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ABSTRACT

A concatenated soft decision forward error correcting (FEC) coding scheme with an inner low

density generator matrix (LDGM) code and an outer product code (PC) is considered for applica-

tions in high-speed optical communications. First, we evaluate the performance of various choices

of inner and outer codes when the inner decoder uses a soft-decision decoder and the outer decoder

is a hard-decision error-only decoder. Then, we evaluate the performance of the concatenated cod-

ing scheme when erasures are introduced at the output of the inner decoder and the outer decoder

is an errors-and-erasures decoder. An exact expression for the number of errors and erasures that

are guaranteed to be decoded by an iterative decoder is derived. Then, an approach for deriving an

approximation of the error probability for the erasures decoder is proposed. Using this approach,

optimal thresholds can be chosen for declaring erasures at the output of the inner decoder. It is

shown that the codeword error rate for the error and erasures iterative decoder can be better than

that of errors only iterative decoder in the error floor region. It is also shown that simulation results

are in close agreement with the mathematical approximations developed at error floors.
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1. INTRODUCTION

The amount of data carried through the internet backbone is increasing due to services such

as social networking, video streaming, coordinated high graphic gaming, cloud computing etc.

Indeed, the estimated global IP traffic has increased five folds from 2011 to 2016. To cope with

increasingly higher traffic, optical transport networks (OTN) need to carry substantially high data

rates. While current OTNs carry 100 to 400 Gbps, the increasing trend in traffic suggests that

OTNs will roughly need data rates of the order of 10 Tbps by 2025. High data rates introduce

impairments such as non-linearities, chromatic dispersion, noise due to amplified spontaneous

emission and polarization mode dispersion. Providing reliable communication at these high data

rates is a challenging task due to the above mentioned distortions. This requires encoding and

decoding schemes which can provide high coding gains.

Several powerful classes of codes have been developed in recent times which can provide near-

Shannon-limit performance. Quasi cyclic-low density parity check (LDPC) codes and polar codes

are examples of such coding schemes. While these codes provide large coding gains, the com-

putational complexity required for implementing the encoder/decoder at very high data speeds is

extremely high. It is natural to wonder if advances in hardware technology predicted by Moore’s

law will be sufficient to make standard implementations of message-passing LDPC decoders pos-

sible at the required data rates. Unfortunately, advances in hardware technology seem to be offset

by the increasing data rates predicted by Butter’s law[3]. This leaves a gap between the hardware

resources available and the hardware resources needed to implement computationally complex ad-

vanced coding schemes at very high data rates. Thus, current approaches are not scalable even

with the improved hardware technologies. This makes innovation in the design of encoders and

decoders essential for implementing decoders for OTNs.

To support the data rate requirements of the future communication systems OTNs need to

obtain error floors as low as 10−15 at code rates exceeding 0.9. Most of the classical research on

forward error correction (FEC) is focused on hard decision decoders. However, with the increase

1



demand for low error rates and recent advances in hardware technology led to a interest on decoders

which exploit soft outputs of the channel for OTNs. To get an idea of the possible gains from soft-

decision decoding, notice that for rate 0.8, the Shannon limit of a quantized binary-input Gaussian

channel is 3.37 dB with two levels and 2.37 dB with four levels. Since a gain of 1 dB is possible,

it makes sense to focus on the design of low-complexity soft-decision decoders.

The design of soft decision decoders that provide high coding gains at such high data rates is

very challenging. One promising candidate for such an FEC is concatenated codes, using a com-

bination of algebraic codes and codes on graphs. Near-optimal coding gains can be achieved by

using concatenated codes with reasonable complexity. Algebraic codes such as Bose- Chaudhuri

and Hocquenghem (BCH) and Reed-Solomon (RS) codes have very efficient hard decision and

erasure decoders which can be implemented with minimal hardware even at high code rates, and

soft decision decoders for small length LDPC or low density generator matrix (LDGM) can be

implemented with reasonable hardware. These class of codes are studied in[1]. This work utilizes

soft decision outputs from the channel in a concatenated coding scheme. This scheme contains an

inner soft decision decoder and outer hard decision decoder. The inner decoder accepts the soft

values from the channel and provides soft output. Hard decisions are made by the outer decoder

on the soft outputs provided by the inner decoder.

1.1 Main Contributions

The decoding scheme presented in this thesis improves on [1] with the introduction of erasures

into the outer decoder. Erasures can exploit soft values even further for improved coding gain. For

an iterative row-column decoder in product code (PC),an exact expression for the number of errors

and erasures that are guaranteed to be decoded is derived. An approximate expression for the error

rate in the error floor region for this decoding scheme is derived. Using this approach, optimal

thresholds can be chosen for declaring erasures at the output of the inner decoder. It is concluded

that introduction of erasures performs better than the existing error only scheme.

2



1.2 Organization

Chapter 2 gives an introduction to LDPC and LDGM codes. Chapter 3 discusses product and

half product codes. It is shown in this chapter that product codes perform better than half product

codes for our application. Chapter 5 discusses our work on concatenation of a soft decision inner

code with a hard decision outer code. It details encoding and decoding for the proposed scheme.

It discusses error floor analysis of the proposed scheme and bounded distance formulation for

product codes using iterative row-column decoder. Chapter 6 provides various simulations that are

performed in this work, discussion of results and conclusions are provided.

3



2. LDPC CODES

x1

x2

x3

x4

x5

x6

x1 + x4 + x6 = 0

x3 + x5 + x6 = 0

x2 + x4 + x5 = 0

x1 + x2 + x3 = 0

Figure 2.1: LDPC code example

Introduced by Gallager in 1960, LDPC codes are linear block codes defined by a sparse parity-

check matrix[4]. An (n, k) LDPC code can be represented by a Tanner graph which is a bipartite

graph with n circle nodes, representing the bit nodes, and n − k square nodes, representing the

check nodes as shown in fig: 2.1. The above bipartite graph can be represented in a matrix form.

Let H = [hij] be a binary (n − k) × n matrix where (hij) is 1 when there is an edge between

ith check node and jth variable in the graph. The degree dv of a variable node v is defined as the

number of check nodes connected to it. Similarly,the degree dc of a check node c is defined as the

number of variable nodes connected to it. The adjacency matrix of the Tanner graph acts as the

parity check matrix for the LDPC code. The sparsity of H is a key property that enables efficient

implementation of decoding algorithms for LDPC codes 1.

1see the paper on "Low density parity check codes" by gallager, 1962 for more detailed information
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i j

(a) Two cycle Example

i1 j1

j2i2

(b) Four Cycle Example

Figure 2.2: Demonstration of 2 and 4 cycles

2.1 Construction of Tanner graph

There are many ways of constructing a parity check matrix for an LDPC code. Apart from

sparsity of the matrix, there are other factors which can effect the performance of decoding al-

gorithms. One of the key factors that drastically effects the performance is cycles in the graph.A

Tanner graph is said to have an n cycle if it has a cycle of length n. Cycles, especially short cycles

degrade the performance of LDPC decoders, because they affect the independence of the extrinsic

information exchanged in the iterative decoding. It is known that parity check matrix with minimal

cycles gives the best performance. Fig:2.2 shows an example for four and two cycles in a Tanner

graph .

Parity check matrix is generated generally by a randomized permutation. consider each edge

is connected to a variable node through a socket and check node through another socket. Total

number of sockets on the left will be equal to the total number of sockets to the right. Random

connection between left and right sockets results in a parity check matrix. This process of ran-

dom generation is repeated until resultant parity check matrix is 2-cycle free. Another mode of

construction is progressive edge growth (PEG). In PEG based construction, each edge is to be con-

structed progressively such that there are no n-cycles for some fixed integer n. Though this kind

of construction is slow, PEG is more reliable as it gives constructions which are n-cycle free. This

construction is discussed in detail later during LDGM construction in section 4.2.

5



2.2 Belief propagation Decoding Algorithm

LDPC codes are decoded using iterative message passing algorithms . At every iteration mes-

sages are passed between variable node to check node and check node to variable node. Message

sent by a variable node to a check node is computed based on the information it receives from the

channel and messages received from other check nodes attached to it. The check nodes connected

to a variable node are called as neighboring check nodes. Similarly the variable nodes connected

to a a check node are called as neighboring variable nodes. The messages that are sent from ei-

ther check node or variable node should contain only extrinsic information i.e, The information

passed from any check node i to variable node j should not contain the information sent by j to i

previously. The same applies for the messages passed by variable nodes to check nodes.

Belief propagation algorithm is an important subclass of message passing algorithms. In be-

lief propagation algorithms, the messages that are passed between variable and check nodes are

probabilities or beliefs.

For any binary random variable x, its likelihood is defined as l(x) = Pr[x = 0]/Pr[x = 1].

The conditional likelihood between a binary random variable x and a real random variable y is

given by l(x|y) = Pr[x = 0|y]/Pr[x = 1|y]. The log-likelihoods L(x) and L(x|y) are defined as

L(x) = ln l(x) and L(x|y) = ln l(x|y).

Let v = (v1, v2, ..., vn) be a codeword of an (n, k) LDPC code. Let x = (x1, x2, ..., xn) denote

the BPSK modulated vector denoting the corresponding codeword vector v. Hence, xj = (−1)vj

denotes the jth transmitted binary symbol over the channel.(vj ∈ {0, 1}and hencexj ∈ {1,−1}).

Let y = (y1, y2, ..., yn) denote the corresponding received vector at the decoder. Then y can be

modeled as y = x + n, where n denotes additive white Gaussian noise(AWGN) of mean 0 and

covariance matrix σ2I(I denotes identity matrix).

The conditional probability of xj given yj can be written as

Pr(xj = b|yj) =
[
1 + exp

−2yjb
σ2

]−1
, b ∈ ±1 (2.1)

6



Hence, the conditional log-likelihood of vj and yj can be computed as

L(vj|yj) =
2yj
σ2
. (2.2)

The algorithm can be summarized in five steps as given below[5].

Step 1: For all variable nodes j ∈ {1, 2, ...n} of the graph, initialize Lj according to the

equation (2.2). Then initialize Lj→i, the beliefs that are scheduled to be sent from variable nodej

to check node i as Lj→i = Lj ∀ j ∈ {1, 2, ..., n}, i ∈ {1, 2, .., n− k}.

Step 2: This step marks the start of iterative procedure of the algorithm. Once the beliefs

are received from variable nodes to check nodes, the check node update and propagate beliefs to

its neighbor variable node. At iteration l of the algorithm, check node i sends belief Li→j to the

variable node j according the update equation.

Li→j = 2 tanh−1

( ∏
j′∈N(i)\{j}

tanh

(
Lj′→i
2

))
, (2.3)

where N(i) denotes all the variable nodes connected to the check node i.

Step 3: Variable node computes the outgoing beliefs as follows.

Lj→i = Lj +
∑

i′∈N(j)\{i}

Li′→j. (2.4)

Step 4: In this step, total Log likelihood ratio at each variable node j ∈ {1, 2, ..., n} is com-

puted as

Ltotal
j = Lj +

∑
i∈N(j)

Li→j (2.5)

Step 5: This step checks for the stopping condition of the algorithm for each variable node

j ∈ {1, 2, ..., n}.

v̂j =


1 if Ltotal

j < 0

0 else,
(2.6)
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di

π
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i

k m

Figure 2.3: LDGM ensemble (reprinted form [1])

to obtain an estimated vector v. If Hv̂T = 0 or if the number of iterations l reaches the

maximum permitted number, then stop, otherwise start over again from step 2.

2.3 Low density generator matrix (LDGM) codes

LDGM codes are an extension to LDPC codes. LDPC codes have a parity check matrix which

is sparse while the LDGM codes have a sparse generator matrix.

LDGM codes have a sparse generator matrix in contrast to LDPC codes which have a sparse

parity check matrix.

Similar to LDPC codes, LDGM codes can also be represented by Tanner graphs, circles rep-

resent variable nodes while squares represent check nodes(see figure 2.3 ). The variable nodes in

LDGM can be partitioned into 2 different types, message nodes (lightly shaded circle nodes) and

parity nodes (dark shaded circle nodes). The number of check nodes in LDGM code is equal to

the number of parity nodes. Each parity node has a degree 1 and is connected to a unique check

node. Hence, the degree di of a check node i ∈ {1, 2, ..,m} is the number of connections on that

check node minus 1. This implies that the connection between parity node and check node is not

counted towards di. The degree dj of variable node j ∈ {1, 2, .., k} is equal to the number of edges

8



incident on that node.

The connections between check nodes and variable nodes are determined as follows. A mes-

sage node j with a degree dj will be assigned j sockets. Similarly, a check node i with a degree

di will be assigned i sockets. Every check node is connected to a unique parity node. Thus, the

number of sockets on the left and right are equal. These sockets can be connected using any al-

gorithm. In this work, progressive edge growth (PEG) algorithm is used to establish connections

between these sockets. The motivation behind choosing this algorithm and implementation details

are discussed later in section 4.2.

The parity check matrix H corresponding to a systematic LDGM code takes the form H =

[P |Im], where P is an m× k sparse matrix and Im denotes the m×m identity matrix. The (i, j)th

entry of matrix P is 1 if there exists an edge between check node i and message node j, else it is 0.

The systematic generator matrix G corresponding to this LDGM code is given by G = [Ik|P T ].

Various forms of LDGM codes are studied in literature with different names. The Luby-

transform (LT) [6], which are a form of rateless codes have a variable number of parity check bits,

whose size can be changed upon the request of the decoder. Another important class of LDGM

codes are the Raptor codes[7, 8, 9]., which are formed by concatenating an LT code with an outer

block code to lower the error floors. These two models uses LDGM with puncturing to increase

code rate.

The LDGM implementation provided in this work does not consider puncturing. The param-

eters k, m and the graph connections are not changed after the design. Hence, the rate of such a

LDGM code is k
k+m

. Thus, the LDGM codes used in this design are similar in spirit to the class

of Error Reduction codes (ERC) [10] [[11],chap 9]. These class of codes do not guarantee the

complete correction of the codeword, but corrects a fraction of errors.

The decoding procedure of LDGM codes is same as that of LDPC codes. LDPC codes are

known to provide lower error floors than the LDGM codes. However, for this concatenated scheme

to work, the inner code only needs to achieve a threshold error probability at a reasonably low SNR.

It is the job of the outer decoder to further reduce this probability to attain error floors. If attaining

9



error floors is not the motive of the inner code, LDGM codes are a better choice than LDPC codes

as they achieve this threshold probability at a lower SNR than LDPC codes. Also, the complexity

of encoding an LDGM code is less than that of the LDPC code. The outer code is designed in such

a way that, error floor is reduced to the target error probability 10−15, when inner code decodes the

received codeword to pth. Product codes(PC) and half product codes(HPC) are known to provide

very low error floors and hence are a good choice for the outer code. The design and decoding

procedure of these codes are discussed in next chapter.
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3. PRODUCT CODES AND HALF PRODUCT CODES

3.1 Product Codes

3.1.1 Preliminaries

Elias introduced product codes in 1954 and Tanner generalized it in 1981. In a codeword of

n1×n2 matrix of symbols, each column is a codeword corresponds to a code of length n1 and each

row codeword corresponds to a code of length n2. If the column and row codes are C1(n1, k1, d1)

code and C2(n2, k2, d2) code respectively, then the resultant product code is a C(N,K,D) lin-

ear code with length N = n1n2, dimension K = k1k2 and minimum distance D = d1d2 [12].

Throughout this chapter, the notation C is used to define a product code formed by component

codes C1(n1, k1, d1) and C2(n2, k2, d2) as column and row codes respectively. The structure of this

product code C can be seen in Figure 3.1.

3.1.2 Encoding Process

The message bits are arranged in the form of k1 × k2 matrix. Each column of this matrix is

encoded using the code C1 resulting in an n1× k1 matrix. Each row of this resulting matrix is then

encoded using C2to a get a codeword of size n1 × n2 of the product code. The generator matrix of

a product codes is a Kronecker product of generator matrices of C1 and C2. Thus for any codeword

c ∈ C1 × C2 can be written as

c = G1
TmG2 (3.1)

where G1 and G2 are generator matrices of C1 and C2 and m denotes the message matrix of

size k1 × k2.

3.1.3 Decoding Process

An iterative hard decision decoding algorithms for product codes was described by Abraham-

son in 1968. The structure of the product code facilitates independent decoding of row and column

codewords. A cascade of row-column decoders are employed at each iteration. All rows are de-
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k1

n1

k2

n2

Figure 3.1: Structure of product code (reprinted form [2])

....

Row Decoder Column Decode

Row DecodeColumn Decode

Figure 3.2: Decoding process of a product code (reprinted form [2])

coded at once using the row decoder of C2 and all columns are decoded with the column decoder

of C1. As with any iterative decoder, iterative process is continued until all the errors are corrected

or the codeword becomes uncorrectable. The decoding process is explained in figure 3.2.

Since the decoder is a cascade of row-column decoding, the entire codeword matrix is not

considered in totality in any decoding step. This results in a decoder which is incapable of correct-

ing some error patters, which are otherwise correctable by the optimal maximum likelihood(ML)

decoder. As the product code is a linear code, the ML decoder should be able to correct upto

bdmin−1
2
c(bc denotes the least integer function) errors, where dmin = d1d2. However, the iterative
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0 0 0 0 0 0 0
0 X 0 0 0 X 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 X 0 0 0 X 0
0 0 0 0 0 0 0

Figure 3.3: A Stopping pattern with 4 errors

decoder is guaranteed to correct upto bd1−1
2
cbd2−1

2
c errors which is less than bdmin−1

2
c. This occurs

due to certain uncorrectable pattern of errors, also known as stopping patterns. This is explained in

more detail in the following example. Consider a (49,16,9) product code formed by (7,4,3) 1-error

correcting Hamming codes as row and column codes. The ML decoder can correct maximum of

4 errors. However, the iterative decoder explained above cannot correct the error pattern given

in figure 3.3, even though the number of errors is 4 (errors are represented by X). This happens

because the row decoder(column decoders) cannot correct rows(columns) 2 and 6, since there are

two errors in these rows(columns) These stopping error patterns give rise to a error floors.

3.1.4 Error floor analysis

To analyze the error floors, the probability of occurrence of all the stopping patterns needs to

be taken into account. However, only the dominant stopping patterns are considered in this work

which provides an approximation for the error floors. Consider the product codeC(n1n2, k1k2, d1d2)

defined in section 3.1.1. The error correcting capabilities of the column code C1 and row code C2

are given by t1 = bd1−1
2
c and t2 = bd2−1

2
c respectively. Thus, a column cannot be corrected by

C1 if it contains more than t1 errors and a row cannot be corrected by C2 if it contains more than

t2 errors.This happens when there are atleast t1 + 1 errors among n1 column positions and atleast

t2 + 1 errors among n2 row positions. Hence, the minimum number of errors Nmin required for a

pattern to become a stopping pattern of this iterative decoder is given by,

Nmin = (t1 + 1)(t2 + 1). (3.2)
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However, the optimal ML decoder can correct a maximum of t errors, where,

t = bdmin − 1

2
c

= b(2t1 + 1)(2t2 + 1)− 1

2
c

= 2t1t2 + t1 + t2. (3.3)

Notice that t > Nmin and the difference t − Nmin being positive is a reason for error floors.

The number of stopping patterns with t1 + 1 errors in each row and t2 + 1 errors in each column

that can occur in the product code C is given by,

NDEP =

(
n1

t1 + 1

)(
n2

t2 + 1

)
. (3.4)

Even though there are many stopping patterns which can contribute to error floors, in low error

rate regime, the dominant stopping patterns are the ones which have t1 + 1 errors in each row and

t2 + 1 errors in each column. The probability of occurrence of these dominant stopping patterns

serves as the lower bound on error floor. This quantity is given by,

Pe = NDEP × pw

=

(
n1

t1 + 1

)(
n2

t2 + 1

)
× p(t1+1)(t2+1), (3.5)

where p denotes the input bit error rate of the channel, w denotes weight of the dominant

stopping pattern.

3.2 Half Product codes

Symmetric product codes, also known as half product codes were first discussed by Justesen

[13]. For any component code C(n, k, d), an n×n symmetric product codeCHPC(N,K,D) can be
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0 0 1 1 1 0 1
0 0 0 1 0 0

0 1 0 1 0
0 1 0 0

0 1 0
0 0

0

(a) Half form of the half product code used for trans-
mission

0 0 1 1 1 0 1
0 0 0 0 1 0 0
1 0 0 1 0 1 0
1 0 1 0 1 0 0
1 1 0 1 0 1 0
0 0 1 0 1 0 0
1 0 0 0 0 0 0

(b) Full code of half product code used for decoding

Figure 3.4: Half and full forms of half product code

formed[12]. In a HPC, rows and columns are formed by the same component code. The diagonal

elements are made to be zeros (Figure 3.4). The HPC CHPC(N,K,D) formed by component code

C(n, k, d) will have N = n(n−1)
2

and dimension K = k(k−1)
2

and minimum distance D that is

described by (3.6) [12].

Dmin ≥



3d2

4
if d is odd,

d(3d+1)
4

if d mod 4 = 1,

d(3d+1)+2
4

if d mod 4 = 3.

(3.6)

Because of the symmetric nature of HPC, only the upper triangular matrix of the codeword

matrix is transmitted. The following example of a half product code formed with (7,4,3) Hamming

code as component code illustrates the structure of both half code (used for transmission) and full

code (used for decoding).

3.2.1 Encoding of HPC

A symmetric k× k message matrix is formed by filling the lower triangular matrix with k(k−1)
2

message bits, the diagonal with all zeros and an upper triangle which is the transpose of the lower

triangle 1. This k×k symmetric message matrix is then encoded into an n×n symmetric PC using

the (n, k, d) row and column component codes similar to the encoding of a PC [2]. Let m denote

1check the paper on "symmetric product codes" by H.D. Pfister, S.K. Emmadi and K. Narayanan for the detailed
analysis on half product codes
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0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 X 0 X

0 X 0
0 X

0

(a) Half form of the half product code

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 X 0 X
0 0 0 X 0 X 0
0 0 0 0 X 0 X
0 0 0 X 0 X 0

(b) Full code of half product code

Figure 3.5: Half and full forms of half product codes illustrating a stopping pattern

a k × k symmetric message matrix, then the codeword c ∈ CHPC corresponding to m is given by,

c = GTmG, (3.7)

where G is the generator matrix of component code C.

3.2.2 Decoding and Error Floor Analysis

The decoding of half product codes is performed with a iterative cascade of row and column

decoding similar to product code decoding. Similar to PC, stopping patterns cause error floors in

HPC. An example for such a stopping pattern of a half product code formed by (7,4,3) Hamming

code as component code is given in figure 3.5 (X denotes error and 0 denotes the correct bit). It

is straight forward to see that the error pattern shown in Figure 3.5b cannot be corrected when this

iterative decoder is used to decode the HPC.

Consider HPC CHPC

(
n(n−1)

2
, k(k−1)

2
, D
)

formed using C(n, k, d) as component code which

can correct t = bd−1
2
c errors. For an error pattern to be uncorrectable, all the erroneous rows and

columns should contain atleast t + 1 errors. Error patterns can be enumerated as shown in figure

3.6 (figure shows only erroneous rows and columns).

It is seen that, in the above pattern there are t + 2 rows and columns with weight t + 1. The

number of such stopping patterns in CHPC is given by NDEP =

(
n

t+ 2

)
. Thus, the probability of

occurrence of these stopping patterns is given by [2],
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0 X1 X2 X3 ... Xt Xt+1

0 X2 X3 ... Xt Xt+1

0 X3 ... Xt Xt+1

. . .
. . .

0 Xt+1

0

(a) Half form

0 X1 X2 X3 ... Xt Xt+1

X1 0 X2 X3 ... Xt Xt+1

X2 X2 0 X3 ... Xt Xt+1

. . . .

. . . . .
Xt Xt Xt 0 Xt+1

Xt+1 Xt+1 Xt+1 Xt+1 0

(b) Full code

Figure 3.6: Illustrating the minimum stopping pattern for half product code in its half and full form
[2].

Pe = NDEP × pw

=

(
n

t+ 2

)
× p

(t+1)(t+2)
2 , (3.8)

where p denotes the input bit error rate of the channel, w denotes weight of the dominant

stopping pattern in its half form.

3.3 Comparison

As HPC uses its half form for transmission while PC uses it full form, for a fair comparison, the

codeword length (block length) should be the same. Thus, the relationship between the parameters

of component codes C1(n1, k1, d2) and C2(n2, k2, d2) corresponding to PC and HPC respectively

should be as given below

n2
1 =

n2(n2 − 1)

2

≈ n2
2

2

=⇒ n2 ≈ n1

√
2.
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Similarly, k2 ≈ k1
√
2 and d2 ≈ d1

√
2. Hence, for the same code rate, HPC has a higher

minimum distance than PC. The minimum number of errors for a pattern to become a stopping

pattern in HPC is given by,

WHPC
min =

(t2 + 1)(t2 + 2)

2
,

where t2 denotes the error correcting capability of the component code C2.

Contrastingly, the minimum number of errors for a pattern to become a stopping pattern in PC

is given by,

W PC
min = (t1 + 1)2,

where t1 denotes the error correcting capability of the component code C1.

Since d2 ≈ d1
√
2, we have t2 ≈ t1

√
2. Thus, the quantity WHPC

min −W PC
min can be computed as

WHPC
min −W PC

min =
(t2 + 1)(t2 + 2)

2
− (

t2√
2
+ 1)2

=
(3− 2

√
2)t2

2

≈ 0.08t2 > 0.

It can be seen from the above equation, that for a given code rate, the size of the minimum

stopping pattern for an HPC is larger than that of a PC. This implies that HPC has a lower error

floor than PC, and this effect is pronounced when block length is large. However, the error floors

resulting from these codes are of magnitudes less than 10−25, a regime not of our current interest.

Hence, it is more meaningful to compare the performance of these two codes in the waterfall

region, where error floors are not the significant cause for error probability. Section 6.1 shows the
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performance comparison between a PC formed by (1023, 993, 7) BCH code and a HPC formed by

(1446, 1402, 9) punctured BCH code as component codes. It is observed that PC outperforms the

HPC in the regime of interest for the codes mentioned above. Also, the computational complexity

of implementing this HPC is higher than that of the PC because of increased codeword length.

This makes the PC formed by (1023, 993, 7) BCH code a more attractive choice than HPC for the

outer code. It is also shown in section 6.1, that threshold probability pth required for the inner code

with PC used as an outer code is 4× 10−3, when the target error rate is fixed at 10−15.

19



4. CONCATENATED CODES

The Concatenated code employed in this work contains a soft decision inner LDGM code and

an outer product code (Figure 4.1). This construction was proposed in [1] with the stair case code

as outer code. The job of the inner LDGM decoder is to reduce the bit error rate to a target threshold

and the product code further brings this down to the error floor.

4.1 Encoding and Decoding Operations

The information bits are arranged into a M ×M matrix which is encoded into a N ×N matrix

with a product code encoder. A random permutation π which is known at the decoder is then

applied on the encoded N × N matrix. The inner code consists of S parallel LDGM codes, each

with dimension k. Hence, N2 bits are divided into S blocks, Each containing k bits, which implies

S = N2

k
(it is assumed without loss of generality that k divides N2). The LDGM encoders add m

parity check bits to each block of size k. Thus, Sk bits are encoded into S(k+m) bits by the inner

LDGM encoders. The rate Rpc of the outer product code is defined as Rpc = M2/N2. Similarly,

the rate R of the LDGM code is R = k
k+m

. Hence, the overall rate of the concatenated code is

given by Rcat = RpcR.

At the output of the channel, S blocks are received which are passed through a soft decision

LDGM decoder which decodes to decode k bits out of k + m received soft values for each of

ChannelChannel

Inner LDGM
Decoders

Decision
Blocks

Outer Hard Decison
Decoder

soft values soft LLRs hard bits

{0, 1}

Figure 4.1: Overall Channel Model
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blocks. These soft values are then classified as 0,1 or erasure. The inverse permutation π−1 is then

applied on the Sk = N2 decisions of the LDGM decoders. The resulting bits are now rearranged

into a block of N2 bits and passed through the product code decoder.

4.2 LDGM code Design

Given a product code, the inner LDGM code must decode a received codeword, to an error rate

specified by the threshold probability pth. pth is determined by the choice of outer code. Also, the

rate of inner LDGM code should satisfy the constraint Rcat = RRpc
1.

Progressive edge growth (PEG) algorithm is used to design the LDGM code. PEG has its

advantages and disadvantages. For a given variable and check node degree distribution, PEG

establishes a bipartite graph in such a way it completely avoids l-cycles (l is a parameter of choice).

However, PEG takes a lot of time to establish a graph. By the name PEG, the graph is constructed

edge by edge. For every edge it establishes, the graph is checked for a depth of l to avoid l

cycles. Since, this steps account to preprocessing, they cannot be considered as decoder or encoder

complexity.

The check node to variable LLR messages at the end of each iteration i can be modeled as a

random variable Y i which follows a symmetric Gaussian distribution N(µi, 2µi). This can be seen

as a common assumption in LDPC and LDGM codes in [8], [9], [14]. The decoding of LDGM

is similar to that of the decoding of an LDPC code. From Figure 2.3, consider all circle nodes as

variable nodes and square nodes as check nodes. Every step shown in the decoding of LDPC code

can be followed between these variable nodes and check nodes. The exchange of messages from

parity nodes to check nodes do not change over the the iterations due to a single link connected

between them.

4.3 Product code Design

The outer code used for this analysis to meet the requirements of code rate and error floor are

product codes. A PC is formed by the 3-error correcting (1023,993,7) BCH component code as

1Detailed information on the design for concatenated code is from the work on "Low Complexity soft-decision
concatenated LDGM-staircase FEC for high-bit-rate fibre-optic communication" by L.M. Zhang and F.R. Kschischang
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row and column codes. The code rate for this PC is Rpc = 9932

10232
≈ 0.94. The decoding will be

carried out as explained in section 3.1.3.

Due to iterative nature of the outer decoder, introducing erasures at the input of outer decoder

can be useful because of the increased size of the dominant stopping patterns it generates. This

phenomenon is discussed in detail in subsequent chapter.

22



5. INTRODUCTION OF ERASURES

The concatenated coding scheme proposed in [1] makes a hard decision on LLRs obtained

from the inner LDGM decoders and given to the outer hard decision decoder as shown in Figure

4.1. In this thesis, an enhancement to the decoder shown in [1] is proposed by introducing erasures.

The erasures are introduced on the LLRs at the output of LDGM decoders. In contrast to outer

decoder in [1], the outer decoder in this proposed scheme can decode combinations of erasures and

hard bits (Figure 5.1). Erasures can be introduced in different ways. One approach is to introduce

erasures with threshold γ on the LLRs. As discussed in the previous section, it is assumed that

output LLRs at variable nodes follow symmetric Gaussian distribution. To analyze the behavior

of decoder with erasures, the overall channel observed by the product code decoder is modeled

as shown in figure 5.2b. Each bit in the PC is considered as a BPSK signal sent over an AWGN

channel. The soft values y received from the channel at the decision block (from Figure 5.1) are

yi = xi + ni ∀ i ∈ {1, 2, 3, ..., N} (5.1)

where xi ∈ {±1} denotes the transmitted BPSK symbols and ni ∈ N (0, σ2) denotes AWGN

noise

The received value yi is mapped to either 0 or 1 or erasure producing a zi by the decision

ChannelChannel

Inner LDGM
Decoders

Decision
Blocks

Outer Error-Erasure
Decoder

soft values soft LLRs
hard bits,
Erasures

{0, 1, E}

Figure 5.1: Proposed Channel Model
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−γ 0 γ
√
Eb−

√
Eb

Region1 Region2 Region3

(a) BPSK divided into regions

1− β − α

α

β

β

α

1− β − α

0

1

0

E

1

(b) Channel observed by PC decoder

Figure 5.2: Figure for illustrating the channel model

block. Decision block introduces an erasure with probability α and 0 or 1 with probability 1− α.

Erasures are declared when the soft value lies between −γ and γ. as shown in figure 5.2a. The

error is defined either when +1 lands in region 1 or −1 lands in region 3.

The analytical expression for output of the channel zi is given by,

zi =


+1 if yi > γ,

−1 if yi < −γ,

E else,

(5.2)

where E denotes erasure.

For this model, error is declared if zi equals ±1 when xi is ∓1. Hence, probability of error β

is computed as

β = P (zi = 1, xi = −1) + P (zi = −1, xi = 1)

= P (zi = 1|xi = −1)P (xi = −1) + P (zi = −1|xi = 1)P (xi = 1)

=
1

2
[P (zi = 1|xi = −1) + P (zi = −1|xi = 1)] . (5.3)

Similarly, erasure probability α can be computed as
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α = P (zi = E, xi = −1) + P (zi = E, xi = 1)

= P (zi = E|xi = −1)P (xi = −1) + P (zi = E|xi = 1)P (xi = 1)

=
1

2
[P (zi = E|xi = −1) + P (zi = E|xi = 1)] (5.4)

Both equations (5.3) and (5.4) contain two terms. Since the channel shown in figure 5.1 is

symmetric, both terms result in same magnitude. Hence, it is sufficient to calculate only one term.

The erasure probability is calculated as below

α =

∫ γ

−γ
N (−1, σ2)dx

=

∫ ∞
−γ
N (−1, σ2)dx−

∫ ∞
γ

N (−1, σ2)dx

= Q

(
−γ + 1

σ

)
−Q

(γ + 1

σ

)
. (5.5)

Similarly, the error probability is calculated as

β =

∫ ∞
γ

N (−1, σ2)dx

= Q

(
γ + 1

σ

)
. (5.6)

5.1 Enumeration of stopping patterns

With the error and erasure probabilities for each bit in PC are defined, it is important to define

the error event in product codes. An iterative decoder cannot correct a codeword, if it encounters

some pattern of errors and erasures. These patterns are termed as stopping patterns, as iterative

decoder stops when these patterns are encountered. Stopping patterns are responsible for the error

in a product code and key for finding the probability of codeword error. Probability of codeword
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X X X X
X X X X
X X X X
X X X X

(a) Stopping pattern 1

X E E X X
E X X X E
X X X E E
E X X E X
X E E X X

(b) Stopping pattern 2

X E E E E X
E X E E X E
E E X X E E
E E X X E E
E X E E X E
X E E E E X

(c) Stopping pattern 3

X E E E E E E
E X E E E E E
E E X E E E E
E E E X E E E
E E E E X E E
E E E E E X E
E E E E E E X

(d) Stopping pattern 4

E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E
E E E E E E E E

(e) Stopping pattern 5

Figure 5.3: Stopping pattern for PC formed by (1023,992) component code

error is defined as the probability that a codeword is uncorrectable by the decoder. Dominant

stopping patterns are patterns which considerably contribute to the probability of error. The outer

product code formed by the (1023,992,8) 3-error correcting BCH code is considered to attain

required code rate and error floor. Some stopping patterns for this PC is shown in Figure 5.3.

In addition to patterns shown, there are other stopping patterns which contribute to error floors.

Adding a row or column, or both, error-erasure combinations to the patterns shown in 5.3 will also

become a stopping pattern. Any E replaced with X in any pattern is also a stopping pattern.

The other code of interest is a PC formed by a (15, 11, 4) 1-error correcting BCH code. This

code is considered due to its higher error floors. To show the real time performance of erasures,

error floors should be simulated. Simulating error floors for (10232, 9922, 82) PC is very time

and resource consuming, while error floors for (152, 112, 42) is can be simulated with reasonable

hardware. Some of the stopping patterns for this code are shown in Figure 6.3. Any E replaced

with X in 5.4 is also a stopping pattern and is demonstrated in the mathematical modeling.

5.2 Correcting capability of product code decoder

With the complete channel modeled, errors and erasures are introduced in a product code with

probabilities β and α respectively. The bounding distance for the combination of erasures and

26



X X
X X

(a) pattern 1

X E E
E X E
E E X

(b) pattern2

E E E E
E E E E
E E E E
E E E E

(c) pattern3

Figure 5.4: Stopping pattern for PC formed by (15,11) component code

errors is stated in the theorem below. Bounding distance is defined as the combination of number

of errors and erasures that are correctable by the decoder.

Theorem 5.2.1 (Bounding Distance of PC). For a product code C(N,K,D) formed by column

component code C1(n1, k1, d1) and row component code C2(n2, k2, d2), any pattern of x errors

and e erasures are correctable if 4x+ e < d1d2 with iterative cascade row and column decoding.

Proof. Consider a product code C(N,K,D) formed by column component code C1(n1, k1, d1)

and row component code C2(n2, k2, d2). The number of errors in a PC provides a lower bound on

the number of erasures required to be a stopping pattern. This will provide a lower bound on the

dimensions of the stopping pattern i.e. number of erroneous rows and columns. For any x number

of errors in the product code, it is sufficient to prove the lower bound on the number of erasures

required to be a stopping pattern should satisfy 4x+e ≥ d1d2. Through out this proof, considering

an example PC Q formed by row and column codes with minimum distances 6 and 8 respectively.

To obtain the lower bound on the number of erasures, the smallest possible stopping pattern should

be determined. For any x number of errors in the pattern, there exists a largest possible q and k

(q, k ≥ 0) such that each erroneous row and column contains at least q and k errors respectively

(Refer to the example pattern in Figure 5.5a of Q with q = 1 and k = 1). There exists at least

one row with exactly q errors. That row cannot by corrected by C2 if and only if at least d2 − 2q

erasures exist. At least one row contains q errors and d2 − 2q erasure, making the length of the

stopping pattern to be d2− q. Similarly, there exists at least one column with exactly k errors. That

column cannot be corrected by C1 if and only if at least d1−2k erasures exist. At least one column

contains k errors and d1− 2k erasures, making the height of the stopping pattern to be d1− k. The
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Figure 5.5: Stopping patterns for a code Q with minimum distances of column and row codes are
d1 = 8 and d2 = 6 respectively. In both the patterns, X represents error, E represents erasure
and D represents don’t care (a) Illustrating a stopping pattern with x = 7, q = 1 and k = 1 (b)
Illustrating a stopping pattern with x = 9, q = 1 and k = 1

size of the resultant stopping pattern will be (d1 − k) × (d2 − q). As, at least q errors are present

in each row of length (d2 − q),

d2 − q ≥ q

d2 ≥ 2q (5.7)

As the total number of errors equal x, any row or column may contain more than q and k errors.

The total number of such errors equals x− q(d1 − k) or x− k(d2 − q). These two quantities need

not be equal.

To obtain the minimum number of erasures required, the maximum number of don’t cares(Ds)

present in the stopping pattern should be determined. Don’t cares are positions which can be either

an error or an erasure or a correct bit. To prove the theorem, the least number of errors and erasures

are desired, consider the don’t cares to be positions of correct bits in the stopping pattern without

loss of generality.

If observed by row, q(d1 − k) errors are fixed in position. So, it is necessary to arrange the

remaining x − q(d1 − q) errors in the pattern. Say, any ath (a ∈ {1, .., d1 − k}) row contains

q + ia(ia ≥ 0) errors. The maximum number of don’t cares that can be introduced in a row with
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q+ ia errors will be ia without altering the size of the stopping pattern. Thus, a row can have q+ ia

errors, ia don’t cares and d2 − 2(q + ia) erasures (Refer 6th and 7th row in Figure 5.5b of Q with

d1 = 8, d2 = 6, x = 9, q = 1 and k = 1 ). This can not be corrected by the row component code.∑d1−k
a=1 ia equals the extra errors which is equal to x − q(d1 − k). This is also equal maximum

number of don’t cares possible, if seen by row.

Similarly, if observed column wise, the maximum number of don’t cares possible are x−k(d2−

q), if seen column wise.

Thus the maximum number of don’t cares possible in a product code is min {x−q(d1−k), x−

k(d2− q} (where min{.} indicates minimum function). To proceed with the proof, without loss of

generality assume x− (d1 − k)q is minimum (Refer to the example pattern in Figure 5.5b), which

implies

x− q(d1 − k) ≤ x− k(d2 − q)

=⇒ q(d1 − k) ≥ k(d2 − q) (5.8)

Total number of errors(x) = x

Maximum number of don’t cares possible(D) = x− q(d1 − k)

Total number of erasures(e) present in the stopping pattern is given by

e ≥ (d1 − k)(d2 − q)− x− (x− q(d1 − k))

= (d1 − k)d2 − 2x (5.9)

Consider the equation 4x+ e with above x and e.
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4x+ e = 4x+ (d1 − k)d2 − 2x(from (5.9))

= 2x+ (d1 − k)d2 (5.10)

As x− q(d1 − k) cannot be negative, it is easy to see

x ≥ q(d1 − k) (5.11)

Substituting (5.11) in (5.10) yields

4x+ e ≥ 2q(d1 − k) + d2(d1 − k)

≥ 2k(d2 − q) + d2(d1 − k) (from (5.8))

= d1d2 + k(d2 − 2q)

≥ d1d2 (from (5.7)) (5.12)

5.3 Analytical Model for Error Floors

The error floor for the (152, 112, 42) PC is calculated with known probabilities. This model

assumes a genie decoder which contains component decoders that are capable of not performing

miscorrections. Miscorrection occurs when a decoder wrongly corrects a erroneous codeword.

Real time decoders can miscorrect a erroneous codeword, while the genie decoder (ideal) provides

a decoding failure in such a case.

Each pattern k (k ∈ {1, 2, 3} for this product code from figure 5.4) occurs with the probability

pk. The equations quoted below gives the probability of occurrence of each stopping pattern.
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P1 =

(
15

2

)
×
(
15

2

)
× β4 (5.13)

P2 =

(
15

3

)
×
(
15

3

)
×Nc × β3 × (α + β)6 (5.14)

P3 =

(
15

4

)
×
(
15

4

)
× (α + β)16 (5.15)

Similar to the above, the probability for each dominant stopping pattern in product code formed

by (1023,992,8) BCH component code shown in figure 5.3 is derived as,

Pk =

(
1023

b

)
×
(
1023

b

)
×Nc × βl × (α + β)m (5.16)

where k indicates pattern number, Nc indicates the number of combinations possible once

positions are fixed, l and m indicates the number of errors and number of erasures respectively in

each pattern. The values of these parameters are provided in table 5.1 for each pattern.

k b Nc l m
1 4 1 16 0
2 5 2040 15 10
3 6 67950 12 24
4 7 7! 7 42
5 8 1 0 64

Table 5.1: Table for the mathematical values of error probability for (10232, 9922, 82).

The values of Nc for k= 2 and 3 (Table 5.1) is determined by exhaustively running all the

combinations of b × b matrix with l errors and m erasures.

All the above equations are the functions of σ and threshold γ. The mathematical approxima-

tion for the error is chosen as,
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Pe ≈ max
k
Pk, (5.17)

where k ∈ {1, 2, 3, ....} represents the index of a stopping pattern among all possible stopping

patterns. Stopping patterns with greater probability of occurrence are considered to be dominant

stopping patterns as shown in figures 5.4 and 5.3, but not limited to them. Equation 5.17 considers

all possible stopping patterns for a given product code.

5.4 Optimal threshold

With many different choices of thresholds to declare erasure, the question remains to find the

optimal threshold. The closed form expression for the optimal threshold cannot be realized with

this model in section 5.3, but it can be computed numerically when all the stopping patterns are

considered. The expression for optimal threshold is given by,

Optimal Threshold (γ) = min
γ

max
k
Pk(σ, γ) (5.18)
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6. RESULTS AND DISCUSSION

6.1 Comparison between Product and Half Product codes

Emmadi has discussed some results in his thesis [2] about comparison between PC and HPC.

It states that PC perform better than HPC if codeword length and error correcting capabilities are

large.This was shown using a HPC of length 1023 and error correcting capability 26. But, HPC

performs better than PC for relatively smaller lengths and error correcting capabilities. This was

illustrated using a HPC of length 255 and error correcting capability 6. As discussed earlier the

product code which can meet the requirements of both code rate (≈ 0.9) and error floor (< 10−15)

is formed by a 3 error correcting (1023, 993, 7) BCH component code. This code doesn’t fall into

any of the above discussed categories, which makes it essential to compare the performances in

this case. The equivalent HPC will be formed by a 4 error correcting (1446, 1402, 9) BCH code.
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PC 1023 BER 3 error correcting
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Figure 6.1: Comparison plot between HPC and PC
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As limited by hardware, the simulations are presented until the bit error rate of ≈ 10−10.

The codeword error rate is defined as the ratio of uncorrected codewords to the total number of

codewords sent, while bit error rate is defined as the ratio of total number bits in error to total

number of bits sent over the channel. X-axis denotes the cross over probability in a standard

binary symmetric channel(BSC). Y-axis denote error rate probability, we can see both codeword

error rate and bit error rate in the same graph. For an AWGN channel N (0, σ2), the crossover

probability p is defined as Q
(

1
sigma

)
.

6.1.1 Observations

It is clearly seen that product code performs better than the half product code in the waterfall

region. It can be seen that the slope of HPC is decaying faster than that of PC. As we know the

error floor for this PC and HPC is lower than 10−15, though HPC may cross PC somewhere at a

lower error rate, but not at rates higher than 10−15. This can be concluded with a naive extension

using the current trend of the slope. Base on this, we propose PC as the choice of outer code. This

graphs also explains the pth required for the outer code to perform in the error rate of below 10−15.

With the slope, pth can be approximated as 4× 10−3 for PC.

6.2 Results based on erasures

6.2.1 Simulations of Product code with (15,11) BCH codes as component codes

Consider the channer model shown in figure 5.2. Erasures are declared if the received value

from the channel falls in region 2. Introduction of erasures in a BCH code degrades the perfor-

mance. This is illustrated in figure 6.2 with the example of a 3-error correcting (1023,993,7) BCH

code. Threshold γ = 0 indicates error only scenario, while other thresholds provides the combina-

tion of errors and erasures with probabilities computed as in equations 5.6 and 5.5.

Introduction of erasures in PC and HPC with iterative decoders improves the error rate perfor-

mance. A product code P formed by a C(15, 11, 4) BCH code is used as an example to illustrate

the effect of erasures. The actual code of interest is a PC formed by a (1023,992,8) BCH compo-

nent code. P is almost similar to this kind of frame work and it is chosen because of its high error
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Figure 6.2: Performance under erasures with BCH decoder of(1023,993)

floor and lower computational complexity. The mathematical approximation for error probabilities

are calculated according to equation 5.17.

Figure 6.3 shows graphs for the simulated codeword error rate for P along with the approxima-

tions derived in section 5.3. In Figure 6.3, dashed lines indicates the mathematical approximation

for codeword error rate, while solid lines indicates the corresponding simulated results. From the

observations, erasures introduced with various thresholds are performing better than error only

(γ = 0) scenario. The simulated codeword error rates less than 10−6 are not accurate due to the

computational limit (number of codewords considered is 107) in the simulations. The gap be-

tween the simulated and mathematical approximation is very minimal. This gap occurs due to

miscorrections and also when more than one stopping pattern occurs dominantly. This shows the

approximation is reasonable and can be used as a measure for calculating codeword error rate

probability.

6.2.2 Simulations of Product code with (1023,992,8) BCH code as component codes

Discussion in the above section concludes that introduction of erasures in PC provides large

coding gains at the error floors. Mathematical approximations derived for codeword error prob-
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Figure 6.3: Performance of PC formed by (15,11)with erasures

abilities are close approximations only at error floors. Consider a PC formed by a (1023,992,8)

BCH code. The mathematical approximation for codeword error rate is shown in Figure 6.4.

The codeword error rate performance improves until the threshold γ is increased to ≈ 0.4,

then it gradually starts deteriorating for any increment in threshold. The error floor for this codes

with the advent of erasures are way lower than the requirement. In the waterfall region (not error

floor), real curves wont follow this trend, as iterative decoder fails in the primary step due to too

many erasures and errors at lower SNRs. The error floors cannot be simulated with the available

hardware resources. The simulations for the PC with (1023,992,8) are presented in Figure 6.5 only

when threshold γ = 0.035, which seemed optimal upon various choices for the water fall region

against error onlyγ = 0 scenario. The curves for higher thresholds have steeper slopes as SNR

increases.
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Figure 6.4: Mathematical approximation of PC formed by (1023,993) with erasures
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7. CONCLUSIONS

Bounded distance for the product code is proposed i.e, a codeword from the product code

formed by C1(n1, k1, d1) and C2(n2, k2, d2) as component codes with x errors and e erasures can

be corrected if it follows 4x+e < d1d2. It is concluded that introduction of erasures attains coding

gain. Erasures are introduced with threshold γ from channel model shown in figure 5.2. Equation

5.18 provides the optimal threshold to chose at a particular SNR. There are many other ways of

choosing the threshold. One way is to check for the LLR value at different iterations on left nodes,

if the sign toggles, that node can be declared an erasure. One other way can be based on the

messages incident on variable node. if the signs of them vary during iterations, we can declare it

as an erasure. These optimizations can be applied and the analysis provided in this work hold true

for any method of erasure introduction and define some erasure probability (α) and error probaility

(β). Mathematical approximations for codeword error rates at error floors are derived.
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