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 ABSTRACT 

Diabetic retinopathy (DR) is the leading cause of blindness among American working 

populations.  Oxidative stress is one of the major culprits contributing to the pathogenesis 

of DR.  In this study, we tested whether melatonin, a potent antioxidant, was able to 

alleviate DR complications in streptozotocin (STZ)-induced diabetic mice.  Melatonin was 

given through oral gavage to imitate the most commonly used intake route in humans.  

Electroretinogram (ERG) recordings were used to measure retinal light responses, and 

fluorescein angiography (FA) was used to assess changes in retinal vasculature 

chronologically.  Three months after STZ-induced diabetes, eyes were harvested and 

analyzed for molecular changes using immunofluorescent staining. Cultured 661W cells, 

a photoreceptor-derived cell line, were used to determine the effect of melatonin on high 

glucose (HG) treated 661W cells.  There was no significant difference in the body weight 

among the control, STZ-diabetic, and melatonin treated STZ-diabetic mice, but melatonin 

treatments appeared to further increase systemic hyperglycemia.  Melatonin treatments 

had a temporarily protective effect on dampened retinal light responses in the STZ-

diabetic mice.  However, melatonin treatments prevented STZ-induced changes in retinal 

vasculature, including venous beading and increased vessel length.  Melatonin treatments 

also reversed the disturbed mitochondrial dynamics and altered mitochondrial calcium 

storage in STZ-diabetic retinas in vivo and HG-treated 661W cells in vitro.  Thus, daily 

oral intake of melatonin might have a protective effect against diabetes-associated retinal 

microvascular complications. 
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1. INTRODUCTION 

1.1 Diabetic Retinopathy 

Diabetes is a fast-growing global problem (Olokoba, Obateru et al. 2012), and diabetic 

retinopathy (DR) is the leading cause of blindness among Americans over 40 years old.  

Eighty percent of patients with type 1 diabetes (Roy, Klein et al. 2004, Ting, Cheung et al. 

2016) and 30 to 50 % of those with type 2 diabetes (Ting, Cheung et al. 2016) will develop 

some degree of DR in their lifetime.  Twenty percent of type 1 diabetic patients start to 

develop retinopathy 3-4 years after diagnoses with diabetes, and half of them further 

develop proliferative retinopathy after 20 years of diabetes, even when they have been 

under insulin therapy (Ryan, Schachat et al. 2012).  

Diabetic retinopathy is a dual disorder with microvascular complications and 

retinal degeneration (Alvarez, Chen et al. 2010).  Figure 1.1 is a schematic diagram of 

possible mechanisms leading to neural and vascular damages in DR (Araszkiewicz and 

Zozulinska-Ziolkiewicz 2016).  The retinal manifestation of diabetes could be classified 

broadly as earlier nonproliferative DR (NPDR) and advanced proliferative DR (PDR) 

(Duh, Sun et al. 2017, Solomon, Chew et al. 2017).  Nonproliferative DR is the early stage 

of DR and characterized by intraretinal microvascular changes, including altered retinal 

vascular permeability, loss of pericytes, microaneurysm formation (Kuwabara and Cogan 

1960), and thickened basement membrane of the capillaries (Bloodworth 1967).  Severe 

NPDR leads to the proliferative phase: the PDR is characterized by new vessel 

proliferation (Solomon, Chew et al. 2017).  The hypoxic condition caused by altered 
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microvascular changes leads to increased production of vascular endothelial growth factor 

(VEGF)  and promotes formation of new vessels (Gupta, Mansoor et al. 2013), which is 

evident as VEGF in the aqueous humor of PDR patients are elevated significantly (Selim, 

Sahan et al. 2010). 

 Historically, DR has been investigated and treated as a vascular complication in 

the eye (Kern and Engerman 1986, Colberg, Sigal et al. 2010).  However, increasing 

evidence shows that the dysfunction of neural retina precedes the microvascular 

complication (Cho, Poulsen et al. 2000).  The diabetic neuronal dysfunction appears to 

occur earlier than microvascular lesions in both diabetic patients and animal models, as 

the color vision has distorted in early diabetes without any microvascular complications 

(Feitosa-Santana, Paramei et al. 2010, McFarlane, Wright et al. 2012).  Using highly 

sensitive techniques, such as multifocal electroretinogram (ERG), early diabetic patients have 

altered retinal light responses (Abdelkader 2013) prior to clinical signs of DR and any vascular 

complications.  Currently, the dysfunction of the neural retina in type 1 DR is one of the major 

interests in the vision research community in hope to develop novel treatments to rescue or 

prevent retinal degeneration in DR. 
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Figure 1.1 Effects of reactive metabolites, transient hyperglycaemia and chronic hyperglycaemia on the 

neurovascular unit via activation of biochemical and signaling pathways. The resulting neovascularization, 

edema, and neurodegeneration represent important advanced clinical stages. CHG, chronic hyperglycaemia; 

HF, haemodynamic factors; IRMA, intraretinal microvascular abnormalities; MA, microaneurysms; mt 

ROS, mitochondrial ROS; NVU, neurovascular unit; RM, reactive metabolites; THG, transient 

hyperglycaemia.  

*Reprinted with permission from Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond by 

Hans-Peter Hammes, 2018, Diabetologia, 61:29–38. Copyright 2018 by Springer. 

 

1.2 Oxidative Stress in Diabetic Retinopathy 

Oxidative stress is one of the major culprits in the development of DR vascular lesions 

(Figure 1.2) (Giacco 2010), so controlling the source of oxidative stress is critical in DR 

management.  The overproduction of reactive oxygen species (ROS) has been stated to 

inhibit protein phosphorylation, cause cell damage, and further induce downstream signal 

transduction (Delmastro and Piganelli 2011).  The levels of ROS are elevated in the 
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diabetic retina and in cultured retinal cells under hyperglycemic condition (Du, Miller et 

al. 2003, Kowluru and Abbas 2003).  Chelating ROS with antioxidants could prevent the 

DR progression: Vitamin C suppressed leukocyte adhesion to endothelium to prevent 

endothelial dysfunction (Jariyapongskul, Rungjaroen et al. 2007), and polyphenols 

inhibited diabetes-induced retinal inflammation (Kumar, Gupta et al. 2012).  Recent 

evidence suggests that photoreceptors are the major source of intraocular ROS (Jarrett and 

Boulton 2012, Du, Veenstra et al. 2013).  In the retina, photoreceptors have the highest 

metabolic rate and consume more oxygen, so they generate more ROS than other retinal cells. 

Diabetic patients with retinitis pigmentosa, characterized by the loss of photoreceptor function, 

rarely develop DR (Arden 2001).  In animal models, pharmacological or genetic induction of 

photoreceptor death in early diabetes dampens the generation of ROS and stops the 

progression of DR (Yu and Cringle 2001, Du, Veenstra et al. 2013, Maeda 2013).  These 

observations support the hypothesis that photoreceptors are the major source of intraocular 

oxidative stress under diabetic insults and contributing to the vascular lesions and 

pathogenesis of early DR.  
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Figure 1.2 Diabetic environment increases production of reactive oxygen species (ROS). And also induces 

many metabolic abnormalities, including activation of polyol pathway (POP), protein kinase C (PKC), 

advanced glycation end products (AGEs) and hexosamine (Hexos) pathway, and production of 

inflammatory mediators. Increased ROS damage mitochondria, and mitochondrial ROS, via inhibiting 

glyceraldehyde 3-phosphate dehydrogenase, feed into the metabolic abnormalities. Sustained accumulation 

of ROS damages mitochondrial DNA (mtDNA) and function, which subsequently accelerates cell apoptosis, 

and leads to the development of retinopathy.  

*Reprinted with permission from Oxidative stress, mitochondrial damage and diabetic retinopathy by Renu 

A. Kowluru, 2015. Biochimica et Biophysica Acta, 1852, 2474–2483. Copyright 2015 by Elsevier.  

 

1.3 Mitochondrial Dynamics in Diabetic Retinopathy 

In the retina, most mitochondria are located in the photoreceptors (Du, Veenstra et 

al. 2013).  Mitochondria are dynamic organelles that constantly divide and fuse to achieve 

an equilibrium in healthy cells (Figure 1.3) (Sesaki and Jensen 1999, Scott and Youle 

2010).  Mitochondrial fission process requires recruitment of dynamin-related protein 1 
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(DRP1) from the cytosol to the outer mitochondrial surface; whereas, mitofusin 2 (MFN2) 

on the outer mitochondrial membrane coordinates with the protein optic atrophy 1 (OPA1) 

on the inner membrane to regulate mitochondrial fusion (Chen, Detmer et al. 2003, Lee, 

Jeong et al. 2004) (Figure 1.2).  Under mild stimulation, mitochondrial fusion is triggered 

by combining healthy and damaged mitochondria and further generate new organelles to 

complement the damaged mitochondria (Archer 2013).  However, under severe damage, 

mitochondria divide and lead to sister-fragmented and depolarized mitochondria.  Once 

the mitochondria are severely depolarized, a programmed autophagy known as mitophagy 

is triggered to eliminate the damaged mitochondria.  This could degrade the dysfunctional 

mitochondrial and recycle contents for maintaining homeostasis (Esteban-Martinez, 

Sierra-Filardi et al. 2017).  Under starvation, mitochondria can fuse with each other to 

maintain bioenergetic efficiency (Gomes and Scorrano 2011).  When there is a nutrient 

overload, increasing fragmented mitochondria permits nutrient storage and avoid energy 

waste (Liesa and Shirihai 2013, Schrepfer and Scorrano 2016).  Since mitochondria are 

highly dynamic, their number and shape within a cell are tightly associated with cellular 

metabolism (Dietrich, Liu et al. 2013).  Retinal endothelial cells isolated from type 2 

diabetic patients have increased mitochondrial fission and ROS overproduction (Shenouda, 

Widlansky et al. 2011), and the retina from DR patients also shows downregulated 

mitochondrial fusion (Zhong and Kowluru 2011).  However, the role of mitochondrial 

dynamics in type 1 DR has not been clearly demonstrated.  Therefore, we aimed to 

determine how streptozotocin-induced type 1 diabetes might impact mitochondria in the 

retina. 
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Figure 1.3 Mitochondrial fission and fusion. Mitochondria are dynamic organelles that undergo continuous fusion 

and fission events to intermix their lipids and contents. (A) Dynamin-related protein 1 (DRP1) regulates 

mitochondrial fission, which consists of two steps: first, DRP1 is recruited from the cytosol to the mitochondrial 

outer membrane (OM); second, its assemblage on the mitochondrial surface results in constriction of the 

mitochondria, leading to the separation of one mitochondrion into two entities. (B) Mitofusins 1 and 2 (MFN1/2) 

at the OM and optic atrophy 1 (OPA1) at the inner membrane (IM) orchestrate mitochondrial fusion, which 

involves MFN1/2-mediated OM fusion of two mitochondria, followed by OPA1-directed IM fusion. 

Mitochondrial fusion leads to elongated and highly interconnected mitochondria.  

*Reprinted with permission from Alterations in Mitochondrial Quality Control in Alzheimer’s Disease by 

Qian Cai, 2016. Front Cell Neurosci. Feb 9;10:24. Copyright 2016 by Frontiers. 

 

1.4 Calcium Channels and Calcium Storage in Diabetic Retinopathy  

Our previous research showed that Ca2+ channels play crucial roles in regulating 

retinal physiology (Jian, Barhoumi et al. 2009, Huang, Ko et al. 2012).  In addition to 

ATP production, mitochondria play an important role to buffer intracellular Ca2+.  When 

the cytosolic Ca2+ concentration is elevated due to stimulation, mitochondria along with 

ER take up and store Ca2+ and thus, buffer the intracellular Ca2+  (Contreras, Drago et al. 

2010).  Mitochondria also prevent the Ca2+ depletion in the ER by extruding Ca2+ into 

the cytoplasm (Clapham 2007, Santo-Domingo and Demaurex 2010).  In retinal 

photoreceptors, mitochondria act as the mediators to regulate the Ca2+ uptake in the outer 
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segment and cell body (Giarmarco, Cleghorn et al. 2017).  In neurons, mitochondria also 

buffer Ca2+ to adjust ATP production and prevent excitotoxicity (Macaskill, Rinholm et 

al. 2009, Qiu, Tan et al. 2013).  Previously, we found that in the STZ-induced diabetic 

retina, calcium homeostasis is impaired, and signaling pathways that are involved in 

calcium homeostasis are down-regulated (Shi, Ko et al. 2014).  Mitochondrial calcium 

uniporter (MCU) is a highly selective Ca2+ channel located in the inner membrane of 

mitochondria (Figure 1.4) (Kirichok, Krapivinsky et al. 2004).  The channel allows Ca2+ 

influx into the mitochondrial matrix, which is thought to be the primary entrance pathway 

(De Stefani, Raffaello et al. 2011).  In retinal photoreceptors, mitochondria are densely 

packed between the outer and inner segments and regulate the intracellular Ca2+ flows 

through MCU (Giarmarco, Cleghorn et al. 2017).  In hyperglycemic cardiomyocytes, the 

mRNA level and protein expression of MCU are down-regulated, which leads to 

impaired mitochondrial Ca2+ buffering capacity and a decrease of mitochondrial Ca2+ by 

40%  (Suarez, Hu et al. 2008).  Overexpression of MCU could restore such damage and 

reduce oxidative stress (Diaz-Juarez, Suarez et al. 2016).  However, inhibition of MCU 

protects cultured cerebellar neurons and other cell-lines from oxidative stress-induced 

cell death (Liao, Hao et al. 2015, Yu, Zheng et al. 2016).  These controversial reports 

lead us to examine the role of MCU in the STZ-induced diabetic retina.  
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Figure 1.4 Mitochondrial calcium uniporter complex and the regulation of the entry of Ca2+ ions into 

mitochondria. The protein complex of mitochondrial calcium uniporter is composed of the pore-forming 

proteins (MCU, MCUb, EMRE), and the regulatory proteins (MICU1, MICU2). A. When the concentration 

of Ca2+ ions is low in the IMS, the heterodimer of MICU1 and MICU2 blocks the channel of MCU to inhibit 

the entry of Ca2+ ions. b When the Ca2+ ions level is high upon stimulation, binding of Ca2+ ions to the MICU 

protein elicits a conformational change to open the channel, resulting in the transport of Ca2+ ions into 

mitochondria to activate several dehydrogenases in the matrix of mitochondria. IMS, intermembrane space; 

IMM, inner mitochondrial membrane.  

*Reprinted with permission from Role of mitochondrial dysfunction and dysregulation of Ca2+ homeostasis 

in the pathophysiology of insulin resistance and type 2 diabetes by Chih-Hao Wang, 2017. J Biomed Sci, 

24: 70. Copyright 2017 by BioMed Central. 

 

1.5 Melatonin in Diabetic Retinopathy 

Melatonin is able to prevent the oxidative stress caused by mitochondrial fission 

(Chuang, Pan et al. 2016, Suwanjang, Abramov et al. 2016).  Melatonin is a well-known 

tryptophan-derived neurohormone (Figure 1.5) secreted by the pineal gland that regulates 

the circadian rhythms in mammals, and it possesses anti-oxidative and anti-inflammatory 

properties (Reiter, Tan et al. 2000).  Melatonin is a strong antioxidant that can scavenge a 

variety of ROS, including hydroxyl radical, H2O2, O
2−, singlet oxygen, peroxynitrite anion, 

nitric oxide, and hypochlorous acid (Reiter, Tan et al. 2000).  Furthermore, melatonin can 

activate other anti-oxidative enzymes, such as glutathione peroxidase and superoxide 
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dismutase (Reiter, Tan et al. 2000).  Several publications elaborate the connection between 

type 2 diabetes and melatonin (Costes, Boss et al. 2015, Zephy and Ahmad 2015). 

Melatonin is able to reduce the damage of hepatic mitochondria in both STZ- and obesity-

induced diabetic rats (Agil, El-Hammadi et al. 2015, Elbe, Esrefoglu et al. 2015).  

Treatments with melatonin reverse the mitochondrial damage by up-regulating 

mitochondrial fusion (Pei, Du et al. 2016).  Additionally, melatonin levels in the blood 

circulation and retina are significantly decreased in diabetics (do Carmo Buonfiglio, 

Peliciari-Garcia et al. 2011), and the decreased melatonin is correlated with increased 

insulin resistance in these patients (McMullan, Schernhammer et al. 2013).  On the 

contrary, increased melatonin is also found in aqueous humor of diabetic patients (Aydin 

and Sahin 2016).  In the United States, melatonin can be self-administered and easily 

purchased without a doctor’s prescription.  About 0.7% of Americans use melatonin as a 

supplement, and the number has doubled within the past 5 years (Clarke, Black et al. 2015).  

Since there are contradicting reports on melatonin’s action in retinal neurons (Wiechmann 

and O'Steen 1992, Wiechmann, Chignell et al. 2008, Baba, Pozdeyev et al. 2009), we 

aimed to clarify the efficacy of melatonin in preventing retinal dysfunction in early 

diabetes. 
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Figure 1.5 Overview of direct and indirect antioxidant actions of melatonin.  

 

*Reprinted with permission from Melatonin and Melatonergic Drugs in Clinical Practice: Melatonin’s 

Antioxidant Properties: Molecular Mechanisms by Rüdiger Hardeland. Copyright 2014 by Springer India.  
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2. RATIONALE AND SIGNIFICANCE 

 In contrast to type 2 diabetes, type 1 diabetes has an early onset in life, and nearly 

80% of type 1 diabetic patients will develop DR that impairs their vision (Colberg, Sigal 

et al. 2010).  Even though insulin pumps stabilize systemic glycemia, there are currently 

no cures for DR (Anderson, Nizzi et al. 2013).  Thus, there is an urgent need to develop 

therapeutic strategies to prevent or delay DR in type 1 diabetes.  Our preliminary data 

showed the potential of using melatonin to reverse retinal dysfunction in early diabetes; 

however, the molecular mechanisms of melatonin action in the retina are not completely 

understood.  We propose to use an in vivo streptozotocin-induced type 1 diabetic animal 

model to examine the effect of melatonin on DR progression.  We will also use in vitro 

experimental models to determine the molecular actions of melatonin in photoreceptors 

that are under hyperglycemic conditions, which will further provide potential 

experimental therapeutic targets for DR treatment 
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3. MATERIALS AND METHODS 

3.1 Animals 

Four-week-old wild-type (WT) male C57BL/6J mice were purchased from the 

Jackson Laboratory (ME, USA).  All animal experiments were approved by the Institutional 

Animal Care and Use Committee of Texas A&M University.  Mice were housed under 

temperature and humidity-controlled conditions with 12:12 h light-dark cycles.  All mice 

were given food and water ad libitum.  

3.2 Diabetes induction and melatonin treatment 

At 5 weeks of age (body weight around 20 g), mice were randomly assigned as the 

control or STZ-diabetic group.  The STZ-diabetic mice were given intraperitoneal (i.p.) 

injections of STZ at 100 mg/Kg body weight (b.w.) for three consecutive days.  The non-

diabetic controls were given i.p. injections with the same volume of saline.  After one week 

of STZ- injections, the mice with a blood glucose level higher than 250 mg/dL were 

considered as diabetic.  Half of the STZ-diabetic mice were given 10 mg/Kg b.w. melatonin 

by oral gavage daily right before the room lights turned off, starting at 1-week post-STZ 

injections for at least 3 months, and the other half of the STZ-diabetic mice were given H2O.  

Freshly prepared melatonin was first well mixed in H2O at 2 mg/ml, and each mouse was 

given 100 μl melatonin solution per 20 g b.w. through oral gavage daily.  The ERG recording 

was used to record retinal light responses, and fluorescein angiography (FA) was used to 

monitor retinal vasculature for all mice monthly.  At 3 months and 1 week after the STZ-
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injections, which was the equivalent period of 3 months of melatonin treatments, mice were 

sacrificed, and the eyes were fixed for further analyses. 

3.3 In Vivo Electroretinogram (ERG) 

Electroretinogram (ERG) is a method to measure the retinal responses to light 

stimulations, as the flash of light elicits a recordable biphasic waveform at the cornea 

(Perlman 1995).  The shape and duration of the flash responses received from the cornea 

depend on the intensity of flash and background illumination.  There are two major 

components of the ERG responses: the a-wave is the first large negative component, 

followed by the b-wave which is corneal positive (Creel 1995).  The ERG a-wave are directly 

produced by the hyperpolarized cones and rods, while the b-wave originates in post-synaptic 

retinal cells to photoreceptors, including ON bipolar cells and Muller cells (Miller and 

Dowling 1970), so the ERG waveforms indirectly reflect the neural activity of the retina 

(Spekreijse and Riemslag 1999).  Blocking synaptic transmission between photoreceptors 

and bipolar cells diminishes the b-wave (Gurevich and Slaughter 1993).  The 

hyperpolarization of the photoreceptor cells leads to decreased glutamate release, which 

results the depolarization of ON bipolar cells.  When the ON bipolar cells are depolarized, 

it subsequently increases the concentration of extracellular potassium, and alter membrane 

potential of Muller cells, so together, these post-photoreceptor events generate positive 

deflection currents as the b-wave (Perlman 1995).  The ERG oscillatory potentials (OPs) are 

embedded in the b-wave but can be analyzed after filtering through 30 Hz.  These OPs mostly 

reflect the amacrine cell responses in the inner retina (Wachtmeister 1998). 
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The ERG retinal light responses were recorded as described previously (Kim, Chang 

et al. 2017).  Mice were dark-adapted for a minimum of 3 hours and anesthetized with an i.p. 

injection of Avertin (2% 2,2,2-tribromoethanol, 1.25% tert-amyl alcohol; Fisher Scientific, 

Pittsburgh, PA, USA) solution (12.5 mg/ml) at a dose of 500 μl per 25 g of body weight.  

Pupils were dilated using a single drop of 1% tropicamide and 2.5% phenylephrine mixture 

for 5 minutes.  Mice were placed on a heating pad to maintain their body temperature at 

37°C. The ground electrode was placed on the tail, and the reference electrode was placed 

under the skin in the cheek below the eye.  A thin drop of Goniovisc (Hub Pharmaceuticals, 

Rancho Cucamonga, CA, USA) was applied to the cornea surface to keep it moist, and a 

threaded recording electrode conjugated to a minicontact lens (Ocuscience, Henderson, NV, 

USA) was placed on top of the cornea.  All preparatory procedures were done under a dim 

red light, and the light was turned off during the recording.  A portable ERG device 

(OcuScience) was used to measure dark adopted ERG recordings at light intensities of 0.1, 

0.3, 1, 3, 10, and 25 candelas .second/meter2 (cd.s/m2).  Responses to 4 light flashes were 

averaged at the lower light intensities (0.1, 0.3, 1.0, and 3.0 cd.s/m2), whereas only 1 light 

flash was applied for the higher light intensities (10 and 25 cd.s/m2).  A 1-minute recovery 

period was programmed between different light intensities.  The amplitudes and implicit 

times of the a-wave, b-wave, and oscillatory potentials (OPs) were recorded and analyzed 

using ERGView 4.4 software (OcuScience).  Both eyes were included in the analyses. 

3.4 Fluorescein Angiography (FA) 

Mice were anesthetized with an i.p. injection of Avertin (12.5 mg/ml) at a dose of 

500 μl per 25 g of body weight.  Pupils were dilated using a single drop of 1% 
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tropicamide/2.5% phenylephrine mixture for 5 minutes.  Immediately following pupil 

dilation, 10% sodium fluorescein (Akorn, Lake Forest, IL, USA) was i.p. injected at a dose 

of 50 μl per 25 g of body weight.  Images were taken using iVivo Funduscope for small 

animals (Ocuscience).  The vascular parameters were further analyzed using Photoshop 

version 6.0 (Adobe Systems) and AngioTool software, a free software developed by the US 

National Institutes of Health/National Cancer Institute (Bethesda, MD, USA).  Areas of 289 

× 289 pixels in the peripheral retinal region (800 pixels from the optic nerve) were cropped 

using Photoshop.  The peripheral retinal regions were obtained to analyze the microvascular 

density (the percentage of vascular area compared to the retinal area), vessel area, vessel 

branch points, and average nonvascular area (average lacunarity), using AngioTool.  The 

primary retinal arteries and veins were not included in the analyses.   

3.5 Isolectin B4 Staining 

For the analyses of retinal blood vessels, mouse eyes were dissected out at the end 

of the 3 months STZ injection and fixed in Zamboni's fixative (VWR) for 2 hours at 4°C as 

previously described.  The retinas were isolated and stained overnight at 25°C with FITC-

conjugated Isolectin B4 (Sigma, St. Louis, MO, USA) in PBS containing 0.1% Triton X-

100 and 1 mM Ca2+. Following 2 hours of washes, retinas were cut on the peripheral edge 

and flat-mounted with the photoreceptor side down onto microscope slides (VWR Scientific) 

in ProLong Antifade reagents (Thermo Fisher Scientific).  Images were captured at 5x 

magnification on a Zeiss Digital Imaging Workstation (Zeiss, Thornwood, NY, USA), and 

whole retinal images were stitched together with the Image Composite Editor (Microsoft, 
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Seattle, WA, USA).  There were 4 peripheral areas from each whole retina randomly selected, 

analyzed, and averaged. Each experimental group had retinas from 4 mice (n = 4) 

3.6 Immunofluorescent Staining 

Mouse eyes were excised and prepared as previously described (Kim, Chang et al. 

2017).  Briefly, eyes were fixed with Zamboni fixative and processed for paraffin sectioning 

at 4 μm.  Each glass slide contained single paraffin sections from the control, STZ, and STZ 

plus melatonin groups.  After deparaffinization and antigen retrieval procedure, sections 

were washed in phosphate-buffered saline (PBS), blocked with 10% goat serum for 2 hours 

at room temperature and then incubated overnight with primary antibodies at 4°C.  The next 

day, sections were washed with PBS several times and incubated with fluorescent-

conjugated secondary antibodies for 2 hours at room temperature and mounted with ProLong 

Gold antifade reagent containing 4′,6’-diamidino-2-phenylindole (DAPI; Invitrogen/Life 

Technologies, Grand Island, NY, USA).  The primary antibodies were DRP1 (1:100; Cell 

Signaling Technology, Danvers, MA, USA), MFN2 (1:100 Abcam, Cambridge, MA, USA), 

MCU (1:100 Abcam).  The secondary antibodies used were Alexa Fluor 488 goat anti-rabbit 

immunoglobulin G (IgG; 1:150 dilution; Molecular Probes/Life Technologies, Grand Island, 

NY, USA) and Cy5 goat anti-mouse IgG (1:150 dilution; Abcam, Cambridge, MA, USA). 

Images will be obtained using a Zeiss Stallion digital imaging workstation equipped with a 

Zeiss Axiovert 200M microscope (Carl Zeiss AG, Oberkochen, Germany).  Each fluorescent 

image from three groups was taken under identical parameters, including the same exposure 

time and magnification. Image analysis included all retinal layers (from the photoreceptor 

outer segment to the ganglion cell layer).  The averaged fluorescence intensity per pixel for 
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each image was quantified without any modification, using the luminosity channel of the 

histogram function in the Photoshop 6.0 software (Adobe Systems, San Jose, CA, USA), 

and the green or red fluorescence intensities were measured on a scale of 0 to 255 brightness 

levels.  A total of 3 to 5 retinal sections from each group were processed for immunostaining 

and image analyses. 

3.7 Cell Culture 

Mammalian 661W cells were originally derived from a mouse retinal tumor and 

characterized as a cone-photoreceptor cell line, since they express cone-specific opsins, 

transducin, and arrestin (al-Ubaidi, Font et al. 1992, Tan, Ding et al. 2004).  The 661W cells 

were obtained from Dr. Al-Ubaidi (originally at the University of Oklahoma, now at the 

University of Houston) and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with 10% Fetal Bovine Serum (FBS), 1% Glutamax and 1% antibiotics at 

37°C in 5% CO2.  Cultured 661W cells were treated with high glucose (HG, 30 mM) for 

different durations to examine the signal transduction changes.  Some HG-treated cells were 

treated with melatonin (100 µM) concurrently to determine whether melatonin reversed the 

effect of HG. 

3.8 H2DCFDA Staining 

H2DCFDA was used to evaluate the formation of hydroperoxides (Wojtala, Bonora 

et al. 2014), which is a sensitive probe to various cellular oxidants, such as hydrogen 

peroxide (H2O2), hydroxyl radicals (OH•), and peroxyl radicals (OOH•) (Sanders, 

Henderson et al. 2004).  The 661W cells were cultured on coverglass chambered slides 



 

19 

 

(Nunc Lab-Tek; Thermo Fisher Scientific) with the same medium described above.  After 

treatment with HG or co-treatment with melatonin for 6 and 24 hours, cells were loaded with 

10 μM fluorescent 2,7-dichlorofluorescein (DCF) (Invitrogen, Thermo Fisher Scientific) for 

30 min at 37 °C.  Cells were then washed three times with PBS and recovered in phenol red 

free DMEM for 5 min. Fluorescence was monitored with a 530 nm barrier filter and laser 

excitation at 488 nm (Barhoumi, Bailey et al. 1995).  Data for each group were collected 

from 3 fields per chamber. 

3.9 Western Immunoblotting 

Cell lysates were collected and prepared as described previously (Kim, Chang et al. 

2017, Chang, Shi et al. 2018).  Briefly, 661W cells were harvested and lysed in the Tris lysis 

buffer (in mM): 50 Tris, 1 EGTA, 150 NaCl, 1% Triton X-100, 1% β-mercaptoethanol, 50 

NaF, and 1 Na3VO4, pH 7.5.  Samples were separated on 10% sodium dodecyl sulfate-

polyacrylamide gels by electrophoresis and transferred to nitrocellulose membranes.  The 

primary antibodies used in this study were DRP1 (1:1000; Cell Signaling Technology), 

MFN2 (1:1000 Abcam), MCU (1:1000 Abcam), actin (1:1000, Cell Signaling Technology).  

Blots were visualized using appropriate secondary antibodies (anti-mouse/anti-rabbit; Cell 

Signaling Technology) at 1:1000 conjugated to horseradish peroxidase and an enhanced 

chemiluminescence (ECL) detection system (Pierce, Rockford, IL, USA).  Band intensities 

were quantified by densitometry using Scion Image (NIH, Bethesda, MD, USA). 
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3.10 Calcium Image Acquisition and Analysis 

The 661W cells were cultured on coverglass chambered slides (Nunc Lab-Tek; 

Thermo Fisher Scientific) with the same medium described above.  After treatment with HG 

or co-treatment with melatonin for 24 hours, cells were loaded with 1 μM Fluo-4 and 1 μM 

Rhod-2 for 30 mins for cytosolic and mitochondrial Ca2+ imaging (Burkeen, Womac et al. 

2011, Spinelli and Gillespie 2012).  Fluo-4 has a fluorescence emission peak at 530 nm when 

excited at 488 nm.  Rhod-2 is a suitable dye for measuring mitochondrial Ca2+ (Hajnoczky, 

Robb-Gaspers et al. 1995).  Rhod-2 fluorescence was generated by excitation at 560 nm and 

mitochondrial Ca2+ was measured at an emission wavelength of 590 nm (Barhoumi, 

Burghardt et al. 2007, Barhoumi, Qian et al. 2010).  Each fluorescent image was taken under 

identical settings, including light intensity, exposure time, and magnification.  The averaged 

fluorescent intensity per pixel for each image was quantified without any modification using 

the luminosity channel of the histogram function in the Photoshop 6.0 software (Adobe 

Systems, San Jose, CA).  A total of 8 to 11 cell images from each group were analyzed in 3 

different sets of experiments (Kim, Chang et al. 2017, Chang, Shi et al. 2018). 

3.11 Statistical Analyses 

All data are mean ± standard error of the mean (SEM).  Statistical analyses were 

carried out using Origin 8.6 software (OriginLab, Northampton, MA, USA).  One-way 

analysis of variance (ANOVA) followed by Tukey's post hoc test was used for statistical 

analyses among all the experimental groups.  Both eyes from the same animal were used in 
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the analyses, and the “n” indicates the number of animals per group.  Throughout, p<0.05 

was regarded as significant. 
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 4. RESULTS 

4.1 STZ-Induced Diabetic Mice Have a Slower Body Weight Gain but Higher Blood 

Glucose Levels Than the Control.   

We monitored the body weights and blood glucose levels in mice before and after 

the STZ-injections.  Mice were randomly assigned into three groups: the control (CON) 

injected with the citric buffer; STZ-injected (STZ); and STZ-injected with daily melatonin 

treatments through oral gavage (STZ+MEL).  We administered 10 mg/Kg b.w. of melatonin 

orally to mimic the most commonly used intake route in humans.  By using a formula that 

accounts for the body surface area, body weight, and metabolic rate differences between 

experimental animals and humans (Nair and Jacob 2016),  this dosage (10 mg/Kg b.w. for 

mice) is equivalent to 0.7 mg/Kg b.w. for humans, which is within the range of taking 

melatonin as a prevention for cancer tumorigenesis (Rondanelli, Faliva et al. 2013) or 

management of insomnia (Buscemi 2004, Costello, Lentino et al. 2014).  Compared to the 

control, STZ- induced diabetic mice had a slower body weight gain (Figure 4.1A), and they 

developed diabetic hyperglycemia (above 250 mg/dL) within one month after the STZ-

injections (Figure 4.1B).  Daily treatments with melatonin in STZ mice did not improve the 

slow weight-gain (Figure 4.1A).  Chronic treatments with melatonin further worsted the 

hyperglycemic condition in STZ-diabetic mice (Figure 4.1B).  Hence, daily melatonin 

treatment through oral gavage was not effective in controlling systemic glycemia in STZ-

induced diabetic mice. 
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Figure 4.1 STZ-induced diabetic mice (STZ) have a slower body weight gain but higher blood glucose levels 

than the control (CON). Daily treatments with melatonin (STZ+MEL) did not improve the appropriate body 

weight gain, and it further caused a higher degree of hyperglycemia. (A) STZ-induced diabetic mice (STZ) 

with or without melatonin treatments had a slower weight gain starting 1 week after STZ-injections compared 

to the CON (*). 3 months after melatonin treatment, the body weight was decreased in the STZ-MEL mice 

than the STZ mice (#). (B) 1 month after STZ-injections, the systemic glucose levels in the STZ-mice were 

significantly higher than in the CON (*). Following 3 months of melatonin administration, the blood glucose 

levels of STZ+MEL mice were significantly higher than CON (*) and STZ mice (#). *,# P<0.05. 

 

4.2 Dark-Adapted ERG a-Wave Amplitudes Are Decreased in the STZ Mice After Two 

Months STZ Injections.   

Distorted color vision and delayed retinal light responses are among the first clinical 

signs of retinal dysfunction in early stage diabetic patients without DR (Feitosa-Santana, 

Paramei et al. 2010, McFarlane, Wright et al. 2012).  We previously reported that retinal 

light responses are delayed in obese mice that were fed with a high-fat-diet for only one 

month, even though at that point, these mice are still within normal blood glucose levels 

(Kim, Chang et al. 2017).  This result verifies that under a pre-diabetic condition, the 

physiology of neural retina might have been compromised.  Melatonin treatments through 

either intraperitoneal injections (Jiang, Chang et al. 2016) or subcutaneous implantation of 
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melatonin pellets (Salido, Bordone et al. 2013) in STZ-diabetic rats have shown to improve 

STZ-induced reduction of retinal light responses.  We next examined when the STZ-induced 

hyperglycemic condition might cause retinal dysfunction, and whether melatonin treatments 

through oral gavage might have the same beneficial effects as other routes, by using the ERG 

recordings to measure the retinal light responses monthly.  The ERG a-wave reflects the 

light responses from the retinal photoreceptors and b-wave reflects the inner retina responses 

(Perlman 2001).  The ERG implicit times reflect how fast the neural retina responds to 

flashlights (Brown 1968).   

Mice were first dark adapted for at least 3 h prior to the ERG recordings with 

stimulations of various light intensities at 0.1, 0.3, 1, 3, 10, and 25 cd·s/m2 (Table 4.1-3; 

Figures 4.2-3).  One month after the STZ injections, we found that the ERG a-wave 

amplitudes and implicit times were similar among three experimental groups (Figure 4.2A-

B), but the STZ and STZ+MEL mice had smaller a-wave amplitudes at two months after 

STZ injections (Figure 4.2C).  Daily treatments with melatonin through oral gavage in STZ-

diabetic mice did not rescue the diminished photoreceptor light responses (Figure 4.2C-F).  
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Table 1 Dark-adapted retinal light responses 1 month after the STZ injections 

 

Light 

Intensity 

(cd.s/m2) 

a-Wave Amplitudes(µV) a-Wave Implicit Time (msec) 

CON 

n=9 

STZ 

n=10 

STZ+MEL 

n=11 

CON 

n=9 

STZ 

n=10 

STZ+MEL 

n=11 

0.1 164.7±8.6 137.2±11* 142.1±9.1* 21.9±0.3 23.5±0.5 24.0±0.4 

0.3 246.9±10.2 203.0±12.4* 187.2±11.0* 20.5±0.3 21.6±0.4 22.0±0.4 

1 249.3±11.3 207.3±13.5* 188.0±12.0* 17.0±0.7 17.8±0.8 15.8±0.7 

3 281.1±11.9 244.1±15.0* 231.9±11.7* 11.1±0.1 11±0.1 11.1±0.3 

10 325.2±13.8 287.4±14.3* 269.1±12.1* 10.1±0.1 10.2±0.1 10.1±0.2 

25 341.5±15.3 299.5±17.9* 289.4±13.8* 8.7±0.1 8.8±0.2 8.5±0.1 

 

Light 

Intensity 

(cd.s/m2) 

b-Wave Amplitudes(µV) b-Wave Implicit Time (msec) 

CON 

n=8 

STZ 

n=9 

STZ+MEL 

n=11 

CON 

n=8 

STZ 

n=9 

STZ+MEL 

n=11 

0.1 692.3±31.0 565.1±29.7* 572.6±40.7* 33.4±0.5 35.3±0.6* 35.3±0.7* 

0.3 852.4±38.0 694.9±34.3* 688.4±40.7* 31.9±0.5 33.5±0.6* 33.5±0.6* 

1 804.7±37.2 700.8±32.9* 669.9±43.6* 30.3±0.4 31.7±0.6* 31.2±0.5* 

3 739.6±43.3 699.3±32.5* 682.0±39.5* 29.2±0.4 30.6±0.5* 30.4±0.6* 

10 872.3±69.2 838.5±40.5 808.2±43.6 31.0±0.4 32.4±0.5* 31.8±0.6* 

25 957.6±54.0 859.6±51.7* 853.9±44.3* 30.3±0.4 31.4±0.5* 31.4±0.5* 

*donates STZ and STZ+MEL significantly different from CON. 

#donates STZ significantly different from STZ+MEL. 

*#p<0.05; data for Figure 4.2C-D, 4.3C-D. 
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Table 2 Dark-adapted retinal light responses 2 months after the STZ injections 

 

Light 

Intensity 

(cd.s/m2) 

a-Wave Amplitudes (µV) a-Wave Implicit Time (msec) 

CON 

n=9 

STZ 

n=11 

SYZ+MEL 

n=13 

CON 

n=9 

STZ 

n=11 

STZ+MEL 

n=13 

0.1 161.7±9.1 161.4±6.8 163.4±10.2 22.6±0.2 24.0±0.5 24.7±0.5 

0.3 247.5±13.2 235.1±11.8 233.5±15.0 20.2±0.2 21.8±0.4 22.2±0.5 

1 273.3±13.4 256.3±13.0 229.1±16.0 17.2±0.5 17.7±0.6 16.4±0.5 

3 311.3±13.6 294.5±14.0 282.6±16.1 11.8±0.5 11.7±0.3 11.1±0.2 

10 361.1±15.1 343.6±16.5 329.2±17.2 10.3±0.2 10.6±0.2 10.3±0.2 

25 384.7±16.9 367.1±17.3 350.3±17.9 8.7±0.2 8.9±0.2 8.7±0.2 

 

Light 

Intensity 

(cd.s/m2) 

b-Wave Amplitudes (µV) b-Wave Implicit Time (msec) 

CON 

n=9 

STZ 

n=9 

STZ+MEL 

n=11 

CON 

n=9 

STZ 

n=9 

STZ+MEL 

n=11 

0.1 687.3±39.9 585.9±46.2* 691.8±42.6 33.9±0.4 35.9±0.6* 37±0.9* 

0.3 828.4±45.1 681.5±65.9* 823.9±52.2 31.4±0.2 33.5±0.5* 34.4±0.9* 

1 855.4±41.5 732.4±68.1* 833.1±53.9 29.8±0.2 31.3±0.5* 32.4±0.8* 

3 843.0±39.1 750.3±68.1* 838.1±54.1 29.0±0.2 30.1±0.4* 30.9±0.8* 

10 1030.1±43.4 864.6±75.5* 950.4±58.0 30.0±0.6 31.5±0.1* 32.00±0.8* 

25 1042.0±53.9 895.2±75.0* 1006.8±61.6 30.0±0.2 30.3±0.4* 31.4±0.7* 

*donates STZ and STZ+MEL significantly different from CON. 

#donates STZ significantly different from STZ+MEL. 

*#p<0.05; data for Figure 4.2A-B, 4.3A-B. 
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Table 3 Dark-adapted retinal light responses 3 months after the STZ injections 

 

 

 

Light 

Intensity 

(cd.s/m2) 

a-Wave Amplitudes (µV) a-Wave Implicit Time (msec) 

CON 

n=6 

STZ 

n=8 

STZ+MEL 

n=11 

CON 

n=8 

STZ 

n=9 

STZ+MEL 

n=11 

0.1 134.8±4.4 118.1±8.3 124.1±8.3 22.0±0.3 22.8±0.3 23.8±0.3 

0.3 198.3±10.5 181.6±14.9 167.8±9.1 20.0±0.2 20.9±0.4 21.6±0.3 

1 199.2±11.0 175.0±14.1 177.2±8.9 16.2±0.5 14.2±0.6* 14.1±0.5* 

3 225.5±13.3 218.7±14.4 219.1±9.6 10.7±0.2 10.6±0.2 10.5±0.2 

10 269.3±16.3 250.9±17.0 253.2±10.6 10.2±0.2 9.7±0.4 9.7±0.2 

25 288.3±17.8 267.0±16.3 284.6±10.0 8.4±0.1 8.3±0.3 8.2±0.1 

 

Light 

Intensity 

(cd.s/m2) 

b-Wave Amplitudes (µV) b-Wave Implicit Time (msec) 

CON 

n=6 

STZ 

n=5 

STZ+MEL 

n=6 

CON 

n=6 

STZ 

n=5 

STZ+MEL 

n=6 

0.1 522.2±19.3 437.8±29.3 518±45.1 32.6±0.5 35.7±0.7* 34.9±0.5* 

0.3 626.5±29.8 506.7±34.8 588.6±42.4 31.0±0.4 33.7±0.7* 32.9±0.5* 

1 602.2±31.2 499.3±32.5 546.3±43.7 29.2±0.4 31.8±0.6* 31.1±0.4* 

3 591.5±35.9 521.5±26.5 565.9±36.2 28.6±0.5 30.4±0.5 29.3±0.6 

10 724.5±44.3 614.2±31.5 670.1±51.2 30.3±0.4 31.7±0.6 32.7±1.1 

25 744.2±57.8 658.4±36.7 704.7±52 29.6±0.4 31.0±0.6 31.4±1.1 

*donates STZ and STZ+MEL significantly different from CON. 

#donates STZ significantly different from STZ+MEL. 

*#p<0.05; data for Figure 4.2E-F, 4.3E-F. 
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Figure 4.2 Dark-adapted ERG a-wave amplitudes are decreased in the STZ mice after two months STZ 

injections (A, C, E). The dark-adapted ERG a-wave amplitude and implicit time in CON, STZ mice and STZ 

mice after (A, B) 1 month, (C, D) 2 months (E, F) and 3 months of melatonin administration (STZ+MEL). 

The dark-adapted ERG a-wave showed no differences among all three groups (A, C, E). The dark-adapted 

ERG a-wave implicit times were similar among the three groups (B, D, F). *P<0.05. 
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One month after the STZ-injections, the STZ-mice had smaller ERG b-wave 

amplitudes, and both STZ and STZ+MEL groups had delayed b-wave implicit times (Figure 

4.3A-B), reflecting that the inner retinal light responses were compromised in the STZ-

diabetic mice.  While we observed a mild protective effect of melatonin treatments in STZ-

mice at one-month post-STZ injections (Figure 4.3A), chronic oral melatonin treatments did 

not further reverse STZ-induced decreases in the retinal light responses at 2 or 3 months 

after the STZ-injections (Figure 4.3C-F), especially the ERG b-wave implicit times of both 

STZ and STZ+MEL groups were significantly delayed (higher) compared to the control. 
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Figure 4.3 Dark-adapted ERG b-wave amplitude is decreased and implicit times are increased in STZ mice. 

The dark-adapted ERG b-wave amplitude and implicit time in CON and STZ mice and STZ mice after (A, B) 

1 month, (C, D) 2 months (E, F) and 3 months of melatonin administration (STZ+MEL). The dark-adapted 

ERG b-wave implicit times in STZ mice, with or without melatonin treatment, were significantly higher than 

CON (*), indicating that the inner retina responding to light flashes were delayed or slower in STZ mice. 

*P<0.05. 
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4.3 Dampened ERG Oscillatory Potentials Show STZ-Induced Neural Retina 

Dysfunction.   

The ERG oscillatory potentials (OPs) are the reflection of inner retinal light 

responses from amacrine cells and/or Müller glial cells (Shirao and Kawasaki 1998, Pardue, 

Barnes et al. 2014).  Delayed OPs are the first signs of the diabetic retina in humans and 

animals (Yonemura, Aoki et al. 1962, Pardue, Barnes et al. 2014).  Even though the dark-

adapted ERG a-wave amplitudes were similar among the three experimental groups, the OP 

amplitudes were already decreased one month after the STZ-injections (Figure 4.4A-D, 

Table 4.4).  At two months after STZ injections, treatments with melatonin did not reverse 

the STZ-caused decreases of OP amplitudes (Figure 4.4E-H) or the delays (increases) of OP 

implicit times (Figure 4.5E-H).  Thus, chronic treatments with melatonin via oral gavage did 

not reverse STZ-induced neural retinal dysfunction (Table 4.5-6).    
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Table 4 Oscillatory potential responses 1 month after the STZ injections 

 

Light 

Intensity 

(cd.s/m2) 

OP1 Amplitude (µV) OP1 Implicit Time (msec) 

CON 

n=9 

STZ 

n=9 

STZ+MEL 

n=11 

CON 

n=9 

STZ 

n=9 

STZ+MEL 

n=11 

0.1 33.5±1.9 36.2±1.8 39.7±1.8 19.5±0.2 21.1±0.3* 22.2±0.5* 

0.3 39.6±2.7 38.5±3.0 46.8±2.9 18.15±0.2 18.8±0.4 19.8±0.5 

1 43.4±2.4 39.8±3.4 49.4±3.8 16.2±0.2 16.7±0.3 17.5±0.4 

3 53.5±2.0 54.4±3.0 57.6±3.7 14.1±0.1 14.4±0.2 14.9±0.3 

10 85.9±4.0 80.1±5.0 83.2±4.5 16.3±0.1 17.0±0.3 17.1±0.5 

25 103.1±5.9 96.8±5.4 102.1±4.7 15.7±0.1 16.1±0.3 16.5±0.3 

 

Light 

Intensity 

(cd.s/m2) 

OP2 Amplitude (µV) OP2 Implicit Time (msec) 

CON 

n=9 

STZ 

n=9 

STZ+MEL 

n=11 

CON 

n=9 

STZ 

n=9 

STZ+MEL 

n=11 

0.1 183.9±11.3 173.1±11.8 182.2±12.0 26.7±0.2 27.9±0.4 29.4±0.6 

0.3 231.1±15.7 195.2±16.4 213.9±19.0 24.5±0.2 25.6±0.4 26.5±0.6 

1 235.2±12.7 196.7±18.7 208.8±20.9 22.8±0.2 23.8±0.3 24.6±0.5 

3 177.8±9.2 174.0±14.8 180.5±15.5 21.1±0.2 21.4±0.4 22.5±0.5 

10 277.2±14.0 244.6±19.3 241.4±19.5 23.5±0.2 24.2±0.3 24.5±0.5 

25 283.6±16.2 247.5±20.4 260.8±18.1 23.0±0.2 23.1±0.3 23.8±0.4 
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Table 4 Continued  

 

 

 

 

 

Light 

Intensity 

(cd.s/m2) 

OP3 Amplitude (µV) OP3 Implicit Time (msec) 

CON 

n=9 

STZ 

n=9 

STZ+MEL 

n=11 

CON 

n=9 

STZ 

n=9 

STZ+MEL 

n=11 

0.1 277.0±18.8 250.4±15.6 273.1±13.7 33.5±0.3 34.2±0.4 35.1±0.5 

0.3 309.4±22.7 279.5±20.2 323.0±19.6 31.3±0.2 32.4±0.3 32.8±0.4 

1 303.2±20.7 272.9±28.2 318.2±25.5 29.7±0.3 30.0±0.4 30.5±0.4 

3 220.8±14.5 233.4±27.4 249.9±20.4 28.8±0.4 29.0±0.4 28.9±0.6 

10 374.3±27.2 349.1±30.7 357.0±23.2 30.3±0.2 30.5±0.3 30.3±0.4 

25 394.2±28.8 351.5±32.0 385.2±20.6 29.4±0.2 29.3±0.2 29.7±0.3 

 

Light 

Intensity 

(cd.s/m2) 

OP4 Amplitude(µV) OP4 Implicit Time(msec) 

CON 

n=9 

STZ 

n=9 

STZ+MEL 

n=11 

CON 

n=9 

STZ 

n=9 

STZ+MEL 

n=11 

0.1 125.8±10.2 98.0±5.3 111.0±9.4 42.1±0.4 42.5±0.4 44.0±0.7 

0.3 121.6±7.6 101.1±6.3* 123.9±9.2 40.4±0.3 40.4±0.5 41.6±0.6 

1 136.7±14.7 105.3±7.3* 131.5±13.5 38.8±0.3 39.4±0.4 39.7±0.5 

3 111.8±11.4 102.8±9.8 121.6±13.1 38.3±0.3 38.1±0.4 37.5±0.9 

10 136.0±13.0 116.5±9.9 144.4±14.3 39.4±0.2 38.7±0.5 39.1±0.5 

25 142.4±12.5 119.4±10.4 147.2±12.0 38.8±0.3 37.5±0.4 38.9±0.4 

*donates STZ and STZ+MEL significantly different from CON. 

*p<0.05; data for Figure 4.4A-D, 4.5A-D. 
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Table 5 Oscillatory potential responses 2 months after the STZ injections 

 

 

 

 

Light 

Intensity 

(cd.s/m2) 

OP1 Amplitude (µV) OP1 Implicit Time (msec) 

CON 

n=8 

STZ 

n=9 

STZ+MEL 

n=11 

CON 

n=8 

STZ 

n=9 

STZ+MEL 

n=11 

0.1 27.3±3.0 35.0±2.3 32.0±1.2 18.9±0.3 20.2±0.4* 21.9±0.4*,# 

0.3 35.7±2.5 40.6±2.7 32.6±2.3 17.9±0.2 18.8±0.3* 20.8±0.6*,# 

1 36.1±2.6 37.9±2.8 35.7±3.1 15.7±0.3 16.6±0.3* 18.2±0.6*,# 

3 46.8±3.3 48.3±3.0 51.8±4.3 13.5±0.2 14.4±0.2* 15.6±0.5*,# 

10 78.5±4.0 73.6±4.2 62.6±4.7 16.1±0.3 17.0±0.3* 18.5±0.5*,# 

25 89.5±4.2 88.6±6.0 69.2±5.3* 15.3±0.3 16.0±0.4* 17.7±0.4*,# 

 

Light 

Intensity 

(cd.s/m2) 

OP2 Amplitude (µV) OP2 Implicit Time (msec) 

CON 

n=8 

STZ 

n=9 

STZ+MEL 

n=11 

CON 

n=8 

STZ 

n=9 

STZ+MEL 

n=11 

0.1 208.3±18.3 187.4±14.0 157.1±7.4 26.2±0.3 27.3±0.4 29.4±0.6* 

0.3 244.9±15.2 224.4±14.2 162.5±11.7*,# 24.7±0.4 25.5±0.3 27.3±0.4* 

1 228.9±9.5 197.0±14.5* 144.8±12.6*,# 22.5±0.4 23.4±0.3 24.8±0.5* 

3 185.2±11.7 144.3±10.1* 107.7±9.7*,# 20.7±0.3 21.3±0.4 22.8±0.8* 

10 274.6±12.4 240.5±15.0* 200.5±13.0*,# 23.6±0.2 24.3±0.3 25.8±0.8* 

25 271.6±14.7 248.2±15.8 196.6±12.9*,# 23.0±0.3 23.5±0.3 25.2±0.5* 
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Table 5 Continued 

 

 

 

 

Light 

Intensity 

(cd.s/m2) 

OP3 Amplitude (µV) OP3 Implicit Time (msec) 

CON 

n=8 

STZ 

n=9 

STZ+MEL 

n=11 

CON 

n=8 

STZ 

n=9 

STZ+MEL 

n=11 

0.1 209.1±21.0 231.5±21.0 189.6±10.5 33.9±0.3 34.3±0.4 37.2±0.5* 

0.3 278.9±21.2 278.3±21.8 204.4±15.3*,# 32.6±0.3 32.9±0.4 34.8±0.6* 

1 246.3±13.9 238.1±21.0 185.6±14.6*,# 30.4±0.4 30.9±0.5 33.0±0.6* 

3 190.1±12.0 177.5±12.6 139.3±11.1*,# 29.4±0.4 30.1±0.4 31.7±0.4* 

10 311.8±18.2 321.9±21.6 265.5±16.8*,# 31.3±0.3 31.6±0.4 33.2±0.5* 

25 307.0±17.4 339.9±22.8 262.6±17.9*,# 30.4±0.3 30.4±0.5 32.7±0.6* 

 

Light 

Intensity 

(cd.s/m2) 

OP4 Amplitude (µV) OP4 Implicit Time (msec) 

CON 

n=8 

STZ 

n=9 

STZ+MEL 

n=11 

CON 

n=8 

STZ 

n=9 

STZ+MEL 

n=11 

0.1 157.3±13.4 145.5±12.9 128.9±9.6 43.0±0.3 43.9±0.5* 46.5±0.7* 

0.3 203.4±17.8 178.0±21.2 156.1±14.8* 41.8±0.3 42.5±0.5 44.6±0.6* 

1 180.0±16.5 162.8±13.4 138.9±13.4* 40.3±0.3 40.9±0.6 42.4±0.6* 

3 142.4±14.4 128.5±9.3 111.5±9.3 39.3±0.3 39.5±0.4 40.9±0.5* 

10 230.1±18.2 198.4±22.8 194.1±21.4 40.7±0.4 41.1±0.5 42.8±0.7* 

25 234.7±18.7 216.2±25.3 186.1±20.0* 39.7±0.3 39.9±0.6 42.1±0.8* 

*donates STZ and STZ+MEL significantly different from CON. 

#donates STZ significantly different from STZ+MEL. 

*#p<0.05; data for Figure 4.4E-H, 4.5E-H. 
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Table 6 Oscillatory potential responses 3 months after the STZ injections 

 

Light 

Intensity 

(cd.s/m2) 

OP1 Amplitude (µV) OP1 Implicit Time (msec) 

CON 

n=6 

STZ 

n=5 

STZ+MEL 

n=6 

CON 

n=6 

STZ 

n=5 

STZ+MEL 

n=6 

0.1 24.5±1.0 21.2±1.9 18.3±1.4 19.4±0.5 20.8±0.5* 21.0±0.5 

0.3 30.5±2.9 24.4±3 30.4±3.0 17.8±0.3 20.2±0.9* 19.3±0.4 

1 26.9±3.0 24.5±2.3 35.7±3.2 15.9±0.3 17.9±0.7* 16.8±0.3 

3 38.8±3.8 36.6±3.9 46.0±3.4 13.9±0.4 15.4±0.7* 14.5±0.3 

10 60.4±7.1 48.2±4.5 68.9±6.3 16.2±0.4 18.0±0.7* 16.6±0.6 

25 70.6±5.6 58.6±6.2 80.0±4.2 15.4±0.3 17.4±0.7* 15.7±0.4 

 

Light 

Intensity 

(cd.s/m2) 

OP2 Amplitude (µV) OP2 Implicit Time (msec) 

CON 

n=6 

STZ 

n=5 

STZ+MEL 

n=6 

CON 

n=6 

STZ 

n=5 

STZ+MEL 

n=6 

0.1 143.9±10.8 137.4±12.6 141.2±10.7 28.4±0.9 28.2±0.5 28.5±0.5 

0.3 164.1±12.2 183.4±20.4 187.7±14.3 26.8±1.0 26.1±0.5 26.6±0.5 

1 146.3±12.5 177.0±24.4 170.7±16.9 24.8±1.1 23.7±0.4 23.7±0.3 

3 126.0±9.7 151.7±20.2 153.1±9.7 22.0±0.8 21.7±0.3 21.4±0.3 

10 191.0±14.9 191.7±28.0 205.0±15.7 25.3±1.0 24.9±0.4 24.4±0.4 

25 203.0±13.8 187.7±27.6 198.1±14.9 24.9±1.0 24.0±0.5 23.3±0.5 
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Table 6 Continued 

 

 

 
 

Light 

Intensity 

(cd.s/m2) 

OP3 Amplitude (µV) OP3 Implicit Time (msec) 

CON 

n=6 

STZ 

n=5 

STZ+MEL 

n=6 

CON 

n=6 

STZ 

n=5 

STZ+MEL 

n=6 

0.1 173.0±14.3 165.5±9.6 187.0±12.4 33.3±0.5 34.7±0.4* 36.2±0.6*,# 

0.3 197.6±19.7 185.4±28.5 253.4±26.2 31.2±0.5 32.6±0.4* 33.8±0.6 

1 166.1±22.4 178.0±32.3 241.2±26.8 29.3±0.4 30.8±0.4 31.2±0.5 

3 126.5±15.5 139.6±18.4 200.5±20.6 27.9±0.6 29.9±0.5 28.9±0.4 

10 220.8±25.6 217.0±41.1 291.3±26.2 29.9±0.6 31.3±0.7 31.1±0.7 

25 254.9±26.7 220.0±40.5 286.1±27.6 29.8±0.5 30.6±0.6 30.0±0.6 

 

Light 

Intensity 

(cd.s/m2) 

OP4 Amplitude (µV) OP4 Implicit Time (msec) 

CON 

n=6 

STZ 

n=5 

STZ+MEL 

n=6 

CON 

n=6 

STZ 

n=5 

STZ+MEL 

n=6 

0.1 74.1±6.9 84.9±7.0 89.0±7.6 41.2±0.6 43.3±0.5 45.4±0.7 

0.3 78.1±6.8 89.3±10.2 93.7±9.7 39.7±0.7 41.2±0.5 43.0±0.7 

1 68.2±5.7 85.1±11.7 91.3±9.6 38.1±0.7 39.7±0.6 40.5±0.7 

3 61.0±6.5 84.6±13.3 94.7±8.2 37.7±0.8 38.9±0.7 39.0±0.5 

10 84.4±8.7 104.8±13.6 107.8±7.4 38.6±0.6 39.0±1.1 39.9±0.7 

25 89.0±10.8 101.6±13.7 115.1±8.7 38.2±0.7 39.0±0.7 38.9±0.7 

*donates STZ and STZ+MEL significantly different from CON. 

#donates STZ significantly different from STZ+MEL. 

*#p<0.05; data for Figure 4.4I-L, 4.5I-L. 
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Figure 4.4 Dark-adapted ERG oscillatory responses (OP1-4) amplitudes are further decreased in STZ mice 

given melatonin for 2 months. The dark-adapted ERG OPs amplitude in CON and STZ mice and STZ mice 

after (A-D) 1 month, (E-H) 2 months and (I-L) 3 months of melatonin administration (STZ+MEL). (A-D) 

STZ mice have decreased OPs amplitudes compared to those of the CON (*) after 1 month STZ injection. 

(E-H) STZ mice have decreased OPs amplitudes compared to those of the CON (*). The OPs amplitude in 

STZ+MEL mice was significantly smaller than CON (*) and STZ without melatonin treatment (#) mice, 

indicating that the inner retina responding to light flashes were smaller in STZ+MEL mice after 2 months 

melatonin treatment. *,# P<0.05. 
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Figure 4.5 Dark-adapted ERG oscillatory responses (OP1-4) implicit times are already increased in STZ mice 

given melatonin for 1 months. The dark-adapted ERG OPs implicit times in CON and STZ mice and STZ mice 

after (A-D) 1 month, (E-H) 2 months and (I-L) 3 months of melatonin administration (STZ+MEL). (A-D) STZ 

mice have delayed OPs implicit time compared to those of the CON (*) after 1 month STZ injection. (E-H) 

STZ mice have increased OPs implicit times compared to those of the CON (*). The OPs implicit times in 

STZ+MEL mice were significantly delayed than CON (*) and STZ without melatonin treatment (#) mice, 

indicating that the inner retina responding to light flashes were delayed or slower in STZ+MEL mice after 2 

months melatonin treatment. *,# P<0.05. 
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4.4 Melatonin Appears to Prevent the Development Of STZ-Induced Microvascular 

Complications.   

We previously reported that high-fat-diet-induced diabetic mice have increased 

microvascular complications including increased vascular permeability (shown as increased 

vascular areas) and acellular microvasculature in the peripheral retina at 6-7 months after 

the high-fat-diet regimen (Chang, Shi et al. 2015, Shi, Kim et al. 2016, Kim, Chang et al. 

2017).  In STZ-induced diabetic mice, there are microvascular complications, such as 

increased vascular permeability at 3 months after STZ-injections (Robinson, Barathi et al. 

2012), so we next examined whether melatonin was able to rescue or prevent STZ-induced 

microvascular changes.  We employed the fluorescein angiography (FA) with AngioTool 

(NIH) to visualize and quantify the ocular vessels (Figure 4.6A).  The AngioTool allowed 

us to analyze the total vascular area (Vessel Area), the percentage of the vascular area to the 

retinal area (vessels percentage %), and the average vessel length.  We previously did not 

find any major vascular changes in the central retina in obesity-induced diabetic animals 

(Chang, Shi et al. 2015, Shi, Kim et al. 2016, Kim, Chang et al. 2017), so we focused the 

vascular changes in the peripheral retina.  Three months after STZ-injections, STZ mice had 

mild increases in vascular areas (Figure 4.6B-C) and a significant increase in average vessel 

length (Figure 4.6D).  There are also hyper-fluorescent spots in both STZ and STZ+MEL 

retinas, indicating increased vascular permeability (Dithmar 2008) in STZ mice.  Daily 

treatments with melatonin had a dampening effect in STZ-induced increases in vascular area 

and average vessel length (Figure 4.6B-D).  We also observed the “venous beading”, a 

microvasculature abnormality seen in non-proliferative diabetic retinopathy patients 
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(Ibrahim Ahmed, Türkçüoğlu et al. 2012), in 3 of the 6 STZ mice at 3 months post-STZ 

injections (Figure 6E, STZ, red rectangle), but the venous beading was not observed in the 

control (CON) and STZ+MEL mice.  Thus, treatments with melatonin either prevent or 

reverse the STZ-induced microvascular complications in the retina.   

Since the vascular permeability was increased in STZ and STZ+MEL mice, we 

further examined whether there was any change in retinal microvasculature in STZ and 

STZ+MEL mice, by staining the whole mount retina with isolectin-B4 (Figure 4.7A), and 

analyzing the vessel area, the percentage of the vascular area to the retinal area, and the 

average vessel length using AngioTool (Figure 4.7B).  The retinas were processed at three 

months after the STZ injections, and there was no statistical difference among three groups 

(the Control, STZ, and STZ+MEL) in all of the microvasculature parameters measured 

(Figure 4.7C).  
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Figure 4.6 Melatonin appears to prevent the development of microvascular complications. (A)Fluorescein 

angiography was used to determine the intraocular microvasculature in mice. AngioTool was used to determine 

the (B) vascular area, (C) vessels percentage and (D) the average vessel length. The average vessel length in 

STZ+MEL mice was significantly shorter than in STZ mice (*). (E) The abnormalities of microvasculature 

were observed in STZ and STZ+MEL mice. * P<0.05 
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Figure 4.7 No diabetic induced neovascularization was observed in mice after 3 months of STZ injections. (A) 

Upper rows: the whole mount retinal vasculature was stained with FITC-labeled isolectin-B4. The first row: 

the fluorescent images from 3 groups were taken at 5X (scale bar = 800 μm). The highlighted regions (red 

square) were displayed in the second row (scale bar = 100 μm). AngioTool was used to determine the (B) 

vascular area, (C) vessels percentage, and (D) the average vessel length.  
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4.5 Melatonin Administration Restores the STZ-Disturbed Mitochondrial Dynamics 

and Calcium Storage in the Diabetic Retina. 

Mitochondria constantly undergo morphological changes with frequent cycles of 

fission and fusion to achieve equilibrium when cells are healthy (Sesaki and Jensen 1999, 

Scott and Youle 2010), but severely damaged mitochondria continue to divide and become 

fragmented.  Thus, the numbers and shapes of mitochondria are highly related to the 

homeostasis within a cell.  We found that there was no significant change in the 

mitochondrial fission process in the retina of all three experimental groups, measured by the 

immunostaining of DRP1, a GTPase that mediates mitochondrial fission (Lee, Jeong et al. 

2004) (Figure 4.8A).  However, the mitochondrial fusion process measured by the 

immunostaining of MFN2, a protein regulating mitochondrial fusion (Chen, Detmer et al. 

2003), was significantly decreased in the STZ-diabetic mouse retina (Figure 4.8B).  STZ-

mice treated with melatonin for 3 months (STZ+MEL) had enhanced mitochondrial fusion 

process back to the control level (Figure 4.8B), indicating that melatonin either prevents or 

reverses STZ-induced mitochondrial damage in the retina.  

MCU is a highly selective calcium (Ca2+) channel located in the inner membrane of 

mitochondria, and it is responsible for storing intracellular Ca2+ in the mitochondria 

(Kirichok, Krapivinsky et al. 2004, Paupe and Prudent 2018).  In the diabetic 

cardiomyocytes, the mitochondrial Ca2+ was decreased by 40%, and the buffering capacity 

of mitochondria was altered in diabetic cardiomyocytes (Suarez, Hu et al. 2008).  Since STZ-

mouse retinas had altered mitochondrial dynamics, we next examined whether the 

expression of MCU was also altered.  We found that the protein expression of MCU was 
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decreased in the STZ-mouse retinas, and treatments with melatonin in STZ mice (STZ+MEL) 

prevented or recovered the STZ-induced loss of MCU (Figure 4.8C).  Overexpression of 

MCU can restore the damage caused by oxidative stress (Diaz-Juarez, Suarez et al. 2016), 

so our data imply that melatonin treatments could decrease the damage by diabetes-induced 

oxidative stress through protecting or recovering mitochondria Ca2+ buffering ability in the 

retina.  
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Figure 4.8 Administration with melatonin in 

STZ mice prevented the altered 

mitochondrial dynamics and calcium 

channels caused by STZ. The immuno-

fluorescent images of dynamin related 

protein 1 (DRP1) (A) and mitofusin2 

(MFN2) (B) in the neural retinas from three 

groups were shown. STZ-mouse retina has 

an apparent decreased MFN2, and treatments 

with melatonin in STZ+MEL mice causes a 

increase in MFN2. (C) Administrating with 

melatonin prevented the mitochondrial 

calcium uniporter (MCU) decreasing in STZ 

mice (*). BF= Bright field. * P<0.05. 
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4.6 As An Antioxidant, Melatonin Prevents the High Glucose-Induced Production of 

Reactive Oxygen Species. 

Since photoreceptors are the largest cell population in the mouse retina, and they are 

the major source of intraocular oxidative stress in the diabetic retina (Du, Veenstra et al. 

2013), to understand whether melatonin is able to protect photoreceptors from 

hyperglycemia-induced damages in mitochondria, we used cultured 661W cells, a 

photoreceptor-derived murine cell line (al-Ubaidi, Font et al. 1992), for the following 

experiments.  

The oxidation of H2DCF to DCF is a two-step process: after the DCF radical is 

formed, it is further oxidized to DCF in a reaction with molecular oxygen (Wardman 2007). 

An increase in DCF fluorescence reflects the ROS-induced DCF oxidation.  After treatment 

with high glucose (HG, 30 mM) for 6 and 24 h, 661W cells had an increase in DCF 

fluorescent intensity (Figure 4.9).  Since melatonin is a strong antioxidant, compared to the 

control (C) and HG, co-treatment with HG and melatonin (100 μM) for 24 hr significantly 

diminished the DCF fluorescent intensity.  
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Figure 4.9 Melatonin prevents high glucose-induced ROS production. After treatment with HG for 6 and 24 

h, increased ROS production in 661W cells was determined by staining with H2DCFDA (10 μM). Up-regulated 

fluorescence intensity with HG treatment at 24 h which was converted or prevented in presence of MEL. The 

data are expressed as the means ± SEM. *,# P<0.05. * represents the statistical significance compared to the 

control (C). # represents the significant difference compared to the HG (30 mM). 

 

4.7 Melatonin Treatments Prevent the High Glucose-Induced Changes in 

Mitochondrial Dynamics and Calcium Storage in Photoreceptor-Derived Cells. 

  Cultured 661W cells were treated with high glucose (HG, 30 mM) for 4, 6, 16, and 

24 hours.  Compared to the control (C) treated with H2O, treatments with HG up-regulated 

the DRP1 expression within 6 hours but down-regulated the expression of MFN2 and MCU 

in a time-dependent manner (Figure 4.10B-D).  Treatment with melatonin concurrently with 

HG for 24 hr was able to reverse HG-caused increases of DRP1 and decreases of MFN2 and 

MCU (Figure 4.10E-G), while treatment with melatonin alone for 24 hr decreased the 

expression of MFN2 but increased the expression of MCU (Figure 4.10F-G).  These results 

indicate that melatonin has a protective effect on the health of mitochondria. 
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Figure 4.10 Treatment with melatonin in 661W cells prevented the mitochondrial calcium channels caused by 

STZ. Activation of the mitochondrial fission and inhibition of mitochondrial fusion and MCU expression by 

the hyperglycemic condition. (A-D) 661W cells were treated with HG (30mM), collected at the indicated time 

points, and cell lysates were assayed by Western blotting with DRP1, MFN2, and MCU antibodies. The 

experiments were repeated at least three times. (E-G) 661W cells were treated with M (melatonin, 100μM), 

G (high glucose, 30mM) or combined treatment with melatonin and HG for 24 hours. Cells were collected and 

subjected to Western blotting analysis of DRP1, MFN2, and MCU. * P<0.05. 

 

4.8 Melatonin Treatments Reinforce the High Glucose-Induced Calcium Storage 

Distribution in Photoreceptor-Derived Cells. 

 High glucose was reported to increase the intracellular Ca2+ concentration due to the 

extracellular Ca2+ influx in retinal neurons (Pereira Tde, da Costa et al. 2010) and retinal 

capillary endothelial cells (Li, Wang et al. 2012).  The entry of calcium mediates the cell 

apoptosis (Li, Wang et al. 2012) and the mitochondrial morphological changes (Deheshi, 

Dabiri et al. 2015).  Rhod-2 is a red fluorescent Ca2+ probe that is frequently used to study 

Ca2+ signals localized in the mitochondrial matrix (Hajnoczky, Robb-Gaspers et al. 1995, 
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Bowser, Minamikawa et al. 1998).  Fluo-4 is a visible wavelength probe which exhibits a 

40-fold enhancement of fluorescence intensity upon Ca2+ binding (Gee, Brown et al. 2000). 

The Fluo-4 can be used for measuring Ca2+ levels in the ER and Rhod-2 can be used for 

mitochondrial Ca2+ levels (Figure 4.11A) (Barhoumi, Qian et al. 2010).  We investigate the 

compartmentation of mitochondrial Ca2+; HG-treated cells showed decreased Rhod-2 

intensity simultaneously, which implies lower mitochondrial Ca2+ in steady state (Figure 

4.11B) (Boitier, Rea et al. 1999).  Meanwhile, compared to CON, 661W cells were treated 

with HG for 24 hr showed higher Fluo-4 intensity (Figure 4.11C), which indicates the higher 

cytosolic Ca2+ (Gee, Brown et al. 2000).  The ratio of mitochondrial to cytosolic Ca2+ can be 

a more sensitive parameter for quantification of Ca2+ variations in cells than either value 

alone (Barhoumi, Qian et al. 2010) (Figure 4.11D); a significant decrease in the ratio of 

mitochondrial to cytosolic Ca2+ levels occurred at HG administration but treatment with 

melatonin concurrently with HG for 24 hr was able to reverse HG-caused Ca2+ storage 

distribution (Figure 4.11D).  Combined with figure 8, these results illustrate melatonin re-

stored the mitochondrial calcium buffering ability via MCU up-relation. 
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Figure 4.11 Melatonin treatments restore HG-induced decreases in the mitochondria-Ca2+ pool.  Calcium-

imaging was carried out on cultured 661W cells after 24 hr of treatments with H2O (CON), HG, or 

HG+melatonin (HG+M).  Cells were loaded with Fluo-4 and Rhod-2 for cytosolic and mitochondrial Ca2+ 

imaging respectively (A).  The Rhod-2 (B), Fluo-4 (C) and the ratio of Rhod-2/Fluo-4 (D) fluorescent 

intensities were quantified.  The experiments were repeated at least three times.  Scale bar= 10 μm.  *p<0.05. 
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5. DISCUSSION 

We investigated the effect of melatonin, a strong anti-oxidant, on type 1 diabetes-

associated retinal dysfunction and microvasculature complications.  One month after the 

STZ injections, mice had diminished b-wave and OP amplitudes, indicating that the retinal 

light responses have been compromised.  With the development of diabetes, both ERG a- 

and the b-wave amplitudes were dampened after 2 months of STZ injections.  We 

hypothesized that treatments with melatonin orally would improve STZ-induced retinal 

dysfunction.  This was based on the reports that melatonin is able to inhibit pro-angiogenic 

factors, relieve oxidative stress and inflammation (Ozdemir, Ergun et al. 2014, Jiang, Chang 

et al. 2016, Lo, Lin et al. 2017), and rescue the retinal damage in diabetic rats (Salido, 

Bordone et al. 2013).  It appears that melatonin could offer a mild protective effect in 

preventing retinal dysfunction, but melatonin was not able to have a positive effect after 2 

or 3 months of the oral administration.  

Diabetic retinopathy is a dual disorder with microvascular complications and retinal 

degeneration (Alvarez, Chen et al. 2010).  However, whether microvascular lesions precede 

neuronal degeneration or vice versa, is still debatable.  Results from monthly ERG 

recordings showed the diminished amplitude and prolonged implicit times in mice at 1-

month post-STZ injections.  We also used FA and isolectin-B4 staining to monitor the 

vascular changes monthly.  The increases in average vessel length were observed in mice at 

3 months post-STZ injections as shown in the FA images, but not in isolectin-B4 staining. 

The FA imaging is an in vivo vessel imaging technique, so it mostly displays blood vessels 

but not able to show detailed microvasculature at a higher resolution.  Isolectin-B4 staining 

is a common dye used to stain endothelial cells and show detailed microvasculature at a 
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higher resolution, but it can also bind to microglia and perivascular cells (Tarpley, Kohler et 

al. 2004, Ernst and Christie 2006).  To differentiate the vasculature from neurons, a NeuN 

may be used concurrently with isolectin-B4 to exclude the neurons specifically (Ernst and 

Christie 2006).  As we used AngioTool to analyze the isolectin-B4 stained retinal 

microvasculature at peripheral retinal areas, AngioTool can only analyze the FA images for 

larger vessels.  Combining the results from FA imaging and isolectin-B4, since there was no 

microvascular change in the whole mount retinal staining, the increased vessel area and 

lengths in STZ-mice from the FA imaging indicates that there could be an increase of vessel 

permeability to the fluorescein, but there was no neovascularization taking place 3 months 

after STZ-induced diabetes.   

However, one potential concern is the effect of STZ itself.  Streptozotocin is the well-

known chemical to induce type 1 diabetes in animals through targeting the islet cells, but it 

is also toxic to the neural retina (Martin, Roon et al. 2004).  Within a month after STZ 

injections, there is a transient cell apoptosis and upregulated glial activation in the neural 

retina, but these abnormalities quickly return to normal in the subsequent 2-4 months (Feit-

Leichman, Kinouchi et al. 2005).  Further retinal degeneration and acellular capillaries are 

observed at least 6 months after the STZ injections (Feit-Leichman, Kinouchi et al. 2005).   

We found that melatonin treatments had a protective effect on the retinal 

microvasculature.  The venous beading was observed in 50% of the STZ-diabetic mice, but 

STZ-mice treated with melatonin did not have venous beading despite their diabetic status.  

Venous beading can be observed at the late stage of NPDR, and it occurs when the vessel 

walls of retinal veins lose their basement alignment pathologically (Gregson, Shen et al. 



 

54 

 

1995).  Melatonin treatments also dampened STZ-induced increases in vascular area and 

average vessel length, which indicates that melatonin treatments might prevent the vascular 

permeability in diabetic animals.  The detailed mechanism of the molecular action of 

melatonin on microvasculature requires further investigation.  

There are several possible explanations of the discrepancy between our results and 

previous reports on the positive effects of melatonin in retinal light responses of early 

diabetic animals:  First, the retinal sensitivity to melatonin treatments is species-dependent, 

so rats might be more responsive to melatonin than the mouse strain (C57BL6J) that was 

used in our study.  The C57BL6J is the most used mouse strain to study retinal function 

compared to other strains, since it does not carry genes that cause retinal degeneration.  

However, C57BL6J is melatonin-deficient, since this mouse strain lacks serotonin–N-

acetyltransferase and hydroxyindole–O-methyl-transferase, the enzyme responsible for the 

synthesis of melatonin from serotonin (Tosini and Menaker 1998), and it is not clear whether 

the retinal expression of melatonin receptors in C57BL6J is similar to that of other 

melatonin-proficient animals (Dubocovich, Rivera-Bermudez et al. 2003).  It is possible that 

the retina of melatonin-proficient animals (such as rats) might respond to exogenous 

melatonin more effectively compared to that of melatonin-deficient animals.   

Second, the routes of treatments and the dosages between our oral study and previous 

reports with i.p. injections (Jiang, Chang et al. 2016) or subcutaneous implantation (Salido, 

Bordone et al. 2013) are different.  We aimed to mimic the most common route of human 

taking melatonin (orally, once a day) and with reasonable dosage, so it is possible that our 

overall melatonin dosage absorbed by the animals was not as much as the ones used in 



 

55 

 

previous reports. The bioavailability of melatonin through oral routes is 15 % (DeMuro, 

Nafziger et al. 2000).  Hence, it might be necessary to further increase the oral melatonin 

dosage in further research, if we were to compare with previous studies using different routes.  

Third, the melatonin–insulin antagonism leads the inefficacy of melatonin.  Different 

from the type 2 diabetic model, type 1 diabetic rats secreted extremely low insulin but had 

increased melatonin in plasma, leading to a worse hyperglycemic condition (Peschke, 

Wolgast et al. 2008).  Long-term administration of melatonin in healthy mice also showed 

disturbed metabolism (Bojkova, Orendas et al. 2008).  Thus, the failure of controlling 

systemic glycemia by melatonin administration in STZ-diabetic mice may lead to worse 

ERGs.  

Last but not the least, melatonin is reported to regulate melatonin receptor positively 

and negatively depending on the exposure dosage. Exposure of an ovary cell line to a lower 

concentration of melatonin (400 pM) increases MT1 receptor binding sites (Masana, Witt-

Enderby et al. 2003).  On the contrary, treating a higher concentration of melatonin (1 μM) 

in the same cell line desensitizes the MT1 receptors and inhibits the downstream signal 

transduction cascade (MacKenzie, Melan et al. 2002).  Previous report states the extra-pineal 

melatonin from i.p. injection melatonin is accumulated highest in mitochondria than cytosol 

but is not via melatonin receptor (MT1/2) in cell membrane (Venegas, Garcia et al. 2012), 

which implies that the high concentration of melatonin in my research could act as the 

scavenger on STZ or HG induced mitochondrial damage directly in our research.  However, 

the expression of MT1 receptor and the melatonin synthesis can take place in the 
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mitochondria from isolated mice brain (Suofu, Li et al. 2017).  Thus, the further research on 

the specific role of melatonin in mitochondria is needed.  

The ATP level is critical in regulating mitochondrial dynamics (Chang, Shi et al. 

2018).  In cultured retinal cells, treatment with HG elevates the extracellular ATP, in which 

the release of ATP is involved in the process of inflammation (Costa, Pereira et al. 2009).  

We found that treatments with HG in cultured 661W photoreceptors elevated DRP1 and 

dampened MFN2, and the level of MFN2 was also decreased in the STZ-diabetic retina.  

Mitochondrial dynamics plays a crucial role in regulating energy expenditure and oxidative 

metabolism.  Tissue-specific ablation of MFN2 in the liver impairs insulin signaling and 

increases hepatic gluconeogenesis and endoplasmic reticulum (ER) stress (Sebastian, 

Hernandez-Alvarez et al. 2012).  We found that melatonin treatments were able to reverse 

the STZ-induced decrease of MFN2 in the retina and the HG-caused elevation of DRP1 in 

cultured 661W cells.  These data imply that melatonin is able to reverse diabetes-induced 

decreases in mitochondrial fusion and HG-caused increases of mitochondrial fission.  One 

possible mechanism is that melatonin blocks the translocation of DRP1 into mitochondria to 

prevent mitochondrial fission (Li, Pi et al. 2016).  Hence, melatonin could restore the 

mitochondrial dynamics that is impaired by hyperglycemia.   

Mitochondrial calcium uniporter (MCU) is a Ca2+ channel specifically expressed in 

the inner membrane of mitochondria.  In diabetic pancreas (Tarasov, Semplici et al. 2012) 

and hearts (Suarez, Cividini et al. 2018), mitochondria function is distributed due to the 

downregulation of MCU.  Our data confirmed that the expression of MCU was decreased in 

the STZ-diabetic retina as well as decreased MCU and mitochondrial Ca2+ in the HG-treated 
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661W cells, but treatments with melatonin were able to restore the MCU expression and 

calcium concentration.  The decrease of retinal mitochondrial Ca2+ buffering ability affects 

the mitochondrial dynamics (Szabadkai, Simoni et al. 2006) and potentially worsens the 

progression of DR (Kowluru and Mishra 2018).  Thus, our data provide evidence that 

melatonin is able to recover the hyperglycemia-induced decrease of the mitochondrial Ca2+ 

pool by increasing the expression of MCU.  
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6. CONCLUSION 

In conclusion, we demonstrated that neural retinal dysfunction might precede the 

detectable microvascular complications in type 1 diabetes.  While melatonin might have a 

transient protection against STZ-induced retinal dysfunction, it impacts the retinal 

microvasculature more by preventing microvascular complications (such as venous beading 

and vascular permeability).  Furthermore, melatonin is able to restore the mitochondrial 

dynamics and Ca2+ storage that are altered under hyperglycemia (Figure 6.1).  While the 

efficacy of melatonin in treating human diabetes still requires more in-depth studies, under 

the daily oral dosage of 0.7 mg/Kg b.w., melatonin might have a protective effect against 

diabetes-associated retinal microvascular complications. 
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Figure 6.1 Proposed model of DR. (1) Under HG condition, ROS are overproduced and disturb calcium 

homeostasis via (2) decreasing MCU expression. (3) The mitochondrial dynamics then also be affected by 

calcium imbalance. (4) However, administration of melatonin, a strong antioxidant, will scavenge ROS, 

reverse down-regulated MCU and restore the altered mitochondrial dynamics, thereby performing a 

protective role in preventing DR.  
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APPENDIX 

A. 1 Introduction 

Since we found that there was a decrease in MCU expression in the STZ-mouse 

retina, the storage of intracellular Ca2+ and mitochondrial buffering ability were disturbed. 

We next investigated whether the L-type voltage-gated calcium channel (LTCC), the major 

calcium channel on the plasma membrane of retinal neurons that gates the calcium influx 

was altered under the diabetic conditions.  In the retina, the three major types of LTCCs are 

Cav1.2, Cav1.3 and Cav1.4 (Barnes and Kelly 2002, Ball, McEnery et al. 2011, Lee, Wang 

et al. 2015, Shi, Chang et al. 2017).  Our previous reports showed that the mRNA and 

protein expression of Cav1.3 is under circadian regulation, and the LTCC currents recorded 

at night are significantly larger than during the day  (Ko, Liu et al. 2007), which indicates 

that Cav1.3 might be more “plastic” and easily affected by the environment or health 

conditions. Null mutation of Cav1.3 compromises the retinal light responses and synaptic 

plasticity, so Cav1.3 is important in retinal synaptic transmission  (Shi, Chang et al. 2017). 

Mutation of Cav1.3 is  known to cause cardiac dysfunction (Mangoni, Couette et al. 2003), 

depression-like behavior (Busquet, Nguyen et al. 2010), autism (Pinggera, Lieb et al. 2015, 

Pinggera and Striessnig 2016), and auditory dysfunction (Platzer, Engel et al. 2000, Cui, 

Meyer et al. 2007).  
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A. 2 Results 

Melatonin treatments downregulate the L-type voltage-gated calcium channels 

expression, and knockdown of Cav1.3 plays a protective role in light responses in early 

type I diabetes 

We found that Cav1.3 was significantly increased in the STZ-diabetic mouse retina 

(Appendix 1).  STZ-mice treated with melatonin for 3 months (STZ+MEL) had 

downregulated Cav1.3 expression back to the control level (Appendix 1), indicating that 

melatonin reversed STZ-induced Ca2+ distribution in the retina. 

To verify whether Cav1.3 is involved in STZ-induced DR, the Cav1.3+/- heterozygous (HE) 

and Cav1.3+/+ wild-type (WT) littermates mice were used in this study.  Because completely 

knockout of Cav1.3 (Cav1.3-/- mice) has arrhythmia (Mangoni, Couette et al. 2003), which 

might further compromise the outcomes in diabetic studies, we chose to use the heterozygous 

(HE) knockout in this study. The Cav1.3-/- mice were originally developed by Dr. Jörg 

Striessnig (University of Innsbruck, Innrain, Innsbruck, Austria) (Platzer, Engel et al. 2000). 

The Cav1.3+/− (heterozygous) breeding pair was obtained from Dr. Amy Lee (University of 

Iowa, Iowa City, IA, USA). The Cav1.3 +/− and Cav1.3+/+ littermates used in this study were 

produced at Texas A&M University (College Station, TX, USA). All animal experiments 

were approved by the Institutional Animal Care and Use Committee of Texas A&M 

University. Mice were housed under temperature and humidity-controlled conditions with 

12:12 h light-dark cycles. At 5-6 weeks of age (body weight around 20 g), WT and HE mice 

were randomly assigned as the control or STZ-diabetic group.  The ERG recording was used 

to record retinal light responses for all mice after 1.5 months post-STZ injections. We found 
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that the ERG a- and b- wave implicit times were mildly delayed in HE, WT+STZ, and 

HE+STZ compared to WT. There was a significant difference in a- and b-wave amplitudes 

among the four groups after STZ injections (Appendix 2A-D). The HE had decreased a- and 

b-wave amplitudes compared to those of WT mice. After the STZ-injections, the WT+STZ 

mice had the smallest ERG a- and b-wave amplitudes among the 4 groups.  However, 

HE+STZ mice had significantly higher ERG amplitudes compared to the WT+STZ mice. 

Overall, the WT mice had highest a- and b-wave amplitudes, followed by HE mice with or 

without STZ, and then the WT with STZ injections. Interestingly, in HE mice, STZ-induced 

diabetes (HE+STZ) did not further impair the retinal light responses, but in the WT, STZ-

induced diabetes (WT+STZ) significantly decreased the ERG amplitudes.   Thus, mice with 

partially knocked down of Cav1.3 seems to prevent the STZ-caused impairment of retinal 

light responses.  As we showed that there was an upregulation of Cav1.3 (Appendix 1A) but 

a downregulation of MCU (Figure 4.8C) in the STZ-mouse retina, thus there could be a 

calcium-induced cytotoxicity in the retinal neurons that compromised the retinal health and 

dampened the retinal light responses.   
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Appendix 1 Administration with melatonin in STZ mice prevented the altered calcium channels caused by 

STZ. The immuno-fluorescent images of Cav1.3 in the neural retinas from three groups were shown. STZ-

mouse retina has an apparent increased Cav1.3. Administrating with melatonin restored the elevated Cav1.3 in 

STZ mice (*). BF= Bright field. * P<0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

77 

 

 

Appendix 2 The decreasing of dark-adapted ERG a- and b-wave amplitude in diabetic mice could be prevented 

in Cav1.3
+/- mice. The dark-adapted ERG a- (A, B) and b-wave (C, D) amplitude and implicit time in WT, 

Cav1.3
+/-, STZ mice and Cav1.3

+/-+STZ mice. The dark-adapted ERG a- and b-wave amplitude in WT-STZ mice 

were significantly lower than WT (*). There was no significant difference in Cav1.3
+/- and Cav1.3

+/-+STZ mice. 

*P<0.05 significantly different from STZ. # P<0.05 significantly different from WT and Cav1.3
+/-. 

 

 




