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ABSTRACT 

 Maps of actual or potential species distributions are crucial for many aspects of 

natural resource management, land use development, and conservation planning. Species 

distribution models (SDMs) attempt to predict or statistically associate geographic 

record of a species with abiotic and biospatial variables of interest over large spatial 

extents and are utilized in wildlife management as aerial imagery and our understanding 

of distributional patterns advances. Most distributional models use variables such as soil 

type, climatic patterns, topography, hydrology, vegetative communities, and other 

abiotic conditions to identify the predicted geographic range of a species. However, 

species interactions have yet to be successfully quantified and included in distributional 

models. It is imperative we include interactions in niche models as certain species 

relationships (i.e. predation, competition, habitat facilitation) have documented influence 

on species distribution. I demonstrated techniques to improve traditional SDMs by 

incorporating intra- and inter-specific biotic interactions using birds as an example. 

Models that incorporate this biotic influence introduce new code in existing statistical 

languages that can also be applied to other environments. The methods I developed 

present a fusion of techniques from multiple fields including ecological modeling, 

remote sensing, and statistical analyses, the synthesis of which result in a novel and 

elevated approach to modeling and predicting species distributions. 
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CHAPTER I 

INTRODUCTION 

 Distribution ecology intends to answer fundamental questions regarding target 

species or the use of an area: what is the habitat of the species? How is a specific area, 

plot, or landscape utilized? Derived from these questions, and their resolutions, are the 

more applicable conclusions relevant in ecological management: estimating species 

abundance and predicting trends in the population, understanding and anticipating the 

behavior of species assemblages, and ultimately determining what leads to a species 

persistence. Awareness of the presence or absence of a species and how that occupancy 

changes temporally and spatially is elemental to any higher understanding of the 

population. Baseline knowledge of occupancy across time enables us to assess the 

importance of specific geographic and vegetative features in the environment to the 

target species, as well as evaluate the changes in that value on a temporal scale. 

Distributional maps offer us visual aide in understanding the spatial definition of the 

species habitat and, when occurrence data are collected over time, provide visual 

representation of temporal trends in habitat utilization (Soberon and Peterson 2004). 

Relevant conclusions can then be used to inform management that better approximate 

the dynamics of natural ecosystems. 

Remote sensing and species occurrence data 

 The continuing advancements in information technology such as large-scale data 

digitization, public-access databases, accessibility and improvements of Earth satellite 
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imagery, and ever-increasing electronic storage capacity have revolutionized how 

ecologists are using and distributing data (Bisby 2000, Edwards et al. 2000, Krishtalka et 

al. 2002). The access to an increasing body of remote sensing (RS) data, as well as an 

imagery archive dating back to the 1960s, has allowed researchers to assess how 

environments have changed over time. For example, land cover and land use change, 

grassland conditions, oil-spill response, wildfire impacts, and changes in fragmentation 

patterns can now be monitored over time (Horning et al. 2010). Furthermore, over 625 

Terabytes (TB) of data from the LANDSAT 8 satellite family, alone, have been 

processed and made available by United States Geological Survey (USGS) (USGS 

2015). Technological advances like geographical information systems (GIS) have 

allowed researchers to develop practical applications that incorporate biodiversity, 

climate, topography, soils, and vegetation indices data at increasingly finer resolutions 

(Peterson et al. 2011). The unique capacity of RS data to characterize the Earth’s surface 

from different perspectives and resolutions allows scientists to establish correlates in 

geographical features and species observation data (Horning et al. 2010). Increasingly, 

this has made remote sensing a powerful tool for evaluating the status and trends of 

ecological systems (Peterson and Parker 1998, Turner et al. 2003, McPhearson and 

Wallace 2008). For example, RS products have been used to develop and simulate 

multiple management and policy scenarios, including managing protected areas, setting 

conservation priorities, and identifying ideal locations for protected areas (Menon and 

Bawa 1997). Among the other broad applications, RS data can be used to link species 



 

3 
 

 

occurrence data to specific environmental features and events such as fires or storms 

through the creation of distributional maps (Horning et al. 2010).   

Comprehensive niche modeling 

 The species niche concept is central to ecology and its history and evolution is 

discussed in the majority of ecological textbooks and classrooms (Shugart 1998, Chase 

and Leibold 2003). Loosely defined as the “requirement of a species for existence in a 

given environment and its impacts on that environment”, the earliest formal niche 

concept is credited to Grinnell (1917) and Elton (1927). In essence, species persistence is 

only possible when its ecological requirements are met in its environment (Chase and 

Leibold 2003). Early niche concept described the full spectrum of environmental 

conditions in which a species can reproduce and persist (Pulliam 1988). In slight contrast 

to the Grinnellian niche, Elton defined the niche as the functional role the species plays 

in its environment as well as its impact on that environment (taking into consideration 

more complex food web interactions). Hutchinson (1957) introduced the idea that a 

species niche can be described as an “n-dimensional hypervolume” in which species 

persistence is limited by a complex combination of biotic and abiotic factors. He is also 

credited with coining the terms “fundamental” and “realized” niche in which the 

“realized” niche is the full set conditions actually utilized by a species after interaction 

forces (e.g. predation or competition) are taken into account.  

 Most distributional models use variables such as soil type, climatic patterns, 

topography, hydrology, vegetative communities, and other abiotic conditions to identify 
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the predicted geographic range of a species (Meier et al. 2010, Zimmermann et al. 2010). 

This results in a fundamental niche model that resembles early Grinnellian niche 

concepts, only taking into account environmentally dictated occupancy (Soberón 2007, 

Guisan and Thuiller 2005, Araújo and Guisan 2006). Some have argued that the outcome 

of modeling species distributions is a description of the species’ realized niche because 

data of actual occurrence is used and so the model expands conditions associated with 

species presence into geographical space (Austin 2002, Thuiller et al. 2004, Guisan and 

Thuiller 2005). The niche is then described statistically and mapped in geographical 

space representing potential distribution (Araújo and Guisan 2006, Soberón 2007). 

However, we now understand that the environment does not solely determine species 

distributions. Instead, a complex network of abiotic and biotic interactions such as 

predation, competition, facilitation, or otherwise symbiotic relationships (Hutchinson’s 

n-dimensional niche concept) interact to influence occupancy (Hutchinson 1957, Holt 

2009, Bascompte, 2009; van Dam, 2009). However, there are conflicting schools of 

thought as to the exact mechanism by which species are distributed.  Diamond’s (1975) 

assembly rules model suggested 7 key mechanisms by which animal communities were 

distributed of which most are largely attributed to competitive interactions between 

species. He based his theory on a decade of field observations of bird distributions in the 

Bismarck Archipelago during which he found species with similar food habits rarely co-

occurred. This observation, when applied to broad patterns of occurrence, produced what 

Diamond called a “checkerboard pattern” attributed mainly to interspecies competition 

(Morrison 2009). Controversy ensued due to the difficulty in definitively naming 
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competition as the driving force in the observed species occurrence patterns. 

Alternatively, Connor and Simberloff (1979) argued that interspecific competition itself 

cannot be a major organizing force for avian communities and refutes Diamond’s 

assembly rules model. Conner and Simberloff discounted Diamond’s 7 governing 

assembly rules arguing that their assumptions are baseless, untestable, and “describe 

situations which would for the most part be found even if species were randomly 

distributed…” (Conner and Simberloff 1979). Upon release of Diamond’s original 

Bismarck data (Mayr and Diamond 2001), Collins et al. (2011) tested Diamond’s theory 

of competitive exclusion driving observed distributional patterns using binary matrices 

to test for checkerboard distributions of birds on the archipelago. They found a greater 

percentage of species exhibiting checkerboard distribution than expected by random 

chance (Collins et al. 2011). Although unable to refute Diamond’s competitive exclusion 

hypothesis based on the results, they argued insufficient evidence to rule out other 

hypotheses.  A recent meta-analysis (involving 96 presence-absence studies) 

investigating the application of Diamond’s assembly rules model was not able to 

confirm the mechanism of the model, however the authors did establish a nonrandom 

frequency of observed co-occurrence (Gotelli and McCabe 2002). It is important to 

acknowledge the complexity of the determinants that influence a species’ distribution. In 

light of these discussions on assembly rules and the driving forces behind species 

occurrence patterns, I subscribe to the more comprehensive perspective in which a 

combination of abiotic and biotic factors determines the occurrence of a species in an 

area.   
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 Species interactions have yet to be successfully quantified and included in 

distributional models (Sexton et al. 2009, Paine 2010, Zarnetske et al. 2012). It is 

imperative we include interactions in niche models as certain species relationships (i.e. 

predation, competition, habitat facilitation) have documented influence on species 

distribution (Hopcraft 2012, Pilfold et al. 2014, Bulleri et al. 2016).  

Modeling species distribution across spatial extents 

 Maps of actual or potential species distributions are crucial for many aspects of 

natural resource management, land use development, and conservation planning (Scott et 

al. 2002, Franklin 2009). Species distribution models (SDMs) attempt to predict or 

statistically associate geographic record of a species with abiotic and biospatial variables 

of interest over large spatial extents and are utilized in wildlife management as aerial 

imagery and our understanding of distributional patterns advances (Guisan and 

Zimmerman 2000, Franklin 2009, Peterson et al. 2011). SDMs have diverse applications 

and can be used to describe both (a) the species niche, and (b) areas of persistence or 

expansion of presence (Franklin 2009, Rotenberry et al. 2006). Typically using 

abundance, density, or presence-absence data collected from surveys, models can then 

be used to extrapolate predictions of habitat or likelihood of a species’ presence into 

areas lacking species occurrence information (Rotenberry et al. 2006). Layering maps of 

individual species distributions can also reveal correlates among the occurrences of 

multiple species that can help us better understand the dynamics of whole ecosystems. 

Expanding the focus from a single species to multiple species distribution can increase 

our understanding of the local and regional species pool and improve our predictions for 
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how changes in the environment might impact the ecosystem. These predictions may 

then help inform management decisions or guide additional survey efforts (Raxworthy et 

al. 2003, Sinclair et al. 2010). Remotely sensed data provide a crucial tool for the 

efficient collection of information needed to set conservation and management priorities 

(Horning et al. 2010). Remotely sensed products allow us to understand environments in 

a broader landscape or global context and thus are valuable for evaluating the status and 

trends of ecological systems (Peterson and Parker 1998, Turner et al. 2003, McPhearson 

and Wallace 2008).  

Modeling bird distributions as influenced by biotic interactions in south Texas 

agricultural landscape 

 The Rio Grande Plains encompasses the Coastal Sand Plain, Tamaulipas 

Scrubland, and Lower Rio Grande Valley natural regions of Texas. The low-growing 

woody plants and dense shrubs that dominate the vegetation in this region have given 

rise to common vernacular names including “brush country”, “shrublands”, and “thorn 

scrub” among others (Taylor 2014). Although much of the land is primarily agricultural 

rangelands, wildlife recreation has become increasingly important to landowners 

because of the associated economic value (TPWD 2016; Dodd 2009). Due to the 

relatively high protein content in the forage and large expanses of un-developed land, 

this region has become popular for producing some of the largest White-tailed deer 

Odocoileus virginianus in the state (TPWD 2016). The area also provides crucial 

resources for North American migratory and resident birds, as well rare and federally 

endangered species (e.g. Ocelots Leopardus pardalis, Aplomado falcon Falco femoralis) 
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often found nowhere else in the United States (USFWS 1980, TPWD 2016). Birds have 

become a group of heightened interest due to the recent increased demand for avian 

game. For example, south Texas landowners that can anticipate an average gross profit 

of $11.60 per acre for the deer or exotic ungulate lease can expect an average gross 

profit of $51.87 per acre for a quail hunting lease (TPWD 2017). However, woody 

vegetation encroachment due to overgrazing and fire suppression has been tied to the 

recent decline in Northern bobwhite Colinus virginianus and Scaled quail Callipepla 

squamata, two highly prized game species (Bridges et al. 2002). Thus, understanding of 

the distributions of game and non-game fauna becomes relevant as landowners and 

wildlife management agencies balance the needs of cattle ranching, exotic game 

ranching, and the requirements of sustainable wildlife populations. The biotic influence 

is crucial in realizing the most accurate ecological niche and it is essential we include 

species interactions in bird distributional models, especially when important 

management decisions are at stake. To address this issue, I built baseline species 

distribution models for resident breeding bird species occurring on a privately managed 

ranch in south Texas from 2014 through 2017 and then improved the models by 

quantitatively and spatially representing biotic influences on bird distribution. 

 I developed techniques to improve traditional SDMs by incorporating intra- and 

inter-specific biotic interactions using birds as an example. Models that incorporate this 

biotic influence introduce new code in existing statistical languages that can also be 

applied to other environments. The methods I developed present a fusion of techniques 

from multiple fields including ecological modeling, remote sensing, and statistical 
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analyses, the synthesis of which result in a novel and elevated approach to modeling and 

predicting species distributions. I achieved this through two over-arching project goals. 

A. GOAL: Development of baseline SDMs for breeding and resident birds in the 

south Texas agricultural landscape.  

1) Objective: Build predictive distribution models using avian point 

count data, environmental conditions, and spatial variables.   

B. GOAL: Advance those select SDMs by incorporating biotic interactions. 

2) Objective: Identify and quantify known biotic interactions of species 

present in the dataset using a combination of scientific literature and 

trends of co-occurrence in the data. 
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CHAPTER II 

MODELING THE INFLUENCE OF LIVESTOCK GRAZING PRESSURE ON 

GRASSLAND BIRD DISTRIBUTIONS 

Introduction 

 Domestic livestock are recognized ecosystem engineers in semi-arid rangelands, 

where they directly and indirectly alter the availability of resources to a wide range of 

grassland-associated organisms (Derner et al., 2009). Several studies cite the influence 

of vegetative changes due to livestock grazing on breeding grassland birds since this 

species group is heavily influenced by vegetative structure (Askins et al., 2007; Brennan 

and Kuvlesky, 2005; Fuhlendorf et al., 2006; Jansen et al., 1999). Grazing pressure has 

historically been difficult to quantify due to variable plant responses to grazing and 

movements of livestock within pastures (Landsberg and Crowly, 2004). However, a 

review of the effects of water-place distribution on rangelands suggested that distances 

from water sources (e.g. livestock tanks, troughs) can provide valuable context for 

interpreting changes in grazed landscapes particularly in areas remote from water 

sources (James et al., 1999; Landsberg and Crowly, 2004; Ludwig et al., 2000). In south 

Texas, water sources are scarce. Specifically, the Coastal Sand Plain region of Texas has 

no natural permanent bodies of freshwater making livestock wells and holding tanks 

supplied by active ranching operations the only water source for domestic livestock and, 

thus, it is reasonable to expect water-points to have a substantial impact on the 
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distribution and intensity of localized grazing (Fulbright et al., 1990; Snelgrove et al., 

2013).  

 Grassland bird populations have experienced precipitous declines on a 

continental-scale over the last few decades (Brennan and Kuvlesky, 2005; Nocera and 

Koslowsky, 2011). Although agricultural and livestock operations dominate the south 

Texas landscape, wildlife-related recreation has become increasingly important to 

landowners because of the associated economic value (Dodd, 2009; TPWD, 2016). For 

example, landowners can anticipate an average gross profit of $4.69 per hectare for a 

deer or exotic ungulate hunting lease and can expect an average gross profit of $20.99 

per hectare for a quail (e.g., Northern bobwhite Colinus virginianus, Scaled quail 

Callipepla squamata) hunting lease (TPWD, 2017). This area also provides crucial 

resources for other migratory and resident grassland birds (e.g., Cassin’s sparrow 

Aimophila cassinii, Grasshopper sparrow Ammodramus savannarum, Dicksissel Spiza 

americana) that have declined throughout their ranges due to land use and climate 

change since 1966 (Brennan and Kuvlesky, 2005; Knopf, 1994). It is essential we 

advance our understanding of how grassland birds are affected by their environment, 

inclusive of both their requirements to persist (i.e., resources) and how they interact with 

environmental features or biotic influences. 

 Traditionally, species distribution models (SDMs), which statistically associate a 

species’ occurrence with a suite of geospatial predictors, use direct variables, resources 

that the animal consumes or requires to persist in an area (e.g., shrub density, water 

availability) to define and project a species’ niche and distribution (Austin and Niel, 
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2011; Elith and Leathwick, 2009). Indirect variables, which are features the animal does 

not consume or require for persistence but with which it may still interact (e.g., 

competition, commensalism), are often excluded in SDMs due to the difficulty in 

identifying the variable ecologically, quantifying the relationship, or in managing 

collinearity issues adding an interaction factor to a traditional SDM framework may 

contribute (Austin and Niel, 2011). However, recent advances in machine learning 

algorithms (e.g., Random Forest) have enabled us to include indirect variables, such as 

grazing pressure, in SDMs that may have more complicated relationships with the 

distribution of the target species than traditional resource variables (Miller, 2010). 

 Our objective was to improve traditional SDMs projecting the distribution of 

three summer resident south Texas grassland birds (Northern bobwhite Colinus 

virginianus, Eastern meadowlark Sturnella magna and Cassin’s sparrow Peucaea 

cassinii) by incorporating livestock grazing pressure, an indirect variable. We used a 

novel approach to spatially quantify localized grazing pressure to include this variable 

using five SDM algorithms: BioClim, Generalized Linear Model, MaxEnt, Boosted 

Regression Tree, and Random Forest. Our approach serves as a valuable tool for 

rangeland managers when the management goal is to promote sustainable livestock 

grazing and recreational wildlife harvest, while maintaining viable nongame species. 
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Methods 

Study site 

 The Coloraditas Grazing Research and Demonstration Area (CGRDA) is a 

7,684-ha area located on the 60,000-ha San Antonio Viejo Ranch (SAV) approximately 

25 km south of Hebbronville, Texas in Jim Hogg and Starr counties (Fig. 1). SAV is 

located within the South Texas Plains ecoregion and is managed predominantly as a 

cow-calf operation. Mean annual temperature within the study site is 22.6 C° and mean 

annual precipitation is 502.5 mm (PRISM Climate Group, 2018). SAV is one of six 

properties of the East Foundation that are managed as a living laboratory to support 

wildlife conservation and other public benefits of ranching and private land stewardship. 

The CGRDA is representative of south Texas rangeland ecosystems and encompasses 

the Coastal Sand Plain and Texas-Tamulipan Thronscrub ecoregions. Low-growing 

woody plants, dense shrubs (Prosopis glandulosa, Acacia greggii, Celtis ehrenbergiana, 

Colubrina texensis, Aloysia gratissima, Lantana urticoides), and cacti (Opuntia 

engelmannii var. lindheimeri, Opuntia leptocaulis) dominate the vegetation in this area. 

The CGRDA is comprised of 10 pastures each assigned to 1 of 4 grazing systems (Fig 

1).  Four pastures were assigned to a continuous grazing system with 2 pastures (Rodeo 

and Tia Nena) maintained under a high stocking rate (1 Animal Unit [AU] /14 ha) and 2 

pastures (San Juan and Calichera) under a moderate stocking rate (1 AU/20 ha). Six 

pastures were assigned to a rotational system with 3 pastures, 1 herd maintained under 

the high stocking rate (Coloraditas, Desiderio, and Guadalupe units) and 3 pastures, 1 

herd maintained under the moderate stocking rate (San Rafael, Loma, and Tequileras  
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Figure 1. Locality and pasture composition of East Foundation’s Coloraditas Grazing 

Research and Demonstration Area (CGRDA). Four pastures were assigned to a 

continuous grazing system with 2 pastures (Rodeo and Tia Nena) maintained under a 

high stocking rate (1 Animal Unit [AU] /14 ha) and 2 pastures (San Juan and Calichera) 

under a moderate stocking rate (1 AU/20 ha) in December 2015. Six pastures were 

assigned to a rotational system with 3 pastures, 1 herd maintained under the high 

stocking rate (Coloraditas, Desiderio, and Guadalupe units) and 3 pastures, 1 herd 

maintained under the moderate stocking rate (San Rafael, Loma, and Tequileras units). 

 



 

15 
 

 

Grazing was deferred on all pastures for two years prior to the onset of livestock grazing 

in December 2015. 

Environmental predictors 

 We used canopy height, shrub density, grass spp. coverage, cacti spp. coverage, 

and bare ground coverage recorded from ground surveys in 2016 as environmental 

predictors in SDMs. We collected vegetation composition and structure data from 141 

permanent 20-m transects in October 2016.  We allocated transects proportional to the 

area of ecological sites that occur in each pasture using stratified sampling resulting in 

12–16 transects per pasture (Bonham, 2013). We marked each transect start and 

collected data in a random, predetermined direction (N, S, E, W). On each transect we 

sampled 5, 20×50 cm quadrats (5 m spacing) randomly placed at either 0, 0.5, 1, 1.5, 2, 

or 2.5 m from the left side of the tape and facing away from the transect start, visually 

recording percent cover of woody, herbaceous (later classified by grass spp.), and bare 

ground in each quadrat.  

 We also documented woody canopy cover along each of the 20 m transects by 

visually recording the amount of the ground (in centimeters) covered by woody plant 

materials (leaves and branches) and succulent (cacti) that intercepted the line transect by 

species (Canfield, 1941; Higgins et al., 2012). If a gap in the canopy exceeded 0.5 m for 

an individual, we recorded separate cover measurements. We calculated percent canopy 

cover by summing the intercept measurements for an individual species, dividing by 

total line length and converting to a cover percentage. We calculated total percent cover 
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by adding cover percentages for all species, which sometimes exceeded 100% when 

overlapping canopies by different species were recorded (Coulloudon et al., 1999). 

 Additionally, we used elevation, topographic relief (30-m2 resolution), and 

Optimized Soil Adjusted Vegetation Index (OSAVI, a measure of LAI) produced from 

remotely sensed imagery collected during the same growing season as the ground 

surveys. We acquired one Landsat 8-OLI tile (< 6% cloud cover) that encompassed the 

study area (courtesy of U.S. Geological Survey) and processed this in ENVI 5.1 (NASA 

Landsat Program, 2016). We corrected for atmospheric conditions and converted the 

original image format of Digital Numbers (DN) to radiance and then surface reflectance. 

We first resized the image to the rectangular extent of the CGRDA pasture complex and 

then extracted by the study area mask in ESRI ArcGIS ArcMap 10.5. We then spatially 

subset the extracted image by bands 2-5 corresponding to Landsat 8-OLI band 

designations: blue, green, red, and NIR. Bands were stacked and the OSAVI was 

calculated using the band math tool in ENVI 5.1. This index for LAI follows the 

standard formula [(NIR-Red)/(NIR+Red+0.16)] and uses a reflectance constant of 0.16 

to adjust for high background reflectance (e.g., areas with sparse vegetation and high soil 

reflectance) (Rondeaux et al., 1996). In south Texas, this vegetation index outperformed 

other, more common vegetation indices (e.g., Normalized Difference Vegetation Index 

[NDVI]) in overall image classification accuracy and herbaceous coverage estimations 

(Fern et al., 2018).  

 Locations of water sources (e.g., livestock wells) within the study site and cattle 

stocking rates were provided by the East Foundation. To calculate water proximity, we 
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gridded the spatial extent of the CGRDA into a fishnet (30-m2 resolution). We performed 

a proximity analysis on each pixel centroid using the Near tool in ArcMap 10.5 to 

determine distance of each centroid to location of nearest water source, usually a 

livestock well and holding tank as no natural surface water exists within the study site, 

and very little exists on the Coastal Sand Plain region of Texas as a whole (Snelgrove et 

al., 2013). We made considerations for seasonality as not all groundwater pumps are 

operational year-round on large south Texas cattle ranches and ensured only those wells 

known to be active during the summer of 2016 were used in the analysis.  

Quantifying grazing pressure 

 Several studies have cited the strong, predictable relationship between localized 

grazing pressure and proximity to water sources, especially in semi-arid rangelands 

(James et al., 1999; Landsberg and Crowly, 2004; Locatelli et al., 2016; Ludwig et al., 

2000). This spatially un-even use of the pasture by the livestock is even visible in 

satellite imagery as one study termed the zone of high livestock impact attenuating away 

from each water point a ‘piosphere’ (Andrew, 1988). Piospheres are areas of high ‘hoof-

action’ and generally have higher accumulation of livestock feces, soil compaction, and 

defoliation (Andrew and Lange, 1986; Graetz and Ludwig, 1978). Due to the absence of 

natural water sources on the CGRDA, the known stocking rates of each pasture, and the 

well-documented relationship between localized grazing pressure and water sources in 

semi-arid rangelands, we used water proximity to create a surrogate index for localized 

grazing pressure. 
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  To quantify grazing pressure to incorporate into SDMs, we used the distance to 

nearest water source previously calculated by the proximity analysis and 30-m2 fishnet 

grid across the CGRDA. This ensured that resulting surface value estimates were the 

same spatial resolution as the other environmental rasters. We divided the distance value 

(m) of each fishnet pixel centroid by the density of grazing livestock (i.e. stocking rate) 

in each pasture using the raster math tool in ArcMap.  

Bird occurrence data 

 Avian point counts consisted of 10 12-point transects (centrally located per 

pasture within the CGRDA). We used point count data collected on the CGRDA from 

April to June 2016 to build baseline SDMs. Each point was located 400-m apart, 2 

observers recorded visual and auditory occurrences of birds within 200-m of each point 

simultaneously yet independently. We used occurrence records rather than abundance or 

density since the distributional modeling algorithms required presence/absence or 

presence only data. We used a traditional framework in which each occurrence was 

counted as a ‘presence’ record at each point, omitting the duplicate records from the 

double observer design, and disregarding the transect construct by subsampling the data 

by a 400-m cell-size. This granted us a finer spatial resolution of the data set to 

thoroughly investigate the impacts of grazing pressure on grassland bird presence. We 

used only grassland-obligate species with an adequate number of presence records 

within the CGRDA during the study period for distribution models: Northern bobwhite, 

Eastern meadowlark, and Cassin’s sparrow. 
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Data processing and analyses 

  We imported values for each predictor (canopy height, shrub density, bare 

ground coverage, grass spp. coverage, cacti spp. coverage, water proximity, and grazing 

pressure) into ArcMap 10.5 and used Kriging interpolation to minimize spatial sampling 

bias and create continuous surface layers of environmental predictor values. Kriging, or 

Gaussian process regression, is a geostatistical method through which interpolated 

values are modeled by a Gaussian process governed by covariances. This method of 

spatial interpolation estimates a continuous surface of values directly based on values at 

surrounding points weighted according to spatial covariance (Van Beers and Kleijnen, 

2004). The Kriging interpolation algorithm is optimal for most eco-spatial modeling 

because it produces an unbiased prediction and calculates the spatial distribution of 

uncertainty allowing for an accurate estimate of error at any particular point 

(Mahmoudabadi and Briggs, 2016). We exported the resulting GeoTIFFs and read these 

into the R statistical language as raster layers (R Core Team, 2013). We also read the 

GeoTIFFs representing the spatial values of elevation and topographic relief into R and 

all layers were stacked to create the occurrence predictor rasters for the baseline SDMs.  

 We imported occurrence data for Northern bobwhite, Eastern meadlowlark, and 

Cassin’s sparrow into R and used the predictor raster stack to build SDMs using five 

different algorithms: BioClim (BC), Generalized Linear Model (GLM), MaxEnt, 

Boosted Regression Tree (BRT), and Random Forest (RF). Table 1 outlines the basic 

mathematical approach of each modeling algorithm and provides a comparison of the 

advantages of each model in the occupancy framework. We generated ‘background data
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Table 1. Comparison of mathematical approach for each modeling algorithm being used to project species distributions in this 

study. Data requirements and advantages are also listed. 

Model Data type Approach/mechanism Advantages 

BioClim (BC) Presence only This method uses a parallelepiped classifier to define 
species potential presence as the multi-dimensional 

environmental spaces bounded by the minimum and 

maximum values for all occurrences and gives a binary 
classification of suitable environment and unsuitable 

environment (Busby, 1986; 1991). 

 

Interpretations are straightforward and the 
model is relatively simple to execute. More 

recently, this approach has proven useful in 

predicting biological invasions and distribution 
of widespread diseases (Robertson et al., 2004; 

Zhao et al., 2006) 

 

Generalized 
Linear (GLM) 

Presence/absence This is a generalization of the multiple regression 
model that uses the “link” function to accommodate 

non-linear relationships between the predictor and 

response variables. Using various transformations of 
the predictors (e.g., Logit, Poisson, Gaussian) 

interactions between predictors can also be specified. 

 

This approach is often ideal since occupancy 
modeling almost always involves multiple 

predictors, non-linear response functions, and 

response variables that are binary (Austin and 
Cunningham, 198; Margules et al., 1987; 

Franklin 2009). 

 
Random 

Forest (RF) 

Presence/absence An ensemble machine-learning method in which a 

large number (500-2000) of decision trees are grown 

with subsets of the data (e.g., species occurrences) 

containing a random subset of candidate predictor 
variables (Breiman, 2001). Each tree votes for a binary 

outcome and the resulting predictions are averaged. 

 

This method makes no assumptions on data 

distribution and instead uses bootstrap 

aggregation to subsample the given data. This 

approach has been shown to have higher 
prediction accuracy than ordinary decision trees 

in SDM and other applications.  (Prasad et al., 

2006; Gislason et al., 2006). 
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Table 1 Continued 

Model Data type Approach/mechanism Advantages 

  entropy is the best approximation of an unknown 
distribution (Phillips et al., 2006). 

environmental gradients as part of the prediction 
process make its application to ecological niche 

modeling ideal (Saatchi et al., 2008; Evangelista 

et al., 2009). 

Boosted 

Regression 

Tree (BRT) 

Presence/absence An ensemble, regression-based method that combines 

the strengths of two commonly used algorithms: 

regression trees (models that define the response to 
predictors using binary splits) and boosting (a method 

for combining multiple simple models to improve 

performance). An initial regression tree is fitted and 
iteratively improved upon in a forward stagewise 

manner (boosting) by minimizing the variation in the 

response not explained by the model at each iteration. 

This approach can easily accommodate different 

types of predictor variables, missing data, and 

outliers as well as fit complex nonlinear 
relationships automatically handing collinearity 

between predictor variables. BRT 

interpretations can be easily summarized to 
provide powerful ecological insight (Franklin, 

2009). 
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to produce the non-presence class required by the logistic models. Background data do 

not attempt to guess at absence locations, but instead are used to characterize the study 

region (Phillips and Elith, 2011; Phillips et al., 2009; Ward et al., 2009). These 

established the environmental domain of the study and are independent of occurrence 

data while presence data established the conditions under which a species is more likely 

to be present than a null, or completely random, model would predict. After building 

baseline SDMs for each species, we added the grazing pressure raster to the occurrence 

predictor raster stack and re-ran the models to assess any improvement or degradation in 

the predictive performance of each algorithm. Pair-wise correlation coefficients between 

predictors are reported in Appendix A. Prior to building SDMs, we performed 

preliminary analyses for each species to ensure only predictors that added to the 

explanatory power of the models and did not add to the overall deviance were used in 

each SDM. This included the use of a priori Gradient Boosting Machine (GBM) 

analyses and step-wise regression variable dropping and selection for each model and 

species.  

Model evaluation 

 We evaluated performance of each model using the Area Under the Receiver 

Operator Curve (AUROC or AUC) and true sensitivity statistic (TSS). The AUC (range 

from 0 to 1) is a measure of rank-correlation. In unbiased data, a higher AUC value 

indicates that areas with high predicted suitability values tend to be sites of known 

presence (Phillips et al., 2006). The TSS is an approach based on maximizing the sum of 

sensitivity and specificity independent of species prevalence (Liu et al., 2013). Many 
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distributional model evaluation approaches (e.g., kappa) are threshold-dependent; a 

value above a user-set threshold indicates a prediction of presence and a value below the 

threshold indicates absence. However, different models assign different weight to false 

absences or false presences making it hard to compare models directly. The TSS is 

considered an alternative to the traditionally used kappa to assess model performance, 

since it has the advantage of being threshold and prevalence independent. This becomes 

especially meaningful when building SDMs for rare or endangered species that may 

have low prevalence across a given range or study area as the default threshold, usually 

0.5, for many models (e.g., logistic regression-based GLM) may not be appropriate. In 

these cases, studies have suggested the use of binary species presence/absence maps as 

input may be preferred for interpretation in building conservation plans, reservation 

networks, or sanctuaries as opposed to a continuous representation of probability of 

species presence (Fernandez et al., 2006; Mladenhoff and He, 1999; Wilson et al., 2005).  

Although not prevalence independent, the AUC can be valuable in determining optimal 

threshold criteria. For example, Freeman and Moisen (2008) found that for SDMs 

projecting distributions of species with high prevalence (50%), default threshold criteria 

tended to converge. However, for species with low prevalence (e.g., 10%), the threshold 

where Sensitivity + Specificity is maximum offered the ideal probability threshold for 

species presence. In the R workspace output, this is typically read as “Max TPR+TNR” 

and can be exceedingly valuable for accurately modeling distributions of rare or 

endangered species. 
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Results 

 We recorded a total of 1,565 occurrences for all three species within the CGRDA 

in the summer of 2016 (Northern bobwhite = 996, Eastern meadowlark = 179, Cassin’s 

sparrow = 390). Predictive maps generated by each algorithm are produced in Appendix 

B (Fig.5-9). Machine learning models (MaxEnt and RF) had the highest combinations of 

AUC and TSS for all species, with RF being the most consistent for each analysis (Table 

2). In comparison of AUC values, the environmental envelope model (BC) and the GLM 

remained constant or only marginally improved with the addition of the grazing pressure 

raster. However, the TSS for these algorithms markedly improved with the addition of 

the grazing pressure raster for the Northern bobwhite (∆TSS = +0.93) and Eastern 

meadowlark (∆TSS = +0.08) SDMs (Table 2). The predictive power of both machine 

learning models and the BRT improved with the addition of the grazing pressure raster 

for all species, with the exception of MaxEnt and Eastern meadowlark (Maxent: 

Northern bobwhite [∆AUC = +0.06], Cassin’s sparrow [∆AUC = +0.02]; Random 

Forest: Northern bobwhite [∆AUC = +0.01], Eastern meadowlark [∆AUC = +0.05], 

Cassin’s sparrow [∆AUC = +0.02]; Random Forest: Northern bobwhite [∆AUC = 

+0.03], Eastern meadowlark [∆AUC = +0.04], Cassin’s sparrow [∆AUC = +0.03]. 

Random Forest had the highest explanatory power (AUC) across all species but was, 

however, outperformed in sensitivity (TSS) by the other algorithms for all species for 

models including the grazing pressure raster (Table 2).  



 

25 
 

 

 Northern bobwhite distribution, the species of highest prevalence (n = 996), was 

best explained by Random Forest model inclusive of grazing pressure (AUC = 0.84; TSS 

= 0.48). However, the bobwhite distribution was better explained by the addition of the 

grazing pressure raster by all algorithms as evidence in the measurable increase in AUC  

 

 

Table 2. Results of species distribution model (SDM) performance for Bioclim, 

Generalized Linear Model (GLM), MaxEnt, Boosted Regression Tree (BRT), and 

Random Forest (RF) algorithms in predicting occurrence of Northern bobwhite (NOBO), 

Eastern meadowlark (EAME), and Cassin’s sparrow (CASP) on East Foundation’s 

Coloraditas Grazing Research and Demonstration Area (CGRDA) in the summer of 

2016. Model performance metrics (area under curve [AUC] and true sensitivity statistic 

[TSS]) are compared for SDMs using environmental predictors only and environmental 

predictors stacked with a raster representing localized grazing pressure (denoted by ‘+’).  

  
BioClim GLM MaxEnt BRT RF 

       

  AUC TSS AUC TSS AUC TSS AUC TSS AUC TSS 

NOBO 

 
0.54 0.032 0.64 0.034 0.61 0.056 0.59  0.049 0.81  0.42 

+ 0.58  0.96 0.67 0.24 0.67 0.18 0.60  0.57 0.84  0.48 
       

EAME 

 
0.81  0.41 0.78 0.62 0.79 0.61 0.84  0.46 0.91  0.62 

+ 0.81  0.49 0.78 0.80 0.78 0.75 0.89  0.80 0.95  0.67 
       

CASP 

 
0.58  0.13 0.44  0.18 0.69  0.24 0.62  0.21 0.78  0.22 

+ 0.62  0.15 0.44 0.18 0.71 0.29 0.64  0.67 0.81  0.23 
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and TSS in each model (∆AUC = +0.01-0.06, ∆TSS = +0.04-0.93; Table 2). Eastern 

meadowlark distribution, the species of lowest prevalence (n = 179), was also best 

explained by the Random Forest model inclusive of grazing pressure (AUC = 0.95; TSS 

= 0.67). The SDM explanatory power for this species’ distribution was not improved 

with the addition of grazing pressure using the BioClim, GLM, and MaxEnt algorithms. 

Cassin’s sparrow distribution, the species of moderate prevalence (n = 390), was also 

best explained by the Random Forest model inclusive of grazing pressure (AUC = 0.81; 

TSS = 0.23). However, the SDM explanatory power for this species’ distribution was not 

improved with the addition of grazing pressure using the GLM algorithm. Additionally, 

other algorithms (BRT and MaxEnt) produced higher TSS values (TSS = 0.67 and 0.29, 

respectively).  

Discussion 

 Our novel approach to spatially quantify localized grazing pressure improved the 

prediction accuracy and sensitivity of SDMs projecting the distribution of Northern 

bobwhite, Eastern meadowlark, and Cassin’s sparrow. Of the three algorithms used, 

Random Forest performed best for explaining presence regardless of species prevalence 

and should be preferred by rangeland managers seeking to promote sustainable livestock 

grazing while balancing the needs of sensitive wildlife populations. It is important to 

note the varying model performance with relation to species prevalence. For example, 

SDMS built to project distributions of Northern bobwhite, the species of highest 

prevalence in this study varied widely in predictive performance (AUC) and sensitivity 

(TSS) across algorithms. Rangeland managers should consider both metrics (AUC and 
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TSS) when assessing model performance since both provide valuable insight into the 

over utility of the model (i.e., AUC describing explanatory power and TSS describing 

model stability, or sensitivity to the predictors). Although, both, AUC and TSS are 

theoretically prevalence independent, for species like Northern bobwhite that are often 

locally abundant where they are present, machine-learning models that can 

accommodate non-linear relationships (e.g., Random Forest) should be preferred in 

modeling distributions. In an ecological context, the improvement in model sensitivity 

and explanatory power seen with the addition of grazing pressure to Northern bobwhite 

SDMs should be considered meaningful by rangeland ecologists. The direct impacts of 

livestock grazing (e.g., changes in vegetative structure and composition) on the 

distribution of Northern bobwhite is well recognized (Baker and Guthery, 1990; 

Coppedge et al., 2008; Flanders et al., 2005; Lusk et al., 2002). However, with the 

inclusion of grazing pressure as an indirect variable and the subsequent increase in 

explanatory power across all algorithms (∆AUC = +0.01-0.06), our findings suggest this 

species’ distribution is also indirectly affected by livestock grazing activities. Thus, 

future investigations into Northern Bobwhite distribution or populations should consider 

the presence and localized intensity of livestock grazing.  

 The addition of grazing pressure as a variable also increased the explanatory 

power and sensitivity of some SDMs built to project distributions of Cassin’s sparrow, 

the species of moderate prevalence in this study (BioClim, MaxEnt, BRT, RF). 

However, any improvements in model performance were marginal (∆AUC = +0.0-0.4). 

Our findings suggest indirect effects of livestock grazing on Cassin’s sparrow presence, 
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though marginally detectable, were negligible. Rangeland managers should consider the 

unique ecological circumstances of each rangeland and livestock grazing system when 

investigating Cassin’s sparrow distribution or presence. Although both machine learning 

models (MaxEnt and Random Forest) and Boosted Regression Tree performed relatively 

well, compared to the envelope (BioClim) and logistic algorithms (Generalized Linear 

Model), the BRT produced the highest model sensitivity. This is likely due the innate 

accommodation of missing and limited data in this algorithm, which makes it ideal for 

species of lower (or unknown) prevalence. In these cases, the Boosted Regression Tree 

provides a superior, yet conservative SDM for rangeland ecologists seeking to project 

distributions of species with low to moderate or unknown prevalence.  

 Distributions of Eastern meadowlark, the species of lowest prevalence in this 

study, were better explained by the addition of grazing pressure only in the Boosted 

Regression Tree and Random Forest SDMs. Although previous studies have suggested a 

neutral effect of livestock grazing activity on the presence of Eastern meadowlark, this 

species has also been known to alter behavior and be particularly susceptible to brood-

parasitism (usually by Brown-headed cowbird Molothrus ater) in heavily grazed 

pastures (Baker and Guthery, 1990; Coppedge et al., 2008). Further, Roseberry and 

Klimstra (1970) found substantial differences in Eastern meadowlark nest densities 

between lightly grazed and heavily grazed pastures of similar vegetation composition 

and area. While direct impacts of livestock grazing (e.g., changes in vegetative structure) 

may not be as evident in the distributions of this species as they are in others (e.g., 

Northern bobwhite), our findings suggest some indirect influence of livestock grazing 
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activity on Eastern meadowlark presence. The Random Forest algorithm, in the 

accommodation of missing data and low presence values, produced the SDM with the 

highest explanatory power for this species and it should be preferred for other species of 

low prevalence.  

BioClim 

 This algorithm is traditionally used as an environmental envelope method to 

model large scale distributions and invasions (Hijmans et al., 2001; 2005). However, 

recent improvements in the algorithm (in the R package ‘Dismo’ [Hijmans et al., 2017]) 

have allowed analyses of single species occurrences at finer resolutions. The binary 

output also makes it especially well-suited for species with low prevalence. For example, 

it performed best (AUC = 0.81) with the Eastern meadowlark, the species of lowest 

prevalence in this study. For this species, this model did not improve with the addition of 

grazing pressure as a predictor. Since other models showed improvement with the 

addition of grazing pressure (BRT and RF), this may suggest some disadvantage to the 

linearity of this algorithm. BioClim also had the poorest predictive performance (AUC = 

0.54; 0.58; with and without grazing pressure, respectively) for Northern bobwhite. This 

species had the highest prevalence in the study and, thus, may suggest a saturation 

limitation for this algorithm as large sample sizes have been recognized to de-stabilize 

similar models (Mateo et al., 2010).  
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GLM (binomial) 

 The SDMs built using this logistic regression-based algorithm, generally, 

performed poorly, especially for Cassin’s sparrow (AUC = 0.44). Additionally, GLM 

SDMs for Eastern Meadowlark and Cassin’s sparrow did not improve with the addition 

of grazing pressure despite the improvement seen in other models. Although this 

algorithm can theoretically accommodate non-linear relationships between predictor and 

response variables, it has been recognized to over-fit distribution models producing 

biased or inaccurate results (Austin and Cunningham, 1981; Elith and Graham, 2009).  

MaxEnt 

 SDMs built using this machine-learning algorithm projecting Northern bobwhite 

and Cassin’s sparrow distributions improved with the addition of grazing pressure as a 

predictor. However, predictive power of the Eastern meadowlark SDM decreased with 

the addition of grazing pressure (AUC = 0.79, 0.78; respectively) while the TSS 

remained high (0.61, 0.75; respectively). Although not a rare or endangered species, this 

was the species of lowest prevalence in the study and supports the concept suggested by 

Freeman and Moisen (2008) that default probability thresholds may not be appropriate at 

low prevalence and that the intersection where Sensitivity + Specificity is maximum 

could serve as a more ideal probability threshold for species presence. We did not 

perform this analysis here but is an area of interest for future research in improving 

SDMs.  
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Boosted Regression Tree (BRT) 

 The BRT performed best with Eastern meadowlark SDMs (AUC = 0.89) and all 

species’ models improved with the addition of grazing pressure as a predictor. This 

algorithm has the unique advantage to accommodate collinearity among predictors and 

fit complex nonlinear relationships between response and predictor variables (Elith et al., 

2008; Franklin, 2009). Among the SDMs projecting Cassin’s sparrow distribution, the 

BRT had the highest model sensitivity (TSS = 0.67). The BRT requires two user-input 

parameters: learning rate (lr), which determines the contribution of each decision tree to 

the overall model, and tree complexity (tc), which controls whether interactions are 

fitted (Elith et al., 2008). Ideally, parameters should be optimized based on sample size, 

number of predictors, intended use of the model, etc. to avoid overfitting the model. 

However, for the purposes of this study, we maintained consistent parameters to directly 

compare model performance (lr = 0.001, tc = 6). This may have contributed to the poor 

predictive performance of the BRT in projecting Northern bobwhite distribution relative 

to the other two species.  

Random Forest (RF) 

 This regression-based machine-learning algorithm performed best for Eastern 

meadowlark SDMs (AUC = 0.95) and produced the most powerful SDMs for all species. 

All models built using this algorithm improved with the addition of grazing pressure as a 

predictor and model sensitivity was relatively consistent compared to the output of the 

other SDMs. Whereas the BRT requires the user to alter input parameters to ensure the 
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model is not over fitted, RF has the advantage of a built-in ‘safe-guard’ against 

overfitting in that each decision tree uses a random bootstrap aggregation to subsample 

the given data (Breiman, 2001; Prasad et al., 2006). RF is growing in popularity among 

ecologists for SDM and shows great promise for advanced SDM applications since it 

makes no assumptions on data distributions.  

Implications  

 Our findings suggest livestock grazing has indirect influence on grassland bird 

species’ distributions and should be included in SDMs as an indirect variable in addition 

to direct, associated vegetative changes. This is especially important for ground-dwelling 

species (e.g., Northern bobwhite). For instance, more advanced boosting or machine-

learning algorithms (e.g., Boosted Regression Tree, Random Forest) that can 

accommodate limited data, complex and non-linear relationships, and collinearity among 

predictors could inform a rangeland ecologist if the redistribution, or absence of 

breeding quail on a property is more heavily influenced by the absence of rainfall during 

drought conditions (an indirect effect) or the resulting senescence of vegetation (a direct 

effect of drought). Algorithms that can tease apart these effects can help inform 

effective, science-based management. Our approach to quantifying localized grazing 

pressure, however, did not capture more fine-scale variability in livestock distribution 

within each pasture (e.g., animals seeking shade in the afternoon, tendency toward a 

favored vegetation type with heterogenous distribution across the pasture). 

Improvements to these models would more represent the movements of livestock within 

each pasture on a finer scale. 
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 Further, model selection for SDM should include consideration of species 

prevalence and machine-learning algorithms should be preferred when the target species 

is of low or unknown prevalence. For example, rangeland ecologists building SDMs for 

a species that is either rare across its range or of unknown abundance are able to select or 

alter the probability threshold of species presence in machine-learning algorithms. This 

is especially valuable since SDMs build based on the default probability threshold (0.5) 

used for rare or endangered species could lead to misinformed conservation plans and 

refuge networks. This new approach in spatially quantifying and including livestock 

grazing pressure as an indirect variable in SDMs has broad implications in rangeland 

ecology since it addresses a weakness in the current SDM framework – the exclusion of 

biotic and indirect relationships. With this, we can better estimate the effects of varying 

grazing regimes on grassland bird populations and more accurately predict the 

distribution of species of interest 
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CHAPTER III 

MODELING THE TEMPORAL INFLUENCE OF COMPETITION IN CONSPECIFIC 

NESTING BIRDS 

Introduction 

 Traditionally, species distribution models (SDMs), which statistically associate a 

species’ occurrence with a suite of geospatial predictors, use resource variables, 

resources that the animal consumes or requires to persist in an area (e.g., shrub density, 

water availability) to define and project a species’ niche and distribution (Austin & Niel, 

2011; Elith & Leathwick, 2009). Indirect variables, which are features the animal does 

not consume or require for persistence but with which it may still interact (e.g., 

competition or predation), are often excluded in SDMs due to the difficulty in 

identifying the variable ecologically, quantifying the relationship, or in managing 

collinearity issues adding an interaction factor to a traditional SDM framework may 

contribute (Austin & Niel, 2011). However, recent advances in machine learning 

algorithms (e.g., Random Forest) have enabled us to include indirect variables or biotic 

relationships, such as competitive exclusion, in SDMs (Miller, 2010). Complex, biotic 

interactions are notably excluded from SDMs as they are often difficult to quantify and 

accommodate in a traditional modeling framework, especially those with a temporal 

component (i.e., an interaction or relationship that changes through time).  

 The principle of competitive exclusion, a term coined by G. Hardin (1960), 

asserts that two species of the same ecology cannot live together in the same place (i.e., 
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complete competitors cannot coexist). Competition between sympatric species often 

include contest for limited resources (e.g., territory, food, water). In birds, availability of 

nesting space or materials presents a unique competitive challenge in that the degree of 

contest between species has a temporal aspect: breeding seasons. For example, 

competition for nest-sites is often observed in sympatric bird species with similar nesting 

ecology that would otherwise partition resources the remainder of the year (Martin, 

1993; McArthur, 1958). Inferior competitors are then frequently pushed to sub-optimal 

nest-sites that may be more vulnerable to predation or exposure (Newton, 1994). 

 One such example is the relationship between breeding Cactus wren 

Campylorhynchus brunneicapillus, a large (32-47 g), territorial wren native to the desert 

southwestern United States, and Verdin Auriparus flaviceps, a small (5-8 g) penduline tit 

native to the southwestern United States and northern Mexico (Anderson & Anderson, 

1973; Lockwood & Freeman, 2004; Williamson, 2000). Most of the year, the disparity in 

size and general morphology of these two species allows for territorial and food resource 

partitioning. Cactus wren, for instance, are typically found in semi-open areas with low-

growing shrub, sifting the ground leaf litter and debris for beetles, weevils, and 

grasshoppers as well as the occasional fruit from cacti, hackberry, and other fruit-bearing 

desert species (Anderson & Anderson, 1973; Bent, 1948). In contrast, Verdin inhabit 

small thickets of woody desert vegetation, gleaning smaller insects (e.g., ants) from the 

foliage (Lockwood & Freeman, 2004; Webster, 1999). Both, the Cactus wren and 

Verdin, prefer areas of dense Cholla cacti (Opuntia spp.) for nesting but will also utilize 

Palo Verde (Cercidium spp.), large mottes of mixed cacti, and other spiny plants 
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(Anderson & Anderson, 1973; Wise-Gervais, 2005). The territorial nature of breeding 

Cactus wren is well-documented and typically involves nest usurping (i.e., destruction) 

of conspecifics (McGee, 1985; Simons & Simons, 1990). Due to their similar nesting 

ecology, breeding Verdin are frequently the target of such behavior and are often forced 

to retreat to alternative nest-sites (McGee, 1985; Simons & Simons, 1990). Our 

objectives were to understand 1) how the density of Cactus wren influenced the 

distribution of Verdin during the breeding season and, 2) whether this influence changes 

throughout the breeding season; if so, can this be incorporated into an SDM framework. 

Methods 

Study site 

 We conducted our study on the East Foundation’s 61,000-ha San Antonio Viejo 

Ranch (SAV), located approximately 25 km south of Hebbronville, Texas in Jim Hogg 

and Starr counties (Fig. 2). SAV is located within the South Texas Plains ecoregion and 

is managed predominantly as a cow-calf operation. Vegetation composition and structure 

within our study area is characteristic of this ecoregion and consists of a mosaic of 

grassland and thornscrub. SAV is representative of south Texas rangeland ecosystems 

and encompasses the Coastal Sand Plain and Texas-Tamulipan Thronscrub ecoregions. 

Low-growing woody plants, dense shrubs (Prosopis glandulosa, Acacia greggii, Celtis 

ehrenbergiana, Colubrina texensis, Aloysia gratissima, Lantana urticoides), and cacti 

(Opuntia engelmannii var. lindheimeri, Opuntia leptocaulis) dominate the vegetation in 

this area.Mean annual temperature within our study site is 22.6 C° and mean annual  
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Figure 2. Locality and representation of study site, East Foundation’s San Antonio Viejo 

Ranch, in south Texas. 

 

 

precipitation is 502.5 mm (PRISM Climate Group, 2018). Mean monthly temperature 

during our study period (April-July 2015 and 2016) was 27.2 C° with a maximum daily 
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high of 32.8 C° (PRISM Climate Group, 2018). Mean monthly precipitation during our 

study period was 77.1 mm with a maximum daily high of 93.1 mm (PRISM Climate 

Group, 2018). SAV is one of six properties of the East Foundation that are managed as a 

living laboratory to support wildlife conservation and other public benefits of ranching 

and private land stewardship.  

Environmental predictors 

 We used canopy height, shrub density, water proximity, grass spp. coverage, and 

cacti spp. coverage recorded from ground surveys as well as local topographic relief and 

an Optimized Soil Adjusted Vegetation Index (OSAVI) calculated using remotely 

sensed imagery in 2015 and 2016 as environmental predictors in SDMs.  We collected 

vegetation composition and structure data from 141 permanent 20-m transects in 

October 2016.  We allocated transects proportional to the area of ecological sites that 

occur in each pasture using stratified sampling resulting in 12–16 transects per pasture 

(Bonham, 2013). We marked each transect start and collected data in a random, 

predetermined direction (N, S, E, W). On each transect we sampled 5, 20×50 cm 

quadrats (5 m spacing) randomly placed at either 0, 0.5, 1, 1.5, 2, or 2.5 m from the left 

side of the tape and facing away from the transect start, visually recording percent cover 

of woody and herbaceous (later classified by grass spp.) in each quadrat.  

 We also documented woody canopy cover along each of the 20 m transects by 

visually recording the amount of the ground (in centimeters) covered by woody plant 

materials (leaves and branches) and succulent (cacti) that intercepted the line transect by 
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species (Canfield, 1941; Higgins et al., 2012). If a gap in the canopy exceeded 0.5 m for 

an individual, we recorded separate cover measurements. We calculated percent canopy 

cover by summing the intercept measurements for an individual species, dividing by 

total line length and converting to a cover percentage. We calculated total percent cover 

by adding cover percentages for all species, which sometimes exceeded 100% when 

overlapping canopies by different species were recorded (Coulloudon et al., 1999). 

Locations of water sources (e.g., livestock wells) within the study site were provided by 

the East Foundation. To calculate water proximity, we gridded the spatial extent of the 

CGRDA into a fishnet (30-m2 resolution). We performed a proximity analysis on each 

pixel centroid using the Near tool in ArcMap 10.5 to determine distance of each centroid 

to location of nearest water source, usually a livestock well and holding tank as no 

natural surface water exists within the study site, and very little exists on the Coastal 

Sand Plain region of Texas as a whole (Snelgrove et al., 2013). We made considerations 

for seasonality as not all groundwater pumps are operational year-round on large south 

Texas cattle ranches and ensured only those wells known to be active during the summer 

of 2015 and 2016 were used in the analysis. 

 We imported values for each predictor (canopy height, shrub density, water 

proximity, grass spp. coverage, and cacti spp. coverage) into ArcMap 10.5 and used 

Kriging interpolation to minimize spatial sampling bias and create continuous surface 

layers of environmental predictor values. Kriging, or Gaussian process regression, is a 

geostatistical method through which interpolated values are modeled by a Gaussian 

process governed by covariances. This method of spatial interpolation estimates a 
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continuous surface of values directly based on values at surrounding points weighted 

according to spatial covariance (Van Beers & Kleijnen, 2004). The Kriging interpolation 

algorithm is optimal for most eco-spatial modeling because it produces an unbiased 

prediction and calculates the spatial distribution of uncertainty allowing for an accurate 

estimate of error at any particular point (Mahmoudabadi & Briggs, 2016). We then 

calculated the mean values for each predictor within the 2015 and 2016 study periods 

using the raster algebra tool in ArcMap 10.5.   

 We acquired one Landsat 8-OLI tile (< 6% cloud cover) that encompassed the 

study area (courtesy of U.S. Geological Survey) for each year (2015 and 2016) and 

processed this in ENVI 5.1 (NASA Landsat Program, 2015; 2016). We corrected for 

atmospheric conditions and converted the original image format of Digital Numbers 

(DN) to radiance and then surface reflectance. We first resized the images to the 

rectangular extent of the SAV and then extracted by the study area mask in ESRI 

ArcGIS ArcMap 10.5. We then spatially subset each extracted image by bands 2-5 

corresponding to Landsat 8-OLI band designations: blue, green, red, and NIR. Bands 

were stacked and the OSAVI was calculated using the band math tool in ENVI 5.1 for 

each image. This index for LAI follows the standard formula [(NIR-

Red)/(NIR+Red+0.16)] and uses a reflectance constant of 0.16 to adjust for high 

background reflectance (e.g., areas with sparse vegetation and high soil reflectance) 

(Rondeaux et al., 1996). In south Texas, specifically, this vegetation index outperforms 

other, more common vegetation indices (e.g., Normalized Difference Vegetation Index 

[NDVI]) in, both, overall image classification accuracy and herbaceous coverage 
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estimations (Fern et al., 2018). We calculated the mean OSAVI values for the 2015 and 

2016 study periods using the raster algebra tool in ArcMap 10.5.  

Bird occurrence data 

 Avian point counts consisted of 25 12-point transects arranged in a stratified-

random design across SAV, stratified by vegetation type. Each transect was surveyed 3 

times throughout the breeding season: first visit between April and mid-May, second 

visit between mid-May and mid-June, and third visit between mid-June and mid-July. 

We used point count data collected from April to July 2015 and 2016 to build baseline 

SDMs. Each point was located 400-m apart, 2 observers recorded visual and auditory 

occurrences of birds within 200-m of each point simultaneously yet independently. We 

used a traditional framework in which each occurrence was counted as a ‘presence’ 

record at each point, omitting the duplicate records from the double observer design, and 

disregarding the transect construct by subsampling the data by a 400-m cell-size. This 

granted us a finer spatial resolution of the data set to thoroughly investigate the influence 

of conspecific (Cactus wren) density on the presence of Verdin. Cactus wren density was 

calculated using observed abundance at each transect point divided by the total space 

surveyed (200-m2). We used the occurrence of Verdin and the calculated density of 

Cactus wren during the breeding seasons of 2015 and 2016 for SDMs.  

Data processing and analysis 

 We exported the rasters of all predictors as GeoTIFFs and read these into the R 

statistical language as raster layers (R Core Team, 2013). All layers were stacked to 



 

42 
 

 

create the occurrence predictor stack for SDMs. Parallel analyses were also performed 

by time period within the breeding season: early (April through mid-May), peak (mid-

May through mid-June), and late (mid-June through mid-July) to investigate temporal 

changes in Cactus wren influence on Verdin distribution. Bird occurrence data were 

subset appropriately. We imported occurrence data for Verdin into R and used the 

predictor raster stack to build SDMs using three different algorithms: MaxEnt, Boosted 

Regression Tree (BRT), and Random Forest (RF). Table 3 outlines the basic 

mathematical approach of each modeling algorithm and provides a comparison of the 

advantages of each model in the occupancy framework. We generated ‘background data’ 

to produce the non-presence class required by the logistic models. Background data do 

not attempt to guess at absence locations, but instead are used to characterize the study 

region (Phillips & Elith 2011; Phillips et al., 2009; Ward et al., 2009). These establish 

the environmental domain of the study and are independent of occurrence data while 

presence data establish the conditions under which a species is more likely to be present 

than a null, or completely random, model would predict. After building baseline SDMs, 

we added the raster representing Cactus wren density to the occurrence predictor raster 

stack and re-ran the models to assess any improvement or degradation in the predictive 

performance and sensitivity of each algorithm. For each breeding period, we also 

calculated relative influence and significance of each predictor using a mixed-model 
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Table 3. Comparison of mathematical approach for each modeling algorithm being used to project species distributions in this 

study. Data requirements and advantages are also listed. 

Model Data type Approach/mechanism Advantages 

MaxEnt Presence only A machine-learning algorithm based on the 
principle from statistical mechanics and 

information theory that states that the 

probability distribution with maximum entropy 
is the best approximation of an unknown 

distribution (Phillips et al., 2006). 

Recent investigations have shown the MaxEnt 
algorithm to be mathematically identical to that 

of the GLM (Poisson distribution) (Renner & 

Warton, 2013). Its unique ability to accept 
environmental gradients as part of the prediction 

process make its application to ecological niche 

modeling ideal (Evangelista et al., 2009; Saatchi 

et al., 2008). 
 

    

Boosted 
Regression 

Tree (BRT) 

Presence/absence An ensemble, regression-based method that 
combines the strengths of two commonly used 

algorithms: regression trees (models that define 

the response to predictors using binary splits) 
and boosting (a method for combining multiple 

simple models to improve performance). An 

initial regression tree is fitted and iteratively 

improved upon in a forward stagewise manner 
(boosting) by minimizing the variation in the 

response not explained by the model at each 

iteration.  
 

 

This approach can easily accommodate different 
types of predictor variables, missing data, and 

outliers as well as fit complex nonlinear 

relationships automatically handing collinearity 
between predictor variables. BRT interpretations 

can be easily summarized to provide powerful 

ecological insight (Franklin, 2009). 

 

Random Forest 
(RF) 

Presence/absence An ensemble machine-learning method in which 
a large number (500-2000) of decision trees are 

grown with subsets of the data (e.g., species  

This method makes no assumptions on data 
distribution and instead uses bootstrap 

aggregation to subsample the given data. This  
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Table 3 Continued 

Model Data type Approach/mechanism Advantages 

  occurrences) containing a random subset of 
candidate predictor variables (Breiman, 2001). 

Each tree votes for a binary outcome and the 

resulting predictions are averaged. 

 

approach has been shown to have higher 
prediction accuracy than ordinary decision trees 

in SDM and other applications.  (Gislason et al., 

2006; Prasad et al., 2006). 
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approach. We calculated relative influence of each predictor on Verdin presence using a 

BRT analysis and the significance of highly influential variables through logit 

generalized linear regression analyses. The BRT has the unique advantage to 

accommodate collinearity among predictors and fit complex nonlinear relationships 

between response and predictor variables making it ideal for determining the relative 

contribution of each predictor (Elith et al., 2008; Franklin, 2009). Pair-wise correlation 

coefficients between predictors are reported in Appendix A. Generalized linear models, 

based on generalized multiple linear regression, also accommodate non-linear 

relationships through use of the “link” function in which predictors can be transformed 

based on response data distribution (Austin & Cunningham, 1981; Franklin, 2009; 

Margules et al., 1987). We used the logit distribution (binary response or 

presence/absence) to determine significance of each predictor.  

 Prior to building SDMs, we performed preliminary analyses to ensure only 

predictors that added to the explanatory power of the models and did not add to the 

overall deviance were used in each SDM. This included the use of a priori Gradient 

Boosting Machine (GBM) analyses and step-wise regression variable dropping and 

selection for each model and time period. We also performed time-fixed effects (FE) 

regression analysis to identify any significant effects between years in occurrence 

response to predictor variables. There was no significant effect in Verdin occurrence 

response to predictor variables between years (p = 0.79), thus eliminating the need to 

separate data per year or accommodate for time-FE in SDMs. Occurrence data were 

pooled for the 2015 and 2016 breeding seasons. 
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Model evaluation 

 We evaluated performance of each model using the Area Under the Receiver 

Operator Curve (AUROC or AUC) and true sensitivity statistic (TSS). The AUC (range 

from 0 to 1) is a measure of rank-correlation. In unbiased data, a higher AUC value 

indicates that areas with high predicted suitability values tend to be sites of known 

presence (Phillips et al., 2006). The TSS is an approach based on maximizing the sum of 

sensitivity and specificity independent of species prevalence (Liu et al., 2013). Many 

distributional model evaluation approaches (e.g., kappa) are threshold-dependent; a 

value above a user-set threshold indicates a prediction of presence and a value below the 

threshold indicates absence. However, different models assign different weight to false 

absences or false presences making it hard to compare models directly. The TSS is 

considered an alternative to the traditionally used kappa to assess model performance, 

since it has the advantage of being threshold and prevalence independent.  

Results 

 We recorded a total of 981 occurrences of Verdin throughout the 2015 and 2016 

breeding seasons: 351 during the early breeding period (April through mid-May), 322 

during the peak breeding period (mid-May through mid-June), and 308 during the late 

breeding period (mid-June through mid-July). Estimated Cactus wren densities ranged 

from 0.06 to 2.9 individuals per 200-m2. Predictive maps generated by each algorithm 

are produced in Appendix C (Fig. 9-12). Of the three algorithms used, Random Forest 

(RF) produced the highest predictive performance SDMs for all three breeding periods 
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(Table 4). Boosted Regression Tree (BRT) produced the lowest performing model 

overall for the early breeding period, both, in terms of predictive power (AUC = 0.60, 

0.63; with and without Cactus wren density included a predictor, respectively) and  

 

 

Table 4. Results of species distribution model (SDM) performance for MaxEnt, Boosted 

Regression Tree (BRT), and Random Forest (RF) algorithms in predicting occurrence of 

Verdin Auriparus flaviceps on East Foundation’s San Antonio Viejo Ranch (SAV) 

during the early (April through mid-May), peak (mid-May through mid-June), and late 

(mid-June through mid-July) breeding seasons of 2015-2016. Model performance 

metrics (area under curve [AUC] and true sensitivity statistic [TSS]) are compared for 

SDMs using environmental predictors only and environmental predictors stacked with a 

raster representing Cactus wren Campylorhynchus brunneicapillus density (denoted by 

‘+’). 

 

 

 

 

 

 

 

   
MaxEnt 

 
BRT 

 
RF 

        

   AUC TSS  AUC TSS  AUC TSS 

Early 

  
0.74 0.40 

 
0.60  -0.02 

 
0.81  0.23 

+ 
 

0.76 0.49 
 

0.63  0.15 
 

0.82  0.47 
        

Peak 

  
0.80 0.14 

 
0.89  0.48 

 
0.89  0.59 

+ 
 

0.89 0.34 
 

0.95 0.73 
 

0.99  0.67 
        

Late 

  
0.81  0.27 

 
0.73  0.31 

 
0.88  0.59 

+ 
 

0.86 0.93 
 

0.77  0.46 
 

0.98  0.73 
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model sensitivity (TSS = -0.02, 0.15; with and without Cactus wren density included as 

predictor, respectively).  

 All models improved in both predictive power (∆AUC = 0.01-0.10) and model 

sensitivity (∆TSS = 0.09-0.66) with the inclusion of Cactus wren density as a predictor 

of Verdin presence (Table 4). However, magnitude of improvement in model 

performance varied by breeding period. During the early breeding period (April through 

mid-May), SDMs that included Cactus wren density as a predictor performed only 

slightly better than those that included environmental features alone (MaxEnt: ∆AUC = 

+0.02, ∆TSS = +0.09; BRT: ∆AUC = +0.03, ∆TSS = +0.17; RF: ∆AUC = +0.01, ∆TSS 

= +0.24). SDMs that included Cactus wren density as a predictor for the peak breeding 

season (mid-May through mid-June), as opposed to those including environmental 

features only, produced larger increases in model performance, relative to the early 

breeding period (MaxEnt: ∆AUC = +0.09, ∆TSS = +0.20; BRT: ∆AUC = +0.06, ∆TSS = 

+0.25; RF: ∆AUC = +0.10, ∆TSS = +0.08). SDMs built for the late breeding period 

(mid-June through mid-July) produced similar, yet less pronounced improvements in 

performance for models that included Cactus wren density as a predictor as opposed to 

environmental features alone (MaxEnt: ∆AUC = +0.05, ∆TSS = +0.66; BRT: ∆AUC = 

+0.04, ∆TSS = +0.15; RF: ∆AUC = +0.10, ∆TSS = +0.14).  

 Water proximity was the most influential (+), and significant (p < 0.001), feature 

in predicting Verdin presence during the early breeding period (Fig. 3). Verdin presence 

during the peak breeding season was most influenced by Cactus wren density (-) and 
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green biomass (+), represented by the OSAVI (p = 0.037 and p = 0.048, respectively). 

Cactus wren density (-) and green biomass (+) remained significant in the late breeding 

period (p = 0.028 and p = 0.041, respectively), however, shrub density (+) and cactus 

spp. coverage (-) also became significant predictors for Verdin presence (p = 0.002 and p 

= 0.027, respectively).  

 

 

Figure 3. Relative influence, as calculated by boosted regression tree analysis (BRT), of 

environmental features and Cactus wren Campylorhynchus brunneicapillus (CACW) 

density on the presence of Verdin Auriparus flaviceps on East Foundation’s San Antonio 

Viejo Ranch during the early (a; April through mid-May), peak (b; mid-May through 

mid-June), and late (c; mid-June through mid-July) 2015-2016 breeding seasons; * p < 

0.05; ** p < 0.01; *** p < 0.001. 
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Discussion 

 Our results indicate that Cactus wren density had a significant, negative influence 

on the distribution of Verdin during the peak (mid-May through mid-June) and late 

(mid-June through mid-July) breeding season. However, Cactus wren density was not a 

negatively correlated predictor for Verdin presence during the early breeding season 

(April through mid-May). This may have biologically meaningful implications for 

understanding how these two conspecifics interact during nest-site selection. More 

specifically, this suggests that optimal nest-site selection may not necessarily be the 

source of the observed competition pressure. Observational studies suggest that Cactus 

wren usurp conspecific nests in an effort to maximize predator-free nest space (McGee, 

1985; Simons & Simons, 1990). Our findings support this assertion as the potential 

source of competitive pressure since Verdin presence was not negatively affected by 

Cactus wren density until after the initial breeding period. Further, predation is the 

primary cause of nest failure in birds so it is reasonable to expect species able to 

minimize predation pressure will have a substantial competitive advantage (Davis, 2017; 

Newton, 1994).   

 The ubiquity and importance of competition as a primary driver in species 

persistence and coexistence among birds have been debated for decades (Collins et al., 

2011; Conner & Simberloff, 1979; Martin, 1993; Wiens, 1989). However, nest predation 

is considered a significant evolutionary force (i.e., natural selection favoring birds 

having life history traits that reduce predation pressure; Martin, 1993; Nilsson, 1986; 

Slagsvold & Wiebe, 2017). Thus, incorporating these biotic interactions, as well as their 
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temporal trends, is essential in efforts to monitor or conserve bird species with similar 

nesting ecologies. Ecologists should not only consider the environmental requirements 

for species persistence, but also the presence of conspecifics with which they are known 

to interact during various life history stages (e.g., fledging periods, nest-site selection or 

initiation). Further, modeling algorithms that can accommodate complex, non-linear 

relationships (e.g., Random Forest) should be preferred in SDM development and 

application. Random Forest routinely outperforms other machine-learning and linear 

algorithms, both, in our study and others involving non-normal data distribution and 

complex predictor interactions (Breiman, 2001; Mi et al., 2014; Prasad et al., 2006).  

 Understanding how and when competitive pressure impacts the distribution of 

sympatric species is crucial for informed management. For example, severe drought 

conditions may disproportionately affect smaller, less territorial birds during sensitive 

fledging periods. Also, livestock grazing may disproportionately affect obligate ground 

nesters during the early breeding season, or nest initiation, relative to the late breeding 

season. It is imperative we include such biotic relationships, as well as their temporal 

components, in the modelling framework for accurate SDMs.  
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CHAPTER IV 

SUMMARY 

Maps of actual or potential species distributions are crucial for many aspects of 

natural resource management, land use development, and conservation planning. Species 

distribution models (SDMs) attempt to predict or statistically associate geographic 

record of a species with abiotic and biospatial variables of interest over large spatial 

extents and are utilized in wildlife management as aerial imagery and our understanding 

of distributional patterns advances. Most distributional models use variables such as soil 

type, climatic patterns, topography, hydrology, vegetative communities, and other 

abiotic conditions to identify the predicted geographic range of a species. However, 

species interactions have yet to be successfully quantified and included in distributional 

models. It is imperative we include interactions in niche models as certain species 

relationships (i.e. predation, competition, habitat facilitation) have documented influence 

on species distribution.  

Our novel approach to spatially quantify localized grazing pressure improved the 

prediction accuracy and sensitivity of SDMs projecting the distribution of Northern 

bobwhite, Eastern meadowlark, and Cassin’s sparrow. Of the three algorithms used, 

Random Forest performed best for explaining presence regardless of species prevalence 

and should be preferred by rangeland managers seeking to promote sustainable livestock 

grazing while balancing the needs of sensitive wildlife populations. Our findings suggest 

livestock grazing has indirect influence on grassland bird species’ distributions and 
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should be included in SDMs as an indirect variable in addition to direct, associated 

vegetative changes. This is especially important for ground-dwelling species (e.g., 

Northern bobwhite). For instance, more advanced boosting or machine-learning 

algorithms (e.g., Boosted Regression Tree, Random Forest) that can accommodate 

limited data, complex and non-linear relationships, and collinearity among predictors 

could inform a rangeland ecologist if the redistribution, or absence of breeding quail on a 

property is more heavily influenced by the absence of rainfall during drought conditions 

(an indirect effect) or the resulting senescence of vegetation (a direct effect of drought). 

Algorithms that can tease apart these effects can help inform effective, science-based 

management. 

Cactus wren density had a significant, negative influence on the distribution of 

Verdin during the peak (mid-May through mid-June) and late (mid-June through mid-

July) breeding season. However, Cactus wren density was not a negatively correlated 

predictor for Verdin presence during the early breeding season (April through mid-May). 

This may have biologically meaningful implications for understanding how these two 

conspecifics interact during nest-site selection. More specifically, this suggests that 

optimal nest-site selection may not necessarily be the source of the observed competition 

pressure. Observational studies suggest that Cactus wren usurp conspecific nests to 

maximize predator-free nest space (McGee, 1985; Simons & Simons, 1990). Our 

findings support this assertion as the potential source of competitive pressure since 

Verdin presence was not negatively affected by Cactus wren density until after the initial 

breeding period. 
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The ubiquity and importance of competition as a primary driver in species 

persistence and coexistence among birds have been debated for decades (Collins et al., 

2011; Conner & Simberloff, 1979; Martin, 1993; Wiens, 1989). However, nest predation 

is considered a significant evolutionary force (i.e., natural selection favoring birds 

having life history traits that reduce predation pressure; Martin, 1993; Nilsson, 1986; 

Slagsvold & Wiebe, 2017). Thus, incorporating these biotic interactions, as well as their 

temporal trends, is essential in efforts to monitor or conserve bird species with similar 

nesting ecologies. Ecologists should not only consider the environmental requirements 

for species persistence, but also the presence of conspecifics with which they are known 

to interact during various life history stages (e.g., fledging periods, nest-site selection or 

initiation). Further, modeling algorithms that can accommodate complex, non-linear 

relationships (e.g., Random Forest) should be preferred in SDM development and 

application. Random Forest routinely outperforms other machine-learning and linear 

algorithms, both, in our study and others involving non-normal data distribution and 

complex predictor interactions (Breiman, 2001; Mi et al., 2014; Prasad et al., 2006).  

 Understanding how and when competitive pressure impacts the distribution of 

sympatric species is crucial for informed management. For example, severe drought 

conditions may disproportionately affect smaller, less territorial birds during sensitive 

fledging periods. Also, livestock grazing may disproportionately affect obligate ground 

nesters during the early breeding season, or nest initiation, relative to the late breeding 

season. It is imperative we include such biotic relationships, as well as their temporal 

components, in the modelling framework for accurate SDMs.  
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APPENDIX A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Correlative relationships (R values [top panel] and scatter plots [bottom 

panel]) of predictors used in species distribution models for Northern bobwhite Colinus 

virginianus, Cassin’s sparrow Peucaea cassinii, Eastern meadlowlark Sturnella magna, 

and Verdin Auriparus flaviceps during the 2016 and 2017 breeding seasons on East 

Foundation’s San Antonio Viejo Ranch. OSAVI = Optimized Soil Adjusted Vegetation 

Index; GPI = Grazing Pressure Index. 
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APPENDIX B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Predictive maps generated by the BIOCLIM algorithm using environmental 

predictors only (without grazing) and environmental predictors + livestock grazing 

pressure (with grazing) across the Coloraditas Grazing Research and Demonstration 

Area (CGRDA) on East Foundation’s San Antonio Viejo Ranch during the 2016 

breeding season for Northern bobwhite (NOBO), Cassin’s sparrow (CASP), and Eastern 

meadowlark (EAME).  
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Figure 6. Predictive maps generated by the Generalized Linear Model (GLM; binomial 

distribution) algorithm using environmental predictors only (without grazing) and 

environmental predictors + livestock grazing pressure (with grazing) across the 

Coloraditas Grazing Research and Demonstration Area (CGRDA) on East Foundation’s 

San Antonio Viejo Ranch during the 2016 breeding season for Northern bobwhite 

(NOBO), Cassin’s sparrow (CASP), and Eastern meadowlark (EAME).  
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Figure 7. Predictive maps generated by the MaxEnt algorithm using environmental 

predictors only (without grazing) and environmental predictors + livestock grazing 

pressure (with grazing) across the Coloraditas Grazing Research and Demonstration 

Area (CGRDA) on East Foundation’s San Antonio Viejo Ranch during the 2016 

breeding season for Northern bobwhite (NOBO), Cassin’s sparrow (CASP), and Eastern 

meadowlark (EAME).  
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Figure 8. Predictive maps generated by the Boosted Regression Tree (BRT) decision 

tree algorithm using environmental predictors only (without grazing) and environmental 

predictors + livestock grazing pressure (with grazing) across the Coloraditas Grazing 

Research and Demonstration Area (CGRDA) on East Foundation’s San Antonio Viejo 

Ranch during the 2016 breeding season for Northern bobwhite (NOBO), Cassin’s 

sparrow (CASP), and Eastern meadowlark (EAME).  
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APPENDIX C 

 

 

 

 

 

 

 

Figure 9. Predictive maps generated by the Random Forest (RF) algorithm using 

environmental predictors only (without grazing) and environmental predictors + 

livestock grazing pressure (with grazing) across the Coloraditas Grazing Research and 

Demonstration Area (CGRDA) on East Foundation’s San Antonio Viejo Ranch during 

the 2016 breeding season for Northern bobwhite (NOBO), Cassin’s sparrow (CASP), 

and Eastern meadowlark (EAME).  
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APPENDIX C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Predictive maps generated by the MaxEnt algorithm using environmental 

predictors only (without CACW) and environmental predictors + Cactus wren density 

(with CACW) on East Foundation’s San Antonio Viejo Ranch during the 2016 and 2017 

breeding season for Verdin Auriparus flaviceps.  
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Figure 11. Predictive maps generated by the Boosted Regression Tree (BRT) decision 

tree algorithm using environmental predictors only (without CACW) and environmental 

predictors + Cactus wren density (with CACW) on East Foundation’s San Antonio Viejo 

Ranch during the 2016 and 2017 breeding season for Verdin Auriparus flaviceps.  
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Figure 12. Predictive maps generated by the Random Forest (RF) algorithm using 

environmental predictors only (without CACW) and environmental predictors + Cactus 

wren density (with CACW) on East Foundation’s San Antonio Viejo Ranch during the 

2016 and 2017 breeding season for Verdin Auriparus flaviceps.  
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