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ABSTRACT

In this study a new computational framework by the name Graph-based Finite Element Approach

(GraFEA) is developed for the study of fracture in solids. Conventional finite element method

(FEM) is without doubt the most widely-used computational method in the field of solids and

structures. However, in its conventional form it is not well-suited for the study of discontinuous

displacement fields (e.g. fracture problems). Several remedies have been proposed in the literature,

but the amount of complexity of these approaches limits and negatively impacts their integration

into the commercial softwares. GraFEA on the other hand builds upon the robustness of conven-

tional FEM, and it can be incorporated into the existing commercial softwares with minor effort.

The two distinct features of GraFEA which make it an appealing choice for the study of fracture

are:

1. Transformation of the conventional FEM into a nonlocal network: The goal of this transfor-

mation is to derive the forces and strains along the edges of the elements of the discretized

continuum instead of determining them at the nodes. The network representation resembles

the truss network to some extent, with the exception that the force along an edge of interest

depends on the collective behavior of the strains along the neighboring edges of the edge of

interest, and not only the strain along the edge of interest. Hence, the resulting network is

not local as in a simple truss network.

2. Imposition of a nonlocal edge-based fracture criterion: The network representation allows

us to study fracture on the discretized body instead of using a continuum approach. This

treatment of failure is as simple as that of lattice models without suffering from the limited

Poisson’s ratio of 0.25. The nonlocal edge-based fracture criterion is motivated by the idea

of weakest link statistics. In this approach, the nonlocal edge-based strain (or force) is

compared with a critical value to determine whether the edge is broken or not. The nonlocal

edge-based strain is the weighted-averaged value of the strain over a characteristic zone

ii



mirrored along the edge of interest. Depending on the relative size of the characteristic zone

and the elements, the nonlocal fracture criterion can turn into a local criterion (no averaging

required).

The network representation of GraFEA is a reformulation of conventional FEM, and it simplifies

to FEM for an intact medium. Progression of fracture is studied by incrementally increasing the

values of the imposed boundary conditions, and monitoring the breakage of the edges.
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1. INTRODUCTION

1.1 Fracture in Solids

The study of fracture in solids has gained the attention of many researchers since the seminal

work of Griffith [1]. Several theoretical and experimental studies on brittle and ductile fracture of

solids have been reported in the literature since then. Given the amount of uncertainties involved

fracture mechanics is a complicated area of study, however, the level of complexity is even higher

for brittle materials. One major issue with brittle materials is the dispersion of the fracture stress

for different specimen size [2]. The scatter in fracture stress is more prominent for brittle materials

[3, 4] as compared to ductile materials which undergo plastic deformation. As a result, the ability

to predict and study initiation and propagation of fracture in brittle materials is more difficult.

Several methods have been proposed in the literature on the study of fracture and damage in

solids. However, the existing methods suffer from shortcomings which limit their use in engi-

neering applications. In general, the existing methods can be categorized into two groups, namely

continuum-based approaches and bond-breakage approaches.

1. Continuum-based approaches: The strength point of this group of methods, which are based

on continuum mechanics, is in the ability to incorporate FEM as a powerful computational

framework. The significant methods in this category are continuum damage mechanics, ex-

tended finite element method (XFEM), and interelement crack method1. Continuum damage

mechanics [5, 6] studies damage within materials by the introduction of a damage variable and

its evolution law; and it does not deal with continuum separation and crack growth in a direct

way. The interelement crack method [7, 8] adds a traction-displacement constitutive equation

across the boundaries of the elements for the study of fracture. The major drawback of the in-

terelement crack method is the limitation enforced on the crack path, that is the crack can only

grow across the boundaries of the elements. Consequently, the results from the interelement

1Sometimes referred to as cohesive zone models. Since cohesive zone models are also used in other method (such
as extended finite element method, this name can be misleading.
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crack method are mesh dependent. XFEM [9–11], on the other hand, enriches the contin-

uum with jump discontinuity functions, and it uses linear elastic fracture mechanics (LEFM) to

study crack propagation. The main shortcomings of XFEM is the stress singularity induced by

LEFM. Despite complying with the field equations, the singular stress field violates some of the

underlying assumptions of the theory of elasticity (refer to the review paper by Sinclair [12]).

2. Bond-breakage approaches: These methods (including lattice models and bond-based peridy-

namic theory [13]) are based on a discrete representation of the continuum by replacing it with

a set of links and nodes similar to a generalized truss network. Fracture is then introduced by

breakage of the bonds. Despite the ease of introduction of fracture in these methods, they suffer

from a major limitation in terms of modeling the material properties. The bond-breakage meth-

ods are not able to model even a simple continuum properly. A lattice network of two-force

members is limited to a Poisson’s ratio of 0.25 [14].

1.2 Motivation and Scope for the Present Study

The question to be answered in this dissertation is whether a new computational framework can

be introduced to keep the best features of the above-mentioned approaches, while avoiding their

limitations. To be specific, we want to answer whether we can retain the robustness of classical

FEM, and still be able to employ the simplicity of the fracture criterion used in lattice models.

The graph-based finite element approach (GraFEA) is a promising answer to this question [15]. In

order to build GraFEA two existing ideas in the literature have been utilized.

GraFEA aims to reformulate the conventional FEM in the form of a nonlocal network using

the idea introduced by Reddy and Srinivasa [16]. For any hyperelastic material, the displacement-

based FEM can be written in terms of the strains along the edges of the elements [16]. The nodal

forces are also shown to be directed along the edges of the elements and they can be written in

terms of the edge-directed strains. Reddy and Srinivasa [16] proved that a network representation

of FEM is possible; however, GraFEA is the first study on numerical implementation of the idea.

This representation of conventional FEM makes it suitable for the integration of discrete edge-
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based fracture criterion. The network representation of GraFEA, which consists only of nodes and

the distance between them, appears similar to a local truss network. The main difference between

the two lies in the locality of the forces. In a truss network the force along an edge only depends on

the relative distance of the two end nodes (strain along that edge). Whereas in GraFEA, the force

along edge i does not only depend on the strain along that edge, but on the collective behavior of

the strain along the set of edges in the elements sharing edge i. Consequently, the force along the

edges has a nonlocal sense in GraFEA, as opposed to the local forces in a truss network. This is

the reason why the Poisson’s ratio for the nonlocal network of GraFEA is not limited to 0.25, as is

for bond-breakage approaches.

Considering the noticeable dispersion in the fracture stress of brittle materials, the use of only

a single parameter, i.e. the fracture toughness (KIc), as the fracture criterion cannot provide us

with reliable results for these materials. Weibull [17] proposed a statistical model to account for

the dispersion of fracture stress for different specimen size. In Weibull’s model, the continuum

is divided into elements, each with a known probability of failure. The survival probability of

the continuum is the product of the probability of survival of all elements. When the size of the

elements becomes very small, the product will turn into an integral, and Weibull’s equation is

achieved. The elements can be thought of as links of a chain [18,19], and the weakest link governs

the strength of the continuum. This led to the birth of the theory of weakest link statistics.

Ritchie, Knott, and Rice [20] showed that for a brittle type of material (cleavage fracture in

mild steel at very low temperatures) fracture does not only depend on the stress at the tip of the

crack, but on the average stress over a characteristic distance ahead of the crack tip. This is a

nonlocal approach to the study of crack growth (named as RKR criterion in [20])) where the value

of the critical parameter, whether it be the strain or the stress, is averaged over a zone and not

considered at a point. Ritchie, Knott, and Rice [20] also showed that the fracture toughness, KIc,

resulting from employing this fracture criterion is compatible with those derived from experiments

at low temperatures given a characteristic distance of two grain diameters. Later, Lin, Evans, and

Ricthie [21] studied brittle fracture of steel by augmenting the RKR nonlocal damage criterion
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with the weakest link statistics. In summary, the idea was that if the characteristic zone is chosen

large enough to guarantee the existence of flaws, fracture propagates when the local stress in the

characteristic region exceeds the critical value σf .

The idea of weakest link statistics is used as the motivation to introduce a nonlocal fracture

criterion into the nonlocal network of GraFEA. The graph-based representation of the continuum

allows for the implementation of a fracture criterion similar to what is done for conventional truss

networks. In this approach an edge is considered broken if the averaged edge-directed strain over

a characteristic zone exceeds a critical value. Depending on the mesh density this criterion can

introduce high level of nonlocality (where the strain is averaged over a large number of elements),

or it can simplify to a local criterion where only the strain along one edge is considered. The

introduced integral type nonlocal criterion is shown to eliminate the mesh dependency induced by

strain localization.

The proposed approach has a number of good features as compared to the existing methods.

Since GraFEA is a reformulation of conventional FEM, it can build upon the robustness of FEM,

and can be easily integrated into already existing commercial FEM softwares. Therefore, one

need not start from scratch. In addition, the discrete approach of GraFEA to fracture circumvents

the need for dealing with the incorporation of a discontinuity into a continuum. Finally, GraFEA

has the ability to incorporate probabilistic methods to provide a contour of damage probability as

opposed to deterministic approaches with a definite crack path (e.g. XFEM). Due to the level of

uncertainty involved (geometry, material properties, etc.), this is a more realistic approach to the

study of damage and fracture.

1.3 Objectives

The following items are identified as the objectives of this dissertation:

1. Construction of the network representation of GraFEA from conventional FEM: In this study,

the theoretical basis for GraFEA is constructed in two steps. First, the network formulation

for an arbitrary linear triangular element in a plane elasticity condition is determined. It is

shown that in the case of no damage this network formulation will yield the same results as
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conventional FEM. This study is the first numerical implementation of the idea proposed by

Reddy and Srinivasa [16].

2. Integration of an edge-based local fracture criterion into the network representation: A local

fracture variable is integrated into GraFEA by imposing a strain-based criterion over the edges.

The effect of the edge-based fracture criterion on the stiffness matrix is observed. For a dam-

aged continuum the results of GraFEA will no longer be similar to conventional FEM for an

undamaged material. It is shown through force-displacement relations that the brittle type frac-

ture in this study will cause an abrupt changes in the force-carrying capacity of the continuum,

causing a sharp decrease in the tangent modulus.

3. Implementation of nonlocality in the fracture criterion: The fracture criterion is upgraded to an

integral-type nonlocal criterion with the introduction of a length scale parameter. The difference

between the nonlocality of the fracture criterion and the one from the reformulation of FEM is

discussed. It is shown that the introduction of a length scale parameter in the fracture criterion

will result in a diffuse damage in addition to the fracture along a certain path.

4. Studying the effect of the length scale parameter on mesh dependency: It is shown that the

results from the local fracture criterion show mesh dependency caused by the strain softening

behavior for the brittle fracture. In other words, the peak force that can be carried continues de-

creasing by further mesh refinement. The effect of the nonlocal fracture criterion in eliminating

the above-mentioned mesh dependency is evaluated through a set of numerical results.

1.4 Organization of the Text

The rest of the dissertation is organized as follows. In Chapter 2, the nonlocal network represen-

tation of GraFEA is constructed for the case of a discretized medium consisting of linear triangular

elements. Utilizing a local fracture criterion, numerical examples are provided to demonstrate the

capability of GraFEA in studying fracture in solids. In Chapter 3, the local fracture criterion used

in the original formulation of GraFEA is updated to a nonlocal fracture criterion, and its effect on

the numerical results is studied. It is shown that the introduction of a nonlocality in the fracture
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criterion will eliminate the mesh dependency caused by strain localization in fracture. Chapter 4

and Chapter 5 are two other projects which I worked on during my doctoral studies giving me

a better insight in choosing the proper measure for resolving the issue of mesh dependency of

GraFEA. In Chapter 4 a unified integro-differential nonlocal model is introduced for the study of

size-dependent features. In this regard the tw-phase integro-differential form of Eringen nonlocal

model [22] is revisited by using a new Kernel function for the integral part. The formulation is de-

rived for a general three-dimensional problem, and then simplified to the case of one-dimensional

Euler-Bernoulli beam. It is shown that the proposed model settles the paradoxical case of can-

tilever beams for the differential form of Eringen model. In Chapter 5 a micro-structure dependent

unified beam theory with the von Kármán nonlinearity is introduced. The size dependent features

are taken into account using the classical strain gradient theory. The unified beam theory includes

three familiar beam theories (namely Euler-Bernoulli beam theory, Timoshenko beam theory, and

third-order Reddy beam theory) as special cases. The individual and combined effects of nonlin-

earity, nonlocality, and shear strains are studied. Finally, Chapter 6 summarizes the concluding

remarks and lists the suggestions for future studies.
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2. GRAFEA: A GRAPH–BASED FINITE ELEMENT APPROACH FOR STUDY OF

DAMAGE AND FRACTURE IN BRITTLE MATERIALS∗

2.1 Introduction

2.1.1 Damage and Failure

Given the importance of predicting structural integrity and failure, and the fact that the conven-

tional finite element method (FEM) is without doubt the most widely–used computational frame-

work in the field of solid and structural mechanics, the ability to integrate damage and fracture into

conventional FEM is of great importance. Since the seminal work of Griffith [1], and its extensions

and clarifications [23–29] that continue to this day in the mechanics literature, there has been much

work done in the area of brittle fracture to gain insight into the fracture process both experimentally

and theoretically. This has led to various criteria that have made their way into handbooks (e.g.,

for example, [30]), which can be used to design for individual cracks. Nevertheless, the ability to

simulate the growth of multiple cracks for the purpose of large scale design evaluations (especially

for the purposes of impact and blast protection for example) has been a great challenge. On one

hand, the physics of local fracture processes are extremely complicated and reach down to atomic

length scales. On the other hand, the result of a fracture fundamentally alters the topology of the

body, making it a challenging simulation problem.

In spite of these difficulties, the engineering significance of the problem is such that two drasti-

cally different approaches have been developed to provide engineers with a tool for the evaluation

of structures:

1. Continuum–based models (including continuum damage mechanics, extended finite element

methods, cohesive zone models)

2. Bond–breakage models (including lattice models and peridynamics)
∗Reprinted with permission from “GraFEA: A Graph–based Finite Element Approach for the Study of Damage

and Fracture in Brittle Materials" by P. Khodabakhshi, J. N. Reddy, and A. R. Srinivasa, 2016. Meccanica, 51(12),
3129–3147, Copyright 2016 by Springer.
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2.1.1.1 Continuum–based models

Continuum damage mechanics (CDM) [5, 6, 31–34], replaces the actual fracture and material

separation with a diffuse “damage” variable (which can be scalar, vector or tensorial), and evolution

equations are provided for this variable. This allows for a modified plasticity–like model that can

be implemented in FEM, but does not actually show crack growth, only “damage zones”. This has

also been extended to nonlocal approaches (see e.g. [35]).

In contrast to CDM, there exists a different approach that is based on the incorporation of

fracture criteria directly into a discrete formulation of the problem and in this approach material

separation is included. The most common versions of these being the extended finite element

method –XFEM (refer to [9–11, 36]), and cohesive zone models.

The core idea of XFEM is to enrich the local polynomial approximations in classical FEM

with non–smooth functions that are chosen to incorporate jumps, discontinuities or other local

phenomena. Depending upon whether these special functions complement or replace the regular

FEM interpolations, we may or may not have additional degrees of freedom. The resulting methods

are extremely complex and need to be tailored to individual problems of crack growth.

A different approach is to retain the conventional FEM approach but assume that the interface

between any two elements represents a region of discontinuity and this is modeled by a “gap” or

a cohesive element [7, 37, 38]. When the gap becomes sufficiently large, the cohesive element

separates. This has the advantage of a reasonably simple approach that can be relatively simply

implemented. On the other hand, care must be taken to prevent gaps from opening up between the

elements even before fracture. Furthermore, the cracks can only grow along the element interfaces

and thus the paths are limited. One other shortcoming of this method is that the crack path should

be known in advance to enrich the elements located on the crack path with cohesive zones. One

solution to overcome this issue is to enrich all elements with cohesive zones, however, according

to Needleman [38] this solution might result in convergence issues with an increase in mesh re-

finement. Cohesive zone models are suitable for use in finite element modeling of fracture studies

in which one can specify the surfaces where cracking takes place a priori.
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2.1.1.2 Bond–breakage models

In contrast to the methods mentioned in the previous section, bond–breakage methods rely on

discretization of a continuum into a truss network. Lattice models (see e.g [39–43]) simply replace

the original body with a discrete lattice, resulting in a simple truss–like model. Fracture is simply

modeled by the failure of the individual links of the truss. More recently, an approach referred to

as peridynamics [13, 44–46], which entirely upends the foundations of local response of continua,

has found favor to a great extent to deal with fracture (see e.g. [47–50]). Here, there are no partial

differential equations, but only “bond forces” which are forces between a given particle and other

particles in its “horizon”. Fracture is then simulated by assuming special forms for the bond forces

as a function of bond distance (e.g. they drop to zero and the bond is broken when the bond forces

exceed a critical value). Bond–breakage methods are simple and easier to implement, but are

not fully physically realistic, because for solids composed of a local lattice network of two–force

members the Poisson’s ratio is limited to 0.25 [14].

2.1.2 Present Study

The major question in this study is the following: Is it possible to retain the simplicity and

physical realism of a conventional FEM, but allow for a treatment of fracture that is as simple as

that for lattice models or peridynamics, hence allowing us to simulate complex fracture problems

in a simple discrete format (i.e., can we eat our cake and have it too)? The surprising answer to

this is yes, if we are able to reformulate classical FEM to be more like a truss model without any

simplification.

Recently, Reddy and Srinivasa [16] presented an idea to reformulate conventional finite element

method (FEM) such that it becomes more suitable for the study of damage. In their study [16], it is

shown that for a hyperelastic material the forces of a discretized system can be written in terms of

the strains along the edges of the elements2. It is also shown that the forces are directed along the

edges of the element. Proof is provided for any choice of element (although in this study we will

2An edge is any line between two individual nodes of an element.
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focus only on constant strain triangular (CST) elements as a proof of concept). Although Reddy

and Srinivasa [16] proved that this could be done, this is the first study to develop a numerical

scheme based on this idea.

The central idea of this study is to reformulate conventional FEM which its focus is on the

elements, to a modified version in which the focus is on nodes and edges (or links). This modified

version is named as graph–based finite element framework, or GraFEA in short. The difference

between this idea and a conventional truss system is that the force along each edge depends on the

properties of the whole element and not only displacements along a specific edge. GraFEA allows

us to approach fracture in a discrete way (rather than the existing continuum methods) which is

more conforming to the nature of fracture. The damage criterion used in this study is based on the

nonlocal damage criterion initially proposed by Ritchie, Knott, and Rice [20] which was successful

in predicting cleavage cracking in mild steel at low temperatures. It was stated in their study [20]

that crack in brittle materials does not proceed when the stress at the crack tip exceeds a critical

value, but when local stress at a microstructurally significant length (known as the characteristic

distance) exceeds the critical fracture stress. Later, Lin, Evans, and Ritchie [21] added the idea of

the weakest link statistics, saying that if a characteristic zone large enough is considered ahead of

the crack tip to guarantee the existence of a flaw, the crack propagates when the local stress in the

zone exceeds the critical stress.

In summary, the novel elements of this work are

1. Development of a nonlocal network based on numerical formulation for the discretization of

a continuum.

2. Introduction of a purely discrete edge–based damage variable, φi, which describes the state

of damage of any link in the network. This is quite different from the damage variable used

in damage mechanics which is based on location alone and not on connectivity.

3. Development of a nonlocal criterion for the failure of a link based on the weakest link statis-

tics idea introduced by Lin, Evans, and Ritchie [21].

4. Showing that such an approach is capable of studying fracture propagation in brittle materi-
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als.

The structure of this study is as follows: In section 2.2 the formulation provided by Reddy

and Srinivasa [16] for a right triangular element is generalized to an arbitrary triangular element

using strain transformation. It is shown that for the arbitrary triangular element the forces act

along the edges of the element. The stiffness matrix is derived to show that it matches that of the

conventional FEM. In section 2.3 an edge–based damage criterion for brittle failure is introduced

into the graph–based model derived in section 2.2 using the ideas proposed by Ritchie, Knott, and

Rice [20], and Lin, Evans, and Ritchie [21]. It is also shown how this failure criterion influences

the forces along the edges, and the stiffness matrix. The formulation is such that it simplifies to

conventional FEM when no damage is considered. In section 2.4 the methodology of integrating

GraFEA with conventional FEM is delivered, and two numerical examples are studied. Finally

concluding remarks and future directions are brought in section 2.5.

2.2 Theoretical Formulation

2.2.1 Strain Transformation

Suppose a triangular element of arbitrary edge lengths of the form shown in figure 2.1. In

this study, the element is chosen to be a linear triangular element with constant strains. One can

determine the normal strain in a direction making an angle ϕ with the positive x direction simply

by using a transformation equation and the constant elasticity strains εxx, εyy, γxy:

Figure 2.1: Arbitrary linear triangular element.
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ε = εxx cos2 ϕ+ εyy sin2 ϕ+ γxy sinϕ cosϕ (2.1)

Therefore, a relation can be written between the sets of strains (εxx, εyy, γxy), and (ε1, ε2, ε3),

where εi, i = 1, 2, 3 is the normal strain along the edge formed by nodes j and k (j, k 6= i, and

assuming positive permutation between i, j, and k). The strain is taken positive if elongation

occurs along the edge, and vice versa. The relation between the two sets of strains is:


ε1

ε2

ε3

 =


cosϕ2

1 sinϕ2
1 cosϕ1 sinϕ1

cosϕ2
2 sinϕ2

2 cosϕ2 sinϕ2

cosϕ2
3 sinϕ2

3 cosϕ3 sinϕ3



εxx

εyy

γxy

 = T


εxx

εyy

γxy

 (2.2)

where cosϕi =
xk−xj
Li

and sinϕi =
yk−yj
Li

(i, j, and k permute in a natural order). T is the trans-

formation matrix between the set of elasticity strains (εxx, εyy, γxy) and the set of normal strains

along the edges (ε1, ε2, ε3). Equation (2.2) can be rewritten using the interpolation functions for a

linear triangular element in conventional FEM [51]:

ψei =
1

2Ae
(αei + βei x+ γei y) , i = 1, 2, 3 (2.3)

where
αei = xjyk − xkyj, βei = yj − yk, γei = − (xj − xk)

3∑
i=1

αei = 2Ae = x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1

(2.4)

Using the definitions of βi and γi in Eq. (2.4), the transformation matrix of Eq. (2.2) is rewritten

as

T =


1
L2
1

0 0

0 1
L2
2

0

0 0 1
L2
3



γ2

1 β2
1 −γ1β1

γ2
2 β2

2 −γ2β2

γ2
3 β2

3 −γ3β3

 (2.5)

The inverse of matrix T is the matrix which relates the strains (ε1, ε2, ε3) to the strains

(εxx, εyy, γxy). Performing some calculations and using the definition of Ae from Eq. (2.4), the
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inverse of the transformation matrix is derived to be:

T−1 = − 1

4A2


β2β3 β1β3 β1β2

γ2γ3 γ1γ3 γ1γ2

β2γ3 + β3γ2 β1γ3 + β3γ1 β1γ2 + β2γ1



L2

1 0 0

0 L2
2 0

0 0 L2
3



εxx

εyy

γxy

 = T−1


ε1

ε2

ε3



(2.6)

ε1, ε2, and ε3 can also be written in terms of the axial displacements mirrored along the edges

of the triangular element (figure 2.2), where di corresponds to the increase in length of the edge

located in front of node i.

di = (uk − uj) .ei, εi =
di
Li

(2.7)

(a) (b)

Figure 2.2: (a) Nodal Displacements mirrored along the edges (b) Unit vectors along the edges of
the triangular element. The edge in front of node i is locally named as edge i, and its unit vector is
determined heading from node j to node k (with i, j, and k in a natural order).

Unit vectors ei are shown in figure 2.2b. The unit vectors along d1, d2, and d3 are named e1,

e2, and e3, respectively which are defined in the following equation (Figure 2.2b):

ei =

〈
cosϕi sinϕi

〉T
(2.8)
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2.2.2 Strain Energy Function

For linear elasticity problems, the strain energy density for a continuum is written as:

U e
0 =

1

2
σijεij (2.9)

For a two–dimensional isotropic plane elasticity problem, the stress–strain relationship is


σxx

σyy

σxy

 =


c11 c12 0

c12 c22 0

0 0 c66



εxx

εyy

γxy

→ σσσ = Cεεε (2.10)

where coefficients cij differ for plane strain and plane stress problems (Table 2.1). For isotropic

materials, E1 = E2 = E, G12 = G = E
2(1+ν)

, ν12 = ν21 = ν.

Table 2.1: Coefficients for plane elasticity problems.

c11 c22 c12 c66

Plane Strain E1(1−ν12ν21)
(1+ν12)(1−ν12−2ν12ν21)

E2(1−ν12ν21)
(1+ν12)(1−ν12−2ν12ν21)

ν12E2

1−ν12−2ν12ν21
G12

Plane Stress E1

1−ν12ν21
E2

1−ν12ν21
ν12E2

1−ν12ν21 G12

The strain energy density function for a plane elasticity problem is obtained by substituting

from the constitutive equation (Eq. (2.10)):

2U e
0 = σxxεxx + σyyεyy + σxyγxy = c11ε

2
xx + c22ε

2
yy + 2c12εxxεyy + c66γ

2
xy (2.11)

Using Eq. (2.6) one can rewrite Eq. (2.11) in terms of strains (ε1, ε2, ε3):

2U e
0 =

1

16A4

{
c11

(
−β2β3L

2
1ε1 − β1β3L

2
2ε2 − β1β2L

2
3ε3

)2
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+ c22

(
−γ2γ3L

2
1ε1 − γ1γ3L

2
2ε2 − γ1γ2L

2
3ε3

)2

+ 2c12

(
−β2β3L

2
1ε1 − β1β3L

2
2ε2 − β1β2L

2
3ε3

)
×
(
−γ2γ3L

2
1ε1 − γ1γ3L

2
2ε2 − γ1γ2L

2
3ε3

)
+ c66

[
− (β2γ3 + β3γ2)L2

1ε1 − (β1γ3 + β3γ1)L2
2ε2 − (β1γ2 + β2γ1)L2

3ε3

]2
}

(2.12)

Equation (2.12) is summarized to the following form with coefficients Aij defined in Eq. (2.14).

One should note that coefficients Aij depend not only on elasticity constants cij , but also on geo-

metric properties of the constant strain triangular element.

U e
0 = A11ε

2
1 + A22ε

2
2 + A33ε

2
3 + A12ε1ε2 + A23ε2ε3 + A31ε3ε1 (2.13)

A11 =
L4

1

32A4

{
β2

2β
2
3c11 + γ2

2γ
2
3c22 + 2β2β3γ2γ3c12 + (β2γ3 + β3γ2)2 c66

}
A22 =

L4
2

32A4

{
β2

1β
2
3c11 + γ2

1γ
2
3c22 + 2β1β3γ1γ3c12 + (β1γ3 + β3γ1)2 c66

}
A33 =

L4
3

32A4

{
β2

1β
2
2c11 + γ2

1γ
2
2c22 + 2β1β2γ1γ2c12 + (β1γ2 + β2γ1)2 c66

}
A12 =

L2
1L

2
2

16A4

{
β1β2β

2
3c11 + γ1γ2γ

2
3c22 + β3γ3 (β1γ2 + β2γ1) c12

+ (β2γ3 + β3γ2) (β1γ3 + β3γ1) c66

}
A23 =

L2
2L

2
3

16A4

{
β2

1β2β3c11 + γ2
1γ2γ3c22 + β1γ1 (β2γ3 + β3γ2) c12

+ (β1γ3 + β3γ1) (β1γ2 + β2γ1) c66

}
A31 =

L2
1L

2
3

16A4

{
β1β

2
2β3c11 + γ1γ

2
2γ3c22 + β2γ2 (β1γ3 + β3γ1) c12

+ (β1γ2 + β2γ1) (β2γ3 + β3γ2) c66

}
(2.14)

The total strain energy of an element is obtained by integrating the strain energy density over the

volume of the element. Since in this study we are only concerned with constant strain triangular

elements, normal strains εi will be constant and the integration over the element becomes very
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simple:

U e =

∫
Ω

U e
0dV = AeheU e

0

= Aehe
(
A11ε

2
1 + A22ε

2
2 + A33ε

2
3 + A12ε1ε2 + A23ε2ε3 + A31ε3ε1

)
(2.15)

2.2.3 Nodal Forces

In this section proof is brought to show that for a discretized plane elasticity problem the forces

will be directed along the edges of the arbitrary triangular element. Using Castigliano’s theorem

I, the forces at each node of the triangular element (contributions from one particular element) is

derived from the strain energy of that element:

Fi =
∂U e

∂ui
= heAe

∂U e

∂εεε
.
∂εεε

∂ui
= heAe

(
∂U e

∂εxx

∂εxx
∂ui

+
∂U e

∂εyy

∂εyy
∂ui

+
∂U e

∂γxy

∂γxy
∂ui

)
(2.16)

where Fi and ui are nodal forces and nodal displacements, respectively. Since there are two sets of

strains in this study (εxx, εyy, γxy and ε1, ε2, ε3), contracted notation cannot be used in Eq. (2.16).

εi, i = 1, 2, 3 corresponds to the strains along the edges of the triangular element. To be able to use

contracted notation and distinguish the two sets of strains, the notation of ε∗i (σ
∗
i ) is used to refer to

(εxx, εyy, γxy) and the corresponding stresses. Therefore, Eq. (2.16) can be restated as follows:

Fi = hA
∂U0

∂ε∗j

∂ε∗j
∂ui

(2.17)

where for the sake of brevity the superscript e is omitted from h and A. Note that one can further

simplify Eq. (2.17) by noting that ∂U0

∂ε∗j
= σ∗j . For a linear triangular element 6 components of

forces and displacements exist:

F =

〈
F 1
x F 1

y F 2
x F 2

y F 3
x F 3

y

〉T
, u =

〈
u1
x u1

y u2
x u2

y u3
x u3

y

〉T
(2.18)
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Using the chain rule, one can express
∂ε∗j
∂ui

in terms of di (displacements along the edges of the

triangular element as shown in figure 2.2).

Fi = hAσ∗j
∂ε∗j
∂dk

∂dk
∂ui

(2.19)

Using di from Eq. (2.7), Eq. (2.13) can also be written in terms of deformation along the edges of

the elements, where di = εiLi. Using Eqs. (2.6), and (2.7), one gets:


εxx

εyy

γxy

 = T−1


ε1 = d1

L1

ε2 = d2
L2

ε3 = d3
L3


= − 1

4A2


β2β3 β1β3 β1β2

γ2γ3 γ1γ3 γ1γ2

β2γ3 + β3γ2 β1γ3 + β3γ1 β1γ2 + β2γ1



L1 0 0

0 L2 0

0 0 L3



d1

d2

d3

 (2.20)

Finally, Eq. (2.19) is written in matrix form as

F = hAA1A2σσσ
∗ (2.21)

where F is defined in Eq. (2.18), σσσ∗, A1, and A2 are defined in the following:

σσσ∗ =

〈
σ∗1 σ∗2 σ∗3

〉T
=

〈
σxx σyy σxy

〉T
(2.22)

A1 =



∂d1
∂u1x

∂d2
∂u1x

∂d3
∂u1x

∂d1
∂u1y

∂d2
∂u1y

∂d3
∂u1y

∂d1
∂u2x

∂d2
∂u2x

∂d3
∂u2x

∂d1
∂u2y

∂d2
∂u2y

∂d3
∂u2y

∂d1
∂u3x

∂d2
∂u3x

∂d3
∂u3x

∂d1
∂u3y

∂d2
∂u3y

∂d3
∂u3y


=



0 cosϕ2 − cosϕ3

0 sinϕ2 − sinϕ3

− cosϕ1 0 cosϕ3

− sinϕ1 0 sinϕ3

cosϕ1 − cosϕ2 0

sinϕ1 − sinϕ2 0
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=



0 γ2 −γ3

0 −β2 β3

−γ1 0 γ3

β1 0 −β3

γ1 −γ2 0

−β1 β2 0




1
L1

0 0

0 1
L2

0

0 0 1
L3

 (2.23)

A2 =


∂ε∗1
∂d1

∂ε∗2
∂d1

∂ε∗3
∂d1

∂ε∗1
∂d2

∂ε∗2
∂d2

∂ε∗3
∂d2

∂ε∗1
∂d3

∂ε∗2
∂d3

∂ε∗3
∂d3

 =


∂εxx
∂d1

∂εyy
∂d1

∂γxy
∂d1

∂εxx
∂d2

∂εyy
∂d2

∂γxy
∂d2

∂εxx
∂d3

∂εyy
∂d3

∂γxy
∂d3



= − 1

4A2


L1 0 0

0 L2 0

0 0 L3



β2β3 γ2γ3 β2γ3 + β3γ2

β1β3 γ1γ3 β1γ3 + β3γ1

β1β2 γ1γ2 β1γ2 + β2γ1

 (2.24)

Note that A1A2 = BT , where B is the matrix relating the strains to the displacements for constant

strain triangular element in plane elasticity problems (refer to Reddy [51]):

B =
1

2A


β1 0 β2 0 β3 0

0 γ1 0 γ2 0 γ3

γ1 β1 γ2 β2 γ3 β3

 (2.25)

Finally, Fi can be written as follows:

F = hA



(a21σxx + a22σyy + a23σxy) cosϕ2 − (a31σxx + a32σyy + a33σxy) cosϕ3

(a21σxx + a22σyy + a23σxy) sinϕ2 − (a31σxx + a32σyy + a33σxy) sinϕ3

(a31σxx + a32σyy + a33σxy) cosϕ3 − (a11σxx + a12σyy + a13σxy) cosϕ1

(a31σxx + a32σyy + a33σxy) sinϕ3 − (a11σxx + a12σyy + a13σxy) sinϕ1

(a11σxx + a12σyy + a13σxy) cosϕ1 − (a21σxx + a22σyy + a23σxy) cosϕ2

(a11σxx + a12σyy + a13σxy) sinϕ1 − (a21σxx + a22σyy + a23σxy) sinϕ2



(2.26)
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where, aij are the components of the matrix A2. Note that the sum of the forces of the three

nodes is equal to zero. The unit vectors are chosen such that they give a CCW rotation (using

the right hand rule) from the node of interest. For instance, unit vector e1 will be from node 2 to

node 3 (Figure 2.2b). From observation of Eq. (2.26), one can notice that the force vector can be

summarized as:

F =


F1

F2

F3

 = hA


(a21σxx + a22σyy + a23σxy) e2 − (a31σxx + a32σyy + a33σxy) e3

(a31σxx + a32σyy + a33σxy) e3 − (a11σxx + a12σyy + a13σxy) e1

(a11σxx + a12σyy + a13σxy) e1 − (a21σxx + a22σyy + a23σxy) e2

 (2.27)

This shows that the forces are directed along the edges of the triangular element, and it also gives

an explicit expression of how they relate to the stresses. One could use the constitutive equation

for plane elasticity problems (Eq. (2.10)) and the transformation equation (Eq. (2.6)) to substitute

for the stresses in Eq. (2.27) and rewrite the forces in terms of the strains along the edges:

σσσ∗ = Cεεε∗ = CT−1εεε (2.28)

The idea behind GraFEA is to transform the continuum to a network of links, where the edges

of the elements of the discretized continuum serve as the links. However, it should be noted that

although the nodal forces can be written in terms of the strains along the edges of the element,

this dependence is not local as in the case of a conventional truss network. The force along edge i

does not only depend on the strain along edge i, but on the strains along the edges of all elements

sharing edge i (as well as material and geometric properties of the element). Consequently, the

resulting network is nonlocal and the force along each edge depends on a collective behavior of

that specific edge and all the neighboring edges. Figure 2.3a shows nonlocality of the forces within

one element. For edges shared between more than one element (Figure 2.3b) the force along the

edge common between two elements depends on the strains of all edges of the two elements. In

figure 2.3b global node numbering and edge numbering is shown for the assembly of two elements.
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(a) (b)

Figure 2.3: Nonlocal forces comprising to a nonlocal network (a) One constant strain triangular
element (b) An edge shared between two elements.

Note that although the present formulation is provided for the case of a constant–strain linear

triangular element, Reddy and Srinivasa [16] proved that for any hyperelastic material in the dis-

cretized form the magnitude of the nodal forces can be written in terms of the strains along the

edges of the element.

2.2.4 Stiffness Matrix

The stiffness matrix is derived to compare the results with that of conventional FEM for further

verification. Previously, nodal forces were derived in Eq. (2.19) using Castigliano’s theorem I.

Stiffness matrix is determined next:

Fi =
∂U

∂ui
= hAσ∗n

∂ε∗n
∂dm

∂dm
∂ui

, Kij =
∂Fi
∂uj

= hA
∂dm
∂ui

∂ε∗n
∂dm

.
∂σ∗n
∂uj

(2.29)

The last term in Kij can be further simplified using the elasticity matrix in Eq. (2.10).

∂σ∗n
∂uj

= Cnp
∂ε∗p
∂uj

= Cnp
∂ε∗p
∂dq

∂dq
∂uj

(2.30)
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Finally, the equation for Kij can be written as:

Kij = hA
∂Fi
∂uj

= hA
∂dm
∂ui

∂ε∗n
∂dm

Cnp
∂ε∗p
∂dq

∂dq
∂uj

(2.31)

The above equation can also be expressed in matrix form. Note that the stiffness matrix is sym-

metric (K = KT ).

K = hAA1A2CAT
2 AT

1 = hABTCB (2.32)

It is apparent that the stiffness matrix is the same as that of the conventional FEM.

2.3 Introduction of Damage

2.3.1 Nonlocal Damage Criterion

Ritchie, Knott, and Rice [20] stated that cleavage fracture in mild steel at very low temperatures

(brittle type of fracture) does not only depend on the stress at the tip of the crack. According to

Ritchie, Knott, and Rice [20]:

“If the fracture criterion in a sharp–cracked specimen were simply that σyy should be suf-

ficiently large to exceed a critical value σf , it is apparent that fracture could be produced,

very close to the crack tip, by vanishingly small applied loads. Hence, it seems necessary to

supplement such a criterion by the additional requirement that the critical stress be achieved

over some microstructurally significant distance (the characteristic distance) ahead of the

tip.”

Consequently, it is necessary to impose a nonlocal damage criterion (named as RKR criterion)

over the characteristic distance ahead of the tip. They have shown that this fracture criterion

can be analytically related to the fracture toughness of the material, KIc. Ritchie, Knott, and

Rice [20] showed that the agreement between the analytically derived values for K and those from

experiments at very low temperatures is good for a characteristic distance of two grain diameters.

Later, Lin, Evans, and Ritchie [21] studied brittle fracture of steel at low temperatures by

augmenting the RKR nonlocal damage criterion with the weakest link statistics (a probabilistic
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approach). In summary, the idea was that if the characteristic zone is chosen large enough to

guarantee the existence of flaws, fracture propagates when the local stress in the region exceeds

the critical value σf . By assuming a region ahead of the crack tip, the competition between the

far–field behavior (where more cracked particles are available but the stress values are lower)

with that of the near–tip behavior (where the number of eligible particles is less, but stresses are

higher) can be accounted for. Using the idea of weakest link statistics, Lin, Evans, and Ritchie [21]

proposed a relation for the characteristic distance which is statistically equivalent to the location

ahead of the tip where the cracking is most probable.

The idea of weakest link statistics is implemented in this study to introduce damage criterion

into GraFEA. The graph–based representation of the continuum allows for the introduction of

damage similar to what is done for conventional truss networks. The core idea is that the weighted

averaged strain in any given direction over the characteristic distance (related to the fracture tough-

ness of the material) has to exceed a critical value, εcritical. In other words, a link in the network

will fail if:

ε̄i = ei ·

[∫
Ω‖r‖≤d

φ (x− x0)εεε (x0) dΩ

]
ei ≥ εcritical (2.33)

where ei is the unit vector along the edge of interest, and the weighting function φ (x− x0) is such

that: ∫
Ω‖r‖≤d

φ (x− x0) dΩ = 1 (2.34)

Damage variable, φi, is imposed to the weighted averaged normal strain, ε̄i, along edge i if the

averaged strain for edge i exceeds the critical strain value. In other words φi (varying between

values 0 and 1) represents the extent of damage across edge i. A value of φi = 1 corresponds to

the undamaged case, and φi = 0 denotes failure of the edge. One can place a damage criterion on

either strains or forces. This simple damage criterion is representative of brittle failure.

φi =

 ε̄i < εcritical φi = 1

ε̄i ≥ εcritical φi = 0
(2.35)
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This type of nonlocal damage criterion have previously been used in the literature [35] in finite

element formulation of continuum damage mechanics.

Equations (2.33), and (2.35) correspond to the situation in which the element size is signifi-

cantly smaller than the zone size (case 1 in figure 2.4a). If the element size happens to be on the

order of the zone size (case 2 in figure 2.4a), then the Eq. (2.33) reduces to the strain along the

edge and the nonlocal damage criterion reduces to a local damage criterion.

εi = ei · εεε ei ≥ εcritical (2.36)

Figure 2.4b shows an edge for which the strain has exceeded the critical value and crack has

already formed. If the strain in the neighboring edges also exceeds the critical value the crack can

propagate into the neighboring edges.

(a) (b)

Figure 2.4: (a) The figure shows the relative value of the element size to the zone size. If the
element size is smaller than the zone size, nonlocal damage criterion and weighted averaged strain
should be used. If, on the other hand, the element size is equal or larger than the zone size, the
nonlocal damage criterion reduces to a local criterion, (b) The figure shows an edge failing when
imposed to the local damage criterion.

One could apply a stress–based damage criterion for the study of damage. The reason why

a strain–based damage criterion is chosen in this preliminary result is to avoid the possibility of

healing after crack propagation.
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2.3.2 Damage Criterion Imposed on GraFEA

In this proof of concept study it is assumed that the element size is of the same order of the

zone size, and a local damage criterion is utilized to assess the feasibility of studying damage using

GraFEA. The nonlocal damage criterion of Eq. (2.35) simplifies as

φi =

 εi < εcritical φi = 1

εi ≥ εcritical φi = 0
(2.37)

This damage criterion will cause softening in the material until it it becomes unstable (the displace-

ment increases with no further increase in the force).

In section 2.2, the strain energy density for an element in a discretized continuum was derived

in terms of the strains along the edges of the element (Eq. (2.13)). One can use U0 (ε1, ε2, ε3)

and impose the damage criterion φi along the edges to construct the strain energy density in the

damaged state:

Ud
0 = Ud

0 (φ1ε1, φ2ε2, φ3ε3)

= A11 (φ1ε1)2 + A22 (φ2ε2)2 + A33 (φ3ε3)2

+ A12φ1ε1φ2ε2 + A23φ2ε2φ3ε3 + A31φ3ε3φ1ε1 (2.38)

where coefficients Aij were previously defined in Eq. (2.14). Superscript “d" corresponds to the

damaged state. Using Eq. (2.38) the stresses are derived to be a quadratic function of φi.

σ∗di =
∂U0

∂ε∗i
=
∂U0

∂εj

∂εj
∂ε∗i

(2.39)

with
∂U0

∂εj
= 2Ajjφ

2
jεj +

3∑
k=1,k 6=j

Ajkφjφkεk, Aij = Aji (2.40)

where no summation on repeated indices is assumed. ∂εj
∂ε∗i

is derived using Eq. (2.2). Finally, one
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gets:

σσσ∗d = TT ∂U0

∂εεε
(2.41)

where T is the transformation matrix of Eq. (2.5), σσσ∗d, and ∂U
∂εi

are elaborated in the following:

σσσ∗d =


σdxx

σdyy

σdxy

 ,
∂U0

∂εεε
=


2A11φ

2
1ε1 + A12φ1φ2ε2 + A13φ1φ3ε3

2A22φ
2
2ε2 + A12φ1φ2ε1 + A23φ2φ3ε3

2A33φ
2
3ε3 + A13φ1φ3ε1 + A23φ2φ3ε2

 (2.42)

This can be rewritten in matrix form as follows:

σσσ∗d = TTΦΦΦHεεεd (2.43)

where

ΦΦΦ =


φ1 0 0

0 φ2 0

0 0 φ3

 , H =


2A11 A12 A13

A12 2A22 A23

A13 A23 2A33

 , εεεd = ΦΦΦεεε =


φ1ε1

φ2ε2

φ3ε3

 (2.44)

It can be shown that H can be written as:

H = T−TCT−1 (2.45)

Therefore, Eq. (2.43) will simplify to:

σσσ∗d = TTΦΦΦT−TCT−1ΦΦΦεεε (2.46)

2.3.3 Nodal Forces in the Damaged State

Equations (2.21) and (2.41) can be combined to derive the forces along the edges in the case of

the damaged element. Note that the definition of the forces follows Eq. (2.19). It is assumed that
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the term
∂ε∗j
∂dk

∂dk
∂ui

is not affected by damage variables φi. Therefore, using Eqs. (2.21) and (2.41) the

relation between the forces and the strains in the edges in damaged condition will be:

Fd =hABTTTΦΦΦHεεεd

=hABTTTΦΦΦHΦΦΦεεε

=hABTTTΦΦΦHΦΦΦTεεε∗

(2.47)

Finally, the force matrix can be written as:

Fd = hABTTTΦΦΦT−TCT−1ΦΦΦεεε = hABTTTΦΦΦT−TCT−1ΦΦΦTεεε∗ (2.48)

where B = AT
2 AT

1 .

2.3.4 Stiffness Matrix in the Damaged State

Similar to the derivations of subsection 2.2.4, the stiffness matrix can be derived in damaged

state to be:

Kd = hABTTTΦΦΦT−TCT−1ΦΦΦTB (2.49)

One can see that the damaged stiffness matrix (Kd) is quadratically dependent on the damage

variables (φi).

It is worth mentioning that if ΦΦΦ is set to the identity matrix I (no damage), Eqs. (2.46), (2.48),

and (2.49) –for damaged stress, damaged force vector, and damaged stiffness matrix, respectively

–will simplify to the corresponding equations in conventional FEM (Eqs. (2.28), (2.21), and (2.32),

respectively).

2.3.4.1 Damage in a right triangular element

As an example, the effect of the changes in the damage variable φi on the stiffness matrix of a

right triangular element is studied. Consider the right triangle of Figure 2.5. The stiffness matrix

in original condition (no damage, φi = 1, i = 1, 2, 3) is determined according to Eq. (2.50) (refer
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to [51]). Equation (2.50) can also be derived by using Eq. (2.49) and setting ΦΦΦ = I.

K =



1
2

(
b
a
c11 + a

b
c66

)
1
2

(c12 + c66) −1
2
b
a
c11 −1

2
c66 −1

2
a
b
c66 −1

2
c12

1
2

(c12 + c66) 1
2

(
a
b
c22 + b

a
c66

)
−1

2
c12 −1

2
b
a
c66 −1

2
c66 −1

2
a
b
c22

−1
2
b
a
c11 −1

2
c12

1
2
b
a
c11 0 0 1

2
c12

−1
2
c66 −1

2
b
a
c66 0 1

2
b
a
c66

1
2
c66 0

−1
2
a
b
c66 −1

2
c66 0 1

2
c66

1
2
a
b
c66 0

−1
2
c12 −1

2
a
b
c22

1
2
c12 0 0 1

2
a
b
c22


(2.50)

Next, the evolution of the stiffness matrix is determined in Table 2.2 for different combinations

Figure 2.5: Arbitrary right triangle.

of φis (setting them either equal to one or zero). When all links are broken φ1 = φ2 = φ3 = 0,

all of the terms of the stiffness matrix will turn to zero. The parametric equations for the damaged

stiffness matrix of an arbitrary triangle can also be derived, but it will be parametrically very

involved.

2.4 Numerical Examples

In this section, first the methodology of integrating GraFEA into conventional FEM is intro-

duced. Next, two numerical examples are provided as the proof of concept. These are only pre-

liminary results to examine the feasibility of using GraFEA to study of damage in brittle materials.

More rigorous results are going to be studied in the future.
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2.4.1 Methodology

The methodology of integrating GraFEA into conventional FEM is graphically shown in Fig-

ure 2.6, where Nbroke is the total number of broken edges at each step, Nnew is the number of new

broken edges produced in the current step, and I is the step counter.

In the numerical examples provided next, the mesh is generated using a 2D mesh generator

by the name distmesh. Distmesh makes use of the analogy between a simplex mesh and a truss

structure to build the mesh3. The edges of the triangles are assumed to be the truss elements

and the vertices are the corresponding nodes. The truss structure is then solved by assuming a

suitable force–displacement relationship at each step to reach equilibrium. Delaunay triangulation

is also used to avoid generation of problematic elements with narrow geometries and to adjust the

topology. The mesh generator code has the ability to produce high quality meshes with triangular

elements with nearly equal edge lengths.

2.4.2 Rectangular Plate with a Circular Hole

A rectangular plate of dimensions W × L made of a homogeneous isotropic material is con-

sidered (Figure 2.7a) under plane stress conditions (with unit thickness). The plate is constrained

in the vertical direction at the bottom, and tensile displacement boundary conditions (vy = v0 > 0)

are applied to the top. To maintain the symmetry of the problem, the node located at the center–line

of the bottom of the plate is constrained in the horizontal direction. The left and right side of the

plate are traction free. A circular hole of radius r is assumed at the center of the plate (Figure 2.7a).

The geometric and material properties used in this numerical examples are listed in the following:

W = 4, L = 6, r = 0.8, E = 3× 106, ν = 0.25, εcritical = 0.005 (2.51)

Figure 2.7 represents the evolution of the broken edges for the plate under consideration. The

figure shows the original symmetric mesh4 with black lines, and the broken edges are represented

3Distmesh mesh generator. Available from http://persson.berkeley.edu/distmesh.
4Symmetry with respect to the vertical axis.
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Start.

Input E, ν,
mesh data, BCs,

and εcritical.

Perform analysis for ΦΦΦ = I.

Determine εmax. Set Nbroke = 0, and I = 0.

Scale the imposed BCs by a factor of εmax
εcritical

.

I = I + 1, Perform Analysis

Set φi = 0 for edges with εi ≥ εcritical.

Set Nnew = numbre of new broken edges.

Nbroke = Nbroke +Nnew

Output U, ΦΦΦ,
Nbroke, Nnew.

Update K using the updated ΦΦΦ.

Instability? Stop.

Nnew 6= 0?Use the same imposed BCs. Increase the imposed BCs.

Yes

No

Yes No

Figure 2.6: Flowchart for performing damage analysis using GraFEA with Nbroke as the total num-
ber of broken edges at each step, Nnew as the number of new broken edges produced in the current
step, and I as the step counter.
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as white lines. It is worth mentioning that crack grows perpendicular to the broken edges. Fig-

ure 2.7b corresponds to the first step in the analysis in which εmax reaches εcritical in the first edge/set

of edges (after scaling the imposed boundary conditions). The subsequent figures are for increas-

ing I , where I was introduced in Subsection 2.4.1 as the step counter (rounds of analysis). As it

can be seen, the crack initiates at the zones with highest stress intensity and propagates towards

the edges of the plate. The crack path should not necessarily be a smooth line.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.7: Evolution of the broken edges for a rectangular plate with a circular hole, (a) The plate
under the application of increasing tensile displacement boundary conditions (b) I = 1 (c) I = 6
(d) I = 11 (e) I = 16 (f) I = 21 (g) I = 26 (h) I = 41.

Evolution of the force–displacement curve at the top boundary of the plate is shown in Fig-

ure 2.8. The top boundary of the plate is imposed to a specified tensile displacement boundary

condition, the corresponding force is determined by summing up the nodal forces calculated at
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the nodes located at the top boundary. The red dot shown on Figure 2.8 corresponds to the point

where the first set of edges are broken. It can be seen that when new edges are broken at a specific

step, a visible reduction on the force–displacement curve is noticed. This reduction is higher if

the number of the additional broken edges is larger. Figure 2.8 shows two significant reductions

in the force–carrying capacity (during which the number of broken edges is increased) of the plate

before total failure (force getting to zero). After these reductions, the force continues increasing

with the increase in the imposed tensile displacement boundary condition, however, the slope of

the force–displacement curve (which is to some extent representative of the stiffness of the plate)

in the second portion has significantly reduced (about 43%) as compared to the first portion. This

shows a substantial decline in the force–carrying capacity upon the increase in the number of bro-

ken edges.

(a)

(b)

Figure 2.8: (a) Force–displacement curve, (b) Number of broken edges for a rectangular plate with
a circular hole imposed to increasing tensile displacement boundary conditions applied at the top
boundary.
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2.4.3 Rectangular Plate with an Elliptic Hole

A rectangular plate with material properties, and geometric dimensions similar to those men-

tioned in section 2.4.2 is considered, the difference is that in this case an elliptic hole is assumed at

the center of the plate. The constraints and the imposed boundary conditions are similar to those

for the circular hole. Figure 2.9a shows the notation used for the dimensions of the elliptic hole.

For this numerical example the following values are assumed for a and b. The rest of the parame-

ters (material parameters, dimensions, and critical strain) are chosen to be the same as that of the

plate with a circular hole (Eq. (2.51)).

a = 0.8, b = 0.2 (2.52)

Figure 2.9b–h displays the evolution of cracks for the rectangular plate of Figure 2.9a. The

figures show that as the crack reaches the ends of the plate, some form of crack branching initiates

near the ends.

Finally the force–displacement curve for the top boundary of the rectangular plate in consider-

ation is pictured in Figure 2.10. Once again the evolution of the force–carrying capacity is studied

under the imposition of the increasing tensile displacement boundary condition. One can see that

for the case of a plate with an elliptic hole the failure happens more abruptly. The number of

broken edges increase significantly at some point to the extent that the plate gets to total failure.

2.5 Chapter Summary and Conclusions

In this study, using the idea presented by Reddy and Srinivasa [16] first conventional FEM is

transformed into a nonlocal network named as the graph–based finite element approach (in short

GraFEA). Reddy and Srinivasa [16] proved that this could be done, but this is the first study in

numerical implementation of this idea. A nonlocal strain–based fracture criterion is integrated

into GraFEA for the study of damage in brittle materials which is based on the idea of weakest

link statistics proposed by Ritchie, Knott, and Rice [20], and Lin, Evans, and Ritchie [21]. The

damage criterion simplifies to a local criterion when the element size is almost of the order of the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.9: Evolution of the broken edges for a rectangular plate with an elliptic hole (a) The plate
under the application of displacement boundary conditions (b) I = 1 (c) I = 101 (d) I = 114 (e)
I = 118 (f) I = 122 (g) I = 124 (h) I = 126.

fracture zone size. This strategy of individual edge failure (while retaining the nonlocal nature of

the network) as opposed to element failure will significantly simplify the study of damage within

materials compared to the existing continuum–based methods in the literature. The fact that the

failure criterion is imposed directly on the discrete body without inheriting it from a continuum is

one of the important features of GraFEA.

Two numerical examples are presented for the case of rectangular plates with a circular and an

elliptic hole as a means to illustrate the capability of GraFEA to study damage in brittle materials.

The results show that GraFEA has a potential to predict damage within materials in a straightfor-

ward manner.

The aim of the present study is a proof of concept for this approach (integrating link–based

damage into a nonlocal network presentation of a continuum, GraFEA). A detailed study on mesh
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(a)

(b)

Figure 2.10: (a) Force–displacement curve, (b) Number of broken edges for a rectangular plate
with an elliptic hole imposed to the increasing tensile displacement boundary conditions applied
at the top boundary.

dependency and validation of the results with experimental results will be addressed in future

works. However, in a slightly different context Reusch, Svendsen, and Klingbiel [52] have shown

that a nonlocal fracture criterion similar to the one used in the present study results in a mesh

independent behavior. The authors plan to carry out similar mesh–independency studies in near

future, but their expectation is that with the new length scale introduced to the model, the findings

will be similar to those of Reusch, Svendsen, and Klingbiel [52].

As already known to the readers, even for nominally similar experimental samples, the crack

paths do not completely coincide due to the randomness of flaws within the materials. Therefore,

the authors believe that the existing deterministic approaches to damage and fracture do not provide

the engineers with useful results. On the other hand, with a probabilistic approach the probability

of failure can be mapped for a problem, which is a more valuable information. The proposed

method has the potential to incorporate a probabilistic approach as opposed to the deterministic

methods proposed in the literature.
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3. A NONLOCAL FRACTURE CRITERION AND ITS EFFECT ON MESH DEPENDENCY

OF GRAFEA

3.1 Introduction

One of the important features to be investigated for any computational method proposed for

the study of fracture in solids is the convergence of the numerical results with mesh refinement and

whether or not the results are independent of the underlying mesh (both in terms of refinement and

orientation). Several studies have been performed for over 30 years to identify the causes and the

measures of eliminating the mesh sensitivity of the numerical methods.

Continuum damage mechanics gained popularity in the numerical implementation of fracture

due to the appealing features of using a continuum approach and its ability to study the emerge

and growth of multiple cracks at the same time as opposed to dealing with the cracks in a dis-

crete segment-by-segment one-crack-at-a-time manner (i.e. cohesive zone models, or XFEM).

One major concern in damage problems is the strain localization which is the direct result of the

strain-softening-induced instability caused by the loss of ellipticity of the governing equations in

static problems1. As a result, the strain softening problems will show physically meaningless re-

sults, where the damage localizes to a zero-volume surface and the energy dissipated in fracture

converges to zero. One of the first studies on the effect of the loss of stability and strain localiza-

tion on the finite element implementation of a strain softening problem dates back to 1975 [54] in

which Bažant showed that the results exhibited strong dependence on the size of the elements in

the finite element mesh. In this study, the fracture in the finite element models of strain soften-

ing materials localizes to one element irrespective of its size, and the amount of dissipated energy

decreases correspondingly with further reduction in the element size.

The new computational framework by the name graph-based finite element approach (GraFEA)

was proposed [15] for the study of fracture in solids. The key feature about GraFEA is that it

pictures the discretized finite element problem as a network of nodes with the edges of the elements

1and the change from hyperbolic equations to elliptic equations in wave propagation problems [53].
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serving as the links between the nodes [16]. This representation of the finite element scheme

enables the imposition of a discrete fracture criterion on the edges. Consequently, GraFEA benefits

from the simplicity of using a continuum approach in modeling the problem, and at the same time it

circumvents the issues of the existing continuum methods on dealing with discontinuities caused by

fracture by adopting a straightforward discrete approach. The original formulation of GraFEA [15]

was built upon a local fracture criterion which is well-known to lead to mesh dependency in most

numerical frameworks. It is shown through a set of numerical examples that the mesh dependency

is also true about GraFEA when using a local fracture criterion.The purpose of this study is to

incorporate an integral-type nonlocal fracture criterion into GraFEA to examine its efficiency in

resolving the mesh sensitivity induced by strain localization. It is demonstrated that adopting a

nonlocal fracture criterion will eliminate the mesh dependency in a global sense.

Several studies were devoted to the clarification of the strain localization phenomena in fracture

problems in materials with strain softening constitutive equation studied via continuum damage

mechanics. Some of the proposed approaches to eliminate the mesh dependency induced by strain

localization are listed in the following:

1. Imposing a lower limit on the size of the elements: this remedy was first discussed in a paper

by Bažant [54] and later employed in the crack band model [55, 56]. The crack band model

is capable of predicting the global force-displacement relationship without convergence to zero

energy dissipation with mesh refinement, however, the fracture volume will localize to a surface

with further mesh refinement [35].

2. Introduction of strain-rate dependence (artificial viscosity): this method (as proposed by Needle-

man [57]) introduces a length scale into the problem in an indirect manner. The method is suc-

cessful in retaining the ellipticity of the governing equations, however, it is only applicable for

problems within short periods of time [35, 58] and it cannot be used as a remedy in a general

sense.

3. Use of weakly nonlocal theories, i.e. higher order gradients [53, 59]: the methods falling into
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this approach can generally be divided into two categories: namely explicit gradient models,

and implicit gradient models. In the explicit models the stress at each point depends not only

on the strain at that point, but also on a set of higher order gradients of the strain. The gradient

terms in the explicit models will result in weak nonlocality where the nonlocal interactions are

limited to an infinitesimal domain. On the other hand, implicit gradient models are such that

the nonlocal stress is determined by the solution of a boundary value problem. In fact, implicit

models can be written in the form of an integral-type nonlocal model where the weight function

is the Green’s function of the boundary value problem [60]. According to a study by Peerlings et

al. [61], the results from implicit gradient models are similar to integral-type nonlocal models,

and the implicit models are successful at resolving the issues with strain localization. However,

the results from explicit gradient models are problematic in the sense that they give unbounded

wave velocity and the crack growth rate is instantaneous (i.e. singular) [60, 61]. Also explicit

gradient models introduce additional boundary conditions which are not physically tangible

introducing further implications in the numerical modeling.

4. Use of strongly nonlocal theories, i.e. integral theories: this method for resolving the issue of

strain localization in fracture problems was initially introduced in the works of Bažant and his

coworkers [58,62,63]. In this approach the strain localization is removed by imposing nonlocal

averaging on a parameter over a characteristic zone. Jirásek [64] showed that depending on the

choice of the variable for nonlocal averaging the results can be different. Therefore, the level of

effectiveness of the nonlocal averaging depends on the chosen variable [64].

It is worth mentioning that explicit higher order gradient models in terms of strains can be written in

a form similar to integral-type nonlocal models in terms of stress, whereas, integral-type nonlocal

models in terms of strain can be written in a form similar to explicit higher order gradient models

in terms of stress (refer to [61, 65, 66] for further information).

The extended finite element method (XFEM) [9–11] and the interelement crack method (some-

times referred to as cohesive zone models2) [7, 8] are two other major computational methods for
2Cohesive zone models can be a misleading terminology, because cohesive zone models are also utilized in other
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the study of fracture. There is little published data on mesh sensitivity of the fracture results from

XFEM, yet it has a significant drawback: the enrichment is only applied to the nodes influenced

by the crack, therefore, by the end of each step the crack should be monitored to update the en-

richment of the new nodes. Also the nodes have different degrees of freedom depending on their

location. The interelement crack method on the other hand is shown to be mesh sensitive [67]. In

this method the cracks are only allowed to propagate across the edges of the elements, therefore,

the crack path cannot be arbitrary in nature. Consequently, the interelement crack method is only

suitable for the cases when the crack path is known in advance and the body is meshed such that

the edges of the elements coincide with the crack path [68].

During the past decade, a new integral-type nonlocal model has gained popularity among re-

searchers. Peridynamic theory [13, 69] is a nonlocal theory which is capable of addressing contin-

uous displacement and spontaneous discontinuity through a single equation of motion. Therefore,

it was assumed a suitable computational framework for the study of fracture in solids. Its original

form (i.e. bond-based peridynamic theory [13]) suffers from a serious limitation: the Poisson’s

ratio is limited to 0.253. Later, state-based peridynamic theory [69] was introduced to eliminate

this shortcoming4. Several studies demonstrated that perdiynamics can result in mesh dependent

or spurious cracks depending on the choice of the horizon (i.e. radius of the nonlocal zone) to the

grid size ratio (δ/h), and a minimum δ/h is required to retain mesh independency in PD simu-

lations [75–81]. This issue, which is observed in both bond-based and state-based peridynamics,

is a serious drawback for peridynamics considering that the method was originally introduced as

a replacement for conventional continuum mechanics for the study of problems with existing or

spontaneous discontinuity. Later, Seleson, Du, and Parks [73] showed that even in the absence

methods (e.g. XFEM [11]).
3To further elucidate the seriousness of this shortcoming assume an isotropic elastic material with two independent

material parameters: Poisson’s ratio ν, and modulus of elasticity E. In the case of linear elasticity, one can non-
dimensionalize the response with respect to E, however, this is not feasible for ν. Therefore, in the case of linear
elasticity the parameter which distinguishes the responses of different materials is the Poisson’s ratio which cannot be
varied using bond-breakage models.

4At the continuum level, peridynamics theoretically reduces to conventional continuum mechanics in the limit of
the zero characteristic zone [70–72]; however, the existence of such a correspondence at the discrete level is debatable
[73]. Tian and Du [74] demonstrated that in general the results of discretized peridynamics do not automatically
converge to those of local continuum mechanics.
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of cracks the accuracy of the results of nearest-neighbor discretized peridynamics depends on the

choice of quadrature weights, otherwise mesh dependent results will be achieved.

In the introductory paper on GraFEA [15] a local fracture criterion was implemented on the

network representation of FEM to demonstrate the feasibility of studying fracture in solids using

GraFEA. The present chapter has two primary goals: 1. to investigate the influence of augmenting a

nonlocal fracture criterion in GraFEA, 2. to examine whether or not the nonlocal fracture criterion

eliminates mesh dependency. The remainder of this chapter proceeds as follows: section 2 provides

a brief introduction on the theoretical background of GraFEA and the method of integration of a

discrete fracture criterion into the network representation of FEM. In section 3 the local fracture

criterion of the original formulation is upgraded to a nonlocal fracture criterion. Because of the ease

of integrating an integral-type nonlocal model into a computational framework (without the need

for imposing further constrains in the form of boundary conditions) and its efficiency in resolving

the strain localization issue (with the proper choice of the variable), an integral nonlocality has

been chosen in this study as the means of eliminating the mesh dependency in GraFEA. Section

4 presents numerical examples to address the above-mentioned main goals of this study. Finally,

section 5 summarizes the concluding remarks.

3.2 Theoretical Background of GraFEA

Reddy and Srinivasa [16] proved that for any hyperelastic material the nodal forces of a dis-

cretized domain are directed along the edges of the element, and the value of the edge-directed

forces can be expressed in terms of the strains along the edges. This representation of conventional

FEM resembles a network where only the nodes and the distance between them (edge length) is of

interest. It is worth noting that any line connecting two distinct nodes of an element is called an

edge (Figure 2.2). The network representation of GraFEA is nonlocal in the sense that the force

along edge i does not only depend on the strain along that edge, but also on the collective behavior

of the strains along the set of edges in the elements sharing edge i. This is the reason why the

nonlocal network of GraFEA, unlike the existing bond-breakage models in the literature, places no

limitations on the Poisson’s ratio of the material to be modeled.
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The idea of weakest link statistics [20, 21] is used to impose an edge-based discrete fracture

criterion on the nonlocal network representation of GraFEA. Ritchie, Knott, and Rice [20] showed

that for a brittle type of material (cleavage fracture in mild steel at very low temperatures) fracture

does not only depend on the stress at the tip of the crack, but on the average stress over a character-

istic distance ahead of the crack tip. By assuming a region ahead of the crack tip, the competition

between the far-field behavior (where more cracked particles are available but the stress values are

lower) with that of the near-tip behavior (where the number of eligible particles is less, but stresses

are higher) is accounted for [21]. Recently, Mao, Talamini, and Anand [82] stated that fracture in

elastomeric materials is a nonlocal phenomenon, and crack propagation occurs when the fracture

criterion is met at a distance ` ahead of the crack tip, and not the crack tip itself. This is a sim-

ilar argument to the one by Ritchie, Knott, and Rice [20] on the study of mild steel. Note that a

nonlocal criterion is not equivalent to crack propagating from an isolated point ahead of the crack

tip [82].

The damaged stiffness matrix in GraFEA is determined according to Eq. (3.1) (refer to refer-

ence [15] for further information). Note that Eq. (3.1) corresponds to a plane elasticity problem

and a linear triangular element with constant strains. However, GraFEA in general is not limited

to a certain constitutive equation (as long as the material is hyperelastic) or element type (refer to

the general proof in reference [16]).

Kd = hABTTTΦΦΦT−TCT−1ΦΦΦTB (3.1)

where h and A are the thickness, and the area of the element, respectively. B is the matrix relating

the elasticity strains to the nodal displacement of the finite element mesh [51], and C is the elastic-

ity matrix. T serves as the transformation matrix between the set of linearized strains (εxx, εyy, γxy)
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and the set of edge-directed normal strains (ε1, ε2, ε3) which is determined to be [15]:
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 (3.2)

in which εi is the strain along edge i connecting nodes j and k (Figure 2.2), and γi and βi are the

terms used in FE interpolation functions for a linear triangular element [51].

βi = yj − yk, γi = − (xj − xk) (3.3)

The remaining variable in Eq. (3.1) to be introduced is ΦΦΦ which is a diagonal matrix containing

the edge-based damage variables [15]. The damage variable for edge i only acquires two values: 1

corresponding to an intact edge, and 0 corresponding to a broken edge. Note that by setting ΦΦΦ = I

Eq. (3.1) simplifies to the stiffness matrix for conventional FEM, therefore, GraFEA in undamaged

situation yields the same results as FEM. One can notice that the stiffness matrix is symmetric and

it is quadratically dependent on the damage variables, Φi.

3.3 Nonlocal Fracture Criterion

In the original formulation of GraFEA [15] a local fracture criterion was used, i.e. the answer

to the question that whether edge i is broken or not was answered solely based on the comparison

of the strain along that edge with a critical strain. An edge was considered broken as soon as the

strain along that edge exceeded the critical strain.

In this chapter a nonlocal edge-directed strain-based fracture criterion is introduced to eliminate

the mesh dependecy observed in the results from the local fracture criterion. The core idea is that

if the weighted averaged strain in any given direction over a characteristic zone exceeds a critical

value, εcritical, fracture happens. In other words, a link in the network will fail if:

ε̄i = ei ·
[∫
‖x−x0‖≤`c

ω (x− x0)εεε∗ (x0) dΩ

]
ei ≥ εcritical (3.4)
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where ei is the unit vector along the edge of interest (Figure 2.2.b), `c is the characteristic distance

(Figure 2.4.a), ω (x− x0) is the averaging weight function, εεε∗ (x0) is the vector of linearized

strains, and ε̄i is the weighted-averaged normal strain for edge i. Existence of a characteristic

length in the fracture criterion results in a size effect which can serve as the transition between

micro to macro fracture [19]. The weight function must satisfy the following constraint over the

characteristic zone of radius `c:

∫
‖x−x0‖≤`c

ω (x− x0) dΩ = 1 (3.5)

A uniform weight function is chosen in this study, therefore, equation (3.5) is simplified as

follows. One could also use distance-decaying weight functions to consider the decrease in the

influence of the elements over each other with increasing distance.

ω (x− x0) =
1

ANonlocal
, where ANonlocal = Ω‖x−x0‖≤`c (3.6)

As it is common with any other nonlocal theory, the boundary layer (the layer of thickness 2`c

from the boundaries of the body) will not satisfy the constraint of Eq. (3.5). This inconsistency

is resolved by adopting the treatment proposed in the study by Bažant and Pijaudier-Cabot [83]:

the integral of Eqs. (3.4) and (3.5) is taken only over the part of the characteristic zone which is

located within the body (neglecting the part that lies outside of the body).

The level of nonlocality of ε̄i (Eq. (3.4)) depends upon the ratio of the element size to the zone

size. In the situations in which the element size is significantly smaller than the zone size Eq. (3.4)

will introduce a high level of nonlocality, and ε̄i is a weighted-averaged strain over a large number

of elements. On the other hand, if the element size happens to be on the order of the zone size, the

nonlocal fracture criterion reduces to a local fracture criterion and Eq. (3.4) simplifies to the strain

along the edge (εi):

ε̄i = εi = ei · εεε∗ ei ≥ εcritical (3.7)
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In this chapter in order to determine the nonlocal zone for each element, a circle of radius `c

is built about the circumcenter of each triangular element. The elements whose circumcenter lies

within the circle built about element i’s circumcenter contribute to the nonlocal zone of the edges

of element i. In the extreme case that `c → 0, the circle goes to zero, and the nonlocal fracture

criterion reduces to the local criterion of Eq. (3.7).

The edge-based nonlocal fracture criterion has the ability to predict crack propagation and

branching. Assume an intact continuum for which the weighted-averaged strain along one edge

exceeds the critical strain and crack initiates (Figure 3.1). If the strain in the neighboring edges

also exceeds the critical value the crack can propagate into the neighboring edges. The link-based

failure is also observed in the transgranular fracture of mild steel at low temperatures as shown

in Fig. 1 of the study by Lin, Evans, and Ritchie [21] which shows a ferrite matrix with carbide

sediments across the grain boundaries. One can notice from the figure [21] that fracture propagates

in a zig-zag manner, and it does not necessarily run across the boundaries of the grain. In fact the

figure shows a transgranular fracture crossing the edges of the boundaries bringing an edge-based

fracture into mind.

Figure 3.1: Edge-based crack initiation and propagation.

The damage variable is introduced into GraFEA to keep record of the broken edges,. The

damage variable, φi, is imposed on the weighted averaged normal strain along edge i, ε̄i, if it
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exceeds the critical strain value. As already mentioned φi (acquiring only values of 0 and 1)

represents the extent of damage across edge i. A value of φi = 1 corresponds to the undamaged

case, and φi = 0 denotes a failed edge. Note that cracks cross the failed edges, and they are not

parallel to those edges. The strain-based fracture criterion chosen in this study is representative of

brittle failure.

φi =

 1 ε̄i < εcritical

0 ε̄i ≥ εcritical

(3.8)

3.4 Numerical Results

In this section numerical examples are provided to demonstrate the ability of GraFEA in study-

ing fracture. The examples are aimed to answer the following questions:

1. What is the effect of the incorporation of a length scale parameter in the fracture criterion

used in GraFEA?

2. Are the results obtained from GraFEA mesh dependent? Do the results vary noticeably with

the changes in the mesh?

3.4.1 The Effect of Length Scale Parameter

The numerical results provided in the recent paper on GraFEA [15] were obtained using a local

fracture criterion where the decision on the failure of each edge was made solely on the strain

along that particular edge. In this study we consider a nonlocal fracture criterion, where fracture

of an edge is dependent upon the collective behavior of all of the edges located within a certain

distance (`c) of the edge of interest. An Examples is provided to examine the effect of considering

a nonlocal fracture criterion (including a length scale parameter) on the response.

A rectangular plate of width W = 4 units, and length L = 6 units with a central circular

hole of radius r = 0.5 units is considered (Figure 3.2). The plate is assumed to be made of steel

with E = 29 × 106 and ν = 0.3, and it is considered to be in plane stress condition (with unit

thickness). The bottom boundary of the plate is fixed in the vertical direction, and the central node
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of the bottom boundary is constrained in the horizontal direction to eliminate rigid body motion.

The top boundary of the plate is subjected to increasing tensile displacement boundary condition

performing a quasistatic analysis. As discussed in the previous section, the existing bond-breakage

models in the literature (such as lattice models or bond-based peridynamic theory) are limited to

the Poisson’s ratio of 0.25. Whereas GraFEA places no limitations on the material properties.

Figure 3.2: Rectangular plate configuration with a circular hole.

The results for 5 values of the length scale parameter are provided to study the effect of non-

locality. Figure 3.3 summarizes the results for all cases, `c/r = 0%, 10%, 20%, 30% and 40%.

The same non-uniform mesh is used for all cases (Figure 3.3.a). One can see that by increasing

the magnitude of the length scale parameter the width of the diffuse damage band increases. How-

ever, as it is demonstrated in Figure 3.4 the changes in the width of the diffuse damage will not be

influential on the global force-displacement relation. Figure 3.3.(b-f) illustrate the nodes of the FE

mesh in their current configuration (by removing the edges for presentation purposes) for different

values of `c/r. The blue dots correspond to the nodes that remain intact after failure (none of the

edges originally attached to these nodes are broken). The yellow dots on the other hand represent

the nodes for which less than 2/3 of the attached edges have failed. Finally, the red dots correspond

to the nodes for which over 2/3 of the edges are broken.

A point is to be made about the quasistatic analysis. If all of the edges connected to a node are

broken (φj = 0 for all edges j connected to node i), point i will become an isolated point detached
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(a) Original Mesh (b) `c/r = 0% (c) `c/r = 10%

(d) `c/r = 20% (e) `c/r = 30% (f) `c/r = 40%

Figure 3.3: The figure demonstrates the effect of the change in the level of nonlocality, `c on the
fracture pattern. The dots represent the nodes in the FE mesh in their current configuration. The
blue dots correspond to intact nodes (no broken edges), the yellow dots correspond to the nodes
for which less than 2/3 of the attached edges are broken, and finally the red dots correspond to the
nodes for which over 2/3 of the attached edges are broken.

from the rest of the plate. This will cause a singularity in the global stiffness matrix, unless the

stiffness matrix is condensed off the rows and columns corresponding to node i. In this study the

φ value for the broken edges is set to a very small value (e.g. 0.0001) instead of zero in order to

resolve this issue without having to condense the stiffness matrix. A similar approach in a slightly

different context was also discussed in a study by Peerlings, de Borst, Brekelmans, and Geers [60].

It is worth mentioning that performing a dynamic analysis would automatically resolve this issue.

The force-displacement diagram of Figure 3.4 highlights the change in the amount of load that

can be sustained by the plate with the changes in the length scale parameter (five different values).

As `c increases, the magnitude of the maximum force also increases. This is due to the fact that

the averaging is performed over a larger characteristic zone.
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Figure 3.4: Force-displacement results for different values of the length scale parameter.

3.4.2 Mesh Sensitivity Studies

One of the main concerns about any numerical approach is whether or not the results are mesh

dependent. The coarseness and fineness of the mesh introduce a length scale into the problem.

Therefore, the numerical approaches based on an underlying mesh are in most cases to some extent

dependent on the mesh, and a certain degree of fineness of the mesh is required to guarantee the

convergence to the solution. The question to be answered in this study is beyond this point, and the

aim is to test whether the results from GraFEA are mesh independent providing that the underlying

mesh is not very coarse. In order to demonstrate this, two sets of examples are provided:

1. The rectangular plate of the example provided in Subsection 3.4.1 is studied with three

meshes of different densities. The force displacement results are compared for the three

meshes and the three values of `c/r to analyze the consistency between them.

2. Mesh sensitivity studies are performed using a hierarchical mesh analysis. In this approach
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the analysis starts with a given mesh. Then the mesh is refined through a hierarchical pro-

cedure in which each subsequent mesh contains the previous mesh as a subset. This is a

methodical approach to studying mesh sensitivity, because one can check whether or not the

pattern of a finer mesh is a refined version of the coarser mesh or if the results are completely

different.

3.4.2.1 Variation of the mesh density

The example of Subsection 3.4.1 is revisited in this section for three different mesh densities.

To be specific the three meshes will have 5716, 6409, and 7654 elements (The results of Subsec-

tion 3.4.1 correspond to the mesh of 7654 elements). To examine whether or not the results are

mesh dependent, the force-displacement results are compared for the three cases. The shape of

the force-displacement diagram for all cases is similar to Figure 3.4, therefore, only the force and

displacement at the peak point of the diagram are summarized in Table 3.1. The results are pro-

vided for five values of the length scale parameter. The error listed in the last column of the table

is the maximum error obtained from the three meshes computed with respect to the average value

between the three mesh densities. One can see that the computed error for all cases is very small,

and the force-displacement results for all mesh densities are compatible.

Table 3.1: Maximum force and the corresponding displacement of the F − δ diagram for three
mesh densities and five values of the length scale parameter.

5716 Elements 6409 Elements 7654 Elements Error(%)
F δ F δ F δ F δ

`c/r = 0% 336163.42 0.01919 339462.27 0.01938 340850.28 0.01946 0.79 0.81

`c/r = 10% 393944.88 0.02248 392033.70 0.02238 394561.51 0.02253 0.38 0.38

`c/r = 20% 439168.27 0.02506 440850.22 0.02517 444406.92 0.02538 0.66 0.69

`c/r = 30% 489976.39 0.02796 491989.07 0.02808 487515.02 0.02784 0.47 0.45

`c/r = 40% 535897.82 0.03059 537005.80 0.03065 537110.94 0.03067 0.17 0.14
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Table 3.2 contains the damage pattern for the three mesh densities and five ratios of `c/r. Each

figure demonstrates the nodes of the FE mesh in their deformed configuration which are color-

coded as previously described. It can be seen that the diffuse damage pattern of the mesh densities

for a specific `c value differ slightly due to the differences in the mesh. However, according to

Table 3.1 these slight variations do not cause discrepancies in a global sense.

Table 3.2: The table contains figures for three different mesh densities and five values of the length
scale parameter. Each figure displays the nodes of the FE mesh in current configuration with the
color-code described in Figure 3.3.

`c/r = 0% `c/r = 10% `c/r = 20% `c/r = 30% `c/r = 40%

5716 Elements

6409 Elements

7654 Elements

3.4.2.2 Hierarchical mesh

A hierarchical mesh procedure is adopted to study the variation in the results with the changes

in the mesh. In each round of mesh refinement each triangular element is divided into four trian-
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gular elements by passing lines through the mid-nodes of each two edges of the elements parallel

to the third edge. This approach gives four elements which are identical to the original element.

Therefore, if the original mesh is a mesh of good quality (avoiding narrow geometries causing sin-

gularity), the refined mesh will also preserve the same level of quality. In a hierarchical mesh the

refined mesh includes the coarser mesh as a subset. Every round of hierarchical mesh refinement

results in an increase in the number of edges, number of nodes, and number of elements (refer to

Figure 3.5 and Table 3.3).

Figure 3.5: Hierarchical mesh refinement on a typical element.

Table 3.3: Increase in the number of edges, nodes, and elements due to one round of hierarchical
mesh refinement.

Number of new nodes Number of edges in the original mesh
Number of new elements 3 × Number of elements in the original mesh

Number of new edges
Number of edges in the original mesh

+ 3 × number of elements in the original mesh

Figure 3.6 shows an example of a hierarchical mesh refinement for a nonuniform mesh. The

original mesh goes through two rounds of hierarchical refinements. From the highlighted red

element it is apparent that the original mesh is a subset of both the meshes resulting from round one

and round two of mesh refinement. The highlighted purple element also shows that the resulting
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mesh from the first round of refinement is a subset of the mesh from the second round of refinement.

Figure 3.6: The figure shows an example of applying two rounds of hierarchical mesh refinement
on a given mesh. The red triangular element in the original mesh is preserved in the first round and
second round, and the purple triangular element highlighted in the resulting mesh from the first
round is preserved in the second round.

An example of mesh sensitivity studies utilizing a hierarchical mesh refinement is provided next

to assess whether the results of GraFEA are dependent on the fineness of the underlying mesh. A

square plate (W = L = 2) with a circular hole (r = 0.25) is chosen (Figure 3.7). The plate is

made of steel with E = 29 × 106 and ν = 0.3 in plane stress condition. A local fracture criterion

is used first, and then a length scale parameter is introduced to investigate the effect of nonlocality.

Similar to the previous examples the top boundary is subjected to tensile displacement boundary

conditions, and the bottom boundary is constrained in the vertical direction. The central node at the

bottom boundary is constrained in the horizontal direction to restrict rigid body translation. Three

rounds of mesh refinement are performed. The number of nodes and elements in the original mesh

and the subsequent meshes are tabulated in Table 3.4.

The results are provided for two values of the length scale parameter, to be specific `c/r = 0%

and 10%. The force-displacement diagram for all four cases (including the original mesh) is pro-

vided in Figure 3.8. Figure 3.9 provides the fracture pattern for each case by utilizing the color-

code of Figure 3.3. According to Figure 3.8, using the local fracture criterion the force displace-
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Figure 3.7: Square plate with a circular hole.

Table 3.4: Mesh information for the original mesh, and the resulting meshes after one, two, and
three rounds of hierarchical mesh refinement.

Original Mesh First Round Second Round Third Round

Number of nodes 415 1580 6160 24320
Number of elements 750 3000 12000 48000

Number of edges 1165 4580 18160 72320

ment diagrams for the meshes resulting from the first and second rounds of mesh refinement are

within very good agreement. However, the force corresponding to the peak value of the third round

(using a local fracture criterion) is slightly smaller than that of round one and round two. This can

be attributed to the mesh dependency of the results of GraFEA with a local fracture criterion. One

can also notice from Figure 3.9 that there is a good compatibility between the fracture pattern of

the round one and round two mesh refinements, however, the crack pattern is different for round

three of mesh refinement. It is also apparent that the maximum force and the corresponding dis-

placement for the original mesh are larger compared to the other meshes. This is partly due to

the mesh dependency of the results and partly due to the coarseness of the original mesh. The

force-displacement results for a nonlocal fracture criterion (Figure 3.9) show perfect compatibility

for all of the meshes (except for the post-fracture-initiation deviation noticed for the original mesh

which is due to the coarseness of the original mesh). It is obvious that the introduction of the

integral-type nonlocal fracture criterion will help eliminate the observed mesh dependency for the
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original GraFEA formulation [15].

The deformed configurations for the original mesh and the three rounds of mesh refinement

are provided in Figure 3.9 for the two values of the length scale parameter. The deviation of the

crack path for round three mesh refinement of a local fracture criterion from those of round one

and round two is noticeable from the figures. The introduction of the nonlocality in the fracture

criterion results in an obvious diffuse damage. However, according to Figure 3.8 this variation

in the diffuse damage pattern does not cause changes in the global force-displacement response,

and the global mesh independency is preserved through the introduction of a nonlocal fracture

criterion.

A few remarks must be made at this point on the integration of a nonlocal fracture criterion in

GraFEA:

• According to Jirásek [64], the nonlocal approach is only successful (in resolving the mesh de-

pendency induced by strain localization) when it is applied to a proper variable. The results

obtained in this study demonstrate that applying the nonlocality to the edge-based damage vari-

able enables GraFEA of producing mesh independent results.

• Peerlings et al. [60] suggested that in the strong nonlocal theories the integral averaging at each

point should only take place over the portion of the characteristic zone which has not yet failed.

Otherwise, the large strains that are formed in the broken edges will cause a faster growth of

the crack and an increase in the width of the diffuse damage part. The effect of updating the

characteristic zone with the progression of crack needs to be further studied.

• One of the issues with integral-type nonlocal damage theories is the question that whether or not

the points located on the two sides of a crack (yet still in each other’s characteristic zone) will

interact. This issue has also been expressed in the study by Peerlings et al. [60], however, its

effect is yet to be studied.
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3.5 Chapter Summary and Conclusions

This chapter is an extension of the recent paper on GraFEA [15] for the study of fracture in

solids. The goals of this chapter are two-folded: the influence of the nonlocality of the fracture

criterion used in GraFEA is studied on the results, and the mesh-sensitivity of GraFEA is examined

for both local and nonlocal fracture criteria. The numerical results illustrate that GraFEA is mesh

dependent in its original form (local fracture criterion), and the introduction of the nonlocality in

the fracture pattern will help eliminate the mesh dependency caused by fracture localization. The

second major finding of this study is that by increasing the level of nonlocality (the length scale

parameter), the problem shifts from an acute fracture problem to a fracture problem with a diffuse

damage pattern.

These findings enhance our understanding of GraFEA, however, more research is required to

investigate the mesh dependency of the results in a more systematic way. The existing studies in

the literature have only dealt with mesh sensitivity in a general sense by qualitatively comparing

the crack patterns, or comparing the global behavior of the model (global force-displacement re-

lationship, wave propagation properties, changes in the dissipated energy with mesh refinement).

Although these studies are informative, they do not provide us with a quantitative measure for

studying mesh dependency.

Further studies need to be carried out to determine the compatibility of the results from GraFEA

with experimental results. This study was a parametric study on the effect of including an intrin-

sic length scale on the numerical results. It is hoped that this study will provide an impetus for

experimentation to determine what this length scale corresponds to. By observing Figure 3.3 and

Figure 3.9, one might speculate that the length scale might probably be related to the width of the

band of the diffuse damage. According to a study by Bažant and Jirásek [35]:

“In relation to nonlinear fracture mechanics, the characteristic length in quasibrittle materials

with distributed cracking may be physically interpreted as (or related to) the effective size of

the fracture process zone at the tip of a macroscopic crack."
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However, more research and experiments are needed to determine the physics behind the length

scale parameter, and how it can be determined for particular material.

It would also be of interest to incorporate GraFEA into probabilistic methods to provide a

contour of damage probability as opposed to deterministic approaches with a definite crack path.

Due to the level of uncertainty involved (geometry, material properties, manufacturing flaws, etc.),

a probabilistic approach would provide us with more reliable results in the study of damage and

fracture. As Bažant and Jirásek [35] put it in words:

“... the real crack path is tortuous and, in one single experiment, may deviate from the

ideal trajectory. However, the computational simulations is supposed to reproduce the mean

trajectory, averaged over a large number of experiments."

It is already known that if the same experiment is run for different samples of the same material

(with similar geometry, and loading conditions), the fracture pattern will differ in the samples.

Thus, the main goal of the computational methods should not be to determine the exact crack path

of an experiment, but to determine a zone in which damage is most probable.
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Figure 3.8: Force-displacement results for a square plate with a circular hole subjected to a tensile
displacement boundary condition. The results are provided for a given mesh and three rounds of
hierarchical mesh refinement using a local fracture criterion (`c/r = 0%) and a nonlocal fracture
criterion (`c/r = 10%).
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Figure 3.9: The figure contains the original mesh and the results of the three subsequent rounds of
mesh refinement, as well as the deformed configurations for a local fracture criterion (`c/r = 0%)
and a nonlocal fracture criterion (`c/r = 10%). The second row displays the FE mesh in the
reference configuration, while the third and fourth rows contain the nodes of the FE mesh in current
configuration with the color-code described in Figure 3.3.

58



4. A UNIFIED INTEGRO–DIFFERENTIAL NONLOCAL MODEL∗

4.1 Introduction

For hyperelastic materials (i.e., Green elastic materials) there exists a potential function whose

derivative with respect to the strain at a point gives the corresponding stress at that point [84].

This forms the basis for a local (conventional) constitutive model where the stress and strain at

each point are related. Local theory of continuum mechanics is inherently scale free, i.e. forces

are only transferred through contact and no long–range forces between points located further apart

are considered. However, there exists certain phenomena (e.g., dispersion of elastic waves, crack

propagation in fracture mechanics, dislocations, and so on) that cannot be explained using local

theory of elasticity. In addition, as a consequence of recent developments in the field of material

science there is a need to model the structural response of a variety of new materials that require

the consideration of nonlocal aspects of the material (e.g. size effect in nanomaterials). In nonlocal

theories, stress at each point is influenced by the strain at all points in the domain. This influence

decreases as the distance between the points increases. The concept of nonlocal theory of linear

elasticity was initially introduced in papers by Kröner [85], Krumhansl [86], and Kunin [87]. Later,

the idea of long–range interactions was further developed in the works of Eringen [88–91] and

Eringen and Edelen [92]. Eringen [90] introduced an integro–differential nonlocal model which

has widely been used in the literature. Later, Eringen proposed a two–phase nonlocal model [22]

which was a combination of local and integro–differential nonlocal constitutive theories. One of

the advantages of an integral nonlocal theory over the local elasticity theory is that the former gives

non–singular results for geometric singularities (i.e. cracks) due to the averaging effect inherent in

the integral form of the constitutive relation.

The nonlocal integral constitutive equation makes use of a positive distance–decaying kernel

function which specifies the dependence of stress at each point on the strain at other points in

∗Reprinted with permission from “A unified integro–differential nonlocal model” by P. Khodabakhshi, and J. N.
Reddy, 2015. International Journal of Engineering Science, 95, 60–75, Copyright 2015 by Elsevier Ltd.
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the domain. Eringen [90] showed that for a specific class of kernel functions the Eringen nonlo-

cal integral constitutive equation can be transformed into a differential form with the exact same

properties. Due to the difficulties in using integral constitutive equations, the nonlocal differen-

tial model proposed by Eringen [90] is the one most widely used in the literature to account for

nonlocal effects. Several studies have been reported on the basis of nonlocal theories. Peddieson,

Buchanan,and McNitt [93] used the Eringen nonlocal differential model to derive the equations

of equilibrium for a nonlocal Euler–Bernoulli beam. This study [93] was pioneering in the sense

that Eringen nonlocal differential model was used to incorporate nonlocal effects into the analy-

sis of structural elements. One of the main issues that was discussed in the work of Peddieson,

Buchanan,and McNitt [93] was the fact that in nonlocal cantilever beams (enhanced with Erin-

gen’s differential model) nonlocal effects were not triggered for point loads applied at the free

end. This is not a desirable outcome, because recently cantilever beams of micro–and nano–sizes

have found several applications as actuators and sensors in the fields of chemical and biological

sciences [94–97]. If a nonlocal model is not capable of capturing the size effect in these nano–and

macro–cantilever beams, then the data obtained by these devices may not be interpreted correctly.

Other examples of nonlocal Euler–Bernoulli beam studies were presented in [65, 98–100].

Challamel and Wang [65] also pointed to the deficiency mentioned in [93] and suggested the in-

tegration of gradient elasticity model with Eringen nonlocal model to eliminate it. Shakouri, Lin,

and Ng [100] gave a discrete formulation for a nonlocal Euler–Bernoulli beam representation of the

double–walled carbon nanotubes using the Galerkin method. Wang, et al. [101], Wang et al. [102],

Wang, and Wang [103], and Wang, and Liew [104] integrated Timoshenko beam theory with Erin-

gen nonlocal model. The main problem with these works [101–104] is that nonlocal effects are

only limited to normal stresses and not transverse shear stresses. Reddy [105] used Eringen nonlo-

cal model to give the variational statements for several beam theories, namely the Euler–Bernoulli,

Timoshenko, Reddy and Levinson beam theories. In this comprehensive study [105] the limitation

on considering the nonlocal effects on the shearing stresses [101–104] is removed and nonlocal ef-

fects are included in both normal and transverse shear stresses. Analytical solutions of static bend-
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ing, vibration, and buckling of the beams are also provided in this study [105]. Later, Reddy [106]

formulated the governing equations for the bending of Eringen nonlocal beams (Euler–Bernoulli

and Timoshenko beam theories) and plates (Classical and first order shear deformation plate the-

ories) which also took in account von Kármán nonlinearity. Reddy [106] stated that no quadratic

functional can be derived for the differential form of Eringen nonlocal beam theory from which the

governing equations can be derived. Thai [107], and Thai, and Vo [108] recently provided a higher

order nonlocal beam theory slightly different from Reddy beam theory which also accounted for

variation of shear stress along the height of the beam. Reddy and El–Borgi [109] provided the

governing equations for bending of nonlocal Euler–Bernoulli and Timoshenko beam theories ac-

counting for moderate rotations through modified von Kármán nonlinearity. Several studies have

also applied Eringen nonlocal model to the study of functionally graded beams [110–112]. Studies

on nonlocal beam theories based on the differential model are far more exhaustive to be reported

here. Interested readers may consult [109] and [110] for further information.

In all of the above–mentioned references, the differential form of the Eringen model had been

used. Polizzotto [113] applied the integral form of Eringen model and derived the variational prin-

ciples governing the integral form from which the nonlocal finite element formulation is obtained.

The kernel function in the integral constitutive equation brings in a concept of a length scale.

Pisano and Fuschi [114] used the approach proposed by Polizzotto [113] to derive a closed–form

solution for a bar in tension with Eringen nonlocal model as the constitutive equation. Later,

Pisano, Sofi, and Fuschi [115] used this integro–differential nonlocal model to give a finite ele-

ment formulation for 2D problems of two–phase elastic materials [22]. DiPaola et al. [116] came

up with a new method to introduce long–range forces into the equations of motion. General 3D

variational statements were constructed and they were further simplified for the Timoshenko beam

theory. The formulation proposed by DiPaola et al. [116] is conceptually similar to the formulation

of peridynamic theory proposed by Silling [13].

It is found by several researchers that Eringen’s differential model yields inconsistent results

for a cantilever when compared to other boundary conditions [65,93,102,104,117]. For all bound-
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ary conditions except the cantilever, the model predicts softening effect (i.e., larger defections

and lower fundamental frequencies) as the nonlocal parameter is increased. Several ad hoc ap-

proaches or explanations have been proposed to alleviate the baffling case of the cantilever beam.

In the present study, classical theory of elasticity is augmented with Eringen’s nonlocal model in

integral form to present a unified integro–differential model for nonlocal elasticity and a general

finite element formulation for the integral form of Eringen nonlocal model. Note that by using the

two–phase Eringen model [22], two control parameters will exist, namely the length scale param-

eter and phase parameter. The general 3D equations are further simplified to the one–dimensional

case of the Euler–Bernoulli beam theory. Several examples are provided to show how Eringen

nonlocal model affects the transverse displacement of the beams. In this study, the kernel function

used in the integral constitutive equation is different from that of which yields into Eringen’s differ-

ential equation [90]. It is shown that the proposed nonlocal model yields consistent results for most

boundary conditions (including the paradoxical case of a cantilever beam), however, the results are

slightly different for the case of a simply supported beam. Among the provided examples, other

than the simply supported beam which shows a slight stiffening effect, the rest of the boundary

conditions show a softening effect as expected. This result is promising, in the sense that it can

be used for the study of nonlocal effects in micro–and nano–cantilevers used as actuators/sensors

in biological and chemical sciences. The softening effect increases with the increase in the length

scale parameter and the decrease in the phase parameter. A brief discussion on the applicability

of the integral formulation to general problems is brought in the end. Also the transition from

stiffened nonlocal simply supported beam to softened nonlocal clamped beam is studied further.

4.2 Eringen–type Nonlocal Formulation

4.2.1 Unified Nonlocal Constitutive Model

The Eringen nonlocal model [88, 89] is based on the assumption that the stress at each point

depends on the strain at all points of the domain. According to this model, stress at point x can be
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determined according to the following equation:

σσσ (x) =

∫
V ′
α (x,x′, lc) C : εεε (x′) dV ′ (4.1)

where εεε (x′) is the local strain at point x′ which is assumed to be the linearized version of the

Green–Lagrange strain tensor [84]:

εεε (x) =
1

2

[
∇u + (∇u)T

]
(4.2)

In Eq. (4.1), α (x,x′, lc) is a kernel function which determines the measure by which stress at point

x is affected by the strain at point x′; α (x,x′, lc) has the following properties [90]:

1. It should be a positive distance decaying function with its maximum value taking place at

x = x′.

2. In the limit of lc → 0 (where lc is a length scale parameter), the kernel function should revert

to the Dirac–delta function and the nonlocal formulation should simplify to the familiar local

formulation.

3. In the limit of lc →∞, the Eringen model should approximate lattice theory.

4. The integral of this function over the whole domain should be unity (assuming that point x

is embedded in an infinite domain):∫
V ′
α (x,x′, lc) dV

′ = 1 (4.3)

Selection of the kernel function is based on satisfying the above–mentioned physical and math-

ematical requirements. Note that the kernel function introduces a concept of material length scale

into the problem. The distance of each point within the domain from a specific point x becomes

meaningful only when it is compared to a length scale. A kernel function is often chosen to be

symmetric and one of the most commonly used forms is the exponential function of the following
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form:

α

(
|x− x′|

lc

)
= α0e

− |x−x′|
lc (4.4)

where α0 is determined by satisfying the constraint in Eq. (4.3) while assuming that the point is

embedded in an infinite domain.

Equation (4.1) can be modified such that it takes the form of a two–phase constitutive model

with both local and nonlocal phases [22]:

σσσ (x) = ξ1C : εεε (x) +

∫
V ′
ξ2α (x,x′, lc) C : εεε (x′) dV ′ (4.5)

where ξ1 and ξ2 satisfy the following relation:

ξ1 + ξ2 = 1 (4.6)

Here ξ1 and ξ2 represent measures of local and nonlocal properties of the model; ξ1 = 1 and

ξ2 = 0 corresponds to the purely local constitutive equation and ξ1 = 0 and ξ2 = 1 corresponds to

the original Eringen nonlocal constitutive equation. ξ1 is called phase parameter in the following

sections.

It is worth mentioning that nonlocal theories in general will introduce at least one length scale

parameter into the constitutive equation (i.e. lc in Eq. (4.1)) regardless of the choice of differential

or integral form. The two–phase constitutive equation used in this study (Eq. (4.5)) accounts for

an additional independent variable, i.e. the phase parameter, compared to the differential form of

Eringen nonlocal model. The phase parameter, ξ1, adds to the generality of the formulation used

herein. By setting ξ1 = 0 the original Eringen formulation is attained.

In order for the nonlocal continuum theory to be applicable to the study of problems with

prominent nonlocal effects, the length scale parameter, lc, should be determined to be repre-

sentative of the problem at hand. Notice that in the original formulation of Eringen [90] and

the papers using the differential form of Eringen model, the kernel function is defined to be

α = α (|x− x′|, τ), where τ = e0a/l. In this formulation a and l are internal and external
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characteristic lengths, respectively, and e0 is a constant which is material dependent. The corre-

sponding counterpart in the formulation used herein is τ l = e0a = lc. To this date, no consensus

has been reached on how to experimentally determine the material–dependent length scale param-

eter. Eringen [90] proposed that the length scale parameter be determined such that the dispersion

curve of the nonlocal theory agreed with that of the atomistic approaches. Wang and Wang [103]

suggested a conservative range for the length scale parameter of the single–walled CNTs to be

lc < 2.0 nm. According to Arash and Wang [118], the length scale parameter of CNTs depends on

several parameters, i.e. boundary conditions, chirality, number of walls, and so on. Further studies

are required to determine the length scale parameter corresponding to a specific problem.

4.2.2 General Finite Element Formulation

The equations of equilibrium and the boundary conditions will remain the same as in local

analysis, where σσσ is replaced by the definition in Eq. (4.5):

∇.σσσ + b = 0 in V, u = ū on Γu, t = t̄ on Γt (4.7)

where V is the interior domain of the body, Γu is the part of the boundary where displacements are

specified, and Γt is the part of the boundary where traction is specified; Γu and Γt are disjoint parts

with the property Γu ∪ Γt = Γ, with Γ being the entire boundary of the domain.

The total potential energy of the system can be written as [119]:

Π (u) = U + V E =

∫
V

(
1

2
σσσ : εεε− b.u

)
dV −

∮
Γ

t.u dS

=

∫
V

(
1

2
ξ1εεε (x) : C : εεε (x)− b.u

)
dV

+
1

2

∫
V

(∫
V ′
ξ2α (x,x′, lc)εεε (x) : C : εεε (x′) dV ′

)
dV −

∮
Γ

t.u dS

(4.8)

The finite element model is derived using the procedure discussed in [51]. The weak form associ-

ated with Eq. (4.8) is
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0 =

∫
Ve

{
− (∇w)T :

[
ξ1C : εεεe (x) +

Nel∑
e′=1

∫
Ve′

ξ2α (x,x′, lc) C : εεεe′ (x
′) dV ′

]}
dV (4.9)

+

∫
Ve

wT .bedV +

∮
Γe

wT .te dS

whereNel is the number of elements in the domain and te is the traction vector along the boundaries

of element e. The nonlocal terms correspond to element e′ interacting nonlocally with element e.

Next, the displacement field u (x) is replaced with a finite element approximation and the

strains are computed using Eq. (4.2):

u (x) = ΨΨΨe∆∆∆e x ∈ Ve, e = 1, ..., Nel (4.10)

εεε (x) =

〈
εxx εyy εzz γyz γxz γxy

〉T
= Du (x) = Be∆∆∆e (4.11)

In Eqs. (4.10) and (4.11), ∆∆∆e is the vector of nodal displacements of element e, and ΨΨΨe is the

matrix of shape functions relating the displacement field of the element to its nodal displacements

∆∆∆e. For a general three–dimensional problem ∆∆∆e, and ΨΨΨe are defined according to Eqs. (4.12) and

(4.13) with n being the number of nodes in the element.

∆∆∆e =

〈
u1
x u1

y u1
z ... unx uny unz

〉T
3n×1

(4.12)

ΨΨΨe =


ψ1 0 0 ... ψn 0 0

0 ψ1 0 ... 0 ψn 0

0 0 ψ1 ... 0 0 ψn


3×3n

(4.13)

In Eq. (4.11), Be is defined as

Be = DΨΨΨe (4.14)

and D is a differential matrix operator:
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D =



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

∂
∂y

∂
∂x

0


(4.15)

The weight function w is replaced with the shape functions ΨΨΨe. Therefore, we have

∇w = Be = DΨΨΨe (4.16)

Finally, u and w are substituted into Eq. (4.9) to obtain the final finite element model over an

element e

0 =

∫
Ve

{
−BT

e :

[
ξ1C : Be∆∆∆e +

Nel∑
e′=1

∫
Ve′

ξ2α (x,x′, lc) C : Be′∆∆∆e′dV
′

]
+ ΨΨΨT

e be

}
dV

+

∮
Γe

ΨΨΨT
e te dS

(4.17)

or

ξ1k
l
e∆∆∆e + ξ2

Nel∑
e′=1

knlee′∆∆∆e′ = Fe (4.18)

where

kle =

∫
Ve

BT
e : C : Be dV x ∈ Ve (4.19)

knlee′ =

∫
Ve

∫
Ve′

α (x,x′, lc) BT
e : C : Be′dV

′ dV x ∈ Ve, x′ ∈ V ′e (4.20)

Fe =

∫
Ve

ΨΨΨT
e be dV +

∮
Γe

ΨΨΨT
e te dS (4.21)

where kle and knlee′ are the local and nonlocal parts of the stiffness matrix, respectively; Fe is the

element force vector. Note that knlee′ has double integration over the domain of elements e and e′. By
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setting ξ1 = 1 in Eq. (4.18), we obtain the familiar finite element model for the local theory. Also

it is worth mentioning that according to Eq. (4.21) the natural boundary conditions for nonlocal

formulation remain the same as those of local formulation. Equation (4.18) is assembled for all

elements in the domain and the specified boundary conditions are imposed before solving for the

unknown nodal values of the displacements.

4.2.3 Kernel Function for One–dimensional Analysis

This study is dedicated to the beams with nonlocal constitutive equations. Therefore, one needs

to determine the one dimensional kernel function used in Eringen nonlocal model. It is assumed

that nonlocal effects are only present along the length of the beam and no effect is considered in

the other two dimensions. For 1D problems Eq. (4.4) simplifies to an exponential equation of the

following form:

α

(
|x− x′|
lc

)
= α0e

− |x−x
′|

lc (4.22)

The constraint in Eq. (4.3) is used to determine the constant α0 in Eq. (4.22). For simplicity of

integration, it is assumed that the cross section of the beam is constant and doesn’t change across

the length of the beam, therefore, A′ = A:

∫ +∞

−∞

∫
A

α

(
|x− x′|
lc

)
dAdx′ = 2α0Alc = 1→ α0 =

1

2Alc
(4.23)

Hence the kernel function becomes

α

(
|x− x′|
lc

)
=

1

2Alc
e−
|x−x′|
lc (4.24)

However, note that the nonlocal part of the stiffness matrix (Eq. (4.20)) has a volume integral over

the domain of element e′. Knowing that no nonlocal effect is considered along the height and width

of the beam, A can be factored out of the integration. Finally, one can assume the kernel function

to be:

α

(
|x− x′|
lc

)
=

1

2lc
e−
|x−x′|
lc (4.25)
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where the volume integration over element e′ is transformed to an integration over the length of

this element only.

In the original formulation, each point is assumed to interact nonlocally with all other points

in the domain. Since the kernel function, α, decays rapidly with distance, it acquires a very small

value beyond some point. One can make use of this property to limit the domain of nonlocal

interactions which is named to be the influence zone. An influence zone of the radius li = 6lc is a

reasonable choice which is used in this study. Using this value the exponential term of the kernel

function reduces to e−li/lc ≈ 0.0025 which is practically a very small value.

4.2.4 Finite Element Model of the Nonlocal Euler–Bernoulli Beam Theory

The ideas presented in the previous sections are applied to the bending of beams. We consider

the Euler–Bernoulli beam theory to illustrate the application of the integro–differential model pro-

posed herein. We also show that the cantilever beam paradox can be successfully resolved.

Consider a straight, homogeneous, isotropic beam of length L, constant rectangular cross sec-

tion b×h (b being the width and h being the height). The x–axis is taken along the geometric cen-

troid of the beam cross section and the z–coordinate is taken positive upward. The only nonzero

strain in the Euler–Bernoulli beam theory [51] is

ε (x) =
du

dx
− zd

2w

dx2
(4.26)

The nonlocal stress is determined using Eq. (4.5):

σ (x) = ξ1E

(
du

dx
− zd

2w

dx2

)
+

∫ L

0

∫
A′
ξ2α (x, x′, lc)E

(
du

dx
− zd

2w

dx2

)
dA′dx′ (4.27)

Applying the general calculations of Subsection 4.2.2 to the present case, one can derive the

one–dimensional finite element formulation for an element of a beam under the action of dis-

tributed horizontal and transverse loads, f (x) and q (x), respectively. Note that, since the gov-

erning equation for the Euler–Bernoulli beam is a fourth order equation, integration by parts is
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applied twice for the term containing w. This makes the calculations slightly different from those

of Subsection 4.2.2. The finite element formulation takes the form of Eq. (4.18):

ξ1

(kle)11
0

0
(
kle
)22


∆∆∆1

e

∆∆∆2
e

+ ξ2

Nel∑
e′=1

(knlee′)11
0

0
(
knlee′
)22


∆∆∆1

e′

∆∆∆2
e′

 =

F1
e

F2
e

 (4.28)

where

(
kle
)11

ij
=

∫ xe2

xe1

EAe
dψei
dx

dψej
dx

dx, i, j = 1..2 (4.29)

(
kle
)22

ij
=

∫ xe2

xe1

EIe
d2φei
dx2

d2φej
dx2

dx, i, j = 1..4 (4.30)

(
knlee′
)11

ij
=

∫ xe2

xe1

∫ xe
′

2

xe
′

1

α (x, x′, lc)EA
eAe

′ dψei
dx

dψe
′
j

dx
dx′dx, i, j = 1..2 (4.31)

(
knlee′
)22

ij
=

∫ xe2

xe1

∫ xe
′

2

xe
′

1

α (x, x′, lc)EI
eAe

′ d2φei
dx2

d2φe
′
j

dx2
dx′dx, i, j = 1..4 (4.32)

(∆∆∆e)1 =

〈
ue1 ue2

〉T
, (∆∆∆e)2 =

〈
we1 θe1 we2 θe2

〉T (
θei = −dw

dx

∣∣∣∣
x=xei

)
(4.33)

(Fe)
1
i =

∫ xe2

xe1

f (x)ψei dx+
2∑
j=1

Pjψ
e
j (xei ), i, j = 1..2 (4.34)

(Fe)
2
i =

∫ xe2

xe1

q (x)φeidx+
4∑
j=1

Qjφ
e
j (xei ), i, j = 1..4 (4.35)

and ψei and φei are the linear Lagrange and Hermite cubic interpolations functions, respectively.

Since the cross section of the beam is assumed to be constant, the subscripts e and e′ over A and

I in Eqs. (4.29) to (4.32) can be eliminated. Also in the above equations xe1
(
xe
′

1

)
, and xe2

(
xe
′

2

)
are the x–coordinate of the first and last nodes of element e (e′), respectively. Substituting for

α (x, x′, lc) from Eq. (4.24) one can rewrite knlee′ as

(
knlee′
)11

ij
=

∫ xe2

xe1

∫ xe
′

2

xe
′

1

1

2lc
e−
|x−x′|
lc EAe

dψei
dx

dψe
′
j

dx
dx′dx, i, j = 1..2 (4.36)
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(
knlee′
)22

ij
=

∫ xe2

xe1

∫ xe
′

2

xe
′

1

1

2lc
e−
|x−x′|
lc EIe

d2φei
dx2

d2φe
′
j

dx2
dx′dx, i, j = 1..4

The final assembled form of the equations is

(
ξ1K

l + ξ2K
nl
)
U = F (4.37)

where U and F are the global vectors of nodal displacements and nodal forces, respectively, and

Kl and Knl are the assembled local and nonlocal global stiffness matrices, respectively.

4.3 Numerical Results

4.3.1 General Comments

In this section, numerical results are presented for the Euler–Bernoulli beam theory with non-

local constitutive relation of the form of Eq. (4.27). Four different types of boundary conditions

and load conditions are considered here (Figure 4.1):

(a) Clamped beam with uniformly distributed load.

(b) Simply supported beam with uniformly distributed load.

(c) Cantilever beam with a concentrated load applied to the free end.

(d) Cantilever beam with non–uniform triangular distributed load.

In all cases, a uniform rectangular cross section with width b and height h is considered. The

problems are solved for three different values of length scale parameter, lc, and five different values

of phase parameter, ξ1. The value of the length scale parameter is chosen to be much smaller than

the length of the beam. The nonlocal interactions are considered to exist only within the influence

zone. If the mesh is such that only part of an element falls into this zone, the nonlocal interaction

between that element and the element of interest is neglected. This causes the discretized integral

form of Eq. (4.18) to be mesh–dependent to some degree for coarse meshes which will be discussed

later. The integral equations are solved numerically using Gauss–Legendre quadrature rule.
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Figure 4.1: Analysis cases with different load conditions and boundary conditions.

In all of the examples presented here the length to height ratio of the beam is chosen to be 40.

Therefore, assumption of a thin beam theory is appropriate and the fact that Euler–Bernoulli beam

theory neglects shear deformation does not introduce a significant error into the solution.

4.3.2 Clamped Beam with Uniform Distributed Load

The first example deals with a clamped beam of length L, constant bending stiffness EI , and

uniformly distributed load of intensity q0. The maximum deflection according to the local beam

model is w(L/2) = q0l
4/384EI . For a beam with constant EI , the conventional FEM gives the

exact deflection. The nonlocal deflections are normalized with respect to the maximum deflection

of the conventional local beam. The deflections of the beam for the purely nonlocal case (ξ1 = 0)

and 3 different values of lc, namely lc = 0.01L, 0.015L, and 0.02L, are shown in Figure 4.2.

It is clear that for the purely nonlocal case an increase in length scale parameter, lc, makes the

beam more flexible and consequently increases the deflection of the beam. This is consistent

with most of the reported results in the literature concerning Eringen nonlocal model (for instance

[93, 102, 104, 105]), whereas DiPaola et al. [116] reported an opposite trend for constant ξ1 and

varying lc. According to Figure 4.2 the transverse deflection of the beam can increase up to about

15% for lc = 0.02L.

The results for the maximum normalized deflection for three different values of lc and varying

phase parameter are shown in Figure 4.3, where ξ1 = 0 and ξ1 = 1 correspond to purely nonlocal
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Figure 4.2: Normalized deflection of a clamped beam with uniformly distributed load and ξ1 = 0.

and purely local constitutive models, respectively. It is clear that the normalized maximum deflec-

tion increases with a decrease in the phase parameter, that is, an increase in the nonlocal part of Eq.

(4.27). One can conclude that for a clamped beam an increase in lc and decrease in ξ1 results in a

more flexible beam. It is worth mentioning that higher lc and lower ξ1 both denote higher nonlocal

effects in the system.

In the local approach, the case of a homogeneous beam with constant cross section having

symmetric boundary conditions and loading conditions can be further simplified with the use of

the inherent symmetry of the model. Using the symmetry, one can model only half of the beam

[0, L/2], and the displacement of the second half is the mirror image of the displacement of the first

half. Due to the decrease in thesize of the domain to be modeled, the accuracy can be increased,

i.e. the same number of elements in a smaller domain gives higher accuracy. Symmetry is present

for a clamped beam with uniform distributed load. Use of symmetry in the nonlocal model of a

clamped beam is examined next. The results for the case with symmetry are shown in Figure 4.4.

Compared to the results shown in Figure 4.2, use of symmetry causes the beam to become more
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Figure 4.3: Normalized maximum deflections of a clamped beam with uniformly distributed load
for different values of the length scale and phase parameters.

flexible. As stated by Pisano, Sofi, and Fuschi [115], the discretized Eringen nonlocal formulation

will introduce some error near the boundaries of the model. This error is present in a zone with

a dimension equal to the influence zone (which is the distance beyond which nonlocal effects are

neglected). This error is due to the fact that in the integral of Eq. (4.3) it is assumed that point

x is embedded in an infinite medium. The effect of the points located further than the influence

zone from the point of interest becomes less significant on satisfying the assumption of Eq. (4.3).

However, this assumption is violated at the boundaries of the medium and the integral will not

result in unity. As a result of the end conditions, the stiffness terms in this zone are approximated

lower than the true value. This causes the noticeable difference between the deflections of the case

with symmetry and without symmetry. It can be seen that the difference is more for higher values

of lc. This shows that reduction of the domain by use of symmetry is not allowable in nonlocal

analysis, unless some conditions are enforced at the end conditions to modify the resulting error in

the stiffness of these areas.
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Figure 4.4: Normalized deflection of a clamped beam with uniformly distributed load and ξ1 = 0
(symmetry is used in modeling only half of the beam).

Note that the error caused by end conditions is present even in the case where the full beam

is analyzed. However, since in the case of a full beam the boundary conditions at the ends of the

beam involve a constraint on the transverse deflection, the reduction in stiffness will not affect

the deflection to the extent of the case of a half beam. In the case of a half beam, the introduced

boundary condition in the middle of the beam has a constraint on the slope of the beam and not the

transverse deflection. As a result, the influence of the end conditions on the deflection will become

more prominent with the use of symmetry.

4.3.3 Simply Supported Beam with Uniformly Distributed Load

Next the problem of a simply supported beam under uniformly distributed transverse load of

intensity q0 is studied. The maximum local deflection of this beam is 5q0l
4/384EI . The normalized

deflections of the beam for ξ1 = 0 and 3 different values of lc are shown in Figure 4.5. The results

shown in Figure 4.5 for a simply supported beam show a different trend as compared with those

shown in Figure 4.2 for a clamped beam. The deflection of the simply supported beam increases
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with the increase in the length scale parameter lc. However, the increase is not very significant.

Also note that the deflections derived from the nonlocal theory are slightly smaller than their local

counterpart which is not in agreement with the softening effect reported in the literature.
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Figure 4.5: Normalized deflection of a simply supported beam with uniformly distributed load and
ξ1 = 0.

Same as what was done for the clamped beam, the maximum normalized deflection for three

different values of lc and varying phase parameter is shown in Figure 4.6. It is obvious that low-

ering the phase parameter makes the system more stiff; therefore, the tip deflection increases with

increasing ξ1. This is in contradiction with the results of the clamped beam (Figure 4.3). In gen-

eral, for the simply supported beam a decrease in ξ1 decreases the deflection as opposed to other

boundary conditions and the reported results in the literature. One should note that the kernel

function used in this study is different from the one which gives rise to Eringen’s differential non-

local model. The differential model comes from a kernel function with a Gaussian distribution;

therefore, differences are to be expected. As will be shown next, the kernel function used here
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(Eq. (4.4)) eliminates the paradox concerning the cantilever beam, however, it introduces another

paradox for the simply supported beam.
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Figure 4.6: Normalized maximum deflections of a simply supported beam with uniformly dis-
tributed load for different values of the length scale and phase parameters.

Although for the case of a simply supported beam the nonlocal transverse deflections are

smaller than the local deflections, by increasing the number of elements in the beam the results

of the local and nonlocal analysis converge and the difference between the results will decrease.

This is shown in Figure 4.7 for lc = 0.01L (for which according to Figure 4.5 the difference be-

tween local and nonlocal deflections was larger among the different values considered for lc) and

increasing number of elements.

Similar to the clamped beam, the analysis of the half beam with the use of inherent symmetry

of the simply supported beam was performed. It was once again concluded that huge errors will

be introduced into the problem, if the stiffness of the end zone near the half beam is not modified.
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Figure 4.7: Normalized maximum deflections of a simply supported beam with uniform distributed
load for different number of elements and lc/L = 1%.

4.3.4 Cantilever Beam with Concentrated Load

The third example deals with a cantilever beam with a point load at the free end. The normal-

ized deflections are shown in Figure 4.8. The conventional (local) FEM result for the maximum

deflection of a cantilever beam of length L with constant EI subjected to a concentrated load P at

the free end is PL3/3EI . The deflections are normalized by this value to remove the effect of other

parameters. The results shown in Figure 4.8 correspond to the value of ξ1 = 0 which gives the

original one–phase Eringen nonlocal formulation of Eq. (4.1). The results show that as expected

the increase in the length scale parameter lc makes the system more flexible and the deflections are

increased which is in agreement with the trend of the clamped beam and the results stated in the

literature [93, 102, 104, 105]. Although an increase in the deflection is noticed, this increase is not

very significant. The maximum increase in the deflection of the tip of the beam is about 5% for

lc = 0.02L. The results for lc = 0.01L is almost the same as those of the conventional local FEM.
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Figure 4.8: Results for a cantilever beam with point load at the free end and ξ1 = 0, normalized by
the local maximum deflection.

The normalized deflection of the tip of the beam for varying phase parameter ξ1 is shown in

Figure 4.9. The results are provided for three different values of lc and five values of ξ1. Similar

to the clamped beam, the results show that the deflections increase with the decrease in the phase

parameter.

Overall, the normalized tip deflection is generally greater than unity for varying lc and ξ1.

In Figure 4.9 the values of the normalized tip deflection for lc = 0.01L and ξ1 other than unity

are slightly smaller than unity, the reason for which is discussed later. As opposed to the results

reported in several studies [65, 93, 102, 104, 117] for the paradoxical case of a cantilever beam, it

can be seen that the integral form of Eringen nonlocal model (with the present choice of kernel

function) results in deflections which are different from its local counterpart.

4.3.5 Cantilever Beam with Non–uniform Distributed Load

Finally, the case of a cantilever beam with triangular distributed load (Figure 4.1d) is studied

here. The maximum deflection for the conventional case is q0L
4/30EI . Normalized displacements
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Figure 4.9: Normalized deflections of the tip of a cantilever beam with a point load at the tip for
different values of length scale parameter and phase parameter.

for varying lc and ξ1 = 0 are shown in Figure 4.10, and normalized deflections of the tip of the

beam for different values of lc and ξ1 are shown in Figure 4.11. The trend is the same as in the

previous cases of a clamped beam and a cantilever beam with a point load. By comparing the plots

of Figure 4.11 with those in Figure 4.9 one can realize that the increase in deflection due to nonlocal

effects is more significant for the cantilever beam with the triangular distributed load compared to

the one with a point load at the tip. Although the results for a cantilever beam with uniformly

distributed load are not brought here, the deflections of the case of the triangular distributed load

even exceed those of the uniformly distributed load. This can be attributed to the derivations by

Reddy [105] which shows that the derivative of q(x) (transverse distributed force) come into the

picture in the differential form of the nonlocal Eringen model.

4.4 Assessment of the Discrete Eringen Nonlocal Formulation

As discussed in the introduction, most of the studies in the literature used the differential form

of the Eringen nonlocal model. Now the discrete integral model is evaluated to determine its
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Figure 4.10: Normalized deflection of a cantilever beam with triangular distributed load and ξ1 =
0.

applicability to the problems.

After finite element discretization of the domain and development of element–wise equations,

the elements are assembled using the connectivity matrix. The connectivity matrix is a rectangular

array whose ith row gives the element numbers which are located in the influence zone of element

i. A schematic view of the determination of the element numbers in the ith row of the connectivity

matrix is shown in Figure 4.12. As shown in the figure, first the exponential term of Eq. (4.25)

is constructed at the end nodes of the ith element (shown as a blue line). Next, the horizontal line

corresponding to the criterion e−li/lc is constructed (shown as a red line). The distance between the

intersection of the red line and the blue line (from constructing the exponential term at end nodes

of element i) is equal to 2li + hi, where li is the influence zone and hi is the length of element i,

and it is named as the nonlocal zone of element i (as shown in Figure 4.12). In the final step, the

elements remaining in the nonlocal zone of element i are determined. These elements form the ith

row of the connectivity matrix. This can be repeated for the rest of the elements to construct the
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Figure 4.11: Normalized tip deflections of a cantilever beam with a triangular distributed load for
different values of length scale and phase parameters.

connectivity matrix (Figure 4.13).

Element Nodes

Element i

Nonlocal Zone
(2li+hi)

e-6

e-6

Figure 4.12: Determination of the elements falling in the influence zone of element i.

By examining Figure 4.13 one can see that for the elements located in a distance equal to the

influence zone from the boundaries of the beam the integral equation of Eq. (4.3) is not satisfied.

This causes the results to have some undesirable changes in these areas. On the other hand, as

it is obvious from the figure, the nonlocal stiffness knlee′ depends highly on the mesh distribution
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Figure 4.13: Constructing the connectivity matrix.

(lc is chosen to be much smaller than the length of the beam). The accuracy of the results in the

integral form depends on the relative value of lc and the mesh size. If the mesh is very coarse, the

finite element solution will not converge to the true solution. Therefore, to obtain accurate results

the mesh size needs to be determined according to the length scale parameter, lc. To illustrate

this, the final results for the normalized maximum transverse deflection of a clamped beam with

uniformly distributed load are shown in Table 4.1 for different values of length scale parameter,

phase parameter, and number of elements. Note that the length of the beam is taken to be constant,

therefore, by increasing the number of elements the mesh size is decreased. As can be seen, by

increasing the number of elements the results start converging. For fewer number of elements,

the maximum nonlocal deflection becomes less than the corresponding local response. However,

the difference between the solutions obtained with meshes of 80, 90, and 100 elements becomes

negligible (the figures provided in the previous sections all correspond to a mesh of 80 elements).

This shows that if the integral form of the Eringen model is to be used, a sensitivity analysis should

be conducted on the mesh size before final analysis. Note that according to the results presented

in Table 4.1, the sensitivity of the solution to the number of elements decreases by increasing the

value of the length scale parameter, lc. This is due to the fact that an increase in lc will result in the

increase in the influence zone which will naturally increase the number of elements falling into the

influence zone.

4.5 Clamped vs. Simply Supported Beam

Except for the simply supported beam, all of the numerical examples presented in Section 4.3

show the following trends with the change in the nonlocal parameters, lc and ξ1:

1. The deflection increases with the increase in the length scale parameter, lc.
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Table 4.1: Normalized maximum deflections for a clamped beam with uniformly distributed load
for different numbers of elements, phase parameter, and length–scale parameter.

Number of Normalized nonlocal deflection
elements ξ1 = 0.00 ξ1 = 0.25 ξ1 = 0.50 ξ1 = 0.75 ξ1 = 1.00

l c
/L

=
0.

01
0 20 0.6891 0.7469 0.8154 0.8982 1.0000

40 0.9252 0.9402 0.9579 0.9779 1.0000
80 1.0307 1.0151 1.0074 1.0029 1.0000
90 1.0387 1.0200 1.0106 1.0044 1.0000

100 1.0451 1.0239 1.0131 1.0056 1.0000

l c
/L

=
0.

01
5 20 0.8638 0.8925 0.9246 0.9602 1.0000

40 1.0274 1.0124 1.0051 1.0014 1.0000
80 1.0904 1.0501 1.0287 1.0129 1.0000
90 1.0960 1.0529 1.0304 1.0137 1.0000

100 1.1003 1.0549 1.0317 1.0143 1.0000

l c
/L

=
0.

02
0 20 0.9689 0.9717 0.9784 0.9880 1.0000

40 1.0951 1.0546 1.0310 1.0137 1.0000
80 1.1421 1.0776 1.0449 1.0203 1.0000
90 1.1466 1.0794 1.0460 1.0208 1.0000

100 1.1495 1.0802 1.0464 1.0211 1.0000

2. The deflection increases with the decrease in the phase parameter, ξ1.

3. The nonlocal deflection (ξ1 6= 1) is generally larger than the local deflection.

For the simply supported beam the same trend with respect to variations of lc is noticed. How-

ever, the last two trends are not observed. The normalized deflection (nonlocal deflection divided

by the maximum local deflection) is always less than or equal to unity (equality to 1 corresponds

to the case of ξ1 = 1); also, the normalized deflection decreases with decreasing ξ1. To study this

further, a simply supported beam with rotational springs at both ends with equal spring constants

of µ, Figure 4.14, is considered. The case of µ = 0 corresponds to a simply supported beam, while

µ → ∞ corresponds to a clamped beam. It is understood that one cannot reach infinity numer-

ically, however, for a value of µ large enough the deflections of the clamped beam are attained.

To observe how the transition from the simply supported beam to the clamped beam occurs,

maximum nonlocal deflection for different values of µ, lc, and ξ1 is obtained. Once again the
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Figure 4.14: Simply supported beam with rotational springs with constant µ at both ends.

results are normalized with respect to the maximum local deflection. The results are tabulated in

Table 4.2 for different values of the normalized rotational stiffness, µL/EI , normalized length

scale parameter, lc/L, and phase parameter ξ1. The values of normalized deflection that are larger

or equal to unity are highlighted in the table. For µL/EI = e0 = 1, the results are almost the same

as the simply supported beam (note that in this case, µ acquires a small value, µ = EI/L 6= 0).

The nonlocal simply supported beam behaves slightly stiffer compared to its local counterpart.

Also note that the normalized deflection for µL/EI = e10 and µL/EI = e12 are the same and

convergence to the clamped beam has been made. One can see that the nonlocal clamped beam

is more flexible than the local clamped beam. As expected, the normalized deflection for ξ1 = 1,

purely local constitutive equation, will be exactly equal to 1 for all values of lc/L and µL/EI .

For other values of ξ1, with an increase in lc the change from a stiffer nonlocal system to a softer

nonlocal system takes place with a lower value of the rotational stiffness spring µ.

Finally, the normalized maximum transverse deflections for a wider range of values of ξ1 and

µL/EI and a constant value of lc/L = 0.02 are shown in Figure 4.15. Since µ changes from

very small values to very large values, the µL/EI is presented in the logarithmic form. The figure

shows that for lc/L = 0.02, only a very small range of µL/EI gives normalized values of less

than unity. With the increase of µ the normalized deflection increases to about 1.14. Due to the

difference in the kernel function used in this study as compared to the underlying kernel function

for the differential Eringen nonlocal model, one should expect some differences to arise. The

advantage of the integro–differential model with the exponential kernel function of Eq. (4.4) is

that it solves the afore–mentioned controversy for cantilever beams which has many applications

in science [94–97].

85



Table 4.2: Normalized maximum deflections of a simply supported beam with rotational springs
at both ends for different values of µL/EI , lc/L, ξ1.

µL/EI
Max. Local Normalized Maximum Nonlocal Deflection
Deflection ξ1 = 0.00 ξ1 = 0.25 ξ1 = 0.50 ξ1 = 0.75 ξ1 = 1.00

l c
/L

=
0.

0
10

100 1.3333 0.9710 0.9782 0.9853 0.9926 1.0000
102 1.3325 0.9710 0.9781 0.9853 0.9926 1.0000
104 1.2543 0.9728 0.9795 0.9862 0.9931 1.0000

2× 104 1.1862 0.9745 0.9807 0.9870 0.9934 1.0000
5× 104 1.0286 0.9785 0.9836 0.9889 0.9944 1.0000

105 0.8593 0.9837 0.9872 0.9913 0.9955 1.0000
2× 105 0.6769 0.9910 0.9919 0.9942 0.9970 1.0000
5× 105 0.4800 1.0028 0.9992 0.9985 0.9989 1.0000

106 0.3852 1.0118 1.0044 1.0015 1.0003 1.0000
108 0.2680 1.0304 1.0149 1.0074 1.0028 1.0000
1010 0.2667 1.0307 1.0150 1.0074 1.0028 1.0000
1012 0.2667 1.0307 1.0150 1.0074 1.0028 1.0000

l c
/L

=
0.

01
5

100 1.3333 0.9887 0.9915 0.9943 0.9971 1.0000
102 1.3325 0.9887 0.9915 0.9943 0.9971 1.0000
104 1.2543 0.9897 0.9922 0.9947 0.9974 1.0000

2× 104 1.1862 0.9907 0.9928 0.9952 0.9976 1.0000
5× 104 1.0286 0.9939 0.9948 0.9964 0.9982 1.0000

105 0.8593 0.9994 0.9983 0.9985 0.9991 1.0000
2× 105 0.6769 1.0093 1.0041 1.0020 1.0007 1.0000
5× 105 0.4800 1.0301 1.0160 1.0089 1.0039 1.0000

106 0.3852 1.0483 1.0264 1.0150 1.0066 1.0000
108 0.2680 1.0897 1.0497 1.0285 1.0128 1.0000
1010 0.2667 1.0904 1.0501 1.0287 1.0129 1.0000
1012 0.2667 1.0904 1.0501 1.0287 1.0129 1.0000

l c
/
L

=
0.

02
0

100 1.3333 0.9976 0.9981 0.9987 0.9994 1.0000
102 1.3325 0.9975 0.9981 0.9987 0.9993 1.0000
104 1.2543 0.9982 0.9986 0.9990 0.9995 1.0000

2× 104 1.1862 0.9992 0.9990 0.9992 0.9996 1.0000
5× 104 1.0286 1.0024 1.0009 1.0004 1.0001 1.0000

105 0.8593 1.0092 1.0046 1.0026 1.0011 1.0000
2× 105 0.6769 1.0225 1.0120 1.0068 1.0031 1.0000
5× 105 0.4800 1.0523 1.0283 1.0163 1.0074 1.0000

106 0.3852 1.0792 1.0431 1.0249 1.0112 1.0000
108 0.2680 1.1410 1.0771 1.0446 1.0201 1.0000
1010 0.2667 1.1420 1.0776 1.0449 1.0203 1.0000
1012 0.2667 1.1420 1.0776 1.0449 1.0203 1.0000
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Figure 4.15: Normalized maximum deflections of a simply supported beam with rotational springs
at both ends, lc/L = 0.02, varying value of ξ1 and µL/EI .

According to most of the studies in the literature Eringen nonlocal model has a softening effect

(e.g. [93,101,102,104]), i.e. the displacements of the Eringen nonlocal model are typically higher

than their local counterpart, while the frequencies are generally lower. However, the studies by

Reddy and El–Borgi [109] and Li et al. [120] showed that the behavior of the Eringen nonlocal

model depends upon the type of loading and boundary conditions compared to their corresponding

local counterpart. Although the stiffness may increase in some cases, there exists some cases where

it has a softening effect [109, 120]. This further supports the results obtained in the present study.

4.6 Chapter Summary and Conclusions

A unified nonlocal integro–differential model is proposed as a generalization of Eringen’s non-

local model. In the present study the constitutive equation is written as a linear combination of local

and nonlocal constitutive theories. The present model gives rise to two key parameters, namely the

length scale parameter, lc, and the phase parameter, ξ1. General three–dimensional finite element

formulation for the integro–differential model is presented. Then the results are specialized to the

case of the Euler–Bernoulli beam theory. It is shown through numerical examples that the nonlo-

cal beam is more flexible than its local counterpart for most boundary conditions (other than the
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case of a simply supported beam). The paradox surrounding the cantilever beam disappears with

the integro–differential model proposed herein, which is very beneficial in the study of micro–and

nano–cantilevers. This can also be attributed to the different choice of kernel function as compared

to the underlying kernel function for the differential form of Eringen’s nonlocal model.

As shown in this study, as with other numerical frameworks the accuracy of the discrete form

of the integral model depends on the mesh size, and it converges to the true solution by increasing

the number of elements. However, note that due to the existence of the nonlocal stiffness matrix,

kee
′

nl , increasing the number of nonlocal interactions will result in a global stiffness matrix with

more nonzero terms (i.e., larger bandwidth) and consequently higher memory demand. The de-

termination of the elements which are within the influence zone of a specific element becomes

more challenging for two–dimensional and three–dimensional problems, which is a topic of future

study. These are most likely the reasons why most of the previous studies made use of the differen-

tial form of the Eringen model. However, the integral form can be used to handle the problematic

case of cantilever beams.

Application of the integro–differential model to other beam theories (e.g., the Timoshenko

and Reddy third–order beam theories) is straightforward. However, extension and application of

the ideas presented herein to plates and shells is more challenging and requires attention. It is also

interesting to see how the integro–differential model predicts the vibration response in fundamental

and higher modes of vibration. It is hoped that with the publication of the present study, a number

of other studies will ensue.
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5. A UNIFIED BEAM THEORY WITH STRAIN GRADIENT EFFECT AND THE VON

KÁRMÁN NONLINEARITY∗

5.1 Introduction

5.1.1 Nonlocal Theories

Classical continuum mechanics has proven to be very useful in the study of a variety of prob-

lems of engineering and applied sciences. However, recent developments in the field of materials

science and emergence of new materials necessitate the need for new theories that account for cer-

tain material length scales. Conventional continuum mechanics is inherently scale–free; therefore,

the stress at each point depends only on the strain at that point. However, there exist examples

where continuum mechanics does not suffice. Nonlocality by itself does not have a single specific

definition, and “it can arise from the way we choose to model physical phenomena” (see [121]).

In nonlocal theories, as opposed to local theories, it is assumed that particles further apart will also

influence each other. Several nonlocal theories exist which consider the long–range interactions

between materials particles. These theories can be broadly divided into two major groups:

1. Weakly nonlocal theories (such as strain gradient theories [122–124] and modified couple

stress theories [125–130]) where stress at each point depends not only on the strain but also

on the derivatives of the strain. These are non–classical mechanics theories in the sense

that they account for couple stress effect and the material length scale comes in through a

constitutive equation relating the couple stress tensor and curvature tensor.

2. Strongly nonlocal theories (such as Eringen integral theory2 [88–90,105,106,131], and peri-

dynamic theory [13,69]), where stress at each point depends on the strain at all points within

∗Reprinted with permission from “A unified beam theory with strain gradient effect and the von Kármán Nonlinear-
ity" by P. Khodabakhshi, and J. N. Reddy, 2017. ZAMM –Journal of Applied Mathematics and Mechanics / Zeitschrift
für Angewandte Mathematik und Mechanik, 97(1), 70–91, Copyright 2016 by John Wiley and Sons.

2Eringen’s model is originally in integral form. However, for a special class of kernel functions the original
formulation is transformed into a differential model which can be considered as an example of stress gradient theories.
However, both integral form and differential form of Eringen nonlocal model are considered to be strongly nonlocal
theories.

89



a domain through an integral.

Several papers have been published in the last ten years in these two areas, and many of them

deal with beams, plates, and shells. A good list of references on these two classes of models

can be found in [131] and [130]. What all nonlocal theories have in common is the introduction

of material length scales which represent certain microstructural features (e.g., lattice structure).

Most nonlocal theories, with the exception of the Eringen nonlocal model, exhibit a stiffening

effect. This effect is more significant when a certain dimension of a structure (e.g., thickness in

the case of beams, plates, and shells) becomes comparable to the length scale parameter. This is

consistent with the results obtained from experiments on micro–and nano–sized structures where

the size effect gives rise to enhanced stiffness. Since the focus of this study is on the strain gradient

theory, the rest of the discussion is devoted to discussions on this theory.

5.1.2 Background on Strain Gradient Theories

Mindlin [122] was the first to formulate a general strain gradient theory where first–and sec-

ond–order strain gradients (as well as the strain itself) were included in the strain energy. The

theory resulted in 18 independent material constants (two of which are the Lamé constants) for an

isotropic homogeneous elastic material. The extra material constants were material length scales

corresponding to the additional strain gradients. Later, several attempts were made to reduce the

number of material length scales [132–134]. Altan and Aifantis [123] simplified the strain gradient

theory presented by Mindlin and Eshel [132]3 to a theory with only one material length scale in

addition to the Lamé constants. This theory [123] is the simplest strain gradient theory available

in the literature. Lam et al. [134] proposed a modified strain gradient theory with three mate-

rial length scales accounting for dilatation gradient, and deviatoric stretch gradient, as well as the

rotation gradient present in modified couple stress theory.

Gao and Park [135] used the strain gradient theory proposed by Altan and Aifantis [123] to

construct a variational formulation for a three–dimensional elasticity problem and determine the

corresponding equilibrium equations and consistent boundary conditions. Several studies have
3With five material length scales.
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been reported on the study of strain gradient homogeneous beams [136–139], functionally–graded

beams with strain gradient theory [140,141], and beams accounting for nonlinearity [142]. Couple

stress theory can be assumed as a form of strain gradient theory where only rotation gradients (the

antisymmetric part of the second order deformation gradients) are considered and the symmetric

part is neglected [134,143]. Lim, Zhang, and Reddy [143] proposed a higher–order nonlocal theory

where both strain gradients and stress gradients are present. The theory can be considered as a

combination of Eringen nonlocal model (differential form) and classical strain gradient theory. The

findings of the study demonstrate a good match with results from lattice dynamics, which couldn’t

be satisfied with each of the theories (Eringen nonlocal model and classical strain gradient theory)

individually. Yaghoubi, Mousavi, and Paavlova [144] and Mousavi, Paavlova, and Reddy [145]

integrated velocity gradients with the strain gradient theory of Altan and Aifantis [123] to study the

effect of material length scales in dynamic problems of beams and plates. Static and kinetic length

scales are chosen to be different. Microstructure–dependent beams have significant applications in

the study of nano–or micro–sized beam–like components. Nano–sensors and nano–actuators are

used frequently in biological, chemical, and engineering sciences [94, 95, 146].

5.1.3 Present Study

Several papers have appeared on the study of strain gradient beams; however, most of the

studies are devoted to one beam theory or another, and most of them do not account for the von

Kármán nonlinearity. In this study attempt is made to unify the familiar beam kinematics of the Eu-

ler–Bernoulli, Timoshenko, and Reddy third–order beam theories into a single unified beam theory

while considering for both the strain gradient effect and the von Kármán nonlinearity. Nonlinear

finite element formulation of the unified beam theory with strain gradient and the von Kármán

nonlinear effects is developed. Individual effect of the kinematics as well as combined effect of

boundary conditions, material length scale, and nonlinearity on the bending response are studied.

Formulations for each beam theory can be derived by assigning appropriate values to a set of pa-

rameters introduced in the unified beam theory. The unified beam theory can be used to develop a

finite element code that can model strain gradient beams with any of the three beam kinematics.
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Section 5.2 includes a summary on the form of the strain energy density function of strain gradi-

ent theories. Section 5.3 covers the definition of the von Kármán nonlinearity, displacement fields

of various beam theories, and the definitions and formulations of the unified beam theory. Sec-

tion 5.4 provides the theoretical formulation to derive the governing equations and the associated

boundary conditions for the proposed beam theory using the principle of virtual displacements. In

Section 5.5 nonlinear finite element formulation and the corresponding tangent matrix for strain

gradient unified beam are developed. Several numerical examples are provided in Section 5.6 to

study the individual influence of shear deformation (different beam theories), strain gradient, and

the von Kármán nonlinearity on transverse deflection. Finally, an example including all factors is

presented. Concluding remarks are provided in Section 5.7.

5.2 Strain Gradient Theory

Strain energy density function is different for strain gradient theory as compared to conven-

tional theory in that it includes additional terms due to the couple stress. The strain energy potential

in classical theories only depends on the strains, whereas in the strain gradient theory it depends

not only on the strain but also on the gradients of the strain. This brings a material length scale (a

size–dependent property) into the formulation.

The strain energy potential for a linearized strain gradient theory is a function of the strains and

their gradients:

U0 = U0 (εij, εij,k) (5.1)

Throughout the text “(),k” is the notation used for differentiation with respect to xk. Therefore,

εij,k =
∂εij
∂xk

. The components of the Cauchy stress tensor, σij and the higher order stress tensor τijk

in linear elastic solids are determined from the strain energy potential as

σij =
∂U0

∂εij
, τijk =

∂U0

∂εij,k
(5.2)

Note that τijk is the work conjugate of εij,k in the same manner that σij is the work conjugate of

εij (Recall that no distinction between reference and current coordinates is made here.).
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The strain energy potential is assumed to be a quadratic function of strains and gradients of

strains [123, 135]. Therefore, we can write

U0 = 1
2
Cijkl εij εkl + 1

2
`2
s Cijkl εij,m εkl,m (5.3)

where `s is the material length scale parameter. Using Eqs. (5.2) and (5.3), σij and τijm can be

expressed in terms of the strains and strain gradients as

σij = Cijkl εkl, τijm = `2
s Cijkl εkl,m = `2

s σij,m (5.4)

Finally, Eq. (5.3) can be rewritten as

U0 = 1
2
εij σij + 1

2
εij,m τijm (5.5)

The total strain energy stored in the elastic body is obtained by integrating the strain energy

potential over the whole domain:

U =

∫
V

U0 dV (5.6)

The virtual strain energy is simply equal to (see Reddy [119])

δU =

∫
V

δU0 dV =

∫
V

(δεij σij + δεij,m τijm) dV (5.7)

5.3 One–dimensional Beam Theories

The goal of this section is to present a unified beam theory to investigate the combined effect

of the strain gradient formulation and the von Kármán nonlinearity on the bending response of

straight beams. Towards this objective, three distinct beam theories, namely, the Euler–Bernoulli,

the Timoshenko, and the Reddy third–order beam theories [51, 119, 147] are considered. A brief

description of each of the beam theories with the von Kármán nonlinearity are provided next.
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5.3.1 The von Kármán Nonlinearity

The Green–Lagrange strain tensor in Cartesian coordinates can be expressed as

Eij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂um
∂Xi

∂um
∂Xj

)
(5.8)

where (X1, X2, X3) denotes the reference coordinate system. In Eq. (5.8) summation on repeated

indices is assumed.

In the case of infinitesimal strains, we assume that ∂ui
∂Xj

are small so that the nonlinear terms

can be omitted and no distinction between the reference coordinates (X1, X2, X3) and current

coordinates (x1, x2, x3) is made. Then Eq. (5.8) simplifies to

Eij ≈ εij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(5.9)

For a one–dimensional beam, x1 is the axis passing through the centroid of the beam and x3 is the

axis perpendicular to it. The only nonzero strains in a straight beam with inextensible normals are

εxx =
∂u1

∂x1

, εxz =
1

2

(
∂u1

∂x3

+
∂u3

∂x1

)
(5.10)

In the case of moderate rotations yet small strains the Green–Lagrange strain tensor can be

simplified to account for the von Kármán nonlinearity, where it is assumed that the nonlinear term

corresponding to ∂u1
∂x1

is small enough to be neglected but the nonlinear term corresponding to ∂u3
∂x1

(which is a measure of rotation) is kept. Thus, we have

Exx ≈ εxx =
∂u1

∂x1

+
1

2

(
∂u3

∂x1

)2

, Exz ≈ εxz =
1

2

(
∂u1

∂x3

+
∂u3

∂x1

)
(5.11)

The extra term in Eq. (5.11) is the source of coupling between extensional and bending re-

sponses of straight beams with moderately large rotations and small strains. Note that the bend-

ing–extensional coupling is present in curved beams even when the nonlinear terms are neglected.
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5.3.2 Euler–Bernoulli Beam Theory

The Euler–Bernoulli beam theory (EBT), also known as the classical beam theory, is built

upon three hypotheses: (1) inextensibility, (2) straightness, and (3) normality of the material lines

transverse to the beam axis. In other words, planes normal to the axis of the beam before deforma-

tion remain rigid, plane, and normal to the axis of the beam after deformation. Consequently, the

Euler–Bernoulli beam theory is not capable of accounting for the transverse shear strain εxz and

Poisson’s effect.

The displacement field of the EBT is given by

u = u1êx + u2êy + u3êz, u1 = u (x)− zw,x (x) , u2 = 0, u3 = w (x) (5.12)

where x1 = x and x3 = z are the axes along the length and height of the beam, respectively; the

y–axis is taken into the plane of the beam; (u1, u2, u3) are the total displacements of a point located

at the point (x, y, z); and u and w are the longitudinal and transverse deflections of a point on the

x–axis, which passes through the centroid of the beam.

The only nonzero von Kármán strain component for the Euler–Bernoulli beam theory is

εxx = ε(0)
xx + zε(1)

xx (5.13)

where

ε(0)
xx = u,x + 1

2
w2
,x, ε(1)

xx = −w,xx (5.14)

5.3.3 Timoshenko Beam Theory

The Timoshenko beam theory (TBT) relaxes the normality restriction of the Euler–Benroulli

beam theory by allowing for the independent rotation of a transverse normal. Thus, the planes

normal to the axis of the beam before deformation will not necessarily be perpendicular to the

axis of the beam after deformation. Consequently, Timoshenko beam theory can account for the
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transverse shear strain. The displacement components for the TBT are

u = u1êx + u2êy + u3êz, u1 = u (x) + zφ (x) , u2 = 0, u3 = w (x) (5.15)

Similar to the EBT, the nonzero components of the simplified Green–Lagrange strain tensor are

εxx = ε(0)
xx + zε(1)

xx , γxz = γ(0)
xz (5.16)

where

ε(0)
xx = u,x + 1

2
w2
,x, ε(1)

xx = φ,x, γ(0)
xz = φ+ w,x (5.17)

The assumed displacement field in Eq. (5.15) results in constant transverse shear strain (and

consequently constant shear stress) across the height of the beam. This is in contradiction with

the fact that top and bottom surfaces of the beam are stress free (unless a distributed shear force

is applied to these surfaces). As a result, Timoshenko beam requires a shear correction factor

to account for the difference between the transverse shear energy calculated from equilibrium

stresses and that predicted by the Timoshenko beam theory [51, 119]. For a homogeneous beam

with rectangular cross section, the shear correction factor is equal to Ks = 5/6.

5.3.4 Third–Order Reddy Beam Theory

The Reddy beam theory (RBT) further relaxes the restrictions of the EBT and the Timoshenko

beam theory by removing the straightness condition. Therefore, it is capable of capturing the

quadratic variation of the transverse shear stress across the height of the beam and avoiding the

need for shear correction factor Ks. The displacement components of the RBT are

u = u1êx+u2êy+u3êz, u1 = u (x)+zφ (x)−c1z
3 (φ+ w,x) , u2 = 0, u3 = w (x) (5.18)

where c1 = 4
3h2

. The nonzero strain components are
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εxx = ε(0)
xx + zε(1)

xx + z3ε(3)
xx , γxz = γ(0)

xz + z2γ(2)
xz (5.19)

where

ε(0)
xx = u,x + 1

2
w2
,x, ε(1)

xx = φ,x, ε(3)
xx = −c1 (φ,x + w,xx) (5.20)

γ(0)
xz = φ+ w,x, γ(2)

xz = −3c1 (φ+ w,x) (5.21)

5.3.5 Unified Beam Theory

The displacement components of the three beam theories outlined in the previous sections can

be cast into a unified set with the help of tracers (αi) whose specific values will yield the three

displacement fields. Let

u1 = u (x) + z (α1φ+ α2w,x) + α3z
3 (φ+ w,x) , u2 = 0, u3 = w (x) (5.22)

where the value of the constants αi (i = 1, 2, 3) is listed in Table 5.1. Table 5.1 also includes the

values of the shear correction factor, Ks. Although Ks does not show up in the displacement field,

it will appear in the strain energy expression.

Table 5.1: Values of the constants of the unified equation for different beam theories.

EBT TBT RBT

α1 0 1 1
α2 -1 0 0
α3 0 0 -c1

Ks 1 5/6 1

The nonzero strain components for the unified beam theory take the following form:

εxx = ε(0)
xx + zε(1))

xx + z3ε(3)
xx , γxz = γ(0)

xz + z2γ(2)
xz (5.23)
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where

ε(0)
xx = u,x + 1

2
w2
,x, ε(1)

xx = α1φ,x + α2w,xx, ε(3)
xx = α3 (φ,x + w,xx) (5.24)

γ(0)
xz = α1φ+ (α2 + 1)w,x, γ(2)

xz = 3α3 (φ+ w,x) (5.25)

This unified form [Eq. (5.22)] can be used to write a general finite element code that can be

used to obtain results for any of the three beam theories by setting appropriate values of constants

αi (i = 1, 2, 3) and Ks.

The unified beam theory presented in this study differs from the general third–order beam

theory proposed by Arbind, Reddy, and Srinivasa [148] in several aspects.

1. The micro–structure dependent properties in the paper by Arbind, Reddy, and Srinivasa [148]

are provided through modified couple stress theory, whereas, in this paper strain gradient

theory is employed. In modified couple stress theory the nonlocal terms present in the strain

energy depend on the product of the deviatoric part of the symmetric couple stress tensor

and the components of the symmetric curvature tensor. Modified couple stress theory can be

considered as a special case of the strain gradient theory [143, 149].

2. The generalized third–order beam theory presented by Arbind, Reddy, and Srinivasa [148]

assumes a displacement field with 7 primary variables with C0 continuity for all variables in

the case where the beam is studied with no nonlocal features. When modified couple stress

theory is considered, some of the primary variables will require C1 continuity. In the unified

beam theory presented in this paper, only 3 primary variables are present. However, the

degree of continuity will depend on the type of the beam and it can vary for each variable

between C0, C1, and C2 continuity. More information is provided later in Table 5.3.

5.4 Theoretical Formulation

The principle of virtual displacements can be used to derive the governing equations and associ-

ated boundary conditions for a beam enhanced with strain gradient theory. The primary purpose of
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this section is to derive the governing differential equations and boundary conditions of the unified

strain gradient beam theory. The boundary conditions always appear in pairs, where one element

of the pair is known as a primary variable (i.e., the generalized displacement) and the second el-

ement of the pair is termed a secondary variable (i.e., the generalized force); see Reddy [119] for

details. For a non–conventional theory of the type considered herein, the nature of the primary and

secondary variables is an important outcome of the principle of virtual displacements. The starting

point of this development is the computation of the total virtual work done, which is the sum of the

virtual strain energy stored in the body (δU) and the virtual work done by external forces (δVE).

The mathematical expression of the principle of virtual displacements is [119]:

δW ≡ δU + δVE = 0 (5.26)

where δW is the total virtual work done, δU is the virtual strain energy stored in the body, and δVE

is the virtual work done by external forces, which are yet to be identified. For a one–dimensional

beam element, δVE is given by

δVE = −

∫ L

0

(fδu+ qδw) dx+

n(α1,α2,α3)∑
i=1

Qi δ∆i

 (5.27)

where the negative sign indicates that the work is expended on the structure, f and q are the

distributed forces in the longitudinal and transverse directions, respectively, and (Qi, ∆i) are the

generalized forces and displacements whose form will be identified for different beam theories

(parameters αi are used to identify various theories; see Eq. (5.22)) in the sequel; n denotes the

number of primary variables. Using the definitions of Eqs. (5.7) and (5.27), one obtains

0 =δU + δVE

=

∫ L

0

∫
A

[σijδεij + τijmδεij,m] dAdx−

∫ L

0

(fδu+ qδw) dx+

n(α1,α2,α3)∑
i=1

Qi δ∆i

 (5.28)
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In the following, δU is expressed in terms of the stress resultants using the displacement field of

Eq. (5.22) of a unified beam:

δU =

∫ L

0

∫
A

{
σxxδεxx + σxzδγxz

+ `2
s

〈
σxx,xδεxx,x + σxz,xδγxz,x + σxx,zδεxx,z + σxz,zδγxz,z

〉}
dAdx

=

∫ L

0

{
Nxx (δu,x + w,xδw,x) +Mxx (α1δφ,x + α2δw,xx) + α3Pxx (δφ,x + δw,xx)

+Qx (α1δφ+ (α2 + 1) δw,x) + 3α3Rx (δφ+ δw,x)

+ `2
s

〈
Nxx,x (δu,xx + w,xxδw,x + w,xδw,xx) +Mxx,x (α1δφ,xx + α2δw,xxx)

+ α3Pxx,x (δφ,xx + δw,xxx) +Qx,x (α1δφ,x + (α2 + 1) δw,xx)

+ 3α3Rx,x (δφ,x + δw,xx) + N̄xx (α1δφ,x + α2δw,xx) + 3α3S̄xx (δφ,x + δw,xx)

+ 6α3T̄x (δφ+ δw,x)

〉}
dx (5.29)

where the following notation have been used for the stress resultants:

〈Nxx,Mxx, Pxx〉 =

∫
A

〈
1, z, z3

〉
σxx dA〈

N̄xx, S̄xx
〉

=

∫
A

〈
1, z2

〉
σxx,z dA

〈Qx, Rx〉 =

∫
A

〈
1, z2

〉
σxz dA

T̄x =

∫
A

zσxz,z dA

(5.30)

By relieving δu, δw and δφ of differentiation, δU can be expressed as

δU =

∫ L

0

{[
−Nxx,x + `2

sNxx,xxx

]
δu+

[
−
(
Nxxw,x

)
,x
− Q̄x,x + M̄xx,xx

+ `2
s

〈(
Nxx,xw,x

)
,xx
−
(
Nxx,xw,xx

)
,x

+ Q̄x,xxx + Ñxx,xx − 6α3T̄x,x − M̄xx,xxxx

〉]
δw

+
[
Q̂x − M̂xx,x + `2

s

〈
6α3T̄x − Q̂x,xx − N̂xx,x + M̂xx,xxx

〉]
δφ

}
dx
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+

{[
Nxx − `2

sNxx,xx

]
δu+ `2

sNxx,xδu,x

+
[
Nxxw,x + Q̄x − M̄xx,x + `2

s

〈
Nxx,xw,xx −

(
Nxx,xw,x

)
,x

+ 6α3T̄x − Q̄x,xx

− Ñxx,x + M̄xx,xxx

〉]
δw

+
[
M̄xx + `2

s

〈
Nxx,xw,x + Q̄x,x + Ñxx − M̄xx,xx

〉]
δw,x + `2

sM̄xx,xδw,xx

+
[
M̂xx + `2

s

〈
Q̂x,x + N̂xx − M̂xx,xx

〉]
δφ+ `2

sM̂xx,xδφ,x

}∣∣∣∣L
0

(5.31)

where for the sake of brevity the following notation is introduced:

M̄xx = α2Mxx + α3Pxx M̂xx = α1Mxx + α3Pxx

Q̄x = (α2 + 1)Qx + 3α3Rx Q̂x = α1Qx + 3α3Rx

Ñxx = α2N̄xx + 3α3S̄xx N̂xx = α1N̄xx + 3α3S̄xx

(5.32)

Using the identities
(
Nxx,xw,x

)
,xx
−
(
Nxx,xw,xx

)
,x

=
(
Nxx,xxw,x

)
,x

andNxx,xw,xx−
(
Nxx,xw,x

)
,x

= −Nxx,xxw,x, the underlined parts in Eq. (5.31) can further be simplified as

δU =

∫ L

0

{[
−Nxx,x + `2

sNxx,xxx

]
δu

+
[
−
(
Nxxw,x

)
,x
− Q̄x,x + M̄xx,xx + `2

s

〈(
Nxx,xxw,x

)
,x

+ Q̄x,xxx + Ñxx,xx

− 6α3T̄x,x − M̄xx,xxxx

〉]
δw

+
[
Q̂x − M̂xx,x + `2

s

〈
6α3T̄x − Q̂x,xx − N̂xx,x + M̂xx,xxx

〉]
δφ

}
dx

+

{[
Nxx − `2

sNxx,xx

]
δu+ `2

sNxx,xδu,x

+
[
Nxxw,x + Q̄x − M̄xx,x + `2

s

〈
−Nxx,xxw,x + 6α3T̄x − Q̄x,xx − Ñxx,x + M̄xx,xxx

〉]
δw

+
[
M̄xx + `2

s

〈
Nxx,xw,x + Q̄x,x + Ñxx − M̄xx,xx

〉]
δw,x + `2

sM̄xx,xδw,xx

+
[
M̂xx + `2

s

〈
Q̂x,x + N̂xx − M̂xx,xx

〉]
δφ+ `2

sM̂xx,xδφ,x

}∣∣∣∣L
0

(5.33)
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By substituting Eqs. (5.27) and (5.33) into the statement of the principle of virtual displace-

ments in Eq. (5.26), one obtains

0 =

∫ L

0

{[
−Nxx,x + `2

sNxx,xxx − f
]
δu

+
[
−
(
Nxxw,x

)
,x
− Q̄x,x + M̄xx,xx + `2

s

〈(
Nxx,xxw,x

)
,x

+ Q̄x,xxx + Ñxx,xx

− 6α3T̄x,x − M̄xx,xxxx

〉
− q
]
δw

+
[
Q̂x − M̂xx,x + `2

s

〈
6α3T̄x − Q̂x,xx − N̂xx,x + M̂xx,xxx

〉]
δφ

}
dx

+

{[
Nxx − `2

sNxx,xx

]
δu+ `2

sNxx,xδu,x

+
[
Nxxw,x + Q̄x − M̄xx,x + `2

s

〈
−Nxx,xxw,x + 6α3T̄x − Q̄x,xx − Ñxx,x + M̄xx,xxx

〉]
δw

+
[
M̄xx + `2

s

〈
Nxx,xw,x + Q̄x,x + Ñxx − M̄xx,xx

〉]
δw,x + `2

sM̄xx,xδw,xx

+
[
M̂xx + `2

s

〈
Q̂x,x + N̂xx − M̂xx,xx

〉]
δφ+ `2

sM̂xx,xδφ,x

}∣∣∣∣L
0

−
n(α1,α2,α3)∑

i=1

Qi δ∆i (5.34)

By setting the coefficients of δu, δw and δφ to zero separately, the equilibrium equations are

derived. Also, the boundary terms resulting from differentiation by parts give the corresponding

boundary conditions. The governing equations for a unified beam theory are:

δu : −Nxx,x + `2
sNxx,xxx − f = 0

δw : − (Nxxw,x),x − Q̄x,x + M̄xx,xx + `2
s

〈
(Nxx,xxw,x),x + Q̄x,xxx + Ñxx,xx − 6α3T̄x,x

−M̄xx,xxxx

〉
− q = 0

δφ : Q̂x − M̂xx,x + `2
s

〈
6α3T̄x − Q̂x,xx − N̂xx,x + M̂xx,xxx

〉
= 0

(5.35)

The primary and secondary variables as well as the generalized force boundary conditions are

identified in Table 5.2 using the boundary terms in Eq. (5.34). It is important to note that only one

element of each pair can be specified at a boundary point. Thus, when a primary variable is known,
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its corresponding secondary variable is unknown and can be determined in the post–computation

of the finite element analysis. On the other hand, if a primary variable is not specified, the corre-

sponding secondary variable must be known/specified.

The stress resultants of Eq. (5.30) can be expressed in terms of the generalized displacements

using a constitutive equation. For an isotropic elastic homogeneous beam, the stress–displacement

relations are given by (using uniaxial stress–strain relations)

σxx = E

[
u,x +

1

2
w2
,x + z (α1φ,x + α2w,xx) + α3z

3 (φ,x + w,xx)

]
(5.36)

σxz = G
[
α1φ+ (α2 + 1)w,x + 3α3z

2 (φ+ w,x)
]

(5.37)

Then, the resultants of Eq. (5.30) can be expressed in terms of the generalized displacements as

follows:

Nxx = Axx

(
u,x +

1

2
w2
,x

)
Mxx = Dxx (α1φ,x + α2w,xx) + α3Fxx (φ,x + w,xx)

Pxx = Fxx (α1φ,x + α2w,xx) + α3Hxx (φ,x + w,xx)

N̄xx = Axx (α1φ,x + α2w,xx) + 3α3Dxx (φ,x + w,xx)

S̄xx = Dxx (α1φ,x + α2w,xx) + 3α3Fxx (φ,x + w,xx)

Qx = Ks [Axz (α1φ+ (α2 + 1)w,x) + 3α3Dxz (φ+ w,x)]

Rx = Ks [Dxz (α1φ+ (α2 + 1)w,x) + 3α3Fxz (φ+ w,x)]

T̄x = 6Ksα3Dxz (φ+ w,x)

(5.38)

where the beam elastic stiffness coefficients (Axx, Dxx, Fxx, Hxx, Axz, Dxz, Fxz) are defined by

〈Axx, Dxx, Fxx, Hxx〉 =

∫
A

E
〈
1, z2, z4, z6

〉
dA (5.39)

〈Axz, Dxz, Fxz〉 =

∫
A

G
〈
1, z2, z4

〉
dA (5.40)

Since the beam is assumed to be homogeneous, the terms with odd powers of z do not contribute
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to the stress resultants.

5.5 Finite Element Formulation

5.5.1 Weak Form

The finite element model of the beam over a typical finite element, Ωe = (xa, xb), can be

developed directly from the principle of virtual displacements, δW = 0, applied to a typical beam

finite element (see Reddy [51, 119, 150]):

0 =

∫ xb

xa

{
Nxx (δu,x + w,xδw,x) +Mxx (α1δφ,x + α2δw,xx) + α3Pxx (δφ,x + δw,xx)

+Qx (α1δφ+ (α2 + 1) δw,x) + 3α3Rx (δφ+ δw,x) + `2
s

〈
Nxx,x (δu,xx + w,xxδw,x

+w,xδw,xx) +Mxx,x (α1δφ,xx + α2δw,xxx) + α3Pxx,x (δφ,xx + δw,xxx) +Qx,x (α1δφ,x

+ (α2 + 1) δw,xx) + 3α3Rx,x (δφ,x + δw,xx) + N̄xx (α1δφ,x + α2δw,xx)

+ 3α3S̄xx (δφ,x + δw,xx) + 6α3T̄x (δφ+ δw,x)

〉
− fδu− qδw

}
dx

−
n(α1,α2,α3)∑

i=1

Qi δ∆i (5.41)

where all of the stress resultants are defined in terms of the generalized displacements in Eq. (5.38).

5.5.2 Finite Element Model

The finite element model is developed by using the following approximation functions for u,

w, and φ. In the derivation of the finite element formulation, δu, δw, and δφ are replaced by ψei ,

θei , and ϕei , respectively, to obtain the ith equation of each set. Let

u (x) ≈ ueh =

n1(α1,α2,α3)∑
i=1

(
∆1
i

)e
ψei (x)

w (x) ≈ weh =

n2(α1,α2,α3)∑
i=1

(
∆2
i

)e
θei (x)

φ (x) ≈ φeh =

n3(α1,α2,α3)∑
i=1

(
∆3
i

)e
ϕei (x)

(5.42)
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1
u
| x=

x
a

=
∆
e 1

−
[N

x
x
−
`2 s
N
x
x
,x
x
] x

=
x
a

=
Q
e 1

2
u
,x
| x=

x
a

=
∆
e 2

−
[`

2 s
N
x
x
,x

] x
=
x
a

=
Q
e 2

3
w
| x=

x
a

=
∆
e 3

−
[ N

x
x
w
,x

+
Q̄
x
−
M̄

x
x
,x

+
`2 s

〈 −N
x
x
,x
x
w
,x

+
6α

3
T̄
x
−
Q̄
x
,x
x
−
Ñ
x
x
,x

+
M̄

x
x
,x
x
x

〉] x
=
x
a

=
Q
e 3

4
w
,x
| x=

x
a

=
∆
e 4

−
[ M̄

x
x

+
`2 s

〈 N
x
x
,x
w
,x

+
Q̄
x
,x

+
Ñ
x
x
−
M̄

x
x
,x
x

〉] x
=
x
a

=
Q
e 4

5
w
,x
x
| x=

x
a

=
∆
e 5

−
[ `2 sM̄

x
x
,x

] x
=
x
a

=
Q
e 5

6
φ
| x=

x
a

=
∆
e 6

−
[ M̂

x
x

+
`2 s

〈 Q̂
x
,x

+
N̂
x
x
−
M̂

x
x
,x
x

〉] x
=
x
a

=
Q
e 6

7
φ
,x
| x=

x
a

=
∆
e 7

−
[ `2 s

M̂
x
x
,x

] x
=
x
a

=
Q
e 7

8
u
| x=

x
b

=
∆
e 8

[N
x
x
−
`2 s
N
x
x
,x
x
] x

=
x
b

=
Q
e 8

9
u
,x
| x=

x
b

=
∆
e 9

[`
2 s
N
x
x
,x

] x
=
x
b

=
Q
e 9

10
w
| x=

x
b

=
∆
e 1
0

[ N
x
x
w
,x

+
Q̄
x
−
M̄

x
x
,x

+
`2 s

〈 −N
x
x
,x
x
w
,x

+
6α

3
T̄
x
−
Q̄
x
,x
x
−
Ñ
x
x
,x

+
M̄

x
x
,x
x
x

〉] x
=
x
b

=
Q
e 1
0

11
w
,x
| x=

x
b

=
∆
e 1
1

[ M̄
x
x

+
`2 s

〈 N
x
x
,x
w
,x

+
Q̄
x
,x

+
Ñ
x
x
−
M̄

x
x
,x
x

〉] x
=
x
b

=
Q
e 1
1

12
w
,x
x
| x=

x
b

=
∆
e 1
2

[ `2 sM̄
x
x
,x

] x
=
x
b

=
Q
e 1
2

13
φ
| x=

x
b

=
∆
e 1
3

[ M̂
x
x

+
`2 s

〈 Q̂
x
,x

+
N̂
x
x
−
M̂

x
x
,x
x

〉] x
=
x
b

=
Q
e 1
3

14
φ
,x
| x=

x
b

=
∆
e 1
4

[ `2 s
M̂

x
x
,x

] x
=
x
b

=
Q
e 1
4
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where ∆∆∆i (i = 1, 2, 3) are the column vectors of the nodal degrees of freedom of the generalized

displacements u, w, and φ, respectively. The polynomial degree of the interpolation functions in

Eq. (5.42), ni (α1, α2, α3), is dictated by the degree of maximum differentiation on each of the vari-

ables in the weak form of Eq. (5.41). This depends on the type of beam theory used. For example,

for the Reddy beam theory with the strain gradient effect n1 (α1, α2, α3) = 4, n2 (α1, α2, α3) =

6, n3 (α1, α2, α3) = 4:

(
∆∆∆1
)e

=



u (xa)(
∂u
∂x

) ∣∣∣
x=xa

u (xb)(
∂u
∂x

) ∣∣∣
x=xb


,
(
∆∆∆2
)e

=



w (xa)(
∂w
∂x

) ∣∣∣
x=xa(

∂2w
∂x2

) ∣∣∣
x=xa

w (xb)(
∂w
∂x

) ∣∣∣
x=xb(

∂2w
∂x2

) ∣∣∣
x=xb



,
(
∆∆∆3
)e

=



φ (xa)(
∂φ
∂x

) ∣∣∣
x=xa

φ (xb)(
∂φ
∂x

) ∣∣∣
x=xb


(5.43)

The strain gradient theory increases the degree of differentiation on each of the displacements u,

w, and φ as compared to conventional beam theories. Thus, for the Reddy beam theory with strain

gradient effect, u and φ should be approximated with the Hermite cubic interpolation functions

and w is approximated with Hermite quintic interpolation functions; whereas, in the conventional

Reddy beam theory, u and φ are approximated with linear Lagrange interpolation functions and w

is approximated with the Hermite cubic interpolation functions. Table 5.3 includes the degree of

interpolation functions for each of the beam theories for both cases: when strain gradient effect is

included and excluded. Degrees of interpolation equal to 1, 3, and 5 in Table 5.3 suggest C0, C1,

and C2 continuity, respectively. Note that for the Euler–Bernoulli beam theory, “N/A" suggests

that the matrices Ki3 and K3i, the force vector f3, and the displacement vector ∆∆∆3 are not present.

Substitution of the interpolation functions from Eq. (5.42) into the weak form in Eq. (5.41)

results in the following finite element model:

Ke∆∆∆e = Fe (5.44)
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Table 5.3: Required degree of interpolation functions.

Without Strain Gradient With Strain Gradient
EBT TBT RBT EBT TBT RBT

1 1 1 3 3 3
3 1 3 5 3 5

N/A 1 1 N/A 3 3

with

Ke =


[K11]n1×n1

[K12]n1×n2
[0]n1×n3

[K21]n2×n1
[K22]n2×n2

[K23]n2×n3

[0]n3×n1
[K32]n3×n2

[K33]n3×n3

, ∆∆∆e =


[∆∆∆1]n1×1

[∆∆∆2]n2×1

[∆∆∆3]n3×1

,

Fe =


[f1]n1×1

[f2]n2×1

[f3]n3×1

+ Qe
(n1+n2+n3)×1

(5.45)

where for the sake of brevity, the superscript e (element label) has been omitted from the submatri-

ces. The components of the stiffness matrices Kαβ
ij and force vectors fαi for a unified beam theory

with the von Kármán nonlinearity are defined as follows:

K11
ij =

∫ xb

xa

{
Axx

[
dψei
dx

dψej
dx

+ `2
s

d2ψei
dx2

d2ψej
dx2

]}
dx

K12
ij =

1

2
K21
ji =

1

2

∫ xb

xa

{
Axx

[
dw̄

dx

(
dψei
dx

dθej
dx

+ `2
s

d2ψei
dx2

d2θej
dx2

)
+ `2

s

d2w̄

dx2

d2ψei
dx2

dθej
dx

]}
dx

K13
ij = K31

ji = 0

K22
ij =

∫ xb

xa

{(
1

2
Axx

(
dw̄

dx

)2

+Ks

[
(α2 + 1)2Axz + 6α3 (α2 + 1)Dxz + 9α2

3Fxz
]) dθei

dx

dθej
dx

+
(
α2

2Dxx + 2α2α3Fxx + α2
3Hxx

) d2θei
dx2

d2θej
dx2

+ `2
s

〈(
Axx

(
d2w̄

dx2

)2

+ 36α2
3KsDxz

)

× dθei
dx

dθej
dx

+

(
Axx

(
dw̄

dx

)2

+Ks

[
(α2 + 1)2Axz + 6α3 (α2 + 1)Dxz + 9α2

3Fxz
]

+ α2
2Axx + 6α2α3Dxx + 9α2

3Fxx

)
d2θei
dx2

d2θej
dx2

+
(
α2

2Dxx + 2α2α3Fxx + α2
3Hxx

)
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×d
3θei
dx3

d3θej
dx3

〉}
dx

K23
ij = K32

ji =

∫ xb

xa

{
Ks

[
α1 (α2 + 1)Axz + 3 (α1 + α2 + 1)α3Dxz + 9α2

3Fxz
] dθei
dx

ϕej

+
(
α1α2Dxx + (α1 + α2)α3Fxx + α2

3Hxx

) d2θei
dx2

dϕej
dx

+ `2
s

〈
36α2

3KsDxz
dθei
dx

ϕej

+
(
Ks

[
α1 (α2 + 1)Axz + 3 (α1 + α2 + 1)α3Dxz + 9α2

3Fxz
]

+ α1α2Axx

+3 (α1 + α2)α3Dxx + 9α2
3Fxx

) d2θei
dx2

dϕej
dx

+
(
α1α2Dxx + (α1 + α2)α3Fxx + α2

3Hxx

)
×d

3θei
dx3

d2ϕej
dx2

〉}
dx

K33
ij =

∫ xb

xa

{
Ks

[
α2

1KsAxz + 6α1α3Dxz + 9α2
3Fxz

]
ϕeiϕ

e
j +
(
α2

1Dxx + 2α1α3Fxx + α2
3Hxx

)
× dϕei

dx

dϕej
dx

+ `2
s

〈
36α2

3KsDxzϕ
e
iϕ

e
j +
(
Ks

[
α2

1Axz + 6α1α3Dxz + 9α2
3Fxz

]
+α2

1Axx + 6α1α3Dxx + 9α2
3Fxx

) dϕei
dx

dϕej
dx

+
(
α2

1Dxx + 2α1α3Fxx + α2
3Hxx

)
×d

2ϕei
dx2

d2ϕej
dx2

〉}
dx (5.46)

f 1
i =

∫ xb

xa

ψei f (x) dx

f 2
i =

∫ xb

xa

θei q (x) dx

f 3
i = 0 (5.47)

It is worth mentioning that the stiffness matrix for a unified beam with the von Kármán non-

linearity is not symmetric
(
K12
ij 6= K21

ji

)
. The boundary conditions, Qe

i , are defined in Table 5.2.

The nonlinearity of the problem dictates the use of an iterative method to solve for the nodal dis-

placements. In this specific problem, the nonlinearity is only due to the transverse displacement,

w. In Eq. (5.46) w̄(x) corresponds to the value for the transverse displacement obtained from the

previous iterations.

5.5.3 Imposition of Boundary Conditions

In the previous section, the stiffness matrix and the source vector for a typical element were

derived. It should be noted that if the total number of degrees of freedom in the finite element mesh
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is equal toN , the number of unknowns (i.e., the number of equations) before assembly of elements

will be equal to 2N (N primary plus N secondary degrees of freedom). The number of unknowns

is decreased to N by assembly of the elements and imposition of the boundary conditions. The

final assembled set of equations will be of the following form:

K (∆∆∆)∆∆∆ = F = Q + f (5.48)

The number of boundary conditions for various beam theories, with and without the strain

gradient effect, are tabulated in Table 5.4, which are determined by use of Table 5.2.

Table 5.4: Number of boundary conditions at each node for various beam theories.

EBT TBT RBT

Without Strain Gradient 3 3 4
With Strain Gradient 5 6 7

Higher–order theories (such as the Reddy third–order beam theory) and the strain gradient the-

ories introduce higher–order primary and secondary variables which do not have simple physical

meanings as the ones in the EBT and TBT with no strain gradient effect. Since the physical mean-

ing of higher order boundary terms is not known, in this study the corresponding natural boundary

conditions (secondary variables) of higher order terms are set to zero at the boundaries. As men-

tioned earlier due to the duality between secondary and primary variables at each node, only one

element of each pair can be specified. For example, in the case of a fixed support (clamped end)

the primary variables u, w, and dw
dx

for the EBT (and u, w, and φ for the TBT and RBT) are set

to zero, and in the remaining pairs (if any, depending on the beam theory and whether or not strain

gradient effect is included) the secondary variables are set to zero or a specified value. For a pinned

support u, and w are set to zero for all beam theories.

109



5.5.4 Newton’s Iterative Scheme

An iterative scheme should be used to solve the set of nonlinear algebraic equations in Eq.

(5.48). Newton’s iterative scheme is chosen here (see Reddy [150]). Using this scheme incremental

solution is derived at each iteration.

δ∆∆∆(r) = −
[
Te
(
∆∆∆(r−1)

)]−1
Re
(
∆∆∆(r−1)

)
(5.49)

with the tangent matrix, T defined in the following:

T
(
∆∆∆(r)

)
=

[
∂R(r)

∂∆∆∆(r)

]
R(r) = K

(
∆∆∆(r)

)
∆∆∆(r) − F(r)

T
(
∆∆∆(r)

)
=
∂K(r)

∂∆∆∆(r)
∆∆∆(r) + K(r) − ∂F(r)

∂∆∆∆(r)

(5.50)

where K(r) = K
(
∆∆∆(r)

)
, r represents the results of the rth iteration, and R is the global residual

vector. The total solution at the end of each iteration is obtained from the following equation:

∆∆∆(r) = ∆∆∆(r−1) + δ∆∆∆(r) (5.51)

At the end of each iteration the following convergence criterion is checked:

√
δ∆∆∆(r) · δ∆∆∆(r)

∆∆∆(r) ·∆∆∆(r)
≤ ε (5.52)

where ε denotes a specified value of the error tolerance. The iteration process continues until

convergence is achieved.

The tangent matrix of a strain gradient unified beam theory with the von Kármán nonlinearity

is derived next. The submatrices of the tangent matrix T are determined individually using the

following definitions:
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Rα
i =

n1(α1,α2,α3)∑
m=1

Kα1
im∆1

m +

n2(α1,α2,α3)∑
n=1

Kα2
in ∆2

n +

n3(α1,α2,α3)∑
p=1

Kα3
ip ∆3

p − Fα
i

Tαβij =
∂Rα

i

∂∆β
j

=

n1(α1,α2,α3)∑
m=1

∂Kα1
im

∂∆β
j

∆1
m +

n2(α1,α2,α3)∑
n=1

∂Kα2
in

∂∆β
j

∆2
n +

n3(α1,α2,α3)∑
p=1

∂Kα3
ip

∂∆β
j

∆3
p

+Kαβ
ij −

∂Fα
i

∂∆β
j

α, β = 1, 2, 3 (5.53)

Note that α as the superscript is a variable different from the degree of interpolation functions

(α1, α2, α3). Since F does not depend on the primary variables, the last term
(
∂Fαi
∂∆β

j

)
vanishes.

Since the nonlinearity of the equations is only due to the primary variable w, we have

∂Kαγ
im

∂∆1
j

=
∂Kαγ

im

∂∆3
j

= 0 α, γ = 1, 2, 3 (5.54)

Consequently, we have

Tα1
ij = Kα1

ij , Tα3
ij = Kα3

ij (5.55)

In addition, the following relations are useful in the determination of Tα2
ij :

∂K11
im

∂∆2
j

=
∂K31

im

∂∆2
j

=
∂K32

in

∂∆2
j

=
∂K13

ip

∂∆2
j

=
∂K23

ip

∂∆2
j

=
∂K33

ip

∂∆2
j

= 0 (5.56)

The Tα2
ij are derived to be

T 12
ij =2K12

ij = K21
ji = T 21

ji

T 22
ij =K22

ij +

∫ xb

xa

{
Axx

[(
dū

dx
+

(
dw̄

dx

)2
)
dθei
dx

dθej
dx

+ `2
s

(
d2ū

dx2
+ 2

dw̄

dx

d2w̄

dx2

)(
d2θei
dx2

dθej
dx

+
dθei
dx

d2θej
dx2

)]}
dx

T 32
ij =K32

ij (5.57)
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where barred displacement components (ū, w̄) correspond to the functions interpolated using the

nodal values from immediate previous iteration. Although the stiffness matrix was not symmetric,

the resulting tangent matrix is symmetric for a strain gradient unified beam with the von Kármán

nonlinearity.

5.5.5 Hermite Quintic Interpolation Functions

From the list of primary variables one can realize that for strain gradient beams, Hermite cubic

polynomials should be used for u and φ (where applicable, e.g., TBT and RBT), whereas w is

approximated by either the Hermite cubic polynomials (TBT) or higher order polynomials (EBT

and RBT). The process of constructing the required higher–order polynomial is described in [119].

Since in the case of transverse displacement of strain gradient EBT and RBT elements there exists

6 parameters in each element (3 at each node), a polynomial of fifth degree (Hermite quintic)

should be used.

w (x) ' weh (x̄) = ce1 + ce2x̄+ ce3x̄
2 + ce4x̄

3 + ce5x̄
4 + ce6x̄

5 (5.58)

where, x̄ is the local coordinate (x̄ = x − xe with xe being the coordinate of the first node of the

element).

Coefficients cei are determined in terms of the nodal values of the primary variables. Note that

he is the length of the element e and the superscript 2 corresponds to the notation used in Eq.

(5.45). We have

(
∆2

1

)e
= weh(0),

(
∆2

2

)e
=
dweh
dx

∣∣∣
x̄=0

,
(
∆2

3

)e
=
d2weh
dx2

∣∣∣
x̄=0(

∆2
4

)e
= weh(he),

(
∆2

5

)e
=
dweh
dx

∣∣∣
x̄=he

,
(
∆2

6

)e
=
d2weh
dx2

∣∣∣
x̄=he

(5.59)

The above equations can be written in matrix form as follows:
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1 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

1 he h2
e h3

e h4
e h5

e

0 1 2he 3h2
e 4h3

e 5h4
e

0 0 2 6he 12h2
e 20h3

e





ce1

ce2

ce3

ce4

ce5

ce6



=



(∆2
1)
e

(∆2
2)
e

(∆2
3)
e

(∆2
4)
e

(∆2
5)
e

(∆2
6)
e



(5.60)

By inverting Eq. (5.60) and substituting it into Eq. (5.58), one can rewrite Eq. (5.58) in terms of

the interpolation functions θei and the primary variables:

w (x) ' weh (x̄) =
6∑
i=1

θei (x̄)
(
∆2
i

)e (5.61)

where,

θe1 (x̄) =

(
1− x̄

he

)3
(

1 + 3
x̄

he
+ 6

(
x̄

he

)2
)

θe2 (x̄) = x̄

(
1− x̄

he

)3(
1 + 3

x̄

he

)
θe3 (x̄) =

1

2
x̄2

(
1− x̄

he

)3

(5.62)

θe4 (x̄) = 1−
(

1− x̄

he

)3
(

1 + 3
x̄

he
+ 6

(
x̄

he

)2
)

θe5 (x̄) = −x̄
(
x̄

he

)2
(

4− 7
x̄

he
+ 3

(
x̄

he

)2
)

θe6 (x̄) =
1

2
x̄2 x̄

he

(
1− x̄

he

)2

The interpolations belong to the Hermite family because at each node w and two of its derivatives

are defined (dw
dx

and d2w
dx2

). Note that the interpolation functions satisfy the following conditions:

θe1 (0) = 1, θei (0) = 1 (i 6= 1)
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θe4 (he) = 1, θei (he) = 1 (i 6= 4)

dθe2
dx

∣∣∣∣
x̄=0

= 1,
dθei
dx

∣∣∣∣
x̄=0

= 0 (i 6= 2)

dθe5
dx

∣∣∣∣
x̄=he

= 1,
dθei
dx

∣∣∣∣
x̄=he

= 0 (i 6= 5)

d2θe3
dx2

∣∣∣∣
x̄=0

= 1,
d2θei
dx2

∣∣∣∣
x̄=0

= 0 (i 6= 3)

d2θe6
dx2

∣∣∣∣
x̄=he

= 1,
d2θei
dx2

∣∣∣∣
x̄=he

= 0 (i 6= 6) (5.63)

Hermite quintic interpolation functions are plotted in Figure 5.1.
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Figure 5.1: Hermite quintic interpolation functions.
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The interpolation functions can also be written in terms of the local coordinate ξ = 2x̄
he
− 1,

which is more useful in code development:

θe1 (ξ) =
1

16
(1− ξ)3 (8 + 9ξ + 3ξ2

)
θe2 (ξ) =

he
32

(1− ξ)3 (1 + ξ) (5 + 3ξ)

θe3 (ξ) =
h2
e

64
(1− ξ)3 (1 + ξ)2 (5.64)

θe4 (ξ) =
1

16
(1 + ξ)3 (8− 9ξ + 3ξ2

)
θe5 (ξ) = −he

32
(1 + ξ)3 (1− ξ) (5− 3ξ)

θe6 (ξ) =
h2
e

64
(1 + ξ)3 (1− ξ)2

5.6 Numerical Results and Discussion

Numerical examples have been selected to demonstrate the individual influence of each of

the factors on the response and compare with the combined effect of all factors. The transverse

displacements are normalized to eliminate the effect of other parameters (such as length of the

beam, elastic modulus, and so on) as follows:

ŵ =
wEh3

L4
(5.65)

where w is the transverse deflection, E is the elastic modulus, h is the height of the beam, and L is

the length of the beam.

The following results have been provided in the subsequent subsections:

• Linear transverse deflections for a clamped–clamped beam according to the Euler–Bernoulli

and third–order Reddy beam theories with no strain gradient effect (to study the effect of shear

deformation).

• Linear transverse deflections for a clamped–clamped beam using the Reddy third–order beam

theory with strain gradient effect (to study the effect of strain gradient terms on the response).
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• Nonlinear transverse deflections for a clamped–clamped beam using the Euler–Bernoulli and

Timoshenko beam theories with no strain gradient effect (to study the effect of the von Kármán

nonlinearity).

• Nonlinear transverse deflections for a clamped–clamped beam using the Reddy third–order

beam theory with strain gradient terms (to study the combined effect of the von Kármán nonlin-

earity and strain gradient effect on shear deformable beams).

• Nonlinear transverse deflections for the Reddy third–order beam theory with the strain gradient

effect for different boundary conditions (to study how the results vary for different boundary

conditions).

The results correspond to a homogeneous beam with Poisson’s ratio of ν = 0.3 and subjected to

a uniform transverse load of intensity q0. The Timoshenko beam element with reduced integration

has been implemented to avoid shear locking. Reduced integration Timoshenko beam element does

not give exact results for nodal displacements even for linear problems, unless a sufficiently large

number of elements are employed. Also, in the case of the von Kármán nonlinearity, nonlinear

terms in the stiffness matrix are evaluated using reduced integration to avoid membrane locking.

For additional discussion on these two types of locking, consult the book by Reddy [150].

5.6.1 Linear Response with No Strain Gradient Effect

Transverse deflections for a clamped–clamped beam with no strain gradient is studied using

the Euler–Bernoulli beam theory (EBT) and the Reddy third–order beam theory (RBT). For the

EBT, the dimensionless deflection is independent of the aspect ratio, L/h of the beam. For the

RBT, 4 aspect ratios have been chosen to study the effect of thickness on the deflection of the

beam. Dimensionless transverse deflections are shown in Figure 5.2. Accounting for the shear

deformation makes the beam more flexible, increasing the transverse deflection (i.e., the dimen-

sionless deflections predicted by the TBT and RBT are higher than that predicted by the EBT).

This increase is significant for thick beams (smaller values of L/h, say 10) for which the effect

of shear deformation is more significant. For larger values of L/h (thin beams) shear deformation
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becomes negligible and the transverse deflections predicted by the TBT and RBT get close to those

of the EBT.
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EBT RBT, L/h = 5 RBT, L/h = 10 RBT, L/h = 50 RBT, L/h = 100

Figure 5.2: Normalized linear transverse displacements computed using the EBT and RBT for a
clamped–clamped beam with different L/h ratios (q0 = 10, ν = 0.3).

5.6.2 Linear Response with Strain Gradient

Strain gradient theories are known to have stiffening effect on the structure. Therefore, ac-

counting for strain gradients should result in a decrease in the displacements. Normalized linear

transverse deflections for the Reddy third–order beam theory for clamped–clamped boundary con-

ditions and for different values of the aspect ratio (L/h) and for two values of length scale param-

eter (`s/L = 0.1% and 1.0%) are brought in Figure 5.3. The following observations can be made

from the results presented in Figure 5.3:

• The transverse deflections predicted by the unified beam theory with the strain gradient effect

are smaller than those of the unified beam theory without the strain gradient terms.
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• Increasing the length scale parameter (`s) results in further reduction of the displacements (in-

creased stiffening effect).

• The effect of strain gradient theory is more prominent for thin beams (higher L/h) than for thick

beams (i.e., beams with smaller L/h).
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Figure 5.3: Normalized linear transverse displacements computed using the RBT for a clamped
–clamped beam with differentL/h ratios; without and with strain gradient effect (q0 = 10, ν = 0.3,
`s/L = 0.0, 0.1% and 1.0%).

The dimensionless transverse deflections predicted by the classical EBT are independent of

the aspect ratio of the beam (L/h). However, this is not true for the EBT with the strain gradient

effect, where thinner beams are influenced more (higher reduction in transverse displacement) as

118



compared to thick beams. This is due to the fact that for thinner beam the thickness becomes

comparable to the length scale parameter.

5.6.3 Nonlinear Response with No Strain Gradient

The von Kármán nonlinearity (small strains and moderately large rotations) makes the systems

stiffer compared to the corresponding linear system. Plots of dimensionless nonlinear maximum

transverse deflections (ŵ (L/2)) predicted by the EBT and TBT versus the intensity of the dis-

tributed transverse load for clamped–clamped beams are shown in Figure 5.4. The results are

presented for several values of the length–to–height ratio, L/h. The following observations can be

made from Figure 5.4:

• Nonlinear transverse deflections are generally smaller than the linear transverse deflections.

• The effect of nonlinearity is more significant on thinner beams (larger L/h ratios). The reason is

that thick beams have larger stiffness and consequently smaller deflections. Therefore, the effect

of geometric nonlinearity on thick beams is less prominent. The trend is similar to the effect of

strain gradient theory of beams with high or low L/h ratios.

• For very thick beams (L/h < 20 inFigure 5.4) the effect of nonlinearity is not significant; that

is linear and nonlinear responses coincide to a good degree.

• Nonlinearity is dependent upon the intensity of the transverse distributed load, q0. Increase in

q0 triggers higher axial force (Nxx) and higher nonlinear contribution to the stiffness, and thus

more reduction in transverse deflections as compared to linear deflections.

5.6.4 Nonlinear Response with Strain Gradient Effect

The results for strain gradient beams with the von Kármán nonlinearity and clamped–clamped

boundary conditions are studied next. The Reddy third–order beam theory is chosen with 4 differ-

ent values of the length–to–height ratio, L/h. The results are graphically presented in figure 5.5.

The figure includes linear and nonlinear results with no strain gradient (`s/L = 0), and nonlinear

strain gradient deflections with two distinct values of the material length scale. In figure 5.5, the
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Figure 5.4: Dimensionless nonlinear maximum transverse displacement (w̄ (L/2)) predicted by
the EBT and TBT for clamped–clamped beams for different L/h ratios and varying transverse
distributed load (ν = 0.3).

linear deflections for higher values of L/h (> 50 in figure 5.5) coincide. For small values of the

length scale parameter `s, the effect of nonlinearity on reducing the transverse deflections is more

prominent than the gradient elasticity theory. However, as `s increases, the reduction in transverse

deflection due to the gradient elasticity effect becomes more apparent. For `s/L = 1.0% one can

see that the beam becomes extremely stiff and the effect of the von Kármán nonlinearity becomes

insignificant (the relationship between the transverse deflection and the load is almost linear).

5.6.5 Different Boundary Conditions

Finally, the results for a strain gradient Reddy beam theory with von Kármán nonlinearity

for two different boundary conditions (pinned–pinned beam and cantilever beam) are studied.

The maximum transverse deflections for pinned–pinned beam and cantilever beam are brought
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Figure 5.5: Dimensionless linear and nonlinear transverse displacements (ŵ (L/2)) for a clamped
–clamped RBT for different L/h ratios, with and without strain gradient (`s/L = 0, 0.1%, and
1.0%), ν = 0.3. L and NL correspond to linear and nonlinear results, respectively.

in figure 5.6 and figure 5.7, respectively. Comparison of figure 5.6 with figure 5.5 shows that

the deflections of a pinned–pinned beam are larger compared to the clamped–clamped beam, and

consequently the effect of strain gradient theory on the reduction of the transverse deflection is

slightly higher. Other than this, the same trend exists for both boundary conditions. A cantilever

beam (figure 5.7) experiences significantly higher transverse bending deflections. Therefore, the

maximum value of the horizontal axis offigure 5.7 is different from the previous figures. One can

see that for a cantilever beam the amount of bending deflection dominates the total transverse de-

flection, therefore, the linear displacements for all aspect ratios of the beam coincide to a good

degree. Similar to the previous examples, the effect of nonlinearity is more apparent for beams

with no strain gradient effect. As the length scale parameter increases, the beam becomes stiff to
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the point that it almost acts linearly.
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Figure 5.6: Dimensionless linear and nonlinear transverse deflections (ŵ (L/2)) predicted by the
RBT for pinned–pinned beams with different L/h ratios, with and without strain gradient effect
(ν = 0.3).

5.7 Chapter Summary and Conclusions

In this study a unified beam theory accounting for both strain gradient effect and the von Kár-

mán nonlinearity is formulated and its displacement finite element model is developed. The uni-

fied beam theory accounts for micro–structure dependent effects through classical strain gradient

theory. Classical strain gradient theory introduces only one material length scale, `s. The Eu-

ler–Bernoulli, the Timoshenko, and the Reddy third–order beam theories are all special cases of

the unified beam theory.
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Figure 5.7: Dimensionless linear and nonlinear transverse deflections (ŵ (L/2)) predicted by the
RBT for cantilever beams for different L/h ratios, with and without strain gradient (ν = 0.3).

Numerical examples are provided to investigate the effect of nonlinearity and strain gradient

terms on the response of different beam theories. The results show that, in general, both the von

Kármán nonlinearity and strain gradient effect make the beam stiffer, and consequently reduce the

transverse deflections. Due to the fact that thicker beams have higher stiffness as compared to

thinner beams, the stiffening effect and nonlinearity are more prominent for thin beams in both

cases. An increase in the material length scale parameter, `s, also makes the beam stiffer. When `s

is increased beyond a point, the beam becomes so stiff that its response is linear.

The unified beam theory can be employed in finite element software to model different beam

theories accounting for both the size effect and geometric nonlinearity using one unified formula-

tion. The idea presented in this study can be extended to the study of composite beams, functionally

graded beams, and plates.
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6. SUMMARY AND CONCLUSIONS

In Chapter 2 a new computational framework for the study of fracture in brittle solids, Graph-

based Finite Element Appraoch (GraFEA), is introduced. The two key features of GraFEA are: 1.

the network representation of the conventional FEM, and 2. the imposition of discrete edge-based

fracture criterion. The network representation of GraFEA moves the focus from the elements (as

in conventional FEM) to the edges. The above-mentioned two features allow us to take advantage

of the strength of the conventional FEM while making use of edge failure for the study of fracture

(similar to bond-breakage models), therefore circumventing the need to deal with the issues of

material separation which is common in continuum-based approaches to fracture.

The network representation of GraFEA is capable of handling crack initiation, crack branching,

and multiple cracks growing at the same time. These aspects makes GraFEA a suitable computa-

tional method for the study of fracture in quasi-brittle materials (such as laminated glass, concrete,

etc.). In these type of materials several cracks form simultaneously, resulting in a shattered sample

where the size of the small pieces is more or less of the same order. This phenomenon cannot be

captured using XFEM or cohesive zone models (which at most can consider only a few number

of cracks emanating in the body), or CDM (which considers a diffuse damage assuming several

microcracks are spread out over the continuum). However, the network representation of GraFEA

is capable of studying such phenomenon, and the introduction of the nonlocal fracture criterion

will also introduce a length scale which can account for the sizes of the broken pieces.

The fact that GraFEA builds upon conventional FEM (through the addition of an edge-based

damage variable) is one of the points of strength of this method. GraFEA converts to conventional

FEM in the case of no damage. Since FEM is the most widely used computational method in the

field of solid mechanics, the ability to study fracture using FEM is a significant contribution.

In Chapter 3 the local fracture criterion of Chapter 2 is upgraded to a physically motivated

nonlocal fracture criterion. It is shown that the nonlocal fracture criterion eliminates the mesh

dependency caused by fracture localization. The mesh dependency studies are performed using a
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hierarchical mesh refinement procedure, and the comparisons for different levels of refinement are

based upon the global force-displacement relationship. With the local fracture criterion, the peak

force at fracture initiation continues to decrease with further mesh refinement. However, for the

nonlocal fracture criterion the global responses are shown to be similar.

The length scale parameter, `c, introduced in the nonlocal fracture criterion will also affect the

fracture pattern. By increasing the magnitude of the `c, the damage pattern moves from a local-

ized fracture to a diffuse damage with complete separation along a certain plane. For a given `c,

differences can be observed for the diffuse part of the damage pattern for different mesh densities,

however, it is shown in Chapter 3 that the influence of these variations on the global response is

negligible.

In Chapter 4 a unified integro-differential nonlocal model is introduced based on the two-phase

Eringen nonlocal model. The proposed model is a linear combination of a local and integral-type

nonlocal constitutive models. The kernel function used in the integral part is chosen different from

the one resulting in the differential form of Eringen nonlocal model, and it is shown that the kernel

function chosen in this study resolves the paradox reported in the literature with regard to the can-

tilever beams. The differential form of Eringen nonlocal model, which has widely been used in the

literature, is incapable of capturing size dependent effects for a cantilever beam. When considering

size dependent effects, cantilever beams are an important class of beams because of their wide use

as micro/nano actuators and sensors. The model introduced in this study is capable of capturing the

softening effect of Eringen nonlocal model (with increasing length scale parameter) for cantilever

beams as well as other beams.

In Chapter 5 the influence of including strain gradient effect and von Kármán nonlinearity on

the response of familiar beam theories (Euler-Bernoulli beam, Timoshenko beam, Reddy third-

order beam) are studied through derivation of displacement-based finite element models. It is

shown that both the strain gradient effect and the von Kármán nonlinearity will have a stiffening

effect on the beams with a more significant influence on the response of thinner beams.

The findings of Chapter 4 and Chapter 5 were used when choosing the remedy for the mesh
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dependency of GraFEA (Chapter 3). Due to the ease of implementation of an integral-type non-

locality (not requiring additional boundary conditions as in the case of gradient theories) and its

ability to resolve mesh sensitivity, a nonlocality of the integral form is chosen.

6.1 Future Studies

In this study all of the numerical results on GraFEA are derived using a quasi-static analysis for

brittle materials. Although these results are informative, they are reliable up to the point of fracture

initiation (peak force in the force-displacement relationship). As soon as a crack is formed in a

brittle material, it propagates in a dynamic manner. Dynamic analysis will automatically resolve

the issue with the singularity in the stiffness matrix when all of the edges connected to one node

are broken (an isolated node). These nodes will serve as the flyaway pieces of a shattered medium

in the dynamic analysis.

The nonlocal fracture criterion used in GraFEA (Chapter 3) introduces a length scale parameter

into the problem. Studies should be carried out to justify the results from GraFEA with experi-

mental data, and to determine the physics behind the length scale parameter. According to the

numerical results from Chapter 3, one assumption is that the length scale parameter is a material

property and it might be related to the width of the diffuse damage band. However, more stud-

ies are required to determine the source of the length scale parameter, and its value for different

materials.

As it has already been discussed, even in nominally similar samples the crack paths are dif-

ferent. These differences can be attributed to changes in the microscale, existing defects, and

uncertainty in the experimental setup. Consequently, the focus of any fracture simulation should

not be to predict the exact crack path of an experimental sample (which can vary from one sample

to another), but to predict the average behavior of a large number of test specimens. In order to

accomplish this, one can acquire probabilistic approaches where one can predict the probability of

a crack propagating in a certain direction instead of the exact crack paths. The network represen-

tation of GraFEA makes it a suitable platform for implementation of probabilistic approaches.
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