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ABSTRACT

Recent advances in remote-sensing techniques enabled accurate location geocoding and en-

couraged the collection of big spatial datasets over large domains. Data obtained in these settings

are usually multivariate, with several spatial variables observed at each location. Statistical mod-

eling for such spatial data is of ever-increasing importance in a variety of fields, including agricul-

ture, climate science, astronomy, atmospheric science. Gaussian processes are popular and flexible

models for such data, but they are computationally infeasible for large datasets.

This dissertation is focused on spatial inference and prediction for big spatial data, and in

particular on the computational feasibility of the statistical methodologies. It includes a general

introduction to spatial statistics including Gaussian processes, spatial prediction as well as multi-

variate spatial data modeling. We also introduce Gaussian-process approximations that use basis

functions at multiple resolutions to achieve fast inference and that can (approximately) represent

any spatial covariance structure. Finally, we extend the multi-resolution approximation from uni-

variate to multivariate spatial data, where the computation is even more expensive, by introducing

latent dimensions into covariance modeling. The last part concludes the dissertation and discusses

the future work.
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1. INTRODUCTION

Spatial data can be defined as location-referenced measurements taken over a spatial domain,

arising in many disciplines like agriculture, geoscience, astronomy, meteorology and ecology. De-

pending on the measuring procedure and domain properties, spatial data could be generated from

very different processes: continuous and discrete spatial processes, or point processes with random

measurement locations. Spatial statistics deals with data that are spatially referenced and follows

the principle that data points close in space are typically more similar than those who are far apart.

For an overview of spatial statistics, see Cressie (1993).

In the recent times, the ubiquity of automated remote-sensing instruments on satellites and

aircraft have led to an explosion in the amount of environmental data being collected in all fields

of science. For example, the NASA Earth Observing System generates everyday terabytes of

data about the land surface, the biosphere, the atmosphere, and the oceans. This results in an

increasing need for analyzing big datasets with large numbers of variables and massive amounts

of observations. Analyzing these datasets can give us new insight on a variety of problems, such

as environmental pollution, atmospheric weather forecasting and climate change. With Gaussian

processes, the spatial statistics field has a rich toolkit for data inference, including parameters

estimation, predicting the unobserved spatial field, and the associated uncertainty quantification

(Cressie and Wikle, 2011).

However, large data sets have posed tremendous challenges to spatial data modeling because of

the notorious curse of dimensionality. In particular, for data of size n with one response variable,

spatial modeling and prediction both involve inversion of an n × n covariance matrix. Tradi-

tional statistical methods require O(n2) memory complexity and O(n3) time complexity, which

is computationally prohibative for very large n. For multivariate spatial data, say p-variate with

n observations, the cross-covariance would be of size np × np, and statistical inference would

be even more computationally demanding. Therefore, scalable statistical methods are needed to

extract information from these big spatial datasets, especially for multivariate data.

1



This dissertation is focused on spatial inference and prediction for big spatial data, and the

particular concern here is with computational feasibility of the statistical methodology. Chapter 2

reviews some basics of spatial statistics. Chapter 3 introduces the multi-resolution approximation

method for big spatial data with two examples and an application to satellite data. Chapter 4

extends the multi-resolution approximation from univariate to multivariate spatial data. Chapter 5

concludes the dissertation.
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2. BACKGROUND

2.1 Gaussian process models for spatial data

A Gaussian process is a collection of random variables such that every finite subset of these ran-

dom variables has a multivariate normal distribution. Gaussian process models have been widely

used in spatial statistics, because the normal distribution has many well-known and attractive prop-

erties. Gaussian processes are flexible and allow for natural uncertainty quantification. In spatial

statistics, the random variables that make up the Gaussian process are indexed by spatial locations.

Spatial data can usually be modeled as a Gaussian process as follows. Let y(·) ∼ GP (µ,C) be

a Gaussian process with mean µ, and a covariance function C, which has to be positive definite.

Then for any finite set of locations S = {s1, s2, . . . , sn} ⊂ D ∈ Rd, d ∈ Z+, we have

y(S) := (y(s1), y(s2), . . . , y(sn))′ ∼ Nn(µ,C),

where

µ =µ(S) = (µ(s1), µ(s2), . . . , µ(sn))′;

C =C(S,S) = (C(si, sj))i,j=1,...,n.

The covariance function C describes the dependence between measurements across locations and

quantifies the variability of the Gaussian process. It usually involves some unknown parameters θ.

Geospatial settings typically assume that at each s ∈ S, that the observed data, z, composed of

the underlying spatial process y, capturing the spatial association, and an independent process ε,

which is often called the nugget:

z(s) = y(s) + ε(s). (2.1)

If we assume y is a Gaussian process with covariance function C, and ε(s) ∼ N (0, σ2I),

independent of y(·), So the covariance of z = (z(s1), z(s2), . . . , z(sn)) is Σ = C + σ2I.

3



2.1.1 Stationarity and isotropy

While the general definition of a Gaussian process provides a very broad and flexible class

of models, applications often require some additional assumptions.Two properties are commonly

imposed on y(·): stationarity and isotropy.

A stochastic process y(·) is strictly stationary (or strongly stationary) if all finite-dimensional

distributions are transformation or shift invariant, i.e.,

P (y(s1) ≤ y1, . . . , y(sn) ≤ yn) = P (y(s1 + h) ≤ y1, . . . , y(sn + h) ≤ yn),

for any vector h ∈ Rd and any choices of spatial locations s ∈ D.

A stochastic process y(·) is weakly stationary or second-order stationary if the mean is spatially

constant, which means that,

E(y(s)) = µ(s) = µ(s + h)

and the covariance is a function of only the vector h,

cov(y(s), y(s + h)) = C(s, s + h) = C(h),

for any s ∈ D and h ∈ Rd.

Throughout the rest of dissertation we will use the term stationary to mean weakly stationary.

A special subclass of stationary processes are isotropic processes.

A stochastic process y(·) is isotropic if it is weakly stationary and the covariance is a function

of only distance:

cov(y(s), y(s + h)) = C(s, s + h) = C(‖h‖)

for any s ∈ D,h ∈ Rd. Isotropy means that the process is rotation invariant, and note that µ(·) is

spatially constant for isotropic processes.

Suppose we have a single spatial variable, and our univariate data generated by Gaussian pro-

4



cess y(·), which we assume to be second-order stationary with mean zero. According to the def-

inition above, the covariance function is isotropic if C(h1) = C(h2) whenever ‖h1‖ = ‖h2‖,

where‖ · ‖ is the Euclidean norm. A class of isotropic covariance function that has received great

attention is the Matérn family, which has the form of

M(r|σ2, λ, ν) = σ2(
r

λ
)νKν(

r

λ
), (2.2)

where σ2 is the sill parameter, λ > 0 is the spatial range and Kν(·) is the modified Bessel function

of order ν > 0 with ν being called the smoothness parameter, which captures the smoothness of

the random field, with larger values of ν corresponding to smoother fields. The range parameter

λ measures how fast the correlation of the random field decays with increasing distance r, with

larger λ indicating a faster decay( while keeping ν fixed). The commonly used smoothness levels

are 0.5, 1.5 and 2.5, because then Kν(·) becomes a polynomial. Moreover, for ν = 0.5, Matèrn

covariance function with smoothness 0.5 is equivalent to the exponential covariance function

C(r) = σ2 exp(− r
λ

).

2.2 Spatial prediction for Gaussian process

A major goal in spatial statistical analysis is to make inference on y(SP ), which is the true

process y(·) at nP prediction locations SP := {sP1 , . . . , sPnP }. This is also referred to as Kriging.

If y(·) is observed directly and without error, let y = y(S), yP = y(SP ), and suppress the

dependence on covariance parameter θ, we have

yP

y

 ∼ NnP+n


µ(SP )

µ(S)

 ,

C(SP ,SP ) C(S,SP )

C(SP ,S) C(S,S)


 . (2.3)
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For multivariate normal distribution, according to its well-known properties, we have

yP |y ∼ NnP
(µyP |y,ΣyP |y), (2.4)

where
µyP |y = µ(SP ) + C(SP ,S)(C(S,S))−1(y − µ(S))

ΣyP |y = C(SP ,SP )−C(SP ,S)(C(S,S))−1C(S,SP ).

The µyP |y is the best linear unbiased predictor of yP based on y (even without the Gaussian

assumption).

However, most of the time, we observe data z(·) with measurement error, instead of the under-

lying spatial process y(·) directly. Thus it is more realistic to assume additive Gaussian noise in

z(·) as in Equation 2.1. Let yP = y(SP ), z(S) = z, then the spatial prediction for Gaussian data

model becomes

yP |z ∼ NnP
(µyP |z,ΣyP |z),

where
µyP |z = µ(SP ) + C(SP ,S)Σ−1(y − µ(S))

ΣyP |z = C(SP ,SP )− C(SP ,S)Σ−1C(S,SP ).

2.3 Multivariate spatial data modeling

Multivariate spatial data is consisting of measurements of several spatially correlated variables,

which are recorded at varying spatial locations. In this case, we need to model both dependence

between variables at a particular location, and correlation between measurements across locations.

For a p-variate spatial process, let Y(s) = (y1(s), . . . , yp(s)), at each location, s ∈ S, there are
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p constituent components. The matrix cross-covariance function of Y(s) is

C(·, ·) =


C11(·, ·) . . . C1p(·, ·)

... . . . ...

Cp1(·, ·) . . . Cpp(·, ·)

 , (2.5)

a mapping C : D × D → Mp×p, where Mp×p is the set of p × p matrices, such that the np × np

covariance matrix

C(S,S) =



C(s1, s1) C(s1, s2) . . . C(s1, sn)

C(s2, s1) C(s2, s2) . . . C(s2, sn)

...
... . . . ...

C(sn, s1) C(sn, s2) . . . C(sn, sn)


(2.6)

is (symmetric) positive definite, though covariance function C itself is not required to be symmet-

ric. Each block in Equation 2.6 is of size p × p, quantifying the (cross) covariance of p variables

measured at certain pairs of locations.

Valid cross-covariance functions require that for any number or any choice of locations, the re-

sulting covariance matrix has to be nonnegative definite. Thus constructing a valid cross-covariance

function is even more difficult than in the univariate case. Various constructions are possible, in-

cluding separable cross-covariance functions (Mardia and Goodall, 1993), linear model of core-

gionalization (LMC) (e.g., Wackernagel, 1995; Banerjee et al., 2004; Gelfand et al., 2004).

Separable cross-covariance functions assume Cij(s1, s2) = ρ(s1, s2)Rij , where ρ(·, ·) has to be

a valid correlation function and Rij = Cov(yi, yj) is the nonspatial covariance between variables

i and j. Separable cross-covariance were sometimes called intrinsic co-regionalizations (Helter-

brand and Cressie, 1994). This construction is simple, easily interpreted, but not flexible enough

to model complex interactions between processes.

Linear combinations of independent processes provide a rich class of cross-covariances for

multivariate data. Such models are the so-called linear models of coregionalization (LMC), which

7



can be exploited for valid dependence structures. The linear model of coregionalization defines

Y(s) = A(s)x(s), s ∈ D, where A is a deterministic, potentially spatially varying matrix. Then

by construction, y(·) is a valid p-variate Gaussian process with cross-covariance function. LMC is

a rather general construction method and it is usually too restrictive to assume that A is constant.

A spatially varying LMC, however, has many parameters, and thus introduces extra difficulties in

the computation for necessary estimation and inferences.

2.3.1 Cross-covariance functions based on latent dimensions

Another approach to construct p-variate cross-covariance functions is based on univariate spa-

tial covariance on an extended space (Apanasovich and Genton, 2010; Genton and Kleiber, 2015).

The idea is to introduce additional latent dimensions that represent the locations of variables to

be studied. Specifically, each component yk is represented as a vector ξk ∈ Rq, i.e., ξk =

(ξk,1, . . . , ξk,q)
T , k = 1, . . . , p representing the processes on latent dimensions. Let ξk(i) denote

the location in latent dimension of the observation at si. Under this setting, the cross-covariance

function between yk and yl becomes:

Ckl(si, sj) = C((si, ξk), (sj, ξl)), si, sj ∈ Rd, ξk, ξl ∈ Rq. (2.7)

Consequently, the resulting covariance matrix is guaranteed to be nonnegative definite if C is a

valid covariance function. If C is stationary or isotropic, then so is the cross-covariance function.

This construction is very flexible and capable of modeling complex multivariate data. As discussed

in Section 2.1.1, the covariance function is stationary in both space domain and latent domain if

Ckl(si, sj) = Ckl(‖si − sj‖, ‖ξk − ξl‖).

Since cross-covariance functions for multivariate spatial data must incorporate the correlation

among variables in addition to the spatial dependence, and multivariate models are more compu-

tationally intensive than the univariate case, especially when both n and p are large. In Chapter 4,

we utilize the latent dimension method and apply the multi-resolution approximation to facilitate

the computation in the modeling and analysis of very large multivariate spatial data sets.
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3. MULTI-RESOLUTION APPROXIMATIONS OF GAUSSIAN PROCESSES FOR LARGE

SPATIAL DATASETS

3.1 Introduction

Gaussian processes (GPs) are highly popular models for spatial data, time series, and functions.

They are flexible and allow natural uncertainty quantification, but their computational complexity

is cubic in the data size. This prohibits GPs from being used directly for the analysis of many

modern datasets consisting of a large number of observations, such as satellite remote-sensing

data.

Consequently, many approximations or assumptions have been proposed that allow the ap-

plication of GPs to large datasets. Some of these approaches are most appropriate for capturing

fine-scale structure (e.g., Furrer et al., 2006; Kaufman et al., 2008), while others are more capable

at capturing large-scale structure (e.g., Higdon, 1998; Mardia et al., 1998; Wikle and Cressie, 1999;

Cressie and Johannesson, 2008; Katzfuss and Cressie, 2009, 2011, 2012). Lindgren et al. (2011)

proposed an approximation based on viewing a GP with Matérn covariance as the solution to the

corresponding stochastic partial differential equation, but this approach is only applicable to co-

variance functions of Matérn type. Vecchia’s method and its extensions (e.g., Vecchia, 1988; Stein

et al., 2004; Datta et al., 2016; Katzfuss and Guinness, 2017) are discontinuous and assume the so-

called screening effect to hold, meaning that any given observation is conditionally independent

from other observations given a small subset of (typically, nearby) observations.

We propose the multi-resolution approximation (M -RA) method, which allows capturing spa-

tial structure at all scales. TheM -RA is based on an orthogonal decomposition of the GP of interest

into processes at multiple resolutions by iteratively applying the predictive process (Quiñonero-

Candela and Rasmussen, 2005; Banerjee et al., 2008). The process at each resolution has an

equivalent representation as a linear combination of basis functions. For increasing resolution, the

number of functions increases while their scale decreases. Unlike other multi-resolution models
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or wavelets (e.g. Chui, 1992; Johannesson et al., 2007; Cressie and Johannesson, 2008; Nychka

et al., 2015), this M -RA automatically specifies the prior distributions of their weights as well as

the basis functions with given covariance function of interest, without imposing any conditions.

To achieve computational feasibility within the M -RA framework, an approximation of the

“remainder process” at each resolution using so-called modulating functions is necessary. We con-

sider two special cases: For the M -RA taper, the modulating functions are taken to be tapering

functions (i.e., compactly supported correlation functions). For increasing resolution, the remain-

der process is approximated with increasingly restrictive tapering functions, leading to increasingly

sparse matrices. In contrast, the M -RA-block iteratively splits each region at each resolution into

a set of subregions, with the remainder process assumed to be independent between these subre-

gions. This can lead to discontinuities at the region boundaries. A special case of the M -RA-block

(Katzfuss, 2017) performed very well in a recent comparison of different methods for large spatial

data (Heaton et al., 2017). A further special case with only one resolution of the M -RA is given by

the full-scale approximation (Snelson and Ghahramani, 2007; Sang et al., 2011; Sang and Huang,

2012).

The M -RA is suitable for inference based on large numbers of observations from a GP, which

may be irregularly spaced. We will describe inference procedures that rely on operations on sparse

matrices for computational feasibility. The M -RA-block can deal with truly massive datasets, as

it amenable to parallel computations on modern distributed computing systems. It can be viewed

as a Vecchia-type approximation (Katzfuss and Guinness, 2017), and the approximated covariance

matrix is a so-called hierarchical off-diagonal low-rank matrix (e.g., Ambikasaran et al., 2016).

The M -RA-taper leads to more general sparse matrices, and thus requires more careful algorithms

to fully exploit the sparsity structure, but it has the advantage of not introducing artificial disconti-

nuities.

This chapter is organized as follows. In Section 3.2, we first describe an exact orthogonal multi-

resolution decomposition of a GP, which then leads to the M -RA framework and the two special

cases described above by applying the appropriate modulating functions. We also study their
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theoretical properties. In Section 3.3, we discuss the algorithms necessary for statistical inference

using the M -RA and provide details of the computational complexity. Numerical comparisons on

simulated and real data are given in Sections 3.4 and 3.5, respectively. We conclude in Section

3.6. All proofs can be found in Appendix A.1. Additional simulation results can be found in the

Appendix A.2.

3.2 Multi-resolution approximations

3.2.1 The true Gaussian process

Let {y0(s) : s ∈ D} be the underlying spatial field on a continuous (non-gridded) domain

D ⊂ Rd, d ∈ N+. And we assume that y0(·) ∼ GP (0, C0) being a Gaussian process with mean

0 and a known covariance function C0 which is positive-definite. For most spatial fields in reality,

y0(·) may not have mean 0, but we can estimate and subtract the mean easily. With observed y0(·)

at spatial locations S of size n, the main goal is to make parameters inference for θ and predict

y0(·) at a set of locations SP . These procedures has O(n2) memory complexity and O(n3) time

complexity, which is computationally prohibitive for n� 104.

3.2.2 Preliminaries

A multi-resolution approximation (M -RA) with M resolutions requires two main “ingredi-

ents”: knots and modulating functions. The multi-resolutional set of knots, Q := {Q0, . . . ,QM},

is chosen such that, for all m = 0, 1, . . . ,M , Qm = {qm,1, . . . ,qm,rm}, is a set of rm knots, with

qm,i ∈ D. We assume that the number of knots increases with resolution (i.e., r0 < r1 < . . . <

rM ). An illustration of such a set of knots in a simple toy example is given in Figure 3.1.

The second ingredient is a set of “modulating functions” (Sang et al., 2011), T := {T0, T1, . . . , TM},

where Tm : D×D → [0, 1] is a symmetric, nonnegative-definite function. In Section 3.2.5 we will

consider two specific examples, but for now we merely require that Tm(s1, s2) is equal to 1 when

s1 = s2, and (exactly) equal to 0 when s1 and s2 are far apart. Here, the meaning of “far” depends

on the resolution m, in that with increasing m, the modulating function should be equal to zero for

increasingly large sets of pairs of locations in D.
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Based on these ingredients, we make two definitions:

DEFINITION 1 (Predictive process). For a Gaussian process x(·) ∼ GP (0, C), with x(m)(·) be-

ing defined as the predictive-process approximation (Quiñonero-Candela and Rasmussen, 2005;

Banerjee et al., 2008) of x(·) based on the knots Qm:

x(m)(s) := E
(
x(s)|x(Qm)

)
= b(s)′η, s ∈ D,

where b(s)′ = C(s,Qm) and η ∼ Nrm(0,Λ−1), with Λ = C(Qm,Qm).

That is, the predictive process is simply a conditional expectation of y(·), and hence a smooth,

low-rank approximation of y(·), which can also be written as a linear combination of basis func-

tions (cf. Katzfuss, 2013). Further, the remainder x(·) − x(m)(·) ∼ GP (0, CR) is independent of

x(·), with positive-definite covariance function CR(s1, s2) = C(s1, s2) − b(s1)
′Λ−1b(s2) (Sang

and Huang, 2012).

DEFINITION 2 (Modulated process). For a Gaussian process x(·) ∼ GP (0, C), with [x][m](·)

being defined as the “modulated” process corresponding to x(·):

[x][m](·) ∼ GP (0, [C][m]), where [C][m](s1, s2) = C(s1, s2) · Tm(s1, s2), s1, s2 ∈ D.

We see that x(·) and [x][m](·) have the same variance structure (because Tm(s, s) = 1), but

[x][m](·) has a compactly supported covariance function that is increasingly bad approximation of

C as m and the distance between s1 and s2 increase.

3.2.3 Exact multi-resolution decompositions of Gaussian processes

For any Gaussian process y0(·) ∼ GP (0, C0) (as specified in Section 3.2.1), using Definition

1, we can write y0(·) = τ0(·) + δ1(·), where τ0(·) := y
(0)
0 (·) is the predictive process of y0(·)

based on the knots Q0, and δ1(·) := y0(·) − τ0(·) ∼ GP (0, w1) is independent from τ0 and is

itself a Gaussian process with (positive-definite) covariance function w1. This allows us to apply

again the predictive process to δ1(·) (this time based on the knots Q1) to obtain the decomposition
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Figure 3.1: For y0(·) ∼ GP (0, C0) with exponential covariance function C0 on D = [0, 1], a set
of multi-resolution knots (black dots) and the corresponding basis functions using the orthogonal
decomposition in (3.1) (black lines) and using two versions of the M -RA (red lines) with r0 = 1,
J = 2, and M = 3. The M -RA-block is exact in this setting (see Proposition 6), and hence the red
and black lines overlap.

δ1(·) = τ1(·) + δ2(·), and so forth, up to some resolution M ∈ N.

This idea enables us to exactly decompose any y0(·) ∼ GP (0, C0) into orthogonal components

at multiple resolutions:

y0(·) = τ0(·) + . . .+ τM−1(·) + δM(·), (3.1)

where τm(·) := δ
(m)
m (·) is the predictive process of δm(·) based on knots Qm, δ0(·) := y0(·),

and δm(·) := δm−1(·) − τm−1(·) ∼ GP (0, wm) for m = 1, . . . ,M . Further, using the basis-

function representation from Definition 1, we can write each component of the decomposition

as τm(·) = am(·)′γm, where γm
ind.∼ Nrm(0,Ω−1), and starting with w0 = C0, we have for

m = 1, . . . ,M − 1:

am(s)′ := wm(s,Qm), s ∈ D

Ωm := wm(Qm,Qm)

wm+1(s1, s2) := wm(s1, s2)− am(s1)
′Ω−1m am(s2), s1, s2 ∈ D.

(3.2)

An important feature of this decomposition is that components τm(·) with low resolution m cap-

ture mostly smooth, long-range dependence, whereas high-resolution components capture mostly
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fine-scale, local structure. This is because the predictive process at each resolution m is an approx-

imation to the first rm terms in the Karhunen-Loéve (KL) expansion of δm(·) (Sang and Huang,

2012). Figure 3.1 illustrates the resulting basis functions in our toy example.

It is straightforward to show that the decomposition of the process y0(·) ∼ GP (0, C0) in (3.1)

also implies an equivalent decomposition of the covariance function C0:

C0(s1, s2) =
M−1∑
m=0

wm(s1,Qm)wm(Qm,Qm)−1wm(Qm, s2) + wM(s1, s2), s1, s2 ∈ D. (3.3)

3.2.4 The multi-resolution approximation

The multi-resolution approximation (M -RA) is a “modulated” version of the exact decompo-

sition in (3.1), which at each resolution m modulates the remainder using the function Tm from

Section 3.2.2. The key idea is that the predictive processes at low resolutions pick up the low-

frequency variation in y0(·). As a result, the remainder terms have smaller and smaller variability

as m increases, therefore approximating the remainder with more and more restrictive modulating

functions causes little approximation error.

DEFINITION 3 (Multi-resolution approximation (M -RA)). For a given M ∈ N, the M -RA of a

process y0(·) ∼ GP (0, C0) based on a set of knots Q = {Q0, . . . ,QM} and a set of modulating

functions T = {T0, . . . , TM}, is given by

yM(·) =
M∑
m=0

τ̃m(·) =
M∑
m=0

bm(s)′ηm, (3.4)

where τ̃m(·) := δ̃
(m)
m (·) and ηm

ind.∼ Nrm(0,Λ−1m ) for m = 0, . . . ,M ; δ̃0(·) := [y0][0](·) ∼

GP (0, v0) with v0 = [C0][0]; δ̃m(·) = [δ̃m−1 − τ̃m−1][m](·) ∼ GP (0, vm) for m = 1, . . . ,M ;
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and

bm(s)′ := vm(s,Qm), s ∈ D, m = 0, . . . ,M,

Λm := vm(Qm,Qm), m = 0, . . . ,M,

vm+1(s1, s2) :=
(
vm(s1, s2)− bm(s1)

′Λ−1m bm(s2)
)
· Tm+1(s1, s2), s1, s2 ∈ D,m = 0, . . . ,M − 1.

(3.5)

Figure 3.1 shows the M -RA basis functions in our toy example. As can be seen, the M -RA

is similar to a wavelet model, in that for increasing resolution m, we have an increasing number

of basis functions with increasingly compact support. However, in contrast to wavelets, the basis

functions b(·) and the precision matrix Λ of the corresponding weights in the M -RA adapt to the

covariance function C0.

For ease of notation, we often stack the basis functions as b(·) :=
(
b0(·)′, . . . ,bM(·)′

)′ and the

corresponding coefficients, η :=
(
η′0, . . . ,η

′
M

)′, so that

yM(·) = b(·)′η, where η ∼ Nr(0,Λ−1), (3.6)

with Λ := blockdiag(Λ0, . . . ,ΛM) and r =
∑M

m=0 rm.

3.2.5 Specific examples

As described in Section 3.2.2, the M -RA requires the choice of two ingredients: knots and

modulating functions. In light of the computational complexities discussed in Sections 3.3.2–3.3.3

below, we introduce a factor J , often chosen to be equal to 2 or 4. Then, starting with some (small)

number of knots r0 at resolution m = 0, we henceforth assume rm = Jrm−1 for m = 1, . . . ,M .

Regarding the modulating functions, we will now discuss two choices that lead to two impor-

tant versions of the M -RA.
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3.2.5.1 M -RA-block

To define the M -RA-block, we need to partition of the spatial domain D recursively, with J

subregions, D1, . . . ,DJ , which is again divided into J smaller subregions at each resolution, up to

level M :

Dj1,...,jm−1 =
⋃̇
jm=1,...,J Dj1,...,jm , j1, . . . , jm−1 = 1, . . . , J ; m = 1, . . . ,M.

We then assume for each resolution m that the modulated remainder δm(·) is independent across

partitions at the mth resolution. That is, the modulating function is defined as

Tm(si, sj) =


1, (i1, . . . , im) = (j1, . . . , jm),

0, otherwise,
si ∈ Di1,...,im , sj ∈ Dj1,...,jm . (3.7)

Simply speaking, we have Tm(s1, s2) = 1 if s1, s2 are from the same regionDj1,...,jm , and Tm(s1, s2) =

0 otherwise. At resolution m, D is split into Jm subregions. Typically, we assume that the knots

at each resolution are roughly equally spread throughout the domain, so that there are roughly the

same number rm/Jm = r0 of knots in every such region.

The M -RA-block and the corresponding domain partitioning are illustrated in a toy example

in Figure 3.1b. A special case of the M -RA-block with QM = S was first proposed in Katzfuss

(2017). Another special case with M = 1 is the block-full-scale approximation (Snelson and

Ghahramani, 2007; Sang et al., 2011).

3.2.5.2 M -RA-taper

We can also specify the modulating functions to be compactly supported correlation functions,

often refered to as tapering functions. For simplicity, we assume here that the modulating functions

are of the form,

Tm(s1, s2) = T∗(‖s1 − s2‖/dm),
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with dm+1 = dm/J
1/d, where d is the dimension of D, ‖ · ‖ is some norm on D, and T∗ is a

compactly supported correlation function that is scaled such that T ∗(x) = 0 for all x ≥ 1. In all

data examples in this manuscript, we will use Kanter’s function (Kanter, 1997):

T∗(x) :=


1, x = 0,

(1− x) sin(2πx)
2πx

+ 1−cos(2πx)
2π2x

, x ∈ (0, 1),

0, x ≥ 1.

For other possible choices of tapering functions, see Gneiting (2002). The taper-M -RA is il-

lustrated in Figure 3.1a. A special case of the M -RA-taper with M = 1 is the taper-full-scale

approximation (Sang and Huang, 2012; Katzfuss, 2013).

3.2.6 Properties of the M -RA process

Throughout this subsection, let yM(·) be the M -RA (from Definition 3) of y0(·) ∼ GP (0, C0)

on domain D based on knots Q = {Q0, . . . ,QM} and modulating functions T = {T0, . . . , TM}.

PROPOSITION 1 (Distribution of the M -RA). The M -RA is a Gaussian process, yM(·) ∼

GP (0, CM), with covariance function

CM(s1, s2) =
M∑
m=0

vm(s1,Qm)vm(Qm,Qm)−1vm(Qm, s2), s1, s2 ∈ D,

where vm is defined in (3.5). We call CM the M -RA of the covariance function C0.

PROPOSITION 2 (Duplication of knots). If q ∈ Qm, then vm+l(q, s) = 0 for any s ∈ D and l ≥ 1.

This proposition implies that there is no benefit to designate the same locations as knots at

multiple resolutions; that is, all knot locations in Q should be unique.

PROPOSITION 3 (Exact variance). If s ∈ Q, then the M -RA variance at location s is exact; that

is, CM(s, s) = C0(s, s).

This proposition implies that, in contrast to other recent basis-function approaches (e.g., Lind-

17



gren et al., 2011; Nychka et al., 2015), no variance or “edge” correction is needed for the M -RA

if we place a knot location at each observed location.

PROPOSITION 4 (Smoothness). If realizations (i.e., sample paths) of y0(·) are exactly p times

differentiable at s ∈ Q, then realizations of yM(·) are also exactly p times differentiable at s,

provided that C0(·,q) and Tm(·,q) are at least 2p times differentiable at s, for any q ∈ Q and

m = 1, . . . ,M .

Many commonly used covariance functions (e.g., Matérn) are infinitely differentiable away

from the origin. IfC0 is such a covariance function, theM -RA-block thus has the same smoothness

as the original process y0(·) at any s that is not located on the boundary between subregions at any

resolution (cf. Katzfuss, 2017). Tapering functions are often smooth away from the origin, except

at the distance at which they become exactly zero. Thus, the M -RA-taper will typically have the

same smoothness at s as y0(·) if T is at least 2p times differentiable at the origin and s is not

exactly at distance dm from any q ∈ Qm, for all m = 1, . . . ,M . Note that this result does not

require the smoothness of y0 to be the same at all locations s; if the smoothness (or other local

characteristics) of the covariance function C0 varies over space, the M -RA will automatically

adapt to this nonstationarity and vary over space accordingly.

There is, however, an issue with the continuity of theM -RA-block process at the region bound-

aries:

PROPOSITION 5 (Continuity). Assume thatC0 is a continuous function. Then, for theM -RA-taper,

realizations of the corresponding process yM(·) and the posterior mean (i.e., kriging prediction)

surface µM(s) := E(yM(s)|z) based on observations z as in (3.8) are both continuous, assuming

that Tm is continuous for all m = 0, 1, . . . ,M . In contrast, for the M -RA-block, yM(·) and µM(·)

are both discontinuous in general at any s on the boundary between any two subregions.

PROPOSITION 6 (Exactness of M -RA-block). Let C0 be a (stationary) exponential covariance

function on the real line, D = R. Further, let CM be the covariance function of the corresponding

M -RA-block (see Section 3.2.5.1) with rm = (J − 1)Jm knots for m = 0, . . . ,M − 1, which are
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placed such that at each resolution m, a knot is located on each boundary between two subregions

at resolution m + 1. Then, the M -RA is exact at every knot location; that is, CM(s1, s2) =

C0(s1, s2) for any s1, s2 ∈ Q.

This proposition is illustrated in Figure 3.1b. As we will see in Section 3.3.2, this result allows

us to exactly decompose a n × n exponential covariance matrix in terms of a sparse matrix with

n rows but only about log2 n nonzero elements per row with r0 = 1 and J = 2. This leads to

tremendous computational savings (e.g., log2(n) < 30 for n = 1 billion).

While the exact result in Proposition 6 relies on the Markov property and the exact screen-

ing effect of the exponential covariance function (which is a Matérn covariance with smoothness

parameter ν = 0.5), similar but approximate results are expected to hold for larger smoothness

parameters in one dimension. Specifically, Stein (2011) shows that an asymptotic screening effect

holds for ν = 1.5 when using conditioning sets of size 2, and he conjectures that an asymptotic

screening effect holds for any ν when using conditioning sets of size greater than ν. This conjec-

ture is also explored numerically in Katzfuss and Guinness (2017). To exploit this screening effect

using the M -RA-block, we can simply place c > ν knots near every subregion boundary (i.e.,

r0 = c(J − 1)).

3.3 Inference

In this section, we discuss the inference for the M -RA, based on a set of measurements at

locations S of size n. We assume additive, independent measurement error, such that

z = yM(S) + ε, ε ∼ Nn(0,Vε), (3.8)

where Vε is a diagonal matrix that might depend on the parameter vector, θ. Throughout this

section, we assume that θ is fixed at a particular value, unless noted otherwise. For the sparsity

and complexity calculations, we assume rm = r0J
m and n = O(rM).
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3.3.1 General inference results

3.3.1.1 Prior matrices

For a given set of parameters, the covariance function C0, the basis functions b(·) and the

precision matrix Λ in (3.6) are fixed. The first step for inference is to calculate the prior matrices

Λ and B := [B0, . . . ,BM ] := [b0(S), . . . ,bM(S)]. Define Wk
m,l := vk(Qm,Ql) and Wk

S,m :=

vk(S,Qm), so that Λm = Wm
m,m and Bm = Wm

S,m. For m = 0, . . . ,M , starting with W0
m,l =

v0(Qm,Ql) and W0
S,m = v0(S,Qm), it is straightforward to verify that

Wk+1
m,l =

(
Wk

m,l−Wk
m,kΛ

−1
k Wk

l,k
′)◦Tk+1(Qm,Ql), k = 0, . . . , l−1; l = 0, . . . ,m; (3.9)

and

Wk+1
S,m =

(
Wk
S,m −Wk

S,kΛ
−1
k Wk

m,k
′) ◦ Tk+1(S,Qm), k = 0, . . . ,m− 1. (3.10)

Here, ◦ denotes the Hadamard or element-wise product. Note that Λm and Bm both grow in

dimension and become increasingly sparse with increasing resolution m. We have (Λm)i,j = 0 if

Tm(qm,i,qm,j) = 0, and (Bm)i,j = 0 if Tm(si,qm,j) = 0.

3.3.1.2 Posterior inference

Once Λ and B have been obtained, the posterior distribution of the unknown weight vector, η,

is given by well-known formulas for conjugate normal-normal Bayesian models:

η | z ∼ Nr(ν̃, Λ̃−1), (3.11)

where Λ̃ = Λ + B′V−1ε B, ν̃ = Λ̃−1z̃, and z̃ = B′V−1ε z.

Based on this posterior distribution of η, the likelihood can be written as (e.g., Katzfuss and
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Hammerling, 2017):

− 2 logL(θ) = − log |Λ|+ log |Λ̃|+ log |Vε|+ z′V−1ε z− z̃′Λ̃−1z̃. (3.12)

Using this expression, the likelihood can be evaluated quickly for any given value of the parameter

vector θ. This allows us to carry out likelihood-based inference (e.g., maximum likelihood or

Metropolis-Hastings) on the parameters in C0 and Vε, by computing the quantities in (3.9)–(3.12)

for each parameter value.

To obtain spatial predictions for fixed parameters θ, note that yM(SP ) = BPη, where BP :=

b(SP ). Defining Wk
SP ,l := vk(SP ,Ql), BP = [BP

0 , . . . ,B
P
M ] can be obtained based on the quan-

tities from Section 3.3.1.1 by calculating W0
SP ,m = v0(SP ,Qm) and

Wk+1
SP ,m =

(
Wk
SP ,m −Wk

SP ,kΛ
−1
k Wk

m,k
′) ◦ Tk+1(SP ,Qm), k = 0, . . . ,m− 1,

and setting BP
m = Wm

SP ,m, for m = 0, . . . ,M . The posterior predictive distribution is given by,

yM(SP ) | z ∼ NnP
(BP ν̃,BP Λ̃−1BP ′). (3.13)

Hence, the main computational effort required for inference is the Cholesky decomposition

of Λ̃, the posterior precision matrix of the basis-function weights in (3.11). As Λ and B are both

sparse, Λ̃ is a sparse matrix that can be decomposed quickly. Specifically, Λ̃ has the block structure

Λ̃ = (Λ̃m,l)m,l=0,...,M , where Λ̃m,l = Λm1{m=l} + B′mV−1ε Bl is an rm × rl matrix whose (i, j)th

element is 0 if 6 ∃s ∈ D such that Tm(qm,i, s) 6= 0 and Tl(ql,j, s) 6= 0. Figure 3.2 shows the sparsity

structures of B, Λ, and Λ̃ corresponding to the toy example in Figure 3.1.

3.3.1.3 Inference in the absence of measurement error

If there is no measurement error (i.e., Vε = 0), we have

z = y ∼ Nn(0,Σ).

21



(a) B for M -RA-taper
(b) Λ for M -RA-taper (c) Λ̃ for M -RA-taper

(d) B for M -RA-block
(e) Λ for M -RA-block (f) Λ̃ for M -RA-block

Figure 3.2: Illustration of the sparsity in the matrices B, Λ, and Λ̃ for the toy example in Figure 3.1.
Resolutions are separated by solid black lines. Top row: M -RA-taper. Bottom row: M -RA-block.

where Σ = BΛ−1B′. To ensure that B (and hence Σ) has full rank, we assume for this case that

S = Q (and thus n = r) and (in light of Proposition 2) that the knots are unique. The likelihood

can then be calculated as −2 logL(θ) = − log |Σ| − y′Σ−1y, where log |Σ| = log |BΛ−1B′| =

log |B|2 − log |Λ|, and y′Σ−1y = ỹ′Λỹ with ỹ = B−1y.

3.3.2 Inference details for the M -RA-block

For the M -RA-block from Section 3.2.5.1, B, Λ, and Λ̃ are block-sparse matrices, with each

block roughly of size r0 × r0 and corresponding to (the knots at) a pair of regions.

As noted in Section 3.3.1.1, we have (Λm)i,j = 0 if Tm(qm,i,qm,j) = 0, and so Λm is a block-

diagonal matrix with diagonal blocks {vm(Qj1,...,jm ,Qj1,...,jm) : j1, . . . , jm = 1, . . . , J}, where

Qj1,...,jm = {qm,i : qm,i ∈ Qm ∩ Dj1,...,jm} is the set of roughly r0 knots at resolution m that lie

in Dj1,...,jm . It is well known that the inverse Λ−1k of a block-diagonal matrix Λk has the same

block-diagonal structure as Λk, and so the prior calculations in Section 3.3.1.1 involving Λ−1k can

be carried out at low computational cost.
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For the posterior covariance matrix, we have from Section 3.3.1.2 that (Λ̃m,l)i,j = 0 if 6 ∃s ∈ D

such that Tm(qm,i, s) 6= 0 and Tl(ql,j, s) 6= 0, and so the block in Λ̃ corresponding to regions

Di1,...,im and Dj1,...,jm is zero if the regions do not overlap (i.e., if Di1,...,im ∩ Dj1,...,jm = ∅). The

Cholesky factor of a (appropriately reordered) matrix with this particular block-sparse structure

has zero fill-in, and can thus be carried out very rapidly.

Katzfuss (2017) describe an algorithm for inference in a special case of the M -RA-block that

can be straightforwardly extended to the more general M -RA-block considered here. This algo-

rithm is well suited for parallel and distributed computations for massive datasets, and it leads

to efficient storage of the full posterior predictive distribution in (3.13). The time and memory

complexity are shown to be O(nM2r20) and O(nMr0), respectively.

3.3.3 Inference details for the M -RA-taper

The case of the M -RA-taper from Section 3.2.5.2 results in sparse matrices, but care must

be taken to ensure computational feasibility. A crucial observation for the computational results

below is that for any location s ∈ D and any resolution m, onlyO(r0) knots fromQm are within a

distance of dm from s (i.e., all sets of the form {qm,i ∈ Qm : ‖s−qm,i‖ ≤ dm} contain onlyO(r0)

elements), because we assumed that the rm = r0J
m knots at resolution m are roughly equally

spread over the domain D, and dm = d0/J
m/d.

First, consider calculation of the prior matrices as described in Section 3.3.1.1. The matrices

Λ and B have O(nr0) and O(nMr0) nonzero elements, respectively, because (Λm)i,j = 0 if

Tm(qm,i,qm,j) = 0, and (Bm)i,j = 0 if Tm(si,qm,j) = 0. Before carrying out the actual inference

procedures, it is helpful to pre-calculate Im,l := {(i, j) : Tl(qm,i,ql,j) 6= 0}, the set of nonzero

indices of the matrix Wl
m,l, for l = 0, . . . ,m and m = 0, . . . ,M . This can typically be done

in O(n log n) time (e.g. Vaidya, 1989). In the actual inference procedure, we then only need to

calculate the Im,l-elements of the matrices Wk
m,l in (3.9). The main difficulty herein is that while

Λk is sparse, its inverse Λ−1k is not. However, we only need to compute certain elements of Λ−1k :

PROPOSITION 7. For l = 0, . . . ,m and m = 0, . . . ,M , the matrix Wl
m,l can be obtained by
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computing

Wk+1
m,l =

(
Wk

m,l −Wk
m,kSkW

k
l,k
′) ◦ Tk+1(Qm,Ql), k = 0, . . . , l − 1, (3.14)

where Sk = Λ−1k ◦Gk and (Gk)i,j = 1{‖qm,i−qm,j‖<(2+2/J)dm}. Thus, the (i, j) element of Λ−1m is

not required for calculating the prior matrices in (3.9) if ‖qm,i − qm,j‖ ≥ (2 + 2/J) dm.

The total time complexity for computing all prior matrices in (3.9) isO(nM2r30), ignoring the cost

of computing the Sk from the Λk.

To calculate Sk from Λk, we use a selected inversion algorithm (Erisman and Tinney, 1975;

Li et al., 2008; Lin et al., 2011) in which we regard element (i, j) as a structural zero only if

‖qk,i − qk,j‖ ≥ (2 + 2/J)dm. This algorithm the same computational complexity as the Cholesky

decomposition of the same matrix. For one-dimensional domains (d = 1), Λk is a banded matrix

with bandwidth O(r0), and so the time complexity to compute its Cholesky decomposition (and

selected inverse) is O(rkr
2
0) (e.g., Gelfand et al., 2010, p. 187). For d ≥ 2, the rows and columns

of Λ should be ordered such that the Cholesky decomposition leads to a (near) minimal fill-in

and hence fast computations. Functions for this reordering are readily available in most statistical

or linear-algebra software. The discussion in Furrer et al. (2006) indicates that the resulting time

complexity for the Cholesky decomposition is roughly linear in the matrix dimension for d = 2.

Moreover, our numerical experiments showed that the selected inversions only account for a small

fraction of the total time required to compute the prior matrices, and so the total computation time

for computing the prior matrices scales roughly as O(nM2r30).

Once the prior matrices including B and Λ have been obtained, posterior inference requires

computing and decomposing the posterior precision matrix Λ̃ = Λ + B′V−1ε B in (3.11), with

(m, l)th block Λ̃m,l = Λm1{m=l} + B′mV−1ε Bl. The (j, k)th element of this block is

(Λ̃m,l)j,k = (Λm)j,k1{m=l} +
∑n

i=1 vm(si,qm,j)vl(si,ql,k)(Vε)
−1
i,i .

As each of the n si is within distances of dm and dl of O(r0) elements ofQm andQl, respectively,
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the time complexity to compute (B′B)m,l is O(nr20), and hence computing Λ̃ requires O(nM2r20)

time.

PROPOSITION 8. The number of nonzero elements in Λ̃ is O(nMr0).

The time complexity for obtaining the Cholesky decomposition of Λ̃ is difficult to quantify, as

it depends on its sparsity structure and the chosen ordering, but again our numerical experiments

showed that the contribution of the Cholesky decomposition to the overall computation time is

relatively small when appropriate reordering algorithms are used.

For prediction, the posterior covariance BP Λ̃−1BP ′ in (3.13) is dense and hence cannot be

obtained explicitly for a large number of prediction locations. But the posterior covariance matrix

of a moderate number of linear combinations Ly(SP ) can be obtained as (LBP )Λ̃−1(LBP )′, also

based on a Cholesky decomposition of Λ̃.

In summary, the time and memory complexity of theM -RA-taper areO(nM2r30) andO(nMr0),

respectively, plus the cost of computing the Cholesky decompositions of Λ and Λ̃. These decom-

positions only accounted for a relatively small amount of the overall computation time in our

numerical experiments. Thus, the time complexity of the M -RA-taper is roughly cubic in r0 while

it is square in r0 for the M -RA-block. However, the actual computational cost for the M -RA-taper

can be reduced when the covariance function C0 has a small effective range relative to the size of

D, because then C0 can be tapered at resolution 0 without causing a large approximation error; in

contrast, for the M -RA-block, we always have T0(s1, s2) ≡ 1. As explained in Katzfuss (2017),

it is often appropriate to expect a good approximation for M = O(log n) (and hence r0 = O(1)),

which results in quasilinear complexity as a function of n for the M -RA.

3.4 Simulation study

For this section, we used data simulated from a true Gaussian process to compare the M -RA-

block and M -RA-taper to full-scale approximations, FSA-block (Sang et al., 2011) and FSA-taper

(Sang and Huang, 2012), which correspond to the 1-RA-block and 1-RA-taper, respectively. An

implementation of the simulations in Julia (http://julialang.org) version 0.4.5 was run on a 16-core
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machine with 64G RAM.

The true Gaussian process was assumed to have mean zero and an exponential covariance

function,

C0(s1, s2) = σ2 exp(−‖s1 − s2‖/κ), s1, s2 ∈ D, (3.15)

with σ2 = 0.95 and κ = 0.05 on a one-dimensional (D = [0, 1]) or two-dimensional (D = [0, 1]2)

domain. We assumed a nugget or measurement-error variance of τ 2 = 0.05 (i.e., Vε = 0.05 I).

Results for Matérn covariances with different range, smoothness, and variance parameters showed

similar patterns as those presented below and can be found in the Supplementary Material.

All comparisons were carried out based on the log-score (i.e., the log-likelihood at the true

parameter values), which is a strictly score that is uniquely maximized in expectation under the

true model (e.g., Gneiting and Katzfuss, 2014). All results were averaged over five replications.

For M -RA-taper, some experimentation showed that there are general guidelines to follow in

order to get a close approximation to true GP. For a true covariance function C0 with effective

range ρ, we recommend setting the M -RA taper range at resolution 0 to d0 = 2ρ, and the distance

between two adjacent knots at resolution 0 to be at most 2
3

of ρ. For example, the covariance in

(3.15) has an effective range of ρ ≈ 0.15, and so we set d0 = 0.3 and the distance between adjacent

knots at resolution 0 to 0.1.

First, we simulated datasets of different sizes on an equidistant grid in one-dimensional space

with D = [0, 1], which allowed fast simulation with the Davies-Harte algorithm and permitted the

evaluation of the exact likelihood using the Durbin-Levinson algorithm for comparison (McLeod

et al., 2007). For each dataset, we recorded the computation times as well as the log-scores for

varying configurations of the M -RA (i.e., with different r0, J , and M ). We also considered the

computation times to achieve particular levels of approximation accuracy, specifically the time

required to obtain an average log-score within a difference of 0.003n, 0.005n, and 0.007n of the

log-score of the true model. We then repeated the simulation study in two dimensions,D = [0, 1]2.

As it was infeasible to compute the true log-likelihood for large n, we use the best approximation

(i.e., the largest approximated log-likelihood) as the base to compare the relative performance of
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Figure 3.3: Summary of results from the simulation study. Top row: D = [0, 1]. Bottom row:
D = [0, 1]2. Left column: Log-score versus computation time for different versions of the M -RA
for fixed n. Right column: Computation time required to get a “close” approximation to the truth
(or best approximation) for different n; lines connect the means of the three times for each model
and each n. Note that the axes of time is on a log-transformed scale. Additional results can be
found in the Supplementary Material.
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different methods, with cut-off values of 0.008n, 0.01n, and 0.012n.

The results are summarized in Figure 3.3. The computation times scaled roughly as expected.

The M -RA-block was consistently better than the other methods, while M -RA-taper and 1-RA-

block performed similarly. The 1-RA-taper was not competitive.

3.5 Application

In this section, we applied the four methods from Section 3.4 to a real satellite dataset. We con-

sidered n = 44,711 Level-3 daytime sea surface temperature (SST) data from August 2016 over

a region in the North Atlantic Ocean, as measured by the Moderate Resolution Imaging Spectro-

radiometer on board the Terra satellite. The data are freely available at https://giovanni.

gsfc.nasa.gov. More specifically, the data (shown in Figure 3.4a) were taken to be the resid-

uals of the SST data after removing a longitudinal and latitudinal trend. The exploratory analysis

showed that an exponential covariance fit well for the data, and then all methods used were ap-

proximating the covariance in (3.15). We assumed a constant noise variance τ 2 (i.e., Vε = τ 2I).

To compare the different approximation methods, we created five different datasets by ran-

domly splitting the complete dataset of residuals into training data, areal test data, and random

test data, each containing 78%, 12% and 10%, respectively, of the values in the full data set. The

split of the complete data into training and test sets was designed to mimic the typical setting of

Level-2 satellite data, with unobserved areas over which the satellite did not fly in a particular time

period, and observed areas with some missing values (e.g., due to clouds). Specifically, the areal

test locations were obtained by splitting the domain into 5 × 5 = 25 equal-area rectangles and

then removing three of these rectangles at random. The remaining test locations were obtained by

simple random sampling of the remaining locations.

Based on each of the five training sets and for a range of settings for each of the four approx-

imation methods, we carried out maximum-likelihood estimation of the unknown parameters σ2,

κ, and τ 2, and obtained posterior predictive distributions at the held-out test locations. We com-

pared the pointwise (i.e., marginal) posterior distributions obtained by the methods to the held-out

test data in terms of the root mean squared prediction error (RMSPE) and the continuous ranked
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(a) Complete set of SST residuals
after removing trend

(b) M -RA-block with r0 = 121,
J = 4, M = 4

(c) M -RA-taper with r0 = 576,
J = 4, M = 3

(d) Missing-area prediction for
M -RA-block

(e) Missing-area prediction for
M -RA-taper

Figure 3.4: Top row: Complete dataset of sea-surface temperature, along with posterior predictive
means for M -RA-taper and M -RA-block based on removing three areal test regions and addi-
tional randomly selected values. Bottom row: Zoomed-in view of the green rectangle in the upper
prediction plots. Color scales are in units of degrees Celsius.
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Figure 3.5: For the satellite SST data, comparison of scores (lower is better) for predictions of
areal test data for different settings of the M -RA.

probability score (CRPS), which is a proper score to quantify the goodness of fit for the predictive

distribution to the data (e.g., Gneiting and Katzfuss, 2014). The scores for the random test data

were almost zero for all methods. The scores for the areal test data are shown in Figure 3.5 (aver-

aged over the five datasets). In general, the scores for M -RA-taper and M -RA-block were better

than those for the full-scale approximations. M -RA-taper produced some RMSPEs that were even

lower than those for M -RA-block.

Maybe more important than the differences in prediction scores are the differences in the pre-

diction plots. Figure 3.4 shows an example of the posterior means as obtained by M -RA-taper

and M -RA-block, for versions of the two methods that took a similar time to run (5 to 7 minutes)

and resulted in similar RMSPEs in Figure 3.5a. Despite the good approximation accuracy and

low RMSPE of M -RA-block, we can see in Figure 3.4d that there are clearly visible artifacts due

to discontinuities of the M -RA-block at the region boundaries (see Proposition 5), which do not

appear for the continuous M -RA-taper in Figure 3.4e. Avoiding these kinds of “non-physical”

artifacts is often of paramount importance to domain scientists.
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3.6 Conclusions

We have proposed and studied a general approach for obtaining multi-resolution approxima-

tions of Gaussian processes (GPs) based on an orthogonal decomposition of the GP of interest into

processes at multiple resolutions. We considered two specific cases of this approach: The M -RA-

taper achieves sparsity and computational feasibility by applying increasingly compact tapering

functions as the resolution increases, while the M -RA-block is based on a recursive splitting of

the spatial domain, and assumes conditional independence between the spatial subregions at each

resolution. We have provided algorithms for inference, along with computational complexity of

the methods.

We have shown theoretically and numerically that both M -RA versions have useful properties

and can outperform related existing approaches. TheM -RA-block achieves more accurate approx-

imations to a given covariance function for a given computation time, and its block-sparse structure

allows it to deal with truly massive datasets on modern distributed computing systems. However,

the M -RA-block process is discontinuous at the subregion boundaries. The M -RA-taper can be

useful for real-world applications in which the true covariance function is unknown anyway, and

hence it might be more important to have a “smooth” model that avoids the potential artifacts and

discontinuities inherent to theM -RA-block due to its domain partitioning. TheM -RA-taper’s pre-

diction accuracy can be highly competitive, especially when the effective range of the covariance

model is small relative to the domain size. Also note that posterior inference involving the M -

RA-taper only requires general sparse matrices, which would allow for relatively straightforward

treatment of areal-averaged measurements (e.g., satellite footprints).

Next chapter will consider multivariate extensions of the methodology. Also of interest is more

precise quantification of the approximation error, and a further investigation of how to choose the

number of resolutions and the knots depending on the covariance to be approximated.
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4. MULTI-RESOLUTION APPROXIMATION FOR MULTIVARIATE SPATIAL DATA

4.1 Introduction

Advances in remote-sensing techniques have enabled the collection of scientific data from mul-

tiple processes accurately over large spatial domain, which led to an explosion in the amount of

data in all field of science, like agriculture, geology, oceanography, astronomy and meteorology.

The data are mostly multivariate, with several variables observed over space. The interest of re-

searchers is to understand the spatial dependence within and across variables. Gaussian processes

are popular models for these settings, because of their flexibility and natural uncertainty quan-

tification (e.g., Banerjee et al., 2004; Rasmussen and Williams, 2006; Cressie and Wikle, 2011).

However, large data sets pose substantial challenges to spatial modeling because of the notorious

curse of dimensionality. In particular, spatial modeling and prediction involve inversion of an n×n

covariance matrix for data of size n with one response variable. For multivariate spatial data with

p processes and n observations for each, the cross-covariance would be of size np×np and the sta-

tistical inference would be even more computationally demanding. So scalable statistical methods

are needed to extract information from big spatial datasets, especially for multivariate data.

Consequently, many approximation methods have been developed to achieve computational

feasibility in order to apply Gaussian processes to large datasets. Low-rank models (e.g., Higdon,

1998; Mardia et al., 1998; Wikle and Cressie, 1999; Banerjee et al., 2008; Cressie and Johannesson,

2008; Katzfuss and Cressie, 2009, 2011, 2012; Nguyen et al., 2014) approximate the spatial process

based on a few basis functions, which may result in over-smoothing and fail to capture fine-scale

variation (Finley et al., 2009; Stein, 2014). Sparse approximation techniques shrink the covariance

of spatial locations to zero if locations are far apart, and yield a sparse covariance matrix in order

to reduce the computation (Furrer et al., 2006; Kaufman et al., 2008). Vecchia’s method and its

extensions (e.g., Vecchia, 1988; Stein et al., 2004; Datta et al., 2016; Guinness, 2016; Katzfuss

and Guinness, 2017; Katzfuss et al., 2018) induce sparsity into the precision matrix instead by
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assuming conditional independence, but these methods require a careful choice of conditional

sets. Katzfuss (2017) and Katzfuss and Gong (2017) introduce a multi-resolution approximation

(MRA) framework, as a mixture of low-rank models and sparse approximation techniques, which

allows capturing spatial structure at all scales. A special case of the MRA is given by the full-

scale approximation (Snelson and Ghahramani, 2007; Sang et al., 2011; Sang and Huang, 2012).

Among these approximation methods, only a small part of work focused on multivariate cases.

Banerjee et al. (2008), Finley et al. (2009) and Sang et al. (2011) adopted the linear model of

coregionalization (LMC) method (Wackernagel, 2003; Gelfand et al., 2004) to model multivariate

dependence structure by specifying a principal component transformation matrix in a Bayesian

setting. However, LMC does not account for asymmetric covariance in general, and using spatially

varying weight matrices would involve too many parameters in the model. The univariate MRA

can also be applied in the LMC setting to model multivariate data, but the intrinsic drawbacks of

LMC, like over-parameterization, may not be easy to overcome. Apanasovich and Genton (2010)

proposed modeling cross-covariances using existing covariance functions on an extended space

that includes latent dimensions, which extended the univariate models to a broader scope. This

leads to a more flexible way to extend the univariate MRA to the multivariate setting.

In this chapter, we introduce a multivariate MRA of Gaussian processes on an extended space,

which facilitates efficient computation with a large number of spatial observations on multiple

processes. It fits into the framework of general multi-scale methods (e.g. Chui, 1992; Johannesson

et al., 2007; Cressie and Johannesson, 2008; Nychka et al., 2015), which have great flexibility

in capturing spatial dependence while being computational feasible. Comparing to other multi-

resolution models, the MRA automatically specifies the spatial basis functions, and generates the

prior distributions of their weights once a covariance function is given. In this chapter, we use the

latent-dimension approach with univariate covariance functions to model the cross-covariance of

multivariate processes (e.g. Apanasovich and Genton, 2010; Genton and Kleiber, 2015), which fits

naturally into the MRA framework. The multi-resolution structure provides great flexibility for

the modeling of multivariate random fields in capturing the marginal and cross-covariance among
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processes at different scales, while keeping the computation within budget.

4.2 Multivariate Gaussian process and latent dimensions

4.2.1 Basic definition

Consider a p-dimensional random process Y(·) = {y1(s), . . . , yp(s))T : s ∈ D}, on a contin-

uous (non-gridded) domain D ⊂ Rd, d ∈ N+, where yk(s) is the k-th process at location s. We

assume that Y(·) ∼ GP (0, C) is a multivariate Gaussian process with cross-covariance function

C. So the marginal distribution of each process yk(·) follows a univariate Gaussian distribution.

And the cross-covariance of all processes, C(s1, s2) = cov{Y(s1),Y(s2)} = {Ck,l(s1, s2)}pk,l=1 is

composed of functions

Ck,l(s1, s2) = cov(yk(s1), yl(s2)), s1, s2 ∈ Rd, (4.1)

for k, l = 1, . . . , p. Once the cross-covariance function is specified, the main goal is to make

inference on the unknown parameters θ in covariance function based on the observed data, and

predict Y(·) at a set of unobserved locations SP (i.e., to get the posterior mean of Y(SP )). For

data of length n, with n =
∑p

k=1 nk, traditional methods using the Cholesky decomposition of the

resulting covariance matrix has O(n2) memory complexity and O(n3) time complexity , which is

computationally prohibitive for n� 104.

Each process yk(·) is associated with a vector ξk ∈ Rq, i.e., ξk = (ξk,1, . . . , ξk,q)
T , k = 1, . . . , p,

which representing the process in the q latent dimensions. Then the observation location s will be

denoted as s̃ = (s, ξk) ∈ Rd+q if process yk is observed at location s. Let ξk(i) denote the location

in the latent dimension of the observation at si. The observed location set is S̃ = {(si, ξk(i)), i =

1, . . . , n}. And we have ξk(i) = ξk if process yk is observed at location si. Under this setting, (4.1)

is modeled as a covariance function with arguments in Rd+q :

Ckl(si, sj) = C((si, ξk), (sj, ξl)), si, sj ∈ Rd, ξk, ξl ∈ Rq. (4.2)
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Figure 4.1: Illustration of a bivariate process in one-dimensional latent space (i.e., d = 1, p = 1)
and knot allocation with r0 = 1, J = 2,M = 2.

Consequently, the resulting covariance matrix is guaranteed to be positive definite if C is a

valid covariance function. The cross-correlation between processes will be determined by the

distances between the latent locations, δkl = ‖ξk − ξl‖. With locations si and sj fixed, larger δijs

are translated to smaller cross-correlation between the k-th and l-th process.

The multivariate MRA is proposed based on the univariate MRA structure and implemented

on d + q dimensions, where the additional latent dimension represents the various processes to be

modeled. Figure 4.1 is an illustration of a bivariate process in one-dimensional space with one

latent dimension.

4.2.2 Latent locations

Generally, instead of specifying the ξk’s, we can also treat them as parameters and estimate

then with observed data. In addition, the cross-covariance with latent dimension allows modeling

non-stationarity by varying parameters for different processes (e.g., for non-stationary Matérn,

using σk, νk, λk for process yk).

As discussed in Section 2.3.1, the parameterization of latent locations could be accomplished
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using either ξk ∈ Rq or the distances δkl = ‖ξk − ξl‖ ∈ R, or even by pre-specifying the values of

ξk, k = 1, . . . , p. Choice of the latent locations of each process is subjective, but there are still some

general guidelines to follow. For example, for covariance functions with a fixed range parameter,

the relative distance of processes on latent dimension determines the cross-correlation between

processes, with shorter distance indicating strong cross-correlation and large distances implying

less correlated processes. Thus for bivariate processes that are known to be strongly correlated. If

we fix the range parameter in its covariance function and set ξ1 to 0, we can place the other process

near 0, say at 0.5 in the latent dimension. On the other hand, if all the ξk’s are specified and fixed,

we could select a larger range parameter to model highly dependent processes.

Thus both the distances between ξk’s and the range parameter in the covariance function can

be used to adjust the cross-correlation between different processes. If ξk’s are treated as model

parameters, there might be an identifiablility problem when trying to estimate ξk and range param-

eters at the same time. In this case, we could restrict the latent locations within a certain range,

for instance, fixing ξ1 = 0 and ξ2 = 1, and for k > 2, ξk ∈ [ξ1, ξ2]. In this way the distances of

different processes in the latent dimensions do not exceed 1.

4.2.3 Nonstationary covariance

The disadvantage of using a stationary univariate covariance function is that we have only one

set of parameters to control the dependence for multiple processes, including smoothness, range

and sill. For example, it is not possible to distinguish between the smoothing effect across the latent

dimension and the spatial dimension if we have a single smoothness parameter for the covariance.

In practice, spatial fields often have different ranges, and thus a nonstationary covariance is more

appropriate for such cases.

According to Paciorek and Schervish (2006), isotropic correlation functions in Rd, d ∈ Z+ can

be extended to nonstationary by using the so-called Mahalanobis distance

q(si, sj) = (h′A−1h)1/2,
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where h = ‖si − sj‖ with si, sj ∈ Rd and A = A(si) + A(sj), and A(s) for each s is a positive

definite d × d matrix that changes smoothly over space. For any isotropic correlation function ρ

that is positive definite on Rd for all d = 1, 2, . . .,

ρNS(si, sj) = c(si, sj)ρ(q(si, sj)) (4.3)

is a valid nonstationary correlation function, where

c(si, sj) = |A(si)|1/4|A(sj)|1/4|(A(si) + A(sj))/2|−1/2

is the normalization term. The isotropic Matérn covariance function introduced in Section 2.1.1

can be made nonstationary in a similar fashion. And we can even let the smoothness parameter

(Stein, 2005) as well as the variance vary over space. A nonstationary Matérn covariance function

corresponding to (2.2) is then given by

MNS(si, sj) = σ(si)σ(sj)c(si, sj)M(ν(si)+ν(sj))/2(q(si, sj)), (4.4)

where σ(s) and ν(s) denotes the spatially varying standard deviation and smoothness parameters.

The setting of multiple processes with latent dimension is well suited to modeling nonstation-

arity with parameters varying over space. In particular, when the parameters depend on the latent

dimension, the covariance function allows much more flexibility for modeling different processes.

The Matérn covariance function in (4.4) can be then redefined as

MNS(s̃i, s̃j) = σ(ξk)σ(ξl)c(ξk, ξl)M(ν(ξk)+ν(ξl))/2(q(s̃i, s̃j)),

where ξk, ξl are the latent location for process yk and yl observed at location s̃i and s̃j , i.e., s̃i =

{si, ξk} and s̃j = {sj, ξl}:

q(s̃i, s̃j) = ((s̃i − s̃j)
′A−1(s̃i − s̃j))

1/2,
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where at ξk, A can be defined as a diagonal matrix with each diagonal element equal to the range

parameters for different dimensions, i.e. {λ1, λ2, . . . , λd, λk} with λ1 = λ2 = . . . = λd = λ. Then,

for k = l, which means the process k is observed at both locations,

cov(s̃i, s̃j) = σ(ξk)
2ρ

(
‖si − sj‖

λk

)
.

For the case where si = sj , which means two processes yl and yk are observed at the same location

si ,

cov(s̃i, s̃j) = σ(ξk)σ(ξl)ρ

(
‖ξk − ξl‖

λ

)
.

4.3 Multivariate MRA

4.3.1 Domain partitioning and knot allocation

With latent dimensions for multiple processes, the extended domain D̃ ∈ Rd+q will be the

cross-product between the original spatial domain D ∈ Rd and the latent process domain Rq as

indicated in (4.2). To define MRA, we need to partition the domain D̃. For the spatial domain D,

partitioning is done recursively at each resolution as in univariate MRA. As discussed in Chapter

3, to de fine the M-RA, we need partition the domain D recursively, where each of the J regions,

D1,D2, . . . ,DJ is partitioned into J smaller subregions again, up to M -th resolution:

Dj1,...,jm−1 = ∪jm=1,...,JDj1,...,jm , j1, . . . , jm−1 = 1, . . . , J ;m = 1, . . . ,M.

To achieve computational efficiency, the subregions are assumed to be independent after the

partition. If the observed locations are uniformly distributed over the spatial domain D, the par-

titions can be done by recursively dividing each region into J subregions equally. For irregularly

spaced locations, we need more complicated partitioning in order to get proper inference within

computation budget. For latent space, the grouping of processes has to be carefully designed to

account for the cross dependence.

We need to choose at which resolution that partitioning happens. If the processes are split
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at lower resolution, at resolution 1 for example, then cross-covariance will only get captured for

large-scale, smooth dependence at resolution 0. Once we split, the two processes will be modeled

independently with a regular MRA within each of their spatial domains, which will greatly reduce

the computation. Therefore, choosing the resolution at which the splitting happens is a tradeoff

between approximation quality of cross dependence and the overall computation efficiency. For

processes with higher cross-correlation, it is better to postpone the partition to a later stage to retain

quality of approximation on the dependence across processes. At the same time, because of the

flexibility of MRA, we could always adjust the number of knots within each process to reduce

computation load to achieve fast inference.

To model multiple processes especially when p > 2, the placement of processes on the latent

dimension also matters to determine the split and grouping of processes. A general guidance is to

put closely correlated process near each other according to domain knowledge of the processes. As

indicated in Section 4.2, the distance δkl and the range parameter of covariance function determine

the cross-correlation between processes yk and yl, and therefore, highly correlated processes are

suggested to be placed close to each other. As mentioned, domain knowledge on real applications

will be helpful to determine the placement and partitioning of processes as well. Suppose the

processes y1, . . . , yp are ordered in an one-dimensional latent space i.e., q=1 (ordering of process

location for q >1 is tricky) according to prior knowledge, we can partition them into G groups

g1, . . . , gG in latent space along with the recursive partitioning in spatial domain. The structure

of MRA allows grouping and partition of multiple resolutions, which provides great flexibility on

the tradeoff between approximation accuracy and efficiency. Again, partitioning of processes at

lower resolutions facilitates the computation but leads to ignoring of small-scale cross-covariance,

whereas later splitting will model the cross-covariance better at the cost of more computation.

Along with the partitioning of the latent dimension, we need a multi-resolution set of knots in

the spatial domain. Similar schemes as in Katzfuss (2017) or Katzfuss and Gong (2017) can be

applied here, by assuming the number of knots increases with resolution by a factor of J . The set

of knots,Qm = {Q1, . . . ,QM} is chosen such that,Qm = {qm,1, . . . ,qm,rm}, is a set of rm knots,
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Figure 4.2: Illustration of domain partitioning for a bivariate process with D = [0, 1], r0 = 1,
J = 2, M = 2.

with qm,i ∈ Rd+q. To achieve good approximations, it is recommended to choose small M and J

and large r0 as long as the computational resources allow, under the constraint that r0JM ≥ n.

To decide the allocation of knots, an exploratory analysis shows that, under the same com-

putation budget, assigning knots between processes in latent dimension does not show obvious

advantage in the approximation but potentially causes problem. For example, it is not clear how

to specify parameters like the smoothness for knots in-between processes in the latent dimensions.

For the sake of simplicity, in the latent dimension, knots are only placed exactly on each process’

latent position ξk, which also makes the specification of cross-covariance function on knots loca-

tions more straightforward. An illustration of bivariate process with such a set of knots is given in

Figure 4.2. In this plot, it shows a bivariate Gaussian process Y = (y1, y2) along with observed

data Z = (z1, z2). We used the same set of knots iteratively for both process with r0 = 1, J = 2,

M = 2 and the same partition on spatial domainD = [0, 1] at each latent location of the processes.

Note that knots for different processes can be also be different in spatial dimension.
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4.3.2 Definition of multivariate MRA

Similarly as in Chapter 3, we can define a multivariate MRA. For a given M ∈ N, the M -RA

of a multivariate process Y0(·) ∼ GP (0, C0) based on a set of knots Q = {Q0, . . . ,QM} and a

set of modulating functions T = {T0, . . . , TM}, is given by

YM(·) =
M∑
m=0

τ̃m(·) =
M∑
m=0

bm(s)′ηm, (4.5)

where τ̃m(·) := δ̃
(m)
m (·) and ηm

ind.∼ Nrm(0,Λ−1m ) for m = 0, . . . ,M ; δ̃0(·) := [Y0][0](·) ∼

GP (0, v0) with [Y0][0](·) being the modulated Y0(·) = Y(·) at 0-th resolution, v0 = [C0][0],

which is the corresponding modulated covariance C0; Similarly, the modulated residuals at m-th

resolution, δ̃m(·) = [δ̃m−1 − τ̃m−1][m](·) ∼ GP (0, vm) for m = 1, . . . ,M ; and

bm(s)′ := vm(s,Qm), s ∈ D, m = 0, . . . ,M,

Λm := vm(Qm,Qm), m = 0, . . . ,M,

vm+1(s1, s2) :=
(
vm(s1, s2)− bm(s1)

′Λ−1m bm(s2)
)
· Tm+1(s1, s2), s1, s2 ∈ D,m = 0, . . . ,M − 1.

(4.6)

For ease of notation, we often stack the basis functions as b(·) :=
(
b0(·)′, . . . ,bM(·)′

)′ and the

corresponding coefficients, η :=
(
η′0, . . . ,η

′
M

)′, so that

YM(·) = b(·)′η, where η ∼ Nr(0,Λ−1), (4.7)

with Λ := blockdiag(Λ0, . . . ,ΛM) and r =
∑M

m=0 rm. And the covariance of YM(·) ∼

GP (0, CM) is given by

CM(s1, s2) =
M∑
m=0

vm(s1,Qm)vm(Qm,Qm)−1vm(Qm, s2), s1, s2 ∈ D,

where vm is defined in (4.6).
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4.3.3 Computational complexity

The computational complexity of univariate MRA applies to the multivariate cases. Because

the multivariate MRA is essentially applying MRA on an extended space, with latent dimensions

added to spatial dimensions. The increase in dimensions does not affect its computational com-

plexity directly, except that we assign knots for each process so that the total number of knots at

each resolution are increased by a factor of p, the total number of processes.

As discussed in Section 3.3.2, we have (Λm)i,j = 0 if Tm(qm,i,qm,j) = 0, i.e., qm,i and

qm,j are from different subregions of resolution m. And thus Λm is a block-diagonal matrix with

diagonal blocks of roughly r0× r0. It is well known that for block-diagonal matrix Λk, the inverse

Λ−1k of it has the same block-diagonal structure as Λk, and so the prior calculations involving

Λ−1k can be carried out at O(r0
3). Iterating over k = 1, . . . ,m and l = 1, . . . , k will result in a

O(M2r0
3). Note that r0 here is the number of knots for all processes.

For the posterior covariance matrix, we have from Section 3.3.1.2 that (Λ̃m,l)i,j = 0 if 6 ∃s ∈ D

such that Tm(qm,i, s) 6= 0 and Tl(ql,j, s) 6= 0, and so the block in Λ̃ corresponding to regions

Di1,...,im and Dj1,...,jm is zero if the regions do not overlap (i.e., the subregions within one res-

olution are exclusive to each other as illustrated in Figure 3.1b and Figure 4.2). The Cholesky

factor of this particular block-sparse structure has zero fill-in, and can thus be carried out very

rapidly. Following the domain partition scheme discussed in Section 4.3.1, there are
∑M

m=1 J
m

subregions in total, with each having a computation complexity of O(M2r0
3). As calculating the

Λ̃ matrices dominating the computation, the final computation complexity of MRA is boiled down

to O(JMM2r0
3) = O(nMr0

2) with n = r0J
M . A comparison of the complexity between direct

Gaussian process inference, FSA and MRA is summarized in Table 4.1.

4.4 Simulation study

In this section, we simulated data from a Gaussian process and compared the performance of

the multivariate MRA with the full-scale approximation (FSA), which is equivalent to the MRA

with only one resolution. The true underlying Gaussian process was assumed to have mean zero

42



Table 4.1: Comparison of computational complexity

Time Memory

GPs n3 n2

FSA nr0
2 nr0

MRA n(Mr0)
2 nMr0

and Matérn covariance function with a nugget on Rd+q,

C0(s̃i, s̃j) = 0.95Mν(|s̃i − s̃j|/λ) + 0.05I(s̃i = s̃j), s̃i, s̃j ∈ Rd+q, (4.8)

where λ is the range parameter, ν is the smoothness parameter of Matérn covariance function

and I(·) is the indicator function. The data was simulated on an one-dimensional equidistant grid

for each process. For simplicity, we use q = 1 and ξ1 = 0, ξ2 = 1. Under this setting, we

simulated bivariate data with different parameter settings and recorded the log-likelihood as well

as its computation time for MRA and FSA with different r0, J and M (for FSA, M = 1). All

results are averaged over five replications. In Figure 4.3b and Figure 4.3d the Kullback-Leibler

(KL) divergence is calculated for a dataset of size n = 16384 as shown for model performance

comparison, with KL divergence given by:

KL(LFSA,LMRA) =
1

2
(log(det(ΣFSA

−1ΣMRA)) + tr(ΣFSA
−1ΣMRA)− n),

where ΣFSA and ΣMSA indicate the approximated covariance matrix from FSA and MRA respec-

tively.

The computation times scaled roughly as expected. The multivariate MRA consistently per-

forms better than FSA in terms of the log-likelihood approximation as well as the KL divergence.

We also compared different levels of cross-dependence by changing the range parameter of the

Matérn covariance function. Because there is an interaction between smoothness parameter and

range parameters, we compared the scenario of different range parameters while having smooth-
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ness fixed at 1.5. It shows no obvious difference in the comparison pattern of FSA and MRA.
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5. CONCLUSIONS

Gaussian processes have been widely used in spatial statistics but face tremendous computation

challenges for big datasets. This dissertation studied methods of approximating Gaussian processes

for modeling big spatial data, with a particular focus on computational efficiency.

In Chapter 3, we proposed and studied a general approach for obtaining multi-resolution ap-

proximations of Gaussian processes based on an orthogonal decomposition of the GP of interest

into processes at multiple resolutions. We considered two specific cases of this approach: The

MRA-taper achieves sparsity and computational feasibility by applying increasingly compact ta-

pering functions as the resolution increases. The MRA-block is based on a recursive splitting of

the spatial domain, and assumes conditional independence between the spatial subregions at each

resolution. The MRA-block produces more accurate approximations to a given covariance func-

tion within a given time budget, and its block-sparse structure allows it to deal with truly massive

datasets on modern distributed computing systems. However, the M-RA-block process is discon-

tinuous at the subregion boundaries. This is why the MRA-taper can be useful for real-world

applications in which the true covariance function is unknown anyway, and hence it might be more

important to have a ’smooth’ model that avoids the potential artifacts and discontinuities inherent

to the MRA-block due its domain partitioning.

In Chapter 4, the MRA is extended to multivariate spatial fields consisting of several different

variables observed over space. The particular focus of that setting is to take the cross-dependence

into account and make the computation feasible when the number of observations is very large. In

this extension, we use latent dimensions with univariate covariance functions to model the cross-

covariance of multivariate process, which fits naturally into the MRA framework. Basically, we

introduced a multivariate MRA of Gaussian processes on latent dimension that could facilitate effi-

cient computation for large multivariate spatial data. Within the framework of multi-scale structure,

it allows modeling non-stationary covariance in a natural way with spatial by varying parameters

for different processes. The multi-resolution structure provides great flexibility for the modeling
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of multivariate random fields, to capture the marginal and cross-covariance among processes at

different scales.

Future research on the multivariate MRA will include a real application and more extensive

simulations with larger data sizes. We plan to explore nonstationary covariance structure with

multivariate MRA, where we could let the location on latent dimension vary as a parameter as

well. Also of interest is a more precise quantification of the approximation error, and a further

investigation of how to choose the number of resolutions and the knots depending on the covariance

to be approximated.
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APPENDIX A

SUPPLEMENTAL MATERIAL FOR CHAPTER 3

A.1 Proofs

In this section, we provide proofs for the propositions stated throughout the manuscript. We

also state and prove three lemmas that are used in the proofs of the propositions.

Proof of Proposition 1. From (3.6), we have yM(·) = b(·)′η, where η ∼ Nr(0,Λ−1) and b(·)

is a vector of deterministic functions (for given C0, Q, and T ). Hence, it is trivial to show that

yM(·) is a Gaussian process with mean zero. The covariance function is derived by combining the

expression for yM(·) on the right-hand side of (3.4) with the equations in (3.5).

LEMMA 1 (Exact predictive process). The predictive process is exact at any knot location; that is,

if x(m)(·) is the predictive process of x(·) ∼ GP (0, C) based on knots Qm (see Definition 1), and

s1 ∈ Qm (or s2 ∈ Qm), then

cov
(
x(m)(s1), x

(m)(s2)
)

= C(s1, s2).

Proof of Lemma 1. By the law of total covariance, we have

cov
(
x(m)(s1), x

(m)(s2)
)

= cov
(
E(x(s1)|x(Qm), E(x(s2)|x(Qm)

)
= cov

(
x(s1), x(s2)

)
− E

(
cov(x(s1), x(s2)|x(Qm))

)
= C(s1, s2),

because cov(x(s1), x(s2)|x(Qm)) = 0 if s1 ∈ Qm (or s2 ∈ Qm).

Proof of Proposition 2. The proof will be carried out by induction. For l = 1, we have

vm+1(q, s) =
(
vm(q, s) − cov(τ̃(q), τ̃(s))

)
Tm+1(q, s) = 0, because using Lemma 1, we can see

that cov
(
τ̃(q), τ̃(s)

)
= cov

(
δ̃(m)(q), δ̃(m)(s)

)
= cov

(
δ̃(q), δ̃(s)

)
= vm(q, s). For l > 1, assuming
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that vm+l−1(q, s) = 0, we have

vm+l(q, s) =
(
vm+l−1(q, s)− bm+l−1(q)′Λ−1m+l−1bm+l−1(s)

)
· Tm+l(q, s) = 0,

because bm+l−1(q) = vm+l−1(q,Qm+l−1) = 0.

LEMMA 2 (M -RA covariance at knot location s). If s1 ∈ Q, then

CM(s1, s2) =
∑M−1

m=0 vm(s1,Qm)vm(Qm,Qm)−1vm(Qm, s2) + vM(s1, s2), s2 ∈ D.

Proof of Lemma 2. In the expression for CM in Proposition 1, we have

vM(s1,QM)vM(QM ,QM)−1vM(QM , s2) = vM(s1, s2) for s1 ∈ Q. This follows from

Lemma 1 if s1 ∈ QM , and from Proposition 2 for s1 ∈ Qm for m < M (because then both sides

of the equation are zero).

Proof of Proposition 3. Because Tm(s, s) = 1 for all m = 0, 1, . . . ,M , we have v0(s, s) =

C0(s, s) and vm+1(s, s) = vm(s, s) − bm(s)′Λ−1m bm(s) for m = 1, . . . ,M . Thus, we can write

vM(s, s) = C0(s, s)−
∑M−1

m=0 bm(s)′Λ−1m bm(s), and using Lemma 2, we have

CM(s, s) =
∑M−1

m=0 bm(s)′Λ−1m bm(s) + C0(s, s)−
∑M−1

m=0 bm(s)′Λ−1m bm(s) = C0(s, s).

Proof of Proposition 4. First, note that realizations of y0(·) are p times differentiable at s if and

only if C0,s(h) := C0(s, s + h) is 2p times differentiable at the origin (2pDO).

By Lemma 2, we have CM,s(h) := CM(s, s + h) =
∑M−1

m=0 fm(s, s + h) + vM(s, s + h),

where fm(s1, s2) :=
∑rm

j=1 am,j(s1)vm(qm,j, s2), and am,j(s) is the j-th element of the vector

am(s) = vm(Qm,Qm)−1vm(Qm, s). We now show by induction for m = 0, . . . ,M − 1 that

vm,q,s(h) := vm(q, s + h) (for any q ∈ Q) and fm,s(h) := fm(s, s + h) are at least

2pDO, and vm,s,s(h) is exactly 2pDO.
(A.1)
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For m = 0, v0,q,s(h) = C0(q, s + h) · T0(q, s + h) is at least 2pDO by assumption and hence so is

f0,s(h) =
∑r0

j=1 a0,j(s)v0(q0,j, s + h). Further, v0,s,s(h) is exactly 2pDO. Now assume that (A.1)

holds for m. Then, using Equation 3.2, vm+1,q,s(h) =
(
vm,q,s(h)− fm(q, s + h)) · Tm+1(q, s + h),

which is at least 2pDO, and so is fm+1,s(h) =
∑rm+1

j=1 am+1,j(s)vm+1,qm,j ,s(h). Also, vm+1,s,s(h)

is exactly 2pDO. This proves (A.1) for m = 1, . . . ,M .

In summary, we have CM,s(h) =
∑M−1

m=0 fm,s(h) + (vM−1,s,s(h)− fM−1,s(h)) · TM(s, s + h),

where TM,s(h) = TM(s, s + h) and fm,s(h), m = 0, . . . ,M − 1, are all at least 2pDO, and

vM−1,s,s(h) is exactly 2pDO.

Thus, CM,s(h) = CM(s, s + h) is 2pDO, and so realizations of the corresponding M -RA

process yM(·) ∼ GP (0, CM) are p times differentiable at s.

Proof of Proposition 5. First, note that realizations are (mean-square) continuous at s ∈ D, if

limh→0CM(s, s+h) = CM(s, s). Further, we have µM(s) = E(yM(s)|z) = z′cov(z)−1CM(S, s).

From the proof of Proposition 4, we have that CM(s0, s + h) =
∑M

m=0

∑rm
j=1 am,j(s0)vm(qm,j, s +

h). It is straightforward to show using a proof by induction very similar to that for Proposition

4, that limh→0 vm(qm,j, s + h) = vm(qm,j, s) if limh→0 Tm(qm,j, s + h) = Tm(qm,j, s) for all

m. In contrast, if s is on a region boundary, at least one Tm(qm,j, s + h) will be discontinuous as

a function of h, and so will CM(s0, s + h) (unless vm(s, s + h) = wm(s, s + h) and hence the

M -RA-block is exact — see Proposition 6).

LEMMA 3 (Sum of predictive processes). For the decomposition in (3.1), the sum of predictive

processes up to resolutionm is equal in distribution to the predictive process based on the union of

the knots up to resolution m, for any m = 0, 1, . . . ,M ; that is,
∑m

l=0 τl(·)
d
=E(y0(·)|y0(∪ml=0Ql)).

Proof of Lemma 3. For m = 1, δ1(s) |= y0(Q0), for any s ∈ D, because E
(
δ1(s)y0(Q0)

)
=

E
((
y0(s)− E(y0(s)|y0(Q0))

)
y0(Q0)

)
= E

(
y0(Q0)

)
E(δ1(s)) = 0, and y0(Q0), δ1(s) are jointly

Gaussian. And we have E(y0(·)|δ1(Q1), y0(Q0)) = E(y0(·)|y0(Q1), y0(Q0)), because for the σ-
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algebras

σ(δ1(Q1), y0(Q0)) = σ
(
y0(Q1)− E

(
y0(Q1)|y0(Q0)

)
, y0(Q0)

)
= σ

(
y0(Q1), y0(Q0)

)
,

since σ
(
y0(Q1) − E

(
y0(Q1)|y0(Q0)

)
, y0(Q0)

)
= σ

(
y0(Q1) − f

(
y0(Q0))

)
, y0(Q0)

)
⊂

σ
(
y0(Q1), y0(Q0)

)
, and the opposite also holds. Therefore,

E
(
δ1(s)|δ1(Q1)

)
= E

(
δ1(s)|δ1(Q1), y0(Q0)

)
= E

(
y0(s)|δ1(Q1), y0(Q0)

)
− E

(
E
(
y0(s)|y0(Q0)

)
|δ1(Q1), y0(Q0)

)
= E

(
y0(s)|y0(Q1), y0(Q0)

)
− E

(
y0(s)|y0(Q0)

)
,

And so,

τ0(s) + τ1(s) = E
(
y0(s)|y0(Q0)

)
+ E

(
δ1(s)|δ1(Q1)

)
= E(y0(s)|y0(Q1), y0(Q0)).

Then, δ2(s) = y0(s) − E
(
y0(s)|y0(Q0 ∪ Q1)

)
, which implies y0(Q0 ∪ Q1) |= δ2(s). Iteratively

repeat this argument to obtain
∑m

l=0 τl(s) = E
(
y0(s)|y0(∪ml=0Ql)

)
.

LEMMA 4 (Block-independence for exponential covariance). Assume y0(·) ∼ GP (0, C0), where

C0 is an exponential covariance function on the real line, D = R, and consider a domain par-

titioning as in (3.7) with rm = (J − 1)Jm knots for m = 0, . . . ,M − 1, which are placed such

that at each resolution m a knot is located on each boundary between two subregions at resolution

m + 1. Then, for any m = 1, . . . ,M , if si ∈ Di1,...,im and sj ∈ Dj1,...,jm , we have wm(si, sj) = 0

(defined in (3.2)) if (i1, . . . , im) 6= (j1, . . . , jm).

Proof of Lemma 4. For any m = 1, . . . ,M , using Lemma 3, we have

wm(si, sj) = C0(si, sj)− C0(si,Qm−1)C0(Qm−1,Qm−1)−1C0(Qm−1, sj),
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where Qm−1 := ∪m−1l=0 Ql. By the law of total covariance,

wm(si, sj) = C0(si, sj)− Cov
(
E
(
y0(si)|y0(Qm−1)

)
, E
(
y0(sj)|y0(Qm−1)

))
= E

(
Cov

(
y0(si), y0(sj)|y0(Qm−1)

))
.

Because (i1, i2, . . . , im−1) 6= (j1, j2, . . . , jm−1), there is a q ∈ Qm−1 that lies between

si and sj . As y0(·) is a Markov process (e.g., Rasmussen and Williams, 2006, Ch. 6),

E
(
Cov

(
y0(si), y0(sj)|y0(Qm−1)

))
= E

(
Cov

(
y0(si), y0(sj)|y0(q)

))
= wm(si, sj) = 0.

Proof of Proposition 6. Comparing the expression for CM in Lemma 2 to the expression for C0 in

(3.3), it is clear that CM(s1, s2) = C0(s1, s2) if

vm(si, sj) = wm(si, sj), for m = 0, . . . ,M and any si, sj ∈ D. (A.2)

We now prove (A.2) by induction. For m = 0, we have v0(si, sj) = C0(si, sj)T0(si, sj) =

C0(si, sj), because T0(si, sj) ≡ 1 for the M -RA-block. For m > 0, assume that vm−1(si, sj) =

wm−1(si, sj). Then, we can write

vm(si, sj) = wm(si, sj)Tm(si, sj). (A.3)

Assume that si ∈ Di1,...,im and sj ∈ Dj1,...,jm . Then, if (i1, . . . , im) = (j1, . . . , jm), (A.3)

holds because Tm(si, sj) = 1. If (i1, . . . , im) 6= (j1, . . . , jm), we have Tm(si, sj) = 0 but also

wm(si, sj) = 0 by Lemma 4. This proves (A.3), which proves (A.2), which in turns proves Propo-

sition 6.

Proof of Proposition 7. From (3.9), we have Wk+1
m,l = (Wk

m,l − Xk
m,l) ◦ Tk+1(Qm,Ql), where

Xk
m,l := Wk

m,kΛ
−1
k Wk

l,k
′. The (i, j)th element of this matrix is

(Xk
m,l)i,j =

∑rk
a,b=1 vk(qm,i,qk,a)vl(ql,j,qk,b)(Λ

−1
k )a,b, (A.4)
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where vk(qm,i,qk,a) = 0 if ‖qm,i−qk,a‖ ≥ dk, and vl(ql,j,qk,b) = 0 if ‖ql,j−qk,b‖ ≥ dk. Further,

we only need the (i, j)th element of Wk+1
m,l (and thus of Xk

m,l) if (i, j) ∈ Im,l, because (Wl
m,l)i,j =

0 if ‖qm,i − ql,j‖ ≥ dl. Hence, we only need (Λ−1k )a,b if ‖qm,i − ql,j‖ < dl, ‖qm,i − qk,a‖ < dk,

and ‖ql,j − qk,b‖ < dk, for some m, l ∈ {k + 1, . . . ,M}. As dk+1 = dk/J > dk+2 > . . . > dM ,

this means that do not need to calculate (Λ−1k )a,b if ‖qk,a − qk,b‖ ≥ 2dk + 2dk+1 = (2 + 2/J)dk,

and so we can replace Λ−1k in Xk
m,l by Sk = Λ̃−1k ◦Gk.

Further, for each (i, j) ∈ Im,l, the time to compute (A.4) is O(r20), because for any s ∈ D, the

size of the set {q ∈ Qk : vk(s,q) 6= 0} is O(r0). As Im,l is a set of size O(rmr0), the cost of

computing Wk
m,l for each m, l, k is O(rmr

3
0). Thus, the total computation time for k = 0, . . . , l −

1, l = 0, . . . ,m, and m = 0, . . . ,M is O(
∑M

m=0

∑m
l=0

∑l−1
k=0 rmr

3
0) = O(r30

∑M
m=0 rmm

2) =

O(r40
∑M

m=0 J
mm2) = O(r40M

2JM) = O(nM2r30), because n = O(r0J
M) and

∑M
m=0m

2Jm ≤

2M2JM = O(MJM).

Proof of Proposition 8. We have (Λ̃m,l)i,j = 0 if 6 ∃ s ∈ D such that Tm(qm,i, s) 6= 0 and

Tl(ql,j, s) 6= 0, or equivalently, if ‖qm,i − ql,j‖ ≥ dm + dl. As dl = dmJ
(l−m)/d, the ith row

(Λ̃m,l)i,· hasO(r0J
(l−m)+) nonzero elements, where (x)+ = x1{x≥0}. The entire row of the matrix

Λ̃ corresponding to qm,i thus has O(r0
∑M

l=0 J
(l−m)+) = O(r0(m + JM−m)) nonzero elements.

As there are O(r0J
m) rows corresponding to resolution m, the total number of nonzero elements

in Λ̃ is O(
∑M

m=0 r0J
m · r0(m + JM−m)) = O(r20(MJM +

∑M
m=0mJ

m)) = O(nMr0), because∑M
m=0mJ

m ≤ 2MJM = O(MJM) and n = O(r0J
M).

A.2 Additional simulation plots

We provide here additional settings for the simulation study described in Section 4 of this chap-

ter. We consider various settings for the Matérn covariance function with smoothness parameter ν,

range parameter κ, and noise or nugget variance τ 2.
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Figure A.1: Comparison of approximation accuracy for different sample sizes in one-dimensional
space.
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Figure A.2: Comparison of approximation accuracy for different sample sizes in two-dimensional
space.
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