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ABSTRACT

This study consists of two projects on bi-free probability. In the first project, a bi-free central

limit distribution is investigated. We find the principal function of the completely non-normal

operator l(v1) + l(v1)∗ + i(r(v2) + r(v2)∗) on a subspace of the full Fock space F(H) which

arises from a bi-free central limit distribution. By the fact that the principal function of a pure

hyponormal operator with trace class self-commutator is an extension of the Fredholm index of

the operator, we find the essential spectrum of this operator. In the second part, we examine the

reduced bi-free product C*-algebra generated by two pairs of commuting self-adjoint projections.

In particular, we partially describe how to find the bi-free product states and the corresponding

C*-algebra given by the GNS construction for a generic distribution of the projections. We prove

some general results analogous to Voiculescu’s partial R- and S-transforms by using combinatorial

techniques on bi-free setting.
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1. INTRODUCTION AND PRELIMINARIES

Free probability theory is initiated by Voiculescu in the 80s in order to solve certain operator

algebra problems. Free independence (or freeness) is an analogue of the classical independence

and free probability theory has evolved into a close parallel to basic probability theory. Also,

it brings together many different fields of mathematics, for example, operator algebras, random

matrix theory, and combinatorics.

In 2013, Voiculescu introduced a notion of bi-free independence as a generalization of free-

ness in a non-commutative probability space. He considered two-faced pairs of non-commutative

random variables and the moments for such a combined system of left and right variables. In

[15, 16, 17], the essential properties and theorems for bi-free independence are discussed, in-

cluding additive and multiplicative bi-free convolutions, two-variables partial transforms, and the

bi-free central limit theorem. The combinatorial constructions and proofs for those results are

presented in [3, 4, 12, 13].

In my dissertation, I intend to further develop bi-free probability theory. The dissertation has

four chapters including the introduction and preliminaries in Chapter 1. In Chapter 2, we investi-

gate a bi-free central limit distribution which is an analogue of a semicircular distribution in free

probability theory. We find the Pincus principal function of a certain seminormal operator which

arises from a central limit distribution and the essential spectrum of the operator as an applica-

tion. The next two chapters, Chapter 3 and 4, are devoted to discuss the reduced bi-free product

C*-algebra generated by two two-faced pairs of commuting projections. For certain combinations

of bi-free pairs of non-commutative random variables, we find their ordered joint moments and

cumulant series through combinatorial techniques.

1.1 Free probability

A non-commutative probability space is a pair (A, φ) where A is a unital algebra over C and

φ : A → C is a linear functional with φ(1) = 1. A non-commutative probability space (A, φ)
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is called a C*-probability space, if in addition, A is a C*-algebra and φ is a state. The joint

distribution of random variables a1, . . . , an in A is the linear functional µ : C〈X1, . . . , Xn〉 → C

given by

µ(P ) = φ(P (a1, . . . , an)), P ∈ C〈X1, . . . , Xn〉

where C〈X1, . . . , Xn〉 is the algebra of complex polylnomials in the non-commuting variables

X1, . . . , Xn. If (A, φ) is a C*-probability space and a ∈ A is normal, i.e., aa∗ = a∗a, then the

distribution of the random variable a is given by a probability measure ν supported on the spectrum

of a by

µa(P (X)) =

∫
σ(a)

P (t) dν.

We will often write µa instead of ν.

Definition 1.1.1. A family of unital subalgebras (Ak)k∈K in a non-commutative probability space

(A, φ) is freely independent if φ(a1 · · · an) = 0 whenever ai ∈ Aki with ki 6= ki+1 and φ(ai) = 0

for all 1 ≤ i ≤ n.

We define the notion of a full Fock space which will be useful for the future arguments.

Definition 1.1.2. Let H be a complex Hilbert space. Then the full Fock space on H is

F(H) = CΩ⊕
⊕
n≥1

H⊗n

where Ω is called the vacuum vector and has norm one. The vacuum expectation is defined as

φΩ(·) = 〈· Ω,Ω〉 on B(F(H)). For an element ξ in H, the left creation operator l(ξ) ∈ B(F(H))

is given by

l(ξ)Ω = ξ

l(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn

for all n ≥ 1 and ξ1, · · · , ξn ∈ H. The adjoint l(ξ)∗ of l(ξ) is called the left annihilation operator.
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The right creation operator r(ξ) ∈ B(F(H)) is determined by

r(ξ)Ω = ξ

r(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ1 ⊗ · · · ⊗ ξn ⊗ ξ

for all n ≥ 1 and ξ1, · · · , ξn ∈ H. Its adjoint r(ξ)∗ is called the right annihilation operator.

Under the above notations, let (ei)i∈I be an orthonormal basis of a Hilbert space H, and let

li = l(ei) and C∗(li) denote the unital subalgebra generated by li for i ∈ I . Then the family

(C∗(li))i∈I is free in (B(F(H)), φΩ).

The free cumulants were introduced by Speicher to understand free independence using a com-

binatorial approach.

Definition 1.1.3. Let S be a finite totatlly ordered set. A partition of the set S is a set π =

{V1, ..., Vn} of pairwise disjoint, non-empty sebsets of S such that S = ∪ni=1Vi. We call V1, ..., Vn

blocks of the partition π. For two elements a, b ∈ S, we write a ∼π b if a and b are contained in

the same block of π.

The set of all partitions of the set {1, ..., n} is denoted by P(n). A paritition π ∈ P(n) is called

non-crossing if whenever 1 ≤ a1 < b1 < a2 < b2 ≤ n are such that a1 ∼π a2 and b1 ∼π b2, we

have b1 ∼π a2. We denote the set of all non-crossing partitions of {1, . . . , n} by NC(n). With the

usual refinement order, let 0n denote the minimal element ofNC(n) and let 1n denote the maximal

element of NC(n). Let NC ′(n) denote the set of all non-crossing partitions π in P(n) such that

the singleton set {1} is a block of π.

Definition 1.1.4. Let π ∈ P(n) and S ⊆ {1, . . . , n}. We say S splits π if for each block V ∈ π,

we have either V ⊆ S or V ⊆ Sc.

Definition 1.1.5. Let (A, φ) be a non-commutative probability space. The free cumulants are a

family of multilinear functionals κπ : An → C determined recursively by the moment-cumulant
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formula

φ(a1 · · · an) =
∑

π∈NC(n)

κπ(a1, . . . , an)

and κπ(a1, . . . , an) :=
∏

V ∈π κV ((a1, . . . , an)|V ), where the product is taken over all the blocks

of π and κV ((a1, . . . , an)|V ) = κk(ai1 , . . . , aik) for V = {i1 < · · · < ik}. We use the notation

κk := κ1k .

The next theorem states that freeness is equivalent to vanishing of mixed cumulants.

Theorem 1.1.6 ([11]). Let (Ai)i∈I be a family of unital subalgebras of a non-commutative prob-

ability space (A, φ) and let (κn)n∈N be the corresponding free cumulants. Then (Ai)i∈I are freely

independent if and only if κn(a1, . . . , an) = 0 whenever aj ∈ Aij and there exist ij 6= ik for

1 ≤ j, k ≤ n.

For π, σ ∈ NC(n) with π ≤ σ, the interval [π, σ] denotes the set {ρ ∈ NC(n) | π ≤ ρ ≤ σ}

and the interval has the canonical factorization of the form NC(1)k1×· · ·NC(n)kn where kj ≥ 0.

The incidence algebra on the lattice of NC(n), denoted by I(NC), is the algebra of all complex-

valued functions on ∪n≥1{(π, σ) | π, σ ∈ NC(n) and π ≤ σ}, equipped with a pointwise addition,

a scalar multiplication, and a convolution product defined by

(f1 ∗ f2)(π, σ) =
∑
ρ∈[π,σ]

f1(π, ρ)f2(ρ, σ).

A function f ∈ I(NC) is said to be multiplicative if f(π, σ) = f(01, 11)k1 · · · f(0n, 1n)kn

whenever the interval [π, σ] is factorized by [π, σ] ∼= NC(1)k1 × · · ·NC(n)kn . Note that a mul-

tiplicative funtion f ∈ I(NC) is completely determined by the sequence (f(0n, 1n))n≥1. LetM

be the set of all multiplicative functions, and denote the set of all multiplicative functions f with

f(01, 11) = 1 byM1. Note that the convlution of two multiplicative functions is multiplicative.

Definition 1.1.7. Let π ∈ NC(n). The Kreweras complement K(π) of π is defined to be the

biggest element among σ ∈ NC(1̄, ..., n̄) such that π ∪ σ ∈ NC(1, 1̄, ..., n, n̄).
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If f1, f2 ∈M, then one can verify that

(f1 ∗ f2)(0n, 1n) =
∑

π∈NC(n)

f1(0n, π)f2(0n, K(π)).

For f1, f2 ∈M1, the pinched-convolution f1∗̆f2 of f1 and f2 is defined by

(f1∗̆f2)(0n, 1n) =
∑

π∈NC′(n)

f1(0n, π)f2(0n, K(π)). (1.1)

where f1∗̆f2 ∈M1. Notice that the pinched-convolution f1∗̆f2 is obtained from the convolution by

pinching out the terms in NC(n)\NC ′(n). In [10], it is demonstrated that for freely independent

random variables a1, a2 ∈ A, if f1, f2 ∈ M are the multiplicative functions associated to the

cumulants of a1, a2, respectively, that is, f1(0n, 1n) = κn(a1) and f2(0n, 1n) = κn(a2) for all

n ≥ 1, then we have (f1 ∗ f2)(0n, 1n) = κn(a1a2) = κn(a2a1). Moreover, f1(0n, π) = κπ(a1)

(respectively, f2(0n, π) = κπ(a2)) is satisfied for all π ∈ NC(n).

For every f ∈M, we define a formal power series φf by

φf (z) =
∞∑
n=1

f(0n, 1n)zn. (1.2)

In [10], it is proved that φf1(φf1∗̆f2(z)) = φf1∗f2(z) for every f1, f2 ∈M1, and therefore we have

φf1∗̆f2

(
φ
〈−1〉
f1∗f2

(z)
)

= φ
〈−1〉
f1

(z). (1.3)

Before finishing this section, we will recall the definitions of free transforms and their equalities

which will be useful in Chapter 3. Let (A, φ) be a C*-non-commutative probability space and let

a ∈ A. Let κn(a) denote the n-th free cumulant of a. As a formal power series, the Cauchy

transform of a is

Ga(z) = φ((zI − a)−1) =
1

z

∑
n≥0

φ(an)z−n,
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and the R-transform is defined by

Ra(z) =
∑
n≥0

κn+1(a)zn.

To use the combinatorial arguments, we need the following analogues of the moment and cumulant

series. The moment series of a is

Ma(z) = 1 +
∑
n≥1

φ(an)zn,

and the cumulant series of a is

Ca(z) = 1 +
∑
n≥1

κn(a)zn.

The S-transform of a is the power series given by

Sa(z) =
1 + z

z
χa(z),

where χa(z) is the formal power series inverse of Ma(z)− 1 under composition, so that

Ma(χa(z)) = z + 1. (1.4)

Recall the relations between the above series as follows.

Ca (z ·Ma(z)) = Ma(z) (1.5)

Ma

(
z

Ca(z)

)
= Ca(z) (1.6)

6



1.2 Bi-free probability

1.2.1 Bi-freeness and examples

We recall the basics about a free product construction to define bi-free independence. Given a

family of Hilbert spaces with specified unit vectors, Hi = Cξi ⊕H◦i for i ∈ I , the Hilbert space

free product (H,H◦, ξ) = ∗i∈I(Hi,H
◦
i , ξi) is defined by

H = Cξ ⊕
⊕
n≥1

 ⊕
ij 6=ij+1

H◦i1 ⊗ · · · ⊗H◦in

 = Cξ ⊕H◦

where ‖ξ‖ = 1 and the direct sums are orthogonal. On B(H), the vector state φξ corresponding to

the specified unit vector ξ is defined by

φξ(T ) = 〈Tξ, ξ〉, T ∈ B(H).

For each i ∈ I , there exist unitary operators Vi and Wi such that

Vi : Hi ⊗

Cξ ⊕
⊕
n≥1

 ⊕
i 6=i1

ij 6=ij+1

H◦i1 ⊗ · · · ⊗H◦in


 → H

is defined by

ξi ⊗ ξ → ξ

H◦i ⊗ ξ → H◦i

ξi ⊗ (H◦i1 ⊗ · · · ⊗H◦in)→ H◦i1 ⊗ · · · ⊗H◦in

H◦i ⊗ (H◦i1 ⊗ · · · ⊗H◦in)→ H◦i ⊗H◦i1 ⊗ · · · ⊗H◦in
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and similarly,

Wi :

Cξ ⊕
⊕
n≥1

 ⊕
i 6=in

ij 6=ij+1

H◦i1 ⊗ · · · ⊗H◦in


⊗Hi → H

is defined by

ξ ⊗ ξi → ξ

ξ ⊗H◦i → H◦i

(H◦i1 ⊗ · · · ⊗H◦in)⊗ ξi → H◦i1 ⊗ · · · ⊗H◦in

(H◦i1 ⊗ · · · ⊗H◦in)⊗H◦i → H◦i1 ⊗ · · · ⊗H◦in ⊗H◦i .

For T ∈ B(Hi), we define the left and right operators, λi(T ) and ρi(T ), on H by

λi(T ) = Vi(T ⊗ I)V −1
i ∈ B(H) (1.7)

ρi(T ) = Wi(I ⊗ T )W−1
i ∈ B(H). (1.8)

For each i ∈ I , we refer to λi and ρi as left and right representations of B(Hi) on B(H).

A two-faced pair of non-commutative random variables in (A, φ) is an ordered pair (b, c) of

random variables in A. We refer to b as left and c as right variables. Using the free product

construction of Hilbert spaces, we can define a bi-free independence of two-faced pairs.

Definition 1.2.1 ([15]). A family ((bi, ci))i∈I of two-faced pairs in (A, φ) is said to be bi-freely

independent (abbreviated bi-free) if there exists a family of Hilbert spaces with specified unit vec-

tors ((Hi,H
◦
i , ξi))i∈I and unital homomorphisms li : C〈Xi〉 → B(Hi) and ri : C〈Yi〉 → B(Hi),

i ∈ I , such that the joint distribution of the family ((bi, ci))i∈I with respect to φ is equal to the

joint distribution of the family of pairs ((π(Xi), π(Yi)))i∈I in (B(H), φξ), where (H,H◦, ξ) =

∗i∈I(Hi,H
◦
i , ξi) and π : C〈Xi, Yi|i ∈ I〉 → B(H) with π(Xi) = λi◦li(Xi) and π(Yi) = ρi◦ri(Yi).

Example 1.2.2. In Definition 1.1.2, we defined left and right creation and annihilation operators

8



on the full Fock space. For a complex Hilbert space H with orthonormal basis (ei)i∈I , let F(H) be

the full Fock space on which left and right creation operators li = l(ei) and ri = r(ei) with their

adjoints l∗i , r
∗
i . Then the family of two-faced families ((li, l

∗
i ), (ri, r

∗
i ))i∈I is bi-free in (B(H), φΩ),

where φΩ(·) = 〈·Ω,Ω〉.

Definition 1.2.3. Let n ∈ N and let χ : {1, . . . , n} → {l, r} be a map such that χ−1(l) = {i1 <

· · · < ik} and χ−1(r) = {ik+1 > · · · > in}. Define a permutation sχ on {1, . . . , n} by sχ(j) = ij .

A partition π ∈ P(n) is said to be bi-non-crossing with respect to χ if the partition s−1
χ · π is non-

crossing, i.e., s−1
χ ·π ∈ NC(n). We denote the set of all bi-non-crossing partitions with respect to χ

by BNC(χ). Let 1χ and 0χ denote the maximal and minimal elements in BNC(χ), respectively.

For n ≥ 1 and given a map χ : {1, . . . , n} → {l, r}, a multilinear functional κχ : An → C is

uniquely determined by the moment-cumulant relation

φ(a1 · · · an) =
∑

π∈BNC(χ)

(∏
V ∈π

κχ|V ((a1, . . . , an)|V )

)
for a1, · · · , an ∈ A

where the product is over all blocks V of π. These κχ’s are called the (l, r)-cumulant functionals

(or, bi-free cumulants) of (A, φ). As in the free case, we use the notations

κπ(a1, . . . , an) =
∏
V ∈π

κχ|V ((a1, . . . , an)|V ).

Let n,m ≥ 0. Consider a map χn,m : {1, . . . , n + m} → {l, r} such that χn,m(k) = l if

1 ≤ k ≤ n and χn,m(k) = r if n + 1 ≤ k ≤ n + m. For notational purpose, we will refer to

this map as χn,m : {1l, . . . , nl, 1r, . . . ,mr} → {l, r} with il 7→ l for 1 ≤ k ≤ n and jr 7→ r for

1 ≤ k ≤ m. In this particular case, we shall denote BNC(χn,m) by BNC(n,m), 1χn,m by 1n,m,

and κ1n,m by κn,m, for n,m ≥ 1. We also write κn,m(a, b) for κ1n,m(a, . . . , a︸ ︷︷ ︸
n

, b, . . . , b︸ ︷︷ ︸
m

) for a, b ∈ A.

Note that κn,0(a, b) = κn(a) and κ0,m(a, b) = κm(b).

As in the free case, it is proved in [4] that bi-free independence is equivalent to vanishing of

mixed cumulants. Let ((bi, ci))i∈I be a family of two-faced pairs in (A, φ). Then ((bi, ci))i∈I are
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bi-freely independent if and only if

κχ(a1, . . . , an) = 0

whenever the map ε : {1, . . . , n} → I satisfying aj ∈ {bε(j), cε(j)} is non-constant. Note that κχ

has the cumulant property; that is, if z1 = (b1, c1) and z2 = (b2, c2) are bi-free, then κχ(z1 + z2) =

κχ(z1) + κχ(z2).

For some 1 ≤ m ≤ n, let χ : {1, . . . ,m} → {l, r} be a map, and let k(0) := 0 < k(1) <

· · · < k(m) := n. Define a map χ̂ : {1, . . . , n} → {l, r} by χ̂(i) = χ(k(j)) for all i ∈ {k(j −

1) + 1, . . . , k(j)} where 1 ≤ i ≤ n and 1 ≤ j ≤ m. For each partition π in BNC(χ), there

exists a corresponding partition π̂ in BNC(χ̂) by replacing each node i of π by the block {k(j −

1) + 1, . . . , k(j)} where i ∈ {k(j − 1) + 1, . . . , k(j)}. Then we can easily see that 1̂χ = 1χ̂ and

0̂χ = ∪
1≤j≤m

{{k(j−1) + 1, . . . , k(j)}}. For any given two partitions π and σ in BNC(χ), let π∨σ

denote the smallest partition in BNC(χ) greater than both π and σ. Then we have the following

result on bi-free cumulants for products of random variables which will be very useful in Chapter

3.

Theorem 1.2.4 (Theorem 9.1.5 of [3]). Let (A, φ) be a non-commutative probability space and

{ai}ni=1 ∈ A. Under the above notations, we have

κ1χ(a1 · · · ak(1), ak(1)+1 · · · ak(2), . . . , ak(m−1)+1 · · · ak(m)) =
∑

π∈BNC(χ̂)

π∨0̂χ=1χ̂

κπ(a1, . . . , an). (1.9)

1.2.2 Partial bi-free transforms

Let (A, φ) be a non-commutative probability space and (a, b) be a two-faced pair in A. The

the two-variable Green’s function is the power series

Ga,b(z, w) = φ((z − a)−1(w − b)−1) =
1

zw
+
∑
m,n≥0
m+n≥1

φ(ambn)z−m−1w−n−1

10



and the partial bi-free R-transform is the generating series

Ra,b(z, w) =
∑
m,n≥0
m+n≥1

κm,n(a, b)zmwn.

Theorem 1.2.5 (Theorem 2.4 of [16]). We have the equality of germs of holomorphic functions

near (0, 0) ∈ C2,

Ra,b(z, w) = 1 + zRa(z) + wRb(w)− zw

G(a,b)

(
1
z

+Ra(z), 1
w

+Rb(w)
)

where Ra(z) and Rb(w) are one variable R-transforms.

The moment series of a two-faced pair (a, b) is a power series

Ma,b(z, w) = 1 +
∑
n,m≥0
n+m≥1

φ(anbm)znwm

and the cumulant series of (a, b) is

Ca,b(z, w) = 1 +
∑
n,m≥0
n+m≥1

κn,m(a, b)znwm = 1 +Ra,b(z, w).

For computational convenience, define the power series Ka,b of the form

Ka,b(z, w) =
∑
n,m≥1

κn,m(a, b)znwm.

Theorem 2.1 in [17] shows that if (a, b) is a two-faced pair of non-commutative random variables in

(A, φ) with φ(a), φ(b) 6= 0, the two-variables partial bi-free S-transform as a holomorphic function

of (z, w) ∈ (C \ {0})2 when z, w are near 0 is of the form

Sa,b(z, w) =
(z + 1)(w + 1)

zw

(
1− 1 + z + w

Ma,b(χa(z), χb(w))

)
. (1.10)
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Theorem 1.2.6 (Theorem 7.2.4 of [13]). Let (A, φ) be a non-commutative probability space and

let a, b ∈ A be arbitrary elements. Then,

Ma(z) +Mb(w) =
Ma(z)Mb(w)

Ma,b(z, w)
+ Ca,b(zMa(z), wMb(w)).

Using Theorem 1.2.6, we can obtain

Ka,b(zMa(z), wMb(w)) = 1− Ma(z)Mb(w)

Ma,b(z, w)
. (1.11)

Indeed, for a, b ∈ A,

Ka,b(zMa(z), wMb(w))

= Ma(z) +Mb(w)− Ma(z)Mb(w)

Ma,b(z, w)
− Ca(zMa(z))− Cb(wMb(w)) + 1

= Ma(z) +Mb(w)− Ma(z)Mb(w)

Ma,b(z, w)
−Ma(z)−Mb(w) + 1

= 1− Ma(z)Mb(w)

Ma,b(z, w)

where the second equality is by (1.5).

1.2.3 Central limit theorem

In free probability theory, Voiculescu proved the existence of central limit distributions.

Theorem 1.2.7 ([18]). Let (A, φ) be a non-commutative probability space, and let (ai)
∞
i=1 be a

family of free random variables in A such that

(i) φ(ai) = 0 for all i ≥ 1,

(ii) supi≥1 |φ(aki )| <∞ for all k ≥ 2,

(iii) limn→∞
1
n

∑n
j=1 φ(a2

i ) = r2/4 > 0.

12



Then letting sn = a1+···+an√
n

, the sequence (sn)∞n=1 converges in distribution to the semicircular

distribution γr, given by

γr(X
n) =

2

πr2

∫ r

−r
tn
√
r2 − t2dt.

In [15], the bi-free version of central limit theorem is also shown by Voiculescu.

Theorem 1.2.8 ([15]). A two-faced pair z := (zl, zr) has a bi-free central limit distribution if and

only if κχ(z) = 0 whenever χ : {1, ..., n} → {l, r} with n = 1 or n ≥ 3.

Theorem 1.2.9. Let (z(n))n∈N = ((z
(n)
l , z

(n)
r ))n∈N be a bi-free sequence of two-faced pairs in

(A, φ) such that

(i) ϕ(z
(n)
l ) = φ(z

(n)
r ) = 0,

(ii) supn≥1|φ(z
(n)
i1
· · · z(n)

im
)| <∞ for every i1, ..., im ∈ {l, r},

(iii) limN→∞

∑N
n=1 φ(z

(n)
i z

(n)
j )

N
= Cij for every i, j ∈ {l, r}.

Then, letting SN = (
∑N
n=1 z

(n)
l√

N
,
∑N
n=1 z

(n)
r√

N
), we have limN→∞ µSN (P ) = γC(P ) for all P ∈ C〈Xl, Xr〉,

where γC is the bi-free central limit distribution with γC(XiXj) = Cij for every i, j ∈ {l, r}.

Theorem 1.2.10. For each matrix C = (Cij)i,j∈{l,r} with complex number entries, there is exactly

one bi-free central limit distribution γC : C〈Xl, Xr〉 → C so that

γC(XiXj) = Cij for each i, j ∈ {l, r}.

For each matrix C, there exist vectors vl, v′l, vr, v
′
r ∈ H such that Cij = 〈vj, v′i〉 for each i, j ∈

{l, r}, and for every such choice, letting

zl = l(vl) + l∗(v′l) and zr = r(vr) + r∗(v′r),

the pair (zl, zr) has the bi-free central limit distribution γC .

13



2. PRINCIPAL FUNCTIONS FOR BI-FREE CENTRAL LIMIT DISTRIBUTIONS ∗

2.1 Principal function of a completely non-normal operator

Let T be a completely non–normal operator on a Hilbert space H with self-commutator T ∗T −

TT ∗ = −2C where C is trace class. Set U = 1
2
(T + T ∗) and V = −1

2
i(T − T ∗). Consider

the unital C*-algebra generated by C in B(H). This C*-algebra is isometrically isomorphic to

C(σ(C)), the complex valued continuous functions on σ(C), by the Gelfand-Naimark theorem.

Consider a function on σ(C) defined by

t 7→


−i
√
−t, t < 0

0, t = 0

√
t, t > 0

and then there exists the unique element Ĉ in the C*-algebra corresponding to this function by the

Gelfand transform. Note that Ĉ2 = C and ĈĈ∗ = Ĉ∗Ĉ = |C|.

The determining function of the operator T is defined to be

E(l, s) = I +
1

i
Ĉ(V − l)−1(U − s)−1Ĉ

for l ∈ C \ σ(V ) and s ∈ C \ σ(U). Then E(l, s), for each fixed l and s, is an invertible element

in the C*-algebra generated by T and I . Since det(I + AB) = det(I + BA) when A is compact

with AB and BA in trace class, we have

detE(l, s) = det

(
I +

1

i
C(V − l)−1(U − s)−1

)
= det

(
(V − l)(U − s)(V − l)−1(U − s)−1

)
. (2.1)

∗Reprinted with permission from [7].
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The principal function g is defined in [2] to be the element of L1(R2) such that

detE(l, s) = exp

(
1

2πi

∫∫
g(δ, γ)

dδ

δ − l
dγ

γ − s

)
. (2.2)

It is known that supp(g) is contained in {(δ, γ) ∈ R2 | γ + iδ ∈ σ(T )}. Moreover, it is a complete

unitary invariant for T if C has one dimensional range; that is, two completely non-normal opera-

tors T and T ′ are unitarily equivalent if and only if their principal functions agree, assuming each

of T and T ′ has a self-commutator with one dimensional range. In Theorem 8.1 of [2], it is proved

that

g(δ, γ) = ind(T − (γ + iδ))

if γ + iδ is not in the essential spectrum σe(T ). This result implies that the principal function g

of T is an extension of the Fredholm index of T − z to the whole plane. However, it is not the

typical situation that g assumes only integer values on the plane; indeed the map T 7→ g is onto,

namely (see [1]), any summable function on R2 with compact support is the principal function of

a completely non-normal operator with a trace class self-commutator.

2.2 The principal functions of certain operators

Definition 2.2.1. An implemented non-commutative probability space is a triple (A, φ, P ) where

(A, φ) is a non-commutative probability space and P = P 2 ∈ A is an idempotent so that

PaP = φ(a)P for all a ∈ A.

An implemented C∗-probability space (A, φ, P ) will satisfy additional requirements that (A, φ) is

a C∗-probability space and that P = P ∗. If a two-faced family ((zi)i∈I , (zj)j∈J) in an implemented

non-commutative probability space (A, φ, P ) satisfies that

[zi, zj] = λi,jP for some λi,j ∈ C, i ∈ I, j ∈ J,
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then the family ((zi)i∈I , (zj)j∈J) is called a system with rank ≤ 1 commutation where (λi,j)i∈I,j∈J

is the coefficient matrix of the system.

Remark 2.2.2. The bi-free two-faced system in Theorem 1.2.10 is an example of rank≤ 1 commu-

tation. Indeed, (B(F(H)), φΩ, P ) is an implemented C∗-probability space where φΩ is the vacuum

expectation and P is a projection on CΩ. We have [zl, zr] = (〈vr, v′l〉 − 〈vl, v′r〉)P .

Let H be a Hilbert space and v1, v2 ∈ H. We consider the operator T on F(H) given by

T = X1 + iX2, with X1 = l(v1) + l(v1)∗, X2 = r(v2) + r(v2)∗.

This arises from the bi-free central limit distribution and was described in Example 3.10 of [16].

We have [X1, X2] = 2i(Im〈v2, v1〉)P in the implemented C∗-probability space (B(F(H)), φΩ, P ),

so that

[T ∗, T ] = −4(Im〈v2, v1〉)P. (2.3)

Both the spectrum and the essential spectrum of X1 on F(H) equal [−2‖v1‖, 2‖v1‖] and those of

X2 equal [−2‖v2‖, 2‖v2‖]. By the following easy lemma, which is well known but whose proof

we include for convenience, the spectrum of the operator T = X1 + iX2 on F(H) is contained

in [−2‖v1‖, 2‖v1‖] + i[−2‖v2‖, 2‖v2‖]. Throughout this chapter, we are interested in non-normal

operators T , so we assume that Im〈v2, v1〉 is non-zero.

Lemma 2.2.3. If A and B are self-adjoint with σ(A) ⊆ [r1, r2] and σ(B) ⊆ [t1, t2], then σ(A +

iB) ⊆ [r1, r2] + i[t1, t2].

Proof. If A1 = A∗1, B1 ≥ 0, and B1 is invertible, then A1 + iB1 = B
1
2
1

(
B
− 1

2
1 A1B

− 1
2

1 + i
)
B

1
2
1 is

invertible sinceB
− 1

2
1 A1B

− 1
2

1 is self-adjoint. Suppose a+ ib /∈ [r1, r2]+ i[t1, t2] . Then either a < r1

or a > r2 or b < t1 or b > t2. If b < t1, then A+ iB− (a+ ib) = (A−a)+ i(B−b) and B−b ≥ 0

is invertible. So a+ ib /∈ σ(A+ iB). If b > t2, then a+ ib− (A+ iB) = (a−A) + i(b−B) and

b−B ≥ 0 is invertible, so that a+ib /∈ σ(A+iB). Since (A−a)+i(B−b) = i((B−b)−i(A−a)),

we can easily show thatA+iB−(a+ib) is invertible for each case of a < r1 and a > r2. Therefore,
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σ(A+ iB) ⊆ [r1, r2] + i[t1, t2].

The operator T ∈ B(H) is said to be hyponormal, if its self-commutator T ∗T−TT ∗ is positive.

Furthermore, if there is no reducing subspace of T , the restriction of T to which is normal, then T

is said to be pure hyponormal or completely non-normal hyponormal.

Theorem 2.2.4 (Theorem 2.1.3 of [9]). Let T ∈ B(H) be a hyponormal operator with [T ∗, T ] =

D. Then there is a unique orthogonal decomposition H = Hp(T ) ⊕ Hn(T ) where Hp(T ) and

Hn(T ) are reducing subspaces for T , such that

(i) Tp = T |Hp(T ) is pure hyponormal,

(ii) Tn = T |Hn(T ) is normal.

Moreover,

Hp(T ) =
∨
{T ∗kT lD(H) | k, l ∈ N}

Hn(T ) = {ζ ∈ H | DT ∗lT kζ = 0 for every k, l ∈ N}.

As we can see in (2.3), if Im〈v2, v1〉 ≤ 0 (or≥ 0), then T = X1 +iX2 is a hyponormal operator

(or cohyponormal, respectively) on F(H). By Theorem 2.2.4, the pure parts Hp(T ) and Hp(T
∗)

of T and T ∗ are equal to alg(T, T ∗, 1)Ω.

Assuming that Im〈v2, v1〉 ≤ 0, if v2 is a scalar mutiple of v1, then alg(T, T ∗, 1)Ω is dense in

F(Cv1) so that T is pure hyponormal on F(Cv1). However, if v2 is not a scalar multiple of v1, then

T is not a pure hyponormal operator on F(Cv1 + Cv2), that is, there exists a nontrivial reducing

subspace N of T in F(Cv1 + Cv2) such that T |N is normal. For, suppose that u is a unit vector

which is orthogonal to v1 in Cv1 + Cv2 and v2 = cv1 + du where c, d ∈ C are non-zero. Since v2

and c
|c|2v1 − d

|d|2u are orthogonal to each other, for each m,n ∈ N,

(l(v1) + l(v1)∗)m
(
u⊗

(
c

|c|2
v1 −

d

|d|2
u

))
∈ span

{
v⊗k1 ⊗ u⊗

(
c

|c|2
v1 −

d

|d|2
u

) ∣∣∣∣ k ∈ N
}
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and

(r(v2) + r(v2)∗)n
(
u⊗

(
c

|c|2
v1 −

d

|d|2
u

))
∈ span

{
u⊗

(
c

|c|2
v1 −

d

|d|2
u

)
⊗ v⊗k2

∣∣∣∣ k ∈ N
}
.

Since alg(T, T ∗, 1) = alg(X1, X2, 1) and [X1, X2] = 2i(Im〈v2, v1〉)P ,

N :=
∨{

(r(v2) + r(v2)∗)n(l(v1) + l(v1)∗)m
(
u⊗

(
c

|c|2
v1 −

d

|d|2
u

)) ∣∣∣∣m,n ∈ N
}

=
∨{

v⊗m1 ⊗ u⊗
(

c

|c|2
v1 −

d

|d|2
u

)
⊗ v⊗n2

∣∣∣∣m,n ∈ N
}
.

is a nontrivial reducing subspace of T in F(Cv1 + Cv2) which is orthogonal to CΩ. Clearly, the

restrictions of l(v1) + l(v1)∗ and r(v2) + r(v2)∗ to N commute, so the restriction of T to N is

normal. Now we will characterize the pure part alg(T, T ∗, 1)Ω of T in F(H) when v1 and v2 are

linearly independent.

Proposition 2.2.5. Let T = l(v1) + l(v1)∗+ i(r(v2) + r(v2)∗) with v1 and v2 linearly independent,

and let u and w be non-zero vectors in Cv1 + Cv2 with u ⊥ v1 and w ⊥ v2. For each n ∈ N, let

An be the span of length n tensor products in F(Cv1 + Cv2). Then

alg(T, T ∗, 1)Ω = CΩ⊕
⊕
n∈N

(An ∩ alg(T, T ∗, 1)Ω) (2.4)

and for every n ∈ N,

Bn := {v⊗n1 , v⊗n−1
1 ⊗ u, v⊗n−2

1 ⊗ u⊗ v2, · · · , v1 ⊗ u⊗ v⊗n−2
2 , u⊗ v⊗n−1

2 } (2.5)

and

B′n := {v⊗n2 , w ⊗ v⊗n−1
2 , v1 ⊗ w ⊗ v⊗n−2

2 , · · · , v⊗n−2
1 ⊗ w ⊗ v2, v

⊗n−1
1 ⊗ w} (2.6)
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are orthogonal bases of An ∩ alg(T, T ∗, 1)Ω. Furthermore, we have the obvious isomorphisms

alg(T, T ∗, 1)Ω ∼= F(Cv1)⊕ (F(Cv1)⊗ u⊗ F(Cv2))

∼= F(Cv2)⊕ (F(Cv1)⊗ w ⊗ F(Cv2)) .

Proof. We will prove by induction on n that Bn is an orthogonal basis for An∩ alg(T, T ∗, 1). This

is clear for n = 1. For n = 2, consider the orthogonal basis of A2

Z2 = {v⊗2
1 , v1 ⊗ u, u⊗ v2, u⊗ w}

containing B2. Here, B2 = {v⊗2
1 , v1 ⊗ u, u ⊗ v2} ⊆ alg(T, T ∗, 1)Ω and Z2 \ B2 = {u ⊗ w} ⊆

(alg(T, T ∗, 1)Ω)⊥ as we saw in the above argument describing N . Now the assertion is proved

for n = 2. Consider another orthogonal basis of A2, Z ′2 = {v⊗2
2 , v2 ⊗ w,w ⊗ v2, w

⊗2}. Then

Z3 := {v1 ⊗ Z2} ∪ {u ⊗ Z ′2} is an orthogonal basis of A3. Since alg(T, T ∗, 1)Ω is a reducing

subspace of T , v1⊗B2 ⊆ alg(T, T ∗, 1)Ω and v1⊗{Z2 \B2} ⊆ (alg(T, T ∗, 1)Ω)⊥. In u⊗Z ′2, only

u⊗ v⊗2
2 is contained in alg(T, T ∗, 1)Ω because every tensor product in F(Cv1 +Cv2) which starts

with u and ends with w belongs to N and is therefore orthogonal to alg(T, T ∗, 1)Ω; moreover

u⊗w⊗ v2 = (r(v2) + r(v2)∗)(u⊗w) ∈ (alg(T, T ∗, 1)Ω)⊥. Hence, B3 = {v1⊗B2}∪ {u⊗ v⊗2
2 }

is contained in alg(T, T ∗, 1)Ω and Z3 \ B3 is contained in (alg(T, T ∗, 1)Ω)⊥. Thus the assertion

holds for n = 3.

The induction step for general n proceeds similarly. For each n ∈ N, construct an orthogonal

basis Zn for An as follows.

Zn = {vn1 } ∪

( ⋃
1≤j≤n

{vn−j1 ⊗ u⊗ Z ′j−1}

)
,

where Z ′k is the set of all length k tensor products in F(H) whose components consist of v2 and

w. The induction hypothesis is that Bj is an orthogonal basis of Aj ∩ alg(T, T ∗, 1)Ω and Zj \ Bj

is orthogonal to alg(T, T ∗, 1)Ω for each 1 ≤ j ≤ n. Then Zn+1 = {v1 ⊗ Zn} ∪ {u ⊗ Z ′n} and it
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is an orthogonal basis of An+1. Since alg(T, T ∗, 1)Ω is a reducing subspace of T and is invariant

under l(v1) + l(v1)∗, we have v1⊗Bn = {v⊗n+1
1 , v⊗n1 ⊗u, v⊗n−1

1 ⊗u⊗ v2, · · · , v1⊗u⊗ v⊗n−1
2 } ⊆

alg(T, T ∗, 1)Ω and v1 ⊗ {Zn \Bn} ⊆ (alg(T, T ∗, 1)Ω)⊥. In u⊗ Z ′n, only u⊗ v⊗n2 is contained in

alg(T, T ∗, 1)Ω and the other elements are orthogonal to alg(T, T ∗, 1)Ω by the induction hypothesis.

Therefore, Bn+1 = {v1 ⊗ Bn} ∪ {u⊗ v⊗n2 } is an orthogonal basis for An+1 ∩ alg(T, T ∗, 1)Ω and

Zn+1 \ Bn+1 is an orthogonal basis for An+1 ∩ (alg(T, T ∗, 1)Ω)⊥. Thus, for every n ∈ N, Bn is

an orthogonal basis for the set of all length n tensor products in alg(T, T ∗, 1)Ω. This finishes the

proof by induction.

The proof that for n ∈ N, B′n is also an orthogonal basis for An ∩ alg(T, T ∗, 1)Ω follows

similarly by induction on n, using the invariance of alg(T, T ∗, 1)Ω under r(v2)+r(v2)∗ rather than

l(v1) + l(v1)∗. The equality (2.4) follows by the above proofs.

Before we further investigate the operator T = X1+iX2 having v1 and v2 linearly independent,

we will take a look at the case when the vectors v1 and v2 are linearly dependent. We will refer to

the following result.

Theorem 2.2.6 ([5]). If T is a hyponormal operator on H, then C∗(T ) is generated by the unilat-

eral shift if and only if T is unitarily equivalent to S, where S satisfies the conditions

(i) S is irreducible,

(ii) self-commutator S∗S − SS∗ is compact,

(iii) σe(S) is a simple closed curve,

(iv) σ(S) is the closure of V , where V is the bounded component of C\σe(S),

(v) ind(S − λ) = −1 for λ ∈ σ(S)\σe(S).

Example 2.2.7. Let v1 = α · v2, where α ∈ C, Im α 6= 0, and ‖v2‖ = 1. Let T be given by

T = l(v1) + l(v1)∗ + i(r(v2) + r(v2)∗)

= (αl(v2) + ir(v2)) + (ᾱl(v2)∗ + ir(v2)∗)
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on F(C). Then,

T (Ω) = (α + i)v2

and for each n ∈ N,

T (v⊗n2 ) = (α + i)v⊗n+1
2 + (ᾱ + i)v⊗n−1

2 .

Therefore,

T = (α + i)U + (ᾱ + i)U∗,

where U is the unilateral shift on F(C). If α = i, then T = 2iU and [T ∗, T ] = 4P so that T is a

hyponormal operator. If α = −i, then T = 2iU∗ and [T ∗, T ] = −4P , so T is cohyponormal.

Since the image of the unilateral shift U in the Calkin algebra is a normal operator, by the

functional calculus, we have

σe((α + i)U + (ᾱ + i)U∗) = {(α + i)t+ (ᾱ + i)t̄ | t ∈ σe(U)}

= {αt+ αt+ i(t+ t̄) | t ∈ T}.

This curve is the solution set of

x2 + |α|2y2 − 2(Re α)xy = 4(Im α)2 (2.7)

in the xy-plane, which is an ellipse centered at the origin. So the essential spectrum of T is a

simple closed curve. Let V0 be the bounded component of C\σe(T ). Then by Theorem 2.2.6, we

have

σ(T ) = V0,

and for λ ∈ σ(T )\σe(T ),

ind(T − λ) =


−1, Im α > 0

1, Im α < 0.
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Thus, the principal function is the characteristic function of the interior of the ellipse (2.7) when

Im α < 0, and is the negative of this when Im α > 0.

In the rest of this chapter, we consider the pure part of T = X1 + iX2 acting on alg(T, T ∗, 1)Ω

where X1 = l(v1) + l(v1)∗ and X2 = r(v2) + r(v2)∗. So T is a completely non-normal operator.

Now we will find a formula for the principal function of T when v1 and v2 are linearly inde-

pendent. For this, we will use equation (2.2), so we will first establish a formula for detE(l, s) of

T . Suppose l ∈ C \ σ(X2) and s ∈ C \ σ(X1). From (2.1), we have

detE(l, s) = det((X2 − l)(X1 − s)(X2 − l)−1(X1 − s)−1)

= det(((X1 − s)(X2 − l)− 2Im〈v2, v1〉iP )(X2 − l)−1(X1 − s)−1)

= det(1− 2Im〈v2, v1〉iP (X2 − l)−1(X1 − s)−1)

= det(1− 2Im〈v2, v1〉iP 2(X2 − l)−1(X1 − s)−1)

= det(1− 2Im〈v2, v1〉iP (X2 − l)−1(X1 − s)−1P )

= det(1− 2Im〈v2, v1〉i · φΩ((X2 − l)−1(X1 − s)−1)P )

= 1− 2Im〈v2, v1〉i · φΩ((X2 − l)−1(X1 − s)−1)

= 1− 2Im〈v2, v1〉i · φΩ((s̄−X1)−1(l̄ −X2)−1)

= 1− 2Im〈v2, v1〉i ·G(X1,X2)(s̄, l̄) (2.8)

where G(X1,X2)(z, w) = φ((z − X1)−1(w − X2)−1). Note that G(X1,X2)(z, w) is the germ of a

holomorphic function near (∞,∞) in C∞×C∞ (see [16]). For the given two-faced pair (X1, X2),

the definition of the partial bi-free R-transform and Lemma 7.2 of [15] give

R(X1,X2)(z, w) = R2,0(X1, X2) +R0,2(X1, X2) +R1,1(X1, X2)

= φ(X2
1 )z2 + φ(X2

2 )w2 + φ(X1X2)zw

= ‖v1‖2z2 + ‖v2‖2w2 + 〈v2, v1〉zw. (2.9)
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From the formula for the partial bi-free R-transform in Theorem 1.2.5, we also have

R(X1,X2)(z, w) = 1 + ‖v1‖2z2 + ‖v2‖2w2 − zw

G(X1,X2)(
1
z

+ ‖v1‖2z, 1
w

+ ‖v2‖2w)
. (2.10)

Denoting

t1 =
1

z
+ ‖v1‖2z and t2 =

1

w
+ ‖v2‖2w,

for z, w ∈ C \ {0} close to 0, we have

z =
t1 −

√
t21 − 4‖v1‖2

2‖v1‖2
and w =

t2 −
√
t22 − 4‖v2‖2

2‖v2‖2
,

where the branches of the square roots are
√
t21 − 4‖v1‖2 ≈ t1 and

√
t22 − 4‖v2‖2 ≈ t2 for |t1| and

|t2| large. From the formulas (2.9) and (2.10), we get

G(X1,X2)(t1, t2) =
zw

1− 〈v2, v1〉zw

=
(t1 −

√
t21 − 4‖v1‖2)(t2 −

√
t22 − 4‖v2‖2)

4‖v1‖2‖v2‖2 − 〈v2, v1〉(t1 −
√
t21 − 4‖v1‖2)(t2 −

√
t22 − 4‖v2‖2)

, (2.11)

where |t1| and |t2| are large.

Let

q(t) =
t−
√
t2 − 4

2
t ∈ C \ [−2, 2]. (2.12)

The function z 7→ z + 1
z

sends the punctured unit disk {z | 0 < |z| < 1} biholomorphically onto

C \ [−2, 2]. The function q is its inverse with respect to composition. We deduce that the identity

q(t) = q(t̄) holds for all t ∈ C \ [−2, 2].

By (2.8) and (2.11), for |l| and |s| large, we have

detE(l, s)

= 1− 2(Im〈v2, v1〉)i

(
(s̄−

√
s̄2 − 4‖v1‖2)(l̄ −

√
l̄2 − 4‖v2‖2)

4‖v1‖2‖v2‖2 − 〈v2, v1〉(s̄−
√
s̄2 − 4‖v1‖2)(l̄ −

√
l̄2 − 4‖v2‖2)

)
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= 1 +
2(Im〈v1, v2〉)i(s−

√
s2 − 4‖v1‖2)(l −

√
l2 − 4‖v2‖2)

4‖v1‖2‖v2‖2 − 〈v1, v2〉(s−
√
s2 − 4‖v1‖2)(l −

√
l2 − 4‖v2‖2)

=
4‖v1‖2‖v2‖2 − 〈v1, v2〉(s−

√
s2 − 4‖v1‖2)(l −

√
l2 − 4‖v2‖2)

4‖v1‖2‖v2‖2 − 〈v1, v2〉(s−
√
s2 − 4‖v1‖2)(l −

√
l2 − 4‖v2‖2)

=
1− ᾱ

‖v1‖‖v2‖q
(

s
‖v1‖

)
q
(

l
‖v2‖

)
1− α

‖v1‖‖v2‖q
(

s
‖v1‖

)
q
(

l
‖v2‖

) (2.13)

where α = 〈v1, v2〉, and for the second equality, we have used

(s̄−
√
s̄2 − 4‖v1‖2) = 2‖v1‖ q

(
s̄

‖v1‖

)
= 2‖v1‖ q

(
s

‖v1‖

)
= s−

√
s2 − 4‖v1‖2

and

(l̄ −
√
l̄2 − 4‖v2‖2) = 2‖v2‖ q

(
l̄

‖v2‖

)
= 2‖v2‖ q

(
l

‖v2‖

)
= l −

√
l2 − 4‖v2‖2.

Since v1 and v2 are linearly independent, we have |α| < ‖v1‖‖v2‖. Since
∣∣∣q ( s

‖v1‖

)∣∣∣ < 1 and∣∣∣q ( l
‖v2‖

)∣∣∣ < 1 for s ∈ C\[−2‖v1‖, 2‖v1‖] and l ∈ C\[−2‖v2‖, 2‖v2‖], the numerator and denomi-

nator in (2.13) do not vanish for such s and l. So the right-hand side of (2.13) is a holomorphic func-

tion there. Since by definition in (2.8), detE(l, s) is holomorphic on (C∞\σ(X2))×(C∞\σ(X1)),

it follows from the analytic continuation that the formula of detE(l, s) in (2.13) holds for all

s ∈ C \ [−2‖v1‖, 2‖v1‖] and l ∈ C \ [−2‖v2‖, 2‖v2‖].

In the rest of this section, we find the formula of the principal function g(δ, γ) of T by using

the formula (2.13). The principal function g was defined on R2 by

detE(l, s) = exp

(
1

2πi

∫
R

∫
R
g(δ, γ)

dδ

δ − l
dγ

γ − s

)

and supp(g) ⊆ {(δ, γ) ∈ R2 | γ + iδ ∈ σ(T )}. To find the principal function of T , consider the
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function f defined by

f(l, γ) =

∫
R
g(δ, γ)

dδ

δ − l
.

for l ∈ C\σ(X2) and γ ∈ R. Fixing γ ∈ R, f(l, γ) is a holomorphic function for l ∈ C \ σ(X2).

From (2.13) and the definition of g(δ, γ), we have

∫
R
f(l, γ)

dγ

γ − s
= (2πi) Log

1− ᾱ
‖v1‖‖v2‖q

(
s
‖v1‖

)
q
(

l
‖v2‖

)
1− α

‖v1‖‖v2‖q
(

s
‖v1‖

)
q
(

l
‖v2‖

)
 , (2.14)

where s ∈ C∞\σ(X1) and l ∈ C∞\σ(X2). Now we will find the function f(l, γ) by using the

Stieltjes inversion formula. We defined the function q(t) for t ∈ C \ [−2, 2] in (2.12).

Lemma 2.2.8. If t0 ∈ [−2, 2], then

lim
ε↘0

q(t0 + iε) =
t0 − i

√
4− t20

2
.

Proof. For t0 ∈ (−2, 2),

lim
ε↘0

q(t0 + iε) = lim
ε↘0

t0 + iε−
√

(t0 + iε)2 − 4

2

= lim
ε↘0

t0 + iε−
√
−(4 + ε2 − t20) + 2iεt0

2

=
t0 − i

√
4− t20

2
.

For, when ε is large and positive, the branch of a square root is such that
√
−(4 + ε2 − t20) + 2iεt0 ≈

t0 + iε. So limε↘0

√
−(4 + ε2 − t20) + 2iεt0 = i

√
4− t20.

Define a function ζ(t) for t ∈ [−2, 2] by

ζ(t) =
t− i
√

4− t2
2

.
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Then ζ(t) ∈ T for t ∈ [−2, 2], where T is a unit circle in C. By Lemma 2.2.8, the limit of q(t+ iε)

goes to ζ(t) as ε↘ 0, where t ∈ [−2, 2]. Then we have for γ ∈ [−2‖v1‖, 2‖v1‖],

lim
ε↘0

q

(
γ

‖v1‖
+ i

ε

‖v1‖

)
=

γ
‖v1‖ − i

√
4−

(
γ
‖v1‖

)2

2
= ζ

(
γ

‖v1‖

)
∈ T. (2.15)

Fix l ∈ R \ [−2‖v2‖, 2‖v2‖]. Since clearly f(l, γ) = 0 for γ ∈ R \ σ(X1), we suppose

γ ∈ σ(X1). Using (2.14), the Stieltjes inversion formula, and (2.15), we have

f(l, γ)

=
1

π
lim
ε↘0

Im

(2πi) Log

1− ᾱ
‖v1‖‖v2‖q

(
γ
‖v1‖ + i ε

‖v1‖

)
q
(

l
‖v2‖

)
1− α

‖v1‖‖v2‖q
(

γ
‖v1‖ + i ε

‖v1‖

)
q
(

l
‖v2‖

)


= 2 log

∣∣∣∣∣∣
1− ᾱ

‖v1‖‖v2‖ζ
(

γ
‖v1‖

)
q
(

l
‖v2‖

)
1− α

‖v1‖‖v2‖ζ
(

γ
‖v1‖

)
q
(

l
‖v2‖

)
∣∣∣∣∣∣

= log

(
1− ᾱ

‖v1‖‖v2‖ζ
(

γ
‖v1‖

)
q
(

l
‖v2‖

))(
1− α

‖v1‖‖v2‖ζ
(

γ
‖v1‖

)
q
(

l
‖v2‖

))
(

1− α
‖v1‖‖v2‖ζ

(
γ
‖v1‖

)
q
(

l
‖v2‖

))(
1− ᾱ

‖v1‖‖v2‖ζ
(

γ
‖v1‖

)
q
(

l
‖v2‖

))

= Log

(
1− ᾱ

‖v1‖‖v2‖
ζ

(
γ

‖v1‖

)
q

(
l

‖v2‖

))
+ Log

(
1− α

‖v1‖‖v2‖
ζ

(
γ

‖v1‖

)
q

(
l

‖v2‖

))

− Log

(
1− α

‖v1‖‖v2‖
ζ

(
γ

‖v1‖

)
q

(
l

‖v2‖

))
− Log

(
1− ᾱ

‖v1‖‖v2‖
ζ

(
γ

‖v1‖

)
q

(
l

‖v2‖

))
(2.16)

where Log is the principal branch of the logarithm. This equality holds where γ ∈ σ(X1) and

l ∈ R \ [−2‖v2‖, 2‖v2‖].

Fix γ ∈ σ(X1). Since each expression appearing as an argument of Log, above, remains in the

disk of radius 1 centered at 1 for l ∈ C \ [−2‖v2‖, 2‖v2‖]. So the expression (2.16) is holomorphic
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on C\[−2‖v2‖, 2‖v2‖]. The equality (2.16) was derived for l ∈ R\[−2‖v2‖, 2‖v2‖], but as defined,

f(l, γ) is holomorphic in C \ [−2‖v2‖, 2‖v2‖]. By the analytic continuation, we have

∫
R
g(δ, γ)

dδ

δ − l

= Log

(
1− ᾱ

‖v1‖‖v2‖
ζ

(
γ

‖v1‖

)
q

(
l

‖v2‖

))
+ Log

(
1− α

‖v1‖‖v2‖
ζ

(
γ

‖v1‖

)
q

(
l

‖v2‖

))

− Log

(
1− α

‖v1‖‖v2‖
ζ

(
γ

‖v1‖

)
q

(
l

‖v2‖

))
− Log

(
1− ᾱ

‖v1‖‖v2‖
ζ

(
γ

‖v1‖

)
q

(
l

‖v2‖

))

for γ ∈ σ(X1) and l ∈ C\σ(X2). Now we will apply the Stieltjes inversion formula to f(l, γ) in

order to recover the principal function g(δ, γ) of T . Since limε↘0 q
(

δ
‖v2‖ + i ε

‖v2‖

)
= ζ

(
δ
‖v2‖

)
for

δ ∈ σ(X2) as in (2.15), it follows that

g(δ, γ)

=
1

π
lim
ε↘0

Im f(δ + iε, γ)

=
1

π

(
Arg

(
1− ᾱ

‖v1‖‖v2‖
ζ

(
γ

‖v1‖

)
ζ

(
δ

‖v2‖

))
+ Arg

(
1− α

‖v1‖‖v2‖
ζ

(
γ

‖v1‖

)
ζ

(
δ

‖v2‖

))

− Arg

(
1− α

‖v1‖‖v2‖
ζ

(
γ

‖v1‖

)
ζ

(
δ

‖v2‖

))
− Arg

(
1− ᾱ

‖v1‖‖v2‖
ζ

(
γ

‖v1‖

)
ζ

(
δ

‖v2‖

)))
.

Set α
‖v1‖‖v2‖ = reiφ for 0 < r < 1, ζ

(
γ
‖v1‖

)
= eiθ1 , and ζ

(
δ
‖v2‖

)
= eiθ2 . Then we get

g(δ, γ) =
1

π

(
Arg

(
1− rei(−φ+θ1+θ2)

)
+ Arg

(
1− rei(φ−θ1+θ2)

)
− Arg

(
1− rei(φ+θ1+θ2)

)
− Arg

(
1− rei(−φ−θ1+θ2)

) )
=

1

π

(
arctan

(
−r sin(−φ+ (θ1 + θ2))

1− r cos(−φ+ (θ1 + θ2)

)
+ arctan

(
−r sin(φ− (θ1 − θ2))

1− r cos(φ− (θ1 − θ2))

)

27



− arctan

(
−r sin(φ+ (θ1 + θ2))

1− r cos(φ+ (θ1 + θ2))

)
− arctan

(
−r sin(−φ− (θ1 − θ2))

1− rcos(−φ− (θ1 − θ2))

))

=
1

π

(
arctan

(
r sin(φ− (θ1 + θ2))

1− r cos(φ− (θ1 + θ2))

)
+ arctan

(
r sin(φ+ (θ1 + θ2))

1− r cos(φ+ (θ1 + θ2))

)
− arctan

(
r sin(φ− (θ1 − θ2))

1− r cos(φ− (θ1 − θ2))

)
− arctan

(
r sin(φ+ (θ1 − θ2))

1− r cos(φ+ (θ1 − θ2))

))
. (2.17)

2.3 On the essential spectrum

As an application, we determine the essential spectrum of the operator T whose principal

function we found in Section 2.2. We will use the following, which follows from Theorem 8.1 of

[2].

Theorem 2.3.1 ([2]). Suppose T is an operator on a Hilbert space H with self-commutator T ∗T −

TT ∗ in trace class. For γ + iδ not in the essential spectrum of T ,

g(δ, γ) = ind(T − (γ + iδ)),

where g(δ, γ) is the principal function for T .

Lemma 2.3.2. Let 0 < r < 1 and let

h(r, φ, θ1, θ2)

=
1

π

(
arctan

(
r sin(φ− (θ1 + θ2))

1− r cos(φ− (θ1 + θ2))

)
+ arctan

(
r sin(φ+ (θ1 + θ2))

1− r cos(φ+ (θ1 + θ2))

)

− arctan

(
r sin(φ− (θ1 − θ2))

1− r cos(φ− (θ1 − θ2))

)
− arctan

(
r sin(φ+ (θ1 − θ2))

1− r cos(φ+ (θ1 − θ2))

))
.

(i) If φ = 0 or φ = π, then h(r, φ, θ1, θ2) = 0.

(ii) If 0 < φ < π, then for all θ1, θ2 ∈ [−π, 0], we have

− 2

π
arctan

(
2r sinφ

1− r2

)
≤ h(r, φ, θ1, θ2) ≤ 0,
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with equality holding on the left when θ1 = θ2 = −π
2

and equality holding on the right only

when θ1 ∈ {−π, 0} or θ2 ∈ {−π, 0}.

(iii) If π < φ < 2π, then for all θ1, θ2 ∈ [−π, 0], we have

0 ≤ h(r, φ, θ1, θ2) ≤ − 2

π
arctan

(
2r sinφ

1− r2

)
,

with equality holding on the right when θ1 = θ2 = −π
2

and equality holding on the left only

when θ1 ∈ {−π, 0} or θ2 ∈ {−π, 0}.

Proof. Part (i) is clear and we may assume φ ∈ (0, π) ∪ (π, 2π).

Let ν = θ1 + θ2 and µ = θ1 − θ2. Then we are interested in the function

h̃(r, φ, ν, µ) =
1

π

(
arctan

(
r sin(φ− ν)

1− r cos(φ− ν)

)
+ arctan

(
r sin(φ+ ν)

1− r cos(φ+ ν)

)

− arctan

(
r sin(φ− µ)

1− r cos(φ− µ)

)
− arctan

(
r sin(φ+ µ)

1− r cos(φ+ µ)

))
,

where

−2π ≤ ν ≤ 0 (2.18)

−min(−ν, 2π + ν) ≤ µ ≤ min(−ν, 2π + ν). (2.19)

In particular, we always have |µ| ≤ π. Note that the boundaries of the region described by (2.18)

and (2.19) correspond to θ1 ∈ {−π, 0} or θ2 ∈ {−π, 0}, where the function h vanishes.

An extreme point of h̃ not on the boundary can occur only where

∂h̃

dν
=

∂h̃

dµ
= 0.

We compute
d

dx
arctan

(
r sin(x)

1− r cos(x)

)
=

r(cos(x)− r)
1− 2r cos(x) + r2

.
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We also compute
d

dc

(
c− r

1− 2rc+ r2

)
=

1− r2

(1− 2rc+ r2)2
> 0,

so the function

c 7→ r(c− r)
1− 2rc+ r2

is strictly increasing on [−1, 1]. Therefore,

∂h̃

dν
=

d

dν

(
arctan

(
r sin(φ− ν)

1− r cos(φ− ν)

)
+ arctan

(
r sin(φ+ ν)

1− r cos(φ+ ν)

))
=
−r(cos(φ− ν)− r)

1− 2r cos(φ− ν) + r2
+

r(cos(φ+ ν)− r)
1− 2r cos(φ+ ν) + r2

vanishes if and only if cos(φ− ν) = cos(φ+ ν), which in turn occurs if and only if either ν ∈ πZ

or φ ∈ πZ. We assumed φ /∈ πZ. If ν ∈ {−2π, 0}, then ν is on the boundary of the interval (2.18),

so the only possibility that is not on the boundary of the region is ν = −π.

Arguing as above, ∂h̃
dµ

= 0 if and only if cos(φ− µ) = cos(φ+ µ). Avoiding the boundary, this

leaves only µ = 0. We conclude that the only extreme point of h̃ not on the boundary occurs at

(ν, µ) = (−π, 0), i.e., at (θ1, θ2) = (−π
2
,−π

2
), and the value of h̃ there is

− 2

π

(
arctan

(
r sinφ

1− r cosφ

)
+ arctan

(
r sinφ

1 + r cosφ

))
. (2.20)

We have the identity, for α, β ∈ R,

arctan(α) + arctan(β) ∈ arctan

(
α + β

1− αβ

)
+ πZ.

Letting

α =
r sinφ

1− r cosφ
and β =

r sinφ

1 + r cosφ
,

since

0 < αβ =
r2 sin2 φ

1− r2 + r2 sin2 φ
< 1,
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we find that the quantity (2.20) equals

− 2

π
arctan

(
α + β

1− αβ

)
= − 2

π
arctan

(
2r sinφ

1− r2

)
. (2.21)

We already observed that on the boundaries of the region described by (2.18)–(2.19), the func-

tion h̃ vanishes and we just showed that the only extreme value not on the boundary is (2.21),

which is attained when θ1 = θ2 = −π
2
. In particular, h̃ is never vanishing on the interior of the

region. This completes the proof of (ii) and (iii).

Theorem 2.3.3. Let T = l(v1) + l(v1)∗ + i(r(v2) + r(v2)∗) with v1 and v2 linearly independent

and Im〈v1, v2〉 6= 0. Then the essential spectrum σe(T ) of T is the closed rectangle

{γ + iδ ∈ C | |γ| ≤ 2‖v1‖ and |δ| ≤ 2‖v2‖}, (2.22)

which equals the spectrum σ(T ) of T .

Proof. By Lemma 2.2.3, we have that σ(T ) is contained in the rectangle (2.22). For γ ∈ σ(X1)

and δ ∈ σ(X2), we have the formula of the principal function g(δ, γ) in (2.17). By Lemma

2.3.2, −1 < g(δ, γ) ≤ 0 if Im〈v1, v2〉 > 0, and 0 ≤ g(δ, γ) < 1 if Im〈v1, v2〉 < 0. The

equality g(δ, γ) = 0 holds only when γ ∈ {2‖v1‖,−2‖v1‖} or δ ∈ {2‖v2‖,−2‖v2‖}, i.e., when

γ and δ are on the boundary of the rectangle (2.22). So the function g(δ, γ) does not assume any

integer value on the interior of the rectangle. But, by Theorem 2.3.1, if γ + iδ /∈ σe(T ), then

g(δ, γ) = ind(T − (γ + iδ)). So the whole interior of the rectangle is included in the essential

spectrum of T . Since σe(T ) is closed in C and is contained in σ(T ), we have σe(T ) equals the

rectangle (2.22).

Proposition 2.3.4 ([8]). Suppose that T has a compact self-commutator T ∗T − TT ∗ on a Hilbert

space H and ind(T − λ) = 0 for all λ ∈ C \ σe(T ). Then T is of the form N + K where N is

normal and K is compact.

Corollary 2.3.5. The operator T = l(v1) + l(v1)∗ + i(r(v2) + r(v2)∗) with linearly independent
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v1 and v2 and Im〈v1, v2〉 6= 0 is normal plus compact.

Example 2.3.6. Let v2 and u be orthogonal vectors in a Hilbert space H with ‖v2‖ = ‖u‖ = 1,

and let α = 1√
2
− 1√

2
i ∈ C. Set v1 in H by v1 = αv2 + u. Suppose that T is a bounded

operator on the full Fock space F(H) defined by T = l(v1) + l(v1)∗ + i(r(v2) + r(v2)∗). Then,

[T ∗, T ] = −2
√

2P and it is an one-dimensional projection on F(H). So, by restricting T ∗ to its

pure part alg(T, T ∗, 1)Ω, T ∗ is a completely non-normal hyponormal operator.

We can find the principal function g(δ, γ) of T by the formula (2.17). For each pair (δ, γ) such

that |δ| ≤ 2 and |γ| ≤ 2
√

2, we have

g(δ, γ) =
1

π

(
Arg

(
1−

(
1

2
+

1

2
i

)
ζ

(
γ√
2

)
ζ(δ)

)
+ Arg

(
1−

(
1

2
− 1

2
i

)
ζ

(
γ√
2

)
ζ(δ)

)

− Arg

(
1−

(
1

2
− 1

2
i

)
ζ

(
γ√
2

)
ζ(δ)

)
− Arg

(
1−

(
1

2
+

1

2
i

)
ζ

(
γ√
2

)
ζ(δ))

))
,

where ζ(t) = t−i
√

4−t2
2

for t ∈ [−2, 2]. Since Im〈v1, v2〉 < 0, we have 0 ≤ g(δ, γ) < 1 for all

(δ, γ) ∈ R2. By Lemma 2.3.2, g(δ, γ) is vanishing only when (δ, γ) is on the boundary of the

rectangle {(δ, γ) ∈ R2 | |γ| ≤ 2
√

2 and |δ| ≤ 2}. Therefore, σ(T ) = σe(T ) = {γ + iδ ∈ C | |γ| ≤

2
√

2 and |δ| ≤ 2}. See Figure 2.1.

Figure 2.1: The principal function g(δ, γ) of T where v1 = αv2 + u, α = 1√
2
− 1√

2
i, u ⊥ v1 and

‖v2‖ = ‖u‖ = 1.
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3. SOME RESULTS ON PARTIAL BI-FREE TRANSFORMS

3.1 Multiplicative convolution of bi-free two-faced families

In this section, we will discuss bi-free cumulants for certain combinations for random variables.

Let (a1, b1) and (a2, b2) be bi-free two-faced pairs in a non-commutative probability space (A, φ)

with φ(ai) = φ(bi) = 1 for i = 1, 2. Furthermore, let fi (respectively gi) denote the multiplicative

functions associated to the cumulants of ai (respectively bi) defined by fi(0n, 1n) = κn(ai) (re-

spectively gi(0n, 1n) = κn(bi)), where 0n and 1n are the minimal and maximal elements in NC(n)

and i = 1, 2.

Lemma 3.1.1. Under the above assumptions, as formal power series,

(i)
∑
n,m≥1

κn,m(a1a2, . . . , a1a2︸ ︷︷ ︸
n

, b2, b1b2, . . . , b1b2︸ ︷︷ ︸
m− 1

)znwm−1 =
Ka2,b2(φf2∗̆f1(z), φg2∗̆g1(w))

φg2∗̆g1(w)

(ii)
∑
n,m≥1

κn,m(a2, a1a2, . . . , a1a2︸ ︷︷ ︸
n− 1

, b1b2, . . . , b1b2︸ ︷︷ ︸
m

)zn−1wm =
Ka2,b2(φf2∗̆f1(z), φg2∗̆g1(w))

φf2∗̆f1(z)

(iii)
∑
n,m≥1

κn,m(a2, a1a2, . . . , a1a2︸ ︷︷ ︸
n− 1

, b2, b1b2, . . . , b1b2︸ ︷︷ ︸
m− 1

)zn−1wm−1

=
Ka2,b2(φf2∗̆f1(z), φg2∗̆g1(w))

φf2∗̆f1(z)φg2∗̆g1(w)

Proof. We will prove the equality (i). Let n,m ≥ 1. By Theorem 1.2.4,

κn,m(a1a2, . . . , a1a2, b2, b1b2, . . . , b1b2)

=
∑

π∈BNC(2n,2m)
π∨σn,m=12n,2m

κπ(a1, a2, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, 1A, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b2 occurs m times

)

where σn,m := {{(2k − 1)l, (2k)l}}nk=1 ∪ {{(2k − 1)r, (2k)r}}mk=1 ∈ BNC(2n, 2m).

Let π ∈ BNC(2n, 2m) and π∨σn,m = 12n,2m. Since (a1, b1) and (a2, b2) are bi-freely independent,
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the cumulant κπ(a1, a2, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, 1A, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b2 occurs m times

) vanishes when the partition π contains

either a non-singleton block including 1A or a block with both (2k)i and (2k′ − 1)j for some

i, j ∈ {l, r} and k, k′. So we will only consider a partition π which does not include such blocks.

Since π ∨ σn,m = 12n,2m, the partition π must contain at least one block V which has both left

and right indices. Let Vπ be the block Vπ such that min(Vπ) is smallest among all blocks containing

both left and right indices, where min(Vπ) denotes the minimum index of the block Vπ; that is, if

Vπ := {(u1)l, . . . , (us)l | u1 < · · · < us} ∪ {(v1)r, . . . , (vt)r | v1 < · · · < vt} for s, t ≥ 1, then

min(Vπ) = min{u1, v1}.

Assume that v1 is odd. Since the block Vπ is not a singleton, we cannot have v1 = 1, so v1 ≥ 3.

But, by choice of Vπ, a set {1r, 2r, . . . , (v1−1)r} splits the partition π, and it also splits the partition

π∨σn,m contrary to hypothesis. Therefore v1 must be even. We claim that v1 = 2. Indeed, suppose

v1 ≥ 4 and denote the smallest right index in the block of π containing (v1 − 1)r by xr. Since π

connects only evens to evens and odds to odds, the set {1r, 2r, . . . , xr − 1} splits π, and hence it

also splits π ∨ σn,m, which is contrary to hypothesis. Note that both left and right indices of Vπ

are even numbers. Moreover, we can easily see that us = 2n and vt = 2m. For, otherwise, the set

{(us + 1)l, . . . , (2n)l} ∪ {(vt + 1)r, . . . , (2m)r} splits π ∨ σn,m, which is contrary to hypothesis.

Therefore, we have

Vπ = {(2ki)l}si=1 ∪ {(2k′j)r}tj=1 with 1 ≤ k1 < · · · < ks = n and 1 = k′1 < · · · < k′t = m.

Let k0 = k′0 = 0 and set

si = ki+1 − ki and tj = k′j+1 − k′j

for 0 ≤ i ≤ s − 1 and 0 ≤ j ≤ t − 1. Define sub-partitions πl,i (respectively, πr,j) of π

corresponding to the set {(2li+1)l, . . . , (2li+1−1)l} (respectively, {(2rj+1)r, . . . , (2rj+1−1)r});

that is,

πl,i = π|{(2ki+1)l,...,(2ki+1−1)l} and πr,j = π|{(2k′j+1)r,...,(2k′j+1−1)r}
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where 0 ≤ i ≤ s − 1 and 0 ≤ j ≤ t − 1. Note that πl,0 = {{1l}} and πr,0 = {{1r}}. Then

π = {Vπ} ∪
(
∪s−1
i=0 πl,i

)
∪
(
∪t−1
j=0 πr,j

)
. Define new partitions π′l,i (respectively, π′r,j) by adding

a singleton block {(2ki+1)l} (respectively {(2k′j+1)r}) on a partition πl,i (respectively πr,j), i.e.,

π′l,i = πl,i ∪ {{(2ki+1)l}} and π′r,j = πr,j ∪ {{(2k′j+1)r}}.

Consider their restrictions to even and odd indices, denoted by

π′l,i|E := π′l,i|{(2li+2)l,(2li+4)l,...,(2li+1)l} ∈ NC
′(si)

π′l,i|O := π′l,i|{(2li+1)l,(2li+3)l,...,(2li+1−1)l} ∈ NC(si)

π′r,j|E := π′r,j|{(2rj+2)r,(2rj+4)r,...,(2rj+1)r} ∈ NC ′(tj)

π′r,j|O := π′r,j|{(2rj+1)r,(2rj+3)r,...,(2rj+1−1)r} ∈ NC(ti)

where 0 ≤ i ≤ s− 1 and 0 ≤ j ≤ t− 1. Since π ∨ σn,m = 12n,2m, it follows that the sub-partition

π′l,i|O (respectively π′r,j|O) is the Kreweras complement of π′l,i|E (respectively π′r,j|E); that is,

π′l,i|O = K(π′l,i|E) and π′r,j|O = K(π′r,j|E)

where K(·) is the Kreweras complement. For π ∈ BNC(2n, 2m) satisfying π∨σn,m = 12n,2m, we

have

κπ(a1, a2, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, 1A, b2, b1, b2, . . . , b1, b2︸ ︷︷ ︸
b2 occurs m times

)

= κs,t(a2, b2) ·
s−1∏
i=0

κπl,i(a1, a2, a1, . . . , a2, a1) · κπr,0(1A) ·
t−1∏
j=1

κπr,j(b1, b2, b1, . . . , b2, b1)

= κs,t(a2, b2) ·
s−1∏
i=0

κπ′l,i(a1, a2, a1, . . . , a2, a1, a2) ·
t−1∏
j=1

κπ′r,j(b1, b2, b1, . . . , b2, b1, b2)
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= κs,t(a2, b2) ·
s−1∏
i=0

(
κπ′l,i|E(a2) · κπ′l,i|O(a1)

)
·
t−1∏
j=1

(
κπ′r,j |E(b2) · κπ′r,j |O(b1)

)

= κs,t(a2, b2) ·
s−1∏
i=0

(
f2(0si , π

′
l,i|E) · f1(0si , K(π′l,i|E))

)
·
t−1∏
j=1

(
g2(0tj , π

′
r,j|E) · g1(0tj , K(π′r,j|E))

)

where π′r,j|E ∈ NC ′(si) and π′r,j|E ∈ NC ′(tj). Recall that f1, g1, f2, and g2 are the multi-

plicative functions associated to the cumulants of a1, b1, a2, and b2, respectively. The sum of

κρ(a1, a2, a1, . . . , a2, 1A, b2, b1, . . . , b2)znwm−1 over all partitions ρ ∈ BNC(2n, 2m) satisfying

Vρ = Vπ and ρ ∨ σn,m = 12n,2m is equal to

κs,t(a2, b2) ·
s−1∏
i=0

(f2∗̆f1)(0si , 1si)z
si ·

t−1∏
j=1

(g2∗̆g1)(0tj , 1tj)w
tj

where si ≥ 1 and tj ≥ 1. By summing this over all possible Vπ and using (1.1), we obtain

∑
s,t≥1

κs,t(a2, b2) ·
s−1∏
i=0

(∑
si≥1

(f2∗̆f1)(0si , 1si)z
si)

)
·
t−1∏
j=1

(∑
tj≥1

(g2∗̆g1)(0tj , 1tj)w
tj

)
=
∑
s,t≥1

κs,t(a2, b2) (φf2∗̆f1(z))s (φg2∗̆g1(w))t−1 ,

which proves the equality (i). Similar proofs can be done for equalities (ii) and (iii).

Lemma 3.1.2. Let n,m ≥ 1. Under the above assumptions,

(i) κn,m(a2a1, . . . , a2a1︸ ︷︷ ︸
n

, b2b1, . . . , b2b1︸ ︷︷ ︸
m− 1

, b2) = κn,m(a1a2, . . . , a1a2︸ ︷︷ ︸
n

, b2, b1b2, . . . , b1b2︸ ︷︷ ︸
m− 1

)

(ii) κn,m(a2a1, . . . , a2a1︸ ︷︷ ︸
n− 1

, a2, b2b1, . . . , b2b1︸ ︷︷ ︸
m

) = κn,m(a2, a1a2, . . . , a1a2︸ ︷︷ ︸
n− 1

, b1b2, . . . , b1b2︸ ︷︷ ︸
m

)

Proof. By symmetry, we only prove the equality (i). Theorem 1.2.4 implies

κn,m(a2a1, . . . , a2a1︸ ︷︷ ︸
n

, b2b1, . . . , b2b1︸ ︷︷ ︸
m− 1

, b2)

=
∑

π∈BNC(2n,2m)
π∨σn,m=12n,2m

κπ(a2, a1, . . . , a2, a1︸ ︷︷ ︸
a2 occurs n times

, b2, b1 . . . , b2, b1, b2︸ ︷︷ ︸
b2 occurs m times

, 1A)
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where σn,m = {{(2k − 1)l, (2k)l}}nk=1 ∪ {{(2k − 1)r, (2k)r}}mk=1 ∈ BNC(2n, 2m). By flipping

the order of indices for left and right variables, we can easily see that there uniquely exists ρ ∈

BNC(2n, 2m) such that ρ ∨ σn,m = 12n,2m and

κπ(a2, a1, . . . , a2, a1︸ ︷︷ ︸
a2 occurs n times

, b2, b1 . . . , b2, b1, b2︸ ︷︷ ︸
b2 occurs m times

, 1A) = κρ(a1, a2, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, 1A, b2, b1, . . . , b2, b1, b2︸ ︷︷ ︸
b2 occurs m times

).

With the corresponding partition ρ, we have

κn,m(a2a1, . . . , a2a1︸ ︷︷ ︸
n

, b2b1, . . . , b2b1︸ ︷︷ ︸
m− 1

, b2)

=
∑

ρ∈BNC(2n,2m)
ρ∨σn,m=12n,2m

κρ(a1, a2, . . . , a1, a2︸ ︷︷ ︸
a1 occurs n times

, 1A, b2, b1, . . . , b2, b1, b2︸ ︷︷ ︸
b2 occurs m times

)

= κn,m(a1a2, . . . , a1a2︸ ︷︷ ︸
n

, b2, b1b2, . . . , b1b2︸ ︷︷ ︸
m− 1

)

for each n,m ≥ 1.

The symmetries among cumulants shown in Lemma 3.1.2 give the following corollary.

Corollary 3.1.3. Under the above assumptions and notation, as formal power series,

(i)
∑

n,m≥1

κn,m(a2a1, . . . , a2a1︸ ︷︷ ︸
n

, b2b1, . . . , b2b1︸ ︷︷ ︸
m− 1

, b2)znwm−1 =
Ka2,b2

(φf2∗̆f1 (z),φg2∗̆g1 (w))

φg2∗̆g1 (w)

(ii)
∑

n,m≥1

κn,m(a2a1, . . . , a2a1︸ ︷︷ ︸
n− 1

, a2, b2b1, . . . , b2b1︸ ︷︷ ︸
m

)zn−1wm =
Ka2,b2

(φf2∗̆f1 (z),φg2∗̆g1 (w))

φf2∗̆f1 (z)
.

In Lemma 3.1.1, we found the formulas for ordered joint cumulant series for the combinations

(a1a2, . . . , a1a2, b2, b1b2, . . . , b1b2) and (a2, a1a2, . . . , a1a2, b1b2, . . . , b1b2). The following lemma

shows a relationship between bi-free cumulant and moment series.
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Lemma 3.1.4. Let a1, b1 be random variables in (A, φ). Then,

∞∑
n=0

κn,1(a1, b1)zn =
1

Ca1(z)
·
∞∑
n=0

φ(an1b1)

(
z

Ca1(z)

)n
(3.1)

∞∑
m=0

κ1,m(a1, b1)wm =
1

Cb1(w)
·
∞∑
m=0

φ(a1b
m
1 )

(
w

Cb1(w)

)m
(3.2)

Proof. Let a1, b1 ∈ A. Then we have

∞∑
n=0

φ(an1b1)zn =
∞∑
n=0

∑
π∈BNC(n,1)

κπ(a1, . . . , a1, b1)zn

=
∞∑
n=0

n+1∑
r=1

κr−1,1(a1, b1)zr−1 ·

( ∑
p1,...,pr≥0

p1+···+pr=n+1−r

r∏
i=1

( ∑
πi∈NC(pi)

κπi(a1)zpi
))

=
∞∑
r=1

κr−1,1(a1, b1)zr−1 ·
r∏
i=1

(
∞∑
p=0

φ(ap1)zp

)

=
∞∑
r=1

κr−1,1(a1, b1)zr−1 ·Ma1(z)r

= Ma1(z) ·
∞∑
r=0

κr,1(a1, b1) (zMa1(z))r ,

which implies
∞∑
r=0

κr,1(a1, b1) (zMa1(z))r =
1

Ma1(z)
·
∞∑
n=0

φ(an1b1)zn.

By substituting z
Ca1 (z)

for z in this equation and using the equality (1.6), we obtain

∞∑
r=0

κr,1(a1, b1)zr =
1

Ca1(z)
·
∞∑
n=0

φ(an1b1)

(
z

Ca1(z)

)n
.

By symmetry, we can easily prove the second equality.
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3.2 Moment series of certain pairs

Let (A, φ) be a C*-non-commutative probability space. Let (a, b) and (p, q) be bi-free two-

faced pairs in (A, φ) such that p and q are non-trivial self-adjoint projections, i.e., p2 = p = p∗ and

q2 = q = q∗, and let φ(a), φ(b), φ(p), φ(q) 6= 0. Note that by freeness of left algebras and right

algebras in bi-free pairs, the random variables a and p are freely independent, and so are b and q.

Moreover, φ(ap) = φ(a)φ(p) and φ(bq) = φ(b)φ(q).

For notational convenience, we define

k = 1− φ(ab)

φ(a)φ(b)
and l = 1− φ(pq)

φ(p)φ(q)
(3.3)

where k ≤ 1 and l ≤ 1.

Theorem 3.2.1. Under the above notation and assumptions,

Mpap,qbq(χap(z), χbq(w)) = 1− φ(pq) +

(
1− φ(pq)

φ(p)

)
z +

(
1− φ(pq)

φ(q)

)
w

+ (1− l) Map,bq(χap(z), χbq(w)) · (z + φ(p))(w + φ(q))

(z + 1)(w + 1) − l · zw

for (z, w) ∈ (C \ {0})2 near (0, 0).

Under the above notation and assumptions, we denote the normalized random variables of a

and p by ā and p̄, that is, ā = a
φ(a)

and p̄ = p
φ(p)

. Let f1 and f2 be the multiplicative functions with

respect to the cumulants of ā and p̄, repectively. Then we can obtain

φf2∗̆f1(φ(ap)zMap(z)) =
φ(p)(Map(z)− 1)Map(z)

Map(z)− 1 + φ(p)
. (3.4)
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Indeed, by definition, Map(z) = Māp̄(φ(ap)z) and

φf2 ◦ φf2∗̆f1(φ(ap)z ·Map(z)) = φf2∗f1(φ(ap)z ·Māp̄(φ(ap)z))

= Cāp̄(φ(ap)z ·Māp̄(φ(ap)z))− 1

= Māp̄(φ(ap)z)− 1

= Map(z)− 1, (3.5)

where for the first and third equalities, we have used (1.3) and (1.5), respectively. From (3.5), we

get φf2∗̆f1(φ(ap)zMap(z)) = φ
〈−1〉
f2

(Map(z) − 1). Note that φf2(z) = Cp̄(z) − 1 = Cp

(
z

φ(p)

)
− 1

by definition. Since p is a projection, we can easily show (Cp(z)− 1)〈−1〉 = z(z+1)
z+φ(p)

, and it follows

that φ〈−1〉
f2

(z) = φ(p)z(z+1)
z+φ(p)

, which implies (3.4). Furthermore, from the equality (3.5), it is trivial

that

Cp̄ (φf2∗̆f1(φ(ap)zMap(z))) = Map(z). (3.6)

Proposition 3.2.2. Under the above assumptions given in this section,

(i)
∞∑
n=1

φ((pap)nq)zn =
∞∑
n=1

φ((pa)nq)zn =
∞∑
n=1

φ((ap)nq)zn = φ(pq)
φ(p)
· (Map(z)− 1)

(ii)
∞∑
m=1

φ(p(qbq)m)wm =
∞∑
m=1

φ(p(qb)m)wm =
∞∑
m=1

φ(p(bq)m)wm = φ(pq)
φ(q)
· (Mbq(w)− 1)

Proof. Let ā, b̄, p̄, and q̄ be the normalized elements of a, b, p, and q in (A, φ). By using Lemma

3.1.3 and 3.1.4, we have

∞∑
n=0

φ((pa)nq) zn = Mpa(z) ·
∞∑
n=0

κn,1(pa, q)(zMpa(z))n

= Mpa(z) φ(q) ·
∞∑
n=0

κn,1(p̄ā, q̄)(φ(pa)zMpa(z))n

= Mpa(z) φ(q) ·
∞∑
n=0

κn,1(p̄, q̄) (φf2∗̆f1(φ(pa)zMpa(z)))n
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=
Mpa(z) φ(q)

Cp̄(φf2∗̆f1(φ(pa)zMpa(z)))
·
∞∑
n=0

φ(p̄nq̄)

(
φf2∗̆f1(φ(pa)zMpa(z))

Cp̄(φf2∗̆f1(φ(pa)zMpa(z)))

)n
. (3.7)

By using equalities (3.4) and (3.6), the last equation in (3.7) is equal to

φ(q) +
φ(pq)

φ(q)
· (Map(z)− 1),

and then we obtain
∞∑
n=1

φ((pa)nq) zn = φ(pq)
φ(q)
· (Map(z) − 1). Note that Map(z) = Mpa(z) by the

freeness of a and p. Since
∞∑
n=1

φ((ap)nq)zn = Map(z)·
∞∑
n=0

κn,1(ap, q)(zMap(z))n and κn,1(ap, q) =

κn,1(pa, q) for n ≥ 0, it follows that
∞∑
n=1

φ((pa)nq)zn =
∞∑
n=1

φ((ap)nq)zn = φ(pq)
φ(p)
· (Map(z) − 1).

Its equality to
∞∑
n=1

φ((pap)nq)zn can be proved by using the techniques in the proof of Theorem

3.2.1 to derive the formula for Mpap,qbq(χap(z), χbq(w)).

Now we will prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Let n,m ≥ 1. By definition of (l, r)-cumulants, we have

φ((pap)n(qbq)m) = φ ((1p · ap · · · ap) · (1q · bq · · · bq))

=
∑

π∈BNC(n+1,m+1)

κπ(1p, ap, . . . , ap︸ ︷︷ ︸
n+ 1

, 1q, bq, . . . , bq︸ ︷︷ ︸
m+ 1

)

=
∑

π∈BNCvs(n+1,m+1)

κπ(1p, ap, . . . , ap︸ ︷︷ ︸
n+ 1

, 1q, bq, . . . , bq︸ ︷︷ ︸
m+ 1

)

+
∑

π∈BNCvs(n+1,m+1)c

κπ(1p, ap, . . . , ap︸ ︷︷ ︸
n+ 1

, 1q, bq, . . . , bq︸ ︷︷ ︸
m+ 1

), (3.8)

where BNCvs(n+ 1,m+ 1) consists of all left-right split bi-noncrossing partitions π ∈ BNC(n+

1,m+1); that is, either V ⊆ χ−1
n+1,m+1(l) or V ⊆ χ−1

n+1,m+1(r) for every block V of π ∈ BNC(n+

1,m + 1). BNCvs(n + 1,m + 1)c denotes BNC(n + 1,m + 1) \ BNCvs(n + 1,m + 1). For

π ∈ BNCvs(n + 1,m + 1), let πl = π|{1l,...,(n+1)l} and πr = π|{1r,...,(m+1)r} denote the sets of left
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and right indexed blocks of π. For the sum over all partitions in BNCvs(n+ 1,m+ 1) in (3.8), we

have

∑
π∈BNCvs(n+1,m+1)

κπ(1p, ap, . . . , ap, 1q, bq, . . . , bq)

=

( ∑
πl∈NC(n+1)

κπl(1p, ap, . . . , ap)

)
·

( ∑
πr∈NC(m+1)

κπr(1q, bq, . . . , bq)

)

= φ ((pap)n)φ((qbq)m). (3.9)

Denoting the sum over all partitions in BNC(n+ 1,m+ 1)c in (3.8) by ψ(z, w), the moment series

Mpap,qbq(z, w) can be written as

Mpap,qbq(z, w) = 1 +
∑
n≥1

φ((pap)n)zn +
∑
m≥1

φ((qbq)m)wm +
∑
n,m≥1

φ((pap)n(qbq)m)znwm

= (1 +
∑
n≥1

φ((pap)n)zn)(1 +
∑
m≥1

φ((qbq)m)wm) + ψ(z, w)

= Map(z) ·Mbq(w) + ψ(z, w). (3.10)

We will now consider the sum ψ(z, w). If π ∈ BNCvs(n+ 1,m+ 1)c, then there exists a block

V of π which includes both left and right indices so that Vl := V ∩ {1l, . . . , (n + 1)l} 6= ∅ and

Vr := V ∩ {1r, . . . , (m + 1)r} 6= ∅. Define Vπ by the block of π containing both left and right

indices such that min(Vπ) is smallest among all partitions containing both left and right indices.

Rearrange the sum ψ(z, w) by choosing integers s ∈ {1, . . . , n + 1} and t ∈ {1, . . . ,m + 1} and

blocks V satisfying |Vl| = s and |Vr| = t. Given such V , summing over π ∈ BNCvs(n+1,m+1)c
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such that Vπ = V , we obtain

ψ(z, w) =
∑
t≥1

∑
s≥1

 ∑
V=Vl∪Vr

( ∑
π∈BNCvs(n+1,m+1)c

Vπ=V

κπ(1p, ap, . . . , ap︸ ︷︷ ︸
n

, 1q, bq, . . . , bq︸ ︷︷ ︸
m

)

) .

Let Θ denote the set of all blocks containing both left and right indicies. We devide up the sum

ψ(z, w) into four parts based on the types of blocks in Θ. For each block V ∈ Θ, denote the left

and right parts by Vl and Vr. Depending on the values of min(Vl) and min(Vr), define four disjoint

subsets Θ1, Θ2, Θ3, and Θ4 of Θ by

Θ1 = { V ∈ Θ | min(Vl) > 1 and min(Vr) > 1}

Θ2 = { V ∈ Θ | min(Vl) > 1 and min(Vr) = 1}

Θ3 = { V ∈ Θ | min(Vl) = 1 and min(Vr) > 1}

Θ4 = { V ∈ Θ | min(Vl) = 1 and min(Vr) = 1}.

Note that Θ = Θ1 ∪Θ2 ∪Θ3 ∪Θ4. For each set Θi, define a partial sum ψi(z, w) of ψ(z, w) by

ψi(z, w) =
∑
s,t≥1

∑
V ∈Θi

 ∑
π∈BNCvs(n+1,m+1)c

Vπ=V, n,m≥1

κπ(1p, ap, . . . , ap, 1q, bq, . . . , bq) znwm


 (3.11)

where 1 ≤ i ≤ 4. Then we have ψ(z, w) = ψ1(z, w) + ψ2(z, w) + ψ3(z, w) + ψ4(z, w).

We will define several notations in order to discuss each term of ψi(z, w) for 1 ≤ i ≤ 4.

Assume that π ∈ BNCvs(n + 1,m + 1)c and Vπ = {(u1)l, . . . , (us)l, (v1)r, . . . , (vt)r | u1 <

· · ·us, v1 < · · · < vt}. where s, t ≥ 1. Let πl,k for 0 ≤ k ≤ s − 1 (respectively, πr,k for

0 ≤ k ≤ t−1) be the set of all blocks of π whose indices are belong to {(uk+1)l, . . . , (uk+1−1)l}

(respectively, {(vk + 1)r, . . . , (vk+1 − 1)r}), where u0 = v0 = 0. Let π̃ denote the set of all blocks

of π whose indices are contained in {(us + 1)l, . . . , (n + 1)l, (vt + 1)r, . . . , (m + 1)r}. Then we
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have the disjoint union of

π = {Vπ} ∪
(
s−1
∪
k=0

πl,k

)
∪
(
t−1
∪
k=0

πr,k

)
∪ π̃.

Let ik for 0 ≤ k ≤ s − 1 (respectively, jk for 0 ≤ k ≤ t − 1) be the size of the block πl,k

(respectively, πr,k), and let is = n − us + 1 and jt = m − vt + 1 so that is + jt = |π̃|. In the

following four lemmas, we will find ψi for 1 ≤ i ≤ 4.

Lemma 3.2.3. Under the above notation and assumptions, we have

ψ1(z, w) =
(Map(z)− 1 + φ(p))(Mbq(w)− 1 + φ(q))

Map(z)Mbq(w)
· (Map,bq(z, w)−Map(z)Mbq(w)).

Proof. Fix n,m ≥ 1. If π ∈ BNCvs(n + 1,m + 1)c and Vπ ∈ Θ1, then we have Vπ =

{(u1)l, . . . , (us)l, (v1)r, . . . , (vt)r | 1 < u1 < · · · < us ≤ n + 1, 1 < v1 < · · · < vt ≤ m + 1} for

some s, t ≥ 1. Then, κπ(1p, ap, . . . , ap, 1q, bq, . . . , bq) is equal to

κπl,0(1p, ap, . . . , ap︸ ︷︷ ︸
i0 − 1

) κπr,0(1q, bq, . . . , bq︸ ︷︷ ︸
j0 − 1

) κs,t(ap, bq)·

(
s−1∏
k=1

κπl,k(ap)

)(
t−1∏
k=1

κπr,k(bq)

)
·κπ̃(ap, bq).

Recall that ψ1(z, w) is defined by

ψ1(z, w) =
∑
s,t≥1

∑
V ∈Θ1

 ∑
π∈BNCvs(n+1,m+1)c

Vπ=V, n,m≥1

κπ(1p, ap, . . . , ap, 1q, bq, . . . , bq) znwm


 .

Given Vπ, summing the terms of κρ(1p, ap, . . . , ap, 1q, bq, . . . , bq) znwm over all ρ ∈ BNCvs(n+

1,m+ 1)c satisfying Vρ = Vπ, we obtain
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 ∑
ρl,0∈NC(i0)

κρl,0(1p, ap, . . . , ap)zi0−1

 ∑
ρr,0∈NC(j0)

κρr,0(1q, bq, . . . , bq)wj0−1

κs,t(ap, bq)z
swt

·
∑

i1,...,is≥0
j1,...,jt≥0

(
s−1∏
k=1

φ((ap)ik)zik

)(
t−1∏
k=1

φ((bq)jk)wjk

)
φ((ap)is(bq)jt)ziswjt .

For fixed s and t, summing over the above equation over all blocks V ∈ Θ1 satisfying |Vl| = s,

|Vr| = t, and Vπ = V , we get

∑
V ∈Θ1

|Vl|=s, |Vr|=t

 ∑
π∈BNCvs(n+1,m+1)

Vπ=V, n,m≥1

κπ(1p, ap, . . . , ap, 1q, bq, . . . , bq) znwm

 (3.12)

=

(
φ(p)φ(q) +

∑
i0,j0≥2

φ((pap)i0−1)φ((qbq)j0−1)zi0−1wj0−1 +
∑
i0≥2

φ((pap)i0−1)φ(q)zi0−1

+
∑
j0≥2

φ(p)φ((qbq)j0−1)wj0−1

)
· κs,t(ap, bq)zswt · (Map(z))s−1 (Mbq(w))t−1Map,bq(z, w)

=
(Map(z)− 1 + φ(p))(Mbq(w)− 1 + φ(q))

Map(z)Mbq(w)
·Map,bq(z, w) · κs,t(ap, bq)(zMap(z))s(wMbq(w))t.

Summing the formula in (3.12) over all s, t ≥ 1, we obtain

(Map(z)− 1 + φ(p))(Mbq(w)− 1 + φ(q))

Map(z)Mbq(w)
·Map,bq(z, w) ·Kap,bq(zMap(z), wMbq(w)).

By (1.11), we have the equality Kap,bq(zMap(z), wMbq(w)) = 1− Map(z)Mbq(w)

Map,bq(z,w)
, and therefore

ψ1(z, w) =
(Map(z)− 1 + φ(p))(Mbq(w)− 1 + φ(q))

Map(z)Mbq(w)
· (Map,bq(z, w)−Map(z)Mbq(w)).
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In a similar way, we can derive expressions for ψ2, ψ3, and ψ4. Recall that l = 1− φ(pq)
φ(p)φ(q)

.

Lemma 3.2.4. Under the above notation and assumptions, we have

ψ2(z, w) =
l (Map(z)− 1 + φ(p))(Map(z)− 1)

Map(z)

·
(
φ(q) +

Mbq(w)− 1 + φ(q)

Mbq(w)
· Map,bq(z, w)

l (Map(z)− 1)(Mbq(w)− 1)−Map(z)Mbq(w)

)
.

Lemma 3.2.5. Under the above notation and assumptions, we have

ψ3(z, w) =
l (Mbq(w)− 1 + φ(q))(Mbq(w)− 1)

Mbq(w)

·
(
φ(p) +

Map(z)− 1 + φ(p)

Map(z)
· Map,bq(z, w)

l (Map(z)− 1)(Mbq(w)− 1)−Map(z)Mbq(w)

)
.

Lemma 3.2.6. Under the above notation and assumptions, we have

ψ4(z, w) = l ·

(
− φ(p)φ(q) +

φ(q)(Map(z)− 1 + φ(p))

Map(z)
+

φ(p)(Mbq(w)− 1 + φ(q))

Mbq(w)

+
Map(z)− 1 + φ(p)

Map(z)
· Mbq(w)− 1 + φ(q)

Mbq(w)

· Map,bq(z, w)

l (Map(z)− 1)(Mbq(w)− 1)−Map(z)Mbq(w)

)
.

We will go back to the proof of Theorem 3.2.1. Since ψ(z, w) is defined to be the sum of

ψi(z, w) for 1 ≤ i ≤ 4, by using the above four lemmas, ψ(z, w) is of the form

ψ(z, w) = −
(
Map(z)− 1 +

φ(pq)

φ(q)

)(
Mbq(w)− 1 +

φ(pq)

φ(p)

)
− φ(pq) l

− (1− l) Map,bq(z, w) · (Map(z)− 1 + φ(p))(Mbq(w)− 1 + φ(q))

l (Map(z)− 1)(Mbq(w)− 1)−Map(z)Mbq(w)
. (3.13)

Recall that Mpap,qbq(z, w) = Map(z)Mbq(w) + ψ(z, w) in (3.10) and χa(z) = (Ma(z) − 1)〈−1〉.
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Substituting χap(z) and χbq(w), respectively, for z and w in (3.13), it follows that

Mpap,qbq(χap(z), χbq(w))

= (z + 1)(w + 1) + ψ(χap(z), χbq(w))

= (z + 1)(w + 1)−
(
z +

φ(pq)

φ(q)

)(
w +

φ(pq)

φ(p)

)
− φ(pq) · l

+ (1− l) Map,bq(χap(z), χbq(w)) · (z + φ(p))(w + φ(q))

(z + 1)(w + 1)− l · zw

= 1− φ(pq) +

(
1− φ(pq)

φ(p)

)
z +

(
1− φ(pq)

φ(q)

)
w

+ (1− l) Map,bq(χap(z), χbq(w)) · (z + φ(p))(w + φ(q))

(z + 1)(w + 1)− l · zw
,

which completes the proof.

With the similar techniques as in Theorem 3.2.1, we can find the moment series Mpap,qb and

Mpap,bq of pairs (pap, qb) and (pap, bq) in (A, φ).

Theorem 3.2.7. Under the above notation and assumptions,

Mpap,qb(χap(z), χbq(w))

= 1− φ(p) +

(
1− φ(pq)

φ(q)

)
w +Mpa,qb(χap(z), χbq(w)) · (z + φ(p))((1− l)w + 1)

(z + 1)(w + 1)− l · zw

on (C \ {0})2 near (0, 0). Furthermore, we have

Mpap,qb(χap(z), χbq(w)) = Mpap,bq(χap(z), χbq(w)).

For the rest of this section, we will assume that a and b are non-trivial self-adjoint projections

in (A, φ) as well. So we are considering bi-free two-faced pairs (a, b) and (p, q) in a C*-non-

commutative probability space (A, φ) such that a, b, p, and q are projections and φ(a), φ(b), φ(p), φ(q)
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are neither 0 nor 1.

Under these assumptions, we can find Map,bq(χap(z), χbq(w)). By definition of the bi-free

partial S-transform, we have

Sap,bq(z, w) =
z + 1

z
· w + 1

w
·
(

1− 1 + z + w

Map,bq(χap(z), χbq(w))

)

and Sap,bq(z, w) = Sa,b(z, w) · Sp,q(z, w) by bi-freeness of (a, b) and (p, q). Then it follows that

Map,bq(χap(z), χbq(w)) =
1 + z + w

1− (z+1)(w+1)
zw

(
1− 1+z+w

Ma,b(χa(z),χb(w))

)(
1− 1+z+w

Mp,q(χp(z),χq(w))

) . (3.14)

For self-adjoint projections a and b, we can easily find Ma,b(χa(z), χb(w)). Indeed, recall some

equalities of free and bi-free transforms

χa(z) = (Ma(z)− 1)〈−1〉 =
z

z + φ(a)
and χb(w) = (Mb(w)− 1)〈−1〉 =

w

w + φ(b)
,

and

Ma,b(z, w) = 1 +
φ(a)z

1− z
+
φ(b)w

1− w
+

φ(ab)zw

(1− z)(1− w)
.

Substituting χa(z) and χb(w) for z and w in the equality of Ma,b(z, w) above, we obtain

Ma,b(χa(z), χb(w)) = 1 + z + w +
φ(ab)

φ(a)φ(b)
· zw.

Similarly, we can findMp,q(χp(z), χq(w)). Therefore, substituting those formulas forMa,b(χa(z), χb(w))

and Mp,q(χp(z), χq(w)) in (3.14), we get

Map,bq(χap(z), χbq(w)) =
((1 + z)(1 + w)− k · zw) · ((1 + z)(1 + w)− l · zw)

(1 + z)(1 + w)− kl · zw

where k = 1− φ(ab)
φ(a)φ(b)

and l = 1− φ(pq)
φ(p)φ(q)

.

In Theorem 3.2.1 and 3.2.7, we represent the joint moment series Mpap,qbq and Mpap,qb using
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Map,bq, when (a, b) and (p, q) are bi-free with only p and q projections. Assuming further that a

and b are also projections, we can obtain the following result.

Theorem 3.2.8. Let (a, b) and (p, q) be bi-free two-faced pairs in a C*-non-commutative proba-

bility space (A, φ) such that a, b, p, and q are non-trivial self-adjoint projections. Then

(i) Mpa,qbq(χap(z), χbq(w)) = 1 + z + w + (1− l)zw ·
(

1− k(w + φ(q))((1− l)z + 1)

(z + 1)(w + 1)− kl · zw

)

(ii) Mpap,qb(χap(z), χbq(w)) = 1 + z + w + (1− l)zw ·
(

1− k(z + φ(p))((1− l)w + 1)

(z + 1)(w + 1)− kl · zw

)

(iii) Mpap,qbq(χap(z), χbq(w)) = 1 + z + w + (1− l)zw ·
(

1− k(1− l)(z + φ(p))(w + φ(q))

(z + 1)(w + 1)− kl · zw

)
where (z, w) ∈ (C \ {0})2 near (0, 0).
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4. BI-FREE PRODUCTS OF C*-ALGEBRAS

4.1 Reduced free product C*-algebras

The reduced free product was introduced by Voiculescu in [14]. For a given set I and each i ∈

I , (Ai, φi) is a C*-non-commutative probability space whose GNS representation is faithful. Then

there is a unique C*-non-commutative probability space (A, φ) with unital embeddings Ai ↪→ A

such that

(i) φ|Ai = φi

(ii) (Ai)i∈I is free in (A, φ)

(iii) A is the C*-algebra generated by ∪i∈IAi

(iv) the GNS representation of A associated to φ is faithful.

We denote the reduced free product C*-algebra by

(A, φ) = ∗i∈I(Ai, φi)

and call φ the free product state. We will examine the most transparent notrivial free product,

namely, the reduced free product of two two-dimensional C*-algebras.

Proposition 4.1.1. There exits a universal, unital C*-algebra, A, on two self-adjoint projections

P and Q. This means that whenever B is a unital C*-algebra containing self-adjoint projections

p and q, there is a unique ∗-homomorphism π : A → B such that π(1) = 1, π(P ) = p, and

π(Q) = q. Moreover, we have

A ∼= {f : [0, 1]→M2(C) | f continuous, f(0), f(1) diagonal}
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with the functions P, Q ∈ A given by

P (s) =

1 0

0 0

 Q(s) =

 s
√
s(1− s)√

s(1− s) 1− s

 .
where s ∈ [0, 1].

Theorem 4.1.2 ([6]). Let p, q be nontrivial self-adjoint projections with µ1 = φ(p) and µ2 = φ(q).

Let

(D, τ) = (
p

C
µ1

⊕
1−p
C

1−µ1

) ∗ (
q

C
µ2

⊕
1−q
C

1−µ2

).

be the C*-algebra reduced free product with 1
2
≤ µ2 ≤ µ1 < 1.

(i) If µ1 = µ2 = 1
2
, then

D = {f : [0, 1]→M2(C) | f continuous, f(0), f(1) diagonal} (4.1)

(ii) If µ1 = µ2 >
1
2
, then

D = {f : [0, β]→M2(C) | f continuous, f(0) diagonal} ⊕
p∧q
C

2µ1−1
(4.2)

(iii) If µ1 > µ2 ≥ 1
2
, then

D =
p∧(1−q)
C

µ1−µ2

⊕ C([α, β])⊗M2(C) ⊕
p∧q
C

µ1+µ2−1
(4.3)

where α, β = µ1 + µ2 − 2µ1µ2 ±
√

4µ1µ2(1− µ1)(1− µ2).

4.2 Basic examples of bi-free product C*-algebras

Let P,Q,A, and B be four self-adjoint projections with a commutative condition [A,B] =

[A,Q] = [P,B] = [P,Q] = 0. Then the universal, unital C*-algebra on those four projections is
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A⊗ A, where A is a universal C*-algebra on two self-adjoint projections as shown in proposition

4.1.1. The universal C*-algebra A⊗ A is of the form as below.

A⊗ A ∼= {f : [0, 1]2 →M4(C) | f continuous, f(0, t), f(1, t) ∈ D2(C)⊗M2(C), and

f(s, 0), f(s, 1) ∈M2(C)⊗D2(C) for all s, t ∈ [0, 1]}

with the projections given by the functions in A⊗ A as follows.

P (s) =

1 0

0 0

⊗ I Q(t) = I⊗

1 0

0 0



A(s) =

 s
√
s(1− s)√

s(1− s) 1− s

⊗ I B(t) = I⊗

 t
√
t(1− t)√

t(1− t) 1− t


where s, t ∈ [0, 1]. A general state ψ on A ⊗ A is the restriction of a state on the C*-algebra

C([0, 1]2, M4(C)) which is of the form, for every f : [0, 1]2 →M4(C) in A⊗ A,

ψ(f) =
∑

1≤i,j≤4

∫
[0,1]2

f(s, t)ij dµij(s, t) (4.4)

where µij are complex measures on [0, 1]2. Note that the measures µii are positive and µij = µji

for all 1 ≤ i, j ≤ 4 because ψ is a state.

Assume that (a, b) and (p, q) are bi-free pairs of commuting projections in a non-commutative

C*-probability space (A, φ), where [a, b] = [p, q] = 0. Under this assumption, we will recall

the definition of bi-free independence and define the reduced bi-free product of C∗-algebras and

the bi-free product state. Let C∗(a, b) (respectively C∗(p, q)) denote the C*-subalgebra of A gen-

erated by a and b (respectively p and q), and let φ1 (respectively φ2) be the restriction of φ to

C∗(a, b) (respectively C∗(p, q)). The GNS construction applied to C∗(a, b) with φ1 gives rise to

a ∗-representation π1 on a Hilbert space H1 with a specified unit vector ξ1, and for C∗(p, q) with
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φ2 we have (π2,H2, ξ2). For Hi = Cξi ⊕ H◦i with i = 1, 2, consider the free product Hilbert

space with specified unit vector, (H, ξ) = ∗i=1,2(Hi, ξi), and on B(H) consider the bi-free state,

∗∗i=1,2 φi(·) = 〈·ξ, ξ〉. As defined in (1.7) and (1.8), we have the left and right ∗-representations λi

and ρi from B(Hi) to B(H) for i = 1, 2.

Let D be the unital C*-subalgebra of B(H) generated by two pairs of projections, (λ1 ◦

π1(a), ρ1 ◦ π1(b)) and (λ2 ◦ π2(p), ρ2 ◦ π2(q)), and let τ := 〈·ξ, ξ〉 be the bi-free state restricted

on D. In this section, we will find the image of GNS representation of D associated to the state τ

which may be called the reduced bi-free product C*-algebra. It follows

C([0, 1]2,M4(C)) ⊃ A⊗ A
π−→ D

τ−→ C (4.5)

where π is the ∗-representation onto D given by π(A) = λ1 ◦ π1(a), π(B) = ρ1 ◦ π1(b), π(P ) =

λ2 ◦ π2(p), and π(Q) = ρ2 ◦ π2(q). The image of the GNS representation of A ⊗ A associated to

τ ◦ π is isomorphic to the image of the GNS representation of D associated to τ . Thus we want to

deside the bi-free state τ ◦ π on A⊗ A. For notational purpose, denote τ ◦ π by ψ. By symmetry,

we assume

0 < φ(a) ≤ φ(p) ≤ 1

2
and 0 < φ(b) ≤ φ(q) ≤ 1

2
.

By the general form of states on A ⊗ A given in (4.4), there exists a matrix of complex measures

(µij)1≤i,j≤4 such that

H11(z, w) : = φ
(
p(z − pap)−1(w − qbq)−1q

)
= τ ◦ π

(
P (z · I− PAP )−1(w · I−QBQ)−1Q

)
=

∫∫
[0,1]2

1

(z − s)(w − t)
dµ11(s, t). (4.6)
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Similarly, we have

H12(z, w) : = φ
(
p(z − pap)−1(w − qbq)−1qb(1− q)

)
=

∫∫
[0,1]2

√
t(1− t)

(z − s)(w − t)
dµ12(s, t) (4.7)

H13(z, w) : = φ
(
(z − pap)−1pa(1− p)(w − qbq)−1q

)
=

∫∫
[0,1]2

√
s(1− s)

(z − s)(w − t)
dµ13(s, t) (4.8)

H14(z, w) : = φ
(
(z − pap)−1pa(1− p)(w − qbq)−1qb(1− q)

)
=

∫∫
[0,1]2

√
s(1− s)t(1− t)
(z − s)(w − t)

dµ14(s, t). (4.9)

To obtain the measures µ1j for 1 ≤ j ≤ 4, we will first derive the expressions for H11, H12, H13,

and H14. The form of the Cauchy transform of the distribution of the product of two projections is

well known ([18]), and we recall it below.

Gap(z) =
1

z
+
z − (φ(a) + φ(p))−

√
(z − α1)(z − β1)

2(1− z)z
(4.10)

Gbq(w) =
1

w
+
w − (φ(b) + φ(q))−

√
(w − α2)(w − β2)

2(1− w)w
(4.11)

where

α1, β1 = φ(a) + φ(p)− 2φ(a)φ(p)±
√

4φ(a)φ(p)(1− φ(a))(1− φ(p))

α2, β2 = φ(b) + φ(q)− 2φ(b)φ(q)±
√

4φ(b)φ(q)(1− φ(b))(1− φ(q)).

Note that 0 ≤ αi < βi ≤ 1 for i = 1, 2. Remark that α1 = 0 if and only if φ(a) = φ(p), and

β1 = 1 if and only if φ(a) + φ(p) = 1, that is, φ(a) = φ(p) = 1
2
. The analogous statements hold

for α2 and β2.
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For z ∈ C \ [α1, β1] and w ∈ C \ [α2, β2], define

ηap(z) =
Gap(z)

Gap(z)− 1
z

and ηbq(w) =
Gbq(w)

Gbq(w)− 1
w

.

Lemma 4.2.1. The functions ηap and ηbq are biholomorphic onto C \
(√

(1−φ(a))(1−φ(p))
φ(a)φ(p)

· D1

)
and

C \
(√

(1−φ(b))(1−φ(q))
φ(b)φ(q)

· D1

)
, respectively, where D1 denotes the closed unit disk on C.

Proof. By symmetry we will only prove that the function ηap is biholomorphic from C \ [α1, β1]

onto C \
(√

(1−φ(a))(1−φ(p))
φ(a)φ(p)

· D1

)
. Note that substituting the formula for Gap(z), we have

ηap(z) =
−2 + φ(a) + φ(p) + z +

√
(z − α1)(z − β1)

φ(a) + φ(p)− z +
√

(z − α1)(z − β1)
.

Define a function g(x) by

g(x) =
(1 + φ(a)(x− 1))(1 + φ(p)(x− 1))

x

for x ∈ C \
(√

(1−φ(a))(1−φ(p))
φ(a)φ(p)

· D1

)
. Combining the functions g and ηap, we have

ηap (g(x)) =
−2 + φ(a) + φ(p) + g(x) +

√
(g(x)− α1)(g(x)− β1)

φ(a) + φ(p)− g(x) +
√

(g(x)− α1)(g(x)− β1)

=
(−2 + φ(a) + φ(p)) x+ g(x) · x+ x

√(
φ(a)φ(p)x2−(1−φ(a))(1−φ(p))

x

)2

(φ(a) + φ(p)) x− g(x) · x+ x

√(
φ(a)φ(p)x2−(1−φ(a))(1−φ(p))

x

)2

=
2φ(a)φ(p)x2 − 2(1− φ(a)− φ(p) + φ(a)φ(p))x

2φ(a)φ(p)x− 2(1− φ(a))(1− φ(p))

= x

where the branch of a square root is specified by the approximation

√(
φ(a)φ(p)x2−(1−φ(a))(1−φ(p))

x

)2

≈
φ(a)φ(p)x2−(1−φ(a))(1−φ(p))

x
for large |x|. Solving the equation g(x) = z for x gives x = 1

2φ(a)φ(p)
·
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(
z − φ(a)− φ(p) + 2φ(a)φ(p)± i

√
(z − α1)(β1 − z)

)
, and so when z ∈ [α1, β1], we have |x| =√

(1−φ(a))(1−φ(p))
φ(a)φ(p)

. Thus, the function g is the inverse of ηap with respect to composition, which

completes the proof.

Now we will find H11, H12, H13, and H14 in the following lemmas. Recall that

k = 1− φ(ab)

φ(a)φ(b)
and l = 1− φ(pq)

φ(p)φ(q)
.

Lemma 4.2.2. For z, w ∈ C \ [0, 1],

H11(z, w) = (1− l)
(
Gap(z)− 1− φ(p)

z

)(
Gbq(w)− 1− φ(q)

w

)
· ηap(z) · ηbq(w)− k
ηap(z) · ηbq(w)− kl

Proof. From (4.6), we have

H11(z, w) = φ(p(z − pap)−1(w − qbq)−1q)

= φ

(
p

(∑
n≥0

(pap)nz−n−1

)(∑
m≥0

(qbq)mw−m−1

)
q

)

= Gpap,qbq(z, w)−
(

1− φ(pq)

φ(p)

)
· Gap(z)

w
−
(

1− φ(pq)

φ(q)

)
· Gbq(w)

z

+

(
1 + φ(pq)

(
1− 1

φ(p)
− 1

φ(q)

))
· 1

zw
(4.12)

for z, w ∈ C \ [0, 1]. Recall that χap(z) and χbq(w) are formal power series inverses of Map(z)− 1

and Mbq(w)− 1, respectively, so we have the following equalities.

Gap

(
1

χap(z)

)
= Map(χap(z)) · χap(z) = (z + 1) · χap(z)

Gbq

(
1

χbq(w)

)
= Mbq(χbq(w)) · χbq(w) = (w + 1) · χbq(w).
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By definition of the two-variable Cauchy transform, we have

Gpap,qbq

(
1

χap(z)
,

1

χbq(w)

)
= χap(z) · χbq(w) ·Mpap,qbq (χap(z), χbq(w)) ,

and it is shown in Theorem 3.2.8 that

Mpap,qbq(χap(z), χbq(w)) = 1 + z + w + (1− l)zw ·
(

1− k(1− l)(z + φ(p))(w + φ(q))

(z + 1)(w + 1)− kl · zw

)
.

Then it follows from (4.12) and the above equalities that

H11

(
1

χap(z)
,

1

χbq(w)

)

= χap(z) · χbq(w) ·

(
Mpap,qbq (χap(z), χbq(w))−

(
1− φ(pq)

φ(p)

)
(z + 1)

−
(

1− φ(pq)

φ(q)

)
(w + 1) + 1 + φ(pq)

(
1− 1

φ(p)
− 1

φ(q)

))

= χap(z) · χbq(w) · (1− l)(z + φ(p))(w + φ(q)) · ((z + 1)(w + 1)− k · zw)

(z + 1)(w + 1)− kl · zw
. (4.13)

Note that the inverses of 1
χap(z)

and 1
χbq(w)

are z ·Gap(z)− 1 and w ·Gbq(w)− 1, respectively. By

substituting these inverses for z and w in the last equation in (4.13), we have

H11(z, w) = (1− l)
(
Gap(z)− 1− φ(p)

z

)(
Gbq(w)− 1− φ(q)

w

)
· ηap(z) · ηbq(w)− k
ηap(z) · ηbq(w)− kl

.

Lemma 4.2.3. For z, w ∈ C \ [0, 1],

H12(z, w) = k(1− l)((1− l)φ(q)− 1) ·
(
Gap(z)− 1− φ(p)

z

)
· 1

ηap(z) · ηbq(w)− kl
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Proof. By (4.7), we have

H12(z, w) = φ(p(z − pap)−1(w − qbq)−1qb(1− q))

= φ

(
p

(∑
n≥0

(pap)nz−n−1

)(∑
m≥0

(qbq)mw−m−1

)
qb(1− q)

)

= w ·
(
Gpap,qb(z, w)−Gpap,qbq(z, w)

)
+

1

z
·

(∑
m≥1

φ(p(qb)m)w−m −
∑
m≥1

φ(p(qbq)m)w−m

)

= w ·
(
Gpap,qb(z, w)−Gpap,qbq(z, w)

)
(4.14)

for z, w ∈ C \ [0, 1]. Note that Proposition 3.2.2 is used for the last equality of (4.14). By using

Theorem 3.2.8, we obtain

H12

(
1

χap(z)
,

1

χbq(w)

)
= χap(z) ·

(
Mpap,qb(χap(z), χbq(w))−Mpap,qbq(χap(z), χbq(w))

)

= χap(z) · k(1− l)((1− l)φ(q)− 1) · (z + φ(p))zw

(z + 1)(w + 1)− kl · zw
.

Plugging in z ·Gap(z)− 1 and w ·Gbq(w)− 1 for z and w, it follows that

H12(z, w) = k(1− l)((1− l)φ(q)− 1) ·
(
Gap(z)− 1− φ(p)

z

)
· 1

ηap(z) · ηbq(w)− kl
.

By symmetry, we can easily find H13.

Lemma 4.2.4. For z, w ∈ C \ [0, 1],

H13(z, w) = k(1− l)((1− l)φ(p)− 1) ·
(
Gbq(w)− 1− φ(q)

w

)
· 1

ηap(z) · ηbq(w)− kl
.
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Lemma 4.2.5. For z, w ∈ C \ [0, 1],

H14(z, w) =
k(1− l)(lφ(p)φ(q)− (1− φ(p))(1− φ(q)))

ηap(z)ηbq(w)− kl
.

Proof. From (4.9), we have

H14(z, w) = φ
(
(z − pap)−1pa(1− p)(w − qbq)−1qb(1− q)

)
= φ

((∑
n≥0

(pap)nz−n−1

)
pa(1− p)

(∑
m≥0

(qbq)mw−m−1

)
qb(1− q)

)

= zw · (Gpa,qb(z, w) +Gpap,qbq(z, w)−Gpa,qbq(z, w)−Gpap,qb(z, w))

for z, w ∈ C \ [0, 1]. It follows from Theorem 3.2.8 that

H14

(
1

χap(z)
,

1

χbq(w)

)
= Mpa,qb (χap(z), χbq(w)) +Mpap,qbq (χap(z), χbq(w))

−Mpa,qbq (χap(z), χbq(w))−Mpap,qb (χap(z), χbq(w))

=
k(1− l)(lφ(p)φ(q)− (1− φ(p))(1− φ(q)))zw

(z + 1)(w + 1)− klzw
.

Substituting z ·Gap(z)− 1 and w ·Gbq(w)− 1 for z and w, we obtain

H14(z, w) =
k(1− l)(lφ(p)φ(q)− (1− φ(p))(1− φ(q)))

ηap(z)ηbq(w)− kl
.

Remark 4.2.6. Consider the fomulas of H1j for 1 ≤ j ≤ 4 in Lemma 4.2.2 - 4.2.5. If l = 1 (or

equivalently, φ(pq) = 0), then all of H11, H12, H13, and H14 vanish. If k = 0 (or equivalently,

random variables a and b are classically independent in (A, φ)), then H12, H13, and H14 vanish.

The condition, φ(p(1− q)) = 0, φ((1− p)q) = 0, and φ((1− p)(1− q)) = 0, respectively implies

that H12 = 0, H13 = 0, and H14 = 0. Note that if H1j = 0, then the corresponding measure µ1j
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is vanishing by the definition in (4.6), (4.7), (4.8), and (4.9). For now we are not considering these

special cases, so we will assume the following conditions in this section, which implies that H1j is

not vanishing for 1 ≤ j ≤ 4.

(i) φ(pq), φ(p(1− q)), φ((1− p)q), and φ((1− p)(1− q)) do not vanish.

(ii) φ(ab) 6= φ(a)φ(b) and φ(pq) 6= φ(p)φ(q), that is, both (a, b) and (p, q) are not pairs of

classically independent random variables in (A, φ).

We would like to recover the measures µ1j by applying the Stieltjes inversion formula to

H1j(z, w) for 1 ≤ j ≤ 4. Before discussing that, it should be verified that H1j(z, w) is well

defined for z, w ∈ C \ [0, 1]; that is, the denominators of H1j(z, w) do not vanish on (C \ [0, 1])2.

By the equalities in Lemma 4.2.2 - 4.2.5, it suffices to show that ηap(z)ηbq(w) − kl 6= 0 for

z, w ∈ C \ [0, 1]. Since a, b, p, and q are self-adjoint projections with [a, b] = [p, q] = 0, we have

0 ≤ φ(a∧ b) ≤ φ(ab) ≤ min(φ(a), φ(b)) and 0 ≤ φ(p∧ q) ≤ φ(pq) ≤ min(φ(p), φ(q)). Then, by

the definition of k and l, we have

max

(
1− 1

φ(a)
, 1− 1

φ(b)

)
≤ k ≤ 1 and max

(
1− 1

φ(p)
, 1− 1

φ(q)

)
≤ l ≤ 1.

Since we assumed that φ(a) ≤ φ(p) ≤ 1
2

and φ(b) ≤ φ(q) ≤ 1
2
, it follows that

|k · l| ≤

√
(1− φ(a))(1− φ(b))(1− φ(p))(1− φ(q))

φ(a)φ(b)φ(p)φ(q)
. (4.15)

In Lemma 4.2.1, it is shown that for z ∈ C \ [α1, β1] and w ∈ C \ [α2, β2],

|ηap(z)| >

√
(1− φ(a))(1− φ(p))

φ(a)φ(p)
and |ηbq(w)| >

√
(1− φ(b))(1− φ(q))

φ(b)φ(q)
. (4.16)

The inequalities (4.15) and (4.16) imply that |k ·l| is strictly less than |ηap(z)·ηbq(w)|, and therefore

ηap(z) · ηbq(w)− k · l does not vanish for z, w ∈ C \ [0, 1].

In order to find the measures µ1j for 1 ≤ j ≤ 4, we will use the following limit.
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Lemma 4.2.7. If s0 ∈ [α1, β1], then

lim
ε↘0

ηap(s0 + iε) =
s0 − φ(a)− φ(p) + 2φ(a)φ(p) + i

√
(s0 − α1)(β1 − s0)

2φ(a)φ(p)
.

Proof. Let s0 ∈ [α1, β1]. Then we have

lim
ε↘0

ηap(s0 + iε)

= lim
ε↘0

−2 + φ(a) + φ(p) + s0 + iε+
√

(s0 + iε− α1)(s0 + iε− β1)

φ(a) + φ(p)− s0 − iε+
√

(s0 + iε− α1)(s0 + iε− β1)

= lim
ε↘0

−2 + φ(a) + φ(p) + s0 + iε+
√
−(ε2 + (s− α1)(β1 − s))− iε(2s− α1 − β1)

φ(a) + φ(p)− s0 − iε+
√
−(ε2 + (s− α1)(β1 − s))− iε(2s− α1 − β1)

=
−2 + φ(a) + φ(p) + s0 + i

√
(s0 − α1)(β1 − s0)

φ(a) + φ(p)− s0 + i
√

(s0 − α1)(β1 − s0)

=
s0 − φ(a)− φ(p) + 2φ(a)φ(p) + i

√
(s0 − α1)(β1 − s0)

2φ(a)φ(p)
(4.17)

For the third equality in (4.17), when ε is large and positive, the branch of a square root is specified

by the approximation
√
−(ε2 + (s0 − α1)(β1 − s0))− iε(2s0 − α1 − β1) ≈

(
−s0 + α1+β1

2

)
+ iε.

Then we have limε↘0

√
(s0 + iε− α1)(s0 + iε− β1) = i

√
(s0 − α1)(β1 − s0).

For s ∈ [α1, β1] and t ∈ [α2, β2], denote the limits of ηap(s + iε) and ηbq(t + iε) as ε > 0 goes

to 0 by

fap(s) :=
s− φ(a)− φ(p) + 2φ(a)φ(p) + i

√
(s− α1)(β1 − s)

2φ(a)φ(p)
(4.18)

fbq(t) :=
t− φ(b)− φ(q) + 2φ(b)φ(q) + i

√
(t− α2)(β2 − t)

2φ(b)φ(q)
. (4.19)

Then fap(s) ∈
√

(1−φ(a))(1−φ(p))
φ(a)φ(p)

·T and fbq(t) ∈
√

(1−φ(b))(1−φ(q))
φ(b)φ(q)

·T by Lemma 4.2.1 and Lemma

4.2.7, where T is the unit circle on C.
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Lemma 4.2.8.

µ11 = c1 · δ(0,0) + (σ1 × δ0) + (δ0 × ζ1) + ω1

where c1 is a non-negative real number, the measures σ1 and ζ1 are absolutely continuous with

respect to Lebesgue measure on R whose supports are [α1, β1] and [α2, β2], respectively, and ω1 is

absolutely continuous with respect to Lebesgue measure on R2 whose support is equal to [α1, β1]×

[α2, β2].

Note that formulas for c1 and the densities of the measures σ1, ζ1, and ω1 are given in the proof

below.

Proof. By the equation (4.6) and Lemma 4.2.2, we have

H11(z, w) = (1− l)
(
Gap(z)− 1− φ(p)

z

)(
Gbq(w)− 1− φ(q)

w

)
· ηap(z) · ηbq(w)− k
ηap(z) · ηbq(w)− kl

=

∫∫
[0,1]2

1

(z − s)(w − t)
dµ11(s, t)

for z, w ∈ C \ [0, 1]. Let θ be the pushforward of the measure µ11 under the coordinate projec-

tion onto the first coordinate. By the disintegration theorem, there exists a family, (νs)s∈[0,1], of

probability measures on [0, 1] such that

∫∫
[0,1]2

1

(z − s)(w − t)
dµ11(s, t) =

∫
[0,1]

1

z − s

(∫
[0,1]

1

w − t
dνs(t)

)
dθ(s).

For each s ∈ [0, 1], let

h(s, w) :=

∫
[0,1]

1

w − t
dνs(t), (4.20)

so that by definition we have

lim
|w|→∞

w · h(s, w) = 1. (4.21)
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Fix w ∈ R \ [0, 1]. Let γw denote the measure satisfying dγw
dθ

(s) = h(s, w), which implies that

∫
[0,1]

1

z − s
dγw(s) = H11(z, w). (4.22)

Recall that Gap(z) − 1−φ(p)
z

=
z(2φ(p)−1)+φ(a)−φ(p)+

√
(z−α1)(z−β1)

2(z−1)z
. Given the equality (4.22), it

follows that γw has point masses whereH11 has simple poles and the mass equals the residue there,

and γw is absolutely continuous with respect to Lebesgue measure where H11(·, w) has nonzero

imaginary part on the real axis. Note that limz→1

√
(z − α1)(z − β1) =

√
(1− α1)(1− β1) =

1 − φ(a) − φ(p) and limz→0

√
(z − α1)(z − β1) = −

√
α1β1 = φ(a) − φ(p). Since limz→1(z −

1) ·H11(z, w) = 0, H11(·, w) has a removable singularity at z = 1 so that the measure γw has no

atom at s = 1. Since H11 has a simple pole at z = 0 with residue

lim
z→0

z ·H11(z, w) = (1− l)(φ(p)− φ(a)) ·
(
Gbq(w)− 1− φ(q)

w

)
·

(
1− 1

φ(a)

)
ηbq(w)− k(

1− 1
φ(a)

)
ηbq(w)− kl

,

the measure γw has a point mass equal to the above residue at s = 0. Since |ηbq(w)| goes to infinity

as |w| → ∞, the equality (4.21) implies that

θ({0}) = lim
|w|→∞

w · h(0, w)θ({0}) = (1− l)(φ(p)− φ(a))φ(q), (4.23)

and hence

h(0, w) =
1

φ(q)
·
(
Gbq −

1− φ(q)

w

)
·

(
1− 1

φ(a)

)
ηbq(w)− k(

1− 1
φ(a)

)
ηbq(w)− kl

. (4.24)

For s ∈ [α1, β1], applying the Stieltjes inversion formula to (4.22), we have dγw
dλ(1) (s) = − 1

π
·

limε↘0 ImH11(s+iε, w) =
(1−l)
√

(s−α1)(β1−s)
2π(1−s)s ·

(
Gbq(w)− 1−φ(q)

w

)
·
(

1− fap(s)ηbq(w)−k
fap(s)ηbq(w)−kl

)
. It follows

from (4.21) that

dθ

dλ(1)
(s) = lim

|w|→∞
w · dγw

dλ(1)
(s) =

φ(q)(1− l)
√

(s− α1)(β1 − s)
2π(1− s)s

(4.25)
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and

h(s, w) =
1

φ(q)

(
Gbq(w)− 1− φ(q)

w

)(
1− fap(s)ηbq(w)− k

fap(s)ηbq(w)− kl

)
. (4.26)

Both equalities (4.24) and (4.26) are derived for w ∈ R \ [0, 1]. However the expressions on the

right-hand sides of the equalities are holomorphic functions for w ∈ C \ [0, 1], and as defined in

(4.20), the function h(s, ·) is holomorphic on C\[0, 1] for every s ∈ [0, 1]. By analytic continuation,

we have

∫
[0,1]

1

w − t
dν0(t) = h(0, w) =

1

φ(q)
·
(
Gbq −

1− φ(q)

w

)
·

(
1− 1

φ(a)

)
ηbq(w)− k(

1− 1
φ(a)

)
ηbq(w)− kl

(4.27)

and

∫
[0,1]

1

w − t
dνs(t) = h(s, w)

=
1

φ(q)

(
Gbq(w)− 1− φ(q)

w

)1−
k(1− l)

(
ηbq(w)

(
1− 1

φ(p)

)(
1− s

φ(a)

)
− kl

)
(
fap(s)ηbq(w)− kl

)(
fap(s)ηbq(w)− kl

)
 (4.28)

where w ∈ C \ [0, 1] and s ∈ [α1, β1]. Consider the equality (4.27) first. Notice that h(0, w) has a

removable singularity at w = 1, and it has a simple pole at w = 0 with residue

lim
w→0

w · h(0, w) =
φ(q)− φ(b)

φ(q)
·

(
1− 1

φ(a)

)(
1− 1

φ(b)

)
− k(

1− 1
φ(a)

)(
1− 1

φ(b)

)
− kl

(4.29)

which is equal to the point mass, ν0({0}), of ν0 at t = 0. By the Stieltjes inversion formula, we

have

dν0

dλ(1)
(t) = − 1

π
lim
ε↘0

Im h(0, t+ iε)

=

√
(t− α2)(β2 − t)
2πφ(q)(1− t)t

·

1−
k(1− l)

((
1− 1

φ(a)

)(
1− 1

φ(q)

)(
1− t

φ(b)

)
− kl

)
∣∣∣(1− 1

φ(a)

)
fbq(t)− kl

∣∣∣2
 (4.30)
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for t ∈ [α2, β2]. Then, ν0 = ν0({0}) · δ(0,0) + ν0|[α2,β2], where ν0|[α2,β2] is absolutely continuous

with respect to Lebesgue measure having a support equal to [α2, β2]. Now consider (4.28). Notice

that h(s, w) has a removable singularity at w = 1, and it has a simple pole at w = 0 with residue

lim
w→0

w · h(s, w) =
φ(q)− φ(b)

φ(q)
·

1−
k(1− l)

((
1− s

φ(a)

)(
1− 1

φ(b)

)(
1− 1

φ(p)

)
− kl

)
∣∣∣(1− 1

φ(b)

)
fap(s)− kl

∣∣∣2


which is equal to the point mass, νs({0}), of νs at t = 0. For t ∈ [α2, β2],

dνs
dλ(1)

(t) = − 1

π
lim
ε↘0

Im h(s, t+ iε)

=

√
(t− α2)(β2 − t)
2φ(q)π(1− t)t

·

1 +
k(1− l) · L1(s, t)∣∣∣(fap(s)fbq(t)− kl)(fap(s)fbq(t)− kl)∣∣∣2

 ,

where

L1(s, t) = kl

(
s · d1(s)

φ(a)φ(p)

(
1− 1

φ(q)

)
+

t · d2(t)

φ(b)φ(q)

(
1− 1

φ(p)

)
− st

φ(a)φ(b)

)

−
((

1− 1

φ(p)

)(
1− 1

φ(q)

)
− kl

)
d1(s)d2(t) (4.31)

and

d1(s) =

(
1− s

φ(a)

)(
1− 1

φ(b)

)(
1− 1

φ(p)

)
− kl (4.32)

d2(t) =

(
1− 1

φ(a)

)(
1− t

φ(b)

)(
1− 1

φ(q)

)
− kl. (4.33)

Then we have νs = νs({0}) · δ(s,0) + νs|[α2,β2], where νs|[α2,β2] is a measure, absolutely continuous

with respect to Lebesgue measure with its support equal to [α2, β2]. Then we can conclude that

µ11 = c1 · δ(0,0) + (σ1 × δ0) + (δ0 × ζ1) + ω1,
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where

c1 = θ({0}) · ν0({0})

= (1− l)(φ(p)− φ(a))(φ(q)− φ(b)) ·

(
1− 1

φ(a)

)(
1− 1

φ(b)

)
− k(

1− 1
φ(a)

)(
1− 1

φ(b)

)
− kl

,

dσ1

dλ(1)
(s) =

dθ

dλ(1)
(s) · νs({0})

= (1− l)(φ(q)− φ(b)) · 1[α1,β1](s)

·
√

(s− α1)(β1 − s)
2π(1− s)s

·

1− k(1− l)d1(s)∣∣∣(1− 1
φ(b)

)
fap(s)− kl

∣∣∣2
 ,

dζ1

dλ(1)
(t) = θ({0}) · dν0

dλ(1)
(t)

= (1− l)(φ(p)− φ(a)) · 1[α2,β2](t)

·
√

(t− α2)(β2 − t)
2π(1− t)t

·

1− k(1− l)d2(t)∣∣∣(1− 1
φ(a)

)
fbq(t)− kl

∣∣∣2
 ,

dω1

dλ(2)
(s, t) =

dθ

dλ(1)
(s) · dνs

dλ(1)
(t)

=
(1− l) · 1[α1,β1]×[α2,β2](s, t)

4π2(1− s)s(1− t)t
·

1 +
k(1− l)L1(s, t)∣∣∣(fap(s)fbq(t)− kl)(fap(s)fbq(t)− kl)∣∣∣2

 .

Note that L1, d1, and d2 are defined in (4.31) - (4.33).

Similar techniques will apply to describe the other measures µij for 1 ≤ i, j ≤ 4, and these can

be used to identify the reduced bi-free product C*-algebra.
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5. SUMMARY

We have described the Pincus principal function of a certain operator arising from a bi-free

central limit distribution. We have also shown the relations between the ordered joint moment and

cumulant series for some combinations of bi-free two-faced pairs of random variables in a non-

commutative probability space. Using these relations, we have discussed how to derive the reduced

bi-free product C∗-algebra generated by two bi-freely independent pairs of commuting projections

in the generic case.

Further work in this direction could show whether the bi-free state on the image of GNS repre-

sentation of the free product C∗-algebra is faithful or not. Another interesting extension might be

to find the bi-free product C∗-algebra for two-faced pairs of non-commuting projections and their

bi-free state.
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