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ABSTRACT 

  

 Jasmonic Acid (JA) is one of the important substances that associates with 

stomatal closure under drought stress for maize. In this project, we performed multiple 

network analyses to identify the expression patterns of JA pathway genes in drought 

responses of different maize genotypes where certain genes from the related pathway 

were knocked out. Differential gene expression analysis was performed to identify 

differentially expressed genes across different water conditions for each maize genotype, 

respectively. As the number of samples is limited in this project, we used partial 

correlation for co-expression network construction for different genotypes using the 

identified DEGs and a weighted LASSO regression method that applies to all samples 

for detailed network connectivity analyses of the JA pathway. The results reveal the 

changes of behaviors and regulatory relationships of JA pathway genes in different 

genotypes. We discussed the shifting of behaviors between different genotypes from the 

analysis results. 
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1. INTRODUCTION 

 

Maize is one of the primary crops in Texas and drought is one of the most 

harmful environmental factors that affects the growth and production of maize, 

especially in Texas. In 2017, Texas maize growers planted almost 2.24 million acres of 

maize, while only 40 percent of total maize acres in Texas are irrigated. Drought 

tolerance, therefore, is a highly appreciated trait for maize breeding. A clearer 

understanding of the molecular mechanisms of maize’s drought response is very 

important for the goal of a successful improvement on this crop. One of the first 

responses to drought stress for plants is stomatal closure which controls the dehydration 

of plant and Jasmonic Acid (JA) is one of the important substances that associates with 

stomatal closure under drought stress [1]. Specifically, 12-OPDA, the JA precursor, is 

the molecule promoting stomatal closure and JA-Ile is the molecule that promotes the 

opening of stomates. Therefore, the understanding of 12-OPDA-JA synthetic pathway 

behavior is important. Various research had been conducted about JA pathway in other 

crops [2-5], however the detailed molecular mechanism for JA pathway in maize is still 

elusive. In recent years, network-based methods have been widely adopted in genomic 

data analysis. These methods can jointly analyze genes in the same pathway or 

subnetwork module, predict the activity levels of a given pathway and relate it with 

different phenotypes based on the analysis [6-12].  

In this project, we performed multiple network analysis to identify the expression 

patterns of JA pathway genes in drought responses of different maize genotypes where 
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certain genes from the related pathway were knocked out. This study will help to further 

elucidate the shifting of JA pathway and the downstream effect of other genes’ behaviors 

in maize drought response, therefore provide valuable candidate genes that could be used 

to develop maize genotypes with better drought tolerance. 

Specifically, we have performed differential gene expression analysis to identify 

significant differentially expressed genes across different water conditions for wild-type 

as well as different mutated/knockout maize genotypes, respectively. The main obstacle 

in this project is the limit of samples: there are no more than 9 samples for each 

genotype and the well adapted robust methods, like WGCNA [13], are not suitable for 

such small sample size. To overcome this difficulty, co-expression network construction 

for different genotypes were constructed with the identified DEGs using partial 

correlation. Detailed network connectivity analysis of the JA pathway was performed for 

understanding the pathway shifting. Because the sample size for each genotype is too 

small for applying regular linear regression methods to each genotype’s data, we used a 

weighted LASSO regression method that applies to all samples to reveal the changes of 

regulatory relationships of JA pathway genes in different genotypes. 

This thesis consists of four chapters and appendix. The first chapter introduced 

the background and a summary of all the works, the second chapter described the 

materials and all the methodology for this study in detail. The third chapter discussed all 

the results and the fourth chapter is the conclusion. We provided additional analysis 

results in the appendix as supplementary materials.  
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2. MATERIALS AND METHODOLOGY 

 

The overall working pipeline of this project is illustrated in Figure 1. First, the 

RNA-seq data of every maize genotype were compared between well-watered status and 

drought stressed for differential expression analysis and differentially expressed genes 

for each genotype were identified. Second, the drought response co-expression networks 

were constructed with the previously identified differentially expressed genes using 

partial correlation. Next, we compared the local and global centralities of the JA 

pathway genes for behavior analysis and finally, we used a weighted LASSO regression 

method to find the regulatory network of JA pathway for each genotype and reveal the 

changes of regulatory relationships of JA pathway genes. In the following subsections, 

we will introduce the data we used and analysis methodology in detail. 
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Figure 1. The working pipeline for the whole project 
 

2.1 Materials 

We focus on the study of drought tolerance for the maize mutations with single 

gene knockouts (lox2, lox4 with genes LOX2 and LOX4 knocked out respectively) and 

two-gene knockouts (lox2lox4, opr7opr8 with LOX2 and LOX4, OPR7 and OPR8 

knocked out respectively) respectively, comparing to the wild-type maize (B73). The 

lox4 and opr7opr8 mutants are considered as drought tolerant genotypes as they have 

significantly reduced water loss through transpiration, while the lox2 mutant had much 

higher transpirational water loss. The leave samples of these different maize genotypes 
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were treated in well-watered condition (WW), drought stress 4 days (D4) and drought 

stress 6 days (D6). The gene read extraction from plant leaves were performed by HiSeq 

HO-50 with 50 bp single-end. There are 3 biological replicates for each condition and 

each genotype, leading to 42 samples in total. In addition, the JA levels for each maize 

genotype at well-watered, drought 4 days and drought 6 days timepoints were collected 

for determining the characterization of each sample, as shown in Table 1.  

 

JA-Ile/nmol Well-Watered/D0 Drought-Stressed/D4 Drought-Stressed/D6 

B73 0.008678111 0.043974411 0.309116225 

lox2 0.009767507 0.017042564 0.499436978 

lox4 0.015794705 0.022293994 0.008952668 

lox2lox4 0.003230448 0.023636207 0.164577413 

opr7opr8 0 0 0 

Table 1. JA-Ile content for each genotype at each timepoint 
 
 

The alignments for reading were processed with Cufflinks [14] which assembles 

transcript isoforms and the gene expression values were quantified as Fragments Per 

Kilobase of transcript per Million mapped reads (FPKM) using the Maize B73 

Reference Genome from MaizeGDB [15] as the reference annotation.  

 

2.2 Differential expression analysis 

Differential expression analysis was performed using the Cuffdiff toolkit [16]. In 

Cuffdiff software, the change of a transcript’s expression level is measures by using a 

statistical approach that compares the distribution of fragment count in each condition. 

First, for each condition, the fragment count 𝑘"# in each replica 𝑗 is geometric 
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normalized with the scale 𝑠# = median" -
./0

1∏ ./34
356 7

6
4
8, which denotes the size of library 

in replica 𝑗. Second, for each replicate, the Cuffdiff algorithm assume that the number 

for each transcript 𝑥:
# in each replica	𝑗 approximately follows a negative binomial 

distribution 𝑥:
#~𝑁𝐵(𝜇:

#, 𝜎:
#C). The variances for these distributions are estimated through 

fitting a generalized linear model with the normalized fragment counts from the previous 

step. The fragment count uncertainty for each transcript is modeled with a beta 

distribution and fitted through maximum likelihood estimation. Next, for each condition, 

the Cuffdiff algorithm combines the overdispersion of fragment numbers and the 

uncertainty of each transcript’s fragment count into one beta negative binomial 

distribution which reflects both sources of variability in an isoform's measured 

expression level. After getting the estimation of distribution for every transcript, the 

posterior distribution of each gene is calculated by combining the distribution of all the 

transcripts of the gene’s isoforms into a posterior distribution for the expression level of 

the gene [16]. Cuffdiff then compute the logC	fold change, the p-value and adjusted p-

value for multiple test statistics. To better address the significance of the differentially 

expressed genes and cut down the number of variables in the co-expression network 

construction, we determine the differentially expressed genes (DEGs) as the genes that 

both have p-value smaller than a 0.0001 threshold and a logC fold change that is larger 

than 0.58 or smaller than -0.58. 
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2.3 Co-expression network construction and network topological analysis for JA 

genes 

We assumed all the differentially expressed genes (DEGs) between well-watered 

condition and drought-stressed condition are the only genes that involved in the drought 

response. Five co-expression networks for each maize genotype respectively were 

constructed within the significantly co-expressed DEGs. As we only have no more than 

nine samples for each genotype from our collaborator, instead of using pairwise Pearson 

correlation (PCC)1, here we used partial correlation to infer the co-expression networks 

for each genotype. Unlike pairwise correlation that only reflects the marginal 

dependency between variables, partial correlation can measure the strength of 

association between a pair of genes while eliminating the effect of other genes in the 

dataset, therefore reduce false positive detection for connections when the number of 

samples is small, which many previous researches preferred [17-19].  

For an observed data matrix 𝕏 = I𝐗K, … , 𝐗MN = I𝐗(K)O , … , 𝐗(M)O NO where 𝐗𝐢 =

[𝑋K", … , 𝑋S"] and 𝐗(") = I𝑋"K, … , 𝑋"MN denote the i-th column and row respectively, the 

sample mean of the i-th column is given by 𝑋UV = K
S
∑ 𝑋#"S
#XK , the vector of sample means 

is given by 𝐗V = I𝑋KYYY, … , 𝑋MYYYYN. Then the covariance matrix is given by 𝐒 = K
S[K

∑ 1𝐗(") −S
"XK

𝐗V7𝑻(𝐗(") − 𝐗V) and the Pearson correlation matrix is defined as 𝐑 = 𝐃𝐒
[6`	𝐒𝐃𝐒

[6`, where 𝐃𝐒 

is the diagonal of 𝐒. For a positive definite correlation matrix 𝐑, the partial correlation 

                                                
1 The co-expression network construction and analysis results based on PCC can be 
found in the Appendix.  
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matrix can be defined as	𝐏 = 𝐃
𝐑b𝟏
[6` 	𝐑[𝟏𝐃

𝐑b𝟏
[6`  where 𝐃𝐑b𝟏 is the diagonal of the inverse 

of 𝐑. When the correlation matrix is not full rank, then the partial correlation can be 

estimated by replacing the inverse as pseudo inverse matrices: 𝐏 = 𝐃
𝐑d
[6`	𝐑e𝐃

𝐑d
[6`, where 

𝐑e denotes the Moore–Penrose pseudoinverse of 𝐑[19]. 

For the co-expression network, we only included the edges that exceeding a 

specific threshold as significant connections. In our analysis, we considered three 

different high threshold levels (0.90, 0.95 and 0.98) for comparison and selected the 

most appropriate one. After finding the co-expression network based on partial 

correlation, we calculated the clustering coefficient and the degree exponent, which are 

two important features in understanding the topological structure of biological networks 

[20], for each genotype-specific network and decide an appropriate threshold to obtain a 

graph for further topological analysis. 

 The degree exponent is widely used for deciding whether the network is scale-

free. Real biological networks are scale-free networks where a small number of hubs 

have large numbers of connections to other nodes and the rest of nodes have few 

interactions [20]. The distribution of degrees in scale-free networks fits the power law 

𝑃(𝑘)~𝑘g, where k is the degree of nodes and 𝛾 is the degree exponent. For a real 

biological network, the degree exponent normally lies in the range of 2 < 𝛾 < 3. 

The clustering coefficient, or transitivity, is a measure of the degree that nodes in 

a graph tend to connect with each other and form clusters. The local clustering 

coefficient of a node is defined as the ratio between the number of interactions between 
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its neighboring nodes divided by the number of all possible interactions they could have. 

The global clustering coefficient is defined as the ratio between the number of 

interactions of all closed triplets in the graph and all the possible interactions for all 

triplets in the graph. Here we compared the global clustering coefficients between the 

network for all genotypes. 

After deciding the co-expression network graph with appropriate threshold, we 

checked the betweenness and degree centrality of the JA pathway genes in each network 

to understand their potential roles in signal transduction. The betweenness centrality of a 

node measures the degree that a node stands between each other nodes. The betweenness 

for a node 𝑣 is given by 𝑔(𝑣) = ∑ 𝜎k:(𝑣)/𝜎k:kmnm: , where 𝜎k: is the total number of 

shortest paths from node 𝑠 to node 𝑡 and 𝜎k:(𝑣) is the number of those shortest paths that 

pass through node 𝑣. A high betweenness means that this node is a key point in many 

pathways, therefore having a key role in the signaling network. The degree of node is 

another important measurement of local centrality which reflects the influence of a node 

on its direct neighbors.  

 
 

2.4 Construction of the regulatory networks around JA pathway  

To better reveal the details of the shifting of the JA pathway, we constructed five 

regulatory networks of the JA pathway for each genotype respectively. The general idea 

of regulatory network construction is to fit a linear relationship between genes in the 

pathway. Considering the number of samples (6-9) for each genotype is too small for 

performing a standard LASSO linear regression, we used the Adaptive NetworkProfiler 
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method [21], which is a weighted LASSO regression and implement this locally linear 

regression fitting for all 4 variants of maize. The Adaptive NetworkProfiler method can 

utilize all sample data into the regularized linear regression and it enables us to fit the 

regulatory network of every condition even if we have too few samples in some 

conditions to perform a standard LASSO linear regression.  

The objective function for Adaptive NetworkProfiler in this project is: 

𝐿(𝛃rs) = 𝑎𝑟𝑔𝑚𝑖𝑛 y
1
2|}1𝑇" − 𝛃rsO 𝐗𝐢7

C𝐾(𝑚" − 𝑚s|𝑏���, 𝑅𝐺(𝑀))	�
S

"XK

� + 𝑃����(𝛃rs) 

Where   𝐾(𝑑"[s|𝑏���, 𝑅𝐺(𝑀)) = exp �− [(�/[��)`

����⋅��(�)
� ,	

𝑃��(𝛃rs) = 𝜆s[𝛿rs‖𝛃rs‖K] 

𝑅𝐺(𝑀) = max(𝑚"|𝑖 = 1,2, …𝑛) − min	(𝑚"|1 = 1,2, …𝑛) 

𝐗𝐢 is the expression profile for the direct neighbors of the 𝑙-th JA pathway gene 

of the i-th sample, 𝑇r" is the expression profile for the 𝑙-th JA pathway gene of the i-th 

sample. 𝛃rs is the coefficients of the direct neighbors of the 𝑙-th JA pathway gene for the 

samples of the 𝛼-th maize genotype. 𝑃��(𝛃rs) is the regularization term.  

𝐾(𝑚" − 𝑚s|𝑏���, 𝑅𝐺(𝑀))	is the Gaussian kernel that determines the weight of 

each sample point in the linear regression model. This Gaussian kernel imposes weights 

on each sample in the fitting of the linear model according to their “similarity” to the 

target’s type. The more the sample and the target is “similar in type”, the closer the 

weight imposed is to 1. 𝑚" denotes the “modulator value” that characterizes the i-th 

sample. In this project, this characteristic is the drought response for every type of maize 
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and the JA level is used as the modulator value. 𝑏��� = �(𝑚" − 𝑚s ¡¢)C measures the 

distance of modulator values between condition α and its K-th nearest neighbor. In this 

project, we use K=2. RG(M) is the distance between the largest and smallest modulator 

values. 

After getting the coefficients 𝛃rs for every direct neighbor gene of every gene 𝑙 

inside the JA pathway, we can construct corresponding co-regulatory networks around 

the JA pathway for each type of maize. For each gene, the modified linear regression fits 

a linear combination of every other genes’ expression data. The larger the absolute value 

of the coefficient for a gene is, the greater influence it is on the target gene it “points to”. 

From the previous formulation, 𝛃rs is sparse and the coefficients that are too small are 

suppressed. Therefore, we decide the regulation exist for one gene to its target when the 

corresponding coefficient is non-zero. If the coefficient is above zero, it means that this 

gene can promote the expression of its target gene; if the coefficient is below zero, it 

means that this gene can suppress the expression of its target gene. By assembling all 

these regulatory relationships of genes that belong to or directly connected to JA 

pathway, we can get the regulatory network around JA pathway for each maize type. By 

comparing these networks for each maize type, we can find out the shifting of the 

regulatory network around JA pathway across different maize genotypes.  
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3. RESULTS 

 

3.1 Differential expression analysis 

The differential expression analysis is carried out using the Cufflinks toolkit and 

a threshold of p-value < 0.0001 and logC fold change < −0.58 or > 0.58 is employed 

to decide the DEGs. To find out the similarities and differences of gene expression for 

drought response, the differential expressed genes for the five maize genotypes under 4 

days and 6 days of drought stress compared with well-watered status were analyzed.  

After 4 days of drought stress, there are 4342, 5481, 5418, 4715 and 955 

significant DEGs detected in B73(wild type), lox2, lox4, lox2lox4, and opr7opr8 mutants 

respectively. After 6 days of drought stress, 6744, 8967, 8283, and 3119 genes were 

identified as DEGs in B73, Lox2, Lox4 and opr7opr8 respectively. (Table.1) The results 

show that the DEG numbers in opr7opr8 mutant is significantly smaller than other 

genotypes, indicating that this mutant has a relatively smaller change in behavior under 

drought-stressed condition, which means a better drought tolerant. 

 
 Drought Stressed Day 4 Drought Stressed Day 6 

 Up-

regulated 

Down-

regulated 

Sub-

total 

Up-

regulated 

Down-

regulated 

Sub-

total 

B73 1996 2346 4342 2776 3968 6744 

lox2 3024 2457 5481 5030 3937 8967 

lox4 2903 2515 5418 4772 3511 8283 

lox2lox4 2526 2189 4715 - - - 

opr7opr8 558 397 955 2046 1073 3119 

 
Table 2. Summary of differential expressed genes in all maize genotypes under 4d and 

6d drought stress with respective well-watered control comparison 
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3.2 Co-expression network and topology analysis 

Five co-expression networks were constructed within the previously selected 

significant DEGs respectively for each maize genotype. Three different thresholds were 

used for deciding the edges for each genotype. We tested the degree exponent and the 

clustering coefficient for each graph. The results in Table 3 showed that the threshold 

0.98 eliminated too many edges and the threshold 0.90 produced ill-condition graphs 

with too large degree exponent. We preferred the threshold 0.95 for the co-expression 

network construction2. 

 

Genotype B73 lox2 lox4 lox2lox4 opr7opr8 
Threshold # of Nodes 7611 9832 9183 4681 3333 

0.90 Connections 306953 334022 248546 331811 62304 
Degree 

Exponent 
2.492 2.112 17.773 44.593 3.200 

Clustering 
Coefficient 

0.4662 0.4827 0.4498 0.4928 0.6366 

0.95 Connections 59881 63427 43929 98752 19190 
Degree 

Exponent 
2.162 1.894 1.881 11.416 2.286 

Clustering 
Coefficient 

0.4309 0.4728 0.4286 0.4605 0.7475 

0.98 Connections 6298 7169 4249 18353 4934 
Degree 

Exponent 
7.280 1.797 1.873 11.365 1.854 

Clustering 
Coefficient 

0.4195 0.4787 0.4361 0.4337 0.7404 

Table 3. The construction of co-expression network for each genotype using partial 
correlation with different thresholds 

                                                
2 The co-expression network analysis results based on the 0.90 threshold can be found in 
the Appendix.  
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We performed betweenness and degree centrality analysis for the JA pathway 

genes with the co-expression networks constructed above for each genotype 

respectively. Here in Table 4 we selected the top 5 genes for both centralities.  

 

Genotypes 

Top 5 JA genes 

for betweenness 

centrality 

Normalized 

betweenness 

value 

Top 5 JA genes 

for degree 

centrality 

Degree Value 

B73 

ZmLOX9 

ZmAOC1 

ZmJAR1a 

ZmLOX10 

ZmKAT2b 

2.102310e-03 

1.930861e-03 

1.526549e-03 

1.475413e-03 

1.246712e-03 

ZmLOX10 

ZmLOX9 

ZmOPR7 

ZmACX1b 

ZmKAT1 

117 

80 

71 

50 

43 

lox2 

ZmACX1b 

ZmKAT2a 

ZmLOX7 

ZmLOX8 

ZmAOS1c 

1.386132e-03 

1.381361e-03 

1.025668e-03 

8.295204e-04 

6.242498e-04 

ZmLOX7 

ZmKAT3d 

ZmOPR8 

ZmKAT1 

ZmKAT2d 

86 

48 

41 

17 

16 

lox4 

ZmACX3 

ZmKAT3d 

ZmKAT2d 

ZmAOS1b 

ZmLOX13 

1.466588e-03 

1.046364e-03 

8.192535e-04 

8.190933e-04 

7.638071e-04 

ZmACX3 

ZmKAT2d 

ZmKAT3d 

ZmLOX13 

ZmLOX9 

82 

22 

17 

15 

12 

lox2lox4 

ZmKAT1 

ZmOPR8 

ZmKAT3b 

ZmACX1b 

ZmKAT2c 

2.290444e-03 

1.499362e-03 

1.459457e-03 

1.372179e-03 

1.292097e-03 

ZmKAT2c 

ZmAOS1a 

ZmKAT2b 

ZmAOC2 

ZmAOC1 

101 

92 

87 

83 

73 

opr7opr8 

ZmKAT2c 

ZmLOX10 

ZmAOS1a 

ZmAOS1b 

ZmLOX8 

9.074133e-03 

8.939360e-03 

6.925383e-03 

4.034165e-03 

3.738651e-03 

ZmAOS1b 

ZmLOX11 

ZmAOS1a 

ZmLOX10 

ZmKAT2c 

21 

16 

15 

14 

12 

Table 4. The centrality analysis of 12OPDA-JA pathway genes for each genotype in 
partial correlation network with threshold of 0.95 
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  We also compared the profile of wild type with each mutant and selected the top 

5 genes that had the largest change (mutant – wild type) in betweenness centrality and 

degree centrality for each mutant, respectively. The results are listed in Table 5. A 

positive difference means that the gene’s centrality in mutant is larger than wild type and 

negative means smaller. 

 
Genotypes Top 5 JA genes 

for change in 

betweenness 

centrality 

Change in 

normalized 

betweenness 

value 

Top 5 JA genes 

for change in 

degree 

centrality 

Change in 

degree value  

lox2 ZmLOX9 

ZmAOC1 

ZmLOX10 

ZmKAT2a 

ZmKAT2b 

-2.102310e-03 

-1.930861e-03 

-1.475413e-03 

1.381361e-03  

-1.246712e-03 

ZmLOX10 

ZmLOX7 

ZmLOX9  

ZmOPR7 

ZmKAT3d 

-117 

83 

-80 

-71 

45 

lox4 ZmLOX9 

ZmJAR1a 

ZmAOC1 

ZmACX3 

ZmKAT2b 

-1.880077e-03 

-1.526549e-03 

-1.468023e-03 

1.388285e-03 

-1.246712e-03 

ZmLOX10 

ZmACX3 

ZmOPR7 

 ZmLOX9 

ZmACX1b 

-108 

77 

-71 

-68 

-48 

lox2lox4 ZmKAT1 

ZmOPR8 

ZmLOX9 

ZmAOC1 

ZmKAT3b 

1.864502e-03 

1.499362e-03 

-1.454940e-03 

-1.140428e-03 

1.097716e-03 

ZmLOX10 

ZmAOS1a 

ZmAOC2 

ZmKAT2c 

ZmKAT2b 

-92 

90 

83 

79 

74 

opr7opr8 ZmKAT2c 

ZmLOX10 

ZmAOS1a 

ZmAOS1b 

ZmLOX8 

8.032531e-03 

7.463947e-03 

6.732398e-03 

3.928742e-03 

2.762226e-03 

ZmLOX10 

ZmLOX9 

ZmOPR7 

ZmACX1b 

ZmKAT1 

-103 

-80 

-71 

-42 

-35 

Table 5. The changes of 12OPDA-JA pathway genes’ centrality for each mutant from 
wild type 
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From the comparing results, we can see that comparing to wild type, the degree 

centrality of gene ZmLOX10 is lower in all 4 mutants and the degree centrality of gene 

ZmLOX9 is lower in lox2, lox4 and opr7opr8. The degree centrality of ZmLOX7 and 

ZmKAT3d went up in lox2 mutant and the degree centrality of ZmACX3 went up in the 

lox4 mutant. In the mutant lox2lox4 we observed a rise in the degree of genes ZmAOS1a, 

ZmAOC2, ZmKAT2c and ZmKAT2b, while in the mutant opr7opr8, the number of direct 

neighbors went down for all genes.  

For the changes in the betweenness centrality, we found that the gene ZmLOX9 

and ZmAOC1 went down for lox2, lox4 and lox2lox4 mutants, while in the opr7opr8, the 

betweenness centrality of genes ZmKAT2c, ZmLOX10, ZmAOS1a, ZmAOS1b and 

ZmLOX8 all went up. 

 

3.3 JA Regulatory network construction 

Five regulatory networks were constructed within the 12-OPDA-JA pathway 

genes respectively for each maize genotype, as Figure 2-6. The penalizing term were 

adjusted for a sparse network where for any gene there would be no more than 3 other 

genes interacting with. In the network, the gene with green arrow pointing into the target 

gene means the gene promotes the target gene and red arrow means suppressing.  
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Figure 2. JA regulatory network for B73 
 
 
 

 

 
Figure 3. JA regulatory network for lox2 
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Figure 4. JA regulatory network for lox4 

 
 
 

 

Figure 5. JA regulatory network for lox2lox4 
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Figure 6. JA regulatory network for opr7opr8 

 
The regulatory network construction displayed comparable results from previous 

part. Comparing with wild type, in the lox2, lox4 and lox2lox4 mutant the gene ZmLOX9 

does not have any suppressive effect on the ZmOPR7 gene. The gene ZmLOX10 has a 

suppressive effect on ZmLOX9 in every mutant comparing with wild type. This is 

consistent with the behavior changes identified in the previous part.  

In lox2 mutant, apart from the behavior change of ZmLOX9 and ZmOPR7, 

ZmLOX11 has additional suppressive effect on ZmACX3 and ZmOPR8 suppresses 

ZmKAT2c. 

Compared with wild type, there is significant changes in the JA regulatory 

network of lox4 mutant. In lox4, the gene ZmLOX13 has additional suppressive effect on 

ZmAOS1a, ZmAOS1b, ZmLOX11 and ZmLOX9. The gene ZmAOC2 suppresses 
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ZmOPR7 and ZmOPR7 suppresses ZmACX1b. ZmOPR8 has suppressive effect on 

ZmJAR1b. 

In lox2lox4 mutant, ZmLOX13 still suppresses ZmAOS1b, ZmLOX11 and 

ZmAOC2 has suppressive effect on ZmOPR7.  

For the opr7opr8 mutant, the absence of ZmOPR7 and ZmOPR8 made it an 

exception where no JA were produced during drought stress. In this mutant, ZmLOX13 

has more genes to suppress including ZmLOX9, ZmAOS1a, ZmAOS1b, ZmAOC2 and 

ZmKAT3a, ZmKAT3d suppress ZmKAT2c, which is consistent with the discovery form 

previous part that ZmKAT2c, ZmAOS1a, ZmAOS1b have significant changes in 

betweenness centrality. 

From the JA-Ile content at drought day 6 for each genotype, we can see that 

opr7opr8 and lox4 are the mutants with lowest JA level. Their JA pathways' behaviors 

have some similarities especially on the behavior of ZmLOX13 gene and its 

neighborhoods.  

 



 

 21 

4. CONCLUSION 

 

In this paper, we performed a network-based analysis of the drought stress 

response behaviors of different drought-tolerant maize mutations. To overcome the 

challenge of a large number of genes and a small number of samples, we performed 

differential expression analysis with the obtained RNA-seq data to identify key genes 

that associate with drought response. We inferred the co-expression networks for each 

genotype through partial correlation to identify the significant relationships between 

genes that might be responsible for the behavior difference in drought response. We 

performed local and global centrality analysis for the JA pathway genes with inferred 

networks to find out the behavior shifting of JA genes in each genotype. We performed 

regulatory network analysis on the JA pathway genes with weighted LASSO method to 

reveal the shifting of the JA pathway. From the results, we identified two genes 

ZmLOX9 and ZmOPR7 that behaves significantly different in all mutants and the 

behavior change of ZmLOX13, ZmAOS1c, ZmAOC2 genes in the lox4 mutant. This will 

help further understand the mechanism of the JA pathway in maize drought response and 

potentially help searching for new candidate genes for crop improvements.  
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APPENDIX 

 

For the co-expression network construction, we also used pairwise Pearson 

correlation coefficients (PCCs) with the DEGs obtained from the previous step. The 

threshold for PCC cut-off is calculated through an estimation based on the sample size 

and the gene numbers. This estimation is based on the hub screening framework from 

Hero et.al [19] where the correlation matrix is computed with a small number of samples 

and a great number of genes. A hub is defined as a vertex of the correlation graph with at 

least degree 𝛿 at threshold 𝜌. The framework gives out an asymptotic expression for the 

false positive rate 𝑃(𝑁�,« > 0) and a phase transition in the mean number of hub 

discovery 𝐸[𝑁�,«]. The mean number of hub discoveries of degree 𝛿 depends on the 

applied threshold 𝜌 and there is a critical phase transition threshold 𝜌­,� that if the 

screening threshold for edge 𝜌 decreases below 𝜌­,�, the number of hub discoveries of 

degree 𝛿 abruptly increases to the maximum numbers of vertexes 𝑝 that the graph has. 

The mathematical form of this critical phase transition threshold is: 

𝜌­,� = ¯1 − �𝑐S,�(𝑝 − 1)�
[ C�
�(S[C)[C	 

Where 𝑐S,� = 𝑎S𝛿𝐽M,� , 𝑝 denotes the number of variables (genes), 𝑛 denotes the 

number of samples and 𝑎S = 2𝐵(S[C
C
, K
C
) with 𝐵(𝑖, 𝑗) denoting the beta function. In the 

framework, 𝐽M,� = 1 + 𝑂 ³�.
M
�
g�
´ where 𝛾𝛿 = 𝛿 + 1 for screening on correlation 

matrices, and this 𝐽M,� can approximately equal to 1 under the assumption of the 
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framework that the network is sparse. This threshold works same for both correlation 

graphs and partial correlation graphs and here we can directly apply it for edge screening 

when we set 𝛿 = 1.  

 
Genotype B73 lox2 lox4 lox2lox4 opr7opr8 
# of DEGs 7611 9832 9183 4681 3333 
Threshold 0.9889342 0.990017 0.9897391 0.9990 0.9845685 

Connections 62075 113954 80819 5596 55125 
Degree 

exponent 
6.908139 2.997043 2.553736 16.6253 27.149 

Clustering 
coefficients 

0.449563 0.492679 0.4691549 0.418476 0.8259683 

Table 6. The construction of co-expression network for each genotype using pairwise 
Pearson Correlation (PCC) 

 
 

From Table 6, we can see the degree exponential measured for PCC is quite 

unstable across each genotype, which varies from 2.5 to over 27. The clustering 

coefficients for PCC networks are larger than the partial correlation networks and we 

found the opr7opr8 genotype has a really large clustering coefficient of 0.826. 

 

Genotype B73 lox2 lox4 lox2lox4 opr7opr8 

Top5 JA genes 

for 

betweenness 

centrality 

ZmKAT3a 

ZmAIM1a 

ZmKAT3d 

ZmACX3 

ZmOPR8 

ZmLOX9 

ZmACX3 

ZmAIM1a 

ZmKAT3a 

ZmACX1a 

ZmAIM1b 

ZmKAT3a 

ZmAOC1 

ZmAIM1a 

ZmKAT3d 

ZmKAT3a 

ZmACX3 

ZmKAT2a 

ZmAIM1a 

ZmAIM1b 

ZmLOX13 

ZmKAT3a 

ZmJAR1a 

- 

- 

Top 5 JA 

genes for 

degree 

centrality 

ZmAOC2 

ZmOPR8 

ZmLOX9 

ZmKAT3a 

ZmAIM1a 

ZmAIM1b 

ZmKAT3a 

ZmLOX9 

ZmKAT3d 

ZmACX3 

ZmAIM1b 

ZmKAT3a 

ZmAIM1a 

ZmACX3 

ZmLOX9 

ZmKAT3a 

ZmKAT2a 

ZmAIM1a 

ZmAOC2 

ZmAIM1b 

ZmLOX13 

ZmKAT3a 

ZmJAR1a 

ZmJAR1b 

- 

Table 7. Network topological analysis result for the PCC co-expression network 
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Genotypes B73 lox2 lox4 opr7opr8 lox2lox4 

ZmLOX8 1 1 - - - 

ZmLOX9 39 156 31 - 1 

ZmLOX10 - 3 1 -  

ZmLOX11 4 1 - - - 

ZmLOX13 3 - - 47  

ZmAOC1 7 - 13 -  

ZmAOC2 76 1 - - 9 

ZmACX1a - 17 - -  

ZmACX3 15 128 34 - 7 

ZmAIM1a 22 108 35 - 10 

ZmAIM1b 1 273 181 - 8 

ZmKAT1 11 10 8 - 3 

ZmKAT2a 19 47 2 - 14 

ZmKAT2d 1 114 6 - 1 

ZmKAT3a 29 190 49 8 19 

ZmKAT3d 15 142 14 - 4 

ZmOPR8 64 1 22 - 3 

ZmJAR1a - - - 3 - 

ZmJAR1b 2 - - 1 - 

Table 8. The degree of 12OPDA-JA pathway genes for each genotype 
 
 

Table 7 and 8 showed the result of the centrality analysis and degree analysis for 

these networks. showed that the behavior of the ZmLOX9, ZmAOC2 and ZmAIM1b 

genes has significant change when the ZmLOX2 or ZmLOX4 gene is absent. Specially, 

the interaction between genes ZmACX3, ZmAIM1a, ZmAIM1b, ZmKAT2d, ZmKAT3a, 

ZmKAT3d with other genes have considerably increased in the lox2 mutant where 

ZmLOX2 is knocked out. For the opr7opr8 mutant, most genes in the 12-OPDA-JA 

pathway were not differentially expressed and the only behavior alter is the ZmLOX13 
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gene. For the lox2lox4 mutant, the interactions of gene ZmLOX9, ZmAOC2 and ZmOPR8 

is lower compared to wild type. 

Here in Table 9 and 10 we also added the centrality analysis results for the co-

expression networks constructed with the other two thresholds 0.90 and 0.98: 

 

Genotypes 
Top 5 JA genes for 

betweenness 
centrality 

Normalized 
Betweeness value 

Top 5 JA genes for 
degree 

centrality 

Degree 
Value 

B73 

ZmAOS1a 

ZmAOS1b 

ZmAIM1b 

ZmAOS1c 

ZmACX1b 

1.193810e-03 

8.846237e-04 

8.042178e-04 

6.378607e-04 

6.308290e-04 

ZmLOX10 

ZmLOX9 

ZmOPR7 

ZmACX1b 

ZmAIM1b 

416 

305 

280 

261 

227 

lox2 

ZmLOX8 

ZmOPR8 

ZmLOX7 

ZmJAR1a 

ZmJAR1b 

7.841538e-04 

6.985335e-04 

5.964007e-04 

5.622205e-04 

4.744887e-04 

ZmLOX7 

ZmKAT3d 

ZmOPR8 

ZmKAT1 

ZmKAT2d 

376 

283 

183 

168 

158 

lox4 

ZmACX1b 

ZmLOX7 

ZmOPR7 

ZmAOS1b 

ZmACX1a 

7.516941e-04 

7.177028e-04 

6.650055e-04 

6.389806e-04 

6.386675e-04 

ZmACX3 

ZmKAT3d 

ZmLOX13 

ZmKAT2d 

ZmLOX9 

292 

121 

93 

92 

83 

lox2lox4 

ZmACX1b 

ZmKAT3b 

ZmLOX7 

ZmAOS1b 

ZmLOX10 

0.0009843214 

0.0007858551 

0.0007811912 

0.0007083171 

0.0007059783 

ZmAOS1a 

ZmKAT2b 

ZmKAT2c 

ZmAOS1b 

ZmAOC1 

245 

236 

227 

226 

223 

opr7opr8 

ZmAOS1b 

ZmAIM1a 

ZmLOX8 

ZmAOS1a 

ZmKAT3a 

0.0043094060 

0.0035531362 

0.0024652655 

0.0023286530 

0.0022949657 

ZmAOS1b 

ZmAOS1a 

ZmLOX11 

ZmACX1b 

ZmKAT2c 

90 

71 

68 

62 

56 

Table 9. The centrality analysis of 12OPDA-JA pathway genes for each genotype in 
partial correlation network with threshold of 0.90 
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Genotypes Top 5 JA genes for weighted degree 
centrality 

Degree Value 

B73 ZmLOX10 

ZmLOX9 

ZmACX1b 

ZmAIM1b 

ZmOPR7 

3481.562 

3464.289 

3414.676 

3407.932 

3384.121 

lox2 ZmLOX7 

ZmKAT3d 

ZmKAT2d 

ZmACX1b 

ZmAOS1c 

4209.996 

4046.592 

4024.182 

3946.869 

3876.646 

lox4 ZmACX3 

ZmAIM1b 

ZmKAT3d 

ZmAOS1a 

ZmLOX10 

3643.215 

3553.993 

3533.379 

3454.440 

3453.177 

lox2lox4 ZmACX1b 

ZmKAT3b 

ZmKAT2b 

ZmOPR8 

ZmACX3 

2063.072 

2046.524 

2018.412 

2018.210 

2005.956 

opr7opr8 ZmKAT2c 

ZmAOS1b 

ZmLOX8 

ZmACX1b 

ZmAOS1a 

1373.7421 

1365.7982 

1346.7508 

1342.9854 

1339.2611 

Table 10. The weighted degree analysis of 12OPDA-JA pathway genes for each 
genotype in partial correlation network with threshold of 0.90 


