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ABSTRACT 

 

Mathematical expressions (ME) are critical abstractions for technical publications. 

While the sheer volume of technical publications grows in time, few ME centric 

applications have been developed due to the steep gap between the typesetting data in post-

publication digital documents and the high-level technical semantics. With the acceleration 

of the technical publications every year, word-based information analysis technologies are 

inadequate to enable users in discovery, organizing, and interrelating technical work 

efficiently and effectively.  

This dissertation presents a modeling framework and the associated algorithms, 

called the mathematical-centered post-publication content analysis (MECA) system to 

address several critical issues to build a layered solution architecture for recovery of high-

level technical information. Overall, MECA is consisted of four layers of modeling work, 

starting from the extraction of MEs from Portable Document Format (PDF) files.  

Specifically, a weakly-supervised sequential typesetting Bayesian model is developed by 

using a concise font-value based feature space for Bayesian inference of ME vs. words for 

the rendering units separated by space. A Markov Random Field (MRF) model is designed 

to merge and correct the MEs identified from the rendering units, which are otherwise 

prone to fragmentation of large MEs.  

 At the next layer, MECA aims at the recovery of ME semantics. The first step is the 

ME layout analysis to disambiguate layout structures based on a Content-Constrained 

Spatial (CCS) global inference model to overcome local errors. It achieves high accuracy at 

low computing cost by a parametric lognormal model for the feature distribution of 
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typographic systems. The ME layout is parsed into ME semantics with a three-phase 

processing workflow to overcome a variety of semantic ambiguities. In the first phase, the 

ME layout is linearized into a token sequence, upon which the abstract syntax tree (AST) is 

constructed in the second phase using probabilistic context-free grammar. Tree rewriting 

will transform the AST into ME objects in the third phase.  

Built upon the two layers of ME extraction and semantics modeling work, next we 

explore one of the bonding relationships between words and MEs: ME declarations, where 

the words and MEs are respectively the qualitative and quantitative (QuQn) descriptors of 

technical concepts. Conventional low-level PoS tagging and parsing tools have poor 

performance in the processing of this type of mixed word-ME (MWM) sentences. As such, 

we develop an MWM processing toolkit. A semi-automated weakly-supervised framework 

is employed for mining of declaration templates from a large amount of unlabeled data so 

that the templates can be used for the detection of ME declarations.  

On the basis of the three low-level content extraction and prediction solutions, the 

MECA system can extract MEs, interpret their mathematical semantics, and identify their 

bonding declaration words. By analyzing the dependency among these elements in a paper, 

we can construct a QuQn map, which essentially represents the reasoning flow of a paper. 

Three case studies are conducted for QuQn map applications: differential content 

comparison of papers, publication trend generation, and interactive mathematical learning. 

Outcomes from these studies suggest that MECA is a highly practical content analysis 

technology based on a theoretically sound framework. Much more can be expanded and 

improved upon for the next generation of deep content analysis solutions.  
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CHAPTER I  

INTRODUCTION  

 

I.1 Background on the importance of mathematics, publishing, and automation 

 

Figure 1 Trends and driving force for the booming of academic publishing 

 

Empowered by information technology, the publishing industry has experienced an 

exponential accumulation of knowledge in the past few decades as shown in Figure 1. Authoring 

tools and the Internet allow authors to produce sophisticated content and publish/transmit 

conveniently. Information technologies such as search engines and automated citation extraction 

tools lead to very large-scale digital library systems for the indexing and searching of intellectual 

work. The existing systems are mostly based on the plaintext words. However, the large number 

of mathematical expressions (MEs) are less studied with few successful applications.  
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(a) Publication ratio by 

disciplines 

(b) The scale of publications in different formats 

 Figure 2 Publication Statistics 

 

Though there are a large number of mathematical contents, they are mostly unstructured 

and could not be processed by automated computer algorithms. Statistics in Figure 2.a from 

Microsoft Academic Graph (MAG) [1] show that over three-quarters of the publications are from 

the Science, Technology, Engineering, and Mathematics (STEM) domains. In STEM, 

mathematical expressions (MEs) are widely adopted, because they provide a standard medium 

for formalizing, exchanging, and accumulating knowledge concisely and efficiently. Even 

though MEs are composed using alphanumerical and special symbols, their content analysis does 

not enjoy the same level of automation as that of the plaintext-based content. The existing efforts 

for ME analysis primarily covers two aspects: formal symbolic computing such as auto-proofing 

systems [2], [3] and formula search engines [4], [5], [6], [7], [8]. The inputs are in a structured 

format such as presentational and content MathML [9]. However, as shown in Figure 2.b, only 

1.4M files in Latex/XML format [10] are annotated for their ME content in a structured format. 

Over 100M articles are only available in Portable Document Format (PDF), where the MEs are 

not explicitly marked, and their layout and semantic structure are unavailable. ME-based data 
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models and their processing algorithms are highly valuable for researchers to facilitate access to 

the vast number of technical articles in STEM (about 79 million (M) out of 127M in MAG).  

 

 

 

 

Figure 3 The writing-reading process: conceptual graph model <=> sequential paper, 

illustrated with the event co-reference resolution paper, parts of this figure are adopted 

from [11] 

 

 

 

Besides the extraction and analysis of the ME content, the neighbor words also play 

important roles in enhancing the semantics of MEs and connecting the logic among MEs. 

Together, the ME and words serve as the bridge to connect the writers and authors. Technical 

writing can be characterized as a collaborative divide-and-conquer process between authors and 

readers. Authors divide the complex technical concepts into a sequence of self-contained yet 
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interconnected reasoning blocks (RB), and readers conquer the RBs in the reading process to 

rebuild the technical concept. Authors and readers rely on a combination of community-specific 

technical dialects (“jargon,” “terminology”) and MEs, as well as lower level gluing words, to 

ensure the correct understanding of the substance.   

It is challenging to recover high-level semantics of technical materials from low-level 

digit files using computer algorithms, which involve PDF parsing, document layout analysis, ME 

layout/semantics parsing, and mixed word-ME mining. First, the typesetting information in PDF 

files is transformed into a layout structure such as columns and lines and grouped into logical 

structures such as paragraphs and MEs. For the MEs, their semantics will be understood through 

layout and semantic analysis. Further, the external meaning of MEs is recovered through the 

bonding with words. Finally, the logic flow should be discovered through dependency analysis at 

the semantic level as the technical essence, which will be the basis for high-level applications.  

 

 

 

 

Figure 4 Research framework of MECA 
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A long chain of solutions is required to recover high-level semantics of technical 

materials from low-level digit files using computer algorithms. In this dissertation, a 

Mathematical Expression Content Analysis (MECA) system is proposed to support layered ME 

content extraction and recovery of their semantics. MECA is organized into the following layers: 

ME extraction, ME layout/semantics parsing, and mixed word-ME (MWM) mining. As shown in 

Figure 4,  the dissertation is organized into five research tasks (RT), RT1-RT4 to implement and 

test modeling work and their associated algorithms for these layers. In RT1, the typesetting 

information in PDF files is transformed into layout structure such as columns and lines and 

grouped into logical structures such as paragraphs and MEs. In RT2, the ME semantics is 

recovered through layout analysis and then represented by an ME semantics taxonomy data 

structure. RT3 focuses on the prediction of the bonding between MEs and their word based 

declarations.  RT4 uses the outputs generated from RT1-R3 to recover the reasoning flow of a 

paper based on the dependency analysis of declarations (qualitative descriptors) of MEs 

(quantitative descriptors). And the result is a novel abstraction called the QuQn map1  to 

represent the technical essence of a paper. At last, three different case studies were conducted to 

validate the usefulness of QuQn graphs for real-world applications. The first use case is for 

supporting the mathematical learning of a high school summer camp.  The second use case is for 

publication trend analysis based on the ME declarations. The last use case is for differential 

content analysis of technical papers. 

 

                                                 

1QuQn graph is an alternative name.   
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I.2 State of the arts and challenges in the automated processing of mathematical documents 

As the MECA analytical framework in Figure 4 shows, the MECA system involves 

multiple components ranging from document processing, layout analysis, semantic analysis, 

natural language processing, and high-level math-centered applications. The related work and 

open challenges will be introduced individually in the following sections.  

I.2.1 Digital document analysis 

I.2.1.1 State of the arts of digital document analysis 

Digital files are mostly designed for the ease of editing and dissemination. There is a 

trend of machine-readable publishing [12], and open document standard supporting semantic 

tags such as Office Open XML [13]. But PDF [14] is still the de facto standard for publishing. 

PDF files only contain a sequence of rendering units (RU) containing the typesetting 

information. Digital document analysis aims at recovering the document layout and logical 

structure from the rendering units [15].  

The document layout structures refer to the hierarchy of documents, including pages, 

columns, lines, and tokens separated by space. There is no one-to-one correspondence between 

RUs and layout structures. One token might be split into multiple RUs. The RUs could be 

merged into higher-level layout elements based on overlapping in a bottom-up fashion or a top-

down split based on Projection Profiling Cutting (PPC) could be applied to identify the high-

level structures such as column first. The PPC technique is a widely adopted technique for 

document layout analysis [16] and mathematical analysis [17]. The PPC works by projecting the 

pixels or shapes onto either the vertical or the horizontal direction and detect the change of 

element distribution for the segmentation boundary. Regardless of processing in a bottom-up or a 

top-down fashion, it is crucial to obtain the exact position of each character.  
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It has already been observed and verified that the raw bounding box (bbox) of the 

characters read from the PDF file is not accurate for all the existing PDF processing toolkits, 

including PDFMiner [18], PDFBox [19], Multivalent [20]. Additional processing is required to 

account for the extra space and shifting of the bounding box for the big operators. Baker [21] 

tried to overcome this problem by matching the bbox with the pixels. However, this is 

computationally costly and cannot resolve the shifting of the parsed bbox comparing with the 

perceived bbox. TextStripper [22] from PDFBox is the best at the recovery of the tight bounding 

box. Further, the accurate bbox is also crucial to improve the discrimination ability of features 

for ME layout analysis. Finally, some big math characters such as the fence for matrices are 

composed of multiple glyphs, and additional pre-merging is necessary [21].   

In addition to the accurate position estimation of each character, layout analysis gets even 

more challenging for documents containing complex MEs due to the two-dimensional nature of 

ME, where one ME is commonly split into multiple rendering blocks and might split into 

multiple vertical ranges. It has been previously observed that the quality of text line 

segmentation has a direct impact on the performance of Isolated ME (IME) detection [23]. 

Special processing is needed to merge the accent and under/upper parts of big operators, where 

the semantic information of the character values is required. Normalization of the character 

values in PDF is highly desired as the value might be ASCII, Unicode, or manifested as the 

glyph name in the font resources.  

On the other side, the logical structures refer to semantic meaning segments, such as title, 

header, paragraph, figure, table, sentence, word and ME. The target of this dissertation, ME, will 

be elaborated in the next section. Only the identification of other logical structures will be 

introduced here, which also play an important role in filtering out negative candidates. Similar to 
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the discrepancy between rendering units and physical layout, one major challenge for logical 

structure analysis is the discrepancy between physical layout units and logical structures. A 

figure might be composed of multiple vector graphics, and an ME might be separated into 

multiple layout units, causing partial matching and over matching issues in existing ME 

Extraction systems [24]. Due to their simple layout structure, the heading information (title, 

authors, and abstract) and references/citations are accurately extracted based on the conditional 

random field (CRF) [25]. The Parcit system [26] has reached production level and to be deployed 

in digital libraries such as Citeseerx [27], Google Scholar, Microsoft academic search [1], 

semantic scholar. The figure/table [28] and their caption/reference metadata [29] could also be 

extracted by regular expression (regex) patterns.  

Most existing PDF analysis tools do not have special processing for MEs, including the 

official Adobe Acrobat DC and the Phantom PDF editor from Foxit. Maxtract [30] is the first 

and only attempt to convert PDF to Latex, which could be considered recovery at the logical 

structure level. However, Maxtract has limited applicability as it only uses the font to 

discriminate between ME and words. 

Though publications in markup languages are much less in comparison to PDF, they are 

still large in quantity. The Arxiv [10] pre-print service hosts about 1.4 million documents as of 

August 2018, occupying about 1% of all publications based on statistics from the Microsoft 

Academic Graph [1]. Much more insights about the nature of technical expressions could be 

discovered even if a fraction of the papers could be analyzed. The Arxiv data has been 

successfully used in the KDD cup 2003 for citation prediction [31] and the NTCIR mathematical 

information retrieval task [5]. LaTeX source can be converted to a semantic level by LateXML 

[32] for both text and MEs with limited accuracy. For transformation among markup languages, 
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the Pandoc Project [33] is the most active and mature, covering most existing file formats, 

including Latex and Docx.  

I.2.1.2 Challenges of digital document processing 

In summary, the critical challenges for digital document processing arise from two 

discrepancies: the discrepancy between the rending units with layout structure and the 

discrepancy between the layout structures with logical units. Accurate recovery of the physical 

layout structures and logical structures is the foundation for all later steps. Also, there are two 

engineering challenges in the normalization of the character information: character value 

normalization and tight bounding box recovery. The normalized values play crucial roles in the 

layout and semantical analysis for MEs.  

I.2.2 ME extraction 

I.2.2.1 State of the arts for ME extraction 

ME is a particular type of logical structure, which faces the same challenge of the 

discrepancy between the physical layout and the logical structure as elaborated in the document 

logical structure analysis and the identification of ME. Additionally, the ME extraction task has 

its unique properties and challenges.  

ME extraction has been studied since 2011 [34], [35], [23], [24]. An ME can be 

embedded (EME) among plaintexts or isolated ME (IME) from them in a standalone line. The 

IMEs are easier to detect as they often have formula serial number [34] with distinct layout [36], 

[34], [23]. Spatial layout features include line height, space above/below, left/right indent [21], 

line centeredness, the variation of line width [34], the sparseness of chars, the variance of 

baseline and the bounding box size [37].  
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EME extraction is still an open problem due to the unrestricted use of fonts and the fuzzy 

boundary with words caused by the discrepancy between physical layout analysis and logical 

units. Besides the above-mentioned spatial layout features for IME detection, the following 

aspects are also explored: 1) math element, 2) fonts, 3) linguistics. Math elements include named 

functions [34], fraction/radical structure [37], and special characters for operations, relations, 

Greek, delimiters, integrals, etc. [34], [38]. The italic font and the irregular size are also indicator 

[37], [39] and [21] also used the particular font name to extract MEs. Linguistics features include 

the purity of words [37] and letters ratio [40]. Past methods mostly model the EME identification 

problem as a classification problem using the Support Vector Machine to train the discriminant 

model. For non-ME (NME) detection, a set of customized regular expressions to detect figure, 

table and equation references are developed based on [29]. 

There is a trend of using adaptive features besides the general features mentioned above. 

To accommodate the writing habits of each user, [40] proposed to use the local features based on 

the identified isolated mathematical expression (IME). However, the mixed usage of general 

features and customized features still hinder the correct decision as will be elaborated in this 

dissertation. 

In addition to typesetting, neighbors of MEs may also provide useful detection clues. For 

example, [35] used the label of neighbors as a feature and [38] used the context as semantic 

constraints and made an assessment of the relationship between connected characters [38]. 

Iwatsuki [40] is the only work which systematically models the neighbor information for 

decision making based on the conditional random field [25]. 
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I.2.2.2 Challenges for ME extraction 

As a particular type of logical structure, the ME extraction module inherits all the 

challenges of digital document processing. More specifically, the errors in layout analysis cause 

partial matching and over-matching issues. The variety of writing habits might violate the 

assumption of global training, leading to degradation of performance. There is a need for the 

design of adaptive feature to capture the writer habits. 

I.2.3 ME layout analysis 

I.2.3.1 State-of-the-arts for ME layout analysis 

Given the identified MEs, represented as typesetting, i.e., a collection of characters with 

value, font, and positional information, the ME layout must be recovered to understand the 

semantics. The existing methods for ME layout analysis can be grouped into divide-and-conquer 

approaches and integrated methods based on the survey by Chan [41] and Zanibbi [42], [43]. 

Characters are atomic building units. The character value and bounding box (bbox) are 

critical information in predicting the ME layout. The bbox must be accurately adjusted to reflect 

the tight bounding box, as elaborated in the digital document analysis section. Many 

characteristics only apply to a subset of the characters. First, the value of accent, radical, and 

binding operators are reliable indicators of possible affiliated children [44], [45]. Second, for 

alphabets and digits, the baseline can be identified to organize the characters into a recursive 

structure which is then transformed into ME layout using tree transformation [46]. Besides the 

baseline, the normalized height, i.e., the distance between the ascender line and the descender 

line can be recovered for more accurate super/subscript classification [47], [48]. Third, besides 

the characters mentioned above, there are large quantities of characters remaining, including 

operators, relations, arrows, etc. Typically, the tight bounding box top/bottom boundary of their 
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glyphs does not align with the typographic reference lines such as baseline or midline. However, 

some are vertically asymmetric and have the vertical center estimated reliably for the assessment 

of vertical relationship [45]. 

For the divide-and-conquer approach, decision rules for different structures are proposed 

based on the aforementioned character dominance [45] and the relative spatial position [42]. 

Since the super/subscript relationships are widely used, many studies focused on them alone. 

Okamoto [49] used fixed thresholds to search for the SUP/SUB. Aly [48] used relative size and 

relative position features calculated from normalized bounding box to predict the relation 

between a pair of alphanumeric character as HOR/SUP/SUB. But alphanumeric characters only 

cover about 57% of all characters and 26.5% of all pairs of characters in dominance relationship. 

Ling [50] and Zanibbi [51] proposed features in the log-polar space and PCA is adopted for 

dimension reduction and improved discriminant ability for layout recovery of hand-written MEs. 

A similar feature was introduced by Fotini [52] to capture the angle. Generally, if the characters 

are not correctly processed to recover their normalized height and vertical center, there will a 

significant overlapping on the distribution of the feature, leading to a degradation of the 

discrimination ability. The methods mentioned above only apply to each pair of characters 

locally, but the local decision might introduce error and also lead to inconsistency globally. 

Integrated model-based approaches [53], [47] are proposed to overcome local decision 

error. Wang [53] treated the layout of ME together as the event space, and the dominance 

relationships of all the characters are inferred simultaneously to reach global optimality. Suzuki 

[47] formulated the layout identification problem as a minimal cost spanning tree problem. 

However, the cost/score for each local linkage is set manually, which might not attain the best 

performance. Alvaro [48] expanded the stochastic context-free grammar and incorporated spatial 
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relationship assessment into the grammar. Although the incorporation of the semantic grammar 

brings some benefits, it also limits the applicability because of the difficulty in capturing the 

flexible representation and customization of ME fonts. Okamoto [49] used projection profiling 

cutting to produce a hierarchical grouping of symbols, which is then traversed and transformed 

into a mathematical layout using re-writing rules. The PPC method is sensitive to the 

overlapping of the characters, and there are no systematical solutions about the order to apply 

vertical/horizontal cutting, which will affect the final results. Raja [54] adopted graph grammar 

rewriting over the neighbor graph of symbols by minimizing conflicts. 

I.2.3.2 Challenges for ME layout analysis 

First, the recovery of the hierarchical ME layout faces the ambiguity in create blocks. 

Further, the identification of the characters on the main baseline is required rather than treating 

the ME block as a whole unit, and the characters must be normalized concerning the reference 

lines to precisely assess the relative spatial relation between ME blocks. Second, there are many 

rules to recover a portion of the ME structures. It is necessary to recover the partial structure in 

the correct order so that the partial structures do not interfere with each other and can cover all 

situations. At last, the local greedy decision method suffers from error propagating, but the 

global inference is computationally costly. Further, given that new layout conventions might be 

introduced, a generative model is preferred over the discriminative model, since generative 

models have a clear system boundary.  

I.2.4 ME semantics analysis 

I.2.4.1 State-of-the-arts for ME semantics analysis 

The “ME semantics” and the “semantic taxonomy” mentioned in this work are similar to 

the concepts Operator Tree [42], OpenMath [55] and Content MathML [9]. However, the 
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operator tree does not adequately express the semantics yet. The superscript might be represented 

as a character ‘^’ in operator tree, but it can have different meanings, such as superscript, 

function inverse, exponential, function differentiation. It is also a non-trivial task to convert 

between different standards [56].  

Different ME-semantics parsing systems have different assumptions about input. Some 

works [57], [58] assume the inputs as images with the need of an OCR module. Some make the 

assumptions that the layout is correctly recovered and only the semantics is left to resolve [59], 

[32]. The second approach with a modularized design is adopted in this work, which is also 

suggested in the survey paper [42]. 

Early works on ME semantics parsing are mostly rule-based systems. Andrea [60] used a 

top-down syntax grammar to build the operator tree. This top-down way has the advantage of 

using the target tag as the context to guide the meaning of the dominated symbols. But the top-

down schema has the disadvantages of exponential complexity and could not pinpoint the error 

when parsing failed. This early work only showed the feasibility with a limited grammar for 

basic algebra. Similarly, a recursive descent method is adopted with the assumption that the ME 

is already segmented into meaningful semantic blocks [57]. 

Graph re-written is another popular rule-based approach [61]. Spatial and content type 

conditions trigger rules to re-write the graph. These rules are applied to the graph iteratively until 

the stop conditions are met. One challenge for the graph-based method is the rule selection when 

multiple rules are satisfied. Lavirotte [59] used the context to make sure there is no ambiguity. 

One equivalent explanation for adding the context is to enforce the order of execution. 

Practically, graph search is time-consuming for the subgraph matching. 
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Miller from NIST developed the LateXML [32] system to convert from Latex into the 

Content MathML representation using Context Free Grammar. It is the state-of-the-art for ME 

semantic parsing. However, it has been reported above 41% of the notations did not have their 

semantic role resolved [62], where the role attribute is set to ‘unknown.’ 

The rule-based parsing mainly uses the context and manually defined rules for the 

resolution of ambiguity. Another direction for the ambiguity resolution is using stochastic 

grammar to resolve the ambiguity statistically, where the probability could either be trained 

using the unsupervised Inside/Outside algorithm [63] or supervised probability estimation from 

ground truth data [64]. 

Except for the LaTeXML [32], the works above only cover the basic math concepts. As 

more math dialects are considered, more ambiguities will be introduced, which is the main 

challenge for ME semantics understanding. Youssef [65] enumerate five types of ambiguities 

that might happen during the semantic analysis, which could be grouped into three major 

categories: tokenization, scoping, and interpretation. The tokenization refers to the process of 

segmenting an ME into atomic building units such as operators, relations, and identifiers (which 

might be a single character or multiple characters). As such, there is an ambiguity that the 

consecutive characters could either mean an identifier or the multiplication of multiple variables. 

Second, for the convenience of writing, the grouping fences could be omitted, causing various 

possible ways to interpret the operation order. For the last interpretation layer, one needs to 

resolve the actual meaning given the same physical layout structure. The accent might mean 

conjugation for complex number or differentiation of a function. The superscript could indicate 

an exponent component or an index.  
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I.2.4.2 Challenges for ME semantics analysis 

First, to cover a wide spectrum of applicability for different math dialects, a general 

extendable framework is necessary to add new rules when necessary. Second, during the parsing 

phase, the semantic analysis faces the ambiguities for tokenization, abstract syntax tree (AST) 

construction, and the AST interpretation. The tokenization challenges come from two aspects. 

On the one hand, one character might have multiple meaning, which will lead to entirely 

different ASTs. On the other hand, the consecutive alphabets might mean multi-character 

identifiers or multiplication by omitting the operators. Second, the AST might not be correctly 

recovered. At last, the same structure might also different interpretation. For example, the 

superscript component could be index or exponents.  

I.2.5 Declaration extraction 

I.2.5.1 State-of-the-arts for declaration extraction 

ME-declaration extraction belongs to the domain of information extraction, but it differs 

from the traditional natural language processing (NLP) due to the elaboration of mixed Word-

ME (MWM) sentences. Additional taxonomy and customization are necessary to analyze the 

syntactic role of ME and its interaction with neighbor plaintext. 

First, the ME could be more complicated than simple plaintext words, acting as a 

sentence or subordinate clause. The existing convention [66] for the part-of-speech (PoS) of ME 

contains three categories: S for a sentence or subordinate clause, NP for a noun or noun phrase, 

NML for a noun modifier. None of the existing PoS taggers pays particular attention to the ME. 

Current works [67], [68], [69] process MWM sentences by treating the MEs as ordinary words 

and directly apply the existing PoS tagger [70], [71]. The special syntactic role of ME could not 

be covered, and the degradation of the PoS tagging for other words was also observed. An F1 
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score of 0.936 is obtained using the Stanford MaxEnt tagger in comparison with 0.96 F1 score 

non-MWM corpus in our study. 

In traditional NLP domain, the PoS tagging task has been considered an almost solved 

problem using statistical machine learning models. Features are the most critical aspect of 

machine learning based methods. The standard features for PoS tagging include the 

value/prefix/suffix of the current token or its neighbors [70]. The machine learning methods that 

capture the interaction among neighbors also helped improve the performance such as the Tri-

gram HMM model [71]. One challenge issue in PoS tagging is the parameter estimation for the 

out of dictionary words, which is commonly attacked by back off interpolation [71]. As for ME 

specific PoS tagging, our previous statistical ME-PoS tagging model [72] based on the format 

complexity of ME, neighbors PoS prediction, and the syntactic properness of the sentence 

reached an accuracy of 75% for three classes classification of the PoS of the MEs. However, it 

did not predict the PoS of other words, which is not accurately predicted by existing toolkit 

because of the ME neighbors.  

Due to the particular PoS of ME and the difference in the interaction of ME with 

plaintext, a traditional constituent or dependency parser will fail to analyze the syntactical 

structure of the MWM sentence related to ME part and even propagate the error to the plaintext 

parts. The existing solution for parsing MWM sentences are based on brittle grammar, including 

the combinatorial category grammar [73] and the typed PCFG [74]. They both require the 

semantic analysis of ME, which itself is still a challenge. On the other hand, a data-driven 

training approach might not be feasible due to the scarcity of dependency parsing tree data for 

MWM sentences. Though it is reasonable to directly extract relation using the dependency 

parsing structure as done in the protein interaction extraction [75], the errors accumulate at both 
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the PoS and parsing steps. Besides, the dependency/constituent parsing face the challenge in the 

multi-word expression [76], the special punctuation [77], and prepositional phrase attachment 

and coordinate conjunction attachment ambiguity [78], [79], [80] even for the regular languages. 

Nevertheless, features will be extracted from the dependency parsing tree generated from the 

existing dependency parser and the training process to determine weight assignments to the 

dependency tree related features. 

The declaration extractor will be built on the information from the above low-level 

processing. The declaration extraction gets attention starting from the NTCIR competition of 

math understanding [4]. Existing work [81], [67], [68] formulated the declaration extraction 

problem into two phases: NP candidate pair generation and ME-NP pair classification. From the 

view of the candidate generation, these existing methods are all using the traditional NLP tools 

for PoS tagging and NP extraction, where errors were introduced for the MWM sentences 

processing. From the view of feature engineering for the classification, the features of the 

classification cover: common declaration patterns, punctuation, word distance, occurrence order 

of ME vs. the declaration candidate, surface text/PoS of two previous/subsequent words of 

declaration candidate and ME, uni/bi/tri-gram of the definition candidate, and the surface text of 

the verb between the ME and candidates. Among all the features, the declaration patterns play 

the most critical roles. However, the patterns manually enumerated are not complete and it is 

highly desirable to have an automated or semi-automated method to collect the declaration 

patterns. 

I.2.5.2 Challenges for declaration extraction 

 In summary, the challenges for declaration extraction comes from two aspects. First, the 

MEs in MWM sentences have special PoS tags that do not fit into existing categories. The 
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special PoS tags lead to degradation of the NP extraction as the declaration candidates. Second, 

the declaration patterns are the features with the most significant weight, but the manual 

enumeration process might miss many patterns. It is necessary to train a customized MWM 

processing toolkit and have a (semi-)automated way to collect the declaration patterns.  

I.2.6 High-level Application of Mathematical Analysis 

I.2.6.1 State-of-the-art for math-centered applications 

Similar with the search engine to query by keywords, there have been more than ten years 

of research and many online systems [82], [83] on the retrieval of mathematical expression using 

mathematical expressions and a mixture of words as inputs. The layout structures of ME 

variables and operators can support novel approaches for presentation-based IR systems [84], 

[85], [86], [87], and the semantic structures of MEs, as well as the declaration words,  will 

support semantic-level IR systems [6], [88], [89], [90], [8]. Normalization and approximation of 

polymorphic forms of MEs are critical to the performance outcomes [7]. Common normalization 

procedures include the removal of structures (mrow, parentheses, attachment, right-hand side 

ME), and case normalization. The notation differences are also alleviated by matching MEs with 

explicit declaration [8]. There are two standard techniques for the indexing term generation: 

vector space model (VSM) and the suffix tree path. VSM treat the symbols in the MEs are tokens 

and build a vector space model, while the substation tree indexing [91] will transform each ME 

into a set of paths. After the term generation, traditional information retrieval technology could 

be applied for indexing and retrieval, including the language model, the binary model, the BM25 

[92]. There are some other MathIR techniques are also design for tree/graph matching. However, 

as pointed in [7], the systems that support querying by formulae are “perceived as not very useful 

yet?” Traditional search engines mostly depend on the word matching to locate specific topics or 



 

20 

 

questions. On the other side, the users need a math search engine are solving problems which 

require the transformation and derivation from some facts to others. The symbolic computing 

and proving assistant might be what they want on this aspect. 

The MathIR is also highly related with the proving assistant system Mizar [2], theorem 

prover Coq [3], and mathematical knowledge management system such as Mathematica [93]. 

Started 45 years ago, the Mizar system is the largest collection strictly formalized mathematical 

knowledge, containing more than 12, 274 definitions and 59, 706 theorems [94]. Though the 

formalization is very helpful in organizing the mathematical knowledge for abstract inference, 

they are less useful for applied mathematics and engineering.  

From the view of improving the readability of mathematical intensive papers/books, there 

is limited research work on ME. There have been attempts to recover the structure of the 

mathematical discussion within a paper through extraction of the math block and links them 

using explicit reference based on pattern matching for math terms such as definition, theorem, 

lemma [95], [96]. But many implicit linkages among the ME are still not recovered yet. For non-

mathematical content, the Utopia project [97] enhanced the reading experience of the medical 

domain by matching external resources such as terminology dictionaries. 

I.2.6.2 Challenges for math-centered applications 

The desired math-centered user experiences are still under exploration. The systems that 

support searching by MEs are perceived as not very useful [7]. Auto-proving [3] and proof-

checker [2] could not scale up due to the massive manual labor efforts and only targeting at pure 

mathematics. Recovery of logic flow by the reference could not cover the implicit dependency.  
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Figure 5. Research Scope for MECA: Analytical framework 
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I.3 Overview of the dissertation 

In this dissertation, the Mathematical Expression centered publications Content Analysis 

system (MECA) is proposed for the large-scale post-publication technical material analysis. 

Elements of the MECA system, organized by the chapters, are illustrated in Figure 5. 

Correspondingly, the software architecture and workflow is shown in Figure 6. A complete 

elaboration of the software system could be found in Appendix C.  

Our study starts with Chapter II, which analyzes the logical structure of documents and 

identify the MEs. A weakly-supervised sequential model to extract MEs from the typesetting of 

PDF files is proposed to overcome the discrepancy between physical layout and the logical 

structure and alleviate the difference in writing habits. The essence of this typesetting-based 

modeling is the consistency of the font usage patterns for MEs and NMEs, either explicit 

selected by the author or implicitly chosen by the document processing system. Based on the 

weakly-supervised heuristic rules using the particular symbol values or external dictionary, a 

significant portion of the ME and NME characters could be identified with high precision. The 

recognized high confident ME/NME characters could build a reliable estimation of the posterior 

probability of the character label as ME/NME given its font-value pair. Then, the char-level 

posterior probability is used for the inference of each physical layout unit (non-separable 

character sequence) to identify potential EME segments. At last, a Markov Random Field based 

sequential modeling is applied to remove the local errors to reach global optimality. This 

weakly-supervised approach based on typesetting provide a simple yet efficient way for the 

adaptation to the font usage of each writer. The MRF based sequential tagging offers a 

systematical way to overcome the discrepancy between the physical layout analysis and the 

logical structure identification. 
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After the identification of ME represented as typesetting, the next task elaborated in 

Chapter III is the recovery of the layout structure of ME, which is crucial for the understanding 

of ME semantics. The ME layout organizes the ME characters into a hierarchical of MEblocks 

with specific relative spatial relationships. The key to accurate ME layout analysis is the 

modeling of the typographical system for precise decision-making. A systematic categorization 

of the characters based on their glyph design is summarized to estimate their normalized height 

and vertical center reliably. Further, parametric modeling for the height ratio and the normalized 

vertical center difference (PHN) could be used reliably for the identification of the relative 

spatial relationships, sub/superscript. The typographic and PHN model provide a solid 

foundation for the tradeoff between the precision and recall for predictive analysis. The above 

foundations are deployed into a divide-and-conquer content-constrained spatial (CCS) layout for 

MEs. First, rules are applied to identify MEBlocks based on the symbol value indicator and the 

dominated regions. Second, a global inference model is applied for the super/subscript 

identification that could overcome local errors. The typographic and PHN model are succinct 

with powerful discriminating ability. The CCS ME layout analysis module on top of them 

outperforms state of the art with fast execution speed. 

The ME layout already encodes lots of semantics manifested as the hierarchical grouping 

of characters into blocks. But more semantics information is left to explore. The chapter IV 

presents the systematic modeling and ambiguity resolution techniques to recover the ME 

semantics. First, a semantic taxonomy of ME is summarized according to the current standard 

OpenMath [55] and MathML [9]. The ME semantics taxonomy provides a guideline for the 

semantics parsing and a convenient framework to operate on the MEs. Second, a systematical 

review of the ambiguity during the ME semantics understanding process is presented. Then, a tri-
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phase ME semantics understanding framework is proposed. The first phase is the preprocessing 

for character semantics disambiguation and characters grouping. The second phase is the PCFG 

parsing tree construction to find the correct hierarchical scoping. The last phase is the context-

dependent ME object generation through tree rewriting. Experiments on a preliminary dataset 

show that the proposed method could achieve similar ME Semantics to the ground truth. 

Besides the MEs, the bonding words around also play important roles. In chapter V, the 

extraction of declaration for MEs is elaborated, which is very important in linking the 

mathematical abstraction with the physical worlds. The core for successful identification of ME-

declaration is at two aspects: the low-level processing of the mixed Word-ME (MWM) 

sentences, and the high-level features/patterns for declaration. A customized PoS tagger and NP 

chunker for the MWM sentences are trained to avoid the degradation that harms the declaration 

candidate enumeration. Further, a semi-automated weakly-supervised method is developed to 

gather a variety of patterns for ME declaration. Experiment results showed a significant 

improvement in the F1 score for ME-declaration identification. 

At last, given the rich analytics of the ME semantics from the quantitative aspect and the 

ME-declaration from the qualitative perspective, these metadata are integrated to create a unified 

qualitative-quantitative (QuQn) mapping by recovering the dependency and pruning redundancy.  

The QuQn mapping of a publication provides a concise representation of the technical essence of 

a publication, with redundant information consolidated and dependency highlighted. A high 

reduction ratio of around 1:4 is reached. The QuQn map is integrated into a web-based reading 

assistant system as the graphical organizer of the technical essence with rich interactive features 

to explore the dependency among factors. The synchronization between the QuQn map and the 
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original materials make it very easy to switch between the high-level abstraction and low-level 

detail.  

Three application scenarios concerning education and knowledge mapping are explored. 

A user study during a high school summer camp shows that the QuQn map could help the 

students understand the dependency among different factors and boost their confidence to learn 

complex systems. The declaration-based topic clustering captures the technical essence behind 

the variety of the research task. The paper difference analysis shows the potential of MECA for 

cross-paper analysis.  
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CHAPTER II 

 ME EXTRACTION FROM PDF FILES* 

 

II.1 Overview of the chapter 

The ability to locate Mathematical Expressions (ME) from digital files is the entry for 

math-centered publication analysis. Given that over 90% papers published in Portable Document 

Format (PDF) according to the statistics from Microsoft Academic Graph [1], this chapter 

focuses on the extraction of ME from PDF files, which only contains typesetting information. 

MEs can be further divided into Isolated MEs (IME), which are explicitly separated from the 

plaintext part, and the Embedded MEs (EME), which are usually treated as a form of technical 

entity being blended into plaintext sentences for reasoning, explanation, or association of the 

mathematical notions with the subject under discussion. It is relatively easy to extract IME 

because of their highlighted spacing. On the other hand, EME extraction is much more 

challenging due to its resemblance with words and the customize font style outside of the 

training dataset. The best performance for EME extraction has a false negative rate of 15.9% and 

a false positive rate over 20% [24]. 

As IMEs are particular types of physical layout lines and the EMEs are embedded into 

lines, the accurate physical layout analysis, especially the recovery of the lines, is the foundation 

for the ME extraction. In this chapter, the document layout analysis is first presented. The 

Projection Profiling Cutting (PPC) based algorithm for the Line-Column Generation (LCG) 

*Reprinted with permission from “A Font Setting Based Bayesian Model to Extract 

Mathematical Expression in PDF Files” by Wang, Xing and Liu, Jyh-Charn, 2017. 14th IAPR 

International Conference on Document Analysis and Recognition (ICDAR), Kyoto, 2017, pp. 

759-764. Copyright 2017 IEEE.  
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according to the bounding box position of the characters in PDF. Each physical layout line is 

tokenized based on spacing into non-separable character sequence (NSCS) using the built-in 

tokenizer of PDFBox and PDFMiner. But when apparent errors are detected, a word matching 

based tokenizer will be applied.  

Then, the IME and EME will be identified from the lines and NSCSes. We observe that 

authors tend to express MEs in particular styles repeatedly in a paper. This observation leads to a 

succinct feature space for the labeling of NSCS for EME. Multiple semantic resources that 

include natural language corpus, citation style, headings, highlighting words, math symbols, and 

math function names, are used to construct heuristic rules for detecting anchoring MEs and non-

MEs (NME), which represent the entities that can be recognized with negligible error. The 

anchoring ME and NME are used to estimate the probability of a character as ME conditional on 

its font name and value, which will then be used to extract ME for NSCSes based on the 

Bayesian inference technique. This weakly-supervised EME identification method is called 

typesetting-based Bayesian (TSB) model.  

Though the TSB model provides a succinct representation and outperforms the state-of-

art [24], it could not discriminate well on the characters that are commonly used in both ME and 

non-ME (NME), such as digits and punctuations. Further, the discrepancy between the physical 

layout and the logical structure might split one ME into multiple rendering units. These two 

factors together cause the partial matching problem. Given that these ambiguous characters have 

a similar probability as ME or NME, their label might be able to be corrected by the label of 

neighbor NSCSes. This idea is formalized into a Markov Random Field (MRF-TSB) based 

sequential tagging problem.  
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The TSB and MRF-TSB models are evaluated on the public dataset Marmot [24]. The 

TSB outperforms state of the art by 10% for both the miss and false rate. Results show that the 

proposed sequential techniques could reduce the incorrect split by 1/3, together with a slight 

improvement on the miss and false rate.  

In the following of this chapter, the document layout analysis module is first introduced. 

Then the TSB and MRF-TSB model will be elaborated. Experiment and result analysis will be 

given at last.  

II.2 Document layout analysis 

II.2.1 Document layout model 

 

 

 

 

Figure 7 Document layout analysis from the Typesetting and font resources of PDF file, 

parts of this figure are adapted from “Lecture Notes 11: The Good-Turing Estimation” 

[98] 
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ME identification is a particular type of document logical structure. The accurate logical 

structure analysis depends on the precise physical layout recovery as shown in Figure 7. In this 

work, our Line-Column Generator (LCG) module is designed to produce columns and lines of a 

page layout in academic publications, which are mostly formatted into single or double columns. 

For double-column pages, they might also have a single-column header, footer or images/tables.  

Unlike general document layout analysis where the page orientation can be skewed, in this work, 

It is assumed that the page orientations of technical papers are either vertical or horizontal. Based 

on this observation, columns and lines are detected using the concept of Projection Profiling 

Cutting (PPC) on the converted binary image 𝐼 from PDF shown in the lower part of Figure 7. A 

pixel is black if it lies in the character bounding boxes extracted from the typesetting of the PDF 

files. Formally, for each character 𝑐 ∈ 𝑛, it is associated with the glyph name value 𝑣𝑐, font 𝑓𝑐, a 

tight bounding box rectangle 𝑏𝑐. Note that some big visual elements such as the open fence for 

matrix might be split into multiple characters and a pre-merging based on the character value is 

required [21]. 

After the LCG processing, a document 𝐷𝑖 consists of pages {𝑃𝑖,𝑗}, where the page 𝑃𝑖,𝑗 is 

composed of columns {𝐶𝑖,𝑗,𝑘}. A column 𝐶𝑖,𝑗,𝑘 contains lines {𝐿𝑖,𝑗,𝑘,𝑙}, where each line could 

stand for an IME or mixed Word-EME line. Each line 𝐿𝑖,𝑗,𝑘,𝑙 is composed of characters which 

could be organized as a sequence of non-separable character sequences (NSCS), 

(𝑛𝑖,𝑗,𝑘,𝑙,1, 𝑛𝑖,𝑗,𝑘,𝑙,2, …), which could be either a plaintext word or part of an embedded ME. IMEs 

are identified by a classification of the lines. EMEs are identified from the sequence of NSCS 

separated by space (marked by red dashed rectangles) from the PDF parsing system.  
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II.2.2 Line-Column Generator 

The procedure for Line-Column-Generator (LCG) is illustrated in Figure 8. The PDF 

files are first fed into the PDF parser [19], [18] to get the tight bounding box for each character 

for better column/line detection. The TextStripper function in PDFBox could correctly segment 

lines so that each NSCS corresponds to a word most of the time. Failures are detected when long 

words are observed. The failure cases will be processed by the PDFminer and a customized 

tokenizer to maximize the matching of words. After the characters and NSCSes are obtained, a 

top-down procedure first segments the page into columns as illustrated in Figure 8. After the 

columns are detected, a bottom-up approach will merge the NSCSes into lines for each column 

based on the vertical overlapping. Special procedures are designed for the merging of a 

decorative structure such as the accent and upper/under parts of binding operators.  

The column detection procedure follows a two-step approach based on the projection 

profiling (𝑝𝑝), which first decides whether double columns exist, then identifies the double 

column region. A 𝑝𝑝 is obtained by projecting the black pixels onto an axis and do a cumulative 

counting on each position on the axis. The horizontal and vertical profiles for a PDF page are 

shown in Figure 8 using the test document 10.1.1.58.6850_6 in [24]. 

A page is detected as double column format if there are at least five lines for the double 

column region between row pixel index 𝑖𝑟
𝑙  and 𝑖𝑟

ℎ, s.t.  𝑖𝑟
ℎ − 𝑖𝑟

𝑙 > 𝛿5𝑙𝑖𝑛𝑒, and there exist a central 

gap in the corresponding horizontal PP 𝑝𝑝ℎ(𝐼[𝑖𝑟
𝑙 : 𝑖𝑟

ℎ,  : ]), where 𝐼[𝑖𝑟
𝑙 : 𝑖𝑟

ℎ,  : ] means cropping the 

image between low boundary row 𝑖𝑟
𝑙  to high boundary row 𝑖𝑟

ℎ. The center gap is defined as an 

empty region of at least 𝛿er pixels around the center of the horizontal pp of text body region.  
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Figure 8 Column Detection Illustration, parts of this figure are adopted from paper 

10.1.1.58.6850 from CiteseerX [99] 

 

 

The column range (𝑖𝑐
𝑏, 𝑖𝑐

𝑒) of the text body is obtained by removing the empty margin. 

From the column range, the central region (𝑖cr
𝑏 , 𝑖cr

𝑒 ) is estimated with a width that is in ratio 𝛼 of 

the text body. Then, 𝛿er consecutive empty pixels are found in the horizontal projection profile 

of the center region, 𝑝𝑝ℎ(𝐼[𝑖𝑟
𝑙 : 𝑖𝑟

ℎ, 𝑖cr
𝑏 : 𝑖cr

𝑒 ]), where 𝐼[𝑖𝑟
𝑙 : 𝑖𝑟

ℎ, 𝑖cr
𝑏 : 𝑖cr

𝑒 ] means the cropped image from 

the beginning column 𝑖cr
𝑏  to the ending column 𝑖cr

𝑒 . 
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If the double column format is detected, one can find the largest |𝑖𝑟
ℎ − 𝑖𝑟

𝑙 |, 𝑖𝑟
𝑙 < 𝑖𝑟

ℎ, with 

the constraint that the horizontal PP of 𝐼[𝑖𝑟
𝑙 : 𝑖𝑟

ℎ,  : ] has a central gap. Each column is passed to the 

line segmentation algorithm, which detects lines based on the zero gaps in the vertical pp. By the 

end, for each LTTextLine 𝑙pdf extracted from PDF file, a line region 𝐿𝑖,𝑗,𝑘
𝑙  is detected from PPC 

such that the overlapping area is at least half of the area of 𝑙pdf. Then enumerate through 

{𝐿𝑖,𝑗,𝑘
𝑙 }

𝑖,𝑗
 in page 𝑗 of document 𝐷𝑖, and merge the associated 𝑙pdf set to construct the lines.  

The center gap ratio 𝛼 is set to 0.1. The 𝛿er is set to 5. And 𝛿5lines is set empirically to 

400 pixels. By manually checking the line detection results, there is only one failure case where 

there is an embedded figure. There is one limitation of the PPC based line detection algorithm 

that it will split the under/over part of IME into separate lines. 

Upon the result from document physical layout analysis, the typesetting-based Bayesian 

model that extracts IMEs from lines and EMEs from NSCSes are introduced in the following 

subsections.  

II.3 Typesetting-based Bayesian model for ME extraction 

Different authors have different document processor environment, and they have free 

choice in choosing the fonts and layouts for MEs. But the mathematical notations are usually in 

separate fonts than the words. Given the assumption and observations, a weak-supervised 

adaptive typesetting-based Bayesian (TSB) model is developed. First, heuristic rules derived 

from the knowledge of math usage and writing practices are employed to identify the seed set of 

ME characters 𝐶𝑀𝐸 and the seed set of NME characters 𝐶𝑁𝑀𝐸 with high confidence. Then, the 

character-level posterior probability 𝑃𝑓𝑣(𝐿|𝐹, 𝑉), conditional upon the font 𝐹 and value 
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information 𝑉, is estimated. These posterior probabilities will be used during the inference of the 

NSCS-level classification as ME or NME. 

II.3.1 Heuristic rules to identify ME/NME characters and their quality 

MEs can be treated as a form of text blended with plaintext words into regular sentences. 

Some MEs may become reserved, de facto terminologies to represent sophisticated abstractions. 

In technical writing, important issues are often highlighted in different forms. Several rules are 

proposed for the partial identification ME and NME characters at the levels of symbols, NSCSes, 

NSCS sequences, and lines. NME could be the heading of theorems, lemmas and the caption of 

figures and tables. 

 

 

Figure 9 Heuristics to identify partial ME/NME, parts of this figure are adapted from the 

“residual transfer networks [100]” 

 

 

 

Table 1 The rules to match document structures 

Element  Regex Example 

Citation \[\d+(, \d+)*\] “[1, 17]” 

\((\D)*(181920)\d\d\) (Tracy, 2000) 

Figure/Table (figure|fig.|table|tbl.)[ ]* \d(\.\d)*[ ]*(\([a-zA-Z]\)\[[a-zA-Z]\]) “Fig. 1a”, 

Equation (equationeqn.eq.formula)[ ]*(\d+(\.\d+)*\(\d+(\.\d+)*\)) “Equation 1” 

Theorem (theorem|definition|example|corollary)[ ]*\d+(\.\d+)* Theorem 1 

Heading (chapter|section)[ ]*\d+(\.\d+)* “Chapter 2” 
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Table 2 Performance of the Heuristics to identify ME/NME 

 Func. Math Sym. IME Word Acronym Citation Intra Structure 

NME 67 3849 9 68570 1147 687 998 416 

ME 190 26842 1409 555 300 40 7 0 

Precision 0.739 0.875 0.994 0.991 0.793 0.94 0.939 1 

 

For non-mathematical elements, plaintext words, acronyms, citations, intra document 

references, and structure indicators such as headings are matched out. The matched words based 

on natural language corpus covers a lot of characters at a high precision of 0.991. The NSCSes 

with less than three characters are filtered out to reduce the false positive. The NSCSes are 

normalized using the Wordnet lemmatizer [101] into its root form and match against the word 

corpus [101]. The regex rules for matching such elements are summarized in Table 1. An 

acronym is typically formed from the first letter of multiple word sequence. Acronyms are 

detected by checking the capitalization and the first letter of surrounding NSCS. Except for the 

acronym, the other rules for NME all achieve over 90% accuracy as shown in Table 2. As will be 

discussed later, it is hard to recognized MEs from acronym is hard because the related characters 

are both used in ME and NME. Further, the human annotation is not consistent either. Based on 

Unicode value and glyph names, math characters and function names are extracted as MEs. 

Greek characters, operators, relations [35] are selected as ME symbols. A simple rule is designed 

for IME detection. If a line contains math elements, but no plaintext words, it will be predicted as 

Isolated Mathematical Expression (IME), with a precision of 0.994, a recall rate of 0.889 and an 

F1 score of 0.939. It is slightly better than the best experiment setting of previous work [24]. The 

first cause of missed IME detection is that the common words for both ME and NME, such as 
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“for,” “and,” “otherwise,” “super.” The other reason is the failure of line extraction and 

corrupted font resources from PDF parsing. 

II.3.2 Bayesian Inference for EME identification 

At the NSCS-level where most EME belongs to, there are no silver bullet rules that 

distinguish ME from NME accurately. Some exception situations include italic fonts for both 

acronyms and ME and natural language words as variables. But it is observed that authors tend 

to express MEs in a particular font style repeatedly in a paper. The heuristic rules derived from 

common writing practice are with high precision at the character level and line level for IME 

identification. The statistics from the characters identified by heuristic rules will be useful for the 

likelihood ratio test 𝐿𝑅(𝑛) at the NSCS level as the workflow shown in Figure 10. At last, a post 

processing step will reject detected EME that overlaps with IME and merge consecutive EME 

into one ME. 

The document elements, characters/NSCS/line, are first pipelined to the rule-based 

ME/NME identification module, which will produce high confidence character set 𝐶ME and 

𝐶NME for ME and NME, respectively. These two sets will be used to estimate the char level 

posterior probability 𝑃𝑐(𝐿|𝐶) is based on the co-occurrence statistics between font-value and 

ME/NME label, where 𝐿 ∈ {ME,  NME} is the label and 𝐶 ∈ 𝐶 is the char set. Let 𝐻ME and 𝐻NME 

respectively denote the font-value co-occurrence matrices, where 𝐻ME(𝑓,  𝑣) and 𝐻NME(𝑓,  𝑣) as 

the count of co-occurrence of font 𝑓 and value 𝑣 for ME and NME.  

Then 𝑃𝐶(𝐿 = 𝑀𝐸|𝐶 = 𝑐) is estimated as: 

𝑃fv(𝐿 = ME|𝐹 = 𝑓𝑐 ,  𝑉 = 𝑣𝑐) =
𝐻ME(𝑓𝑐, 𝑣𝑐)

𝐻ME(𝑓𝑐 , 𝑣𝑐) + 𝐻NME(𝑓𝑐, 𝑣𝑐)
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, where 𝐹 ∈ 𝐹 and 𝑉 ∈ 𝑉 be random variables of font and value defined over the 𝐶. If the char 

𝑐 ∉ 𝐶ME, 𝑃𝐶(𝐿 = 𝑀𝐸|𝐶 = 𝑐) is estimated by the marginal font conditional probability 

𝑃f(𝐿 = ME|𝐹 = 𝑓𝑐).

The inference of the label 𝐿 for a NSCS 𝑁 ∈ 𝑁 is realized through the likelihood ratio 

test which is transformed using the Bayesian rule as follows: 

𝐿𝑅(𝑛) =  
𝑃(𝐿 = 𝑀𝐸|𝑁 = 𝑛)

𝑃(𝐿 = 𝑁𝑀𝐸|𝑁 = 𝑛)
≃

𝑃(𝑁 = 𝑛|𝐿 = ME)𝑃(𝐿 = ME)

𝑃(𝑁 = 𝑛|𝐿 = NME)𝑃(𝐿 = NME)

Figure 10 The workflow for the Typesetting-based Bayesian model, reprinted with 
permission from [102] 
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Given that the combinatorial space for NSCS 𝑁 is too large for probability estimation, the 

assumption of conditional independence is made here, where the 𝑃(𝑁|𝐿) in (2) could be 

decomposed as follows: 

𝑃(𝑁 = 𝑛|𝐿) =  ∏ 𝑃𝐶(𝐶 = 𝑐|𝐿)

𝑐∈𝑛

 

The Bayesian rule to transform the char level likelihood 𝑃𝐶(𝐶|𝐿) to posterior 𝑃𝐶(𝐿|𝐶): 

𝑃(𝑁 = 𝑛|𝐿) = ∏ 𝑃𝐶(𝐿|𝐶 = 𝑐)

𝑐∈𝑛

𝑃(𝐶 = 𝑐)/𝑃(𝐿) 

It is further assumed the equal prior probability of ME vs. NME, i.e., 𝑃(𝐿 = ME) = 𝑃(𝐿 =

NME). Then plug in the expansion based on conditional independency into the likelihood ratio 

test and cancel out 𝑃(𝐶 = 𝑐), leading to: 

𝐿𝑅(𝑛) = ∏
𝑃𝐶(𝐿 = 𝑀𝐸 |𝐶 = 𝑐)

𝑃𝐶(𝐿 = 𝑁𝑀𝐸 |𝐶 = 𝑐)
𝑐∈𝑛

 

However, errors occur frequently for the punctuation and digits, leading to the split of one ME 

into multiple parts. This problem will be elaborated in the next sequential EME extraction 

section. 

II.4 An MRF-based sequential modeling for EME extraction 

Labeling of EME is still a problem not fully solved due to the fuzzy boundary. For 

instance, many EMEs are incorrectly split due to misidentification of a few characters. As shown 

in Figure 11, the fuzzy boundary is mainly due to the discrepancy between the physical layout 

units separated by the red lines and the logical structures, causing errors in the EME prediction 

marked in the blue shaded area. Existing work and my TSB model only use information within 

NSCS without systematic incorporation of neighboring information. 
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By further exploring the log of the posterior probability of each NSCS as ME and NME 

in Figure 11, the observation to correct the NSCS label prediction by its neighbors is shown. The 

plaintext words (“for,” “so,” “that”) have large log probability as NME compared with ME. For 

most of the ME parts, they have large log probability as ME compared with NME. However, 

there are less determinant zone such as punctuations and digits, causing the over split of ME. 

However, the label of their direct neighbors could play an important role in predicting the right 

label. 

 

 

 

 

Figure 11 The motivation for sequential tagging and the related posterior probability 

𝒍𝒐𝒈(𝑷(𝑴𝑬|𝒏𝒊)) and 𝒍𝒐𝒈(𝑷(𝑵𝑴𝑬|𝒏𝒊)), parts of this figure are adapted from 

10.1.1.6.2281_9 in Marmot dataset [24] 
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Inspired by the pair-wise potential concept commonly used in the Markov Random Field 

algorithm, an MRF based extension to the existing TSB model for sequential prediction is 

proposed, which incorporates neighbor constraints in labeling of EME vs. plaintext. 

Experimental results show that this technique significantly reduces splitting of EMEs, with small 

gains in the false and miss rate. 

The rest of this section is organized in the following order: In this section, the MRF-TSB 

pair-wise potential model for sequential EME prediction is first presented. Then, an example is 

used to illustrate how MRF-TSB works as well as a sensitivity analysis for the parameter settings 

is given. At last, the optimization solver design is presented. 

II.4.1 Problem formulation of MRF-TSB model 

The embedded mathematical expression identification will be on the lines not identified 

as IME. Given such a line 𝐿 composed as a NSCS sequence {𝑛1,  … , 𝑛𝑁𝐿
}, the goal is to predict 

EME label sequence 𝑦 = {𝑦1, … , 𝑦𝑁𝐿
}, where the superscript is omitted for convenience, 𝑁𝐿 is 

the number of elements in the line. 𝑦𝑖 ∈ {0,1}, where 0 indicates plaintext and 1 indicates EME. 

From the view of the pointwise decision process, the existing TSB model could be modeled as 

posterior probability maximization. It is equivalent to minimizing the negation of summation of 

log probability − ∑ 𝑙𝑜𝑔(𝑃(𝑦𝑖|𝑛𝑖))))𝑖∈[1,𝑁𝐿] , i.e., 

𝑈(𝑦) = − ∑ 𝑦𝑖log(𝑃(𝐿 = 𝑀𝐸|𝑁 = 𝑛𝑖)) + (1 − 𝑦𝑖)log(𝑃(𝐿 = 𝑁𝑀𝐸|𝑁 = 𝑛𝑖))

𝑖

 

, where 𝑃(𝐿 = [𝑁]𝑀𝐸|𝑁 = 𝑛𝑖) is cacluated from TSB model. For convenience, let 𝑈(𝑦) denote  

− ∑ 𝑦𝑖𝑙𝑜𝑔(𝐿𝑅(𝑛𝑖))𝑖 , where LR(𝑛𝑖) = 𝑃(𝐿 = 𝑀𝐸|𝑁 = 𝑛𝑖)/𝑃(𝐿 = 𝑁𝑀𝐸|𝑁 = 𝑛𝑖). 

Given this observation, a heuristic is proposed, which prefers the label of 𝑦𝑖 to be similar 

with the label of its neighbors 𝑦𝑖−1 and 𝑦𝑖+1 . Mathematically, a penalty is added for the 
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difference in the consecutive labels, i.e., 𝑃(𝑦) = ∑ |𝑦𝑖 − 𝑦𝑖+1|𝑖∈[1,𝑁𝐿) . By merging the above two 

factors, we have the following minimization objective function 𝑈(𝑦) + 𝜆𝑃(𝑦), where 𝜆 > 0 is a 

weight parameter. 

II.4.2 How MRF-TSB model works and the parameter setting 

We will study two scenarios based on the above example. For the latest quadruple 

sequential of [“[”, “1”, “,”, ”T]”]. The values of objective function under different predicted 

labels are enumerated in Table 3. From the table, we can see that, if we assign the less-

determinant NSCS as NME (label 0) between highly determinant ME, penalty 2𝜆 will be 

introduced, which is consistent with the requirement 𝜆 > 0 for our formulation to help alleviate 

the over split issue. 

 

 

 

Table 3 Objective value table for the case [“[”, “1”, “,”, ”T]”] 

Label Objective value Reduced 

[1,0,0,1] 1*-14+0*0+0*0+1*-15+2𝜆 -29+2𝜆 

[1,0,1,1] 1*-14+0*0+1*0+1*-15+2𝜆 -29+2𝜆 

[1,1,1,1] 1*-14+1*0+1*0+1*-15 -29 

 

 

 

Table 4 Objective value table for the case [“that”, “w”] 

Label Objective value Reduced 

[0,0] 0*13+0*-12 0 

[0,1] 0*13+1*-12+𝜆 -12+𝜆 

[1,0] 1*13+0*-12+𝜆 13+𝜆 

[1,1] 1*13+1*-12 1 

 

 

 



 

42 

 

On the other hand, we should not set 𝜆 too high. For example, [“that”, “w”], we 

enumerate the objective function value under different labeling situation in Table 4. The 

objective value of the ground truth is -12+𝜆. However, if we set the 𝜆 > 12, then the best 

prediction will be [0,0]. More analysis will be presented in the experiment section on how the 

parameter setting for 𝜆 will affect the final decision. 

The parameter 𝜆 should be larger than 0 to penalize the difference in consecutive labels. 

But, it should not be too large, so that it has more effect than the unary potential, leading to false 

negatives. From the statistics of negative log likelihood ratio – log(LR(ni)) in Figure 12, we can 

see that most of the false-negative samples causing the over split are with 0 value. The false 

negative means that they should be ME but predicted as NME, like the case in Table 3. While to 

avoid over-correction that label ME as NME illustrated by the case in Table 4, 𝜆 should be 

smaller than the absolute value of the true positive statistics in the first row. This parameter 

setting is in accordance with the general performance to be presented in the experiment section, 

where smaller 𝜆 leads to better performance. 

 

 

 

 

Figure 12 Statistics of the negative log-likelihood ratio for “10.1.1.6.2281_9 [103]” 
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II.4.3 Solver design 

The condition 𝑦𝑖 ∈ {0,  1} indicates the optimization as a mixed integer programming 

(MIP) problem. However, the absolute value lead to non-linearity. It is transformed in the 

following way: for each absolute value |𝑦𝑖 − 𝑦𝑖+1|, 𝑖 ∈ [1, 𝑁𝐿), two auxiliary variables 𝑧𝑖
+ and 

𝑧𝑖
− are introduced with the following constraint set 𝐶: 𝑧𝑖

+ + 𝑧𝑖
− = |𝑦𝑖 − 𝑦𝑖+1|, 𝑧𝑖

+ − 𝑧𝑖
− = 𝑦𝑖 −

𝑦𝑖+1, 𝑧𝑖
+, 𝑧𝑖

− ∈ {0,1}. Then the optimization goal is transformed into the following MIP problem: 

minimize 

𝑓(𝑦, 𝑧) = − ∑ log(LR(𝑛𝑖))𝑦𝑖 + 𝜆 ∑ (𝑧𝑖
+ + 𝑧𝑖

−)

𝑖∈[1,𝑁𝐿)𝑖∈[1,𝑁𝐿]

 

, subject to the constraint set 𝐶 and 𝑦𝑖 ∈ {0,  1}. 

II.5 Performance and analysis for ME extraction 

The dataset and the evaluation criteria will be introduced first. Then, the experiment 

settings for compared methods are presented. At last, I will show the performance statistics for 

the TSB, MRF-TSB model, and other comparison models, followed by some case studies. 

II.5.1 Dataset and evaluation criteria 

In this paper, the Marmot dataset and the criteria in [24] are used. The dataset contains 

400 papers with additional 1888 ME labeled in [104]. MEs in figures were mostly not labeled in 

the previous work. Thus also do not consider them in the evaluation process. The ME in caption 

and footnote are kept as the original ground truth. 
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Figure 13 The criteria for the performance evaluation of ME Extraction 

 

 

 

The evaluation is challenging given the possibility of only partial element extracted. All 

possible matching situation between the ground truth and the prediction is illustrated in Figure 

13. Given a set of ground truth ME 𝑀gt and a set of predicted ME 𝑀pd. First, an ME in 𝑀gt is 

missing if it does not overlap with any predicted MEs. For a predicted ME 𝑚pd could be one of 

the seven relations: Correct, Expanding, Merging, Partial, Split, Partial&Expanding(PAE), and 

False . Correct means fully are overlapping. Expanding (Exp) means that the 𝑚pd contains only 

one ground truth ME 𝑚gt, and expanding and merging (Mer) mean that 𝑚pd is equal the merge 

of multiple ground truth MEs. Partial and Split (Spl) mean the predicted ME is only partial of an 

ME 𝑚gt in ground truth, where the partial (Par) indicates only the predicted ME is contained in 

the 𝑚gt. The remaining overlapping situation is marked as PAE. In addition to the detail number 

in each matching category, three coarse level measurements are adopted: the miss rate 𝑟𝑚 =

#(𝑀𝑖𝑠)

#(𝑇𝑜𝑡𝑎𝑙)−#(𝐹𝑎𝑙)
, the false rate 𝑟𝑓 =

#(𝐹𝑎𝑙)

#(𝑇𝑜𝑡𝑎𝑙)−#(𝑀𝑖𝑠)
, and 𝐹1 =

2∗(1−𝑟𝑚)∗(1−𝑟𝑓)

(1−𝑟𝑚)+(1−𝑟𝑓)
, where #(𝑇𝑜𝑡𝑎𝑙) is 

the number of processed MEs in prediction or ground truth. 
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II.5.2 Experiment settings for comparison CRF based method 

The CRF based EME sequential labeling system [40] is used for comparison. Given the 

line, 𝐿 = {𝑛1, … , 𝑛𝑁𝐿
}, the desired label sequence of {“B”, “I”, “O”} need to maximize: 

𝑃𝛩(𝐲|𝐱) ∝ exp(∑(∑ 𝜆𝑗𝑓𝑗(𝑒𝑖)

𝑗

+ ∑ 𝜇𝑘𝑔𝑘(𝑛𝑖, 𝑦𝑖)

𝑘

)

𝑖

) 

The label “B” indicates the beginning of math, “I” for in math, and “O” for out of math. 𝑓𝑗(𝑒𝑖) is 

the j-th feature defined on the edge 𝑒𝑖 = (𝑦𝑖−1, 𝑦𝑖) and 𝑔𝑘(𝑛𝑖 , 𝑦𝑖) is the k-th feature define over 

the NSCS ni together with the label 𝑦𝑖. Features {𝑔𝑘} are the same with previous work except for 

the block feature covering the font, word, and character. Further, to avoid information inequality 

between the CRF based method and TSB/MRF-TSB, three features are added, including 

plaintext words, citations, and reference to figures and tables used in our TSB model. Since CRF 

is supervise training model, a 5-folder cross-validation is adopted. Python-CRFSuite toolkit 

[105] is used for training. 

II.5.3 Performance 

The TSB and MRF-TSB are compared against two state-of-the-art systems. Lin [24] is 

the baseline. TSB is the font-setting based Bayesian Model. The CRF1 is the same with [40], and 

CRF2 is enhanced with the features used in the TSB model. The performance at the macro-level 

is shown in Table 5. First, our TSB model outperforms the state-of-art method Lin for both the 

missing rate and false rate, corresponding to a 0.1 increase in the F1 score. Further, when the 

1888 ME samples that were identified in, the performance of earlier work may need to be 

adjusted. 
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Table 5 Coarse performance statistics for EME detection 

 𝑟𝑚 𝑟𝑓 F1  𝑟𝑚 𝑟𝑓 F1 

Lin 0.159 0.23 0.804 SEQ.5 0.0782 0.079 0.921 

FSM 0.083 0.089 0.916 SEQ1 0.0975 0.074 0.914 

CRF1 0.206 0.049 0.87 SEQ2 0.111 0.070 0.909 

CRF2 0.217 0.050 0.858     

 

 

 

The TSB model along also outperform the CRF model on the F1 measurement. CRF is 

with a lower false rate at the cost of high miss rate, which might be due to its sensitivity to 

training data. The Marmot data is randomly selected from Citeseerx and has more noise than the 

ACL repository in [40]. Adding the information in FSB model into the CRF model is not helpful, 

which will be explained in the following CRF case study. 

By extending the TSB model with sequential modeling, the MRF-TSB outperforms the 

baselines, TSB and CRF. The performance is high when the 𝜆 is set to a smaller value with the 

reason discussed in pthe arameter selection section. 

The most common false cases are the section numbers, reference to the equation and 

some plaintext words connected with bracket. A particular example is a file with square brackets 

surrounding the reference. As for the missing part, single char variables are the common cause. 

The capitalized variables are also confused with acronyms. 

Besides the miss rate and false rate, the over split issue is another principal target of this 

paper with the result shown in Table 6. The MRF-TSB model alleviates the over split problem 

by over 1/3 and reduces the false cases. When the parameter 𝜆 is set to a high value, it will have 

lower false and partial rate, at the cost of increased miss and expansion cases. 
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Table 6 Detail Performance statistics for EME detection 

 Cor Mis Fal Par Exp Pae Mer Spl 

TSB 4906 762 921 3091 841 580 1 4 

SEQ.5 4418 872 773 1887 2000 717 3 0 

SEQ1 4393 964 714 1820 1999 701 3 0 

SEQ2 4336 1088 664 1728 1996 684 3 0 

CRF1 4029 1981 396 1461 1605 559 3 0 

CRF2 4071 1945 404 1447 1605 570 3 0 

 

 

 

 

II.5.4 Case study for CRF model to show its drawback 

 

 

 

 

Figure 14 Example to show the fallacy of the CRF model, parts of this figure are adapted 

from 10.1.1.6.2308_3 in Marmot dataset [24] 

 

 

 

The CRF method has a high miss rate. The reason is explained using one case study 

shown in Figure 14. The ground truth is that “B” and “w” marked in the light blue background 

are mathematical notations. But they are not predicted as ME. We study the unary probability for 

the token “w” in Figure 15. Given the conflicting situation, the linear summation of the 

coefficient given the math label “B” (0.632) is smaller than the plaintext label “O” (2.87). The 

main contributing factors for this wrong prediction are a few general features: only contain 

letters, no Greek symbols, no math symbols. These global features are mostly reverse sufficient 

condition. Here, reverse sufficient means when the value switched, they are good sufficient 
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indicator. For example, if “greek=T,” i.e., there exist greek symbols, it is very likely that the 

NSCS is EME. But, no greek symbol “greek=F” in this case does not mean it will not be EME. 

 

 

 

 

Figure 15 The feature weight for CRF based EME identification  

 

 

 

 

Another issue is that the parameter is sensitive the training dataset. This case is in the fold 

3 experiment. The weight of “fontsuffix=CMTI10” is with low weight for “B” in comparison 

with “O,” which is not true for the parameter of the fold 1 experiment shown in top parameter 

weight. 

II.5.5 Computational cost 

The average execution time (Python code based) for one PDF page is decomposed as 

follows: 1.89 seconds for layout analysis, 2.25 seconds for heuristic rule matching and font 

statistics, 0.22 seconds for IME identification, and 0.12 seconds for EME identification. In 

comparison, the supervised machine learning methods would take about 1 second to predict a 

line, 10 seconds to predict a word. It took 12 and 763 seconds to train line and word classifiers, 

respectively. The enhanced MRF-TSB is slower because it will call an external MIP solver.  
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II.6 Conclusion 

In this section, two open problems in the extraction of ME are attacked and partially 

solved: the customized font usage and the EME-splitting problem due to the discrepancy 

between the physical layout units and semantic logical structure. The ME extraction is a complex 

task involving many processing steps for PDF parsing, document layout analysis and 

construction of resources. A weak supervised typesetting-based Bayesian (TSB) model is 

proposed first by leveraging on knowledge about the natural language, technical publication 

practice, and probabilistic models. The TSB model could adapt to the input PDF about the font 

usage based on elements extracted from heuristic rules. Then a Bayesian inference is conducted 

for each NSCS. Second, a Sequential EME extraction model is developed to incorporate the 

neighbor information during the decision-making. Results show that the TSB outperformance 

state of the art by 10% regarding missing and false rate. The sequential modeling can 

significantly reduce the over split issue, which is very important in the later stage of ME parsing. 

Both TSB model and MRF-EME model are explainable and easy to be interpreted and intervene. 
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CHAPTER III 

 CONTENT CONSTRAINED SPATIAL MODEL FOR ME LAYOUT ANALYSIS*  

 

III.1 Overview of the chapter for ME layout analysis 

Representing MEs at the semantic level is the basis for high-level task information 

retrieval [42], machine reading [106], and even auto-proofing [3]. ME could be treated as a type 

of visual language [107], and the semantics of MEs is manifested by both the particular values of 

the characters {𝑐𝑖} in an ME such as operators/alphabets and the ME layout as illustrated in 

Figure 16. The ME layout is a hierarchical grouping of the characters and the relative spatial 

relationships among blocks. It could be transformed into equivalent character-level dominance 

shown in Figure 16.b. This chapter focuses on recovering the ME layout from typesetting 

information in PDF, where the typesetting only contains the symbol value and their size/position.  

 

  

(a) Hierarchy of ME Layout (b) Character-level dominance 

Figure 16 Example of ME layout  

 

 

*Reprinted with permission from “A content-constrained spatial (CCS) model for layout 

analysis of mathematical expressions” by Wang, Xing and Liu, Jyh-Charn, 2017. Twelfth 

International Conference on Digital Information Management (ICDIM), Fukuoka, 2017, pp. 

334-339. Copyright 2017 IEEE.  
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The composition of MEs covers the following two aspects: the atomic building units of 

characters and the hierarchical spatial arrangement. First, the characters are the atomic building 

units of an ME. The character values are indicators of their semantics. Alphabets and Greeks are 

commonly used as variables and operations/relations are expressed by values such as summation, 

less than, etc. Some special character values are indicators to look for particular layout 

structures. For example, the accents, binding operators, and fraction line are indicators to look 

for the upper/under associated elements. The challenge from the first aspect is that the same 

character might have different semantic meanings and layout convention. Take ‘*’ sign in Figure 

19.b for example. When used as a binary operator, it is in a horizontal relationship with the left 

operand and the right operand. When used as identifier decorator, it is commonly placed at the 

superscript of an identifier. 

 

 

 

 

Figure 17 The challenge from the glyph of the characters 

 

 

 

 

Besides the meaning ambiguity for the same character, the glyph design also need to be 

normalized carefully to assess the relative spatial relationship. At each layer of the hierarchy, the 

characters are commonly arranged from left to right on several baselines, which could also be 

placed at the super/subscript and upper/under position for different decorative purposes. Smaller 

glyph sizes and a shift in vertical direction indicate being dominated such as sub/superscript or 
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under/over parts, playing decorative roles. But it is non-trivial to resolve the relative spatial 

relationship due to the difference in the glyph design, visual appearance and placement for each 

character as shown in Figure 17. Even with the same font size, the glyphs of some characters are 

designed smaller than others for ease of reading. For example, the character ‘i’ is higher than the 

character ‘n’ in function name ‘min’ in Figure 19.b. Although most of the alphabets, digits and 

Greek letter are aligned with the typographic reference lines, there are half of the mathematical 

operators (43% of all ME characters in [47]) not aligned with the reference line. It is difficult to 

estimate the baseline for the non-aligned characters directly. Further, there are special symbols 

that are usually small such as the punctuation and accent characters, and there are many big 

operator and fence characters with varying size. The varying and small size leads to the 

challenge in recovering the normalized height from the ascender line to descender line to judge 

whether two characters on the same baseline level based on the size. If not normalized, there will 

be significant overlapping in the distribution, limiting the upper bound of the discrimination 

performance shown in Figure 18. 

 

 

 

  

(a) Probability density function for HR (b) Probability density function for NVCD 

Figure 18 Degraded discrimination performance 
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(a) Left or right 
superscript 

(b) The scope of the 
under/upper 

(c) The scope of binding 
operations 

Figure 19 Examples to illustrate the ME layout and challenges, parts of the figure are 

adapted from Infty-CDB [47] 

 

 

 

Second, the characters are grouped into a hierarchical structure as illustrated in Figure 

16.a. The hierarchy origin from ME semantics from a top-down decomposition. Partial of the 

structure could be recovered based on symbol dominance of the binding operator/accent/fence or 

the matching of common practice such as the function “min.” But the loss of the grouping 

information leads to the ambiguity that one character could be interpreted to be affiliated with 

many neighbors. In Figure 19.a, the superscript “t” should be attached to the left operator “=” or 

the right variable “x.” In Figure 19.b, “1” could be interpreted as the under part of “=” or the left 

part of “≤.” In Figure 19.c, there are two consecutive summation binding operators, and the 

algorithm needs to make sure the “j” is grouped to the under parts of the second binding operator 

rather than the first one. Another challenge brought by the hierarchical structure is the 

degradation of feature discrimination ability. A common way to calculate features between 

blocks [64] is to use the whole block, but the whole block might not reflect the real baseline such 

as the “min” structure in Figure 19.b and the bind operators in Figure 19.c.  

Though there are only limited relationships types between blocks, the possible 

combination will explode when building the hierarchy bottom-up for many characters. Local 

greed approach [46], [45] face the challenge of error propagation especially when a 
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misprediction is inevitable based on the feature distribution as shown in Figure 18. On the other 

hand, the global inference faces the challenge high computational cost. The PCFG based method 

[64] has a complexity of 𝑂(𝑛3𝑙𝑔𝑛|𝑃|), where P is the set of derivation rules. Further, the method 

heavily depends on the grammar rules [64] or the symbol dominance rules [45] will fail when 

there is out of rule situation when the author develop their notation and layout system. 

Given the natural of intertwining between the semantic and layout, a content-constrained 

spatial (CCS) model is proposed to solve the challenges of the ME layout prediction. The 

following issues will be explored:  

• Formalize the typographic model and the recovery of the perceived normalized height 

and vertical center. 

• Enumerate the ME Layout hierarchy systematically and partially recovery structure based 

on character dominance and high confidence spatial relationships. 

• Design discriminative features capturing the long-distance dependency relationship and a 

parametric approximation for fast inference 

This chapter is organized as follows. Before going into details of the proposed method, 

the background knowledge about the typographic design and a few critical reference lines are 

introduced. Next, we present ME layout taxonomy, which is the basis of our divide-and-conquer 

approach. In the first phase, the rule-based approach will identify the partial ME Blocks based on 

the symbol dominance and high confident spatial analysis. In the second phase, a global 

inference model is proposed to identify the super/subscripts among horizontally arranging ME 

blocks. For the efficient inference of the best ME layout using the CCS model, a parametric 

approximation of the probability density function is developed for the features to discriminate 

the relative spatial relationship by modeling the relative sizing and shifting of the 
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super/subscripts. Experiment evaluation and analysis are conducted on the public InftyCDB 

dataset by the end. 

III.2 Typographic System 

The digital typographic system arranges the glyph of characters in 2D space. The 

perceived height and vertical center difference are very important for the baseline assessment. In 

this section, the reference lines to place characters will be introduced first. Then, categorization 

of characters based on the alignment to the reference lines is presented, together with the models 

to recover the perceived normalized height. 

III.2.1 Typographic lines 

In the typographic system, the glyph of characters is placed based on the five reference 

lines (RL) used in typography systems are illustrated in Figure 20. Most characters use the 

baseline as their anchoring level, upon which letters may extend downward (upward) to reach the 

descender (ascender) line. The midline is meant to be the middle point between the baseline and 

the ascender line, which is the upper boundary for characters such as “o.” The centerline is the 

midpoint between the descender and ascender line. 

 

 

 

 

Figure 20 The typographic reference lines 
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III.2.2 Categorization of characters and recovery of the normalized height 

When only considering the tight bounding box (bbox) of each character, one might get 

the wrong conclusion. For example, in Figure 20, “p” might be misidentified as the subscript of 

“H.” For this reason, it is necessary to recover the normalized height, or equivalently recover the 

ascender line and descender line from the tight bbox. Based on how the elements are aligned 

with the reference lines, the characters are organized based on their glyph as shown in Table 7.  

 

 

 

Table 7 Glyph types and categorized of the characters 

 

 

 

 

Given the five types for the glyphs, only the characters that are RL aligned or width 

stable as illustrated in Figure 21 could have their normalized height recovered reliably. Given a 

character 𝑐, denote 𝑦𝑐
𝑡, 𝑦𝑐

𝑏, 𝑥𝑐
𝑙 , and 𝑥𝑐

𝑟 as the top, bottom, left and right of the tight bounding box. 

For a character 𝑐 that is aligned with reference lines vertically, its ascender line 𝑐. 𝑎𝑠𝑐𝑒𝑛𝑑𝑒𝑟 is 

calculated as the 𝑦𝑐
𝑡 + ℎ𝑐

𝑡 × 𝑢𝑟𝑣, where ℎ𝑐
𝑡  is the tight height of character 𝑐 and 𝑢𝑟𝑣 is the ratio 

between the ascender line - glyph top gap 𝑐. 𝑎𝑠𝑐𝑒𝑛𝑑𝑒𝑟 − 𝑦𝑐
𝑡 and the tight height ℎ𝑐

𝑡 . Similarly, 
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the descender line is recovered as 𝑐. 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑟 as 𝑦𝑐
𝑏 − 𝑐. ℎ𝑡 × 𝑑𝑟𝑣. The ascender/descender 

line derivation for the narrow and width-stable characters is illustrated on the right of Figure 21. 

Though there are a few special characters having neither the normalized height nor vertical 

center, their semantics is a strong indicator of the possible layouts. For example, the punctuation 

is in horizontal with its right neighbor, and the prime symbols is attached as the right superscript. 

 

 

 

 

Figure 21 Recover the ascender/descender line and the normalized height for height stable 

or width stable characters 

 

 

 

The statistics in Figure 22 show the necessity of categorizing the characters based on 

their glyphs. The first two columns show the histogram statistics of the vertical adjustment ratio 

𝑢𝑟𝑣 and 𝑑𝑟𝑣 for height stable character “A” and varying size character “sum.” The second two 

columns show the horizontal adjustment ratio 𝑢𝑟ℎ and 𝑑𝑟ℎ for width stable character “-“ and 

speicial character “,.” From the statistics, the adjustment ratio for height stable and width stable 

characters are mostly concentrated in a small region near the peak, showing a distribution like a 

normal distribution. On the other side, the adjustment ratios for the varying size character 

summation shows two peaks. The horizontal adjustment ratio for the special characters, comma, 

show a scattered distribution cover a large value range. 
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Figure 22 Histogram of the vertical adjustment upper/under ratio for “A” and “sum” and 

horizontal adjustment upper/under ratio for “-“ and “,” 

 

 

 

In summary, after grouping the characters by their glyph type, the difference in the glyph 

design for different values are normalized. The characters, for which the normalized height and 

vertical center could be accurately recovered, are enumerated. The recovered normalized height 

and vertical center are the same as human readers perceive. These observations lay a solid 

foundation for the later stage of relative spatial relationship assessment. 

III.3 Hierarchical ME layout taxonomy 

As MEs are organized hierarchically, a complete enumeration of the possible ME layout 

structures is the guideline for a systematic solution for the ME layout recovery. In this section,  

the taxonomy for ME Layout and the common properties for the building blocks are elaborated.   
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III.3.1 ME layout taxonomy 

Different types of ME Blocks as the taxonomy of ME layout are presented using Unified 

Model Language (UML) in Figure 23. Each rectangle could be an interface if there is a 

description “<<interface>>” at the top or a class otherwise. The class name or interface is placed 

on the top, and the member variables and functions are listed in the following rows. Each row is 

in the format of “name: type,” and the parentheses in the name indicate that the line describes a 

function. The type after the colon of each row indicates the type of a member or the return type 

of a function. 

The ME Blocks are composed of atomic building units such as MESymbol and MEPath. 

The MESymbol covers all characters, including alphabets, Greeks, operation, relations, and 

accent. The MEPath are horizontal lines that play as fraction line or top line of a radical 

structure. Each MEBlock has its members, which are the MEBlocks being dominated. Next, the 

ME blocks are elaborated based on the processing sequence to be elaborated later. Firstly, the 

MEAccentBlock, MERadicalBlock, MEFractionBlock, MEBindVarBlock, and MEFenceBlock 

are structures that could be identified by the particular characters. The second groups of 

MEBlock are related to the vertical relationship, including the MESupSubBlock and MEUnder/ 

Upperblocks related with vertical under/upper relation. At last, the MEHorBlock, MESupBlock, 

and MESubBlock describe with horizontally arranged blocks.  
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Table 8 Illustration of ME blocks and the baseline character, parts of this table are adapted 

from InftyCDB [47] 

 

 

 

Besides, there are three types of intermediate MEBlock type. The UnorganizedBlockPath 

is generated in the beginning without any information about the relationship among the children 

ME blocks. The HS&SBlock might contain an MEBlock with both superscript and subscript, 

while an MEBlock could only have superscript or subscript in HS|SBlock. Examples of each 

type of ME Blocks could be found in Table 8. Note that there is a special MEBlock called 

EmptyBlock. It is used when the accent symbol did not see the expected base part, or the fence 

did not see the contained part, they should be filled with EmptyBlock. 
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Figure 24 Illustration of attacher and attached object, parts of this figure are adapted from 

InftyCDB [47] 

 

 

 

III.3.2 Common interface for ME layout blocks 

Besides these ME block classes and their members, their common interface will also be 

presented. The ME Object interface describes common functions about the geometric measures 

of the tight bounding box and height-adjusted bounding box. The tight bounding box is the 

minimal rectangle that contains all the pixels of glyphs. When the normalized height of a glyph 

could be estimated, the adjusted bounding box is obtained with the top and bottom aligned with 

the ascender and descender line. Extending ME Object interface, the MEBlock is an abstract 

interface about the common operations/properties that an ME layout structure could have. The 

interface is illustrated in Figure 24. 

• Children: The ability to access all the children is necessary as some transformations are 

recursively applied to all the children/descenders. For the base ME block “(−1)” in Figure 

24, it has a child ME Block which is of type MEHorBlock containing two MESymbol, “-” 

and “1.” 

• Attacher and attached object. These two concepts are essential to recover the attachment 

tree structure so that the evaluation could be done against the InftyCDB dataset [47]. An 
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example is given in Figure 24. There are two MEBlocks where the HorBlock “𝑗 + 1” is the 

superscript of the FenceBlock “(−1)”. When recovering the attachment tree is defined at 

the character level, the attacher object of the superscript MEBlock (character “𝑗”) is 

attached to the attached object of the base MEBlock (character “)”). 

• Baseline character is a very important concept to determine the relative spatial relation 

among MEBlock according to the height, baseline and center line. The baseline symbol for 

different types of ME Block is illustrated in Table 8.  

– For the fraction block, a fake MESymbol is created with value “/,” Its bounding box 

is the same size of the primary baseline character but shifted vertically to be 

centered at the fraction line. 

– The baseline symbol of an accent/radical/fence block is the same as the baseline 

symbol of the dominated block. 

– For binding variable blocks, the baseline symbol is the binding operator. 

– The baseline symbol of the UpperBlock, UnderBlock, and UpperUnderBlock is the 

baseline symbol of their baseMEBlock. 

III.4 Two-phase ME layout analysis architecture 

In this work, a two-phase architecture is proposed as shown in Figure 25. In the first 

phase, heuristic rules are applied to identify vertical, enclosed and some horizontal structures, so 

that the characters are organized into a hierarchical of horizontally arranged blocks. Then, in the 

second phase, the super/sub-script relationship for the horizontally arrange blocks of each layer 

in the hierarchy are resolved using the proposed global spatial inference model. As both phases 

use the character content either as constraints or clues for spatial relation identification, this 

model is named as content-constrained spatial (CCS) model. These two phases will be elaborated 
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in detail in the next two sections. One example will be given next to illustrate the processing and 

the rationality of the execution order. 

Figure 25 Two-phase ME layout analysis architecture, parts of this figure are adapted with 
permission from [108] 

For the example in Figure 16.a, an MESymbolBlock is created for each symbol (marked 

in grey dashed rectangles) and an MEPath for each horizontal vector graphic line in the 

beginning. The MESymbolBlocks and MEPaths together form an UnOrganizedBlockPath 

(UBP). The elements in UnOrganizedBlockPath will be processed sequentially in seven steps to 

identify the accent, radical, fraction, binding operators, both superscript and subscript, fence, and 

upper/under structures. After the above mentioned six steps of processing, the UBP is 

transformed into a hierarchy of horizontally arranged blocks. With each group of horizontally 

arranged blocks, the only possible relationships between the blocks are same baseline (HOR), 
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superscript (SUP), and subscript (SUB), which will be resolved through our Content-constrained 

spatial model to be explained in next section. 

The execution order does matter. Another execution sequence might lead to the wrong 

results. The accent structure processing is adopted as an example.  

 

 

 

 

Figure 26 Merging alphabetic MEHorBlocks after the accent analysis, parts of this figure 

are adapted from ME 28016825 in InftyCDB [47] 

 

 

 

First, identifying other structures first might hurt the accent structure. If the ‘merging 

consecutive alphabets’ procedure is executed before the identification of accent structure, the 

symbols dominated by accent and symbols not dominated by the accent might be merged such as 

‘h’ and ‘w’ in Figure 26. But only ‘h’ belongs to the accent structure. 

Second, identifying the accent structure first will not affect the identification of other 

structure. By the nature of the hierarchical structure, one character will be assigned to only one 

MEBlock in the hierarchy. And if by further assuming that the procedure to find the dominated 

blocks of MEAccentBlock is accurate. The way to prove that the accent identification does not 

hurt other ME structures is as follows: 1) the symbols not belonging to the accent block are not 

touched so that other structure will not have missing symbols. 2) the symbols belonging to the 

accent struct are all extracted so that they will not be assigned to other structures. 

Note that similar elaborations could be found for accent processing, radical, fraction and 

consecutive alphabetic HorBlock. There are a few rare cases where the accent symbols are not 
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used conventionally, which will violate our assumption above. As for the binding variable 

processing, both superscript and subscript, and general upper/under structure, the decision 

boundary for their vertical decorative parts is not clear. The evaluation section also confirms 

with this observation.  

III.5 Rule-based MEBlock identification 

The rule-based MEBlock identification targets at the recovery of MEBlocks with 

indicators, vertically stacked structures, and pre-merging of MEHorBlocks. It consists of 

sequential processing of seven steps shown to the left of Figure 25. The details of each 

processing will be given one by one. 

III.5.1 Accent Structure 

The accent processing is an iterative process described in Figure 28 and illustrated by the 

example in Figure 27. In each iteration, the smallest accent symbol is identified first, which does 

not contain other accent symbols horizontally. The list of accent values is predefined as: "acute", 

"grave", "hat", "tilde", "check", "breve", "overline", "dot", "ddot", "vec", "dddot", "underline", 

"underbrace". In this example, it is the smaller hat character 𝑐3 that is closer to 𝑦 in the first 

iteration. After the identification of the smallest accent symbol, 𝑐3, the iterativeExpand 

procedure in Figure 29 is used to find the blocks dominated by the accent symbol based on the 

following assumptions: 1) The elements dominated by the accent symbol overlap vertically; 2) 

The dominated blocks should be horizontally overlapping with the accent block. For the hat 

character 𝑐3, the dominated MEBlock is only the MESymbolBlock for 𝑐4 of value ‘y’. In the 

second iteration, the hat character 𝑐1 is identified and the dominated blocks includes the 

MESymbolBlock for open fence 𝑐2, the MEAccentBlock 𝑏1 constructed in previous iterathe tion, 

and the MESymbolBlock for the close fence 𝑐5. 
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Figure 27 Illustration of the iterative accent structure analysis, parts of this figure are 

adapted from ME 28008501 of InftyCDB [47] 

 

 

 

 

Figure 28 Accent structure processing 

 

 

 
Figure 29 Iterative expanding procedure 
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III.5.2 Pre-merging of consecutive alphabets on the same baseline 

Some consecutive alphabets placed in the horizontal line, such as the function names 

‘min’, should be merged before the vertical structure analyses. The normalized vertical center 

difference measurement is used to detect the characters in HOR relationship. The center line, 

instead of the baseline, is used for such analysis because there are more characters with estimable 

vertical center compared with the characters aligned with the reference lines to recover the 

baseline, shown in the typography knowledge section. In this work, two characters 𝑐𝑖 and 𝑐𝑗 are 

asserted to have the same center line based on the following criteria: 𝑔𝑖
𝑐 − 𝜂𝑖 ∗ 𝛼 < 𝑔𝑗

𝑐 < 𝑔𝑖
𝑐 +

𝜂𝑖 ∗ 𝛼, where 𝜂𝑖 and 𝑔𝑖
𝑐 are the normalized height and vertical center of the character 𝑐𝑖. This 

rule is valid subject to the condition HorByCenter, which requires 𝑐𝑖 with estimable normalized 

height 𝜂𝑖 and 𝑐𝑗 with estimable vertical center 𝑔𝑖
𝑐. 

 

 

 
 

(a) all pairs satisfying HorByCenter (b) alphabetic characters 

Figure 30 The tradeoff between the precision and recall for centerline-based analysis 

 

 

 

For the InftyCDB-I dataset [47], all pairs of characters that should lie on the same 

baseline are gathered first. The precision for the identified pairs lying on the same baseline is 
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drawn in blue curve against the threshold 𝛼 in Figure 30. The corresponding recall is in the 

dashed orange curve. When the threshold gets larger, more same baseline pair could be 

discovered, but the precision degrades very faster. The recall rate reaches a plateau of 0.6 after 

𝛼 > 0.2. The plateau is reached because of our rule is applied when the condition HorByCenter 

is satisfied. Though only covering 0.6 of all pairs, it is much better than alphabets pairs only, 

which only occupy about 26% of all pairs. This is very important for our later stage analysis of 

content-constraint HOR/SUB/SUP discrimination. When considering alphabets only, this rule 

could achieve a high precision and recall 0.97 at the same time as shown in Figure 30.b. 

III.5.3 Fraction 

The fraction processing procedure in Figure 31 is similar to the accent processing. The 

only difference is that, given an identified fraction line with the smallest horizontal span, the 

iterative expansion in Figure 29 should be conducted for both the upper and under part. 

 

 

 

 

Figure 31 Fraction structure processing 
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III.5.4 Big operator structure 

The binding operation processing here mainly refers to the binding operator with under 

and/or upper part as shown in Figure 32. If the scope of the binding operation is manifested as 

super/subscript, it will be processed in the later stage processing of both superscript and 

subscript. 

 

 

 

 
 

(a) Binding operator with under parts, 
ME 28008168 

(b) Binding operators with both upper 
and under parts, ME 28004533 

Figure 32 Example of big operator structures, parts of this figure are adapted from 

InftyCDB [47] 

 

 

 

The bind operation processing constructs a BindVarBlock for each big operator, together 

with the horizontally overlapping component as UBPs over and under it, such as the example in 

Figure 32.b. One particular situation is the consecutive binding operation with upper/under parts 

exceeding the horizontal range of the binding operator as the example in Figure 32.a shows. 

Currently, our solution is to treat the consecutive binding operator as a whole to discover the 

upper and under parts. Then the characters between the binding operators are segmented based 

on the largest gap, such as the gap between “1” and “j” in Figure 32.a. 
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III.5.5 Fence, matrix, piecewise processing 

The paired fences are strong indicators both at the layout level and the semantic level. At 

the layout level, the left fence symbol is in a horizontal relationship with its right direct 

neighbors and the right fence symbol. More beneficially, it could divide a long structure into 

smaller units, thus reducing the computation complexity. The fence characters considered in this 

work include parenthesis “()”, square bracket “[]”, curve bracket “{}”, and vertical bar “|.” Note 

that there might be nothing between the paired fence. 

After the identification of the paired fence, the content in the fence might be just one 

MEs or multiple MEs such as a matrix and a vertical vector. For the unmatched fence starting 

with curve bracket, it could be the piecewise ME with different values under different conditions. 

To detect the grid of elements in matrix or lines in the piecewise ME, projective-profile cutting 

technique is used to detect the vertical overlapping and horizontal overlapping region.  

III.5.6 Element with both superscript and subscript 

After the previous processing, an MEBlock might still be associated with both the super- 

and subscript components. Structures with both super and subscript are identified first to reduce 

the complexity for the super/subscript resolution. Both sup/sub structure identification run in 

iterations. In each iteration, UBP in the existing MEBlock hierarchy is recursively traversed and 

processed. Within each UBP, the first MEBlock 𝑠𝑏 are located with two direct right up or down 

MEBlocks 𝑠𝑢, 𝑠𝑑 that do not overlap vertically. The superscript parts 𝑠𝑢 is expanded with 

vertically overlapping MEBlocks on its right that does not overlapping with 𝑠𝑑. Similar 

processing is applied to the subscript part. Each expansion step will create an UBP, and together 

with the base MEBlock 𝑠𝑏, they will construct an SSB. The process terminates when no SSB can 

be generated from an iteration. 
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III.5.7 General Upper/Under 

 

 

 

 

  

(a) function decorator (b) Under accent decorator (c) Operator 
decorator 

Figure 33 The semantics related with upper/under structure, parts of this figure are 

adapted from InftyCDB [47] 

 

 

 

Example of general upper/under relationship is shown in Figure 33. The under and over 

parts might play as the decorator of the function, operators, or accent. The procedure to recover 

the upper/under structure is shown in Figure 34. It is an iterative procedure until there is no 

upper/under structure. First, among all sub MEblocks under 𝑚, an MEBlock 𝑚. 𝑚𝑏𝑠[𝑖] is 

identified to horizontally overlapping but not vertically overlapping with the next. Then, the 

upper and under part are expanded based on vertically overlapping. The next step will decide 

which part is the base and which is the decorator mainly based on two clues. The first clue is that 

some indicator such as function name or operator are the base part. The second clue is that the 

characters on the same baseline with the neighbors are the base part. If there are no special 

indicators, the default option is to choose the under part as the decorator. 
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Figure 34 General upper/under structure detection 

 

 

 

III.5.8 Performance of non-horizontal structure identification 

 

 

Table 9 Performance of Non-horizontal structure analysis 

 

 

 

 

The performance of non-horizontal structure identification is shown in Table 9. The 

performance for accent, fraction, and the binding operator is very accurate. There are still some 

errors in the identification of structure with both super- and sub-scripts. The recognition of 

general under/upper relation is still challenging due to the difficulty in identifying the right 

scoping of the multi-character variable/function names. 
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(a) Accent out of scope, 

ME 28019974 

(b) Failure of vertical 

expanding, ME 

28020343 

(c) Special accent usage, 

ME 28000643 

  
 

(d) Failure of the stop-

expanding condition 

for both sup and sub, 

ME 28020495 

(e) Minus sign on the 

superscript, ME 

28018421 

 

(f) Over shifting, ME 

28020198 

 

Figure 35 Cases study for the rule-based MEBlocks identification, parts of this figure are 

adapted from InftyCDB [47] 

 

 

 

The error for accent structure analysis is mainly in two aspects: the mismatch of the 

horizontal scope of the accent characters and the special usage of the accent characters. For the 

first aspect, the first situation is that some characters might not fall under the scope of the accent 

character as shown in Figure 35.a. The second situation is that the accent characters might be too 

large to overlap with others. For the second aspect, some accent is used standalone in the 

superscript in Figure 35.c. For fraction errors, the errors mainly happened during the expanding 

process as shown in Figure 35.b. For the binding operator, both superscript and subscript, and the 

general under/upper structure, the primary challenge is the uncertainty of their horizontal scope. 

There are no reliable clues on when to stop expanding. Further, the noise of the over shifting and 

the special glyph characters also affect the assessment of the relative position based on the 

overlapping of the bounding box from the vertical or horizontal direction, as shown in Figure 
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35.d and Figure 35.f. The big integral operator which slant to its right also cause the failure of 

the detection of both super- and sub-script structure. 

III.6 Global inference for super/subscript resolution 

After the rule-based ME layout structure identification, the characters of the ME are 

organized into a hierarchical structure of horizontally arranged ME blocks as shown in Figure 

36. The only relationships between characters left are the horizontal (HOR), superscript (SUP), 

subscript (SUB) or the stacking of these relationships. 

Existing works focused on the classification of HOR/SUP/SUB, but the error from local 

greedy decisions will propagate to neighbors. Further, the relationship between consecutive 

characters could be very complex beside the three relationships mentioned above, such as inverse 

superscript. To avoid the local error, a global inference is used for the analysis of the horizontally 

arranged MEblocks at each layer of the hierarchy. Then a probabilistic ranking that could cover 

the long-distance dependency is presented to find the candidate with the largest probability 

satisfying the constraints. 

 

 

 

 

Figure 36 Intermediate results after the rule-base ME layout structure analysis 
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III.6.1 Searching Space Enumeration

Formally, for a horizontal chain arranged blocks 𝐵 = {𝑏𝑖}, each possible horizontal 

layout structure could be described as an 𝑛 − 1 triples, 𝐿 = {⟨𝑖, 𝑖𝑝, 𝑟𝑖⟩}, where 𝑖 and 𝑖𝑝 are the 

index for ME blocks and 𝑟𝑖 ∈ {𝐻, 𝑆𝑈𝑃, 𝑆𝑈𝐵} is the relative position between the 𝑏𝑖 and its 

sibling 𝑏𝑖𝑝
. But not all such triples are valid horizontally layout, they should follow the four

axioms and the content-based constraints introduced below. After the possible constraints are 

elaborated, the enumeration procedure to generate the ME layout candidates is presented. 

It is assumed that there are no left super/subscript relationships. First, the left relationship 

is rare. A statistic over the InftyCDB dataset shows that there are only 12 MEs with left 

relationships out of 20K samples. Second, the left super/subscript could also be viewed as the 

right super/subscript if there is no global information, which could be handled by our existing 

procedure. Third, even if the left super/subscript is at the beginning, errors introduced is 

expected to be detected by our post checking modules, which is elaborate at the end of the 

experiment section. 

III.6.1.1 Four axioms and constraints

Figure 37 Four axioms about the layout of horizontally arranged ME blocks, 

reprinted with permission from [108] 
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The triples to describe horizontally arranged blocks satisfy four axioms based on writing 

convention as illustrated in Figure 37. 

• Axiom A1 (OneSibling): Each ME block 𝑏𝑗 can only be attached to one 𝑏𝑖 on its left, i.e., 

∀⟨𝑖, 𝑖𝑝𝑟⟩ ∈ 𝐿, 𝑖𝑝 < 𝑖. 

• Axiom A2 (OneSiblingRel): ∀𝑗 ∈ [1, 𝑛], 𝑟 ∈ {𝐻, 𝑆𝑈𝑃, 𝑆𝑈𝐵}, !∃𝑖 ≠ 𝑖′, ⟨𝑗, 𝑖, 𝑟⟩ ∈ 𝐿 ∧

⟨𝑗, 𝑖′, 𝑟⟩ ∈ 𝐿. 

• Axiom A3 (VerOverlap): Each ME block 𝑏𝑖 should vertically overlap with 𝑏𝑖𝑝
 based on 

the typesetting convention of superscript, subscript, or baseline. 

• Axiom A4 (NoSkipScript): If 𝑟 ∈ {𝑆𝑈𝑃, 𝑆𝑈𝐵}, then there are no other MEBlocks 

between the 𝑏𝑖 and 𝑏𝑖𝑝
 horizontally, i.e., 𝑖𝑝 = 𝑖 − 1. 

Besides these axioms, the constraints are summarized below based on the symbol 

dominance and spatial relationship: 

• A MESymbolBlock 𝑏𝑖containing a relation symbol or punctuation must be in a horizontal 

relationship with its right neighbor block 𝑏𝑖+1. 

• A MESymbolBlock 𝑏𝑖containing a relation symbol or punctuation must be in a horizontal 

relationship with one of its left neighbor blocks {𝑏1, … , 𝑏𝑖−1}. 

• Pairs of MEBlocks ⟨𝑏𝑖, 𝑏𝑗⟩ with their baseline characters 𝑐𝑖 and 𝑐𝑗 satisfying the same 

center-line checking should be in HOR relationship. 

The constraints mentioned above could all be represented as ⟨𝑖, [𝑗, 𝑘], 𝑡⟩, where 𝑏𝑖 is the 

ME block that triggers the constraint, the blocks {𝑏𝑗 , … , 𝑏𝑘} are constrainted. The constraint type 

𝑡 could be 𝐻𝑂𝑅𝑀𝑈𝑆𝑇 or 𝐻𝑂𝑅𝐸𝑋𝐼𝑆𝑇. 
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III.6.1.2 Enumeration Procedure 

 

 

Figure 38 Enumeration of the ME layout for horizontally arrange blocks 

 

 

 

 

Figure 39 Horizontal layout candidate enumeration 

 

 

 

The layout enumeration procedure in Figure 39 is design to find all possible layout 

among the blocks, where each layout could be formally represented as a triple set {⟨𝑖, 𝑖𝑝, 𝑟𝑖⟩}. The 
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input to the procedure is the MEBlocks 𝐵 = {𝑏1, … , 𝑏𝑛} to resovle the HOR/SUP/SUB 

relationship and the constraint set ℂ is generated by the rules in the previous section. The 

procedure starts with a combinatorial enumeration of range [1, 𝑛]. The index of the selected 

blocks, ℎ𝑐 = {𝑖1(= 1) < 𝑖2 < ⋯ < 𝑖𝐾 ≤ 𝑛}, are the blocks that lies on the main baseline, which 

will be tested through ConstrainSat(ℎ𝑐, ℂ) before further processing. For the example in Figure 

38, suppose that block 2 is a relation symbol, which must be in a horizontal relationship with its 

right neighbor and one of the elements in the left neighbor. This makes the ℎ𝑐 combinations {1}, 

{1,2}, and {1,3} invalid. Given one ℎ𝑐, there are sub ranges between the elements in ℎ𝑐. For each 

sub range [𝑖𝑘 + 1, 𝑖𝑘+1 − 1] with at least 1 element, a local constraint set ℂ′ is created and 

enumeration is conducted on the local subrange. The layout enumeration for each sub range 

SubLayoutCandsList𝑖 will be merged together through set production to create the full 

enumeration space SubLayoutCandProdSpace. For each possibility in the product space, each 

sub range will be shifted by its starting index, and the subrange will attach to the original 

sequence as either subscript or superscript component. For the example in Figure 38, if ℎ𝑐 = {1}, 

the enumeration will be applied on the range [2,3]. The layout candidates 23, 23, and 23 could 

be attached to the base block 1 as either superscript or subscript, resulting in a total of 6 

possibilities. 

The search space of possible layout candidates 𝐿(𝐵) for a 𝐵 with 𝑛 blocks is 𝛩(2𝑛). To 

reduce the labeling search space, a simple heuristic partition technique is proposed to split blocks 

into two set of blocks, {𝑏, … , 𝑏𝑚−1} and {𝑏𝑚, … , 𝑏𝑛}, where 𝑏𝑚 is the block with the largest 

height. Empirically it was found 98% of them were non-super/subscript and anchored on the 

same baseline as the first block. 
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III.6.2 Global probabilistic inference and features 

For each 𝐵 = {𝑏1, … , 𝑏𝑛}, the horizontal layout is found by optimizing: 

𝑎𝑟𝑔 𝑚𝑎𝑥𝐿∈𝕃(𝐵) ∏ 𝑃

𝑖<𝑗

(𝑂𝑖𝑗|𝑅𝐶𝑖𝑗
𝐿 ) 

where 𝕃(𝐵) is generated by the layout candidate enumeration procedure, and 𝑅𝐶𝑖𝑗
𝐿  is the relation 

chain between 𝑏𝑖 and 𝑏𝑗 under the horizontal layout 𝐿. The relation chain is constructured by 

finding the path between the blocks 𝑏𝑖 and 𝑏𝑗, {𝑖 = 𝑘1, … , 𝑘𝑚 = 𝑗} so that 𝑟𝑖 is appended to 𝑅𝐶𝑖𝑗
𝐿  

if ⟨𝑘𝑖 , 𝑘𝑖+1, 𝑟𝑖⟩ ∈ 𝐿 or 𝑅𝐸𝑉(𝑟𝑖) is appended to 𝑅𝐶𝑖𝑗
𝐿  if ⟨𝑘𝑖+1, 𝑘𝑖 , 𝑟𝑖⟩ ∈ 𝐿, where the 𝑅𝐸𝑉 denote the 

reverse of the spatial relation. For the example 𝑎𝑏𝑐, 𝑐 and 𝑎 are in relation chain of [𝑆𝑈𝑃, 𝑆𝑈𝐵].  

 

 

 

 

Figure 40 Features for inference of super/subscript 

 

 

 

As the only possible relationship between ME blocks are HOR/SUB/SUP after the rule-

based processing, two simple and powerful features are adopted here: the height ratio 𝛷𝑖𝑗 and the 

normalized vertical center different 𝛹𝑖𝑗 to capture the relative spatial relationship between 

MEBlock 𝑏𝑖 and 𝑏𝑗 as illustrated in Figure 40:𝛷𝑖𝑗 =
𝜂𝑗

𝜂𝑖
, 𝛹𝑖𝑗 =

𝑔𝑗
𝑐−𝑔𝑖

𝑐

𝜂𝑖
, 𝜂𝑖 and 𝑔𝑖

𝑐 are the 

normalized height and vertical center of the baseline character 𝑐𝑖 of MEBlock 𝑏𝑖. However, not 



 

81 

 

all character could reliably estimate the normalized height/vertical center. Based on the 

characteristics of the related characters: 

𝑃(𝑂𝑖𝑗|𝑅𝐶𝑖𝑗
𝐿 ) = {

𝑃(𝛷𝑖𝑗|𝑅𝐶𝑖𝑗
𝐿 )𝑃(𝛹𝑖𝑗|𝑅𝐶𝑖𝑗

𝐿 ) 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1

𝑃(𝛹𝑖𝑗|𝑅𝐶𝑖𝑗
𝐿 ) 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

, where 1) condition 1 is satisfied if the normalized height of both 𝑐𝑖 and 𝑐𝑗  could be 

estimated; 2) condition 2 is satisfied if the normalized height of 𝑐𝑖 could be estimated and 

only the vertical center of 𝑐𝑗  could be estimated. 

 

 

(a) Height ratio comparison for all pairs, alphabets pairs, and height-estimable pairs  

 

(b) Normalized vertical center difference distribution comparison for all pairs, alphabets 
pairs, and condition 2 

Figure 41 Feature distribution for different relations with/out filtering 
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The reasons to have different features based on the character values could be explained 

by Figure 41. For both HR and NVCD features, when only considering the alphabets pairs, the 

feature distributions for HOR/SUP/SUB show distinct patterns and rarely overlap. But when 

considering all pairs without differentiating the character values, there is quite a large area of 

overlapping, which will harm the classification or inference. When filter the character based on 

condition 1, the overlapping of the HR feature distribution for different spatial relationship below 

the value of 0.5 is gone. When filter the characters based on condition 2, the probability density 

function is even similar to that of the alphabets pairs. In summary, by applying the condition 1 

and condition 2 to filter based on character values, the discriminating power of the feature is 

improved, and more characters are covered in comparison with alphabets only. 

Note that the way 𝑃(𝑂𝑖𝑗|𝑅𝐶𝑖𝑗
𝐿 ) only depends on the character values 𝑐𝑖 and 𝑐𝑗. The 

number of multiplied items for ∏ 𝑃(𝑂𝑖𝑗|𝑅𝐶𝑖𝑗
𝐿 )𝑖<𝑗  will be the same, thus will not lead to the bias 

problem.  

III.6.3 Parametric modeling of Height ratio and Normalized vertical center difference (PHN) 

The global inference formation is powerful to capture the long-distance dependency. 

However, for practical purpose, it is necessary to efficiently calculate the likelihood of the HR 

feature 𝑃(𝛷𝑖𝑗|𝑅𝐶𝑖𝑗
𝐿 ) and the likelihood of the NVCD feature 𝑃(𝛹𝑖𝑗|𝑅𝐶𝑖𝑗

𝐿 ). The challenge for the 

likelihood estimation comes from the varieties of possible relation chains. One possible solution 

is based on simulation and non-parametric density estimation as shown in Figure 42. The 

probability density functions of the feature for the smaller sub relation chains 𝑅𝐶𝑖𝑘
𝐿  and 𝑅𝐶𝑘𝑗

𝐿  will 

be used to generate samples randomly to calculate the feature value 𝜙𝑖𝑗 and 𝜓𝑖𝑗 for larger 

relation chains 𝑅𝐶𝑖𝑗
𝐿 . Then all the generate samples {𝜙𝑖𝑗} and {𝜓𝑖𝑗} are feed into the non-
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parametric kernel density estimation to get �̂� (𝛷𝑖𝑗|𝑅𝐶𝑖𝑗
𝐿 ) and �̂� (𝛹𝑖𝑗|𝑅𝐶𝑖𝑗

𝐿 ). But this way is

computational inefficient. 

Ground 
Truth

Samples CDF Sampling

PDF

r.v. algebra

1 2

6

3

45

Figure 42 Non-parametric estimation of the likelihood, reprinted with permission 
from [108] 

(a) Subscript example (b) lognormal distribution of the character height 

Figure 43 Relative sizing and baseline shifting of super/subscript 

An approximate Parametric model of Height ratio and Normalized vertical center 

difference (PHN) model is proposed to overcome the computational cost of the non-parametric 

density estimation,. The approximation model is based on two observation: the lognormality of 

the height of characters (in Figure 43.b) and the relative sizing and shifting of the 

super/subscripts (in Figure 43.a). Given these two assumptions, the HR and NVCD features are 

found to conform with lognormal distribution through linear transformations. 
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III.6.3.1 Relative size and baseline shifting of superscript and subscript 

Based on the description in [109], the size and baseline of the super/subscript could be 

modeled relatively concerning the base characters as illustrated in Figure 43.a. The first group of 

parameters is related to the characters 𝑐𝑖 in a PDF file: 

• 𝑦𝑖
𝑐, 𝑦𝑖

𝑏, and 𝑦𝑖
𝑑 denote the theoretical center position, the baseline, and the descender line, 

respectively of 𝑐𝑖. The random variable (r.v.) g denotes the corresponding observed value 

of 𝑦, e.g., 𝑔𝑖
𝑐 denotes the observed center position. 

• ℎ𝑖 represents the normalized theoretical height for the difference between the ascender 

line and the descender line. The r.v. 𝜂𝑖 denotes the observed ℎ𝑖. Histograms (in blue) as 

well as the fitted lognormal probability density curve (in red) on the height for glyphs of 

character values ‘a’ and ‘Y’ in InftyCDB-1 are plotted in Figure 43.b. The figures suggest 

that the normalized height could be approximated as a lognormal distribution skewed to 

the left, i.e., 𝜂𝑖 ∼ ℒ(𝜇𝑖, 𝜎𝑖
2), where 𝜇𝑖 = 𝑙𝑜𝑔 (ℎ𝑖) and 𝜎𝑖 are related to the glyph design of 

𝑐𝑖. 

Other needed parameters are related to the document preparation system [109]: 

• 𝛿𝑆𝑈𝐵/𝛿𝑆𝑈𝑃: The drop-off and the raise-up ratio of the baseline of SUB/SUP. 𝛿𝐻𝑂𝑅 = 0. 

• 𝜃𝑏: The ratio of the baseline-descender difference (𝑦𝑖
𝑏 − 𝑦𝑖

𝑑) with respect to ℎ𝑖. 

• 𝛾𝑆𝑈𝐵/𝑆𝑈𝑃: The ratio of the theoretical normalized height of SUB/SUP w.r.t the 

normalized height of the base character. 𝛾𝐻𝑂𝑅 = 1. 

• When a character 𝑐𝑗 is the SUB/SUP of 𝑐𝑖, there baseline difference 𝑑𝑖,𝑗
𝑏 = 𝑦𝑗

𝑏 − 𝑦𝑖
𝑏 =

𝛿#ℎ𝑖, and ℎ𝑗 = 𝛾#ℎ𝑖, where the relation # ∈ {𝑆𝑈𝐵, 𝑆𝑈𝑃}. 
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Table 10 Parameter estimation of the RSBS 

 𝛿𝑆𝑈𝑃 𝛿𝑆𝑈𝐵  𝜃𝑏 𝛾𝑆𝑈𝐵 𝛾𝑆𝑈𝑃 

Mean 0.434 -0.192 0.206 0.7 0.7 

Std. 0.065 0.07 0.05 0.126 0.106 

 

 

 

Different document processing systems use different parameters in the rendering of the 

super/subscript [109]. Assuming the ME are produced using the same document preparation 

system, the parameter estimation for InftyCDB-I dataset [47] is shown in Table 10. Note that 

𝛾𝑆𝑈𝐵 and 𝛾𝑆𝑈𝑃 appeared to be consistent with the setting of the Latex system and 𝛿𝑆𝑈𝑃 and 𝛿𝑆𝑈𝐵 

does not match any of the parameters reported in the literature. 

The only left parameter is the standard derivation for the lognormal distribution of the 

observed normalized height for each font size. We build a toy document with five paragraphs of 

the font size 8, 9, 10, 11, and 12, to gain some insights on the relation between the estimated 

standard derivation and mean of the lognormal distribution. However, no apparent linear 

relationship could be observed based on the mean and std. 𝜎𝑖 of the lognormal distributions. As 

such, the median value is taken the lognormal std. for each character value in InftyCDB-I 

dataset, which is 0.097, for 𝜎𝑖 of all characters.   

III.6.3.2 Overview of the parametric derivation of 𝑷(𝜱𝒊𝒋|𝑹𝑪𝒊𝒋
𝑳 ) and 𝑷(𝜳𝒊𝒋|𝑹𝑪𝒊𝒋

𝑳 ) 

With the knowledge about the typography system and the relative sizing and baseline 

shift for the super/subscripts, the process to derive the approximate probability density function 

of the feature HR and NVCD for a pair of character (𝑐𝑖, 𝑐𝑗) with a relation chain 𝑅𝐶𝑖,𝑗 =

{𝑅𝐶𝑖,𝑗,𝑘}𝑘=1,…,𝐾𝑖𝑗
 is illustrated in Figure 44. 
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Figure 44 Outline for the inference process for the PHN model 

 

 

 

Succinctly put, the height ratio Φ𝑖𝑗 conforms to lognormal distribution because the height 

of each character is assumed to follow lognormal distribution and the ratio of lognormal 

distribution is still a lognormal distribution. The NVCD Ψ𝑖𝑗 also follows lognormal distribution 

because it could be expressed as a linear transformation to the height ratio feature approximately. 

The constant factor and the relative baseline shift are derived from the RSBS parameters given 

the relation chain 𝑅𝐶𝑖𝑗. As such, the likelihood of both features could be calculated efficiently.  

III.6.3.3 Derivation of the likelihood of height ratio 𝑷(𝜱𝒊𝒋|𝑹𝑪𝒊𝒋
𝑳 ) 

HR for the pair (𝑐𝑖 , 𝑐𝑗) is defined as 𝛷𝑖,𝑗 = 𝜂𝑗/𝜂𝑖. Given the r.v. of the observed 

normalized height of 𝑐𝑖, 𝜂𝑖 ∼ ℒ(𝜇𝑖, 𝜎𝑖
2), and the normalized height of the second character 𝜂𝑗 ∼

ℒ(𝜇𝑗, 𝜎𝑗
2), we have 𝑙𝑜𝑔(𝜂𝑖) ∼ 𝒩(𝜇𝑖, 𝜎𝑖

2) and 𝑙𝑜𝑔 (𝜂𝑗) ∼ 𝒩(𝜇𝑗, 𝜎𝑗
2). The scripted notation ℒ and 

𝒩 indicates the lognormal distribution and the normal distribution respectively. By the definition 

of 𝛷𝑖,𝑗, 𝑙𝑜𝑔 (𝛷𝑖,𝑗) = 𝑙𝑜𝑔 (𝜂𝑗) − 𝑙𝑜𝑔 (𝜂𝑖). Knowing that addition of 2 normal distributions 

produces another normal distribution with the mean and variance as the sum of the two original 

distributions, 𝑙𝑜𝑔 (𝛷𝑖,𝑗) = 𝒩(𝜇𝑗 − 𝜇𝑖 , 𝜎𝑖
2 + 𝜎𝑗

2) or 𝛷𝑖,𝑗 ∼ ℒ(𝜇𝑗 − 𝜇𝑖 , 𝜎𝑖
2 + 𝜎𝑗

2). 
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As elaborated in the parameter estimation section, the same variance is chosen for all 

characters. For the mean difference 𝜇𝑗 − 𝜇𝑖, the simple case of a character 𝑐𝑖 and its parent 𝑐𝑖𝑝
 

with parential relationship 𝑟𝑖 is considered first. Then, the result is generalized to the case where 

the characters 𝑐𝑖 and 𝑐𝑗 satisfy relation chain 𝑅𝐶𝑖𝑗. 

Given a relation label 𝑟𝑖 between 𝑐𝑖 and its parent 𝑐𝑖𝑝
, ℎ𝑖 = 𝛾𝑟𝑖

ℎ𝑖𝑝
 from the RSBS model, 

where 𝛾𝑟𝑖
 denotes the HR of 𝑐𝑖 and 𝑐𝑖𝑝

 . By plugging in ℎ𝑖 = 𝑒𝑥𝑝 (𝜇𝑖), 𝑒𝜇𝑖 = 𝑒
𝜇𝑖𝑝 ∗ 𝛾𝑟𝑖

 , or 𝜇𝑖 −

𝜇𝑖𝑝
= 𝑙𝑜𝑔 (𝛾𝑟𝑖

) . This also implies that the mean of distribution for HR 𝛷𝑖𝑝,𝑖 should only be tied 

to the RSBS parameter 𝑙𝑜𝑔 𝛿𝑟𝑖
. 

Next, the distribution derivation for 𝑐𝑖 and 𝑐𝑗 satisfying relation chain 𝑅𝐶𝑖𝑗 is elaborated. 

For convenience, the index sequence of the characters on 𝑅𝐶𝑖𝑗 is {𝕚𝑖,𝑗,1 = 𝑖, … , 𝕚𝑖,𝑗,𝐾𝑖𝑗+1 = 𝑗}, 

where ⟨𝕚𝑖,𝑗,𝑘+1, 𝕚𝑖,𝑗,𝑘, 𝑅𝐶𝑖,𝑗,𝑘⟩ ∈ 𝐻𝐿 or ⟨𝕚𝑖,𝑗,𝑘, 𝕚𝑖,𝑗,𝑘+1, 𝑅𝐸𝑉(𝑅𝐶𝑖,𝑗,𝑘)⟩ ∈ 𝐻𝐿. Then,  

𝜇𝑗 − 𝜇𝑖 = 𝜇𝕚𝑖,𝑗,𝐾𝑖𝑗+1
− 𝜇𝕚𝑖,𝑗,1

= ∑ 𝜇𝕚𝑖,𝑗,𝑘+1
− 𝜇𝕚𝑖,𝑗,𝑘

𝐾𝑖𝑗

𝑘=1

 

. By the fact that 𝜇𝕚𝑖,𝑗,𝑘+1
− 𝜇𝕚𝑖,𝑗,𝑘

= 𝑙𝑜𝑔 (𝛾𝑅𝐶𝑖,𝑗,𝑘
) for 𝑐𝕚𝑖,𝑗,𝑘

 as the parent of 𝑐𝕚𝑖,𝑗,𝑘+1
 with relation 

𝑅𝐶𝑖,𝑗,𝑘, we would have 

𝜇𝑗 − 𝜇𝑖 = ∑ 𝑙

𝐾𝑖𝑗

𝑘=1

𝑜𝑔 (𝛾𝑅𝐶𝑖,𝑗,𝑘
) 

, which implies that: 

𝛷𝑖,𝑗 ∼ ℒ(∑ log(𝛾𝑅𝐶𝑖,𝑗,𝑘
)

𝐾𝑖𝑗

𝑘=1

, 𝜎𝑖
2 + 𝜎𝑗

2) 
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III.6.3.4 Derivation of the likelihood of normalized vertical center difference 𝑷(𝜱𝒊𝒋|𝑹𝑪𝒊𝒋
𝑳 ) 

The NVCD feature for (𝑐𝑖, 𝑐𝑗) is defined as 𝛹𝑖,𝑗 = (𝑔𝑗
𝑐 − 𝑔𝑖

𝑐)/𝜂𝑖. From the RSBS model, 

we have 𝑦𝑖
𝑐 = 𝑦𝑖

𝑏 − ℎ𝑖𝜃𝑏 + ℎ𝑖/2. By replacing the theoretical ‘ℎ/𝑦’ in to observation random 

variable ‘𝜂/𝑔’, and assuming the observed baseline 𝑔𝑖
𝑏 = 𝑦𝑖

𝑏, an approximation heuristic rule is 

obtained that 𝑔𝑖
𝑐 ≈ 𝑦𝑖

𝑏 − 𝜂𝑖𝜃𝑏 + 𝜂𝑖/2 when ℎ𝑖 is replaced by 𝜂𝑖. Then, 

𝛹𝑖,𝑗 ≈
(𝑦𝑗

𝑏 − 𝜂𝑗𝜃𝑏 +
𝜂𝑗

2 ) − (𝑦𝑖
𝑏 − 𝜂𝑖𝜃𝑏 +

𝜂𝑖

2 )

𝜂𝑖
 

          =
𝑦𝑗

𝑏 − 𝑦𝑖
𝑏

𝜂𝑖
+ (𝜃𝑏 − 0.5) + (0.5 − 𝜃𝑏)𝛷𝑖,𝑗 

A further approximation is taken that ((𝑦𝑗
𝑏 − 𝑦𝑖

𝑏)) ⁄ 𝜂𝑖 ≈ (𝑦𝑗
𝑏 − 𝑦𝑖

𝑏)/ℎ𝑖. Then, 𝛹𝑖,𝑗 is 

decomposed into three parts: the relative baseline shifting (𝑦𝑗
𝑏 − 𝑦𝑖

𝑏)/ℎ𝑖, a constant related to the 

baseline-descender ratio (𝜃𝑏 − 0.5), and the weighted HR (0.5 − 𝜃𝑏)𝛷𝑖,𝑗. The only unknown is 

the relative baseline shifting (𝑦𝑗
𝑏 − 𝑦𝑖

𝑏)/ℎ𝑖, which will be denoted as 𝜌𝑖,𝑗 in the following 

discussion. After estimation of the first two factors, 𝛷𝑖,𝑗 is a linear function of r.v. HR by a 

constant factor, which needs to be derived based on the relation chain 𝑅𝐶𝑖,𝑗 and the RSBS 

parameters. The observed value of the NVCD feature 𝛹𝑖,𝑗 could be shifted and rescaled so that 

the following value conforms to the lognormal distribution of 𝛷𝑖,𝑗: 

(𝛹𝑖,𝑗 − 𝜌𝑖,𝑗 + (0.5 − 𝜃𝑏)) ⁄ ((0.5 − 𝜃𝑏)) 

Next, let us discuss the inference of 𝜌𝑖,𝑗. Similar to the parameter estimation of HR, we 

also start with the pair of character 𝑐𝑖 and its parent 𝑐𝑖𝑝
 in relation 𝑟𝑖. Then, the analysis is 

expanded to 𝑅𝐶𝑖𝑗. When 𝑟𝑖 ∈ {𝑆𝑈𝐵, 𝑆𝑈𝑃, 𝐻𝑂𝑅}, 𝑦𝑖
𝑏 − 𝑦𝑖𝑝

𝑏 = 𝛿𝑟𝑖
ℎ𝑖𝑝

 from the RSBS model, i.e., 

𝜌𝑖𝑝,𝑖 = 𝜌(𝑟𝑖) = 𝛿𝑟𝑖
, where the notation 𝜌(⋅) is valid only for pairs with a parental relationship. 
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Through a few algebra steps, we get 𝜌(𝑅𝐸𝑉𝑆𝑈𝑃) = −1/(𝛾𝑆𝑈𝑃𝛿𝑆𝑈𝑃) and 𝜌(𝑅𝐸𝑉𝑆𝑈𝐵) =

1/(𝛾𝑆𝑈𝐵𝛿𝑆𝑈𝐵). Then for 𝑟𝑖 we get 

𝛹𝑖𝑝,𝑖 = 𝜌(𝑟𝑖) + (𝜃𝑏 − 0.5) + (0.5 − 𝜃𝑏)𝛷𝑖𝑝,𝑖 

When extending to 𝑅𝐶𝑖𝑗, 

(𝑦𝑗
𝑏 − 𝑦𝑖

𝑏)/ℎ𝑖 = ∑
𝑦𝕚𝑖,𝑗,𝑘+1

𝑏 − 𝑦𝕚𝑖,𝑗,𝑘

𝑏

ℎ𝑖

𝐾𝑖𝑗

𝑘=1

= ∑
ℎ𝕚𝑖,𝑗,𝑘

𝜌(𝑅𝐶𝑖,𝑗,𝑘)

ℎ𝑖

𝐾𝑖𝑗

𝑘=1

= ∑ 𝛤𝑖𝑘

𝐾𝑖𝑗

𝑘=1

𝜌(𝑅𝐶𝑖,𝑗,𝑘), 

where 

𝛤𝑖𝑘 = ∏ ℎ𝕚𝑖,𝑗,𝑚+1

𝑘−1

𝑚=1

/ℎ𝕚𝑖,𝑗,𝑚
= ∏ 𝛾𝑅𝐶𝑖,𝑗,𝑚

𝑘−1

𝑚=1

. 

The second step and the inference of 𝛤𝑖𝑘 is due to 𝑐𝕚𝑖,𝑗,𝑘
 is the parent of 𝑐𝕚𝑖,𝑗,𝑘+1

 with 

relation 𝑅𝐶𝑖,𝑗,𝑘. Then, 

𝛹𝑖,𝑗 = ∑ 𝛤𝑖𝑘

𝐾𝑖𝑗

𝑘=1

𝜌(𝑅𝐶𝑖,𝑗,𝑘) + (𝜃𝑏 − 0.5) + (0.5 − 𝜃𝑏)𝛷𝑖,𝑗 

III.6.3.5 Probability density function in the joint space of HR and NVCD 

The PHN has an analytical form for inference the PDF of any relation chain. As shown in 

Figure 45, 11 relations are enumerated for the toy example, “𝑎𝑏𝑑
𝑐
𝑑𝑓ℎ

𝑔”. Due to the space limit of 

the figure, H/U/D stands for HOR/SUP/SUB and R prefix indicate a reverse relation. The figure 

shows the distribution for one-hop relations [H, U, D, RU, RD], two-hop relations [U-U, U-D, 

D-U, D-D], tri-hop relation [RU-H-D] between “b” and “f”, and quad-hop relation “RU-H-D-U” 

between “b” and “g”. In the joint space of HR&NVCD, the simplest relation chain could be 

discriminated well. However, the “RU-H-D-U” in yellow overlaps a lot with “D-D” in blue-

green showing the challenge to discriminate the stacking of super/subscript relations. 
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Figure 45 The likelihood for each relation chain in HR&NVCD joint space 

 

 

III.7 ME layout analysis experiment and results 

III.7.1 Dataset and evaluation criteria 

InftyCDB-I [47] is a database of 20,767 mathematical expressions extracted from 476 

pages of 30 English articles. The ground truth of each character in InftyCDB-I is described by id, 

name, bounding box, the parent id, and the relative relationship with its parent. The layout for 

one ME is represented as a set of triples {⟨𝑖, 𝑖𝑝, 𝑟𝑖⟩}, where each triple ⟨𝑖, 𝑖𝑝, 𝑟𝑖⟩ indicates that 𝑐𝑖 is 

dominated by its parent 𝑐𝑖𝑝
 by relationship 𝑟𝑖. The relative spatial relationship has 8 possibilities 

as illustrated in Figure 46.  

 

 

Figure 46 The relationship among ME symbols in InftyCDB 
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Both the ground truth ME layout 𝐿𝑀𝐸
𝐺𝐷 , and the predicted ME layout 𝐿𝑀𝐸

𝑝𝑟𝑒𝑑
, are represented 

by 𝐿𝑀𝐸 = {𝑇𝑖}, where 𝑇𝑖 = ⟨𝑖, 𝑖𝑝, 𝑟𝑖⟩ denotes that the character 𝑐𝑖 is in relation 𝑟𝑖 with the parent 

𝑐𝑖𝑝
. The reconstructed ME layouts are used for the character height normalization, non-

horizontal structure evaluation, and the global parameter estimation. Evaluation of the ME layout 

recognition was conducted at 1) the character-level about the parent and relative relation, 2) the 

whole ME, and 3) the tree structure edit distance of MathML. 

• The character-level F1 score is defined as F1=2*Precision*Recall/(Precision+Recall), 

where Precision = |TP|/ (|TP|+|FP|), and Recall= |TP|/(|TP| +|FN|). 𝑇𝑖 ∈ 𝐿𝑀𝐸
𝑝𝑟𝑒𝑑

 is a true 

positive (TP) if 𝑇𝑖 ∈ 𝐿𝑀𝐸
𝐺𝐷  also, otherwise a false positive (FP). 𝑇𝑖 is a false negative (FN) 

if it is in 𝐿𝑀𝐸
𝐺𝐷  but not in 𝐿𝑀𝐸

𝑝𝑟𝑒𝑑
. 

• For exact ME-level matching, an ML is correctly labeled if 𝐿𝑀𝐸
𝐺𝐷 = 𝐿𝑀𝐸

𝑝𝑟𝑒𝑑
. 

• Besides the exact ME-level matching, the EMERS [110] is adopted to compare the 

performance of CCS-PHN against that of the two-dimensional stochastic parsing [64]. 

EMERS is defined over the presentational MathML [9] tree to capture the edit distance 

between two trees. The edit distance offers more detailed information about false 

predictions than other performance measures. 

There is another public dataset [111] which only contains LaTeX and the automated 

generated PDF files. However, it is hard to evaluate the recognition performance based on the 

Latex or the rendered images. LaTeX is a representation language, but the same ME layout could 

be written in different LaTeX code. Figure 47 shows the ground truth and the predicted Latex 

code by our system as well as the rendered ME. Though both LaTeX codes render the same, they 

have a considerable edit distance of 182. On the other side, any minor error in the LaTeX code 
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might cause significant changes in the whole 2D layout structure. Given the reason above, only 

the InftyCDB-I dataset is used for the evaluation of ME layout prediction. 

 

 

(a) Rendered ME 

ds^{2} = (1 - {qcos\theta\over r})^{2\over 1 + \alpha^{2}} 
\lbrace dr^2+r^2d\theta^2+r^2sin^2\theta d\varphi^2\rbrace  
-{dt^2\over  (1 - {qcos\theta\over r})^{2\over 1 + \alpha^{2}}}\, .\label{eq:sps1} 

(b) The ground truth LaTeX value 

{d {s}^{{2}} = {( {1 - \frac{{q {c o s} \theta}}{{r}}} )}^{{\frac{{2}}{{1 + {\alpha}^{{2}}}}}}  
\{ {d {r}^{{2}} + {r}^{{2}} d {\theta}^{{2}} + {r}^{{2}} {{s i n}}^{{2}} \theta d {\phi}^{{2}}} \}  
- \frac{{d {t}^{{2}}}}{{{( {1 - \frac{{q {c o s} \theta}}{{r}}} )}^{{\frac{{2}}{{1 + {\alpha}^{{2}}}}}}}} .} 

(c) The predicted LaTeX value 

Figure 47 Example to show fallacy to evaluate using edit distance of LaTeX 

 

 

III.7.2 ME layout prediction evaluation at the character level 

For character-level evaluation, the overall F1 score is 0.975. By taking a further look into 

the details as shown in Figure 48, it appears that the F1 score is ME length dependent, as 

expected. When the ME length is shorter than 60, the F1 score is mostly higher than 0.95. The 

score fluctuates significantly once the length becomes longer than 60. The sub-optimal heuristics 

in the handling of a large number of the non-horizontal structure might cause the fluctuating 

performance. 
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Figure 48 The performance of F1 score vs. the number of characters in MEs 

 

 

III.7.3 ME layout prediction evaluation by exact matching 

The ME level evaluation tests the correctness of labeling for a full ME. Some earlier 

work reported in [46] achieved the accuracy of 38% for the hand-written dataset UW-III. As for 

printed ME recognition, Okamoto [112] reported the correct ratio as 96.83% based on results 

tested for 3000 MEs. However, their dataset is limited only containing papers from one journal 

where the fonts are constrained. On the other hand, our algorithm achieved the accuracy of 

89.6% on the InftyCDB-I dataset, which consists of over 20,000 MEs extracted from 13 journals. 

III.7.4 ME layout prediction evaluation by EMERS tree edit distance 

Presentational MathML (PML) is another common way to describe the layout structure of 

MEs in a tree structure. However, the same ME could be represented by different MathML 

structures. EMERS, which stands for Evaluation of Mathematical Expression Recognition 

System, is the first attempt to normalize the difference among MathML trees using tree edit 

distance as a way to measure the quality of the recognition. Though EMERS tries to normalize 

the ME, there are still many situations not covered. As a result, cross-comparison between 

different methods may not be as consistent as based on other measures. For example in Figure 

49, the ME 28000767 in InftyCDB is 𝐵𝛼 with the character 𝐵 as the parent of 𝛼. But there might 
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be different PMLs for this simple ME. The ground truth MathML for 𝐵𝛼 is shown on the left, 

while the MathML generated by our procedure is shown on the right. Though they are expressed 

the same ME from the view of the layout, their MathML representations are not exact the same. 

The converted MathML is with extra root ‘mathml’ tag and without the extra ‘mrow’ tag. 

 

 

 

 

Figure 49 Example of the flexibility of the presentational MathML 

 

 

 

 

Figure 50 ME-level evaluation using MathML representation 

 

 

 

Table 11 ME-level evaluation using the EMERS edit distance on MathML 

HC length 2-7 8-14 15-21 >22 overall 

Case Ratio 69.5% 21.0% 7.3% 2.1% 100% 

2DPCFG [64] 0.8±1.5 2.6±3.1 4.1±4.2 8.4±9.3 2.3±3.8 

GT-PD 1.0±1.1 2.5±1.9 4.0±2.8 5.8±3.4 1.6± 1.9 

CT-PD 0.14±0.6 0.6±1.5 1.1±2.1 1.4±2.3 0.3±1.1 
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Regardless, to gain some insights on PHN’s performance at this level, a pipeline designed 

is shown in Figure 50 to evaluate the conformance of our prediction versus the ground truth as 

well as studying the effect of our MathML generation utility on the EMERS score. The parent-

child relationship from our CCS-PHN model is converted to “Pred MathML.” 

The result is shown in Table 11. The first evaluation is between “Pred MathML” and the 

ground truth MathML provided by the InftyCDB. The result is shown in the row “GT-PD.” The 

‘GT-PD’ is using the same evaluation protocol as the Alvero’s 2D PCFG method [64]. Our 

Method achieves smaller edit distance and smaller standard derivation, especially for the longer 

MEs, showing the advantage of the global modeling. We further create the “Converted 

MathML” ground truth directly from the parent-child relationship ground truth to reduce the 

discrepancy between our MathML generation procedure with that of the InftyCDB. The 

evaluation between the Prediction “Pred MathML” and the “Converted MathML” ground truth is 

show in the row “CT-PD” of the performance table. In comparison with “GT-PD,” the average 

edit distance is further reduced by more than 1, which is due to that our procedure consistently 

have one root node of ‘mathml’ while the ground truth does not have it. 

III.7.5 Post Checking 

The results of the rule-based processing show that the vertical structure identification 

performance still needs improvement. The error in the rule-based stage will propagate to the next 

stage, causing cascading errors. It would be helpful to have a self-checking mechanism so that 

human intervention could step in when necessary. There is one way for post-checking to identify 

whether the predicted ME layout is correct. Based on the analysis in the per-merging of 

consecutive alphabets, the center line analysis is a very reliable feature to decide whether two 
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characters satisfying the condition HorByCenter are on the same baseline. In Figure 30, almost 

all pairs of alphabets on the same baseline are covered, when the threshold 𝛼 > 0.3. This is in 

accordance with the statistics on the NVCD features. For pairs of alphabetic characters on the 

same baseline, the mean value and std value of NVCD feature are 0.0004 and 0.09, respectively. 

The 3𝜎 is rougly corresponding to 0.3 as elaborated above. This means for a pair of characters 

predicted to be on the same baseline, but their NVCD feature is larger than 3𝜎, it is identified as 

a wrong prediction. After the checking, there are about 730 MEs identified that could not pass 

the test. And after the filtering, the F1 score is increase from 0.971 to 0.983. 

III.7.6 Execution Speed 

Being a parametric model with an analytical form of the density function, PHN is much 

faster than its non-parametric counterpart. Figure 51 shows the average execution time in log 

scale concerning the number of characters in an ME. The splitting threshold was set to be 10, 

which clamps down the growth of the computing cost. On the other hand, the running time for 

the non-parametric method (shown in the orange curve) is about 12 seconds for an ME with eight 

characters. The F1 score loss by switching from the non-parametric model to the PHN model is 

negligible. 
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Figure 51 Speed performance comparison 

 

 

 

III.8 Conclusion of CCS-PHN model 

This chapter presents a systematical analysis of the ME layout analysis covering the 

typography design, common writing practice, and a global inference model with parametric 

approximation PHN. The refined analysis of the typography design improved the discriminating 

ability of the features and acting as the basis for pre-mering and post checking. PHN can 

efficiently estimate the probability distribution of the HR and NVCD features for pairs of 

characters satisfying any chain of relations, thus enable global inference. The proposed content-

constrained spatial model outperforms the state-of-art system under multiple evaluation criteria 

with low computational cost.  
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CHAPTER IV  

ME SEMANTICS ANALYSIS 

 

IV.1 Overview of the chapter 

The ME layout analysis only specifies the attachment and relative position among 

characters. However, the hierarchical grouping/segmentation and the meaning of the hierarchical 

structure is not understood, which is the scope of the semantic analysis. The recovery of ME 

semantics is vital because this is the level that humans perceive the MEs. Experiments have 

shown that the semantic level ME could improve the performance of mathematical information 

retrieval [42]. Besides, the symbolic computing, auto proving [3], code generation all require the 

ME to be at the semantic level. However, there are three levels of challenges: 

• One character could have multiple meanings due to the mathematical dialect. The character 

“|” could mean absolute value or carnality of a set. “𝛥” could be used as the difference 

operator or a variable. “d” could be a variable or the prefix of the integral target variable. 

• There exists ambiguity in the grouping of characters for the correct order of execution. For 

example, ∑ 𝑥𝑖𝑖 + ∑ 𝑦𝑗𝑗  could be interpreted as (∑ 𝑥𝑖𝑖 ) + (∑ 𝑦𝑗𝑗 ) or ∑ (𝑖 𝑥𝑖 + ∑ 𝑦𝑗𝑗 ). 

• The same spatial relationship could have different meanings: 

– The superscript could mean indexing, notation, exponent, derivation, or inverse 

function. 

– Consecutive alphabets could mean multiple-character variable, notation, or 

multiplication without an operator. 

– There might be multiple ways to group the elements. 
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In this work, the semantic taxonomy of ME is presented, which provides a standard 

guideline for the parsing. Second, the probabilistic context-free grammar framework is adopted 

to resolve the scoping ambiguity of the hierarchical structure. Further, two of the challenges 

mentioned above will be attacked, i.e., consecutive alphabets disambiguation and superscript 

semantics. For consecutive alphabets, the normalized pointwise mutual information (NPMI) is 

used to identify multi-character identifiers based on the frequency of their occurrence. Heuristic 

rules are proposed to resolve the superscript semantics ambiguity. By the end, the ME semantic 

parsing system is evaluated at multiple datasets.  

IV.2 ME semantic taxonomy 

In the ME layout section, some introduced MEBlocks already have semantic meanings. 

In this section, we go beyond the ME layout and present the semantic taxonomy of ME. ME 

semantics are at the human-level concepts, such as triangle functions, exponent, integral, etc. 

Using the content MathML [9] and OpenMath [55] as the references, a semantic taxonomy of 

ME is summarized. A portion of the ME taxonomy for the atomic expression is illustrated in 

Figure 52. For every ME, they have the interface as specified in the abstract class ‘Expression’ to 

access the equivalence, containing relationship, retrieval all the children, and convert to Content 

MathML, Latex, or operator tree. The ME objects are organized into atomic ME Expression and 

compounded ME Expression. The simple ME could be an identifier, modified identifier, constant 

number, each including different members. The common compounded ME includes relation 

expression, function application expression, and the bind var expression. Besides the atomic 

expression package, and the compounded expression package, in the appendix, there are other 

domain-specific packages for domains such as calculus, set theory, functional analysis, logic, 

number theory, probability. 
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Figure 53 Conversion among different standard 

 

 

 

Our ME semantic taxonomy can cover all the concepts mentioned in the official content 

dictionary of OpenMath Standard [55] as of Aug. 2018. One advantage of our ME semantic 

taxonomy data structure is that common operations could be defined as the function shown in the 

Expression class. The conversion between different standards is illustrated in Figure 53.  

• The conversion from typesetting, Latex, and Presentational MathML (PMML) to parsing 

tree is the target of this chapter.  

• There is a bi-direction conversion between the parsing tree and the target ME semantics 

taxonomy.  

• The conversion from the parsing tree to the ME object in the semantic taxonomy is the 

parsing process while the creation of the parsing tree from the ME object is for the 

training of PCFG parser.  
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• The conversion from PMML to Content MathML (CMML) is realized by the LateXML 

tool. An eXtensible Stylesheet Language Transfomer (XSLT) is adapted to convert 

PMML to Latex during the evaluation.  

• The OpenMath is connected to some other standard as a cross-checking. 

IV.3 The parsing algorithm and ambiguities resolution 

 

 

Figure 54 ME semantics parsing pipeline 

 

 

 

The framework to parse the ME semantics is shown in Figure 54. In this work, the 

Probabilistic Context-Free Grammar framework is adopted. For the situation with ambiguity, 

two mechanisms are proposed to resolve them. First, for the multi-character element, the NPMI 

is used measurement to merge them first. Second, the operator hierarchy is resolved during the 

PCFG parsing process. At last, the layout structure with multiple meanings is resolved during the 



 

103 

 

abstract syntax tree transformation process. Context-sensitive rules will be triggered based on the 

type of element generated. 

IV.3.1 Consecutive alphabets ambiguity resolution 

The consecutive characters could be multi-character variable/notation/function or 

multiplication omitting the operators. If it is a structure omitting the multiplication operators, the 

subcomponents will also occur in combination with other symbols. A co-occurrence 

measurement is likely to differentiate between the two situations. In this work, the normalized 

pointwise mutual information (NPMI) [113] is used: 

𝑁𝑃𝑀𝐼(𝑥, 𝑦) =
𝑃𝑀𝐼(𝑥, 𝑦)

ℎ(𝑥, 𝑦)
, 𝑃𝑀𝐼(𝑥, 𝑦) = log

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
 

, where ℎ(𝑥, 𝑦) = − log 𝑝(𝑥, 𝑦). The NPMI has a value of -1 if 𝑥 and 𝑦 never co-occur together, 

0 for independent, and 1 for complete co-occurrence. In this work, the 𝑁𝑃𝑀𝐼∗ is calculated as 

the maximum NPMI score by separating the string 𝑠 of size 𝑛 into two parts. 

𝑁𝑃𝑀𝐼∗ = 𝑚𝑎𝑥𝑖∈[1,𝑛−1]𝑁𝑃𝑀𝐼(𝑠[1: 𝑖], 𝑠[𝑖 + 1, 𝑛]) 

By applying it to one of the test files, the multi-character elements, as well as their 

substring, are found with high 𝑁𝑃𝑀𝐼∗ score for the aggieSTEM test case in Table 12. There are 

only three noise situations for “mgh,” “rnet,” and “MR,” when the 𝑁𝑃𝑀𝐼∗ is larger than 0.3. But 

their frequency is low. In this work, after manually setting the 𝑁𝑃𝑀𝐼∗ threshold as 0.3 and the 

frequency threshold as 3. Most of the usage for multiple-character identifier are recovered, 

including “net,” “KE,” “PE,” and “rot.” 
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Table 12 NPMI score & frequency for the AggieSTEM test case 

Token 𝑁𝑃𝑀𝐼∗ Frequency Token 𝑁𝑃𝑀𝐼∗ Frequency 

mgh 1.000 2 tran 1.000 2 

grav 1.000 2 trans 1.000 2 

ne 0.975 29 net 0.975 29 

KE 0.915 21 rans 0.869 2 

gh 0.869 2 ans 0.763 2 

gra 0.738 2 PE 0.615 5 

et 0.585 29 MR 0.556 2 

rne 0.495 2 rnet 0.495 2 

OE 0.449 1 rot 0.427 8 

ro 0.427 8 tra 0.425 2 

ot 0.392 8 rav 0.377 2 

mg 0.377 2 ran 0.351 2 

ns 0.246 2 mr 0.245 12 

gr 0.184 2 ML 0.167 2 

ma 0.128 5 mv 0.017 2 

av -0.067 2 an -0.093 2 

rF -0.130 3 ra -0.148 4 

rn -0.202 2 at -0.286 2 

Fr -0.289 1 tr -0.395 2 

 

 

IV.3.2 Probabilistic Context Free Grammar 

After the layout of an ME is identified, the next task is to create a hierarchical grouping 

of the symbols or multi-character tokens corresponding to semantic ME object. The way human 

creates sentences or MEs could be described as grammars, which consist of terminal tokens, 

internal states, the target states, and production rules. Though the context is essential, it will lead 

to computational infeasibility. When the context-free assumption is introduced, a dynamic 

programming CYK algorithm [114] is available to generate the syntactic structure in polynomial 
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time. Given the probability for each production rules, each possible syntactic structure for a 

sentence/ME would be associated with a probability to rank the likelihood. In this section, the 

PCFG for ME parsing is introduced in a bottom-up fashion. 

IV.3.2.1 Terminal tokens 

The characters, multi-character tokens, and the spatial relationships are mapped to 

terminal tokens in the grammar as shown in Table 13. The alphanumeric and Greek characters 

are mapped to a corresponding token. They are not mapped to identifier directly as some of them 

might be physical unit. They could also be merged as a multi-character function or variable. The 

digits are not pre-merged because there are production rules for integer/float number. The 

‘Operation’, ‘Big Operator’, and ‘Named function’ group are operators. The relation symbols are 

group into general relation, number relation and distributed into the token set for each domain. 

The punctuation and fence symbols also carry important meanings. The spatial token 

corresponds to the relative spatial relationship among blocks. Special notations for the set theory, 

logic and calculus are also covered. A complete list of terminal tokens and the explanation could 

be found in the appendix.  

 

Table 13 Terminal tokens of the PCFG for ME semantic parsing 

Group description Group Description 

Symbol Groups  Greeks, 
Alphanumeric 

Fence (), [], {}, ⌈ ⌉, etc.  

Operations +, -, ×, ⊕, etc.  Spatial  SUB_OPEN, SUB_CLOSE, etc.  

Big Operators ∑, ∏, ∐, etc.   Set ∈, ∪, etc.  

General relations =, ≡, ≠, etc. Logic ∀, ∧, etc.  

Numerical relation <, ≤ Calculus 𝜕, ∫  

Punctuation ∙, ∗, ′, !, :, etc.  Misc.  Other assistant tokens 

 



 

106 

 

IV.3.2.2 Internal states 

The internal states are grouped as shown in Table 14 and Table 15. First, the characters 

are mapped to the general categories such as DIGIT, GREEK, and ALPHABET. They could also 

be merged as NUMBERs, UNITS, or NAMED_FUNC. For the operator and relations, they are 

grouped based on the priority of execution based on the production rules. Each spatial structure 

has corresponding elements. Fence also play important roles in the ME scoping and semantics. 

At last, these basic units are built into a hierarchical structure, ranging from FACTOR, TERM, 

EXP, REL_EXP, and ME. The state token ME is the target root state of the PCFG representing a 

mathematical expression. 

IV.3.2.3 Production rule and probability 

The production rules for different types of ME are manually constructed. Only parts of 

the rules and the associated probability are shown in Table 16. An expression (EXP) is an ME 

object with numerical values. It could be a TERM which denotes the result of multiplication, or 

the plus/minus of multiple TERMs. As shown in the probability, a large portion (>97%) of the 

EXP is composed of merely one TERM. Addition fence could be applied to enforce the 

evaluation order. But they are rare in our training data gathered from Arxiv. The EXP could be 

chained into a list of expression, i.e., EXP_LIST, which is used in vector, set, etc. A complete 

grammar of the production rules could be found in the appendix. 

 

 

 

 

 



 

107 

 

Table 14 Internal states of the PCFG for ME semantic parsing 

Symbols  
  
  
  
  
  
  
  

  SCI_NUM_FACTOR     Scientific format float  

  GREEK     Greek characters  

  DIGIT     Digits  

  ALPHABET     Alphabets  

  ALPHABET_SEQ     Alphabetic string  

  NUM_FACTOR     Number  

  INT_NUM_FACTOR     Integer  

  FLOAT_NUM_FACTOR     Float  

Op/Rel  
  
  
  
  
  
  
  
  
  

  ARITHM_OP_LEVEL1     Null  

  ARITHM_OP_LEVEL2     TODO: multiply and division  

  ARITHM_OP_LEVEL3     TODO: plus  

  SET_OP_LEVEL1     set operation  

  DEF     :=  

  SINGLE_OP     operator expect one argument  

  QUANTIFIER     logic quantifier  

  REL_OP     relation  

  REL_OP_SET_LEVEL1     relation of set  

  REL_OP_ARITHM_LEVEL1     relation of numbers  

Function  
  
  
  
  
  

  NAMED_FUNC     common function such as lim, min 

  USER_FUNC   
  user-defined function composed of 
alphabets  

  BIG_OP     big operator such as sum, prod 

  FUNC     a function  

  FUNC_DELC     declaration of the function  

  DENOTATION     denotation of one symbol as others  

Physics  
  

  CUNIT     compounded physical unit  

  UNIT     physical unit  

Spatial  
  
  
  
  
  
  

  SUB_SUP_FACTOR     factor with both sub/superscript  

  SUB_FACTOR     factor with subscript  

  SUP_FACTOR     factor with superscript  

  OVER_EXP     over parts  

  SUB_EXP     subscript  

  SUP_EXP     superscript  

  UNDER_EXP     under parts  
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Table 15 Internal states of the PCFG for ME semantic parsing (Cont.) 

ME Object    VARSYM     a variable denotation by a character  

    REL_OP_EXP     to form relation  

    EXT_REL_EXP_LIST     to form a list of relation expression  

    PUNCT_COMMA_REL_EXP     to form a list of relation expression  

    EXT_TERM     to form exp  

    EXT_FACTOR     to form term  

    MUL_OP_FACTOR     to form term  

    BIG_OP_SUB_EXP_1     big operator with subscript  

    VAR     a variable  

    EXP_LIST     to form expression list  

    EXT_EXP_LIST     to form expression list  

    PUNCT_COMMA_EXP     to form expression list  

    ME     the root node  

    EXP     such as a+b  

    REL_EXP     relation expression  

    REL_EXP_LIST     a list of relation expression  

    TERM     such as a*b  

    FACTOR     factor  

    NORM_FACTOR     Norm Fence  

    SET_FACTOR     Set  

    ETC_FACTOR     etc ... in set  

    BIG_OP_FACTOR     big operator factor  

Fence    VEC_FENCE_OPEN | CLOSE   Open, close fence for vector  

    FENCE_ARG_OPEN | CLOSE   open (, close ) for the function arguments  

    FENCE_OPEN_RANGE_OPEN     begin of open interval  

    FENCE_OPEN_RANGE_CLOSE     end of open interval  

    FENCE_CLOSE_RANGE_OPEN     begin of closed interval  

    FENCE_CLOSE_RANGE_CLOSE     end of close interval  

    FENCE_MATRIX_OPEN | CLOSE   begin of a matrix structure  

    FENCE_GROUP_OPEN |CLOSE   open (, close ) to enforce execution order  

    FENCE_SET_OPEN|CLOSE     begin of set mark \{  , \} 

    FENCE_CASE_OPEN     indicator of piecewise ME  

    FENCE_ABS_OR_CARD_OPEN     vertical bar as abs or carnality  

    FENCE_ABS_OR_CARD_CLOSE     vertical bar as abs or carnality  

    FENCE_NORM_OPEN |CLOSE    double vertical bar as norm  

    PR_OPEN_FENCE     open ( for the probability  

    PR_CLOSE_FENCE     close ) for the probability  

    COND_SET_FENCE     vertical bar in the conditional probability  
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Table 16 Production rules and the probability 

Rule Probability 

EXP -> TERM 0.974 

EXP -> TERM, EXT_TERM 0.0218 

EXP -> BRACKET_OPEN, EXP, BRACKET_CLOSE 0.0003 

EXP -> SQ_BRACKET_OPEN, EXP, SQ_BRACKET_CLOSE 0.0003 

EXP -> GROUP_OPEN, EXP, GROUP_CLOSE 0.0003 

EXP -> TERM, UNIT 0.0003 

EXP_LIST -> EXP, EXT_EXP_LIST 0.909 

EXT_EXP_LIST -> PUNCT_COMMA_EXP 0.612 

EXT_EXP_LIST -> PUNCT_COMMA_EXP, EXT_EXP_LIST 0.388 

PUNCT_COMMA_EXP -> PUNCT_COMMA, EXP 1.0 

 

 

IV.3.2.4 Training and inference 

As the production rules, terminals, and states are manually enumerated, the training phase 

for the PCFG is only to estimate the probability of each rule. Given the property that the sum of 

probability of all productions rules with the same left-hand side (LHS) equals 1, the probability 

of a rule 𝑟 is estimated as: 

𝑃(𝑟) =
𝑓 (𝑟)

∑ 𝑓𝑟′.𝑙ℎ𝑠=𝑟.𝑙ℎ𝑠 (𝑟′)
 

The notation 𝑓 (𝑟) indicates the normalized frequency of the production rule 𝑟. Let 𝑓(𝑟) denote 

the frequency of the production rule 𝑟. Then, 

𝑓 (𝑟) = {

𝑓(𝑟) 𝑖𝑓𝑓(𝑟) > 0

0.1
𝑚𝑖𝑛{𝑓(𝑟′): 𝑓(𝑟′) > 0, 𝑟′. 𝑙ℎ𝑠 = 𝑟. 𝑙ℎ𝑠}

|{𝑟′: 𝑓(𝑟′) = 0, 𝑟′. 𝑙ℎ𝑠 = 𝑟. 𝑙ℎ𝑠}|
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The second rule means the 0-frequency rules are normalized based on the minimal non-zero 

frequency rule with the same lhs. The ‘frequency’ is first reduced by a 0.1 factor and then further 
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reduced by the number of the zero-frequency rule with the same lhs. In this way, the 

normalization will not give too much weight for the zero-frequency rules. 

Parsing tree data at the ME semantic level is precious. However, there is not such a data 

available. First, the MEs are mostly represented in Latex, Presentation MathML, Content 

MathML. A conversion is needed from these formats into a parsing tree representation. Second, 

different parsing system might use different rules. The converter must be customized based on 

target parsing system. This is also common for Natural language processing, where the Brown 

PoS tagging dataset use the coarse level, while the Penn Tree dataset uses fine level tagging 

[101]. In this work, 43245 MEs from 100 Arxiv papers are processed using LateXML [32]. The 

output XMath internal format is converted into our semantic taxonomy. Then, based on a 

customized converter, the ME objects are converted into all possible parsing trees by our 

manually constructed rules. Production rules are collected from each parsing tree for the raw 

frequency statistics. 

For the inference, a dynamic programming approach in NLTK is adopted. Given a 

sequence of terminal tokens, it will return a list of parsing trees together and the probability in 

descending order w.r.t the probability. 

IV.3.3 ME objects generation 

Given the abstract syntax tree (AST) is built from the PCFG parsing system, a reclusive 

procedure to construct the ME Object. Most of the rules simply return one of the elements 

corresponding to the right states. For each terminal token, a ‘Symbol’ object is created. Most 

rules are designed to have unique interpretation. For example, the rule ‘UNIT-> 

M_LOW_TEXT’ will create a unit object uniquely. But there are few cases that ambiguity might 

be introduced. Special attentions are paid to the superscript function classification as exponent, 
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index, or function operator. The following heuristics are proposed to resolve the actual intent of a 

superscript based on the context, neighbor and object type: 

• function operator: if the superscript is a constant number with value -1 

• exponential function: if the super component is a ConstantNumber, if the base expression is 

a complex expression such as the Fence Expression or FunctionApplicationExpression 

• a super identifier: if the base expression is a Symbol, Identifier, SubIdentifier 

 

IV.4 Experiment and Result Analysis 

The dataset/ data sources used for evaluated ME semantics understanding are first 

introduced. Then the evaluation criteria and the performance of recognition are presented.  

IV.4.1 Dataset collection 

For our data collection purposed, similar with [115], [116], an extension to the LaTeX is 

proposed so that the semantic and the scoping are enforced without any ambiguity. The special 

tags for the STeX is illustrated in Table 17. The annotation interface is illustrated in Figure 55. 

The image for the ME and the current semantic representation in the indented string format is 

shown in the first two row. A user could input the correction in STeX format and then click 

check to show the parsed the semantic representation in the last text area.  
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Figure 55 The interface for the annotation of the ME semantics in STeX 

 

 

 

Table 17 Extended LaTeX tags to annotate the ME semantics 

Alphanumeric Var, Func, Const, Unit, Token, 

ConsecutiveMulitiply, ConsecuiveNotation,  

DeltaDiff, DeltaVar, 

MinusSym, NegSym 

Superscript SupIndex, SupNotation, SupExp, SupTranspose, SupFuncInv, SupFuncDiff 

Fence Open/CloseParArg, Open/CloseParGroup,  

Open/CloseSqVec, Open/CloseSqIndex, 

BarAbs, BarNorm 
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IV.4.2 Evaluation criteria and ME semantics recognition performance 

 

 

 

Table 18 The performance for ME semantic analysis 

Method Total Number Exact Match # Operator Tree Edit Distance 

  AggieSTEM  

LateXML 283 169 3.76 ± 5.85 

MECA-PCFG  175 2.597 ± 4 

MECA-PCFG+MER  185 2.13 ± 3.62 

  Geo Simulation  

LateXML 38 4 19.39 ± 22.13 

MECA-PCFG  8 7.08 ± 9.39 

MECA-PCFG+MER  8 7.08 ± 9.39 

 

 

 

The evaluation will be at the exact matching level and edit distance on the operator tree 

level based on the tree edit distance [117]. The performance for ME semantics analysis for the 

AggieSTEM physics chapter and a Geographical simulation model is shown in Table 18. 

There are 283 MEs collected for the AggieSTEM chapter. For the simple MEs such as 

identifier or identifier with super/subscript or accent, both LateXML and MECA-PCFG parser 

handles them well. But the MECA-PCFG is a bit better in the exact matching and with 

significantly smaller operator tree edit distance. The smaller operator tree edit-distance shows 

that the MECA-PCFG is better at capturing partial structure. But for the identifier with multiple 

characters, both systems could not correctly merge them. With pre-merging, ten more MEs are 

correctly identified, and the average operator tree edit distance is reduced by 0.4. 
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As for the other geographical simulation modeling paper, only the large IMEs are 

collected to test the performance of the system on complex MEs. The average number of 

characters within an ME in the LaTeX format is 89, with a standard derivation of 55. Six MEs 

that LateXML failed to process are removed to avoid bias in the comparison. For these large 

MEs, neither system is good at fully recover the ME semantics. But our MECA-PCFG is a bit 

better. The pre-merger does not help a lot because the consecutive notations or variables are rare 

in the study sample. From the view of the operator tree edit distance, our MECA-PCFG gives 

much smaller edit distance in comparison with the LateXML. 

IV.5 Conclusion for ME-semantics parsing 

In this chapter, a three-phase PCGF based parser is proposed for ME semantics 

understanding to systematically resolve the ambiguities at three levels: symbol tokenization, 

hierarchical structure recovery, and AST interpretation. With pre-merging according to the 

NPMI score, multiple-character identifiers are per-merged. A heuristic rule-based superscript 

interpreter is adopted to create different ME Object accordingly. On a preliminary dataset with 

semantics annotation, the experiment shows that our ME semantics outperform the state-of-art 

system LateXML. The performance improvement is significant for large MEs.  

Note that we only provide a framework for the ME semantics parsing. More modules 

could be easily added as extensions to make the parser more powerful. For example, in the 

tokenization phase, classifiers could be built to decide: whether the vertical bar as absolute value 

or carnality; whether 𝛥 as a variable or a function; whether d/D mean differentiation or a 

variable. At the last stage of ME object construction, the type of each Identifier or Notation could 

be inferenced according to the context and some global statistics. Further, the OpenMath 
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provides paired the representational MathML and the Content MathML. It is worthwhile to 

evaluate the ME semantics parsing performance on it.  
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CHAPTER V 

DECLARATION EXTRACTION AND MIXED WORD-ME PROCESSING 

 

V.1 Overview of the chapter 

The mathematical expressions (ME) alone are not enough for readers to understand the 

complex system, as the mathematical notations need to be mapped back to the abstract/physical 

concepts through declarations. It is a typical writing practice that a notation must be introduced 

or declared before being used. This writing practice makes it possible for the automated 

extraction of the declaration. Besides acting as the notation table to help the reader navigate 

between MEs and concepts, the automatically extracted declarations are also very helpful for 

cross-paper analysis. It has been shown that the declaration words/phrase could help enhance the 

semantics of MEs for better mathematical information retrieval [8]. 

For automated declaration extraction, existing systems follow a two-phase framework 

[67], [81], [68]. First, the noun phrases (NP) are extracted as the candidates of the declaration 

based on traditional constituent parsing. Then, a prediction is made for each pair of ME-NP 

about whether the NP is the declaration of the ME using a binary classifier. The classifier is 

trained using the features concerning the common declaration patterns, the words/part-of-speech 

(PoS) of neighbor tokens, and structure features. 

 

 

Figure 56 Three-phase framework 
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However, a degradation of the part-of-speech (PoS) tagging and constituent parsing was 

observed when applying the traditional NLP toolkit to the mixed word-ME (MWM) sentences. 

ME could be very complicated, corresponding to sentences or subordinate clauses. The sentence 

role of ME does not exist in the traditional PoS annotation schema. It leads to cascading error for 

later constituent parsing. We overcome the limitation with a new three-phase framework in 

Figure 56. First, a customized PoS tagger is trained for the (MWM) sentences using the tri-gram 

HMM model. Then, the NPs (marked in dashed rectangles) are extracted as the declaration 

candidates by a shallow parser, i.e., noun phrase chunker. At last, a decision procedure decides 

whether an NP candidate is the declaration for an ME in the same sentence. Experiment results 

show that our MWM PoS tagger could improve the tagging quality. As a consequence, the 

declaration extraction is significantly improved for both pattern-matching and SVM-based 

classification methods. 

The above example shows that the ways people declare MEs seem to follow limited 

patterns. However, it is a non-trivial to enumerate all the patterns manually. A semi-automated 

weakly-supervised (SAWS) approach is proposed to mine the patterns from a large quantality of 

unlabeled data. The SAWS approach is based on the observation that 58% of the first-time 

occurrence of simple mathematical expression is with declaration [62]. Using TFIDF to rank and 

some heuristic to filter the patterns from a collection of 14K Arxiv papers, many meaningful 

patterns are identified. 

In this chapter, the MWM processing for PoS tagging and NP extraction will be 

introduced first. Then, the declaration extraction methods and SAWS pattern mining is 

presented. Experiments and result analysis are given by the end.  
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V.2 Mixed word-ME processing 

The goal of mixed word-ME (MWM) processing is to accurately extract noun phrases 

(NP) as the candidates for the declaration. Part-of-speech (PoS) tagging is the most important 

low-level task, which is the foundation of high-level tasks such as NP extraction and information 

extraction. However, the MWM sentences introduce new usage patterns compared with the 

everyday language, leading to the degradation of the PoS tagging, noun phrase extraction, and 

syntactic structure parsing. A customized PoS tagger for MWM sentences is proposed to attck 

the challenge. After the PoS are accurately identified, the NPs are identified using the Linear 

SVM-based consecutive NP chunker [118], [101]. 

V.2.1 New ME-PoS tag and In-sufficiency of existing NLP toolkit 

The mathematical notation system itself could be treated as a language. This fact implies 

that one ME could be very complex and even correspond to a sentence or subordinate clause of 

everyday language. Follow the convention in the Elsevier dataset [66]; there are three syntactic 

roles for ME as shown in Table 19.  

 

 

 

Table 19 PoS for ME and examples 

ME-PoS Example 

NP Let 𝐺 = 𝑙𝑖𝑚𝐺𝑛 be the projective limit of this system. 

NML This happens 𝑙𝑔𝑛 times by repeating squaring. 

S Note that [𝑓]𝑝 = [𝑓0]𝑝 and [𝑓′]𝑝 = [𝑓0′ − 𝑓1]𝑝. 
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Figure 57 The error propagation from PoS tagging to constituent parsing 

 

 

 

An ME could be very complex corresponding to sentences. Failure to identify such roles 

also leads to degradation for the PoS tagging of other words from the F1 score of 0.96 to 0.93. 

Further, the error will propagate to constituent parsing phrase, affecting the NP candidate 

generation for declaration [67]. For example, the PoS error for ‘ME44’ messes up the structure 

analysis of the sentence in Figure 57.  

V.2.2 MWM PoS tagger 

The task of PoS tagging is to predict the PoS label 𝑙𝑖 for each token 𝑤𝑖 in a sentence 𝑠 =

{𝑤1, … , 𝑤𝑛}. When the token is a plaintext word, the label candidates are the PennTreeBank PoS 

tags, such as NN, JJ. When the token is an ME, there are three possible labels: {𝑆, 𝑁𝑃, 𝑁𝑀𝐿}. 

Based on the Tri-gram Hidden Markov Model based PoS tagging framework [71], the PoS 

tagging is formulated as the optimization goal 𝑙∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙𝑃(𝑙|𝑠), where 

𝑃(𝑙|𝑠) = ∏ 𝑃

𝑖∈[1,𝑛]

(𝑙𝑖|𝑙𝑖−2, 𝑙𝑖−1) ∏ 𝑃

𝑖∈[1,𝑛]

(𝑤𝑖|𝑙𝑖) 

. Two additional labels 𝑙−1 = 𝑙0 =∗ are added to the front of each sentence. The conditional 

probability 𝑝(𝑙𝑖|𝑙𝑖−2, 𝑙𝑖−1) is smoothed as 

𝑝(𝑙𝑖|𝑙𝑖−2, 𝑙𝑖−1) = 𝜆1 𝑝 (𝑙𝑖) + 𝜆2 𝑝 (𝑙𝑖|𝑙𝑖−1) + 𝜆3 𝑝 (𝑙𝑖|𝑙𝑖−2, 𝑙𝑖−1) 
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The 𝑝 indicate the unsmoothed probability and {𝜆∗} are estimated using a global context-

independent smoothing [71]. For the rare words with a frequency less than 5, their suffixes are 

used to estimate the probability 𝑝(𝑤𝑖|𝑙𝑖). Viterbi algorithm is used for the efficient prediction of 

tagging based on the tokens. 

The MWM PoS tagging is evaluated on the Elsevier open access dataset [66]. It consists 

of 10 papers from different domains. There are 346 MWM sentences are containing 545 MEs. A 

10-fold cross-validation experiment is designed to test generalization ability. In each fold, one 

file is picked as the test data set. The other nine files and the CoNLL2000 & Penn Treebank from 

NLTK [101] are used for training. A micro performance of over 0.97 for precision/recall/F1 is 

reached as shown in Table 20. Besides, the PoS prediction F1 score for the normal words also 

reaches 0.97. 

 

 

 

Table 20 TnT-based PoS tagging prediction performance 

Label Size Prec. Recall F1 

NML 72 0.96 0.97 0.97 

NP 399 0.99 0.97 0.98 

S 74 0.90 0.99 0.94 

Avg. 545 0.98 0.97 0.97 

 

 

 

V.3 Declaration extraction system description 

The system diagram for the declaration extraction is shown in Figure 58. Following the 

existing paradigm, NP is extracted as the declaration candidates using the customized PoS tagger 

and NP chunker. For each NP candidate, a decision will be made whether the NP is the 

declaration of any ME in the same sentence. Two methods are adopted to make the decision: 
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pattern matching and classification. Besides, a sequential tagging framework is explored, and 

more declaration patterns are collected using a weakly-supervised method.  

 

 

 

 

Figure 58 The system architecture for declaration extraction 

 

 

Table 21 Features for declaration extraction 

Category Features 

Patterns (10) 9 basic and the 10th is any of them is satisfied. 

Surface value ‘:’, ‘,’, other MEs between ME and DEC (3) 

ME/DEC in parenthesis (2) 

ME before DEC (1) 

ME-DEC token dist (1) 

Surface/PoS 
Enum 

bi-gram of token/pos of previous/following of DEC (4) 

token/pos of the first/last of the DEC (4) 

tri-gram of token/PoS of previous/following of ME (4) 

uni/bi/tri-gram of token of previous/following × first/last token of DEC 
(4*) 

verbs between ME and DEC (1*) 

Structure distance on dependency parsing tree 

whether ME (DEC) is head of DEC (ME) 

uni/bi/tri-gram of token seq. on the path from DEC to ME 
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Table 22 Patterns of declaration 

DEC ME ME denote / mean / stand for DEC ME is denoted / defined / given by DEC 

ME DEC ME is / are DEC Let ME be denoted by DEC 

DEC (ME) * ME Let / Set ME denote / be DEC denote (as / by) ME DEC 

 

 

 

From the view of patterns, there are two common groups: the appositions such as ‘a 

hidden vector ℎ𝑡’ and the neighbor clues words such as ‘denote’ and ‘as’ in ‘we denote ℎ𝑡 as the 

hidden vector’. However, the ways are also flexible. Similar clues words or phrase could be 

adopted, and the order could also be reordered using passive tense. Our pattern matching based 

system baseline adopt 9 patterns shown in  

Table 22 based on previous works [67], [81], [68]. For the classification machine learning 

approaches, the patterns, surface text, PoS tags, and structure features from the dependency 

parsing are used as features as summarized in Table 21, where ‘DEC’ indicates the declaration 

candidates. 

Further, another paradigm that adopts a sequential tagging approach is tested without the 

generation of NP candidates. There are two implications without the NP candidates: First, all the 

features mentioned above are not applicable since there is no NP extracted as the candidates. 

Second, the features for the CRF training should cover the knowledge for NP extraction. Given 

these two requirements, the following features are proposed: the lower case of the token and its 

suffix of length 2 and 3; PoS tag and its prefix of length 2; whether the token is upper case, digit; 

the distance from the token to a target ME. 
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V.4 Weakly-supervised learning 

The weak-supervised learning process is based on the observation that 58% of the first 

time occurs variables are with a declaration [62]. The workflow designed to remove the left 40% 

noise and collect the patterns for declaration is shown in Figure 59.  

 

 

Figure 59 Semi-automated weakly-supervised process for declaration pattern extraction 

 

 

 

 

Figure 60 Statistics of the position of the declaration relative to the ME 
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The first step is to gather the possible pairs of ME and associated declaration. The MEs 

of concern are simple variables such as identifiers or identifiers with superscript, subscript or 

accent. And if there is an NP nearby, a pair of ME-DEC is created. Based on the statistics from 

an annotated dataset, the distance between ME and the corresponding declaration are mostly 

within a range of 5 as shown in Figure 60. When preparing the ME-DEC pairs for the 

unsupervised Arxiv dataset, an even stricter threshold is set so that only the pair with a distance 

of less or equal than three are considered. 

The second question is what the pattern templates to generate patterns candidates are. The 

patterns without clues words are simply the case where ME is the apposition of DEC. The 

patterns with one clue word are also limited to use the word “is,” “are,” etc. More patterns are 

with more than one words such as “Let ME be DEC” or “denote DEC by ME.” Given the above 

observation, the skip-bi-gram patterns are mined around the ME-DEC candidates, where the skip 

is to ensure the flexibility. The clues words should also be not far from the ME-DEC pair, and 

we use the same threshold 3. 

Third, given the two tokens as the clue words, some obvious patterns will not lead to a 

pattern for declaration. The contributing words are mostly verb, prepositions, and parenthesis. 

The token pair containing words of other PoS are filtered out. A complete table of the related 

PoS could be found in the Appendix. The following patterns are removed from consideration:  

• the PoS of both tokens are preposition “IN” 

• one of the tokens is a preposition, and another word is “be” word 

• there are clues tokens between ME and DEC 

• there is an unmatched parenthesis. 
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Table 23 Trivial patterns collected simply by frequency 

...of... DEC ... ME ...is... 391 ...is... DEC ... ME ...is... 286 

...Let... ME ...be... DEC ... 204 ...of... ME ... DEC ...of... 161 

...Let... ME ... DEC ...of... 126 ...in... DEC ... ME ...is... 120 

 

 

Table 24 Manual intervention for declaration pattern extraction, round 1 

good patterns ...use... ME ...denote... DEC ... ...Let... ME ...be... DEC ... 

...with... ME ...being... DEC ... ... DEC ...denote...by... ME ... 

...(... ME ...)... DEC ... ... ME ...to...denote... DEC ... 

...define... ME ...as... DEC ... ...let... ME ...be... DEC ... 

...with... ME ...denoting... DEC ... ...(... DEC ...)... ME ... 

...denote... ME ...as... DEC ... ...denote... DEC ...by... ME ... 

...Define... ME ...as... DEC ... ...use... ME ...represent... DEC ... 

...denote... DEC ...as... ME ... ...Denote... ME ...as... DEC ... 

ignore patterns ...use... ME ...to... DEC ... ...as... DEC ...where... ME ... 

...to... ME ...if... DEC ... ...exists... ME ...that... DEC ... 

...is... ME ...and... DEC ... ...in... DEC ...let... ME ... 

...with... ME ...if... DEC ... ...of... ME ...if... DEC ... 

...the... DEC ...of... ME ... ...of... ME ...th... DEC ... 

...denote... DEC ...of... ME ... ...denotes... DEC ...of... ME ... 

...of... DEC ...let... ME ... ...consider... DEC ...of... ME ... 

...of... ME ...and... DEC ... ...given... DEC ...of... ME ... 

…… 

stop words th the 

where if 

that and 

of in 

over consider 

exits say 
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Table 25 Manually constructed patterns from mined skip-bi-gram 

let ME be/define DEC use ME as DEC use ME [to]* denote/represent DEC 

with ME being/denoting DEC ME refer[s]* to DEC refer ME as DEC 

refer DEC as ME write ME for DEC ME is called DEC 

DEC represented by ME ME corresponding to DEC ME (DEC) 

DEC denote[d]* by/as ME define/denote ME as DEC define/denote DEC as ME 

 

The last question is how to rank the patterns to get the possible patterns for declaration. 

By simply collecting the frequent skip-gram pattern around the ME-DEC pairs, there are lots of 

trivial stop-words patterns extracted as shown in Table 23. To avoid such a situation, the TF*IDF 

is used to filter out common patterns that are not specific to declarations. The TF refers to the 

frequency of the skip-bigram pattern. The IDF is the inverse document frequency of the skip-

bigram pattern on a collection of more than 1K Arxiv paper.   

Given the above procedures, there are still some skip-bi-gram that does not contribute to 

the declaration extraction. A human in the loop procedure is developed to manually confirm and 

deny the patterns, as well as building stop words for declaration extraction. The result for the 

first round is given in Table 24. In the table, there are some prepositional stop words to show the 

relationship between elements, such as “of,” “in,” and “over.” The word “th” is also very 

common, where people write 𝑖th as the indexing. 

In summary, given the clues from the mined skip-bi-gram patterns. 12 patterns are 

constructed as shown in Table 25. They will be used as additional patterns for declaration 

extraction in the experiment section. 
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V.5 Experiment Result and Analysis 

V.5.1 Dataset and evaluation criteria 

The NTCIR10 math understanding dataset [4] is used for evaluation. There are 35 papers 

with a total 9172 MEs. There are two types of annotation: short and full. For the sentence ‘Let 

𝑀𝐸143 be a graph with 𝑀𝐸144 vertices’, ‘a graph with 𝑀𝐸144 vertices’ is called a full 

declaration, while the core, ‘a graph’, is called a short declaration. There are 3076 short 

declarations and 3053 full declarations. There are two evaluation modes: strict and soft. The 

strict matching requires exact matching, while the soft mode only requires partial overlapping. If 

our prediction is ‘a graph’ for the above example, we get a false positive under the strict 

evaluation mode for the full declaration and a true positive sample for the other combinations. 

The evaluation criteria are precision, recall, and F1 score. 

V.5.3 Experiment design 

The experiments are designed to answer the following questions: 

1. Is the customized MWM toolkit improve the performance of the declaration extraction? 

2. Which features are the major contributing factors? 

3. Will sequential tagging approach improve the performance by omitting the candidate 

enumeration step? 

4. Do the mined declaration patterns help improve the declaration extraction? 

To answer the first question, a comparison is made between the NP candidates extracted 

from the Stanford CoreNLP toolkit [119] and our customized MWM toolkit. Then a pattern 

matching module will make the final decision of the declaration identification. The experiments 

are named “Pattern Matching [Stanford]” and “Pattern Matching [MWM].”  
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For the second question, the MWM toolkit is used to extract the candidates, and an SVM-

based classification approach is adapted to make the final decision. The following feature groups 

are added sequentially: patterns, token/Pos, dependency parsing tree. As the enumeration feature 

of token or tree structure is very large, a Chi-square feature selection is adopted to keep the first 

1,000 features.  

For the third question, the Conditional Random Field is adapted for directly sequential 

tagging. For the last question, the automatically mined skip-bi-gram patterns and manually 

constructed patterns are added for both the pattern matching and the SVM-based ME-declaration 

pair classification.  

V.5.3 Result and Analysis 

 

Table 26 Short declaration extraction performance 

Method Soft Matching Strict Matching 

Prec.  Recall F1 Prec.  Recall F1 

MCAT 0.817 0.483 0.562 0.682 0.404 0.508 

Pattern Matching [Standford] 0.415 0.261 0.321 0.311 0.196 0.241 

Pattern Matching [MWM] 0.722 0.610 0.661 0.558 0.471 0.511 

SVM (Pattern) 0.699 0.660 0.679 0.526 0.496 0.511 

SVM (Pattern+Token/PoS) 0.729 0.594 0.655 0.566 0.461 0.508 

SVM (Pattern+Token/PoS+Dep) 0.752 0.590 0.661 0.583 0.457 0.512 

CRF (Token/PoS) 0.164 0.500 0.247 0.149 0.454 0.225 

Pattern Matching (Existing+Mined) 0.721 0.610 0.661 0.557 0.471 0.510 

SVM (Existing+Mined) 0.698 0.659 0.678 0.526 0.496 0.510 

SVM (Ex.+50 Mined Skip-Gram) 0.696 0.649 0.672 0.526 0.490 0.508 

SVM (Ex.+100 Mined Skip-Gram) 0.696 0.649 0.672 0.526 0.490 0.508 

 

 

 

The comparison is made in two aspects: the candidate generation and the methodologies. 

For declaration candidate generation, the comparison is made between our new MWM pipeline 

with existing Stanford constituent parsing for NP candidate generation. From the view of the 
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methodologies, the comparison is made between different methods, including pattern matching, 

classification, and sequential tagging. 

 

 

 

Table 27 Long declaration extraction performance 

Method Soft Matching Strict Matching 

Prec.  Recall F1 Prec.  Recall F1 

MCAT 0.873 0.483 0.622 0.620 0.373 0.466 

Pattern Matching [Standford] 0.430 0.273 0.334 0.106 0.067 0.083 

Pattern Matching [MWM] 0.729 0.620 0.670 0.447 0.380 0.411 

SVM (Pattern) 0.713 0.674 0.693 0.422 0.399 0.410 

SVM (Pattern+Token/PoS) 0.739 0.602 0.664 0.474 0.386 0.425 

SVM (Pattern+Token/PoS+Dep) 0.762 0.598 0.670 0.486 0.381 0.427 

CRF (Token/PoS) 0.165 0.507 0.249 0.130 0.397 0.196 

Pattern Matching (Existing+Mined) 0.728 0.620 0.670 0.446 0.380 0.410 

SVM (Existing+Mined) 0.713 0.672 0.692 0.422 0.398 0.410 

SVM (Ex.+50 Mined Skip-Gram) 0.712 0.663 0.686 0.427 0.398 0.412 

SVM (Ex.+100 Mined Skip-Gram) 0.712 0.663 0.686 0.427 0.398 0.412 

 

 

 

The performance comparison of different method for the short/long declaration under both 

the strict and soft evaluation criteria are shown in Table 26 and Table 27. We have the following 

observations: 

• First, the MWM processing is significantly improving the performance in general, which 

could be verified by that fact “Pattern [MWM]” is better than “Pattern [Stanford].” 

• Using the SVM algorithm for candidate classification, our system outperforms the best 

performance of the MCAT system [81]. The pattern features carry the most weight during 

the SVM prediction. As more features are added to the system, the precision gets higher. 

But the recall goes lower. 
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• The CRF sequential tagging is worse than the pattern matching and SVM classification, 

possibly due to the insufficient training data. 

• Soft matching is usually better than the strict matching. Under strict matching, the short 

version is better, due to that the NP candidates are generaly short. 

• When adding the new patterns mined through SAWS, the performance does not gain. But 

the patterns are confirmed manually, and they might help in a larger scale evaluation.  

V.6 Conclusion 

In this work, we identified one bottleneck for ME declaration extraction, i.e., the 

processing mixed Word-ME (MWM) sentences. The customized PoS tagger and NP chunker are 

proposed to enhance the preprocessing. Evaluation on Elsevier dataset shows that the customized 

PoS tagger could greatly enhance the PoS tagging performance for MWM sentences. The 

declaration extraction performance is also greatly enhanced using the NP candidates generated 

from the customized processing toolkit. Comparisons show that the declaration pattern features 

play the most important role both for pattern matching or SVM-base classification-based 

declaration classification. A semi-automatic weakly-supervised approach is proposed to mine 

more patterns from a large collection on unlabeled data. Manual inspection shows that many new 

patterns are identified. However, there is no performance gain when applying these new features 

to the NTCIR dataset. Quantitative verification is expected for the future large-scale experiment.  
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CHAPTER VI 

QUALITATIVE-QUANTITATIVE MAPPING OF SCIENTIFIC PUBLICATIONS* 

 

VI.1 Overview of the chapter 

It is a rewarding experience to understand the technical materials, but there are three aspects 

of challenges in the existing practice:  

• Technical writing transforms complex interrelated scientific abstractions into a linear 

representation based on the mixed use of words and mathematical language. To digest the 

original idea, one must walk forward and backward through a paper to reestablish the 

complex relations from the linearized writing, as well as look up the external materials. 

Missing a subtle point may impede a reader from capturing the essence of a paper. Also, 

given the different background of the reader, she/he might want to read it in a different way 

rather than the order presented by the author. 

• Papers contain lots of redundant information. Our experimental outcomes showed that the 

amount of MEs and their relevant words could be very dense. Sometimes, too many MEs 

used for the formalism of a presentation may even interfere with the understanding of the 

key logic flows which are carried by less frequently used MEs. 

• MEs and words are carefully bonded in technical writing to characterize physical concepts 

and their interactions quantitatively, and qualitatively. The mapping between the physical 

world and the abstract math world should be done through the declaration. 

*Reprinted with permission from “QuQn Map: Qualitative-Quantitative Mapping of Scientific 

Papers” by Wang, Xing, Lin, Jason, Vrecenar, Ryan, and Liu, Jyh-Charn, 2018.  

Proceedings of the 2017 ACM Symposium on Document Engineering, Halifax, Nova Scotia, 

Canada, 2018. Copyright 2018 ACM. https://doi.org/10.1145/3209280.3229116 
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Given the rich analytical products from the ME analysis and ME-word bonding mining, in 

this chapter, the Qualitative-Quantitative (QuQn) map (also known as QuQn graph) is proposed 

as an abstraction of scientific papers to depict the dependency among MEs and their most related 

adjacent words. QuQn map aims to offer a succinct representation of the reasoning logic flow in 

a paper. 

Figure 61 QuQn map architecture, reprinted with permission from [120] 

The QuQn map supports interactive rendering of words and MEs based on their 

qualitative and quantitative dependencies. QuQn map supports the selective pruning of nodes 

and links based on different filtering rules. It uses spatial layout and color style to highlight the 

dependency relationship among automatically discovered MEs and words. The first processing 

step of the QuQn map is QuQn ME extraction and transformation. Given an ME expressed in 

LaTeX, Presentation MathML (PML), Content MathML (CML) or PDF, we extract, parse, and 

convert the MEs into a semantic taxonomic structure, which can be further decomposed into sub-

expressions for high-level semantic analysis. Examples of the parsed MEs marked in the nested 

red rectangle boxes are shown in Figure 61. Each ME paired with its declaration words is 

compared with other MEs to generate their dependency graph. Based on different filtering rules, 
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the user can prune the dependency graph for QuQn map to render only the needed information 

on the limited 2D display space. The QuQn visualizer is integrated with an online pdf viewer as a 

reading assistant.  

Following the visualization principles by Tufte [121], the linkage among MEs are 

manifested by their spatial affinity. Information on demand is achieved by highlighting the 

dependent MEs and synchronization between the QuQn map with the original PDF file. 

Searching ability provide a unified interface for the user to quickly locate the related information 

by typing in word description or ME Latex code. In this way, readers could quickly grasp the 

main essence of an idea and follow the inference process. 

Various filters can be applied to a QuQn map to reduce redundant/indirect links, control 

the display of problem settings (simple ME variables with declaration), and prune nodes with 

specific topological properties such as the largest connected subgraph. A visualization tool 

prototype is developed to support interactive browsing of the technical contents at different 

granularities of detail. 

VI.2 QuQn abstraction and essence graph construction 

VI.2.1 QuQn abstraction construction 

The QuQn map is represented by a set triple ⟨𝑀, 𝐸, 𝐷⟩. From the quantitative aspect, 𝑀 =

{𝑚𝑖} denotes the set of MEs and their sub expressions in a document 𝑈, 𝐸 the set of links 

indicating the dependency among MEs. 𝐷 is the set of ME denotations which can be a word 

description from the qualitative aspect or other equivalent MEs. Note that an ME may have 

multiple denotations, yet some MEs have no denotation. Extraction of equivalent or related MEs 

from 𝑈 requires an understanding of the semantics of MEs. As such, we first introduce our 

semantic taxonomy of ME and the notion of “equal,” “sub-component,” and “left hand side” of 
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MEs. Then, the formulation of ME denotations for linking of MEs and association between MEs 

and words is presented. 

VI.2.1.1 ME Processing 
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Figure 62 Examples to illustrate ME decomposition, parts of this figure are adapted from 

LDA2Vec [122] 

 

 

 

As described in the ME semantics analysis section, MEs from different sources are 

converted into our own ME semantic taxonomy. Matching at the semantic level, rather than the 

character/layout level, will significantly reduce the false positive. After transforming the ME into 

the object according to the ME semantic taxonomy, the ME could be viewed as a hierarchical 

composition structure. For example, the ME 𝑚1 (𝐿 = 𝐿𝑑 + ∑ 𝐿ij
neg

ij ) is decomposed into 10 

(sub)expressions {𝑚𝑘} with the subexpression number 𝑘 marked on the left top corner in Figure 

62 from the paper lda2vec [122]. The superscript d and neg are not marked as ME as they only 

play as notations rather than variables. On the other hand, the subscript 𝑖 and 𝑗 are marked as ME 

as they are actively used for indexing. The direct subcomponents of 𝑚𝑘 is denoted as 𝛷(𝑚𝑘). 

For example, the ME 𝑚2 (𝐿) and the ME 𝑚3 (𝐿𝑑 + ∑ 𝐿ij
neg

ij ) are the direct subcomponents of 𝑚1. 

𝛹(𝑚𝑘) is denoted as all subcomponents of 𝑚𝑘. In this example, 𝛹(𝑚1) = {𝑚𝑖}𝑖≠1. 
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VI.2.1.2 Denotation and Link Identification 

Denotation refers to the semantic equivalent information for an ME. A denotation of ME 

can be a qualitative description expressed in words or a quantitative description expressed by 

another ME. And they are called word denotation and ME denotation, respectively. Denotation is 

critical for the detection of relations between MEs and linking an ME to their related words. 

There are three related concepts for ME denotation and ME relation extraction: 

• 𝑚𝑖 = 𝑚𝑗 if the two expressions are the same, such as the case of 𝑚6 and 𝑚9. 

• 𝑚𝑖 is a subcomponent of 𝑚𝑗, denoted as 𝑚𝑖 ∈ 𝑚𝑗, iff ∃ 𝑚𝑖′ ∈ 𝛹(𝑚𝑗),  𝑚𝑖 = 𝑚𝑖′. 

• The left(right)-hand side function 𝐿(𝑅)𝐻𝑆 is used to represent ME types such as relation 

expression and function declaration expression. For example, LHS(𝑚1) = 𝑚2. If there is 

no valid LHS, LHS(𝑚) = 𝑛𝑢𝑙𝑙. 

The set of ME denotations 𝐷𝑀 is constructed so that each element represents an ME 𝑚 

that has the elements of LHS, RHS, and the relation “=”, where the denotation is expressed as 

⟨𝐿𝐻𝑆(𝑚), 𝑅𝐻𝑆(𝑚)⟩. In addition to ME denotations, one ME 𝑚𝑖 may optionally associate with a 

word denotation consisting of a sequence of words 𝑊𝑖 = {𝑤𝑖
𝑗
}. The declarations are extracted 

based on the pattern matching described in the previous chapter. By the end, the ⟨𝑚, 𝑊⟩ are 

obtained to form the set of word denotations 𝐷𝑊 for a document.  

Given the ME-based denotation 𝐷𝑀, the linkages among ME 𝐸 are identified as 

{⟨𝑚𝑖, 𝑚𝑗⟩:  ⟨𝑚𝑖, 𝑚′⟩ ∈ 𝐷𝑀 ,  𝑚𝑗 ∈ 𝛹(𝑚′),  𝑚𝑖, 𝑚𝑗 ∈ 𝑀𝑑
𝑟}. The condition ⟨𝑚𝑖, 𝑚′⟩ ∈ 𝐷𝑀,  𝑚𝑗 ∈

𝛹(𝑚′) states that 𝑚𝑗 is the subexpression of 𝑚′, which is equivalent to 𝑚𝑖. 
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VI.2.2 essence graph construction 

The QuQn map triple ⟨𝑀, 𝐸, 𝐷⟩ represents a significant reduction of information from its 

original document. When all elements in ⟨𝑀, 𝐸, 𝐷⟩ are included, the graph can become 

overcrowded with low-level details and repetitive occurrences of certain MEs/words. To improve 

its readability, the essence graph is proposed and its progressive visualization of publications 

based on the following pruning rules. 

An essence graph can be reduced from the raw QuQn map based on node pruning and link 

pruning. Node pruning is based on three rules: 

• The first criterion is to keep the MEs with denotation only for users to understand the 

semantics of every ME node. After the first filtering, we get 𝑀𝑑 = {𝑚: ⟨𝑚,∗⟩ ∈ 𝐷𝑀 ∪ 𝐷𝑊}. 

• The second criterion is to remove duplicate occurrences of an ME. Formally, among the 

MEs with denotation 𝑀𝑑 = {𝑚𝑑𝑖
}, the MEs with multiple denotations are removed to get 

𝑀𝑑
𝑟. That is, if two equal MEs 𝑚𝑑𝑖

= 𝑚𝑑𝑗
∈ 𝑀𝑑 are in the reduced set, then only the first 

𝑚𝑑𝑖
 in the ME with denotation is kept. 

• The numerous MEs for the problem settings often clutter the essence graph even after the 

pruning steps above. The third heuristic detects and removes MEs primarily for problem 

settings, including 1) identifiers (with optional sub/superscripts, accent), which do not 

interact with others, and 2) relation expression with a constant number on the right-hand 

side, which are usually the detail of the implementation. 

These conditions eliminate a significant number of nodes, but the dependency graph can be still 

too crowded for visualization. A further step of link pruning can be based on the following two 

rules: 
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• Remove indirect edges. If there exists an edge ⟨𝑚𝑖, 𝑚𝑗⟩, ⟨𝑚𝑗 , 𝑚𝑘⟩, then edge ⟨𝑚𝑖, 𝑚𝑘⟩ also 

exists, which is indirect because of the intermediate node 𝑚𝑗. The indirect edges clutter the 

graph without adding new information. 

• Keep only the largest connected subgraph, which in its effect likely removes local 

discussions. 

• The graph is reduced into acyclic dependency tree by removing edges to increase the 

readability of the essence graphs. This is based on the observation that the vast majority of 

quality works actively avoid circular reasoning. 

 

 

 

 

Figure 63 Colored visualization of a (cropped) essence graph pruned from its raw QuQn 

map, parts of this figure are adapted from paper LDA2Vec [122] 
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The final essence graph generated for the paper lda2vec [122], after all the pruning steps, 

is plotted in Figure 63 as a tree hierarchy. The atomic building units such as variables are located 

on the top, and the high-level compounded expressions such as the problem formulation are 

placed at the bottom. Note that this tree visualizer is feasible only for small papers with not too 

much MEs. For a big paper with a large amount of MEs, a dynamic force based interactive 

graphical visualizer will be introduced in the next section. The number of MEs is reduced by 

75%, or only 25% of MEs were retained in the resulting essence graph. A very similar level of 

compression rate was achieved for three other papers with Arxiv identifier 1412.5567, 

1508.04395, 1806.07495. The entire process to generate the essence graph from the four files 

was manually validated. Note that the pruning rules are not generalized. For other papers, 

different pruning rules may be more effective to produce optimally minimal essence graph(s) to 

capture the core model(s) and their problem settings. 

VI.3 Essence graph visualization 

Given the graph constructed and pruned, the next task is to design the user interface to 

visualize the dependency graph using the location combined with color to meet the following 

needs: 

• Visualize the essence graphs of different sizes and different topological structure 

• Highlight the linkage among MEs through the spatial affinity, interaction animation, and 

customized location. 

• Navigate between the source file and the essence graph visualization easily 

• Locate the desired information quickly 
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The system interface that meets the above criteria is shown in Figure 64. First, to 

accommodate the visualization of graphs of any size, an infinity drawing space is created in 

which the user could easily surf around through pan and zoom in/out operations. Second, to 

highlight the linkage among MEs, mass is added to each node to attract each other through 

gravity, and charge assigned to nodes as the repulsive force. 

 

 

 

 

Figure 64 Graphical user interface (GUI) for the QuQn visualization and interaction, parts 

of this figure are adapted from the paper LDA2Vec [122] 

 

 

 

To further highlight the linkage among related MEs, unrelated MEs will hide when the 

mouse holds on a specific ME. The user could also customize the location of certain MEs by 

dragging them to the desired locations. One could also hide specific MEs if they do not 

contribute to the understanding of the system. Third, for the easiness of navigation between the 
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source file and the essence graph, color encoding is used. When an ME is clicked, the source file 

will scroll to the page where the ME is located, and the ME on the PDF will be highlighted as 

red. When the source file is scrolling, the MEs on the page will show as blue on the dependency 

graph visualization. At last, to better serve the need for ease of locating information, a search bar 

is provided where the user could type in text description or an ME. Related MEs will be 

highlighted by the orange color and larger font size. 

The system is implemented using JavaScript libraries, d3, and pdf.js. The image for MEs 

is cropped from PDF files and colored. The information for ME, declaration, essence graphs are 

pre-calculated and might be manually corrected. 

VI.4 Summary 

This section presents a novel abstraction of technical papers called the Qualitative-

Quantitative (QuQn) map to represent MEs and their ME-ME and ME-word dependency 

relationships. The sequential elaboration from the original technical material is segmented and 

re-arranged in the graph format to show the dependency among different factors. Information 

overload is a critical problem for content analysis. Node/link pruning is a crucial process to 

control the amount of information display that captures the relationships among MEs in an 

essence graph, especially for the analysis of complex papers. The proposed progressive pruning 

heuristics appear to be highly promising for the design of automated pruning solutions. All the 

ME related analysis is conducted at the semantic level for better accuracy, include the 

dependency recovery and the pruning. 
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CHAPTER VII 

APPLICATIONS OF MECA 

 

In this chapter, we will show three use cases of the MECA system. The first use case 

applies MECA system in an educational environment to help high school students to understand 

the dependency relationship among factors in the rotational physical system. The second use case 

creates a mapping and analyzes the evolution of knowledge through the analysis of the 

conference paper in NIPS. The last use case is to illustrate the possible effect when comparing 

the technical essence of publications using QuQn.  

VII.1 User study in AggieSTEM summer camp 

The learning process is an iterative process that first locates the relevant material, then 

consume the knowledge, and apply the learned knowledge. The search engine has greatly 

enhanced the experience in finding relevant materials, but the tools to boost the learning process 

are mostly under development. One of major bottleneck is that the low-level digit file could not 

be recovered efficiently as structured information to serve high-level learning applications. 

However, our MECA system provides a foundational solution to overcome the gap, and the next 

question is how to use the structured information.  

Learning is a process that internalizes the concepts and knowledge expressed in a medium 

such as languages and mathematical notations. “Cognitive learning theory suggests that the brain 

learns most effectively by relating new experiences and knowledge with previous knowledge” 

[123]. Being able to automatically discover highly related system concepts, which are mostly 

represented in MEs and words from technical papers, will significantly improve the learning 

experience and the research productivity. In this work, we propose to fill the gap by creating a 
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graphical mapping of scientific publications to highlight the connection between different factors 

as well as the mapping between the abstract math notation with the physical world.  

A pilot user study during a high school summer camp is conducted to evaluate the 

effectiveness of QuQn map. The experiment settings are first presented, followed by the pre/post 

questionnaires and the evaluation metrics. At last, the quantitative results are given.  

VII.1.1 Experiment settings 

The study happened during a high school physics summer camp. The control group has 

15 students and the experiment group has 16 students. During the summer camp, they will learn 

rotational physics concepts as well as apply the knowledge to design a spinner. The related 

concepts include “rotational velocity,” “rotational inertia,” “angular momentum,” and “rotational 

kinetic energy.” Their linkage relationship is shown Figure 65. 

 

 

 

 

Figure 65 The final QuQn map created by the teacher, parts of this figure are adapted 

from [124]  
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During the physics knowledge learning phase, both groups are allowed to use whatever 

resources they can access, while only the experiment group is exposed to our system. In the 

experiment group, when explaining the concepts, the teacher frequently use the QuQn system to 

explain the linkage among different factors. 

VII.1.2 Questionnaire and evaluation metrics 

The same questionnaire is taken both before and after the summer camp. The questionnaire 

covers both the attitude, knowledge, and connection among concepts. There is a significant 

increase in the attitude and connection questions for the experiment group in comparison with 

the control group and a modest increase n the knowledge aspect. In this dissertation, the attitude 

questions are emphasized. The following attitude questions are asked in both the pre and post 

questionnaire.  

1. I feel that complex physics concepts are approachable. 

2. I am comfortable exploring new topics in physics. 

3. I understand the ways in which physics concepts are related to each other. 

4. I enjoyed learning physics. 

5. I am able to learn difficult physics concepts. 

6. The Mathematics Equations Map helped me to understand connections between concepts 

(Exp Posttest only) 

The questions are answered by a value from 1 – 5, where the larger value indicates better 

opinion. The goal of education is to increase the mean value and reduce the difference among 

students. The pre-post effect size (PPES) measurement [125] is commonly used to measure the 

difference before and after an experiment: 

𝑃𝑃𝐸𝑆 =
𝜇𝑃𝑂𝑆𝑇 − 𝜇𝑃𝑅𝐸

(𝜎𝑃𝑂𝑆𝑇 + 𝜎𝑃𝑅𝐸)/2
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The larger PPES is, the better effect the education process is. Both the large difference in the 

gain or smaller standard derivation will contribute to the increase of PPES score. Further, to 

evaluate the effectiveness of our QuQn map, the percentage gain (PG) of the experiment group 

versus the control group is calculated as: 

𝑃𝐺 =  
𝑃𝑃𝐸𝑆𝐸𝑋𝑃 − 𝑃𝑃𝐸𝑆𝐶𝑂𝑁𝑇

𝑃𝑃𝐸𝑆𝐶𝑂𝑁𝑇
 

VII.1.3 Quantitative results 

The statistics of the mean and standard derivation for the pre/post testing of the experiment 

and control group are shown in Table 28. For the last question, the high school students mostly 

agreed that the QuQn map helps them understand the connection between concepts. For the other 

questions, it would be more meaningful to look at the comparison between the experimental 

group and the control group as shown in Table 29. 

 

Table 28 Mean and Std. statistics for the pre/post 

  Pre-test Post-test 

  Exp Control Exp Control 

Q1 Mean 3.75 3.80 4.00 4.13 

 Std. 0.68 1.08 0.73 0.83 

Q2 Mean 4.44 4.00 4.44 4.13 

 Std. 0.73 1.07 0.51 0.83 

Q3 Mean 3.31 3.13 4.31 3.87 

 Std. 0.95 1.19 0.70 0.99 

Q4 Mean 3.94 3.53 4.13 3.67 

 Std. 1.00 0.83 0.72 0.98 

Q5 Mean 3.50 3.53 4.00 3.67 

 Std. 0.97 0.92 0.73 0.98 

Q6 Mean - - 4.38 - 

 Std - - 0.96 - 
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Table 29 Comparison of pre-post 

 Q1 Q2 Q3 Q4 Q5 

Exp Pre-Post Effect Size 0.35 0.00 1.20 0.22 0.58 

Cont Pre-Post Effect Size 0.35 0.14 0.67 0.15 0.14 

Percentage Diff Exp vs. Cont 2% N/A 79% 47% 314% 

 

 

 

There is a significant gain for the experiment group vs. the control group for question 3 

and 5. For the question 3, the experiment group shows that they could understand more about 

how the physics concepts are related to each other. This result indicates that the goal of the 

QuQn map is met. Based on question 5, the QuQn map boosts the confidence of the student to 

learn complex concepts. In summary, this pilot study shows that the QuQn map could help the 

students understand the linkage among concept and boost their confidence in learning complex 

systems. The user study shows that the QuQn map helps the students understand the dependency 

among different factors and increased their confidence in learning complex systems. 

VII.2 Knowledge mapping and evolution analysis 

Understanding the evolution trends of topics is valuable for both researcher and funding 

agents to locate valuable research topics and methodologies. The similarity assessment between 

papers is the key for clustering and evolution analysis. The existing work for evolution analysis 

is mostly based on co-citation clustering [126] and co-word clustering and topic modeling [127]. 

On the one hand, the citations might have different purposes as studied by Teufel [128]; being 

cited together might not reflect the similarity of their technical essence. On the other hand, using 

all the words in the document is at a coarse grain and might introduce noise for the content 
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analysis. Secondly, it is also a challenging issue to visualize the topics, links among papers 

together with their evolution.  

In this work, the similarity among papers is measured based on the declaration words. 

The declarations are related with the technical essence such as 1) the mathematical methods 

used, function, matrix, vector, bandit, policy, etc. 2) the problem settings that link the variable 

with the real-world concept such as the webpage, image, etc. Meaningful clusters are detected at 

the level of research methodology and compare against the cluster based on the full document. 

Further, the similarity also provides a secondary checking for the strength of the citations for 

their technical relevance.  

VII.2.1 Declaration-based document clustering 

 

 

Figure 66 Pipeline for declaration-based topic mining 

 

 

 

Feeding all the document to the topic modeling procedure might introduce too much 

noise that leads to degradation of clustering performance. In this work, we proposed to feed the 

text of the declarations, which are highly related to the problem settings and the mathematical 

methodology. The other processing steps in the pipeline shown in Figure 66 are all common 



 

147 

 

techniques used in NLP and data mining. The pipeline starts with declaration extraction as 

described in Chapter V. All the declaration within a PDF file are merged as a new document 

representation. The new document will first be filtered by stop words [101] and then construct 

the vector space model. Each dimension is re-weighted by the IDF value. Then the re-weighted 

TF*IDF model is passed to the latent semantic analysis [129] (LSA) module to reduce to a lower 

dimension representation, in which spectrum clustering [130] will be applied. Spectrum 

clustering is preferred over the k-means as it could capture the manifold structure. At last, a 

multi-dimensional scaling (MDS) techniques is used to map the low-dimension representation 

from LSA (still larger than 3 dimensions) into 2D for visual inspection of the clusters.  

The generated clusters are described by the top words with the largest weight based on 

the LSA. Further, the declaration-based clusters are compared against the full document-based 

analysis as shown in Figure 67. In general, the declaration-based clusters capture the essence of 

the methodology used while the full document-based analysis captures the topic domain.  

• For the cluster concerning clustering algorithms F1 based on the full document, it 

consists of two major clusters from the declaration based analysis: (D2) kernel-based 

method such as spectral clustering and (D6) node/edge graph theory-based method.  

• For the convex optimization cluster F2, the corresponding papers mostly lie in the (D2) 

kernel based convex optimization cluster by declaration analysis. 

• For the kernel classification cluster F3, their technical essences are related to kernel (D2) 

and the loss formulation (D3). 

• The latent topic modeling (F4) has three parts: (D1) document topic modeling, (D4) 

neural network, and (D5) latent probabilistic model 

• The object detection topic (F6) is mostly related to the (D4) neural network.  

• The reward action, re-enforcement learning (F7) is also detected by the declaration-based 

clustering (F7) as this is a more theoretical work.  
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Figure 67 Full document-based clustering vs. Declaration-based clustering 

 

 

VII.2.2 Evolution visualization and analysis 

Given the clusters obtained from the view of their research methodology, visualizing the 

trends of the research methodology would be very helpful in the curriculum design for education 

purposes and the understanding the fundamental research methodology for the funding agencies.  
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From the view of the visualization techniques, it is desirable to show the evolution in the limited 

2D space that could accommodate any many years as possible. It is also desired that the global 

trends could be easily identified and while preserving the ability to inspect the local detail. For 

such purpose, the evolution wheel is designed as shown in Figure 68.  

 

 

 

  

Figure 68 Evolution visualization for the Neural Information Processing System (NIPS) 

conference papers (2013-2017) 

 

 

 

In the evolution wheel, the papers in each year are manifested as dots on a line. The dot 

size is positively related to the number of citations. The color of the dot for papers is related to 

the topic from the declaration clustering. Papers belonging to the same topic are grouped for ease 

of identifying the topics, its scale, and comparison across years. The links among papers are 
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shown as curved lines. The color tone shows the strength of the similarity from the declaration 

topic analysis. The dashed line indicates that the similarity strength is smaller than a certain 

threshold.  

To easily identify the citation influence among papers, interaction features are provided 

for both the nodes and links. When hovering over one paper, the paper, the cited papers, the 

citing papers, and the links are highlighted with red boundary. After clicking on the paper, the 

information mentioned above will be shown on the top right information panel. When clicking 

over the citation link, two related papers are shown. One could click the hyperlink to view the 

paper and the associated QuQn map. Besides, a similarity range filter is provided to remove the 

citation links that are not “technical relevant.”  

From the topic evolution graph, we could find three major topics: convex optimization, 

neural networks, and latent probabilistic modeling.  

• The convex formulation is popular until 2013 and decreases since then.  

• The Neural Network (NN) based formulation is getting more attention. From the 

correspondence between full doc and declaration-based analysis, there are three driving 

forces: latent topic modeling, Convolutional NN (CNN) for image classification, and 

object detection.  

• The last one is the probabilistic latent topic modeling.  

• Some small topics are dying such as the cluster, graph structure modeling, manifested as 

green.  

VII.2.3 Weak citation linked analysis based on declaration similarity 

Besides capturing the trends of the techniques used, the declaration similarity could also 

be applied to detect the weak citations. The five citations links in Figure 69 are manually 
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verified. The citations with the smallest similarity are not meaningful. For the citation link 1, the 

syntactic topic model in the year 2008 [131] is only one application of the Poisson Dirichlet 

process for topic mining [132]. For the citation link 2, they are both related to Latent Dirichlet 

Analysis. But one paper focus on the distributed learning [133] and another focus on online 

learning [134]. This online learning paper is cited in two later papers through link 3 and 4, which 

are general multi-task Bayesian optimization [135], [136] as a generalization of the previous 

paper. For link 5, these two papers [137], [138] only worked on the same topic but using 

different methodology. For the citation link 6, the later paper [139] concern policy design where 

the convex loss function optimization is based on the previous paper [140].  

 

 

 

 

Figure 69 Weak citations 

 



 

152 

 

VII.3 Differential publication analysis by QuQn map 

Comparing the technical essence between publications is non-trivial due to differences in 

the notations and problem formulation. Given that the QuQn map is an abstraction of the 

publication, the notation differences could be potentially overcome by matching the declaration, 

and the problem formulation could be represented as the dependency graph in QuQn. It must be 

admitted that the matching of MEs by their declarations is still an open problem due to the 

flexible way to describe the concept in natural language. The matching of the logic flow between 

papers is also very hard as it involves the testing the semantical equivalence. These challenges 

are worth exploring for future work.  

 

 

 

 

Figure 70 Illustration of differential publication analysis, parts of this figure are adopted 

from [141] and [142] 
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In this section, a simple example is given to illustrate the potential of applying MECA for 

differential publication analysis. The notation systems of the two papers are the same, given that 

the two papers selected [141] [142] are by the same author on the same topic. The QuQn maps of 

the two papers are constructed manually with necessary correction for the ME Extraction and 

ME semantic analysis. The MEs between two papers are matched based and the tree edit distance 

[117] on the corresponding operator tree as described in the ME semantic evaluation section. The 

distance is further normalized by the maximum number of elements in the two operator trees of 

concern. If the normalized distance for two MEs is less than 0.1, the corresponding nodes in the 

QuQn graph are merge into one. The merged QuQn graph is illustrated in Figure 70, where the 

common part of the two papers is placed in the middle and the different parts on the two sides. 

From this example, we could see that the QuQn based differential analysis could easily help the 

reader understand the overlapping of the concept between papers. It could also help reviewers to 

understand the new contribution of a submission easily.  

VII.4 Summary of MECA applications 

In summary, the rich analytical products of MECA could support a broad spectrum of 

applicability ranging from the end-user (students/researchers) to the stage-holder (funding 

agency). The rich metadata could help users easily navigate through the technical material and 

understand the dependency relationships. Given the captured technical essence, the MECA 

system provides new insights into the evolution of the research methodologies.  
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CHAPTER VIII  

CONCLUSION 

 

MECA is designed to help the management and consumption of technical knowledge tied 

to mathematical abstractions. To meet such needs, a sequence of information extraction and 

transformation are designed to overcome the gap between the high-level semantics and the low-

level digital representations. MECA system has significantly progressed regarding automated 

ME extraction, ME analysis, and their semantic bonding with words. It lays a solid foundation 

for the development of the next generation of deep content analysis solutions. Important lessons 

learned from the research and the potential future directions are discussed next.   

VIII.1 Summary of research findings 

Our work starts with a weakly-supervised typesetting-based Bayesian (TSB) model for 

the identification of mathematical expressions (ME) from PDF files. To capture the customized 

font usage, a weakly-supervised methodology is applied to identify characters for ME and non-

ME to estimate the posterior probability of a character as ME or NME. Then, the Bayesian 

inference is applied to the atomic physic units, non-separable character sequence (NSCS) to 

identify EME segments. Due to the discrepancy between the physical layout and the logical 

units, one EME might be split into multiple NSCS. At last, a Markov Random Field based 

sequential model (MRF-TSB) is applied to merge the over split EME segments by adding a 

pairwise potential. Experiment results show that the TSB model outperforms the state-of-art 

SVM based method by 10% in the miss rate and false rate. The MRF-TSB model significantly 

reduces the number of partial matching (by 1/3), which is crucial for the later stage of ME layout 

and semantic analysis.  
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After the identification of ME from PDF, the next step is the recovery of the ME layout 

hierarchy from the typesetting representation. Given the ME layout as a hierarchical structure, it 

is necessary to correctly group the characters into MEBlocks and make an assessment of the 

relative spatial relationship between MEBlocks. However, ambiguities might happen during the 

grouping process. The upper bound of the performance for discriminate analysis is limited by the 

overlapping of the distribution directly calculated from the character glyph and the bounding box 

of the MEBlocks. To overcome these challenges, a content-constrained spatial (CCS) model is 

proposed. The character dominance is first applied to identify MEBlocks such as accent and 

fraction structure. Then, by recovering the normalized height and vertical center, partial of the 

characters lying on the same baseline could be accurately recovered for the pre-merging of 

consecutive alphabets or playing as constraints in the later stage of super/subscript resolution. 

The normalized height and vertical center are also important in the design of high discriminative 

features, height ratio (HR) and normalized vertical center difference (NVCD), for the 

super/subscript resolution. Further, to avoid the local errors, a global inference model is proposed 

where the character values and confidence same baseline assessment play as constraints for the 

modeling. For the efficiency of the inference, a parametric approximation is proposed that fit the 

HR and NVCD features into lognormal distribution. Experiment results show that our CCS 

model outperforms the state-of-art algorithms in multiple evaluation criteria, with the target-

ground truth edit distance decreased by more than 1. The analytics of the centerline analysis also 

provides a basis for the post check to identify the miss-predictions.  

Though the ME layout already contains rich structure information and heavily used in 

mathematical information retrieval system, there is still a gap with the ME semantics which is 

crucial to the accuracy of high-level task such as dependency analysis. The first challenge for 



 

156 

 

ME semantics analysis is the lack of a standard and the common evaluation dataset. Though the 

MathML and OpenMath cover many core concepts, they still do not cover many mathematical 

dialects. This leads to the difficulty in the annotation of the ME semantics. From the view of the 

ME semantics recovery process, ambiguities at different levels are hindering the correct 

understanding, including the symbol level, structure level, and interpretation level. To resolve the 

ambiguities, a three-phase ME semantics understand framework is proposed. The first phase 

tokenizes the characters and assigns the terminal tokens to them. It will merge the multiple 

character identifier based on the normalized pointwise mutual information score. The spatial 

relationship is converted to special spatial token. The second phase is a probabilistic context-free 

grammar to build the abstract syntax tree, where the probability reflexes the likelihood of the 

syntax tree to be observed in a larger collection of the training dataset. The third phase is 

designed to resolve the different possible semantics under the same syntactic structure. The 

ground truth data collection is from the later user study experiments. Evaluate based on the exact 

matching and structure similarity both show that our ME semantics parser outperforms the state-

of-art LateXML parser.  

After the analysis of MEs themselves, one type of very important word/phrases that 

bonds with the MEs, the declaration, are extracted. The declaration manifests the physical 

meanings of the mathematical notations for readers to easily switch between the mathematical 

abstraction and the physical world. The challenges are at two folds: the processing of MWM 

sentences and the enumeration of declaration patterns. The ME is embedded in the sentences, but 

it could express very complex concepts such as a subordinate clause. In this work, the 

customized PoS tagger and noun phrase chunker are built to accommodate the MWM situation. 

This will provide a more accurate set of declaration candidates. The declarations are written in 



 

157 

 

limited patterns, and the previous experiment also shows that these pattern features played the 

most important role. But it is not trivial to enumerate these patterns. To help with the 

enumeration of the declaration patterns, frequency declaration patterns are identified by TFIDF 

ranking from the sentences where simple variables first occur. After a few rounds of human 

intervention, many patterns are identified. Experiments on the public evaluation testbed NTCIR 

math understanding shows that our customized PoS tagger and NP chunker could significantly 

improve the declaration extraction performance. Though the mined patterns did not improve the 

performance, they are expected to give an improvement on a larger test dataset.  

At last, the rich analytical products above are consolidated into a QuQn map, which is a 

qualitative-quantitative mapping of the scientific publications from the knowledge understanding 

aspect. The QuQn map is expected to give a technical abstraction of the technical material. The 

sequential contents are decomposed and reconstructed as a graph-based abstraction. The 

dependencies are reconstructed from the ME object at the semantic level. Redundant information 

is pruned with a reduction ratio of 1:4.  

User study in collaboration with AggieSTEM shows that this QuQn abstraction could 

help the high school students better understand the relationship among factors and boost their 

confidence in learning complex systems. The QuQn framework provides a solid foundation for 

the further large-scale user study at the post-graduate level for paper reading. In another 

knowledge evolution analysis case study, topic analysis based on the declaration is shown to 

capture the methodologies behind different application topics. The similarity metric derived from 

LSA could also play as a strong indicator for the citation strength.  
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VIII.2 Lessons learned and implication for future work 

The summary of the research findings could be consolidated into three aspects 

concerning the implication for future work: data, model interpretability, and user requirement.  

The annotated dataset is crucial for the exploration of properties and the validation of 

models. However, the higher level the task is, the rarer the public datasets are. In this work, the 

datasets cover hundreds of PDF files for ME Extraction and ME Layout analysis. But there is no 

dataset for the ME semantics analysis and few datasets available for the declaration extraction. 

On the other sides, lots of unlabeled datasets are available, and the weakly-supervised techniques 

are applied twice in this work for ME Extraction and the declaration patterns collection. Due to 

the limited ways of presentations to express in technical materials, the weakly-supervised 

mechanism and unsupervised techniques might be useful to model and predict other types of 

bonding between the ME and words, e.g., attribution, derivation, constraints. Besides the 

availability, the lack of standard annotation schema and evaluation criteria also hinder the 

comparison between different systems. For the ME layout evaluation, the character pair, ME 

exact match, and MathML edit distance criteria are adopted. There are more works using the edit 

distance of the LaTeX representation or even image pixel level matching. At the ME semantic 

level, the OpenMath is supported by the community for a long time, but the officially supported 

names space is still limited to less than 30. The effort could either be placed on the unification of 

standards or provide tools to transform between different formats easily, and the latter one is 

adopted in this work.  

The model interpretability is an important factor in the development of the advance 

model and gives a confidence level for the prediction. This is especially important when errors 

are inevitable due to the noise or the out of dictionary situations. Research is a creative process, 
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new notations, layout, and special meaning are defined constantly. They are not covered during 

the model construction process and could easily lead to a failure of the existing systems. 

However, if the model is a generative model and the statistical properties are well understood. 

Additional post-check could be conducted such as the post-checking for ME layout analysis. It 

will pinpoint errors and save the effort for manual validation.  

The last aspect is the user study. The technical products are designed to better serve 

human in organizing the knowledge. The usefulness of the product could only be validated 

through a user study. As a point in [7], though there have been ten years of research on 

mathematical information retrieval (searching), formulae search is not “perceived as useful yet?” 

To understand the user needs and better improve the system, direct observation is required. Our 

reading assistant system provides a platform targeting at the knowledge exploration and 

consumption process. It will play an important role in gather user input in the future.  
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APPENDIX A PCFG PRODUCTOIN RULES FOR ME SEMANTICS PARSING 

This appendix chapter for the ME semantics parsing will give a complete token list and 

the grammar for the parsing of ME semantics.  

A.1 A complete table of the terminal tokens 

Symbol Groups    Greek    greek characters   

    Accent    indicator for Accent   

    A-Za-Z0-9    alphabets and digits   

Operations    PM   
 corresponding to $\pm$,  could mean two number or 
mean/std 

    CIRC    TODO 

    CDOT    vector product   

    TIMES    corresponding to $\times$   

    OTIMES    corresponding to $\otimes$,  for vector outer product   

    DIV    corresponding to /   

    FRAC   
 corresponding to frac in Latex,  expect to have following 
numerator and denominator   

    MINUS    corresponding to -,  could mean negation or minus   

    PLUS    corresponding to +   

    OPLUS    corresponding to $\oplus$   

Big operator    SUM    summation   

    PROD    production   

    INT    integral   

    CO_PROD    co-production   

Named 
functions    LOG    log   

    MIN    min   

    FUNC_NAME    named function matching a predefined table   

General 
Relation    EQUIV    two element are equivalent   

    CONG    two element are essentially the same but not identical   

    EQUAL    two elements are equal   

    NOTEQUAL    two elements are not equal   

    SIMEQUAL    two elements are similar   

Number relation    LESS    one number is less than the other   

    GREATER    one number is greater than the other   

    LEQ    one number is less than or equal to the other   

    GEQ    one number is greater than or equal to the other   
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Punctuation    BULLET    Might be used as multiplication or divergent   

    AST    Could mean matching arbitary or a special value   

    PRIME    Could mean a special variable or the differentiation   

    EXCLAM    factorial   

    CDOTS    Etc.   

    LDOTS    Etc.   

    PUNCT_COMMA    separating elements   

    PUNCT_PERIOD    accessing members   

    PUNCT_COLON    definition $:=$,  function mapping $f: R \rightarrow R$   

  PUNCT_SEMICOLON    separating parameters from variables   

Paired Fences    BRACKET_OPEN    (   

    BRACKET_CLOSE    )   

    SQ_BRACKET_OPEN    [   

    SQ_BRACKET_CLOSE    ]   

  
  
CURVE_BRACKET_OPEN    \{   

  
  
CURVE_BRACKET_CLOSE    \}   

  
  
ANGLE_BRACKET_OPEN    $\langle$   

  
  
ANGLE_BRACKET_CLOSE    $\rangle$   

    FLOOR_OPEN    $\lfloor$   

    FLOOR_CLOSE    $\rfloor$   

    CEIL_OPEN    $\lceil$   

    CEIL_CLOSE    $\rceil$   

    VERT_BAR    | for absolute or cardality   

    DOUBLE_VERT_BAR    || for norm   

Spatial Tokens    GROUP_OPEN    special tag to mark the beginning of a semantic unit 

    GROUP_CLOSE    special tag to mark the end of a semantic unit 

    SUP_OPEN    start of an superscript   

    SUP_CLOSE    end of an superscript   

    SUB_OPEN    start of an subscript   

    SUB_CLOSE    end of an subscript   

    OVER_OPEN    start of an over structure   

    OVER_CLOSE    end of an over structure   

    UNDER_OPEN    start of an under structure   

    UNDER_CLOSE    end of an under structure   

    ACCENT_OPEN    start of an accent structure   

    ACCENT_CLOSE    end of an accent structure   

    SQRT_OPEN    start of the enclosed part for a radical structure   

    SQRT_CLOSE    end of the enclosed part for a radical structure   
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Set Theory    IN    element in set   

    NOTIN    element not in set   

    NSUBSETEQ    set 1 not as the subset of or equal to set 2   

    SUBSETEQ    set 1 as the subset of or equal to set 2   

    SUBSET    set 1 as the subset of set 2   

    CUP    merging of two set   

    SETDIFF    corresponding to \\   

    CAP    intersection of two set   

Logic    FORALL    $\forall$   

    WEDGE    and logic   

    EXISTS    $\exists$   

Calculus    D_LOW_TEXT    intergal factor   

    PARTIAL    partial derivation   

    NABLA    gradient or divergent   

SemanticsKnown    IDVAR    identifier for variables or functions   

    MUL    the virtual concept of multiply   

    FUNC_ARG_OPEN    ( as the open of function arguments   

    FUNC_ARG_CLOSE    ) as the end of function arguments   

    CN    constant number   

Misc.    UNKNOWN    out of dictionary symbol   

    EMPTY    empty set   

    INFTY    infinity   

    WRT    with respect to   

    ST    such that   

    SPACE    For an empty space   

    PUNCT_AND    Not sure of the usage   

 

A.2 A complete list of the production rules 

A.2.1 Digits  

FACTOR -> NUM_FACTOR 

NUM_FACTOR -> MINUS, NUM_FACTOR 

NUM_FACTOR -> INT_NUM_FACTOR 

DIGIT -> DIGIT_0 | DIGIT_1| DIGIT_2| DIGIT_3| DIGIT_4| DIGIT_5| DIGIT_6 | DIGIT_7| DIGIT_8 | DIGIT_9 

INT_NUM_FACTOR -> DIGIT 

INT_NUM_FACTOR -> DIGIT, INT_NUM_FACTOR 
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NUM_FACTOR -> FLOAT_NUM_FACTOR 

FLOAT_NUM_FACTOR -> PUNCT_PERIOD, INT_NUM_FACTOR 

FLOAT_NUM_FACTOR -> INT_NUM_FACTOR, PUNCT_PERIOD, INT_NUM_FACTOR 

NUM_FACTOR -> SCI_NUM_FACTOR 

SCI_NUM_FACTOR -> INT_NUM_FACTOR, E_LOW_TEXT, PLUS, INT_NUM_FACTOR 

SCI_NUM_FACTOR -> INT_NUM_FACTOR, E_LOW_TEXT, MINUS, INT_NUM_FACTOR 

A.2.2 Algebra  

FACTOR -> FRAC, EXP, EXP 

FACTOR -> GROUP_OPEN, EXP, GROUP_CLOSE 

FACTOR -> SQRT_OPEN, EXP, SQRT_CLOSE 

FACTOR -> SQ_BRACKET_OPEN, EXP, SQ_BRACKET_CLOSE 

FACTOR -> BRACKET_OPEN, EXP, BRACKET_CLOSE 

ARITHM_OP_LEVEL2 -> WEDGE 

FACTOR -> IDVAR 

FACTOR -> CN 

FACTOR -> INFTY 

FACTOR -> CN, PERCENT 

FACTOR -> BRACKET_OPEN, EXP, BRACKET_CLOSE 

EXT_TERM -> SUM_OP_TERM 

EXT_TERM -> SUM_OP_TERM, EXT_TERM 

SUM_OP_TERM -> ARITHM_OP_LEVEL3, TERM 

ARITHM_OP_LEVEL3 -> ARITHM_OP_LEVEL3, SUB_EXP 

FACTOR -> BRACKET_OPEN, REL_EXP, BRACKET_CLOSE 

FACTOR -> AST 

ARITHM_OP_LEVEL3 -> PLUS | MINUS | PM 

ARITHM_OP_LEVEL2 -> MUL | BULLET | AST | CIRC | CDOT | DIV | WEDGE 

ARITHM_OP_LEVEL2 -> SPACE 

VEC_FENCE_OPEN -> ANGLE_BRACKET_OPEN 

VEC_FENCE_OPEN -> SQ_BRACKET_OPEN 
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VEC_FENCE_CLOSE -> ANGLE_BRACKET_CLOSE 

VEC_FENCE_CLOSE -> SQ_BRACKET_CLOSE 

FACTOR -> ANGLE_BRACKET_OPEN, EXP, ANGLE_BRACKET_CLOSE 

FACTOR -> ANGLE_BRACKET_OPEN, EXP_LIST, ANGLE_BRACKET_CLOSE 

FACTOR -> SQ_BRACKET_OPEN, EXP_LIST, SQ_BRACKET_CLOSE 

FACTOR -> ANGLE_BRACKET_OPEN, EXP, PUNCT_COMMA, EXP, ANGLE_BRACKET_CLOSE 

FACTOR -> BRACKET_OPEN, EXP, PUNCT_SEMICOLON, EXP, BRACKET_CLOSE 

FACTOR -> BRACKET_OPEN, EXP_LIST, PUNCT_COMMA, ETC_FACTOR, PUNCT_COMMA, EXP, BRACKET_CLOSE 

FACTOR -> IDVAR, VERT_BAR, IDVAR, VERT_BAR, ETC_FACTOR, VERT_BAR, IDVAR 

FACTOR -> SQ_BRACKET_OPEN, EXP_LIST, PUNCT_COMMA, ETC_FACTOR, PUNCT_COMMA, EXP, 
SQ_BRACKET_CLOSE 

FACTOR -> SQ_BRACKET_OPEN, EXP, PUNCT_COMMA, ETC_FACTOR, PUNCT_COMMA, EXP, SQ_BRACKET_CLOSE 

FACTOR -> SQ_BRACKET_OPEN, EXP, ETC_FACTOR, EXP, SQ_BRACKET_CLOSE 

FACTOR -> LESS, EXP, GREATER 

FENCE_ABS_OR_CARD_OPEN -> VERT_BAR 

FENCE_ABS_OR_CARD_CLOSE -> VERT_BAR 

FACTOR -> FENCE_ABS_OR_CARD_OPEN, EXP, FENCE_ABS_OR_CARD_CLOSE 

FACTOR -> NORM_FACTOR 

NORM_FACTOR -> FENCE_NORM_OPEN, EXP, FENCE_NORM_CLOSE 

NORM_FACTOR -> NORM_FACTOR, SUB_OPEN, EXP, SUB_CLOSE 

NORM_FACTOR -> NORM_FACTOR, SUB_OPEN, REL_EXP_LIST, SUB_CLOSE 

FENCE_NORM_OPEN -> DOUBLE_VERT_BAR 

FENCE_NORM_CLOSE -> DOUBLE_VERT_BAR 

FENCE_GROUP_OPEN -> BRACKET_OPEN 

FENCE_GROUP_CLOSE -> BRACKET_CLOSE 

FENCE_GROUP_OPEN -> SQ_BRACKET_OPEN 

FENCE_GROUP_CLOSE -> SQ_BRACKET_CLOSE 

FACTOR -> FENCE_GROUP_OPEN, EXP, FENCE_GROUP_CLOSE 

TERM -> FACTOR 

TERM -> FACTOR, EXT_FACTOR 
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EXT_FACTOR -> MUL_OP_FACTOR 

EXT_FACTOR -> MUL_OP_FACTOR, EXT_FACTOR 

MUL_OP_FACTOR -> ARITHM_OP_LEVEL2, FACTOR 

MUL_OP_FACTOR -> FACTOR 

ARITHM_OP_LEVEL2 -> ARITHM_OP_LEVEL2, SUB_EXP 

MUL_OP_FACTOR -> SET_OP_LEVEL1, FACTOR 

SET_OP_LEVEL1 -> CAP 

SET_OP_LEVEL1 -> SETDIFF 

SET_OP_LEVEL1 -> CUP 

SET_OP_LEVEL1 -> SET_OP_LEVEL1, SUB_EXP 

EXP -> BRACKET_OPEN, EXP, BRACKET_CLOSE 

EXP -> SQ_BRACKET_OPEN, EXP, SQ_BRACKET_CLOSE 

EXP -> GROUP_OPEN, EXP, GROUP_CLOSE 

EXP -> TERM 

EXP -> TERM, EXT_TERM 

EXP -> TERM, UNIT 

EXP_LIST -> EXP, EXT_EXP_LIST 

EXT_EXP_LIST -> PUNCT_COMMA_EXP 

EXT_EXP_LIST -> PUNCT_COMMA_EXP, EXT_EXP_LIST 

PUNCT_COMMA_EXP -> PUNCT_COMMA, EXP 

A.2.3 Binding operators  

FACTOR -> BIG_OP_FACTOR 

BIG_OP_FACTOR -> BIG_OP, EXP 

BIG_OP_FACTOR -> BIG_OP, UNDER_EXP, EXP 

BIG_OP_FACTOR -> BIG_OP, UNDER_EXP, OVER_EXP, EXP 

BIG_OP_FACTOR -> BIG_OP, SUB_EXP, EXP 

BIG_OP_FACTOR -> BIG_OP, BIG_OP_SUB_EXP_1, EXP 

BIG_OP_FACTOR -> BIG_OP, SUB_EXP, SUP_EXP, EXP 

BIG_OP_SUB_EXP_1 -> SUB_OPEN, REL_EXP_LIST, EQUAL, CN, SUB_CLOSE 
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BIG_OP -> SUM | MIN | INT | PROD | CUP | OPLUS | OTIMES | WEDGE 

A.2.4 Relation  

REL_EXP -> EXP, REL_OP_EXP 

REL_EXP -> EXP_LIST, REL_OP_EXP 

REL_EXP -> REL_EXP, REL_OP_EXP 

REL_OP_EXP -> REL_OP, EXP 

REL_OP_EXP -> REL_OP, EXP_LIST 

REL_EXP -> EXISTS, REL_EXP 

REL_EXP -> FORALL, REL_EXP 

REL_EXP -> REL_EXP, FORALL, FACTOR 

REL_EXP -> REL_EXP, FORALL, EXP_LIST 

REL_EXP -> REL_EXP, FORALL, REL_EXP 

REL_OP -> EQUAL | SIMEQUAL | NOTEQUAL | EQUIV | CONG |  LEQ | GEQ | GREATER |  LESS 

REL_OP -> LEFTARROW | RIGHTARROW 

REL_OP -> IN | NOTIN | NSUBSETEQ | SUBSETEQ | SUBSET 

REL_EXP_LIST -> REL_EXP, EXT_REL_EXP_LIST 

EXT_REL_EXP_LIST -> PUNCT_COMMA_REL_EXP 

EXT_REL_EXP_LIST -> PUNCT_COMMA_REL_EXP, EXT_REL_EXP_LIST 

PUNCT_COMMA_REL_EXP -> PUNCT_COMMA, REL_EXP 

A.2.5 Spatial layout 

FACTOR -> SUB_FACTOR 

SUB_FACTOR -> FACTOR, SUB_EXP 

FACTOR -> SUP_FACTOR 

SUP_FACTOR -> FACTOR, SUP_EXP 

SUP_FACTOR -> EXP, SUP_OPEN, EXP, SUP_CLOSE 

UNDER_EXP -> UNDER_OPEN, ME, UNDER_CLOSE 

OVER_EXP -> OVER_OPEN, ME, OVER_CLOSE 

UNDER_EXP -> UNDER_OPEN, ALPHABET_SEQ, UNDER_CLOSE 
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OVER_EXP -> OVER_OPEN, ALPHABET_SEQ, OVER_CLOSE 

SUB_EXP -> SUB_OPEN, ME, SUB_CLOSE 

SUB_EXP -> SUB_OPEN, DEC_SYMBOL, SUB_CLOSE 

SUB_EXP -> SUB_OPEN, GROUP_OPEN, DEC_SYMBOL, GROUP_CLOSE, SUB_CLOSE 

SUP_EXP -> PRIME 

SUP_EXP -> PRIME, PRIME 

SUP_EXP -> SUP_OPEN, ME, SUP_CLOSE 

SUP_EXP -> SUP_OPEN, DEC_SYMBOL, SUP_CLOSE 

SUP_EXP -> SUP_OPEN, GROUP_OPEN, DEC_SYMBOL, GROUP_CLOSE, SUP_CLOSE 

DEC_SYMBOL -> DOWN_ARROW | UP_ARROW | AST | PRIME | T_CAP_TEXT | DAGGER 

DEC_SYMBOL -> PRIME, PRIME 

FACTOR -> ACCENT_SYM, ACCENT_OPEN, EXP, ACCENT_CLOSE 

A.2.6 Calculus  

FACTOR -> DELTA_CAP, IDVAR 

FACTOR -> DELTA_CAP, EXP 

FACTOR -> DELTA_CAP, BRACKET_OPEN, EXP, BRACKET_CLOSE 

FACTOR -> PARTIAL, DIV, PARTIAL, IDVAR 

FACTOR -> NABLA, EXP 

FACTOR -> NABLA, CDOT, EXP 

FACTOR -> NABLA, BULLET, EXP 

FACTOR -> NABLA, TIMES, EXP 

A.2.7 Functions  

ME -> DENOTATION 

ME -> FUNC_DELC 

DENOTATION -> EXP, PUNCT_COLON, ME 

FUNC_PARAM_HOLDER -> CDOT 

FUNC_DELC -> EXP_LIST, PUNCT_COLON, EXP, MAPSTO, EXP 

FUNC_DELC -> EXP_LIST, PUNCT_COLON, EXP, RIGHTARROW, EXP 
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FUNC_DELC -> EXP, PUNCT_COLON, EXP, MAPSTO, EXP 

FUNC_DELC -> EXP, PUNCT_COLON, EXP, RIGHTARROW, EXP 

FUNC_DELC -> EXP, PUNCT_COLON, EQUAL, ME 

FACTOR -> IDVAR, MAPSTO, IDVAR 

FACTOR -> IDVAR, MAPSTO, EXP 

FUNC -> NAMED_FUNC 

FUNC -> USER_FUNC 

FUNC -> FUNC_NAME 

USER_FUNC -> ALPHABET_SEQ 

USER_FUNC -> VARSYM 

USER_FUNC -> VARSYM, SUB_EXP 

NAMED_FUNC -> LOG | MIN 

SINGLE_OP -> LOG | O_CAP_TEXT | MIN | MINUS | PLUS | PM | PARTIAL | WEDGE 

SINGLE_OP -> FUNC_NAME 

SINGLE_OP -> L_LOW_TEXT, N_LOW_TEXT 

FACTOR -> SINGLE_OP, TERM 

FACTOR -> SINGLE_OP, FENCE_ARG_OPEN, EXP, FENCE_ARG_CLOSE 

FACTOR -> FUNC, FENCE_ARG_OPEN, EXP, FENCE_ARG_CLOSE 

FACTOR -> FUNC, FENCE_ARG_OPEN, REL_EXP, FENCE_ARG_CLOSE 

FACTOR -> FUNC, FENCE_ARG_OPEN, EXP_LIST, FENCE_ARG_CLOSE 

FENCE_ARG_OPEN -> BRACKET_OPEN 

FENCE_ARG_CLOSE -> BRACKET_CLOSE 

FENCE_ARG_OPEN -> FUNC_ARG_OPEN 

FENCE_ARG_CLOSE -> FUNC_ARG_CLOSE 

A.2.8 Probability  

PR -> P_CAP_TEXT 

PR_OPEN_FENCE -> BRACKET_OPEN 

PR_OPEN_FENCE -> SQ_BRACKET_OPEN 

PR_OPEN_FENCE -> FUNC_ARG_OPEN 
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PR_OPEN_FENCE -> FENCE_ARG_OPEN 

PR_CLOSE_FENCE -> BRACKET_CLOSE 

PR_CLOSE_FENCE -> SQ_BRACKET_CLOSE 

PR_CLOSE_FENCE -> FUNC_ARG_CLOSE 

PR_CLOSE_FENCE -> FENCE_ARG_CLOSE 

FACTOR -> PR, PR_OPEN_FENCE, FACTOR, VERT_BAR, REL_EXP, PR_CLOSE_FENCE 

FACTOR -> PR, PR_OPEN_FENCE, REL_EXP, PR_CLOSE_FENCE 

FACTOR -> PR, PR_OPEN_FENCE, EXP, PR_CLOSE_FENCE 

FACTOR -> PR, PR_OPEN_FENCE, EXP, VERT_BAR, EXP_LIST, PR_CLOSE_FENCE 

FACTOR -> PR, PR_OPEN_FENCE, EXP, VERT_BAR, EXP, PR_CLOSE_FENCE 

A.2.9 Set  

FACTOR -> SET_FACTOR 

SET_FACTOR -> SET_RANGE_OPEN, EXP, PUNCT_COMMA, EXP, SET_RANGE_CLOSE 

SET_RANGE_OPEN -> BRACKET_OPEN 

SET_RANGE_OPEN -> SQ_BRACKET_OPEN 

SET_RANGE_CLOSE -> BRACKET_CLOSE 

SET_RANGE_CLOSE -> SQ_BRACKET_CLOSE 

FENCE_SET_OPEN -> CURVE_BRACKET_OPEN 

FENCE_SET_CLOSE -> CURVE_BRACKET_CLOSE 

SET_FACTOR -> FENCE_SET_OPEN, REL_EXP_LIST, FENCE_SET_CLOSE 

SET_FACTOR -> FENCE_SET_OPEN, EXP_LIST, FENCE_SET_CLOSE 

SET_FACTOR -> FENCE_SET_OPEN, EXP, FENCE_SET_CLOSE 

SET_FACTOR -> FENCE_SET_OPEN, REL_EXP, FENCE_SET_CLOSE 

SET_FACTOR -> REALDOMAIN 

REALDOMAIN -> R_CAP_TEXT 

SET_FACTOR -> EMPTY 

SET_FACTOR -> SET_FACTOR, SUP_EXP 

SET_FACTOR -> SET_FACTOR, SUB_EXP, SUP_EXP 

COND_SET_FENCE -> VERT_BAR 
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COND_SET_FENCE -> PUNCT_COLON 

SET_FACTOR -> FENCE_SET_OPEN, ME, COND_SET_FENCE, REL_EXP, FENCE_SET_CLOSE 

SET_FACTOR -> FENCE_SET_OPEN, ME, COND_SET_FENCE, REL_EXP_LIST, FENCE_SET_CLOSE 

SET_FACTOR -> FENCE_SET_OPEN, EXP_LIST, PUNCT_COMMA, ETC_FACTOR, PUNCT_COMMA, EXP_LIST, 
FENCE_SET_CLOSE 

SET_FACTOR -> FENCE_SET_OPEN, EXP_LIST, PUNCT_COMMA, ETC_FACTOR, PUNCT_COMMA, EXP, 
FENCE_SET_CLOSE 

SET_FACTOR -> FENCE_SET_OPEN, EXP, PUNCT_COMMA, ETC_FACTOR, PUNCT_COMMA, EXP_LIST, 
FENCE_SET_CLOSE 

SET_FACTOR -> FENCE_SET_OPEN, EXP, PUNCT_COMMA, ETC_FACTOR, PUNCT_COMMA, EXP, FENCE_SET_CLOSE 

ETC_FACTOR -> LDOTS 

ETC_FACTOR -> CDOTS 

ETC_FACTOR -> PUNCT_PERIOD, PUNCT_PERIOD 

ETC_FACTOR -> PUNCT_PERIOD, PUNCT_PERIOD, PUNCT_PERIOD 

A.2.10 Units  

UNIT -> R_LOW_TEXT, A_LOW_TEXT, D_LOW_TEXT 

UNIT -> S_LOW_TEXT 

UNIT -> K_LOW_TEXT, G_LOW_TEXT 

UNIT -> N_CAP_TEXT 

UNIT -> M_LOW_TEXT 

UNIT -> P_CAP_TEXT, A_LOW_TEXT 

UNIT -> BRACKET_OPEN, UNIT, BRACKET_CLOSE 

UNIT -> SQ_BRACKET_OPEN, UNIT, SQ_BRACKET_CLOSE 

UNIT -> CUNIT 

CUNIT -> UNIT 

CUNIT -> UNIT, CUNIT 

CUNIT -> UNIT, ARITHM_OP_LEVEL2, CUNIT 

CUNIT -> UNIT, SUP_OPEN, NUM_FACTOR, SUP_CLOSE 
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A.2.11 Incomplete  

INCOMPLETE_EXP -> ME, VERT_BAR 

INCOMPLETE_EXP -> EXP, VERT_BAR 

INCOMPLETE_EXP -> ME, BRACKET_CLOSE 

INCOMPLETE_EXP -> BRACKET_OPEN, ME 

INCOMPLETE_EXP -> ME, PUNCT_COMMA 

INCOMPLETE_EXP -> ME, PUNCT_COLON 

INCOMPLETE_EXP -> ME, PUNCT_PERIOD 

INCOMPLETE_EXP -> ME, PUNCT_SEMICOLON 

INCOMPLETE_EXP -> ME, PUNCT_COLON, EQUAL 

INCOMPLETE_EXP -> REL_OP, ME 

INCOMPLETE_EXP -> ME, REL_OP 

INCOMPLETE_EXP -> ME, ARITHM_OP_LEVEL1 

INCOMPLETE_EXP -> ME, ARITHM_OP_LEVEL2 

INCOMPLETE_EXP -> ME, ARITHM_OP_LEVEL3 

INCOMPLETE_EXP -> ARITHM_OP_LEVEL1, ME 

INCOMPLETE_EXP -> ARITHM_OP_LEVEL2, ME 

INCOMPLETE_EXP -> ARITHM_OP_LEVEL3, ME 

INCOMPLETE_EXP -> UNIT 

INCOMPLETE_EXP -> REL_OP 

INCOMPLETE_EXP -> ARITHM_OP_LEVEL1 

INCOMPLETE_EXP -> ARITHM_OP_LEVEL2 

INCOMPLETE_EXP -> ARITHM_OP_LEVEL3 

INCOMPLETE_EXP -> PUNCT_AND 

INCOMPLETE_EXP -> PRIME 

INCOMPLETE_EXP -> SPACE 

INCOMPLETE_EXP -> ETC_FACTOR 

FACTOR -> IDVAR, VERT_BAR, SUB_OPEN, IDVAR, SUB_CLOSE 

EXP_LIST -> EXP, LDOTS, EXP 
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APPENDIX B. MANUAL FILTERING FOR DECLARATION PATTERNS COLLECTION 

This appendix chapter show the supplementary materials for the declaration pattern 

collection, including the PoS table for pattern filtering, and the history of the manual filtering 

process.  

B.1 PoS Table 

Table 30 PoS filtering for declaration pattern collection 

category tags 

parenthesis -LRB-, -RRB- 

verb VB, VBG, VBD, VBN, VBP, VBZ 

preposition IN, (might include TO) 

noun NN, NNS, NNP, NNPS 

pronoun PRP, PRP$ 

adjective JJ, NML, JJR, JJS 

adverb RB, RBR, RBS, WRB 

ME NP-ME, S-ME, NML-ME 

punctuation "$", ",", ".", ":", "#", "”", 

wh-* WDT, WP, WP$ 

determinate DT, PDT 

particle RP 

digits/symbol CD, SYM 

misc. MD, UH, -NONE-, FW, LS, EX, CC POS, 

unknown STOP 
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B.2 Manual filter process 

 
Table 31 Manual pattern filtering, round 2 

good patterns ... ME ...refers...to... DEC ... ...Let... DEC ...denote... ME ... 

 ...with... ME ...,... DEC ... ...write... ME ...for... DEC ... 

 ...Let... DEC ...be... ME ... ... ME ...is...called... DEC ... 

 ... DEC ...denoted...by... ME ... ...refer... ME ...as... DEC ... 

 ...denoted... ME ...for... DEC ... ...refer... DEC ...as... ME ... 

 ... DEC ...denote...with... ME ... ...use... ME ...as... DEC ... 

 ...denote... DEC ...with... ME ... ...by... ME ...represents... DEC ... 

 ...denotes... DEC ...with... ME ... ...Let... ME ...denote... DEC ... 

 ...Let... DEC ...define... ME ... ... ME ...corresponding...to... DEC ... 

 ...mapping... ME ...to... DEC ... ...with... ME ...defined... DEC ... 

 ... ME ...to...represent... DEC ... ...Let... ME ...as... DEC ... 

 ...Denote... DEC ...by... ME ...  

ignore patterns ...be... DEC ...let... ME ... ...)... DEC ...(... ME ... 

 ...for... DEC ...let... ME ... ...divide... DEC ...into... ME ... 

 ...is... DEC ...than... ME ... ... ME ...are...respectively... DEC ... 

 ...with... DEC ...than... ME ... ...with... ME ...representing... DEC ... 

 ...into... ME ...,... DEC ... ...to... ME ...through... DEC ... 

 ...For... DEC ...use... ME ... ...we... ME ...to... DEC ... 

 ...To... DEC ...let... ME ... ...for... DEC ...given... ME ... 

 ...use... DEC ...from... ME ... ...hidden... ME ...at... DEC ... 

 ...be... DEC ...than... ME ... ...given... DEC ...with... ME ... 

 ...to... DEC ...while... ME ... ... DEC ...parameterized...by... ME ... 

 ...to... DEC ...than... ME ... ...is... DEC ...let... ME ... 

 ...has... ME ...,... DEC ... ...by... DEC ...denoted... ME ... 

 ...given... ME ...with... DEC ... ...replacing... ME ...with... DEC ... 

 ... DEC ...indexed...by... ME ...  

stop words divide than 

 respectively we 

 at hidden 

 while parameterized 

 replacing indexed 
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Table 32 Manual pattern filtering, round 3 

good patterns ... DEC ...denoted...as... ME ... ...let... DEC ...denote... ME ... 

 ...let... ME ...denote... DEC ... ...Denoting... DEC ...by... ME ... 

 ...Denote... DEC ...as... ME ...  

ignore patterns ...assume... DEC ...has... ME ... ...corresponding... ME ...for... DEC ... 

 ...denote... DEC ...from... ME ... ...define... ME ...on... DEC ... 

 ... DEC ...denote...as... ME ... ... ME ...belongs...to... DEC ... 

 ...denote... DEC ...set... ME ... ...containing... ME ...,... DEC ... 

 ...add... ME ...to... DEC ... ...denote... ME ...to... DEC ... 

 ...set... ME ...be... DEC ... ... ME ...according...to... DEC ... 

 ... ME ...depends...on... DEC ... ...Let... DEC ...set... ME ... 

 ...define... ME ...for... DEC ... ...use... ME ...for... DEC ... 

 ...Let... DEC ...for... ME ... ...Let... ME ...for... DEC ... 

 ...using... ME ...to... DEC ... ...write... ME ...to... DEC ... 

 ...for... ME ...then... DEC ... ...sends... ME ...to... DEC ... 

 ...Let... ME ...indicate... DEC ... ...by... DEC ...let... ME ... 

 ...using... DEC ...with... ME ... ...for... ME ...given... DEC ... 

 ... DEC ...induced...by... ME ... ...for... ME ...,... DEC ... 

 ...think... ME ...as... DEC ... ...with... ME ...nodes... DEC ... 

 ...with... ME ...then... DEC ... ...is... DEC ...containing... ME ... 

 ...to... ME ...given... DEC ... ... ME ...belonging...to... DEC ... 

 ...to... ME ...has... DEC ... ...node... ME ...node... DEC ... 

 ...consisting... ME ...,... DEC ... ...to... DEC ...Let... ME ... 

 ...centered... DEC ...with... ME ... ...mapping... ME ...from... DEC ... 

 ...have... DEC ...with... ME ... ... DEC ...update...gate... ME ... 

stop words assume has 

 belongs according 

 depends then 

 sends indicate 

 induced nodes 

 belonging node 

 consisting centered 

 mapping embedding 

 conditioned update 
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APPENDIX C. MECA SOFTWARE SYSTEM 

 

As shown in Figure 6, the MECA software prototype has a modularized system 

architecture to implement five content analysis models, which are integrated through a Graphical 

User Interface (GUI).  Organized into packages, the analytical models include ME extraction, 

ME layout analysis, ME semantic analysis, declaration extraction, and QuQn dependency 

analysis. These components use a shared data pipeline to exchange data, and each of them has its 

training and testing components. In the Document layout analysis package in Figure 6, the ME 

Extraction module starts with the PDF parsing [19] [18], which extracts raw rendering units and 

organizes them into a hierarchy of column-line-NSCS by layout analysis. Then the TSM and 

MRF-TSM modules will identify MEs from NSCSes. The identified MEs are represented as a set 

of characters with values and positions, which are then processed by the ME layout analysis 

package. The CCS module organizes the set of characters into a hierarchy of ME layout 

structures on top of the typographic system and the parametric lognormal modeling of the 

relative spatial relationship, i.e., the PHN model. The ME layout structure is further parsed into 

ME objects according to the ME semantic taxonomy through tokenization, parsing, and tree re-

writing as shown in the ME semantic analysis package. The PCFG parsing framework from 

NLTK [101] is adopted for prototyping the ME semantical parser.  Besides the analysis of MEs 

alone, we also extract the bonding declaration phrase for MEs in the Declaration extraction 

package. The mixed Word-ME sentences obtained from the PDF parser are fed into our 

customized PoS tagger, NP chunker, and declaration extractor sequentially. At last, we 

consolidate the qualitative bonding declarations and the quantitative MEs into a unified 

graphical representation in the QuQn abstraction package. The Object-Oriented representation of 
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the ME semantic objects greatly simplifies the dependency analysis and pruning of the QuQn 

map.  

The analytical products from the MECA modules are stored in MongoDB2, which is a 

non-SQL database due to its flexibility in the table schema for fast iteration. The objects for the 

complex structure are serialized into a string to store into databased and deserialized when 

reading from the database. Besides saving the content extracted by the automated system, user 

corrections and annotations could also be stored into the database only with the extra field about 

the annotator and timestamps.  

 The graphical user interface GUI is based on the Model-View-Control (MVC) 

architecture pattern. Given that most of the models are written in Python, we choose a 

lightweight web framework web.py3 to develop the MVC based GUI. The front-end interaction is 

based on Hypertext Markup Language (HTML) and JavaScript. The communication between the 

front end and backend subsystems is based on asynchronous JavaScript and XML (AJAX) for 

smooth interaction experience without refreshing the page. The Bootstrap CCS library4 is used 

for the webpage layout design. Pdf.js library5 is used for rendering PDF on the webpage and the 

annotations on the PDF are implement as colored transparent rectangles. The d3.js library6 is 

used for the interactive visualization of the QuQn map and the knowledge evolution. The reading 

                                                 

2 https://www.mongodb.com/ 

3 http://webpy.org/ 

4 https://getbootstrap.com/ 

5 https://mozilla.github.io/pdf.js/ 

6 https://d3js.org/ 
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assistant integrates the PDF viewer and the QuQn map and synchronizes the focused 

information. The MEs visible in the current PDF viewer is highlighted in the QuQn map; a click 

on an ME in the QuQn map leads to the automated scrolling of PDF viewer to the corresponding 

page containing the clicked ME.  

 Parallel processing and caching are heavily adopted across the system for processing 

speed up and avoidance of duplicated computations. For parallelization, each PDF page is passed 

to one computing process for PDF parsing and ME Extraction. Each user at the frontend will be 

dispatched to a different process by the Apache web server. On the other side, Memcached7 is 

used to store the short-term, intermediate results such as the request by a user, such as getting all 

the MEs for a PDF page. MongoDB is used to store long-term intermediate results that might be 

used by many later stages of processing such as the result of PDF parsing. Special care is taken 

to ensure the consistency among copies of the same information at different caching layers and 

the front-end GUI. For example, when a user corrects the extracted MEs, the correction is stored 

into the MongoDB. Correspondingly, we will also update Memcached for the corresponding 

item. Further, the highlight in the front-end is also updated accordingly, such as removing a 

deleted ME or create a new annotation rectangle for a new added ME.  

                                                 

7 https://memcached.org/ 




