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ABSTRACT 

 

 

 The objective of this study is to determine the relationship between lightning and 

six large-scale environmental variables: convective available potential energy (CAPE), 

normalized CAPE (nCAPE), column saturation fraction (r), 700-hPa omega, 900-700 hPa 

low-level wind shear (LS) and 900-300 hPa deep wind shear (DS). Lightning data is 

obtained from the Tropical Rainfall Measuring Mission’s (TRMM) Lightning Imaging 

Sensor (LIS) from 1998 to 2013 and large-scale environmental variables are derived from 

3-hourly Modern-Era Retrospective analysis for Research and Applications version 2 

(MERRA-2) data. Each dataset is binned at 0.5° x 0.5°. MERRA-2 data is considered to 

represent a lightning environment when lightning occurs within 30 minutes of the 

MERRA-2 time stamp.   

CAPE, nCAPE and r show clear distinctions in lightning environments compared 

to non-lightning environments and the largest flash occurrences are associated with low-

to-moderate CAPE, moderate nCAPE, slightly negative values of 700-hPa omega (i.e., 

rising motion), high r, low-to-moderate LS and low DS. Clear geographical distinctions 

for flash occurrences exist between land and ocean for CAPE, nCAPE and r and between 

tropical and sub-tropical areas for CAPE, nCAPE, r and DS. The relationship of r with 

other variables for lightning occurrences is evaluated and it is shown that CAPE and 

omega with r have the clearest relationships.  
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The association between large-scale environmental variables and lightning is 

analyzed globally for latitudes between 35°N and 35°S using two statistical models. Using 

a generalized linear model (GLM), nCAPE and r are the primary predictors for lightning 

prediction. Using a point-process model, nCAPE is the best predictor, with strong regional 

contrasts present. The GLM is used in a lightning parameterization to predict lightning 

from MERRA-2 and the Community Atmosphere Model version 5 (CAM5). Predicted 

lightning from both datasets generally agrees with observations from the TRMM LIS, 

which supports the use of a lightning parameterization in GCMs.  
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NOMENCLATURE 

 

CAM5 Community Atmosphere Model version 5 

CAPE Convective Available Potential Energy 

DS Deep (900-300hPa) Wind Shear 

GCM Global Climate Model 

GLM Generalized Linear Model 

LGCP Log-Gaussian Cox Process 

LI Land Indicator 

LIS Lightning Imaging Sensor 

LS Low-Level (900-700hPa) Wind Shear 

MERRA-2 Modern-Era Retrospective analysis for Research and Applications, 

version 2 

NASA National Aeronautics and Space Administration 

nCAPE Normalized Convective Available Potential Energy 

OTD Optical Transient Detector 

r Column Saturation Fraction 

ReLogit Rare Event Logistic Regression Model 

TRMM Tropical Rainfall Measuring Mission 
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1. INTRODUCTION 

Lightning has many environmental and societal impacts including its modification 

of the NOx cycle (Schumann and Huntrieser 2007), its ability to spark forest fires 

(Flannigan et al. 2009) and its threat as one of the leading causes of weather-related 

fatalities in the United States (Curran et al. 2000).  Lightning is created by a difference in 

charge within a cloud itself (intra-cloud; IC), between a cloud and the ground (cloud-to-

ground; CG) or between two separate clouds (cloud-to-cloud; CC). This charge separation 

often occurs due to the presence and collision of graupel and ice particles within clouds 

(Reynolds et al. 1957; Takahashi 1978; Churchill and Houze 1984; Saunders et al. 1991). 

The production of graupel and ice particles heavily relies on the influence of large-scale 

environmental variables (Zipser and Lutz 1994; Williams et al. 2002), therefore a 

potentially predictive link exists between the large-scale environment and lightning.  

Various studies have evaluated the influence of large-scale environmental 

variables on lightning occurrence using both observational and model data. Convective 

Available Potential Energy (CAPE) has been long thought of as a major contributing 

factor to the electrification of clouds because it is a proxy for updraft strength (Rutledge 

et al. 1992; Williams et al. 1992; Zipser and Lutz 1994). For example, Williams et al. 

(2002) studied convection in four environmental regimes over Brazil using radiosonde 

data, the Brazil Lightning Detection Network and field charge antennae, and determined 

that higher peak flash rates occurred at moderate-to-high CAPE. The study area was 

primarily over land, however the westerly wind regime had convective properties similar 
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to the ocean and was weak in its lightning production even though a comparison of CAPE 

values between all regimes showed little variability. 

More lightning occurs over land typically as a result of stronger updrafts and 

differing surface properties (Orville and Henderson 1986; Zipser et al. 2006). Stolz et al. 

(2015) used normalized CAPE (nCAPE) to better quantify the environmental conditions 

associated with the land-ocean lightning contrast. The “shape-of-the-CAPE” is considered 

when using nCAPE, and can differentiate between “fat CAPE,” typically found over land, 

and “skinny CAPE,” typically found over ocean. For example, if two regions both have 

CAPE of 1000 J kg-1 and the depth of CAPE is 2000 m over land and 4000 m over ocean, 

nCAPE would equal 0.5 J kg-1 m-1 and 0.25 J kg-1 m-1, respectively. Thus, while regular 

CAPE calculations would not be able to discern the thermodynamic environment between 

the land and ocean regions, nCAPE could provide a more physically based distinction.  

Stolz et al. (2015) used the 6-hourly European Reanalysis dataset (ERA-Interim), 

a global transport model (GEOS-Chem) with the online microphysics module TOMAS 

and the Tropical Rainfall Measuring Mission’s (TRMM) Lightning Imaging Sensor (LIS) 

to evaluate the occurrence of total lightning density (TLD) over the tropics against 

nCAPE, warm cloud depth (WCD) – which is the vertical distance between the lifting 

condensation level (LCL) and the freezing level – and cloud condensation nuclei (CCN). 

More flashes occurred at moderate-to-high nCAPE, variable CCN and large WCD. They 

also found that nCAPE helped quantify the land-ocean lightning contrast, as more 

lightning occurred at lower nCAPE over the ocean. 
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Stolz et al. (2017) expanded upon this study by evaluating the occurrence of TLD 

against nCAPE, WCD, CCN, 1000-500 hPa wind shear and the average relative humidity 

(RH) between 850 and 500 hPa using ten statistical models. They created a lightning 

parameterization using a multiple-linear regression model, which was the best performer 

of the ten models, and found that TLD was positively correlated with nCAPE, CCN and 

wind shear, and was negatively correlated with WCD and RH. It was concluded that wind 

shear and RH were of secondary importance when compared to nCAPE, CCN and WCD.  

Rather than evaluating RH at isolated levels as in Stolz et al. (2017), column 

saturation fraction (r) is a measure of how humid a column is relative to its saturation 

specific humidity (similar to column-integrated water vapor). Many studies have linked 

precipitation (P) to r (e.g., Bretherton et al. 2004) and have found that P – r curves vary 

for differing precipitation types and intensity (Ahmed and Schumacher 2015, 2017). 

However, studies relating lightning and r are absent in the literature. In addition, large-

scale vertical motion (omega) at 500 hPa has also been used as a proxy for precipitation 

(e.g., Bony et al. 2004). However, like r, the link between large-scale omega and lightning 

in the literature is lacking. Furthermore, the relationship between mid-layer wind shear 

(1000-500 hPa) and lightning has been identified (e.g., Stolz et al. 2017) and was shown 

to have secondary importance for lightning production. However, the relationship between 

low-level wind shear (LS) and deep wind shear (DS) and lightning has not yet been 

studied. LS has been shown to increase the longevity of storms and a strong relationship 

has been observed between LS and squall line strength (Rotunno et al. 1988). DS has been 

shown to enhance hydrometeor detrainment and therefore increase the stratiform rain area 
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in deep convection (Li and Schumacher 2011), thus similar to omega and r, there may be 

an unidentified link between LS and lightning and DS and lightning because of the 

relationship of LS and DS to precipitation. 

Increasing the understanding of lightning and large-scale environmental variables 

will also help when predicting lightning and creating lightning parameterizations; however 

very few studies have analyzed lightning in global climate models (GCMs). Lightning 

occurrence is rare and is considered to have a relatively weak signal and interaction with 

other model variables, and therefore is typically not parameterized and/or output. In 

addition to Stolz et al. (2017), Romps et al. (2014) and Magi (2015) have attempted to 

shows the significance and importance of a lightning parameterization.  

Magi (2015) used a subset of Coupled Model Intercomparison Project phase 5 

(CMIP5) models to evaluate monthly mean total precipitation, convective precipitation 

and convective mass flux from the GCMs in relation to observed global lightning flash 

rate distributions from a combined dataset of the Optical Transient Detector (OTD) and 

LIS. An empirical lightning parameterization from the GCM output and lightning 

observations was created using a polynomial fit. Over land, the lightning parameterization 

applied to the GCM output was found to under (over) predict flash rates in areas where 

higher (lower) occurrences of lightning were observed in satellite measurements. 

Generally, flash rates were over-predicted across all ocean areas compared to 

observations. Magi (2015) used monthly mean values in his calculations, but better 

correlations and statistical fits are more likely with higher temporal resolution data. 
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Romps et al. (2014) created a lightning parameterization from one year of twelve-

hourly observations of precipitation and CAPE over the Continental United States 

(CONUS) and applied it to GCM outputs. The majority of GCMs predicted an increase in 

precipitation and they all predicted an increase in mean CAPE over CONUS, and therefore 

an overall increase in lightning. While this parameterization worked well over CONUS, it 

most likely would not translate over the oceans and/or on a global scale because 

relationships between lightning and the environment can exhibit strong regional 

differences and thus need to be accounted for, as other studies have observed (e.g., 

Williams et al. 2002; Zipser et al. 2006). In addition, precipitation is a highly derived, and 

often biased, quantity in models so focusing on large-scale environmental variables is 

warranted when examining the ability of GCMs to represent changes in lightning 

production. 

 Statistical models can be used to create lightning parameterizations. When 

evaluating the statistical relationship between meteorological variables and certain events, 

there are two ways to quantify the result: (1) determining whether the event occurs and (2) 

assessing the intensity of the event. Logistic regressions can be used to determine if an 

event occurs when the response is dichotomous, i.e., when there are only two possible 

outcomes (McCullagh and Nelder 1989). Previous studies (e.g., Stolz et al. 2017) have 

used linear logistic regressions to quantify the occurrence of lightning and have found this 

method to be effective. The spatial Log-Gaussian Cox Process (LGCP) is a point-process 

model first introduced by Moller et al. (1998). This model differs from a linear logistic 

regression by determining both the occurrence and intensity of an event; by extension, a 
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LGCP approach is more complex and its accuracy in determining the occurrence and 

intensity of an event is much more precise than a simple regression model. Unlike the 

linear logistic regression method, quantifying lightning flash rates and intensity using a 

LGCP model has not been directly addressed in the literature.   

 Motivated by this review of the current literature, the work presented here will 

have three distinct objectives: (1) Analyze the relationship, if any, between variables that 

characterize the large-scale environment with the occurrence of lightning between 35°N  

and 35°S latitude, (2) Evaluate the use of a LGCP statistical model by comparing results 

to those obtained using a linear regression model, and (3) Create a lightning 

parameterization using the linear regression model and use it to predict lightning in a 

GCM. In addition, this work will assess the robustness of the conclusions presented by 

Stolz et al. (2017) that RH and wind shear are of secondary importance when used as a 

predictor of lightning. This will be done by (a) using r as a proxy for column-integrated 

humidity, rather than using RH at isolated levels, and (b) distinguishing between a low-

level and deep wind shear as opposed to using a mid-layer shear parameter.  
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2. DATA AND METHODS 

2.1. Observational Datasets 

Ground instrumentation, like lightning mapping arrays (LMAs), were some of the 

only sources of lightning data prior to space-borne instruments. Multiple studies have 

evaluated the influence of large-scale environmental variables on lightning using LMAs 

(e.g., Samsury and Orville 1994; Molinari et al. 1994; Williams et al. 2002) despite sparse 

to non-existent data on a global scale, particularly over the ocean.  The introduction of the 

World-Wide Lightning Location Network in the late-1990s (WWLLN, Rodger et al. 2005) 

helped to populate these data sparse regions and ensured that LMAs remained a common 

source of lightning data during the satellite era.  

In 1995, the OTD onboard Microlab-1 (later renamed Orbview-1) was the first 

space-borne lightning observing instrument to be launched into space (Christian et al. 

2003). Between 1995 and 2000, the OTD provided previously unobtainable observations 

of lightning occurrences over oceanic regions but lacked in its detection efficiency (Cecil 

et al. 2014). In November of 1997, the TRMM satellite – a joint project between the 

National Aeronautics and Space Administration (NASA) and the Japan Aerospace 

Exploration Agency (JAXA) – was launched (Kummerow et al. 1998). The mission 

effectively ended in 2014 when the satellite ran out of fuel and began a slow drift 

downward. One of the instruments onboard TRMM was LIS, which improved on the 

OTD’s detection efficiency by detecting approximately 90% of all lightning in TRMM’s 

swath (Cecil et al. 2014). LIS detected lightning at storm-scale resolution (~3-6 km) and 

was able to observe a single point for approximately 80-100 seconds.  
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The OTD and LIS provide a valuable dataset of the occurrences and intensity of 

global lightning between 1995 and 2015 that has been utilized to evaluate the influence of 

large-scale environmental variables on lightning (e.g., Magi 2015). For this study, OTD 

data is excluded based on the suboptimal detection efficiency and resolution. LIS orbit 

data files are obtained from the NASA Earth Observing System Data and Information 

System Global Hydrology Resource Center (http://ghrc.nsstc.nasa.gov/) and a full TRMM 

LIS climatology is built to examine the interannual variability during TRMM’s lifetime. 

TRMM orbited from the end of 1997 to early 2015, but the partial years, 1997 and 2015, 

are eliminated for consistent interannual analysis.  

Figure 1. Climatology of flash rates from TRMM LIS. Black line shows average flash 
rates for latitudes between 35°N and 35°S and blue line shows average flash rates for 

tropical areas, between 20°N and 20°S.  
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Figure 1 shows the year-to-year variability in the LIS average lightning flash rates 

separated into tropics only (blue line) and subtropics + tropics (black line). Most of the 

lightning observed by LIS occurs in the tropics and there are some notable interannual 

variations associated with ENSO. For example, the strong El Niño in 1998 is hypothesized 

to be the cause of the large flash rates at the beginning of the climatology with lower 

values during the La Niña event the following year. After 2000, there appears to be a 

decline in average flash rates until 2008 after which the values begin to increase until 

2013. It is unclear what may be causing this trend, but the overall range in average flash 

rates amount to only ~10% of the maximum observed value. Further, the tropics only and 

subtropics + tropics generally show a similar pattern, albeit with some differences year-

to-year. 

During 2014, TRMM was being prepared to come down from orbit and its altitude 

varied frequently. Following Albrecht et al. (2016), 2014 is also excluded for the 

remainder of the analysis. The TRMM satellite was boost to a higher altitude in 2001 in 

order to conserve fuel. Thus, flash rates (units of flashes s-1 km-2) are used instead of flash 

counts (units of flashes s-1) throughout the analysis to avoid artificial changes in counts 

because of the boost. 

The global climatology of flash rates is analyzed within the context of the larger 

scale atmospheric conditions. Atmospheric observations are limited over large parts of the 

tropics, therefore reanalysis data, such as the ERA-Interim dataset used in Stolz et al. 

(2015, 2017), is necessary to describe the 3-D state of the large-scale environment. The 

Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-
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2) is a reanalysis dataset produced by NASA’s Global Modeling and Assimilation Office 

(Gelaro et al. 2017). MERRA-2 data is available globally at 3-hourly temporal resolution 

with a horizontal resolution of 0.5° x 0.625° and 72 vertical pressure levels from the 

surface to 0.01 hPa.  

MERRA-2 reanalysis data files are obtained from the NASA’s Goddard Earth 

Sciences Data and Information Services Center 

(https://goldsmr5.gesdisc.eosdis.nasa.gov/). MERRA-2 provides the pressure, 

temperature, specific humidity and omega fields as well as the zonal (u) and meridional 

(v) wind components that were used to calculated the six large-scale environmental 

variables used for analysis in this study: CAPE (J kg-1), nCAPE (J kg-1 m-1), r (unitless), 

omega (Pa s-1) at 700 hPa, LS (m s-1) from 900-700 hPa and DS (m s-1) from 900-300 hPa. 

These environmental variables are calculated from the 3-hourly MERRA-2 data and 

matched with the TRMM LIS data between 35°N and 35°S. The data is classified as a 

lightning environment if a lightning flash occurs within 30 minutes of the MERRA-2 time 

stamp, otherwise it is classified as a non-lightning environment.  

CAPE is calculated by taking the temperature and specific humidity data provided 

by MERRA-2 and using the cape_sound.pro Interactive Data Language (IDL) script 

created by Dominik Brunner 

(https://svn.ssec.wisc.edu/repos/bennartz_group/LIBRARY/idl/std_libs/atmos_phys/). 

Dividing CAPE by the depth of the positive CAPE area (i.e., the area between the Level 

of Free Convection (LFC) and the Equilibrium Level (EL)) gives an approximation of 

nCAPE.  
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Figure 2 shows mean omega profiles for lightning environments and non-lightning 

environments from the MERRA-2 data set. The non-lightning environments show very 

weak sinking motion (positive values) through most levels and the lightning environments 

show strong rising motion (negative values), particularly at lower levels, with the 

maximum occurring at 700 hPa. Because of this maximum separation, omega at 700 hPa 

is chosen to best represent the large-scale vertical motions for lightning environments.  

As done in Ahmed and Schumacher (2015), r is calculated by first estimating the 

saturation vapor pressure (𝑒"), column water vapor (CWV) and the saturation CWV 

(CWVs), following equations (1)-(3), respectively,  

Figure 2. Mean omega profiles for differing environments. Lightning environments are 
shown in black and non-lightning environments are shown in blue (note differing x axis 

for differing environments). Profiles are averaged for the years 1998-2013.  
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 𝐶𝑊𝑉 = 𝑞𝑣) ∗
Δ𝑝)
𝑔 + ⋯+ 𝑞𝑣0 ∗

Δ𝑝0
𝑔 		 (1) 

 
 𝑒" = 𝑥) + 𝑥3(𝑇 − 𝑇7) + 𝑥9(𝑇 − 𝑇7)9 +⋯+ 𝑥0(𝑇 − 𝑇7)0 (2) 

 
 𝐶𝑊𝑉" = 𝑞𝑣") ∗

Δ𝑝)
𝑔 +⋯+ 𝑞𝑣"0 ∗

Δ𝑝0
𝑔 	 (3) 

 
where 𝑞𝑣)(0)	is the mixing ratio at the lowest (𝑖th) pressure level, Δ𝑝)(0) is the difference 

in pressure between the lowest (ith) level and the level immediately above, g is the 

acceleration due to gravity, 𝑥),… , 𝑥0 are the coefficients of 𝑒", T is temperature in K and 

𝑇7 = 273.15. The subscript ‘s’ indicates the variable is at saturation. Dividing CWV by 

the CWVs, gives an estimate of r. LS and DS are estimated using equations (4) and (5) 

 𝐿𝑆 = 	E(𝑢G)) − 𝑢H)))9 + (𝑣G)) − 𝑣H)))9	 (4) 
 
 𝐷𝑆 =	E(𝑢G)) − 𝑢J)))9 + (𝑣G)) − 𝑣J)))9	 (5) 

  
where ui and vi are the zonal and meridional winds at the ith pressure level.  

 The MERRA-2 and TRMM LIS data was initially binned at three different 

resolutions: 2.5°, 1.0° and 0.5°, and tests were performed to evaluate the sensitivity of 

lightning environment distributions to resolution. Figure 3 shows histograms for MERRA-

2 derived variables for lightning occurrences between 1998 and 2013 for 0.5° x 0.5° 

resolution (solid blue lines) and 2.5° x 2.5° resolution (dashed red lines). The axes are 

normalized by the maximum count value, except for CAPE and nCAPE where the second 

largest count values were used as the normalizing factor to exclude the high counts at 0. 

CAPE and nCAPE show the biggest differences between the two grid resolutions, where 

more lightning occurs for higher CAPE and nCAPE at 0.5° x 0.5° resolution (Figure 3a  
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Figure 3. Distributions of MERRA-2 variables for differing grids (1998-2013). Solid 
blue lines show distributions for 0.5° x 0.5° grid and dashed red lines show distributions 

for 2.5° x 2.5° grid. 
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Figure 4. Distributions of MERRA-2 variables for differing environments (1998-2013). 
Solid blue lines show distributions for non-lightning environments and dashed green 

lines show distributions for lightning environments. 
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and b). Omega, r, LS and DS show minimal differences between the two grid resolutions 

(Figure 3c, d, e and f). Therefore, the 0.5° grid was chosen to more accurately represent 

CAPE and nCAPE for lightning environments. 

Histograms of CAPE, nCAPE, omega, r, LS and DS observed within 0.5° grids 

with lightning between 1998 and 2013 are compared to environmental values from grids 

with no lightning (Figure 4). The axes are again normalized by the maximum count value 

for each of the variables, with the exception of CAPE and nCAPE where the second largest 

value was used as the normalizing factor. Figure 4 shows that the distributions of the large-

scale parameters are clearly distinguishable between the lightning and non-lightning 

environments, with the exception of LS. The largest differences are reflected in CAPE, 

nCAPE and r. Figure 4a shows that 74% of lightning occurs at CAPE greater than 500 J 

kg-1 and only 56% of non-lightning environments have CAPE greater than 500 J kg-1. For 

non-lightning (lightning-only) environments, 68 (30) % of nCAPE instances lie between 

0 and 0.05 (Figure 4b). Figure 4d also presents justification for the use of r as a predictor 

of lightning, as the distribution of values for all environments is much broader than for 

lightning-only, with the peak in the latter shifted to higher r.  

As expected, omega at 700 hPa shows a shift towards increased rising motion in 

lightning-only environments (Figure 4c), however the smaller difference between the 

distribution curves suggests that omega will be of secondary importance in predicting 

lightning compared to CAPE, nCAPE and r. The distribution of LS for lightning-only 

environments is almost indistinguishable from the non-lightning environments (Figure 
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4e). However, the difference in distributions becomes larger for the DS case (Figure 4f), 

motivating the inclusion of the alternate shear parameters in subsequent analysis.   

Mean values of flash rates from TRMM LIS and atmospheric variables derived 

from MERRA-2 between 1998 and 2013 are shown in Figure 5 for all longitudes between 

Figure 5. Mean maps for lightning and MERRA-2 variables for the years 1998-2013. 
Panel (a) shows flash rates (flashes year-1 km-2) obtained from TRMM LIS and (b)-(g) 

shows environmental variables derived from MERRA-2.  
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35°N and 35°S. Higher flash rates are more prevalent over land compared to the ocean, 

consistent with many previous studies (e.g., Orville and Spencer 1979; Williams and 

Stanfill 2002; Virts et al. 2013; Albrecht et al. 2016). Flash rates over the ocean are never 

more than 3 flashes year-1 km-2, while flash rates exceed 15 flashes year-1 km-2 over parts 

of the Congo region of Africa, the Himalayas in Southeast Asia, Argentina and the 

southeastern United States. Over land, higher flash rates are often correlated with 

moderate-to-high CAPE (>1000 J kg-1), high nCAPE (>0.08 J kg-1 m-1), moderate-to-high 

r (>0.8) and negative omega indicative of rising motion. Higher LS (>10 m s-1) and DS 

(>30 m s-1) values are associated with the higher flash rates in South America, but not in 

all flash intensive regions. This regionality could be caused by the low-level jet present 

near the Andes (Stensrud 1996). Regions of zero flash rates (e.g., the southeast Pacific and 

southern Atlantic Oceans) are reflected in near-zero mean values of CAPE, nCAPE and r, 

which helps motivate this study in understanding the geographical relationship with 

variables and lightning. 

 

2.2. Statistical Models and Lightning Parameterization 

 Correlations between lightning and environmental variables found by two linear 

regression models and one LGCP model are evaluated in order to determine which model 

will work best in a lightning parameterization. The two generalized linear models (GLMs) 

utilized in this study determine whether lightning will occur using a logistic regression 

(McCullagh and Nelder 1989). The first model is trained using data obtained for 2003 

from the TRMM LIS and MERRA-2 reanalysis (see section 2.1). The year 2003 is chosen 
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because it lies outside of an El Niño or La Niña period in which the data may not represent 

normal conditions. In this model, the logit of the transformation of the probability of a 

lightning occurrence, 𝑙𝑜𝑔𝑖𝑡N𝑝(𝑠)P, where 𝑠 is a grid point, is expressed as the linear 

combination of the environmental predictors: 

  𝑙𝑜𝑔𝑖𝑡N𝑝(𝑠)P = logT
𝑝(𝑠)

1 − 𝑝(𝑠)U = 	𝛽) + 𝛽3𝑋3
(𝑠) + ⋯+ 𝛽X𝑋X(𝑠) + 𝜖(𝑠) 

 
(6) 

where 𝑋0(𝑠) denotes the predictor (e.g., nCAPE, r, etc.) at grid point 𝑠, 𝛽0 represents the 

coefficients found by the model, and 𝜖(𝑠) denotes the associated error term. To evaluate 

the differences, if any, between correlations (i.e., the magnitude and sign of the 

coefficients found in equation (6)) of lightning and large-scale variables over different 

surfaces, the model is trained using data over land and ocean, land-only, and ocean-only.  

Lightning is detected by TRMM LIS just 0.01% of the time within a half hour of 

the MERRA-2 three hourly samples; therefore, lightning is considered a rare event. This 

situation can result in inaccurate coefficients and potentially large underestimation in the 

probability of lightning occurring. The extent of this bias is tested using a second linear 

regression model. The rare event logistic model (ReLogit) was first introduced by King 

and Zeng (2003) and utilizes the same logistical regression method after applying a 

correction that accounts for small sample sizes. Training the ReLogit model on the 2003 

dataset constitutes the “rare event” experiment and the coefficients of each predictor are 

compared to those obtained from runs over each surface type. 

In order to test the predictability of lightning using these linear regression models, 

the output of equation (6), which ranges between zero (no chance of lightning occurring) 
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to one (100% chance of lightning occurring), is examined. These probabilities of lightning 

flash occurrences for 2003 will be compared with observations obtained from TRMM LIS 

for the tropical and sub-tropical regions in order to determine a cutoff probability, 𝑝Z. 

Lightning is defined to occur over locations where 𝑝̂(𝑠) ≥ 𝑝Z, where 𝑝̂(𝑠) is the predicted 

probability of the lightning occurrence.  

The outputs of these linear regression models will give a probability of lightning 

occurring in each bin, however there is no information regarding the flash rate (i.e., the 

intensity). The spatial LGCP was first introduced by Moller et al. (1998) and will give a 

probability and intensity for a region of interest. First, an intensity process is defined as 

𝑅(𝑠) ∶ 𝐷 → [0,∞) where 𝐷 ⊂ ℝ9, i.e., an intensity process is a non-negative valued 

stochastic process. The point process 𝑋(∙) is a nonnegative integer-valued process defined 

on the domain 𝐷 and is called the spatial LGCP with the intensity function 𝑅(∙) if (1) 𝑋(∙) 

is a Cox process (Cox 1955) with intensity 𝑅(), and (2) log(𝑅(∙)) is a Gaussian process 

(MacKay 2003). In other words, 𝑋(∙) is said to be a spatial LGCP with intensity R if X 

and R satisfy the following two conditions: 

 T
𝑋(𝑠)	~	𝑃𝑜𝑠𝑠𝑖𝑜𝑛(𝑅(𝑠))

logN𝑅(𝑠)P = 	 𝛾) + 𝛾3𝑋3(𝑠) + ⋯+ 𝛾X𝑋X(𝑠) + 𝑌(𝑠)
 

 
(7) 

where 𝑋0(𝑠) is the ith predictor at a grid point s and 𝑌(∙) is assumed to be a mean zero 

stationary bivariate gaussian process. One of the most widely used covariance models for 

the stationary process 𝑌(∙) is the Matérn covariance, including the case when the 

smoothness parameter is held constant (𝜈 = 0.5), called the exponential covariance 
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(Matérn 1986), where 𝐾m is a modified Bessel function of the second kind, 𝜎9 is the 

variance and 𝜙 is the scale parameter.  

𝑐𝑜𝑣N𝑌(𝑠3), 𝑌(𝑠9)P = 𝐶(‖𝑠3 − 𝑠9‖) = r
𝜎9 9

stu

v(m)
w‖"sx"y‖

z
{
m
𝐾m w

‖"sx"y‖
z

{

𝜎9 exp w− ‖"sx"y‖
z

{
  

 

  Matérn 
 

exponential 

 

(8) 

Evaluating the covariance will give a measure of the dependence of the data.  

 

2.3. Community Atmosphere Model Version 5 Data 

 GCMs rarely include a lightning parameterization due to the small spatial and 

temporal scales involved. However, it is beneficial to investigate whether GCMs are 

capable of predicting lightning using the statistical methods described in section 2.2. The 

Community Atmosphere Model version 5 (CAM5) does not currently include a lightning 

parameterization but can provide output at a similar temporal (three-hourly) and spatial 

(0.25° x 0.25°) resolution to the MERRA-2 observational dataset. Large-scale atmospheric 

variables from CAM5 (pressure, temperature, specific humidity, omega, and the u and v 

wind components) are interpolated to a 0.5° x 0.5° grid at three-hourly resolution (i.e., the 

same resolution as the MERRA-2 data) for 2003. Calculations of CAPE, nCAPE, r, LS 

and DS follow the same methods described in section 2.1 and are input into the statistical 

models described in section 2.2. The predicted flash occurrences using the linear 

regression model are compared to the occurrences predicted by the regression model for 

CAM5 environmental data from 2003 and further analyzed with respect to the observed 

flash rates from TRMM LIS.   
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3. RESULTS 

3.1. Relationship of Lightning and Large-Scale Environmental Variables 

3.1.1. Single Variable Relationships 

Density plots from 1998 to 2013 for all longitudes and latitudes between 35°N and 

35°S of CAPE, nCAPE, omega, r, LS and DS against observed lightning flash rates are 

shown in Figure 6. Greater lightning density is associated with low-to moderate CAPE, 

moderate nCAPE, slightly negative 700-hPa omega (i.e., rising motion), high r, low-to-

moderate LS and low DS, although there is large spread for all variables. Comparing 

Figure 4 and Figure 6, the same overall distribution of environmental values during 

lightning occurrence can be seen; however, it is now clear that the density of flash rates is 

greatest below approximately 2 flashes day-1 km-2 and the highest flash rates are very rare 

with varying relationships to the environmental parameters.  

While higher densities of lightning (e.g., greater than 10 flashes day-1 km-2) occur 

at CAPE between 0 and 1500 J kg-1 (Figure 6a) and nCAPE between 0.02 and 0.11 J kg-1 

m-1 (Figure 6b), the highest flash rates occur in more narrow ranges of CAPE and nCAPE 

centered around 1000 J kg-1 0.08 J kg-1 m-1, respectively. This analysis shows that the 

highest flash rates don’t necessarily occur at the highest possible CAPE or nCAPE. 

Similarly, the highest flash rates occur at slightly negative 700-hPa omega rather than at 

extreme negative values (Figure 6c). 
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Figure 6. Density plots of large-scale environmental variables and flash rates (1998-
2013).
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Figure 6d shows that almost all lightning flashes occur at r equal to or greater than 

0.25, with 59% of flashes occurring between 0.7 and 0.9, where a non-linear increase in 

flash rates occurs. This is indicative of the moisture source required to fuel the storms that 

produce lightning and unlike the other variables, the highest flash rates occur at the largest 

r. High flash rates also occur for LS primarily between 2 and 10 m s-1 and DS less than 15 

m s-1 (Figure 6e and Figure 6f), thus high shear appears inimical to large lightning 

production.  

 Figure 7 shows the influence the underlying surface type has on the relationship 

between flash rates and the environmental conditions. Subtracting the normalized 

histograms for land and ocean produces positive (negative) values where there is a 

stronger relationship between the variables over land (ocean). Blue and red lines show 

contours of -0.03 and 0.03. Figure 7a and Figure 7b show a clear distinction between land 

and ocean, which makes sense in context of Figure 5, where a distinction in both flash 

rates and values of CAPE and nCAPE are observed. The histogram differences show that 

lightning is more likely to be associated with CAPE less than 700 J kg-1 and nCAPE less 

than 0.06 J kg-1 m-1 over land. However, these thresholds increase slightly as flash rates 

increase. Greater CAPE and nCAPE are more likely to be associated with lightning over 

ocean, potentially because (1) higher CAPE and nCAPE generally occur over the ocean 

(Figure 5) and/or (2) more CAPE, and therefore stronger updrafts, are required for 

lightning to occur over ocean.  
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Figure 7. Land-ocean differences for environmental variables and flash rates (1998-
2013). Values of -0.03 and 0.03 are shown in the blue and red contours.  



 

 25 

Lightning is associated with higher nCAPE over ocean compared to over land 

(Figure 7b). This result appears inconsistent with Stolz et al. (2017), who suggested that 

lower nCAPE is expected over ocean and higher nCAPE is expected over land. However, 

recall that nCAPE uses CAPE and the “shape-of-the-CAPE” in its calculation (i.e., 

nCAPE = CAPE/z, where z is the depth of the CAPE layer). Since lightning occurs at 

significantly higher values of CAPE over ocean than over land (Figure 7a), the “skinny” 

nature of CAPE (and thus a larger z) only slightly weakens the land/ocean nCAPE 

relationship in Figure 7b (i.e., it is similar to the CAPE relationship, albeit less 

pronounced). 

Omega at 700 hPa shows a shift towards positive values during lightning 

occurrences over land (although more highly negative omega values are also observed) 

and a more concentrated occurrence over ocean with values focused at -0.1 Pa s-1 (Figure 

7c). The onset for lightning for r over ocean (land) is greater than (less than) 0.8 (Figure 

7d), suggesting that lightning can occur in drier environments over land. Furthermore, 

Figure 7d shows that higher r is associated with higher flash rates over land at r values less 

than 0.8, while there is little difference in flash rate magnitude with changes in r over 

ocean compared to land. LS (Figure 7e) shows negligible differences between land and 

ocean and DS (Figure 7f) shows a shift towards lower DS for land at higher flash rates 

and higher DS for ocean at low flash rates. Figure 7 suggests that in order for lightning to 

occur over ocean, more favorable conditions (i.e., moderate-to-high CAPE and nCAPE, 

high r and moderate DS) must be present compared to land.   
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In addition to land/ocean differences, latitudinal differences are also evident 

between lightning and environmental parameters. Figure 8 shows histograms of flash rates 

by environmental variables for 1998-2013 in tropical areas (20°N to 20°S; 1st column), 

sub-tropical areas (20°N to 35°N and 20°S to 35°S; 2nd column), and the normalized 

difference between the tropics and subtropics (3rd column). Positive values (warm colors) 

Figure 8. Tropics-subtropics density plots of environmental variables and flash rates 
(1998-2013). First column shows density plots for tropical areas, second column shows 
density plots for subtropical areas and third column shows the differences between the 

first two columns. Values of -0.03 and 0.03 are shown in the blue and red contours. 
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show stronger relationships for tropical areas and negative values (cool colors) show 

stronger relationships for sub-tropical areas. Lightning with flash rates less than 10 flashes 

year-1 km-2 occurs for higher CAPE in the tropics (Figure 8a), although there is also 

generally higher CAPE in the tropics versus the subtropics (Figure 5b). Between the 

tropics and subtropics, nCAPE associated with lightning doesn’t shift as much as CAPE 

(Figure 8b). Subtle differences can be found at low, moderate and high nCAPE where a 

shift occurs towards the subtropics at low nCAPE, the tropics for moderate nCAPE and 

Figure 8. Continued      
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slightly back to the subtropics for high nCAPE, most likely due to the land-ocean 

differences between the tropics and subtropics. While omega associated with lightning 

shows very little difference between the tropics and subtropics (Figure 8c), r shows a more 

distinct pattern with higher r in the tropics for low flash rates (Figure 8d). Again, this is 

likely due to the fact that the tropics are simply more moist (Figure 5e). LS shows very 

little latitudinal preference in relation to lightning production (Figure 8e), but DS shows a 

more dramatic tropics/subtropics comparison (Figure 8f). Lightning occurs for DS 

primarily less than 20 m s-1 in the tropics, but at all values between 0 and 50 m s-1 in the 

subtropics, which can be linked back to the different large-scale flow in both regions 

(Figure 5g). 

Figure 7 and Figure 8 show that large geographical differences occur when looking 

at lightning production and its relationships with large-scale variables. Motivated by these 

results, maps of these variables only when lightning is occurring are examined (Figure 9). 

CAPE is higher over ocean during lightning occurrences, with some areas exceeding 2000 

J kg-1, particularly in the Caribbean Sea (Figure 9a). Little lightning production is expected 

in the Caribbean (Figure 5a), but Figure 9a shows that for lightning to occur, high CAPE 

must be present. Figure 9b shows minimal differences between CAPE and nCAPE when 

lightning is present except that some areas over land (ocean) increase (decrease) in 

magnitude when compared to CAPE, as expected for nCAPE where high values of nCAPE 

are expected over land and lower values over ocean. This is most distinguishable for land 

in Argentina, the southeastern United States and South Africa and for the Caribbean Sea 

and the Indian Ocean. Figure 9c gives some explanation for high flash rates in Argentina, 
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where it can now be observed that large rising motion is associated with lightning 

occurrences. Figure 9d shows some regional differences and supports the conclusions of 

Figure 7d and Figure 8d where higher r is expected for lightning occurrences over the 

ocean and that the lightning occurs in the subtropics in less moist environments. LS and 

DS show enhanced mean maps of those presented in Figure 5f and g and can also help to 

explain large lightning production in areas like Argentina, where high LS and DS are 

observed (Figure 9e and f). Overall, these maps show that large regional contrasts are 

Figure 9. Mean environmental maps of MERRA-2 derived variables for lightning 
occurrences for the years 1998-2013. 
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present and that for lightning production to occur, variable thresholds may change from 

region to region.  

 
3.1.2. Two-Variable Relationships 

 Figure 10 shows the two-parameter relationship between one of the best predictors, 

r, and each of the other variables for lightning occurrences. CAPE and r show the clearest 

relationship: as r increases from moderate-to-high values, lightning occurs at higher CAPE 

with the highest lightning density at high r/moderate CAPE (Figure 10a). A similar 

relationship is seen with nCAPE, although there is a less gradual “pick-up” in nCAPE at 

moderate r (Figure 10b). Figure 10c shows high lightning densities at high r and a focused 

range of omega between 0.0 and -2.0 Pa s-1. At high r, LS between 1 and 7 m s-1 and DS 

between 2 and 13 m s-1 are associated with higher lightning occurrence. Figure 10 suggests 

that at high r, environments with moderate-to-high CAPE and nCAPE, negative omega 

and moderate LS and DS are conducive to lightning production, thus refining the 

predictive potential of each of these parameters.  
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Figure 10. Two-variable density plots from MERRA-2 for all flash occurrences (1998-
2013).  
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Following the same method as Figure 7, two-parameter density lightning 

difference plots between land and ocean are shown in Figure 11. Large differences 

between land and ocean are apparent. Lightning over ocean typically occurs at moderate-

to-high CAPE and nCAPE and high r (shown as the blue areas in Figure 11a and b). Over 

land, there is a clear shift to lightning occurrence in environments with low-to-moderate 

CAPE and nCAPE and moderate r (shown as the red areas in Figure 11a and b). The pick-

up for high r/moderate CAPE and nCAPE primarily occurs over land. Lightning over the 

ocean occurs at higher r for similar values of 700-hPa omega compared to over land 

(Figure 11c). Figure 11d shows that over ocean (land), lightning occurs at all values of LS 

when r is high (moderate-to-low). Unlike the LS case, Figure 11e shows that for land 

surfaces, lightning occurrence increases as DS decreases and r increases.  

Figure 11 shows that there is a large land-ocean contrast in environmental 

characteristics during instances of lightning that can be more fully explained in a multi-

parameter space. Overall, these plots help to explain this contrast, particularly over land, 

where pickups occur at increasing r/low-to-moderate CAPE, increasing r/low-to-moderate 

nCAPE and decreasing r/low-to-moderate DS. Figure 11c and d show similar results to 

those presented in Figure 7c and d, and don’t provide significant additional information 

when combining the two parameters. 
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Figure 11. Land-ocean differences for two-variable density plots of MERRA-2 
environmental variables (1998-2013). Values of -0.03 and 0.03 are shown in the blue 

and red contours. 
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As shown in Figure 6a, lightning primarily occurs for low-to-moderate CAPE, 

which is unexpected. Instead, most lightning is expected to occur for high CAPE. To 

investigate this further, omega profiles for lightning occurrences are presented in Figure 

12a to see how they change for differing CAPE intensities. The plot shows mean omega 

profiles for lightning occurrences for all CAPE (black line), weak CAPE (<500 J kg-1; 

blue line), moderate CAPE (500 J kg-1 ≤ CAPE ≤ 2000 J kg-1; green line) and strong 

CAPE (>2000 J kg-1; red line). Figure 12a shows that weak CAPE cases are associated 

with the strongest rising motion, particularly in the lower levels. This is most likely due 

to strong CAPE being consumed by previous storms, and therefore only weak CAPE is 

observed at the time of lightning occurrence. Figure 12b shows the relationship between 

Figure 12. Omega-CAPE relationships. Left panel shows omega profiles for varying 
CAPE intensities averaged for years 1998-2013. CAPE thresholds are defined as weak 

CAPE: CAPE < 500 J kg-1, moderate CAPE: 500 J kg-1 ≤ CAPE ≤ 2000 J kg-1 and 
strong CAPE: CAPE > 2000 J kg-l. Right panel shows a density plot for CAPE vs. 700-

hPa omega (1998-2013). 
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CAPE and 700-hPa omega for lightning occurrences supporting the fact that low-to-

moderate CAPE is associated with large rising motion in the lower troposphere.  

 

3.1.3. Extreme Lightning 

 Investigating flash rates greater than a certain threshold, or extreme lightning, is 

beneficial because it can explain the conditions for which the extreme events will occur. 

Extreme lightning is defined here as a flash rate greater than approximately 12 flashes day-

1 km-2, which is the 95th percentile of the TRMM LIS climatology (Figure 13). This 

threshold is based on approximately 631,000 lightning cases. It is hypothesized that the 

environmental relationships observed in Figures 4 through 8 will be strengthened when 

looking at the extreme lightning cases only.  

Figure 13. Distribution of lightning flash rates from TRMM LIS between 1998 and 
2013. Dashed vertical line shows 95th percentile.   
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Figure 14 shows density plots for the same variable pairs as Figure 10 where 

extreme and non-extreme lightning cases are considered separately. The first column 

shows non-extreme lightning cases, the second column represents extreme lightning cases, 

and the third column shows the magnitude change between the first and second columns. 

Similar, but weakened relationships are shown in column two compared to column one. 

Surprisingly, the extreme lightning cases are associated with lower r when r is plotted 

against CAPE, nCAPE, omega, LS and DS compared to values associated with the non-

extreme cases (Figure 14 a-e). However, extreme lightning is more present for high CAPE, 

nCAPE, LS and DS (Figure 14a, b, d and e). CAPE versus r shows the strongest 

relationship when considering extreme lightning only, but the pickup and density at high 

Figure 14. Two-variable extreme lightning density plots (1998-2013). The first column 
shows non-extreme lightning, the second column shows extreme lightning (values above 

the 95th percentile) and third column is the normalized difference between the two. 
Values of -0.03 and 0.03 are shown in the blue and red contours. 
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r/moderate CAPE isn’t as strong as compared to non-extreme cases (Figure 14a). The 

omega/r relationship discussed in section 3.1.2 holds for extreme lightning but isn’t 

stronger (Figure 14c). Overall, the environments for which extreme lightning occur appear 

to be relatively similar to non-extreme lightning conditions.  

 

3.2. Statistical Models and Lightning Parameterizations  

3.2.1. Generalized Linear Models Results 

Figure 14. Continued 
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 Following the methods presented in section 2.2, the results presented previously 

are quantified using a GLM. Table 1 shows the results obtained using the GLM given by 

equation (6) for the MERRA-2 data after the pc threshold has been applied. The four cases 

discussed in section 2.2 are presented: (a) land and ocean (i.e., all), (b) land-only, (c) 

ocean-only, and (d) rare events (ReLogit). The GLM outputs “1” if lightning is predicted 

to occur in the specified bin and “0” if it is not. Furthermore, if TRMM LIS observes a 

lightning event within a bin, a “1” is recorded, and again, a “0” if a flash does not occur. 

Therefore, there are four possible combinations of output: (1) flash observed and 

predicted, (2) flash observed and not predicted, (3) flash not observed and not predicted, 

and (4) flash not observed and predicted. The proportion of the number of pixels that fall 

into each category is given in Table 1.  

Table 1. Logisitic regression contingency table showing comparisons of observed and 
predicted lightning occurrence for TRMM LIS.  
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In general, the model performs well across experiments (a) to (d) when predicting 

which regions will experience no lightning. The best performers were (a) and (d), where 

the absence of lightning was predicted correctly 82% of the time. The worst performer 

was the land-only experiment (b), where the absence of lightning was only predicted 

correctly 64% of the time. Models (a), (b) and (d) predicted lightning correctly 80% of the 

time, and model (c) was the worst predictor of lightning occurrence, only predicting 

correctly 60% of the time. By these findings, models (a) and (d) are the best predictors of 

both the absence of lightning and lightning occurrences. However, the Relogit model does 

not improve on model (a), and therefore is removed for further analysis. 

In order to evaluate the significance and relative importance of each large-scale 

environmental variable for the lightning predictions above, the coefficients (β�) in 

equation (6) for each variable are presented in Table 2, where positive (negative) 

coefficients show positive (negative) correlations. In addition to evaluating the large-scale 

Table 2. Logistic regression estimates for (a) all events, (b) land-only events and (c) 
ocean-only events. P-values: “ ” = 0.1, “.” = 0.05, * = 0.01, ** = 0.001, *** = 0.  
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variables, a land indicator (LI) variable was also added to test the significance of the land-

ocean contrasts shown in section 3.1. Experiment (a) shows positive correlations of 

nCAPE, r, LS and LI to lightning occurrence, and negative correlations for CAPE, omega 

and DS. A positive correlation means that as the variable increases, flash occurrence also 

increases. This is certainly reflected for r in Figure 6d, as flashes increase for high r. A 

negative correlation means that as the variable increases, flash occurrence decreases. 

CAPE and DS show strong evidence of this in Figure 6a and f, where lightning occurs for 

low values of CAPE and DS. A negative correlation is given for omega, but this is 

expected because it shows that as omega decreases, indicating rising motion, flash 

occurrences increase. We will therefore also consider this a positive correlation.  

The land-only and ocean-only models show some contrasting results, particularly 

for DS where it is negatively correlated for (b) but positively correlated for (c). This could 

be attributed to more lightning occurring for only primarily small DS over land, compared 

to the ocean where more spread is observed (Figure 7f). For (c) all variables are positively 

correlated apart from CAPE. This suggests similar findings of those found in section 3.1, 

where for lightning to occur over the ocean, certain thresholds of each variable must be 

obtained. Through all models, nCAPE, omega, r and LS are positively correlated with 

lightning and CAPE is always negatively correlated. Also, for experiments (a) through (c), 

most variables have regression estimates that are statistically significant, thus making 

these reasonable predictors of lightning. The only variable that was not statistically 

significant was DS in the ocean-only model, so it will not be used in further analysis.  
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Figure 15 shows the relative importance of each variable for each model. For (a), 

the most important variables are nCAPE and r, with a heavy reliance on the land-ocean 

distinction variable. CAPE, nCAPE and r are the most important for the land-only model 

and similar results are shown for the ocean-only model, except that CAPE shows lesser 

importance compared to nCAPE and r. This is expected considering land-ocean contrasts 

and that CAPE does not distinguish between land and ocean (Williams et al. 2002). 

Omega, LS and DS all show little importance for each model, most likely due to lightning 

occurring at near-zero values of these variables.  

 

Figure 15. Relative importance of MERRA-2 variables in the GLM. Models (a) all 
(black stars), (b) land-only cases (green diamonds) and (c) ocean-only cases (blue 

triangles) are shown. 
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To quantify the best performer of models (a)-(c), Receiver Operating 

Characteristic (ROC) curves are created and shown in Figure 16. From these plots, the 

Area Under the Curve (AUC) can be calculated, which is a measure of the performance 

of the binary classification (i.e., a result of lightning being predicted or not predicted). A 

larger AUC indicates better performance. For this study, the land-only AUC is the lowest, 

indicating the worst performer of the binary classification between the three cases, and the 

all case is the best performer of the three models because of its large AUC. As a result, in 

creating the lightning parameterization, model (a) will be used.  
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Figure 16. ROC curves for (a) all regression model, (b) land-only model and (c) ocean-
only model. AUC denoted in legend.  
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3.2.2. Log-Gaussian Cox Process Model Results  

 Next, a point-process model is used to not only be able to predict lightning 

occurrence, but lightning intensity as well. The LGCP model used here does not handle 

large regions well, so five regions of interest were chosen (Figure 17). These regions were 

chosen because of their varying lightning intensity and mean large-scale environments 

(Figure 5). For example, Argentina was chosen because of its intense lightning production 

for high nCAPE, rising motion, and LS but relatively low r and moderate CAPE (Figure 

5 and Figure 9). Moreover, the Maritime Continent was chosen for its relatively high 

CAPE, high nCAPE, negative omega, and high r, but minimal lightning production 

(Figure 5 and Figure 9).  

The computations for the spatial LGCP fittings are completed using R (www.r-

project.org) package lgcp (Taylor et al. 2013). More specifically, for each region, the 

logarithm of the intensity process is assumed to follow the Gaussian process with mean 

Figure 17. Mean flash rates for 2003 overlaid with LGCP regions of interest. 
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zero and the exponential covariance function (see section 2.2 for more detail). Parametric 

estimators are obtained by using the Metropolis-Hastings algorithm (Hastings 1970) with 

50,000 repetitions. Table 3 reports the median of each estimator after 10% of the burn-in 

period. 

Table 3 presents the LGCP coefficients for each variable along with the standard 

deviation (𝜎) and the scale parameter (𝜙) for each of the five regions. A large scale 

parameter indicates more spatial dependence (i.e., more clustering) and a large standard 

deviation indicates large variability in the data. The largest standard deviation and scale 

parameter are in Southeast Asia, while the smallest are in the Pacific Ocean. This indicates 

more spatial dependence and variability in the data over Southeast Asia (i.e., where 

lightning flashes are present, they are clustered, but in varying degrees of intensity) and 

Table 3. LGCP coefficient estimates for each region (displayed in Figure 17). Bolded 
values represent significant coefficients within a 95% credible interval.  
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more spread but more agreement between the data for the Pacific Ocean (i.e., where 

flashes are present, there may be spread but the intensities are similar through the region).  

Estimates in Table 3 greater than one show positive correlations, estimates less than one 

show negative correlations and bolded numbers represent significant coefficients with a 

95% credible interval. In Argentina, all variables show positive correlations apart from 

CAPE. In the Congo region of Africa, omega, r and LS show negative correlations with 

significant coefficients for LS, DS and LI, while over the Maritime Continent, CAPE, 

omega, LS and DS all show negative correlations, with significant coefficients for nCAPE, 

omega and LI. Southeast Asia only shows positive correlations with r, LS and LI, but 

because the coefficients for r and LS are extremely close to one, they may be considered 

insignificant. These weak relationships may be caused due to the high elevation of the 

Himalayas driving convection rather than that large-scale environment. The Pacific Ocean 

only shows positive correlations with nCAPE and LS, but significant negative correlation 

is present for DS. Overall, only nCAPE and LI maintain positive correlations through most 

of the five regions and concludes that strong regional contrasts in relationships between 

lightning and the large-scale environment exist. 

 

3.2.3. Creating and Evaluating a Lightning Parameterization 

Next, a lightning parameterization is created using the best performing statistical 

model discussed in section 3.2.1, model (a). Figure 18 gives a comparison of observed 

lightning by TRMM LIS (top) with the predicted probabilities from the GLM (equation 

(6)) of lightning occurrence using MERRA-2 (middle) and CAM5 data (bottom); all 
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panels are averaged over the year 2003. The probabilities were scaled to match the flash 

rate values for panel (a). For complete data, areas in which a variable was missing in the 

MERRA-2 data (i.e., 700-hPa omega, LS and DS are not available at higher elevations) 

were set to zero and therefore in certain areas, like the Himalayas, lightning may be 

underpredicted. The CAM5 data handles extrapolates over these regions and therefore 

could result in incorrect predictions. 

Predicted lightning occurrences using both MERRA-2 and CAM5 data generally 

agree well with the observed events, particularly over Africa, Australia and over the 

oceans. The GLM over predicts lightning occurrence in the Amazon and over the Maritime 

Continent, but under predicts in places like Argentina. Over predictions can be caused by 

a single variable; for example, where there are high omega values over Papua New Guinea 

(Figure 5), there are anomalously high predictions of lightning occurrence (Figure 18). 

The CAM5 results presented in Figure 18 are comparable with the MERRA-2 results. This 

is motivation for using lightning parameterizations in GCMs, and how using just a simple 

model, such as the one used here, can do a fairly good job for lightning prediction. 
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Figure 18. Mean predicted lightning from GLM parameterization. Mean flash rates for 
2003 from TRMM LIS (top), predicted lightning from MERRA-2 variables using GLM 

(middle) and predicted lightning from CAM5 variables using GLM (bottom). The 
middle and bottom panel are scaled to match the values and color bar for the first panel.  
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4. CONCLUSIONS 

 Lightning data obtained from TRMM LIS from 1998 to 2013 is compared with six 

large-scale environmental variables derived from 3-hourly MERRA-2 reanalysis data to 

evaluate their relationships. These six variables include CAPE, nCAPE, r, 700-hPa omega, 

LS from 900-700 hPa and DS from 900-300 hPa. The data is binned at 0.5° x 0.5° 

resolution and matched if lightning occurred within 30 minutes of the MERRA-2 data.  

 Distributions of atmospheric variables for lightning and non-lightning 

environments show clear distinctions, particularly for CAPE, nCAPE and r (Figure 4). 

Density plots between each variable and observed lightning flash rates show that the 

greatest lightning density is associated with low-to-moderate CAPE, moderate nCAPE, 

slightly negative 700-hPa omega (i.e., rising motion), high r, low-to-moderate LS and low 

DS, although there is large spread for all variables (Figure 6). Clear geographical 

distinctions for flash occurrences exist between land and ocean for CAPE, nCAPE and r 

(Figure 7) and between tropical and sub-tropical areas for CAPE, nCAPE, r and DS 

(Figure 8). Figure 9 supports this result and shows that variable thresholds may differ from 

region to region in order for lightning to occur.  

The relationship of r with other variables for lightning occurrences is evaluated 

and it is shown that CAPE and omega with r have the clearest relationships. As r increases, 

CAPE increases from low to moderate values and omega displays more rising motion 

(Figure 10). Figure 11 expands on the land-ocean contrasts observed in Figure 7, 

particularly over land where pickups occur at increasing r/low-to-moderate CAPE, 

increasing r/low-to-moderate nCAPE and decreasing r/low-to-moderate DS. 
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Relationships with the large-scale variables do not exhibit much change when examining 

extreme lightning cases (Figure 14).  

 A GLM is constructed using all data, land-only data and ocean-only data and 

nCAPE and r are found to be of utmost importance for lightning prediction. A LGCP 

model is also compiled and five regions are examined for lightning production. Overall, 

strong regional contrasts are observed and, with the exception of nCAPE and a land 

distinction term that should be used in all predictions, different variables and thresholds 

may need to be considered for differing regions. These results support the conclusion of 

Stolz et al. (2017) that the shear parameters are of secondary importance, particularly 

when compared to nCAPE, however this study refutes their conclusion that RH (i.e., r) is 

of secondary importance for lightning production. The GLM is used as the basis of a 

lightning parameterization to predict lightning from MERRA-2 and CAM5 variables. 

Predicted lightning from both datasets generally agrees with satellite observations, which 

is motivation for implementing a lightning parameterization in GCMs.  

 Evaluating the results found here with other lightning and environmental datasets 

may be useful, particularly the new additions of the International Space Station’s LIS and 

the Geostationary Lightning Mapper (GLM). Strong latitudinal and elevation dependence 

is observed with the occurrence of lightning, so in future work, adding a latitude and 

elevation term may be warranted in statistical models. For comparison and evaluation, 

using the LGCP model in a parametrization may be useful, especially in showing lightning 

predictions on regional scales. It would also be useful to evaluate the parameterization in 

other models to see if the performance is consistent or worsens.  
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