0×10-6 1.0×10-6 1.0×10-6 

Initial water saturation 0.8 Figure 3.5 0.4 

Pressure-dependent 
Compaction coeff. b (psi-1) 

5.9×10-5 5.5×10-4 0 

Initial Pressure (psi)  6425  

Reservoir Temperature (degF) 160 
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(a) Porosity   (b) Permeability-x  (c) Permeability-z 

 

(d) Shape factor (e) Initial water saturation 

Figure 3.5 Geometry of multi-stage hydraulic fractures for CO2 Huff-n-Puff case 

(reprinted with permission from Iino and Datta-Gupta, 2018) 

 

 

Three-phase relative permeability for the matrix is shown in Figure 3.6a and b whereas 

straight lines were used for the fracture system. Figure 3.6c illustrates the permeability 

reduction due to compaction using the relation: k = ki×e-bp where ki is the initial 

permeability, p is pressure depletion and b is the compaction coefficient (Raghavan and 

Chin, 2002). The EoS model with seven pseudo-components was adapted from (Wan and 

Sheng, 2015) and the initial composition is listed in Table 3.3. The bubble point pressure 

is 2,300 psi at the reservoir temperature of 160 degF and Minimum Miscibility Pressure 

(MMP) with the injection CO2 is estimated to be 2,200 psi based on the slimtube 

simulation. 
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(a) Oil-water relative permeability  (b) Gas-oil relative permeability 

 

(c) Rock compaction table 

Figure 3.6 Relative permeability and rock compaction tables for CO2 Huff-n-Puff 

case (reprinted with permission from Iino and Datta-Gupta, 2018) 

 

 

Table 3.3 Initial composition and molecular weight for CO2 Huff-n-Puff case 

(reprinted with permission from Iino and Datta-Gupta, 2018) 

Component 
Initial Mole 
Fraction. 

Mol. Weight 
(g/mole) 

C1 0.50 
16 

CO2 0.00 
44.01 

C2-3 0.03 
44.1 

C4-6 0.07 
86.2 

C7-11 0.20 
142.2 

C12-15 0.15 
206 

C16p 0.05 
282 
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3.5.2 Base Case Simulation 

We first simulated primary depletion for 1,000 days under constant bottomhole 

pressure of 2,500 psi. Number of 1-D grid blocks was set to be 800 based on the analysis 

of w() convergence discussed in 2.4.1. Both oil and water productions are in good 

agreement between the FMM-based simulation and the FDSim (Figure 3.7). 

 

 

(a) Oil and water rate   (b) Cumulative oil and water 

Figure 3.7 Comparison of FMM-based simulation with FDSim in primary depletion 

before Huff-n-Puff (reprinted with permission from Iino and Datta-Gupta, 2018) 

 

 

Subsequently, seven cycles of CO2 Huff-n-Puff were simulated for another 1,000 days 

where one cycle consists of three periods: (1) CO2 injection with 5 MMscf/d for 25 days, 

(2) soaking for 20 days and (3) production with bottomhole pressure of 2,500 psi for 100 

days. Figure 3.8 illustrates the simulated well performance during the Huff-n-Puff. The 

FMM-based simulation (lines) provides good agreement with the FDSim (symbols). The 

incremental oil in Figure 3.8 is evaluated from the end of primary depletion at 1,000 days. 
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For comparison purpose, the incremental oil production of ‘do-nothing’ case (i.e. 

continued primary depletion) simulated by the FMM-based approach is also plotted 

(dashed line) in Figure 3.8. Increase in incremental oil recovery was predicted to be 56 

Mstb for CO2 Huff-n-Puff case compared to the do-nothing case.   
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Figure 3.8 Simulated well performance during CO2 Huff-n-Puff (line: FMM-based 

simulation, symbol: FDSim) (reprinted with permission from Iino and Datta-

Gupta, 2018) 
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3.5.3 CPU Time 

In addition to the good agreement of simulation results with the FDSim, the FMM-

based simulation provides significant computational efficiency. Table 3.4 shows the 

comparison of computational performances between the FDSim and the FMM-based 

simulation. The FMM-based approach achieves two-order of magnitude faster 

computation because of mainly two reasons: it significantly reduces (1) the number of 

simulation grid blocks by transforming the 3-D to 1-D problem and (2) the number of flash 

calculations and stability analysis involved in compositional simulation. The breakdown 

of CPU time for the FMM-based approach is also illustrated in Figure 3.9. The FMM can 

efficiently solve the Eikonal equation within a minute for this example with 0.4 million 

cells. In the next section, we will present the sensitivity of Huff-n-Puff operational 

parameters. The 1-D simulation dataset can be used for any well schedules as long as well 

completion remains the same, which means we can skip the steps of solving the Eikonal 

equation and calculating w() and 1-D transmissibilities for such sensitivity runs once the 

1-D dataset is generated. 

 

Table 3.4 Computational efficiency of FMM-based compositional simulation for 

CO2 Huff-n-Puff simulation 

 FDSim FMM Scale-up or Speed-up 

# of grid blocks 394,000 800 493 

# of flash & stability 
analysis 

2,220 millions 3.6 millions 617 

CPU Time (min) 2,121 4 530 
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Figure 3.9 Breakdown of CPU time of FMM-based simulation for 1000day primary 

depletion plus 1000day CO2 Huff-n-Puff (reprinted with permission from Iino and 

Datta-Gupta, 2018) 

 

 

3.5.4 Sensitivity Analysis 

Designing a Huff-n-Puff EOR involves the selection of operational parameters 

such as injection rate, injection time, soaking and production times, etc. Such parameters 

may significantly influence the incremental recovery during the project life and need to 

be comprehensively explored for optimizing the Huff-n-Puff. Based on the parameter 

ranges in Table 3.5 and the maximum injection pressure limit of 6,425 psi, sensitivity 

analysis was performed as shown in Figure 3.10. The injection rate is the most influential 

parameter; the higher injection rate improves the oil recovery as it facilitates further 

propagation of injected CO2 and more increase in reservoir pressure. The injection time 

shows similar sensitivity but less impact than the injection rate. The shorter production 

time has a positive impact on the incremental recovery with the base case parameters. The 

soaking time shows relatively small impact in this case possibly because we do not model 

the molecular diffusion.  
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Table 3.5 Ranges of operational parameters of Huff-n-Puff for 1,000 days 

(reprinted with permission from Iino and Datta-Gupta, 2018) 
 

Parameter Low Base High 

Injection rate 
(MMscf/day) 

1 5 10 

Injection time (day) 10 25 50 

Soaking time (day) 10 20 40 

Production time (day) 25 50 200 

* Maximum injection BHP was set as 6425 psi 
 

 

 

Figure 3.10 Sensitivity of operational parameters for Huff-n-Puff on incremental 

recovery (reprinted with permission from Iino and Datta-Gupta, 2018) 

 

 

To further validate our FMM-based approach and see the impact on the incremental 

recovery, fifty (50) parameter combinations were sampled by Latin Hypercube Sampling 

(McKay et al., 1979) from the parameter space of Table 3.5. Figure 3.11a illustrates the 

cross-plot of incremental oil production computed from the FMM-based simulation and 

the FDSim. The FMM-based simulation consistently gives a good matching with the 

FDSim for all the simulation cases. In addition, computational efficiency of the FMM-
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based approach enables us to run large number of cases in a practical timeframe as seen 

in Figure 3.11b. The FMM-based approach required only two hours whereas the FDSim 

would have required 59 days if simulations were run in sequence using the same computer 

resources. In the next section, we will present a field-scale optimization of operational 

parameters of Huff-n-Puff EOR.  

 

 

  (a) Incremental oil    (b) CPU time 

Figure 3.11 Comparisons between FMM-based simulation and FDSim: incremental 

oil and CPU time for fifty combinations of operational parameters for Huff-n-Puff 

(reprinted with permission from Iino and Datta-Gupta, 2018) 

 

 

3.6 Field Scale Application 

In this section, we present an efficient framework for field-scale optimization of 

Huff-n-Puff EOR in unconventional reservoirs using Genetic Algorithm and the FMM-

based simulation.   
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3.6.1 Model Setting 

A 3-D dual-porosity reservoir model was built using typical properties for the 

Eagle Ford Shale (Table 3.6). The reservoir domain of 2,000’×2,800’×150’ was regularly 

gridded using Cartesian cells of 400×560×5 (1,120,000). Natural fracture porosity and 

permeability were upscaled from the stochastically generated discrete fractures (Figure 

3.12a and b). We assumed homogeneous properties and water saturation for the matrix. 

High water saturation was assigned to the region around hydraulic fractures (Figure 

3.12c). Four stages of hydraulic fractures were generated as illustrated in Figure 3.12d by 

a commercial software where each stage has five fractures with a spacing of 100 ft (Yang 

et al., 2017b). The permeability of hydraulic fractures were adjusted to account for the 

grid block size (5’×5’×30’) such that the actual fracture conductivity was replicated. The 

same EoS model, relative permeability and rock compaction tables were used as the 

previous example.  The DTOF was computed as depicted in Figure 3.12e, which indicates 

that pressure will first propagate within hydraulic fracture planes, followed by the 

formation linear flow and then compound linear flow. 
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Table 3.6 Reservoir and hydraulic fracture properties for field-scale example of 

Huff-n-Puff optimization (reprinted with permission from Iino and Datta-Gupta, 

2018) 
 

 Hydraulic Fracture Fracture Matrix 

Porosity Figure 3.12 Figure 3.12 0.08 

Permeability (mD) Figure 3.12 Figure 3.12 1.5×10-4 

kv/kh 1.0 0.1 0.1 

Rock compressibility (psi-1) 1.0×10-6 1.0×10-6 1.0×10-6 

Initial water saturation 0.9 Figure 3.12 0.4 

Pressure-dependent 
Compaction coeff. b (psi-1) 

5.9×10-5 5.5×10-4 0 

Initial Pressure (psi)  6425  

Reservoir Temperature (degF) 160 

 

 

 

(a) Porosity         (b) Permeability      (c) Initial water saturation 

   

(d) Hydraulic fracture geometry and permeability        (e) Computed DTOF 

Figure 3.12 Fracture properties and computed DTOF for field-scale example of 

Huff-n-Puff optimization (reprinted with permission from Iino and Datta-Gupta, 

2018) 
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3.6.2 Fluid Composition and Phase Behavior 

Fluid Composition and Phase Behavior. In this case study, we will use the 

hydrocarbon gas as a solvent.  The gas composition was generated by an atmospheric flash 

of the reservoir fluid (Table 3.7). The MMP of 4,850 psi was estimated by the slimtube 

simulation. The swelling test simulation indicates that oil volume increase of 50% will be 

achieved with the injected gas of 60 mole% and saturation pressure of 4,500 psi (Figure 

3.13).   

 

Table 3.7 Composition of reservoir fluid and solvent for field-scale example of 

Huff-n-Puff optimization (reprinted with permission from Iino and Datta-Gupta, 

2018) 

Component Reservoir Fluid HC gas solvent 

 C1 0.50 93.15 

CO2 0.00 0.00 

C2-3 0.03 4.97 

C4-6 0.07 1.83 

C7-11 0.20 0.05 

C12-15 0.15 0.00 

C16+ 0.05 0.00 

MMP (psi)  4,850 psi 
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  (a) Swelling test    (b) Slimtube 

Figure 3.13 Slimtube and swelling test simulation (reprinted with permission from 

Iino and Datta-Gupta, 2018) 

 

 

3.6.3 Primary Depletion 

We first simulated the primary depletion for 1,000 days under constant bottomhole 

pressure of 2,500 psi. Figure 3.14 compares oil and water production between the FMM-

based simulation and the FDSim and shows good agreement. The cumulative oil 

production amounts to 212 Mstb that corresponds to a recovery factor of 4.2%. The CPU 

times of the FMM-based approach and the FDSim are 0.1 hours and 20.6 hours, 

respectively. The FMM-based approach shows two-order of magnitude faster 

computation. 
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      (a) Oil and water rate     (b) Cumulative oil and water production 

Figure 3.14 Simulated well performances for primary depletion for for field-scale 

example of Huff-n-Puff optimization (reprinted with permission from Iino and 

Datta-Gupta, 2018)  

 

 

3.6.4 Huff-n-Puff: Base Case Simulation 

As we have seen in the previous example, the operational parameters of Huff-n-

Puff have significant impact on the incremental recovery and need to be optimized. We 

defined the objective function as incremental oil recovery for 1,000 days after the primary 

depletion. Parameters to be tuned are injection rate, injection time, soaking time and 

production time per cycle. For optimization, we used the Genetic Algorithm (Yin et al., 

2011) incorporated with the rapid FMM-based simulation, which enables a large number 

of simulations in a practical timeframe. We first performed a base case simulation, 

followed by the sensitivity analysis using the parameters in Table 3.8. The production 

period was constrained by constant BHP of 2,500 psi, whereas the injection period was 

controlled by the assigned surface rate with the maximum BHP limit of 5,500 psi, which 

is above the MMP with hydrocarbon gas. 

0

500

1000

1500

0 250 500 750 1000

O
il
 &

 W
a
te

r 
R

a
te

, 
s
tb

/d

Days

FMM_Qo FMM_Qw

FDSim_Qw FDSim

0

100

200

300

0 250 500 750 1000

C
u

m
. 

P
ro

d
u

c
ti

o
n

, 
M

s
tb

Days

FMM_CumOil FMM_CumWat

FDsim_CumOil FDSim_CumWat



 

145 

 

 

Table 3.8 Parameter ranges, objective function and simulation setting for Huff-n-

Puff optimization (reprinted with permission from Iino and Datta-Gupta, 2018) 
 

Parameter Low Base High 

Injection rate (MMscf/day) 0.5 5 10 

Injection time (day) 10 25 50 

Soaking time (day) 5 20 50 

Production time (day) 50 100 200 

Simulation period (day) 1000 day primary depletion + 1000 day Huff-n-Puff 

Objective function Incremental oil recovery (Mstb) for 1000-2000 days 

Production constraints Const. BHP control of 2,500 psi 

Injection constraints Rate control with max. BHP limit of 5,500 psi 

Solvent HC gas 

 

 

 

Figure 3.15 shows the simulated well responses of BHP, cumulative and 

incremental production where the ‘do-nothing case’ i.e. continuation of primary depletion 

is also depicted for comparison. Huff-n-Puff case shows an incremental recovery of 170 

Mstb, which is significantly improved compared to the ‘do-nothing’ case of 36 Mstb. 

During the injection periods in Huff-n-Puff, injection BHP and well grid pressure reached 

the MMP but it falls off below the MMP in the soaking period. Hence, the base case 

simulation cannot maintain the single-phase condition during the production period. 

However, we still have effects of vaporizing, swelling and viscosity reduction by gas 

injection, leading to the improved oil recovery. Figure 3.16, which is change in methane 
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mole fraction in matrix oil, illustrates footprints of the injected gas at the end of gas 

injection in first, third and seventh cycles. We can confirm that the injected gas well 

propagates into the formation in the base case as the cycle of Huff-n-Puff proceeds. We 

will further optimize the operational parameters for better design of Huff-n-Puff.  

 

 

Figure 3.15 Simulated BHP and cumulative oil responses with base case parameters 

for field scale example of Huff-n-Puff optimization (reprinted with permission from 

Iino and Datta-Gupta, 2018) 

 

 

 

Figure 3.16 Footprint of injected gas at each cycle (Base case)  
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3.6.5 Huff-n-Puff: Sensitivity Analysis 

Subsequently, sensitivity analysis was performed with the parameter ranges in 

Table 3.8. Figure 3.17 shows a tornado chart that quantifies the impact of individual 

parameters. As we have seen in the previous example, injection rate is the most influential 

parameter on incremental recovery because it affects pressure increase, propagation 

distance of injected gas and achievement of miscibility. Injection time has similar effect 

but less impact since the longer injection time leads to reduced number of Huff-n-Puff 

cycles. The shorter production and soaking times have a positive impact with the base case 

parameters. 

 

 

Figure 3.17 Sensitivity analysis on incremental recovery for field-scale example of 

Huff-n-Puff optimization (reprinted with permission from Iino and Datta-Gupta, 

2018) 

 

 

3.6.6 Optimizing Huff-n-Puff 

In the optimization using the Genetic Algorithm, parameters were adjusted to 

maximize the objective function i.e. incremental recovery. Figure 3.18 illustrates the 
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simulated incremental recovery versus generation numbers, which stabilizes after three 

generations. The required number of simulations was approximately 160 but was finished 

within 9 hours by use of the rapid FMM-based simulation. This would be computationally 

prohibitive in a practical timeframe if we used a normal finite difference simulation. 

 

 

Figure 3.18 Incremental oil recovery vs. generation number during the 

optimization using Genetic Algorithm (reprinted with permission from Iino and 

Datta-Gupta, 2018) 

 

 

The ranges of parameter distributions have been narrowed down through the 

optimization. By selecting the best thirty (30) realizations from the entire population, we 

depict the boxplots (Figure 3.19) that show the distributions of parameters and 

incremental recovery before and after optimization, which would assist designing the 

Huff-n-Puff parameters. For example, 6-7 MMscf/d is sufficiently enough for the injection 

rate with the injection time of 33-40 days and it is not required to achieve a higher rate 

such as 10 MMscf/d, which was the upper bound of the range. The soaking time of 25 

days in base case seems to be too long and is preferred to be 8-12 days. The production 
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time should not be too short or too long; 110-150 days would be an appropriate choice to 

maximize the incremental oil recovery. Consequently, distributions of incremental oil 

recovery, voidage-replacement ratio (V.R.R.) and solvent usage were obtained as depicted 

in Figure 3.20. The V.R.R. (fraction) and solvent usage (Mscf/STB) are defined as 

cumulative production divided by cumulative injection in reservoir volumes and 

cumulative injection (Mscf) divided by incremental oil production (STB) in surface 

volume, respectively. With optimized parameters, we expect the resulting V.R.R. between 

1.38 and 1.46 and the solvent usage between 5.7 and 6.3 Mscf/stb.  

 

    

(Left: initial population, right: best 30 realization after optimization) 

Figure 3.19 Box plots of parameters before/ after Huff-n-Puff optimization 

(reprinted with permission from Iino and Datta-Gupta, 2018) 
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Figure 3.20 Box plots of simulated incremental recovery, V.R.R. and solvent usage 

before/ after optimization 

 

 

Finally, we compare the worst, base and best cases to understand how the 

parameters influence the reservoir performance. Figure 3.21 shows footprints of the 

injected gas for three cases along with the parameters and resulting V.R.R. and usage ratio. 

Because of the low injection rate (0.7 MMscf/d) in the worst case, the injected gas 

propagates less than the other cases and the field average pressure (Figure 3.22) decreases, 

leading to less improved recovery. On the other hand, the best case shows deeper 

propagation of the injected gas and the average pressure is maintained at higher level, 

requiring the larger V.R.R. of 1.4 and solvent usage of 6.0 Mscf/stb.  
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Figure 3.21 Footprint of injected gas at final cycle (worst, base and best cases) 

 

 

Figure 3.22 Average pressure during Huff-n-Puff (worst, base and best cases) 
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It should be noted that selection of objective function, parameters and their ranges 

can be specific to the project of interest. For instance, one might prefer to use Net Present 

Value (NPV) as the objective function rather than incremental recovery or prefer to 

include the commencement time of Huff-n-Puff as a parameter to get an idea when EOR 

should be started, etc. Our workflow using the FMM-based simulation provides a practical 

framework to improve the Huff-n-Puff design. 

 

3.7 Conclusions 

In this chapter, we presented the FMM-based compositional simulation and its 

application to rapid optimization of Huff-n-Puff EOR in unconventional reservoirs. 

Conclusions from this chapter are summarized below:   

 The Diffusive Time-of-Flight (DTOF) obtained from the Fast Marching Method 

(FMM) is a representation of travel time of pressure ‘front’ propagation in 

heterogeneous and fractured reservoirs. The rapid FMM-based simulation utilizes 

the DTOF as a spatial coordinate to decouple the 3-D flow equations into 1-D flow 

equations, leading to significant reduction in computation time compared to full 3-

D simulation. 

 We validated the FMM-based approach by comparing with a commercial finite 

difference simulator using a CO2 Huff-n-Puff in a synthetic dual-porosity reservoir 

with multi-stage hydraulic fractures. The FMM-based approach showed good 

agreement in simulated well responses and orders of magnitude faster computation 

as compared to the 3-D finite difference simulation. 



 

153 

 

 We presented a Huff-n-Puff optimization using the Genetic Algorithm coupled 

with the FMM-based simulation for a field-scale dual-porosity model with over a 

million cells and complex fracture geometry. Operational parameters such as 

injection rate, injection time, soaking and production times were tuned to 

maximize the incremental recovery. 

 In the optimization example, approximately 160 simulation runs were required to 

achieve convergence but finished within only 9 hours. Use of rapid compositional 

simulation based on the FMM enables a large number of Huff-n-Puff simulations 

with a field-scale reservoir model in a practical timeframe. 

 We can flexibly select any objective function, parameters and their ranges subject 

to the purpose and constraints specific to the project of interest. The optimization 

using a rapid FMM-based simulation can quickly assist designing and evaluating 

the Huff-n-Puff EOR in unconventional reservoirs. 
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CHAPTER IV 

RAPID FIELD-SCALE WELL SPACING OPTIMIZATION IN TIGHT AND SHALE 

OIL RESERVOIRS USING THE FAST MARCHING METHOD§ 

4.  

4.1 Chapter Summary 

An immediate and pressing need in the development of unconventional reservoirs 

is an innovative workflow that facilitates fast optimization of well placement. The optimal 

well placement design must ensure minimal interference between wells while maximizing 

the recovery/NPV. However, due to highly uncertain and poorly understood complex 

fracture geometries, optimal well spacing designs based on classical analytical techniques 

can be unreliable. We propose a rapid workflow to optimize well placement in 

unconventional reservoirs using the Fast Marching Method (FMM).  

Our approach is to partition the reservoir model into independent sub-domains 

associated with individual wells based on the Diffusive Time of Flight (DTOF) computed 

as solution to the Eikonal equation using the FMM. Multi-phase production rates are then 

computed for each well by utilizing the DTOF as spatial coordinate to reduce the full 3-D 

numerical model to 1-D equivalent models resulting in orders of magnitude speed up in 

computation time. The computational efficiency of our approach enables extensive 

                                                 

§ Material adapted with permission from “Rapid Field-Scale Well Spacing Optimization in Tight and Shale 

Oil Reservoirs Using Fast Marching Method” by Iino et al. 2018: Paper URTeC-2901376-MS Presented at 

the Unconventional Resources Technology Conference held in Houston, Texas, USA, 23-25 July 2018. 

Copyright 2018, Unconventional Resources Technology Conference. Further reproduction is prohibited 

without permission.    
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simulation runs to determine the point of diminishing return for additional well placement 

to obtain the optimal well spacing.  

We illustrate the power and utility of our optimization workflow using synthetic 

and field-scale examples with multiple multi-stage hydraulically fractured wells. First, we 

demonstrate the reliability of our technique by confirming good rank correlation between 

our FMM-based simulation workflow and the 3-D finite difference simulation. Next we 

apply our optimization strategy to obtain the optimal well spacing while accounting for 

uncertainties in complex fracture geometries and conductivities. Finally, we show the 

robustness of our well spacing optimization workflow with an application to a shale oil 

reservoir in the Eagle Ford.  

A unique and distinctive feature of our workflow is the computational efficiency 

that results from the significant reduction in simulation complexity through the FMM-

based 1-D transformation. This enables rapid evaluation of well placement designs for 

large field models using an exhaustive search method which can be computationally 

prohibitive using classical numerical simulation techniques.    

 

4.2 Background 

Unconventional reservoirs account for significant hydrocarbon reserves in the U.S. 

(EIA, 2016). In most U.S. unconventional reservoir development, operators often first drill 

the minimum number of wells (parent wells) to hold their acreage followed by placing 

infill (child) wells to enhance the recovery generally 1 to 4 years after parent well 

depletions (Ranjan, 2015; Lindsay et al., 2018). As many operators initiated 
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unconventional reservoir developments between 2003 and 2010, majority of parent wells 

have been depleted, leading to increasing number of child wells drilled in recent years 

(Mason, 2012; Miller et al., 2016). Depletion of parent wells creates pressure sinks and 

therefore the stress field changes accordingly. Hydraulic fractures from the child well tend 

to grow towards lower resistance i.e. towards pressure sinks that can cause fracture 

interference (frac hit), resulting in a negative impact on production performance of both 

parent and child wells (Rodionov et al., 2017). Thus, careful reservoir management is 

essential in designing and optimizing the infill well placement.  

In an effort to better understand the unconventional reservoirs, analytical and 

numerical models incorporating relevant physics at varying fidelity levels have been 

developed. Decline curve analysis (Fetkovich, 1980) and pressure/rate transient analysis 

(Song and Ehlig-Economides, 2011) are commonly used for fracture characterization and 

well performance predictions. While these analytical models provide significant benefits 

in terms of computational efficiency and simplicity, capturing important details such as 

heterogeneities of reservoir properties remains a considerable challenge.  

High-fidelity, full-physics numerical simulators that typically employ finite 

difference/volume schemes are capable of simulating detailed non-linear descriptions. For 

fractured media, many approaches including multiple continuum models (e.g., Warrant 

and Root 1963; Kazemi et al., 1976) and discrete fracture models (Hyman et al., 2015; 

Monteagudo and Firoozabadi, 2004; Noorishad and Mehran, 1982) have been presented. 

For unconventional reservoirs, detailed spatial and temporal discretization is required to 

accurately model multi-phase flow in complex fracture network and high contrast systems 
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and therefore numerical models tend to be computationally expensive. This challenge has 

been partly mitigated by state-of-the-art solvers and parallelization, however, it is still too 

expensive to perform uncertainty assessment or optimizations where hundreds or 

thousands of simulations are required. 

In this chapter, we present a rapid simulation technique based on the Fast Marching 

Method (FMM) for multiple wells. Recently, Huang et al. (2017) presented extension of 

the FMM-based approach to multi-well applications by partitioning the reservoir based on 

the flux and stationary tracer solutions. We demonstrate the robustness and efficacy of the 

FMM-based simulation for field scale optimization of infill development scenarios. 

 

4.3 Methodology 

This section describes the mathematical formulations and simulation methodology 

for multi-well simulation for a particular scenario where all the wells are controlled by the 

same bottomhole pressure.  

 

4.3.1 Mathematical Formulation 

In this chapter, we assumed the single-porosity and blackoil system. By removing 

the transfer term between fracture and matrix in Eqs. (2.33) through (2.35), we obtain the 

following governing equations on 1-D DTOF coordinate:  
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(4.3) 

 

4.3.2 Drainage Volume Partition 

To date, the application of the FMM-based approach to nonlinear problems such 

as multi-phase flow has been limited to the single-well simulation where no well 

interference effects need to be incorporated. However, for simulations where all the wells 

are controlled by the same bottomhole pressure, we can directly apply the FMM-based 

approach without any major corrections. Huang (2017) showed that ‘equal-’ interfaces, 

at which the pressure front marching from one well encounters the others, physically 

approximates the no flow boundary between the producers. This is because the -contours 

represent the pressure contours and ‘equal-’ represents the same pressure. Figure 4.1a 

illustrates the flow partition defined by the flux obtained from finite difference simulation 

(Huang et al., 2017; Shahvali et al., 2012). This agrees with the flow partition defined by 

the ‘equal-’ depicted in Figure 4.1b, indicating that ‘equal-’ interfaces can be an 

approximation of no flow boundaries. 
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(a)  Well drainage partition (right) defined by flux obtained by finite difference 

simulation (middle) using heterogeneous permeability (left). 

 

 

(b) Well drainage partition (right) defined by ‘equal-’ interface based on the DTOF 

solution (middle) using heterogeneous permeability (left). 

 

Figure 4.1 Comparison of well drainage partition. Circles in the permeability field 

on the left represent the producers (Huang, 2017) 

 

 

4.3.3 Simulation Workflow 

Once we can define the flow partitions for each well, the extension of the FMM-

based technique to multi-well case is fairly straightforward. Our proposed approach is 

simply to partition the reservoir into independent sub-domains associated with individual 

wells based on the equal DTOF and perform series of independent 1-D simulation within 

each domain. Figure 4.2 illustrates the workflow of the FMM-based multiple-well 

simulation for fixed BHP constraints, which consists of the following five (5) steps:  
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1. Solve the Eikonal equation using the FMM assigning  = 0 at completions of each 

well and obtain the DTOF map. Keep track on marching fronts from different 

sources to label which source gets a first arrival at each grid block.  

2. Partition the reservoir domain based on the 'equal- ' interfaces where the marching 

front from a well encounters the others. 

3. Calculate the drainage pore volume Vp and w() associated with each individual 

well as a function of the DTOF from the well.  

4. Discretize pore volume Vp and build 1-D simulation grid blocks for each well  

5. Run individual 1-D simulations for each well. 

 

 

Figure 4.2 An illustration of drainage volume partition and 1-D simulation. Circles 

in the permeability field on the left represent the producers (reprinted with 

permission from Iino et al., 2018) 
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Once we generate the partition at step-2, the remaining steps 3–5 can be carried 

out in parallel for each individual well. Note that Figure 4.2 illustrates the case where two 

wells start producing at the same time. If the second well production starts later such as 

infill wells, we run the FMM-based simulation for the first well only until the time step 

when the second well starts producing. Subsequently, we map the 1-D solution back onto 

the original grid blocks and carry out the FMM-based simulation for two wells following 

the workflow. 

 

4.4 Validation 

In this section, we validate our simulation methodology for multi-well simulation 

based on the FMM by comparisons with a commercial finite difference simulator 

(FDSim). A 3-D synthetic reservoir model was used to simulate the infill well 

performances following the depletion by the parent well.  

 

4.4.1 Case Setting 

For a validation case, we built the synthetic 3-D reservoir model with reservoir, 

fluid and rock properties listed in Table 4.1. The reservoir domain of 2,600’×2,800’×150’ 

was gridded into 520×560×15 and the total number of grid blocks amounted to 4.4 million. 

Figure 4.3a shows the matrix permeability upscaled from the Discrete Fracture Network. 

The ‘parent well’, which is placed at 750’ away from the reservoir boundary on the left 

(Figure 4.3b), has four stages of hydraulic fractures generated by a commercial software 

where each stage has five fractures with a spacing of 100 ft (Yang et al., 2017b). The same 
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PVT data as Figure 2.15 was used. The three-phase relative permeability is depicted in 

Figure 4.4. 

 

Table 4.1 Reservoir, fluid and rock property for infill validation case (reprinted 

with permission from Iino et al., 2018) 

Item Value 

Model size (ft3) 2600’×2800’×150’ 

Grid block dimension 520×560×15 (4,368,000) 

Matrix permeability (mD) Figure 4.3 

Hydraulic fracture permeability (mD) Figure 4.3 

Matrix porosity 0.05 

Hydraulic fracture porosity 5×10-4 

Initial water saturation 0.20 

Rock compressibility (psi-1) 1.0×10-6 

Water viscosity (cp) 1.0 

Water compressibility (psi-1) 1.0×10-6 

Water formation volume factor (rbbl/stb) 1.0 

Initial solution gas-oil ratio (Mscf/stb) 1.12 

Bubble point pressure (psi) 2,500 

Initial pressure (psi) 6425 

 

 

     (a) Matrix       (b) Hydraulic Fractures 

Figure 4.3 Permeability of matrix and hydraulic fractures for infill validation case 

(reprinted with permission from Iino et al., 2018) 
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     (a) Oil-water        (b) Gas-oil 

Figure 4.4 Relative permeability for infill validation case (reprinted with 

permission from Iino et al., 2018) 

 

 

4.4.2 Depletion by Parent Well Production 

We first simulated the pressure depletion for one year by the production of the 

parent well with constant bottomhole pressure of 2,000 psi. Cumulative production of oil 

and gas from the FMM-based approach and the FDSim illustrated in Figure 4.5 show a 

good agreement. At the end of simulation, the pressure, saturation and solution gas-oil 

ratio solved on the 1-D DTOF coordinate were mapped back onto the original grid. Figure 

4.6 shows the pressure profile of the middle layer, which also confirms a good consistency 

between the FMM-based simulation and the FDSim, although the pressure profiles from 

the FMM-based simulation appear to be more diffused. This is because the 1-D DTOF 

grid block has less resolution compared to the original 3-D grid block. 
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 (a) Cumulative oil production   (b) Cumulative gas production 

Figure 4.5 Cumulative oil and gas production of parent well– comparison between 

FMM-based simulation (line) and FDSim (symbol) (reprinted with permission from 

Iino et al., 2018) 

 

 

        (a) FMM-based simulation       (b) FDSim 

Figure 4.6 Pressure profile after 1 year production by parent well– comparison 

between FMM-based simulation and FDSim (reprinted with permission from Iino 

et al., 2018) 
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simulation setting: we tested five (5) different well spacing to see the trade-off between 

the incremental oil production and well spacing. In this example, the hydraulic fracture 

geometry and property of the child well were assumed to be identical to those of the parent 

well. Thus, effects of pressure depletion on the fracture geometry of the child well were 

not accounted for in this section because we focus on the validation of simulation 

methodology. We will discuss the spacing optimization of infill wells accounting for 

effects of pressure depletion on the child well’s fractures in the next section. 

 

Table 4.2 Simulation setting for additional depletion by parent and child wells 

(reprinted with permission from Iino et al., 2018) 

Item Value 

Infill well spacing (ft) 200, 300, 400, 500, 800 

Timing child well placed After 1yr depletion by parent well 

Prediction period (yr) 1 

Well constraints 
2000 psi (const. BHP) for both parent and child 

wells 

# of 1-D DTOF grid blocks 1,000 

 

 

Figure 4.7 illustrates the child well location and drainage volume partition based 

on the ‘equal-’ interfaces for different spacing. The 200’-spacing shows severe overlaps 

(frac hits) of hydraulic fractures between parent and child wells, whereas there is no 

overlap in the 800’-spacing. Figure 4.8a shows the comparison of cumulative oil 

production from the FMM-based simulation and the FDSim, which confirms a good 

agreement. The cumulative production increases as we take the larger spacing. However, 
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increase in the cumulative oil production starts converging around spacing of 500’— the 

plot of incremental oil recovery after the infill well was placed versus well spacing (Figure 

4.8b) clearly tells that there is an inflection point around 500’, indicating the trade-off 

between minimizing the spacing and maximizing the recovery. The pressure maps (Figure 

4.9) at the simulation end show that two wells severely interfere for 200’-spacing case and 

non-depleted zone exists between two wells for 800’-spacing, while 500’-spacing case 

seems to efficiently drain without significant interference. 

 

 

Figure 4.7 Child well locations and drainage volume partition on the middle layer 

based on the ‘equal-tau’ for difference well spacing (reprinted with permission 

from Iino et al., 2018) 
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(a) Cumulative oil production   (b) Incremental oil after placing child well 

Figure 4.8 Comparison of cumulative oil production between FMM-based 

simulation and finite difference simulation (reprinted with permission from Iino et 

al., 2018) 

 

 

Figure 4.9 Pressure profile after 1 year since the infill well was placed: FMM-based 

simulation (upper row) and FDSim (lower row) (reprinted with permission from 

Iino et al., 2018) 
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4.4.4 CPU Time 

In addition to the good accuracy discussed above, the most important feature and 

advantage of the FMM-based simulation is its computational efficiency. Table 4.3 

highlights the CPU time for a 2-year simulation of the 500’ spacing case. The finite 

difference simulation required 19 hours whereas the FMM-based simulation spent only 

0.5 hours. Thus, the orders of magnitude faster computation can be achieved by use of the 

FMM, which offers robust and quick assessment of infill well planning. 

 

Table 4.3 Comparison of grid block number and CPU time between FDSim and 

FMM-based simulation 

Item FDSim FMM Scale-up/ Speed-up factor 

# of grid blocks 4,368,000 2,000 2,184 

CPU time (hrs) 18.9 0.5 37 

 

 

4.5 Field-scale Application 

In this section, we present a field-scale application of the FMM-based approach to 

a realistic example with complicated fracture geometry due to the existence of natural 

fractures and changes in pressure/ stress field by the parent well depletion. The fracture 

propagation was simulated by a commercial software. Our focus in this example is to show 

the applicability of the FMM-based approach to the optimization workflow of infill 

spacing by demonstrating the consistency of the simulated well and reservoir 

performances with a commercial finite difference simulator. 
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4.5.1 Generating Fracture Geometry 

We carried out the field scale infill development study based on a case 

representative of the Eagle Ford reservoir properties and completion/stimulation practices 

using the integrated workflow (Marongiu-Procu et al., 2016) illustrated in Figure 4.10. 

The hydraulic fractures along a 4,800 ft lateral of the parent well was generated in a sector 

model of 6,200 × 4,200 × 350 ft3 using the treatment schedule presented in Marongiu-

Porce et al. (2016)  where each of 16 treatment stages contains 5 perforation clusters (6 

shots per foot) with 50 ft spacing. The 20/40 proppant with cross-linked gel was used for 

the hydraulic fracturing treatment and the pumping schedule begins with slick water, 

followed by the gel and proppant with gradually increasing concentration (Table 4.4). We 

generated the discrete fracture network (DFN) of natural fractures based on the statistical 

properties listed in Table 4.5. Note that spatial variability of natural fractures such as 

intensity and orientations are typically characterized based on 3-D seismic attributes and 

image logs (Offenberger et al., 2013); however, these were not considered in this study.  

 

 

Figure 4.10 Complex fracture modeling workflow for infill development (reprinted 

with permission from Iino et al., 2018) 
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Table 4.4 Pumping schedule for fracturing simulation (reprinted with permission 

from Iino et al., 2018) 

Fluid Type 
Pump Rate 

(bpm) 
Fluid Vol. 

(gal) 
Proppant 

Proppant 
Conc. (PPA) 

Prop. Mass 
(lb) 

Slick water 10 11000 - - - 

Slick water 50 25000 - - - 

30# X-linked gel 50 40000 - - - 

30# X-linked gel 50 12600 20/40 sand 0.50 6300 

30# X-linked gel 50 12600 20/40 sand 0.75 9450 

30# X-linked gel 50 12600 20/40 sand 1.00 12600 

30# X-linked gel 50 12600 20/40 sand 1.50 18900 

30# X-linked gel 50 12600 20/40 sand 2.00 25200 

30# X-linked gel 50 12600 20/40 sand 2.50 31500 

30# X-linked gel 50 12600 20/40 sand 3.00 37800 

30# X-linked gel 50 12600 20/40 sand 3.50 44100 

30# X-linked gel 50 12600 20/40 sand 4.00 50400 

30# X-linked gel 50 12600 20/40 sand 4.50 56700 

Flush 50 String Volume - - - 

 

 

Table 4.5 Statistical parameters used to generate discrete natural fractures 

(reprinted with permission from Iino et al., 2018) 

Item Average Standard Deviation 

Length (ft) 250.0 7.0 

Orientation (deg) 0.0 10.0 

Spacing (ft) 90.0 20.0 
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Hydraulic fracture propagation was then simulated using a commercial software 

Mangrove®. Based on the DFN including natural and hydraulic fractures, an unstructured 

grid was generated by the automated gridding algorithm (Cipolla et al., 2011) whereby 

cell widths of fracture and matrix were assigned to be 5 ft and 200 ft, respectively, after 

Marongiu-Porce et al. (2015). The parent well depletion was then simulated for one year 

using a commercial reservoir simulator with reservoir properties and well constraints 

shown in Table 4.6. The same PVT and relative permeability data in the previous section 

was used here. Subsequently, the simulated pressure distribution and the DFN were fed to 

a finite element geomechanical simulator VISAGE® in order to update the in-situ stress 

field (top right in Figure 4.10). Bottom part of Figure 4.10 illustrates the subsequent 

procedures for a child well. Here, we repeated the same procedure as the parent well for 

the child well but considered the existing fractures of the parent well and the updated 

pressure and stress field. We examined four scenarios of different child well spacing: 300, 

600, 900, and 1,200 ft, which are in a range of common practice in the Eagle Ford infill 

developments. The same set of input from the parent well are used to simulate fracture 

propagation of the child well. We converted the unstructured grid from the commercial 

simulator into an equivalent structured grid system for the FMM-based simulation of the 

parent and child wells. Note that, although the number of grid blocks of the structured grid 

system after the conversion from the unstructured grid became large (~3.3 millions) to 

accurately describe hydraulic fractures and it can result in substantial rise in CPU time, it 

is not a significant concern with the FMM-based simulation framework because of its 

computational efficiency. The permeability of hydraulic fractures for reservoir simulation 
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are illustrated in Figure 4.11, showing severe frac hits in 300 ft spacing case, whereas 

little hits in 1,200 ft spacing case. 

 

Table 4.6 Reservoir, fluid and rock properties for field-scale application of infill 

spacing optimization (reprinted with permission from Iino et al., 2018) 

Item Value 

Model size (ft3) 6300’×4200’×350’ 

Grid block dimension 840×560×7 (3,292,800) 

Matrix permeability (mD) 5×10-4 

Matrix porosity 0.06 

Hydraulic fracture porosity 6×10-4 

Initial water saturation 0.15 

Rock compressibility (psi-1) 1.0×10-6 

Water viscosity (cp) 0.404 

Water compressibility (psi-1) 3.0×10-6 

Water formation volume factor (rbbl/stb) 1.02 

Initial solution gas-oil ratio (Mscf/stb) 0.55 

Bubble point pressure (psi) 2,302 

Initial pressure (psi) 6,425 

Production period 
1 year with parent well, followed by  

another 1 year by parent and child wells 

Well control Const. BHP of 2,000 psi 

# of 1-D DTOF grid blocks 2,000 
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(a) Before infill placement  (b) 300 ft   (c) 600 ft 

  

 (d) 900 ft    (e) 1,200 ft 

Figure 4.11 Permeability of field-scale example for reservoir simulation with 

different infill well spacing (top view of middle layer) (reprinted with permission 

from Iino et al., 2018) 

 

 

4.5.2 Optimal Well Spacing 

We simulated well performances of parent and child wells for each spacing using 

the FMM-based approach. Figure 4.12a shows the cumulative oil production from both 

parent and child wells. The profile of cumulative production converges, which indicates 

less interference effects with larger spacing. The incremental oil after the child well 

placement (Figure 4.12b) clearly shows that the spacing larger than 900ft does not give 

significant additional gain. This is consistent with the pressure maps at the simulation end 

in Figure 4.13 where the parent and child wells significantly interferes with each other up 
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to 600’ spacing, while the 900’ spacing shows very limited child well interfere with the 

parent well. 

 

(a) Cumulative oil production from parent and child wells 

 

(b) Incremental oil production after child well placement 

Figure 4.12 Cumulative oil production and incremental recovery for field-scale 

example (reprinted with permission from Iino et al., 2018) 
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(a) Before infill placement  (b) 300 ft      (c) 600 ft 

 

    (d) 900 ft      (e) 1,200 ft 

Figure 4.13 Pressure maps of the middle layer: (a) just before the child well 

placement at 1 year and (b)-(e) at the end of simulation at 2 years (reprinted with 

permission from Iino et al., 2018) 

 

 

Finally, we compared the CPU time for the 300’ spacing case between the FMM-

based approach and the FDSim (Table 4.7). The FMM-based approach required 0.6 hours 

for reservoir simulation of two years, whereas the FDSim required 14 hours for the same. 

The FMM-based approach can quickly provide quantitative assessment of infill well 

spacing that would help efficient design and optimization of development planning of 

unconventional reservoirs. 
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Table 4.7 Comparison of grid block number and CPU time between FDSim and 

FMM for field-scale application 

Item FDSim FMM Scale-up/ Speed-up factor 

# of grid blocks 3,292,800 2,000 1,646 

CPU time (hrs) 14.0 0.6 23 

 

 

4.6 Conclusions 

The Fast Marching Method (FMM) based rapid flow simulation technique has 

shown great promise in modeling and performance assessment of unconventional 

reservoirs (Zhang et al., 2016; Fujita et al., 2016; Iino et al., 2017a and 2017b). However, 

to-date the application of the FMM simulation has been mostly limited to single well 

studies.  In this chapter, we have extended the Fast Marching Method (FMM) to multiple-

well problem in unconventional reservoirs with an application to optimization of well 

spacing. Conclusions from this study are summarized below: 

 When multiple wells are constrained at the same bottomhole pressure, the 

extension of the FMM-based technique to multi-well case is fairly straightforward. 

This is because under such conditions, 'equal-' contours from different wells 

represent the same pressure. Hence, the 'equal- ' interface, at which the marching 

front of pressure propagation from a well encounters that of the others', 

approximates a no flow boundary. Our proposed approach is simply to partition 

the reservoir into independent sub-domains associated with individual wells based 
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on the equal DTOF and perform independent 1-D simulation within each domain. 

This requires one FMM-based 1-D simulation per well. 

 We validated our proposed FMM-based multi-well simulation approach by 

comparing the results with a commercial finite difference simulator using a 

synthetic reservoir model with infill-well scenario. We confirmed that the FMM-

based simulation shows good agreement with finite difference simulation with 

orders of magnitude faster computation. Although the incremental recovery from 

the FMM results shows close agreement, the pressure distribution from the FMM 

solution shows smeared features compared to the finite difference simulation 

results. This is because the 1-D DTOF grid block has less resolution as compared 

to the original 3-D grid blocks. 

 For field-scale application, we presented a comprehensive workflow for assessing 

and optimizing the infill well spacing that incorporates the fracture propagation 

simulation accounting for the parent well depletion. We demonstrated that the use 

of FMM-based approach can quickly provide quantitative assessment of potential 

frac hits and help efficient design and optimization of infill well planning in 

unconventional reservoirs 
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CHAPTER V 

EXTENTION OF FMM-BASED MULTI-WELL SIMULATION TO CONSTANT 

RATE PRODUCTION SCENARIO 

5.  

5.1 Chapter Summary 

In development planning or actual field operations, we often have situations where 

production wells are controlled by the constant rates because of the limitation of sand-face 

drawdown, surface facility limits and variable sales demand, etc. In such situations, the 

degree of pressure depletion may have a contrast among drainage areas according to the 

production rate of each well, leading to the dynamic migration of the drainage volume 

partition over time. In this chapter, we newly proposed two different methods of the FMM-

based multi-well simulation that can account for the dynamic changes in the drainage 

volume partition.   

The first method utilizes the flux fields, which can be efficiently calculated by the 

asymptotic approximation, to define the drainage volume partition. The unique feature is 

that it also involves the dynamic updates of the flux-based partition during the FMM-

based simulation in order to capture the effects of the drainage volume changes. The 

second method, which still uses the fixed partition based on the ‘equal-‘ interface, 

introduces a novel inter-partition transmissibility that allows the flux-in and flux-out 

across the partitions.   

We demonstrate the efficacy and utility of our proposed approaches using 

synthetic reservoir models. We first validated our methodologies using a 2-D 
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homogeneous model by confirming good agreement in the simulated bottomhole 

pressures with the commercial finite difference simulator. Next, we applied our 

methodologies to a 3-D million-cell model with four hydraulically fractured wells. We 

confirmed that the FMM-based simulation can show faster computation than the 

commercial finite difference simulator, however, the extra calculation for the inter-

partition transmissibility requires expensive computational costs. In addition, we also 

found that the velocity calculation using the asymptotic approximation needs to be further 

improved in order to obtain a robust drainage volume partition.   

This study demonstrated the feasibility of the rapid FMM-based multi-well 

simulation for the scenario of constant rate productions. As future work, we need to 

mitigate the remaining challenges identified in this study for further improvement of the 

proposed methods.  

 

5.2 Background 

In Chapter IV, we proposed the FMM-based multi-well simulation for the fixed 

BHP scenario using the equal- interface as a drainage volume partition. However, Huang 

(2017) showed that equal- no longer represents the drainage volume partition in the 

situation where wells are controlled by different constant rates. This is because difference 

in the withdrawal rates creates different degree of depletion in each partition, resulting in 

the dynamic shift in the drainage volume partition over time.  

Let us first illustrate the dynamic change in the drainage volume partition using 

the 2-D homogeneous example. The reservoir domain of 10,100×10,100×50 ft3 was 
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uniformly gridded by 101×101×1 grid blocks. Porosity, permeability and rock 

compressibility are 30%, 1 mD and 1×10-5 psi-1, respectively. Single-phase oil is assumed 

with viscosity of 0.49 cp, initial formation volume factor of 1.93 rbbl/stb and 

compressibility of 5×10-5 psi-1. Three (3) producers are placed at grid blocks (21, 21), (41, 

81) and (81, 21) and operated with the constant rate of 25, 50 and 100 stb/d, respectively.  

Figure 5.1 shows pressure maps from the FDSim and corresponding streamlines at four 

different time steps of 100, 500, 2000 and 5000 day. The streamlines are generated based 

on the flux from the FDSim using the Pollock’s method (Pollock, 1988). In the early time 

(100 day), the flow partition does not reach the equal- interface, indicating the 

independent transient flow for each well. Flow regimes at 500 days show transitions to the 

pseudo-steady state, and the flow partition starts deviating from the equal- partition. Once 

it becomes the pseudo-steady flow (2000 and 5000 days), the flow partition keeps 

changing over time. The drainage area of the well P1 with the smallest rate is shrinking 

whereas that of the well P3 with the largest rate is expanding. Finally, the drainage volume 

will be allocated proportional to the production rate of each well (Matthews and Russel, 

1967).  
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Figure 5.1 Dynamic change in pressure (top) and drainage volume partition based 

on streamlines (bottom) by depletion from three wells controlled by constant rates 

of 25, 50 and 100 stb/day 

 

 

 

In such situations, the FMM-based simulation with equal- partition does not 

provide consistent bottomhole pressure with the FDSim as shown in Figure 5.2a. The log-

log diagnostic plots (Figure 5.2b) clearly shows that the FMM-based simulation does not 

replicate the pressure performances after the infinite acting period is over. Thus, key 

challenge for the FMM-based multi-well simulation is to appropriately model the dynamic 

changes in the drainage volume partition.  
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(a) Linear plot 

 

(b) Log-log diagnostic plot (left: P1, middle: P2 and right: P3) 

Figure 5.2 Comparisons of simulated bottomhole pressures between FDSim 

(symbol) and FMM-based simulation (line) for three wells producing at different 

constant rates 

 

 

5.3 Methodology and Validation 

In this section, we tested and compared the following four approaches for multi-

well simulations using the FMM:  

1. Equal- partition (presented in Chapter IV) 

2. Flux-based partition (Huang 2017; Huang et al., 2017) 

3. Flux-based partition with dynamic update (newly proposed approach) 
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4. Inter-partition transmissibility (newly proposed approach) 

 

5.3.1 FMM-based Flux Partition 

Huang et al. (2017) proposed the method to define the drainage volume partition 

based on the flux field, which can be efficiently calculated using the FMM-based 

asymptotic approximation of pressure gradient along the DTOF coordinate (King et al., 

2016). Their approach consists of three decoupled steps: (1) generating flux fields 

associated with each well and superimposing them to get a flux map, (2) solving the 

steady-state tracer equation to define the interfaces between drainage volume partitions 

and (3) running the FMM-based 1-D simulations for each well. Although the drainage 

volume partition keeps changing over time, they assumed that we can approximate such 

dynamic partition by selecting one representative snapshot of the drainage volume 

partition. Thus, this method requires the appropriate selection of the time step to generate 

the flux field at step (1), as discussed later. In addition, we need to assume single-phase 

flow in order to adopt the asymptotic approximation for pressure gradient calculation 

along the DTOF coordinate.  

 

5.3.1.1 Methodology 

For slightly compressible fluid flow, King et al. (2016) derived the following 

approximation for the Darcy flux across the -contours:  

 ( , ) ( )t

p
q t c w 







,

 
(5.1) 
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where the flux q is a function of location  and time t.  Rearranging Eq.(5.1) yields the 

pressure gradient along the DTOF:  

 ( , )

( )t

p q t

c w



 





.

 
(5.2) 

The approximated flux is given by:  
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(5.3)  

where subscript sf stands for a sand-face and Vp() will be numerically computed from the 

FMM solution. V0(t) is defined as: 
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(5.4) 

Thus, the pressure gradient at location  and time t can be semi-analytically computed by 

the following formulation:  
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(5.5) 

Velocity on the Cartesian grid system, u(x), can be translated from the pressure gradient 

along the DTOF:  

 ( , )
( , )

p t
t




 


  



k
u x ,

 
(5.6) 

Note that we have discussed the pressure gradient associated with individual well thus far. 

Huang et al. (2017) generated the flux map in the reservoir model with multiple wells by 

the superposition of the velocity fields associated with individual wells as follows:  
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  ( , ) ( , )
wN

iw
iw

t tU x u x ,

 
(5.7) 

where Nw is the well counts and subscript iw is the index of wells. Finally, the drainage 

volume partition associated with each individual well is determined by solving the steady-

state tracer equation for the concentration c (Shahvali et al., 2012):  

   ˆ( , ) ( )iw iw iwt c qc   U x x x .

 
(5.8) 

As boundary conditions, any concentration ciw to label wells will be assigned with the flow 

rate per unit bulk volume at each well location xiw such that the solution c identifies the 

well to which each grid block belongs. The steady-state assumption reduces Eq. (5.8) as 

follows:  

 ˆ( , ) ( )iw iwt c qc   U x x x ,

 
(5.9) 

because the divergence of velocity vanishes. The gradient of tracer concentration is 

evaluated from the inflow directions:  

 ( )
 (if flow direction is )

face
i j

j

j j

c c
c U j i

L


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
U ,

 
(5.10) 

 

where i: grid block index, j: directions of adjacent cells and L: grid block length. 

Integrating Eq. (5.10) over the grid block volume yields the following expression:  

 d ( ) ( )

i

face face
i j

j i j i j iw iw

j jjV

c c
U V Q c c qc
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
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(5.11) 
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Thus, the drainage volume partition can be determined only with the volumetric flux. Note 

that Eq. (5.11) defines the tracer concentration associated with the single well iw. 

Therefore, we need to solve Eq. (5.11) as many times as the number of wells with different 

boundary conditions by the finite difference scheme. Subsequently, we compare the 

concentration maps associated with each well in order to assign the well label to each grid 

block based on the highest concentration.  

 

5.3.1.2 Results and Discussion 

For the same 2-D homogeneous example as the last section, we generated the 

drainage volume partition using the FMM-based flux partition (Figure 5.3). It is observed 

that the FMM-based flux partition shows reasonable agreement with those from the 

FDSim.  

 

 

Figure 5.3 Drainage volume partition at each time step from FMM-based flux 

calculation (top) and FDSim (bottom). Production rate = 25, 50 and 100 stb/day. 
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Subsequently, we run the FMM-based 1-D simulations using drainage volume partitions 

at different time steps. Figure 5.4 illustrates the comparison of bottomhole pressure 

between the FDSim and the FMM-based simulation. For comparison purpose, the FMM-

based simulation with equal- partition is also compared with the FDSim (Figure 5.4a), 

which indicates significant deviation in the late time where the pseudo-steady state has 

been reached. On the other hand, the FMM-based simulation with the flux-based partition 

gives better matching with the FDSim compared to the equal-. Obviously, the simulation 

results of the FMM-based approach depends on the selection of the time step to generate 

the drainage volume partition. If we select 500 days or 5000 days for the time step to 

generate the drainage volume partition, the bottomhole pressure from the FMM-based 

simulation shows significant deviation from the FDSim (Figure 5.4b and Figure 5.4d). It 

seems that selecting 2,000 days for the drainage volume partition provides the excellent 

agreement between both simulations, however, we need a guideline for the optimal time 

step selection. In this study, rather than pursuing the optimal time step selection for the 

fixed drainage volume partition, we propose a new methodology that dynamically updates 

the drainage volume partition during the FMM-based simulation in the next section.  
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 (a) FMM with equal- partition  (b) FMM with partition at 500 days 

 

 (c) FMM with partition at 2,000 days  (d) FMM with partition at 5,000 days 

Figure 5.4 Comparison of simulated bottomhole pressure between FDSim (symbol) 

and FMM-based simulation (line) using flux-based drainage volume partition at 

different time steps 

 

 

5.3.2 FMM-based Flux Partition with Dynamic Update 

In the previous section, we pointed out that the selection of the time step to 

generate the drainage volume partition is critical. Although investigating the optimum 

time step selection is one option to tackle this issue, we will study another option that 
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involves the dynamic update of the drainage volume partition during the FMM-based 

simulation.  

 

5.3.2.1 Methodology 

This method can be easily implemented with minor corrections to the workflow of 

the previous method as illustrated in Figure 5.5:  

1. Generate the DTOF from each well for the entire reservoir domain. 

2. Generate the FMM-based flux partition for all the time steps to update the drainage 

volume partition.  

3. Run the FMM-based simulation using the initial drainage volume partition until it 

reaches the time step to update the drainage volume partition. 

4. Map-back the 1-D solutions onto the original grid blocks. Update the drainage 

volume partition.  

5. Go back to step-3 until the simulation terminates.  

At step-1, we need to define the time steps for updating the drainage volume partition. 

Here, we will study the sensitivity of the update frequency, and leave the optimal 

frequency selection as future work.  
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Figure 5.5 Flowchart of FMM-based multi-well simulation using flux-based 

drainage volume partition with dynamic update 

 

 

5.3.2.2 Results and Discussion 

Using the same 2-D homogenous model with three wells producing 25, 50 and 100 

stb/day, respectively, we compared the bottomhole pressure between the FDSim and the 

FMM-based simulation with dynamically updating the drainage volume partition. Figure 

5.6 illustrates comparisons with (a) the fixed equal- partition, (b) the flux-based partition 

with three times updates, (c) 9 times updates and (d) 19 times updates. Obviously, the 

dynamic update of flux-based partition yields better matching with the FDSim compared 

to the equal- partition. In addition, there is no significant difference in the simulated well 

performances between the update frequencies, indicating that only a few update can be 
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sufficient. Figure 5.7 shows percentages of the drainage volume partition associated with 

each well. After 6,000 days, drainage volumes are almost stabilized according to the ratio 

of the production rates of each well (Matthews and Russell, 1967). Thus, we may not need 

to update the drainage volume partition once the partition is stabilized. In addition, we 

need not update the drainage volume partition until the time when interference starts, 

which can be inferred based on the DTOF. The optimal selection of the update frequency 

and time steps will be left as future work.   

 

 
           (a) Equal- partition      (b) with partition updated 3 times 

 
(c) with partition updated 9 times  (d) with partition updated 19 times 

Figure 5.6 Comparison of bottomhole pressure between FDSim (symbol) and 

FMM-based simulation (line) with dynamic update of drainage volume. Drainage 

volume partition was updated with different frequency denoted by black diamonds 
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Figure 5.7 Percentage of drainage volume associated with each well from FMM-

based flux partition 

 

 

5.3.3 Inter-partition Transmissibility 

As we have discussed thus far, the idea of the FMM-based multi-well simulation 

using the flux-based partition is to define the drainage volume partition prior to the flow 

simulation. Limitation is that such partitions are scenario dependent and we need to 

generate the partitions for different well schedules. In addition, the flux calculation needs 

to be based on single-phase assumption in terms of the velocity superposition and the 

asymptotic flux approximation.  

Here, we propose a new methodology that introduces the inter-partition 

transmissibility to model the dynamic flow-in and flow-out across the partitions. The 

advantage of the inter-partition transmissibility is that there is no scenario dependency 

because it is determined purely based on the static properties. Furthermore, the method is 

not limited to the single-phase system, but is valid for multi-phase flow.  
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5.3.3.1 Methodology 

Figure 5.8 illustrates the FMM-based simulation workflow that incorporates the 

inter-partition transmissibility, consisting of four (4) steps:  

1. Generate the equal- partition 

2. Calculate Vp() and w() for each well 

3. Calculate the inter-partition transmissibility 

4. Run the 1-D simulation using a series of the 1-D grid blocks where the inter-

partition transmissibility is assigned to allow the flow-in and flow-out across the 

partitions 

 

Hence, step-3 is an extra computation required for this method where the inter-partition 

transmissibility is calculated for each -contours of each well pair. Thus, the 1-D 

simulations are no longer run independently as we need to account for the dynamic 

communication between partitions. Rather, the flow simulation in this approach is close 

to the 2-D simulation where 1-D grid block systems for each well are connected via the 

non-neighbor connections.  
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Figure 5.8 FMM-based multi-well simulation workflow incorporating inter-

partition transmissibility 
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5.3.3.2 Computation of Inter-partition Transmissibility 

The critical step of this method is to calculate the inter-partition transmissibility. 

As depicted in Figure 5.9, we need to visit every -contour and regard the blue grid blocks 

lying in the -contour of interest as a single grid block, as well as purple grid blocks. The 

inter-partition transmissibility is defined as the transmissibility between the blue and 

purple regions.  

 

 

Figure 5.9 Illustration of DTOF-contour where inter-partition transmissibility is 

computed 

 

 

Due to the complex geometry of -contours, it is difficult to apply analytical 

methods to calculate the transmissibility between partitions. In addition, flow-based 

transmissibility calculation is not preferred as it may require substantial computation time.  

Therefore, we use the analytical pressure calculation based on the DTOF to evaluate the 

inter-partition transmissibility.  
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Figure 5.10 illustrates the procedure to calculate the inter-partition 

transmissibility. We first pick up the underlying grid blocks lying in the -contour of 

interest (step-1). We then place source points along the partition interface and run the 

FMM to get the DTOF within the contour (steps-2 and 3). When we run the FMM, all the 

other cells than the contour of interest are set to be inactive. Subsequently, we separately 

count the pore volumes for each partition and calculate w() functions (steps-4 and 5). 

Assuming the steady-state with the unit flux across the partition interface, pressure profiles 

in each partition will be calculated along the DTOF based on the Darcy’s law (step-6):  

 1/2 1
)( ) )( )t ref i t ref i i

i

w c w c p pp
q

   

   

 
  

   
 

, 

 
(5.12) 

where we need to impose any arbitrary value for the boundary pressure pi=0 at  =0 (e.g. 

3,000 psi in this example). The steady-state transmissibility can be determined based on 

the pressures at maximum  in each partition (step-7). The same steps will be repeated for 

every -contour and the inter-partition transmissibility will be accumulated as a function 

of the DTOF (step-8). The number of -contours for the transmissibility calculation can 

be different from the number of -contours for the 1-D simulation because we can 

interpolate the transmissibility from the cumulative transmissibility obtained at step-8. See 

further detail in Appendix D that illustrates a step-by-step explanation and validation 

using a 2-D homogeneous example with two producers.  
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Figure 5.10 Workflow to calculate inter-partition transmissibility using the FMM 
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For the 2-D homogeneous example with three wells in section 5.3.1, the inter-partition 

transmissibility was calculated as shown in Figure 5.11 where different numbers of -

contours (N) for transmissibility calculation were examined. Although it does not perfectly 

converge as increasing the number of -contours, it shows stable results.  

 

  

 

Figure 5.11 Inter-partition transmissibility for 2-D homogeneous example with 

three wells. Different numbers of DTOF-contours are examined 

 

 

5.3.3.3 Building 1-D Simulation Grid Blocks 

Since this method allows the interaction between the drainage volume partitions, 

the 1-D simulation grid blocks associated with individual wells should be consistently set 

up each other. Let us consider the case with three wells. Figure 5.12 depicts an example 
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of simulation grid blocks for the FMM-based multi-well simulation using the inter-

partition transmissibility. The pink dotted line indicates the first -contour of the partition 

interface. Between the well location and the first partition interface, gridding can be 

different for each well. On and after the first partition interface, the 1-D grid blocks need 

to be aligned with the same gridding in order to model the interference. For each well pair, 

the inter-partition transmissibility will be assigned via the non-neighbor connection.  

 

 

Figure 5.12 Example of grid block set-up for FMM-based simulation incorporating 

inter-partition transmissibility 

 

 

5.3.3.4 Results and Discussion 

By assigning the calculated inter-partition transmissibility (Figure 5.11) to the 1-

D grid systems, the bottomhole pressure of three wells were simulated. Figure 5.13 shows 

comparisons between the FDSim and the FMM-based simulation with the inter-partition 
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transmissibility. Compared to the equal- partition, the bottomhole pressure matching was 

significantly improved by introducing the inter-partition transmissibility, indicating that 

the flux-in and flux-out across the partitions can be reasonably modeled via the inter-

partition transmissibility. We also tested three different numbers of DTOF contours for 

calculating the inter-partition transmissibility (Figure 5.11) and confirmed that the 

simulated bottomhole pressures were almost identical. Thus, we should further investigate 

the optimum selection of the number of the DTOF contours for computing the inter-

partition transmissibility, which has been left as future work. Figure 5.14 illustrates 

comparisons of the log-log diagnostic plot where the FMM-based simulation with the 

inter-partition transmissibility better captures the trends of pressure derivatives from the 

FDSim, compared to the equal- partition. The computation time required for the inter-

partition transmissibility calculation will be discussed in the next section using a field-

scale model.  
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(a) Equal- partition   (b) Inter-partition transmissibility (N=10) 

 
 (c) Inter-partition transmissibility (N=20) (d) Inter-partition transmissibility (N=30) 

Figure 5.13 Comparison of bottomhole pressure between FDSim (symbol) and 

FMM-based simulation using inter-partition transmissibility (line) 

 

 

 

 
 

         (a) P1           (b) P2       (c) P3 

 

Figure 5.14 Comparisons of log-log diagnostic plot (symbol: FDSim, dashed line: 

FMM with equal-tau, solid line: FMM with inter-partition transmissibility)  
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5.4 Extreme Rate Contrast 

We further tested a case with the extreme contrast in production rates where the 

constant rates of 10, 10 and 100 stb/day were assigned for P1, P2 and P3, respectively. 

Figure 5.15 shows the comparison of the simulated BHP between the FDSim and the 

FMM-based simulations. In this particular example, the fixed flux-based partition does 

not give a reasonable matching with the FDSim (Figure 5.15b), indicating that there is no 

one representative partition that can approximate the whole simulation period. The flux-

based partition with the dynamic update shows better matching than the fixed partition, 

but it overestimates the drainage volumes of P2 and P3 (Figure 5.15c). The inter-partition 

transmissibility shows excellent matching in P2 and P3, however, it cannot replicate the 

BHP of P1. Although the more contrast in the production rates seems to result in less 

accuracy, both FMM-based simulations, with the dynamic update of the flux-based 

partition and with the inter-partition transmissibility, can still captures the overall trend of 

the FDSim.  
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      (a) Equal- partition       (b) Flux-based partition fixed at 2000 days 

 
    (c) Flux-based partition with three updates (d) Inter-partition transmissibility 

Figure 5.15 Comparison of simulated BHP between FDSim (symbol) and FMM-

based simulation (line) with four different methods. Production rate = 10, 10 and 

100 stb/day 

 

 

5.5 Application to Million-cell Model with Fractured Wells 

Finally, we present the example of a million-cell model with four (4) fractured 

wells to illustrate the applicability of the methods to unconventional reservoirs and 

computational efficiency.  
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5.5.1 Model Setting 

We set up the 3-D Tartan grid dimensioned by 765×300×5 (1.1 million cells) to 

model the reservoir section of 8,000×3,000×150 ft3 and four (4) hydraulically fractured 

wells (Figure 5.16). Each well has 20 stages and 4 clusters per stage with the spacing of 

100 ft and 40 ft, respectively. The uniform half length of 170 ft was assumed for all 

fractures where there is no frac hit for the well spacing of 400 ft apart. The uniform fracture 

permeability was assumed; 1,000 mD for wells P1 and P3 and 100 mD for wells P2 and 

P4, respectively.  

 

 

Figure 5.16 Geometry of hydraulic fractures for four fractured wells case 

 

 

Other input data is summarized in Table 5.1. The same PVT properties was used shown 

in Figure 2.15. The relative permeability and rock compaction tables are depicted in 

Figure 5.17 where rock compaction was applied only for the hydraulic fractures.  
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Table 5.1 Input data for four fractured wells case 

Item Value 

Model size (ft3) 8000’×3000’×150’ 

Grid block dimension 765×300×5 (1,147,500) 

Matrix permeability (mD) 1×10-3 

Hydraulic fracture permeability (mD) 100 or 1000 

Matrix porosity 0.05 

Hydraulic fracture porosity 5×10-4 

Initial water saturation 0.23 

Rock compressibility (psi-1) 1.0×10-6 

Water viscosity (cp) 1.0 

Water compressibility (psi-1) 1.0×10-6 

Water formation volume factor (rbbl/stb) 1.0 

Initial solution gas-oil ratio (Mscf/stb) 1.34 

Bubble point pressure (psi) 2,860 

Initial pressure (psi) 5,000 

 

 

(a) krw and kro    (b) krg and krog      (c) Rock compaction 

Figure 5.17 Relative permeability and rock compaction for four fractured wells 

case 

 

 

5.5.2 Comparison of Simulation Results 

We run the simulation for 3,000 days with the constant rate controls of 50, 100, 

50, 100 stb/day for wells P1, P2, P3 and P4, respectively. Figure 5.18 shows the 
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comparison of the BHP responses from the FDSim (symbol), the FMM-based simulation 

with equal- partition (black dashed line), the fixed flux-based partition (blue solid line; 

flux field was generated at 100 day) and the inter-partition transmissibility (red solid line). 

As discussed later, solutions of the flux-based partition collapsed after 200 days and 

therefore we cannot obtain the simulation results from the flux-based partition with the 

dynamic update. For wells P2 and P4, the FMM-based simulation with the flux-based 

partition shows better matching with the FDSim compared to the equal- partition, 

whereas the FMM-based simulation with the inter-partition transmissibility shows 

excellent matching. However, the FMM-based simulation shows the significant deviation 

from the FDSim for well P3.  

 

 

 

 

 

Figure 5.18 Comparison of BHP responses for four fractured wells case 
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In this example, the flux-based partition was fixed at 100 day because we have seen the 

solution collapse for the drainage volume partition at 200 days and after as illustrated in 

Figure 5.19. We have confirmed that we did not see this issue as long as we use the 

velocity field from the FDSim. Therefore, the flux field calculated from the superposition 

of Eq. (5.2) may have some issues, and this has been left as future work. The dynamic 

update would improve the matching between the FDSim and the FMM-based simulation 

with the flux-based partition.  

 

 

Figure 5.19 Equal-tau and flux-based partition for four fractured wells case 

 

 

On the other hand, we also identified the challenge for the FMM-based simulation with 

the inter-partition transmissibility. Figure 5.20 shows the inter-partition transmissibility 
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calculated with different numbers of -contours, indicating that the transmissibility 

calculation is unstable. This might be because of the less accurate calculation of w() from 

the cell-center Eikonal solution and the smoothing technique, rather than the 27-pt stencil 

Eikonal solver. The reason we used the cell-center approach is to save computational time 

required for the inter-partition transmissibility calculation. Thus, one potential mitigation 

is to implement the 27-pt stencil Eikonal solver for the inter-partition transmissibility 

calculation although it requires extra the computation time.  

 

 

 

Figure 5.20 Inter-partition transmissibility for four fractured wells case. Different 

numbers of DTOF-contours are examined 
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5.6 Summary 

In this chapter, we studied the FMM-based simulation for multiple wells. We 

revisited the flux-based partition which was previously proposed by Huang et al. (2017), 

and we also newly proposed two methods that incorporate (1) the dynamic update of the 

flux-based partition and (2) the inter-partition transmissibility to model the flux-in and 

flux-out across the partitions, respectively. Conclusions from this study are summarized 

below for each methodology:   

 

FMM-based simulation with flux-based partition 

 The FMM-based simulation proposed by Huang et al. (2017) used the velocity 

field to define the drainage volume partition. The velocity field can be efficiently 

calculated by the FMM-based asymptotic approximation of pressure gradient 

along the DTOF coordinate (King et al., 2016).  The drainage volume partition, 

which is obtained assuming one particular time step, will be fixed during the 

FMM-based simulation. Thus, the assumption is that we can approximate the 

dynamically changing partition by a single snapshot of the partition maps.  

 For cases with multiple wells constrained by the different constant rates, the FMM-

based simulation with the flux-based partition shows better matching with the 

FDSim compared to the FMM-based simulation with equal- partition presented 

in Chapter IV.  

 The simulation results from this method are sensitive to the time step selected for 

generating the flux field. The possible two options to mitigate this challenge are 
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(1) investigating the optimal time step selection or (2) dynamically updating the 

drainage volume partition during the FMM-based simulation.   

 

FMM-based simulation with flux-based partition with dynamic update 

 Rather than selecting one representative time step to model the drainage volume 

partition over time, we proposed a new approach that dynamically updates the 

drainage volume partition during the simulation.  

 It was confirmed that only a few update of the drainage volume partition improved 

matching between the FMM-based simulation and the FDSim compared to the 

fixed flux-based partition. The optimal frequency of updating the drainage volume 

partition should be further studied.  

 Extra computations for the 1-D pore volume and the 1-D transmissibility are 

required when the partition is updated. However, it should be only a small portion 

of total CPU.  

 Solutions of the drainage volume partition from the tracer equation can collapsed 

due to the flux field generated from the FMM-based asymptotic approximation. A 

robust flux calculation should be investigated.  

 

FMM-based simulation with inter-partition transmissibility 

 The FMM-based simulation introducing the inter-partition transmissibility was 

newly proposed. This method first defines the drainage volume partition using the 

equal- interface, followed by the calculation of the transmissibility across the 



 

211 

 

partitions. The 1-D simulations for each well are no longer independent because 

the communication across the partitions is enabled via the inter-partition 

transmissibility. The inter-partition transmissibility can be determined purely 

based on the static properties and there is no rate and time dependency. 

 The simulation results from this method showed better matching with the FDSim 

than the FMM-based simulation with the equal- partition. Similar or better 

matching quality was confirmed compared to the FMM-based simulation with the 

dynamic update of the flux-based partition.  

 Two remaining issues were identified: (1) calculation of the inter-partition 

transmissibility is sensitive to the number of the DTOF contours especially for the 

fractured well case and (2) calculation of the inter-partition transmissibility is 

computationally expensive. Results indicate that the 27pt-stencil FMM is required 

for accurate calculations of w() functions and inter-partition transmissibility.  

 

CPU Time 

 For a million cell example with four fractured wells, all the FMM-based 

approaches, including the flux-based partition and the inter-partition 

transmissibility, achieved faster computation than the FDSim. Due to the extra 

computation of the inter-partition transmissibility, the FMM-based simulation with 

the inter-partition transmissibility required almost double CPU time than the 

FMM-based simulation with the equal- partition. On the other hand, the 

additional time required for the flux-based partition is not significant.  
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.  

6.1 Conclusions 

In this study, we developed and validated an efficient simulation approach for 

multi-phase and multi-component flow in unconventional reservoirs using the Fast 

Marching Method (FMM). The high frequency asymptotic solution of the diffusivity 

equation leads to the Eikonal equation, which is a generalized form of the depth of 

investigation in heterogeneous and fractured reservoirs with arbitrary well completions. 

The Eikonal equation can be efficiently solved by the FMM for the Diffusive Time-of-

Flight (DTOF) that governs the geometry and the travel time of pressure ‘front’ 

propagation. The key concept of the proposed FMM-based simulation is to utilize the 

DTOF as a 1-D spatial coordinate embedding reservoir heterogeneity to transform an 

original 3-D reservoir model into an equivalent 1-D model, leading to orders-of-magnitude 

faster computation compared to the normal finite difference simulation (FDSim).  

We applied the FMM-based simulation to field history matching, optimization of 

gas injection EOR, and design of infill well placement for unconventional reservoirs. The 

rapid simulation of the FMM-based approach enables us to use high resolution models to 

describe geological heterogeneity and complex fracture geometry. Furthermore, robust 

population-based algorithms for history matching and optimization can be incorporated 

even if large numbers of simulations are required. Thus, the FMM-based simulation 
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provides wide applicability for quick and comprehensive assessment of unconventional 

reservoirs. Conclusions from this research are summarized as follows:  

 We developed and validated the FMM-based simulation for multi-phase flow in 

dual-porosity single-permeability (DPSP) models. We also confirmed that the 

FMM-based simulation can provide orders-of-magnitude faster computation for 

million-cell models compared to the FDSim. The field application of history 

matching demonstrated that the rapid FMM-based simulation assists efficient 

history matching using the population-based technique that requires a large 

number of simulation runs. Multiple history matched models were generated and 

used for uncertainty assessment in reservoir properties as well as the remaining 

recovery. 

 We further extended the FMM-based simulation to multi-component flow in DPSP 

model. The speed-up compared to the FDSim was more significant than blackoil 

simulations because of the reduction in the total number of primary variables, as 

well as in the number of flash calculations and stability analysis involved in the 

compositional simulation. Use of the rapid compositional simulation based on the 

FMM provides not only quick assist to optimize operational parameters for field-

scale application, but also physical assessment of displacement/ recovery 

processes.  

 We proposed a FMM-based multi-well simulation approach for a scenario where 

all the wells are constrained by the same and constant bottomhole pressures. In this 

scenario, 'equal-', the interface at which the marching front of pressure 
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propagation from a well encounters that of the others', approximates no flow 

boundary. Our proposed approach partitions the reservoir model into independent 

sub-domains associated with individual wells based on the equal- followed by 

independent 1-D simulations within each domain. Coupling with the FMM-based 

multi-well simulation, we proposed a comprehensive workflow for assessing and 

optimizing the infill well spacing that incorporates the fracture propagation 

simulation accounting for the parent well depletion. We demonstrated that the use 

of the FMM-based approach can quickly provide quantitative assessment of 

potential frac hits and help efficient design and optimization of infill well planning 

in unconventional reservoirs. 

 We newly proposed and validated two methods of the FMM-based multi-well 

simulation for the constant rate production scenario where drainage volume 

partition dynamically changes over time. The first method involves the dynamic 

update of drainage volume partition during the FMM-based simulation, using the 

flux fields obtained from the asymptotic approximation. We found that only a few 

updates seems enough to capture the migration of drainage volume, but the optimal 

frequency of the dynamic update needs to be further investigated. In addition, a 

robust calculation of flux fields should also be studied since we identified a case 

where physically reasonable solutions for the drainage volume partition could not 

be obtained. The other method introduces the inter-partition transmissibility that 

allows flux-in and flux-out across the partition. The identified challenge is to 
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reduce the computational time that is required for calculating the inter-partition 

transmissibility.  

 

6.2 Recommendations and Future Work 

In order to extend and improve the current work, the followings are recommended 

as future work:  

 A methodology to incorporate gravity in the FMM-based simulation needs to be 

developed. Phase segregation due to gravity in hydraulic fractures may 

significantly affect the simulated well performances. One possible option is a 

multi-domain modeling that uses original multi-dimensional grid blocks for 

hydraulic fractures and the 1-D DTOF grid blocks for the rest of the regions.  

 Molecular diffusion, which is considered important physics for modeling gas 

injection in unconventional reservoirs, should also be incorporated in the FMM-

based simulation.   

 A robust and efficient Eikonal solver needs to be developed. Although the 27pt-

stencil FMM provides accurate and stable w() function, the challenge is expensive 

computational costs since it requires more numbers of solution nodes for the DTOF 

than the cell-center FMM. A hybrid approach might be one option that applies the 

27pt-stencil FMM for near-well regions and the cell-center for the remaining 

regions.  

 We identified several remaining challenges for the FMM-based multi-well 

simulation. For the flux-based partition with dynamic update, a robust calculation 
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of flux fields as well as the optimal frequency of updating the drainage volume 

partition needs to be further investigated. For the inter-partition transmissibility, 

we should address: (1) further validation of the inter-partition transmissibility 

calculation based on the FMM, especially for fractured well case and (2) 

improvement of computational efficiency of the inter-partition transmissibility 

calculation to reduce the CPU time. 
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NOMENCLATURE 

 

a Parameter in Equation-of-State for molecular interaction 

b Coefficient for exponential transmissibility reduction model or 

parameter in Equation-of-State for molecular volume 

B Formation volume factor 

BHP Bottomhole pressure 

c Compressibility 

CDF Cumulative distribution function 

DTOF Diffusive Time-of-Flight 

DPSP Dual-porosity Single-permeability 

EOR Enhanced oil recovery 

EoS Equation-of-State 

F Fugacity 

FMM Fast Marching Method 

FDSim Finite Difference Simulation 

GA Genetic Algorithm 

GOR Gas-oil ratio 

h Thickness 

HC Hydro Carbon 

HF Hydraulic fractures 

Huff-n-Puff Huff and Puff 
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k Permeability 

k Permeability tensor 

kij Binary interaction coefficient between components i and j 

kr Relative permeability 

l length of matrix blocks in dual-porosity model 

L Liquid phase 

Lw Effective well length of horizontal well 

M Mobility ratio 

MMP Minimum Miscibility Pressure 

p Pressure 

PVT Pressure-volume-temperature 

q Flow rate 

rw Well radius 

R Universal gas constant 

Rs Solution gas-oil ratio 

RMS Root-mean-squared error  

S Saturation 

scf Standard cubic foot 

SRV Stimulated reservoir volume 

stb Stock tank barrel 

t Time 

u Velocity 
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V Volume or vapor phase 

Vdp Dykstra-Parson’s coefficient 

V.R.R. Voidage-replacement ratio 

w Weight 

w() Function defined as derivative of drainage pore volume w.r.t  

WC Water cut 

WHP Wellhead pressure 

WI Well Index 

xi Mole fraction of component-i in liquid phase 

x Location vector 

Xf Fracture half length 

yi Mole fraction of component-i in vapor phase 

zi Global mole fraction of component-i 

zw Distance from reservoir top to horizontal well 

 Diffusivity 

 Dirac Delta 

 Porosity 

 Transfer rate between fracture and matrix or surface area 

 Mobility or inter-porosity coefficient 

 Viscosity 

 Phase function 
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 Mass or mole density 

 Shape factor 

 Diffusive Time-of-Flight 

 Frequency or storativity ratio 

 Domain 

 

Subscript 

b Bulk 

h Horizontal 

j Phase 

g Gas 

mp Multi-phase 

o Oil 

p Pore 

ref Reference condition 

sc Standard condition 

t Total 

v Vertical 

w Water 

 

Superscript 

n Time step 
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up Upstream 
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APPENDIX A 

COUPLING FMM-BASED SIMULATION WITH EXISTING RESERVOIR 

SIMULATOR 

 

One of the advantage of FMM-based simulation is that it can be coupled with any 

existing reservoir simulators. This is because the 1-D mass/ mole conservation equations 

along the DTOF coordinate are basically the same as those of 1-D Cartesian coordinate, 

while the pore volume, transmissibility and pore volume need to be specific to the DTOF 

coordinate. In addition, any heterogeneity within the same -contour have to be averaged 

as shown in Table 2.2. Then, once we calculate and feed all the relevant properties defined 

on the 1-D DTOF coordinate to the existing reservoir simulator, the 1-D simulation can 

be readily performed. In this appendix, we summarize the keywords which should be 

specific to the 1-D FMM-based simulation in Table A.1 through Table A.5. Eclipse® is 

assumed as a reservoir simulator to be used.  

 

Table A.1 RUNSPEC Keywords required for FMM-based 1-D simulation 

Item Value 

DIMENS NX should be number of 1-D grid blocks. NY and NZ should be 1.  
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Table A.2 GRID Keywords required for FMM-based 1-D simulation 

Item Value 

DX, DY, DZ 
Arbitrary values can be entered. DX, DY and DZ will be unused 
since pore volume and transmissibility will be explicitly specified in 
EDIT section 

PERMX, PERMY, PERMZ 

Arbitrary values can be entered for fractures because PERMX, 
PERMY and PERZ will be unused since transmissibility and well 
index will be explicitly specified in EDIT and SCHEDULE sections. 
PERMX for matrix should be the permeability calculated by Eq. 
(2.64) for each 1-D grid. PERMY and PERMZ for matrix will be 
unused. 

PORO 

PORO for fracture can be arbitrary. PORO for matrix should be 
the averaged matrix porosity for each 1-D grid block as it will be 
used for bulk volume calculation that is a part of fracture/ matrix 
transmissibility 

SIGMAV 
SIGMAV should be the shape factor calculated by Eq. (2.64) for 
each 1-D grid. 

TOPS 
TOPS can be arbitrary but should be (reference depth of the well 
in WELSPECS) – (DZ/2) 

 

 

Table A.3 EDIT Keywords required for FMM-based 1-D simulation 

Item Value 

TRANX 
TRANX for fracture should be calculated by (2.40). TRANX for 
matrix needs to be zero. 

PORV PORV should be calculated based on either (2.52) or (2.56) 

 

 

Table A.4 REGIONS Keywords required for FMM-based 1-D simulation 

Item Value 

SATNUM Should be averaged value by majority vote within each -contours.  

ROCKNUM Should be averaged value by majority vote within each -contours. 

PVTNUM Should be averaged value by majority vote within each -contours. 

EOSNUM Should be averaged value by majority vote within each -contours. 
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Table A.5 SCHEDULE Keywords required for FMM-based 1-D simulation 

Item Value 

WELSPECS 
Well head location should be the first cell of 1-D grid. BHP 
reference depth needs to be consistent with the original data. 

COMPDAT 

Completion location should be the first cell of 1-D grid. Well 
connection factor (well index) should be calculated by Eq. (2.51). 
Well diameter can be arbitrary as it will be unused due to 
explicitly assigned well connection factor.  
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APPENDIX B 

FMM-BASED SIMULATION FOR RESERVOIRS WITH MULTIPLE ROCK TYPES 

ACROSS DTOF CONTOURS  

 

In Chapter II, we discussed limitations of the FMM-based multi-phase simulation 

using the cases of gas liberation and waterflooding. In this appendix, we further present 

special cases involving multiple rock types with extremely different relative permeability 

or rock compaction. The first case is an example that is beyond the capability of the FMM-

based simulation, and the second case requires the frequent DTOF updates.   

 

B.1 Waterflooding in Reservoirs with Multiple Rock Types 

When pressures and saturations are mapped back from the 1-D to the original 3-D 

grid blocks, we accordingly update the compressibility, viscosity, relative permeability 

and compaction (pressure-dependent pore volume and transmissibility) on grid-by-grid 

basis. If there exist multiple rock types of which distributions are not aligned with the 

initial DTOF contours, diffusivity changes will have spatial variation, leading to changes 

in the DTOF geometry. In this section, we present a waterflooding example in reservoirs 

with multiple rock types to illustrate how the FMM-based simulation works in such cases.  

 

B.1.1 Case Setting 

We set up the 2-D reservoir model as summarized in Table B.1. Two rock types 

that have extremely different water relative permeability are defined as illustrated in 
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Figure B.1. The rock type #1 (blue) allows little water movement and diffusivity remains 

almost constant until water saturation reaches approximately 0.45. On the other hand, 

water phase can easily move in the rock type #2 (red) and diffusivity (mobility) 

significantly increases as water saturation increase. However, the initial DTOF (depicted 

by white lines on the center) only reflects the spatial heterogeneity of absolute 

permeability and is not affected by rock types since the initial water saturation is 

homogeneous and equal to immobile saturation (0.3). Once we start water injection from 

the center, it is expected that the injected water preferably goes through the rock type #1 

as it increases mobility, leading to change in the DTOF geometry.  

 

Table B.1 Input data for waterflooding example with multiple rock types 

Item Value 

Model size (ft3) 30,000’×30,000’×10’ 

Grid block dimension 155×155×1 (24025) 

Size of Area of Interest (AoI) (ft3) 10,100’×10,100’×10’ 

Grid block dimension of AoI 101×101×1 

Permeability (mD) 50 (rock type #1) & 100 (rock type #2) 

Porosity 0.046 

Initial water saturation (immobile) 0.30 

Rock compressibility (psi-1) 1.0×10-6 

Water compressibility (psi-1) 1.0×10-6 

Water viscosity 0.152 

Initial oil compressibility (psi-1) 1.5×10-5 

Initial oil viscosity (cp) 1.52 

Initial pressure (psi) 3,000 

Water injection rate (stbw/d) 500 
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Figure B.1 Rock type distribution (center), DTOF contour (lines on the center plot) 

and associated relative permeabilities and diffusivity (left and right) 

 

 

B.1.2 Pressure, Saturation and Diffusivity from Finite Difference Simulation 

We first run the FDSim to see how pressure and saturation evolve in such 

reservoirs with multiple rock types. Figure B.2 shows frontal arrival times of pressure and 

saturation from the FDSim (Vasco, 2011). Obviously, the early arrival of the saturation 

front is observed along the rock type #2 (Figure B.2b) due to the contrast in the mobility 

increase between two rock types, whereas the pressure arrival is less sensitive to it. The 

cross-plot of arrival times of pressure and saturation (Figure B.2c) shows two distinct 

trends between two rock types. It indicates that there will be significant variation in 

saturation within each DTOF contour.  
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(a) Pressure arrival    (b) Saturation arrival  (c) Crossplot 

Figure B.2 Front arrival of pressure and saturation in 2-D reservoir with 

multiplerock types 

 

 

Figure B.3 shows the maps of pressure, saturation and diffusivity change from the 

FDSim at 40 and 400 days. It is observed that evolution of water saturation and changes 

in diffusivity take place selectively along the rock type #2. On the other hand, changes in 

the geometry of pressure contours are less sensitive to the underlying rock type as we can 

see little or slight changes between Figure B.3a and 3b. Thus, saturation contours are not 

well aligned with pressure contours in this case, indicating that this can be beyond the 

assumption of the FMM-based multi-phase simulation.  
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(a) 40 days 

 

(b) 400 days 

Figure B.3 Pressure, saturation and diffusivity change from FDSim in 2-D reservoir 

with multiple rock types 

 

 

B.1.3 FMM-based Simulation 

Based on the above observation, it is obvious that the initial DTOF contour, which 

is independent from diffusivity changes expected in the simulation, cannot represent 
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saturation contours in this case. Therefore, we tested updating the DTOF during the FMM-

based simulation to honor the diffusivity changes.  

For simulating water injection for 400 days, three different frequencies of the 

DTOF update were examined: (a) no update, (b) update every 100 days and (c) update 

every 5 days. Figure B.4 illustrates the maps of pressure, saturation and DTOF at 400 

days from the FMM-based simulations. Compared to the ones from the FDSim (Figure 

B.3b), no update case shows good matching in pressure but not in saturation (Figure B.4a). 

On the other hand, updating the DTOF every 100 days changes the geometry of the DTOF 

contour from the initial map, resulting in the pressure and saturation contours to elongate 

along the rock type #2 (Figure B.4b). The more frequent update yields more elongation of 

the DTOF contour as seen in Figure B.4c. Thus, in this particular example, updating the 

DTOF leads to the improved matching in terms of saturation, but it also results in deviation 

in pressure compared to the FDSim. Although the FMM-based simulation might be able 

to capture some sort of averaged trends of both pressure and saturation by updating the 

DTOF, there is a trade-off between the pressure matching and saturation matching. Thus, 

it may be beyond the capability of the FMM-based approach if multiple rock types with 

extremely different relative permeability are lying across the DTOF contours.  
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(a) No DTOF update 

 

(b) DTOF update every 100 day 

 

(c) DTOF update every 5 days 

Figure B.4 Pressure, saturation and diffusivity change at 400 days from FMM-

based simulation in 2-D reservoir with multiple rock types 
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B.2 Injection into Stress-sensitive Layer 

In the above example, we discussed the multiple rock types across the DOF 

contour in terms of extremely different relative permeability. The transmissibility 

reduction due to the compaction i.e. pressure-dependent permeability is another example 

that may require the DTOF update during the FMM-based simulation.  

It should be noted that we presented a case with different compaction tables 

defined for hydraulic and natural fractures in Chapters II and III, indicating little or no 

necessity to update the DTOF. This is because the rock type distribution i.e. hydraulic 

fractures and natural fractures was aligned with the DTOF contours in those examples. In 

other words, original grid blocks lying within each DTOF contour had almost uniform 

rock types. Therefore, it did not significantly change the geometry of DTOF contours 

during the FMM-based simulation.  

Here, we will discuss the case where rock types with different compaction tables 

are distributed across the initial DTOF contour. The stress-sensitive layer is one example 

of such cases.  

 

B.2.1 Case Setting 

We set up a 2-D cross-sectional reservoir model as summarized in Table B.2. Two 

rock types are defined as illustrated in Figure B.5: the middle zone have extreme increase 

in transmissibility as per pressure increase and the others have no pressure dependency in 

transmissibility. A vertical injector is completed for the whole thickness of the middle 

zone and constrained with the constant rate of 50 stb/day. At the initial condition, 
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permeability is uniform, and the resulting DTOF contour is illustrated in the bottom of 

Figure B.5. Once the water injection is started, we expect that the permeability increases 

selectively in the middle zone, and the DTOF contour will keep elongating along the 

middle zone.  

 

Table B.2 Input data for water injection example with multiple compaction tables 

Item Value 

Model size (ft3) 4,100’×100’×820’ 

Grid block dimension 41×41×1 (1681) 

Permeability (mD) 0.01 

Porosity 0.30 

Initial water saturation (immobile) 0.0 

Rock compressibility (psi-1) 1.0×10-5 

Oil compressibility (psi-1) 1.0×10-5 

Water compressibility (psi-1) 1.0×10-6 

Water viscosity 0.5 

Oil viscosity (cp) 0.5 

Initial pressure (psi) 3,000 

Water injection rate (stbw/d) 100 

 

 

Figure B.5 Illustration of 2-D cross-sectional model for water injection into stress-

sensitive layer 
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B.2.2 Simulation Results 

We compared simulation results for 2,000 days injection between FDSim and 

FMM-based simulation where we tested three different frequency of updating the DTOF: 

(1) no update, (2) every 250 days and (3) every 100 days. Figure B.6 and Figure B.7 show 

comparisons of the simulated bottomhole pressure and the maps of pressure and 

saturation, respectively. Obviously, the FMM-based simulation with no DTOF update 

shows significant deviation from the FDSim because the permeability increase is limited 

only around the well. On the other hand, updating the DTOF shows excellent agreement 

in the bottomhole pressure with the FDSim. Pressure and saturation contours in Figure 

B.7 shows that the higher frequency of DTOF update yields the closer matching with the 

FDSim.  

 

 

Figure B.6 Simulated injection pressure for water injection into stress-sensitive 

layer 
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(a) Pressure 

 

(b) Saturation 

Figure B.7 Pressure and saturation maps at 500 and 1000 days for water injection 

into stress-sensitive layer 

 

 

Thus, it is effective to update the DTOF to better capture pressure and saturation 

profiles in the reservoir with multiple compaction tables lying across the DTOF contour. 

The difference from the previous example, multiple relative permeability tables, is that 
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diffusivity changes in this case are dominantly associated with pressure changes rather 

than saturation changes. Since the DTOF is a representation of the pressure wave 

propagation, the FMM-based simulation can provide reasonable approximation for such 

cases where the pressure change is a dominant process for fluid flow and reservoir 

dynamics.  

 

B.3 Summary 

In this appendix, we discussed the validity to use the DTOF as a spatial coordinate 

for special cases that have multiple rock types across the DTOF contour:  

 If multiple rock types with extremely different relative permeability lie across the 

DTOF contour, saturation contours can be significantly different from pressure 

contours, which may violate the assumption of the FMM-based simulation. 

Updating the DTOF indeed helps better capture the evolution of saturation, 

however, it results in less accuracy in pressure calculation.  

 Multiple rock types with extremely different compaction tables lying across the 

DTOF contour can be reasonably modeled in the FMM-based simulation by 

updating the DTOF. It indicates that the DTOF can still be a valid spatial 

coordinate in cases where the diffusivity changes are mainly associated with the 

pressure changes, which is different from the cases with multiple relative 

permeability tables.  
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APPENDIX C 

MAP-BACK 1-D SOLUTIONS ONTO ORIGINAL GRID BASED ON MASS 

CONSERVATION 

 

The FMM-based simulation solves pressure, saturation and composition on the 1-

D DTOF coordinate. As we have seen thus far, there are several situations that require 

mapping back the 1-D solution onto the original grid block system:  

 Visualizing pressure, saturation and composition changes in the physical space 

 Updating the DTOF contours because of the dynamic diffusivity changes 

 Updating the DTOF contours to simulate infill wells 

 

We will discuss two different methods to map back the 1-D solutions onto the original 

grid block system:  

1. Interpolation map-back based on the grid block DTOF 

2. Material balance-based map-back 

 

C.1 Interpolation map-back 

This method is fairly simple and straight forward. Prior to the 1-D simulation, the 

DTOF values have been assigned onto every grid block as solutions of the Eikonal 

equation. On the other hand, the FMM-based 1-D simulation provides us with pressure, 

saturation and composition solutions as functions of the DTOF. Thus, we can approximate 

the pressure, saturation and composition on the original grid blocks by interpolating the 
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1-D solutions based on the DTOF value assigned to the original grid blocks (Figure C.1). 

However, this method does not guarantee the mass conservation before and after the map-

back.  

 

 

Figure C.1 Illustration of the interpolation map-back 

 

 

C.2 Material Balance-based Map-back 

The alternative approach is to honor the material balance but requires extra 

computation. Let us consider the three-phase blackoil simulation where the solutions to 

be mapped back are p, Sw, Sg and Rs.  

The key idea of this method is to reallocate the pressure and fluid volumes in the 

1-D grids onto original grid blocks. Figure C.2 illustrates the -contours and underlying 

original grid blocks, indicating that the pore volume of each -contour consists of 

contributions of multiple grid blocks in the original grid system. Conversely, one original 

grid block can lie across the multiple -contours.  
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Figure C.2 Illustration of pore volumes of original grid blocks lying in each t-

contour 

 

 

Fortunately, we can record how much percentages of the pore volume of each grid lie in 

each -contour when we compute Vp() by Eq. (2.56) where the 27pt-stencil FMM is 

incorporated. Thus, we will use the pore volume as a weight for the reallocation in order 

to honor the material balance. We can write down the relationship between pore volumes 

of 1-D grids and original grids by introducing the weight matrix w:   
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where n and N are number of grid blocks of the 1-D DTOF grid and the original grid, 

respectively. The weight wi,j represents the fraction of pore volume of grid block i which 

is included in jth -contour subject to: 
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(C.2) 

 

The pore volume weighted pressure (psi×rbbl), water volume (rbbl) and gas volume (rbbl) 

on original grid blocks can be computed with the 1-D solutions using following 

formulations:   
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Dividing these quantities by pore volume of each grid block yields pressure, water and gas 

saturation mapped back onto the original grid blocks:  
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 The next step is to determine the solution gas-oil ratio. We first need to map back the oil 

volume (stb) and solution gas volume (Mscf) both at the surface condition: 
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The solution gas-oil ratio can be determined by dividing the solution gas volume by the 

surface oil volume:  

 , ,

, ,

,

,
,

, ,

,

 (sol. gas vol. in Mscf)

 (oil vol. in STB) 

n
s l o l

ijk l p l

l o l

s ijk n
o l

ijk l p l

l o l

R S
w V

B
R

S
w V

B














,

 
(C.10) 

 

Strictly speaking, in order to perfectly conserve the mass balance, iterative 

calculations should be required because the oil volume is a function of pressure and 

solution GOR. However, we do not see any necessity for the iterative calculation based 

on the examples presented in the next section. Another challenge is a huge memory 

required for the weight matrix w (N×n), especially for high resolution models.  

 

C.3 Comparison of Map-back Methods 

We compared the interpolation-based and material balance-based map-back 

schemes in terms of the material balance error, the simulated well performances and the 

computation time. The gas liberation case with the heterogeneity of Vdp = 0.9 in 2.8.1 is 
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used. For the simulation period of 100 days, two different map-back frequencies were 

tested: every 2 days and 10 days which correspond to 50 times and 10 times map-back, 

respectively. The material balance error is defined as follows:  
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where terminologies IIP and CIP denote the initial-in-place and the current-in-place, 

respectively. All the oil and gas volumes in Eqs. (C.11) and (C.12) are evaluated at the 

surface condition, and the gas includes both solution and free gases.  

 

C.3.1 Material Balance Error 

Figure C.3 shows the comparison of material balance errors between the map-

back schemes with two different map-back frequencies. For oil volume, both map-back 

schemes yield material balance errors less than 1%. On the other hand, significant 

difference can be observed in the material balance error in gas volume that is magnified 

by larger compressibility compared to the oil phase. In the case of 50 times map-back, the 

material balance error from the interpolation map-back amounts up to 5% whereas the 

material balance-based scheme shows less than 1%. It seems that the material balance 

error from the interpolation map-back increases with increasing number of map-back 
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performed. In the case of 10 times map-back, the interpolation map-back yields enough 

small material balance error in gas volume less than 1%. Thus, the interpolation map-back 

can still be a reasonable approach if only the map-back is required only a few or several 

times such as the example presented in Chapter-IV where only one map-back was 

performed for modeling a child well.  

 

 

(a) Oil volume 

 

(b) Gas volume 

Figure C.3 Comparisons of material balance errors between material balance-

based map-back (green solid line) and interpolation-based map-back (red dashed 

line) with two different map-back frequencies 
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C.3.2 Well Performances 

Next, we compared the simulated well performances between the two map-back 

schemes and two different map-back frequencies, including the case with no map-back 

(Figure C.4). For the oil rate, all the cases show almost identical profile. On the other 

hand in the GOR plot, the material balance-based method (green solid lines) shows 

‘zigzag’ profile at map-back time steps, which is not observed in the interpolation-based 

method (red dashed lines). This is because pressure, saturation and solution GOR of the 

well cell on original grid block system will be computed by averaging those of the well 

grid and adjacent several 1-D grid blocks, leading to the different conditions in the 1-D 

well grid blocks before and after map-back.  

 

 
(a) Oil rate 

 
(b) GOR 

Figure C.4 Comparisons of well performances between material balance-based 

map-back (green solid line) and interpolation-based map-back (red dashed line) 

with two different map-back frequencies 
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C.3.3 Computation Time 

Finally, we compared the computation time required for the two map-back 

schemes. The interpolation-based method requires a table-lookup as many times as the 

number of original grid blocks whereas the material balance-based method involves 

multiplication of the weight matrix (N×n) and the 1-D solution vector (n ×1). Figure C.5 

illustrates comparison of the CPU time required to map-back the 1-D solutions for 

different numbers of original grid blocks. It shows that there is no significant difference 

between the two map-back methods. However, the weight matrix in the material balance-

based method involves extra memory to store the weight matrix, which can be huge for 

high resolution models.  

 

 

Figure C.5 Comparisons of CPU time required to map-back 1-D solutions with 

respect to number of original grid blocks (numbers of map-back and 1-D grid 

blocks are 10 and 400, respectively) 
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C.4 Summary 

In this appendix, we presented and compared two methods for mapping back the 

1-D solutions onto the original grid blocks. The following is summary and 

recommendation: 

 The interpolation-based map-back is a simple table lookup. Based on the DTOF 

value on original grid blocks, pressure, saturations and solution GOR on the 

original grid blocks are determined by directly interpolating 1-D solutions on the 

DTOF coordinate. 

 The material balance-based map-back is a volumetric reallocation where pore 

volume-weighted pressure and volumes of water, oil and gas are mapped back 

then saturations and solution GOR are determined. The weight matrix, which 

represents how much pore volumes of each original grid are allocated to each 1-

D grid, is constructed and used for reallocation. 

 No significant difference in the simulated well performances and the CPU time 

was confirmed between the two map-back schemes. However, the interpolation-

based method may result in significant material balance error if a large number of 

map-back is performed, whereas the material balance-based method shows little 

error. 

 It is recommended that the material balance-based method should be used to honor 

the material balance for cases where a large number of map-back will be 

performed. Otherwise, either the interpolation or material balance-based method 

can be used.  
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APPENDIX D 

CALCULATING INTER-PARTITION TRANSMISSIBILITY: STEP-BY-STEP 

ILLUSTRATION 

 

In Chapter V, we described a workflow for the FMM-based multi-well simulation 

incorporating the inter-partition transmissibility. In this appendix, we provide more 

detailed explanation on each step in the simulation workflow.  

  

D.1 Model Set-up 

Here, we will use a simple 2-D homogeneous model to illustrate the workflow. 

Two wells are symmetrically placed 3,231ft apart in the reservoir domain of 

10,200×10,100×50 ft3. Porosity and permeability are set to be 0.3 and 1 mD, respectively. 

Single-phase oil is assumed with the compressibility of 1.486×10-5 psi-1 and the viscosity 

of 0.49 cp. The corresponding   is 677 (mD×psi×cp-1)0.5. Figure D.1 shows the well 

locations and the DTOF contours. The equal- interface lies across the center of the model. 

In the following section, we present procedures to compute the inter-partition 

transmissibility.   
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Figure D.1 Well locations and DTOF contour for two-well case in 2-D homogeneous 

reservoir 

 

 

D.2 Illustration of the Method  

In this research, computation of inter-partition transmissibility was implemented 

by the following four steps.  

 

1) Identify the maximum  where two contours have no contact 

We first identify the maximum DTOF where the DTOF contours associated with 

each well have no contact with the others. In this case, no contact can be found for  < 

2.39, as illustrated in Figure D.2. Thus, we will assign zero to the inter-partition 

transmissibility for the 1-D DTOF grid blocks within this threshold (th). Here, suppose 

we set the number of -contours (N) for the inter-partition transmissibility calculation to 

be 9. We adopt equal-spacing to discretize the contours, giving the step size  = (max - 
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th)/ 9 = (9.05-2.39) = 0.74 where max is the maximum DTOF value in the domain. We 

could also use the logarithmic discretization.  

 

Figure D.2 DTOF contours that have no contact for the DTOF less than threshold 

 

 

2) Calculate the transmissibility between -grids of the first contact 

The first -grid is defined between  and th + (=3.11) as illustrated in Figure 

D.3. It should be noted that we need to include the grid blocks not only between th and 

th + but also in  < th, which resulting in ‘eyeglass-like’ grid blocks. This special 

treatment is because of the fact that reservoir fluids in the DTOF contours less than the 

threshold can flow in and out through the contour of the first contact. Then we place the 

imaginary sources on all the grid blocks along the partition interface and run the FMM to 

get the DTOF. This DTOF (top-middle in Figure D.3), which is different from the DTOF 

that we first generated in Figure D.1, will be used for calculating pressure profiles within 

two -grid blocks where we compute the inter-partition transmissibility. The pressure 

profile is simply calculated on the 1-D coordinate assuming the unit flux and unit viscosity 
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under the steady-state flow condition. Finally, we get the inter-partition transmissibility 

for the -grids that have the first contact.   

 

 

Figure D.3 Illustration of procedure to compute inter-partition transmissibility 

between DTOF-grids that have first contact 

 

 

3) Calculate the transmissibility between -grids of the second contact 

We visit the next -grids defined between  of 3.11 and 3.86 (Figure D.4). For 

second grid and after, we work on the ‘two rings’ grid blocks. We will repeat the same 

calculation as step 2) to obtain the inter-partition transmissibility.  
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Figure D.4 Illustration of procedure to compute inter-partition transmissibility 

between DTOF-grids that have second contact and after 

 

 

4) Visit every -grid and accumulate the inter-partition transmissibility 

We repeat the step 3) for every -grid and accumulate the inter-partition 

transmissibility to construct a correlation between the cumulative transmissibility and the 

DTOF (Figure D.5). Note that the last two -grids have no apparent contact and therefore 

they were aggregated with 7th -grid.  
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Figure D.5 Inter-partition transmissibility for each DTOF grid 

 

 

D.3 Comparison of Simulated BHP 

Subsequently, we compared the bottomhole pressure from the FMM-based 

simulation and the FDSim. The production rates were set to be 25 stb/day and 50 stb/day 

for P1 and P2, respectively. In Figure D.6a, we partition the reservoir model using the 

equal- and no inter-partition transmissibility was incorporated, resulting in deviation 

from the FDSim in the mid-late time. On the other hand, Figure D.6b shows the case 

using the inter-partition transmissibility where good agreement can be confirmed with the 

FDSim. The log-log diagnostic plot in Figure D.7 gives us the better idea on how the 

inter-partition transmissibility improved the simulated BHP. Incorporating the inter-
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partition transmissibility yields the better matching with the FDSim during the transition 

from the infinite-acting to the pseudo-steady state flow periods and afterwards.  

 

 

  (a) Equal- partition   (b) Inter-partition transmissibility 

Figure D.6 Comparison of bottomhole pressure between FDSim and FMM-based 

simulation using (a) equal-tau partition and (b) inter-partition transmissibility 

 

 

 

Figure D.7 Comparison of log-log diagnostic plot between FDSim and FMM-based 

simulation using (a) equal-tau partition and (b) inter-partition transmissibility 
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D.4 Comparison with Flow-based Transmissibility using FDSim 

Finally, we performed the flow-based transmissibility calculation using the FDSim 

in order to make comparison with the calculated inter-partition transmissibility in Figure 

D.5. For every -grid depicted in Figure D.5, we imposed the different initial pressures to 

each partition and run the flow simulation. In the process of pressure equalization, we 

obtained average pressures and fluxes across the partition to get the effective 

transmissibility. Figure D.8 compares the inter-partition transmissibility between the 

proposed FMM-based method and the flow-based approach using the FDSim. The inter-

partition transmissibility from the FMM-based approach well captures the trend of that 

from the FDSim although matching in the magnitude is not perfect. In order to see the 

impact of the difference in the calculated transmissibility on the simulated BHP, we run 

the FMM-based simulation using the flow-based transmissibility instead of the inter-

partition transmissibility. The bottomhole pressures from the FMM-based simulations 

using the inter-partition and flow-based transmissibility were compared in Figure D.9 

where almost identical results were confirmed.  
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Figure D.8 Comparison of inter-partition transmissibility between FMM-based and 

FDSim-based approaches 

 

 

 (a) Inter-partition transmissibility  (b) Flow-based transmissibility 

Figure D.9 Comparison of bottomhole pressures from FMM-based simulation 

using two different transmissibilities 
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