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ABSTRACT 

 

The application of statistical analysis and data analytics is not widespread in the 

petroleum industry, but is gaining recognition and will be applied more in the future. 

Applying these tools could improve the accuracy and precision of results, which could 

have a positive effect on the decision-making process. Therefore, both statistical analysis 

and data analytics constituted the core of this research to generate an efficient systematic 

workflow that was applied to study one of the major problems that characterize the 

complex shale reservoirs, namely how to improve their low recovery factor (RF).  

A simulation-based design-of-experiments (DoE) workflow was developed to 

optimize the design of four recovery schemes to maximize the low RF in Eagle Ford shale. 

These schemes are primary production (PP), waterflooding, continuous miscible gas 

flooding, and miscible gas huff ’n’ puff. The workflow was used to pinpoint the optimum 

spots in the multidimensional variable space. Using an innovative injection pattern that 

relies on alternating injection and producing fractures along the same lateral, continuous 

miscible gas flooding was found to have the highest potential to maximize RF. Developing 

this injection pattern might be the next breakthrough to boost the low shale RF.  

Adequate representation of the complex and challenging shale reservoirs using 

numerical simulation necessitates making many uncertain assumptions, which could affect 

the reliability of its results. Leveraging less presumptive techniques like data analytics 

(DA) is required to validate modeling results. Both DA and DoE were applied on a Bakken 

shale PP case study. Results showed that RF has a physical limit that cannot be exceeded 
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by merely optimizing PP, which can only accelerate oil production and cash flow. 

Metamodeling was used for optimization and quantifying the effects of uncertainties in 

reservoir characteristics and design variables.  

The main purpose of this research is to illustrate the use of DoE in the oil and gas 

industry. DoE provides a systematic research framework that can be leveraged for an 

efficient exploration of the multidimensional variable space to pinpoint the optimum spots. 

This framework produces statistically-based conclusions and data-driven facts, which 

could improve the objectivity of the decision-making process.  

We hope that this work could help encourage petroleum researchers and engineers 

to incorporate statistics at the heart of industrial and academic research and problem-

solving tools, and to learn and apply DoE regardless of the type of experiments that they 

conduct; physical experiments, simulation runs, or field trials.  
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1. INTRODUCTION AND LITERATURE REVIEW 

 

The application of statistical analysis and data analytics is not widespread in the 

petroleum industry, but is gaining recognition and will be applied more in the future. 

Applying these tools could improve the accuracy and precision of results, which could 

have a positive effect on the decision-making process. Therefore, both statistical analysis 

and data analytics constitute the core of this research to generate an efficient systematic 

workflow that can be applied to study one of the major problems that characterize the 

complex shale reservoirs, namely how to improve their low recovery factor (RF).  

The Energy Information Administration (EIA 2013) estimated that the total risked 

shale oil in place is around one trillion barrels (Tbbl) for the US, and around seven Tbbl 

for the world. These numbers might be highly conservative due to lack of data (Maugeri 

2012). Over the past decade, the technological improvements in horizontal wells and 

multistage hydraulic fracturing have opened access to these vast oil resources, which were 

earlier considered uneconomical. In 2015, the US produced about 4.9 million barrels per 

day (bpd) of crude oil from shale oil resources, which represented around 52% of its total 

crude oil production (EIA 2016a). However, the RF from shale is low, ranging from 1 to 

10% of the original oil in place (Clark 2009; Hoffman 2012; Chen 2013; Gamadi 2014; 

Kathel and Mohanty 2013; Joshi 2014; Morsy 2014; Sheng and Chen 2014; Sheng 2015). 

In the last decade, several hundred studies (experimental and numerical simulation) 

investigated several improved oil recovery (IOR) techniques to improve the low RF of 

shale plays. Alfarge et al. (2017) reviewed many of such studies. The studied IOR 
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techniques include waterflooding (WF), huff and puff miscible gas injection (HNP), and 

miscible continuous gas flooding (CON).  

1.1 Waterflooding 

Many researchers applied simulation to evaluate waterflooding (WF) potential to 

improve oil recovery in shale reservoirs (Table 1.1). Some found out that WF could have 

large impact on RF (Wang et al. 2010; Morsy et al. 2013; Sheng and Chen 2014; Kong et 

al. 2016). On the other hand, there are some other researchers who found out that WF does 

not produce appreciable improvement in RF (Iwere et al. 2012; Dong and Hoffman 2013; 

Kurtoglu 2014; Nguyen et al. 2015). The ultra-low permeability of shale is probably the 

main cause of the very poor injectivity during WF (Chen 2013; Fai-Yengo et al. 2014; 

Sheng and Chen 2014; Nguyen et al. 2015). Although the general trend in the literature is 

to rule out WF as a potential IOR technique (Sheng 2015), some contradiction still exists 

in the reported results. In addition, the number of WF studies is small. Thus WF is 

considered in this work just for the purpose of comparison.  

 

Reference Primary RF, % WF RF, % RF increment, % 

Kong et al. (2016) - - up to 10 

Morsy et al. (2013) 12 up to 21 9 

Sheng and Chen (2014) 6.5 11.9 5.4 

Wang et al. (2010) 3.64 8.3 4.66 

Kurtoglu (2014) - - 1.12 

Dong and Hoffman (2013) - - 0.94 

Nguyen et al. (2015) - - 0.45 

Iwere et al. (2012) - - 0.3 

Table 1.1—RF improvement in the literature for WF. 
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1.2 Miscible Gas Enhanced Oil Recovery  

Based on the Enhanced Oil Recovery (EOR) screening guidelines developed by 

Taber (1983) and Taber et al. (1997), Iwere et al. (2012) concluded that gas injection 

methods are the most suitable EOR technique for Bakken and Three Forks shale 

formations. According to the available literature on EOR in shale oil plays, Sheng (2015) 

concluded that miscible gas injection is more efficient than WF. Table 1.2 summarizes 

some of the results in the literature.  

Six of the eight cases (Wang et al. 2010; Chen 2013; Kurtoglu 2014; Sheng and 

Chen 2014; Fragoso et al. 2015; Nguyen et al. 2015; Sheng et al. 2015; Fragoso et al. 

2017) that investigated both CON and HNP agree that the former gives higher recovery. 

However, the general trend in the literature considers HNP to have a higher potential to 

improve RF (Sheng 2015). This might be attributed to the higher risk of early gas 

breakthrough through the natural fractures system in case of CON, and to the ultralow 

permeability, which could make CON more difficult to conduct (Sheng and Chen 2014; 

Sheng 2015). Thus my research considers both techniques. Innovative injection patterns 

that apply both injection and production from the same well will be investigated. 

1.3 Scope and Organization 

Most of the published work about IOR in shale used one factor at a time (OFAT) to 

conduct research. However, Design of Experiments (DoE) is a more accurate and precise 

method. It leads to a better understanding of the system performance over a wide range of 

conditions, enhances response prediction in the variable space, and produces more valid 

conclusions (Daniel 1973; Czitrom 1999; Santner et al. 2003; Box et al. 2005; Mathews  
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Reference Permeability 
Primary 

RF, % 
Gas inj. RF, % 

RF increase, 

% 

Inj. 

scheme 

Wang et al. (2010) 
0.04 and 2.5 

md 
3.64 

up to 36.2% up to 32.57 CON 

28.9 25.26 HNP 

Iwere et al. (2012) 
13 µd to 1.06 

nd 
6.4 7 0.6 CON 

Chen (2013); Sheng 

and Chen (2014) 

100 nd and 

0.001 md 
6.46 

up to 73.65 (≈ 100% 

for 0.001 md) 
up to 67.19 CON 

up to 14.42 up to 7.96 HNP 

Dong and Hoffman 

(2013) 
40 µd 5.42 up to 30.01 up to 24.59 CON 

Wan et al. (2013a) 100 nd 6.5 up to 60 up to 53.5 HNP 

Wan et al. (2013b) 100 nd 5.5 up to 70 up to 64.5 HNP 

Chen et al. (2014) 0.01 md 5.83 5.59 -0.24 HNP 

Fai-Yengo et al. 

(2014) 
80 µd     up to 28.5% CON 

Kurtoglu (2014) 0.031 md 5.24 
5.81 (max.) up to 0.57 CON 

5.43 (max.) up to 0.19 HNP 

Yu et al. (2014) 5 µd ≈ 14 ≈ 23.4 (max.) up to 9.4 HNP 

Li et al. (2015) 500 nd     up to 70.07 HNP 

Fragoso et al. (2015) 250 nd 10.62 up to 40.63 up to 30.01 CON 

Fragoso et al. (2015) 250 nd 10.62 up to 32.55 up to 21.93 HNP 

Nguyen et al. (2015) 500 nd 11.58 
15.08 (max.) up to 3.50 CON 

13.45 (max.) up to 1.87 HNP 

Sheng et al. (2015) 220 nd 3.2 
4.3 1.1 CON 

7.1 3.9 HNP 

Vinassa et al. (2015) 250 nd 10 53 43 HNP 

Li et al. (2016) 500 nd 5.656 up to 31.52 26.864 HNP 

Chen and Gu (2017) 10 µd 7.47 up to 26.65 up to 19.18 HNP 

Fragoso et al. (2017) 100 nd 6.9 
up to ≈ 27.5 up to 20.6 CON 

up to ≈ 35.9 up to 29.0 HNP 

Kanfar et al. (2017) 5 µd 8 up to 11.4 up to 3.4 HNP 

Li et al. (2017) 300 nd 6.08 up to 18.3 up to 12.22 HNP 

Zhu et al. (2017) 
10 µd 17.1 32.8 15.7 CON 

1 µd 9.4 21.9 12.5 CON 

Table 1.2—RF improvement in the literature for miscible gas injection. 

 

2005; Eriksson 2008; Wu and Hamada 2009; Montgomery 2012). A few studies handled 

shale oil production using DoE or its basic principles (Ghaderi et al. 2012; Kalra and Wu 

2015; Popov et al. 2016; Chen and Gu 2017; Joslin et al. 2017). Nevertheless, they dealt 

with it from an EOR perspective. To the best of our knowledge, no one has studied 

primary production (PP) or WF in shale reservoirs using DoE (detailed discussion about 
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DoE is provided in Chapter 2). Thus one of the main goals of this work is to develop a 

DoE-based simulation workflow to determine the potential of optimizing the design of four 

recovery schemes (PP, WF, CON, and HNP) to maximize the low RF in Eagle Ford shale 

(Chapter 3). This is done by achieving the following objectives: 

1. Estimate the effects of design variables on RF more accurately and more precisely 

2. Define the most important variables that affect the RF of PP, WF, CON, and HNP 

3. Specify if PP optimization is enough to improve the low primary RF 

4. Compare the four recovery schemes to identify the most prospective one 

5. Determine which miscible injection scheme (continuous flooding vs. cyclic 

injection) is better 

6. Specify the injection gas that yields the best economic performance 

7. Determine the optimum combination of important design variables that maximizes 

the RF for selected recovery schemes 

8. Evaluate the potential of an innovative injection scheme that uses alternating 

injecting and producing fractures along the same lateral 

Since this workflow is based on simulation, adequate representation of the complex 

and challenging shale reservoirs necessitates making numerous uncertain assumptions. In 

addition, reservoir simulation can be time consuming. Thus other less presumptive 

methods are required to validate simulation results (Mohaghegh et al. 2017). Data 

Analytics (DA) offers a powerful tool in this respect because it avoids making the physical 

assumptions associated with simulation. Therefore, using DA could reduce the 
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uncertainties associated with shale oil production, which could reduce risk and improve the 

robustness to the decision-making process.  

For comparison purposes, both DA and simulation/DoE workflows are applied. 

The DoE-based simulation workflow is applied to PP in Bakken shale (Chapter 4). It 

considers both controllable design variables as well as uncontrollable state variables (e.g., 

reservoir permeability). In addition to the first three objectives previously stated for 

Chapter 3, this chapter adds the following objectives: 

1. Compare the relative importance of two categories of variables: controllable and 

uncontrollable variables 

2. Understand how the dominance of the effects of the most important variables on 

production economics change over time 

3. Assess the effects of uncertainties in different design and state variables on oil 

production economics 

Then, Chapter 5 harnesses the potentials of DA and applies it to a big dataset for 

Bakken shale to produce statistically-based conclusions and data-driven facts. The 

objectives here are as follows:  

1. Identify key factors that distinguish good wells from poor-performing ones 

2. Mine data-driven insights from the available big data and translate them into better 

understanding of shale reservoirs and improving their production performance 

3. Compare DA conclusions to those based on reservoir simulation and DoE (Chapter 

4) to evaluate the validity of the results from the latter and assess the performance 

of simulation 
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2. DESIGN OF EXPERIMENTS IN PETROLEUM ENGINEERING: HISTORY 

AND CURRENT CHALLENGES 

 

2.1 Introduction 

Engineering research is a systematic approach to understand, design, and/or 

optimize a system (product or process) through collecting, analyzing, and interpreting 

information obtained by experimentation (National Academy of Engineering 1995; Kothari 

2004; Leedy and Ormrod 2013). A widely applied type of research is analytical research, 

which is usually concerned with cause-effect relationships. This type of research is 

performed to evaluate the influence of the explanatory variable(s) on the response 

variable(s) by conducting experiments (Montgomery 2012). Experiments here might be 

laboratory tests, modeling runs, or field trials. 

Due to the inherent variability in experimentation, engineers and scientists need to 

use statistics. In addition, with the increasing cost of experimentation, research should be 

done as efficiently as possible by maximizing the amount of useful information per 

experiment. Design of Experiments (DoE) is used to maximize research efficiency. 

However, in general, as well as in the petroleum industry, engineers and scientists 

extensively apply two other approaches for evaluating cause-effect relationships; best-

guess and one-factor-at-a-time (OFAT) (Montgomery 2012). 

2.1.1 Best-Guess Approach 

Best-guess starts with selecting an arbitrary combination of levels of factors. 

Experiments are then conducted to see what happens. The results and observations of the 
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preliminary experiments will direct the experimenter to the next combination of levels of 

factors for the next experiment or set of experiments. It often works well when the 

experimenters have good knowledge and experience with the system. One major 

disadvantage of this approach however is that, in searching for the desired outcomes, it 

could continue almost indefinitely, changing the levels of one, two or several factors for 

the next test, based on the results of the current test. In addition, there is no guarantee for 

success. Another drawback is that the researcher might decide to stop testing if any of the 

best-guess attempts produces acceptable results. This does not mean, however, that the best 

solution has been found (Montgomery 2012). Moreover, it is often difficult to describe 

how the optimal settings of factors are obtained, quantify factor effect, or develop an 

empirical prediction model (Lye 2002). 

2.1.2 One-Factor-at-A-Time (OFAT) 

The first step in OFAT (sometimes called OVAT, one-variable-at-a-time, or COST, 

changing one single variable at a time) is to select a base case, i.e., a certain set of levels 

for each factor. Then, one factor is changed over its range while holding all other factors 

constant at their base-case levels. The process repeats for all factors. Eventually, the 

experimenter constructs a series of graphs showing how each factor affects the response 

variable with all other factors held constant. However, the main effects estimated are 

conditional effects (not general effects averaged over the entire design space). The main 

disadvantage of OFAT is that it does not account for interactions, which is very common 

in many engineering experiments, leading to poor and sometimes even wrong conclusions. 

Many experimenters (including the experienced ones) are not familiar with this issue, or if 
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they are, they do not know how evaluate it. Therefore, “there are a large number of 

engineering phenomena resulting from interactions and other complexities that could be 

revealed by experimental design and are waiting to be discovered and exploited,” (Box 

2001). Another drawback appears while searching for the optimum, where OFAT is 

inefficient in the sense that there is a very low probability that the experimenter can hit the 

optimum conditions. This is true even when the number of factors is as low as two. It 

becomes increasingly unreliable and inefficient as the number of factors increases. It can 

reach the optimum only when there are no interactions or interactions are very small 

compared to the smallest of the main effects. Like the best-guess approach, OFAT could 

mistakenly lead the experimenter into thinking that the optimum is reached. Unfortunately, 

a lot of engineers and scientists still think that OFAT and best-guess approaches are the 

standard research tools to explore cause-effect relationships (Koselka 1996; Lye 2002; Box 

et al. 2005; Wu and Hamada 2009; Montgomery 2012).  

Despite its many drawbacks, OFAT can still be used in some very specific 

circumstances. It could be economic to apply when the effects are more than four times the 

standard deviation of the random error. However, the effect estimates could be biased if 

large interactions exist. In addition, OFAT does not consider randomization and 

uncontrollable time trends will have a detrimental effect on the results, especially when 

experiments take a long enough time for such trends to be appreciable (Daniel 1973). Thus 

OFAT can be applied only when the errors are small and the experiments are quick. In 

deterministic computer modeling however, time trends and random errors do not exist, 

which could make OFAT a suitable approach when the number of modeling scenarios is 
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limited to approximately the number of factors (Frey et al. 2003). Frey and Wang (2006) 

showed that adaptive OFAT can be better than resolution III fractional factorial designs 

that have the same number of experiments (adaptive OFAT requires n(k-1)+1 experiments 

with k levels for each of n factors), especially when interactions are large (quarter of the 

main effects) or errors are small. They also demonstrated that adaptive OFAT can provide 

substantial improvements in early stages, which could be an advantage if the experiments 

need to be terminated before the plan is completed.  

Experience and knowledge about the system are very important to decide how the 

factors will be set to provide a good point for starting design space exploration, and how 

the factors will be changed thereafter by OFAT (Wu and Hamada 2009). These are not 

always available however, especially for new systems. Even if they are available, applying 

a more systematic approach with an intelligent sampling of the variable space can provide 

more efficient and effective methodology to achieve study objectives by delivering a larger 

amount of more accurate and more precise information per experiment. This more 

systematic approach is design of experiments, DoE. 

2.1.3 DoE vs. OFAT 

Statistical design of experiments, or DoE, is almost always better than the 

inefficient best-guess and OFAT approaches for examining cause-effect relationships 

(Fisher et al. 1990; Montgomery 2012; Anderson and Whitcomb 2017). Fig. 2.1 compares 

both approaches in a simple optimization problem involving two factors. OFAT is a non-

systematic trial-and-error approach, which depends on luck, intuition, and experience 

(Antony et al. 2003). This is apparent in Fig. 2.1a. In addition, OFAT can mislead the 
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experimenter to believe that point (10) is the optimum. On the other hand, changing all 

factors simultaneously based on DoE provides more decisive information regarding the 

location of the optimum (Fig. 2.1a) with less experiments - five experiments (four full 

factorial plus one center-point) for DoE compared to 12 for OFAT. Thus DoE provides 

more higher-quality information with less resources.  

 

 

Fig. 2.1—Comparison between OFAT and DoE: (a) OFAT (11 points); (b) DoE (5 points for 
full factorial with centerpoint). The darkest region in (a) represents the optimum operating 
conditions. 

 

Fig. 2.1 demonstrates a simple problem where only two factors are involved. How 

would OFAT work when we have more than that? Exploring the variable space will suffer. 

DoE can handle such cases more efficiently. Below are some of the reasons why engineers 

and scientists should use DoE (Daniel 1973; Czitrom 1999; Box et al. 2005; Mathews 

2005; Eriksson 2008; Wu and Hamada 2009; Hibbert 2012; Montgomery 2012): 

(a) (b) 
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a. DoE handles more efficiently situations where the objective function depends on 

many explanatory variables (factors).  

b. DoE incorporates randomization, which is ruled out in OFAT making its estimates 

biased because of time trends. 

c. DoE consumes less resources for obtaining more higher-quality information.  

d. DoE defines the number of experiments required before actual experimentation. 

e. DoE does not require prior knowledge of the physics that governs the system.  

f. DoE evaluates the effect of one factor at more than one level of other factors. Thus 

it provides more accurate and more precise factor effects by reducing the bias and 

variability in their estimates. This leads to a better understanding of the system 

performance over a wide range of conditions, enhances response prediction in the 

factor space, and produces valid conclusions.  

g. DoE systematically estimates the interaction between factors. OFAT cannot do 

that. 

h. DoE provides a more efficient optimization process since the whole 

multidimensional variable space is searched for the optimum. 

i. DoE leads to conclusions that are based on facts, which improves the objectivity of 

the decision-making process. 

In spite of such facts, the vast majority of petroleum engineers, especially those 

working in the field and those focusing on lab experiments, still use the inefficient OFAT 

and best guess approaches. Some situations could be justified as stated earlier. However, 

this is not the case for most analytical research studies. OFAT is still widely used because 
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it is intuitive. However, intuition is not always correct or enough, especially when it does 

not have strong foundations. Another reason is that many researchers have little or no 

knowledge about DoE, or have little or no enthusiasm to learn and apply DoE (Daniel 

1973). Furthermore, investigators prefer OFAT because they can see and react to the 

experimental results faster, which - according to cognitive psychology - can help them 

more readily understand the physics of the system under investigation (Daniel 1973; Wu 

and Hamada 2009). Also using DoE could seem intimidating in the beginning when one 

determines the required number of experiments. This is not true for OFAT. However, the 

systematization, the efficiency of obtaining more higher-quality information, and the 

higher potential of solving various problems outweigh the efforts (Weissman and 

Anderson 2015). 

2.2 Design of Experiments (DoE) 

The National Institute of Standards and Technology (NIST), and the 

Semiconductor Manufacturing Technology (SEMATECH) consortium 

(NIST/SEMATECH 2016) define DoE as “a systematic, rigorous approach to engineering 

problem-solving that applies principles and techniques at the data collection stage so as to 

ensure the generation of valid, defensible, and supportable engineering conclusions. In 

addition, all of this is carried out under the constraint of a minimal expenditure of 

engineering runs, time, and money.” DoE is the “gold standard” approach to establish 

cause-effect relationships (Santner et al. 2003). Statistical design and analysis of 

experiments should be placed at the heart of the research process. 
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2.2.1 DoE Applications 

Here is a brief description of DoE applications. More details can be found 

elsewhere (Eriksson 2008; Wu and Hamada 2009; Montgomery 2012; NIST/SEMATECH 

2016). Neither best-guess nor OFAT is efficient for any of these applications. 

1. Characterization: It is faced when the researcher wants to get more familiar with a 

new system that is not well-understood. No more than 10% of the available 

resources is usually spent in this stage. 

2. Treatment comparison: The focus here is on a single factor to determine how its 

levels (treatments) affect the response. This might be similar to OFAT in some 

sense. However, the conclusions are more objective because it is based on sound 

planning and execution of experiments, and supportable inferential statistical 

analysis. 

3. Screening: It is conducted to identify the most significant variables - along with 

their ranges - from a pool of several variables, some of which might not be 

significant for the response. Once identified, these significant variables can then be 

used in the more thorough extensive applications that follow.  

4. Optimization: Clearly, the objective is to optimize (minimize or maximize) the 

response(s) using optimization methodologies. An intelligent approach is to apply a 

sequential strategy which gets factor settings closer and closer to the optimum 

region. Once reached, a more thorough exploration using DoE (sometimes with 

metamodeling) can be applied to locate the optimum. In case of several responses, 

there is usually a conflict between the various objective functions so that they all 
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cannot be fulfilled simultaneously. Here the analyst should prioritize the responses 

based on their importance. The desirability function is a common technique to 

optimize multiple response processes (Harrington 1965). 

A special case of optimization applied in reservoir engineering is history matching, 

where the objective function to be minimized is some measure of the error 

(difference between actual history and model output). 

5. Robustness: DoE is done here to evaluate the sensitivity of a system (product or 

process) to small changes that might happen to factor settings and to noise. If the 

system is not robust, then the variable settings should be changed to reach a robust 

region in the design space. 

6. Uncertainty analysis: The objective is to evaluate the effects of uncertainty in the 

variables on the response so that decision-making process could consider the 

probabilistic random nature of the problem under investigation.  

7. Metamodeling: It is a combination of mathematical and statistical tools used to 

build a proxy with a high response-prediction power. Other names for proxy that 

could be found in the literature include auxiliary model, surrogate model, response 

surface (RS), and emulator (Jin et al. 2001; Giunta et al. 2003; Kleijnen et al. 2005; 

Yeten et al. 2005). Conventionally (in physical experiments), response surface 

methodology (RSM) is a more common term than metamodeling. However, 

metamodeling is more widely used in computer experiments. In addition to RSM, 

which employs regression-based, low-order polynomials (Box et al. 2005; Myers et 

al. 2009), metamodeling includes various other techniques that could be more 
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appropriate than RSM for computer experiments. Examples include artificial neural 

networks (Smith 1993; Cheng and Titterington 1994), multivariate adaptive 

regression splines (Friedman 1991), radial basis function (Hardy 1971; Dyn et al. 

1986), inductive learning (Evans and Fisher 1994), and kriging (Sacks et al. 1989b; 

Booker et al. 1999).  

Metamodeling is very useful, especially when the experiment is expensive. It has 

become a very important tool in general engineering design (Goodwin and Powell 2012). 

Metamodeling can be used in conjunction with DoE for the following purposes (Simpson 

et al. 2001c; Wang and Shan 2006; Eriksson 2008; Wu and Hamada 2009; Montgomery 

2012; Law 2014; Ludvigsen and Le 2015): 

1. Sensitivity analysis: It provides more insight into the effects of various variables on 

the response. 

2. Design space exploration and response prediction: It helps explore the behavior of 

the response throughout the multi-dimensional variable space, especially for 

variable settings that were not tested. 

3. Optimization: It helps determine the combination of various variables that optimize 

the response of interest.  

4. Uncertainty analysis: It helps evaluate the impact of uncertain variables on the 

response through Monte Carlo simulation. 

5. Saving time and effort: For the previous four applications, many runs (could be 

millions in case of computer experiments) might be required. This could be 
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impractical, if not impossible. A proxy can be used in such cases because it can 

evaluate the response in a small fraction of a second. 

DoE is not restricted to physical experiments. In fact, running computer 

experiments occasionally provides some advantages over physical experiments. Sometimes 

it is practically impossible, time consuming, and/or too expensive to run physical 

experiments and therefore, computer experiments could be a feasible alternative. Computer 

experiments also can handle a lot more input variables because they are easier to change. 

Furthermore, they have the ability to account for considerable higher-order interactions, 

which are usually important in modeling, without the need to make assumptions about RS 

nature which is usually more complex (Simpson et al. 1997; Santner et al. 2003; Sanchez 

2005). At least, modeling will provide a good start to increase the pace of optimization 

with less physical experiments to be conducted on a system. Thus industries are shifting 

their experimentation to the computer rather than physical experiments. Instead of utilizing 

the advancements in creating faster computer models, they are more used to drive the 

models to be more complicated to better match the physical processes. This makes the 

modeling process tedious and time consuming. Thus DoE is required to make system 

exploration and/or optimization faster and more efficient (Joseph 2016). Although DoE is 

not widely or effectively used in modeling in many disciplines, (Kleijnen et al. 2005), it is 

mainly applied in modeling (not in physical experiments) in petroleum engineering. As we 

shall see, 76.35% of onepetro publications that implemented DoE are modeling studies. 
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2.2.2 DoE Guidelines 

One comprehensive study would necessitate a strong background knowledge about 

the system under investigation. However, this might lead to frustration if the assumptions 

made based on such knowledge are not true. Using a sequential approach of experimentation, 

in which all objectives are sequentially fulfilled in a series of smaller experimental plans, 

would be more useful and save resources. Below are some general steps for implementing 

DoE to solve cause-effect problems. More details can be found elsewhere (Coleman and 

Montgomery 1993; Wu and Hamada 2009; Montgomery 2012). 

1. Define the problem statement and the goal of the study. The research problem 

should be clearly delineated. Its goal can be divided in several objectives (mostly 

one of the seven previously discussed applications). They should be clear and 

achievable based on the available resources. 

2. Plan for experiments properly. Failure to do so leads to wasting resources and poor 

results, and complicates the analysis (if it can still be done). Planning can be done 

as follows: 

i. Select the response(s). They should be measurable, preferably continuous. First, 

the response’s measurement device should be calibrated to ensure that the 

measurements are accurate (accuracy is a measure of bias, which is the 

difference between true and measured values). After calibration, a gauge 

repeatability and reproducibility (R&R) study can be done to ensure that the 

measurement device is precise and reliable. Repeatability and reproducibility 

are measures of variation caused by the measurement device and the operator, 



 

19 

 

respectively. When repeatability and reproducibility are assured, the system is 

said to be precise and reliable, respectively.  

ii. Define factors and ranges. All potential factors that might affect the process 

should be considered. A cause-effect (fishbone) diagram can help organize the 

possible factors. The ranges should be determined based on available 

knowledge about the system and the technical feasibility of achieving such 

ranges. The number of levels should be carefully chosen. This would depend on 

the DoE objective (screening, optimization, etc.) and the nature of the effects 

(linear vs. nonlinear). 

iii. Consider replication, blocking, and randomization (Table 2.1). These three 

principles are applied to enhance the signal and reduce the noise to improve test 

power. Randomization is used to control bias, which is the systematic influence 

of unknown extraneous (uncontrollable and unmeasurable) nuisance variables. 

Replication is used to estimate experimental error and control noise, which is 

unsystematic influence of the unknown extraneous nuisance variables. If these 

uncontrollable factors are measurable, analysis of covariance can handled them. 

Blocking is used to control the influence of recognized controllable nuisance 

variables that are not of interest. Balanced designs should also be promoted 

whenever resources allow. Balanced designs facilitate the analysis of the 

results, maximizes the power of the test, and gives more tolerance to model 

analysis and analysis of variance (ANOVA) against equal variance assumption. 
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3. Choose a proper screening DoE to determine which of the multitude of possible 

factors significantly affects the response.  

 

 Nuisance factor 

Degree of control Controllable Uncontrollable 

Measurability  Measurable Unmeasurable 

Influence   Systematic (Bias) Unsystematic (noise) 

How treated Blocking Analysis of Covariance Randomization Replication 

 
Table 2.1—Categories of nuisance factors and how to treat their influence. 

 

4. Conduct the experiments. Trial runs might be required in the beginning to get 

familiar with the system and make sure that there are no problems. In addition, the 

results of the preliminary runs should make sense. This is especially true for 

modeling where the model should be well-tuned to avoid “garbage in, garbage 

out”. Prior planning to this stage of running experiments is critical for success. 

Otherwise, the results could be frustrating.  

5. Analyze the experimental results to determine the significant variables. The 

statistical analysis would be easy if the experiments are properly designed and 

conducted. The experimenters might change the ranges and/or add more factors as 

appropriate based on what they learn in the screening stage. Objectives might be 

added, canceled, and/or modified. 

6. Plan for another DoE if needed. An optimization DoE might be chosen to focus on 

the significant variables and determine which levels they should be set at to reach 

the optimum response(s). A sequential DoE approach might be useful in this case. 
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7. Fit a metamodel to the data if required.  

8. Implement a robustness DoE if needed to make sure that the process is robust 

against the extraneous variation which cannot be controlled, and against small 

changes in factor settings.  

9. Analyze the results and make sure that the objectives are fulfilled. Confirmation 

experiments can be conducted to support the chosen factor settings. 

2.3 DoE in Petroleum Engineering 

In the petroleum industry, many papers provide some details about various types of 

DoE and metamodeling techniques (Saxena and Vjekoslav 1971; Peng and Gupta 2004; 

Yeten et al. 2005; Amudo et al. 2009; Haight 2010; Wolff 2010; Goodwin 2015; Shams 

2016). Detailed discussion of DoE and metamodeling is outside the scope of this chapter. 

Interested readers are referred to the previously cited papers, as well as other references 

cited in this chapter (for example, Montgomery (2012) for DoE in physical experiments, 

and Santner et al. (2003) for DoE in computer experiments).  

DoE is generally overlooked in petroleum engineering publications and is 

sometimes applied incorrectly. By searching for the keywords “experimental design” and 

“design of experiment” in SPE online library (onepetro.org), Chidi et al. (2014) found that 

applying DoE in the petroleum industry has been steadily increasing, especially after 1990. 

However, most of these papers did not actually apply DoE, and there are no much details 

regarding how the rest applied DoE or the nature of such studies. Thus it is one of the main 

goals of this chapter to address such shortages in the literature to see where the petroleum 

industry stands. 
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An extensive literature review is conducted through onepetro for all the papers that 

have any of the keywords “design of experiments”, “design of experiment”, “experimental 

design”, or “factorial” till 2016. The search was ended on February 6th 2017. Around 3,000 

papers are found to include one or more keywords. We do not claim that the review 

presented here is comprehensive, because many papers are believed to use DoE without 

including any of the keywords used in the current search. In addition, errors might have 

occurred during collecting and analyzing the data from these 3,000 publications. 

All the 3,000 papers are checked to decide if they actually used DoE. We found 

that the majority (2,019) did not implement DoE. The papers appeared in the search 

because one or more of the keywords are misused or are present in their literature review 

or references list. We found that 981 papers - which represent around 0.49% of the 200,000 

total onepetro publications until 2016 - actually implemented DoE in their work. These are 

divided into 227, 749, and five for experimental, computer modeling, and social studies, 

respectively. Included in the 981 publications, there are 137 journal papers, which are 

divided into 42, 94, and one for experimental, modeling, and social studies, respectively. 

The majority of objectives fall under DoE applications of screening, metamodeling, 

optimization, and uncertainty analysis. Fig. 2.2 shows the changes in the annual count and 

percentage of simulation and experimental DoE publications. Modeling publications 

started to dominate the annual count in early 2000s. The percentage was relatively stable 

with an average of 0.23% until 2000. Afterwards, it started to increase until 2006 when it 

became relatively constant again (with a slight increase over time) at an average of 0.80%. 

Fig. 2.3 shows the classification of the publications among the publishers based on the 
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nature (modeling, experimental, and social) of the study. As expected, modeling 

dominates. 

2.3.1 DoE in Experimental Studies 

DoE has been used in petroleum engineering literature for over seven decades. The 

earliest reference found on SPE online library (onepetro.org) dates back to 1946, when 

Kemler (1946) did lab experiments to define the effects of thread tolerances, makeup, and 

type of lubricant on leakage resistance of threaded joints. Ten years later the next DoE 

experimental work was published (Krueger 1956). It used factorial design to investigate 

the effects of five variables on perforation performance. Vogel (1956), which is sometimes 

erroneously conceived as the first DoE publication in onepetro literature, extended the 

work of Krueger (1956) by developing a fixed-effects model to fit the experimental data. 

Out of a total of 227 experimental DoE publications, 33 did not mention the type of DoE 

they used. There are 15 repeated publications (conference papers converted to journal 

ones).  

The total annual number of publications increased very slightly until 2010, when it 

started to accelerate with a total of 74 papers (68 conference and six journals) published 

between 2011 and 2016. However, the percentage of DoE publications does not increase 

with time for either conference or journal publications. More awareness about the 

potentials of using DoE in physical experimental is required. 
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Fig. 2.2—Numbers and percentage of DoE papers. 

 

 

 
Fig. 2.3—Classification of the publications among various publishers based on the nature of the study (modeling, experimental, or 
social). SPE modeling publications are 578. The scale ends at 100 for clarity purposes.
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DoE applications in experimental studies include sensitivity and screening (64.3%), 

metamodeling (23.7%), optimization (11.4%), and robustness (0.6%). As expected, the 

major application is sensitivity. The maximum number of factors is 16 (Rosenberg and 

Syrett 1996) followed by 11 (Kapustka et al. 2005). The most frequent number is three. 

The average number of factors is almost constant with time at around four. This is 

expected taking into account the cost of physical experiments which limits the number of 

factors that can be tested in labs. Factorial designs represent 59.40% of the total DoE types 

reported, which is expected. 

For proxy generation, multi-linear regression is the dominant technique (94.9%), 

which could be attributed to its easiness and flexibility. It is also appropriate for physical 

experiments, whose nature involves random error. Quadratic models dominate regression 

models at 71.2%. This is expected because, unlike linear models (23.3%), they account for 

nonlinearities, and they have less terms than cubic models (5.5%), which is translated into 

less model parameters and therefore, less experiments. 

2.3.2 DoE in Modeling Studies 

The first modeling DoE paper found on SPE online library (onepetro.org) is 

Winestock and Colpitts (1965), which used a gas-well simulator. The next one was 

published by Sawyer et al. (1974), which employed a fractional factorial design to study 

the effects of nine variables on the economics of wet gas drive and develop a simple proxy 

with linear and interaction terms. Like Vogel (1956), Sawyer et al. (1974) or Damsleth et 

al. (1992) are mistakenly considered to be the first to introduce DoE to reservoir simulation 

studies or to the petroleum industry in general by some onepetro publications. Until 1980, 

only two more modeling papers were published (Gregory 1974; Klasi 1980). The annual 
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count of DoE publications did not change until the 1990s when it began to slightly increase 

with time. From 2000 to 2016, the average annual increase was substantial with a total of 

646 papers published during that period. The percentages of journal and conference 

publications demonstrate a similar behavior until 2009, after which they remain relatively 

stable at an average of 0.73% and 0.70%, respectively.  

Out of a total of 749 modeling DoE publications, there are 62 repeated publications 

handling the same problem (conference papers converted to journal publications). In 

addition, 212 out of the 749 did not state which DoE technique they used. For the 

remaining 537 that used DoE, only 139 papers used modern DoE methods (space-filling 

designs) that are suitable for simulation. The remaining 398 papers only used classical 

DoE techniques that are conventionally used in physical experiments, and are sometimes 

not well-suited for computer experiments. Thus the conclusions of such publications might 

be questionable, if not incorrect. The space-filling designs represent 20.36% of the total 

DoE types reported.  

DoE applications in simulation studies include sensitivity analysis and screening 

(40.7%), metamodeling (25.9%), uncertainty analysis (15.3%), optimization (9.7%), and 

history matching, a special case of optimization (8.4%). The maximum number of factors 

is 125 (Zheng et al. 2016). The most frequent number is five and the average is around 

nine (9.1), both being higher than their corresponding values in experimental studies. 

Contrary to experimental studies, the average number of factors in simulation studies has 

doubled in the last 40 years. This could be attributed to the increased computational power 

and speed. For proxy generation, least squares regression is the dominant technique 
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accounting for 71.7% of the total, with quadratic models being the most frequently used at 

76.6%. Least squares regression, however, is not well-suited for computer experiments 

unless the regression model is checked, which is rarely the case. Other major proxy models 

used include kriging (15.8%), artificial neural networks (5.8%), thin-plate splines (2.2%), 

and radial basis functions (1.9%). 

2.4 Peculiarities in Computer Experiments 

We have shown that the most common way to construct a proxy using DoE in 

reservoir simulation is by applying classical DoE techniques (e.g., factorial and composite 

designs) and continuing with RSM and regression analysis to generate second-order 

polynomials that represent the computationally expensive reservoir simulation runs. 

However, the conclusions of such publications are debatable from a statistical viewpoint 

and the results might not be correct. The doubts arise mainly because computer 

experiments are deterministic in nature with no random errors. Thus statistical analyses 

cannot be applied appropriately (Sacks et al. 1989b; Simpson et al. 1997; Kleijnen 1998; 

Giunta et al. 2003). In addition, computer experiments could handle more factors, have 

considerably higher-order (>2) interactions, and are characterized by more complex 

nonlinear response-factors relationship (Sanchez 2005). Hence, this section calls attention 

to the common problems in applying DoE and metamodeling in computer experiments in 

the petroleum industry. We also provide some general recommendations regarding the 

appropriate use of different DoE and metamodeling methods.  
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2.4.1 Pitfalls in Applying DoE  

Classical DoE techniques are widespread in modeling studies in petroleum 

engineering. They account for 79.6% of the total DoE techniques used. They were 

primarily designed for physical experiments, which involve random errors due to the 

random nature of the factors and the presence of nuisance variables. Deterministic 

computer experiments do not have random error. Thus applying the three basic principles 

of classical DoE (randomization, blocking, and replication) does not make any sense. In 

addition, choosing variable combinations to be on the boundaries of the variable space 

(which is done to strengthen the signal (effect) and comparatively minimize the effects of 

random errors in classical DoE) is not the best practice in computer experiments because 

this might produce inaccurate predictions in parts of the design-space, which are not well 

covered. As a result, classical designs might be inappropriate, and sometimes inefficient, 

for the deterministic computer experiments (Sacks et al. 1989b; Simpson et al. 2001a; 

Giunta et al. 2003; Santner et al. 2003; Kleijnen et al. 2005; Wang and Shan 2006; Kenett 

et al. 2014; SAS Institute Inc. 2015). 

Additionally, relying on two-level factorial and fractional factorial designs to 

estimate the effects of variables might lead to misleading results because modeling 

response may not be monotonic in nature when one or more input variables change their 

levels. Moreover, since three-way and higher interactions are often neglected, fractional 

factorial designs might lead to the estimation of biased main and two-way interaction 

effects. Another important point is that classical DoEs are usually designed in such a way 

that minimizes the number of required experiments. This is not necessary for computer 
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experiments because computers can handle a considerably larger number of experiments. 

Computer modeling can also handle more factors (Sanchez 2005; Giunta et al. 2003; Law 

2014).  

Thus instead of having a small number experiments distributed around the 

boundaries of low-dimensional design space with replicates at the design points, the 

experiments should be spread out to fill the interior of the variable space (whose 

dimensionality can be increased by incorporating more factors than classical DoEs can 

handle), as well as its edges with no replicates. The design points can be either uniformly 

distributed throughout the design space or are spread out as far from each other as possible. 

This ensures providing information about all parts in the design space. In addition, this 

reduces the bias (difference between fitted proxy and modeling output) in response 

prediction, which is often based on interpolation. This is because the error of prediction 

depends on the distance between the point of interest and the closest design points. Such 

“space-filling” designs constitute modern DoE. Modern DoE is sometimes called DACE, 

or design and analysis of computer experiments. However, DACE is also often used to 

mean kriging (Sacks et al. 1989b; Simpson et al. 2001a, 2001c; Giunta et al. 2003; Santner 

et al. 2003; Kleijnen et al. 2005; Chen et al. 2006; Wang and Shan 2006; Kenett et al. 

2014; SAS Institute Inc. 2015).  

Space-filling designs are more flexible than classical designs, as they do not require 

making prior assumptions regarding the nature of the relationship between the response 

and input variables. Therefore, they help avoid the bias associated with such assumptions 

and allow fitting a variety of models (Sacks et al. 1989b; Simpson et al. 2001a; Giunta et 
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al. 2003; Santner et al. 2003; Kleijnen et al. 2005; Kenett et al. 2014; SAS Institute Inc. 

2015). Another feature in which modern DoE is superior to classical DoE is that it can 

handle probability distribution of the factors. Classical designs assume uniform 

distribution. Although this might be a good assumption in physical experiments, it is not 

generally the case in computer modeling (Giunta et al. 2003). 

There are various sampling strategies involved in space-filling designs. Latin 

hypercube design (LHD) is one of the most common space-filling designs (Kenett et al. 

2014), accounting for 72.2% of the total space-filling designs used in SPE publications. It 

was first introduced by McKay et al. (1979) and has recently been extensively used in 

reservoir simulation studies that apply DoE. Other designs that can be used in computer 

experiments include sphere packing, uniform, minimum potential, maximum entropy, 

Gaussian process IMSE optimal, pseudo-Monte Carlo sampling, quasi-Monte Carlo 

sampling, Hammersley sequence sampling, nearly orthogonal designs, orthogonal arrays, 

and fast flexible filling (Simpson et al. 2001a; Santner et al. 2003; Chen et al. 2006; 

Bingham et al. 2009; SAS Institute Inc. 2015). The average percentage of modern DoE in 

the last six years is 31.1%, which is promising considering its continuously increasing 

implementation with time.  

2.4.2 Pitfalls in Applying Metamodeling 

Least-squares regression technique is most common in modeling studies since it is 

well-established and simple. Using least squares to fit a mathematical equation to the 

results of physical experiments makes sense because the random results affected by noise 

are averaged. In deterministic reservoir simulation experiments however, there is no 



 

31 

 

random error. Thus there is no point in averaging the response at the design points 

(Simpson et al. 1997). In addition, the error of approximation could not be used to account 

for random errors. This means that the statistical analysis and ANOVA done on least 

squares regression in modeling are not valid. 

To use regression proxies, at least verification and validation (V&V) should be 

done to ensure its accuracy. Validation of a proxy is a measure of its accurate 

representation of the real simulation model results (Carson 2002). It is can be done using 

blind random test data at non-design points (Simpson et al. 1997, 2001c). If such data is 

not available, cross-validation might be a good option (Schneider and Moore 2000). If 

cross-validation is not enough to assess model accuracy (Lin 2004), other measures of fit 

like determination coefficient (R2), maximum absolute error, root mean square error 

(RMSE), and predicted residual error sum of squares (PRESS) can be used to indicate the 

quality of fit because they are less sensitive to the absence of randomness (Simpson et al. 

1997, 2001c; Wang and Shan 2006; Myers et al. 2009). However, such measures are 

usually not enough (a high R2 does not necessarily indicate a good fit) and verification 

should be done. Verification of a proxy is to check whether it conforms to specifications 

and assumptions (Carson 2002). Verification of regression proxy adequacy can be applied 

using regression diagnostics (Sheather 2009) to check assumptions like constant variance 

and normality of residuals (Simpson et al. 1997, 2001c). This is very important if the 

model is used mainly for inference (as opposed to prediction). 

Unfortunately, proxy verification and validation are not widely applied. For 

example, a very few DoE publications were found to deal with residual diagnostics 
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(Cobianco et al. 1999; Castillo et al. 2010; Al-Mudhafar and Rao 2015). A quick search for 

the keyword “regression” on onepetro reveals that it appeared 11,767 times till 2016. On 

the other hand, the keywords “regression diagnostics”, “regression diagnostic”, “residual 

diagnostics”, “residual diagnostic”, “residual analysis”, and “residuals analysis” appeared 

only 47 times combined. This implies that regression diagnostics are rarely applied. 

Therefore, the predictions made by the least-squares equations may be questionable, if not 

incorrect. This brings into question the reliability of the results of analyses based on 

regression models. However, it is important to note that there is no reason to reject a least 

squares RS when it provides a good match between predicted and actual responses 

(Simpson et al. 1997; Law 2014). This is especially true if the model is used mainly for 

prediction (as opposed to inference). 

Another concern with least squares regression is that its models may yield poor 

predictive accuracy in stiff non-linear problems or when the investigated variables’ space 

is very large (Simpson et al. 2001c; Li and Friedmann 2005a, 2005b; Kleijnen 2010; 

Osterloh et al. 2013; Law 2014). Computer experiments are known to have more complex 

nonlinear response-factors relationship (Sanchez 2005). Higher-order polynomials can 

improve the proxy’s predictive accuracy. However, they need lots of design points to 

estimate a larger number of regression coefficients and they might be unstable. Other 

metamodeling techniques could solve or minimize the problems associated with 

nonlinearity and the absence of random errors. 

Artificial neural networks (ANN) can produce accurate proxies despite requiring 

intensive training and large data sets, which is computationally costly in terms of modeling 
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time and effort. However, like least squares regression, the accuracy of ANN is reduced 

because it is not data exact as it smooths out the predictions. Despite being appropriate for 

physical experiments, this averaging might not be acceptable for computer experiments 

where random error is not existent. Interpolation techniques (e.g. kriging (KG) and thin-

plate splines (TPS) interpolation) can take care of this problem because they exactly honor 

the design points (Simpson et al. 2001c; Santner et al. 2003; Li and Friedmann 2005a, 

2005b; Zubarev 2009; Osterloh et al. 2013). Moreover, they could enhance the 

computational efficiency. KG is promising, as it has accurate predictability (Sacks et al. 

1989b). In addition, KG (or nonparametric Gaussian process) outperforms TPS 

interpolation for higher nonlinearity despite being more complex and computationally 

costly (Zubarev 2009). Zubarev (2009) recommended TPS interpolation as the most 

reasonable solution in spite of being more prone to error for small data sets. Nevertheless, 

both interpolation methods tend to smooth out the non-linearities and are less efficient in 

case of unevenly distributed nonlinearities (Li and Friedmann 2005a, 2005b). Least 

squares regression is increasingly replaced by other techniques, especially kriging whose 

average percentage in the last five years is 20.9%. 

2.5 Criticisms against DoE and Metamodeling 

This section provides an overview of the criticisms against DoE and metamodeling 

and some recommendations regarding these criticisms. 

2.5.1 DoE 

One of the disadvantages of DoE found in the literature is that most DoE do not 

honor the probability distribution of the factors. Li et al. (2011) compared the probabilistic 
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performance of the proxies of classical (D-optimal, exhaustive sampling, and folded 

Plackett–Burman) and space-filling designs with that of probabilistic collocation method 

(PCM), which can handle the probability density functions of the factors. They concluded 

that PCM is more efficient and accurate than DoE. However, space-filling designs can 

account for the probability-density function of the input variable (Giunta et al. 2003), 

which – if considered – might lead to different conclusions. For classical designs - which 

assume uniform distribution - different weights could be assigned to the different design 

points according to their joint probability while generating the proxy. Some more work 

needs to be done in these two respects. According to Wolff (2010), however, the 

distributions of uncertain variables may have small influence on forecasts as compared to 

the larger influence of their ranges. This assumption needs to be supported, especially 

when using classical DoEs.  

Another disadvantage is associated with high dimensionality (say 100) in computer 

modeling. Breaking down the complex problem into many smaller problems, with smaller 

number of variables, is one way to solve this issue. This technique was used in other 

disciplines (more details in Simpson et al. 2001c). For screening purposes, classical 

screening designs (like fractional factorial and Plackett–Burman designs) would require 

too much time because at least (k + 1) scenarios should be run. Special screening designs 

like group screening, iterated fractional factorial designs, Morris’s designs, sequential 

bifurcation, supersaturated designs, and Trocine screening can handle such situations 

(Bettonvil and Kleijnen 1997; Lewis and Dean 2001; Trocine and Malone 2001; Morris 

2006; Wan et al. 2006; Kleijnen 2008; Kleijnen 2010). However, to the best of our 
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knowledge, such methods have not been applied in petroleum engineering. This could be 

because only three publications are found to deal with more than 50 factors; Agrawal et al. 

(2015), Schulze-Riegert et al. (2016) and Zheng et al. (2016) used 70, 116, and 125 factors, 

respectively. The first two applied screening using LHD and OFAT, respectively, and the 

latter used all the factors to generate a proxy using ANN. 

One more problem that might be combined with the high dimensionality issue is 

the fact that DoE assumes that the factors are independent. This is not always a problem, 

however. For example, Egeland et al. (1992) has shown that the dependence of variables 

has a little effect on Monte Carlo simulation. This is not generally the case though. If 

dependence is detected, its effect should be investigated. One way to address this problem 

is to use principal component analysis, or PCA (Wang and White 2002). PCA can reduce 

the number of variables depending on their correlations with each other. In their study, 

Wang and White (2002) reduced the number of factors from 36 geologic factors to six 

independent groups of factors, which is manageable by DoE and satisfies the assumption 

of independence.  

Two other major concerns in DoE are adding factors that were initially overlooked 

in the middle of the study and dealing with factors with different number of levels. 

Optimal designs can take care of these two problems (White and Royer 2003). Although 

optimal designs could be appropriate to apply in physical experiments, care should be 

exercised when they are applied to deterministic computer experiments because of the lack 

of random error.  
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OFAT might be preferred over DoE when the experiments are expensive. However, 

sequential DoE is another alternative. This technique has been studied extensively in 

classical DoE. However, a lot of work needs to be done to evaluate its potentials in 

computer modeling in various disciplines (Lin et al. 2004; Chen et al. 2006). Petroleum 

engineering is not an exception.  

2.5.2 Metamodeling 

The major concern about applying the traditional RSM is the absence of random 

errors in deterministic computer experiments. However, if randomness could be introduced 

into the model (in one or more factors), inferential statistical analysis would make sense. If 

not feasible, then the model should at least be verified using regression diagnostics 

(particularly if the model is used for inference), validated at untested points, and/or cross-

validated. Inferential statistical analysis should be used with caution, and test statistics (F, 

t, and others) should be considered as descriptive rather than inferential statistics (Yamada 

2008). 

One of the disadvantages of using proxies is that they might not consider the 

important physical effects and could be inefficient in locating the optima, especially when 

nonlinearity is severe and unevenly distributed (Ludvigsen and Le 2015). To mitigate such 

problems and improve the accuracy, Li and Friedmann (2005a) proposed applying 

interpolation techniques to partitioned parts of the variable space. However, this could be 

computationally intensive. Thus Li and Friedmann (2005b) introduced a novel 

metamodeling technique (TPS interpolation based on amplitude factor analysis) that can 

handle nonlinearity without partitioning the variable space. This enhances the 
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computational efficiency. They claim that it is more efficient and accurate than TPS 

interpolation and regression. 

According to Lawal (2009), metamodeling has many shortcomings. One of the 

major concerns is that the input distributions are not chosen carefully. For example, 

engineers commonly use P10 and P90 for factors to generate a proxy, which is then used to 

estimate the whole range of uncertainty, including P0 and P100. However, this is not a 

problem of the proxy itself. Rather, it is related to how the proxy is generated. Another 

drawback is that proxies do not preserve the physical relationship between various 

responses such that the proxies are mathematically consistent. However, this is not a 

drawback because no study was found in the literature to violate such consistency. One 

more issue is that proxies are built using modeling results, not actual reservoir 

performance, which could make them inaccurate. In spite of being true, the major part of 

this problem is related to the accuracy of the computer model itself. It is not just a problem 

of the proxy. It is easier to control the proxy and ensure its accuracy than it is for 

simulation. The non-uniqueness of the simulation model that satisfies the history matching 

is a problem of the simulation, not the proxy. Proxies can be viewed as lower-risk 

approximations of higher-risk approximations. So if the model is not well-tuned, the proxy 

will simply follow the “garbage in, garbage out” principle. On the other hand, if the 

simulation model well describes the physical process, a validated and verified proxy would 

give good approximations of reality. Another problem that Lawal (2009) pointed to is that 

the inclusion of controllable design variables (e.g., fracture half-length) in a proxy with 

uncontrollable intrinsic reservoir properties (e.g., permeability) might mask the effects of 
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the latter. Close attention should be paid to this point. It might be of interest though, to see 

which of the controllable or uncontrollable variables have the dominant effect. This could 

have very important implications in decision-making process. For example, if the 

uncontrollable variables are overwhelming, the priority should be given to searching for 

sweet reservoir spots rather than optimizing the design variables. 

The author also disagrees with many of the other “shortcomings” provided in 

Lawal (2009). First, derivatives and integrals of proxies with respect to time are invalid 

unless the proxy includes time as a variable. For instance, proxies for total oil production 

and oil flow rate give their respective responses at a certain point of time. Thus taking the 

time derivative of the first to calculate oil flow rate or integrating the second to calculate 

the total oil production is not justifiable. Another concern about the shortcomings that 

Lawal (2009) mentioned is that he used the proxy for extrapolating the performance 

outside the investigated range. For example, a proxy for recovery factor (RF) as a function 

of permeability (in addition to some other variables) was used to predict RF in case of zero 

permeability rock to get a non-zero RF. However, proxies cannot be used outside the 

investigated range of the factors. Thus this point is invalid as well.  

Box (1979) said, "All models are wrong but some are useful." No model can 

capture the exact physical nature of relationship between the variables and responses. 

Zubarev (2009) recommended understanding the proxy limitations and performing proper 

quality assurance to quantify the errors before taking decisions. In spite of their 

imperfection, generating proxies is still viewed as an efficient and valid tool for the reasons 

discussed previously in DoE Applications (section 2.2.1). 
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2.5.3 Choice of Sample Size 

For physical experiments, where regression analysis is a legitimate metamodeling 

technique, the recommended number of required experiments per regression coefficient in 

the regression model ranges between 5 and 20 (Schmidt 1971; Green 1991; Harrell 2001) 

with 20 being preferred (Green 1991). So for a full quadratic polynomial with two factors 

(six regression coefficients), a good number of experiments to start with could be 30 – 120 

experiments.  

A common issue associated with applying DoE in computer modeling is that the 

number of runs is arbitrarily chosen. This is true in the vast majority (more than 95%) of 

the petroleum engineering studies. Thus some general guidelines are required in this 

respect. Despite being important, not much could be found in the literature regarding the 

choice of sample size in deterministic computer modeling (Loeppky et al. 2009). This is 

especially true for large-scale problems where the sample size increases exponentially with 

the number of variables, a problem known as the “curse of dimensionality” (Wang and 

Shan 2006). 

Although the true relationship between the response and the variables is usually 

unknown, the nature of the model could sometimes be assumed. In doing so, one can use 

some criteria for choosing a design. This could help facilitate selecting the sample size. For 

example, Osterloh et al. (2013) concluded that to get a good predictive accuracy of an 

LHD-based metamodel, the sample size should be 1 to 1.5 times the number of coefficients 

in a second order polynomial (k = (n+1)(n+2)/2; n is the number of variables). Kaufman et 

al. (1996) found that samples of size 1.5k for lower dimensional problems (5 – 10 
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variables) and 4.5k for higher dimensional problems (20 – 30 variables) are required to get 

good accuracy of second-order polynomial models. 

Chapman et al. (1994) and Jones et al. (1998) suggested using a sample size 10 

times the dimension of the variable space (10d). This rule of thumb however might not be 

adequate as dimensionality increases because it leads to a sparse distribution of design 

points. Loeppky et al. (2009) studied this informal rule and concluded that 10d is adequate 

for an initial experiment when d is five at most. The rule also works with d up to 20 or 

more if the response is sensitive to a few of the investigated factors. In general, they 

recommended checking the proxy and adding more design points if it lacks accuracy. An 

example of the inadequacy of the 10d rule was given in Chen et al. (2010). They used 

computer simulation to model bistable laser diodes with two factors (d = 2). They found 

that the kriging proxy was not quite accurate over the entire space and, therefore, more 

than 10d (20) design points are required. 

Focusing on space-filling designs, Simpson et al. (2001a) found that larger sizes 

generally improve the accuracy. They also found that larger sizes do not affect the 

predictive accuracy of the metamodels (except for MARS) when non-linearity is not 

severe. On the other hand, Liu (2005) found out that, excluding the extremely nonuniform 

space-filling designs, the sample size is mostly more influential on the predictive accuracy 

of the metamodel than the type of design used. The distribution of the design points is less 

important as long as the best sample size is unknown (Wang and Shan 2006). This agrees 

with Johnson et al. (2011) who concluded that using an adequate sample size of space-

filling design is the best way to enhance the predictive accuracy of Gaussian-process 
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models regardless of the type of space-filling design used. The “adequate” size depends on 

the complexity of the relationship between the response and its factors and, therefore, is 

difficult to know a priori and will remain a mystery (Wang and Shan 2006; Johnson et al. 

2011). That is why sequential and adaptive sampling is becoming more popular (Wang and 

Shan 2006).  

Sequential sampling was generally found to be more efficient than one-stage 

sampling and is less computationally demanding (Jin et al. 2002). In addition, it can help 

determine an interesting region in the design space where sampling can further focus on to 

improve the metamodel prediction accuracy. However, they also concluded that sequential 

sampling with or without adaptation is not guaranteed to improve the accuracy of a 

metamodel over one-stage sampling. Lin (2004) developed sequential exploratory 

experimental design (SEED) using D-optimal and maximum entropy sampling to increase 

metamodel accuracy. Sample points are generated using the analysis of information from 

data/validation points and metamodels. Sasena et al. (2002) used a global constrained 

nonlinear optimization algorithm (superEGO) to create adaptive DoEs whose sample 

points are selected based on information acquired from previous samples.  

Jin et al. (2001) recommended further investigations in adaptive sampling, where 

the variables are sampled based on their contribution to response. Adaptive response 

surface method (ARSM) was developed by Wang et al. (2001) based on central composite 

design (CCD). For each step, ARSM uses a critical value to reject regions of the design 

space whose response surpasses such a limit. This strategy gets the design space closer to 

the optimum region. This technique, however, requires a sample size that increases 
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exponentially with the number of variables. In addition, the points of previous steps cannot 

be inherited to the new sample. Thus Wang (2003) replaced CCD with an inheritable Latin 

Hypercube design (LHD) to avoid these two limitations. It is claimed that the new 

technique is better suited for global optimization of computationally intensive problems.  

Still however, more research is required to address large-scale problems and new 

sampling and metamodeling techniques are required (Wang and Shan 2006). 

2.6 Comparison between Metamodeling and DoE Techniques 

Many authors compared different proxy and DoE techniques. Appendix A 

summarizes some of the work done in petroleum engineering literature. There is a general 

agreement in petroleum engineering literature that space-filling designs are better than 

classical designs. This agrees with the findings of Simpson et al. (2001c) and Giunta et al. 

(2003). In addition, Johnson et al. (2011) found that no one space-filling design has an 

advantage over another regarding prediction accuracy using Gaussian process models. For 

metamodeling, however, there is no consensus regarding which technique is superior to the 

others, which agrees with Simpson et al. (2001c) and Wang and Shan (2006). Chen et al. 

(2006) provided detailed comparison tables for DoE and metamodeling techniques.  

Chen et al. (2006) recommended developing DoEs and metamodeling techniques 

that are better suited for different applications. General guidelines and recommendations 

about which DoE and metamodeling techniques (especially for computer modeling) are not 

as well-developed in petroleum engineering literature as in other disciplines. Petroleum 

engineers and scientists can use those guidelines developed in other disciplines (Appendix 

A) until more extensive studies are done (Simpson et al. 1997; Giunta and Watson 1998; 
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Simpson 1998; Varadarajan, et al. 2000; Jin et al. 2001; Simpson et al. 2001a, 2001b, 

2001c; Giunta et al. 2003; Chen et al. 2006; Wang and Shan 2006; Johnson et al. 2011). 

However, before doing this, other challenges need to be addressed first.  

At the end of his paper, Vogel (1956) wrote “It is hoped this paper will encourage 

others to investigate the many possible uses of these techniques in the fields of reservoir 

engineering and research.” Now, 62 years after Vogel’s publication, it is hard to say that 

his hope has become realistic. Engineers and scientists fear statistics and therefore, they 

resist change (Tanco et al. 2010). They rarely use statistics (Box 2001). In fact, some of 

them think that OFAT represents a “sound” engineering principle or is related to the 

scientific method (Montgomery 2012). Thus it is hard to realize that there is a problem in 

the first place. Petroleum engineers and scientists are no exception, and OFAT and best-

guess approaches are ubiquitous in the petroleum industry. Part of the problem could be 

the lack of DoE awareness, which could be attributed to not focusing on DoE and 

statistical analysis in general in petroleum engineering programs. We need to focus on 

statistics as an indispensable way to solve engineering problems. Leveraging the enormous 

potentials of statistics and DoE would help us improve our approaches and increase the 

efficiency of various operations in the petroleum industry. 

2.7 Conclusions 

Design of Experiments (DoE) is the gold standard systematic research 

methodology that can maximize analytical research efficiency by efficient planning and 

execution of experiments and unbiased analysis of the results to establish cause-effect 

relationships. We recommend adopting DoE as a standard research methodology in the 
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petroleum industry. This could be started by incorporating it as one of the crucial courses 

in petroleum engineering programs. On the long run, we - petroleum engineers - can draw 

our own guidelines for the best choice of sample size and the best use of DoE and 

metamodeling in various situations, which could enrich the industry and maximize the 

efficiency of its various processes. We hope that this work could motivate petroleum 

researchers and engineers to learn and apply statistics and DoE, regardless of the type of 

experiments that they conduct; physical experiments, modeling runs, or field trials.  
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3. OPTIMIZATION OF PRIMARY AND ENHANCED OIL RECOVERY IN 

EAGLE FORD SHALE USING STATISTICAL DESIGN OF EXPERIMENTS 

 

3.1 Introduction 

In this chapter a DoE-based workflow is developed and applied with one major 

goal: to determine the potential of optimizing four recovery schemes to maximize the low 

RF in Eagle Ford shale. The four schemes are primary production (PP), waterflooding 

(WF), continuous miscible gas flooding (CON), and huff and puff miscible gas injection 

(HNP). The focus in this chapter is on controllable design variables (e.g., fracture spacing). 

Uncontrollable reservoir state variables will be considered in Chapter 4. That major goal is 

done by achieving the following objectives: 

1. Estimate the effects of design variables on RF  

2. Define the most important variables that affect the RF of PP, WF, CON, and HNP 

3. Specify if PP optimization is enough to improve the low primary RF 

4. Compare the four recovery schemes to identify the most prospective one 

5. Determine which miscible injection scheme (CON vs. HNP) is better 

6. Specify the injection gas that yields the best economic performance 

7. Determine the optimum combination of important design variables that maximizes 

the RF for selected recovery schemes 

8. Evaluate the potential of an innovative injection scheme that uses alternating 

injecting and producing fractures along the same lateral 
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3.2 Methods 

3.2.1 DoE 

JMP and R statistical software are used here for statistical design and analysis. The 

DoE workflow starts with selecting RF as a response that needs to be maximized by 

optimizing the effects of controllable design variables. The next main steps (Fig. 3.1) 

represent three of the major applications of DoE (Eriksson 2008; NIST/SEMATECH 

2016). These steps are as follows: 

1. Screening: The uncertain design variables are varied based on a screening DoE and 

simulation is run to specify the most important variables that affect RF. The 

changes in the rank of importance of the important variables is also tracked through 

a production period of 15 years.  

2. Optimizing: The optimum settings of the most important variables that maximize 

the RF are determined.  

3. Comparison: RFs of all recovery schemes are statistically compared together to 

determine which one is more prospective. 

 

Fig. 3.1—Flowchart of the DoE-based optimization process. 

 

More details on how these steps are applied are given in section 3.3. 

Identify responses, variables, and their 
ranges - Build reservoir model

Screening DoE to identify the most 
imporant variables

Sequential DoE to find optimum 
operating conditions 

Statistically compare between the 
performances of different recovery schemes
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3.2.2 Simulation Model Description 

Simulation is one of the most widely accepted approaches used to evaluate 

reservoir performance and forecast production. It is a strong managerial tool to optimize oil 

recovery before lab testing or field application. Table 3.1 summarizes the properties of 

reservoir rock and fluids (Chaudhary 2011; Morsy et al. 2013; Wan et al. 2013b; Gamadi 

et al. 2014; Wan et al. 2014; Fragoso et al. 2015; Wan et al. 2015) of the single-porosity 

model used in this study. CMG is used for modeling. 

 

Property Unit Value 

 Depth to top of the reservoir ft 10,500 

 Pressure psi 7,350 

 Temperature oF 225 

 Thickness ft 200 

 Porosity % 7 

 Permeability  nd 500 

 Vertical-to-horizontal permeability ratio   0.1 (1)† 

 Rock compressibility psi-1 5.00E-06 

 Irreducible water saturation (Swi)   0.3 (0.01)† 

 Residual oil saturation (Sor)   0.3 (0.01)† 

 Critical gas saturation   0.05 (0.01)† 

 Endpoint relative permeability to oil at Swi   1 (1)† 

 Endpoint relative permeability to water at Sor   1 (1)† 

 Endpoint relative permeability to gas at immovable liquid saturation   1 (1)† 

 Oil exponent   3 (1)† 

 Water exponent   3 (1)† 

 Gas exponent   3 (1)† 

 Liquid exponent   3 (1)† 

 Gas gravity   0.8 

 Oil API gravity oAPI 42 

 Bubble point pressure psi 2,375 

 Gas-oil ratio scf/STB 653 

 † Values between parentheses are for fracture blocks.  

 

Table 3.1—Properties of reservoir rock and fluids for the present simulation model. 
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Horizontal wells are simulated in the middle of the thickness of the formation. 

Transverse fractures (TFs) are assumed to be perpendicular to the direction of the 

horizontal well and equally spaced with heights equal to the formation thickness. Fig. 3.2 

illustrates a part of two wells with multistage hydraulic fractures. Because of symmetry, 

only a small part representing fracture wing is simulated (Fig. 3.2b). Production is 

simulated for 15 years. 

 

 

Fig. 3.2—(a) Schematic illustration of a part of two wells with multistage hydraulic fractures; 
(b) Enlarged simulated region showing LGR, permeability gradient away from hydraulic 
fracture, and non-refined block dimensions. 
 

The relative permeability curves of the fracture and the matrix are generated using 

modified Brooks-Corey functions. The reservoir is assumed to be homogeneous with no 

natural fractures. The actual width (wf) and porosity (φf) of the fractures are assumed to be 

0.0025 ft (0.03 in) and 0.4 (porosity of orthorhombic proppant packing), respectively. The 

(a) (b) 
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simulated effective fracture width, weff, is determined to be 0.1 ft because it is the 

minimum value found to be numerically stable. For the same reason, local grid refinement 

(LGR) is used around TFs and the producing perforation in the lateral and vertical 

directions (Fig. 3.2b). LGR also helps obtain a better representation of the rapid pressure 

and saturation changes around the fractures. A non-refined grid block has dimensions of 30 

ft x 30 ft in the lateral directions. Fracture blocks have an effective permeability, keff, 

calculated using the following equation: 

𝑘𝑒𝑓𝑓 =  
𝑘𝑓×𝑤𝑓

𝑤𝑒𝑓𝑓
           (Eq. 3.1) 

where kf is the actual fracture permeability. 

To obtain more accurate results, the effective porosity (φeff) of fracture blocks is 

modified using the volumetric average of matrix porosity (φmat = 7% as shown in Table 

3.1) and fracture porosity (φf) using the following equation: 

𝜑𝑒𝑓𝑓 = 𝜑𝑚𝑎𝑡 +  𝜑𝑓 ×
𝑤𝑓

𝑤𝑒𝑓𝑓
=  0.07 +  0.4 ×

0.0025

0.1
=  0.07 +  0.01 = 0.08 (Eq. 3.2) 

To avoid large transmissibility contrasts and to get a well-conditioned model that 

better represents the secondary fractures and microfractures induced by hydraulic 

fracturing treatment in the vicinity of the main fractures, permeability is reduced 

logarithmically in the LGR zone away from the main fractures, from keff to matrix 

permeability (Fig. 3.2). The width of that zone of secondary fractures increases with 

fracture conductivity. For example, its width is 3.57 ft if conductivity is 1,000 md.ft and 

1.03 ft if conductivity is 1.0 md.ft. Such widths depend on the LGR system chosen. 
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Vertical to horizontal permeability ratio is assumed equal to unity in all blocks with non-

matrix permeability. 

A literature review was conducted to identify design variables and their ranges for 

the four recovery schemes (Table 3.2) in Eagle Ford shale (Shoaib and Hoffman 2009; 

Chaudhary 2011; Dong and Hoffman 2013; Morsy et al. 2013; Wan et al. 2013a, 2013b; 

Xu and Hoffman 2013; Eshkalak et al. 2014; Gamadi et al. 2014; Han and Gu 2014; Liu et 

al. 2014; Sheng and Chen 2014; Wan et al. 2014; Fragoso et al. 2015; Kalra and Wu 2015; 

Pu and Li 2015; Rivera et al. 2015; Wan et al. 2015; Yu et al. 2014; Zhu et al. 2017). The 

number of factors are five, nine, 11, and 11 for PP, WF, CON, and HNP, respectively.  

 

Case Variable Unit 
Levels 

Low High 

All 

Frac spacing (Frac_spcg) ft 210 1,050 

Half well spacing (Half_W_spcg) ft 540 1,320 

Producing BHP (Prod_BHP) psi 2,400 3,600 

PP and 

HNP 

Frac half length (Frac_half_L) ft 120 540 

Log of frac conductivity 

(log(Frac_cond)) 
  0 (1 md.ft) 3 (1,000 md.ft) 

WF and 

CON 

Production frac half length 

(Prod_frac_half_L) 
ft 120 540 

Injection frac half length 

(Inj_frac_half_L) 
ft 120 540 

Log of prod. frac conductivity 

(log(Prod_frac_cond)) 
  0 (1 md.ft) 3 (1,000 md.ft) 

Log of inj. frac conductivity 

(log(Inj_frac_cond)) 
  0 (1 md.ft) 3 (1,000 md.ft) 

WF, 

CON, and 

HNP 

Injection bottom-hole pressure 

(Inj_BHP) 
psi 7,500 11,000 

Prod. time after which injection 

starts (Inj_time) 
years 1 9 

CON and 

HNP 

Degree of miscibility (w)   0.2 0.8 

Minimum miscibility pressure 

(MMP) 
psi 

2,500 

(CO2 or Sep. gas) 
5,000 (Lean gas) 

HNP 
Injection time (Inj_duration) days 30 150 

Production time (Prod_duration) days 30 270 

 

Table 3.2—Controllable design variables and their ranges. 
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Factor ranges are chosen carefully to avoid dominance of numerical error on the 

response and the risk of overlooking a meaningful factor. Due to its wide range, fracture 

conductivity is expressed logarithmically. Producing bottom-hole pressure is always kept 

above the bubble point pressure of 2,375 psi to avoid the evolution of gas, which would 

adversely affect oil production (and substantially increase the simulation time). Minimum 

miscibility pressure (MMP) has a range that could cover the two extremes: rich separator 

gas or CO2, which requires a low MMP (2,500 psi), and lean gas, which needs higher 

MMP (5,000 psi) to attain miscibility. Inj_time is the period of primary oil production after 

which injection starts.  

Continuous injection into the ultra-low permeability shale does not seem to be 

practical. For the injection pressure wave to propagate, either the matrix permeability must 

be increased or the distance between the injecting and producing wells must be decreased. 

The former option is impossible. In addition, the second option necessitates drilling more 

wells, which might not be cost-effective. To solve such a dilemma, the model is developed 

such that when injection starts, every other fracture along the same lateral is converted 

from production to injection for CON and WF. This means that the same well is used for 

both production and injection for continuous flooding schemes (WF and CON) as well as 

cyclic injection (HNP). This reduces the distance required for pressure propagation 

between injectors and producers and does not require drilling as many laterals. This is not 

currently feasible. However, it is believed that it would be better than using separate wells 

for injection and production in these ultra-low permeability formations. Although the 

author authentically developed this technique, it was found out that this injection technique 
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was first suggested by Dombrowski et al. (2015). Zhu et al. (2017) applied CON using this 

technique and found that it gave good results in terms of RF improvement. In spite of the 

general preference of HNP over CON in the literature, the author believes that CON will 

outperform HNP with the help of this innovative completion technique. 

3.3 Results 

3.3.1 Screening (Sensitivity)  

The screening study is concerned with identifying the most important variables 

affecting the response (15-year RF) so that the next phase of optimization would be more 

focused on those critical variables. The main effects and two-way interactions are the 

major focus here. Therefore, only the high and low levels of the variables are of interest 

(Table 3.2). Full factorial design is used for PP due to the small number of its factors. 

Fractional factorial is used for the other three cases to reduce the number of required runs. 

This is summarized in Table 3.3. It should be recognized that the specific results presented 

in this dissertation are valid only for the input data shown in Table 3.1 and Table 3.2. The 

conclusions should be valid for other sets of input that are not much different than the data 

used in this work. The main purpose of this research is to illustrate the use of Design of 

Experiments in the oil and gas industry. 

Fig. 3.3 gives a box-plot comparing the 15-year RFs of the four recovery schemes. 

It is obvious that CON has the highest potential for RF improvement. This agrees with the 

previous expectations that CON could outperform HNP, as well as other schemes. Because 

of that (and also because HNP takes substantially more simulation time that the other 

recovery schemes), HNP is not considered in the optimization stage.  
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Input Approach 

Scheme 
# 

factors 

Screening Optimization 

DoE # runs 
# important 

factors 
DoE 

# 

factors 
# runs 

PP  5 
Full 

factorial  
32 5 I-optimal  5 100 & 25 

WF 9 
Fractional 

factorial  

128 (V 

resolution) 
8 

Full 

factorial 
5 125 

CON  11 
Fractional 

factorial  

128 (V 

resolution) 
8 

Full 

factorial 
4 144 

HNP 11 
Fractional 

factorial  

128 (IV 

resolution) 
 8 - - - 

 

Table 3.3—Work summary. [-] means negative effect. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.3—Box-plots showing RF distribution of the four recovery schemes based on screening 
runs. 
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Pareto plot (Fig. 3.4) for PP shows the most important variables that affect the 15-

year RF value based on a significance level, α, of 0.051. All the variables of PP are 

important and will be carried through to the optimization stage. PP is the only one whose 

Pareto plot is given because the other three recovery schemes have 30+ significant 

variables and interactions, which would render their plots too busy and unclear. The four 

most important variables for all schemes are provided in Table 3.4.  

 

Fig. 3.4—Pareto plot for PP. 

 

_______________________ 
1 “Significance” level here is only used as a value to help determine the most influential variables and is 

considered as a descriptive rather than an inferential statistic because of the deterministic nature of 

simulation. 
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Table 3.4—Most important variables for four recovery schemes. 

 

Fig. 3.5 tracks how the ranks of the most important variables change with time for 

PP based on their p-value. It shows that fracture spacing, well spacing, and fracture half-

length dominate the influence on RF. From practical importance perspective, this is also 

clear in Fig. 3.6. This means that fracture spacing should be the variable of primary interest 

in the optimization stage. This behavior is also observed in all three injection schemes. 

 
 

 
 
 

Fig. 3.5—Tracking the rank of important variables during the 15-year production period for 
PP. 
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Period, month

Frac_spcg [-] Half_W_spcg [-] Frac_half_L

Prod_BHP [-] log(Frac_cond)

Scheme Most important factors 

PP  
Fracture spacing [-], well spacing [-], fracture half-length, fracture spacing-well 

spacing interaction, and producing BHP [-].  

WF 

Fracture spacing [-],well-spacing [-], producing fracture half-length, fracture 

spacing-well spacing interaction, fracture spacing-fracture half-length interaction [-

], and injecting fracture half-length 

CON  

Fracture spacing [-], well spacing [-], producing fracture half-length, fracture 

spacing-well spacing interaction, fracture spacing-producing fracture half-length 

interaction [-], and injecting fracture half-length. 

HNP Fracture spacing [-], well spacing [-], fracture half-length, and producing BHP [-]. 

1            3             6            12          24           48          84          120        180    
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Fig. 3.6—Box-plots of the 15-year RFs of the 32 screening runs at both levels of the 
important variables of PP. 
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For all recovery schemes, fracture half-lengths and conductivities have positive 

main effects on RF, while fracture spacing, well spacing, and producing bottom-hole 

pressure have negative main effects. This means that RF increases when fracture spacing, 

well spacing, and producing bottom-hole pressure decrease, and when fracture half-lengths 

and conductivities increase within the investigated ranges. An important implication is that 

half-well spacing should be minimized (the minimum being equal to fracture half-length, 

which should be maximized). The author believes that there is no significant increase in 

RF when half-well spacing exceeds fracture half-length because the reservoir volume 

beyond the stimulated reservoir volume (SRV) is less affected by the depletion process for 

PP. In addition, it would be less accessible to the injected fluids for the three injection 

schemes because it is not along the path of steepest pressure gradient. This is especially 

true once breakthrough occurs. Thus for best performance, fracture half-length should be 

maximized and well spacing should be designed to be equal to double of fracture half-

length. This, in addition to minimizing fracture spacing, accelerates the oil recovery. 

Another key finding is that, for all recovery schemes, fracture conductivity is 

important (which agrees with Ye 2016) despite the common belief that fracture 

conductivity is not important for shale reservoirs. It is well known that dimensionless 

fracture conductivities (CfD) above around 30 will cause the fracture to apparently have an 

infinite effective conductivity (Cinco-Ley and Samaniego 1981). Thus it would be 

uneconomical to increase the fracture conductivity to the point that CfD exceeds 30. Based 

on that, and with the model’s properties and assuming a fracture half-length of 540 ft, 

fracture permeabilities above 81 md (modeled fracture conductivity > 8.1 md.ft or 
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log(Frac_cond) > 0.91) are not required. However, this work shows that increasing fracture 

conductivity beyond that limit has a positive effect on RF. This could be attributed to the 

deeper induction of secondary fractures and microfractures beyond the main hydraulic 

fractures associated with larger conductivities. Such secondary fractures are expected to 

enhance and accelerate the flow of oil in shale. The two highest production rates in the first 

year have fracture conductivity of 1000 md.ft. 

For injection schemes, injection time changes its effect from positive to negative 

later during production. In the beginning, starting injection decelerates production and RF 

becomes lower than their corresponding PP cases. However, with time, the effect of 

injection on production starts to appear and RFs of the injections schemes overtake those 

of PP. Overall earlier injection was found to have a better effect on accelerating recovery. 

Thus the focus in the optimization stage will be on earlier start of injection. This is also 

supported by Fig. 3.7a, which shows that the low level of injection time (one year) is 

preferred for all post-primary recovery schemes. For injection BHP, it has a positive effect 

on the 15-year RF for WF and CON, but its effect is not important on HNP. Fig. 3.7b 

shows that the higher level of injection BHP is preferred, which is expected.  

For the two EOR cases (HNP and CON), minimum miscibility pressure (MMP) has 

a negative main effect on HNP and no significant effect on CON. The degree of miscibility 

(w) has no significant effect on either HNP or CON. The type of injection gas is less 

influential than the other important variables. Thus less miscible gases could be used and 

provide good results compared to the corrosive and expensive CO2. However, both MMP 
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and w are present in some important interactions. Thus based on the effect heredity 

principle (Montgomery 2012), they will not be discarded in the optimization stage.  

 

 

Fig. 3.7—Distribution of RF for the three injection schemes plotted by (a) Inj_time; (b) 
Inj_BHP. 

 

For HNP, increasing the production duration (puff period) and reducing the 

injection period (huff period) increase the RF. This agrees with Chen et al. (2014). 

However, it is not believed that this conclusion is definitive because of the nature of 

fractional factorial design used (confounding exists). Further investigations are required if 

HNP performance is to be optimized. However, this is beyond the scope of this study. As 

stated previously, the optimization stage will not consider HNP. 

(a) (b) 
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3.3.2 Optimization  

3.3.2.1 Primary Production (PP) 

Optimization starts with redefining the ranges of the important variables selected 

based on the screening DoE results. For PP, the five investigated variables are important 

(Fig. 3.4). Therefore, the levels in the optimization stage will be modified accordingly to 

focus more on the levels of a variables that give higher RF. Two more levels are 

introduced to provide a better coverage of the variable space. The variables and their new 

ranges are summarized in Table 3.5.  

 

Variable Unit 
Levels 

1 (low) 2 3 4 (high) 

Fracture spacing 

(Frac_spcg) 
ft 90 360 630 900 

Fracture half length 

(Frac_half_L) 
ft 180 300 420 540 

Half-well spacing 

(Half_W_spcg) 
ft 540 720 900 1,080 

Log of fracture conductivity 

(log(Frac_cond)) 
 

0.699 

(5 md.ft) 

1.466 

(29.24 md.ft) 

2.233 

(171 md.ft) 

3 

(1,000 md.ft) 

Producing BHP 

(Prod_BHP) 
psi 2,400 2,700 3,000 3,300 

Table 3.5—Modified ranges and levels of PP important variables for optimization. 

 

The next step is to determine the adequate number of runs required for the 

optimization. However, this “adequate” number depends on the complexity of the 

relationship between the response and its factors. And since this relationship is not exactly 

known, this number is difficult to know a priori and will remain a mystery (Wang and 

Shan 2006; Johnson et al. 2011). That is why this study uses sequential DoE. The first 

stage of sequential DoE uses I-optimal design. The number of runs chosen is 100 because 
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it provides the maximum G-efficiency (Fig. 3.8), which is 0.68 for this case. This value 

lies within the recommended range (0.6 – 0.7) provided by Eriksson (2008). Furthermore, 

the number of runs per variable (20) is acceptable based on the literature findings 

(Chapman et al. 1994; Jones et al. 1998; Loeppky et al. 2009). 

 

 

Fig. 3.8—G-efficiency variation with the number of runs generated by I-optimal design for 
PP. 
 
 

 

Fig. 3.9 shows the distribution of RF after 15 years. The slopes of the blue lines 

joining the means supports the previous conclusions of important variables in the screening 

study. For example, the line in the fracture spacing boxplot has the maximum slope, which 

indicates that fracture spacing is the most important variable and that RF increases with its 

decrease. Such conclusions are also emphasized by the contour plots given in Fig. 3.10. In 

addition, not being parallel to the axes, the contour lines in Fig. 3.10 indicate the presence 

of interactions between the important variables, which agrees with the screening study 

conclusions. The contour plots also corroborate the previous finding that fracture half-
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length should be maximized and well spacing should be designed to be equal to double of 

fracture half-length.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Fig. 3.9—Box-plots of the 15-year RFs of the 100 optimization runs at all levels of the 
important variables of PP (solid blue lines connect mean RFs). 
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Fig. 3.10—Contour plots of the 15-year RF vs. the five important variables of PP.  

 

Fig. 3.11 shows the RF change during the 15 years of production. The maximum 

RF is 9.6%. This maximum recovery case also has the maximum rate of RF increase. Its 

design settings are 90 ft for fracture spacing, 540 ft fracture half-length, 540 ft for half 

well-spacing, 2,400 psi for producing bottom-hole pressure, and 1,000 md.ft for fracture 

conductivity. The maximum RF conditions are constrained by the variable space specified 
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earlier (Table 3.5). The optimum conditions could be outside that design space. This is 

apparent in Fig. 3.9. Thus the second round of sequential DoE will extend the search for 

the optimum outside the design space specified in Table 3.5. To facilitate the search for the 

optimum however, the following points are important to consider: 

1. As shown earlier, fracture conductivity is an important variable and having 

conductivities of 1,000 md.ft (or even more) accelerates the recovery. As a result, 

fracture conductivity is kept at its maximum of 1,000 md. This value is not 

exceeded because it is hard to go beyond it from the practical viewpoint. 

2. The proportion of reservoir volume affected by main hydraulic fractures and their 

induced fractures will be larger for closely spaced fractures. Thus fracture spacing 

range is extended below 90 ft to search for the optimum.  

3. Producing BHP is restricted to be above the bubble point pressure of 2,375 psi (this 

might need to be revised though). Therefore, it is kept at its minimum, 2,400 psi. 

4. Fracture half-length will be extended beyond its current maximum limit of 540 ft. 

Based on the previous findings, half-well spacing will be set equal to fracture half-

length. Thus half-well spacing is not included as an independent variable. 

5. It is assumed that the effects of interactions will be the same. 
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Fig. 3.11—Change of RF of the 100 optimization PP runs with time. 

 

With only fracture half-length and fracture spacing selected for the second 

optimization round of sequential DoE, five levels are chosen for each of them (Table 3.6). 

A full factorial design (52 = 25 runs) is conducted. The 3D and contour plots of the 15-year 

RF are provided in Fig. 3.12. It shows that for maximum RF, fracture spacing should lie 

between 20 and 40 ft. In addition, the contour lines are almost parallel to the fracture half-

length axis. This implies that 15-year RF is not sensitive to fracture half-length or its 

interaction with fracture spacing in this region of the variable space. This could be 

attributed to the fact that half-well spacing is set equal to fracture half-length. If larger half-

well spacing is used, RF would depend on both half-well spacing and fracture half-length 

(as was the case in the screening study). However, despite being uninfluential on the RF, 

increasing fracture half-length reduces the number of wells that need to be drilled. Thus the 

economics of shale oil production shall be improved.  
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Variable Unit 
Levels 

1 2 3 4 5 

Fracture spacing 

(Frac_spcg) 
ft 90 70 50 30 10 

Fracture half length 

(Frac_half_L) 
ft 540 660 780 900 1,020 

 

Table 3.6—Modified ranges and levels for second round of PP optimization in sequential DoE. 

  

 

Fig. 3.12—3D and contour plots of the 15-year RF for the second round of PP optimization. 

  

 The maximum RF among the 25 runs is 10.6%. It corresponds to 30 ft fracture 

spacing. This implies that PP optimization is not enough to improve the RF from Eagle 

Ford shale. It can only accelerate the recovery and cash flow. Its effect is limited on 

improving the primary RF, which has a maximum physical limit (determined by pressure 

depletion) that cannot be exceeded by PP optimization alone. Exploring other recovery 

methods is a necessity.  
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3.3.2.2 Waterflooding (WF) 

Like PP, WF optimization starts with redefining the ranges of variables. Based on 

our understanding of the whole recovery process, the problem is simplified by reducing the 

number of variables to be optimized as follows. It is believed that keeping producing BHP 

at its minimum (2,400 psi) and fractures (injection and producing) conductivity at their 

maximum (1,000 md.ft) will enhance the production performance. To further simplify the 

problem, the lengths of the injecting and producing fractures are treated as one variable. 

Like PP, half-well spacing is set equal to fracture half-length. In addition, injection BHP is 

kept at its maximum (11,000 psi), which will maximize RF (its important interactions with 

other variables have synergistic effect). Therefore, only three variables (fracture spacing, 

fracture half-length, and injection time) are left to be optimized instead of the important 

nine defined by the screening study. Their levels are given in Table 3.7. The levels of 

fracture spacing and fracture half-length are chosen based on the knowledge and 

understanding developed thus far from PP. This was also verified by applying one-factor at 

a time (OFAT), which showed that the maximum RF lies in the same range as that of PP 

for fracture half-length and fracture spacing. For injection time, the study focuses on the 

range of 0.0 to 2.0 years because of the rapid decline in PP production, which requires 

pressure support to start as soon as possible. 

A full factorial design (53 = 125 runs) is done and 3D plots of the 15-year RF are 

provided in Fig. 3.13. Like PP, the contour lines are parallel to the fracture half-length axis 

and therefore, RF does not depend on fracture half-length or its interaction with fracture 

spacing. This supports the previous justification that RF is not sensitive to fracture half-
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length as long as half-well spacing is set equal to fracture half-length. The same applies to 

injection time. This could be because most of the recovery occurs before the end of the 15-

year production period, which makes RF at 15 years relatively insensitive to injection time. 

However, increasing the fracture half-length and starting the injection early would improve 

the economics of shale oil production because of the earlier cash flow associated with 

higher early production. For fracture spacing, its continuous decrease from 90 to 10 ft 

improves RF. The optimum PP fracture spacing of 20 to 40 ft is economically reasonable 

and agrees with the current practical estimates. These observations imply that the optimum 

design of lateral spacing and hydraulic fractures is the same for PP and WF. The maximum 

RF for WF is nearly 54.4%, almost five times as much as that of PP (10.6%). This number 

is unrealistic and could be due to the assumption of homogeneous reservoir without any 

natural fractures. The results would not be as promising if natural fractures are included. 

The systematic DoE workflow can be further extended to explore different models. 

 

 

Table 3.7—Modified ranges and levels for WF optimization. 
 
 

3.3.2.3 Continuous Gas Injection (CON) 

Based on the previous findings and conclusions, the interest here is restricted to 

four variables: fracture spacing, injection time, degree of miscibility, and minimum 

Variable Unit 
Levels 

1 2 3 4 5 

Fracture spacing (Frac_spcg) ft 90 70 50 30 10 

Fracture half length (Frac_half_L) ft 540 660 780 900 1,020 

Production time after which 

injection starts (Inj_time) 
years 0 0.5 1 1.5 2 
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miscibility pressure. Their levels are given in Table 3.8. Half-well spacing is set equal to 

fracture half-length. A full factorial design (4*4*3*3 = 144 runs) is done.  

 

 

Fig. 3.13—3D plots of the 15-year RF for WF optimization. 

 

Variable Unit 
Levels 

1 2 3 4 

Frac spacing (Frac_spcg) ft 10 30 50 70 

Production time after which injection starts (Inj_time) Year 0 0.5 1 1.5 

Degree of miscibility (w)   0.2 0.5 0.8 

Minimum miscibility pressure (MMP) psi 2,500 3,750 5,000 

 

Table 3.8—Modified ranges and levels for CON optimization. 

  

The 15-year RF of all 144 runs is almost 100%. This could mean that RF is not 

sensitive to any of the four variables considered because all runs have the same RF 

regardless of the variable settings. However, earlier injection, higher degree of miscibility, 

and lower MMP are preferred from the economic viewpoint because they attain the same 

RF earlier. Likewise fracture spacing between 20 and 40 ft is better. This is an important 
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finding because the optimum design (20 – 40 ft fracture spacing and well spacing that is 

twice as much as fracture half-length) is the same for all recovery schemes. The initial 

optimum design for PP will still be optimum for subsequent IOR injection schemes. No 

infill wells or refracturing is required. 

Certainly 100% RF is not realistic. However, having half-well spacing equal to 

fracture half-length maximizes the volume swept by injection gas because all the simulated 

volume lies within the path of steepest pressure gradient between the injecting and 

producing fractures along the same lateral. Thus gas sweeps all the SRV. This explains 

why miscible gas flooding has the potential of achieving RF close to 100%. However, the 

presence of heterogeneity and natural fractures would slow down the recovery process and 

cause early breakthrough. RF would be much less than these unrealistically high values. 

This needs further investigation. Actually, Sheng and Chen (2014) had a comparable 

model structure and obtained 99.3% RF. Other studies (e.g., Zhu et al. 2017) with similar 

model structure and the same assumptions (homogeneous reservoir with no natural 

fractures) did not achieve 100% RF. This is probably because they did not use a well 

spacing that was twice as long as fracture half-length. It is important to recognize that the 

presented completion design might not be logistically feasible and it is not clear yet how to 

implement it. Drilling two laterals alongside each other might be more feasible but this 

needs more logistic studies. 

3.4 Conclusions 

The main goal of this chapter was to illustrate how to use simulation and design of 

experiments (DoE) to maximize RF of four recovery schemes (primary production (PP), 
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waterflooding (WF), continuous miscible gas injection (CON), and huff and puff miscible 

gas injection (HNP) in a homogeneous Eagle Ford reservoir with no natural fractures. The 

objectives are to determine their most important variables, optimize their design, and 

compare their performance to specify the most prospective one. Adopting the innovative 

design of alternating injecting and producing fractures along the same lateral, the main 

findings and conclusions of the study are as follows: 

1. PP optimization can only accelerate the recovery and cash flow from Eagle Ford 

shale. Its effect is limited on improving the primary RF, which has a maximum 

physical limit that cannot be exceeded by PP optimization alone. Thus exploring 

other recovery methods is a necessity to improve RF. 

2. Continuous miscible gas injection has the highest potential to improve RF.  

3. Developing alternating injection/production fractures along the same lateral might 

be the next breakthrough to boost the RF from shale plays. 

4. Being two of the most important design variables for all recovery schemes, fracture 

spacing and fracture half-length should be better estimated in order to reduce the 

uncertainty in forecasting oil production. 

5. For all schemes, the optimum design settings are as follows:  

a) Fracture spacing: should be from 20 to 40 ft.  

b) Fracture half-length: should be maximized as practically as possible. 

c) Well-spacing: should be twice as long as fracture half-length. In such a way, all 

the reservoir volume between wells will be covered with hydraulic fractures. 

This does not consider the fracture hit effect. 
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d) Fracture conductivity: is important for shale oil recovery despite the common 

belief that it is not important. It should be maximized.  

e) Bottom-hole pressure: should be minimized (above the bubble point pressure). 

6. For secondary and tertiary recoveries to achieve the best performance, injection 

should start as early as possible (preferably, when the well is put on production) 

with the maximum injection pressure.  

7. For CON and HNP, although minimum higher miscibility pressure (MMP) and 

degree of miscibility are preferred in general, the type of injection gas is not as 

influential as the fracture design and well spacing. Less miscible gases could be 

used and provide good results. 
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4. ECONOMIC OPTIMIZATION OF PRIMARY OIL RECOVERY IN BAKKEN 

SHALE USING STATISTICAL DESIGN OF EXPERIMENTS 

 

4.1 Introduction 

Despite leveraging the sophisticated technology of horizontal wells and multistage 

hydraulic fracturing, recovery factor (RF) is still very low. In the US, the RF in the 

producing tight oil fields can be as low as 1% and as high as 12% with the normal range 

being from 3 to 7% of the original oil in place (Joshi 2014). In addition, the high capital 

expenses of the massive stimulation treatments and horizontal drilling add to economic 

stress. Furthermore, the high uncertainty in many controllable completion design variables 

and uncontrollable reservoir variables exacerbates the economic uncertainty. Thus 

economic optimization of oil recovery and hydraulic fracturing treatments is of utmost 

importance. Again DoE is used here to maximize the economic oil recovery and quantify 

the uncertainties through efficiently and systematically exploring the multidimensional 

variable space. 

In Chapter 3, an optimization DoE-based workflow was used to optimize well and 

fracture design for maximum primary and enhanced oil recovery in Eagle Ford shale. The 

effects of uncontrollable reservoir variables (e.g., permeability) were not considered. Thus 

this chapter considers these variables in addition to the controllable design variables to 

compare their relative importance for shale oil recovery. In addition, economics is 

considered here with net present value (NPV) as the response to be maximized instead of 
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RF. Finally, reservoir heterogeneity is considered to provide a more realistic reservoir 

description. 

4.2 Methods 

Fig. 4.1 summarizes the main steps of the workflow. Net present value (NPV) is 

selected as the response to be optimized. A thorough literature review identifies 16 

uncertain variables which are varied in a screening DoE study to determine which ones are 

more significant for NPV. These significant “heavy hitters” will be incorporated into an 

optimization DoE to obtain a response surface (RS). This semi-empirical RS is then used 

to optimize the economic recovery by maximizing NPV, and to evaluate the uncertainty in 

the NPV using Monte Carlo (MC) simulation. JMP and R statistical software are used here 

for statistical design and analysis. 

 

 

 
 
 
 

Fig. 4.1—Flowchart of economic optimization approach. 

 

4.2.1 Simulation Model Description 

The general structure of the model is the same as Eagle Ford shale model (section 

3.2.2 and Fig. 3.2). CMG is used for modeling. A thorough literature review (Shoaib and 

Hoffman 2009; Nojabaei et al. 2012; Cherian et al. 2013; Dong and Hoffman 2013; Kurz 

Identify response and variables with 
their ranges - Build reservoir model

Economic analysis and screening DoE to 
identify heavy hitters

Optimization DoE and fitting a semi-
empirical RS

Uncertainty analysis 
(MC simulation)
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et al. 2013; Morsy et al. 2013; Wan et al. 2013a, 2013b; Xu and Hoffman 2013; Chen et al. 

2014; Eshkalak et al. 2014; Fai-Yengo et al. 2014; Gamadi et al. 2014; Han and Gu 2014; 

Liu et al. 2014; Saputelli et al. 2014; Sheng and Chen 2014; Wan et al. 2014; Yu and 

Sepehrnoori 2014b; Yu et al. 2014; Alharthy 2015; Fragoso et al. 2015; Kalra and Wu 

2015; Pu and Li 2015; Rivera et al. 2015; Wan et al. 2015; Zhu et al. 2015) has been done 

to identify 16 uncertain variables for Middle Bakken shale, five controllable completion 

design variables and 11 uncontrollable reservoir variables (Table 4.1). Factor ranges are 

chosen carefully to avoid the dominance of numerical errors on the response and the risk of 

overlooking a meaningful factor. Due to their wide ranges, matrix permeability, vertical to 

horizontal permeability ratio, and fracture conductivity are expressed logarithmically. 

The effect of heterogeneity is incorporated into the model through Dykstra Parsons 

coefficient (DP). Permeability (k) is assumed to have log-normal distribution. In other 

words, Y = ln(k) has normal distribution with mean μ and standard deviation σ, which are 

related to heterogeneity, mean permeability (E(k)), and permeability variance (Var(k)) 

through the following equations (Zhu et al. 2015): 

DP = 1 – exp(-σ)         (Eq. 4.1) 

E(k) = exp(μ + σ2 /2)          (Eq. 4.2) 

Var(k) = (exp(σ2) - 1) x exp(2μ + σ2)       (Eq. 4.3) 

Unlike the deterministic cases in Chapter 3, using inferential statistics is more 

justifiable here because introducing heterogeneity ensures randomness in the simulation 

model.   
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Type # Variable Unit 
Levels 

Low High 

C
o

n
tr

o
ll

a
b

le
  

D
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n

 

V
a

ri
a

b
le

s 

1 Half well spacing (Half_W_spcg) ft 540 1,320 

2 Prod. frac half length (Frac_half_L) ft 120 540 

3 Frac spacing (Frac_spcg) ft 210 1,050 

4 Frac conductivity (log(Frac_cond)) md.ft 1 (0) 100 (2) 

5 Producing BHP (Prod_BHP) psi 1,600 3,000 

U
n

co
n

tr
o

ll
a

b
le

 S
ta

te
 V

a
ri

a
b

le
s 

 

6† 

Initial reservoir pressure (P_res) † psia 5,000 7,000 

Reservoir temperature deg F 225 255 

Depth ft 9,500 11,500 

7 Matrix porosity (Poro) % 2 10 

8 
Matrix permeability  

(log(Perm)) 
md 

0.0005  

(-3.30103) 

0.05  

(-1.30103) 

9 Dykstra-Parsons coeff. (DP)   0 0.8 

10 Kv/Kh (log(Kv/Kh))   0.01 (-2) 1 (00) 

11 Rock compressibility (R_compr) 10-6psi-1 3.5 8.5 

12 Pay thickness (h) ft 30 70 

13 Initial connate water saturation (Swi) ft 0.25 0.45 

14 Residual oil saturation (Sor)   0.1 0.4 

15 
Matrix endpoint relative permeability to water 

at Sor (Krw) 
  0.024 0.6 

16 
Matrix endpoint relative permeability to oil at 

Swi (Krow) 
  0.1 1 

† Only initial reservoir pressure was considered to avoid multicollinearity problems. Reservoir 

temperature and depth were modified accordingly. 

 

Table 4.1—Screening controllable and uncontrollable variables and their ranges. 

 

For the oil model, Bakken oil composition (Fig. 4.2) is taken from Pu (2013). 

Peng-Robinson Equation of State (EOS) is employed to calculate fluid properties (Fig. 4.3) 

and phase envelope (Fig. 4.4). 

For DoE and RSM, more details will be provided in section 4.3 since it is a 

sequential process (i.e., each round of DoE depends on the results of the previous rounds). 
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Fig. 4.2—Bakken reservoir oil composition. 
 
 
 

 
  

Fig. 4.3—Bakken reservoir oil properties. (a) Gas oil ratio, oil formation volume factor, and 
oil compressibility vs. pressure; (b) Oil density and viscosity vs. pressure.  
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Fig. 4.4—Bakken reservoir oil phase envelope. 
 
 

4.2.2 Economic Analysis 

The NPV is calculated for 10 years based on a 1,280-acre producing area assuming 

a constant average oil and gas prices of USD 65/bbl and USD 3/Mscf, respectively. Annual 

interest rate, royalty taxes, and other taxes are assumed to be 10%, 12.5% and 11.5%, 

respectively (SPE 2015). Operating expenses (OPEX) are taken to be USD 20/bbl (EIA 

2016c). Based on these assumptions, the net profit per barrel of oil equivalent (BOE) is 

USD 35.77. The cost of drilling a 10,080 ft lateral (a typical lateral length in Bakken shale 

(EIA 2016c)) is USD 4.80 MM. The cost of one fracture stage is calculated using the 

following equation (based on the work of Schweitzer and Bilgesu (2009)): 

Cost per stage (USD M) = 75 + 0.1 x Frac_half_L     (Eq. 4.4) 

The calculated capital expenses per well agree with the literature (Schlumberger 

2013; Apaydin 2014; Yu and Sepehrnoori 2014a; EIA 2016b, 2016c). The cumulative 

NPV is calculated based on the following equation: 
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Cum NPV =  ∑ (
(Oil and Gas prices −OPEX)×(1−Tax)

(1+interest day)⁄ j ) − CAPEX3653
day (j)=1

   (Eq. 4.5) 

where the daily interest rate is based on 10% annual interest rate. 

4.3 Results 

4.3.1 Screening (Sensitivity)  

A sensitivity study is conducted to screen out the most significant variables (heavy 

hitters) from the pool of 16 variables selected previously. The response variables here are 

RF and NPV. For screening purposes, only two levels of the variables are of interest (Table 

4.1). A full combination of all possible scenarios would necessitate 216 = 65,536 simulation 

runs. However, this part of the study is only concerned with evaluating the main effects of 

the variables not their interactions. Two-level fractional factorial design can help reduce 

the number of runs considerably and provide the required information about main effects. 

This design is one of the most widely used in screening studies (Box et al. 2005; Mathews 

2005; Eriksson 2008; Montgomery 2012; Jamshidnezhad 2015).  

Resolution IV screening design (64 runs) is selected because it can estimate the 

main effects which will be aliased with three-factor interactions in the worst case. 

Assuming that three-level and higher interactions are negligible, all main effects are 

estimable with no confounding by using only 64 runs. This represents around 0.1% of the 

full factorial runs.  

After running the 64 simulation scenarios and conducting the economic analysis, 

the minimum, median, average, and maximum NPV values are USD -44.99 MM, USD -

11.33 MM, USD -10.45 MM, and USD 102.89 MM, respectively. Only 14 runs (21.88%) 

of the 64 runs yielded positive NPV. This signifies the stressing need to optimize shale oil 
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recovery process. It is remarkable to note that out of these 14 runs, all have the high 

permeability level (0.05 md) and 12 have the high porosity level (10%) indicating the 

importance of these variables. 

NPV results are then used to construct a half normal probability plot (Fig. 4.5), 

which shows that there are eight significant variables along with some interactions 

affecting the 10-year NPV (those most deviated from the blue reference line). All of them 

(except the interaction term Half_W_spcg*Frac_spcg) have a positive effect on the NPV. 

These eight variables are directly related to reservolir oil in place (e.g., porosity and 

thickness) and/or productivity (e.g., permeability and fracture spacing) 

Fig. 4.6 tracks how the ranks of the NPV significant variables and their interactions 

change with time based on their p-value. At early production time, half well spacing 

(Half_W_spcg) and fracture spacing (Frac_spcg) are the two most significant variables. 

Their ranks retreat back continuously, however, as production goes on, and they get 

replaced by porosity (Poro) and permeability (log(Perm)). Design variables initially 

dominate the effect on production economics and reservoir characteristics take over later 

(after one to two years) in the life of the well. Fig. 4.7a shows that NPV increases when 

the number of wells and fracture stages decrease (i.e., Half_W_spcg and Frac_spcg 

increase) within the tested range. Note that the presence of curved contour line agrees with 

the previous conclusion that interaction exists between these two variables represented 

with the term Half_W_spcg*Frac_spcg.  
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Fig. 4.5—Half-normal probability plot showing the most significant variables and 
interactions affecting the 10-year NPV. 

 

 

Fig. 4.6—Tracking the rank of NPV significant variables during production time. [-] means 
negative effect. 
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Fig. 4.7—Contour plot of 10-year NPV (in USD M) vs. (a) Half_W_spcg and Frac_spcg; (b) 
Prod_BHP and Frac_cond; (c) Prod_BHP and Frac_half_L. 
 

It is noteworthy to observe that the less significant design variables (Prod_BHP, 

Frac_half_L, and log(Frac_cond)) affect the NPV. Their effect, however, is less 

pronounced than the effects of the significant variables. This should be considered while 

searching for the optimum conditions. 
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The same analysis of Fig. 4.6 could be done on the significant variables for RF 

after 10 years (Fig. 4.8). The uncontrollable reservoir variables and their interactions 

dominate the effect on RF throughout the life of the well. Because of such dominance, 

three of the five design variables (fracture half-length, farcture conductivity, and producing 

bottom-hole pressure) are not significant for NPV or RF.  

 
 

 

Fig. 4.8—Tracking the rank of significant variables during production time for RF. [-] means 
negative effect. 

 

Statistically fracture half length (Frac_half_L) is not significant since its p-values 

are larger than 0.05. However, Fig. 4.7c demonstrates that reducing Frac_half_L would 

have a positive impact on the 10-year NPV. This could be because additional economic 

benefit from increasing oil production by increasing Frac_half_L does not cover the 

0

1

2

3

4

5

6

7

8

9

10

11

R
a

n
k
 o

f 
s
ig

n
if
ic

a
n

c
e

Month

log(Perm) P_res Krow

Prod_BHP [-] Swi Frac_spcg [-]

R_compr Poro [-] log(Perm)*R_compr

Half_W_spcg [-]

1                             3                  6                12                24                48            84   120 



 

84 

 

additional capital expenses of the additional increase in Frac_half_L. The same is true for 

Prod_BHP (Fig. 4.7b). 

Taking these observations into account in the optimization stage, the capital costs 

could be reduced and the Bakken oil recovery economics could be improved by: 

 Reducing the number of drilled wells per unit area. Thus 540 ft will be excluded 

and the tested range of Half_W_spcg will be from 660 ft to 1,320 ft 

 Reducing the number of fracture stages in each well. Therefore, 210 ft will be 

excluded and the tested range of Frac_spcg will be from 420 ft to 1,050 ft 

 Keeping Frac_cond constant at the middle level, 6 md.ft. This matches the results 

found in Cherian et al. (2013) 

 Keeping Prod_BHP constant at the lower level, 1,600 psi. Lower pressure is not 

selected to avoid gas evolution around the wellbore if pressure goes below the 

bubble point pressure (1,569 psi), which would adversely affect oil production 

 Keeping Frac_half_L constant at 300 ft to reduce the capital expenses  

Table 4.2 summarizes the significant variables with the new ranges for the 

controllable ones. All the uncontrollable reservoir variables that were not significant are 

kept constant at their average level (Table 4.1). 
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Type # Variable Unit 
Levels 

Low Mid 1 Mid 2 High 
C
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s 
1 

Half well spacing 

(Half_W_spcg) 
ft 660 880 1,056 1,320 

2 
Frac spacing 

(Frac_spcg) 
ft 420 630 840 1,050 

U
n
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n
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o

ll
a

b
le

 R
es

er
v

o
ir

 

V
a

ri
a

b
le

s 
 

3† 

Initial reservoir pressure (P_res) psia 5,000 6,000 7,000 

Reservoir temperature deg F 225 240 255 

Depth ft 9,500 10,500 11,500 

4 
Rock compressibility 

(R_compr) 

1E-6 

psi-1 
3.50 6.00 8.50 

5 Matrix porosity (Poro) % 2 6 10 

6 
Matrix permeability 

(log(Perm)) 
md 

0.0005 

(-3.30103) 

0.005 

(-2.30103) 

0.05 

(-1.30103) 

7 Pay thickness (h) ft 30 50 70 

8 
Matrix endpoint relative 

permeability to oil at Swi (Krow) 
  0.1 0.55 1 

†Only initial reservoir pressure was considered to avoid multicollinearity problems. Reservoir 

temperature and depth were modified accordingly. 

Table 4.2—Optimization controllable and uncontrollable variables and their ranges. 

 

4.3.2 Optimization  

With the selection of eight significant variables, the next step is to fit a semi-

empirical model to relate the response to these variables. A quadratic polynomial model is 

flexible and is the most widely used model in response surface methodology (RSM) 

applications because it can efficiently handle curved response functions which is often the 

case in optimization (Mathews 2005; Eriksson 2008; Montgomery 2012; Jamshidnezhad 

2015). This quadratic model includes the linear, quadratic, and interaction terms as 

follows:  

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑚𝑥𝑚 + ∑ 𝛽𝑖𝑖𝑥𝑖
2𝑚

𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑚
𝑖=2𝑗<𝑖 + 𝜀 (Eq. 4.6) 

where y is the objective function (response); xi, i = 1, 2, …, m, are the variables; βi (and 

βij), i = 1, 2, …, m, are the regression coefficients; m is the number of variables (eight in 
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the current case); and ε is the error. The summation term represents the quadratic terms and 

the double summation term represents the interaction terms. It should be recognized that 

machine learning techniques other than least squares regression could be used and 

probably give better results. However, the focus here is to illustrate the basic steps in least 

squares regression and how it can be verified using residuals diagnostics. More machine 

learning techniques will be used in Chapter 5 and their performance will be compared to 

that of least squares regression. 

I-optimal design is chosen to generate this model because it outperforms the more 

commonly used D-optimal design since it minimizes the average variance of the estimates 

of model parameters and focuses on prediction. Thus it is more appropriate than the D-

optimality criterion for RS designs (Jones and Goos 2012). 

To permit accurate estimation of regression coefficients in the multi-linear 

regression model, the number of simulation runs needs to be determined. With eight 

variables, Eq. 4.7 could have as many as 45 coefficients. Thus the minimum number of 

simulation runs required must be at least 45. Austin and Steyerberg (2015) did a good 

literature regarding the number of runs per variable. Based on their work, the required 

number of runs is found to vary from 40 to 200. The number selected here is160 runs (20 

runs per variable). G-efficiency of the generated I-optimal design is 0.635 which is within 

the recommended range provided by Eriksson (2008).  

Fig. 4.9 shows boxplots of the NPV of the eight time steps for the 160 optimization 

runs. Most of the 160 runs have negative NPV even after 10 years of production. 
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Fig. 4.9—Boxplots of the NPV of the eight time steps in the 160 optimization runs. 

 

Fig. 4.10 shows how the two most significant variables (porosity and permeability, 

representing oil in place and flow rate, respectively) affect the 10-year NPV. The low 

levels of these two variables (2% and 0.0005 md) have negative mean NPV values. In 

addition, 55 out of the 63 runs with 2% porosity and 61 out of the 63 runs with 0.0005 md 

permeability have negative NPV. Thus it is evident that primary production from 

reservoirs with 0.0005 md permeability and/or 2% porosity is usually not economic. This 

suggests that these two variables might be better estimated in order to reduce the 

uncertainty in forecasting oil production. This also suggests that searching for sweet spots 

could be more economically beneficial than well and fracture design optimization. 

Investigating the potential of other recovery methods could be another solution to improve 

RF.  
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Fig. 4.10—Box-plots of 10-year NPV vs. the three levels of porosity and permeability. 

 

4.3.2.1 Fitting RS 

Mixed stepwise regression is performed to determine the best response surface 

(RS) based on model selection criteria (minimum root mean square error (RMSE), 

minimum predicted sum of squares (PRESS), minimum Mallow’s Cp, minimum corrected 

Akaike Information Criterion (AICc), minimum Bayesian Information Criterion (BIC), and 

maximum adjusted coefficient of determination (R2
adj)). Table 4.3 gives the estimates of 

regression coefficients of the 10-year NPV best RS. The objective NPV function (y in Eq. 

4.6) is (𝒍𝒏(√𝑵𝑷𝑽 + 𝟓𝟎))−𝟏.𝟓 with NPV in millions of dollars (USD MM). 

The p-values of the regression coefficients are all less than the significance level, α 

= 0.05, indicating their significant contribution to the RS. Furthermore, power analysis is 

conducted using significance level, α = 0.05, and the value of power is given in the last 

column of Table 4.3. The resulting power of most model terms is more than 0.95, which 

means that in similar runs, there is a 95% chance of detecting a significant effect for the 

corresponding variables or interactions. This model has the following statistical properties: 
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RMSE = 0.008737, PRESS = 0.0155933, R2 = 0.977731, R2
adj = 0.972119, Cp = 31.6983 

(< p = 33, number of predictors +1), AICc = -1012.71, and BIC = -927.196. Its analysis of 

variance (ANOVA) table is given in Table 4.4. 

 

Term Estimate Prob>|t| Power 

Intercept 4.670E-01 <0.0001   

Half_W_spcg -4.223E-05 <0.0001 1.000 

h -9.650E-04 <0.0001 1.000 

log_Perm -3.538E-02 <0.0001 1.000 

P_res -8.249E-06 <0.0001 1.000 

Krow -3.572E-02 <0.0001 1.000 

Poro -6.145E-03 <0.0001 1.000 

R_compr -1.644E-03 <0.0001 0.999 

(Half_W_spcg-989.725)*(Half_W_spcg-989.725) 6.686E-08 <0.0001 0.986 

(Half_W_spcg-989.725)*(Frac_spcg-737.625) 1.959E-08 0.0288 0.593 

(Frac_spcg-737.625)*(Frac_spcg-737.625) 6.471E-08 0.0004 0.950 

(Half_W_spcg-989.725)*(h-49.875) 7.543E-07 <0.0001 1.000 

(Frac_spcg-737.625)*(h-49.875) 5.059E-07 0.0006 0.940 

(h-49.875)*(h-49.875) 1.257E-05 0.0047 0.816 

(Half_W_spcg-989.725)*(log_Perm+2.30103) 1.962E-05 <0.0001 1.000 

(h-49.875)*(log_Perm+2.30103) -2.600E-04 <0.0001 1.000 

(log_Perm+2.30103)*(log_Perm+2.30103) 3.681E-03 0.0354 0.560 

(Half_W_spcg-989.725)*(P_res-5975) 1.060E-08 0.0002 0.970 

(Frac_spcg-737.625)*(P_res-5975) 1.037E-08 0.0004 0.949 

(log_Perm+2.30103)*(P_res-5975) -1.873E-06 0.036 0.557 

(Half_W_spcg-989.725)*(Krow-0.54719) 2.464E-05 <0.0001 0.983 

(h-49.875)*(Krow-0.54719) -3.220E-04 0.0012 0.909 

(log_Perm+2.30103)*(Krow-0.54719) 1.088E-02 <0.0001 1.000 

(Krow-0.54719)*(Krow-0.54719) 3.461E-02 0.0001 0.978 

(Half_W_spcg-989.725)*(Poro-6.025) 6.778E-06 <0.0001 1.000 

(Frac_spcg-737.625)*(Poro-6.025) 5.431E-06 <0.0001 1.000 

(h-49.875)*(Poro-6.025) -3.466E-05 0.0019 0.883 

(log_Perm+2.30103)*(Poro-6.025) -3.360E-03 <0.0001 1.000 

(Krow-0.54719)*(Poro-6.025) -3.651E-03 <0.0001 1.000 

(Poro-6.025)*(Poro-6.025) 4.824E-04 <0.0001 0.992 

(Half_W_spcg-989.725)*(R_compr-5.95313) 2.700E-06 0.0148 0.689 

(log_Perm+2.30103)*(R_compr-5.95313) -1.104E-03 0.0019 0.881 

(R_compr-5.95313)*(R_compr-5.95313) 6.668E-04 0.0182 0.661 

 

Table 4.3—Estimates of RS regression coefficients, their p-values and power. 
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Source Degrees of Freedom Sum of Squares Mean Square F Ratio 

Model 23 46.940526 2.04089 707.2793 

Error 136 0.392435 0.00289 Prob > F 

Total 159 47.332961   <.0001 

Table 4.4—ANOVA table of the fitted Response Surface. 

  

The actual by predicted plot is given in Fig. 4.11. It shows an acceptable match 

between the simulation output (actual) and RS predicted response (NPV function). The 

average absolute error between simulated NPV and RS predicted NPV is USD 2.766 MM. 

  

  

Fig. 4.11—Actual by predicted plot of the 10-year NPV response surface. 

0.05 Significance curves 

Line of mean 

Line of fit 

 
NPV function - Predicted  

NPV function - Actual  
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The model is checked further by Box-Cox plot (Fig. 4.12). It is a good diagnostic 

tool for identifying if data transformation is required. The current value of lambda (λ) in the 

model, one, lies within the recommended range that minimizes the residual sum of squares. 

Thus no transformation is required. This is an indication of model validity. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12—Box-Cox plot. 

 

Model diagnostics are then investigated to validate the model assumptions about 

the prediction errors (εi’s) which are: 

1. εi’s are independent 

2. εi’s have constant mean 0 and constant variance σ2 

3. εi’s have normal distribution 

For independence, there should be no autocorrelation in the residuals (prediction 

errors). This is because the simulation runs would give the same results regardless of the 

order of doing them. Thus they should be independent. The second assumption is checked 
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using a plot of the studentized (standardized) residuals versus the predicted model 

responses (Fig. 4.13).  

 

Fig. 4.13—Studentized (standardized) residual by predicted plot for NPV function. 

 

As it can be seen, the scatterplot looks flat validating the constant zero mean 

assumption. In addition, the vertical scatter of the data does not change horizontally, 

indicating the validity of constant variance assumption. The same conclusions can be 

derived from the analysis of the residual plots of the studentized residuals versus each of 

the eight predictors (Fig. 4.14). 

 

 



 

93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.14—Plots of studentized residual by the eight significant variables. 

 

Half_W_spcg 



 

94 

 

The third and last assumption is checked by taking a closer look at the observations 

that could affect the normality assumption. These observations could be unusually large 

residuals (outliers) or data that make exceptional contribution to the model fit or analysis 

(influential observations). Outliers are detected by calculating studentized residuals for 

each observation. Its absolute value should be 2.5 or greater to indicate a potential outlier. 

In the present case, three observations have absolute values greater than 2.5 (2.58839, 

2.55862, and -3.72404). However, this can be considered acceptable for 160 observations. 

For influential observations, Cook's D Influence should be 0.2 or larger to consider the 

observation as influential. In this case, none of the Cook's D Influences is beyond 0.2 and, 

therefore, no influential observations exist. These conclusions validate the normality 

assumption.  

The normality assumption is also checked by considering the studentized residuals’ 

normal quantile plot and histogram (Fig. 4.15). The distribution histogram of the residuals 

seems normal with one outlier and a normal curve fits it well. The normal quantile plot 

shows that all the points lie between the 95% confidence limits along the diagonal 

reference line validating the normality assumption. Additionally, a normality hypothesis 

test (Shapiro-Wilk W test) gives the same conclusion as shown below. 

H0: data is from normal distribution; H1: data is not from normal distribution  (Eq. 4.8) 
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Fig. 4.15—Normal quantile plot and distribution of studentized residuals of NPV function 
with normal fit. 

 

The Shapiro-Wilk W statistic is 0.990541 and the p-value is 0.3654. With 

significance level, α = 0.05, the null hypothesis (H0) cannot be rejected because p-value > 

α, and there is no strong evidence against the normal distribution hypothesis. Now the 

model is ready for further use. 

4.3.2.2 Optimum Operating Conditions 

The NPV function model is then used to find the optimum combination of 

significant controllable variables (Half_W_spcg and Frac_spcg) at the average level of the 

uncontrollable reservoir variables, i.e., log_Perm = -2.30103 (Perm = 0.005 md), P_res = 

6,000 psi, h = 50 ft, Poro = 6%, Krow = 0.55, and R_compr = 6 x 10-6psi-1. Mathematical 

optimization yields optimum Half_W_spcg = 1,310 ft and Frac_spcg = 688 ft. The NPV 

for this case is USD 12.8 MM using the RS and USD 6.4 MM using simulation. The 
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prediction accuracy could be increased by using the techniques in Chapter 5. However, the 

RS is still considered reliable and is used in further analysis. Fig. 4.16 shows the 

cumulative oil production and cumulative NPV over the production period. The payback 

time is around 3.2 years.  

 

 

Fig. 4.16—Economic performance of the optimum run. 

 

The effects of the less significant design variables are then investigated. Producing 

bottom-hole pressure is not investigated because it is kept constant at 1,600 psi, the lowest 

possible pressure to avoid the evolution of gas. For fracture conductivity and half-length, 

two more levels are investigated: 120 ft and 480 ft for fracture half-length and 0.6 and 60 

md.ft for fracture conductivity. Table 4.5 summarizes the results of the simulation runs. 

Increasing both fracture conductivity and fracture half-length from their base-case values 

leads to increasing the NPV by around USD 5.2 MM. This clearly reveals that considering 

the variables that were screened out by the screening study is vital to maximize the NPV. 
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Case Base 120 ft/ 0.6 md.ft 120 ft/ 60 md.ft 480 ft/ 0.6 md.ft 480 ft/60 md.ft 

NPV, USD MM 6.41 -2.3 -0.6 2.5 11.6 

Table 4.5—Effects of the less significant design variables. 

 

4.3.2.3 Uncertainty Analysis (Monte Carlo Simulation) 

 The final step is to conduct Monte Carlo (MC) simulation to quantify the 

uncertainty in the generated NPV. Using the response surface, MC uncertainty analysis is 

much simpler than stochastic methods and is almost as accurate as MC analysis with fine-

scale simulation. The distribution of the various variables is assumed as follows: uniform 

for both Half_W_spcg and Frac_spcg; log-normal for permeability (i.e., normal for 

log_Perm); and triangular for P_res, h, Krow, log_Perm, R_compr, and Poro. The average 

value (Table 4.2) of the uncontrollable state variables is used for triangular distributions. 

The number of iterations (n) conducted is 50,000. The distribution of the NPV is given in 

Fig. 4.17. The median value is USD 4.93 MM. 62.53% of the runs produced positive NPV. 

78.73% of these runs have permeabilities larger than the average Bakken permeability, 

0.005 md (Sarg 2012). 98.18% of the remaining 37.47% runs (runs with negative NPV) 

have permeabilities lower than 0.005 md. This suggests that primary production is mostly 

uneconomic for Bakken reservoirs with permeabilities lower than 0.005 md. Exploring 

other recovery methods is a necessity to boost the economics of Bakken shale oil 

production with permeabilities lower than 0.005 md. Also searching for sweet spots rather 

than focusing on well and fracture design optimization could be more rewarding. 
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Fig. 4.17—10-year NPV probability distribution for 50,000 Monte-Carlo iterations. 
 
 
 

4.4 Conclusions 

Using simulation and design of experiments (DoE), this chapter deals with primary 

production (PP) in a heterogeneous Bakken shale reservoir. RSM was applied and verified 

using residuals analysis. The objectives are to determine the most significant variables for 

the 10-year NPV, compare the relative importance of controllable design variables and 

uncontrollable reservoir characteristics, optimize PP design for maximum NPV, and 

quantify the uncertainty in NPV. The main findings and conclusions of the study are as 

follows: 

1. Six out of the eight statistically significant variables are reservoir characteristics 

indicating their dominant influence on reservoir economic performance. PP is 

10-year NPV, USD MM 
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mostly uneconomic for Bakken reservoirs with permeabilities lower than 0.005 md. 

Priority should be given to searching for sweet reservoir spots and EOR rather than 

drilling and completion optimization. 

2. Being the two most significant variables, porosity and permeability should be better 

estimated in order to reduce the uncertainty in forecasting oil production. 

3. Design variables initially dominate the effect on production economics, and 

reservoir characteristics take over later (after one to two years) in the life of the 

well. 

4. For average Bakken shale properties, the optimum conditions are 1,310 ft and 688 

ft for half well spacing and fracture spacing, respectively. The 10-year NPV for this 

case is USD 6.4 MM. However, if the screened-out design variables (fracture 

conductivity and fracture half-length) are considered, the NPV jumps to USD 11.6 

MM. 
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5. REDUCING BIAS BY DATA ANALYTICS AND STATISTICAL ANALYSIS: 

APPLICATION ON BAKKEN SHALE 

 

5.1 Introduction 

Statistical design of experiments (DoE) is generally overlooked in the petroleum 

industry (Chapter 2). The same is true for data analytics (DA) (Schuetter and Mishra 

2015). Fig. 5.1 shows the trend of the appearance of some keywords related to DA in SPE 

online library (onepetro.org) until the end of 2016. Despite the continuous increase with 

time, more efforts should be directed towards increasing the awareness of such techniques. 

This is especially true for DoE, which should become the standard methodology of 

conducting analytical research.  

The lack of use of such techniques could deteriorate research efficiency and lead to 

biased conclusions stemmed from reduced accuracy and precision of results. Such a 

problem could be especially aggravated in complex and marginally economic reservoirs 

like shale, where large uncertainties intensify the risk in the decision-making process. 

Therefore, Chapters 3 and 4 employed DoE and statistical analysis using reservoir 

simulation to understand shale oil recovery process and improve its low recovery factor 

(RF).  
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Fig. 5.1—Numbers and percentage of DA papers.2 

 

 

However, adequate representation of the complex and challenging shale reservoirs 

using numerical simulation necessitates making numerous uncertain assumptions. In 

addition, these techniques could be time consuming and their efficiency deteriorates in 

case of complicated and highly non-linear response-predictors relationships. Thus other 

less presumptive, more effective, and faster methods are required to support modeling 

results (Mohaghegh et al. 2017). DA offers a powerful tool in this respect because it avoids 

making the physical assumptions associated with simulation. Thus it reduces the  

 

_______________________ 
2 DA search keywords are "data mining", "machine learning", "big data", "data analytics", "predictive analytics", 

"predictive modeling", "data science", "supervised learning", and "unsupervised learning" (search done July 8th 2017). 

Note that only years with DA publications are shown and that mentioning these keywords does not imply that DA was 

actually implemented. 
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uncertainties associated with shale oil production, which could reduce risks and improve 

the robustness to the decision-making process. Furthermore, it could be faster if data 

preparation is not a big issue, and more effective for complicated response-predictors 

relationships.  

This chapter harnesses the evolutionary potentials of data analytics and applies it to 

a big dataset for Bakken shale to produce statistically-based conclusions and data-driven 

facts. Several authors applied data analytics on Bakken shale (Lafollette et al. 2012; Izadi 

et al. 2013; Ling et al. 2016; Lolon et al. 2016; Wang and Chen 2016b). However, not 

many predictive analytics techniques were employed. In addition, the results sometimes 

disagree for different techniques and studies. Furthermore, some data sets are relatively 

small. Thus this study uses a more comprehensive data analytics (descriptive and 

predictive) framework on an 8,095-well dataset by applying and comparing the results of 

12 supervised learning (SL) techniques for four production performance metrics. These 

techniques are artificial neural networks (ANN), regression trees (RT), bootstrap (or 

random) forests (BF), boosted trees (BT), k-nearest neighbors (KNN), linear regression 

(LR), ridge regression (RR), least absolute shrinkage and selection operator (LASSO), 

adaptive LASSO (A-LASSO), elastic net (EN), adaptive EN (A-EN), and finally 

ensembles (ENS). The objectives of this work are to: 

1. Compare the predictive performance of the 12 SL techniques for four production 

performance metrics 

2. Identify key factors that distinguish good wells from poor-performing ones 
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3. Mine data-driven insights from the available big data to better understand the 

complex relationships and interactions between drilling, completion, and reservoir 

data on one side, and production data on the other side 

4. Predict the production performance of future wells based on their location, 

completion design, and well architecture 

5. Evaluate the validity of the results of Chapter 4 to assess the performance of 

simulation 

5.2 Methodology 

JMP statistical software is used here to do statistical analysis. 

5.2.1 Data Preparation, Exploration, and Reduction 

This step incorporates domain knowledge, data summaries, data conversion, 

dimension reduction, regression imputation, multivariate normal imputation, and univariate 

and bivariate analytic techniques to understand the overall structure of the dataset and 

reduce its dimensionality when required. The dataset includes drilling, completion, and 

production data of 19,109 wells in Bakken shale play. There are 5,449 wells with no 

production data, 95% of which also have no completion data at all. Thus these wells were 

deleted. Less than 3% of the 3,556 wells completed before 2011 have completion data. 

These wells were discarded as well. Vertical wells were also removed from the dataset to 

focus on horizontal wells. If all such wells were not removed, more than 50% of the 

completion predictors would have been missing, which could reduce the quality of study 

findings and conclusions. Boxplots, scatterplots, cross-plots, and color-coded maps were 

used to clean the data and explore the response-predictors relationships. 
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Further cleaning of the remaining dataset continued to replace or delete values that 

did not make sense, and to impute missing values. For example, regression analysis was 

used to fit a linear relationship between completion date and first production date with 

determination coefficient (R2) of 0.99935. This relationship was then used to impute 

missing completion dates. Completion date was used to create a new variable, Quarter 

(wells completed in the first quarter of 2011 have Quarter = 1). The analysis left nine 

predictors to be used in this work. They included eight continuous predictors as follows: 

well location (Latitude and Longitude), Quarter, Vertical Depth (foot or ft), Lateral Length 

(ft), amounts of Water and Proppant used for fracturing (US gallon (gal) and pounds (lb), 

respectively), and number of Fracture Stages. The ninth predictor is Pad ID and it is 

categorical. Wells are considered to have Pad ID = 1 if they are located less than 250 ft 

apart. 

Four production metrics are used as responses. They are IP, EUR, Cum90, and 

Cum365, which represent initial production (b/d), estimated ultimate recovery (million bbl 

or mmbbl), cumulative 90-day production (bbl), and cumulative 365-day production (bbl), 

respectively. EUR is estimated based on 30-year decline curve analysis. The production of 

the first month (Cum30) usually does not represent production over a 30-day period 

because production might not start at the beginning of the month. In addition, early 

production could be subject to early changes. Thus Cum30 was not considered as one of 

the production performance metrics. The four metrics were predicted using 12 SL 

techniques to strengthen the reliability of the results because incorrect values most likely 

still remain in the dataset despite the tedious data cleaning and preparation. Another reason 
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for using four different responses representing different production times is to assess the 

performance of simulation of Chapters 3 and 4 and to provide better representation of well 

performance on the short as well as long terms. 

Further imputation of missing values of other predictors proceeded. Multivariate 

normal imputation - a multiple imputation (MI) method - was used to impute the missing 

values based on a multivariate normal distribution. A shrinkage estimator is used to 

enhance the covariance matrix estimation (Klimberg and McCullough 2016). MI assumes 

that the missing data mechanism is ignorable (missing completely at random, MCAR or 

missing at random, MAR). Although the current dataset may not satisfy this assumption 

and the missing data mechanism could be missing not at random or MNAR (Fig. 5.2), 

Schafer and Graham (2002) found that MI methods are often unbiased with NMAR data. 

Multivariate normal imputation was also applied to impute the missing values for the four 

production metrics. However, imputation considered only various other production 

metrics, which are highly correlated to the four chosen metrics. No predictors were used 

here for this imputation.  
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Fig. 5.2—Missingness pattern cell plot of the nine predictors and four responses. 

 

 

Extreme outliers of the predictors were removed using Mahalanobis distance. 

Euclidean distance was not used because it depends on the units used for predictors, does 

not consider variability of predictors, and ignores the correlations between them. 

Mahalanobis distance offers an effective solution to such problems (Shmueli et al. 2017). 

Fig. 5.3 shows Mahalanobis distance plot with alpha of 0.001. Wells that have 

Mahalanobis distance above an upper control limit (UCL) of 5.3 are considered outliers 

and removed from the dataset. The final complete dataset had 8,095 wells. 
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Fig. 5.3—Mahalanobis distance plot with alpha of 0.001.  

 

5.2.2 Model Evaluation and Selection 

Several metrics were used to assess the fit and compare the predictive ability of 

various models. These measures include root mean square error (RMSE), coefficient of 

determination (R2), mean absolute error (MAE), and median absolute error (MdAE). 

RMSE represents the standard deviation of the differences between the actual and 

predicted values. R2 represents the proportion of variability in the response that is 

predicted by the predictors. MAE gives an idea about the central tendency of the errors. 

Absolute error is used because negative errors would cancel out positive ones, resulting in 

a mean value that is not truly indicative of the errors. MdAE is used because MAE could 

be highly influenced by outliers in the errors. In addition, since absolute errors disregard 

the magnitude of the variable, some relative measures of error are also considered. These 

include mean absolute relative errors (MARE), median absolute relative errors (MdARE), 

and relative squared error (RSE). These metrics are defined by the following equations: 
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Coefficient of determination (R2) = 1 − ∑ (�̂�𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1⁄    (Eq. 5.1) 

Root mean square error (RMSE) = √
1

𝑛
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1      (Eq. 5.2) 

Mean absolute error (MAE) = 
1

𝑛
∑ |�̂�𝑖 − 𝑦𝑖|

𝑛
𝑖=1       (Eq. 5.3) 

Mean absolute relative errors (MARE) = 
1

𝑛
∑ |�̂�𝑖 − 𝑦𝑖| 𝑦𝑖⁄ ∗ 100𝑛

𝑖=1    (Eq. 5.4) 

Relative squared error (RSE) = ∑ (�̂�𝑖 − 𝑦𝑖)2𝑛
𝑖=1 ∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1⁄     (Eq. 5.5) 

where �̂�𝑖, 𝑦𝑖, and �̅� are the ith estimated response, ith actual response, and average of n 

actual responses, respectively. n is the number of data points in the training or validation 

sets. The two median measures are self-explanatory. 

To avoid overfitting, the 8,095-well dataset was split into three sets. The first is a 

training set used to train the 12 SL methods. The second set is for validation to guard 

against overfitting by comparing the evaluation metrics of the validation set to their 

corresponding values in the training set. An increase in the difference between the metrics 

of both sets indicates overfitting and using complex models. This happens because the 

error in the validation set starts to increase after a certain level of training at which the 

model starts to fit the random errors instead of the underlying relationship. In addition, the 

evaluation metrics of the validation set are used to compare the predictive performance of 

all generated models in each of the 12 SL techniques to choose the best model for each 

technique. Then, the validation set is also used to compare the predictive performance of 

the 12 best models to determine the superior model that outperforms all others. However, 

this “superior” model could still be overly optimistic. Thus a test set is used after training 

and validation to provide an unbiased measure of the performance of the best model. The 
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test set accounts for 25% of the dataset. The remaining set is divided into 75% for training 

and 25% for validation.  

5.2.3 Supervised Learning (SL) 

Here various SL methods are applied to produce models for various production 

performance metrics. Twelve methods were used and their predictive performance for the 

four responses were compared together. In addition, the contribution of the nine predictors 

to the four production responses were considered. These 12 methods are described below 

(Klimberg and McCullough 2016; Shmueli et al. 2017). 

1. Artificial neural networks (ANN): Only one hidden layer is used. The hyperbolic 

tangent transformation is used as the activation function for the hidden nodes and a 

linear combination of the generated features from the hidden nodes is used for the 

four output nodes corresponding to the four responses. Several numbers of hidden 

nodes were tried to search for the numbers that best model the four responses 

without overfitting. The strategy started with a minimum number of three nodes 

and continued to increase progressively until the prediction error of the validation 

(hold-out) set started to increase. Up to 40 nodes were tried. Care was considered to 

avoid overfitting, which was indicated by a training error that is much higher than 

the validation error. Several techniques were employed to improve the fit. First, the 

continuous variables were transformed to near normality because they are skewed 

and have outliers. Second, gradient boosting was employed to enhance the 

predictive performance of the ANN. The number of models tried in boosting was 

20, and a low learning rate of 0.1 was used to reduce the chance of overfitting. 
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Another technique used to avoid overfitting was the penalty method, which 

penalizes the square of the estimated weights. The fourth and final technique used 

to reduce the chance of getting trapped in a local optimum was to restart the ANN 

model several times using various sets random initial weights, and selecting the 

best model. Twenty restarts were used as recommended by Sall et al. (2007).  

2. Regression trees (RT): The number of splits was varied for each response while 

keeping an eye on R2 and RMSE for both training and validation sets to avoid 

overfitting.  

3. Bootstrap forests (BF): To get the best BF model, the number of trees in the forest 

was varied up to 1,000, the number of variables sampled at each split was varied 

from two to nine, and the number of splits per tree ranged from 10 to 2,000. The 

minimum number of instances used for a node to split is five as recommended by 

Hastie et al. (2009). Adding more trees was stopped when it did not improve the 

validation R2. 

4. Boosted trees (BT): To get the best BT model, the number of trees that could be 

considered was up to 1,000, the number of splits varied from three to 100, and 

learning rate varied from 0.1 to 0.9. As shall be seen later, the four best models for 

the four responses have a learning rate of 0.1. The minimum number of instances 

used for a node to split is five. 

5. K-nearest neighbors (KNN): The predictors are standardized to eliminate the effect 

of different units of measurement. The value of k was varied from 1 to 50 and the 
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value that provides the model with the least validation RMSE was chosen for each 

response. 

6. Multiple linear regression (LR): Mixed stepwise regression was employed with a p-

value of 0.05 for the variables to enter or leave the model. A response surface 

model that has linear, quadratic, and interaction terms was considered. Overall F-

test for the whole model as well as individual t-tests for each predictor were 

conducted. FDR (false discovery rate) LogWorth was considered to assess 

variables’ importance. FDR LogWorth modifies the p-value in such a way that 

considers the false discovery rate associated with multiple tests. Any variable 

whose FDR p-value exceeded 0.05 was discarded. Tens of models were 

investigated for each response to make sure that regression assumptions are met. 

The assumptions and how they were treated are as follows: 

 Linear relationship: Residual plots were ensured to have constant zero mean. 

 Homoscedasticity (constant variance): At first, all the residual plots were fan 

shaped indicating non-constant variance. Thus Box-Cox transformations were 

used to transform the response variables to help eliminate such behavior of the 

residuals.  

 Normality: Normal quantile plots for standardized residuals were used to check 

the normality of residuals. No problems were detected.  

 No auto-correlation: Durbin Watson test was applied to check for 

autocorrelation. No problems were found as the residuals were not serially 

auto-correlated. 
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In addition, multicollinearity was considered. Variables with variance 

inflation factor (VIF) above 6.0 were discarded. Eliminating such variables 

improved the stability of the estimates of the regression coefficients. This agrees 

with the principle of parsimony which states that better models have less variables.  

To reduce prediction error of LR, a penalty was applied to large 

coefficients. This was done by using a shrinkage penalty, which introduces some 

bias to the criterion of minimizing the residual sum of squares (RSS) of LR. This 

bias could reduce the variance, which translates into an improvement in prediction 

ability of LR (bias-variance trade-off).  

Three penalization methods were considered here: ridge regression (RR), 

least absolute shrinkage and selection operator (LASSO), and elastic net (EN). In 

addition, the adaptive versions of the last two methods (adaptive LASSO (A-

LASSO) and adaptive EN (A-EN)) were used as well. These adaptive versions 

improve the fit by reducing the penalty applied to variables that are more influential 

to the prediction. These five versions of generalized linear regression (GLR) are 

considered as separate methods (seven to 11). 

7. Ensemble (ENS): This is the 12th method. In an ensemble, the 11 SL models are 

combined together into a supermodel. This could reduce the variance of the errors 

and therefore, improve the predictive performance by providing more precise 

predictions. Median, average, weighted average and best-fit ensembles were 

investigated. The last two were based on the following form: 
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ŷENS =  ∑ ci ∗ ŷi
11
i=1          (Eq. 5.6) 

where ŷENS is the estimated ensemble value for any of the four responses for any 

well; i is a count that varies from 1 to 11 and accounts for the 11 SL techniques; ci 

is the coefficient (best fit) or weight (weighted average) of the ith technique; and �̂�𝑖 

is the predicted value of any of the responses with the ith technique. 

For weighted average and best-fit, a non-linear optimization problem was 

set up for each of the four responses. The weights/coefficients of the 11 SL 

techniques were varied with the purpose of minimizing the objective function, 

RMSE of the training set. Central finite difference was used in optimization 

because it gave more accurate results. The process was repeated using different 

random starting sets of values of the weights (250 sets) to enhance the chance of 

finding the global optimum. Then error analysis was conducted. RMSE and R2 of 

both training and validation sets were compared to avoid overfitting.  

5.2.4 Importance of Variables 

The contributions of the predictors to the four responses were evaluated. For LR, 

the relative importance of each predictor is measured by its standardized beta coefficient. 

Solution path plots were used for the five GLR techniques except RR. RR did not produce 

discernible solution path plots and therefore, the contributions of the predictors were not 

clear. The same is true for EN for all responses except EUR. For ANN, the importance of 

variables was evaluated based on the variability of the predicted response that results from 

changing the predictors in their ranges. If variation of a predictor resulted in high 

variability in the predicted response, the effect of such predictor is considered important. 
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For RT, BT, and BF, the ranking of a predictor’s importance was based on its contribution 

to the explanation of the variance of the response. KNN and ENS do not produce such 

contributions (Klimberg and McCullough 2016; SAS Institute Inc. 2016; Shmueli et al. 

2017). Interactions were also considered in the six regression techniques. 

5.3 Results and Discussion 

5.3.1 Data Exploration 

Fig. 5.4 shows the distribution of the wells color-coded based on Cum365. The 

distribution is not random. There are some sweet spots which have higher productivity on 

average. The counties with the highest well densities are McKenzie, Mountrail, Williams, 

and Dunn.  

Fig. 5.5 displays a scatterplot for the nine predictors along with their distributions. 

No strong correlations exist between any couple of predictors except for Vertical Depth 

and Latitude (0.6288). This is clearer in Table 5.1. This was considered in LR because of 

the multicollinearity it introduces into the models. Fig. 5.6 focuses on the four highest 

productive counties and shows how completion predictors have evolved through time and 

their effect on Cum365 (similar effects on the other three production metrics were 

observed). Lateral Length is almost constant (9,000 to 10,000 ft) with time. Stages increase 

with time. Because Lateral Length is almost constant, Stages/1,000 ft also increase with 

time. Water, Water/stage, Proppant, and Proppant/stage increase with time. On the other 

hand, Proppant Concentration decreases slightly with time on average. Fig. 5.6 also shows 

that Cum365 increases with time. This is particularly clearer for McKenzie and Dunn. This 

could be due to the continuous increase of the amount of Proppant and Water per stage and 



 

115 

 

decrease of fracture spacing. It must be stated that the purpose of showing trends in cross-

plots, like Fig. 5.6, is to demonstrate whether there is a positive or negative trend between 

the presented variables. That does not imply that there is a linear relationship (correlation 

does not imply causation). 

 

 

Fig. 5.4—County map for Bakken play wells color-coded based on Cum365. Training, 
validation, and test sets shown in dots, pluses, and crosses, respectively. 
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Fig. 5.5—Scatterplot matrix for nine predictors. Training, validation, and test sets shown in dots, pluses, and crosses, respectively. 
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Fig. 5.6—Trellis plot of completion predictors vs. Days (time since January 1st 2011). Darker points mean higher Cum365. Training, 
validation, and test sets shown in dots, pluses, and crosses, respectively.
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Predictor 
Longit-

ude 

Latit-

ude 

Compl 

Date 

Vert. 

Depth (ft) 

Lateral 

Length (ft) 

Frac. 

Stages 

Water 

(US gal) 

Proppant 

(lbs) 

Longitude 1.0000 -0.1679 0.0302 -0.0454 -0.0417 -0.0249 -0.1235 0.0150 

Latitude -0.1679 1.0000 0.0177 -0.6288 -0.0388 0.0885 0.0216 0.0261 

Completion Date 0.0302 0.0177 1.0000 0.1073 0.1221 0.3616 0.4273 0.2605 

Vertical Depth (ft) -0.0454 -0.6288 0.1073 1.0000 0.0658 0.0195 0.2009 0.1220 

Lateral Length (ft) -0.0417 -0.0388 0.1221 0.0658 1.0000 0.2797 0.1575 0.1360 

Stages -0.0249 0.0885 0.3616 0.0195 0.2797 1.0000 0.3509 0.3958 

Water (US gal) -0.1235 0.0216 0.4273 0.2009 0.1575 0.3509 1.0000 0.5558 

Proppant (lbs) 0.0150 0.0261 0.2605 0.1220 0.1360 0.3958 0.5558 1.0000 

Table 5.1—Correlation matrix of the nine predictors. 

  

 

Fig. 5.7 shows that production metrics normalized with respect to Lateral Length 

increase with reducing fracture spacing (increasing number of stages per 1,000 ft lateral). 

Recently, the average number of stages per 1,000 of lateral has been between 3.5 and 5.5. 

The Lateral Length-normalized production metrics also increase with increasing Proppant 

and Water per stage and slightly decrease (except Cum90) with Proppant Concentration. 

The top 10% performing wells based on Cum365 tend to have more Water and Proppant 

per stage, 300 ft for fracture spacing, and 1 – 2 lb/gal Proppant Concentration. Another 

important observation is that the normalized EUR fitted line vs. Stages/1,000 lateral is the 

flattest among the four normalized responses. This implies that the effect of reducing 

fracture spacing is least on normalized EUR. Reducing fracture spacing has more to do 

with accelerating oil flow than improving the ultimate recovery, which agrees with the 

findings of Chapters 3 and 4.  
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Fig. 5.7—Production metrics normalized with respect to Lateral Length vs. Stages/1,000 ft of Lateral Length, Proppant/stage, Proppant 
Concentration, and Water/stage. Darker points mean more recent Completion Date. Training, validation, and test sets shown in dots, 
pluses, and crosses, respectively.
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The same behavior is generally true for production metrics normalized with respect 

to Stages (Fig. 5.8). However, these normalized metrics decrease with reducing fracture 

spacing, which agrees with Al-Alwani et al. (2015). This is expected since the stimulated 

reservoir volume (SRV) per stage decreases with decreasing fracture spacing. Thus less oil 

would be available for production per stage. Fig. 5.9 provides a generalized plot for the 

four responses and their normalized values based on Stages and Lateral Length. The 

general trends of the 12 production metrics are plotted vs. Quarter, Stages, Stages/1,000 ft, 

Lateral Length, and Proppant Concentration are described below.  

 Quarter: All the nine metrics related to Cum365, Cum90, and IP increase with time 

(Quarter). This might be attributed to the increase in completion productive 

efficiency with time. This trend is less pronounced for the metrics normalized 

based on Stages though. The situation is different, however, for the three EUR 

metrics. The recent developments in completion were successful in accelerating 

production, which is translated into higher Cum365, Cum90, and IP metrics. 

However, the SRV are depleted more quickly and the production decline rate 

increases. Therefore, EUR does not vary much. This agrees with the findings in 

Chapters 3 and 4.  

 Fracture Stages: Stages-normalized metrics decrease with Stages increase. 

However, the non-normalized as well as Lateral Length-normalized production 

metrics increase with Stages. This implies that production efficiency decreases with 

increasing the Stages. This could be because the positive effect of adding more 

production pathways by extra Stages exceeds the negative effect of decreasing 

production due to the decrease in SRV per Stage. A fivefold increase in Stages  
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Fig. 5.8—Production metrics normalized with respect to Stages vs. Stages/1,000 ft of Lateral Length, Proppant/stage, Proppant 
Concentration, and Water/stage. Darker points mean more recent Completion Date. Training, validation, and test sets shown in dots, 
pluses, and crosses, respectively.
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Fig. 5.9—Twelve production metrics vs. three predictors and Proppant concentration
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from 10 to 50 translates into an increase of 2.2, 1.7, 2.0, and 1.4 times for IP, 

Cum90, Cum365, and EUR, respectively. This agrees with the previous finding that 

the effect of completion optimization has a larger impact on accelerating recovery 

than increasing its ultimate value. 

 Lateral Length: Non-normalized metric increase with Lateral Length. However, 

doubling the Lateral Length does not necessarily mean that production doubles. 

This might be because of the decreased production efficiency when Lateral Length 

increases. Production efficiency reduction could be due to reduced efficiency to 

transport proppants to the toe of the lateral. This means that production per 1,000 ft 

is not constant along the lateral. It decreases with it. In addition, the farthest 

fractures along the lateral will have to have higher pressure for the oil produced to 

move longer distances. This interpretation is also manifested in the decrease of 

Lateral Length-normalized metrics with Lateral Length. Stages-normalized metrics 

are not affected by Lateral Length as expected. 

 Proppant Concentration: The general trends of the 12 production metrics vs. 

Proppant Concentration are weak. The top performing wells have 1 – 2 lb/gal 

Proppant Concentration. 

For Water and Proppant along with their normalized values based on Stages and 

Lateral Length, the 12-production metrics increase with all of them. Thus they were 

excluded from the graph for the purpose of clarity.  
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5.3.2 Supervised Learning (SL) Models and Their Evaluation 

The best number of nodes that minimizes the errors and improves the fit of ANN is 

26 for IP, EUR, and Cum90, and 30 for Cum365. These numbers minimize RMSE and 

MAE, and maximize R2 for both training and validation sets. For RT, the best numbers of 

splits are 48, 15, 26, and 36 for IP, EUR, Cum90, and Cum365, respectively. These 

numbers minimize RMSE and maximize R2 for both training and validation sets. For BF, 

the best numbers of trees that maximize validation R2 are 27, 153, 128, and 66 for IP, EUR, 

Cum90, and Cum365, respectively. For BT, the best numbers of trees that maximize 

validation R2 are 93, 121, 127, and 85 for IP, EUR, Cum90, and Cum365, respectively. For 

KNN, the best numbers of neighbors are 9, 18, 9, and 10 for IP, EUR, Cum90, and 

Cum365, respectively. These numbers minimize validation RMSE (for minimum training 

RMSE, these numbers are 8, 21, 5, and 12, respectively). 

For LR, Box-Cox transformation was successful to stabilize the variance of IP and 

EUR. However, non-constant variance was still present for Cum90 and Cum365. This 

suggests that some variables might be missing. The absence of actual reservoir properties - 

which are expected to be much more influential than the completion and drilling variables 

(Chapter 4) - is believed to be the reason for that. This belief is supported by the fact that 

the location of the wells (Latitude and Longitude) is the most important variable (as shall 

be seen later).  

For ENS, although median predictions are less affected by outliers of predicted 

values, they were found less accurate than the simple average. Arranged from least to most 

accurate, the ensembles are median-based, average-based, weighted average-based, and 
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best fit-based. Having the highest predictive power, best-fit ensembles would only be 

considered in further analysis.  

Table 5.2 to Table 5.5 provide a comparison between the various evaluation 

measures for the four responses. The measures of the training set for all 12 SL techniques 

of the four responses are very close to their corresponding values of the validation set. This 

indicates that overfitting probably was not a problem. For all responses, ENS always 

provides the best measures for both training and validation sets. Fig. 5.10 shows how the 

relative errors (RE) of the four responses are distributed. Fig. 5.11 provides a more clear 

distribution of REs using a log scale for their absolute values (AREs). The AREs cover a 

large spectrum of errors (1,000s %). However, as Table 5.6 shows, more than 90% of the 

AREs are below 50% (REs lie within ± 50%) except for Cum90, which has 83.92% of the 

AREs below 50%. Color-coding based on the logarithm of the response (Fig. 5.11) reveals 

that all the large REs occur for the poor producing wells. This is expected since a small 

deviation of the predicted values from the actual ones would lead to large REs for such 

wells. Table 5.7 also demonstrates that for all four production metrics, ENS consistently 

provides the highest percentage of data points that lie within any interval of ARE. This 

agrees with the previous conclusion that ENS has the highest predictive power.  
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Table 5.2—Accuracy metrics for IP arranged ascendingly according to validation RMSE. 

 

Table 5.3—Accuracy metrics for EUR arranged ascendingly according to validation RMSE. 

 
 
 
 
 

Trn Vld Trn Vld Trn Vld Trn Vld Trn Vld Trn Vld Trn Vld

ENS 0.744 0.761 131.9 134.6 96.7 98.0 72.5 71.8 23.9 24.3 15.0 14.8 0.256 0.239

BT 0.686 0.711 145.9 147.9 109.8 108.8 86.7 83.2 28.0 27.4 17.4 16.6 0.314 0.289

BF 0.687 0.701 145.7 150.5 108.2 110.5 81.3 82.2 28.0 28.6 16.7 16.5 0.313 0.299

ANN 0.505 0.534 183.3 187.8 140.5 140.3 113.6 105.5 36.4 36.2 23.0 21.7 0.495 0.466

KNN 0.499 0.525 184.5 189.6 141.5 140.7 115.7 108.9 37.6 38.3 22.7 21.5 0.501 0.475

RT 0.464 0.483 190.8 197.9 145.5 147.4 117.2 112.3 37.7 37.5 23.5 22.2 0.536 0.517

LASSO 0.377 0.388 205.7 215.2 159.2 164.5 129.7 131.8 41.9 43.4 26.0 26.4 0.623 0.612

RR 0.378 0.387 205.5 215.5 159.0 165.0 131.1 131.0 41.8 43.5 26.0 26.3 0.622 0.613

EN 0.378 0.387 205.5 215.5 159.0 165.0 131.1 131.0 41.8 43.5 26.0 26.3 0.622 0.613

A-LASSO 0.358 0.386 208.8 215.6 161.1 164.6 128.7 130.5 42.7 43.2 25.8 26.2 0.642 0.614

A-EN 0.358 0.385 208.9 215.7 161.1 164.7 128.9 129.6 42.7 43.3 25.8 26.2 0.642 0.615

LR 0.366 0.383 207.5 216.2 157.8 161.0 122.8 118.9 39.3 40.1 25.4 25.1 0.634 0.617

RSER
2 RMSE MAE MdAE MARE MdARE

Accuracy 

metric

Absolute Relative

Trn Vld Trn Vld Trn Vld Trn Vld Trn Vld Trn Vld Trn Vld

ENS 0.761 0.746 0.088 0.090 0.062 0.064 0.044 0.045 22.1 23.0 13.8 14.2 0.239 0.254

BT 0.696 0.682 0.099 0.101 0.072 0.073 0.051 0.053 26.2 27.2 15.7 16.3 0.304 0.318

BF 0.665 0.649 0.104 0.106 0.075 0.078 0.053 0.057 27.6 29.6 16.5 17.2 0.335 0.351

ANN 0.444 0.440 0.134 0.134 0.099 0.100 0.077 0.076 36.6 38.4 23.1 23.1 0.556 0.560

KNN 0.391 0.393 0.140 0.140 0.105 0.105 0.082 0.083 39.6 41.3 24.3 24.4 0.609 0.607

LASSO 0.328 0.324 0.147 0.147 0.111 0.112 0.089 0.088 41.4 43.3 26.3 26.7 0.672 0.676

EN 0.327 0.324 0.147 0.148 0.111 0.112 0.089 0.089 41.4 43.4 26.3 26.8 0.673 0.676

A-LASSO 0.314 0.323 0.149 0.148 0.113 0.112 0.091 0.088 42.2 43.5 27.0 26.7 0.686 0.677

RR 0.328 0.323 0.147 0.148 0.111 0.112 0.090 0.088 41.4 43.4 26.3 26.7 0.672 0.677

A-EN 0.328 0.323 0.147 0.148 0.111 0.112 0.090 0.088 41.4 43.4 26.3 26.7 0.672 0.677

LR 0.315 0.312 0.148 0.149 0.109 0.110 0.083 0.083 37.8 39.6 26.1 26.2 0.685 0.688

RT 0.329 0.312 0.147 0.149 0.111 0.113 0.087 0.088 41.5 44.3 25.9 26.2 0.671 0.688

MdARE RSER
2 RMSE MAE MdAE MARE

Relative
Accuracy 

metric

Absolute
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Table 5.4—Accuracy metrics for Cum90 arranged ascendingly according to validation RMSE. 

 

 

Table 5.5—Accuracy metrics for Cum365 arranged ascendingly according to validation RMSE. 

 

Trn Vld Trn Vld Trn Vld Trn Vld Trn Vld Trn Vld Trn Vld

ENS 0.744 0.761 9292 9234 6649 6554 4924 4459 45.7 42.9 18.0 17.4 0.256 0.239

BT 0.685 0.700 10305 10349 7597 7723 5839 5895 58.4 58.8 20.3 20.8 0.315 0.300

BF 0.664 0.680 10651 10687 7827 7957 5829 5881 62.2 62.6 20.2 22.1 0.336 0.320

KNN 0.406 0.428 14155 14293 10675 10826 8225 8362 83.5 90.5 28.8 28.3 0.594 0.572

ANN 0.357 0.363 14732 15076 11135 11529 8492 8737 90.1 96.0 29.0 30.0 0.643 0.637

RT 0.317 0.329 15185 15476 11526 11902 8855 9433 91.9 98.1 30.5 32.2 0.683 0.671

LASSO 0.230 0.230 16119 16580 12350 12840 9813 10035 99.7 106.8 32.7 34.6 0.770 0.770

RR 0.231 0.229 16110 16584 12351 12849 9742 9895 99.3 106.5 32.8 34.3 0.769 0.771

EN 0.231 0.229 16110 16584 12351 12849 9742 9895 99.3 106.5 32.8 34.3 0.769 0.771

A-EN 0.231 0.229 16110 16584 12351 12849 9742 9895 99.3 106.5 32.8 34.3 0.769 0.771

A-LASSO 0.231 0.229 16110 16584 12351 12849 9742 9895 99.3 106.5 32.8 34.3 0.769 0.771

LR 0.198 0.206 16456 16837 12457 12886 9611 10260 93.2 98.9 33.6 36.0 0.802 0.794

RSER
2 RMSE MAE MdAE MARE MdARE

Accuracy 

metric

Absolute Relative

Trn Vld Trn Vld Trn Vld Trn Vld Trn Vld Trn Vld Trn Vld

ENS 0.793 0.784 19293 20085 13686 14169 9953 10082 21.4 20.9 12.1 12.4 0.207 0.216

BT 0.755 0.754 20985 21422 15050 15441 10994 11222 24.7 23.8 13.1 13.8 0.245 0.246

BF 0.709 0.714 22906 23101 16447 16760 11874 12149 27.9 26.8 14.3 14.6 0.291 0.286

ANN 0.480 0.519 30584 29979 22891 22568 17473 17481 38.4 35.7 21.3 20.6 0.520 0.481

KNN 0.466 0.484 31011 31024 23325 23418 18178 18199 39.9 38.8 21.5 21.3 0.534 0.516

RT 0.417 0.445 32401 32187 24147 24478 18393 19292 40.9 39.5 22.5 22.9 0.583 0.555

A-LASSO 0.313 0.356 35164 34683 26851 26803 21434 21424 46.2 43.6 25.6 25.0 0.687 0.644

LASSO 0.329 0.355 34747 34690 26469 26787 20918 21129 45.4 43.6 25.1 25.4 0.671 0.645

A-EN 0.313 0.355 35173 34695 26860 26813 21417 21608 46.3 43.6 25.6 25.0 0.687 0.645

RR 0.331 0.354 34714 34727 26448 26843 20941 20977 45.3 43.6 25.2 25.5 0.669 0.646

EN 0.331 0.354 34714 34727 26448 26843 20941 20977 45.3 43.6 25.2 25.5 0.669 0.646

LR 0.318 0.346 35040 34931 26349 26624 20501 20470 43.2 41.3 24.8 24.8 0.682 0.654

R
2 RMSE MAE MdAE MARE

Accuracy 

metric

Absolute Relative

MdARE RSE
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Fig. 5.10—Boxplots showing the distributions of REs for the four production responses. 
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Fig. 5.10 Continued—Boxplots showing the distributions of REs for the four production 
responses. 

 

 

Fig. 5.11—Boxplots showing the distributions of AREs for the four production responses. 
Log scale used for clarity. 
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Fig. 5.11 Continued—Boxplots showing the distributions of AREs for the four production 
responses. Log scale used for clarity. 
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Table 5.6—Distribution of validation AREs arranged ascendingly according to 30% ARE. 

 

The next best models after ENS are BT and BF. This is expected because these BT 

and BF are ensemble models themselves. Ensemble is powerful since it enhances the 

robustness and accuracy of predictions. The six regression techniques are the worst in 

terms of their predictive performance. 

Response Response

ARE ≤ 10% ≤ 20% ≤ 30% ≤ 50% ≤ 70% ≤ 100% ARE ≤ 10% ≤ 20% ≤ 30% ≤ 50% ≤ 70% ≤ 100%

EN 19.41 39.37 55.25 77.79 85.29 90.67 A-EN 19.01 38.62 54.70 76.23 85.90 91.76

RR 19.41 39.37 55.25 77.79 85.29 90.67 RR 19.01 38.62 54.70 76.23 85.90 91.76

A-LASSO 19.69 40.26 55.52 77.72 85.49 90.87 EN 19.62 38.28 55.25 76.57 85.90 91.42

A-EN 19.75 40.40 55.59 77.72 85.56 90.87 LASSO 19.62 38.22 55.45 76.57 86.04 91.49

LASSO 19.82 39.37 55.99 77.72 85.29 90.74 LR 20.23 38.56 55.79 80.11 89.03 93.39

LR 20.78 40.94 58.17 79.77 87.13 92.23 A-LASSO 19.28 38.35 55.86 76.43 86.10 91.55

RT 25.34 45.50 62.47 79.29 87.53 92.71 RT 19.48 40.12 55.99 77.18 85.22 90.05

ANN 24.59 46.80 64.44 82.08 88.49 93.46 KNN 22.55 42.51 58.86 78.20 86.38 91.35

KNN 26.43 46.39 64.58 81.68 88.08 92.37 ANN 22.75 44.28 61.58 80.79 88.28 92.57

BF 31.68 58.65 73.57 86.51 92.30 95.78 BF 30.31 55.52 72.07 85.97 91.49 95.84

BT 32.43 58.24 74.25 87.74 93.60 96.05 BT 33.65 58.04 73.64 88.15 93.19 96.73

ENS 36.99 63.49 78.41 90.19 94.14 96.59 ENS 38.69 63.28 78.27 91.08 95.50 98.02

Response Response

ARE ≤ 10% ≤ 20% ≤ 30% ≤ 50% ≤ 70% ≤ 100% ARE ≤ 10% ≤ 20% ≤ 30% ≤ 50% ≤ 70% ≤ 100%

LR 14.65 28.68 42.37 66.28 77.86 82.08 LASSO 20.71 40.19 57.56 78.34 86.44 91.01

A-EN 15.33 29.97 43.53 66.01 74.93 80.04 EN 20.10 40.19 57.77 78.34 86.44 91.01

A-LASSO 15.33 29.97 43.53 66.01 74.93 80.04 RR 20.10 40.19 57.77 78.34 86.44 91.01

EN 15.33 29.97 43.53 66.01 74.93 80.04 A-LASSO 21.59 40.74 58.31 77.93 86.10 90.94

RR 15.33 29.97 43.53 66.01 74.93 80.04 A-EN 21.87 40.80 58.38 77.93 86.04 90.94

LASSO 16.08 30.11 43.60 66.01 75.20 80.25 LR 20.23 40.94 58.38 80.52 88.08 91.89

RT 16.89 32.49 47.55 69.48 76.77 82.02 RT 23.43 44.07 62.87 81.95 87.87 92.57

ANN 16.83 33.92 50.00 70.91 78.13 82.97 KNN 24.59 47.14 64.85 82.63 88.15 92.03

KNN 18.80 35.97 52.79 71.46 79.02 83.58 ANN 25.89 48.57 66.62 83.92 89.17 93.26

BF 25.75 45.98 64.65 78.41 84.33 88.22 BF 36.38 61.44 76.98 88.96 93.19 96.12

BT 25.95 48.50 65.53 79.90 84.88 88.90 BT 37.94 65.05 81.13 90.12 93.60 97.00

ENS 30.86 55.04 69.69 83.92 89.03 92.85 ENS 41.69 69.01 83.51 92.17 95.71 98.02

IP EUR

Cum365Cum90
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Being the best model, ENS was then tested using the test set to provide an unbiased 

measure of its performance. Table 5.7 shows the distribution of AREs for ENS. AREs of 

training and validation sets are also included for comparison. It is obvious that the 

predictive performance of ENS is consistently lower for the test set. This is also supported 

by the predictive performance metrics provided in Table 5.8. Fig. 5.12 gives a boxplot 

distribution for the REs and AREs for the three sets. It is apparent that the test set has 

higher percentage of larger REs. In addition to the fact that most of the large REs occur for 

the poor producing wells, the absence of the overwhelmingly important reservoir 

characteristics, and the presence of unavoidable error in the available dataset could be the 

reason for that deterioration in the predictive performance of the model. Fig. 5.13 shows 

the actual-by-predicted plots for the four responses along with the distribution of the 

errors. It shows that the test points are well distributed around the unit-slope line. 

Therefore, the predictive performance of ENS was considered acceptable.  
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Table 5.7—Distribution of the test (Tst) set AREs for ENS. AREs of training (Trn) and validation 
(Vld) sets are included for comparison. 

 

 

 

 

Table 5.8—Predictive performance metrics of the testing (Tst) set for ENS. Metrics of Training (Trn) 
and validation (Vld) sets are included for comparison. 

 

Resp. Set ≤ 10% ≤ 20% ≤ 30% ≤ 50% ≤ 70% ≤ 100%

Trn 35.20 62.28 77.44 90.53 94.68 97.24

Vld 36.99 63.49 78.41 90.19 94.14 96.59

Tst 24.05 46.72 62.96 82.86 90.37 94.32

Trn 38.18 64.69 80.20 91.74 95.33 97.67

Vld 38.69 63.28 78.27 91.08 95.50 98.02

Tst 24.30 45.68 61.98 82.02 90.52 94.86

Trn 30.12 54.22 69.71 83.55 88.96 92.09

Vld 30.86 55.04 69.69 83.92 89.03 92.85

Tst 19.41 38.47 53.53 75.21 83.21 88.10

Trn 42.70 69.23 83.07 92.68 95.55 97.59

Vld 41.69 69.01 83.51 92.17 95.71 98.02

Tst 25.63 48.94 67.56 85.28 91.60 95.11C
u

m
3

6
5

C
u

m
9

0
EU

R
IP

Resp. Set R2 RMSE MAE MdAE MARE MdARE RSE

Trn 0.7439 131.88 96.65 72.52 23.92 14.99 0.2561

Vld 0.7609 134.56 97.99 71.80 24.31 14.77 0.2391

Tst 0.5136 186.24 139.46 105.57 34.92 21.68 0.4864

Trn 0.7610 0.0876 0.0623 0.0442 22.07 13.81 0.2390

Vld 0.7462 0.0904 0.0640 0.0451 22.97 14.15 0.2538

Tst 0.3877 0.1402 0.1006 0.0720 36.01 22.16 0.6123

Trn 0.7442 9292 6649 4924 45.74 18.00 0.2558

Vld 0.7611 9234 6554 4459 42.94 17.35 0.2389

Tst 0.4507 13644 10081 7394 69.57 27.72 0.5493

Trn 0.7932 19293 13686 9953 21.40 12.13 0.2068

Vld 0.7839 20085 14169 10082 20.95 12.44 0.2161

Tst 0.5039 29784 22061 16255 34.52 20.41 0.4961

EU
R

C
u

m
9

0
C

u
m

3
6

5
IP
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Fig. 5.12—Boxplots of REs, and AREs for the four responses. 

 

 

Fig. 5.13—Actual-by-predicted plots for the four responses along with the distribution of the 
errors. Training, validation, and test sets shown in black dots, red pluses, and blue crosses, 
respectively. 
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Fig. 5.13 Continued—Actual-by-predicted plots for the four responses along with the 
distribution of the errors. Training, validation, and test sets shown in black dots, red pluses, 
and blue crosses, respectively. 
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5.3.3 Importance of Variables 

Fig. 5.14 shows how different variables rank in terms of their importance for the 

four responses of the different SL techniques. For the six regression techniques, because 

there were many important squared terms and interactions, only the main effects were 

shown in this figure.  

Latitude and Longitude are dominantly important for all the four responses as 

evaluated by various techniques. They are also included in the most important squared 

terms and interactions in the regression techniques. The reason for such dominance could 

be due to the fact that reservoir characteristics are much more important than design 

variables related to drilling and hydraulic fracturing. Since such characteristics are not 

available for analysis, well location can be considered as their indicator because the 

reservoir sweet spots tend to be allocated to certain ranges of Latitudes and Longitudes. 

This agrees with Izadi et al. (2013) who considered well location as a proxy for reservoir 

quality. This is also consistent with the maps of thermal maturity, pore pressure gradient, 

and hydrocarbon pore volume of Kuhn et al. (2010), Wescott (2016), and Hamlin et al. 

(2017), respectively. These maps have contour patterns that are very similar to the Cum365 

map (Fig. 5.4).  
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Fig. 5.14—Rank of importance of the nine predictors for all four responses with nine SL 
techniques. 
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Fig. 5.14 Continued—Rank of importance of the nine predictors for all four responses with 
nine SL techniques. 

 

Lateral Length is one of the least important variables. This could be mainly because 

of its very small variability. It did not change much (Fig. 5.6). Therefore, the SL 

techniques were not able to capture its effect on the production metrics. This would have 

been different if there had been more variation in Lateral Length. Another minor reason 

could be the inefficiency associated with longer laterals (Fig. 5.9). This agrees with Jain et 
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al. (2013) who found that some fracture clusters do not contribute to production, due to the 

non-uniform distribution of proppant and fluids.  

Fig. 5.15 shows the bivariate relationships between the four responses and the nine 

predictors. Although the bivariate relationships are weak (no R2 exceeds 0.1), the figure 

displays the general trend of the effects of the predictors on the responses. In general, the 

four production metrics are improved with increasing Longitude, Vertical Depth, Lateral 

Length, Water, Proppant, Fracture Stages, and time (Quarter), and if a well is on a pad (the 

weakest relationship). The only predictor that has a negative effect is the Latitude. Despite 

being weak, the variable that has the largest R2 is Vertical Depth. However, this variable is 

ranked 6th on average for all four responses (Fig. 5.14). This conflict could be resolved by 

observing that Vertical Depth is also highly correlated with Latitude (Table 5.1). Thus the 

effect of Vertical Depth is confounded with that of Latitude, the most important variable 

for all four responses on average. Accordingly Vertical Depth is believed to be more 

important than evaluated by the different SL methods, which agrees with the findings of 

Wang and Chen (2016a). This is also clearer if the map of Fig. 5.16 is compared with Fig. 

5.4. In fact, no other completion variable has a strong match between its map (like Fig. 

5.16) and any production response map (like Fig. 5.4) as does Vertical Depth. This makes 

since pressure, which is the main driving force of production, is a function of vertical 

depth. 
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Fig. 5.15—Effects of the nine predictors on the four responses.
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Fig. 5.16—County map for Bakken play wells color-coded based on Vertical Depth. Training, 
validation, and test sets shown in dots, pluses, and crosses, respectively. 

 

5.4 Conclusions 

The data analytics framework provided here could help produce statistically-based 

conclusions and data-driven facts, which ensures the objectivity of the decision-making 

process. Harnessing the evolutionary potentials of data analytics, this chapter applies 12 

SL techniques to mine data-driven insights from the available big data and translate them 

into better understanding of Bakken shale play and improving its production performance, 

and to identify key factors that distinguish good wells from poor-performing ones. The 

main findings and conclusions of the study are as follows: 
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1. The optimization of completion design and well architecture can accelerate oil 

recovery. The effect of such a process on improving the RF is limited. Exploring 

EOR is important to improve the RF. 

2. Ensembles model outperforms the other 11 SL models. It can predict can predict 

the four responses in the test set with an average of 61.5% and 81.4% of the 

predictions less than 30% and 50%, respectively, of absolute relative error. Such a 

model can be used to optimize the location of future wells, their architecture, and 

hydraulic fracture design, and predict their production. 

3. Reservoir quality is much more important than completion quality for reservoir 

performance. To improve oil recovery, searching for sweet spots is more 

recommended that focusing on completion optimization.  
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6. SUMMARY AND RECOMMENDATIONS 

In this dissertation, the main goal was to apply a systematic DoE-based workflow 

to improve shale oil recovery using simulation. Four major recovery schemes were studied 

for Eagle Ford shale. The four schemes are primary production, waterflooding, continuous 

miscible gas flooding, and miscible gas huff ’n’ puff. This work is the first to 

systematically and statistically compare the performance of these four methods in Eagle 

Ford shale. Sequential DoE was applied to search for the maximum RF region in the 

multidimensional variable space. An innovative injection pattern that relies on alternating 

injection and producing fractures along the same lateral was considered. Here are the main 

findings, conclusions, and recommendations for Eagle Ford: 

1. Fracture design and lateral placement are recommended to be designed such that 

fracture wings extend to half the distance between the laterals. Fracture spacing 

should be around 20 - 40 ft and fracture half-length should be maximized as 

practically as possible. This design is optimum for primary production as well as 

potential subsequent recovery schemes. No infill wells or re-fracturing is needed. 

2. Being the two most influential design variables on RF, fracture spacing and fracture 

half-length should be better estimated in order to reduce the uncertainty in 

forecasting oil production. 

3. PP optimization is not enough to improve the RF from Eagle Ford shale. Exploring 

other recovery methods is a necessity. 

4. Continuous miscible gas flooding with injectors and producers along the same 

lateral was evaluated to have the highest potential to maximize RF. 
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5. Developing alternating injection/production fractures along the same lateral might 

be the next breakthrough to boost the RF from shale plays. 

Because of simulation assumptions, data analytics was applied as well with the 

main objective of validating simulation results. Another case that involved primary 

production in Bakken was studied using DoE and simulation. Data analytics supported the 

findings in the simulation results. In addition, a model was developed that can reasonably 

predict future well production performance based on its potential location and completion 

design. The main findings and conclusions are: 

1. Reservoir quality is more important than completion quality.  

2. Completion and well design optimization can accelerate oil recovery. However, its 

effect on ultimate RF is limited by physical constraints. Thus it is recommended 

that research should focus more on finding sweet reservoir spots and EOR. 

3. The best data analytics model (ensembles) has a practically acceptable prediction 

accuracy. It can be used to optimize the location of future wells, their architecture, 

and hydraulic fracture design, and predict their production. 

The systematic framework presented here allowed for an efficient exploration of 

the multidimensional variable space to pinpoint the optimum spots where recovery could 

be maximized. This framework produces statistically-based conclusions and data-driven 

facts, which could improve the objectivity of the decision-making process.  

The specific results presented in this dissertation are valid only for the input data 

used here. The conclusions should be valid for other sets of inputs that are not much 
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different than the data used in this work. The main purpose of this research is to illustrate 

the use of Design of Experiments in the oil and gas industry. 

We hope that this work could help encourage petroleum researchers and engineers 

to incorporate statistics at the heart of industrial and academic research and problem-

solving tools, and to learn and apply DoE regardless of the type of experiments that they 

conduct; physical experiments, simulation runs, or field trials.  
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APPENDIX A 

SUMMARY OF SOME DOE WORK DONE IN PETROLEUM ENGINEERING 

LITERATURE AND OTHER DISCIPLINES 

 

Reference Proxy DoE Notes 

Peng and 

Gupta 2003 

QPR FuF, MC, & 

various versions 

of PB & FrF 

 Two-level FrF. (e.g., PB) is enough for screening 

 Recommends adding control & axial points to two-level FrF  

 Recommends using expert knowledge to get efficient DoE 

(min. number of runs) for best proxy 

Peng and 

Gupta 2004 

QPR & KG FuF, FrF, & LHD  LHD did not perform better than three-level FrF 

 KG is not better than QPR 

Li and 

Firedmann 

2005b 

Amplitude factor 

RSM, QPR, & 

TPS 

CCD  Amplitude factor RSM is more efficient & accurate than TPS 

& QPR for highly nonlinear problems without the need to 

partition the variable space 

Yeten et al. 

2005  

QPR, KG, & 

TPS 

SFD, PB, CCD, 

& D-opt 
 Better results with SFDs than classical designs 

 QPR gives effect estimates that agree with other proxies 

Kalla and 

White 2007 

QPR & KG OA, NOA, HS, & 

LHD 
 OA & NOA are better than HS & LHD for sampling for 

uncertainty analysis 

 HS is more efficient than LHD for sampling for uncertainty 

analysis, especially in high dimensional problems 

 QPR is better than KG 

Devegowda 

and Gao 

2007 

QPR (for CCD) 

& KG (for LHD) 

CCD & LHD  LHD/KG provides more accurate estimates than the traditional 

CCD/QPR through the whole variable space 

Zubarev 

2009 

QPR, KG, TPS, 

& ANN 

LHD  Metamodeling method itself is not very influential on proxy 

performance as long as adequate input data is available 

 Using proxies in high dimensions is not recommended 

 KG & TPS are better for highly nonlinear response with KG 

being better for more nonlinearity 

Li et al. 

2011 

QPR, LPR, 

LIPR, ANN, 

TPS, & KG 

D-opt, exhaustive 

sampling, folded 

PB, & SFD 

 Probabilistic collocation method (PCM) is more efficient & 

more accurate than tested DoEs for uncertainty analysis since 

most DoEs do not honor the probability distribution of factors 

 Various DoEs & proxies give different results 

 The best DoE & proxy are problem-specific 

Table A.1—Summary of DoE and proxy techniques in petroleum engineering studies.3 

 

 

_______________________ 
3 DoE abbreviations: AP = augmented pairs, BB = Box Behnken, CCD = central composite design, D-opt = D-optimal, FrF = fractional 
factorial, FuF = full factorial, HS = Hammersley sequence, LHD = Latin hyper-cube design, MC = Monte Carlo sampling, ME = 

maximum entropy, MM = MaxiMin, NOA = nearly orthogonal array, OA = orthogonal array, PB = Plackett-Burman, and SFD = space-

filling designs.  
Proxy abbreviations: ANN = artificial neural networks, KG = kriging, LIPR = polynomial regression (PR) with linear and interaction 

terms, LPR = linear PR, QPR = quadratic PR, and TPS = thin plate splines. 
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Reference Proxy DoE Notes 

Gupta et al. 

2012 

QPR, KG, ANN, 

& regression 

based decision 

tree 

case 1 (2 factors): 

LHD & FuF 

case 2 (8 factors): 

LHD & D-opt 

By comparing RMSE they concluded that: 

 For small no. of factors, FuF/D-opt & QPR are preferred  

 For large no. of factors, LHD & KG preferred  

 KG, ANN, & regression decision tree work best with LHD 

Lechner, 

and Zangl 

2005 

ANN Draper & Lin, 

BB, FrF, & 

various versions 

of CCD 

 Recommends three levels not two 

Mishra et al. 

2015 

QPR (for BB) & 

KG (for LHD) 

BB & LHD 

(MM)  
 LHD with KG gives better results than BB with QPR 

Schuetter 

and Mishra 

2015 

QPR (for BB & 

AP) & KG (for 

LHD & ME) 

BB, LHD (MM), 

ME, & AP 
 LHD with KG & QPR have the best performance 

 LHD & ME with KG give better results than classical DoEs 

with regression 

 LHD with QPR is recommended since KG is more 

computationally costly (despite being slightly better) than QPR  

Table A.1 Continued—Summary of DoE and proxy techniques in petroleum engineering studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

168 

 

Reference Proxy  DoE  Notes 

Simpson 

1998 and 

Simpson et 

al. 2001b 

KG & QPR OA  KG has same performance as second order QPR 

 Despite being complex in fitting, using, & validating, KG 

has the potential of higher accuracy, which justifies more 

research 

Jin et al. 

2001 

QPR, 

MARS, 

RBF, & 

KG 

LHD with different 

sample sizes 
 RBF is usually the most accurate and robust method. PR is 

very accurate for nonsevere nonlinearity 

 QPR is the most efficient in terms of computational cost & 

KG is the least 

 QPR & MARS have good transparency (providing 

information about contribution of model terms), while KG & 

RBF do not 

 QPR & RBF are the easiest to use 

 Sampling technique affects the performance of metamodels 

Simpson et 

al. 1997, 

2001c 

(review 

papers) 

     Building PR is manageable for up to 20 factors. However, 

obtaining data is the limiting factor for more than 10 factors. 

PR is simple & well-established but breaks down in case of 

high non-linearity 

 ANN can handle highly nonlinear & high dimensionality 

problems (10,000 parameters) if resources are available 

 Inductive learning suites discrete-valued factors & responses 

 KG is very flexible but complex & computationally 

expensive. It can either honor the data or smooth the data 

points & is suitable for deterministic modeling with up to 50 

factors 

Giunta and 

Watson 

1998 

KG and 

QPR 

D-opt for 5- & 10-

factor problems 
 QPR is more accurate than KG even for highly non-

quadratic cases 

 

Table A.2—Summary of DoE and proxy techniques in other disciplines.4 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

_______________________ 
4 DoE abbreviations: CCD = central composite design, D-opt = D-optimal, GP IMSE = Gaussian process integrated mean square error, 
HS = Hammersley sequence, LHD = Latin hyper-cube design, MC = Monte Carlo sampling, OA = orthogonal array, RND = random 

sampling, SP = sphere packing, and UD = uniform design.  

Proxy abbreviations: ANN = artificial neural networks, KG = kriging, LIP = least interpolating polynomials, MARS = multivariate 
adaptive regression splines, PR = polynomial regression, QPR = quadratic PR, RBF = radial basis function, RSM = response surface 

method, SVR = support vector regression, and TPS = thin plate splines. 
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Reference Proxy  DoE  Notes 

Simpson et 

al. 2001a 

QPR, 

MARS, 

RBF, and 

KG 

LHD, HS, OA, RND, 

& UD for 3- & 14-

factor problems 

 HS & UD give more accurate models with HS performing 

better with larger sample size while UD performs well with 

small sizes 

 KG & RBF give better accuracy for different DoEs & 

sample sizes 

 MARS is the least robust since its performance varies 

widely with different DoEs & sample sizes 

 PR gives average results & are good with low-order non-

linearity 

 In general, accuracy increases by larger sizes. This is not 

true, however, when non-linearity is not severe (except for 

MARS) 

Johnson et 

al. 2011 

KG LHD, UD, GP IMSE, 

& SP 
 No design has an advantage over another regarding 

prediction accuracy 

 Adequate sample size of space-filling designs is the best 

way to enhance the predictive accuracy 

Chen et al. 

2006 

QPR, 

ANN, 

MARS, 

KG, RBF, 

& LIP 

UD, LHD, OA, OA-

based LHD, HS, & 

FCD for 2- & 10-

factor problems 

 No DoE or metamodel outperforms the others. However, 

OA design & KG & RBF metamodels have consistent good 

performance 

 RSM designs perform well only for RSM models. Other 

designs are generally good for all metamodels 

Sacks et al. 

1989a 

KG CCD, LHD, & optimal  CCD & LHD perform well with large sample size while 

optimal designs are good with small sample size 

Clarke et al. 

2005 

KG, RBF, 

MARS, 

QPR, & 

SVR 

CCD, inscribed CCD, 

HS, LHD, OA-based 

LHD, & UD for 2-, 3-, 

& 4-factor problems 

 SVR is more accurate & more robust than the other used 

techniques 

 SVR combines the good predictive accuracy & robustness of 

KG with transparency & computational efficiency close to 

those of PR & RBF 

 SVR has a great potential as a metamodeling technique 

 

Table A.2 Continued—Summary of DoE and proxy techniques in other disciplines. 


