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ABSTRACT 

 

The phase behavior of petroleum fluids is an important factor in evaluating the 

hydrocarbon reserves and forecasting the oil and gas production behavior. Due to the 

existence of nano-scale pores, the fluid phase behavior in unconventional shale reservoirs 

differs significantly from that in unconventional reservoirs. Practically, the complexities 

of phase behavior in shale is associated with several factors, such as confinement effect, 

pore size distribution, surface uncertainty and heterogeneous distribution of hydrocarbon 

species. Previous work has mostly focused on theoretical studies and simulations. 

However, there are relatively few experimental data to verify the theories and models. A 

comprehensive picture of pressure-volume-temperature (PVT) behavior for the confined 

hydrocarbons remains uncertain. 

 

This study, combined with laboratory and simulation studies, is dedicated to understand 

fluid phase behavior under nano-confinement effect from both experimental and 

theoretical aspects. Firstly, we developed an experimental technique of differential 

scanning calorimetry to measure the hydrocarbon liquid-vapor phase transition 

temperature in nanopores. Next, the experimental data is used to correlate a pore-size-

dependent equation of state (EOS). The confinement parameters in EOS are determined 

and the EOS is shown to predict experimental results. With the pore-size-dependent EOS, 

a multi-scale PVT simulator is developed for shale’s nano-scale pore size distribution 

systems. The PVT simulator realistically models the constant composition expansion and 
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swelling behavior in gas injection for the shale reservoir fluids under macro- to nano-scale 

porous geometries.  
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NOMENCLATURE 

 

a Conventional energy parameter for PR EOS 

A Helmholtz free energy 

ap Confinement-modified energy parameter for PR-C EOS 

b Conventional volume parameter for PR EOS 

bp Confinement-modified volume parameter for PR-C EOS 

Bo Oil formation volume factor 

d Cylindrical pore diameter 

fi
L    Liquid phase fugacity for component i 

fi
V   Vapor phase fugacity for component i 

Fpr,i Fraction of fluid within the pore surface attractive field under 

random distribution 

kij Binary Interaction parameters between component i and j 

kB Boltzmann constant 

MW Molecular weight 

Nav Avogadro's number 

NC Number of components 

ni Moles of component i 

P Pressure 

Pb Bubble point pressure 

PC Critical pressure 
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R Ideal gas constant 

Rs Solution gas-oil ratio 

rp Cylindrical pore radius 

T Temperature 

TC Critical temperature 

v Molar volume 

V Volume 

VSP Volume shift parameter 

xi Mole fraction of component i 

δp Square well depth of fluid-pore wall surface interaction potential 

εp Square well depth of fluid-pore wall surface interaction potential 

θ Geometric term in expression of Fp 

κ Fluid-pore surface affinity factor 

λ de Broglie wavelength 

μi Chemical potential of component i 

ρ Fluid density 

σi Molecular diameter of component i 

ω Acentric factor 
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1. INTRODUCTION  

1.1 Background 

1.1.1 The shale fluid challenge 

The productions from unconventional tight/shale reservoirs constitute an important 

component in petroleum fluids production. In 2017, tight oil productions has contributed 

to 50% of crude oil production and tight/shale gas production has contributed to almost 

70% of natural gas production in United States (Figures 1 and 2). As projected by U.S. 

Energy Information Administraction,1 the U.S. crude oil and natural gas liquids production 

will continue to grow through 2050 as a result of the further development of tight oil and 

shale gas resources, especially under the circumstances of high oil and gas resource 

technology.  

 

Figure 1. U.S. tight oil productions and projections through 2050 (reprinted from US 

EIA Annual Energy Outlook 2018).1 
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Figure 2. U.S. tight and shale gas productions and projections to 2050 (reprinted from 

US EIA Annual Energy Outlook 2018).1 

 

However, the tight/shale oil and gas productions are poised with many challenges. The 

wells drilled in unconventional reservoir suffer a rapid production rate decline, and the 

ultimate oil recovery is very low compared to the recovery from conventional reservoirs. 

The uncertainty in phase behavior is one of the greatest challenges in developing 

unconventional shale resources. The complex phase behavior is due to the broad range of 

pore size distribution in shale. In macro-scale geometries such as fractures and 

macropores, the fluid behavior is bulk-like; in nano-scale pores, the fluid behavior is 

significantly altered by confinement effects. In nanopores, the fluid molecules interact 

with pore surfaces and these interactions can lead to a heterogeneous distribution of 

molecules, which the conventional bulk-phase thermodynamics fails to describe. 
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The deviated fluid phase behavior results in disconnections in industrial practice. The 

current industrial process of fluid PVT characterization utilizes the bulk-scale PVT cell 

measurement, but PVT for shale reservoirs cannot be measured in bulk-scale PVT cell 

because the phase behavior is significantly altered from bulk behavior by the nanopores 

in shale rock. The unknown fluid phase behavior results in two major challenges:2 firstly, 

the actual fluid compositions in shale reservoir is unknown; secondly, the behavior of 

fluids depletes in the shale system is not understood. The latter challenge is associated 

with fluid flow, with contributes to another dimension of uncertainty in fluid production 

from shale reservoirs. Anomalous production behavior caused by fluid behavior is 

commonly observed with shale well productions, such as extended understaturated 

production stage (suppressed bubble point),3,4 leaner-than-expected fluid produced in the 

wellstreams,5 low recovery and its association with the degree of undersaturation.5 

 

1.1.2 Experimental approaches 

Past experimental approaches largely use isothermal sorption to evaluate various fluids in 

mesoporous media.6-10 Adsorption behavior of argon, nitrogen, light hydrocarbons 

(methane to n-butane) and some intermediates (n-pentane and n-hexane) in nanoporous 

media have been experimentally studied.11-13 It is generally observed that the adsorption 

pore filling happens at a very low relative pressure (p/po) in pores of less than 2 nm because 

the proximity of pore surfaces results in stronger interaction between the adsorbate and 

pore surface; pore filling later happens at an increased p/po in pores with diameter larger 

than 2 nm, and both monolayer-multilayer adsorption and capillary condensation may be 
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observed; finally, in very large pores (diameter > 50 nm), pore filling occurs near or at 

p/po = 1, i.e., phase behavior is almost the same as bulk.14 Based on these observations, 

IUPAC adopts the notations:14,15 (1) micropore: pore diameter < 2 nm; (2) mesopores: 2 

nm < pore diameter < 50 nm; (3) macropore: pore diameter > 50 nm. Also, the criticality 

of the confined fluid deviates from bulk values, and the confined critical temperature 

decreases related to that of bulk.7 Furthermore, hysteresis is commonly observed in 

sorption isotherms, for which the loop undergoes a reduction in size with increasing 

temperature.6,16 It is also reported that chemical properties, texture and degree of disorder 

of pore surface affect the adsorption/desorption behavior.8,9  

 

Other experimental approaches include neutron diffraction,17 vibrating tube densimetry18 

and visual observation.19-21 As observed in these experiments, fluid shows bulk phase 

behavior in pores larger than 50 nm, while in nanopores smaller than 50 nm, the phase 

behavior is distinctly altered by the confinement effect. 

Table 1. Previous experimental methods for studying confined hydrocarbons. 

Methods Pros Cons 

Isothermal Adsorption Good for light hydrocarbons 
Not good for intermediates and 

heavy hydrocarbons 

Visual Observation  

(Lab-on-a-Chip) 

Allows the visualization of 

phase transitions 
Limited to low viscosity fluid 

Vibrating Tube 

Densimetry 

Directly measures fluid 

density,  HPHT suitable 
Limited to low viscosity fluid 

X-Ray/Neutron 

Diffraction 

Gives the details of pore filling 

process 

Indirect density information, 

instrument limitation 
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Table 1 summarizes the pros and cons of the previous experimental methods. Isothermal 

adsorptions is not suitable for measuring phase behavior of heavy hydrocarbons, because 

the vapor pressures of heavy hydrocarbons are very low. Visual methods and vibrating 

tube densimetry are limited to low viscosity fluid, and, therefore, the intermediate and 

heavy hydrocarbons are difficult to exam. X-Ray or neutron diffractions are very good 

methods to probe the pore filling process, however, the fluid density is indirectly obtained 

and the instrument is very expensive and not commonly accessible.  

 

Therefore, the experimental studying of confined hydrocarbons, especially for the 

intermediate and heavy hydrocarbons, is very challenging using the previously developed 

experimental methods. A reliable and efficient method to access the phase behavior of 

hydrocarbon phase behavior in nanopores is highly desired. 

 

1.1.3 Thermodynamic modeling 

Fundamentally, there are two kinds of molecular interactions for the fluid in nanopores: 

one is the fluid-fluid interaction and the other is the fluid-pore wall interaction. The fluid-

fluid interactions has been well-studied and described in the bulk-state thermodynamics. 

It is the extra interaction between fluid and pore wall that leads to the deviations of 

confined phase behavior from the bulk behavior. Therefore, to study the phase behavior 

of confined fluid, the description of fluid-pore wall interaction is necessary. Generally, 

there are two types of approaches to describe the fluid-pore wall interaction: one is to 

indirectly consider it as a capillary effect, which is quantified as a pressure difference 
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between the liquid and vapor phase, i.e. capillary pressure; the other method is to directly 

describe the fluid-pore wall interaction in form of a molecule-level potential function. 

 

The capillary pressure method utilizes the Young-Laplace equation, Eq. (1.1). Δp is the 

pressure difference between liquid and vapor phase; γ is the surface tension; R1 and R2 are 

the principal radii of interface curvature. The interfacial tension γ between fluid in the 

nanopore and fluid in the bulk are assumed equal. Additionally, the equation does not 

include the interaction force between the fluid molecules and the pore wall, and it therefore 

ignores the surface-adsorbed fluid. The formulation based on capillary pressure yields the 

classical Kelvin equation. However, it needs to be noted that, in practice the Kelvin 

equation was found to severely underestimate pore size in determining pore size in nano-

scale systems.22-24 Recently, several studies have examined the nano-scale fluid phase 

behavior by implementing the capillary pressure in flash calculations using the Peng-

Robinson equation of state (PR EOS).4,25-28 Elsewhere, Tan and Piri29,30 reported an 

equation-of-state modeling by PC-SAFT (perturbed chain-statistical associating fluid 

theory) coupled with a modified Young-Laplace equation. 

∆𝑝 = 𝛾 (
1

𝑅1
+
1

𝑅2
)                                                     (1.1) 

For the approach of directly describing the fluid-pore wall interactions, several methods, 

such as extended equation of state (EOS), density functional theories (DFT) and molecular 

simulation, are developed. Recently, Travalloni et al. reported a pore-size-dependent 

equation of state (EOS) by extending the PR-EOS to nano-systems.31-34 The Peng-

Robinson-Confined (PR-C) EOS is formulated by describing the interaction between fluid 
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molecules and the pore wall as a square-well potential, Eq (1.2). u represents the 

interaction energy; r is the distance of molecule to the wall; σ is the diameter of fluid 

molecule; εp is the square-well depth and δp is the square-well width. The resulting EOS 

requires two parameters to describe the fluid-pore surface interaction by range and energy, 

which need to be determined from experiments. The advantage of PR-C EOS is that it 

embeds the molecular description of the fluid-pore surface interaction while keeping a 

relatively concise form, and also that the PR-C EOS describes the pore fluid by pore 

diameter and it naturally reverts to PR EOS at large pores.32  

𝑢(𝑟) =

{
 
 

 
 ∞             𝑟 <

𝜎

2
                  

−휀𝑝          
𝜎

2
< 𝑟 <

𝜎

2
+ 𝛿𝑝

0                      𝑟 >
𝜎

2
+ 𝛿𝑝

                                        (1.2) 

Density functional theory (DFT)35,36 and molecular simulation37-40 are sophisticated 

methods which employs more realistic potentials for molecule-molecule and molecule-

pore wall interactions. The Lennard-Jones potential is the most commonly used potential 

function, Eq. (1.3).41 Substantial insight into the phase transitions in nanopores have been 

obtained through DFT and molecular simulations. Li et al. 35 developed an engineering 

DFT technique combined with PR EOS and simulated adsorptions of single components 

and hydrocarbon mixtures in nano-scale slit pores. Jin and Nasrabadi40 presented a 

modified gauge-Gibbs ensemble Monte Carlo (GEMC) molecular simulation to study 

phase equilibria of single and multi-component hydrocarbons and found that in nanopores 

the critical temperature is reduced and the density gap between liquid and vapor phase is 

narrowed. Jin and Firoozabadi36 comparatively applied the methods of Langmuir 
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adsorption isotherm, solid-solution model, PR EOS/capillary pressure, DFT, and 

molecular simulation (GCMC) to model the phase behavior of hydrocarbons in shale, and 

concluded that in pores with sizes greater than 10 nm, the conventional equation of state 

may be applicable, while in pores less than 10 nm, the fluids become inhomogeneous and 

molecular level modeling is necessary. However, compared to EOS modeling, both DFT 

and molecular simulation are computationally expensive. DFT also suffers from the 

drawbacks such as difficulty in assigning proper pore-fluid potentials42 and expensive 

computational cost for the adsorption integral equation.43 

𝑢(𝑟) = 4휀 ((
𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

)                                           (1.3) 

 

1.2 Dissertation outline 

The object of this research is to develop experimental method to assess the phase behavior 

of hydrocarbons in nanopores, advance the thermodynamic modeling of petroleum fluids 

in nanoporous media and develop PVT modeling solutions for shale reservoirs. The 

outline of this dissertation are as followed:  

 Chapter 2 presents the experimental measurements of hydrocarbon phase 

transitions in nanoporous media by differential scanning calorimetry (DSC). The 

bubble point temperatures of hydrocarbons (n-hexane, n-octane and n-decane) are 

measured at different pore sizes. The effect of pore loading, fluid mixing and pore 

size distribution on phase behavior are also studied. 

 Chapter 3 discusses the thermodynamic modelings for the experimental 

observations using equation of state (EOS). The capillary pressure coupled with 
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Peng-Robinson EOS method is found failed in modeling the experiments. The 

pore-size-dependent PR-C EOS models the experimental results and predicts the 

criticalities. The confinement parameters of hydrocarbons (methane to n-

tetradecane) for PR-C EOS are accomplished and summarized as a data base.  

 Chapter 4 presents the multi-scale phase behavior simulation for the shale fluids. 

Using the pore-size-dependent equation of state, the phase equilibrium among 

different sizes of nanopores and bulk geometries is calculated and found quite 

different from the bulk-state phase behavior. The simulation delivers a realistic 

fluid PVT picture for the petroleum fluids under macro- to nano-scale pore size 

distribution. 

 Chapter 5 presents application of multi-scale phase behavior simulation for gas 

injections. The criticalities, bubble point shift and phase heterogeneities caused by 

methane injection is simulated. Additionally, the nanopore-fluid swelling behavior 

is studied and the oil extraction effect from nanopore is quantified in comparison 

to bulk fluid swelling behavior. 

 Chapter 6 concludes the study and makes future work recommendations. 
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2. EXPERIMENTAL MEASUREMENT OF PHASE TRANSITIONS*  

2.1 Methods 

Silicate nanoporous materials CPG-35 (controlled pore glasses, from Sigma-Aldrich), 

SLG-15 (silica gel, from Sigma-Aldrich), MSU-H (Michigan State University silica-H, 

from Sigma-Aldrich), SBA-15 (Santa Barbara amorphous silica-15, from ACS Material), 

CPG-4 (controlled pore glasses, from SCHOTT), SBA-16 (Santa Barbara amorphous 

silica-16, from ACS Material), MCM-41 (Mobil Crystalline Material-41, from Sigma-

Aldrich) were used. The materials properties are shown in Table 2. These silicates are a 

free-flowing white powder with a 200 to 400 mesh size. The pores are highly branched, 

connected, and approximately cylindrical in shape. The mean diameter, pore distribution, 

surface area, and pore volume are given in Table 2. The silicate materials were first 

cleaned with boiling 70% nitric acid at 100 ℃ for 10 h. Caution: Proper safety precautions 

should be taken. The nitric acid was decanted and the porous media were rinsed with 

copious deionized water until the aqueous residue was neutral, and then the porous media 

were dried under vacuum for 24 h at 240 ℃. The surface of the porous media was rendered 

oleophilic by surface-functionalization with hexamethyldisilazane (HMDS). The porous 

                                                 

* Part of this chapter is reprinted with permission from “Use of differential scanning calorimetry to study 

phase behavior of hydrocarbon mixtures in nano-scale porous media” by S. Luo, J. L. Lutkenhaus, and H. 

Nasrabadi, 2018. Journal of Petroleum Science and Engineering, Volume 163, Pages 731-738, Copyright 

[2018] by Elsevier B.V., and “Confinement-Induced Supercriticality and Phase Equilibria of Hydrocarbons 

in Nanopores” by S. Luo, J. L. Lutkenhaus, and H. Nasrabadi, 2016. Langmuir, Volume 32, Pages 11506-

11513, Copyright [2016] by American Chemical Society, and “Experimental Study of Confinement Effect 

on Hydrocarbon Phase Behavior in Nano-Scale Porous Media Using Differential Scanning Calorimetry” by 

S. Luo, J. L. Lutkenhaus, and H. Nasrabadi, 2015. SPE Proceedings, SPE-175095-MS, Copyright [2015] by 

Society of Petroleum Engineers, and “Effect of confinement on the bubble points of hydrocarbons in 

nanoporous media” by S. Luo, H. Nasrabadi, and J. L. Lutkenhaus, 2016. AIChE Journal, Volume 62, Pages 

1772-1780, Copyright [2016] by American Institute of Chemical Engineers. 
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media were reacted with neat HMDS at 55 ℃ for 20 h. The reagent was decanted, and the 

porous media were rinsed copiously with dichloromethane and dried under vacuum for 24 

h at 100 ℃.44 When not in use, the porous media were stored in a desiccator for up to three 

months. It is reported that silylation on silica nanopores resulted in a pore diameter 

decrease of ca. 0.2 nm.8,45 The effective pore diameters of materials after surface treatment 

are obtained accordingly, as shown in Table 2.  

Table 2. Properties of nanoporous materials. 

Materials MCM-41 SBA-16 CPG-4 SBA-15 MSU-H SLG-15 CPG-35 

Native Pore Diameter 

(nm) 
2.4 3.5 4.3 6.2 10 15 38.1 

Effective Pore 

Diameter after 

surface treatment 

(nm) 

2.2 3.3 4.1 6 9.8 14.8 37.9 

Surface Area (m2/g) 1000 700-900 170 600 750 300 64.7 

Pore Volume (cm3/g) 0.98 0.98 0.22 0.68 0.91 1.15 1.17 

 

In preparing test samples for differential scanning calorimetry (DSC), the porous media 

powder was weighed and transferred to the pan prior to adding the hydrocarbon. The pan 

was capped with a Tzero® hermetic lid bearing a 75-µm-diameter pinhole, sealed 

carefully with wax film and vinyl tape, and kept undisturbed for 24-48 h so that the pores 

were filled with hydrocarbons by capillary wetting. The film and tape were removed prior 

to DSC measurements.  

 

Thermal analysis was performed using a TA Instruments Q200 differential scanning 

calorimeter and all measurements were performed under nitrogen atmosphere. The heating 

rate was selected to be 10 K/min and only the first scan was analyzed. We found that 
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slower heating rates resulted in significant fluid loss from vaporization and that faster 

heating rates gave an undesirable thermal lag. The bubble point was taken as the onset of 

the endothermic peak associated with vaporization, determined as the intersection of the 

tangent line at the point of greatest slope on the leading edge of the peak with the 

extrapolated baseline. The bulk octane and decane bubble points 𝑇𝑏 were 398.72 0.04 

K and 447.4 0.2 K, respectively, and are in good agreement with the literature.46 These 

values were taken as the bulk values for reference in this study. The enthalpy of 

vaporization ∆𝐻𝑣𝑎𝑝 was calculated from the integrated area of the endothermic peak, and 

was generally consistent among all results. However our measured ∆𝐻𝑣𝑎𝑝 was about 10% 

less than the standard bulk enthalpy of vaporization. This deviation could be due to mass 

loss through the course of the sample preparation and experiment, since the pan was open 

to the atmosphere by the pinhole. 

 

Thermogravimetric analysis (TGA) was performed using a Q500-TGA from TA 

Instruments and measurements were performed under nitrogen atmosphere. The same 

sample system are selected as that in DSC: the Tzero® hermetic pan and lid with pinhole 

were used and the heating rate was selected to be 10 K/min. According to the TGA 

analysis, the vaporization mass loss before reaching the bubble point was minimal, which 

was 3~5% of the total hydrocarbon mass loss. 
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2.2 Single component in single-sized nanopores 

DSC thermograms of octane and decane-loaded in 37.9 nm pore diameter CPGs are 

presented for various loadings in which 100% represents the case of completely filled 

pores, Figure 3.47 Below 100% the CPGs are under-filled, and above 100% the CPGs are 

over-filled. The loading is based on the known volume of fluid added relative to the pore 

volume. The thermogram for the bulk fluid (in the absence of CPGs) is presented as the 

bottom green trace. The heat flow is normalized against the mass of the hydrocarbon only. 

DSC scans for octane infiltrated into the 37.9 nm pores for various loadings of 135% 

(1.581 cm3/g), 101% (1.181 cm3/g), 90% (1.057 cm3/g), 77% (0.902 cm3/g), 49% (0.574 

cm3/g) and 19% (0.225 cm3/g) are shown in Figure 3a; scans for decane infiltrated into the 

37.9 nm pores for various loadings of 143% (1.743 cm3/g), 96% (1.167 cm3/g), 80% 

(0.966 cm3/g), 59% (0.722 cm3/g), 39% (0.475 cm3/g) and 19% (0.232 cm3/g) are shown 

in Figure 3b. 𝑇𝑏 represents the bubble point of the bulk fluid and 𝑇𝑏,𝑐 represents the bubble 

point of the confined fluid. 

 

For octane loadings of 101% and 135%, the bulk-vaporization peak is observed at the bulk 

bubble point, which is due to excess octane outside the pore, Figure 3a. For Tb,c  at octane 

loadings of 90% and below, a single vaporization endotherm distinguished from the bulk 

peak was observed with an onset of 394-399 K, about 0-5 K below the bulk bubble point 

(399 K), Figure 3. The bubble point generally decreased slightly as loading decreased. At 

the lowest loading of 20 %, only a 2 to 5 K shift in bubble point was observed, which 

implies that confinement is not very strong at this length scale. This trend in loading can 
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be rationalized by considering that loading probably occurs first by surface wetting,48 

second by filling the remaining volume in the pore,49 and third by existing as excess at 

high loadings. Accordingly, the thermal properties for low loadings should reflect fluid 

within the CPG pores, and high loadings should reflect both excess fluid and that within 

the pores. Here, the two peaks observed in Figure 3a are likely a result of excess octane 

and that within the CPGs. Decane behaved quite similarly, Figure 3b.  
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Figure 3. DSC thermograms for (a) octane and (b) decane infiltrated into 37.9 nm pore 

diameter CPGs. The heat flow is normalized against the mass of the hydrocarbon alone. 

Scan rate is 10 K/min.47 

 

We next turn to the case of octane and decane infiltrated into CPGs bearing 4.1 nm 

diameter pores. Endotherms for octane at loadings of 120% (0.263cm3/g), 103% (0.226 

cm3/g), 87% (0.192 cm3/g), 73% (0.161 cm3/g), 65% (0.143 cm3/g) and 56% (0.124 cm3/g) 
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and for decane at loadings of 138% (0.304 cm3/g), 114% (0.250 cm3/g), 86% (0.189 

cm3/g), 79% (0.174 cm3/g), 69% (0.145 cm3/g) and 56% (0.124 cm3/g) are shown in 

Figure 4. Significant deviations in the bubble point behavior from the bulk fluid were 

observed. Specifically, all confined fluids exhibited two endothermic peaks (one above 

and one below the bulk vaporization peak). 𝑇𝑝 represents the maximum peak temperature 

for the bulk case and 𝑇𝑝,𝑐 represents the maximum peak temperature for the second 

endothermic peak of the confined fluid. 

 

We first discuss the lower temperature peak, which follows a trend similar (but more 

pronounced) to that of the infiltrated 37.9 nm CPGs. From 87% to 56% octane loading, 

the onset of the low temperature peak (𝑇𝑏,𝑐) shifted downward from 388 K to 383 K, which 

is 11-16 K low temperature peak decreased relative to  the bulk bubble point (399 K). For 

decane, a similar shift in the low temperature peak was observed; from 86% to 56% 

loading, 𝑇𝑏,𝑐 shifted from 434 K to 423 K, which is 13-24 K lower than the bulk bubble 

point (447 K). The variation of octane and decane bubble points with loading indicates 

good wetting characteristics of the treated CPG surface, which is consistent with the 

results of hydrocarbons in the 37.9 nm CPG. On the other hand, the high temperature 

endothermic peak shifted to higher temperatures relative to the bulk vaporization peak. 

Since this second peak was broad and its onset overlapped at times with the first peak, the 

maximum peak temperature 𝑇𝑝,𝑐 was applied to describe the bubble point shift relative to 

the maximum peak temperature for the bulk case 𝑇𝑝. Variation in the peak temperature 

was relatively small among the different loadings. For octane, the peak temperature 𝑇𝑝,𝑐 
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was 415 K to 420 K for loadings from 56% (under-filled) to 120% (over-filled), which is 

14-19 K greater than bulk 𝑇𝑝 (401 K). Similar behavior was observed for decane: 

𝑇𝑝,𝑐varied from 464 K at 56% loading to 467 K at 138% loading, which is 15-18 K higher 

than the bulk 𝑇𝑝 (449 K). 
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Figure 4. DSC thermograms for (a) octane and (b) decane infiltrated into 4.1 nm pore 

diameter CPGs for various loadings. The heat flow is normalized against the mass of the 

hydrocarbon alone. Scan rate is 10 K/min.47 

 

We turned to thermogravimetric analysis to investigate the fluid vaporization (weight loss) 

to complement results from DSC, Figure 5. TGA of octane in 4.1 and 37.9 nm pore 

diameter CPGs was performed using conditions identical to that of DSC, and the weight 
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fraction is normalized against hydrocarbon weight (octane infiltrated in CPGs, red curve) 

and CPG weight (pure CPG, green curve). As shown in Figure 5, any weight loss is 

associated with the vaporization of octane, since the CPGs are inert over this temperature 

range. For the octane-loaded 37.9 nm CPG, one vaporization event observed, with an onset 

at 372 K; the weight percentage retained decreased from 97.8 wt% to 0.9 wt% over the 

course of vaporization, suggestive of complete vaporization of the hydrocarbon. For 

octane loaded 4.1 nm CPGs, two vaporization events occurred with onsets at 356.7 (98.8 

wt% retained) and 400.8 K (56.1 wt%) and complete vaporization (0.6 wt% at 498.3 K). 

This result is consistent with DSC results for octane-loaded 4.1 nm CPGs, in low 

temperature endothermic peak almost disappears at 56% loading (purple curve, Figure 

2a). The DSC and TGA results for nanoconfined octane are compared for similar loadings. 

The weight loss rate and heat flow rate both exhibit the same curve shape for octane in 

both 37.9 nm and 4.1 nm pore diameter CPGs. The peak onsets and maximums indicate 

that the bubble points measured from both techniques are consistent.47 
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Figure 5. Thermogravimetric profiles for octane infiltrated into (a) 37.9 nm (loading 88%) 

and (b) 4.1 nm (loading 87%) pore diameter CPGs. The scan rate is 10 K/min and the 

weight % is normalized against hydrocarbon weight (octane infiltrated in CPGs, red curve) 

and CPG weight (pure CPG, green curve).47 
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Next we investigated the phase transition in the nanopores of a various pore diameters.50 

Nanoporous media of varying pore diameter (CPG-35: 37.9 nm, SLG-15: 14.8 nm, MSU-

H: 9.8 nm, SBA-15: 6.0 nm, CPG-4: 4.1 nm, SBA-16: 3.3 nm, MCM-41: 2.2 nm) were 

filled with hydrocarbons (n-hexane, n-octane or n-decane) by capillary wetting.47 Figure 

6 shows the DSC traces for bulk hexane, octane and decane as green curves (without 

porous media). For confined fluid/media systems at various pore sizes, the media were 

over-filled with hydrocarbons and a clear separation between the confined and bulk fluid 

is observed.47 The liquid-vapor phase transition under confinement is obtained as the onset 

of the confined vaporization peak. The confined fluid generally vaporized at a temperature 

higher than the bulk fluid, except the case at 2.2 nm. At 2.2 nm, the fluid show different 

phase behavior, observed as one major peak and several minor peaks at higher 

temperatures. For the example of hexane (Figure 7a), from 37.9 to 4.1 nm, the bubble 

point of the confined fluid increased from 342.6 to 357.0 K. From 4.1 to 3.3 nm, the bubble 

point the bubble point then decreased, from 357.0 to 348.4 K. It’s worth noting that at 4.1–

9.8 nm the bubble shift is 15.1–12.1 K from bulk; whereas at 14.8–37.9 nm, the bubble 

point shift is 2.8–0.7 K (Figure 7b, red triangles). It can be inferred that below 10 nm, the 

confinement effect is much greater than that over 15 nm pore diameter. Octane and decane 

behaved similarly (Figure 6b and 6c). In 37.9 nm pores, octane showed a bubble point of 

398.8 K; as the pore size decreased to 4.1 nm, the bubble point increased to 416.5 K 

(Figure 7b, red triangles); further decreasing the pore size resulted in a decreased phase 

transition point down to 405.8 K (3.3 nm). For decane, the bubble point is 447.8 K at 37.9 

nm; decreasing pore diameter resulted in an increased bubble point, which peaked at 4.1 
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nm (465.0 K) (Figure 7c, red triangles); from 4.1 to 3.3 nm, the phase transition point 

decreased to 455.5 K.  

 

Figure 6. DSC thermograms of nanoconfined fluids (a) hexane, (b) octane and (c) decane 

at atmospheric pressure (101.325 kPa). Clear separation between bulk and confined fluid 

vaporization peaks was observed. The nanopores were infiltrated with hydrocarbons, and 

excess hydrocarbons existed as bulk fluid outside the pores. The pore loading percentages 

are included in supplementary information. The numbers on the right indicate the diameter 

of the nanoporous media in which the hydrocarbons were confined. Bulk refers to the scan 

of bulk fluid (green curves). The thermograms of octane and decane in 4.1 and 37.9 nm 

pores are from our previous work.47,50 
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Figure 7. Results of the experimental bubble points and modeled T-d phase diagrams at 

atmospheric pressure (101.325 kPa) bulk vapor for (a) hexane, (b) octane and (c) decane. 

The experimental bubble points increased from 37.9 nm to 4.1 nm (red triangles with error 

bars). Error bars, s.e.m, are obtained from experiments repeated three times.50 

 

The multiple enthalpic peaks in the thermograms for pore diameters less than 4 nm is 

expected mostly because of the layering effect and heterogeneous pore distribution. For 

example, at 2.2 nm, one major peak is assigned as the bulk fluid peak, and several broad 

and small peaks of confined fluids are observed at higher temperatures. The high 

temperature peaks may be attributed to the evaporation of the first few layers of adsorbed 

fluid in the pore. Li et al. reported phase transitions associated with layers of fluid in 
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narrow slit pores: after evaporation of the main fluid in the capillary, residual layers of 

fluid are removed consecutively from the pore at lower pressures.51 Similar layering 

transitions have also been observed by Wongkoblap et al. in the study of argon adsorption 

in single wall nanotubes.52 An alternative explanation is that the high temperature peak is 

associated to the molecules adsorbed in smaller micropores due to a heterogeneous pore 

size distribution. Hydrocarbon desorption temperature in micropores (dia. <2 nm) are 

reported to be much higher than in mesopores (dia. 2-50 nm). For example, n-nonane 

desorbed in 3.5 nm pore (SBA-15) at 325 K53 while in 1 nm pore (zeolite) at 407 K54 and 

in 0.5 nm pore (zeolite) at 493 K.54 The complex desorption at high temperature in MCM-

41 of our study could be due to the fluid in micropores of the heterogeneous media.  

 

2.3 Mixtures in single-sized nanopores 

In the following work, we extend the study to the bubble point of octane-decane binary 

mixtures.55 Initially, the bulk fluid samples were subjected to DSC, as shown in Figure 8. 

Mixtures of various compositions (mol:mol) were studied. It was observed that the main 

peak was followed by a second shoulder on the right (e.g. 55%:45% mixture, in green), 

which is different from the results of the single components. We envision that the feature 

resulted from the compositional change occurring throughout the vaporization process: 

the heavy component was left behind from the initial vaporization, and the second 

shoulder was that residue mainly composed of decane. The shoulder matches well with 

the endotherm of bulk decane. The explanation is also supported by the trend that from 

high to low octane composition (i.e. 92% octane to 8% octane), the intensity of residue 
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shoulder gradually increases and finally merges with the main peak. The bubble point is 

taken as the onset of the main DSC peak, and the PR-EOS calculated bubble point 

temperatures are in agreement with the experimental results (Table 3). 

 

Figure 8. DSC thermograms for the bulk octane:decane binary mixtures (mol:mol).55 

 

Table 3. DSC-measured and PR EOS-modeled bubble point temperatures of bulk fluids.55 
Composition 

(octane:decane, 

mol:mol) 

12%:88% 34%:66% 55%:45% 74%:26% 92%:8% 

Tb (DSC) / K 439.6±0.2 425.5±0.06 415.7±0.09 407.7±0.4 401.7±0.1 

Tb (Modeling) / K 438.3 424.5 414.6 407.2 401.3 

 

The bubble points of various octane-decane compositions in 37.9 or 4.1 nm CPGs were 

investigated. Here, we compared the results from 90% loading (taken as the saturated case) 

and 19% and 58% loading (taken as the under-filled case) for pore diameters of 37.9 nm 

and 4.1 nm, respectively. At 37.9 nm, the bubble points of fluids in the pore are very close 

to that of the bulk throughout all compositions at 90% loading (Figure 9a), indicating that 
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the confinement effect is minor in 37.9 nm saturated pores. However, for the severely 

under-filled case of 19% loading, the bubble shifted downward by 1-7 K, which implies 

that the confinement effect emerges at low loadings.  

 

The bubble points of hydrocarbon mixtures in 4.1 nm pores reveal interesting features 

(Figure 9b). Here, only the first peak (lower bubble point) is specifically discussed as the 

composition corresponding to the second peak is largely uncertain because of the prior 

evaporation event. At saturated loading (90%), the octane-decane binary mixture generally 

showed a bubble point ca. 20 K lower than the bulk bubble point. At the low loading of 

58%, the bubble point curve was relatively flat; regardless of composition, the bubble 

points were close to that of single component octane. The observations can be rationalized 

by considering the fluid compositional heterogeneity between the surface-adsorbed state 

and confined bulk state. At the under-filled loading of 58%, the lighter component (octane) 

mainly populates the confined bulk state, while the heavier component (decane) shows 

greater affinity to the pore surface and mainly exists as a surface-adsorbed fluid. 

Consequently, the lower bubble points of the binary mixtures, corresponding to the 

confined bulk state fluid, are close to the single lighter component (octane) case. Similar 

compositional distribution has been observed by Ma and Jamili.56 They reported that the 

wall favors the heavier component over the lighter component for an n-butane/methane 

mixture in a 20 nm slit pore.  
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Figure 9. (a) Bubble point temperatures of octane-decane binary mixtures at loadings of 

90% and 19% in 37.9 nm CPGs at various compositions. (b) Lower bubble point 

temperatures for octane-decane binary mixtures at loadings of 90% and 58% in 4.1 nm 

CPGs at various compositions.55 

 

2.4 Single component in nanopores with pore size distribution 

Herein, we present an experimental study of hydrocarbon phase behavior in synthetic 

media of broad pore size distribution representing shale rock. Two types of synthetic 

media representing the pore size distribution of natural shale rocks (Eagle Ford shale and 

Bakken shale) are studied. n-Hexane, n-octane and n-decane are infiltrated into 

nanoporous media, and DSC is used to measure the phase transition temperature of the 

confined hydrocarbons. We choose two representative pore size distributions for shale 
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rock: one for Eagle Ford shale57 and the other for Bakken shale.4 Eagle Ford shale has a 

major pore size of ca. 16 nm, and Bakken shale has a major pore size of ca. 40 nm. 

Experimental synthetic porous materials of specific pore diameters were physically mixed 

to mimic the shale pore size distribution. Figure 10 shows the pore size distributions of 

the two shale samples and the representative mixture samples used in this work.  

 

 

Figure 10. Pore size distribution are from two shale cores: (a) Eagle Ford shale57 and (b) 

Bakken shale.4 The laboratory pore size distribution of shale rocks are shown as blue lines. 

The shaded columns are the representative discretized pore volumes of synthetic 

nanoporous media with a specific pore diameter used in this work. The details are 

discussed in experimental section. 

 

 

The porous materials in Table 2 were physically mixed to mimic the pore size distribution 

of shale rock (Figure 10). A specific portion of each type of material was used to represent 

the corresponding pore size portion of shale rock. An optimization method was used to 

determine the mass fractions of porous media. We note the pore diameters of n types of 

experimental porous media from smallest to the greatest as 𝑑1, 𝑑2, … , 𝑑𝑛 and their pore 
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volumes per mass (cm3/g) as 𝑃𝑉1, 𝑃𝑉2, … , 𝑃𝑉𝑛. Their mass fractions in the synthetic 

mixture are 𝑚1, 𝑚2, … ,𝑚𝑛 and the pore volume fractions are 𝑉1, 𝑉2, … , 𝑉𝑛. The mass 

fraction relation and pore volumes can be written as: 

𝑚1 +𝑚2 +⋯+𝑚𝑛 = 1                                              (2.1) 

𝑉𝑖 =
𝑚𝑖∙𝑃𝑉𝑖

∑ 𝑚𝑖∙𝑃𝑉𝑖
𝑛
𝑖=1

                                                        (2.2)                                                                       

The discrete pore volumes 𝑉1, 𝑉2, … , 𝑉𝑛 represent the pore size distribution. 𝑉𝑖 is the area 

of shaded columns of the medium i in Figure 8. The height of the column is directly read 

from the PSD curve by the specific material’s pore diameter, as ℎ𝑖. The width 𝑤𝑖 of the 

column is the range of PSD represented by the pore diameter in the center. 

𝑤𝑖 ∙ ℎ𝑖 = 𝑉𝑖                                                           (2.3)  

Herein, we optimize the choices of column widths 𝑤1, 𝑤2, … , 𝑤𝑛 by minimizing the gaps 

between the columns, where the target function g(w) can be written as: 

𝑔(𝑤) = ∑(
𝑤𝑖 + 𝑤𝑖+1

2
− (𝑑𝑖+1 − 𝑑𝑖))

2𝑛−1

𝑖=1

                             (2.4) 

The target function is minimized under the constraints of Eq. (2.1) and the relations of 

Eqs. (2.2) and (2.3) using the Matlab optimization toolbox. The results of mixing mass 

fractions for each case are listed in Table 4. 

Table 4. Nanoporous media mixture representing the shale pore size distribution. 

Porous Materials MCM-41 SBA-16 CPG-4 SBA-15 MSU-H SLG-15 CPG-35 

Mass 

Fraction 

Eagle 

Ford 

sample  

0.4% 1.3% 1.2% 8.9% 1.6% 64.3% 22.3% 

Bakken 

sample 
0.1% 0.2% 0.2% 2.1% 2.7% 11.6% 83.1% 
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DSC thermograms of octane confined in the synthetic Eagle Ford sample at different 

loadings are presented in Figure 10a. The loading is defined as the volume of added fluid 

to the cumulative volume of the pores (Table 2 and 4). A loading of 100% represents that 

all pores are completely filled, above 100% the pores are over-filled, and below 100% the 

pores are under-filled. The uncertainty of loading percentage is expected to be 3-10% due 

to uncertainties in fluid58 and pore volume59,60 calculations. At a loading of 107%, two 

major peaks were observed along with minor features below and above these peak 

temperatures. At a loading of 93%, four peaks are clearly observed. As found in our 

previous observations, the bulk fluid bubble point temperature is lower than that of the 

confined fluid.50 The peak at the lowest temperature relates to the vaporization of bulk 

fluid, which exists outside the pores. It needs to be clarified that bulk fluid may be 

observed at a loading slightly less than 100% because fluid may fill the porous media 

heterogeneously and some minor amount of fluid may stay outside the nanopores. 

Consistent with our previous observations,47 the bulk peak disappeared upon lowering the 

loading to 83%. At 83%, the onsets of the two major peaks were 396.7 K and 401.8 K. 

Further decrease of the pore loading to 68% resulted in a smaller peak at 396.7 K. At a 

pore loading of 46%, there was only one major peak at 401.8 K and a minor one at the 

higher temperature. By comparing with the scans of octane confined in porous media of a 

single pore size,50 the bubble points were associated with vaporization from the 

corresponding pore sizes: 398.9 K for 37.9 nm, 401.8 K for 14.8 nm and 410.3-416.6 K 

for 9.8-4.1 nm. Thus, for the two major peaks at 83%, the one with a lower temperature is 

from fluid in the 37.9 nm pore, and the higher one is from the 14.8 nm pore. Additionally, 



 

31 

 

the loading tests indicate that when the pores are under-filled, the fluid will preferably fill 

the pores of smaller sizes. n-Hexane and n-decane showed similar discrete vaporization 

behavior among different pore sizes for the synthetic Eagle Ford PSD (Figure 9b and 9c), 

where the vaporization of bulk, confined fluid in 37.9 nm, 14.8 nm and smaller pores could 

be found (peaks from low to high temperature, respectively). 

 

Figure 11. DSC thermograms for (a) octane (b) hexane (c) decane infiltrated in the sample 

with the synthetic Eagle Ford PSD at atmosphere pressure (101.325 kPa). The percentages 

on the right are the pore loadings (Loading percentage = Vfluid/Vtotal pore volume × 100%). 

Bulk is the scan of bulk fluid (green curves). 

 

DSC thermograms of octane confined in the sample with the synthetic Bakken PSD at 

different loadings are presented in Figure 12a. At a loading of 108%, two overlapping 

major peaks were observed. At a loading of 89%, the left peak associated with bulk fluid 
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vaporization nearly disappeared. The onset of the main peak was measured as 398.6 K, in 

agreement with the bubble point of octane in 37.9 nm pores (398.9 K).47 For loadings of 

89% to 48%, the main vaporization peak at 398.9 K remains, and several minor peaks at 

higher temperatures were found. The minor peaks are rationalized to be associated with 

the vaporization of fluid in small pores (14.8 nm and below). Hexane and decane showed 

similar vaporization behavior for the synthetic Bakken PSD, where a clear separation of 

bulk fluid and a major confined peak from 37.9 nm can be recognized (Figures 12b and 

12c).  

 

Figure 12. DSC thermograms for (a) octane (b) hexane (c) decane infiltrated in synthetic 

Bakken PSD at atmosphere pressure (101.325 kPa). The percentages on the right are the 

pore loadings (Loading percentage = Vfluid/Vtotal pore volume × 100%). Bulk is the scan of bulk 

fluid (green curves) 
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From the DSC analysis of hydrocarbons in the heterogeneous nanoporous media, it is 

concluded that the phase behavior of hydrocarbons in nanoporous media of a varying PSD 

varies with fluid saturation or loading. It is generally observed that from high loadings 

(>100%) to low loadings (<100%), the bulk fluid disappears first, then the large pores are 

unfilled, and at last the small pores are left empty. These observations indicate that, in the 

presence of different pore sizes, fluid infiltrates into the smaller pores before the larger 

pores, both prior to existing in bulk space. It can be explained that the nanopore walls 

result in stronger interactions between the fluid and pore surface.61 On the other hand, 

under a given pore volume, smaller nanopores have the larger surface area, and fluid 

would preferably fill the smaller pores to lower the surface energy. Russo et al. 

experimentally studied the adsorption enthalpies of organic compounds (e.g., toluene, n-

pentane, neopentane) in different silica nanopore sizes and found that the isosteric 

enthalpies with capillaries are higher in narrower mesopores, indicating a stronger 

interaction or lower energy in narrower nanopores.9  
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3. MODELING PHASE TRANSITIONS IN NANOPORES* 

3.1 Peng-Robinson equation of state/capillary pressure 

3.1.1 Background 

A flash calculation based on Peng-Robinson equation of state62 including capillary 

pressure effect is applied to model the bubble point temperature of the nanoconfined 

hydrocarbons.55 In conventional reservoirs, the phase behavior of petroleum fluid is well 

described with equation of state because the confinement effect is insignificant. In 

unconventional shale reservoirs, the phase behavior is greatly altered from the bulk under 

the confinement from the pore size at nano-scale. It is established that the effect of 

capillary pressure due to the curvature at the interface greatly affects the phase behavior.63 

Several studies have accommodated the capillary pressure in modeling the liquid-vapor 

equilibrium.4,20,64-66 Herein, to model the experimental measured bubble point temperature 

of nanoconfined hydrocarbons, we performed a simulation with PR EOS and capillary 

pressure under isobaric condition. 

 

                                                 

* Part of this chapter is reprinted with permission from “Use of differential scanning calorimetry to study 

phase behavior of hydrocarbon mixtures in nano-scale porous media” by S. Luo, J. L. Lutkenhaus, and H. 

Nasrabadi, 2018. Journal of Petroleum Science and Engineering, Volume 163, Pages 731-738, Copyright 

[2018] by Elsevier B.V., and “Confinement-Induced Supercriticality and Phase Equilibria of Hydrocarbons 

in Nanopores” by S. Luo, J. L. Lutkenhaus, and H. Nasrabadi, 2016. Langmuir, Volume 32, Pages 11506-

11513, Copyright [2016] by American Chemical Society, and “Experimental Study of Confinement Effect 

on Hydrocarbon Phase Behavior in Nano-Scale Porous Media Using Differential Scanning Calorimetry” by 

S. Luo, J. L. Lutkenhaus, and H. Nasrabadi, 2015. SPE Proceedings, SPE-175095-MS, Copyright [2015] by 

Society of Petroleum Engineers. 
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Phase equilibrium indicates that the fugacities of component i in the vapor phase and in 

the liquid phase should be equal and can be calculated by PR EOS: 

𝑓𝑖
𝑉(𝑇, 𝑝𝑉, 𝑦) = 𝑓𝑖

𝐿(𝑇, 𝑝𝐿 , 𝑥)                                          (3.1) 

A pressure discontinuity exists between the vapor and liquid phase because of capillarity. 

The Young-Laplace equation67 is used to relate the pressure difference between the two 

phases as capillary pressure (pC). The capillary pressure is determined by the interfacial 

tension (σ), pore diameter (d) and contact angle (θ): 

𝑝𝐶 = 𝑝𝑉 − 𝑝𝐿 =
4𝜎 𝑐𝑜𝑠 𝜃

𝑑
                                            (3.2) 

The interfacial tension (σ) is described with the relation reported by Danesh et al.:68 

𝜎1/𝐸 = ∑ 𝑃𝑖(𝑥𝑖𝜌
𝐿 − 𝑦𝑖𝜌

𝑉)
𝑛𝑐
𝑖=1                                        (3.3) 

𝐸 = 3.583 + 0.16(𝜌𝐿 − 𝜌𝑉)                                       (3.4) 

It is reported that the contact angle of hexane on HMDS modified silica is 86°.69 The 

contact angle is a function of temperature and it is estimated that the contact angle 

decreases with increasing temperature at the rate of ~0.1 K/deg.70,71 Thus, we assume that 

for the hydrocarbons in CPGs at the bubble point, contact angle θ=75°. 

 

The initial guess K factors Ki=yi/xi are obtained from the Wilson’s equation72 with bulk 

bubble point Tb. 

𝐾𝑖 =
𝑝𝑐𝑖

𝑝
𝑒𝑥𝑝 (5.37(1 + 𝜔𝑖) (1 −

𝑇𝑐𝑖

𝑇𝑏
))                            (3.5) 
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The estimated confined fluid bubble point is obtained by searching a temperature array. 

The temperature giving the minimal |𝑙𝑛 (
𝑓𝑖
𝑉

𝑓𝑖
𝐿)| , which is closest to equal fugacity, is used 

as the initial guess in iteration. 

 

3.1.2 Modeling experimental results 

We solve the nonlinear equations, Eqs. (3.1)-(3.4) using the Newton-Raphson algorithm 

for confined bubble point temperature with the parameters shown in Table 5. Critical 

properties and acentric factors from Lyons and Plisga,46 parachors from Danesh,73 and 

binary interaction coefficient from CMG®. 

Table 5. Parameters for modeling bubble point.55,74 

Parameters Octane Decane 

PC 2486 kPa 2099 kPa 

TC 568.76 K 617.4 K 

Ω 0.399 0.4904 

P (parachor) 351.5 433.5 

δi,j 0.00069 

P 101.3 kPa 

Θ 75° 

 

Modeling results, in comparison with the experimentals, are shown in Figure 13. 

Generally, PR EOS/capillary pressure model calculation gives an increased bubble point 

temperature relative to the bulk and the deviation is greater at smaller pore diameter. At 

37.9 nm, the modeling gives that the bubble point is 439.4 K for octane and 486.3 K for 

decane, which indicates that temperature increases are 40.7 K and 38.9 K, respectively. 

However, the experimental results at 37.9 nm show that the deviation from the bulk is less 

than 1 K. At 4.1 nm, greater bubble point increase is predicted: 495.3 K for octane and 
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542.9 K for decane. The experimental results show the bubble point shifts differently. The 

lower bubble points show a 10.6 K decrease to 388.3 K for octane and a 12.6 K decrease 

to 434.2 K for decane (Table 6). And the upper bubble points (octane: 416.9 K, decane: 

467.1 K) don’t agree with modeling results either, shown as purple round symbol in 

Figures 13a and 13b.     

 

Bubble point inconsistency between modeling and experimental results are also found for 

octane:decane=55%:45% mixture (Figure 13c). At 37.9 nm, the experimentally measured 

bubble point shift is insignificant while the model predicts an increase of 41.1 K to 456.8 

K; at 4.1 nm, the experiment gives a lower bubble point of 403.4 K and upper bubble point 

peak maximum of 453.2 K, but according to the modeling results, the bubble point is 

calculated as 515.5 K (Table 6). It is worth noting that experimentally, compared to single 

component case, the binary mixtures show a greater difference between the lower and 

upper bubble points at 4.1 nm, which is attributed to the composition change throughout 

the vaporization process. 
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Figure 13. Bubble point temperature plot in relation to pore diameter for single component (a) 

octane, (b) decane and (c) binary mixture octane:decane=55%:45%.74 
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Table 6. DSC measured and PR EOS/capillary pressure modeled bubble point temperature 

of confined fluids. At 4.1 nm the experimental upper and lower bubble points are listed. 

The error percentage is calculated based on the experimental upper bubble point 

temperature.55 

Pore Diameter 37.9 nm 4.1 nm 

Fluid Octane Decane 
Mixture 

Octane Decane 
Mixture 

(55%:45%) (55%:45%) 

Tb (DSC) / K 398.8 447.8 415.8 388.3, 416.9 434.2, 467.9 403.3, 453.2 

Tb (Modeling) / K 439.4 486.3 456.8 495.3 542.9 515.5 

% Error 10.2% 8.6% 9.9% 18.8% 16.0% 13.7% 

 

3.2 Extended Peng-Robinson equation of state 

3.2.1 Formulations 

A novel pore-size-dependent equation of state (PR-C EOS) has recently been presented 

by Travalloni et al.31,32,75 The PR-C EOS employs molecular descriptions of fluid-fluid 

and fluid-pore surface interactions, and it relates the fluid PVT behavior to the fourth 

dimension of confining pore diameter. The EOS requires two confinement parameters of 

range and energy to describe the fluid-pore surface interaction. The PR-C EOS considers 

the interaction between the fluid and pore surface as a square-well potential (Figure 14), 

where two parameters of square well depth (휀𝑝) and square well width (𝛿𝑝) need to be 

determined by experiments. The method of directly considering fluid-pore surface 

interaction is in agreement with the molecular interaction treatments in molecular 

simulation and density function theory, and the formulations yield the explicit expression 

of fluid chemical potential in nanopores, Eq. (3.7). The equation of state describes the 

fluid in pores with a parameter of cylindrical pore diameter (𝑑𝑝) and it reverts to PR EOS 

at the large pore diameter.  
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Figure 14. Square-well potential model for the fluid-pore surface interaction. 𝜺𝒑: square-

well depth; 𝜹𝒑: square-well width. 𝜺𝒑 and 𝜹𝒑 need to be determined by experiments.76 

 

The PR-C EOS is written as follows:32 

P =
𝑅𝑇

𝑣 − 𝑏𝑝
−

𝑎𝑝

𝑣2 + 2𝑏𝑝𝑣 − 𝑏𝑝2
 

−∑(
𝑥𝑖
2𝜃𝑖𝑏𝑝,𝑖

𝑣2
(1 −

𝑥𝑖𝑏𝑝,𝑖

𝑣
)

𝜃𝑖−1

(1 − 𝐹𝑝𝑟,𝑖) (𝑅𝑇 (1 − exp (−
𝑁𝑎𝑣휀𝑝,𝑖

𝑅𝑇
)) − 𝑁𝑎𝑣휀𝑝,𝑖))

𝑁𝐶

𝑖=1

 

(3.6) 

𝜇𝑖 = 𝜇0,𝑖 + 𝑅𝑇𝑙𝑛 (
𝑁𝑎𝑣𝑥𝑖𝜆𝑖

3

𝑣 − 𝑏𝑝
) +

𝑅𝑇𝑏𝑝,𝑖

𝑣 − 𝑏𝑝
−

𝑎𝑝𝑏𝑝,𝑖𝑣

𝑏𝑝(𝑣2 + 2𝑏𝑝𝑣 − 𝑏𝑝2)
  

+
√2

4
ln (

𝑣 + (1 + √2)𝑏𝑝

𝑣 + (1 − √2)𝑏𝑝
)(

𝑎𝑝𝑏𝑝,𝑖

𝑏𝑝2
−
2

𝑏𝑝
∑(𝑥𝑗𝑎𝑝,𝑖𝑗)

𝑁𝐶

𝑗=1

) − 𝐹𝑝𝑟,𝑖𝑁𝑎𝑣휀𝑝,𝑖  

+(1 − (𝜃𝑖 + 1)
𝑥𝑖𝑏𝑝,𝑖

𝑣
) (1 −

𝑥𝑖𝑏𝑝,𝑖

𝑣
)

𝜃𝑖−1

(1 − 𝐹𝑝𝑟,𝑖) 

∙ (𝑅𝑇 (1 − exp (−
𝑁𝑎𝑣휀𝑝,𝑖

𝑅𝑇
)) − 𝑁𝑎𝑣휀𝑝,𝑖)                                   (3.7) 

The ap and bp are confinement-modified energy and volume parameters for the equations 

of state. rp is the cylindrical pore radius. σi is the molecular diameter of component i from 
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Eq. (3.13). σij is the average molecular diameter of component i and j, Eq. (3.14). Binary 

interaction parameters 𝑘𝑖𝑗 are included in the mixing rule, Eq. (3.10). ap is given as: 

𝑚𝑖 = {
0.37464 + 1.54226𝜔𝑖 − 0.26992𝜔𝑖

2, 0 < 𝜔𝑖 ≤ 0.5

0.3796 + 1.485𝜔𝑖 − 0.1644𝜔𝑖
2 + 0.01667𝜔𝑖

3, 𝜔𝑖 > 0.5
        (3.8) 

    𝑎𝑖 =
0.45724R2𝑇𝐶,𝑖

2

𝑃𝐶,𝑖
(1 +𝑚𝑖 (1 − √

𝑇

𝑇𝐶,𝑖
))

2

                               (3.9)             

𝑎𝑝,𝑖𝑗 = (1 − 𝑘𝑖𝑗)√𝑎𝑖𝑎𝑗 (1 −
2

5

𝜎𝑖𝑗

𝑟𝑝
)                                  (3.10) 

𝑎𝑝 =∑∑(𝑥𝑖𝑥𝑗𝑎𝑝,𝑖𝑗)

𝑁𝐶

𝑗=1

𝑁𝐶

𝑖=1

                                            (3.11) 

bp is given as: 

𝑏𝑖 =
0.07780𝑅𝑇𝐶,𝑖

𝑃𝐶,𝑖
                                                (3.12) 

𝜎𝑖 = √
1.158𝑏𝑖
𝑁𝑎𝑣

3

                                                    (3.13) 

𝜎𝑖𝑗 =
𝜎𝑖 + 𝜎𝑗

2
                                                        (3.14) 

𝑏𝑝,𝑖 =
𝑁𝑎𝑣𝜎𝑖

3

1.158 − 0.479 exp (0.621 (0.5 −
𝑟𝑝
𝜎𝑖
)) + 0.595 exp (4.014 (0.5 −

𝑟𝑝
𝜎𝑖
))

  (3.15) 

𝑏𝑝 =∑𝑥𝑖𝑏𝑝,𝑖

𝑁𝐶

𝑖=1

                                                     (3.16) 

For component i, 𝜃𝑖 is the geometric term and Fpr,i is the fraction of fluid within the pore 

surface attractive field under random distribution:  

𝜃𝑖 =
𝑟𝑝

𝛿𝑝,𝑖 +
𝜎𝑖
2

                                                       (3.17) 
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𝐹𝑝𝑟,𝑖 =
(𝑟𝑝 −

𝜎𝑖
2)

2

− (𝑟𝑝 −
𝜎𝑖
2 − 𝛿𝑝,𝑖)

2

(𝑟𝑝 −
𝜎𝑖
2)

2                                   (3.18) 

 

In addressing the two-dimensional phases adsorption problem, the phase equilibrium is 

solved by relating the fugacities of the adsorbed phase and bulk phase, using the 

methodology proposed by Hoory and Prausnitz.77 The calculation results of adsorption 

has been compared with Monte Carlo simulations in satisfactory agreement.78 In 

application of the extended van der Waals equations, Travalloni et al.31,32 models the 

multicomponent adsorption in nanoporous media by solving the adsorption equilibrium 

equations, which is,  

𝜇𝑖,𝑎 (𝑇, 𝜌𝑎 , 𝑥𝑎 , 𝑟𝑝) = 𝜇𝑖,𝑏 (𝑇, 𝑃𝑏 , 𝑥𝑏) , 𝑖 = 1,2, … ,𝑁𝐶                 (3.19) 

Where NC is the number of components, 𝜇𝑖,𝑎 and  𝜇𝑖,𝑏 are the chemical potential for 

component i of adsorbed and bulk phase, and 𝑥𝑎 and 𝑥𝑏 denote all molar fractions of 

components 1, 2,…, NC in adsorbed and bulk phase, 𝑃𝑏 is the bulk phase pressure, 𝜌𝑎 is 

the adsorbed phase density and 𝑟𝑝 is the pore radius. 

 

Adsorption can be predicted by solving Eq. (3.19) for relation of adsorbed phase density 

and bulk vapor pressure. Taking type IV (IUPAC classification) isotherms of mesoporous 

sorption as an example: fluids exist as a dilute phase (vapor) at pressure lower than pore 

condensation pressure, stay as vapor-liquid equilibrium at pore condensation pressure and 

turn into dense phase (liquid) by further increasing pressure.6,31,32,51 For our experiments, 

the phase transition occurs by increasing temperature at constant bulk vapor pressure, 
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which can be described as the process of Figure 13a to 13b to 13c. The reverse path 

captures the adsorption process. In this study, the phase transition of the confined liquid 

to vapor is termed as the apparent bubble point and determined as the onset of the confined 

fluid “boiling”. It needs to be noted that the confined fluid is connected to bulk vapor and 

confined supercritical fluid will also vaporize into bulk when confined fluid chemical 

potential reaches that of bulk atmospheric pressure vapor. Similar desorption phenomenon 

has been reported79,80 and further investigated in this work.  

 

Figure 15. Phase states in adsorption systems by porous media. (a) Confined liquid in 

equilibrium with bulk vapor. (b) Liquid and vapor are in equilibrium within the pore, 

which are in equilibrium with the bulk vapor outside. This phase transition is generally 

termed as capillary condensation/evaporation. (c) Confined vapor in equilibrium with bulk 

vapor. (a) to (b) to (c) is desorption, and the opposite process is adsorption. LC: confined 

liquid; VC: confined vapor; VB: bulk vapor.50   
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Table 7. Bulk and confinement parameters in the equation of state: molecular weight 

(MW), critical temperature (Tc), critical pressure (Pc), acentric factor (ω), square well 

potential depth (εp) and width (δp).
50 

Parameters n-Hexane n-Octane n-Decane 

Bulk 

MW (g/mol) 86.178 114.232 142.286 

PC (kPa) 2968.8 2482.5 2107.6 

TC (K) 507.4 568.8 617.6 

ω 0.296 0.394 0.490 

Confinement 
εp/kB (K) 1852 2090 2306 

δp/σ 0.5 0.5 0.5 

 

3.2.2 Modeling experimental results 

The phase transition boundary is experimentally observed as the bubble point of 

vaporization (Figure 7). To establish the phase transition criteria for the subcritical 

confined fluid, the chemical potential of the liquid phase inside the pore and the bulk vapor 

phase outside the pores are equal, as Eq. (3.20); inside the pore, the coexisting liquid and 

vapor phase have equal chemical potentials, as Eq. (3.21). P is the bulk phase pressure, 

which is atmospheric pressure in our experiments.  

 𝜇𝑝𝑜𝑟𝑒
𝐿 (𝜌𝐿 , 𝑇, 휀𝑝, 𝑟𝑝) = 𝜇𝑏𝑢𝑙𝑘

𝑉 (𝑃, 𝑇)                                (3.20) 

𝜇𝑝𝑜𝑟𝑒
𝑉 (𝜌𝑉, 𝑇, 휀𝑝, 𝑟𝑝) = 𝜇𝑝𝑜𝑟𝑒

𝐿 (𝜌𝐿 , 𝑇, 휀𝑝, 𝑟𝑝)                           (3.21) 

 

The equation of state developed by Travalloni et al32 is used in modeling phase equilibria 

under confinement. As discussed above, εp and δp are the derived parameters by extending 

the PR-EOS to cylindrical nanoconfined geometries, and represent the depth and width 

square-well potential between the fluid molecular and pore wall. Following the 

literature,32,81,82 it is specified that δp/σ = 0.5 (σ is molecular diameter). In the modeling 
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work, εp is determined with experimental results. With the experimentally obtained bubble 

point temperature at the specific pore size, the interaction potential parameter (εp) can be 

determined. Using the bubble point temperature at 6.0 nm, εp is solved from Eqs. (3.20) 

and (3.21) as 1852kB, 2090kB and 2306kB for hexane, octane and decane, respectively (kB 

is Boltzmann’s constant). At this point, this leads to a full set of pore-size-dependent 

equation of state for the PVT-d (4D) phase behavior as confirmed by experiment. The 

EOS parameters are summarized in Table 7. 

 

The phase transition temperature-pore diameter relation is calculated using the εp obtained 

as above (Figure 5, blue curves). A bisection algorithm is applied to solve the Eqs. (3.20) 

and (3.21) for liquid-vapor phase transition temperature. The calculated bubble points 

(phase boundaries between liquid and vapor) capture the experimental results well from 4 

up to 40 nm: from 40 to 20 nm, the transition temperature increases slowly; from 20 to 4 

nm, the transition temperature increases significantly and reaches a peak bubble point 

temperature around 4 nm.  
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Figure 16. Results of the experimental bubble points and modeled T-d phase diagrams at 

atmospheric pressure (101.325 kPa) bulk vapor for (a) hexane, (b) octane and (c) decane. 

The experimental bubble points increased from 37.9 nm to 4.1 nm (red triangles with error 

bars). The phase boundaries (blue lines) dissect the diagram into three regions: liquid, 

vapor and supercritical fluid and are calculated from Eqs. (3.20-3.23) for the confined 

fluid in equilibrium with bulk vapor. Error bars, s.e.m, are obtained from experiments 

repeated three times.50 
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However, at ca. 4 nm, the confined fluid’s critical temperature is reached and Eq. (3.21) 

becomes redundant. Confined critical behavior has been mentioned in previous studies. 

Evans et al. showed that the coexistence of confined liquid and vapor disappeared as the 

critical temperature is approached.83 Findenegg et al. studied the critical behavior of 

confined fluids and showed the isochore as a continuous curve in the supercritical region.7 

As the equation of state is pore-size-dependent, solving Eqs. (3.22) and (3.23) gives the 

critical point75,84 of the confined fluid for a specific pore diameter. The critical temperature 

– pore diameter relation is shown as the boundary between supercritical fluid and 

liquid/vapor region in Figure 5. The critical temperature is generally lower than that of 

bulk and the critical temperature significantly lowers as the pore size decreases, which are 

in agreement with previous experimental7 and simulation studies.37,39 It is found that at 

3.3 and 2.2 nm the experimental phase transition points of confined hexane and octane 

were in the supercritical region, while for decane, the phase transitions occurred in the 

supercritical region at 4.1–2.2 nm. The criticality analysis gives important implications in 

that the critical points exactly lie in the area of the bubble point’s change in trend. It can 

be concluded that the phase behavior of confined hydrocarbons is altered after entering 

the supercritical state at ca. 4 nm.  

(
𝜕𝑃

𝜕𝑣
)𝑇𝑐 = (

𝜕2𝑃

𝜕𝑣2
)𝑇𝑐 = 0                                          (3.22) 

(
𝜕3𝑃

𝜕𝑣3
)𝑇𝑐 < 0                                                   (3.23) 

 

It would be counterintuitive to observe phase transitions when the fluid is supercritical 

(e.g. below 4 nm). To rationalize it, it is important to clarify that the case of the bulk-
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confined connected system differs from the case of single bulk or confined region system. 

The phase transitions observed through this experiment represent the confined 

supercritical fluid into bulk vapor. In the experiment, the bulk vapor pressure was kept 

constant and by increasing temperature the phase transition from confined supercritical 

fluid to bulk vapor was triggered. And the phase transition point is defined as the phase 

equilibrium between the confined supercritical fluid and bulk vapor, shown as in Eq. 

(3.24). The phase transition observed below 4 nm here is unlikely to involve any solid or 

glass-like states. If there is any solid or glass-like hydrocarbons in the pore, the 

temperature needs to in the range of 160 – 220 K or below.44,85 Phase transitions of 

confined hydrocarbons has been observed elsewhere by temperature-programmed 

desorption studies in less than 4 nm nanopores, where the fluid is likely in supercritical 

state.39,53,86  

 𝜇𝑝𝑜𝑟𝑒
𝑠𝑢𝑝 (𝜌𝑠𝑢𝑝, 𝑇, 휀𝑝, 𝑟𝑝) = 𝜇𝑏𝑢𝑙𝑘

𝑉 (𝑃, 𝑇)                                   (3.24) 

 

Adsorption/desorption equilibrium in nanoporous media can be divided as fluid phase 

equilibrium where the confined fluid is in (i) subcritical state Eqs. (3.20-3.21) or (ii) 

supercritical state Eq. (3.24). From that point of view, the phase transition of confined 

supercritical fluid to bulk vapor can be treated as desorption and Eq. (3.24) is consequently 

regarded as a specific form of sorption equilibrium. To solve Eq. (3.24) for phase transition 

temperature (T), the confined supercritical fluid density (ρsup) is experimentally estimated 

by identifying the fluid density when the pores are saturated. In relating the experimental 

fluid density to the molar volume in the EOS, the volume translation parameter (cvt) is 
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obtained by applying the confined fluid critical temperature from Eqs. (3.23) and (3.24) 

in Monnery’s correlation.87 The parameters cvt are -0.0056 m3/kmol, -0.0825 m3/kmol and 

-0.1375 m3/kmol at 3.3 nm for hexane, octane, decane, respectively, and -0.0765 m3/kmol 

for decane at 4.1 nm. The calculated confined phase transition point (desorption 

temperature) at 3.3 nm is 350.7 K, 407.8 K, 456.7 K for hexane, octane, and decane, 

respectively. And the desorption temperature at 4.1 nm for decane given from calculation 

is 469.9 K (Table 8). Besides, the phase transition at 2.2 nm cannot be calculated with this 

method, since there’s no major peak for confined fluid from DSC thermograms and the 

confined fluid density cannot be obtained. 

Table 8. Experimental and calculated desorption temperatures of fluid below 4.1 nm.50 

  n-Hexane n-Octane n-Decane 

  
Expr. Tdesorb 

(K) 

Calc. Tdesorb 

(K) 

Expr. Tdesorb 

(K) 

Calc. Tdesorb 

(K) 

Expr. Tdesorb 

(K) 

Calc. Tdesorb 

(K) 

SBA-16 (3.3 

nm) 
348.4±0.3 350.7 405.4±0.7 407.8 455.2±0.7 456.7 

CPG-4a (4.1 

nm) 
- - - - 465.2±0.3 469.9 

aIn 4.1 nm nanopore, hexane and octane are determined as in subcritical state, so they 

are not solved as supercritical fluid desorption. 

 

The work above investigated the confined phase equilibria by experimental isobaric 

thermal analysis and phase equilibria modeling with EOS. Here we show the application 

of the EOS modeling by predicting capillary sorption isotherms using the same parameters 

εp and δp as obtained above. In previous studies, the phase behavior of confined fluid was 

accessed through adsorption/desorption of fluid in mesoporous media at constant 

temperature. The phase equilibria for single component sorption equilibrium is given as 

Eq. (3.24), where ρa is the adsorbed phase density.31 Matsumoto et al studied the n-hexane 
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adsorption by surface silylated mesoporous material MCM-48,88 which is close to the 

materials used in this work on surface chemical properties. Their experimental isotherms 

of hexane in surface-modified MCM-48 (2.4 nm) at 298 K is shown as triangles in Figure 

17. We model the adsorption isotherm by solving Eq. (3.25) for ρa at specific pressure P. 

(cvt -0.0062 m3/kmol) The predicted adsorption isotherm generally correlates well with the 

experimental results as a Type IV curve: the condensation mainly occurs at 3 kPa < P < 6 

kPa; above 8 kPa, the adsorption amount increases very little as the pores are saturated 

with adsorbate. However, some deviations can be found such as the early adsorption 

uptake and saturation density. The deviations may arise from the limitation of the model 

to fluid in ideal cylindrical pore. And because of the minor difference in pore connectivity 

and surface roughness, parameters characterized from our experiment may not perfectly 

reflect the properties of the materials by Matsumoto.  

𝜇𝑝𝑜𝑟𝑒(𝜌𝑎, 𝑇, 휀𝑝, 𝑟𝑝) = 𝜇𝑏𝑢𝑙𝑘
𝑉 (𝑃, 𝑇)                                    (3.25) 
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Figure 17. Experimental results and predicted isotherm of n-hexane adsorption in MCM-

48 OSM2 at 298 K. The material is prepared by silylating the surface of MCM-48 and the 

pore diameter is 2.4 nm. The y-axis was originally reported as filling ratio and here it is 

converted into adsorbed amount (mmol/cm3).88 In this work, the isotherm is calculated 

from (3.25) using the completed EOS as above. The predicted isotherm correlates well 

with the experimental results on condensation and pore saturation pressure.50  

 

The confinement parameters of square-well depth (휀𝑝) and width (𝛿𝑝) for fluid-pore 

surface interactions are required to be determined from experiments. We developed an 

isobaric measurement of differential scanning calorimetry (DSC) for fluid in nanopores,74 

and the phase transition temperatures of n-hexane, n-octane and n-decane were measured 

in pores from 2.0 to 37.9 nm. The confinement parameters of 휀𝑝 and 𝛿𝑝 were determined 

accordingly. The phase boundaries between liquid, vapor, and supercritical fluid predicted 

by PR-C EOS overlap very well with experimental findings.50 Recently, we measured the 

phase transitions of intermediate to heavy hydrocarbons in nanopores and obtained the 

confinement parameters (휀𝑝, 𝛿𝑝) for C5~C14. For the light hydrocarbons (C1~C4), the 

parameters were determined by fitting the adsorption isotherms in nanoporous 

media.13,88,89  
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In calculating the confinement parameters by experimental data, we observed that, for a 

specific species, 휀𝑝 and 𝛿𝑝 are in negative correlation and the product (area of square well) 

is positively correlated to molecular weight. Therefore, we suggest a normalized fluid-

pore surface affinity factor, 𝜅, as the product of 휀𝑝 and 𝛿𝑝 over molecular weight Eq. 

(3.26). The 𝜅 factor describes the interaction strength between the fluid and pore surface 

per molecular weight. On a given surface, 𝜅 factor should be dependent on the fluid 

molecular structure. The 𝜅 factor relation to molecular weight of n-alkanes is shown in 

Figure 18. In practice, it is suggested that δp/σ = 0.5, in agreement with the set in molecular 

simulations,90,91 as too large or small ratio may lead to deviated phase equilibrium.81  

Fluid-pore surface affinity factor: 𝜅 =
εp∙δp

MW
                         (3.26) 

 
Figure 18. Fluid-pore surface affinity factor κ in relation to molecular weight and carbon 

number of n-alkanes. 𝜺𝒑 is defined with the unit of kB∙K (kB: Boltzmann constant) and 

𝜹𝒑 is defined with the unit of fluid molecular diameter (σ). Confinement parameters for 

C1~C4 and C6 are obtained by fitting the adsorption isotherms in nanopores of diameters 

2.4-3.8 nm.13,88,89 Parameters for C5~C14 are determined by the liquid-vapor phase 

transition temperature in 6.0 nm pore, measured by differential scanning calorimetry 

(DSC). All experimental measurements utilized nanoporous silica with silylated surface.76 
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It is worth noting that the confinement parameters in Figure 18 are determined from the 

DSC/adsorption experiments with silylated nanoporous silica. The silylation modification 

renders organic characteristics to the media surface, which are experimentally observed 

as hydrophobicity (non-water-wet) and oleophilicity (oil-wet).92 In that, the silylated 

surface makes the experimental nanoporous media a reasonable analog to organic matter 

(OM), where most nanopores are located in shale.93,94 
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4. PHASE BEHAVIOR OF SHALE RESERVOIR FLUIDS* 

4.1 Multi-Scale fluid phase behavior model 

The scales of porous geometries in shale reservoirs range across several orders of 

magnitude. Natural fractures are commonly found to have the widths of a few micrometers 

to millimeters.95,96 After hydraulic-fracture stimulation, macro-scale fractures are 

introduced to the formation in connection to the wellbore,97 and a significant amount of 

natural microfractures are reactivated.98 Within the shale matrix, the pore sizes are in the 

range of nanometers to micrometers. The matrix pores are classified into mineral pores 

and organic-matter (OM) pores. The minerals pores are in micrometers, and the organic-

matter pores range from a few to hundreds of nanometers, though organic-matter bubble 

pores can be a few micrometers.93,94 The actual pore size distributions usually vary from 

case to case.99,100 Cho, et al. 101 comparatively measured the pore sizes of shale samples 

by mercury injection capillary pressure (MICP) and discovered several pore size 

distribution patterns. The middle Bakken shales exhibit a unimodal pore size distribution 

(30~50 nm) or a bimodal pore size distribution (30 nm and 100 nm). For the Niobrara 

formation, the pore size distributions are mostly unimodal, and the pore diameters range 

from 4 to 11 nm. Recently, Ko, et al. 94 presented a quantitative analysis of pore structures 

with Eagle Ford shale samples by different analytical methods. By SEM imaging and pore-

tracing, they identified that the pore diameters distribute bimodally at 10-30 nm and 35-

                                                 

* Part of this chapter is reprinted with permission from “Multi-Scale Fluid Phase Behavior Simulation in 

Shale Reservoirs by a Pore-Size-Dependent Equation of State” by S. Luo, J. L. Lutkenhaus, and H. 

Nasrabadi, 2017. SPE Proceedings, SPE-187422-MS, Copyright [2017] by Society of Petroleum Engineers. 
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1000 nm. However, the SEM/pore-tracing method is limited to resolving pore diameters 

from ca. 20 nm to 15 μm (Figure 19, blue columns). Nitrogen adsorption is able to measure 

pores from diameter 0.3 to 200 nm, and the measurement shows significant volumetric 

portions of nanopores smaller than 10 nm (Figure 19, red shaded columns).94 SEM/pore-

tracing and nitrogen adsorption analyses combine to form the whole picture of pore size 

distribution: both nanopores and macropores constitute important porosities in the Eagle 

Ford shale. 

 
Figure 19. Pore size distribution of an upper Eagle Ford core by SEM/pore-tracing and 

nitrogen adsorption analyses.94 SEM/pore-tracing method resolves pore diameters from 

ca. 20 nm to 15 μm, and nitrogen adsorption measures pores in 0.3-200 nm. The 

combination of results from two methods forms the whole picture of pore size distribution 

(1 μm = 1000 nm).76 
 

 

A multi-scale model of fluid in shale is conceived based on distinct phase behaviors under 

different confining scales: the porous space is divided into a bulk region and nanopores 

(Figure 20). The bulk region refers to the hydraulic fractures, natural fractures and 



 

56 

 

macropores in the shale matrix, where the reservoir fluid behaves as bulk fluid; the 

nanopores are the pores in the matrix with a diameter less than 50 nm, where the phase 

behavior deviates from the bulk. Due to the strong confinement in small nanopores (<10 

nm) but weak confinement above 30 nm,50 the nano-porosity is further discretized into 

pores of several diameters (𝑑1, 𝑑2, 𝑑3, … ). The multi-scale phase behavior model is 

analogous to the dual/multiple porosity (permeability) model,102,103 whereas in this model 

we specifically investigate the thermodynamic phase equilibria among pore geometries of 

multiple scales. In this model, the pressure-volume-temperature relation and fluid 

compositions in nanopores and bulk region are dependent on the global phase equilibrium.  

 

 
Figure 20. Multi-scale model for fluid phase behavior in fractured shale reservoirs. The 

shale porous space is divided into the bulk region where the fluid shows bulk behavior 

and nanopores where the fluid phase behavior is altered under the nano-confinement 

effect. The phase behavior of the whole system is the thermodynamic equilibria among 

the bulk region and multiple sizes of nanopores.76 

 

 

Herein, we simulate the depletion of the shale reservoir by modeling the constant 

composition expansion (CCE) of the multi-scale system. The bulk region volume is 

repeatedly expanded, and the volumes of nanopores are fixed at the initial condition, in 
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light that the volumetric flow primarily takes place through the bulk-scale geometries such 

as fractures, while the transmissivity from small pores is very low.104,105  

 

We consider the isothermal-isochoric fluid phase equilibria among the bulk region and 

𝑁𝑃 sizes of nanopores with pore diameters noted as 𝑑1, 𝑑2, … , 𝑑𝑁𝑃. The multi-scale 

system is defined with given moles of 𝑁𝐶 components (𝑛1, 𝑛2, … , 𝑛𝑁𝐶), volumes (bulk 

region volume 𝑉𝑏 and volumes of nanopores 𝑉1, 𝑉2, … , 𝑉𝑁𝑃) and temperature (𝑇). The 

numbers of fluid phases are noted as 𝑁𝐹𝑏 phases in the bulk region and 𝑁𝐹𝑘 phases in the 

nanopore of diameter 𝑑𝑘(𝑘 = 1,2, … , 𝑁𝑃). The total Helmholtz free energy (𝐴) is the sum 

of the bulk region and all nanopores Eqs. (4.1)-(4.3). The constraints are the conservations 

of moles and regional volumes Eqs. (4.4)-(4.6), where i denotes the properties of 

component i and j denotes the properties for phase j. 

 

The total Helmholtz free energy of the bulk- 𝑁𝑃 nanopores system: 

𝐴 = 𝐴𝑏 +∑𝐴𝑝,𝑘

𝑁𝑃

𝑘=1

                                                  (4.1) 

𝐴𝑏 =∑(−𝑃𝑗,𝑏𝑉𝑗,𝑏 +∑𝑛𝑖𝑗,𝑏𝜇𝑖𝑗,𝑏

𝑁𝐶

𝑖=1

)

𝑁𝐹𝑏

𝑗=1

                                   (4.2) 

𝐴𝑝,𝑘 =∑(−𝑃𝑗,𝑘𝑉𝑗,𝑘 +∑𝑛𝑖𝑗,𝑘𝜇𝑖𝑗,𝑘

𝑁𝐶

𝑖=1

)

𝑁𝐹𝑘

𝑗=1

                                 (4.3) 

The constraints are molar and volumetric conservations: 

∑𝑉𝑗,𝑏 = 𝑉𝑏                                                           (4.4)

𝑁𝐹𝑏

𝑗=1
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∑𝑉𝑗,𝑘 = 𝑉𝑘   ∀𝑘 ∈ {1,2, … ,𝑁𝑃}                                        (4.5)

𝑁𝐹𝑘

𝑗=1

 

∑𝑛𝑖𝑗,𝑏

𝑁𝐹𝑏

𝑗=1

+∑∑𝑛𝑖𝑗,𝑘

𝑁𝐹𝑘

𝑗=1

𝑁𝑃

𝑘=1

= 𝑛𝑖                                            (4.6) 

Under isothermal conditions: 

𝑇𝑏 = 𝑇𝑝,1 = 𝑇𝑝,2 = ⋯ = 𝑇𝑝,𝑁𝑃                                         (4.7) 

The global phase equilibrium of the multi-scale system can be determined as the state of 

minimized Helmholtz free energy.32,78,84 At the first order optimality conditions, the 

system naturally satisfies the equality of chemical potentials for any component i among 

phases from all regions and equality of pressures among phases within each region: 

𝜇𝑖,𝑏 = 𝜇𝑖,1 = 𝜇𝑖,2 = ⋯ = 𝜇𝑖,𝑁𝑃                                          (4.8) 

𝜇𝑖,𝑏 = 𝜇𝑖𝑗,𝑏   ∀𝑗 ∈ {1,2, … ,𝑁𝐹𝑏}                                         (4.9) 

𝜇𝑖,𝑘 = 𝜇𝑖𝑗,𝑘   ∀𝑗 ∈ {1,2, … ,𝑁𝐹𝑘} 𝑎𝑛𝑑 ∀𝑘 ∈ {1,2, … ,𝑁𝑃}                (4.10)  

 

4.2 Constant composition expansion 

4.2.1 Case description 

We use a case of modified black oil from the Eagle Ford liquid-rich shale (LRS) by Orangi, 

et al. 106 The reservoir fluids are grouped into 6 pseudo-components. The PR-C EOS 

parameters are listed in Table 10 and 11, where the critical properties, acentric factors, 

volume shift parameters and binary interaction parameters are bulk species parameters. 

The confinement parameters 휀𝑝 and 𝛿𝑝 of the pseudo-components are obtained by 

interpolating or extrapolating using the 𝜅 factor-molecular weight plot in Figure 18 

(assuming δp/σ = 0.5). 
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The reservoir conditions are presented in Table 9.106 The shale oil reservoir is initially 

undersaturated at 6000 psia, 240 oF. The ratio between the bulk region volume and 

nanopores volume (diameter < 50 nm) should be dependent on the exact formation and 

also the specific location within the reservoir. Ko, et al. 94 showed that for Eagle Ford 

shale the bulk region volume is similar to the volume of nanopores (Figure 19). Herein, 

we assume the initial volume ratio between the bulk region and nanopores as 1:1, except 

for the single-scale case where all the space is assigned as bulk. In simulating the constant 

composition expansion, the bulk region volume is repeatedly expanded while the volumes 

of nanopores are kept constant, as the volumetric flow mainly takes place through the 

bulk-scale geometries (e.g. fractures).104,105 The bulk region is given a typical macropore 

diameter of 10 microns. The diameters of nanopores are specified as 5 nm or 15 nm based 

on the nano-scale pore size distribution of an Eagle Ford shale (Figure 19).76  

Table 9. Reservoir conditions of an Eagle Ford liquid-rich shale (LRS).76 

   Properties Value 

   Reservoir Temperature 240 oF 

   Initial Reservoir Pressure 6000 psia 

   Initial Vbulk:Vnanopores 1:01 

   Reservoir Fluid Type Oil 
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Table 10. PR-C EOS properties for Eagle Ford oil modified from Orangi et al.76,106 

Species 
MW 

(g/mol) 
TC (oR) 

PC 

(psia) 
ω VSP 

εp /kB 

(K) 
δp /σ 

Mole 

Fraction 

N2-C1 16.07 343.02 672.7 0.01306 -0.154 227 0.5 0.3130 

C2 30.07 549.8 708.4 0.0986 -0.1002 481 0.5 0.0431 

CO2-C3 44.08 644.14 690.06 0.16954 -0.083 1209 0.5 0.0543 

C4-C6 72.04 839.26 488.86 0.24541 -0.0386 1932 0.5 0.1330 

C7-C10 114.4 1060.5 402.8 0.3739 0.0191 2091 0.5 0.1630 

C11+ 238.07 1391.01 234.71 0.67743 0.18412 2407 0.5 0.2935 

 

Table 11. Binary interaction parameters for Eagle Ford oil from Orangi et al.76,106 

  N2-C1 C2 CO2-C3 C4-C6 C7-C10 C11+ 

N2-C1 0.000 0.000 0.005 0.021 0.038 0.077 

C2 0.000 0.000 0.004 0.018 0.034 0.072 

CO2-C3 0.005 0.004 0.000 0.006 0.016 0.045 

C4-C6 0.021 0.018 0.006 0.000 0.002 0.019 

C7-C10 0.038 0.034 0.016 0.002 0.000 0.008 

C11+ 0.077 0.072 0.045 0.019 0.008 0.000 

 

4.2.2 Single-Scale PVT (conventional reservoirs) 

The PVT model using PR-C EOS is firstly validated by simulating the fluid PVT at the 

single bulk scale, i.e. the conventional reservoir conditions. The single-scale system is set 

up with a bulk pore diameter of 10 μm. The phase diagram and pressure-volume relations 

are calculated. The results from our model match with the simulation output of a 

commercial software using PR EOS (Figure 21). The bubble point pressure of the bulk 

fluid is 2074 psia. In the following discussions, the single bulk-scale PVT is referred to as 

conventional reservoir phase behavior. 
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Figure 21. (a) Phase diagram and (b) pressure-volume plot. The red dashed lines in Fig. 

5a and red round symbols in Figure 19b show results from PR-C EOS PVT model using 

a single bulk size (pore diameter: 10 microns). In Figure 19b, the open symbol mark the 

bubble point pressure. The results agree with the output by a commercial software using 

PR EOS (solid blue lines).76  

 

4.2.3 Dual-Scale PVT 

The dual-scale constant composition expansion (CCE) is simulated by the multi-scale PR-

C EOS model. The bulk-scale size is 10 μm, and the nanopore diameter is specified as 15 

nm (Figure 22), representing a major nanopore diameter from the Eagle Ford shale pore 

size distribution in Figure 19.94 The initial volumes of the bulk region and nanopores are 

assumed equal. The bulk region volume is expanded while the nanopore volume is fixed 

to consider that most volumetric flows take place through the bulk geometries.104 
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Figure 22. Dual-scale model (bulk-15 nm) for constant composition expansion. The bulk 

region is given a pore diameter of 10 microns, and the nanopores are specified with the 

diameter of 15 nm. The initial volumes of the bulk region and nanopores are assumed 

equal. The bulk space is expanded, and the volume of nanopores is fixed. The component 

exchange between the bulk region and nanopores is enabled for global phase equilibrium 

at each stage (1 μm = 1000 nm).76 

 

The molar density profiles of the simulated CCE are shown in Figure 23. The first bubble 

forms in the bulk region at 2002 psia, which is lower than the conventional reservoir 

bubble point (2074 psia). At the undersaturated conditions (P > 2002 psia), the fluids in 

both the bulk region and nanopores are in the liquid state, and the molar density is slightly 

higher in nanopores. There are some small compositional differences: the molar densities 

of C2, CO2-C3, C4-C6 are higher in nanopores than in the bulk region, and these species 

are associated with relatively large surface affinity factors (Figure 18). As the pressure 

falls below the bubble point (2002 psia), the gas phase expands in the bulk region; the 

nanopores release the light hydrocarbons (Figure 24a) but retain the intermediate to heavy 

components (C7-C10, C11+) (Figure 24 and 24c). Intermediates C4-C6 are not released into 

the bulk gas phase from 15 nm pores until the pressure falls below ca. 300 psia (Figure 
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24b). Due to the confinement effect and accumulations of heavy components (Figure 24c), 

the fluid in the nanopores remains undersaturated both above and below the bubble point. 

The liquid phase in the bulk region undergoes a compositional shift towards the heavier 

side in a similar manner with the liquid in nanopores (Figure 23). Assuming an ultimate 

recovery at the pressure of 501 psia (Figure 23), the nanopores retain large amounts of 

intermediate to heavy hydrocarbons, which indicates a significant oil loss in shale 

nanopores. 
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Figure 23. Molar density profiles of all phases at selected pressures in the dual-scale 

constant composition expansion. The length of a cylinder section refers to the actual molar 

density (kmol/m3) of a specific species in the corresponding phase. The noted pressure is 

the bulk region pressure. The bubble point pressure is 2002 psia (72 psia lower than the 

conventional reservoir fluids), and the first bubble emerges from the bulk region. As the 

pressure is lowered, the gas phase expands in the bulk region, but in 15 nm nanopores the 

fluid is always undersaturated. In the end, a significant amount of intermediate and heavy 

components are trapped in nanopores.76 
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Figure 24. Mole fractions of (a) light component: N2-C1, (b) intermediate: C4-C6, and (c) 

heavy component: C11+ distributed in various phases during the dual-scale constant 

composition expansion. The bubble point pressure is 2002 psia. Below the bubble point, 

N2-C1 is quickly released from the bulk and confined liquid phases into the bulk gas phase, 

and C4-C6 is released into the gas phase from the nanopores at a very low pressure (ca. 

300 psia). C11+ accumulates in the liquid phase of the nanopores below the bubble point.76 

 

 

The liquid volumetric saturation of the dual-scale shale system is compared with that of 

conventional reservoir fluids in Figure 25a. In nanopores, the reservoir fluid is always 

liquid. The bubble point is slightly suppressed, and the liquid saturation in the bulk region 

quickly declines with decreasing pressure. The liquid saturation in the bulk region is 

generally lower (5~15%) than those in conventional reservoirs. In the oil production from 

shale, the fast decline of liquid saturation should lead to a sharp rise of GOR once entering 

the two-phase stage. This can be correlated to the observations by Jones 107 that in LRS 
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production a quick rise of GOR occurs after the flowing bottom hole pressure falls below 

bubble point. The pressure-volume relation is plotted in Figure 25b. The volume of shale 

nanopores is fixed, and the bulk region volume expands faster with decreasing pressure 

than it does in the conventional reservoir.  

 

 
Figure 25. (a) Liquid volumetric saturation of each region in relation to pressure: in the 

bulk region, Pb is slightly suppressed and, at the two-phase stage, the liquid saturation 

drops faster than that in the conventional reservoir. In nanopores (15 nm), the fluids are 

undersaturated at all pressures. (b) Pressure-volume relations: the nanopore volume is 

fixed. The bulk region expands with lowered pressure, at a rate faster than that in 

conventional reservoirs. The bubble point pressure for shale is marked as an open blue 

square, and for conventional reservoirs it is marked as a green circle.76 

 

4.2.4 Triple-Scale PVT and criticality 

As shown by nitrogen porosimetry (Figure 19), there is a significant amount of small 

nanopores (diameter < 10 nm) in shale.94 To consider this, we refine the model by 

introducing the 5 nm pores in the nanopores region. The initial volume ratio is specified 

as 3:2:1 for the bulk region, 15 nm, and 5 nm pores (Figure 26). In the same manner with 

the dual-scale CCE, the bulk volume is expanded, but the volumes of nanopores are fixed.  
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Figure 26. Triple-scale model (bulk-15 nm-5 nm) for constant composition expansion. 

The bulk region is given a pore diameter of 10 microns and the nanopores are specified 

with the diameters of 15 and 5 nm. The initial volumes of the bulk region, 15 nm, and 5 

nm nanopores are assumed as 3:2:1. The bulk space is expanded and the volumes of 

nanopores are fixed. The component exchanges between the bulk region, 15 nm, and 5 nm 

pores are enabled for global phase equilibrium at each stage (1 μm = 1000 nm).76 

 

The molar density profiles of the triple-scale CCE are shown in Figure 27. The bubble 

point pressure is 1936 psia, and the first bubble occurs in the bulk region, which is similar 

to the behavior in the dual-scale CCE. Above the bubble point, fluids in all regions are in 

the liquid state. However, the compositions in 5 nm pores significantly deviate from those 

in 15 nm pores and the bulk region. The mole percentages of light and intermediate species 

are high in 5 nm pores, but the mole percentage of heavy component (C11+) is relatively 

low (Figure 27). The fluid in 5 nm pores is classified as volatile oil. The fluids in the bulk 

region and 15 nm pores are typical black oil by composition. As the pressure decreases 

below the bubble point, the gas phase in the bulk region expands and gathers a great 

portion of light components (N2-C1, C2) (Figure 28a). The fluids in nanopores become 

further undersaturated by releasing the light components and accumulating the 
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intermediate to heavy components (Figures 27, 28b and 28c). During the two-phase stage 

(of the bulk region), the compositional change in 5 nm pores shifts the fluid type from 

volatile oil towards black oil. Assuming the ultimate recovery pressure as 500 psia (Figure 

27), large amounts of intermediates and heavy hydrocarbons are trapped in 5 and 15 nm 

pores. 
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Figure 27. Molar density profiles of all phases at selected pressures in the triple-scale 

constant composition expansion. The length of a cylinder section refers to the actual molar 

density (kmol/m3) of a specific species in the corresponding phase. The noted pressure is 

the bulk region pressure. The bubble point pressure is 1936 psia (138 psia lower than the 

conventional reservoir fluids), and the first bubble emerges from the bulk region. As the 

pressure is lowered, the gas phase expands in the bulk region, but the fluids are always 

undersaturated in 5 and 15 nm nanopores. The 5 nm pores have relatively high fractions 

of C1~C6. In the end, a significant amount of intermediate and heavy components are 

trapped in nanopores.76 
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Figure 28. Mole fractions of (a) light component: N2-C1, (b) intermediate: C4-C6, and (c) 

heavy component: C11+ distributed in various phases during the triple-scale constant 

composition expansion. The bubble point pressure is 1936 psia. Below the bubble point, 

N2-C1 is quickly released from the bulk and confined liquid phases into the bulk gas phase, 

and C4-C6 is released into the gas phase from the nanopores at a very low pressure (ca. 

300 psia). C11+ accumulates in the liquid phases of the nanopores (5 and 15 nm) below the 

bubble point.76 

 

The oil properties are also investigated by examining the critical temperature. For each 

stage in the CCE, the critical temperature of fluid in a specific size of pore is calculated 

from Eqs. (4.11) and (4.12).84 Above the bubble point (P > 1936 psia), the critical 

temperature of the liquid-state fluid in the nanopores (15 and 5 nm) is lower than those in 

the bulk region. The decrease of the critical temperature in nanopores is consistent with 

previous findings from adsorption experiments7 and molecular simulations.38,40 By 

differential scanning calorimetry, we also observed that the supercriticality of 



 

71 

 

hydrocarbons was induced by confinement effects in the nanopores less than ca. 4 nm in 

diameter.50 In 5 nm pores, due to the confinement effect and high fractions of light 

hydrocarbons, the critical temperature is significantly lowered to ca. 263 oF, which is 

slightly above the reservoir temperature (240 oF). In this scenario, the fluid is near-critical 

volatile oil (Figure 29). Below the bubble point, the critical temperature in the nanopores 

increases with decreasing pressure, as the liquid-state fluid in the nanopores become richer 

in heavy hydrocarbons. In 5 nm pores, the compositional change is so large that it 

ultimately turns the fluid to black oil. As the fluid composition changes in the nanopores, 

the viscosity is expected to alter notably, which should significantly affect the fluid flow 

during the later stage of production in liquid-rich shale.  

 

(
𝜕𝑃

𝜕𝑣
)
𝑇𝐶

= (
𝜕2𝑃

𝜕𝑣2
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= 0                                              (4.11) 
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𝜕3𝑃
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< 0                                                        (4.12) 
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Figure 29. Critical temperatures of fluid in the bulk region/nanopores with respect to 

pressure over the constant composition expansions. The reservoir temperature is 240 oF 

(light blue dashed line, horizontal) and the bubble point is 1936 psia (green dashed line, 

vertically crossing the open symbols). At the undersaturated stage, the fluid in 5 nm pores 

is (near-critical) volatile oil. As the pressure falls below the bubble point, the fluid critical 

temperature in 5 nm pores shifts away from the reservoir temperature, and the fluid type 

turns into black oil.76 

 

The liquid volumetric saturation-pressure behavior in the triple-scale system (bulk-15 nm-

5 nm) is similar to the dual-scale behavior. The bubble point (1936 psia) is suppressed, 

and the liquid saturation decreases as the bulk region fluid enters the two-phase state 

(Figure 30a). The impact on production GOR can be referred to the discussions in the 

dual-scale section. The bulk region expands remarkably with decreasing pressure, and by 

assumption, the volumes of the nanopores are fixed (Figure 30b).  
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Figure 30. (a) Liquid volumetric saturation of each region in relation to pressure: in the 

bulk region, Pb is suppressed, and the liquid saturation declines faster than that in the 

conventional reservoir. In nanopores (5 and 15 nm), the fluid is undersaturated at all 

pressures. (b) Pressure-volume relations: the nanopore volumes (5 and 15 nm) are fixed. 

The bulk region expands with lowered pressure at a rate faster than that in conventional 

reservoirs. The bubble point pressure for shale is marked as an open blue square, and for 

conventional reservoirs it is marked as a green circle.76 

 

4.2.5 Apparent bubble point 

The reservoir fluids behave quite differently in the broad pore size distribution 

(nanometers to a few micrometers) of shale porous structure. The fluid 

evaporation/condensation pressure in nanopores is commonly lower than the bulk 

saturation pressure due to the confinement effect. The lowered phase transition pressures 

of pure fluids in nano-capillaries have been well recorded in isothermal adsorption 

experiments8,11 and simulation studies.41 For the multicomponent shale reservoir fluids, 

the vaporization in nanopores is further suppressed by the compositional extraction of light 

components (e.g. C1, C2) into the gas phase of the bulk region. In the simulated CCE, the 

liquid-vapor transitions are completely suppressed in 5 and 15 nm pores, i.e. the fluids in 

nanopores are undersaturated throughout the reservoir depletion. On the other hand, the 
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first bubble of shale oil emerges from the bulk region at a deviated pressure from the 

single-scale bulk bubble point. 

 

For the multi-scale shale system, we suggest the term “apparent bubble point pressure” as 

the pressure when the first bubble forms in a certain region of scale while the fluids in the 

remaining regions stay undersaturated. In the case of Eagle Ford oil, the first bubble 

always occurs in the bulk region while the fluids in nanopores remain in the liquid-state. 

As discussed, the apparent bubble point is associated with the onset of two-phase flow in 

the bulk porous geometries of shale (e.g. fractures) and the sharp rise of production GOR. 

 

The apparent bubble point is rationalized to be dependent on the compositional 

distributions between the bulk region and nanopores. Due to the compositional 

heterogeneities, the apparent bubble point which occurs in the bulk region is slightly 

suppressed in the bulk-15 nm case (Figure 23). With the small-scale nanopores (e.g. 5 

nm), the bubble point is further suppressed (Figure 28). The apparent bubble point 

pressures in shale are 2002 psia for the bulk-15 nm case and 1936 psia for the bulk-15 nm-

5 nm case, which are lower than the bulk bubble point in the conventional reservoir (2074 

psia). 
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5. SHALE RESERVOIR FLUIDS IN GAS INJECTION* 

 

5.1 Gas injection for shale reservoirs 

Due to the rapid decline of production rate, the shale wells suffer very low oil recovery 

compare to conventional reservoirs. For example, the oil recovery factor was in the range 

of 4-6% in Bakken play.108 With a significant amount of resources remaining in the 

reservoir, improved/enhanced oil recovery (IOR/EOR) has attracted much interest. Gas 

injection shows high displacement efficiency and applicability to low permeability 

reservoirs, and is considered a potential approach for improved oil recovery in shale fluids 

production. In the previous studies, the injected gas species include CO2,109-112 natural 

gas113 and nitrogen.114 However, most studies focus on simulations and experimental 

work. There are very few field operation results reported. Todd et al. reported the injection 

pilots in the Bakken formation and found that none of the wells have so far produced any 

incremental oil, probably due to the very early breakthrough.115 On the other hand, EOG 

Resources disclosed that the by injecting natural gas, production increases on 15 wells 

were gained in 30 to 70%. In another 32-well test, 300,000 bbl of oil were produced at the 

cost of $6/bbl through gas injection.116 

 

                                                 

* Part of this chapter is reprinted with permission from “Effect of Nano-Scale Pore Size Distribution on 

Fluid Phase Behavior of Gas IOR in Shale Reservoirs” by S. Luo, J. L. Lutkenhaus, and H. Nasrabadi, 

2018. SPE Proceedings, SPE-190246-MS, Copyright [2018] by Society of Petroleum Engineers. 
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There are several challenges for gas injections in shale reservoirs, which include unknown 

phase behavior, low permeability and complex hydraulic/natural fracture systems.117-119 

The challenge in phase behavior is resulted from the broad pore size distribution in shale 

reservoirs. In gas injection, the phase behavior is critical in assessing swelling effect, gas 

solubility and minimal miscible pressure (MMP). As discussed in the previous chapter, 

the fluid phase behavior in shale reservoirs is multi-scale: in fractures and macropores 

(>50 nm), fluid behaves the same as bulk; in nanopores (<50 nm), the phase behavior 

deviates significantly from the bulk behavior by confinement effect. However, to the best 

knowledge, there are very few studies considers the confinement-induced phase behavior 

deviation in gas injection for shale reservoirs. The bulk fluid thermodynamics, such as 

Peng-Robinson EOS, is the most used approach in reservoir simulations for gas injections 

for shale reservoirs.109,111 

 

In this chapter, the phase behavior in gas injection is investigated in two models. Firstly, 

the multi-scale constant composition expansion (CCE) processes is studied for the mixture 

of original oil and injected gas. The bubble point and volumetrics are discussed. Next, the 

swelling of nanopore-fluid is simulated. The gas is injected into a specific nanopore and 

the phenomenon that fluid swells out of the pore is investigated. 
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5.2 Multi-scale PVT of original oil and gas mixture 

5.2.1 Case description 

A case of Anadarko basin black oil is used as the original oil in reservoir before gas 

injection. The initial reservoir pressure is assumed as 5000 psia and the pore size 

distribution is Vbulk:V15nm:V5nm=3:2:1. The reservoir fluid has a bubble point of 2000 psia 

under bulk PVT conditions. The reservoir conditions are shown in Table 12.120 

Table 12. Reservoir conditions of an Anadarko basin formation.120 

Properties Value 

Initial Reservoir Pressure 5000 psia 

Reservoir Temperature 165 oF 

Initial Vbulk:V15nm:V5nm 3:2:1 

Reservoir Fluid Type Black Oil 

Current Reservoir 

Pressure 
2000 psia 

Injected Fluid 
Gas 

(methane) 

 

The fluid properties used in PR-C EOS are listed in Table 13 and 14. The confinement 

parameters (휀𝑝, 𝛿𝑝) are determined from the 𝜅 factor in Chapter 3.2.2.  

Table 13. PR-C EOS properties for Anadarko basin oil.120 

Species 
MW 

(g/mol) 
TC (R) PC (psia) ω VSP εp /kB (K) δp /σ 

Mole 
Fraction 

C1 16.04 343.08 667.2 0.008 -0.0595 227 0.5 0.35354 

C2-CO2-C3 35.93 599.85 673.39 0.12156 -0.05381 747 0.5 0.14643 

C4-C6 69.28 823.38 511.04 0.22632 -0.00866 1908 0.5 0.13527 

C7-C12 116.61 1080.04 385.52 0.33607 0.15057 2108 0.5 0.18576 

C13-C22 238.31 1389.92 206.2 0.69687 0.21568 2408 0.5 0.14544 

C23+ 497.15 1733.72 111.27 1.20213 0.26619 2781 0.5 0.03356 
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Table 14. Binary interaction parameters for Anadarko basin oil.120 

  C1 C2-CO2-C3 C4-C6 C7-C12 C13-C22 C23+ 

C1 0 0.005 0.019 0.039 0.081 0.122 

C2-CO2-C3 0.005 0 0.005 0.017 0.048 0.083 

C4-C6 0.019 0.005 0 0.004 0.023 0.050 

C7-C12 0.039 0.017 0.004 0 0.009 0.027 

C13-C22 0.081 0.048 0.023 0.009 0 0.005 

C23+ 0.122 0.083 0.050 0.027 0.005 0 

 

5.2.2 Multi-Scale PVT of mixed fluid 

The multi-scale phase behavior model is used in studying the phase behavior of gas 

injection in shale reservoirs. The gas is injected into the multi-scale system and the fluid 

phase behavior is determined as the thermodynamic equilibria among different pores 

(Figure 31). The original oil and injected gas are mixed in the multi-scale system and the 

phase equilibrium is calculated as the minimized Helmholtz free energy of the total 

system. The constant composition expansion (CCE) is conducted for the gas injection 

under different ratios of original oil/injected gas mixing. 
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Figure 31. Multi-scale model for gas injections for fractured shale reservoirs. The gas 

injection operation adds light components into the system and the species distribute among 

different regions by multi-scale phase equilibrium.120 

 

Firstly, the phase behavior of original reservoir fluid in the system with discretized sizes 

of nanopores is examined. The triple-scale constant composition expansion (CCE) of the 

original oil is simulated. As shown in Figure 32, the bubble point is 1821 psia, which is 

lower than the bubble point (2000 psia) of bulk fluid. As the pressure is further lowered, 

the fluid remain undersaturated in 5 and 15 nm nanopores. There are less heavy 

components (C13-C22, C23+) in nanopores due to the nano-confinement effect. Upon 

entering the two-phase state in the bulk region, light components (C1, C2-CO2-C3) are 

released from the liquid phases in nanopores to the vapor phase in the bulk region. At the 
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end (1002 psia), the intermediate and heavy components (C4-C6, C7-C12, C13-C22, C23+) are 

retained in the nanopores, which suggests an oil loss by the nanopores in production.76,120 

 

Figure 32. Original reservoir fluid molar density profiles of all phases at selected 

pressures in the triple-scale confined constant composition expansions. The length of a 

cylinder section refers to the actual molar density (kmol/m3) of a specific species in the 

corresponding phase. V denotes the vapor phase, and L denotes the liquid phase.120 

 

Next, the CCE processes for the reservoir fluid mixed with injected gas is studied. For the 

case of 22.3 mol% injected gas (overall 50 mol% C1) (Figure 33), similar behavior is 

observed as the original oil. The fluid in 5 and 15 nm pores remains undersaturated 

throughout the process. The bubble point is 2935 psia. It’s worth noting that at 5000 psia 
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in 5 nm pores, the fluid is at supercritical state. The supercriticality is associated with the 

increased mole fraction of light components C1 in the system. Also, the nano-scale 

confinement contributes to a decrease of critical temperature,7,50,76 and fluid in the smallest 

5 nm pores enters the supercritical state first. As the pressure decreases, the fluid in 5 nm 

pores turns to liquid-state.120 

 

Figure 33. Reservoir fluid mixture with 22.3 mol% injected gas (overall 50 mol% C1) 

molar profiles of all phases at selected pressures in the triple-scale confined constant 

composition expansions. The length of a cylinder section refers to the actual molar density 

(kmol/m3) of a specific species in the corresponding phase. V denotes the vapor phase, 

and L denotes the liquid phase. SC stands for supercritical state.120 
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Supercritical state fluid is observed at multiple stages for the fluid mixture with 53.6 mol% 

injected gas (overall 70 mol% C1) (Figure 34). As discussed above, this is attributed to the 

increased mole fraction of C1 in the whole system. It is observed that the bubble point is 

6054 psia in the triple-scale confined system, 968 psia lower than the bubble point of bulk-

state reservoir fluid. Fluid in both 5 and 15 nm pores are in the supercritical state above or 

slightly below bubble point. However, as the pressure is lowered, the fluid turns into the 

subcritical state, because the light and intermediate components are released from the 

nanopores and accumulate in the vapor phase in the bulk region.120 
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Figure 34. Reservoir fluid mixture with 53.6 mol% injected gas (overall 70 mol% C1) 

molar density profiles of all phases at selected pressures in the triple-scale confined 

constant composition expansions. The length of a cylinder section refers to the actual 

molar density (kmol/m3) of a specific species in the corresponding phase. V denotes the 

vapor phase, and L denotes the liquid phase. SC stands for supercritical state.76 

 

Herein, the relative volume (RV) is defined as Eq. (5.1), where V is the sum of pore 

volumes for all sizes. 

𝑅𝑉 =
𝑉(𝑇, 𝑃)

𝑉(𝑇, 𝑃𝑏)
                                                       (5.1) 

Generally, relative volume curves of the confined shifted to the lower than the bulk relative 

volume curves (Figure 35). It is also worth noting that the distance between the confined 
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and bulk curve narrows in the two-phase stage. It indicates that the total volume of the 

confined fluid increases very fast. This behavior is due to the fast increase of gas 

saturation, which is also observed in the Chapter 4.2.76 

 

Figure 35. Relative volume – pressure relation for the CCE tests with or without injected 

gas. The circles and triangles show the bubble points of corresponding cases. The relative 

volume of confined fluid is the sum of fluid volumes of all sizes of pores.120 

 

The bubble point of the reservoir oil and injected gas mixture has a generally lower bubble 

point than the bulk-state bubble point (Figure 36). At low fractions of injected gas, the 

bubble point decrease is as small as 200 psia. However, with the higher fractions of 

injected gas, the nano-confinement effect becomes greater. At 60 mol% injected gas, the 

bubble point is ca. 1000 psia below bulk bubble point. The critical pressure of the bulk 

fluid mixture is 10203 psia (62.5 mol% injected gas). Above the critical point, the reservoir 

fluid is gas condensate. However, for the multi-scale confined system, the fluid exhibits 

phase changes into the supercritical state in nanopores at lower mole fractions of injected 

gas (Figures 33-34).120 
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Figure 36. Bubble point pressure with respect to mole fractions of injected gas. The red 

line is confined fluid in the Vbulk:V15nm:V5nm=3:2:1 system, and the blue line is bulk fluid. 

The diamond symbol denotes the critical point of bulk fluid.120 

 

5.3 Nanopore-Fluid swelling 

In the previous section, the model is that gas is injected into multi-scale system. Next, the 

gas injection into a single-scale nanopore is simulated. The object of part is to probe the 

behavior of nanopore’s fluid expanding into the bulk region. As shown in Figure 37, the 

gas is injected into the nanopore and mixes with the original pore-fluid. Under the swelling 

effect, the fluid in the nanopore expands into the bulk region (macropores and fractures) 

and the swelled fluid is envisioned to further flow into the well stream.  
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Figure 37. Gas injection into a nanopore and confined fluid swelling. 

 

Based on the model, a swelling ratio is defined as: 

𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑖𝑜 =
𝑉𝑠𝑤𝑒𝑙𝑙𝑒𝑑 + 𝑉𝑛𝑎𝑛𝑜𝑝𝑜𝑟𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑉𝑛𝑎𝑛𝑜𝑝𝑜𝑟𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
                            (5.2) 

 

The case described in Chapter 5.2.1 is used. 20 mol% gas (methane) is injected into the 

nanopores at 4000 psia at the state given by the original oil triple-scale CCE. Multi-stage 

separator conditions are applied: (200 psia, 100 oF) → (50 psia, 80 oF) → stock tank. 

 

Firstly, gas injection into 15 nm pore by the fraction of 20 mol% is studied (Figure 38). 

The swelling of bulk state oil is simply a mixing effect of oil and injected gas, and the 

compositions are therefore given by dilution. However, due to the compositional 

heterogeneity between the nanopore and the bulk region, the swelling behavior is different. 

The swelling ratios are nearly the same (swelling ratio 1.11) but the swelled fluid from 15 

nm pore has more heavy ends (C7+) and C1. This indicates that under confinement effect, 

the volumetrical behavior is almost the same between confined and bulk systems, but there 

are more oil extracted from the nanopore. Under the multi-stage separator conditions, the 
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swelled oil has a smaller volume formation factor (Bo) and solution gas/oil ratio (Rs) (Table 

15).  

 

Figure 38. Swelled fluid: bulk state vs 15 nm (original oil mixed with 20 mol% injected 

gas at 4000 psia). 

 

Next, gas injection into 5 nm pore is investigated (Figure 38). Similar to the results with 

5 nm pore, the swelled fluid has more heavy ends (C7+) and C1. Overall, the swelled fluid 

has more oil since Bo and Rs are smaller than those in the bulk state swelling (Table 15). 

The volumetric expansion is slightly greater for bulk fluid, where the swelling ratio is 

1.17, compared to the confined swelling ratio of 1.13. 
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Figure 39. Swelled fluid: bulk state vs 5 nm (original oil mixed with 20 mol% injected 

gas at 4000 psia). 

 

Table 15. Properties of swelled fluid (original oil mixed with 20 mol% injected gas). 

Case Injection into 15 nm Pore Injection into 5 nm Pore 

Confinement Bulk State 15 nm Bulk State 5 nm 

Swelling Ratio 1.11 1.11 1.17 1.13 

Bo (rb/stb) 1.51 1.33 2.01 1.83 

Rs (scf/stb) 1008 704 1885 1634 
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6. SUMMARY 

 

6.1 Summary and conclusions 

6.1.1 Summary 

In this work, we have explored the phase behavior of nano-confined hydrocarbons by both 

experimental and theoretic methods. It has been clearly shown by experiments that the 

fluid confined in nanopores behaves significantly different from the fluid at bulk state. 

The equation of state simulations suggest that the petroleum fluids behavior in shale is 

highly heterogeneous because of the nano-scale pore size distribution. The conventional 

bulk thermodynamics is not applicable for liquid-rich shale reservoirs. Molecule-based 

simulations or theories are highly desired.  

 

6.1.2 Experimental studies 

Differential scanning calorimetry (DSC) is a useful method for measuring the phase 

transition temperature of confined hydrocarbons in nanopores. Silica-based nanoporous 

media can effectively serve as hosts for hydrocarbons. By studying the bubble point 

temperatures of hydrocarbon in different sizes of nanopores, it is found that at 40 nm or 

above, the fluid phase behavior is very close to bulk; as the pore size decreases, the fluid 

phase behavior deviates from the bulk and the confined bubble point increases; at small 

pore sizes (e.g. less than 4 nm), the phase behavior undergoes an alteration, which is 

observed as bubble point decreases with decreasing of pore size. Theoretical studies 

suggest that the alteration is associated with the confinement induced supercriticality. 
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The phase behavior is found to be affected by several factors, such as pore loading, pore 

size distribution and surface property. As the pore loading decreases, the bubble point 

temperature decreases. In the pore size distribution system, the fluid fills the small 

nanopores prior to filling the large pores. On native silica or trimethylsilylated silica, the 

confined hydrocarbons show different levels of deviations. Besides, for fluid mixtures in 

nanopores, it is inferred that there is a composition separation of a heavier surface-

adsorbed phase and lighter confined-core phase. 

 

6.1.3 Thermodynamic modeling 

The molecule-based thermodynamics modeling is necessary in understanding the phase 

behavior of nano-confined fluid. The capillary pressure, which is based on the classic bulk 

thermodynamics, fails to model the experimental results. The pore-size-dependent 

equation of state, PR-C EOS, which is based on molecular description of fluid-pore wall 

interaction, successfully correlates to experimental results. The supercriticality induced by 

nanopores is also predicted by PR-C EOS, which correlates with an alteration of phase 

transition in experiments. The confinement parameters of PR-C EOS are determined from 

various hydrocarbons (C1~C14) based on experimental data. 

 

In shale reservoirs, the macro- to nano-scale pore size distribution requires a specific 

strategy in modeling the fluid phase behavior. The fluid in the bulk region (macropores 

and fractures) behaves in the same way as bulk fluid; in the nanopores, the fluid phase 

behavior is significantly affected by the confinement effect. The pore-size-dependent 
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equation of state, PR-C EOS, gives a natural solution to model the multi-scale phase 

behavior in shale system. Fluid phase behavior in each pore is described by pore diameter 

and the multiscale phase equilibrium is calculated by minimizing the Helmholtz free 

energy. 

 

The multi-scale constant compositions expansions are simulated for an Eagle Ford oil 

system. The compositional heterogeneity between different sizes of nanopores are 

observed, and as the pressure decreases, the bubble point is reached at a pressure ca. 100 

psi lower than the bulk bubble point. The vapor phase only emerges from the bulk region, 

but the nanopores remains undersaturated to the end of depletion, which results in a 

significant oil recovery loss. 

 

For the multi-scale phase behavior of gas injection, injected gas contributes to an increase 

in the fraction of light components and turns the fluid state towards critical point. 

Confinement effect further lowers the critical point, and the fluid in nanopores enters the 

supercritical state, in the order of small pores prior to large pores. The bubble points of 

nano-confined fluid mixtures are generally lower than those of bulk. From the nanopore-

fluid swelling simulations, the extraction from nanopores is predicted to give more oil than 

the conventional swelling of bulk fluid.  
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6.2 Future work 

Experimental studies in confined fluid mixtures will be highly valuable. Tests of fluid 

mixtures, especially crude oil, will very useful. Another good step is high pressure 

differential scanning calorimetry. The current instrument setup is limited to atmospheric 

pressure. High pressure test will bring the conditions towards the high pressure high 

temperature in reservoirs. The high pressure data will also be very valuable for validating 

thermodynamic models. 

 

For the modeling work, molecular simulation and density functional theory can give 

insight to the fluid details in nanopores and also support equation of state modelings. 

These sophisticated methods are also very useful in probing the fluid mixing effect. The 

hysteresis effect is another object to look into, as the thermodynamic phase equilibrium 

may not hold in the nanoporous network, and the shale system may be controlled by the 

kinetics. 
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