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ABSTRACT

In this dissertation, two problems are studied by computational mechanics. The first problem is

the development and application of open-source software OpenFOAM to solve a coupled system

from shape optimization on a time-dependent changing domain to minimize a cost functional.

Previously, researcher have treated this problem in 2D space, but here the author will extend the

computation to 3D space. She will use the finite volume methods and OpenFOAM to build time-

varying domains for optimization.

The second problem is about computational forensics. The author will discuss some photo-

graphic evidence, introduce mathematical modeling and do computational modeling regarding this

particular Daallo Airlines bombing case, in which only a small amount of explosives was used.

Mathematical and computer modeling of viscoplasticity, fracture and explosion by LS-DYNA will

be used to study this problem and we computed on the supercomputer at Texas A&M University’s

High Performance Research Computing Center. All of the numerical results of airplane bombing

can be seen in the many video animations we made from the post-processed supercomputer results.

The associated physical phenomena will also be interpreted.
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1. INTRODUCTION

This dissertation is built on the following two main topics:

(P1) 3D shape optimization by a finite volume method using OpenFOAM as the platform;

(P2) computation of a laptop bombing case by the finite element method based on the mechan-

ics of solid, fracture and explosion, using LS-DYNA software.

These two themes look, at first, to be disjoint and dissimilar, as they deal with seemingly totally

different topics. However, there is a unifying theme, namely, the application and development of

the state-of-the-art computational methodologies and software to solve problems of contemporary

interest in applications.

Both problems (P1) and (P2) are challenging, at least as far as actual computations are con-

cerned, because we are dealing with 3D geometries. Regarding (P1), nearly all computational

studies published earlier dealt with 2D geometry. The reason is quite simple - 3D geometries are

far more complex in general, requiring a significant amount of computer code development even

for an experienced programmer. But, with the advent of OpenFOAM, available less than a decade

ago using the finite volume method, the treatment of 3D geometries has been greatly simplified.

Better still, the developed codes in OpenFOAM are open-source and, thus, can be easily modified

for our own purposes. Those existing codes are written in object-oriented C++ language enabling

the researcher to easily understand and adapt. Such a luxury was not available at all a few years

ago, and even now, we still have not seen much (or, possibly, any) shape-optimization computation

work using the finite volume method and OpenFOAM. In this regard, the author may likely be

entitled the claim of priority for the advance in this direction by her work here.

For (P1), the author will first introduce the background and motivation to solve a coupled

systems for the optimization problem. Next, in Section 2.2 we will introduce the software Open-

FOAM and also the way to use OpenFOAM for the computational modeling when the domains

are time-varying. Section 2.3 deals with the 2D cases, but the author extends the study to 3D in

Section 2.4.
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Next, with regard to (P2), our work here is probably also one of the first to study the math-

ematical modeling and supercomputing of an airplane bombing case, which would be of strong

interest to homeland security. Bombing is perhaps the most favorite tactics by terrorists, and it

can cause a large number of casualties up to several hundreds. Everywhere in the world, terror-

ists have not given up their attempts to blow up airplanes; the most recent incident happened in

2016. Therefore, it is necessary to elucidate what would happen when an aircraft is bombed. How-

ever, a real physical experiment of aircraft bombing would be very expensive. On the other hand,

the computer-based high-fidelity simulation is much cheaper and easier to achieve the result. It

is hard to imagine that computational mechanics can do such a wonderful job on a real physical

phenomenon simulation. Numerical simulation of explosion involves high complexities that have

to be captured in order to successfully predict their behavior. These complex phenomena include

aerodynamics, solid and fracture mechanics, detonation process, crack and fracture (erosion).

In (P2), the authors will first present examples of several past airplane bombing cases. We

explore what may happen when a large amount of explosives are detonated inside a cabin; some

photographic evidence will also be discussed. The authors will then introduce the modeling and

computational forensics Regarding this particular Daallo Airlines bombing case, in which only a

small Amount of explosives were used. Mathematical and computer modeling of viscoplasticity,

fracture and explosion by LS-DYNA will be used to study this problem.

In summary, the above work done by the author represents new advances in computational

mathematics and mechanics. The work of shape optimization (i.e., (P1)) is useful in selecting the

best shape that minimizes a given cost, and the simulation of Daallo Airline laptop bombing will

be helpful to study of homeland security. The author is excited and gratified that she has learned

these state-of-the art methodologies and software (such as OpenFOAM and LS-DYNA) for treating

problems of contemporary interest.
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2. NUMERICAL MODELING AND COMPUTATION OF 3D SHAPE OPTIMIZATION

PROBLEMS BY OPENFOAM

2.1 Introduction

Shape optimization is a problem belong to the optimal control theory field and it is an important

problem in engineering design and optimization. For example, ([4]) has helped the (real-world)

problem of the design of a Canadian satellite. This work [4] finds the optimal shape of a minimum-

weight thermal diffuser with a priori specifications on the inward thermal power flux (TPF) and a

bound on the outward TPF. There are, naturally, many other applications. Structural engineer might

want to know what is the shape of an airplane wing has minimal drag when a minimal wing strength

is required. Generally speaking, in shape optimization, the domain needs to be optimized according

to certain distributed or boundary control forces and design specifications. The classical problem is

to find the best shape which is optimal and which can simultaneously minimize the cost functional

J while satisfying given constraints. For the airplane wing problem, the cost functional is the wind

drag and the given constraint is the wing strength. The most important part of the optimization

problem is to determine the shape gradient. When computing the gradient, it is common to use the

finite element method for implementation.

There are three ways to treat of shape optimization. The first is a Lagrangian approach. It

considers a sufficiently large number of point to get accurate outline of the shape then moving the

boundary points to evolve the shape. The second is an Eulerian approach. It defines a function

to be zero on the boundary of the shape, negative outside of the shape and positive inside of the

region. Then it considers a rectangular grid on the box around the shape and value the functional

at the grid points. When the shape is evolving, only the functional will change, but not the grid

points. The last one uses a flow function. It considers that any point belonging to the shape can be

traced back to a point of the original shape in a one-to-one mapping. That is, a diffeomorphism ft

exist. ft : Ω0 → Ωt, t ≥ 0.
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The finite element method is perhaps the most standard way to treat non-rectangular geometry

in multiple dimensions. In Sokolowski et al. [5], chapter 7 the important Hadamard formula

shows that the Eulerian upper semiderivative of the shape functional J is a boundary integral. The

boundary element method (BEM) utilizes this and reduces all calculation on the boundary. BEM

avoids internal discretization, which provides more efficiency and accuracy.

This chapter follows Chen et al’s [6] and extends their examples into 3D cases via an open

source software OpenFOAM [7].

The shape optimization problem requires problem-solving on a changing domains Ωt according

to the flow 
d
dt
x(X, t) = V (x(X, t), t), x(X, t) ∈ Ωt ⊂ RN , t ≥ 0,

x(X, 0) = X ∈ Ω0,
(2.1)

where the V (x, t) is the velocity (vector) field. The time-varying Ωt can also be defined as

Ωt = {x(X, t)|∀X ∈ Ω0}

Let a target function zd be defined in RN , and

zd ∈ H
r+ 1

2
loc (RN), r > 0. (2.2)

Therefore, zd ∈ Hr
loc(M) for any (N-1) dimensional manifold M in RN . Let f be a given

distribution function defined on RN . Now consider the linear-quadratic-regulator (LQR) problem

on the moving domains Ωt:

(LQR)



inf
t≥0

inf
u
J(Ωt, u) ≡

∫
∂Ωt

[|w(x)− zd(x)|2 + γu2(x)]dσ,

subject to

∆w(x) = f, x ∈ Ωt,

∂w
∂n

= u ∈ L2(∂Ωt).

(2.3)
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On a fixed Ωt with sufficiently smooth boundary ∂Ωt and sufficient by regular f , the LQR

problem has a unique optimal control ût ∈ L2(∂Ωt)(by Chen et al [6]). Define

J t(Ωt) ≡ J(Ωt, ût).

For problem (2.3) with a fixed t ≥ 0, the solution w will satisfy the following compatibility

condition: ∫
∂Ωt

wdσ =

∫
Ωt

f(x)dx

Problem (2.3) has infinitely many solutions w(x) as shown below if wp(x) is a particular solu-

tion of problem (2.3).

w(x) = wp(x) + c, ∀c ∈ R.

Therefore, the cost function J in problem (2.3) as defined by infinitely many w(x), it has the

effect of determining the free constant c in a unique way.

We first study the problem (LQR) on the fixed domain Ωt ≡ Ω. By introducing an adjoint

state p and using calculus of variations (by [8]), we obtain the following optimality system (OPT)

characterizing the unique optimal control û:

(OPT )



primal system


∆w = f on Ω,

∂w

∂n
= û on ∂Ω;


adjoint system


∆p = 0 on Ω,

∂p

∂n
= w − zd on ∂Ω;


optimality condition p+ γû = 0 on ∂Ω

(2.4)

In the rest of the chapter, we will simply discuss the case where û = − 1
γ
p(x). Therefore, this

chapter is handles with the coupled system p, w as follows:
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
∆p(x) = 0 on Ωt,

∂p(x)

∂n
= w(x)− zd(x), x ∈ ∂Ωt;

(2.5)

and 
∆w(x) = f(x) on Ωt,

∂w(x)

∂n
= −1

γ
p(x), x ∈ ∂Ωt;

(2.6)

Then we have

J t(Ωt) = J(Ωt, ût) =

∫
∂Ωt

[
∂p(x)2

∂n
+

1

γ
p2(x)

]
dσ

The main purpose of this chapter is to calculate the shape gradient δJ t, in order to determine

when the shape functional J will be minimized and what the value of J is. We will redo the two

examples (from Chen [6]) in OpenFOAM so we can visualize them in an easier way to validate

their examples.

2.2 The Computational Method

2.2.1 Software OpenFOAM

OpenFOAM (Open source Field Operation and Manipulation) [7] is a free, open-source soft-

ware for solving continuum mechanics problems, including computational fluid dynamics (CFD).

The name, OpenFOAM, was registered by OpenCFD Ltd. in 2007. It is based on the finite vol-

ume method (FVM) and it develops a syntactical model of equation mimicking by using C++

and object-oriented programming. Thus, people can easily create their own customized numerical

solvers with OpenFOAM. One feature of OpenFOAM is its syntax. The syntax for tensor opera-

tions and partial differential equations are close to the mathematical representation of the equation.

One can easily translate between the syntax and the equation.

There are many number of solvers that have been developed in OpenFOAM, including basic

CFD solvers, DNS and LES, buoyancy-driven flow solvers, multiphase flow solvers, solvers for

conjugate heat transfer, molecular dynamics solvers, particle-tracking solvers, electromagnetics

solvers, direct simulation Monte Carlo solvers, solvers for combustion problems, compressible
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flow solvers with RANS and LES capabilities, incompressible flow solvers with RANS and LES

capabilities and solid dynamics solvers.

One can use OpenFOAM to generate their mesh and then pick a proper solver and utilities (for

example, the setup for boundary conditions, parallel processing, pre-processing, post-processing,

etc.)

There’s many research done by OpenFOAM. It can works on some real world problems like

wind flows simulation, [9] to test the interaction between wind turbine in order to get the best way

position turbines. [10] studying cavitation nuisance for hydrodynamic machinery by using Large

Eddy Simulation (LES) and finite rate mass transfer modeling together with a mixture assump-

tion. It simulate the presence of several cavitation mechanisms. The OpenFOAM can also solve

some pure PDE problems, like want I will show in this chapter. For more cases, [11, 12] using

OpenFOAM to get the numerical solution on the Kirchhoff type problem.

2.2.2 Modeling

OpenFOAM allows users to change and define their own programs. The version that we use to

solve the coupled system is OpenFOAM - 2.3.0. To solve PDE problems, we first need to define

and mesh a domain.

When meshing with OpenFOAM, we use BlockMesh utility. The first step is to describe the

whole domain with grids and to separate the gridded domain into many hexahedrons or wedge

shaped blocks. For the shape optimization problems, this is not an easy step. The next step is

to use all the vertices from blocks describing the boundary face, which is needed for setting-up

boundary condition. Notice that user needs to define the coordinate of all the vertices and describe

the function for the edge to connect between vertices. Since there are many types of domains that

I have tried for shape optimization problems, I have written several customized edge utilities to

satisfy the requirement.

I noted that there are three ways to track the shape and the last one is the reason we can track

our mesh with OpenFOAM. I not only need to mesh a domain, but also have to find a way to make

the domain change corresponding to the give changing function. Since the domain is not fixed, the
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dynamicMeshDict file in constant directory is needed. In order to let the domain changing as the

way we like. I write boundary editing tool for different changing domains. For example, the first

2D case has the following codes describing the motion.

void l i b M y C h a n g e P a t c h V e c t o r F i e l d : : u p d a t e C o e f f s ( )

{ i f ( t h i s −>u p d a t e d ( ) ) { re turn ; }

c o n s t polyMesh& mesh = t h i s −> d i m e n s i o n e d I n t e r n a l F i e l d ( ) . mesh ( ) ( ) ;

c o n s t Time& t = mesh . t ime ( ) ;

c o n s t p o i n t P a t c h& p_ = t h i s −>p a t c h ( ) ;

v e c t o r F i e l d pNew_=p_ . l o c a l P o i n t s ( ) ;

v e c t o r F i e l d p0Rel = p0_ − o r i g i n _ ;

v e c t o r p 0 r o t ;

v e c t o r p0New ;

v e c t o r F i e l d sd ( p0Rel , 0 ) ;

f o r A l l ( p0_ , i t e r )

{ p 0 r o t = p0Rel [ i t e r ] ;

p0New = pNew_ [ i t e r ] ;

sd [ i t e r ] = v e c t o r ( cosh ( t . v a l u e ( ) ) ∗ p 0 r o t [ 0 ] / cosh (0 .5) − p 0 r o t [ 0 ] ,

s i n h ( t . v a l u e ( ) ) ∗ p 0 r o t [ 1 ] / s i n h (0 .5) − p 0 r o t [ 1 ] , 0 ) ;

} ;

v e c t o r F i e l d : : operator =( sd ) ;

f i x e d V a l u e P o i n t P a t c h F i e l d < v e c t o r > : : u p d a t e C o e f f s ( ) ;

}

void l i b M y C h a n g e P a t c h V e c t o r F i e l d : : w r i t e ( Ostream& os ) c o n s t

{ p o i n t P a t c h F i e l d < v e c t o r > : : w r i t e ( os ) ;

os . wr i teKeyword ( " o r i g i n " )<< o r i g i n _ << t o k e n : : END_STATEMENT << n l ;

p0_ . w r i t e E n t r y ( " p0 " , os ) ;
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w r i t e E n t r y ( " v a l u e " , os ) ;

}

Next, it is also important to write a solver to solve the coupled system. We set up the given

function f as fun and use OpenFOAM - 2.3.0 to solve the system by:

s o l v e ( fvm : : l a p l a c i a n ( P ) ) ;

s o l v e ( fvm : : l a p l a c i a n (W)− fun ) ;

We also set up the equation for boundary condition in the system/codeDict directory with the

coded streams: codedP, and codedW.

codedP

{

code

#{

v o l S c a l a r F i e l d valW= t h i s −>db ( ) . l o ok upO b j ec t < v o l S c a l a r F i e l d >( "W" ) ;

l a b e l p a t c h I = p a t c h ( ) . i n d e x ( ) ;

s c a l a r F i e l d pW( valW . b o u n d a r y F i e l d ( ) [ p a t c h I ] ) ;

s c a l a r F i e l d one ( p a t c h ( ) . Cf ( ) . s i z e ( ) , 1 . 0 ) ;

s c a l a r F i e l d Zd_ = Given F u n c t i o n ;

s c a l a r F i e l d g r a d i e n t _ = pW∗ one−Zd_ ;

operator ==( t h i s −> p a t c h I n t e r n a l F i e l d ( )

+ g r a d i e n t _ / t h i s −>p a t c h ( ) . d e l t a C o e f f s ( ) ) ;

# } ;

}

codedW
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{

code

#{

v o l S c a l a r F i e l d va lP = t h i s −>db ( ) . l o ok upO b j ec t < v o l S c a l a r F i e l d >( "P" ) ;

s c a l a r F i e l d one ( p a t c h ( ) . Cf ( ) . s i z e ( ) , 1 . 0 ) ;

l a b e l p a t c h I = p a t c h ( ) . i n d e x ( ) ;

s c a l a r F i e l d pP ( va lP . b o u n d a r y F i e l d ( ) [ p a t c h I ] ) ;

f l o a t c o e f _ =1;

s c a l a r F i e l d g r a d i e n t _ =( −1)/ c o e f _ ∗ pP ∗ one ;

operator ==( t h i s −> p a t c h I n t e r n a l F i e l d ( )

+ g r a d i e n t _ / t h i s −>p a t c h ( ) . d e l t a C o e f f s ( ) ) ;

# } ;

}

It is also important to setup the numerical method with each operator and tolerance in fvSolu-

tion and fvSchemes file in system directory.

After solving the coupled system of PDE, we use the calculus of the variations to find and to

record the values of cost functional J and δJ . By doing so, we are able to find the minimal value

of J when δJ changes its sign. After we know WHEN the minimal value of J occur, we can back

to find the shape that we need. The found domain which is optimized with the minimal cost value

and satisfying given constraints.
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2.3 Example in 2D

Example 1. This example defines the domain Ωt according to the flow



d

dt
x1(X, t) = x1 tanh t,

d

dt
x2(X, t) = x2 coth t,

 t ≥ 1
2

 x1(X,
1

2
)

x2(X,
1

2
)

 =

 X1

X2

 =

 r1 cos(θ)

r2 sin(θ)

 = X, r2 =
√
r21 − 1,

1 ≤ r1 < cosh 1
2
, 0 ≤ θ < 2π

(2.7)

Therefore, the domain Ωt is formed as

 x1(X, t) = r1 cosh t cos θ/ cosh
1
2
,

x2(X, t) = r2 sinh t sin θ/ sinh
1
2
,

 0 ≤ θ < 2π, t ≥ 1

2
(2.8)

Hence,

∂Ωt = {(x1, x2)|x1 = cosh t cos θ, x2 = sinh t sin θ}

For the cost functional J as in (LQR), we choose the target function as follows:

γ = 1, f = 0, (2.9)

zd(x) = e−(1−2|x|)2 − 1

2
+

1

|x|2
− x1x2, x = (x1, x2) ∈ R2 (2.10)

The profile of the zd function can be found in Figure 2.1. Since the ∂Ωt avoids the center (0, 0)

when t ≥ 1
5
, it causes no effect even though Zd has a singularity at x = (0, 0). Figure 2.2 is present

the mesh when I select 64 points on the boundary to build the mesh.

In order to check there’s only a little difference between the mesh refinement Figure 2.3 present

the results of ût
h where the number of the boundary points selected is 64, 128 and 256.
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Figure 2.1: The graphics of Zd, the desired target shape.

Figure 2.2: The mesh where the number of the boundary points selected is 64.

Figure 2.4 2.5 show the observation for pth and wt
h when there’ 128 points selected on the

boundary at time t = 0.84.
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Figure 2.3: The graph of ût
h as a function of θ, at time t=0.84, where the number of the boundary

points selected is 64, 128 and 256.

By checking the record list of δJ (see Figure 2.6), got the minimal value occurred between

t=0.84283 and t=0.84284. Therefore, 1.86216 is the approximation of J when nh = 128. There-

fore, the required domain is occurred between t=0.84283 and t=0.84284. The Figure 2.7 indicates

the result of J is consistent with different level of mesh refinement.
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Figure 2.4: The graphics of pth on Ωt̂h,h where the number of the boundary points selected is 128.

14



Figure 2.5: The graphics of wt
h on Ωt̂h,h where the number of the boundary points selected is 128.
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Figure 2.6: The graph of J t
h as a function of t, where the number of the boundary points selected

is 128.

Figure 2.7: The graph of J t
h as a function of time t, where the number of the boundary points

selected is 64, 128 and 256.
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2.4 Example in 3D

Example 2. In this example, the domain Ωt changes as a growing sphere. The domain Ωt is formed

as 
x1(X, t) = r ∗ t ∗ sin θ ∗ cosϕ,

x2(X, t) = r ∗ t ∗ sin θ ∗ sinϕ,

x3(X, t) = r ∗ t ∗ cos θ

 0 ≤ θ < π, 0 ≤ ϕ < 2π, t ≥ 1

2
(2.11)

Thus, we know that the Ωt is a sphere centered at origin with radius rt. For the cost functional J as

in (LQR), we set the target function in (2.13) as the following

γ = 1, f = 0, (2.12)

zd(x) = e−(1−2|x|)2 − 1

2
+

1

|x|2
− x1x2x3, x = (x1, x2, x3) ∈ R3 (2.13)

For the 3D case, we build mesh with the package blockMeshBodyFit [13] in OpenFOAM, which

can project a cubic mesh onto a 3D stl file. The Figure 2.8 is a 13*13*13 cubic projected onto a

sphere.

Figure 2.8: The mesh when a 13*13*13 cube is projected to a sphere. The right one is the cross-
sectional surface.
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Figure 2.9: The graph of J t
h as a function of time t, where zd in (2.13) is used in (2.3)

By checking the values of δJ (see Figure 2.9), we can determine that the minimal value is

happens between t=0.47452 and t=0.47453. The approximation value of J is 889.286 and the

required domain is occurred between t = 0.47452 and t = 0.47453. The Figure 2.10 , 2.11 and

2.12 are present the results for pt̂hh , wt̂h
h and ût

h when time t is 0.47.

Figure 2.10: The left graphics shows pt̂hh on Ωt̂h,. The right graphics is the semi sphere with (1, 1,
0) as normal vector on the cross-sectional surface.
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Figure 2.11: The graphics shows wt̂h
h on Ωt̂h,.

Figure 2.12: The graph of ût
h as a function of θ on with the intersection of x+y=0 and the sphere,

at time t=0.47.
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2.5 Conclusions

Shape optimization problem is important in many engineering design problems. We will try to

evolve the shape when satisfying given constraints and tracking the shape to find when it has the

minimal cost function.

In this Chapter, we have studied the shape optimization problem when the Ωt is given. It

is really interesting to simulate the result with OpenFOAM. We can intuitively observe the cost

functional and other condition on the domain for every changing moment. This gives us the idea

of what we can expect on the numerical result. Such an ease of use and a simplicity for observation

for 3D time-varying domains have never been achieved before.

We confirmed that there is little difference between mesh refinement as long as the grid are

sufficiently small. And then we’ve successfully presented the result of the cost function in both 2D

and 3D domains.
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3. TOWARD COMPUTATIONAL FORENSICS FOR THE LAPTOP BOMBING

TERRORISM CASE OF DAALLO AIRLINES FLIGHT 159, FEBRUARY 2, 2016

3.1 Introduction

Bombing is perhaps the most common tactic done by terrorists. Airplane bombing is partic-

ularly favored by terrorists as it can cause a large number of casualties up to several hundred. In

addition, it can destroy an airplane, often worth hundreds of million dollars for a modern passenger

airliner. Ultra tight inspection procedures in airport boarding processes have been implemented in

order to prevent airplane bombings. If an airplane bombing occurs, aviation authorities want to

examine all the forensics of such a crime in order to understand the motives and modus operandi

of the perpetrators. Such a study will help prevent future airplane bombings. In the U.S., we have

not seen an airplane bombing for decades, thanks to the success of homeland security measures

and law enforcement.

Elsewhere in the world, terrorists have not given up their attempts to blow up airplanes. The

most recent incident happened in 2016. Daallo Airlines is a Somalia-based airline with a hub

located in the Djibouti-Ambouli International Airport in Djibouti. On February 2, 2016, Flight

159 (DAO 159) en route from Mogadishu to Djibouti (see Figure 3.1) carried 74 passengers and

7 crew members. T he plane was a 19 year-old Airbus A321-111 model. A suicide bomber from

the Islamic militant group Al-Shabaab set off a laptop bomb with a built-in explosive device at an

altitude of about 14,000ft (4,300m) five minutes after taking off from Mogadishu, Somalia. The

explosion blew a large hole in the fuselage, and the suspected bomber was sucked out of the hole.

His body was found in Balad, Somalia. Aviation sources said that it would have been a disaster

had the bomb detonated after the flight reached its cruising altitude, and there could have been a

secondary explosion in the fuel tank. The bombing of Daallo Airlines Flight 159 will be the focal

topic of this chapter of the PhD dissertation. The author present some real-world photos of this

accident from internet in Figure 3.2.
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Wikipedia search for "Timeline of airliner bombing attacks"[14], will turn up tens of instances.

Casualties can easily reach hundreds. On June 23 1985, an explosion happened in the forward

cargo area of Air India Flight 182 on its path from Montreal to London. The bombing killed 329

people, making it the largest mass murder in Canadian history and the deadliest aircraft bombing.

The most famous airplane bombing occurred on Pan Am Flight 103. On December 21 1988, a

bomb destroyed a Boeing 747 flying from Frankfurt to Detroit via London. The aircraft crashed

onto residential areas of Lockerbie, Scotland, killing everyone on board and also 11 people on the

ground.

Figure 3.1: Flight origin: MGQ (Aden Adde International Airport). Destination: JIB (Djibouti-
Ambouli International Airport). The location where a burnt body of the terrorist was found: Balad.
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Figure 3.2: The photos of DAO159 taken from the Internet [1, 2, 3].

After these attacks, people wanted to know what happened on the airplane. The flight recorder

(also known as the Black Box) can help confirm what happened, but the recorder can’t tell us

everything. Of course, police can run some experiments to recover the truth,but aircrafts are ex-

pensive! Running realistic bombing experiments on aircraft explosions would be highly expensive

for every single incident. Computational mechanics can simulate the results at a much lower cost;

all one needs is a supercomputer and the required software, and no aircraft is destroyed in the com-

putational processes; digital tests can save time and money. That is the beauty of computational

forensics.

The English idiom says "a picture is worth a thousand words." We can similarly say that a
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video is worth a thousand pictures. Suppose one is running some experiment. There are many

physical variables and quantities to observe and measure, but data collection is only a part of the

experiment. Thanks to modern video recording technology, one can review a video of every im-

portant moment. However, it is beyond video’s capacity to record results from multiple directions

or observe something in the blind spot of the video. With scientific computations, one can check

every little piece of a computational simulation from any needed perspective. Moreover, compu-

tational simulations can also present some results not easily achievable by experiments. In reality,

one can never observe an aircraft crash test without the flying dust and smoke from an explosion

or the breach in the craft without the fragmented shell. However, these observations are possible

with computer simulations. For example, one could zoom-in on the important part of the simu-

lation from any direction and any perspective - this is something one could never do in physical

experiments. Computational simulation is not just a substitution for an experiment; it has its own

value.

3.1.1 Airplane bombing experiments by MythBusters

Our computational simulation aims to test the result of a mid-air airplane damaged by a bomb.

We will simplify the case as an explosion happening on a pressurized aircraft. We have found a

similar experiment on an episode of MythBusters [15].

MythBusters is an Australian-American science entertainment television program that pre-

miered on the Discovery Channel on January 23, 2003. The creator is Peter Rees and the producer

are Australia’s Beyond Television Productions. The series was broadcast by SBS Australia and

other Discovery channels worldwide. The show were hosted by Adam Savage and Jamie Hyne-

man, these special effects experts used the scientific method to verify a variety of rumors, myths,

news stories, Internet videos and movie scenes. The show was one of the most popular on the

Discovery Channel.

The 10th episode of MythBusters, aired on January 18, 2004, was concerned with explosive

decompression. The hosts tested some explosives on a pressurized airplane, and checked whether

the hole caused by a bullet or a small explosive would grow dramatically to cause a breakup of the
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plane as seen in movies. They experimented with three different cases on a pressurized airplane.

The airplane was pressurized at 8 pounds per square inch (8 psi), making the pressure difference

between the inside and outside of the airplane the same as it would be at a height of 35,000 feet.

The first case dealt with bullet damage to a window, and the results was a normal bullet hole. In

the second case, the hosts used a special charge to damage the circumference of the window, which

resulted in a hole in the window. A passenger’s arm would have been blown out from the hole, but

no other damage occurred (see Figure 3.3) In the last case, hosts used a large charge to try to break

up the airplane (see Figure 3.4)

Figure 3.3: The result by a special explosive charge on the circumference of the window by a
MythBusters’ experiment. For video, see https://youtu.be/Fi1_1l7M8FA?t=2m30s
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Figure 3.4: Explosion by a large explosive charge by a MythBusters’ experiment. For video, see
https://youtu.be/Fi1_1l7M8FA?t=4m17s

3.2 Computer modeling for the airplane, explosion and validation

We study the computer modeling of the problem in this section.

3.2.1 Software LS-DYNA

LS-DYNA is a numerical modeling tool developed by LSTC [16]. It started from the Lawrence

Livermore National Laboratory (LLNL) in 1976, a 3D FEA program DYNA3D developed by Dr.

John O. Hallquist. It is generally designed for transient dynamic analysis of highly nonlinear prob-

lems. As a general-purpose multiphysics simulation software, LS-DYNA can be applied to metal

forming, drop tests, crash and occupant simulations and other contact-related applications. LS-

DYNA has numerous capabilities and functions, especially for transient dynamic problems such

as automotive crashes and explosions. More recent enhancements concern fluid-structure inter-
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actions. Much of LS-DYNAs finite element (FE) discretization of real industrial problems deals

with thin-shell elements, for example the beam and solid elements. Based on the Mindlin the-

ory, a large number of element formulations for shells are available. Therefore, LS-DYNA offers

choices between improved accuracy and computational efficiency. Because of the efficiency of the

element vectors’ formation and robustness in the case of large element distortions, reduced order

integration is often preferred in large deformation analyses. There are also a choice of methods

and formulations to avoid hourglassing problems. Moreover, the software provide more than 100

different material models to represent many types of highly nonlinear material behaviors. It can

simulate real-world problems and show the results in 3D video animations.

A large number of problems can be solved or simulated by LS-DYNA. For example, to improve

the industrial manufacturing process, a factory may need to try different spray nozzle positions

for optimal efficiency. Car companies need crash tests to define safe design standards in crash

worthiness and crash compatibility. Of course, they still need actual vehicles to run the final crash

tests, but computer simulations can save a lot of time and money by allowing them to establish the

perfect settings for the physical tests. Reference [17] shows an experiment investigating the impact

conditions for components and tensile tests on specimens with simulations. For safety design

of civil engineering structures under fire conditions, one needs to investigate various modeling

approaches of composite actions between the concrete slab and the steel beams; it is not realistic to

build many buildings with various structures, and burn them. Reference [18] shows that LS-DYNA

can to capture key phenomena of heated structures. It can also be used in biomechanics. Reference

[19] shows a method for building a Hill-type muscle model with LS-DYNA.

When Malaysia Airlines flight MH370 disappeared on March 8, 2014, no one could find the

aircraft, and no one had any idea of what had happened. Chen [20] ran several emergency water

landing simulations from various angles. The simulation results showed an angle at which the

aircraft could have ditched safely in water, as well as a possible landing angle that could explain

the plane’s mysterious disappearance.

In our case, we use LS-DYNA to simulate the DAO 159 crash through finite element analysis
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(FEA) and smoothed particle hydrodynamics (SPH). LS-DYNA can model the process of how

explosives breached the aircraft fuselage and the interaction between all the fragmented shells.

3.2.2 Mechanical models and simplification

Our first goal is to see the video animations for the whole process of the explosion while DAO

159 was crashing. The second goal was to establish the minimum amount of explosives that could

breach the aircraft. Thus, we need to build an aircraft model with LS-DYNA and test it with

different amounts of explosive.

To be able to do so, we use the same aircraft geometry as Chen et al. [20, 21] and build a slightly

smaller inner layer as the cabin wall. But we note that a real aircraft is far more complicated. A

horizontal floor separates the passenger area and cargo bay. The aircraft also has many sections

such as the cockpit, passenger area, bathroom, flight attendants area, etc. Other minor supporting

or decorative structures also exist besides the exterior fuselage skin. There are additional varying

factors such as the number of passengers and seats, the amount of luggage, etc. Our numerical

experiments are an attempt to investigate the explosion, focusing on the hole caused by the bomb.

We focus on the bomb damage and the breached walls. Therefore, this experiment only required

an exterior fuselage skin, an inner cabin wall and a bomb (TNT explosive).

The aircraft material primarily utilized in transport aircraft today is an aluminum alloy, 7075-

T6, which is one of the strongest among all such alloys. Many plastic pieces form the inner

cabin wall, and the differences in strength between plastic pieces are omitted (under explosion

circumstances). We choose a common plastic as the material. In LS-DYNA simulations, the

exterior fuselage skin was structured as an aluminum alloy 7075-T6 shell with 1.2 mm thickness,

and the inner cabin wall is a plastic shell with the same thickness. LS-DYNA has more than

100 material models. The fundamental material models for the aircraft explosion experiment are

viscoplasticity and fracture mechanics. We’ll give a brief review for the technical equation behind

the concept; the complete theory is in the LS-DYNA Theory Manual [22].
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The classical linear elasticity theory is based on the constitutive equation

¯̄σ = C ¯̄ϵ,

where ¯̄σ is the Cauchy stress tensor, C is the fourth-order stiffness tensor, ¯̄ϵ = 1
2
[∇u + (∇u)T ], is

the infinitesimal strain tensors, and u is the Largrangian displacement.

The equation of motion is

∇ · ¯̄σ + F = ρ
∂2(u)

∂t2
.

where F is the body force per unit volume, and ρ is the mass density. In the case of nonlinear

viscoplasticity, such as in our investigation of the break-up of an aircraft and the impact effects

of fracture, the strain is generally large. Therefore, the time rates of change of both stress and

strain should be considered within the constitutive equation. We have ¯̄ϵ = ¯̄ϵe + ¯̄ϵvp where ¯̄ϵvp and

¯̄ϵe are the viscoplastic and elastic strain tensor components of ¯̄ϵ. For viscoplasticity described in

terms of spring-dashpot-slider elements, there are three constitutive models: the elastic perfectly

viscoplastic solid, the elastoviscoplastic hardening solid and the perfectly viscoelastic solid and

their serial or parallel connections.

In this paper, we choose a simplified effective material model, MAT_PLASTIC_KINEMATIC,

for the fuselage and cabin. This model is designed for modeling isotropic and kinematic hardening

plasticity with the option of including rate effects. In this model, for the yield stress σy we use the

following Cowper and Symonds model:

σy =

[
1 +

ϵ̇

C

1/p
]
(σ0 + βEpϵ

p
eff ),

where σ0 is the initial yield strength, Ep =
EtE
E−E′

t
is the plastic hardening modulus, β is a parameter

satisfying 0 ≤ β ≤ 1, ϵ̇ =
√

˙ϵij ˙ϵij is the strain rate, ϵpeff =
∫ t

0

√
2
3
ϵpijϵ

p
ijdt is the effective plastic

strain , ϵpij is plastic strain rate which is the difference between the total and elastic strain rates and

p and C are user-defined input constants. The parameters for the material model are listed in Table
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(3.1).

To compute the a case of whole aircraft would take up a lot of computing resources and time,

especially when we use larger amounts of explosives. During numerical experiments, we have

noticed that some parts of the fuselage skin were not impacted by the blast particles. Since we

only need to check whether the explosion was large enough to cause certain damage to the aircraft

fuselage, we have selected only a portion part of the fuselage to run the test. At the end of each

simulation, we checked that the boundary of the selected fuselage cell partition was not impacted

by the blast particles. We run still a few more cases with the whole aircraft fuselage to make sure

that the simplified case was representative of the original test.

Parameter for Aluminum Value

Density 3000 kg/m3

Young’s modulus 70 GPa

Poisson’s ratio 0.35

Yield stress 0.47 GPa

Parameter for Plastic Value

Density 1400 kg/m3

Young’s modulus 1.4 GPa

Poisson’s ratio 0.39

Yield stress 0.016 GPa

Table 3.1: Parameters for the aircraft.

3.2.2.1 Whole Plane Simulation

When using the whole aircraft model to run explosion simulations, the grids from the original

model may not have sufficient resolution. There are two ways to split the mesh (check Figure 3.5):

the first type is (type A), another type is (type B). Type A remained one edge

from the original grid. That means that after triple refinements, the grids look thin and long, and

still maintain a long edge. This is not ideal because we hope to minimize the longest edge from

each grid. Type B causes a free edge. The red edges from Figure 3.5c are the free edges. Free edge

is when an element edges in the mesh is not shared with other elements. Therefore, free edges may

indicate connectivity problems in the mesh and/or the underlying model geometry.
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...

(a) Original mesh.

..

(b) Splitting type A.

...

(c1) Fix the free edges.

..

(c) Splitting type B.

...

(c2) Retain body.

Figure 3.5: Mesh refinements.
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3.2.2.2 Aircraft Windows

Generally, aircraft windows are made of acrylic plastics colloquially called plexiglass. This

material is light, relatively strong and has decent optical properties. The window is elliptic with a

major radius 225 mm and a minor radius 150 mm on the aircraft shell. We use the material model

MAT_PLASTIC_KINEMATIC, where Table (3.2) displays its parameters list.

Parameter for Acrylic Value

Density 1200 kg/m3

Young’s modulus 3.2 GPa

Poisson’s ratio 0.37

Yield stress 0.071 GPa

Table 3.2: Parameters for acrylic windows.

There are two ways to connect the window to the aircraft: CONTACT_TIED_SURFACE_

TO_SURFACE_FAILURE or CONTACT_TIEBREAK_SURFACE_TO_SURFACE_ONLY. The

results are slightly different during these transient response to a blast, but they look the same after

the window parts are blown out or away.

3.2.3 Modeling the explosive

We are now in a position to simulate the laptop bombing on DAO 159. We choose TNT as the

explosive and store it in the laptop. The principal part of the laptop bomb is the explosive. We use

only a box-shaped TNT explosive to represent the laptop bomb. The assumed distance between the

TNT explosive and the cabin shell is 1 cm. We use SPH to model the explosive. Not that the blast

wave draws a large amount of energy to a small, very localized volume to increase pressure and

flow. The material model for explosives in LS-DYNA is MAT_HIGH_ EXPLOSIVE_BURN.
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(See Table (3.1).) The idea of SPH is essentially an N-body integration scheme, whose major

departure from the classical method is the absence of a grid. It uses conservation equations to

approximate particles.

In the material model of explosives, the pressure satisfies

p = Fpeos(V,E),

where F is the burn fraction and peos is the pressure from the equation of state (see below). The

value of burn fraction is

F = max(F1, F2),

where

F1 =
2tDAemax

3ve
, F2 =

1− V

1− VCJ

,

where t is current time, D is detonation velocity, and VCJ Chapman-Jouguet relative volume.

The equation of state of high explosives is chosen to be EOS_JWL (the empirical Jones-

Wilkins-Lee equation of state), given by

peos(V,E) = A

(
1− ω

R1V

)
e−R1V +B

(
1− ω

R2V

)
e−R2V +

ωE

V
,

where V is the relative volume, E is internal energy per initial volume, and ω,A,B,R1 and R2

are user defined input parameters. The parameters for TNT explosive needed when using the

EOS_JWL can be formed in Table 3.3.
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Parameter for TNT Value

Density 1630 kg/m3

Detonation velocity 6930 m/s

Chapman-Jouget pressure 21 GPa

A in JWL 371.2 GPa

B in JWL 2.23 GPa

R1 in JWL 4.15

R2 in JWL 0.95

ω in JWL 0.3

Initial E in JWL 7 GJ/m3

Initial V in JWL 1.0

Table 3.3: Parameters for TNT in JWL equation.

The number of SPH is important. With the same size of explosive, different arrangements of

the SPH might lead to different results. The smooth particle mesh must be uniform. If the smooth

particle represents a 1×1×100 rectangle space, the explosion will expand mainly in one direction

instead of exploding uniformly. A lack of sufficient smooth particles causes poor accuracy but a

large amounts of smooth particles may take too long to compute.

3.2.4 Cabin Pressurization

To model the cabin pressurization, we have tried a few methods, but only one has worked.

First, we use PARTICLE_BLAST to simulate the way that an explosion can fill air particles to a

domain automatically. However, there is no way to fill a domain with two kinds of air particles

— the kind with higher pressure inside the cabin and the one with lower pressure outside the

fuselage. The keyword PARTICLE_BLAST can only contain one kind of air particle in a rectangle

domain or the entire domain. Therefore, we have achieved no success. Modeling air particles with
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SPH has another possibility way; the keyword EOS defines an equation of state. The keyword

EOS_IDEAL_GAS for air particles could set up ideal gas properties. Therefore, one can describe

the pressure by P = nRT
V

. However, such air particles won’t flow based on the pressure difference

alone; the left graphics in Figure 3.6 sets up two kinds of air particles, one fuselage skin and one

TNT explosive. The right graphics in Figure 3.6 shows the result after detonation. The air particles

moved because they were bumping into blast particles not because of the pressure difference.

Figure 3.6: The left figure shows the set-up of the inner and outer air particles using SPH. The
right figure shows the air particles have been disturbed without flow after the fuselage has been
breached.

Finally, we have decided to used the keyword LOAD to load the pressure difference (8 psi)

uniformly on the surface with the normal direction of fuselage skin. The effect of pressure differ-

ence on the surface is a force acting on the surface uniformly, and its magnitude is the degree of

pressure difference. The white arrows in Figure 3.7 show how LOAD works on the surface.
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Figure 3.7: The arrows indicate how the LOAD works on the surface.

3.2.5 Cracks and fracture criteria

When a blast occurs, the impacts between objects follow. Contact conditions are necessary

when impact is present. The keyword CONTACT uses the contact-impact algorithms to handle

sliding and impact along interfaces. The impact between the blast SPH nodes and the aircraft is

modeled by CONTACT_AUTOMATIC_ NODES_TO_SURFACE since this keyword describes

the contact force. We also modeled the contact force between the fragmentation of fuselage and

cabin with CONTACT_ERODING_ SINGLE_SURFACE.

The erosion criteria are available for each model, and are independent from the choices of

material. The parameter fs is normally used as the effective plastic strain for eroding elements or

the so-called the failure strain. There are many independent conditions, and the element will be

deleted by the calculation if any of the conditions are satisfied. The criteria for failure according

to LS-DYNA (page 18.15 from [22]) are:

• p ≥ pmin where P is the pressure (positive in compression), and pmin is the pressure at

failure.
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• σ1 ≥ σ′
max, where σ1 is the maximum principal stress, and σ max is the principal stress at

failure..

•
√

3
2
σ′
ijσ

′
ij ≥ σ̄max, where σ′

ij are the deviatoric stress components, and σ̄max max is the

equivalent stress at failure.

• ϵ1 ≥ ϵmax, where ϵ1 is the maximum principal strain, and ϵmax is the principal strain at

failure.

• γ1 ≥ γmax where γ1 is the shear strain, and γmax is the shear strain at failure.

• The Tuler-Butcher criterion,

∫ t

0

[max(0, σ1 − σ0)]
2dt ≥ Kf ,

where γ1 is the maximum principal stress, γ0 is a specified threshold stress, σ1 ≥ σ0 ≥ 0,

andKf is the stress impulse for failure. Stress values below the threshold value are too low

to cause fracture even for very long duration loadings.

3.2.6 Validation of SPH Blast Simulation

We validated the SPH blast computational modeling by simulating Shirey’s explosion test [23].

The test was used to investigate the breach of a steel plate after a direct explosion by circular

disks of sheet explosive C4, in this case (see Figure 3.8 for the set-up, and Figure 3.9 for the

simulation processes). Shirey has concluded that there is a threshold of explosive thickness needed

for breaching the plate. If the diameter of the explosive disk is small, it needs to be thicker in order

to breach the steel plate. However, when the diameter is large enough, there’s a minimum thickness

requirement to breach the steel plate. (see the red curve in Figure 3.10 for the property). Since

Shirey didn’t describe details of the material properties of the steel used in the test, instead we

choose a property for some common steel and experimented with failure strains of 0.28, 0.31 and

0.41. For all these failure strains, one simulation results show qualitatively causes of similar shapes.
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Figure 3.10 shows the thresholds of explosive thickness from both the LS-DYNA simulation and

Shirey’s experiment. The material model for the steel plate part is MAT_PLASTIC_ KINEMATIC,

and we used MAT_HIGH_EXPLOSIVE_BURN for C4 explosive. See the parameters in Table

(3.4) and Table (3.5).

Figure 3.8: Explosive set-up geometry.
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Figure 3.9: Snapshots of simulation for the Shirey’s explosion test.
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Parameters Value

Density 1601 kg/m3

Detonation velocity 8193 m/s

Chapman-Jouget pressure 28 GPa

A in JWL 609.7999 GPa

B in JWL 13 GPa

R1 in JWL 4.5

R2 in JWL 1.4

ω in JWL 0.25

Initial E in JWL 9 GJ/m3

Initial V in JWL 1.0

Table 3.4: Parameters for high explosive (C4).

Parameters Value

Density 7691 kg/m3

Young’s modulus 210 GPa

Poisson’s ratio 0.3

Yield stress 0.3 GPa

Table 3.5: Parameters for steel plate.
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Figure 3.10: Threshold causes for 6 mm steel plate with different failure strains.

Jasak, etal’s book [24] mentions two explosion tests with reinforced concrete structures. One

test was conducted by Jonasson and reported by Forsen [25] who found that the relationship be-

tween charge weight and hole diameter is linear. Lonnqvist [26] extended this research with ad-

ditional parameters and combined them with the previous work by Jonasson and Persson. Here

we quote Figure 3.11 directly from the book to show the conclusions from these two explosion

tests. We did not actually simulate the reinforced concrete explosion test with LS-DYNA, as there

are too many parameters to be considered that are not present in the aircraft explosive case. We

just want to point out that the simulation of the aircraft explosion case can also establish that the
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relationship between charge weight and hole diameter is linear (Figure 3.12).

Figure 3.11: Relationship between charge weight and hole diameter for reinforced concrete explo-
sive test.

Figure 3.12: Relationship between explosive charge weight and hole diameter in aircraft explosion.
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3.3 Computer simulation of the Daallo Airline Flight 159 bombing

The first case we have tried is a cargo plane, which has no windows. In this case, we still put

an extra layer inside the fuselage as the plastic cabin wall. We have obtained the results below.

We have also established the relationship between the size of the charge and the dimension of the

hole. Figure 3.13a is a cross section of the aircraft. The inner square layer is the cabin. Note that

we didn’t need to build the whole cabin for this test. Figure 3.13b-3.13f are snapshot photos of the

explosion. In these figures, the left layer represents the fuselage, the right one is the cabin and the

red particles are the TNT explosive.

Figure 3.12 shows that the relationship between charge weight and hole diameter is linear, and

that TNT explosive measuring 6 cm × 6 cm × 1 cm is not enough to breach the aircraft based on

our simulation result. However, TNT explosive measuring 6.2 cm × 6.2 cm × 1 cm was enough

to breach it. Figure 3.14 compares the real aircraft damage photo with the LS-DYNA simulation

result.
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(a)

(b) (c)

(d) (e) (f)

Figure 3.13: Panel of snapshot of explosion. (With 8×0.6×8 cm3 size of TNT explosive) The unit
of time is millisecond. See the video animation in http://goo.gl/aUwqJx
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Figure 3.14: Comparison between the real airplane damage photo and the simulation result (With
24×1.5×24 cm3 size of TNT explosive).

By comparing the simulated result and the real photo in Figure 3.14, we have noticed that the

real hole was nearly rectangular in shape, but ours is circular. After we have seen the photo of the

inside view of the airplane (Figure 3.2), we have found that airframes’ ribs were the cause. As seen

in the bottom right photo in Figure 3.2, the ribs obviously bounded the hole. Therefore, our next,

refined model is to treat a fuselage with ribs.

After searching online, we have formed the structure of an airframe. (Figure 3.15) We want to

build a cylinder shaped passenger cabin with only two rings of ribs, since the hole was between

two ribs. However, as shown in Figure 3.16 having only two rings of ribs for a cabin would have

suffered extra deformation. Therefore, the final model is a cylinder-shaped passenger cabin fully

supported by many rings of ribs. Figure 3.17 shows snapshot of the process of explosion on the

fully supported cabin model. The left one in Figure 3.18 shows the result from no-ribs case, and

the right-top one in Figure 3.18 shows the result when the fuselage fully supported by ribs. A few
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segments of the LS-DYNA computer codes are shown in Appendix 1 with comments. Moreover,

it is important to refine the mesh in a proper way. With the same structure as in Figure 3.17, the

result will be different if we refine the mesh. If we split every element in Figure 3.17 into 16, i.e.

four rounds of refinements, then the result will be as the left panel in Figure 3.19. If we split every

element in the previous case into 16, then the result will be as the right panel in Figure 3.19.

Figure 3.15: A real fuselage and design.
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Figure 3.16: The top two panels are the cabin fuselage with only two ribs and the bottom two are
the one fully supported by more ribs. The left two are the ribs setting, and the right two are the
results of damage after 14 ms.
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Figure 3.17: Snapshots of explosion showing damage to the aircraft body, whose airframe is fully
supported by ribs. For video animation, see http://goo.gl/3NmV2u
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Figure 3.18: The left panel corresponds to is the case without ribs, and the right top one is the case
with ribs. The right bottom one is the real photo.
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Figure 3.19: The result of damage after mesh refinement.

3.4 Conclusions

Antiterrorism is a major undertaking by governments all over the world. A substantial part of

antiterrorism revolves around the prevention of airplane bombings. We hope our study on airplane

bombing will contribute to the understanding of and forensics for antiterrorism.

A modern airliner has a sophisticated airframe structure, allowing it to fly at high speed with

minimum weight. The supporting structure, such as rings of ribs, the floor, and even restrooms and

passenger seats can play some role in protecting an airplane in the event of a small scale bombing.

This is an interesting finding in our work.

We have also learned that in the new generation of passenger airliners, Boeing is able to fab-

ricate the fuselage hull of an aircraft in one piece with lightweight composite materials, without

the need to build ribs. Under normal operating conditions, we believe there are no structural safety

concerns. However, if a small size bomb were detonated, the lack of protection provided by ribs in

the hull could result in a larger hole; this could be rather problematic.

The mathematical modeling for an inside-cabin explosion of a large passenger airplane flying

at a high altitude remains a challenging task. For Daallo Flight 159, the altitude of 4,300m was

only a fraction of the cruising altitude. It is our understanding that there is not yet an accepted
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theoretical model for decompression collapse of an airframe structure; building a fundamental

model allowing the exchange of airflows between the inside and the outside of airplane cabin

once the hull is breached would constitute the most important step. This model must be dynamic,

because the high flight and wind speeds tend to open up the hole and eventually lead to the breakup

of the fuselage.

Our computations for a refined model in section 3.3 of Chapter 3, even though ribs have been

built in, still do not constitute a full-size airplane. We don’t expect that this would cause a large

discrepancy in numerical computations and outcomes. However, one should still use as complete

an airplane model as possible. The building of such a model is important, because we can use

this refined model to compute problems in this dissertation and for a large class of other similar

problems in aviation involving explosions and impacts. This will be part of our future research.
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4. SUMMARY

In this thesis, two problems are solved by computational mathematics and mechanics. One is

the work of shape optimization and the other is the simulation of Daallo Airline laptop bombing.

We use OpenFOAM to work on shape optimization which is important in many engineering de-

sign problems. After validate there is little difference between mesh refinement as long as the grid

is sufficiently small, the author evolves the shape when satisfying given constraints and tracking

the shape to find when it has the minimum cost function. The author can achieve 3D time-varying

domains which never been done before and we can expect to use it for more complex domain latter

and might able to apply to the real world problems.

We use LS-DYNA to simulate the Daallo Airline laptop bombing case. Our computer simula-

tion has not included wind speed. Our aircraft is only damaged by the blast particle and there’s no

wind fore to drag the fragment to enlarge the size of the hole. The aircraft model does not contain

seats, engine, and fuel tank. Therefore, we would not consider the case if the bomb explosion near

the engine or fuel tank (which might cause larger damage). Although we believe there would not

cause a large discrepancy in numerical computations and outcomes if we use a full-size airframes

airplane. Our simulations still need to be improved to be close to the real case.

The computational simulation is favorable to saving long and expensive processes of laboratory

setup and measurements. It is easier for mathematicians to conduct interdisciplinary collaboration

with physicists and engineers for the modeling and computation of real-world problems when

there are more abundant free and open-source computational tools and user-friendly software been

developed. However, there still have challenges such as get the perfect quality of mesh or pick

the good-enough model when the situation is not ideal. The computational research sometimes

can become very empirical and require lots of trial-and-error. Under these circumstances, the

mathematical analysis might able to lead some best practice guidelines and give more insights.
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APPENDIX A

PART OF THE K-FILE

A few segments of the input k-file for the LS-DYNA simulation:

The part for the passenger cabin: the material is plastic and the thickness for the skin is 1.2

mm.
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The part for the fuselage: the material is Aluminum Alloy 7075-T6 and the thickness for the

skin is also 1.2 mm.

The part for the ribs: the material is Aluminum Alloy 2024 and the thickness for the skin is 6

mm.
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The part for the TNT explosive and its JWL equation.

The part for the windows: the material is Acrylic and the thickness for the skin is also 1.2 mm.
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Add the erosion effect on the airplane, so the airplane will crack after blasting.

Let the blast SPH work on the airplane

Use TIEBREAK so the ribs will weld on the fuselage.
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To LOAD 8 psi uniformly only on the surface of aircraft fuselage.

Use TIED so the windows and the fuselage will glued together.
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