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ABSTRACT

Numerical methods for the simulation of wave propagation have extensive applications in ex-

ploration seismology as in velocity estimation and subsurface imaging. Among numerical methods,

the standard finite element method (FEM) presents important advantages such as the ability to

handle meshes to conform to complex geometry, making this technique attractive. However its

main drawback is the longer simulation time it may take compared to other numerical techniques.

Nonetheless, a modified version, the generalized finite element method (GFEM), has the potential

to overcome this limitation. Hence, I have applied the GFEM to simulate the acoustic wave propa-

gation to test its performance against the standard FEM in models that are relevant to exploration

seismology. The GFEM exploits the partition of unity property of the FEM standard basis functions

by incorporating additional user-defined enrichment functions to improve the efficiency of the

simulation. Specifically, I have incorporated plane waves at different directions to mimic the radial

propagation of transient acoustic waves, with the goal of accelerating the solution convergence.

I have tested this approach using models of interest in exploration seismology, including a low

velocity layer, a karst structure and topography. Results from these specific models show that

the GFEM approach is more efficient than a standard FEM reference solution, with an acceptable

solution accuracy.
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1. INTRODUCTION

The Finite Element Method (FEM) is a numerical technique that has been widely applied to

solve partial differential equations (PDEs) arising from different types of boundary value problems

such as heat transfer [Reddy and Gartling, 2010], fracture mechanics [Kuna, 2013], earthquake

rupture [Duan and Oglesby, 2006], mechanical deformation [Lewis et al., 1998], fluid flow [Hughes

et al., 1986, Aarnes and Efendiev, 2008], mass transport [Sudicky, 1989], seismic wave propagation

[Ham and Bathe, 2012, Gao et al., 2015], among others.

The FEM is a versatile numerical method that present several advantages. It allows, in a

straightforward manner, to incorporate flexible meshing techniques that conform to complex

structures within the model domain [De Basabe and Sen, 2009, Frehner et al., 2008], increasing

the accuracy of the solution. The FEM also allows to impose easily natural boundary conditions

through its weak formulation [Brenner and Scott, 2008]. From a mathematical point of view, the

FEM weak formulation makes it possible to prove the uniqueness of its solution [Brenner and Scott,

2008].

1.1 FEM Applied to Wave Simulation

The classical continuous Galerkin FEM with piecewise polynomial approximation has been

applied for the simulation of acoustic and seismic wave propagation [Marfurt, 1984, Mullen and

Belytschko, 1982]. However, one of the main simulation issues is the dispersion effect that the

solution suffers as the wave number increases [Deraemaeker et al., 1999, Ihlenburg and Babuška,

1995a]. Dispersion error refers to the wave number difference between the numerical and exact

solution [Deraemaeker et al., 1999], and depends on the spatial and temporal discretization of the

numerical problem [De Basabe and Sen, 2007]. The simplest way to improve the accuracy of the

solution is to incur in increasingly refined meshes [Ihlenburg and Babuška, 1995b], but this approach

becomes computational expensive as the wave number increases. Improved approaches include

the implementation of higher order polynomial approximation [Esterhazy et al., 2017, Ihlenburg
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and Babuska, 1997], while modern techniques incorporate adaptivity of mesh refinement and

of high order polynomials based on a posteriori error estimation [Bangerth and Kayser-Herold,

2009, Demkowicz et al., 1989].

The generalized finite element method (GFEM) is a different FEM implementation strategy

to improve the accuracy and efficiency of wave simulation. The GFEM applies the partition of

unity property of the standard FEM basis functions [Babuška and Melenk, 1997]. This approach

relies on adding enrichment or user-defined basis functions, apart form the standard polynomials,

to enhance the solution approximation and avoid excessive mesh refinement as the wave number

increases. In general, the criterion to chose additional basis functions is based on closed form

solutions of particular partial differential equations [Strouboulis et al., 2000, Babuška and Sauter,

1997]. This technique has been mostly applied to solve the harmonic wave equation with a variety

of oscillatory enrichment functions. In [Strouboulis et al., 2006, Babuška and Sauter, 1997], the

authors propose plane waves at different directions as additional enrichment functions to solve the

Helmholtz equation, showing the higher convergence rate of the solution compared to the standard

FEM. In [Strouboulis et al., 2008], the authors considered, apart from plane waves enrichment

functions, wave band and Vekua functions, testing performance, convergence rate and meshes with

different architectures. In [El Kacimi and Laghrouche, 2009], the authors propose a solution for

the time-harmonic elastic wave equation incorporating plane waves at different directions to enrich

both compressional (P) and shear (S) waves. They show that it is possible to increase frequency

without further mesh refinement while maintaining the accuracy of the solution. As discussed, most

of the problems treated in the literature that incorporate the GFEM approach are time harmonic.

Although in [Ham and Bathe, 2012], the authors implement transient problems, they test cases

considering homogeneous media only. The GFEM as discussed falls in the continuous Galerkin

(CG) formulation. However, as shown in [Hiptmair et al., 2016], a discontinuous Galrking (DG)

formulation is also possible. In this formulation the continuity of the basis functions is not required

at the DOF nodes, providing more flexibility in defining basis functions. However this method

increases the number of DOFs for which to solve. Nevertheless, DG methods have the advantage of
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yielding block diagonal matrices that are more amenable to invert; which is generally not the case in

CG formulations. For this thesis work I focus on the GFEM approach based on the CG formulation.

Similar methods to the GFEM, such as some versions of the generalized multiscale approach

(GMsFEM) [Gao et al., 2015, Jiang et al., 2010], also rely on the partition of unity property to

simulate wave propagation. The central aspect of these methods is the numerical estimation of

enrichment functions by solving spectral local problems in a fine mesh with the goal of capturing

local heterogenities. These enrichments are then incorporated as part of the basis functions to solve

the time dependant problem in a coarser mesh. The main difference of these multiscale methods

with GFEM is that GFEM aims for capturing the wave number, which depends on both the medium

seismic velocities and the induced frequency of an external source. In this sense, multiscale and the

GFEM approaches can be seen as complementary, with one being able to incorporate small scale

heterogeneities and with the other one targeting to include the frequency signature of an external

source.

1.2 Challenges of Wave Simulation in Exploration Seismology

Important applications of wave simulation in exploration seismology involve the propagation of

wavefields across irregular boundaries found in the near-surface geology and in surface topography

[Yilmaz, 2013, Keho and Kelamis, 2012, Bridle et al., 2007]. These type of features present

challenges for the implementation of meshing techniques to conform to the irregular boundaries and

for handling the high impedance contrast between these structures and the surrounding rock, which

can lead to excessive mesh refinement. For instance, carbonate reservoirs present near-surface

diagenetic features that are a product of massive dissolution, collapse and fracturing of rocks [Lucia,

1999, Wright and Smart, 1994], which result in the formation of caves, vugs and fracture systems

with irregular geometries [Huang et al., 2017, Robert F. Lindsay, Dave L. Cantrell, Geraint W.

Hughes, Thomas H. Keith, Harry W. Mueller III, 2006], adding complexity to the underground

structures. These diagenetic products could be partially filled with different material such as

loose sediments, breccias or water [Regone et al., 2017, Lucia, 1999], which can create a high

impedance contrast with the surrounding rock. Similarly, topography also imposes challenges on
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wave simulation. Surface relief includes irregular structures such as sand dunes, dry river beds, salt

flasts, collapse filled karsts among others [Keho and Kelamis, 2012, Bridle et al., 2007], which in

general generate wave scattering, surface ground rolls and may also trap seismic energy producing

unwanted multiples [Keho and Kelamis, 2012]. Thus, to improve the accuracy of wave simulation

through these complex features is paramount to model as accurate as possible their geometry and

seismic properties. Finite difference (FD) techniques have been widely used to simulate wave

propagation since they have a faster run time than FEM. However, its main disadvantage is their lack

of flexibility to mesh complex shapes. Although recent implementations have tried to improve on

this issue, these techniques are still less direct than FEM approaches [Lan and Zhang, 2011,Tessmer

et al., 1992]. In contrast to FD, FEM-related methods allow a straightforward treatment of irregular

geometries as they can incorporate flexible, boundary-conforming meshes [Komatitsch and Vilotte,

1998, Lee et al., 2008]. Furthermore, the GFEM has the potential to improve the efficiency of the

simulation time since this technique does not require incremental mesh refinement as the wave

number increases, reducing largely the computational time of the FEM, which has been traditionally

the most impactful disadvantage of the method.

1.3 Summary of the Thesis Work

For the present thesis work, I implement the GFEM approach to simulate the acoustic wave

propagation by introducing plane waves at different directions with their wave number matching that

of the geological feature with the highest wavenumber in a seismic model. These plane waves are

introduced as the enrichment functions for the extended GFEM basis functions as in [Strouboulis

et al., 2006] to improve the efficiency of the solution convergence. However in [Strouboulis

et al., 2006] and similar work [Strouboulis et al., 2008, El Kacimi and Laghrouche, 2009] the

GFEM implementation considered mainly the solution of standing waves. Thus, I expand its

application to the transient wave propagation with particular focus on acoustic waves. Although,

I include an initial basic example of wave propagation on a homogeneous acoustic medium to

show the main advantages of the GFEM method, I also present examples with more relevance to

exploration seismology. In special, I consider media with complex underground structures that
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include a low velocity layer, a karst inclusion, and surface topography. For these cases, I use flexible

meshing, capable to conform to the boundary of complicated geometries. I also present performance

comparisons between the GFEM and a standard FEM reference solution, including estimation of

the solution error respect to the reference and comparison of simulation times.
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2. METHODOLOGY

2.1 The Acoustic Wave Equation

I assume an acoustic medium whose domain is Ω ⊂ R2, and whose boundary is ∂Ω with

outward normal vector n̂. The medium presents an acoustic velocity c in Ω and velocity cb on ∂Ω. I

want to find the transient propagation of pressure p within the time interval I = (0, T ] produced

by a localized and known force f , where both p and f are functions of position x ∈ Ω and time

t ∈ I , and in general c is a function of position x ∈ Ω. I formulate the PDE for the acoustic wave

propagation with absorbing boundary conditions as follows:

∂2p

∂t2
−∇.

(
c2∇p

)
= f in Ω× I,

∇p.n̂ = − 1

cb

∂p

∂t
on ∂Ω× I,

p = 0 for t = 0 in Ω,

∂p

∂t
= 0 for t = 0 in Ω.

(2.1)

I introduce the following change of variables v = ∂p
∂t

and reformulate equation 2.1 as :

v − ∂p

∂t
= 0 in Ω× I,

∂v

∂t
−∇.

(
c2∇p

)
= f in Ω× I,

∇p.n̂ = − 1

cb

∂p

∂t
on ∂Ω× I,

p = 0 for t = 0 in Ω,

v = 0 for t = 0 in Ω.

(2.2)

The advantage of equation 2.2 is that it only contains first order derivatives in time, which

facilitates the use of time discretization schemes.
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2.2 Weak Formulation of the Acoustic Wave Equation

To obtain the weak form of equation 2.2, I take the inner product (gi, φ)D =
∫
D
giφ between

each element gi of the equation and a a test function φ ∈ H1(Ω), where H1 is a Hilbert space with

at most first derivatives in the distributional sense [Brenner and Scott, 2008], I also apply Gauss’

theorem when necessary. Then, I formulate the weak form as follows:

Find p and v ∈ H1(Ω) such that:

(v, φ)Ω −
(
∂p

∂t
φ

)
Ω

= 0(
∂v

∂t
, φ

)
Ω

+

(
cb
∂p

∂t
, φ

)
∂Ω

+
(
c2∇p,∇φ

)
Ω

= (f, φ)Ω

(2.3)

2.3 Space Discretization of the Weak Formulation: Continuous Galerkin Approach

The strategy I use to discretize equation 2.3 in space and time is the Rothe’s method [Rothe,

1930]. In this approach, at each time step, a discrete PDE problem in space is solved by applying

the FEM technique.

To discretize equation 2.3 in space, I define a mesh τ covering the domain Ω ⊂ R2 with

quadrilateral elements κ ∈ τ and the associated finite dimensional space Vh ⊂ H1. I also introduce

a test function φh ∈ Vh and formulate the discrete problem in space as:

Find ph and vh ∈ Vh such that:

(
∂ph
∂t

φh

)
Ω

− (vh, φh)Ω = 0,(
∂vh
∂t

, φh

)
Ω

+

(
cb
∂ph
∂t

, φh

)
∂Ω

+
(
c2∇ph,∇φh

)
Ω

= (f, φh)Ω .

(2.4)

2.3.1 The Standard FEM Approximation

In general, the classical FEM incorporates piecewise polynomial basis functions Ni(x) ∈ Vh to

approximate the solution. Thus, I express the solution ph and vh as a linear combination of the basis
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functions Ni(x):

ph =
∑
i∈I

PiNi(x),

vh =
∑
i∈I

BiNi(x).

(2.5)

where Pi and Bi are the standard degrees of freedom (DOF) associated with the shape functions

Ni(x) and I is the set of all nodes of DOF on the mesh τ . For this work I restrict the basis functions

to bilinear polynomials.

2.3.2 The GFEM Approximation

This approximation technique exploits the partition of unity property of the standard FEM basis

functions [Babuška and Melenk, 1997]:

∑
i∈I

Ni(x) = 1. (2.6)

This property allows to reproduce any user-defined function ψj(x) when multiplied by the

partition of unity functions. Then the additional (enriched) basis functions are defined as the product

between the standard basis functions and the enrichments: Ni(x)ψj(x). In this case, the solution

approximation has a standard and an enriched part as follows:

ph =
∑
i∈I

PiNi(x) +
∑
i∈I

Ni(x)
∑
j∈S

Qi
jψj(x),

vh =
∑
i∈I

BiNi(x) +
∑
i∈I

Ni(x)
∑
j∈S

Ci
jψj(x).

(2.7)

Where Qi
j and Ci

j are the DOFs associated with the enriched basis functions Ni(x)ψj(x), and S

is the set of user-defined enrichment functions. Usually, the enrichment functions are taken from

closed form solutions to improve the FEM approximation. I define the enrichment functions ψ(x)

with x ∈ R2 as plane waves that can take different directions according to the unit wave number
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vector k̂j as in [Strouboulis et al., 2006]:

S = span{ψj(x) = cos
(
kk̂j.x

)
},

with k̂j = cos
2πj

q
x̂1 + sin

2πj

q
x̂2 j = 0, ..., q − 1

(2.8)

Where k is the wave number, q is the total number of directions for the plane wave, and x̂1 and

x̂2 are the the basis vectors in R2 Cartesian coordinates. For this work, the wave number used to

define the enrichments is the maximum wave number among the different geological bodies present

in a medium.

2.3.3 Local Mesh Refinement

In general, I use conforming quadrilateral meshes in R2; however when needed I apply local

mesh refinement by locally subdividing the elements of a mesh. This operation leads to non-

conforming meshes with hanging nodes (Figure 2.1), meaning that some vertices of the refined

elements will lie on the edge of neighboring unrefined elements [Šolín et al., 2008]. The main

issue with this refinement technique is that produces a lack of solution continuity across the edge of

hanging nodes.

To ensure the continuity of the solution approximation, I impose that the dominating shape

functions correspond to the unrefined elements across the edge of hanging nodes. Thus, I constrain

the DOF of the refined elements by a set of linear relationships relating the constrained DOF Dni

with the unconstrained DOF Dj [Bangerth and Kayser-Herold, 2009]:

Dni =
∑
j∈Im

αijDj ∀i ∈ In (2.9)

where In is the subset of constrained DOF, Im is the subset of unconstrained DOF, and αij are

weighting factors relating the i-th constrained DOF with the j-th unconstrained DOF.
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Figure 2.1: (a) Coarse Mesh. (b) Locally refined mesh with hanging nodes. Modified from class notes in [Bangerth,
2013].

2.4 Time Discretization of the Weak Formulation

For the time discretization, I subdivide the time interval I = (0, T ] into sub-intervals In =

(tn−1, tn) of equal length ∆t = tn − tn−1, where the discrete solution approximations for the

corresponding times are pn−1
h , pnh, and vn−1

h , vnh , respectively. Then, the time-discretized form of

equation 2.4 applying the θ-scheme with θ ∈ [0− 1] is as follows:

(
pnh − pn−1

h , φh
)

Ω
−∆t

(
θvnh + (1− θ)vn−1

h , φh
)

Ω
= 0,(

vnh − vn−1
h , φh

)
Ω

+
(
cbp

n
h − pn−1

h , φh
)
∂Ω

+ ∆t
(
θc2∇pnh + (1− θ)c2∇pn−1

h ,∇φh
)

Ω

= ∆t
(
θfn + (1− θ)fn−1, φh

)
Ω
.

(2.10)

2.5 Implementation

For this work I set θ = 0.5, for which the θ-method becomes the Crank-Nicholson scheme.

Since I use the same mesh for every time step, the shape functions are the same for every time step

as well: φh = φnh = φn−1
h . I also assume that solution vector is Dn

p for ph and Dn
v for vh at time tn.

The elements of these vectors are the DOF Dn
pi

and Dn
vi

at the nodes i. Then I can write the the
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solution approximation at the time step tn as:

pnh =
∑
i∈I

Dn
pi
φhi(x),

vnh =
∑
i∈I

Dn
vi
φhi(x).

(2.11)

Where, depending on the FEM approach, φhi are either the standard FEM basis functions or the

standard plus enriched basis functions. Thus, equation 2.11 is a generalization of equations 2.5 and

2.7. Then, after replacing equation 2.11 into equation 2.10 and simplifying terms, I write equation

2.10 in matrix form as follows:

LpD
n
p = Rp,

LvD
n
v = Rv.

(2.12)

Where matrices Lp and Lv and vectors Rp, and Rv are defined as follows:

Lp = M + ∆tθB + ∆t2A,

Lv = M,

Rp =
(
M + ∆tθB −∆t2θ2(1− θ)A

)
Dn−1
p

+ ∆t2θ2F n + ∆t2θF n−1,

Rv = MDn−1
v + (B −∆t(1− θ)A)Dn−1

p

− (B + ∆tθA)Dn
p + ∆tθF n + ∆t(1− θ)F n−1.

(2.13)
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With matrices M , A and B, and vectors F n and F n−1 defined as:

Mij = (φhi , φhj)Ω,

Aij = (c2∇φhi ,∇φhj)Ω,

Bij = (cbφhi , φhj)∂Ω,

F n
i = (fn, φhi)Ω,

F n−1
i = (fn−1, φhi)Ω.

(2.14)

I also define the continuous function f(x, t) in a similar way as in [Yue and Guddati, 2005]:

f(x, t) = aof1(t)f2(x),

f1(t) = fo(t− to) exp
(
π2f 2

o (t− to)2
)
∀ t ≤ to,

f2(x) =

(
1− ‖x− ro‖

2

R2
s

)3
1

V
∀ ‖x− ro‖ ≤ Rs,

V =
π

4
R2
s.

(2.15)

Where f(x, t) = f is the right hand side of the PDE defined in equation 2.1 and represents a

seismic source, ao is a scaling factor, fo = 1/to is the central frequency of the source, ro is the

source center, ‖.‖ is the Euclidean distance and Rs is the source radius. The spatial part of the

source f2(x) is normalized by its volume V , so that the size of the source does not affect the wave

amplitude, at least from a theoretical point of view. In a numerical implementation, however, source

size might have an effect on the wave amplitude when the mesh size is not fine enough to sample

the source a required number of times. I explore the source size effect in the GFEM simulations in

section 3.1.1.

2.5.1 Mesh Generation and Numerical Simulation

All the software I use for this work is open source. I use gmsh [Geuzaine and Remacle, 2009]

to generate quadrilateral meshes. The advantage of gmsh is that it allows for flexible meshing,

generating elements that conform to complex geometry boundaries. It also has the capability to
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control element size in different regions of the mesh, keeping mesh regularity. I also use tethex

(https://github.com/martemyev/tethex/wiki), which is a utility that arranges gmsh mesh output

to a format that is compatible with the FEM library deal.II [Bangerth et al., 2007] that I use to

implement the acoustic wave simulation. deal.II provides the necessary tools for simulation with

FEM, including classes that implement the standard and enriched basis functions [Davydov et al.,

2017]. This library is built using object-oriented programming in C++, with modular classes that

include mesh generation, definition of finite element spaces, linear solvers and post-processing

capabilities among others. deal.II can create non-conforming locally refined meshes and has the

capability to handle hanging node constraints to maintain the continuity of the finite element space .

Although for this work I implement a continuous Galerkin formulation, deal.II also allows for a

discontinuous Galerkin implementation. deal.II implements finite element linear systems, as the

ones in equation 2.12, in the standard fashion, by performing calculations at each element K of a

mesh τ . For instance: (., .)Ω =
∑
K∈τ

(., .)K .

2.6 Error Estimate

The proposed method estimates the error between the traces obtained using the GFEM and a

reference solution, in which the reference solution results from applying the FEM in a fine mesh.

For that I define an error measure Ek:

Ek =

∣∣∣∣1− ∣∣∣∣CCkAC0

∣∣∣∣∣∣∣∣ (2.16)

Where CCk is the cross correlation between the test and reference solution either for the zero

lag (k = 0) or at the maximum cross correlation value (k = max) and AC0 is the zero lag auto

correlation of the reference solution.
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3. NUMERICAL EXAMPLES

In the following examples I explore the advantages of the GFEM approach when compared to

the standard FEM regarding accuracy and simulation time for some relevant cases in exploration

seismology. In these examples I use a model in R2 whose dimensions are 800 m in the horizontal

direction and 400 m in the vertical direction except for the last case for which I include some

topographic relief. I also include a seismic source as defined in equation 2.15 with a central

frequency fo =40 Hz. For every example I find a reference solution in a fine mesh applying the

standard FEM, and compare the performance against various GFEM simulation cases, presenting

error estimates versus simulation time. I also find additional solutions with the standard FEM for

coarser meshes to compare the overall performance against the GFEM technique.

From the second seismic model on-wards I show the corresponding shot gathers in a variable

density presentation (See Figures 3.15, 3.27 and 3.41). For all these figures the amplitude of the

traces have been modified by incorporating a time dependent divergence correction and by applying

a fixed gain to each trace with the purpose of enhancing data visualization.

To find the divergence corrected traces I use the following equation:

Td(t) = T (t) tα (3.1)

Where Td(t) is the divergence-corrected trace,T (t) is the trace to modify, t is time and α is a user

defined factor. Since the purpose of this correction is to enhance later arrivals, α is commonly

greater than 1.

The fixed gain is applied as follows:

Tgi(t) =
mx

mxi
Ti(t) (3.2)

Where Tgi(t) is the i-th gain-modified trace of a shot gather, Tgi(t) is the corresponding input

14



trace, mx is the maximum amplitude of the shot gather and mxi is the maximum amplitude of the

corresponding trace.

All other figures showing individual traces correspond to raw data without any further modifica-

tion.

3.1 Case 1: Homogeneous Medium

For this case, I assume that the medium has an acoustic velocity of 1800 m/s. I place a seismic

source at the center of the model, I also locate receivers in a radial configuration at 50 m and 100

m from the center of the source, with a receiver spacing of 5 degrees as shown in Figure 3.1. The

reference solution corresponds to a fine mesh with grid size h =1.5625 m and source radius of

2h. For all the GFEM cases the wave number used for the plane wave enrichments is 0.14 m−1,

calculated by dividing the source radial frequency by the medium velocity.

0°	

90°	

Figure 3.1: Homogeneous model with a seismic source in the center (yellow star) and two sets of receiver arrays (dotted
circles) at 50 m and at 100 m from the center of the source.
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3.1.1 Effect of Source Size

Since I am using a source with a finite dimension for these simulations, I investigate the effect

of source size on the accuracy of the GFEM solutions. Figure 3.2 and Figure 3.3 show the effect of

source radius on the simulated seismograms obtained with the GFEM approach. For these cases,

I used source radii equal to the mesh size and smaller than the mesh size. The plots show that to

obtain the best solution approximation the source radius should be at least equal (or greater) to the

mesh size as depicted in Figure 3.4.
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Figure 3.2: Homogeneous model: Seismograms for a receiver at 0 deg and 50 m from the source center (see Figure 3.1).
GFEM solutions correspond to a mesh size of 8h and source radius of 8h and 4h. (a) Seismograms for the reference
solution and 2 GFEM solutions with plane waves in 3 directions. (b) Seismograms showing the reference solution and 2
GFEM solutions with plane waves in 5 directions.
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Figure 3.3: Homogeneous model: (a) GFEM error for all seismograms at 50 m from the center of the source. (b) GFEM
error for all seismograms at 100 m from the center of the source.

R=h 

Figure 3.4: Sketch showing the minimum source radius required according to mesh size to get a good solution
approximation with the GFEM approach.
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3.1.2 Adding Refinement around the Source

To be able to match the source size to that of the reference solution applying the GFEM approach

in a course mesh, I implement some local mesh refinement around the source location as shown in

Figure 3.5. Figures 3.6 and 3.7 show the seimograms for two GFEM cases in which local mesh

refinement has been applied, exhibiting a good match with the reference solution. Figures 3.8 and

3.9 show the maximum cross correlation lag between GFEM solutions and the reference solution

for each seismogram at 50 m from the source center, as well as two error types; one related to

the maximum cross correlation (Emax) and the other one to the zero lag cross correlation (E0).

The lag fluctuates between -2 and 2 time steps for both GFEM cases. The observed maximum

error corresponds to (E0) and is around 3%. These results show that these GFEM solutions with

additional local mesh refinement around the source present an acceptable accuracy with respect to

the reference solution.

Figure 3.5: Coarse mesh with grid size of 8h used for GFEM simulations showing local mesh refinement around the
source location.
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Figure 3.6: Homogeneous model: Seismograms for a receiver at 0 deg. and 50 m from the source center (see Figure
3.1). GFEM solutions correspond to a mesh size of 8h and source radius of 2h. (a) Seismograms for the reference
solution and GFEM solution with plane waves in 3 directions. (b) Seismograms for the reference solution and GFEM
solution with plane waves in 5 directions.
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Figure 3.7: Homogeneous model: Seismograms for a receiver at 0 deg. and 100 m from the source center (see Figure
3.1). GFEM solutions correspond to a mesh size of 8h and source radius of 2h. (a) Seismograms for the reference
solution and GFEM solution with plane waves in 3 directions. (b) Seismograms for the reference solution and GFEM
solution with plane waves in 5 directions.
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Figure 3.8: Homogeneous model: Maximum cross correlation lag and errors for each receiver seismogram at 50 m
from the source center for 2 GFEM cases with mesh size 8h and source size 2h. (a) For the GFEM solution with 3
plane wave directions. (b) For the GFEM solution with 5 plane wave directions.
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Figure 3.9: Homogeneous model: Maximum cross correlation lag and errors for each receiver seismogram at 100 m
from the source center for 2 GFEM cases with mesh size 8h and source size 2h. (a) For the GFEM solution with 3
plane wave directions. (b) For the GFEM solution with 5 plane wave directions.
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3.1.3 Performance Comparison

To compare the accuracy and performance of GFEM solutions, I include two additional standard

FEM solutions. Figure 3.10 shows the seismograms at 50 m and 100 m from the source center for

two FEM solutions with coarser meshes than the reference solution. Figure 3.11 and 3.12 show

the corresponding maximum cross correlation lag and errors. These results reveal that the solution

accuracy deteriorates as the mesh size increases and in general the errors are greater than the GFEM

cases with additional mesh refinement.
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Figure 3.10: Homogeneous model: Seismograms for the reference solution and two additional FEM solutions with
mesh size 2h and 4h. (a) Seismograms at 0 deg and 50 m from the source center. (b) Seismograms at 0 deg and 100 m
from the source center.

Figure 3.13 shows the the mean error versus relative simulation time and standard deviation for

the additional standard FEM solutions and for various GFEM cases. the GFEM cases correspond to

solutions with a coarse mesh of 8h and with a source radius of 8h and 2h. An additional GFEM

result with mesh and source radius size of 4h is also presented. The relative simulation time were

calculated as a ratio taken with respect to the reference FEM solution and the mean error is the mean

of all seismogram errors at 50 and 100 m from the center of the source. For all the GFEM results,

except for the case of mesh size 4h and plane waves in 3 directions (q3_4h_4h), the mean error is
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Figure 3.11: Homogeneous model: Maximum cross correlation lag and errors for seismograms for each receiver at 50
m from the source center for 2 FEM cases. (a) For the FEM solution with mesh size of 2h. (b) For the FEM solution
with mesh size of 4h.
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Figure 3.12: Homogeneous model: Maximum cross correlation lag and errors for seismograms for each receiver at 100
m from the source center for 2 FEM cases (a) For the FEM solution with mesh size of 2h. (b) For the FEM solution
with mesh size of 4h.

lower than any of the two additional FEM cases. Among The GFEM cases, the examples with the

additional mesh refinement exhibit the least error and standard deviation. The GFEM solutions

also present a faster simulation time than the reference solution, it is around 0.2 times the reference

solution.
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Figure 3.13: Homogeneous model: Mean error vs relative time and standard deviation for various FEM and GFEM
cases. (a) Mean error vs relative time. (b) Mean error vs standard deviation

3.2 Case 2: Layered Medium with Low Velocity Layer

The model for this example is as shown in Figure 3.14, where hi and vi are the thickness and

acoustic velocity of i− th layer respectively. Notice that in this case the top layer presents a relative

low velocity respect to the other two. The source is located at a depth of - 50m and and at 400 m in

the horizontal coordinate. There are also 50 receivers spanning from 400 m, directly above from

the source, to 750 m in the horizontal coordinate very close to surface. For this case, I also find a

FEM reference solution in a fine mesh of size h with source radius of 2h. I find as well 2 additional

FEM solutions in mesh sizes of 2h and 4h. I also obtain GFEM solutions in a coarse mesh of 8h

and source sizes of 8h and 2h. For all the GFEM cases the wave number used for the plane wave

enrichments is 0.14 m−1, calculated by dividing the source radial frequency by the lowest velocity

(1800 m/s).

Table 3.1 shows the wavelength and wavenumber for the different layers according to their

velocity. It also shows the number of cells per wavelength for the different meshes used. Figure

3.15 shows the seismograms for the reference solution for the shot gather configuration of Figure

3.14.
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h1=100	m	v1=1800	m/s	

h2=200	m	v2=3500	m/s	

h3=100	m	v3=2500	m/s	

Figure 3.14: Three-layer model with a seismic source in the first layer (yellow star) and a horizontal array of 50
receivers close to surface as depicted by the dotted line.

Layer Velocity (m/s) Wavelength
λ (m)

Wavenumber
k (m−1)

Number cells per wavelength
in a mesh size of:
h 2h 4h 8h

1 1800 45 0.14 28.8 14.4 7.2 3.6
2 3500 87.5 0.07 56 28 14 7
3 2500 62.5 0.10 40 20 10 5

Table 3.1: Layered model: Table showing the velocity, wavelength and wavenumber for each layer, as well as the
number of cells per wavelength in different mesh sizes. Source frequency is 40 Hz and h =1.5625 m
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Figure 3.15: Layered model: Seismograms of the shot gather as depicted in Figure 3.14 of the reference solution.
Coefficient for the divergence correction is 2.5.
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Figure 3.16 presents the seismograms for different FEM solutions, including the reference one,

for receivers located at 400 m and 750 m in the horizontal coordinate. (See Figure 3.14). These

results show that FEM solutions degrade as the mesh gets coarser and as the receiver gets further

away from the source location. Figures 3.17 and 3.18 present GFEM solutions with 3 and 5 plane

wave directions and for source radii of 8h ( Figure 3.17) and 2h (Figure 3.18). In general, the

solution improves as the number of plane waves used increases and the source size decreases.

However the GFEM solutions with 3 plane waves directions present some ringing in the waveforms.

This observation suggests that 3 plane wave directions is too few to obtain a stable solution with

this mesh size.
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Figure 3.16: Layered model: Seimograms of the reference solution and 2 additional FEM solutions in coarser meshes.
(a) Seimograms from a receiver placed at 400 m in the layered model. (b) Seimograms from a receiver placed at 750 m
in the layered model.
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Figure 3.17: Layered model: Seismograms of the reference solution and 2 GFEM solutions with 3 and 5 plane wave
directions, using a mesh and source size of 8h. (a) Seimograms from a receiver placed at 400 m in the layered model.
(b) Seimograms from a receiver placed at 750 m in the layered model.
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Figure 3.18: Layered model: Seismograms of the reference solution and 2 GFEM solutions with 3 and 5 plane wave
directions, using a mesh size of 8h and source size of 2h. (a) Seimograms from a receiver placed at 400 m in the layered
model. (b) Seimograms from a receiver placed at 750 m in the layered model.
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Figure 3.19 presents the maximum cross correlation lag and two error types with respect to the

reference solution for the two FEM cases calculated at the 50 receiver seismograms . Notice that

the maximum cross correlation lag tend to increase as the receiver position gets further away from

the source center. This effect is stronger for the FEM case with the coarsest mesh (4h). The errors

corresponding for this FEM case are also the greatest. In general the error related to the maximum

cross correlation (Emax) is lower than the error related to the zero cross correlation E0, showing the

effect of mesh dispersion in the results.

Figures 3.20 and 3.21 present the maximum cross correlation lag and two types of error for

various GFEM cases for the 50 receiver seismograms. Figure 3.20 shows the effect of source size for

GFEM solutions with 3 plane waves directions and Figure 3.21 does it for the GFEM solution with

5 plane waves directions. These results reveal that the errors decrease for GFEM solutions when

compared to the 2 FEM cases in Figure 3.19 and that decreasing source radius further decreases the

errors. Notice that, specially for the GFEM case with 5 plane wave directions, the lag and error are

consistent across the 50 receivers, revealing less dispersive effects despite of using a very coarse

mesh.
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Figure 3.19: Layered model: Maximum cross correlation lag and errors for each receiver seismogram for 2 FEM cases.
(a) For the FEM solution with mesh size of 2h.(b) For the FEM solution with mesh size of 4h.
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Figure 3.20: Layered model: Maximum cross correlation lag and errors for each receiver seismogram for 2 GFEM
solutions with 3 plane wave directions and mesh size of 8h. (a) For the GFEM solution with source size of 8h. (b) For
the GFEM solution with source size of 2h
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Figure 3.21: Layered model: Maximum cross correlation lag and errors for each receiver seismogram for 2 GFEM
solutions with 5 plane wave directions and mesh size of 8h. (a) For the GFEM solution with source size of 8h. (b) For
the GFEM solution with source size of 2h

Figure 3.22 shows the mean error versus relative simulation time and standard deviation for

the FEM solutions and for various GFEM cases. According to theses results, the GFEM cases are

faster than the FEM reference solution and than the FEM solution in a mesh of 2h inclusive. The

fastest solutions belong to the GFEM solutions implemented with 3 plane waves directions, due to

29



their lower number of DOFs. Regarding the mean error, all but one GFEM solution present lower

error than any of the FEM solutions is coarser meshes of 2h and 4h, and the GFEM solutions with

5 plane waves directions presents the 2 lowest errors. For the standard deviation, results trends

resemble those of the mean error vs time, with lower standard deviation corresponding to the GFEM

cases except one and with the 2 lowest standard deviation corresponding to the GFEM solutions

with 5 plane wave directions. Observe as well that the accuracy of GFEM results improve with the

smallest source size.
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Figure 3.22: Layered model: Mean error vs relative time and standard deviation for various FEM and GFEM cases. (a)
Mean error vs relative time. (b) Mean error vs standard deviation.
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3.3 Case 3: Model with Karst Inclusion (Scattering Model)

The model for this example is as shown in Figure 3.23. This model is similar to the layered

model, however for this case the top layer velocity is half of that in the layered model, to simulate a

poor consolidated layer. This model also presents a karst inclusion which is assumed to be full of

water. The main goal of this simulation model is to show the capability of the GFEM approach to

combine flexible local refinement with its computational efficiency.

In this model, The source is located at the same position as in the layered model: -50 m in the

vertical coordinate and 400 m in the horizontal coordinate and has a frequency of 40 Hz. There are

100 receivers placed close to the surface and span from 50 m to 750 m in the horizontal coordinates.

Table 3.2 shows the velocity, wavelengths and wavenumbers for each of the geological features

present in the model. It also shows the number cells per wavelength for different mesh sizes.

h1=100	m	v1=900	m/s	

h2=200	m	v2=3500	m/s	

h3=100	m	v3=2500	m/s	

v4=1500	m/s	

Figure 3.23: Scattering model with a seismic source in the first layer (yellow star) and a horizontal array of 100 receivers
close to surface as depicted by the dotted line.

For the reference solution, I use a similar mesh as in Figure 3.24, but for this case the mesh size

is h except for the top layer, for which a mesh size of h/2 is used. I use similar coarser meshes -

of sizes 2h and 4h and top layer mesh sizes of h and 2h correspondingly - to run two additional
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Feature
Velocity
(m/s)

Wavelength
λ (m)

Wavenumber
k (m−1)

Number of cells per wavelength in a
mesh size of :
h/2 h 2h 4h 8h

1 900 22.5 0.28 28.8 14.4 7.2 3.6 1.8
2 3500 87.5 0.07 112 56 28 14 7
3 2500 62.5 0.10 80 40 20 10 5
4 1500 37.5 0.17 48 24 12 6 3

Table 3.2: Scattering model: Table showing the velocity, wavelength and wavenumber for each geological feature in the
model, as well as the number cells per wavelength in different mesh sizes. Source frequency is 40 Hz and h =1.5625 m

FEM cases. For the GFEM simulation cases I use two mesh configurations: one as shown in Figure

3.25, with a background mesh size of 8h and of size 4h for the top layer. The second mesh is as in

Figure 3.26, which is similar to the first one but with additional refinement around the karst feature.

The goal of this additional refinement is to conform better to the karst geometrical shape, and as

consequence obtain a more accurate simulation. For all the GFEM cases the wave number used for

the plane wave enrichments is 0.28 m−1, calculated by dividing the source radial frequency by the

lowest geological feature velocity (900 m/s).

Figure 3.24: Scattering model: Example of one of the meshes used for the standard FEM simulations. The original
mesh with grid size of 4h is subdivided in half (2h) at the top layer.
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Figure 3.25: Scattering model: Example of a type of mesh used for the GFEM simulations. The original mesh with grid
size of 8h is subdivided in half (4h) at the top layer.

Figure 3.26: Scattering model: Example of a type of mesh used for GFEM simulations. This mesh is similar to the
mesh in Figure 3.25 with additional refinement around the karst inclusion.
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Figure 3.27 shows the seismogram of the shot gather for the reference solution. Prominent

features are the direct wave, the reflection at the bottom of the top layer and the multiple scattering

effects produced by the karst inclusion.
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Figure 3.27: Scattering model: Seismograms of the shot gather for the reference solution. Divergence coefficient is 2.5
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Figure 3.28 shows the seismograms for the reference solution and 2 additional FEM simulation

cases with coarser meshes for receivers placed at 156.1 m and 580.3 m in the horizontal coordinate.

As expected simulation results deteriorate in accuracy as the mesh is coarsened when compared to

the reference solution.

Figures 3.29 and 3.30 show the seismograms for the reference solution and GFEM simulation

cases with 5 plane wave directions obtained for receivers placed at 156.1 m and 580.3 m in the

horizontal coordinate respectively. In both of these figures I compare the effect of source size and

of the additional refinement around the karst feature. As found in the layered model example, a

decrease in source size improves the accuray of the simulation result. The additional refinement

around the karst feature also improves the match of reflections coming at later times with the

reference solution as pointed by the arrows in the figures.

Figure 3.31 shows the seismograms for the reference solution and for a GFEM simulation case

with 3 plane wave directions obtained for receivers placed at 156.1 m and 580.3 m in the horizontal

coordinate respectively. I this case I use a mesh as in figure 3.24 with no additional refinement

around the karst inclusion. This is the same mesh used for the FEM case with the coarsest mesh.

However, when compared the results of GFEM with that of the corresponding FEM in figure 3.28,

the GFEM outcomes are much more accurate.
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Figure 3.28: Scattering model: Seismograms of the reference solution in a mesh size of h and h/2 at the top layer and
for 2 additional FEM solutions in coarser meshes. (a) Seimograms from a receiver located at 156.1 m in the horizontal
coordinate. (b) Seimograms from a receiver located at 580.3 m in the horizontal coordinate.

(a) (b)

Figure 3.29: Scattering model: Seismograms from a receiver located at 156.1 m in the horizontal coordinate for the
reference solution and GFEM solutions obtained with 5 plane wave directions and with a source radius of 2h and 8h.
(a) Seismograms showing GFEM solutions obtained in a mesh as in Figure 3.25. (b) Seismograms showing GFEM
solutions obtained in a mesh as in Figure 3.26. Arrows show the difference in the GFEM seismograms.
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(a) (b)

Figure 3.30: Scattering model: Seismograms from a receiver located at 580.3 m in the horizontal coordinate for the
reference solution and GFEM solutions obtained with with 5 plane wave directions and a source radius of 2h and 8h.
(a) Seismograms showing GFEM solutions obtained in a mesh as in Figure 3.25. (b) Seismograms showing GFEM
solutions obtained in a mesh as in Figure 3.26. Arrows show the difference between the GFEM seismograms in (a) and
(b).
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Figure 3.31: Scattering model: Scattering model: Seismograms from a receiver located at 580.3 m in the horizontal
coordinate for the reference solution and a GFEM solution obtained with 3 plane wave directions, in a mesh of size 4h
and 2h at the top layer and with a source radius of 2h.

37



Figure 3.32 presents the maximum cross correlation lag and two error types with respect to the

reference solution, calculated for the two FEM simulations across the 100 receiver seismograms.

As noted in the layered model error analysis, the maximum cross correlation lag and the associated

errors increase as the receivers get further away from the source center (400 m). This effect is the

greatest for the FEM with the coarsest mesh. As also noted before, the error related to the maximum

cross correlation (Emax) is lower than the one related to the zero lag cross correlation (E0) and

their difference increases as the source-receiver offset increases. These results show not only the

numerical error as the seismic wave travels further away from the source but also the dispersion

error caused by increasing the mesh size.

Figures 3.33 and 3.34 show the maximum cross correlation lag and two error types with respect

to the reference solution for several GFEM cases obtained with 5 plane wave directions. Each of

these figures compare the effect of refinement around the karst inclusion as source size is kept

constant. Note that in both figures, there are results spiking up from the average. These spikes

correspond to receivers located at 467.2 m and 474.2 m. I examine possible causes of these

anomalous outputs in the appendix. Disregarding the two irregular outputs in all figures, the effect

of the additional refinement around the karstic feature is practically imperceptible, however the

effect of decreasing source size is evident, causing a decrease in the errors. Overall, as mentioned

for the layered model, errors are consistent across the 100 receivers, showing little dispersion

effect. Figure 3.35 shows the maximum cross correlation lag and two error types with respect to

the reference solution for an additional GFEM case obtained with 3 plane wave directions. For

this case, a minimum error lag of -1 time step exist for the receivers at both ends and in general

the errors are consistent in average across the 100 receivers, increasing slightly as the receivers get

further away from the center of the source.

38



100 200 300 400 500 600 700
receiver position (m)

0

1

2

3

4

5

m
ax

 C
C 

lag
 (t

im
e s

te
ps

)

fem_2h

max CC lag 
Error (Emax)

Error (E0)

0.02

0.04

0.06

0.08

0.10

Er
ro

r
(a)

100 200 300 400 500 600 700
receiver position (m)

2

4

6

8

10

12

14

16

18

m
ax

 C
C 

lag
 (t

im
e s

te
ps

)

fem_4h

max CC lag 
Error (Emax)

Error (E0)

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

(b)

Figure 3.32: Scattering model: Maximum cross correlation lag and errors for 100 receiver seismograms for the 2 FEM
cases. (a) For the FEM solution with mesh size of 2h and h at the top layer. (b) For the FEM solution with mesh size of
4h and 2h at the top layer.
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Figure 3.33: Scattering model: Maximum cross correlation lag and errors for 100 receiver seismograms for 2 GFEM
cases with 5 plane wave directions and source size of 8h. (a) For the GFEM solution with mesh as in Figure 3.25. (b)
For the GFEM solution with mesh as in Figure 3.26, which adds refinement around the karst feature.
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Figure 3.34: Scattering model: Maximum cross correlation lag and errors for 100 receiver seismograms for 2 GFEM
cases with 5 plane wave directions and source size of 2h. (a) For the GFEM solution with mesh as in Figure 3.25. (b)
For the GFEM solution with mesh as in Figure 3.26, which adds refinement around the karst feature.
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Figure 3.35: Scattering model: Maximum cross correlation lag and errors for 100 receiver seismograms for a GFEM
solution with 3 plane wave directions, mesh size of 4h and 2h at the top layer, and with source size of 2h.
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Figure 3.36 shows the mean error versus relative simulation time and standard deviation for

the FEM and GFEM cases. Regarding GFEM results,the fastest times correspond to the GFEM

solutions with 5 plane wave directions, the coarsest mesh and the biggest source size (8h), but the

smallest errors correspond for the GFEM solutions with the smallest source size(2h), either for 3 or

5 plane wave directions. In general the effect of the additional refinement around the karst feature is

very mild and can be noticed as a slightly lower standard deviation.
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Figure 3.36: Scattering model: Mean error vs relative time and standard deviation for various FEM and GFEM cases.
(a) Mean error vs relative time. (b) Mean error vs standard deviation.
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3.4 Case 4: Model with Topography (Topographic Model)

The model for this example is as shown in Figure 3.37. This model is similar to the scattering

model, but for this case a topographic relief is present on the top layer with the same velocity (900

m/s). In this simulation, the objective is to show the GFEM capability to handle the meshing of

geometrically complex domain boundaries while keeping its computational efficiency.

In this model, the source is located in the same position as in the previous models: -50 m in the

vertical direction and 400 m in the horizontal coordinate, and has a frequency of 40 Hz. The receiver

array geometrical configuration is the same as in the scattering model: 100 receivers deployed very

close to zero depth and spanning from 50 to 750 m in the horizontal coordinates. Table 3.3 shows

the velocity, wavelengths and wavenumber for the top layer. It also shows the number number of

cells per wavelength in different refined mesh sizes. Table 3.4 shows similar information for the

remaining geological features.

For this case, I apply a free boundary condition at the curvy top layer boundary to simulate

the multiple chaotic reflections produced by waves bouncing back and forth between the top and

bottom boundaries of this first layer with topography. To find a reference solution I use a similar

mesh as in Figure 3.38, but for this case the mesh sizes were h and 0.6h for the top layer with relief.

I used similar but coarser meshes - of sizes 2h and 4h with top layer mesh sizes of 0.6(2h) and

0.6(4h) correspondingly- to run two additional FEM cases. For the GFEM simulations, I use the

mesh configuration as in Figure 3.38 - for the GFEM case with 3 plane wave directions; and the

meshes as in Figures 3.39 and 3.40 for the GFEM cases with 5 plane wave directions. For all the

GFEM cases the wave number used is 0.28 m−1, calculated by dividing the source radial frequency

(2π 40) by the lowest geological feature velocity (900 m/s).
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v1=900	m/s	

h2=200	m	v2=3500	m/s	

h3=100	m	v3=2500	m/s	

v4=1500	m/s	

Figure 3.37: Seismic model including both topography and karst inclusion. The seismic source is located in the first
layer (yellow star) and a horizontal array of 100 receivers is located close to zero depth as depicted by the dotted line.

Feature
Velocity
(m/s)

Wavelength
λ (m)

Wavenumber
k (m−1)

Number of cells per wavelength in a mesh
size of :
0.6 (h) 0.6 (2h) 0.6 (4h) 0.6 (8h)

1 900 22.5 0.28 24 12 6 3

Table 3.3: Topographic model: Table showing the velocity, wavelength and wavenumber for the top layer in the model,
as well as the number cells per wavelength in different mesh sizes. Source frequency is 40 Hz and h =1.5625 m

Feature
Velocity
(m/s)

Wavelength
λ (m)

Wavenumber
k (m−1)

Number of cells per wavelength in a
mesh size of :
h 2h 4h 8h

2 3500 87.5 0.07 56 28 14 7
3 2500 62.5 0.10 40 20 10 5
4 1500 37.5 0.17 24 12 6 3

Table 3.4: Topographic model: Table showing the velocity, wavelength and wavenumber for the remaining geological
features in the model, as well as the number cells per wavelength in different mesh sizes. Source frequency is 40 Hz
and h =1.5625 m
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Figure 3.38: Topographic model: Example of one of the meshes used for the standard FEM simulations. Mesh size is
0.6(4h) in the top layer with topographic relief and 4h in the rest of the model.

Figure 3.39: Topographic model: Example of one of the meshes used for the GFEM simulations. Mesh size is 0.6(8h)
in the top layer with topographic relief and 8h in the rest of the model.
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Figure 3.40: Topographic model: Example of one of meshes used for the GFEM simulations. This mesh is similar to
the one in Figure 3.39 but with additional refinement around the karst inclusion.
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Figure 3.41 shows the seismograms for the shot gather configuration shown in Figure 3.37

obtained for the reference solution. Observe that the seismograms are saturated with multiple

reflections produced by waves bouncing between the top and bottom boundaries of the first layer.

These reflections hinder the visualization of other reflections produced at the boundaries of the

other two deeper layers and of the karst inclusion.
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Figure 3.41: Topographic model: Seismograms for the shot gather configuration as in Figure 3.37 obtained for the
reference solution. Divergence coefficient is 1.5.
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Figure 3.42 shows the seismograms for the reference solution and 2 additional FEM simulations

obtained in coarser meshes at a receiver located at 580.3 m in the horizontal coordinate. Notice

the complex waveform reflections and that this additional FEM solutions cannot reproduce various

complicated details of the reference waveform.

Figure 3.43 shows the seismograms for the reference solution and GFEM simulations obtained

with 5 plane wave directions at a receiver located at 580.3 m in the horizontal coordinate. Sub-

figures (a) and (b) correspond to meshes without and with refinement around the karstic feature

respectively. Notice that since the multiple reflections at the top layer overshadow other incoming

reflections, there is no visible improvement of the additional refinement performed around the karst

feature as it was evident in the case of the scattering model.

Figure 3.44 shows the seismograms for the reference solution and GFEM simulations obtained

with 3 plane wave directions at a receiver located at 580.3 m in the horizontal coordinate. This

GFEM solution was obtained in a mesh as shown in Figure 3.38, which is a finer mesh than the

ones used for the GFEM solutions as in Figure 3.43. Notice the improvement in the match of the

waveforms with the reference solution. However, this increase in accuracy due to a decrease in

mesh size affects the efficiency of the simulation time as more DOFs are needed. See Figure 3.49

for details in the simulation time and errors.
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Figure 3.42: Topographic model: Seismograms for a receiver at 580.3 m in the horizontal coordinate, for the FEM
reference solution with a mesh of size h and 0.6h at the top layer, and additional FEM solutions obtained in coarser
meshes. (a) Seismograms showing the reference solution and 2 additional FEM solutions. (b) Same as (a) but
disregarding the FEM solution in the coarsest mesh.
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Figure 3.43: Topographic model: Seismograms for a receiver at 580.3 in the horizontal coordinate, for the FEM
reference solution and various GFEM cases obtained with 5 plane wave directions and source radius of 8h and 2h. (a)
Seismograms for the reference solution and 2 GFEM cases obtained in a mesh as in Figure 3.39. (b) Seismograms for
the reference solution and 2 GFEM cases obtained in a mesh as in Figure 3.40, which presents refinement around the
karst feature.
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Figure 3.44: Topographic model: Seismograms for a receiver at 580.3 in the horizontal coordinate of the FEM reference
solution and a GFEM case obtained with 3 plane wave directions, mesh as in Figure 3.38 and source radius of 8h and
2h.
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Figure 3.45 present the maximum cross correlation lag and two error types with respect to the

reference solution, calculated for two FEM simulations across the 100 receivers of the model. As

with the results for the previous models, the lag and errors increase as the receivers get further away

from the source center in the horizontal coordinate (400 m), with the greatest effect for the FEM

with the coarsest mesh. For this FEM case (sub-figure (a)), the maximum cross correlation lag goes

up to 18 time steps and errors take values as high as more than 0.6. As discussed before, these

errors evidence the effect of dispersion which worsen as grid size becomes coarser.

Figures 3.46 and Figure 3.47 present the maximum cross correlation lag and two error types

with respect to the reference solution calculated for various GFEM simulations obtained with 5

plane wave directions across the 100 receivers of the model. For each figure, the corresponding

sub-figures present results for meshes without and with additional mesh refinement around the karst

feature, keeping source radius constant respectively. As mentioned before, the effect of the karst

feature on the results are imperceptible. On the other hand, notice that the lag and errors do not

vary much across the receivers, with the least errors corresponding to the GFEM cases with the

smallest source radius. As already mentioned, these results show that despite the coarse mesh used,

the enrichments implemented in the GFEM approach diminish dispersion effects, and that matching

the source size to that of the reference solution further improves the accuracy of the outputs.

Figure 3.48 presents the maximum cross correlation lag and two error types with respect to the

reference solution, calculated for a GFEM case obtained with 3 plane wave directions across the

100 receivers of the model. This is the GFEM solution obtained in the finest mesh of all GFEM

cases, same mesh as the coarsest mesh used for the FEM cases. Notice that there is no lag present

across all the receivers for the maximum cross correlation and the errors are comparable to those

corresponding to the best solution of the GFEM cases with 5 plane wave directions.
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Figure 3.45: Topographic model: Maximum cross correlation lag and errors for 100 receivers for 2 FEM cases. (a) For
the FEM solution in a mesh size of 2h and 0.6(2h) at the top layer. (b) For the FEM solution in a mesh size of 4h and
0.6(4h) at the top layer.
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Figure 3.46: Topographic model: Maximum cross correlation lag and errors for 100 receivers for 2 GFEM cases with
5 plane wave directions and source radius of 8h. (a) For the GFEM solution in a mesh as in Figure 3.39. (b) For the
GFEM solution in a mesh as in figure 3.40, which adds refinement around the karst feature.
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Figure 3.47: Topographic model: Maximum cross correlation lag and errors for 100 receivers for 2 GFEM cases with
5 plane wave directions and source radius of 2h. (a) For the GFEM solution in a mesh as in Figure 3.39. (b) For the
GFEM solution in a mesh as in figure 3.40, which adds refinement around the karst feature.
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Figure 3.48: Topographic model: Maximum cross correlation lag and errors for 100 receivers for a GFEM case with 3
plane wave directions in a mesh as in Figure 3.38.
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Figure 3.49 shows the mean error versus relative simulation time and standard deviation for the

FEM and GFEM cases. Regarding GFEM results, the fastest time correspond to the case with 5

plane wave directions, coarse mesh without refinement around the karst inclusion and the biggest

source size. Correspondingly, 3 GFEM cases present the samllest error, 2 of them with five plane

wave directions and the smallest source size and the other one correspond to the GFEM case with

3 plane wave directions. These cases also show small standard deviation with the smallest one

belonging to the GFEM case with 3 plane wave directions.
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Figure 3.49: Topographic model: Mean error versus relative time and standard deviation for various FEM and GFEM
cases. (a) Mean error vs relative time. (b) Mean error vs standard deviation.
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4. DISCUSSION

In this work I explored the possible benefits of implementing the GFEM over the standard

FEM using models relevant to exploration seismology. The corresponding results show that the

plane wave enrichments used in the GFEM implementation have a positive effect in the simulation

efficiency, showing a lower simulation time, around a fifth of a reference solution, with acceptable

accuracy, which could be as low as 5% from the reference, and low dispersion effects, with constant

error despite of the azimuth or increased distance from the source. The main factor contributing to

this this outcome is the implementation of additional user-defined basis functions. Specifically for

this case, I implemented plane waves in different directions with a wave number equal to the highest

wave number among the geological features represented in each of the seismic models. Although

in the GFEM approach the number of DOF per cell increases, corresponding to the standard plus

enriched basis functions, this effect is counteracted by the use of coarser meshes, which, depending

on the number of plane waves implemented, can decrease the global DOF of the system. For

the examples presented, I used meshes of sizes 8h and 4h with 5 and 3 plane wave directions.

A salient observation is that using coarse meshes with few directions produce seismograms with

ringing characteristics as in case 2, in which I included a GFEM solution with mesh size of 8h

with 3 plane waves (Figures 3.18 and 3.18). These results suggest that there is a maximum mesh

size to use according to the number of plane wave directions implemented to obtain artifact-free

seismograms. In general, these results indicate that as the mesh is coarsened, more directions are

needed. However, there is a limit on how coarse the mesh could be, since one wavelength must

be sampled by a minimum number of cells to obtain a stable solution. For the cases presented in

this work, the smallest wavelength is covered at least by 3 cells in the coarsest mesh used for the

GFEM simulations. (See Table 3.3). To explore the effect of fewer cells sampling a wavelength, I

run a GFEM simulation for the case with topography, but for this test I do not consider a finer mesh

size a the top layer but keep the mesh size constant and equal to 8h and I consider 7 plane wave

directions for the additional basis functions. Under these conditions one wavelength at the top layer
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is covered by 1.8 cells. Figure 4.1 compares the seismograms for the reference solution and this test

simulation. Notice the excessive ringing of the GFEM solution. This observation suggests that the

smallest wavelength should be sampled at least by 3 cells in a mesh to obtain a stable solution.
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Figure 4.1: Topographic model: Seismograms of the reference solution and a GFEM case with 7 wave plane directions
in a coarse mesh of 8h for a receiver located at 580.3 in the horizontal coordinate.

A similar effect on the accuracy of the solution is produced by the mesh - source size relationship

as explored in case 1. In this case, I showed that the source radius needs to be at least equal to the

mesh size to improve the accuracy of the GFEM simulations. Nevertheless, a way to circumvent

this requirement and implement a smaller source size than the background mesh is to perform

local mesh refinement around the source. Evidently, this additional refinement increases the overall

DOFs of the sytem, but as results show (See for instance Figures 3.13 and 3.36), this effect in the

simulation time is minimal, with the additional benefit of further reducing the simulation errors.

In this work, I have also shown important advantages of the GFEM as in the implementation

of flexible meshing with conforming and non-conforming local mesh refinement. These features

have been exploited not only when performing local refinement around the source to implement

smaller source sizes but also in the meshing of complex boundaries as in cases 3 and 4, in which

a karst structure and topographic relief are included in the geological models. In case 3, the

scattering model shows the benefit of including the additional refinement around the karst inclusion
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to conform better to its boundary. As shown in Figures 3.29 and 3.30, this additional refinement

improved the accuracy of reflections coming from the karst boundaries. In case 4, the topographic

model, unstructured meshes make possible to generate boundary-conforming meshes along the the

topographic relief. As discussed in the introduction, this is one of the most problematic issues when

using finite difference methods, since finite difference does not allow in a straight forward manner

to implement unstructured meshes with local refinement.

An aspect that is relevant for the computational efficiency of the simulations, but not explored in

this work, is related to appropriate techniques for solving the matrix equation at every time step. To

solve this type of equation is, in general terms, very costly for continuous FEM approaches, including

GFEM, since it involves the inversion of commonly large, albeit sparse, mass matrices [De Basabe

and Sen, 2009]. For this work, I used a direct multifrontal solver based on the LU factorization

since this method can handle sparse and rank-deficient matrices as they may occur in the GFEM

approach. However it is known that the efficiency of these type of solvers degrades for large

systems. Nevertheless, recent developments in direct solver algorithms are providing more efficient

techniques as for the case of direct solvers with QR factorization as applied in [Bogiatzis et al.,

2016]. A more common and effective approach to handle large systems is to diagonalize the

mass matrix by applying mass lumping techniques [Jensen, 1996] as a preconditioning step. Yet, a

completely different methodology that can provide a good improvement in efficiency is to implement

a discontinuous Galerkin (DG) FEM-GFEM formulation, instead of a continuous one, as suggested

in [Hiptmair et al., 2016]. An important advantage of the DG formulation is that it produces a block

diagonal mass matrix [Grote et al., 2006] that is more amenable to invert, saving computational

cost.
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5. CONCLUSION

The results for the seismic models presented show that the GFEM approach for the acoustic

wave simulation has a positive impact in improving the computational efficiency compared to a

reference solution obtained with the standard FEM in a fine mesh, with overall good accuracy and

low dispersion effects. This acceleration happens because the GFEM technique allows to use coarser

meshes, as user defined basis functions are incorporated to improve the solution approximation. For

this work,this user defined basis functions are plane waves in different directions with a wavenumber

equal to the highest wavenumber in the medium. For the examples presented, these enrichments are

capable to approximate the radial behavior of the acoustic wave propagation and its characteristic

wavelength. However, there is a trade off between mesh size and number of plane wave directions.

In general, as the mesh size increases, the number of plane wave directions needs to be increased

as well to keep the solution free of artifacts. Thus, The essential aspect in this methodology is to

use the minimum number of plane wave directions and the coarsest possible mesh, and still obtain

a solution free of artifacts together with a faster convergence. However, the maximum mesh size

cannot be increased indefinitely at will since it is constrained by the smallest wavelength in the

medium, as this wavelength must be sampled by a minimum number of cells for the solution to

present a low error and be free of artifacts. Our results show that the smallest wavelength should

be covered at least 3 cells to obtain a good solution. Since the maximum mesh size depends on

the wavenumber of the medium, then it is also related to the wave frequency - velocity ratio of the

medium. This detail evidences that this particular GFEM implementation takes into account the

effect of an external source and not only the properties of the medium.

On the other hand, in this work I also showed the ease with which flexible refinement can be

incorporated with the GFEM approach, and in general with any FEM-related approaches. This is an

important advantage since it allows to conform the mesh to complex geometrical boundaries which

are commonly encountered in geological structures, and in this work I specifically treated the case

of a karst inclusion and topography. This precise meshing allows an accurate simulation without
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the staircase effect or excessive mesh refinement that are, for instance, commonly present in finite

difference implementations.
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APPENDIX A

ANALYSIS OF ANOMALOUS GFEM SEISMOGRAMS

In this appendix I analyze the anomalous results obtained in two of the 100 receiver arrays for

the scattering model presented in section 3. These irregular outputs are evident in Figures 3.35 and

3.36 which show the maximum correlation lag and two types of error for GFEM simulation cases

obtained with 5 plane wave directions. In these figures, the results corresponding to the receivers

placed at 467.2 and 474.2 m are outliers that strongly deviate from the average trend.

Figure A.1 shows traces for the reference solution and for the GFEM solution presenting the

aforementioned issues in the red colored red trace. Notice that the traces for the FEM solution

smoothly shift in time from receiver to receiver. However, for the GFEM solution, the two traces

in red present abrupt changes. Figure A.2 show the maximum cross correlation lag and errors

for the receiver array for this GFEM solution, together with the highlighted cells for which the

corresponding receivers present spikes in the results. Figures A.2 and A.4 show similar outputs as

in Figure A.2. However for this cases the receiver spacing has been increased by 0.1 m and 0.2

m correspondingly to obtain the GFEM solutions. Notice that in Figure A.3(a) there is only one

spike present and that in A.3(b) there is not a receiver located to the left of the highlighted grid, and

that the highlighted grid is the same as one of the shaded ones in the previous Figure. In Figure

A.4, two spikes are visible again corresponding to the same grids as in Figure A.2. Although these

observations do not provide with the underlying cause for these anomalies, it suggest that for the

mesh used for these GFEM cases, this errors are associated with receivers located at the highlighted

grids in Figures A.2 and A.3. However, further investigation is needed to find the source of these

systematic irregularity.
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Figure A.1: Scattering model: (a) Traces for the FEM reference solution, red colored traces belong to those that present
an anomaly in the GFEM cases in question. (b) Traces for a GFEM solution showing in red those that deviates from the
average trend.
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Figure A.2: Scattering model: (a) Maximum cross correlation lag and errors for the GFEM case in Figure A.1(b). (b)
Mesh grid and receiver location with highlighted grids corresponding to the receiver positions where the spikes occur.
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Figure A.3: Scattering model: Figures obtained when shifting the receivers 0.1 m to the right for the GFEM solution. (a)
Maximum cross correlation lag and error for the GFEM solution. (b) Mesh grid and receiver location with highlighted
grids corresponding to the receiver position where the spikes occur
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Figure A.4: Scattering model: Figures obtained when shifting the receivers 0.2 m to the right for the GFEM solution. (a)
Maximum cross correlation lag and error for the GFEM solution. (b) Mesh grid and receiver location with highlighted
grids corresponding to the receiver positions where the spikes occurs.
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