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ABSTRACT

Plasma shear flows are abundant in nature and frequently encountered in engineering applica-

tions. The stability characteristics of plasma shear flows are of much fundamental interest. Shear

flows are susceptible to various algebraic and modal instabilities, i.e., velocity perturbations grow

as a polynomial or an exponential function of time. It is well known in literature that background

magnetic field applied along the flow direction and compressibility have a stabilizing influence on

these shear instabilities. In this dissertation, a systematic investigation of the stabilization mecha-

nisms is performed. This dissertation consists of three studies, each addressing a different type of

free shear layer: Study 1 - homogeneously sheared flows in the incompressible regime; Study 2 -

inhomogeneously sheared mixing layers in the incompressible regime; Study 3 - inhomogeneously

sheared planar jets in the compressible regime. The common theme of all the studies investigate

the nature of pressure-velocity-magnetic-field interactions that influence stabilizing mechanisms.

For the case of homogeneous shear investigated in the first study, velocity perturbations in the

absence of the magnetic field are susceptible to algebraic instability, i.e., kinetic energy contained

in the perturbations (k) grows as, k ∼ O(tn). The stabilizing influence of magnetic field strength

and perturbation orientation (β) on the instability is characterized using linear analysis and direct

numerical simulations. Linear analysis indicates that the perturbation growth is dependent on the

parameter, RA ≡ VAκ/S, where, VA, κ and S are the Alfvén wave speed, initial wavenumber and

mean flow shear, respectively. Analytical solutions for various perturbation energies at extreme

RA regimes – RA � 1 and RA � 1 – are derived and compared to numerical simulations. The

behavior of perturbations at different RA regimes and β values is also explicated using numerical

simulations.

In the second study, a tangent hyperbolic profile is chosen for the mean velocity field. Owing

to the presence of an inflection point in the profile, the flow field is subjected to Kelvin-Helmholtz

(KH) instability leading to exponential growth of perturbations, i.e., k ∼ O(et). In the absence

of any magnetic field (hydrodynamic limit), the precursor vortices form and roll up into a primary
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vortex. The primary vortex further entrains fluid leading to the onset of nonlinear asymptotic stage

and formation of secondary vortex bands. We investigate the linear and nonlinear effects of mag-

netic field on this three-stage evolution of KH instability. Flow field features such as circulation,

gauge pressure and perturbation energies are utilized to delineate the parameter space into strong,

weak and intermediate magnetic-field stabilization regimes. The mechanisms of magnetic field

stabilization in each of the three regimes is investigated using direct numerical simulations.

In the third study, the evolution of pressure-, kinetic- and magnetic-perturbation energies for

the case of compressible magnetohydrodynamic (MHD) planar jets is investigated. A streamwise

background magnetic field is again applied. The change in the nature of interactions between

velocity and magnetic fields due to compressibility is established using linear analysis. Numerical

simulations of single mode and random, isotropic initial perturbations are performed to examine

these new agencies of exchange and their subsequent effect on the overall stability of the flow field.

The findings of this dissertation are expected to further our understanding of various compress-

ible and magnetic field mechanisms and their roles in perturbation evolution. This will aid in the

development of closure models for MHD shear flows which could be used for designing efficient

plasma propulsion engines and flow control devices.
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1. INTRODUCTION

1.1 Motivation

Plasma shear flows are abundant in nature and engineering applications as plasmas constitute

99% of the baryonic matter in the universe (Chen, 1994). The inherent electric and magnetic fields

present in plasma shear flows make their behavior markedly different as opposed to a hydrody-

namic shear flow. Such a change in behavior is evident in the collimated evolution of astrophysical

jets over thousands of light years, for example plasma jet emanating from the active galaxy, Messier

87, remains collimated for 4900 light years or 1.5 kilo-parsec (Doeleman et al., 2012). As these

jets propagate at hypersonic/relativistic speeds, compressibility also alters their evolution, in addi-

tion to modifications by electric and magnetic fields. The effects of compressibility and magnetic

fields resulting in collimation of these jets/outflows has been a subject of intense research in the

astrophysics community (Blandford & Payne, 1982).

Understanding the processes that govern plasma shear flows is important as they have applica-

tions in other naturally-occurring and engineering flows. For example, plasma shear flows play a

crucial role in the generation mechanism of a solar cycle (Zaqarashvili, 1997), entry of solar wind

into Earth’s magnetosphere (Nykyri & Otto, 2001), magnetorotational dynamo action (Herault

et al., 2011), neutron star mergers (Price & Rosswog, 2006; Obergaulinger et al., 2010) and mag-

netic reconnection (Faganello et al., 2008; Belle-Hamer et al., 1994), to name a few. In aerospace

engineering, shear flows and large scale instabilities arising out of separated flow over an aircraft

are controlled by means of magnetic fields and plasma actuators (Roth et al., 1998; Shatrov & Ger-

beth, 2007; Thomas et al., 2008; Corke et al., 2010). Such control strategies could result in reduced

noise and drag caused by the non-aerodynamic components in the airframe. In space propulsion

applications, plasma jets generate thrust via Lorentz force as in a magnetoplasmadynamic (MPD)

thruster (Mikellides et al., 2000) or via a magnetic nozzle as in a variable specific impulse magneto-

plasma rocket (VASIMR) (Diaz, 2000). The motivation for this dissertation stems from the need to
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understand the mechanisms of stabilization of compressibility and magnetic field on plasma shear

flows in order to develop physics-based closure models that could be used in complex engineering

flows.

1.2 Background

While investigating the evolution of plasma jets/shear flows, many studies in literature adopt a

single fluid approximation, known as magnetohydrodynamics (MHD). A single fluid approxima-

tion can be justified despite the presence of multiply charged ions and electrons for a quasi-neutral,

fully ionized plasma (Kulsrud, 2005; Goossens, 2012). As we also adopt MHD paradigm in this

dissertation, we present a background of MHD shear flow literature in which the effects of com-

pressibility and magnetic fields are studied.

Stability of hydrodynamic shear flows have been studied for over a century. The linear stabil-

ity works of Kelvin and Helmholtz underlined the instability of an incompressible hydrodynamic

vortex sheet, i.e., a discontinuous mixing layer (Helmholtz, 1868; Thomson, 1871). The stability

of vortex sheet in the context of MHD with magnetic field applied was first investigated by Chan-

drasekhar (1961). He identified the magnetic field applied along the flow, i.e., along the streamwise

direction, to be stabilizing. Other orientations of magnetic field do not have any effect on the in-

stability of the vortex sheet. This stabilizing action of magnetic field is also seen in the case of

continuous mixing layers, for example, tangent hyperbolic mixing layers (Ong & Roderick, 1972).

Compressibility has also been shown to have a similar stabilizing effect on the growth rate of a hy-

drodynamic mixing layer (Blumen et al., 1975). Where as in a MHD vortex sheet, compressibility

can be stabilizing or destabilizing depending upon the ratio of velocity jump and magneto-acoustic

speeds (Sen, 1964).

The nonlinear stability of incompressible and compressible MHD shear flows has also been

addressed in numerous works by means of numerical simulations (Malagoli et al., 1996; Frank

et al., 1996; Baty & Keppens, 2006; Palotti et al., 2008). These studies identified the nonlinear

stabilizing action of magnetic field at late times, even for field strengths where linear stabilization

can’t be seen. The nonlinear stabilization at late times is due to the onset of ‘resistive’ instability.
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Since understanding the mechanisms of collimation/ astrophysical phenomena motivated many

of these studies, the effects of both compressibility and magnetic field have been incorporated.

Such an approach renders the isolation of individual processes pertaining to compressibility and

magnetic field difficult. Our goal is to examine the effects of compressibility and magnetic fields

individually and then in combination. This allows for identification of specific mechanisms leading

to possible closure modeling.

1.3 Thesis research

Objective Statement: (i) To advance the fundamental understanding of flow mechanisms in

compressible MHD shear flows by examining the effects of magnetic field and compressibility

in isolation and in combination. (ii) To understand the stability characteristics of MHD shear

flows at various speed regimes.

1.3.1 Research tasks

To achieve the above objectives, we examine the evolution of incompressible and compressible

shear MHD flows using linear analysis and numerical simulations. The stability of any shear

flow is dictated by the interactions between pressure and velocity fields. Such interactions are

profoundly modified by compressibility and background magnetic fields. Therefore, to determine

the stability of an MHD shear flow, it is imperative to evaluate and characterize pressure-velocity-

magnetic field interactions. Investigation of these interactions for shear flows at various degrees of

compressibility and magnetic field strength forms the central theme of this work.

The flowchart in figure 1.1 depicts the approach that needs to be followed to understand the

stability of MHD shear flows. The tasks already performed in literature are indicated in light gray

boxes, i.e., pressure-velocity interactions in compressible shear flows. A comprehensive investiga-

tion of the effect of compressibility on turbulent shear flows has been preformed previously in the

research group (Kumar et al., 2014; Karimi & Girimaji, 2016; Xie et al., 2017). Dark gray boxes

indicate the novel tasks performed in this dissertation. Pressure-velocity-magnetic field interac-

tions in the incompressible limit are evaluated first. This results in the isolation of stabilization
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Figure 1.1: Flowchart identifying the specific objectives of this study. The ones examined in detail
in literature are indicated in light gray boxes, where as, the novel studies of this dissertation are in
dark gray boxes.

processes pertaining to magnetic field. Then, the inferences from hydrodynamic compressible

studies and incompressible MHD flows are extended for compressible MHD shear flows.

1.3.1.1 Incompressible MHD shear flows

Two studies are performed in this dissertation to understand pressure-velocity-magnetic-field

interactions in incompressible MHD shear flows:

1. Study 1 – homogeneously sheared MHD flows.

2. Study 2 – MHD mixing layers.

Homogeneously sheared flows are subjected to algebraic instability, i.e., the growth rate of pertur-

bations is lower compared to modal instabilities seen in mixing layers (Landahl, 1980). Homo-

geneous shear flows are amenable to analytical treatments such as rapid distortion theory (RDT)

(Pope, 2001). Due to these reasons, a comprehensive understanding of pressure-velocity-magnetic-

field interactions can be made possible in the case of homogeneous shear. These inferences are then
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Figure 1.2: A sketch of the various shear flows studied in this dissertation. (a) Homogeneous
shear, (b) mixing layer and (c) planar jets. Magnetic field is applied in the streamwise direction, as
shown, in all the studies.
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extended to MHD mixing layers, in which shear is inhomogeneous in nature. The presence of an

inflection point also results in modal instability, due to which perturbations grow exponentially

(Rayleigh, 1879). In both of the flow configurations, magnetic field is applied along the stream-

wise direction, which was identified by the work of Chandrasekhar (1961) to be stabilizing to flow

instabilities. The schematics depicting mean velocity and magnetic fields for homogeneous shear

and mixing layer are shown in figures 1.2 (a) and (b).

1.3.1.2 Compressible MHD shear flows

To understand pressure-velocity-magnetic-field interactions in the case of compressible MHD

shear flows in the third study, we investigate:

1. Compressible MHD homogeneous shear

2. MHD planar jets.

As discussed previously, homogeneous shear due to its amenability to analysis leads to a better

understanding of the interactions in acoustic and magnetic timescales. MHD planar jets are more

complex than mixing layers due to the presence of two inflection points. The flow is susceptible to

multiple modal instabilities. A schematic of planar jet mean velocity profile is shown in figure 1.2

(c).

We now present a survey of literature specific to each of the studies.

1.4 Study 1 - Incompressible MHD homogeneous shear1

Evolution of velocity and magnetic perturbations in the presence of uniform mean flow shear

and a parallel background magnetic field is the canonical problem examined in this study. This

problem is of broad interest and it is widely studied in the context of elemental shear dynamo

(McWilliams, 2012) and Magnetorotational instability (Herault et al., 2011; Kirillov et al., 2014).

This study examines such homogeneously sheared MHD flows to establish the fundamental na-

ture of velocity-magnetic field interactions and their dependence on background magnetic field
1Reprinted with permission from Divya Sri Praturi, Diane Collard and Sharath S. Girimaji. The effect of mag-

netic field on perturbation evolution in homogeneously sheared flows. Journal of Fluid Mechanics (in production).
Copyright [2018] by Cambridge University Press.
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strength. Shear flows with uniform mean velocity experience a transient algebraic growth of per-

turbations (Landahl, 1980). Normal mode analysis is inapplicable as the flow does not permit

exponentially growing perturbations. Nonmodal analysis needs to be performed in order to under-

stand the algebraically growing transient dynamics (Trefethen et al., 1993).

Homogeneously sheared MHD flows in the incompressible limit with a constant magnetic field

have been studied using nonmodal analysis (Lerner & Knobloch, 1985; Chagelishvili et al., 1993;

Zaqarashvili, 1997; Dimitrov et al., 2011). Lerner & Knobloch (1985) performed nonmodal anal-

ysis and identified solutions to the asymptotic behavior of magnetic field as a function of viscosity

and resistivity. They also performed energy analysis that indicates resistivity and viscosity to have

a stabilizing influence on the growth of perturbations. Their analysis is restricted to investigating

the asymptotic behavior of magnetic field perturbations. Chagelishvili et al. (1993) identified a

new transient amplification mechanism of two-dimensional magnetoacoustic waves under the in-

fluence of low streamwise magnetic field. Dimitrov et al. (2011) derived analytical solutions for

the perturbation velocity and magnetic fields in terms of Confluent Heun functions. The authors

also characterized the asymptotic amplification coefficient of slow magnetosonic waves for long

wavelengths. The studies of Chagelishvili et al. (1993) and Dimitrov et al. (2011) restricted the

physical analyses to inviscid, low magnetic field regime.

Background magnetic fields in nature and engineering vary by many orders of magnitude from

an astrophysical flow (≈ 10−6 Tesla) to a plasma propulsion jet (≈ 2 Tesla) (Olsen et al., 2013).

In addition, applications such as flow control necessitate a thorough understanding of transient

and asymptotic behavior of both velocity and magnetic field perturbations at different magnetic

field strengths. As a result, there is a need to further the analyses in literature and characterize the

behavior of individual perturbation modes at different field strengths. Furthermore, the behavior

of perturbation wavevectors that are not aligned with the mean flow or applied magnetic field must

be characterized. It is also important to note that previous studies are restricted to linear analyses

and the results have not been confirmed against full numerical simulations.

The objective of this study is to identify fundamental stabilization mechanisms in MHD shear
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flows and characterize their behavior as a function of magnetic field strength and wavevector ori-

entation. Toward that end, the linear analyses of Lerner & Knobloch (1985); Chagelishvili et al.

(1993); Dimitrov et al. (2011) is furthered to study the small perturbation evolution in MHD shear

flows. The aim is to:

1) Establish the behavior of perturbation fields at different parameter regimes (magnetic field

strength - B0 and perturbation wavevector orientation - β) using linear analysis of the initial

value problem. The notation and approach followed is that of rapid distortion theory (Pope,

2001) for homogeneously sheared flows.

2) Perform direct numerical simulations (DNS) to closely examine processes such as pressure

redistribution, kinetic energy production, kinetic-magnetic energy exchange and magnetic

stretching.

3) Develop general inferences on the stabilizing effect of magnetic field on MHD shear flows.

1.5 Study 2 - Incompressible mixing layers

Imposed magnetic field is known to exert two distinct influences on the stability of mixing

layers in conducting fluids: (i) linear effect – strong magnetic field prevents the onset of Kelvin-

Helmholtz (KH) instability; and, (ii) nonlinear effect – weak magnetic field permits the inception

of KH instability, but disrupts its later development. The goal of this study is to characterize

the spatio-temporal evolution of perturbations in magnetohydrodynamic (MHD) mixing layers at

different magnetic field strengths and contrast them against the hydrodynamic KH instability onset

and development.

Chandrasekhar (1961) was the first to perform modal linear stability analysis of MHD equations

for the case of infinitesimally-thin mixing layer. The stability of mixing layers is characterized in

terms of Alfvén Mach number, MA, defined as:

MA ≡
VA

∆U/2
, (1.1)
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where, VA is the Alfvén wave velocity and ∆U is the differential velocity between the two streams

constituting the mixing layer. The author demonstrates that when the magnetic field is strong

enough that MA ≥ 1, the flow is linearly stable. In other words, when the magnetic field is strong,

the onset of KH instability is entirely eliminated leading to a complete stabilization of the flow.

Lau & Liu (1980) then extended the analysis and finding to a finite-thickness mixing layer. These

findings have been verified by many simulations, but the precise stabilization mechanism has not

been clearly explicated.

If the magnetic field is weak, i.e., MA < 0.2, the linear stabilizing influence is too weak to

prevent the onset of KH instability. Then, a different mechanism - called resistive “tearing” insta-

bility - curtails the perturbation growth in the nonlinear regime. Many numerical studies have been

performed to understand resitive instability and ensuing stabilization (Malagoli et al., 1996; Frank

et al., 1996; Palotti et al., 2008; Obergaulinger et al., 2010; Mak et al., 2017). Frank et al. (1996)

also examine intermediate magnetic fields (MA = 0.4, 0.8). Most of these numerical studies focus

on compressible mixing layers of unit Mach number. Compressibility in itself is known to stabilize

mixing layers (Karimi & Girimaji, 2016, 2017). This renders the demarcation of compressibility

effect and magnetic field influence difficult. The only incompressible KH instability study was per-

formed by Mak et al. (2017) to quantify the level of disruption in the weak magnetic field regime,

MA < 0.1. No numerical study thus far has addressed the entire magnetic field regime in the

incompressible limit.

We aim to delineate the physical features at different stages of incompressible MHD mixing-

layer spatio-temporal development that lead to perturbation stabilization or amplification. Toward

that end, linear analysis and numerical simulations of full nonlinear incompressible MHD equa-

tions is performed to:

1. Examine the relevant dimensionless parameters that describe the evolution of incompressible

MHD mixing layers at different (streamwise) magnetic field strengths.

2. Investigate and explicate the velocity-pressure-magnetic field interaction mechanisms that

lead to KH stabilization in the linear regime and curtailed amplification in nonlinear regime.
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3. Characterize the evolution of circulation, suction pressure and key instability measures as a

function of magnetic field strength. Of particular interest is the degree of amplification of

various perturbations at different magnetic field strengths.

1.6 Study 3 - Compressible planar jets

As mentioned in the previous section, many studies in literature examined the behavior of MHD

shear layers in the presence of background magnetic field and compressibility. When acting alone,

compressibility and magnetic field are stabilizing. However, when acting together, Sen (1964)

identified the effect of compressibility to be stabilizing or destabilizing depending upon the ratio

of streaming and magneto-acoustic speeds. When the streaming speed is greater than the magneto-

acoustic speed, compressibility is stabilizing and vice-versa. As mentioned in the previous section,

nonlinear evolution of MHD mixing layers at sonic Mach number and low magnetic fields has been

extensively studied. Many planar jet studies have also been restricted to a similar regime (Min,

1997; Keppens & Tóth, 1999; Baty & Keppens, 2002, 2006). As this is the regime of relevance

for astrophysical plasmas, nonlinear studies of jets focussed at understanding the morphology of

compressible jets as they go through shocks.

As a result, similar to previous studies, there is a need to investigate the behavior of a wide

range of magnetic field strengths and Mach numbers to comprehensively understand the effects

of compressibility and magnetic field. Further, the explicit roles played by magnetic pressure and

tension at different levels of compressibility need to be investigated. Toward that end, the aim of

this study is to:

1. Perform linear analysis to understand the nature of pressure-velocity-magnetic-field inter-

actions at different Mach numbers and magnetic field strengths. Specifically, the effect of

compressibility on the agencies of interaction caused by magnetic pressure and magnetic

tension are examined.

2. Perform numerical simulations of full compressible, resistive MHD planar jets perturbed

by a single streamwise mode to examine exchanges between kinetic, magnetic and internal
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energies.

3. Perform numerical simulations of random, isotropic initial modes to bring together the

knowledge base on the effects of compressibility and magnetic fields on single modes of

various orientations.

1.7 Dissertation outline

The following is the outline for this dissertation. Chapter II performs the linear and energy

analyses of incompressible and compressible MHD equations for all the free shear flows. Chapter

III presents the description of the numerical methods used for the sake of performing direct numer-

ical simulations of MHD shear flows. The results of simulations and comparisons with analysis for

the case of homogeneous shear flows are presented in Chapter IV. Chapter V presents the evolution

of incompressible mixing layers in the presence of streamwise applied magnetic field of various

strengths. Chapter VI presents the evolution of pressure, kinetic and magnetic energies for the case

of compressible MHD planar jets subjected to a streamwise applied magnetic field. The inferences

from all the above studies regarding the nature of pressure-velocity-magnetic field interactions are

made in Chapter VII.
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2. GOVERNING EQUATIONS

The goal of this thesis is to investigate pressure-velocity-magnetic field interactions in sheared

plasma flows at various speed regimes. Plasma flows comprise of ions of multiple charges, elec-

trons and neutral atoms. As mentioned in the introduction, despite the presence of multiple species,

a single-fluid MHD approximation holds true for long wavelength, low frequency plasmas. The

implications of single fluid assumption for a plasma are presented in detail here (Chen, 1994;

Kulsrud, 2005):

1. The long wavelength assumption implies that we consider length scales that are larger than

the electron/ion gyroradius and Debye length.

2. Plasma is considered to be of low frequency when we investigate the dynamics on time scales

longer compared to electron/ion cyclotron times.

3. The plasma is quasi-neutral.

4. A single-fluid assumption also implies identical electron and ion temperatures. This can be

achieved when the species collision frequencies are high.

We consider three-dimensional compressible, viscous, resistive MHD equations for analysis and

numerical simulations in this study.

The conservation of mass for a fluid of density, ρ and velocity, ~V , is given by:

∂ρ

∂t
+ ~∇ · (ρ~V ) = 0. (2.1)

The momentum balance equation of the fluid subject to pressure, viscous and Lorentz forces is

given by:

ρ

(
∂~V

∂t
+ (~V · ~∇)~V

)
= −~∇p+ ~J × ~B + ~∇ · ~~τ, (2.2)
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where, p, ~J and ~B are the fluid pressure, current density and magnetic field, respectively of the

MHD fluid. ~~τ is the viscous stress tensor given by:

~~τ = µ
(
~∇~V + (~∇~V )T

)
+ λ~∇ · ~V ~~I, (2.3)

where, µ and λ = −2µ/3 are the dynamic viscosity and bulk viscosity coefficient. Magnetic field

evolution is given by Ohm’s law:

∂ ~B

∂t
= ~∇× ~V × ~B +Dη∇2 ~B; Dη =

η

µ0

, (2.4)

where, Dη, the magnetic diffusivity can be expressed in terms of the resistivity of MHD fluid, η,

and the permeability of free space, µ0, as Dη = η/µ0. In addition, magnetic field should satisfy

divergence-free condition at all times, i.e.,

~∇ · ~B = 0. (2.5)

Current density, ~j, in the MHD fluid can be expressed in terms of magnetic field, ~B, and electric

field, ~E, using Ampère-Maxwell equation:

~∇× ~B = µ0
~j + µ0ε0

∂ ~E

∂t
, (2.6)

where, ε0 and µ0 are the vacuum permittivity and permeability, respectively. The temporal variation

of electric field term on the right hand side of equation (2.6) can be neglected for the cases where

flow velocity is insignificant compared to the speed of light, i.e., |~U | � c. The governing equation

for the evolution of the sum of internal, kinetic and magnetic energies is given by:

∂Etot
∂t

+ ~∇ ·

(
~V (Eh + p)− κ~∇T − ~V · ~~τ +

~E × ~B

µ0

)
= 0, (2.7)
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Etot =
ρ~V · ~V

2
+

p

γ − 1
+
~B · ~B
2µ0

; Eh =
ρ~V · ~V

2
+

p

γ − 1
, (2.8)

where, κ is the thermal conductivity of the MHD fluid.

2.1 Incompressible limit

We now consider the three-dimensional viscous, resistive MHD equations in the incompress-

ible limit Davidson (2002):

ρ

(
∂~U

∂t
+ (~U · ~∇)~U

)
= −~∇p+~j × ~B + ~∇ · ¯̄τ, (2.9)

~∇ · ~U = 0. (2.10)

∂ ~B

∂t
= ~∇× (~U × ~B) +Dη∇2 ~B, (2.11)

~∇ · ~B = 0. (2.12)

Using equation (2.6), the Lorentz force term on the right hand side of the momentum equation (2.9)

can be written in terms of magnetic pressure and magnetic tension terms:

~j × ~B = −~∇

(
~B · ~B
2µ0

)
+

1

µ0

( ~B · ~∇) ~B = −~∇ (pm)

+
1

µ0

( ~B · ~∇) ~B.

(2.13)

The magnetic pressure (pm) supplements the fluid pressure (pf ), where as, magnetic tension gives

rise to Alfvén waves. The Poisson equation for total pressure (pt = pf + pm) can be obtained by

taking the divergence of the momentum equation (2.9) (assuming ρ is homogeneous):

∇2pt = ∇2pm +∇2pf = −ρ(~∇~U : ~∇~U) +
1

µ0

(~∇ ~B : ~∇ ~B). (2.14)

It is evident that the magnetic tension contributes to the total pressure in the flow field. The evolu-

tion of magnetic field, ~B, is given by Ohm’s law:
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Vorticity evolution equation is derived by taking the curl of the momentum equation (2.9):

∂~ω

∂t
+
(
~U · ~∇

)
~ω =

(
~ω · ~∇

)
~U −

(
~j · ~∇

)
~B +

(
~B · ~∇

)
~j. (2.15)

For the purpose of analysis, the velocity, pressure and magnetic fields are decomposed into

mean (ensemble) and perturbation fields:

ui = ui + u
′

i; p = p+ p
′
; Bi = Bi +B

′

i (2.16)

The mean can represent ensemble, time or space average as appropriate to the specific flow un-

der consideration. The equations are derived for the most general ensemble average first. The

governing equations for the mean field are given by:

∂ui
∂xi

= 0;
∂Bi

∂xi
= 0 (2.17)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
−
∂u
′
iu
′
j

∂xj
− 1

2µ0ρ

∂

∂xi
(BjBj)−

1

2µ0ρ

∂B
′
jB
′
j

∂xi

+
Bj

µ0ρ

∂Bi

∂xj
+

1

ρµ0

∂B
′
iB
′
j

∂xj
+ ν

∂2ui
∂x2

j

(2.18)

∂Bi

∂t
+ uj

∂Bi

∂xj
= Bj

∂ui
∂xj

+
∂

∂xj

(
u
′
iB
′
j − u

′
jB
′
i

)
+ η

∂2Bi

∂xj∂xj
(2.19)

∂ωi
∂t

+ uk
∂ωi
∂xk

= ωk
∂ui
∂xk
− jk

∂Bi

∂xk
+Bk

∂ji
∂xk
− u′k

∂ω
′
i

∂xk
+ ω

′
k

∂u
′
i

∂xk
− j ′k

∂B
′
i

∂xk
+B

′
k

∂j
′
i

∂xk
, (2.20)

where, i, j, k take values 1, 2, 3 and Einstein summation convention is used. Einstein summation

convention is used. Overbar indicates ensemble averaging. For the case of homogeneous shear

flows, ensemble average is equivalent to spatial average on the streamwise-spanwise plane.
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(a)

(b)

Figure 2.1: (a) Problem setup (b) wavevector orientation with respect to streamwise direction.
Reprinted with permission from Praturi et al. (in production).

2.1.1 Linear analysis for homogeneous shear flows1

The setup for linear analysis and numerical simulations is shown in figure 2.1a. The mean

velocity is oriented along 1-direction and it varies along the 2-direction. The magnetic field is

applied in the 1-direction. The co-linear alignment of velocity and magnetic fields is seen in

plasma propulsion jets such as Variable specific impulse magnetoplasma rocket (VASIMR) engine

(Diaz, 2000). Other magnetic field orientations will be considered in the future. In subsequent

discussions, 1, 2 and 3 directions will be referred as streamwise, normal and spanwise directions.

For this study we consider,

ū ≡ (U1(x2), 0, 0); B̄ ≡ (B0, 0, 0) (2.21)

1Reprinted with permission from Divya Sri Praturi, Diane Collard and Sharath S. Girimaji. The effect of mag-
netic field on perturbation evolution in homogeneously sheared flows. Journal of Fluid Mechanics (in production).
Copyright [2018] by Cambridge University Press.
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Mean density is taken to be uniform. For linear analysis, we consider an ideal MHD fluid. In direct

numerical simulations (DNS), the full nonlinear and viscous/resistive effects are included. Under

the assumptions of idealized MHD linear analysis, mean pressure is uniform throughout the flow

field:
∂p

∂xi
= 0 (2.22)

The evolution of fluctuating fields is isolated by subtracting the mean field evolution terms from

the total field evolution equations upon neglecting nonlinear terms. The resulting equations are

(Chagelishvili et al., 1993):
∂u
′
i

∂xi
= 0;

∂B
′
i

∂xi
= 0 (2.23)

Du
′
i

Dt
≡ ∂u

′
i

∂t
+ U1(x2)

∂u
′
i

∂x1

= −u′2Sδi1 −
1

ρ

∂

∂xi

(
p
′
+
B0B

′
1

µ0

)
+
B0

ρµ0

∂B
′
i

∂x1

(2.24)

DB
′
i

Dt
≡ ∂B

′
i

∂t
+ U1(x2)

∂B
′
i

∂x1

= B
′

2Sδi1 +B0
∂u
′
i

∂x1

(2.25)

where, the uniform flow shear is given by:

S ≡ dU1

dx2

(2.26)

A coordinate frame (X) that convects and deforms with the mean flow is utilized to examine the

flow evolution (Rogallo, 1981):

X1 = x1 −
∫ t

0

U1(x2)dξ; X2 = x2; X3 = x3; t = t (2.27)

Equations in the convective coordinate frame (X) then become:

∂u
′
i

∂Xi

− St ∂u
′
2

∂X1

= 0 (2.28)

∂B
′
i

∂Xi

− St∂B
′
2

∂X1

= 0 (2.29)
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∂u
′
i

∂t
= −u′2Sδi1 −

1

ρ

∂p
′

∂Xi

− B0

ρµ0

∂B
′
1

∂Xi

+
St

ρ

∂p
′

∂X1

δi2 +
StB0

ρµ0

∂B
′
1

∂X1

δi2 +
B0

ρµ0

∂B
′
i

∂X1

(2.30)

∂B
′
i

∂t
= B0

∂u
′
i

∂X1

+B
′

2Sδi1 (2.31)

Following rapid distortion theory (RDT) methodology (Taylor & Batchelor, 1949; Batchelor &

Proudman, 1954; Pope, 2001; Cambon et al., 1993), we now consider perturbations that are peri-

odic in all Xi directions:

q
′
( ~X, t) = q̂(t)ei~κ(0)· ~X = q̂(t)ei~κ(t)·~x (2.32)

Due to the coordinate transformation, the wavenumbers evolve as (Pope, 2001):

dκi
dt

= −κj
∂Uj
∂xi

(2.33)

For the mean velocity profile (U1(x2)) considered in this study, the above equation reduces to:

dκ1

dt
= 0;

dκ2

dt
= −κ1S;

dκ3

dt
= 0, (2.34a)

leading to

κ1(t) = κ1(0); κ2(t) = κ2(0)− Stκ1(0); κ3(t) = κ3(0). (2.34b)

The implication is that the wavevector magnitude and direction in the streamwise-spanwise plane

remain constant, and the wavenumber in the normal direction grows linearly. The perturbation

amplitudes evolve as (using equation (2.34b)):

dûi
dt

= −û2Sδi1 − iκi
(
p̂

ρ
+
B0

ρµ0

B̂1

)
+
B0

ρµ0

iκ1B̂i (2.35)

dB̂i

dt
= B̂2Sδi1 + iκ1B0ûi (2.36)
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subject to the divergence-free constraints,

iκiûi = 0; iκiB̂i = 0 (2.37)

It is evident from the above equations that the stability characteristics of the linear system are

contingent on the initial wavenumber of the perturbations. The equations demonstrate that κ2

plays a critical role in the perturbation evolution as it is the only wavenumber component that

changes with time. We consider two distinct classes of initial conditions: κ2 6= 0; and κ2 = 0.

Initial perturbations with κ2(0) 6= 0. In the early stages, the initial value of κ2 plays

a critical role in determining the evolution of the perturbations. This transient stage can have

interesting implications on perturbation growth. Chagelishvili et al. (1993) have investigated the

early time energy interactions for two-dimensional perturbations on the streamwise-normal (κ1 −

κ2) plane. Further analytical examination of this parameter regime will be performed in future

works.

Initial perturbations with κ2(0) = 0. In this study, we focus on perturbations which are

initially located on the κ1 − κ3 plane for several reasons. First and foremost, these perturbations

provide crucial insight into the long-term stability characteristics of general shear flow instabilities

subject to streamwise magnetic field. Secondly, due to the nature of κ2 growth, the asymptotic

stability of the linear equations can be completely captured by this initial condition. Finally, this

system is amenable to rigorous mathematical analysis which leads to profound insight into the

stabilizing influence of magnetic field. We express these initial wavevectors in terms of their

magnitude κ0 and orientation β with respect to the streamwise direction (see figure 2.1b). The

wavenumber equation (2.34b) can be written as:

κ1(t) = κ0 cos β; κ2(t) = −κ0St cos β; κ3(t) = κ0 sin β (2.38)

Poisson equation for total pressure amplitude, (p̂ + B0B̂1/µ0), can be obtained using equa-
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tions (2.34b), (2.35) and (2.37):
p̂

ρ
+
B0

ρµ0

B̂1 =
2iκ1

κ2
û2S (2.39)

Equation (2.35) then becomes,

dûi
dt

= û2S

(
−δi1 +

2κ1κi
κ2

)
+ i

B0

ρµ0

κ1B̂i (2.40)

The perturbation equations (2.36), and (2.40) are non-dimensionalized using Alfvén wave speed

(VA), mean flow shear, initial wavenumber and imposed magnetic field:

u∗i = ui/VA; VA =
B0√
ρµ0

; τ = St; κ∗i = κi/κ0; B∗i = Bi/B0 (2.41)

Finally, the governing dimensionless equations are:

dû∗i
dτ

= û∗2

(
−δi1 +

2 cos(β)κ∗i
1 + cos2(β)τ 2

)
+ iRA cos(β)B̂∗i (2.42)

dB̂∗i
dτ

= B̂∗2δi1 + iRA cos(β)û∗i (2.43)

where, RA ≡
κ0VA
S

=
shear timescale

magnetic timescale
(2.44)

From the above equations, it can be seen that the flow behavior can be completely characterized

in terms of the parameters, RA and β. The role of RA has been recognized to some extent in the

other studies (Chagelishvili et al., 1993). The influence of β is examined in detail for the first time

in this study. Equations (2.42), (2.43) clearly indicate the velocity and magnetic field perturbations

are coupled via the last terms on their right hand sides. RA cos(β) is the coupling parameter in

the problem. Therefore for a given value of RA, streamwise perturbations experience the highest

degree of coupling. The coupling becomes weaker with increasing β. For spanwise orientations,

velocity and magnetic field perturbations are decoupled.

We now investigate the evolution of the magnitudes of velocity and magnetic perturbation
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amplitudes. For the ease of notation, we denote the dimensionless variables, q∗ as q. In order to

obtain the evolution equation for perturbation kinetic energy, we multiply equation (2.42) with ¯̂ui,

the complex conjugate of ûi.

¯̂ui
dûi
dτ

= ¯̂uiû2

(
−δi1 +

2 cos(β)κi
1 + cos2(β)τ 2

)
+ iRA cos(β)B̂i

¯̂ui (2.45)

Utilizing the complex conjugate of the continuity equation (equation 2.37), the above kinetic en-

ergy equation (2.45) reduces to:

¯̂ui
dûi
dτ

= −¯̂uiû2δi1 + iRA cos(β)B̂i
¯̂ui (2.46)

Similarly, equation (2.43) is multiplied by ¯̂
Bi (the complex conjugate of B̂i) to obtain the magnetic

energy equation:
¯̂
Bi
dB̂i

dτ
=

¯̂
BiB̂2δi1 + iRA cos(β)

¯̂
Biûi (2.47)

Summing equations (2.46), (2.47) with their complex conjugate counterparts yields:

1

2

dûi ¯̂ui
dτ

= −Re(¯̂uiû2)δi1 −RA cos(β)Im(B̂i
¯̂ui) (2.48)

1

2

dB̂i
¯̂
Bi

dτ
= Re(B̂2

¯̂
Bi)δi1 +RA cos(β)Im(B̂i

¯̂ui) (2.49)

where, Re(q), Im(q) indicate the real and imaginary parts of a complex quantity, q. The first

term on the right hand side of equation (2.48) represents production, the process in which per-

turbation kinetic energy is transferred from the mean flow. Similarly, the first term on the right

hand side of equation (2.49) represents magnetic stretching, the process in which perturbation

magnetic energy is produced by the stretching action of the mean flow. Production and magnetic

stretching occur at shear (S) timescale. It can be seen that the last terms on the right hand side

of equations (2.48), (2.49) are identical, but with opposite signs. This implies that they result in

a harmonic exchange between magnetic and kinetic energies. The harmonic exchange process
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takes place at the timescale, VAκ0 cos(β). Therefore, RA cos β determines the relative timescales

of production and exchange processes.

We next investigate the energy transfer among individual components of kinetic and magnetic

energies. We utilize the following notation for various energies for the sake of simplicity:

k ≡ ûi ¯̂ui; k1 ≡ û1
¯̂u1; k2 ≡ û2

¯̂u2; k3 ≡ û3
¯̂u3 (2.50a)

b ≡ B̂i
¯̂
Bi; b1 ≡ B̂1

¯̂
B1; b2 ≡ B̂2

¯̂
B2; b3 ≡ B̂3

¯̂
B3 (2.50b)

The governing equations for the energies in velocity components are:

dk1

dτ
≡ d(û1

¯̂u1)

dτ
= 2Re(û2

¯̂u1)
2 cos2(β)

1 + cos2(β)τ 2
− 2Re(û2

¯̂u1)− 2RA cos(β)Im(B̂1
¯̂u1) (2.51a)

dk2

dτ
≡ d(û2

¯̂u2)

dτ
= −2Re(û2

¯̂u2)
2 cos2(β)τ

1 + cos2(β)τ 2
− 2RA cos(β)Im(B̂2

¯̂u2) (2.51b)

dk3

dτ
≡ d(û3

¯̂u3)

dτ
= 2Re(û2

¯̂u3)
2 cos(β) sin(β)

1 + cos2(β)τ 2
− 2RA cos(β)Im(B̂3

¯̂u3) (2.51c)

The first terms in equations (2.51) denote pressure redistribution. This is a consequence of the

action of pressure in reorienting ûi in equation (2.42) to impose divergence-free constraint. Total

pressure redistributes the energy amongst different velocity components in order to satisfy conti-

nuity. Production and pressure redistribution in equation (2.51a) have opposing effects as can be

seen from the coefficients of û2
¯̂u1. The coefficient of production is always negative (-1), where

as, the coefficient of pressure redistribution is always positive. The nature of the term ¯̂u1û2 can be

deduced using the continuity equation:

û1κ1 + û2κ2 + û3κ3 = 0 (2.52)
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Substituting for the values of κi using equation (2.38):

û1 cos β − τ û2 cos β + û3 sin β = 0 (2.53)

Multiplying the above equation with the complex conjugate of û1:

cos β|û1|2 + ¯̂u1û3 sin β = τ ¯̂u1û2 cos β (2.54)

Therefore, the term ¯̂u1û2 can be written as:

¯̂u1û2 =
1

τ

(
|û1|2 + ¯̂u1û3 tan β

)
(2.55)

For β = 0◦, continuity equation stipulates ¯̂u1û2 to be always positive. For other orientations, ¯̂u1û2

could be positive or negative depending upon the initial conditions. However, the value of ¯̂u1û2 for

all orientations decreases with time as τ−1.

The evolution equations for energies in the magnetic field components are given by:

db1

dτ
≡ d(B̂1

¯̂
B1)

dτ
= 2Re(B̂2

¯̂
B1) + 2RA cos(β)Im(B̂1

¯̂u1) (2.56a)

db2

dτ
≡ d(B̂2

¯̂
B2)

dτ
= 2RA cos(β)Im(B̂2

¯̂u2) (2.56b)

db3

dτ
≡ d(B̂3

¯̂
B3)

dτ
= 2RA cos(β)Im(B̂3

¯̂u3) (2.56c)

Unlike velocity field, there is no mechanism to redistribute the energy amongst different magnetic

field components. Similar conclusions to û2
¯̂u1 can be drawn regarding the magnetic stretching

production term B̂2
¯̂
B1.

¯̂
B1B̂2 =

1

τ

(
|B̂1|2 +

¯̂
B1B̂3 tan β

)
(2.57)

Overall, the energy interactions involve four important processes: production, magnetic stretch-

ing, pressure redistribution and harmonic kinetic-magnetic exchange. It can be observed that pro-
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duction and magnetic stretching depend on the behavior of normal components of velocity and

magnetic fields, u′2, B
′
2. Therefore, it is crucial to examine the evolution of u′2, B

′
2 at different

RA, β.

We examine the evolution of spanwise perturbations (β = 90◦) first, followed by an investiga-

tion of other orientations (β ∈ [0◦, 90◦)).

2.1.1.1 Spanwise Perturbations, β = 90◦

As seen in previous sections, this represents a special limit since the velocity and magnetic

fields are decoupled. The wavevectors remain at their initial state:

κ1(t) = 0; κ2(t) = 0; κ3(t) = κ3(0) (2.58)

Total pressure Poisson equation becomes:

1

ρ
p̂+

B0

µ0ρ
B̂1 = 0 (2.59)

The individual velocity components evolve as:

dû1

dτ
= −û2;

dû2

dτ
= 0;

dû3

dτ
= 0 (2.60)

The velocity equations are unaffected by pressure similar to spanwise perturbations in hydrody-

namic homogeneous shear flow (Kumar et al., 2014). This is called pressure-released behavior

(Simone et al., 1997). Integrating the above equations,

û1(τ) = −û2(0)τ + û1(0); û2(τ) = û2(0); û3(τ) = û3(0) (2.61)
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If û1, û3 are zero initially, the kinetic energy (k) in the flow will evolve with respect to the initial

kinetic energy (k0) as (Simone et al., 1997):

k

k0

= 1 + τ 2 (2.62)

The individual magnetic components evolve as:

dB̂1

dτ
= B̂2;

dB̂2

dτ
= 0;

dB̂3

dτ
= 0 (2.63)

This implies,

B̂1(τ) = B̂2(0)τ + B̂1(0); B̂2(τ) = B̂2(0); B̂3(τ) = B̂3(0) (2.64)

Magnetic perturbations remain unchanged when the initial magnetic energy is zero.

2.1.1.2 Perturbation orientations with β ∈ [0◦, 90◦)

Recall that the evolution of kinetic and magnetic energies critically depends on the behavior of

u
′
2 and B′2. In order to eliminate the explicit dependence of β on û2, B̂2, we define a new timescale

(τ ∗), similar to the transformation performed by Dimitrov et al. (2011).

τ ∗ = τ cos β (2.65)

The resultant equations are given by:

dû2

dτ ∗
= − 2τ ∗û2

1 + τ ∗2
+ iRAB̂2 (2.66a)

dB̂2

dτ ∗
= iRAû2 (2.66b)

This is a coupled system of homogeneous linear ordinary differential equations with RA as the

coupling parameter. In order to isolate the evolution of each field, a second derivative with respect
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to τ ∗ is calculated. The resulting equations are:

d2û2

dτ ∗2
= − 2τ ∗

1 + τ ∗2
dû2

dτ ∗
− 2û2

1− τ ∗2

(1 + τ ∗2)2
+ iRA

dB̂2

dτ ∗
(2.67a)

d2B̂2

dτ ∗2
= iRA

dû2

dτ ∗
(2.67b)

Using equations (2.66a), (2.66b), the decoupled equations for û2, and B̂2 are given by:

d2û2

dτ ∗2
+

2τ ∗

1 + τ ∗2
dû2

dτ ∗
+ 2û2

1− τ ∗2

(1 + τ ∗2)2
+R2

Aû2 = 0 (2.68a)

d2B̂2

dτ ∗2
+

2τ ∗

1 + τ ∗2
dB̂2

dτ ∗
+R2

AB̂2 = 0 (2.68b)

To facilitate an analytical solution, the following transformation of variables is performed (Lerner

& Knobloch, 1985)

û2 = g(τ ∗) exp (−
∫

τ ∗dτ ∗

1 + τ ∗2
) =

g(τ ∗)√
1 + τ ∗2

(2.69a)

B̂2 = h(τ ∗) exp (−
∫

τ ∗dτ ∗

1 + τ ∗2
) =

h(τ ∗)√
1 + τ ∗2

(2.69b)

The new variables g and h represent scaled values of velocity and magnetic field perturbation

amplitudes. The resulting equations for the evolution of g(τ ∗), h(τ ∗) are:

d2g

dτ ∗2
= −

(
1− 2τ ∗2

(1 + τ ∗2)2
+R2

A

)
g (2.70a)

d2h

dτ ∗2
= −

(
− 1

(1 + τ ∗2)2
+R2

A

)
h (2.70b)

A similar magnetic field evolution equation (2.70b) was derived by Dimitrov et al. (2011). Those

authors note that equation (2.70b) resembles the effective Schrödinger equation, and derived an

analytical solution in terms of Confluent Heun functions. The solution is not amenable to simple

physical analysis. In this study, we further the work of Dimitrov et al. (2011) to identify different

parameter regimes of self-similar behavior and characterize the precise nature of energy exchange
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between velocity and magnetic fields. Following the analysis, we perform DNS to verify the

analytical findings.

It is evident from equations (2.70a), (2.70b) that, for a given RA, the u′2 and B′2 perturbations

are self-similar in scaled time τ ∗ for all β. The value of β merely determines the timescale of

evolution.

The first term on the right hand side of equation (2.70a) represents the pressure reorientation

mechanism which manifests as pressure redistribution process in the energy equation discussed

previously. Similarly, the first term on the right hand side of equation (2.70b) represents a higher

order implication of the effect of total pressure on B′2. For any τ ∗, the maximum values of the

coefficients of these terms are of the order unity. The last terms on the right hand sides of equa-

tions (2.70a), (2.70b) represent the effect of harmonic exchange on the evolution of û2 and B̂2.

If the value of RA under consideration is larger than unity, the second terms influence the physi-

cal processes from the beginning. Taking these considerations into account, we examine different

regimes of RA to identify dominant behavior: RA � 1 and RA � 1.

2.1.1.2.1 RA � 1 or High magnetic field limit

In this limit, equations (2.70a), (2.70b) simplify to:

d2g

dτ ∗2
≈ −R2

Ag (2.71a)

d2h

dτ ∗2
≈ −R2

Ah (2.71b)

The solutions to these equations are:

g(τ ∗) ≈ A1 exp(iRAτ
∗) + A2 exp(−iRAτ

∗) (2.72a)

h(τ ∗) ≈ B1 exp(iRAτ
∗) +B2 exp(−iRAτ

∗) (2.72b)
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where, the values of A1, A2, B1 and B2 can be obtained from appropriate initial conditions. The

solution for the amplitudes of u′2, B′2 can then be written as:

û2(τ ∗) ≈ A1
exp (iRAτ

∗)√
1 + τ ∗2

+ A2
exp (−iRAτ

∗)√
1 + τ ∗2

B̂2(τ ∗) ≈ B1
exp (iRAτ

∗)√
1 + τ ∗2

+B2
exp (−iRAτ

∗)√
1 + τ ∗2

(2.73)

The behavior of u′2, B
′
2 is oscillatory, as a result of the dominating influence of harmonic exchange.

Due to pressure reorientation, the magnitude of u′2 and consequentlyB′2 decrease. Therefore, using

Parseval’s theorem, the evolution of normal kinetic energy (k2) in physical space is given by:

k2 =
cos2(RAτ

∗)

1 + τ ∗2
(2.74)

For the case of no initial magnetic field perturbations, the evolution of normal magnetic energy

(b2) is given by:

b2 =
sin2(RAτ

∗)

1 + τ ∗2
(2.75)

A solution to equation (2.70b), similar to equation (2.75) was derived by Lau & Liu (1980). In

this limit, u′2 and B
′
2 are oscillatory with a phase difference of π/2 and a time period of T =

2π/RA. This oscillatory evolution results in negligible production and magnetic stretching when

averaged over a full cycle. This implies that harmonic exchange between magnetic and kinetic

energy dominates at all times. As a result, equipartition of energy between perturbation velocity

and magnetic fields is indicated.

2.1.1.2.2 RA � 1 or Low magnetic field limit

We first consider the evolution of the coefficients of the first terms on the right hand sides of

equations (2.70a), (2.70b). At initial times,

1− 2τ ∗2

(1 + τ ∗2)2
∼ O(1) (2.76)
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and asymptotes to zero at late times. Similarly, at early times,

1

(1 + τ ∗2)2
∼ O(1) (2.77)

and asymptotes to zero at subsequent times. Thus, the first terms dominate during the early time

in the low RA regime. At late times, however, the first terms have negligible contributions and the

last terms dominate, i.e., harmonic exchange prevails. We now investigate the behavior at early

times.

Early time behavior. In this limit, the last terms in equation (2.70a), (2.70b) can be omitted.

This implies that exchange is negligible and pressure reorientation is the crucial process at this

stage. As a result, the evolution equations for g, h can be written as follows:

d2g

dτ ∗2
≈ − 1− 2τ ∗2

(1 + τ ∗2)2
g (2.78a)

d2h

dτ ∗2
≈ 1

(1 + τ ∗2)2
h (2.78b)

The g equation (2.78a) is identical to pure hydrodynamic case implying that the magnetic field

does not affect initial behavior. The solution for such flows is given by:

g(τ ∗) =
c1√

1 + τ ∗2
(2.79)

The evolution of k2 is given by:

k2 =
1

(1 + τ ∗2)2
(2.80)

The following is the analytical solution for h, B̂2:

h =
√

1 + τ ∗2(c1 + c2 arctan(τ ∗))⇒ B̂2 = c1 + c2 arctan(τ ∗). (2.81)

If there is no initial magnetic field perturbation then, c1 = 0. c2 can be determined from equa-
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tion (2.66b). Thus, the final solution for b2 at early times is:

b2 = R2
A arctan2(τ ∗). (2.82)

Late time behavior. For late times, harmonic exchange dominates as seen from the order of

magnitude analysis performed above. As a result, the evolution of û2 and B̂2 become oscillatory,

similar to the behavior of cases with RA � 1.

Therefore, u′2 and B
′
2 for flows with RA � 1 experience a three-stage evolution: At early

times, pressure reorientation determines the dynamics. However, for later stages, harmonic ex-

change is the dominant mechanism. At late times, the equipartition between magnetic and kinetic

energies is indicated once again. The behavior at intermediate times where pressure reorientation

and exchange are equally dominant will be deduced from numerical simulations.

2.1.1.3 Inferences from linear inviscid analysis of homogeneous shear

The following inferences can be made from inviscid linear analysis:

1) For spanwise wavevector orientations, the velocity and magnetic field equations are decou-

pled leading to pressure-released behavior. As a result, u′1 grows linearly and u′2, u
′
3 remain

unchanged. Consequently, kinetic energy grows quadratically. Since the exchange terms are

zero, all the magnetic field components remain zero if not initialized.

2) The behavior of u′2 and B′2 is critical for other orientations, β ∈ [0◦, 90◦), as they determine

the production and magnetic stretching processes, respectively.

3) For the case of perturbations withRA � 1, u′2 andB′2 exhibit a three-stage behavior. At early

times, the evolution resembles that of incompressible hydrodynamic flows. Subsequently,

the kinetic-magnetic harmonic exchange dominates. This results in oscillatory evolution of

u
′
2 and B′2 at late times.

4) For perturbations with RA � 1, harmonic kinetic-magnetic exchange dominates and the

evolution is oscillatory from the beginning.
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5) At late times, irrespective of RA, harmonic exchange between kinetic and magnetic energies

dominate leading to equipartition of energy.

6) The effect of β is to merely influence the timescale of evolution. With increasing β, the

kinetic-magnetic coupling becomes weaker and the evolution rate progressively slows down.

2.1.2 Linear analysis for inhomogeneously sheared mixing layers

Linear analyses of incompressible MHD equations for the case of zero thickness (Chandrasekhar,

1961) and finite thickness (Lau & Liu, 1980) mixing layers have been performed in literature.

These studies perform modal stability analysis to assess asymptotic perturbation growth-rates. In

contrast, in this study, we examine the initial value problem. Although an analytical solution is not

possible, we aim to gain valuable insight into the spatio-temporal aspects of onset and development

of KH instability.

Velocity, pressure, vorticity and magnetic fields can be decomposed into background and per-

turbation components:

ui = ui + u
′

i; p = p+ p
′
;

ωi = ωi + ω
′

i; Bi = Bi +B
′

i.

(2.83)

A schematic of the mixing layer problem studied here is shown in figure 2.2. Background velocity

field and imposed magnetic field are given by:

u = (U1(x2), 0, 0); B = (B0, 0, 0). (2.84)

We refer to 1-, 2- and 3-directions as streamwise-, normal- and spanwise-directions, respectively.

Under inviscid linear analysis assumptions, the background field equations simplify to (Drazin &

Reid, 1981):
∂p

∂xi
= 0, (2.85)

with all the other equations identically satisfied. The fluctuating field can be extracted by subtract-
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Figure 2.2: Schematic of mixing layer.

ing the equation for background flow (2.85) from the total field equations (2.9 to 2.15):

∂u
′
i

∂xi
= 0;

∂B
′
i

∂xi
= 0, (2.86)

∂u
′
i

∂t
+ U1(x2)

∂u
′
i

∂x1

= −u′2S(x2)δi1 −
1

ρ

∂p
′
t

∂xi
+
B0

ρµ0

∂B
′
i

∂x1

,

where, S ≡ dU1

dx2

(2.87)

∂B
′
i

∂t
+ U1(x2)

∂B
′
i

∂x1

= B
′

2S(x2)δi1 +B0
∂u
′
i

∂x1

, (2.88)

∂ω
′
3

∂t
+ U1(x2)

∂ω
′
3

∂x1

= u
′

2

d2U1

dx2
2

+B0
∂j
′
3

∂x1

,

where, j
′

3 =
(~∇× ~B′)3

µ0

(2.89)
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∂2p
′
t

∂x2
1

+
∂2p

′
t

∂x2
2

+
∂2p

′
t

∂x2
3

= −2S(x2)
∂u
′
2

∂x1

,

where, p
′

t ≡ p
′
+
B0B

′
1

µ0

.

(2.90)

S(x2) is the mean flow shear, p′t is the total pressure perturbation and j ′3 is the current density

perturbation in the spanwise direction. As spanwise vorticity sufficiently captures the growth of

KH instability, we restrict our considerations to this component.

Key interactions. From equations (2.87) and (2.89), it can be seen that the normal velocity,

u
′
2, plays a critical role in the interactions as it appears in the source term of streamwise velocity

and spanwise vorticity equations. Indeed, it is the sole source contributing to kinetic energy and

vorticity production. Similarly, normal magnetic field, B′2, is important as it is the sole source

contributing to magnetic stretching production in equation (2.88). Although production terms of

kinetic and magnetic energies are resident in their streamwise components, u′1, B
′
1, the agency

of production is resident in the normal components, u′2, B
′
2. The total pressure perturbation in

equation (2.90) retains the same form as seen in the hydrodynamic limit.

We now transform the above fluctuating field equations to a coordinate system that convects

with the mean flow (Kovasznay, 1953):

X1 = x1 −
∫ t

0

U1(x2)dξ; X2 = x2;

X3 = x3; t = t.

(2.91)

The equations in the new convecting coordinate frame are:

∂u
′
i

∂Xi

− S∗(x2)
∂u
′
2

∂X1

= 0;
∂B

′
i

∂Xi

− S∗(x2)
∂B

′
2

∂X1

= 0, (2.92)

∂u
′
i

∂t
= −u′2S(x2)δi1 −

1

ρ

∂p
′
t

∂Xi

+
S∗(x2)δi2

ρ

∂p
′
t

∂X1

+
B0

ρµ0

∂B
′
i

∂X1

,

(2.93)
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∂B
′
i

∂t
= B

′

2S(x2)δi1 +B0
∂u
′
i

∂X1

, (2.94)

∂ω
′
3

∂t
= u

′

2

d2U1

dx2
2

+B0
∂j
′
3

∂X1

, (2.95)

where, S∗(x2) =
∫ t

0
S(x2)dξ is the cumulative (dimensionless) deformation experienced by the

fluid in the new coordinate system.

We restrict our analysis to initial perturbations with only a streamwise wavevector component

as it is most responsible for KH instability (Chandrasekhar, 1961). The role of obliqueness, i.e.,

modes with both streamwise and spanwise components, is to only increase the timescale of cou-

pling between velocity and magnetic fields (Section 2.1.1). We investigate modes of the type:

q
′
( ~X, t) = q̂(X2; t) exp(iκ0X1), (2.96)

where, q = {ui, Bi, p} represents all the perturbation flow field variables. Equations (2.92)

to (2.95) can now be written as:

iκ0û1 +
∂û2

∂X2

− iκ0S
∗û2 = 0; iκ0B̂1 +

∂B̂2

∂X2

− iκ0S
∗B̂2 = 0, (2.97)

∂û1

∂t
= −û2S −

iκ0

ρ
p̂t +

iκ0B0

ρµ0

B̂1, (2.98)

∂û2

∂t
=
iκ0S

∗

ρ
p̂t −

1

ρ

∂p̂t
∂X2

+
iκ0B0

ρµ0

B̂2, (2.99)

∂B̂1

∂t
= B̂2S + iκ0B0û1;

∂B̂2

∂t
= iκ0B0û2, (2.100)

Perturbation velocity and magnetic fields in equations (2.98) - (2.100) are coupled via the last

terms on their right hand sides. The degree of magnetic field influence on perturbation stabil-

ity depends upon the relative importance of the coupling term over hydrodynamic processes. To

quantify the relative importance of production and coupling, the perturbation equations must be

suitably parameterized. The choice of normalization depends on the strength of magnetic field.
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We consider two extreme cases: Strong magnetic field limit and near-hydrodynamic limit.

2.1.2.1 Strong magnetic field limit

In this regime, the magnetic processes are more rapid than fluid processes. We choose the

following reference variables:

Lref =
1

κ0

; tref =
1

VAκ0

; uref = VA;

Bref = B0; pref = ρV 2
A .

(2.101)

The new dimensionless perturbation equations (q∗, q = {ui, p, Bi}) are given by:

∂û∗1
∂τ

= −û∗2
1

RA(x2)
− ip̂∗t + iB̂∗1 ;

∂û∗2
∂τ

= iS∗p̂∗t −
∂p̂∗t
∂X∗2

+ iB̂∗2 ,

(2.102)

∂B̂∗1
∂τ

= B̂∗2
1

RA(x2)
+ iû∗1;

∂B̂∗2
∂τ

= iû∗2 (2.103)

where, the normalized time and shear-to-magnetic time scale ratio are:

τ ≡ VAκ0t; RA(x2) ≡ VAκ0

S(x2)
. (2.104)

RA(x2) quantifies the local dominance of magnetic field effects over that of shear. In a mixing

layer, RA(x2) is minimum at the center and increases towards the edges of the free stream. When

magnetic field is very strong, it is reasonable to expect that the value of RA at the centerline,

RA(x2 = 0) ∼ O(1). Then, RA(x2) � 1 at all other locations. Therefore, production and

magnetic production terms in equations (2.102) and (2.103) are less important relative to coupling.

We now investigate kinetic and magnetic energy evolution in this limit. Neglecting the produc-

tion terms, kinetic and magnetic energy equations are given by:

1

2

dû∗i
¯̂u∗i

dτ
≈ −Im(û∗i

¯̂
B∗i );

1

2

dB̂∗i
¯̂
B∗i

dτ
≈ +Im(û∗i

¯̂
B∗i ), (2.105)
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where, ¯̂u∗i ,
¯̂
B∗i are the complex conjugates of normalized velocity and magnetic field amplitudes.

The terms on the right hand sides of the above equations are equal in magnitude and opposite in

sign implying harmonic exchange between velocity and magnetic fields.

Based on the above analysis, the following inferences can be drawn about the flow field evolu-

tion in this regime:

1. Production of perturbation kinetic and magnetic energies is small in comparison to harmonic

û∗i − B̂∗i interactions.

2. The harmonic exchange gives rise to oscillatory, out-of-phase evolution of û∗i and B̂∗i about

zero.

3. This oscillatory evolution of û∗2 and B̂∗2 about zero further diminishes the net production of

kinetic and magnetic energies. This is due to the fact that production alternates between

negative and positive values resulting in very little net growth.

4. Harmonic exchange in the absence of production results in equipartition of kinetic and mag-

netic energies.

5. The flow field is stable and KH instability is eliminated as the perturbations do not grow

(Chandrasekhar, 1961; Lau & Liu, 1980).

To assess energy partition, we define Φb as:

Φb ≡
b

k + b
, (2.106)

where, k, b are volume-averaged perturbation kinetic and magnetic energies. The behavior of Φb

will be examined using numerical simulations.
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2.1.2.2 Near hydrodynamic limit

In this limit, we choose hydrodynamic field values for normalization:

Lref = δω ≡
∆U

S0

; tref =
1

S0

; uref =
∆U

2
;

Bref = B0; pref = ρ∆U2,

(2.107)

where, δω is the vorticity thickness (Sandham & Reynolds, 1991) of a mixing layer and S0 is the

centerline mean flow shear. The dimensionless forms for the perturbation equations are:

∂û∗1
∂τ

= −û∗2
S

S0

− 2iκ0δωp̂
∗
t + iRA0MAB̂

∗
1 ;

∂û∗2
∂τ

= 2iκ0δωS
∗p̂∗t − 2

∂p̂∗t
∂X∗2

+ iRA0MAB̂
∗
2 ,

(2.108)

∂B̂∗1
∂τ

= B̂∗2
S

S0

+ i
RA0

MA

û∗1;
∂B̂∗2
∂τ

= i
RA0

MA

û∗2 (2.109)

τ ≡ S0t; RA0 ≡ RA(x2 = 0); MA ≡
VA

∆U/2
, (2.110)

where, τ is the new normalized time, RA0 is the ratio of centerline shear-to-magnetic time scales

and MA is the convective Alfvén Mach number. We now investigate the parameters that describe

the development of perturbations in this regime:

1. The ratio of mixing layer thickness to perturbation wavelength, κ0δω: This is the only stabi-

lizing parameter of relevance in incompressible hydrodynamic mixing layers. It is shown in

previous studies that flow is stable to KH instability for κ0δω > 1, implying that it is a long

wavelength instability Michalke (1964); Ong & Roderick (1972).

2. Convective Alfvén Mach number, MA: This global parameter is the overall ratio of inertial

forces to magnetic forces in the MHD flow field.

3. Centerline shear-to-magnetic time scale ratio, RA0: RA0 describes the relative importance

of hydrodynamic production over velocity-magnetic field interaction.
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Of the above three parameters, only two are independent, i.e.,

RA0 =
1

2
MAκ0δω, (2.111)

In this study, we examine the effect of RA0 for a given κ0δω ∼ O(10−1). This large wavelength

ensures that the underlying hydrodynamic mixing layer is inherently unstable to KH perturbations.

Summary of linear analysis findings. The stability characteristics of MHD mixing layers

depend upon the relative importance of hydrodynamic production over the velocity-magnetic field

coupling. If hydrodynamic production dominates (RA0 � 1), one can expect behavior akin to

the classical KH instability. On the other hand, when the interaction term is completely dominant

(MA > 1;RA0 > 1), the MHD mixing layer will be linearly stable as seen earlier. For other RA0

cases, the degree of stabilization will be dictated by the local prominence of the velocity-magnetic

coupling effect. Examination of equations (2.102) and (2.104) reveals the following:

1. For a given RA0 or MA, the magnetic field influence increases with increasing x2. Thus,

even if the centerline of a mixing layer is unstable, the magnetic field can have a stabilizing

influence in the outer regions of the flow. The higher the RA0, the smaller is the central

region of instability.

2. At a given location x2 in the mixing layer, the onset and timescale of velocity-magnetic field

interaction decrease with increasing RA0.

2.2 Analysis of compressible MHD equations

In this section, the agencies of energy interactions between velocity, magnetic and pressure

fields are first presented. Then the equations are simplified in the linear limit to examine the linear

agencies of exchange and their dependence on shear, magnetic and acoustic timescales.

2.2.1 Energy analysis

For the sake of assessing the energy exchanges between pressure, velocity and magnetic fields,

we consider the individual evolution equations of internal, kinetic and magnetic energies. The
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internal energy equation is given by:

∂

∂t

(
p

γ − 1

)
+

∂

∂xj

(
puj
γ − 1

− κ ∂T
∂xj
− uiτij

)
= −p∂ui

∂xi
− ui

∂τij
∂xj

+
1

σ
j2. (2.112)

Kinetic energy equation is given by:

∂

∂t

(ρuiui
2

)
+

∂

∂xj

((ρuiui
2

+ p
)
uj

)
= p

∂ui
∂xi

+ ui
∂τij
∂xj

+ ui(~j × ~B)i. (2.113)

Magnetic energy equation is given by:

∂

∂t

(
BiBi

2µ0

)
+

∂

∂xj

(
( ~E × ~B)j

µ0

)
= − 1

σ
j2 − ui(~j × ~B)i. (2.114)

It can be seen that the right hand sides of the above equations sum to zero giving rise to the total

energy equation (2.7). Figure 2.3 shows the interactions between internal, kinetic and magnetic

energies. Unidirectional interactions are indicated in dashed lines and bi-directional exchanges are

shown in solid lines.

Internal-kinetic energy exchange. Kinetic and internal energies exchange energy via the pres-

sure dilatation term, p∂ui/∂xi. This term is non-zero only for compressible flows. There is also a

irreversible energy transfer from kinetic to internal energy via viscous stresses, τij∂ui/∂xj . This

term results in the viscous dissipation of velocity field in both incompressible and compressible

regimes.

Kinetic-magnetic energy exchange. Velocity and magnetic fields exchange energy via Lorentz

work given by ui(~j× ~B)i, i.e., the work done by Lorentz force on velocity field. Lorentz work can

be simplified as follows:

ui(~j × ~B)i = − 1

µ0

∂(BjBj)

∂xi
ui +

1

µ0

uiBj
∂Bi

∂xj
= − 1

µ0

∂(BjBjui)

∂xi
+
∂ui
∂xi

BjBj

µ0

+
1

µ0

uiBj
∂Bi

∂xj
.

(2.115)

The above equation shows that Lorentz work comprises of the works done by magnetic pressure,
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Figure 2.3: Kinetic, internal and magnetic energies in a compressible MHD flow and the agencies
of exchange amongst them.

∂(BjBj)

∂xi
ui, and magnetic tension, uiBj

∂Bi
∂xj

. In the incompressible regime, when divergence of

velocity is zero, magnetic pressure only acts as a flux term and as a result can only exchange

energies at the boundaries. However, in the compressible regime, the magnetic pressure work acts

similar to the pressure dilatation term. As a result, dilatational kinetic energy in the compressible

regime is shared between internal and magnetic energies. The nature of work done by magnetic

tension remains the same in both incompressible and compressible regimes.

Internal-magnetic energy exchange. The dissipative action of resistivity on magnetic field

results in the decay of magnetic energy to heat via the Joule heating term given by, −j2/σ. As j2

is always positive, this transfer is unidirectional in all regimes.

2.2.2 Linear analysis of compressible MHD equations

The flow variables of density, velocity, pressure and magnetic field are decomposed into mean

and perturbation quantities as follows:

q = q + q′; q = {ρ, ~u, p, ~B}. (2.116)
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The governing equations for the mean fields can be written as:

∂ρ

∂t
+ ui

∂ρ

∂xi
+ ρ

∂ui
∂xi

+
∂

∂xi

(
ρ′u′i
)

= 0, (2.117)

∂ui
∂t

+ uj
∂ui
∂xj

+ u′j
∂u′i
∂xj

= −1

ρ

∂p

∂xi
+
ρ′

ρ2

∂p′

∂xi
− ρ′2

ρ3

∂p

∂xi

− ∂

∂xi

(
BjBj

2ρµ0

)
− ∂

∂xi

(
B′jB

′
j

2ρµ0

)

+
∂

∂xj

(
BiBj

ρµ0

)
+

∂

∂xj

(
B′iB

′
j

ρµ0

) (2.118)

∂p

∂t
+ uj

∂p

∂xj
+ u′j

∂p′

∂xj
= −γp∂uj

∂xj
− γp′

∂u′j
∂xj

, (2.119)

∂Bi

∂t
+ uj

∂Bi

∂xj
+ u′j

∂B′i
∂xj

= Bj
∂ui
∂xj

+B′j
∂u′i
∂xj
−Bi

∂uj
∂xj
−B′i

∂u′j
∂xj

. (2.120)

In the linear limit, the above equations can be simplified as:

∂ρ

∂t
+ ui

∂ρ

∂xi
+ ρ

∂ui
∂xi

= 0, (2.121)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
− ∂

∂xi

(
BjBj

2µ0

)
+

∂

∂xj

(
BiBj

µ0

)
(2.122)

∂p

∂t
+ uj

∂p

∂xj
= −γp∂uj

∂xj
, (2.123)

∂Bi

∂t
+ uj

∂Bi

∂xj
= Bj

∂ui
∂xj
−Bi

∂uj
∂xj

. (2.124)

Equations for perturbations in the linear limit can be obtained by subtracting the mean equa-

tions (2.121) - (2.124) from the total field equations (2.1) - (2.7) by neglecting terms of order

higher than O(q′). These equations take the form:

∂ρ′

∂t
+ ui

∂ρ′

∂xi
+ ρ

∂u′i
∂xi

= 0, (2.125)
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∂u′i
∂t

+ uj
∂u′i
∂xj

+ u′j
∂ui
∂xj

= −1

ρ

∂p′

∂xi
+
ρ′

ρ2

∂p

∂xi
− ∂

∂xi

(
BjB

′
j

ρµ0

)
+Bj

∂

∂xj

(
B′i
ρµ0

)
+B′j

∂

∂xj

(
Bi

ρµ0

)
(2.126)

∂p′

∂t
+ uj

∂p′

∂xj
+ u′j

∂p

∂xj
= −γp

∂u′j
∂xj
− γp′∂uj

∂xj
(2.127)

∂B′i
∂t

+ uj
∂B′i
∂xj

+ u′j
∂Bi

∂xj
= Bj

∂u′i
∂xj

+B′j
∂ui
∂xj
−Bi

∂u′j
∂xj
−B′i

∂uj
∂xj

(2.128)

For the sake of analysis, initial density and pressure are considered to be uniform throughout the

domain. The mean velocity field is taken to oriented along 1-direction with variation along 2-

direction as shown in figure 1.2. The mean magnetic field is oriented along the 1-direction and is

uniform throughout the domain.

ui = (U1(x2), 0, 0);Bi = (B0, 0, 0). (2.129)

The mean field equations then reduce to:

ρ(xi, t) = ρ(xi, 0); p(xi, t) = p(xi, 0) (2.130)

The perturbation equations simplify as follows:

∂ρ′

∂t
+ U1(x2)

∂ρ′

∂x1

+ ρ
∂u′i
∂xi

= 0, (2.131)

∂u′i
∂t

+ U1(x2)
∂u′i
∂x1

+ u′2
dU1

dx2

δi1 = −1

ρ

∂p′

∂xi
− ∂

∂xi

(
B0B

′
1

ρµ0

)
+B0

∂

∂x1

(
B′i
ρµ0

)
(2.132)

∂p′

∂t
+ U1(x2)

∂p′

∂x1

= −γp
∂u′j
∂xj

(2.133)

∂B′i
∂t

+ U1(x2)
∂B′i
∂x1

= B0
∂u′i
∂x1

+B′2
dU1

dx2

δi1 −B0

∂u′j
∂xj

δi1 (2.134)
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On the above perturbation equations, rapid distortion analysis can be performed, similar to sec-

tion 2.1.1. The resulting equations for Fourier amplitudes for perturbations are given by:

dρ̂

dt
+ iκiρûi = 0, (2.135)

dûi
dt

= −û2Sδi1 −
iκi
ρ
p̂− iκiB0

ρµ0

B̂1 +
iκ1B0

ρµ0

B̂i, (2.136)

dp̂

dt
= −iγκipûi, (2.137)

dB̂i

dt
= B̂2Sδi1 + iκ1B0ûi − iκjB0ûjδi1. (2.138)

The above equations are only valid when the mean flow is homogeneously sheared and the wavenum-

bers are time-dependent (equation (2.38)). In the analysis of homogeneous shear, magnetic pres-

sure is subsumed into total pressure as it does not actively contribute to any energetic exchange

between velocity and magnetic fields. However, for compressible flows, magnetic pressure ex-

changes energy between velocity and magnetic field via magnetic-pressure-dilatation. Therefore,

in the following analysis, the individual effects of fluid and magnetic pressures are investigated.

Going forward, we will investigate the behavior of u′2 and magnetic and pressure fields that influ-

ence its evolution. The equation for u′2 is given by:

dû2

dt
= −iκ2

ρ
p̂− iκ2B0

ρµ0

B̂1 +
iκ1B0

ρµ0

B̂2. (2.139)

u′2 is effected by p′, B′2 and B′1. Differentiating the above û2 equation with time,

d2û2

dt2
= −κ2

2a
2û2 − κ2

2V
2
Aûi − κ2

1V
2
Aû2 + ....

= −κ2
0S

2t2a2û2 − κ2
0S

2t2V 2
Aû2 − κ2

1V
2
Aû2 + ....

(2.140)
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In the above equation, only the wave terms depending on û2 are shown. Normalizing time with

shear and velocity with maximum perturbation amplitude,

d2û2

dτ 2
= −τ

2 cos2(β)

M2
g

û2 −R2
Aτ

2 cos2(β)û2 −R2
A cos2(β)û2. (2.141)

RA ≡
VAκ0

S
; Mg ≡

S

κ0a
; a =

√
γp

ρ
; τ = St. (2.142)

Mg is the gradient Mach number introduced by Sarkar (1995). It has been established in the pre-

vious sections that wave nature of equations giving rise to oscillatory evolution of u′2 stabilizes the

shear instabilities. The above wave equation for û2 shows that there are three wave-like interac-

tions arising, due to B′1, B
′
2 and p′. The incompressible coupling term between u′2 and B′2 arising

due to magnetic tension remains the same even in the compressible regime. This coupling arises

due to the last term on the right hand side of equation (2.141) and the timescale of interaction

is time-independent given by RA cos β. The first term on the right hand side of equation (2.141)

results coupling between compressible pressure and u′2. The timescale of interaction increases in

time and is given by τ cos(β)/Mg. This has been established in the previous compressible homo-

geneous shear works of Bertsch et al. (2012); Kumar et al. (2014). The third wave-like interaction

arises due to magnetic pressure and is given by the second term on the right hand side of equa-

tion (2.141). The timescale of interaction arising out of magnetic pressure also increases with time

and is given by τRA cos β. Therefore, the physics in compressible MHD shear flows is not a mere

superposition of incompressible MHD shear flows and compressible hydrodynamic shear flows.

Additional agencies of interactions between velocity, magnetic and pressure fields is caused by

magnetic pressure. These are identified in detail in the linearized energy analysis that follows.

It has been established in the previous section that for the case of incompressible mixing layer

that magnetic field is least stabilizing at the location of maximum shear, asRA = VAκ/S. However,

Mg = S/κa result in maximum stabilization due to compressibility at the location of maximum

shear. Figure 2.4 summarizes the domains of stabilization of compressibility and magnetic field

for the case of compressible mixing layer.
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Figure 2.4: Domains of stabilization of compressibility and magnetic field in a mixing layer.

2.2.2.1 Energy interactions in the linear limit

The key energy interactions that dictate the stabilizing mechanisms in the linear limit are now

investigated. When the streamlines are confined to streamwise-normal plane, the perturbation

energy equations for u′2, B
′
1, B

′
2 components are given as follows:

DK2

Dt
=

∂

∂t

(
ρ

2
u′2u

′
2

)
+ U1(x2)

∂

∂x1

(
ρ

2
u′2u

′
2

)
= −∂(p′u′2)

∂x2

+ p′
∂u′2
∂x2

+B0
u′2
µ0

∂B′2
∂x1

−B0
u′2
µ0

∂B′1
∂x2

,

(2.143)

DB1

Dt
=

∂

∂t

(
B′1B

′
1

2µ0

)
+ U1(x2)

∂

∂x1

(
B′1B

′
1

2µ0

)
=
B′1B

′
2

µ0

S − B0

µ0

∂(u′2B
′
1)

∂x2

+
B0

µ0

u′2
∂B′1
∂x2

, (2.144)

DB2

Dt
=

∂

∂t

(
B′2B

′
2

2µ0

)
+ U1(x2)

∂

∂x1

(
B′2B

′
2

2µ0

)
=
B0

µ0

∂(u′2B
′
2)

∂x1

− B0

µ0

u′2
∂B′2
∂x1

, (2.145)

DP
Dt

=
∂

∂t

(
p′p′

2γp

)
+ U1(x2)

∂

∂x1

(
p′p′

2γp

)
= −p′∂u

′
k

∂xk
. (2.146)

Here, D/Dt is the total derivative of the fluid moving with respect to the mean flow. It has been

noted in many previous works of homogeneously sheared compressible turbulence that normal
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component of velocity fluctuation contributes the most to the dilatation (Bertsch et al., 2012), i.e.,

∂u′i
∂xi
≈ ∂u′2
∂x2

⇒ DP
Dt
≈ −p′∂u

′
2

∂x2

. (2.147)

Summing the equations for B1, B2 and P , we obtain:

D

Dt
(B1 + B2 + P) =

B′1B
′
2

µ0

S − B0

µ0

∂(u′2B
′
1)

∂x2

+
B0

µ0

∂(u′2B
′
2)

∂x1

+
B0

µ0

u′2
∂B′1
∂x2

− B0

µ0

u′2
∂B′2
∂x1

− p′∂u
′
2

∂x2

.

(2.148)

It can be seen that the last three terms on the right hand sides of equations (2.143) and (2.148) are

equal in magnitude and opposite in sign indicating harmonic interactions. This implies that in the

absence of magnetic stretching production of B1 and negligible transport,K2 and B1 +B2 +P may

experience equipartition of energy. The extent of energy interactions is examined at various flow

and magnetic field regimes using numerical simulations in later chapters of this dissertation.
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3. NUMERICAL SCHEME - MAGNETO-GAS KINETIC METHOD

This chapter enlists the details of the numerical scheme utilized for the direct numerical simu-

lations of magnetohydrodynamic free shear flows. Magneto-gas kinetic method (MGKM) solves

the fluid part of the compressible MHD equations using gas kinetic method (GKM) and the mag-

netic contributions to fluid momentum and energy are added as source terms (Araya et al., 2015).

The magnetic field equation is evolved in MGKM using finite difference schemes. In the following

sections, we first describe GKM and then present how magnetic field is evolved in MGKM.

3.1 Gas kinetic method

As GKM is a finite volume solver, its formulation can be given as follows:

∂

∂t

∫
Ω

UdV +

∫
∂Ω

F · dS = 0. (3.1)

Here,U constitutes the conserved variables of mass, momentum and energy in the control volume,

Ω, and F contains its fluxes at the boundary of the control volume ∂Ω. The fluxes, F at the bound-

aries are computed by taking the moments of Boltzmann equation (Xu, 2001). This eliminates the

need to specify explicit constitutive relationships for viscous and thermal transport. As a result,

higher order Burnett and super Burnett effects are included in GKM (Liao et al., 2008).

A concise methodology of GKM is given below. Boltzmann equation in one dimension, gov-

erning the evolution of a single particle distribution function, f(x, u, t), is given by:

∂f

∂t
+ u

∂f

∂x
+ a

∂f

∂u
=

(
∂f

∂t

)
collisions

. (3.2)

Bhatnagar, Gross and Krook (BGK) developed the following model for the collision term on the

right hand side of the above equation (Bhatnagar et al., 1954):

(
∂f

∂t

)
collisions

=
g − f
τ

. (3.3)
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Here, g is the equilibrium distribution function and τ is the collisional relaxation time related to

fluid viscosity. Assuming no body forces, the Boltzmann equation employing the BGK model

(B-BGK) is given by:
∂f

∂t
+ u

∂f

∂x
=
g − f
τ

. (3.4)

The solution to the above equation at the cell interface, xj+1/2, employing method-of-characteristics

is given by (Prendergast & Xu, 1993):

fj+1/2(t, u) ≡ f(xj+1/2, t, u, ξ) =
1

τ

∫ t

0

g(x′, t′, u, ξ)e
t′−t
τ dt′ + e−t/τf0(xj+1/2 − ut). (3.5)

Here, ξ represents one of the internal degree of freedoms of the gas, x′ is decided by the particle tra-

jectory, xj+1/2−x′ = u(t−t′) and f0 is the initial particle distribution function. However in GKM,

fj+1/2 is not computed explicitly. The fluxes are computed directly by integrating equation (3.5)

in velocity space as follows:

Fj+1/2 =

∫ ∞
−∞

uΨfj+1/2(t, u)dudξ; Ψ ≡
[
1, u,

1

2
(u2 + ξ2)

]T
. (3.6)

Evaluating Fj+1/2 would imply computing the moments of g and f0 at the cell interface, xj+1/2. In

a finite volume formulation, the values of conserved variables are only known at the cell centers.

A nonlinear interpolation such as weighted essentially non oscillatory (WENO) scheme must be

utilized to compute the moments of g and f0 at xj+1/2. Similar procedure can be applied to obtain

fluxes at the interface, xj−1/2. Once the fluxes at xj+1/2 and xj−1/2 are known, the updated values

for conserved variables can be given by:

Un+1
j = Un

j −
∆t

∆x

(
F n
j+1/2 − F n

j−1/2

)
. (3.7)
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3.2 Magneto gas kinetic method

To the above finite volume formulation of GKM employing fluid equations in conservation

form, the contributions of Lorentz force and Joule heating are added as source terms. The resulting

formulation for mass, momentum and energy equations is as follows:

∂ρ

∂t
+ ~∇ · (ρ~V ) = 0, (3.8)

∂ρ~V

∂t
+ ~∇ · (ρ~V ~V + p

~~I + ~~τ) =

(
~∇× ~B

µ0

)
× ~B, (3.9)

∂Eh
∂t

+ ~∇ ·
(

(Eh + p)~V − κ~∇T + ~V · ~~τ
)

=
~∇× ~B

µ0

·

(
~∇× ~B

µ0σ
− ~V × ~B

)
. (3.10)

Magnetic field evolution equation, given by Ohm’s law:

∂ ~B

∂t
= ~∇×

(
~V × ~B −

~∇× ~B

σµ0

)
, (3.11)

is evolved using finite difference schemes. Finite differences are also used to compute the deriva-

tives in the expressions for Lorentz force and Joule heating. In plasma propulsion applications,

magnetic field is applied at all times in order to generate thrust. To incorporate this, the magnetic

field in MGKM is decomposed into applied and induced components, i.e.,

~B = ~BA + ~BI . (3.12)

The contributions of both ~BA and ~BI are considered in the right hand sides of equations (3.9)

- (3.11). However, ~BA does not change with time, only evolution of ~BI is considered.

Validation: GKM has been validated for a variety of incompressible and compressible turbulent

flows (Kerimo & Girimaji, 2007; Kumar et al., 2013, 2014; Karimi & Girimaji, 2016). A validation

study for MGKM is performed in Araya et al. (2015).
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4. PERTURBATION EVOLUTION IN INCOMPRESSIBLE HOMOGENEOUSLY

SHEARED MAGNETOHYDRODYNAMIC FLOWS1

The aim of this chapter is to confirm the findings of linear analysis performed in Section 2.1.1

and establish the dominant fluid and magnetic processes at different shear-to-magnetic timescales

(RA).

4.1 Numerical setup

The schematic of the background velocity and magnetic fields with perturbations is shown in

figure 2.1a. Periodic boundary conditions are applied in streamwise and spanwise directions. For

boundaries in normal direction, shear periodic boundary conditions are applied (Baron, 1982).

φ(t, x+m1L1, y +m2L2, z +m3L3) = φ(t, x− Sm2L2t, y, z) (4.1)

where, L2 is the length of the domain in the normal direction and m1,m2,m3 are integers.

Simulations are performed for different shear-to-magnetic timescales (RA). Table 4.1 lists the

details of various simulations. As u′2 is most critical for the development of fluid instabilities, only

these perturbations are considered in the initial conditions.

u
′

1(0) = 0; u
′

2(0) = sin(κ1x1 + κ3x3); u
′

3(0) = 0 (4.2a)

B
′

1(0) = 0; B
′

2(0) = 0; B
′

3(0) = 0 (4.2b)

where, κ1 and κ3 are integers. κ1 and κ3 are modified such that the perturbation wavevector

orientations vary from streamwise to spanwise directions, i.e., β ∈ [0◦, 90◦]. Reynolds numbers,

fluid and magnetic (Re = S/νκ2, Rem = S/ηκ2) and β values considered in different simulations

are shown in Table 4.1. Since, MGKM is a compressible flow solver, we choose low gradient

1Reprinted with permission from Divya Sri Praturi, Diane Collard and Sharath S. Girimaji. The effect of mag-
netic field on perturbation evolution in homogeneously sheared flows. Journal of Fluid Mechanics (in production).
Copyright [2018] by Cambridge University Press.
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β Mg RA Re Rem Grid size
90◦ 0.005 0.17,1.7, 17 770 195 1283

0◦ 0.005 0.39 100000 100000 1282 × 4, 2562 × 4
26◦ 0.02 0.39 100000 100000 1283, 2563

63◦ 0.03 0.39 100000 100000 1283, 2562 × 128
0◦ 0.005 1.7 770 195 1283

0◦ 0.005 17 770 195 1283

26◦, 63◦ 0.002 3.9, 39 154 39 1283

Table 4.1: Incompressible homogeneous shear: Simulation parameters. Reprinted with permission
from Praturi et al. (in production).

Mach numbers, Mg ≡ S/κa ≤ 0.03, to emulate incompressible limit. Grid sensitivity study is

performed for the case of β = 0◦ in the low RA(= 0.39) limit. Figure 4.1 shows that 128 ×

128 × 4 and 256 × 256 × 4 give nearly identical results except for a higher numerical dissipation

in the low resolution simulation. As the evolution of long wavelength perturbations is of current

interest, the grid resolution requirements are much less stringent than turbulent flows. The smallest

energetic wavelength encountered at the end of the run is of the order of domain size. Thus, the

grid resolution employed in the simulation is quite adequate. Nonlinear breakdown and transition

to turbulence would require much finer grids and such investigation is currently underway. The

analytical results derived in Section 2.1.1 would validate the implementation of shear periodic

boundary conditions into MGKM for future nonlinear studies.

In addition to DNS, the RDT equations (2.42), (2.43) are evolved temporally using fourth order

Runge-Kutta method. To contrast the MHD flow evolution against hydrodynamic flows, RA = 0

cases are also considered. Analytical results and numerical solutions from RDT and DNS are

compared in the next section.

4.2 Results

We now present simulation results for various cases of RA and perturbation wavevector ori-

entations. As shown in Table 4.1, for a given value of β different magnetic field strengths are

considered to correspond to low, intermediate and high magnetic field effects. We use the notation
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introduced in equation (2.50) to refer to different components of normalized kinetic and magnetic

energies. Throughout MRDT refers to temporally evolved solution of equations (2.42) and (2.43),

where as HRDT refers to the hydrodynamic effect alone. We now present the results of spanwise

fluctuations and then for other orientations.

4.2.1 Spanwise perturbations – β = 90◦

This perturbation orientation (cos β = 0) represents a special limit as velocity and magnetic

fields are decoupled. In addition, the velocity fields are impervious to pressure (equation (2.60)).

The evolution of kinetic energy (k) at different magnetic fields is plotted in figure 4.2. It can

be seen that k grows quadratically consistent with MRDT and HRDT analytical solution given

in equation (2.62), regardless of the magnetic field strength. This confirms that the flow field

behaves in accordance to the pressure-released hydrodynamic equations noted in Section 2.1.1.1.

For the initial conditions considered, perturbation magnetic energy remains zero at all times, for

all background magnetic field strengths.

4.2.2 Perturbations with β ∈ [0◦, 90◦)

The results for low, intermediate and high magnetic field cases are now presented for other

wavevector orientations.

4.2.2.1 Low magnetic field regime, RA � 1

Linear analysis in Section 2.1.1 suggests a three-stage behavior for RA � 1 cases. The differ-

ent stages are now examined.

Early hydrodynamic behavior (τ ∗ < 1). Figure 4.3 presents the behavior of k2 for the case

of RA = 0.39 and various β values. The analytical result (equation 2.80) is compared against

numerical solutions of MRDT and DNS. The self-similarity of k2 evolution is clearly evident.

Since only k2 is initialized in DNS and RDT, the dominant processes in this stage are pressure

redistribution and production. For β = 0◦, 26◦, the action of pressure redistributes k2 to k1 and k3

as seen from the increase in their values in figures 4.4, 4.5. This implies that production of k1 is

negative for β = 0◦, 26◦ in the first stage. For β = 63◦, u′1 and u′2 are negatively correlated, as a
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result, k1 increases due to production and pressure redistributes energy from k1 to k2 and k2 to k3.

The evolution of k in figure 4.6 also proves that production is negative for β = 0◦, 26◦ and positive

for 63◦. There is a small amount of energy transfer from velocity field to their respective magnetic

field components as evident from b1, b2 and b3 evolution in figures 4.7, 4.8 and 4.9. The linear-

inviscid analytical solution for b2 given in equation (2.82) is compared against DNS and MRDT in

figure 4.8 and demonstrates good agreement. Figure 4.10a is a schematic that identifies the various

energy exchanges dominant at the early stages. Clearly, the velocity field behavior in this regime

is very similar to the hydrodynamic case as evidenced by the negligible transfer of energy to the

magnetic field.

Intermediate stage onset of magnetic field effect. For τ ∗ ≥ 1, the magnetic field processes

set in. The small amount of energy transfer to b1 and b2 in the first stage seeds the growth of

perturbation magnetic energy (b) due to magnetic stretching. This growth can be seen from the

significant increase of b1 (figure 4.7) for the case of β = 0◦. The increase cannot solely be attributed

to harmonic exchange with k1, since k1 values never exceed unity for this case proving that this is a

consequence of magnetic stretching. From figure 4.3, k2 goes to zero faster than the hydrodynamic

case as a result of exchange with b2. At τ ∗ ≈ 2, k2 goes to zero. Subsequently, k2 starts growing

again due to harmonic exchange with b2. Similarly, k1 (figure 4.4) increases for β = 0◦, 26◦ and

decreases for β = 63◦ due to harmonic exchange with b1. Harmonic exchange is the only dominant

process for the velocity and magnetic field perturbations in the spanwise direction, and the transfer

is from k3 to b3. The growth of magnetic perturbations along the streamwise direction in this

stage is the amplification identified in Chagelishvili et al. (1993) and Dimitrov et al. (2011). The

exchange dynamics of this stage are summarized in figure 4.10b.

Late stage behavior. For times, τ ∗ > 4, the only dominant linear process is the harmonic

exchange between the corresponding velocity and magnetic field components. The oscillations of

u
′
2 and B′2 about zero render the sum of kinetic energy production and magnetic energy stretching

production to vanish when integrated over a cycle. The magnetic and kinetic fields harmonically

exchange energies with a time period of π/RA for the case of β = 0◦, 26◦, 63◦. Slight deviations
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from the analytical MRDT solutions are attributed to the numerical dissipation and compressibility

effects present in DNS. The presence of numerical dissipation is also evident in the grid indepen-

dence study demonstrated in figure 4.1. The linear energy interaction processes in this stage of

evolution are summarized in figure 4.10c.

Some important observations can be made about the evolution of magnetic energy (b) seen

in figure 4.11. For a given RA, b experiences a self-similar evolution (figure 4.11) in the linear

stage at all β in spite of magnetic stretching occurring on the shear (S) timescale. This is due to

the fact that b2 is initially zero in both DNS and RDT. The b2 responsible for magnetic stretch-

ing is generated due to exchange from k2. Since the transfer from k2 to b2 occurs on magnetic

(VAκ0 cos β) timescale, for a given RA, b experiences a self-similar evolution for all β in scaled

time τ ∗ = τ cos β.

4.2.2.2 Intermediate magnetic field regime, RA ≈ 1

In this RA regime, the magnetic field processes respond rapidly to the initial hydrodynamic

processes. As a result, the first and second stages seen in RA � 1 occur nearly simultaneously.

The kinetic and magnetic energies for RA = 1.7, β = 0◦ are presented in figures 4.12 and 4.13, re-

spectively. During the course of evolution, the magnetic energy (b) exceeds the initial perturbation

kinetic energy (k0) due to magnetic stretching. k2 is transferred to k1 due to pressure redistribution.

Even though the production of k1 in this case is negative (β = 0◦), it has negligible influence on

the evolution of k due to the oscillatory nature of u′2 seen from the beginning. The kinetic energy

(k) becomes zero at τ ≈ 0.75 and then increases due to harmonic exchange. An overshoot is seen

in k due to harmonic exchange, at the end of first cycle of exchange. After this time, harmonic

exchange prevails and the sum of kinetic and magnetic energy production goes to zero.

4.2.2.3 High magnetic field regime, RA � 1

In this regime, the magnetic field evolution is rapid enough that all the stages identified in

RA � 1 occur nearly simultaneously. As seen in Section 2.1.1.2, in the linear limit of this RA
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regime, the evolution of k2 and b2 are given by:

k2 =
cos2(RAτ

∗)

(1 + τ ∗2)
(4.3a)

b2 =
sin2(RAτ

∗)

(1 + τ ∗2)
(4.3b)

These equations can be rewritten as follows to obtain a self-similar result in this regime.

k2(1 + τ ∗2) = cos2(RAτ
∗) = cos2(τ ∗∗) (4.4a)

b2(1 + τ ∗2) = sin2(RAτ
∗) = sin2(τ ∗∗) (4.4b)

where, τ ∗∗ = RAτ
∗. Using the above equations, the computed k2 and b2 in all cases with RA > 2

are plotted in the timescale τ ∗∗. Figures 4.14, 4.15 demonstrate the excellent agreement of the

DNS results with linear theory and confirm the self-similar state of k2 and b2 in this RA regime.

Linear analysis also suggests equipartition between perturbation kinetic and magnetic energies

in the high RA limit. In order to understand how the perturbation energies are distributed between

magnetic and kinetic components, we define the energy partition function (Φb) as follows:

Φb =
b

k + b
(4.5)

This definition is similar to that of Sarkar et al. (1991) for dilatational kinetic and potential en-

ergies. Equipartition would imply that the energy partition function (Φb) oscillates about 0.5. In

order to verify this, we plot Φb from DNS of intermediate and high RA cases (exchange dominates

at all times) for all perturbation orientations, β = 0◦, 26◦, 63◦. A timescale of RAτ
∗ is chosen so

as to demonstrate the self-similar behavior at different β,RA values. Figure 4.16 verifies that Φb

oscillates about 0.5 demonstrating equipartition of kinetic and magnetic energies. Another obser-

vation consistent with equipartition is that production and magnetic stretching are of comparable

magnitudes and opposite in sign with a phase difference of π/2. This leads to zero net growth of
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k + b when integrated over a cycle.

As a result, pressure reorientation and exchange are the only significant processes in this

regime. Investigating the sum of kinetic and magnetic energies, i.e., (k + b), (k1 + b1), (k2 + b2)

and (k3 + b3), removes the effect of harmonic exchange and highlights the effect of pressure redis-

tribution at different β:
d(k + b)

dτ
= −2Re(û2

¯̂u1) + 2Re(B̂2
¯̂
B1) (4.6a)

d(k1 + b1)

dτ
= −2Re(û2

¯̂u1)

(
1− 2 cos2(β)

1 + cos2(β)τ 2

)
+ 2Re(B̂2

¯̂
B1) (4.6b)

d(k2 + b2)

dτ
= −2Re(û2

¯̂u2)
2 cos2(β)τ

1 + cos2(β)τ 2
(4.6c)

d(k3 + b3)

dτ
= 2Re(û2

¯̂u3)
2 cos(β) sin(β)

1 + cos2(β)τ 2
(4.6d)

The case of RA = 17, β = 0◦ is investigated first. It can be seen from figure 4.17 that the

sum of kinetic and magnetic energies (k + b) obtained from DNS remains nearly a constant. For

β = 0◦, production is always negative (equation 2.55) and magnetic stretching is always positive

(equation 2.57). This implies that the sum of production and stretching becomes negligible due to

the rapid oscillatory nature of u′2 and B′2 with a phase difference of π/2. Overall, energy transfer

occurs from (k2 + b2) to (k1 + b1) due to pressure redistribution. Slight decrease in the value of

(k + b) from unity is due to the viscous and resistive effects included in DNS.

We now investigate the evolution of magnetic and kinetic perturbations for the case of β =

26◦, RA = 3.9. From figure 4.18, it can be seen that the sum of kinetic and magnetic energies

decays a little faster than β = 0◦, RA = 17 since the fluid and magnetic Reynolds numbers are

lower. The frequency of oscillation of u′2, B
′
2 is lower than that of β = 0◦ case. As a result,

the flow experiences longer periods of positive stretching and negative production. This results in

larger amplitude oscillations as compared to β = 0◦ case. (k2 + b2) loses energy to (k1 + b1) and

(k3 + b3) due to pressure redistribution. (k1 + b1) dominates at late times.

For β = 63◦, RA = 3.9 shown in figure 4.19, the timescale (τ ∗ = τ cos(β)) at which exchange

between magnetic and kinetic energies occurs is slower than that of β = 26◦ case. This, in addition
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to initial positive production and stretching, results in even larger amplitude oscillations in (k + b)

compared to β = 0◦, 26◦ cases. At late times, however, production becomes negative and stretching

becomes positive. So, the sum of production and stretching becomes negligible when integrated

over a cycle. At early times, (k2 + b2) loses energy to (k3 + b3) and gains energy from (k1 + b1)

due to redistribution. (k3 + b3) dominates at late times.

4.2.2.4 Viscous vs. inviscid MRDT

We now compare the evolution of viscous MRDT with that of the inviscid limit. Figure 4.20

shows the evolution of kinetic energy (k) for viscous and inviscid MRDT for β = 0◦ at low and

moderate RA values. Similar Re,Rem values as the DNS calculations are chosen for viscous

MRDT calculations. At low RA, comparing the behavior of k in the viscous limit, where Re =

Rem = 105, to that of the inviscid solution, we observe that the two calculations agree well with

one another. This implies that for the time ranges investigated in the low RA regime, there is no

considerable effect of viscous and resistive action on the perturbation evolution. For the moderate

RA(= 1.7) case where, Re = 770 and Rem = 195, the viscous solution experiences considerable

amount of decay. However, for the times τ < 3 presented in the DNS solution (figure 4.12),

viscous and inviscid MRDT agree well with one another.
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Figure 4.1: Grid independence is shown for RA = 0.39, β = 0◦. Reprinted with permission from
Praturi et al. (in production).

Figure 4.2: Spanwise perturbation: Evolution of kinetic energy, k, ofRA = 0.17, 1.7, 17 compared
against pressure-released hydrodynamic solution of MRDT: k = 1+τ 2. Reprinted with permission
from Praturi et al. (in production).
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Figure 4.3: Low RA regime (RA = 0.39): Evolution of k2 obtained using DNS and MRDT for
β = 0◦, 26◦, 63◦ compared against the analytical solution of HRDT: k2 = 1/(1 + τ ∗2)2. Reprinted
with permission from Praturi et al. (in production).

Figure 4.4: Low RA regime (RA = 0.39): Evolution of k1 obtained using DNS and MRDT for
β = 0◦, 26◦, 63◦. Reprinted with permission from Praturi et al. (in production).
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Figure 4.5: Low RA regime (RA = 0.39): Evolution of k3 obtained using DNS and MRDT for
β = 26◦, 63◦. For β = 0◦, k3 = 0 at all times. Reprinted with permission from Praturi et al. (in
production).

Figure 4.6: Low RA regime (RA = 0.39): Kinetic energy (k) evolution obtained using DNS and
MRDT for β = 0◦, 26◦, 63◦. Reprinted with permission from Praturi et al. (in production).
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Figure 4.7: Low RA regime (RA = 0.39): Evolution of b1 obtained using DNS and MRDT for
β = 0◦, 26◦, 63◦. Reprinted with permission from Praturi et al. (in production).

Figure 4.8: Low RA regime (RA = 0.39): Evolution of b2 obtained using DNS and MRDT for
β = 0◦, 26◦, 63◦ compared against the analytical solution b2 = R2

A arctan2(τ ∗). Reprinted with
permission from Praturi et al. (in production).
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Figure 4.9: Low RA regime (RA = 0.39): Evolution of b3 obtained using RDT and DNS for
β = 0◦, 26◦, 63◦. Reprinted with permission from Praturi et al. (in production).
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(a) (b)

(c)

Figure 4.10: Dominant processes in low RA regime: (a) Stage 1 – Pressure redistribution (solid)
and production, P (dashed), (b) Stage 2 – Production, magnetic stretching and harmonic exchange
and (c) Stage 3 – Harmonic exchange. Reprinted with permission from Praturi et al. (in produc-
tion).
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Figure 4.11: Low RA regime (RA = 0.39): Magnetic energy (b) evolution obtained using DNS
and MRDT for β = 0◦, 26◦, 63◦. Reprinted with permission from Praturi et al. (in production).

Figure 4.12: IntermediateRA regime (RA = 1.7): Evolution of kinetic energies (k, k1, k2) obtained
using DNS and MRDT for β = 0◦. Reprinted with permission from Praturi et al. (in production).
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Figure 4.13: Intermediate RA regime (RA = 1.7): Evolution of magnetic energies (b, b1, b2) ob-
tained using DNS and MRDT for β = 0◦. Reprinted with permission from Praturi et al. (in
production).

Figure 4.14: High RA regime: Evolution of k2 obtained using DNS for RA = 3.9, 17, 39; β =
0◦, 26◦, 63◦. The analytical solution of MRDT, k2(1+τ ∗2) = cos2(τ ∗∗) is also presented. Reprinted
with permission from Praturi et al. (in production).
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Figure 4.15: High RA regime: Evolution of b2 obtained using DNS for RA = 3.9, 17, 39; β =
0◦, 26◦, 63◦. The analytical solution of MRDT, b2(1+τ ∗2) = sin2(τ ∗∗) is also presented. Reprinted
with permission from Praturi et al. (in production).

Figure 4.16: Energy partition function (Φb) obtained using DNS plotted for RA = 1.7, 3.9, 17, 39;
β = 0◦, 26◦, 63◦. Reprinted with permission from Praturi et al. (in production).
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Figure 4.17: High RA regime (RA = 17): Evolution of the sum of kinetic and magnetic energies
(k + b, k1 + b1, k2 + b2) obtained using DNS and MRDT for β = 0◦. k3 + b3 is zero at all times.
Reprinted with permission from Praturi et al. (in production).

Figure 4.18: High RA regime (RA = 3.9): Evolution of the sum of kinetic and magnetic energies
(k + b, k1 + b1, k2 + b2, k3 + b3) obtained using DNS and MRDT for β = 26◦. Reprinted with
permission from Praturi et al. (in production).
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Figure 4.19: High RA regime (RA = 3.9): Evolution of the sum of kinetic and magnetic energies
(k + b, k1 + b1, k2 + b2, k3 + b3) obtained using DNS and MRDT for β = 63◦. Reprinted with
permission from Praturi et al. (in production).

Figure 4.20: Viscous vs. inviscid MRDT (β = 0◦): Kinetic energy (k) in the inviscid limit com-
pared against viscous MRDT at low RA = 0.39, Re = Rem = 105 and moderate RA = 1.7, Re =
770, Rem = 195. Reprinted with permission from Praturi et al. (in production).
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5. LINEAR AND NONLINEAR SUPPRESSION MECHANISM OF

KELVIN-HELMHOLTZ INSTABILITY IN MAGNETOHYDRODYNAMIC FLOWS

In this chapter, we perform numerical simulations to investigate the linear and nonlinear evo-

lution of KH instability when subjected to a streamwise applied magnetic field. The linear effect

of magnetic field on KH instability has been presented in Section 2.1.2. As mentioned in the Intro-

duction, the nonlinear stage of perturbation evolution is disrupted by resistive “tearing” instability

when magnetic field is weak. We first present a brief discussion on resistive instability. Thereafter,

numerical setup and results are presented.

5.1 Resistive “tearing” instability in nonlinear stage

In general, resistive instabilities act to release accumulated energy in regions of magnetic field

inhomogeneity to move to a lower energy state (Goldston & Rutherford, 1995). These inhomo-

geneities in magnetic field are otherwise stable in ideal MHD fluids (zero resistivity). There are

multiple types of manifestation of resistive instability (Furth et al., 1963). In the current prob-

lem, the “tearing” mode of resistive instability gives rise to the disruption in the nonlinear regime

(Frank et al., 1996; Malagoli et al., 1996; Palotti et al., 2008; Mak et al., 2017). Tearing mode of

resistive instability is initiated at the inflection region in the magnetic field resulting in a wave-like

breakdown of magnetic field (Goldston & Rutherford, 1995).

Work done by magnetic field on velocity via the Lorentz force is a precursor to resistive insta-

bility (Furth et al., 1963). The expression for the work done by Lorentz force, W , can be obtained

by taking the dot product of Lorentz force and velocity:

W ≡ (~j × ~B) · ~U =
1

µ0

(
~∇× ~B × ~B

)
· ~U, (5.1)

where, ~U, ~B are total velocity and magnetic fields. If W > 0, energy is transferred from magnetic

field to velocity and could result in the unbounded growth of kinetic energy. When W < 0,

energy transfer from velocity field enables the growth of magnetic energy. Since, resistive “tearing”
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instability is onset in the nonlinear stage of KH instability, it is not easily amenable to analytical

investigation.

We now perform a series of numerical simulations to compare and contrast the sequence of

flow and magnetic field events leading to linear stabilization or nonlinear disruption of perturbation

evolution in MHD mixing layers.

5.2 Simulation setup

The setup for direct numerical simulations (DNS) is shown in figure 2.2. The simulations are

quasi three-dimensional, i.e., we have a nominal number of grid points in the spanwise direction to

be able to compute the derivatives. Since we are investigating temporal evolution of mixing layers,

periodic boundary conditions are applied at streamwise boundaries. The flow field is also periodic

in the spanwise direction. Zero gradient boundary conditions are applied at the normal boundaries.

Background velocity field is given by a hyperbolic tangent mixing layer profile:

U1(x2) =
U0

2
tanh

(
2x2

δω

)
, (5.2)

where, δω is the vorticity thickness of the mixing layer. We introduce normal velocity perturbations

(u′2) with the wavevector oriented along the streamwise direction (Kumar et al., 2014):

u
′

2(x1, x2, x3; t) = {0.01, 0.03} × U0

2
sin

(
2πx1

L1

)
. (5.3)

This corresponds to perturbations with amplitudes 1% and 3% of the maximum background veloc-

ity. An external magnetic field, B0, is applied at all times in the streamwise direction as shown in

figure 2.2. Tab. 5.1 shows B0, MA and RA0 values for all the simulations performed. κ0δω is held

constant at 0.2. Viscosity and resistivity for the flow are chosen such that the fluid and magnetic

Reynolds numbers, given by Re = U0δω/ν and Rem = U0δω/Dη are 250 each.
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B0 (T) M = 2VA/U0 RA(x2 = 0) Grid resolution % perturbation intensity
0 0 0 ({1, 4} × 256)2 × 4 1%, 3%

0.001 0.018 2E-3 10242 × 4 1%
0.003 0.055 5.9E-3 ({1, 2, 3, 4, 5} × 256)2 × 4 1%, 3%
0.01 0.184 0.019 ({1, 4} × 256)2 × 4 1%, 3%
0.02 0.368 0.039 10242 × 4 1%, 3%
0.03 0.55 0.059 10242 × 4 1%, 3%

0.035 0.645 0.070 10242 × 4 1%, 3%
0.04 0.737 0.078 10242 × 4 1%, 3%

0.055 1.01 0.11 10242 × 4 1%
0.075 1.38 0.15 10242 × 4 1%, 3%
0.1 1.84 0.2 10242 × 4 1%
0.3 5.5 0.59 10242 × 4 1%, 3%

Table 5.1: Incompressible MHD mixing layers: Simulation parameters.

5.2.1 KH schematic and instability metrics

The choice of perturbations in equation (5.3) makes the center of streamwise-normal plane a

pivot point about which the KH vortex evolves (Karimi & Girimaji, 2016). A schematic of the

streamwise-normal plane of the flow field is shown in figure 5.1, with the pivot point identified as

P . There are two more stagnation points, S1, S2, on the centerline at the streamwise boundaries.

In addition, the plane is divided into four quadrants, Q1 − Q4 about P . This nomenclature is

similar to that of Karimi & Girimaji (2016) and will be used to examine the perturbation evolution

at different RA0 through the remainder of the chapter.

We examine the following metrics for establishing the degree of perturbation instability: cir-

culation in the flow domain, total pressure at the pivot point, P , and volume-averaged perturbation

kinetic and magnetic energies. Circulation is an indicator of the degree of mixing and entrainment

in the flow domain (Karimi & Girimaji, 2016) and is computed using the following expression:

Γ =

∮
~u′ · ~dl. (5.4)

The line integral is computed around a square loop of side L1/2 centered at P . Total pressure at
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Figure 5.1: Schematic showing the pivot point.

the pivot point assesses the strength of rollup and vortical motion. The greater the level of suction

at P , the stronger is the KH vortex.

5.2.2 Verification

Since MGKM is a compressible flow solver, an appropriately low convective Mach number

needs to be chosen in order to capture incompressible behavior. We consider mixing layers at

Mach numbers of 0.03 and 0.3 to compare their evolution. Figure 5.2 presents the development

of circulation and perturbation kinetic energy for the above two Mach numbers. As their time

evolution is almost identical, Mach number 0.3 is deemed appropriate for this study at the incom-

pressible limit.

Grid convergence in the MHD limit. We perform grid sensitivity studies for the magnetic

field case of RA0 = 0.0059 using grids of resolution 2562 × 4, 5122 × 4, 7682 × 4, 10242 × 4

and 12802 × 4. To demonstrate grid convergence, we plot volume-averaged values of kinetic and

magnetic energies in figures 5.3(a),(b), respectively. The above figures indicate that both these

volume-averaged statistics converge beyond resolutions of 10242 × 4. We only present results for

grids resolutions of 10242 × 4 or higher.
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(a)

(b)

Figure 5.2: Normalized (a) circulation and (b) volume-averaged kinetic energy, k/k0, for Mach
numbers 0.03 and 0.3.
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(a)

(b)

Figure 5.3: Volume-averaged (a) kinetic (k/k0) and (b) magnetic (b/k0) energies forRA0 = 0.0059
at different grid resolutions.
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5.3 Results

We present results from MHD mixing layer simulations at different imposed magnetic field

strengths and contrast them against the hydrodynamic limit. We will then investigate in detail the

underlying flow and magnetic field mechanisms leading to stabilization or growth.

5.3.1 KH instability in hydrodynamic mixing layer

We now present the dynamics of KH instability in the hydrodynamic limit which will serve

as the benchmark for comparison against MHD cases. We review the three-stage development of

incompressible KH instability identified by Karimi & Girimaji (2016): linear, merger-rollup and

nonlinear stages.

Linear growth stage. Figure 5.4(a) shows the spanwise perturbation vorticity contours in the

first stage of evolution. We observe the development of positive anti-clockwise vorticity in Q1

and Q3 and negative clockwise vorticity in Q2 and Q4 near the pivot point, P . The formation

of these precursor vortices can be explained examining the production term in spanwise vorticity

equation (2.95): u′2d
2U1/dx

2
2. The simulations are initialized such that u′2 is negative in Q1, Q4

and positive in Q2, Q3. However, d2U1/dx
2
2 is negative in Q1, Q2 and positive in Q3, Q4. This

implies that negative or clockwise vorticity is generated in Q2, Q4 and positive or anticlockwise

vorticity is generated in Q1 and Q3. Then the Poisson equation for pressure dictates that low and

high pressures are generated at P and S1&S2, respectively (figure 5.5(a)).

Merger and rollup stage. The pressure-velocity coupling leads to positive feedback between

negative pressure (p) and normal velocity (u′2) (Karimi & Girimaji, 2016). This coupling intensifies

suction at P and u′2 magnitude with time resulting in sustained production of negative vorticity.

Therefore due to low pressure at P , the two negative vortex regions in Q2 and Q4 merge leading

to the formation of the primary vortex as seen in figure 5.4(b). Positive vorticity in Q1 and Q3

is eliminated. As evident from the monotonic increase of circulation in figure 5.6(a), the merged

primary vortex rolls up, entraining more surrounding fluid. This stage is also characterized by the

formation of an extreme low pressure region at P , as seen in figures. 5.5(b), 5.7(a).
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Figure 5.4: Hydrodynamic KH instability: Spanwise vorticity perturbation contours.

(a) S0t = 45.5 (b) S0t = 68

(c) S0t = 77 (d) S0t = 91
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Figure 5.5: Hydrodynamic KH instability: Fluid gauge pressure contours.

(a) S0t = 45.5 (b) S0t = 68

(c) S0t = 77 (d) S0t = 91

77



Nonlinear stage. As the primary vortex rollup intensifies, early nonlinear stage culminates

with wave-breaking as evidenced from figure 5.4(c). This is followed by asymptotic nonlinear

stage characterized by the formation of secondary vortex bands (figure 5.5d). Figures 5.6(a)

and 5.7(a) show that circulation and suction pressure at P saturate during this stage.

5.3.2 KH instability in MHD mixing layers

The nature of perturbation development in conducting fluids depends upon the strength of

the imposed magnetic field. Figure 5.6 compares the circulation evolution of different MHD cases

against the baseline hydrodynamic behavior. It can be seen that the circulation values decrease with

increasing magnetic field strength. RA0 < 0.019 cases (figure 5.6a) exhibit similar behavior as the

pure hydrodynamic case up to S0t ≈ 80, i.e., until the merger and rollup stage of KH instability.

After S0t ≈ 80, circulation in these cases decreases. For the cases of RA0 = (0.039 − 0.078)

in figure 5.6(a), circulation begins to deviate from the hydrodynamic behavior at an earlier time

of S0t ≈ 20. Beyond S0t ≈ 20, circulation in these cases is always lower than RA0 ≤ 0.019

cases. For RA0 ≥ 0.11 in figure 5.6(b), the circulation is always lower than its initial value and

experiences an oscillatory evolution.

Figure 5.7 shows the evolution of gauge value of total pressure at the pivot point, P , i.e., total

pressure relative to its value at the beginning of the simulation. Suction at P for RA0 ≤ 0.019 is

similar to the hydrodynamic case up to S0t ≈ 80, but starts to change at later times. The amount

of suction at the core decreases as magnetic field strength is increased as seen in figure 5.7(a) for

RA0 ≥ 0.039. For RA0 ≥ 0.11 shown in figure 5.7(b), the suction pressure is considerably lower

than the hydrodynamic cases and experiences an oscillatory evolution about zero.

The maximum values of circulation and suction pressure are strong indicators of degree of KH

instability growth - the larger the values, the stronger is the instability. We now plot the maximum

circulation and suction pressure computed at different magnetic field strengths and perturbation

intensities in figure 5.8(a). As observed in figures 5.6, 5.7, the maximum values of circulation and

suction pressure decrease with increasing magnetic field strength. Figure 5.8(b) depicts the values

of volume-averaged perturbation kinetic and magnetic energies at the instant when maximum cir-
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(a)

(b)

Figure 5.6: Circulation for (a) RA0 ≤ 0.078, (b) RA0 ≥ 0.078. Perturbations with 1% intensity are
plotted here.
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(a)

(b)

Figure 5.7: Total pressure at P for (a) RA0 ≤ 0.078, (b) RA0 ≥ 0.078. Perturbations with 1%
intensity are plotted here.
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(a)

(b)

Figure 5.8: For different magnetic field strengths: (a) Maximum circulation and suction pressure
at P , (b) Perturbation kinetic and magnetic energy amplification at maximum circulation.
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culation is achieved. Based on figure 5.8(b), magnetic field effects can be categorized into strong,

weak and intermediate regimes as follows:

1) Weak field regime, MA ≤ 0.2 or RA0 ≤ 0.019: The maximum value of volume-averaged

kinetic energy is smaller than the baseline hydrodynamic KH instability, but is of the same

order. Thus the mixing layer is unstable, but the degree of perturbation amplification is

lower than the hydrodynamic case. This is similar to what has been observed in the works

of Malagoli et al. (1996); Mak et al. (2017).

2) Strong field regime, MA > 1 or RA0 ≥ 0.15: The volume-averaged kinetic energy remains

close to initial value indicating no growth or instability. This result is consistent with the

linear analysis performed by Chandrasekhar (1961); Lau & Liu (1980).

3) Intermediate field regime, 0.2 < MA < 1 or 0.019 < RA0 < 0.15: The volume-averaged

kinetic energy grows but the maximum amplification is an order-of-magnitude (or more)

smaller than the hydrodynamic case. This is along the lines of Frank et al. (1996).

It is important to note that none of the studies in literature have examined the entire range of

magnetic field strengths with a single set of simulations. The current study enables us to delineate

the ranges of different magnetic field regimes more precisely than previous works.

We now characterize the spatio-temporal evolution of perturbations in weak, intermediate and

strong field regimes and contrast it against the hydrodynamic behavior.

5.3.2.1 Strong field regime

We now consider the various stages of perturbation development in the strong field regime for

the case of RA0 = 0.59 or MA = 5.5. Vorticity and pressure contours at two representative times

are shown in figure 5.9.

Dominant physics. RA(x2) � 1 at almost all locations in the domain. Therefore, harmonic

exchange between velocity and magnetic fields is the dominant process, as seen in linear analysis

Section 2.1.2.1. This harmonic exchange results in oscillatory, out-of-phase evolution of u′2 and

B
′
2 about zero at pivot point, P , as seen in figure 5.10(a).
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Figure 5.9: Strong field regime, RA0 = 0.59: (a), (b) Spanwise vorticity and (c), (d) fluid gauge
pressure.

(a) S0t = 45.5 (b) S0t = 68

(c) S0t = 77 (d) S0t = 91
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(a)

(b)

Figure 5.10: Strong field regime: Evolution of (a) u′2, B
′
2 at P for RA0 = 0.59 and (b) Φb for

RA0 = 0.15− 0.59
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Flow field evolution. The oscillatory evolution of u′2 leads to reduced accumulation of kinetic

energy as production alternates between positive and negative values (equation 2.98). Vorticity

production given by, u′2d
2U1/dx

2
2, is also considerably reduced as seen in figures 5.9(a),(b). There-

fore, linear growth stage, i.e., the first stage of hydrodynamic KH instability, is entirely eliminated

owing to the winding and unwinding nature of precursor vortices. Neither unidirectional rollup of

precursor vortices leading to the formation of primary vortex nor the development of low pressure

core at P are seen in figures 5.9(b)-(d). As velocity field perturbations do not grow beyond their

initial values, KH instability is suppressed.

Magnetic field evolution. As a result of oscillatory evolution of B′2, magnetic stretching pro-

duction also alternates between positive and negative values leading to low B
′
1. Magnetic field

does not develop high levels of inhomogeneity forestalling the possibility of resistive instability.

Equipartition. Dominance of harmonic exchange results in equipartition between perturbation

velocity and magnetic fields as seen from figure 5.10(b). Equipartition is seen in the range of

RA0 = 0.15− 0.59.

Overall, in this regime, even the early stages of hydrodynamic and MHD development are

very different due to the dominance of velocity-magnetic field interactions over hydrodynamic

mechanisms.

5.3.2.2 Weak field regime

Here we illustrate the different stages of perturbation evolution in the weak field regime for

the case of RA0 = 0.0059 or MA = 0.055. Figures 5.11, 5.12 and 5.13 depict the contours

of perturbation vorticity, fluid gauge pressure and streamwise induced magnetic field at S0t =

45.5, 68, 77 and 91.

Dominant physics. In this case, RA(x2) < 1 at most locations in the interior of the domain

leading to initial hydrodynamic type behavior. The hydrodynamic processes dominate over u′i−B
′
i

interactions (Section 2.1.2.1).

Flow field evolution. u′2 (figure 5.14a for P ) experiences monotonic evolution like in hydro-

dynamic limit, giving rise to sustained production of kinetic energy and vorticity. Contours of
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Figure 5.11: Weak field regime, (RA0 = 0.0059): Spanwise vorticity perturbation contours.

(a) S0t = 45.5 (b) S0t = 68

(c) S0t = 77 (d) S0t = 91

86



Figure 5.12: Weak field regime, (RA0 = 0.0059): Fluid gauge pressure contours.

(a) S0t = 45.5 (b) S0t = 68

(c) S0t = 77 (d) S0t = 91
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Figure 5.13: Weak field regime, (RA0 = 0.0059): Streamwise induced magnetic field,BI,1, overlaid
with perturbation magnetic field vectors. The line along which BI,1 = 0 is also indicated at
S0t = 77 (c).

(a) S0t = 45.5 (b) S0t = 68

(c) S0t = 77 (d) S0t = 91
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(a)

(b)

Figure 5.14: Weak field regime: Evolution of (a) u′2, B
′
2 at P for RA0 = 0.0059 and (b) Φb for

RA0 = 0.002− 0.019.
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Figure 5.15: Weak field regime, RA0 = 0.0059: Lorentz work contours overlaid with perturbation
velocity vectors.

(a) S0t = 68 (b) S0t = 73

vorticity and fluid pressure in figures 5.11(a),(b) and 5.12(a),(b) at S0t = 45.5, 68 are similar to

those seen in linear growth and merger-rollup stages in the hydrodynamic case. Formation of pri-

mary vortex is seen at S0t = 68. Beyond S0t ≈ 80, the perturbation growth transitions from linear

to nonlinear regime.

Magnetic field evolution. Lorentz work contours computed using equation (5.1) are shown

in figures 5.15(a),(b). As primary vortex rolls up, there is a narrow (inner) band in the flow field

where work is done by velocity on magnetic field. Consequently, magnetic energy in this nar-

row inner band increases producing a clear inhomogeneity in magnetic field. However, in another

(outer) band adjacent to the inner band, work is done on velocity field by magnetic field (ideal

MHD). Due to Lorentz work, during the process of KH evolution, energy is transferred from u
′
2

to B′2 which results in the monotonic evolution of B′2 (figure 5.14a). This gives rise to magnetic

stretching production of B′1 as evidenced from figures 5.13(a),(b). In figures 5.13(c), 5.15(b) resis-

tive instability is onset in the vicinity of the outer band at the locations where there is an inflection

point in magnetic field (non-ideal MHD). The evidence of resistive instability can also be seen
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from the formation of magnetic islands in figure 5.13(d) (Palotti et al., 2008).

Magnetic field effects. Once the resistive instability is onset in the outer bands, the effects

propagate through flow field causing the dynamics to deviate from hydrodynamic behavior. This

can be seen in vorticity and pressure contours in figures 5.11(c),(d) and 5.12(c),(d). Secondary

vortex bands in figure 5.11(d) are disrupted. The vortex disruption is similar to that seen in Mak

et al. (2017). The deviation from hydrodynamic-like evolution of u′2 due to resistive instability can

be seen in figure 5.14(a). Circulation as shown in figure 5.6(a) is also considerably curtailed.

Equipartition. Since harmonic exchange is not a dominant process in this regime, equiparti-

tion between perturbation velocity and magnetic fields can not be expected. Figure 5.14(b) shows

Φb for various cases in weak field regime. Φb for RA0 = 0.002, 0.0059 cases are far from equipar-

tition even after the onset of resistive instability. However, RA0 = 0.019 case tends towards

equipartition after the onset of resistive instability.

Overall, in this regime, the first two stages of KH instability are similar to that of hydrodynamic

KH instability leading the formation of primary vortex and low pressure core around P . However,

the third stage of KH growth and secondary vortex bands are disrupted by the magnetic field via

the onset of resistive instability.

5.3.2.3 Intermediate field regime

The perturbation evolution in the intermediate magnetic field regime for the case of RA0 =

0.078 or MA = 0.74 is examined in figures 5.16 and 5.17.

Dominant physics. The behavior of perturbations in this regime is intermediate between strong

and weak field regimes with production and harmonic exchange being significant in different re-

gions of the mixing layer.

Flow field evolution. u′2 at P shown in figure 5.16(a) is monotonic with reduced amplitude

resulting in reduced production of kinetic energy and vorticity. The strength of precursor vor-

tices at S0t = 45.5 in figure 5.17(a) is considerably reduced compared to that seen in the linear

growth stage of hydrodynamic case. Low pressure region at P is not formed at S0t = 45.5, 91

in figures 5.17(c),(d). Consequently, the negative clockwise precursor vortices in Q2 and Q4
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(a)

(b)

Figure 5.16: Intermediate regime: Evolution of (a) u′2, B
′
2 at P for RA0 = 0.078 and (b) Φb for

RA0 = 0.039− 0.11.
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Figure 5.17: Intermediate regime, RA0 = 0.078: (a), (b) Spanwise vorticity and (c), (d) fluid gauge
pressure.

(a) S0t = 45.5 (b) S0t = 68

(c) S0t = 77 (d) S0t = 91
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rollup without any merger interrupting the formation of primary vortex, as seen in figure 5.17(b)

at S0t = 91.

Magnetic field evolution. B
′
2 at P increases slowly due to transfer from u

′
2 (figure 5.16a)

giving rise to magnetic stretching production of B′1. The inhomogeneities in magnetic field build

up more gradually due to the slow growth of B′1, B
′
2. The weak development of inhomogeneities

in magnetic field delays the onset of resistive instability.

Equipartition. This regime has reduced perturbation production and increased u′2 − B
′
2 in-

teraction compared to the weak field regime. Φb for various intermediate regime cases with

RA0 = 0.039 − 0.11 plotted in figure 5.16(b) demonstrate a slow trend towards equipartition

of velocity and magnetic fields.

Overall, this regime experiences a short-lived initial perturbation growth stage similar to the

hydrodynamic case. However, the second stage of vortex merger and primary vortex formation is

disrupted by the development of a high pressure region at the pivot point. Thus, the KH instability

does not fully develop in this regime of magnetic field.
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6. THE EFFECT OF COMPRESSIBILITY ON MAGNETOHYDRODYNAMIC PLANAR

JETS

The objective of this chapter is to investigate the effects of compressibility and magnetic field

on energy interactions between pressure, velocity and magnetic fields and the consequent outcome

on the stability of planar jets. First we present the simulation setup and validation of implemen-

tation of MGKM to incompressible turbulent jets. Then the various energy exchange mechanisms

amongst perturbation pressure, velocity and magnetic energies are examined at different Mach

number and magnetic field regimes.

6.1 Simulation setup

The setup for numerical simulations is shown in figure 6.1. The simulation is initialized with

both the background velocity and magnetic fields along the streamwise direction. The mean ve-

locity field is specified using the following tangent hyperbolic function (da Silva & Métais, 2002;

da Silva & Pereira, 2008):

U1(x2) =
U0

2

(
1 + tanh

(
b

a
− |x2|

a

))
, (6.1)

where, b, a are the half-width of the jet and thickness of shear layer between jet and the freestream.

The magnetic field is imposed at all times and is of uniform strength throughout the domain. The

flow is considered to be periodic along streamwise and spanwise directions and zero gradient is

applied at the normal boundaries.

6.1.1 Relevant parameters

The parameters of relevance in a compressible MHD planar jet are examined in this section.

The strength of applied magnetic field is assessed using Alfvén Mach number, MA and the ratio of

95



Figure 6.1: Schematic of planar jet.

shear-to-magnetic timescales, RA,min, at the maximum shear:

MA =
VA
U0

; VA ≡
B0√
ρµ0

; RA,min ≡
VAκ

Smax
. (6.2)

The subscript ‘min’ refers to the fact that this is the location of minimum magnetic-to-shear

timescale. The effect of compressibility is characterized via convective Mach number defined

as:

M =
U0

c
; c ≡

√
γp

ρ
. (6.3)

The fluid and magnetic Reynolds numbers, Re and Rem, for the single-mode studies are defined

based on the shear layer thickness of the jet as follows:

Re ≡ ρ0U0a

µf
; Rem ≡ σµ0U0a. (6.4)
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Here, µf is the dynamic viscosity of the fluid. For simulations with random, isotropic initial

conditions, mass flow rate of the jet is used to define the Reynolds number as follows:

Req ≡
q0

µf
; q0 ≡

∫ L2

0

ρu1dx2. (6.5)

6.1.2 Validation

Validation studies are performed for the case of incompressible hydrodynamic turbulent jets by

subjecting the initial velocity field given by equation (6.1) to random, isotropic initial perturbations.

The MGKM code is rendered hydrodynamic by initializing all the magnetic field components to

zero. This study serves as a validation for the implementation of jet configuration. Compressibility

effects have been validated in previous studies of Kumar et al. (2014); Karimi & Girimaji (2016),

where as, magnetic field implementation has been validated in Araya et al. (2015) as well as in

Chapter 4.

Two grids, 2563, 5122×256, are employed to simulate planar turbulent jet at a convective Mach

number of 0.3. The Reynolds number Req ≡ q0/µf is 5000 for all the simulations. Figure 6.2

presents the self-similar velocity profiles obtained. The streamwise component of mean velocity is

normalized with respect to its centerline value and the normal coordinate is normalized using the

location where the mean jet velocity is half of its centerline value. Incompressible experimental

data of Gutmark & Wygnanski (1976); Ramaprian & Chandrasekhara (1985) and numerical work

of Stanley et al. (2002) at a low convective Mach number of 0.32 are used to validate the evolution

of the mean velocity profiles. It can be seen that the numerical results agree well with literature.

6.1.3 Simulation cases

MHD planar jets subjected to two kinds of perturbations are analyzed: single mode perturba-

tions and random, isotropic initial perturbations corresponding to turbulent jets. The simulation

parameters for single mode cases are given in Table 6.1. For these cases, velocity is perturbed
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0

Figure 6.2: Self-similar planar jet profiles compared against experimental and numerical data at
M = 0.3.
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along the normal direction with wavevector oriented along the streamwise direction:

u
′

2(x1, x2, x3; t) = {0.01} × U0

2
sin

(
2πx1

L1

)
(6.6)

This chosen configuration for velocity perturbation can instigate the formation of KH rollers.

The simulation parameters for random, isotropic initial conditions are given in Table 6.2. The

initial Taylor Reynolds number (Reλ) for these cases is 8. Based on the values of M and MA, the

simulations in Tables 6.1 and 6.2 can be categorized into the following regimes:

1. Subsonic- and sub-Alfvénic-Mach number regime: Cases 1, 2

2. Subsonic- and super-Alfvénic-Mach number regime: Case 3, T-2

3. Supersonic- and sub-Alfvénic-Mach number regime: Case 4, 7, 8, T-4

4. Supersonic- and super-Alfvénic-Mach number regime: Case 5, 6

As the cases T-1 to T-4 are subjected to random, isotropic initial perturbations, the instabilities in

the jet amplify the perturbations, eventually leading to a fully turbulent jet. Therefore, two purely

hydrodynamic cases, T-1 and T-3, are examined to establish baseline hydrodynamic behavior. The

change in the nature of T-1 and T-3 when subjected to super-Alfvénic magnetic field and sub-

Alfvénic magnetic field, respectively, will be established using cases T-2 and T-4.

6.2 Results

The results obtained from the simulations at different Mach and Alfvén Mach numbers are

categorized into four regimes in the previous section. We first present the results for the single

mode perturbations. The turbulent cases are then explicated based on the findings of the single

mode simulations.

6.2.1 Single mode cases

For all the four types, we present the evolution of spanwise vorticity perturbation at different

regimes, as it demonstrates the growth of KH instability in planar jets. We then present the evo-

99



Case M = U0/a MA = VA/U0 RA,min Rea Rem,a Grid resolution
1 0.3 0.023 5E-3 250 0.14 2562 × 4
2 0.3 0.23 5E-2 250 0.14 2562 × 4
3 0.3 3.926 0.822 250 0.14 2562 × 4, 5122 × 4
4 1.2 0.177 0.037 250 0.14 2562 × 4
5 1.2 1.08 0.226 250 0.14 2562 × 4
6 1.2 1.08 0.226 250 14 2562 × 4
7 2.4 0.029 6E-3 250 0.14 2562 × 4
8 2.4 0.539 0.113 250 0.14 2562 × 4

Table 6.1: Simulation parameters for jets subjected to a single streamwise perturbation.

Case M = U0/a MA = VA/U0 RA,min Req Rem,q Grid resolution
T-1 0.3 0 0 5000 2.8 1283

T-2 0.3 3.926 0.822 5000 2.8 1283

T-3 2.4 0 0 5000 2.8 1283

T-4 2.4 0.539 0.113 5000 2.8 1283

Table 6.2: Simulation parameters for jets subjected to random, isotropic initial perturbations.
Reλ(t = 0) = 8 for all the cases.

lution of perturbation kinetic, magnetic and internal energies and highlight the dominant energy

exchanges present in each regime.

Notation. For all the results presented in this section, time is normalized using S ≡ U0/2a.

Perturbation kinetic, magnetic energies and pressure variance denoted by K, B and P are normal-

ized using the initial energy in velocity perturbations, K0. Perturbation vorticity is normalized

using U0/a.

6.2.1.1 Subsonic- and sub-Alfvénic-Mach number regime

As discussed in the previous section, cases 1 and 2 fall under this regime. We first present the

vorticity perturbation contours at St = 27, 54, 68 and 81 for cases 1 and 2 in figures 6.3 and 6.4.

Then, the evolution of perturbation energies is presented in figures 6.5, 6.6.

Spanwise Vorticity. In figures 6.3(a),6.4(a) at St = 27, the formation of precursor vortices is
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(a) St = 27 (b) St = 54 (c) St = 68 (d) St = 81

Figure 6.3: Case 1 - M = 0.3, RA,min = 5E − 3: Spanwise vorticity perturbation.

(a) St = 27 (b) St = 54 (c) St = 68 (d) St = 81

Figure 6.4: Case 2 - M = 0.3, RA,min = 5E − 2: Spanwise vorticity perturbation.

Figure 6.5: Case 1 - M = 0.3, RA,min = 5E − 3: Perturbation energy evolution.
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Figure 6.6: Case 2 - M = 0.3, RA,min = 5E − 2: Perturbation energy evolution.

seen at both bottom and top shear layers (jet-ambient fluid interface). At St = 54 (figures 6.3,6.4

b), the precursor vortices merge, leading to accelerated spreading of the jet as seen in figures 6.3,6.4

(c),(d). This accelerated spreading is due to the intensification of high and low pressure regions

in the top and bottom shear layers leading to a net force in the negative normal direction. In case

2, the presence of a slightly higher magnetic field compared to case 1 results in a slightly reduced

spreading of the jet.

Energy interactions. In case 1, as significant stabilizing influences due to magnetic field

and compressibility are absent, due to flow instabilities the perturbation kinetic energy grows to

three orders of magnitude larger than the initial value before saturating (at St ≈ 70). Due to

the presence of a weak imposed magnetic field, the exchange between perturbation kinetic and

magnetic energies is slow leading to lower magnetic energy levels. Internal energy, owing to

moderate levels of compressibility, is two orders of magnitude lower than kinetic energy. For case

2, kinetic energy is slightly reduced compared to case 1, due to the presence of higher magnetic
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field. Magnetic perturbation energy also grows to values that are comparable to that of the internal

energy. The evolution of internal energy remains relatively unchanged compared to case 1.

Overall, in this regime, the jet is susceptible to KH instability and kinetic energy grows to

values that are three orders of magnitude higher than that of the initial value before saturation.

Significant energy interactions between pressure, velocity and magnetic fields are absent.

6.2.1.2 Subsonic- and super-Alfvénic-Mach number regime

Case 3 withM = 0.3,MA = 3.926 falls under this regime. The evolution of spanwise vorticity

perturbation at St = 5.4, 11, 14 and 19 is shown in figure 6.7. The evolution of perturbation kinetic,

magnetic and internal energies are shown in figure 6.8.

Spanwise vorticity. The formation of precursor vortices is seen in figure 6.7(a) at St = 5.4,

similar to that seen in the Subsonic- and sub-Alfvénic-Mach number regime. However, the sign

of vorticity in the precursor vortices changes without any merger at St = 11, 14. At St = 19,

the precursor vortices dissipate as the perturbation kinetic energy exchanged with magnetic field is

dissipated in Joule heat. Therefore, KH instability in this regime is suppressed and perturbations

are dissipated.

Energy interactions. Due to the presence of a strong magnetic field, the harmonic exchange

between perturbation kinetic and magnetic energies is quick. This results in equipartition of kinetic

and magnetic energies at initial times as seen in figure 6.8. Perturbation internal energy does not

grow to the same intensities as the previous regime and decays as kinetic energy is decaying.

Overall, in this regime, KH instability is eliminated owing to rapid harmonic exchange between

perturbation kinetic and magnetic energies. As magnetic Reynolds number is low, the energy

transferred from kinetic to magnetic energy is dissipated as Joule heat. This results in the decay of

internal energy as well.

6.2.1.3 Supersonic- and sub-Alfvénic-Mach number regime

We now present the results for cases 4, 7 and 8 with M = 1.2,MA = 0.177; M = 2.4,MA =

0.029 and M = 2.4,MA = 0.539. Spanwise vorticity perturbation contours for case 4 at St =
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(a) St = 5.4 (b) St = 11 (c) St = 14 (d) St = 19

Figure 6.7: Case3 - M = 0.3;RA,min = 3.926: Spanwise vorticity perturbation.

Figure 6.8: Case3 - M = 0.3;RA,min = 3.926: Perturbation energy evolution.

(a) St = 41 (b) St = 57 (c) St = 73 (d) St = 89

Figure 6.9: Case4 - M = 1.2;RA,min = 0.037: Spanwise vorticity perturbation.
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(a) St = 54 (b) St = 75 (c) St = 108 (d) St = 130

Figure 6.10: Case 7 - M = 2.4;RA,min = 6E − 3: Spanwise vorticity perturbation.

(a) St = 54 (b) St = 75 (c) St = 109 (d) St = 217

Figure 6.11: Case 8 - M = 2.4;RA,min = 0.113: Spanwise vorticity perturbation.

Figure 6.12: Case4 - M = 1.2;RA,min = 0.037: Perturbation energy evolution.
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41, 57, 73 and 89 are presented in figure 6.9. Spanwise vorticity contours at St = 54, 76, 108 and

130 for case 7 are given in figure 6.10. For case 8, the evolution of spanwise vorticity is presented

in figure 6.11 at St = 76, 108, 130 and 217. The evolution of perturbation energies are given in

figures 6.12, 6.13 and 6.14.

Vorticity evolution. At St = 41 in figure 6.9(a) for case 4, the formation of precursor vortices

can be seen. In figures 6.9b- 6.9d, these precursor vortices merge and spread along the normal

direction similar to that seen in the previous regime. However, the spreading rate and intensity of

spanwise vorticity is reduced compared to the subsonic-, sub-Alfvénic Mach number regime. This

is owing to the increase in the sonic Mach and Alfvénic Mach number resulting in a reduction in

the production of perturbations. For cases 7 and 8 in figures 6.10 and 6.11, the precursor vortex

merger is considerably delayed compared all the previous cases of 1-4, i.e., vortex merger does not

occur until St = 75. The intensity of vorticity perturbation and spreading rate are also considerably

reduced.

Energy interactions. In case 4, perturbation kinetic energy saturates at values that are slightly

lower than those of cases 1 and 2. However, internal and magnetic energies assume values that are

an order of magnitude higher. Similar evolution of kinetic and internal energies are seen even for

case 7 in figure 6.13. However, magnetic energy in this case (RA,min = 5E − 3) is comparable

to that of case 1 (RA,min = 6E − 3), implying that the transfer between velocity and magnetic

fields is dependent on the parameter, RA. In case 8 shown in figure 6.14, the growth of kinetic en-

ergy is considerably reduced, almost equipartition is evident between kinetic energy in the normal

component and internal energies. However, the energies seem to grow monotonically at a reduced

growth rate compared to all the previous cases.

Overall, the instability in this regime is not fully eliminated. Internal energies in this regime

grow to values that are almost comparable to that of kinetic energy. The growth of magnetic energy

seems to be dependent on the value of RA,min.
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Figure 6.13: Case7 - M = 2.4;RA,min = 6E − 3: Perturbation energy evolution.

Figure 6.14: Case 8 - M = 2.4;RA,min = 0.113: Perturbation energy evolution.
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(a) St = 1.6 (b) St = 16.2 (c) St = 65 (d) St = 130

Figure 6.15: Case 5 - M = 1.2;RA,min = 0.226;Rem = 0.14: Spanwise vorticity perturbation.

(a) St = 1.6 (b) St = 16.2 (c) St = 65 (d) St = 130

Figure 6.16: Case 6 - M = 1.2;RA,min = 0.226;Rem = 14: Spanwise vorticity perturbation.

Figure 6.17: Case 5 - M = 1.2;RA,min = 0.226;Rem = 0.14: Perturbation energy evolution.
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Figure 6.18: Case 6 - M = 1.2;RA,min = 0.226;Rem = 14: Perturbation energy evolution.

6.2.1.4 Supersonic- and super-Alfvénic-Mach number regime

Vorticity contours at St = 1.6, 16, 65 and 130 for M = 1.2,MA = 1.08 at Rem = 0.14, 14

are shown in figures 6.15 and 6.16. The evolution of various energies for these cases are given in

figures 6.17 and 6.18.

Spanwise vorticity. Similar to case 3, precursor vortices form but never merge in this regime,

as seen in figures 6.15,6.16 (a)-(d). Due to the action of resistivity, the magnitude of vorticity in

case 5 with Rem = 0.14 is reduced with time. However for case 6 with Rem = 14, even though

the vorticity is reduced at St = 16.2, 65, it grows again at St = 130.

Energy interactions. In case 5, the rapid harmonic exchange between kinetic and magnetic

energies results in the eventual decay of kinetic and magnetic energies. As the Mach number in

this case is high, internal energy also builds up to similar energy levels as that of kinetic energy

in the normal component. At late times, all the energies seem to have saturated at values lower
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than the initial value of perturbation kinetic energy. In case 6 with Rem = 14, the magnetic energy

does not decay as much and maintains similar energy levels as those of internal energy and kinetic

energy in the normal component.

Overall in this regime, KH instability is eliminated due to the presence of a strong magnetic

field.

6.2.1.5 Equipartition

Linear analysis performed in Section 2.2.2.1 indicates that if the magnetic stretching production

of B′1 is minimal, the normal component of kinetic energy should equipartition with the sum of

magnetic and internal energies. The validity of this inference is investigated for cases 5 and 6 where

the magnetic field is strong enough to eliminate magnetic stretching production. Figure 6.19 shows

the evolution of kinetic energy in the normal component compared against the sum of magnetic and

internal energies for case 5 with Rem = 0.14. Equipartition between the two energies is clearly

exhibited. As Rem is increased to 14 in figure 6.20, there is an evidence of clear equipartition

at early times. At late times, the energies seem to be out-of-phase with each other. However,

the sum of magnetic and internal energies is greater in magnitude compared to the kinetic energy

owing to magnetic production. Evidence of equipartition at early times is also seen for case 8 with

M = 2.4,M = 0.5 in figure 6.21. However, as seen in figure 6.11, the flow is not fully stable and

this is evident from the continuous growth of kinetic, internal and magnetic energies. At late times,

as seen in case 6, the sum of magnetic and internal energies slightly overshoots kinetic energy in

the normal component owing to magnetic stretching production.

6.2.2 Random isotropic initial conditions

The simulation parameters for various random isotropic initial perturbation simulations are

shown in Table 6.2. Results for each of these cases are presented below. The vortex flow structure

computed by taking the curl of the full velocity field is presented first. Then, volume averaged fluc-

tuating kinetic energy, K/K0, magnetic energy, B/K0, and pressure variance, P/K0, are shown.
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Figure 6.19: Case 5 - M = 1.2;RA,min = 0.226;Rem = 0.14: Evolution of K2 compared against
P + B.

Figure 6.20: Case 6 - M = 1.2;RA,min = 0.226;Rem = 14: Evolution of K2 compared against
P + B.
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Figure 6.21: Case 8 - M = 2.4;RA,min = 0.113: Evolution of K2 compared against P + B.

6.2.2.1 Subsonic hydrodynamic jet

The contours of spanwise vorticity for the case T-1 are presented in figure 6.22. The evolution

of K, P and K2 are presented in figure 6.23. The formation of typical KH spanwise rollers can be

seen in figure 6.22a at St = 50. During this stage, the turbulent kinetic energy grew exponentially

as seen in figure 6.23. Pressure variance is three orders of magnitude smaller than the turbulent

kinetic energy as the Mach number is low. Beyond, St = 60, the growth in K and K2 is saturated

and the flow breaks down to turbulence as seen from figures 6.22(b)-(d).

6.2.2.2 Subsonic MHD jet in strong magnetic field

The initial mean and perturbation velocity field configuration in this case is similar to that of

the previous case. The jet is now subjected to a strong magnetic field. KH instability rollers are

completely eliminated by the action of magnetic field as seen from the spanwise vorticity contours

presented in figure 6.24. The fluctuating energy evolution in figure 6.25 shows a dip in kinetic
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(a) St = 50 (b) St = 87 (c) St = 106 (d) St = 124

Figure 6.22: Case T1 - M = 0.3, RA,min = 0: Spanwise vorticity.

Figure 6.23: Case T1 - M = 0.3, RA,min = 0: Fluctuation energy evolution.
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energy around St = 5. This is due to the transfer of energy from velocity fluctuations to magnetic

fluctuations. As seen in Chapter 4, the rate of transfer is maximum for streamwise wavevectors

and decreases as β is increased. For spanwise wavevectors, velocity and magnetic fluctuations

are decoupled. As βs in this scenario are randomly distributed, only a portion of K is transferred

to B. Due to a small magnetic Reynolds number, the reverse transfer from B to K is negligible

and B is dissipated as Joule heat. The only energetic wavevectors are the ones oriented in the

spanwise direction. This can be verified from the fact that K2 remains a constant at late times

(Section 2.1.1.1). u′1 grows linearly due to production for spanwise wavevectors, leading to growth

of K at late times. However, this growth is not manifest in figure 6.24 as the total velocity field has

decayed in time via magnetic field due to Joule heating.

6.2.2.3 Supersonic hydrodynamic jet

The spanwise vortices for the case of supersonic hydrodynamic jet with M = 2.4 are shown

in figure 6.26. The fluctuating energies are shown in figure 6.27. The intensity of perturbations

considered in this case is the same as cases T-1 and T-2. It can be seen from figure 6.26 that

the spanwise vorticity does not evolve into KH-like rollers. Instead, the structures are elongated

forming λ-shaped vortices, which quickly breakdown to turbulence. The fluctuating kinetic energy,

K, in figure 6.27 shows that growth rate of the perturbations is considerably reduced compared to

(a) St = 1 (b) St = 12 (c) St = 50

Figure 6.24: Case T2 - M = 0.3, RA,min = 0.822: Spanwise vorticity.
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Figure 6.25: Case T2 - M = 0.3, RA,min = 0.822: Fluctuation energy evolution.

the case T-1. However, K/K0 asymptotes to similar values as that of T-1. Pressure variance, P , is

considerably larger than that of case T-1, as anticipated and the values are closer to K2. However,

true equipartition between P and K2 is not achieved. This is due to the presence of spanwise

wavevectors that exhibit pressure-released behavior and do not exchange any energy with P .

6.2.2.4 Supersonic MHD jet in the presence of a moderate magnetic field

The initial velocity field in this case is the same as that of the case, T-3. A moderate magnetic

field withRA,min = 0.113 is applied on the jet, which results in a more organized flow (figure 6.28)

than T-3. Compared to the previous case, the fluctuating kinetic energy,K, in figure 6.29 is reduced

by two orders of magnitude. K2 and P are comparable, similar to T-3. However, when the evo-

lutions of K2 and P + B are compared, equipartition between them is not evident even at early

time, unlike its singe mode counterpart, case 8. This is due to fact that some of the energy in K2 is

resident in its spanwise wavevectors.
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(a) St = 5 (b) St = 100 (c) St = 150 (d) St = 198

Figure 6.26: Case T3 - M = 2.4, RA,min = 0: Spanwise vorticity.

Figure 6.27: Case T3 - M = 2.4, RA,min = 0: Fluctuation energy evolution.
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(a) St = 5 (b) St = 100

Figure 6.28: Case T4 - M = 2.4, RA,min = 0.113: Spanwise vorticity.

Figure 6.29: Case T4 - M = 2.4, RA,min = 0.113: Fluctuation energy evolution.
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7. SUMMARY AND CONCLUSIONS

While the stabilizing influences of compressibility and magnetic field have long been known,

the underlying stabilizing mechanisms are not clearly established. The goal of this dissertation is

to understand the stabilization mechanisms of background magnetic field on perturbation growth in

incompressible and compressible planar free shear flows. Toward that end, three planar shear flows

are chosen: homogeneous shear, mixing layer and planar jets. In incompressible homogeneous

shear, flow is subject to algebraic instability, where as, mixing layers and planar jets are susceptible

to exponential growth of perturbations. In MHD studies, each of the flows is subject to a uniform

background magnetic field that is applied at all times along the flow direction to study its influence

on perturbations. The applied magnetic field affects the fluid momentum by means of the Lorentz

force. This is a simplified case of what is encountered in plasma propulsion applications.

For all the planar shear flows, the production of velocity and magnetic field perturbations is

largely dependent on the nature of evolution of perturbations normal to the mean flow direction.

As a result, these are the main drivers of the instability. If the perturbations in the normal com-

ponent experience monotonic evolution, then the production is dominant. However, if the normal

components are oscillatory about zero, then the perturbation production could be almost negligi-

ble. Since we are mainly interested in the behavior of velocity field, in all of the three studies only

normal velocity perturbation components are initialized.

7.1 Incompressible regime - MHD Homogeneous shear

For the case of homogeneously sheared flows, the evolution of perturbations is determined by

the interplay between the processes of pressure-redistribution, kinetic energy production, magnetic

stretching production and harmonic-kinetic-magnetic exchange. Rapid distortion analysis reveals

that the evolution of the normal velocity and magnetic field perturbations is solely determined

by the parameter, RA ≡ VAκ0/S in the scaled time, τ ∗ ≡ St cos β. RA signifies the ratio of

shear-to-Alfvén frequency. Therefore, when RA � 1, the evolution of perturbations is decided
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by the Alfvén wave. This results in oscillatory evolution of normal velocity and magnetic field

components and curtailed production. However, when RA � 1, the fluid processes dominate and

could result in significant growth of velocity perturbations, depending on the value of β. However

at late times, as the homogeneously sheared mean flow does not result in vorticity production and a

large scale instability, production and pressure redistribution eventually die out and only harmonic

exchange dominates. The following is a brief summary of perturbation evolution at different RA

regimes for β ∈ [0◦, 90◦) (when only normal velocity component is initialized):

When RA � 1, a three-stage evolution of perturbations is seen. As the normal velocity

component evolves monotonically due to negligible harmonic exchange, positive/negative pro-

duction is dominant depending on the value of β. Almost immediately, pressure redistribution

also becomes active in order to satisfy incompressibility condition. During this stage, only a small

amount of energy is transferred to magnetic field, resulting in a seemingly hydrodynamic behavior.

This seed transfer initiates the second stage of perturbation development, where in the streamwise

component of magnetic field is amplified. The amplification of magnetic perturbations goes on

until the time when Alfvén-wave processes dominate which eventually result in oscillatory evolu-

tion of the normal components. As a result, in the third stage only harmonic exchange dominates

and equipartition of perturbation velocity and magnetic fields is seen. Overall, the perturbation

energies equipartition about a value that is greater than the initial value.

When RA ∼ O(1), the first two stages of hydrodynamic processes and magnetic production

occur almost simultaneously. This is followed by the final stage where only harmonic exchange

dominates and equipartition between perturbation kinetic and magnetic energies is seen. Due to

a two-stage behavior and curtailed monotonic growth stage, the amplification of perturbations is

significantly reduced compared to the RA � 1 regime.

WhenRA� 1, the Alfvén processes dominate from the beginning. As a result, harmonic ex-

change dominates over all other processes and no amplification of perturbations is seen. Equipar-

tition of kinetic and magnetic energies is prevalent from the beginning.

For spanwise wavevectors, the velocity and magnetic fields are decoupled. As a result, there
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is no stabilization of shear instability due to magnetic field and kinetic energy grows algebraically.

7.2 Incompressible regime - Inhomogeneously sheared MHD mixing layers

For the case of mixing layers, the ratio of shear-to-Alfvén frequency varies along the normal

direction, i.e., RA ≡ RA(x2). Since the value of shear is maximum at the center, RA(x2 = 0)

assumes the minimum value. At normal locations, x2 ≥ (4 − 5)δω, the mean velocity is almost

uniform and RA(x2) � 1. If different normal locations were to evolve independently (negligible

transport), stabilization due to applied magnetic field is maximum at locations far from the cen-

ter, where shear is maximum. However, as the location of maximum shear is also an inflection

point leading to large scale Kelvin-Helmholtz instability and transport in inhomogeneous shear

flows is not negligible, the dynamics of the perturbation/instability are decided by the value of

RA0 ≡ RA(x2 = 0). This also eliminates the possibility of similar analytical treatment as the pre-

vious study. Therefore, we utilize direct numerical simulation of mixing layers with streamwise

magnetic field to characterize perturbation evolution at different RA0 regimes. Instability mea-

sures such as maximum circulation and perturbation amplification with respect to hydrodynamic

case are utilized to demarcate the parameter space of RA0 into strong-, intermediate- and weak-

field regimes. In each of the regimes, the pressure-vorticity dynamics are explicated and evolution

of normal velocity and magnetic fields is investigated.

In the hydrodynamic regime, owing to vorticity production - u′2d
2U1/dx

2
2, the precursor vor-

tices with positive and negative vorticity form around the pivot point, i.e., the stagnation point

at the center of the streamwise-normal plane. Due to positive feedback from negative pressure,

vortices with negative magnitude merge and rollup, entraining the surrounding fluid. The negative

pressure and vorticity mutually intensify each other until nonlinear asymptotic stage sets in and

secondary vortex bands form.

In the weak field regime, RA0 ≤ 0.02, the behavior is similar to that seen in the hydrodynamic

regime and similar merger and rollup of vortices is seen. However, the formation of secondary

vortex bands is disrupted by the onset of ‘resistive’ instability. This results in reduced circulation,
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suction pressure compared to the hydrodynamic case. However, unlike RA � 1 regime in ho-

mogeneous shear, equipartition of perturbation kinetic and magnetic energies is not seen at late

times.

In the strong field regime, RA0 ≥ 0.1, implying that at most normal locations, RA(x2) � 1.

As seen for the case of homogeneous shear this results in oscillatory evolution of normal velocity

and magnetic field components leading to negligible kinetic, magnetic and vorticity production.

As u′2 changes sign, the precursor vortices simply wind and unwind and do not intensify. The

instability is eliminated and equipartition between perturbation kinetic and magnetic energies is

seen. This behavior is similar to the one-stage evolution of perturbations seen for RA � 1 for the

case of homogeneous shear.

In the intermediate field regime, the precursor vortices form similar to the hydrodynamic

regime but are of much reduced intensity. Due to uni-directional transfer from kinetic to magnetic

energy at initial times, normal velocity component grows monotonically but with reduced intensity.

As a result, suction at pivot point is not generated and precursor vortices rollup without merger.

The instability is not fully manifest and the conditions for the onset of resistive instability are

delayed.

7.3 Compressible regime - Inhomogeneously sheared MHD planar jets

Due to the inhomogeneity in shear in planar jets, RA ≡ RA(x2), similar to mixing layers.

However, in the compressible regime, there is another parameter, Mg(x2) ≡ S(x2)/κa, which

accounts for the frequency of the pressure wave. Mg attains maximum values at the locations of

maximum shear and as a consequence, pressure wave stabilization is maximum at the location of

the instability, i.e., inflection point. In a compressible regime, the coupled velocity and magnetic

field terms are different from those in the incompressible regime. The normal component of veloc-

ity perturbation is now coupled with both streamwise and normal components of magnetic field,

in addition to pressure. As a consequence, harmonic exchange leading to equipartition cannot be

anticipated between individual components of velocity and magnetic fields. Equations for pertur-

bation energies now indicate equipartition between K2 and B + P , if transport and production are
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negligible.

The evolution of single streamwise modes in the low Mach number regime indicate similar

behavior as that seen in the case of incompressible mixing layers and P is negligible. As M

is increased, P increases substantially attaining values close to that of K2 due to exchange via

pressure-dilatation. The exponential growth of instability is not eliminated, only growth rate is

substantially reduced. As MA or RA,min is increased, the growth rate is further reduced. For

supersonic cases with RA,min ∼ O(0.1), the exchanges of K2 with P + B become harmonic

leading to equipartition. For low Rem, equipartition is seen at all times. As Rem is increased,

equipartition is seen at early times and P + B grows due to magnetic stretching production.

For random, isotropic initial conditions, due to the presence of spanwise wavevectors not sta-

bilized by compressibility and magnetic field, the fluctuations do not cease to grow even at high

magnetic field strengths. But the overall instability is highly suppressed.
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