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ABSTRACT 

 

A large volume of gene expression data is being generated for studying mechanisms of 

various biological processes. These precious data enabled various computational analyses to speed 

up the understanding of biological knowledge. However, it remains a challenge to analyze the data 

efficiently for new knowledge mining. These data were generated for different purposes, and their 

heterogeneity makes it difficult to consistently integrate the datasets, slowing down the reuse of 

these data and the process of biological discovery for new knowledge. To facilitate the reuse of 

these precious data, we engaged biology experts to manually collected RNA-Seq gene expression 

datasets for perturbed splicing factors and RNA-binding proteins, resulting in two online 

databases, SFMetaDB and RBPMetaDB. These two databases hold comprehensive RNA-Seq gene 

expression data for mouse splicing factors and RNA-binding proteins, and they can be used for 

identify key genes or regulators in biological processes or human diseases. Beside showing an 

importance of two databases, these two projects also demonstrated an efficient way to collect data. 

In my dissertation, we also engaged biology collaborators to collect comprehensive regulate genes 

in cold-induced thermogenesis supported by in vivo experiments with key genes deposited to 

CITGeneDB. This database is the first to offer comprehensive list of regulators in cold-induced 

thermogenesis in a higher regulatory hierarchy. In addition to build data resources, my dissertation 

also worked on analyze RNA-Seq gene expression data to gain biological insights. To study the 

mechanism of human skin disease psoriasis, we analyzed mouse and human public psoriasis 

datasets, and compared to splicing factor perturbed datasets in SFMetaDB, resulting in candidate 

genes for psoriasis. Our computational predictions provide candidate factors to follow to study 

fundamental processes underlying psoriasis. In addition, we introduced a data processing paradigm 
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to identify key genes in biological processes via systematic collection of gene expression datasets, 

primary analysis of data, and evaluation of consistent signals. Our paradigm was applied to two 

applications of epidermal development and cold-induced thermogenesis, and revealed many key 

genes in the two applications. By collaborating with web labs, we experimentally validate a novel 

gene suprabasin (SBSN) in epidermal development. These findings enable a better understanding 

of the mechanisms underlying epidermal development and cold-induced thermogenesis, and also 

demonstrate the effectiveness of our paradigm by combining data collection and integrated 

analysis. My dissertation has mainly investigated a biological data process paradigm, consisting 

of systematic data collection, data analysis and hypothesis generation. By intensive works, we 

demonstrated the effectiveness of this novel biological data process approach, and this approach 

can be readily generalized to other biological processes or human diseases. 
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1. INTRODUCTION AND LITERATURE REVIEW 

High-throughput expression profiling has been used to identify transcriptional changes 

associated with many diseases and biological processes (BPs). However, the mechanism 

underlying the associated changes remains mostly unclear. To uncover the underlying molecular 

mechanism, complementary approaches such as ChIP-Seq[1] and CLIP-Seq[2] have been 

incorporated to identify direct interactions among proteins and DNAs/RNAs. These two 

immunoprecipitation-oriented approaches are limited because high-quality antibodies against 

specific proteins may not be readily available, the protocols are complex, and only a limited 

number of specialized labs can perform them well. In addition, direction binding relations do not 

necessarily represent upstream regulation. Thus, approaches that bypass these limitations are 

needed to prioritize upstream regulators in diseases and BPs. 

Given the large scale of high-throughput expression profiling data publicly available, any 

method that can utilize these data to identify upstream regulators of transcription in diseases or 

BPs will be of great value. High throughout expression profiling has become routine and much of 

the resulting data are available from online repositories, such as Gene Expression Omnibus 

(GEO)[3]. Up to the second quarter of 2018, GEO hosted over 97,000 data series comprising over 

2,400,000 samples. As a popular method for transcriptome analysis, RNA-sequencing (RNA-

Seq)[4] has enabled genome-wide analyses of RNA molecules at a high sequencing depth with 

high accuracy. It has been successfully used on many mouse models[5, 6], and thousands of RNA-

Seq datasets have been generated and released to the public. This massive amount of biological 

data brings great opportunities for generating prominent biological hypotheses[7, 8]. However, 

these data were produced for diverse purposes and are not friendly to large-scale data integration. 

Therefore, substantial work is needed to build well-organized resources using these data to enable 
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efficient and extensive integrated analysis. In this dissertation, we developed an integrated analysis 

to reveal upstream regulators of transcription in diseases or BPs using these public RNA-Seq data. 

We focused on datasets related to splicing factors (SFs), as approximately 95% of human 

multi-exonic genes are alternatively spliced, and RNA splicing is a fundamental process 

controlling gene expression in eukaryotes[9]. We previously curated the metadata of a 

comprehensive and accurate list of mouse RNA-Seq data with perturbed SFs, which are hosted on 

our SFMetaDB[10]. Using these metadata, corresponding RNA-Seq data were used to compute 

alternative splicing changes and gene expression changes related to perturbed SFs, represented in 

RNA splicing signatures and gene expression signatures, respectively. The generated signature 

data were used to determine the biological relevance of SFs to a disease or a BP using signature 

comparison[11]. Highly relevant SFs were considered key regulators in the disease or BP. 

Our approach is a general high-level regulator discovery method that can be used to 

identify master splicing factors (MSFs) that are key regulators at the top of the transcriptome 

regulatory hierarchy affecting a large number of downstream genes in a specific disease or BP[12]. 

To demonstrate our approach, we conducted several studies, consisting of identifying key genes 

in psoriasis using transcriptome data (section 2), and revealing underlying biological processes in 

epidermal development and cold-induced thermogenesis (section 3). To facilitate the first part of 

our data analysis paradigm, we engaged biologists to manually collect several databases. 

Particularly, we collected a comprehensive regulatory genes in cold-induced thermogenesis 

supported by in vivo experiments (section 4), and two metadata databases of public RNA-Seq 

datasets for splicing factors in SFMetaDB (section 5) and for RNA-binding proteins in 

RBPMetaDB (section 6). 
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In summary, our systematic integration of disorganized and unstructured RNA-Seq 

datasets along with generated signatures provides a novel approach for the identification of the 

most promising hypotheses for experimental testing. These novel hypotheses will form the basis 

for new in vivo experiments leading to the elucidation of detailed regulatory mechanisms at a 

molecular level. 
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2. IDENTIFICATION OF KEY SPLICING FACTORS IN PSORIASIS* 

Psoriasis is a chronic inflammatory disease that affects the skin, nails, and joints. For 

understanding the mechanism of psoriasis, though, alternative splicing analysis has received 

relatively little attention in the field. We developed and applied several computational analysis 

methods to study psoriasis [13]. Using psoriasis mouse and human datasets, our differential 

alternative splicing analyses detected hundreds of differential alternative splicing changes. Our 

analysis of conservation revealed many exon-skipping events conserved between mice and 

humans. In addition, our splicing signature comparison analysis using the psoriasis datasets and 

our curated splicing factor perturbation RNA-Seq database, SFMetaDB, identified nine candidate 

splicing factors that may be important in regulating splicing in the psoriasis mouse model dataset. 

Three of the nine splicing factors were confirmed upon analyzing the human data. 

2.1 Introduction 

Psoriasis is a chronic inflammatory skin disease with symptoms of well-defined, raised, 

scaly, red lesions on skin. It is characterized by excessive growth and aberrant differentiation of 

epidermal keratinocytes. A number of known psoriasis susceptibility loci have been identified[14], 

some of which are shared with other chronic inflammatory diseases[15]. Psoriasis also shares 

pathways with other diseases. Despite great progress made over the past few years, the exact causes 

of psoriasis remain unknown[16]. 

To discover the disease mechanisms, significant effort has been devoted to analyzing 

psoriasis gene expression. For example, in a study of small and large plaque psoriasis, microarray 

                                                

* Reprinted with permission from "Genome-wide transcriptome analysis identifies alternative 
splicing regulatory network and key splicing factors in mouse and human psoriasis" by Jin Li 
and Peng Yu, 2018. Scientific Reports, 8(1), 4124, Copyright 2018 by authors 
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gene expression analysis revealed the up-regulation of genes in the IL-17 pathway in psoriasis. 

But the expression of genes in this pathway of small plaque psoriasis is significantly higher than 

that of large plaque psoriasis, and negative immune regulators like CD69 and FAS have been found 

to be down-regulated in large plaque psoriasis. This result suggests that the down-regulation of 

these negative immune regulators contributes to the molecular mechanism of large plaque psoriasis 

subtypes[17]. 

As high-throughput sequencing becomes the mainstream technology, RNA-Seq has also 

been used for measuring gene expression to gain biological insights of psoriasis. For example, a 

recent RNA-Seq‒based gene expression study of a large number of samples from lesional psoriatic 

and normal skin uncovered many differentially expressed genes in immune system processes[18]. 

The co-expression analysis based on this dataset detected multiple co-expressed gene modules, 

including a module of epidermal differentiation genes and a module of genes induced by IL-17 in 

keratinocytes. This study also discovered key transcription factors in psoriasis and highlighted the 

processes of keratinocyte differentiation, lipid biosynthesis, and the inflammatory interaction 

among myeloid cells, T-cells, and keratinocytes in psoriasis. 

The high resolution of RNA-Seq data allows for study of not only gene expression but also 

splicing in psoriasis. A recent analysis of psoriasis RNA-Seq data revealed around 9,000 RNA 

alternative splicing isoforms as a significant feature of this disease[19]. Another study showed that 

serine/arginine-rich splicing factor 1 (SRSF1) promoted the expression of type-I interferons (IFNs) 

in psoriatic lesions, and suppression of SRSF1 treated by TNFα in turn suppressed the expression 

of IFNs[20]. Despite the potentially important role that splicing plays in the mechanism of 

psoriasis, analyzing alternative splicing in psoriasis has received relatively little attention in the 

research community. To develop a better understanding of the disease mechanism of psoriasis, this 
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section seeks to perform an integrated analysis to reveal missing information about splicing in 

psoriasis that will largely complement previous gene expression analysis. 

To reveal the biological functions of the alternative splicing events in psoriasis, we 

performed multiple sequence alignment (MSA) between the sequences of mouse and human 

alternative splicing events, as the conserved splicing events are more likely to play similar roles in 

both species[21, 22]. Our analysis revealed 18 conserved exon-skipping (ES) events between mice 

and humans. These conserved events are potential candidates for further functional study. 

To identify the candidate splicing factors (SFs) that may be key regulators of splicing 

disruption seen in psoriasis, we created a database—called SFMetaDB—of all RNA-Seq datasets 

publicly available in ArrayExpress and GEO from gain or loss function studies of SFs in mice. 

Using the data source from SFMetaDB, we implemented a signature comparison method to infer 

the critical SFs for psoriasis. The splicing changes in a psoriasis mouse model[23] and the SF 

perturbation datasets were used to derive the splicing signatures. By comparing the signatures of 

psoriasis datasets to the splicing signatures of our splicing signature database, we revealed nine 

candidate SFs that potentially contribute to the regulation of alternative splicing in psoriasis. Genes 

regulated by such key SFs are involved in a number of critical pathways associated with psoriasis. 

2.2 Methods 

2.2.1 Differential alternative splicing analysis using RNA-Seq data 

To identify the DAS events, we performed DAS analysis for the Tnip1 KO mouse model 

dataset (GSE85891), where the Tnip1 KO mice and controls were treated for two days with 

imiquimod (IMQ)[23], and for the human psoriasis dataset (GSE54456), where the human lesional 

psoriatic and normal skins established large-scale gene expression data[18]. We first aligned the 

raw RNA-Seq reads to mouse (mm9) or human (hg19) genomes using STAR (version 2.5.1b)[24] 
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with default settings, and only uniquely mapped reads were retained for further analysis. The 

number of reads for each exon and exon-exon junction in each RNA-Seq file was computed by 

using the Python package HTSeq[25] with the annotation of the UCSC KnownGene (mm9 or 

hg19) annotation[26]. DMN was used to model the counts of the reads aligned to each isoform of 

each event[27], and the likelihood ratio test was used to test the significance of the changes in 

alternative splicing between psoriasis samples and controls[28]. We calculated the q-values from 

the p-values in the likelihood ratio test by the Benjamini-Hochberg procedure[29]. The DAS 

events are classified into seven splicing types: Exon skipping (ES), alternative 5' splice sites 

(A5SSs), alternative 3' splice sites (A3SSs), mutually exclusive (ME) exons, intron retention (IR), 

alternative first exons (AFEs) and alternative last exons (ALEs). In addition, PSI was used to 

evaluate the percentage of the inclusion of variable exons relative to the total mature mRNA in the 

splicing events[30]. The PSI was originally defined for ES events. Here, its definition is expanded 

to describe the changes in splicing of all the splicing types in our DAS analysis. Specifically, the 

splicing event types ES, A5SS, A3SS, ME, and IR involve two isoforms where one isoform is 

longer. We calculated the PSI as the percentage usage of the longer isoform compared with both 

isoforms. For the splicing events AFE and ALE, we calculated PSI as the percentage of usage of 

the proximal isoform (the isoform with the variable exon closer to the constitutive exon) relative 

to both isoforms of the event. The DAS events are identified under ΔΨ > 0.05 and 𝑞 < 0.05. 

2.2.2 Gene ontology analysis 

To examine the biological functions of the genes in the Tnip1 KO mice and the human 

psoriasis dataset, GO analysis was performed to screen for the enriched GO terms using Fisher’s 

exact test[31] with the null hypothesis H0: log odds ratio	
  < 1. In the test of enriched GO terms for 

the genes with DAS events, these genes were taken as the foreground, and the expressed genes 
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were taken as the background. To reveal the enriched GO terms for differentially expressed genes, 

specifically up-regulated genes were taken as the foreground and expressed genes were taken as 

the background. The estimated log odds ratio was also retained for overlapped GO terms. Enriched 

GO terms were identified under p-value < 0.05. 

2.2.3 Splicing conservation analysis 

To reveal the biological function of DAS events in psoriasis, we performed splicing 

conservation analysis between mice and humans. We first checked whether the homologous genes 

between the two species both had the DAS events. By mapping the human gene symbol to the 

mouse homologous gene symbol using HomoloGene[32], we constructed a contingency table 

consisting of the counts of the homologous genes in both species with DAS events or in only one 

species with DAS events. Taking the homologous genes expressed in both mice and humans as 

the background genes, the Fisher’s exact test was used to test the enrichment of common 

homologous genes with DAS events in both species. 

Additionally, we compared the isoform sequences between mice and humans. Within the 

89 homologous genes with DAS events, 33 showed ES events in both species. To investigate the 

conservation of splicing changes in these 33 genes, we performed MSA analysis of the ES events 

in these genes. We first extracted the two isoform sequences that cover each of the ES events—

i.e., the upstream and downstream exons in the event are included in both isoforms, but the variable 

exon is included in only one of the isoforms. Within each homologous gene, we compared all the 

mouse-human splicing event pairs. In each comparison, we constructed an MSA of the translated 

protein sequences or the predicted mRNA sequences of the extracted isoforms in mice and humans 

using MAFFT[33]. For the coding events, we constructed the MSA for the translated protein 

sequences. Alternatively, for the events with noncoding isoforms, we built the MSA for the 
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predicted mRNA sequences. The MSA results between the mouse and human isoforms revealed a 

commonality of splicing events between mice and humans.  

2.2.4. Mouse splicing factor perturbation database 

To screen for the candidate SFs that may regulate splicing in psoriasis, we curated a set of 

mouse RNA-Seq datasets with perturbed SFs. Our curated datasets were deployed as a database 

called SFMetaDB, which hosts the full mouse RNA-Seq datasets with perturbed SFs (knocked-

out/knocked-down/overexpressed). To curate the mouse SF perturbation database in SFMetaDB, 

we extracted 315 RNA SFs in GO (accession GO:0008380) for the mice[31]. For each SF, we used 

the gene symbol to search against ArrayExpress[34] for mouse RNA-Seq datasets. For the 

retrieved results from ArrayExpress, we performed manual curation of the dataset to make sure 

the SF was perturbed in the dataset. We ended up with 34 mouse RNA-Seq datasets for the 

perturbation of 31 SFs. These 34 SF perturbation datasets provided the precious raw data for us to 

induce the candidate SFs that regulate splicing in psoriasis. 

2.2.5 Splicing signature‒based connectivity map 

To identify the candidate SFs that regulate splicing events in psoriasis, we first determined 

whether the expression of SFs increased or decreased in the Tnip1 KO mouse dataset and the 

human psoriasis dataset using the following procedure. The raw RNA-Seq reads were aligned to 

mouse/human genome using STAR, the same as the DAS analysis. The uniquely mapped reads 

were used to calculate the read-counts for each gene against the UCSC KnownGene annotation 

(mm9/hg19). A table of read-counts for all the genes and all the samples was created and 

normalized by DESeq[35]. The fold change calculated from this normalized count table was used 

to determine whether the expression of an SF increased or decreased.  
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Then, we checked how the splicing events were regulated by the SFs in the SF perturbation 

datasets by comparing these splicing events with the events in the psoriasis datasets. For example, 

if 1) a splicing event was positively regulated by an SF according to an SF perturbation dataset—

i.e., the inclusion of the variable exon of the event was increased (Figure 2.1a) upon the 

overexpression of the SF or the inclusion of the variable exon of the event was decreased upon the 

knock-down/knock-out of the SF in the SF perturbation dataset (Figure 2.1b), and 2) the same 

variable exon was more included in psoriasis along with an increased expression of the SF or the 

same variable exon was less included in psoriasis along with a decreased expression of the SF, this 

consistency between 1) and 2) suggests that the event is likely regulated by the SF in psoriasis. If 

this consistency holds across a significantly large number of events, then the SF is likely a key 

factor responsible for the regulation of large-scale splicing changes in psoriasis. This consistency 

comparison approach was also used in CMap, a gene expression signature comparison method that 

has been widely used to detect the consistency between the gene expression signatures of a disease 

and the small-molecule or drug-treated samples[36]. Such a signature comparison method based 

on gene expression is powerful because some of the predictions have been validated in vivo[37]. 

However, most signature comparison approaches mainly focus on gene expression data and fail to 

detect fine-tuning of gene expression by splicing. To obviate the drawback in CMap, we applied a 

splicing signature‒based comparison method using splicing changes in the SF perturbation 

datasets and the psoriasis datasets (Figure 2.1c). We first calculated the splicing signatures for the 

34 SF perturbation datasets, where +/– indicates that an event is positively/negatively regulated 

by the given SF of the dataset and 0 indicates that no evidence exists that the event is regulated by 

the SF. Another signature vector made of +/–/0 was used to characterize the relation of an SF 

and the events in the psoriasis dataset. By comparing a signature from the SF perturbation dataset  
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with a signature from the psoriasis data, a 3×3 contingency table was tabulated with rows and 

columns named +/–/0 and was used to see whether the two signatures match each other. To 

further check for the direction of the consistency, we collapsed the 3×3 table into two 2×2 tables 

so that the enrichment of ++ events and – – events, respectively, could be tested using Fisher’s 

exact test (Figure 2.1c). The SFs with significantly enriched ++ events and – – events are the 

candidate SFs that regulate the splicing in psoriasis. 

Splicing 
signature
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E2 0
E3 −
E4 0
E5 0
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0 −0 0+ +
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Figure 2. 1 Splicing signature comparison workflow for the discovery of candidate SFs 

that regulate alternative splicing in psoriasis.  

(a) The splicing events direction in the perturbed group. (b) The regulation direction of DAS 

event. (c) Splicing signatures comparison workflow. 
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2.3 Results 

2.3.1 Revealing large-scale changes in alternative splicing by analyzing RNA-Seq data from 

psoriasis mouse model and human skin 

To investigate the role of the splicing process in psoriasis, a psoriasis mouse model was 

studied first to detect splicing changes. In this mouse model, the gene Tnip1 was knocked out[23]. 

Notably, TNIP1 (the homologous gene of Tnip1) in humans is found in a psoriasis susceptibility 

locus[38]. It has been shown that Tnip1 knockout (KO) mice exhibit macroscopical psoriasis-like 

Figure 2. 2 Number of DAS events for the seven splicing event types. 

DAS analyses were performed for the mouse and human datasets, involving seven splicing 

event types: ES, A5SS, A3SS, ME, IR, AFE, and ALE. Under |ΔΨ| > 0.05 and 𝑞 < 0.05, the 

pie charts depict the number of DAS events for the seven splicing event types. (a) DAS analysis 

revealed 609 DAS events in the Tnip1 KO mouse model dataset. (b) DAS analysis revealed 606 

DAS events in the human psoriasis dataset. 
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phenotypes, such as redness and scaling, and microscopical psoriasis-like phenotypes, such as 

epidermal thickening, elongated rete-like ridges, papillomatosis, retention of nuclei within 

corneocytes, and infiltrations with different immune cell types[23]. To reveal splicing changes, the 

Dirichlet Multinomial (DMN) regression[27] was used to analyze the dataset from the Tnip1 KO 

Figure 2. 3 Heat map of PSI values for alternative ES events in the Tnip1 KO mouse model 

dataset and the human psoriasis dataset. 

Yellow: high PSI. Blue: low PSI. (a) The heat map of the PSI values between three KO samples 

and three wild-type samples in mice. 64 of 181 ES events have more inclusion of variable exons 

in psoriasis, and 117 ES events have less inclusion of variable exons in psoriasis. (b) Heat map 

of the PSI values between 92 lesional psoriatic skins and 82 normal control skins in humans. 

98 of 217 ES events have more inclusion of variable exons in psoriasis, and 119 ES events have 

less inclusion of variable exons in psoriasis. 
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mouse model. Benjamini-Hochberg‒adjusted[29] p-value and the percent sliced in (PSI, Ψ) were 

estimated for seven types of splicing events. Under ΔΨ > 0.05 and 𝑞 < 0.05, a total of 609 

differential alternative splicing (DAS) events were identified. Figure 2.2a shows the number of 

DAS events for seven splicing types in the mouse model. To verify that the Tnip1 KO mouse 

model recapitulated the main splicing features in human psoriasis, we performed a DAS analysis 

using RNA-Seq data from psoriasis patients and controls[18]. This DAS analysis identified 606 

DAS events ( ΔΨ > 0.05 and 𝑞 < 0.05). Figure 2.2b shows the number of DAS events for seven 

splicing types in the human psoriasis dataset.  

Our DAS results revealed many significant splicing events in the psoriasis mouse model. 

Figure 2.3 shows the heat map of PSI values for ES events in the Tnip1 KO mouse model and in 

the human psoriasis dataset. In the Tnip1 KO mouse model dataset, 64 splicing events have more 

inclusion of the variable exons in psoriasis, while 117 splicing events have less inclusion of the 

variable exons in psoriasis. In the human psoriasis dataset, 98 splicing events have more inclusion 

of the variable exons in psoriasis, while 119 splicing events have less inclusion of the variable 

exons in psoriasis. To reveal the biological functions of the genes with DAS events, gene ontology 

(GO) analysis was applied to detect the enriched GO terms for genes with DAS events in both the 

Tnip1 KO mice and the human psoriasis dataset. Specifically, the GO term “regulation of wound 

healing, spreading of epidermal cells” was enriched in both mice and humans. The wound healing 

process is accelerated in psoriasis, suggesting the potential role of splicing changes in 

psoriasis[39]. In addition, the actin-filament‒related GO terms “negative regulation of actin 

filament depolymerization” and “actin filament reorganization” were enriched in mice and 

humans, respectively. Dysregulation of actin filament is observed in psoriatic skins, indicating that 

splicing changes may contribute to the formation of psoriasis[40]. Therefore, our DAS analysis 
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discovered large-scale splicing changes in psoriasis, providing feasible and promising new features 

to study the role of splicing in the pathogenesis of psoriasis.  

2.3.2 Revealing conserved splicing events in both mice and humans by splicing conservation 

analysis 

To identify the most critical splicing changes in psoriasis, we conducted a splicing 

conservation analysis to reveal the splicing changes common to both the Tnip1 KO mouse model 

dataset and the human psoriasis dataset. By mapping mouse and human gene symbols using 

HomoloGene[32], we detected 89 homologous genes with DAS events in both mice and humans 

Figure 2. 4 Venn diagram of the genes with DAS events in the Tnip1 KO mouse model 

dataset and the human psoriasis dataset. 

To investigate the genes with DAS events, we ended up with 667 genes in the Tnip1 KO mouse 

model dataset and 607 genes in the human psoriasis dataset. Mapping the human gene symbols 

to mouse homologous genes using HomoloGene resulted in 89 common homologous genes 

with DAS events in both species. Alternatively, 578 genes have DAS events in mice but not 

humans. On the other hand, 518 genes have DAS events in humans but not mice. Taking 12,233 

homologous genes expressed in both species as the background genes, the Fisher’s exact test 

showed significant enrichment of the common homologous genes with 𝑝 = 1.7×10789. 
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(Figure 2.4). The Fisher’s exact test showed significant enrichment of the common homologous 

genes with 𝑝 = 1.7×10789. This supports the conclusion that there is commonality in splicing 

underlying psoriasis in both mice and humans.  

To further characterize the conservation of splicing in mice and humans, we compared the 

isoform sequences between them. By the splicing conservation analysis at the isoform level, we 

ended up with 24 homologous genes with conserved isoform sequences for the common splicing 

events in human and mouse gene annotation. The high proportion of conserved isoform sequences 

for the common splicing events (24 of 33) suggested feasible and promising conservation of 

splicing changes between the Tnip1 KO mouse model dataset and the human psoriasis dataset.  

To identify the splicing features in psoriasis, we further evaluated whether the common 

splicing events were conserved in the same isoform between the Tnip1 KO mouse model dataset 

and the human psoriasis dataset. Specifically, we checked whether the splicing events shared the 

same inclusion pattern of variable exons in mouse and human. We ended up with 18 alternative 

splicing events conserved in the same isoform, which means that the splicing events have more or 

less inclusion of variable exons in the same way between the two species (Table 2.1). The 

corresponding 18 homologous genes with conserved alternative splicing events include ABI1, 

ARHGAP12, ATP5C1, CTTN, DNM1L, EXOC1, FBLN2, FNBP1, GOLGA2, GOLGA4, MYH11, 

MYL6, MYO1B, PAM, SEC31A, SLK, SPAG9, and ZMYND11. Of the 18 conserved splicing 

events, eight were largely spliced in both species, with over 10% PSI differences (Table 2.1). Our 

conservation analysis identified the 18 conserved splicing events, suggesting that the splicing 

features in the psoriasis mouse model dataset can be recapitulated in the human psoriasis dataset, 

and further, the 18 conserved splicing events can be promising targets to follow to study the 

splicing mechanism in psoriasis. 
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Table 2. 1 Identification of the conserved splicing events between the Tnip1 KO mouse 

model dataset and the human psoriasis dataset. 

Gene 

 in human 

Gene 

in mouse 

ΔΨ  

in human 

ΔΨ  

in mouse 

Isoform conservation PSI consistency 

ABI1 Abi1 ‒0.133 ‒0.095 both Y 

ARHGAP12 Arhgap12 ‒0.069 ‒0.309 both Y 

ATP5C1 Atp5c1 0.104 0.259 both Y 

CTTN Cttn ‒0.054 ‒0.159 both Y 

DNM1L Dnm1l ‒0.096 ‒0.221 both Y 

EXOC1 Exoc1 0.186 0.198 both Y 

FBLN2 Fbln2 ‒0.172 ‒0.173 both Y 

FNBP1 Fnbp1 ‒0.137 ‒0.269 both Y 

GOLGA2 Golga2 ‒0.099 ‒0.144 both Y 

GOLGA4 Golga4 0.058 0.086 both Y 

MYH11 Myh11 ‒0.064 ‒0.225 both Y 

MYL6 Myl6 ‒0.101 ‒0.294 both Y 

MYO1B Myo1b ‒0.109 ‒0.206 both Y 

PAM Pam ‒0.096 ‒0.327 both Y 

SEC31A Sec31a ‒0.105 ‒0.115 both Y 

SLK Slk 0.107 0.217 both Y 

SPAG9 Spag9 ‒0.100 ‒0.226 both Y 

ZMYND11 Zmynd11 0.061 0.365 both Y 

AXL Axl ‒0.060 0.091 both N 
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Table 2.1 Continued. 

Gene 

 in human 

Gene 

in mouse 

ΔΨ  

in human 

ΔΨ  

in mouse 

Isoform conservation PSI consistency 

DMKN Dmkn ‒0.180 ‒0.078 hs_inc=mm_excl a N 

MLX Mlx 0.089 ‒0.132 both N 

MPRIP Mprip ‒0.127 0.187 both N 

NDRG2 Ndrg2 0.126 ‒0.159 both N 

POSTN Postn ‒0.072 ‒0.195 hs_inc=mm_excl b N 

 

The column “PSI consistency” marks ‘Y’ for the 18 splicing events conserved in both mice and 

humans. 

a The ΔΨ s are of the same negative signs, meaning psoriatic samples have more exclusion for the 

splicing events in DMKN/Dmkn of both species. However, the isoform with more inclusion of the 

variable exon in the human (hs_inc) is conserved with the isoform with more exclusion of variable 

exon in the mouse (mm_excl). Therefore, the event is not conserved. 

b The ΔΨ s are of the same negative signs, meaning psoriatic samples have more exclusion for the 

splicing events in POSTN/Postn of both species. However, the isoform with more inclusion of the 

variable exon in the human (hs_inc) is conserved with the isoform with more exclusion of variable 

exon in the mouse (mm_excl). Therefore, the event is not conserved. 
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2.3.3 Revealing candidate splicing factors regulating splicing in psoriasis by splicing 

signature analysis in mouse 

To further elucidate the splicing mechanism in psoriasis, we conducted SF screening to 

discover the candidate SFs that may regulate large-scale splicing events in psoriasis. Because a 

great number of splicing events are discovered in mouse psoriasis datasets, we hypothesize that 

SFs may play critical roles in the regulation of these events. To screen for the candidate SFs, we 

manually curated a list of RNA-Seq datasets with gain- or loss-of-function of mouse SFs[10]. 

Using the datasets in SFMetaDB, we systematically compared the splicing changes in the psoriasis 

mouse model dataset with the effects of SF perturbation using a splicing signature comparison 

workflow (Figure 2.1). Our splicing signature comparison approach screened the SF perturbation 

datasets related to a total 31 SFs for splicing regulators in the mouse psoriasis dataset, where nine 

SFs showed significant overlapping splicing changes in psoriasis, including NOVA1, PTBP1, 

PRMT5, RBFOX2, SRRM4, MBNL1, MBNL2, U2AF1, and DDX5, which are potential 

regulators responsible for splicing changes in psoriasis. 

2.3.4 Confirming the key splicing regulators in humans 

To confirm the importance of these nine SFs in mice, we performed a similar splicing 

signature comparison analysis in humans. Using the human homologous symbols of these nine 

mouse SFs, we curated on GEO[41] the human RNA-Seq datasets with these genes perturbed. Our 

curation resulted in four datasets for three of nine human SFs—GSE59884 [42] and GSE69656 

[43] for PTBP1, GSE66553 for U2AF1, and GSE76487 [44] for MBNL1. The splicing signature 

comparison analysis (Figure 2.1) using splicing signatures from the human psoriasis dataset and 

the four datasets of the three human SF perturbation showed significantly overlapped splicing 

changes between the human psoriasis dataset and the SF perturbation datasets of three human 
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SFs— i.e., PTBP1, U2AF1, and MBNL1. These results suggest the important role of these three 

SFs in potentially regulating splicing in psoriasis. 

2.3.5 Revealing potential candidate SFs that regulate splicing in psoriasis using conserved 

splicing events in SF perturbation datasets 

To identify the potential SFs that regulate the conserved splicing events in psoriasis, we 

investigated the consistency of regulation direction of splicing events in the mouse/human dataset 

and the SF perturbation datasets. The 18 conserved ES events were significantly conserved in the 

Tnip1 KO mouse model dataset and the human psoriasis dataset, indicating the key spliced genes 

in psoriasis. Upon checking whether the splicing events were positively/negatively regulated by 

the SF in the same way in the SF perturbed datasets and the psoriasis datasets (Figure 2.1b), we 

ended up with 12 SFs (CELF1, CELF2, DDX5, MBNL1, MBNL2, NOVA1, PRMT5, PTBP1, 

RBFOX2, SF3A1, SRRM4, and U2AF1) potentially regulating 13 splicing events (Abi1, 

Arhgap12, Atp5c1, Cttn, Exoc1, Fbln2, Golga2, Golga4, Myl6, Pam, Sec31a, Spag9, and 

Zmynd11) in the Tnip1 KO mouse model dataset and three SFs (PTBP1, U2AF1, and MBNL1) 

potentially regulating five splicing events (ABI1, CTTN, GOLGA2, MYL6, and PAM) in the human 

psoriasis dataset. These results show the potential SFs that may regulate splicing events in 

psoriasis. 
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3. IDENTIFYING KEY FACTORS IN EPIDERMAL DEVELOPMENT AND COLD-

INDUCED THERMOGENESIS* 

A large volume of biological data is being generated for studying mechanisms of various 

biological processes. These precious data enable large-scale computational analyses to gain 

biological insights. However, it remains a challenge to mine the data efficiently for knowledge 

discovery. The heterogeneity of these data makes it difficult to consistently integrate them, slowing 

down the process of biological discovery. We introduce a data processing paradigm to identify key 

factors in biological processes via systematic collection of gene expression datasets, primary 

analysis of data, and evaluation of consistent signals [8]. To demonstrate its effectiveness, our 

paradigm was applied to epidermal development and identified many genes that play a potential 

role in this process. Besides the known epidermal development genes, a substantial proportion of 

the identified genes are still not supported by gain- or loss-of-function studies, yielding many novel 

genes for future studies. Among them, we selected a top gene for loss-of-function experimental 

validation and confirmed its function in epidermal differentiation, proving the ability of this 

paradigm to identify new factors in biological processes. In addition, this paradigm revealed many 

key genes in cold-induced thermogenesis using data from cold-challenged tissues, demonstrating 

its generalizability. This paradigm can lead to fruitful results for studying molecular mechanisms 

in an era of explosive accumulation of publicly available biological data. 

  

                                                

* Reprinted with permission from "A data mining paradigm for identifying key factors in 
biological processes using gene expression data" by Jin Li, Le Zheng, Akihiko Uchiyama, 
Lianghua Bin, Theodora M. Mauro, Peter M. Elias, Tadeusz Pawelczyk, Monika Sakowicz-
Burkiewicz, Magdalena Trzeciak, Donald Y. M. Leung, Maria I. Morasso, and Peng Yu., 2018. 
Scientific Reports, 8, 9083, Copyright 2018 by authors 



 

 22   

Figure 3. 1 Data processing paradigm flowchart. 

Data curation was performed to identify the gene expression datasets with the given biological 

process perturbed (e.g., the process is increased in CMP 1 with +1 and is decreased in CMP 2 

or CMP m with direction −1). +1/−1/0 represents the up-regulated, down-regulated, or 

unchanged genes, respectively. An affinity score of +1/−1/0 was calculated first by 

comparing the gene expression change and the regulation of the biological process, where +1 

indicates that the gene (e.g., Gene 1 in CMP 1 and CMP 2) is positively related to the biological 

process, −1 indicates that the gene (e.g., Gene 2 in CMP m and Gene n in CMP 1) is negatively 

related to the biological process, and 0 indicates no relation of the gene to the biological process. 

No measurement (notated as NA, e.g., Gene 3 in CMP 1) indicates an unknown affinity of the 

gene in the dataset. By summing the affinity scores, a consensus score was calculated for genes 

in the perturbed datasets. 

 
 
 

Data curation in ArrayExpress/GEO for experimental 
comparisons (CMPs) in datasets with the biological 

process perturbed, i.e., increased (+1) or decreased (-1).

CMP 1:
increased: +1

CMP 2:
decreased: -1

CMP m:
decreased: -1

symbol CMP 1 CMP 2 … CMP m Consensus 
Score

Gene 1 +1=+1*+1 +1=-1*-1 … 0=-1*0 2=+1+1+0

Gene 2 +1=+1*+1 +1=-1*-1 … -1=-1*+1 1=+1+1-1

Gene 3 NA=+1*NA 0=-1*0 … 0=-1*0 0=0+0

… … … … … …

Gene n -1=+1*-1 -1=-1*+1 … -1=-1*+1 -3=-1-1-1

…

DEG analysis

Biological process related genes with high consensus scores
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3.1 Introduction 

The huge amount of data generated from previous biological studies provides a precious 

resource for mining new biological knowledge. A significant portion of the data is freely available 

in public repositories such as ArrayExpress [34] and Gene Expression Omnibus (GEO) [41]. For 

example, around one million series studies are publicly available in GEO. Due to the unstructured 

nature of the metadata associated with public data, manual curation is required [5, 6, 10, 45, 46], 

a step that is essential for collecting large-scale gene expression data.  

Gene expression data facilitate the application of the network reconstruction approach for 

identifying key factors in biological processes. For example, Bhaduri et al. [47] applied the gene 

network reconstruction approach to explore epidermal differentiation regulators. Using network 

analysis, the MPZL3 gene was identified as a highly connected hub required for epidermal 

differentiation. In addition, the MPZL3 gene indirectly regulates epidermis genes, including 

ZNF750, TP63, KLF4, and RCOR1, through the FDXR gene and reactive oxygen species. 

Complementing data analyses with more relevant data improves the identification of key 

factors in biological processes. Even though massive expression data can provide essential insights 

in revealing genetic interactions, there are confounding factors or “noise” introduced by technical 

variations, such as batch effects [48]. To obviate the “noise” and generate a consistent result, one 

solution is integrative analysis by comparing large-scale datasets [49]. In this section, we 

introduced a paradigm to integrate data collection and data analysis for mining key factors in 

specific biological processes (Figure 3.1). To demonstrate the power of our data processing 

paradigm, we evaluated key factors of two applications in skin biology and energy homeostasis. 

The epidermis of skin mediates various functions that protect against the environment, such 

as microbial pathogen challenges, oxidant stress, ultraviolet light, chemicals, and mechanical 
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insults [50]. Therefore, it is critical to understand mechanisms of epidermal development to 

develop new treatment for human skin diseases [13]. Our paradigm predicts key factors in 

epidermal development by collecting related datasets and integrating the information. A fraction 

of genes are annotated in Gene Ontology (GO) or have strong functional validation based on gain-

/loss-of-function studies [51]. The remaining genes are novel; their functionality has not been 

experimentally validated. We picked a top hit, suprabasin (SBSN), and performed loss-of-function 

experiments for the mouse homolog of gene Sbsn using RNA-Seq. The analysis validates that Sbsn 

knockdown in mouse keratinocyte cultures down-regulates cornified envelope genes, suggesting 

an essential role of SBSN in epidermal differentiation. These results demonstrate the effectiveness 

of our paradigm in discovering key factors of epidermal development. 

As another application, cold-induced thermogenesis (CIT) can reduce body weight by 

increasing resting energy expenditure in mammals [52]. Genes involved in CIT can be promising 

therapeutic targets for treating obesity and diabetes. Thus, it is important to understand the 

underlying mechanism of CIT. Our paradigm detected potential CIT-related genes, including 

known CIT genes and novel ones, showing that the paradigm can be generalized easily to other 

biological processes. It is a promising integrative analysis approach to identify key factors in 

biological processes. 

3.2 Methods 

3.2.1 Curating gene expression data related to epidermal development 

We collected gene expression datasets related to epidermal development by manual 

curation according to the following procedure. First, we searched ArrayExpress using the keyword 

(“epidermis+development” OR "epidermal+development”) AND organism: “homo sapiens”, 

retrieving only five studies, none of which could be reused to study the epidermal development 
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process because of no change in epidermal development in the datasets. Therefore, we started from 

known epidermal development genes to curate datasets with the process perturbed. Specifically, 

genes from the GO [31] epidermis development (accession GO:0008544) term were extracted first 

for humans. Then, the official symbol of each gene was queried on ArrayExpress for human 

microarray datasets. Each retrieved dataset was manually examined to retain only the datasets with 

at least one epidermis development gene being perturbed (i.e., knocked out, knocked down, or 

overexpressed). To ensure proper downstream statistical analysis, any dataset with no replicates 

was discarded. 

3.2.2 Data processing paradigm of the perturbed expression data 

To identify the genes related to a biological process, our data processing paradigm was 

performed on the gene expression data to capture the affinities between specific genes and the 

biological process. An affinity score of +1 or −1 means that the gene is positively or negatively 

related to the biological process. Specifically, if the expression of a gene is increased or decreased 

in a biological process that is increased, the gene has an affinity score of +1 or −1 for the 

biological process. Alternatively, if the biological process is decreased, these genes have an 

affinity score of −1 or +1. The affinity score was 0 or NA for the genes not differentially expressed 

or unmeasured. The detailed workflow of the paradigm is shown in Figure 3.1. For a biological 

process, systematic data curation is performed to collect gene expression datasets with the process 

perturbed (increased or decreased). Using DEG analysis [53-55], affinity scores are calculated for 

each gene in each comparison in each dataset. Finally, a consensus score is calculated by summing 

these affinity scores among the comparisons for each gene. High consensus scores suggest that the 

corresponding genes are potentially critical to the biological process. Thus, our paradigm is a 

general framework that can be used to identify the key factors in a biological process. 
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3.2.3 DEG analysis using Sbsn knockdown RNA-Seq data in mouse differentiating primary 

keratinocyte cultures 

To identify the differentially expressed genes in mouse differentiating primary keratinocyte 

cultures in which Sbsn had been knocked down with siRNA, the following analysis was performed. 

The raw RNA-Seq reads were aligned to the mouse (mm10) genome using STAR (version 2.5.1b) 

[24] with default settings. The uniquely aligned reads were retained to calculate the read counts 

for each gene against the UCSC KnownGene annotation (mm10), and a count table was 

constructed by counting the number of reads aligned uniquely to each of the genes for each sample. 

DEG analysis was performed by DESeq2 [56]. To adjust the batch effect, a generalized linear 

model with a batch factor was used to model the read counts for all samples, and the Wald test was 

used to test the significance of differences in gene expression between Sbsn knockdown samples 

and controls. FDR adjusted q-values were then calculated from the p-values in the Wald test using 

the Benjamini-Hochberg procedure [29]. The log2-fold changes between Sbsn knockdown 

samples and controls were also calculated for each gene. The differentially expressed genes were 

identified under |log2-fold-change| > 0.5 and	
  𝑞 < 0.05. 

3.2.4. Comparisons on the curated datasets with respect to epidermal development 

To assess the ability of the paradigm, differentially expressed genes using individual 

comparisons were compared to top identified genes. For individual comparisons, the genes were 

ordered by contrasts for the increased process or by negative contrasts for the decreased process. 

Because there were 295 genes in the epidermis development GO term (accession GO:0008544), 

the same number of genes was selected as top genes in each individual comparison. Further, 295 

top genes were selected for the combined comparisons. Some genes tied at the rank of 295, so 24 

instances of random sampling (to generate the same number of observations as individual 
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comparisons) were performed within these tied genes to keep only a total of 295 genes. Within 

each of these sets of 295 genes, the number of the genes in the epidermis development GO term 

was recorded. To test the difference of epidermal development genes between individual 

comparisons and top identified genes, one-sided Wilcoxon test was applied over the recorded 

number of epidermal development genes. 

3.2.5. Phylogenetics-based GO analysis 

Because the function of SBSN has not been elucidated, it is important to derive an unbiased 

indication regarding its biological function. For this purpose, a GO analysis based on a gene set 

derived by a phylogenetic approach was performed using the following procedure. Co-evolved 

genes of human SBSN were first detected using the human-centric binary phylogenetic matrix from 

Clustering by Inferred Models of Evolution (CLIME) [57]. The human-centric phylogenetic 

matrix in CLIME was built by searching the protein sequence of each gene in humans against the 

protein sequences in the rest of 138 fully sequenced eukaryotic organisms [58] and in a 

Figure 3. 2 GO terms enriched in the co-evolved genes of SBSN. 

Three GO terms, keratin filament, intermediate filament, and intermediate filament 

cytoskeleton, were significantly enriched in the 59 co-evolved genes of SBSN in humans. 
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“prokaryote” outgroup of 502 prokaryotic species using BLASTP [59]. In this matrix, rows are 

human genes, and columns are the 138 eukaryotic organisms together with the “prokaryote” 

outgroup. Each element in the matrix is binary, which takes 1 if the human protein sequence of the 

gene in the row is similar to the sequence of a protein in the species of the column; otherwise it 

takes 0. Then, the Fisher’s exact test was applied to evaluate the significance that each gene was 

co-evolved with SBSN among 138 eukaryotic organisms and the “prokaryote” outgroup. A total of 

59 genes were co-evolved with SBSN under 𝑝 < 1.0×107;. These 59 co-evolved genes were used 

to screen for the enriched GO terms using Fisher’s exact test (with the null hypothesis H0: log-

odds-ratio < 2) with the genes appearing in all human GO terms as background [31].  

The GO analysis resulted in three significantly enriched GO terms related to epidermal 

development: keratin filament, intermediate filament, and intermediate filament cytoskeleton 

(Figure 3.2). For example, keratin filament has shown to be critical in the formation of skin 

disorders [60]. These enriched GO terms identified by the co-evolved genes of SBSN indicate a 

potentially critical role of SBSN in epidermal development. 

3.2.6. Expression increase of SBSN upon epidermal differentiation 

To evaluate the gene expression changes of SBSN upon epidermal differentiation, a 

microarray dataset (GSE52651) measured in a 7-day time-course keratinocyte differentiation 

experiment was analyzed. Human progenitor keratinocytes were seeded onto devitalized dermis 

to enable keratinocyte differentiation into fully stratified epithelium, which captured dynamic 

changes in tissue regeneration [61]. With log2 transformation and quantile normalization of raw 

probe expression values, Figure 3.3 shows increased expression of SBSN upon epidermal 

differentiation starting from day 1. The early increase of its expression values upon the induction 

of differentiation indicates a potentially critical role of SBSN in epidermal differentiation. 
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3.2.7. Clustering analysis using the affinity distance metric based on Fisher’s exact test 

To investigate the relationship of the 24 experimental comparisons in the curated datasets, 

clustering analysis was performed using an affinity distance metric. The affinity distance metric 

Figure 3. 3 Expression changes of SBSN in human keratinocytes upon epidermal 

differentiation. 

To investigate the gene expression changes of SBSN upon epidermal differentiation, a time-

course microarray dataset was used to measure the expression values of SBSN. Human 

keratinocytes were treated to induce differentiation for discrete time points of seven days. The 

boxplot shows the normalized log2-expression values of the 11 probes in the microarray 

mapped to SBSN with two biological replicates measured per day. The expression of SBSN was 

significantly up-regulated in days 1 to 7 compared with day 0 (t-test using linear contrast p-

value < 2.2×107<;). 
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was derived from an affinity score matrix calculated in the paradigm (Figure 3.1). An affinity score 

(annotated as +1/−1/0 or NA) of a gene in an experimental comparison examines the relatedness 

of the gene to a biological process. To evaluate the similarity of the results of two experimental 

comparisons, a 3×3 contingency table, labeled as +1/0/−1, was tabulated by counting the 

number of genes from the two columns in the affinity score matrix; the table then was collapsed 

into two 2×2 tables such that the enrichment of the genes having +1s or −1s in both experimental 

comparisons could be tested using Fisher’s exact test. The geometric mean of the two p-values 

calculated from the two 2×2 tables corresponding to +1s and −1s was considered the affinity 

distance between the two experimental comparisons. A smaller affinity distance indicates a closer 

relationship between the two experimental comparisons. To examine the relationships among the 

24 experimental comparisons in our curated datasets, the affinity distances were calculated for all 

pairs of 24 comparisons and were saved in an affinity distance matrix. Then, hierarchical clustering 

with complete linkage was applied to this matrix. 

3.2.8. Empirical distribution of consensus score 

To determine the cutoff of consensus scores, simulations were performed to generate the 

empirical distribution. Specifically, the consensus scores for all genes and 24 comparisons in 

epidermal development were used to construct an original score matrix, with rows as genes and 

columns as comparisons. To perform the simulation, the affinity scores for each comparison (each 

column) were permutated. After all columns were permutated, the consensus scores were 

calculated for each row. A total of 10,000 iterations of simulation were executed to generate the 

empirical distribution of consensus scores. 
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3.2.9. DEG analysis using microarray data 

For each of the curated human microarray datasets in Table 3.1, DEG analysis was 

performed as described below. To map microarray probes to gene symbols, the probe sequences 

were aligned to the transcript sequences of the GENCODE human annotation (release 25) [62] 

Table 3. 1 Result of dataset curation on GEO by the epidermis development GO term genes 
 
GSE No. Perturbed 

Gene Perturbation Experiment Tissue Abbreviation Tissue Type 

GSE37637 EXOSC9 Overexpressed Primary human 
keratinocytes PHK Epidermal 

tissue 

GSE71017 GRHL2 Knockdown Ovarian cancer cell line 
OVCA429 OVCA429 Cancer cell 

GSE37049 GRHL3 Knockdown Primary human normal 
neonatal keratinocytes NHEK Epidermal 

tissue 

GSE32685 KLF4 Knockdown Primary neonatal 
keratinocytes HEKn Epidermal 

tissue ZNF750 

GSE1676 RELA Knockdown HEK 293 HEK 293 Organotypic 
tissue 

GSE62454 RUNX1 Knockdown LNCaP cell line LNCaP Cancer cell 
GSE24778 RUNX1 Knockdown K562 cells K562 Cancer cell 

GSE8640 TFAP2A Knockdown MCF7 MCF7 Cancer cell TFAP2C 

GSE28448 SMAD4 Knockdown HMEC-TR HMEC-TR Epithelial cell TIF1 

GSE33495 
TP63 

Knockdown Primary neonatal 
keratinocytes HEKn Epidermal 

tissue TP63 
TP63 

GSE38039 ZNF750 Knockdown HaCaT cells HaCaT Cancer cell 
E-MTAB-
1833 CUX1 Knockdown Loucy cells Loucy Organotypic 

tissue 

GSE27275 PITX2 Knockdown Trabecular meshwork (TM) 
tissue from eye TM Trabecular 

meshwork cell 
E-MTAB-
900 RELA Knockdown HEK293T HEK293T Organotypic 

tissue 

GSE70940 SMAD4 

Overexpressed 
(8hr) 

Pancreatic ductal 
adenocarcinoma (PDAC) 
cell line BxPC3 

PDAC Cancer cell 
Overexpressed 
(24hr) 
Overexpressed 
(48hr) 

GSE28558 SNAI1 Knockdown A549 A549 Cancer cell 
GSE44203 TFAP2C Knockdown MCF7 MCF7 Cancer cell 
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using Bowtie (version 1.1.2) [63] with an exact match. The probes aligned to multiple genes were 

discarded. The raw microarray probe data were then rank-normalized by transforming the raw 

probe values to ranks scaled to [0, 1] by dividing the total number of probes in each platform. 

These scaled ranks were transformed by the variance-stabilizing transformation (VST) [64]. The 

resulted VST values were fit using linear models with adapted FDR in contrasts [29, 65]. The 

DEGs were identified as FDR ≤ 0.05. 

3.2.10. DEG analysis using RNA-Seq data 

For DEG analysis using RNA-Seq data, raw full-length of the single-end or the first end of 

the paired-end reads were first aligned to the transcriptome sequences annotated in GENCODE 

(mouse release M12) [66] eliminating pseudogenes using STAR (version 2.5.3a) [24] ignoring 

multiple alignment reads. A count table was tabulated of the number of reads aligned to each gene, 

discarding those reads aligned to multiple genes. Genes with low counts were filtered out from the 

count table. Normalization and DEG were conducted using DESeq2 [56]. FDR-adjusted q-values 

were computed using the Benjamini-Hochberg procedure [29]. The DEGs were identified as |log2-

fold-change| > 0.5 and 𝑞 < 0.05.  

3.3 Results 

3.3.1 Identification of candidate epidermal development genes 

To identify key gene expression datasets that are likely to be related to epidermal 

development, data curation was performed. A total of 295 epidermis development genes 

(according to GO) were searched on ArrayExpress to query microarray datasets, and over 300 

datasets were retrieved. Due to the limitation of the search function in ArrayExpress, many 

retrieved datasets did not have any perturbation of these epidermis development genes, even 
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though the gene symbols were mentioned in the datasets. To overcome this problem, manual 

curation was performed on each retrieved dataset to retain relevant ones, and the manual curation  

  

Figure 3. 4 DEG results of the curated microarray datasets. 

To identify the differentially expressed genes of the 24 experimental comparisons in curated 

microarray datasets, DEG analysis was performed as mentioned in supplemental materials. 

DEGs were identified under 𝑞 ≤ 0.05. (a) The bar plot depicts the number of DEGs identified 

in each of the 24 experimental comparisons. (b) The figure depicts the number of genes 

differentially expressed in n comparisons out of all the 24 comparisons. A large number of 

DEGs were identified in the curated datasets. A small group of genes was differentially 

expressed in multiple datasets. 
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Figure 3. 5 Heatmap of the top genes (consensus score ≥ 𝟔) in epidermal development 

derived from 24 experimental comparisons of the curated datasets. 
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resulted in 24 experimental comparisons from 17 datasets with gain or loss function of 14 

epidermis development genes (Table 3.1).  

To determine the candidate genes potentially involved in epidermal development, 

differential gene expression (DEG) analysis was performed on the 24 experimental comparisons 

of the curated microarray datasets. Differentially expressed genes were identified under 𝑞 ≤ 	
  0.05. 

The large-scale gene expression changes derived from our curated datasets provided a list of 

candidate genes that may be potentially involved in epidermal development (Figure 3.4).  

To identify genes that are potentially critical in epidermal development, consensus gene 

scores were summarized for each gene from affinities on the 24 experimental comparisons. Eighty-

one genes were identified as key genes related to epidermal development with a consensus score 

Figure 3.5 Continued. Heatmap of the top genes (consensus score ≥ 𝟔) in epidermal 

development derived from 24 experimental comparisons of the curated datasets. 

To identify the candidate genes that are potentially important in epidermal development, the 

paradigm was applied to the curated datasets. A total of 81 top genes (consensus score ≥ 6) 

revealed a set of candidate genes involved in epidermal development. Each column in the 

heatmap represents one of the 24 experimental comparisons in the curated datasets. For 

example, “ZNF750/-; GSE32685; PHK” represents the dataset (GSE32685) in which ZNF750 

was knocked down in primary human keratinocytes. Each row corresponds to a gene that was 

examined in those experimental comparisons. The colors yellow/blue/black/white correspond 

to the affinity scores +1/−1/0/	
  NA, respectively. These 81 top genes showed an affinity in 

epidermal tissues, demonstrating potential roles of these genes in epidermal development. 

 
 
 



 

 36 

≥ 6. The heatmap (Figure 3.5) shows a majority of these genes with a +1 affinity score in skin-

related cell types. This information suggests that these top genes may play a role in epidermal 

development. To infer the biological processes involved, GO analysis was performed on these top 

genes using Fisher’s exact test (the null hypothesis is log-odds-ratio < 2) with all the genes 

annotated in GO as the background. Several epidermis-related GO terms were enriched in these 

genes (Figure 3.6). For example, the essential GO terms in the epidermis were enriched, such as 

keratinocyte differentiation, epidermal cell differentiation, epidermis development, skin 

development, cornified envelope, and keratinization. In addition, the GO terms involved in skin 

barrier formation were also enriched, such as fatty acid elongase activity, lipoxygenase pathway, 

and establishment of skin barrier. These enriched GO terms suggest that the top identified genes 

are critical in epidermal development.  

Because GO annotation is not complete for gene functions [67], we manually curated 

functional annotations for the top identified genes.  Of these genes, besides the 18 genes annotated 

Figure 3. 6 Biological process and literature study of genes with consensus score ≥ 𝟔. 

To identify the biological process that the 81 top genes (consensus score ≥ 6) were involved 

in, a GO enrichment analysis was performed. The enriched GO pathways were plotted with a 

log10 p-value, along with their log10 odds ratios in the enrichment analysis. 
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in the GO term “epidermis development,” only three genes have loss-of-function experiments 

supporting their role in epidermal development. However, the majority of these identified genes 

have no functional experimental validation on epidermal development. Of the three genes with 

literature evidence, EDN1 (consensus score = 7) mediates the homeostasis of melanocyte (located 

at the bottom of epidermis) in vivo upon ultraviolet irradiation [68]. The loss function of ELOVL4 

(consensus score = 6) represses the generation of very-long-chain fatty acids, which is critical for 

the epidermal barrier function, showing the important role of ELOVL4 in epidermis development 

[69]. The in vitro loss-of-function experiment of HOPX (consensus score = 6) leads to increased 

expression of cell differentiation markers in human keratinocytes, demonstrating its involvement 

in epidermal development [70].  

To evaluate how well the roles of the identified genes are understood in epidermal 

development, we queried the PubMed literature database and examined the results. For each gene, 

the keyword used in the PubMed search was constructed as “<symbol>[tiab] AND (epidermis OR 

skin)”. The search results showed that a large proportion of identified genes (~42% = 34/81) have 

no publications related to skin. Therefore, these understudied novel genes revealed potential 

candidate genes for new studies on epidermal development. In addition, the majority (> 70%) of 

identified genes were not in the epidermis development GO term (Figure 3.7). These novel genes 

demonstrate the ability of the paradigm to discover unknown factors in epidermal development.  

To demonstrate the effectiveness of the paradigm computationally, top-ranked genes using 

collective comparisons were compared to genes using individual comparisons. Figure 3.8 shows 
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the significantly (p-value =	
  3.6×107B) increased epidermal development genes identified by the 

paradigm compared to differentially expressed genes derived from individual comparisons.  

Figure 3. 7 The majority of identified genes were not annotated in the epidermis 

development GO term. 

To evaluate the effectiveness of the paradigm in identifying new factors in epidermal 

development, the top identified genes were overlapped with the genes in the epidermis 

development GO term (GO:0008544). These identified genes were extracted using consensus 

score thresholds from ≥ 6 to ≥ 10. The green and red bars depict the number of total identified 

genes given the threshold and the number of the genes in the epidermis development GO term, 

respectively. The majority of identified genes (consensus score ≥ 6) were not in the epidermis 

development GO term. 
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3.3.2 Validation of Sbsn role in epidermal differentiation by loss-of-function and other 

experiments  

Among the identified genes, a top gene (SBSN) (with a high consensus score of 9) was 

selected to validate its role in epidermal development. A phylogenetics-based GO analysis 

revealed enriched GO terms related to epidermal development using co-evolved genes of SBSN 

(Figure 3.2). In addition, a time-course microarray dataset showed an increased expression of 

Figure 3. 8 The paradigm revealed an increased number of epidermal development genes. 

To demonstrate the power of the paradigm, differentially expressed genes derived from 

individual comparisons were compared to the top ranked genes using all the comparisons. One-

sided Wilcoxon test was used to test the significance of the difference between the number of 

epidermal development genes from two approaches. (***: p-value < 0.001) 
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SBSN upon epidermal differentiation (Figure 3.3). These results suggest a potentially critical role 

of SBSN in epidermal development. To determine the cellular component that Sbsn is involved 

with, we performed a study of the differentially expressed genes in differentiating mouse primary 

keratinocyte cultures from mice with Sbsn knockdown. In Sbsn knockdown mouse cultures, 326 

genes were up-regulated, and 161 genes were down-regulated (Figure 3.9a).  To investigate the 

functional roles of Sbsn, these differentially expressed genes were used to search for enriched GO 

terms [31] using Fisher’s exact test (null hypothesized log-odds-ratio < 2) with the genes 

expressed in the Sbsn knockdown mouse culture and the controls as background. Specifically, the 

cornified envelope GO term was found enriched in the genes down-regulated upon Sbsn 

knockdown (p-value < 0.05), and eight cornified envelope genes were down-regulated (Table 3.2). 

These results suggest the role that Sbsn may play in epidermal differentiation and cornified 

envelope formation.  

 
 
 

Table 3. 2 Eight enriched cornified envelope genes in Sbsn knockdown mouse differentiating 

keratinocyte cultures. 

Cnfn 
Lce1g 
Lce1h 
Lce3c 
Lce3d 
Lce3e 
Sprr2d 
Sprr2e 

 
 
 
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease [71]. IL-4, 

a type 2 cytokine, contributes to the development of AD. Because broad defects of cornified  
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Figure 3. 9 Validations of SBSN in epidermal differentiation. 
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envelope have been identified in AD [72], SBSN may play a critical role in AD via defective 

cornification. To investigate the putative role of SBSN in AD, differentiated primary normal human 

Figure 3.9 Continued. Validations of SBSN in epidermal differentiation. (a) Heatmap of 

the expression levels between Sbsn knockdown mice and controls. Expression levels are shown 

for genes differentially expressed (under |log2-fold-change| > 0.5 and q-value < 0.05) upon Sbsn 

knockdown. Red and white colors indicate high and low expression levels (arc-sine hyperbolic 

transformed normalized counts by DESeq and scaled by standard deviations) for 326 up-

regulated genes, respectively. Blue and white colors indicate high and low expression levels for 

161 down-regulated genes, respectively. (b) Expression values of SBSN normalized by 18S 

rRNA in differentiated keratinocytes upon IL-4 treatment. To evaluate the gene expression 

changes of SBSN during keratinocyte differentiation upon IL-4 treatment, an RT-PCR 

experiment was performed with nine differentiated cells with and without IL-4 treatments (three 

replicates per condition). The expression values of SBSN were normalized by the expression 

levels of 18S rRNA. The boxplot shows a significant decrease of SBSN expression at two IL 

doses (5 ng/ml and 50 ng/ml) (*: p-value < 0.05). (c) Expression values of full-length SBSN 

transcript (v1) in AD skins. To evaluate the expression changes of SBSN in AD skins, 

expression values were measured in AD skins for the SBSN transcripts via RT-PCR. The 

expression levels were normalized by the expression levels of G6PD. The full-length SBSN 

transcript showed significantly decreased expression levels in AD lesional skins compared to 

AD nonlesional and control skins (***: p-value < 0.001, **: p-value < 0.01, *: p-value <

0.05). 
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epidermal keratinocytes (NHEKs) were cultured to examine the expression levels of SBSN upon 

IL-4 treatments via RT-PCR. In the presence of IL-4 (at doses of 5 ng/ml and 50 ng/ml), SBSN 

mRNA levels in the differentiated cells were significantly decreased as compared to differentiated 

cells without cytokine treatment (Figure 3.9b). These decreased expression levels of SBSN upon 

IL-4 treatment suggest a critical precursor role of SBSN in the development of AD via disruption 

of cornification—and further indicate an important role of SBSN in epidermal differentiation. 

Figure 3. 10 Expression values of SBSN transcript v2 and v3 in AD skins. 

To evaluate the expression changes of SBSN in AD skins, expression values were measured in 

AD skins for the SBSN transcripts via RT-PCR. The expression levels were normalized by the 

expression levels of G6PD. (a) As shown in Figure 3.9c, the SBSN transcript v1 showed 

significantly decreased expression levels in AD lesional skins compared to AD nonlesional and 

control skins. (b) The SBSN transcript v2 showed significantly different expression changes 

between AD lesional versus nonlesional skins and nonlesional versus control skins. (c) The 

SBSN transcript v3 showed significantly different expression changes between AD nonlesional 

versus control skins (***: p-value < 0.001, **: p-value < 0.01, *: p-value < 0.05). 
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To investigate the role of SBSN in AD, expression levels of three SBSN transcripts were 

measured in AD lesional/nonlesional and control skins via RT-PCR. A total of 49 skin biopsies 

were measured, consisting of 16 AD lesional skin biopsies, 16 AD nonlesional skin biopsies, and 

17 healthy controls. The expression levels of SBSN transcripts were normalized to G6PD. SBSN 

transcript v1 (NM_001166034.1) showed a significantly decreased level in AD lesional skin 

compared to AD nonlesional skin and controls (Figure 3.9c). The decreased expression levels of 

the full-length transcript of SBSN suggests an important role of this SBSN isoform in AD.  

The expression of the full-length transcript of SBSN (v1) was significantly decreased in 

AD lesional skin compared to nonlesional skin and healthy controls (Figure 3.9c). The transcript 

v2 (NM_198538.3) of SBSN showed significantly decreased levels in AD lesional skin compared 

to nonlesional skin, but not controls. However, the transcript v3 (NM_001166035.1) showed no 

significant expression changes in AD lesional skin compared to nonlesional skin and controls, 

even though nonlesional skin showed an increased expression compared to controls (Figure 3.10). 

The v2 and v3 SBSN transcript variants had lower expression compared to the full-length transcript 

(v1) (~10% and < 1% of v1 in healthy controls). Because the v2 and v3 SBSN transcript variants 

were much less abundant compared to the full-length transcript (v1), the full-length transcript of 

SBSN may be the SBSN isoform critical in AD.  

3.3.3 Generalization of the paradigm as demonstrated by its application on CIT 

To investigate the generalizability of our integrative analysis approach, we applied the 

paradigm to reveal thermogenesis genes in tissues upon cold exposure. We collected ten gene 

expression datasets from GEO (Table 3.3). These gene expression data were collected from tissues 

of mice treated with cold temperature to induce thermogenesis. Both microarray and RNA-Seq 

data were collected. Because thermogenesis is always activated upon cold exposure, the direction 
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of thermogenesis is thus increased in all the 24 comparisons within the ten collected datasets. 

Using DEG analysis, the paradigm calculated the consensus scores for measured genes from 24 

comparisons and identified 153 genes with a consensus score ≥ 6. These 153 identified genes were 

then used to perform GO analysis. Enriched GO terms are related to energy homeostasis (Figure 

3.11). Literature curation confirmed the functional evidence in CIT of some identified genes. For 

example, elongation of very-long-chain fatty acids (Elovl3, consensus score = 13) in ablated mice 

showed a proliferated metabolic rate in a cold environment, indicating a higher capacity for brown 

fat-mediated nonshivering thermogenesis. Thus, Elovl3 is a key regulator for CIT in adipose tissue 

upon cold exposure [73]. As another example, carnitine palmitoyltransferase 2 (Cpt2, consensus 

score = 11) depletion mediates the fatty acid oxidation in adipose tissue, which is required for 

CITs, suggesting the critical role of Cpt2 in CIT [67, 74]. This second application of our paradigm 

in CIT suggests that the paradigm can be generalized to other biological processes. Our paradigm 

is a simple but important integrative data processing approach for gene expression data.  

Figure 3. 11 Enriched GO terms of identified genes in CIT. 

The identified genes (consensus score ≥ 6) were used to screen GO terms, and the figure depicts 

the enriched GO terms. The p-values and odds ratio from Fisher’s exact test were recorded for 

each GO term.  

 
 
 

cellular lipid catabolic process
tricarboxylic acid cycle

mitochondrial ATP synthesis coupled electron transport
fatty acid catabolic process

ATP synthesis coupled electron transport
mitochondrial acetyl−CoA biosynthetic process from pyruvate

oxidative phosphorylation
nicotinamide nucleotide metabolic process

oxidoreduction coenzyme metabolic process
acyl−CoA metabolic process

fatty acid oxidation
respiratory electron transport chain

−4 −2 0 2
log10 p-value log10-odds-ratio



 

 46 

Table 3. 3 Ten gene expression datasets of adipose tissue upon cold exposure. 

GEO 
Accession 

Experimental Tissue Platform 

GSE13432 White adipose tissue Affymetrix Mouse Genome 430 2.0 
Array 

GSE40486 Brown adipose tissue; 
Skeletal muscle 

Illumina mouseRef-8 v1.1 expression 
beadchip 

GSE44138 Brown adipose tissue; 
White adipose tissue; 
Liver 

Illumina Mouse Ref-6 V1 

GSE51080 Brown adipose tissue; 
Mesenteric white adipose tissue; 
Posterior subcutaneous white 
adipose tissue 

Affymetrix Mouse Genome 430 2.0 
Array 

GSE63031 Interscapular brown adipose tissue; 
Inguinal white adipose tissue; 
Epididymal white adipose tissue 

Illumina Genome Analyzer II 

GSE64909 Brown adipose tissue Illumina MouseWG-6 v2.0 R2 
expression beadchip 

GSE70437 Interscapular brown adipose tissue Illumina HiSeq 1500 
GSE74062 Epididymal white adipose tissue Affymetrix Mouse Exon 1.0 ST Array 
GSE74899 Inguinal white adipose tissue Affymetrix Mouse Transcriptome Array 

1.0 
GSE77534 Brown adipose tissue Illumina HiSeq 2000 
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4. CITGENEDB: GENES ENHANCING OR SUPPRESSING COLD-INDUCED 

THERMOGENESIS* 

Cold-induced thermogenesis increases energy expenditure and can reduce body weight in 

mammals, so the genes involved in it are thought to be potential therapeutic targets for treating 

obesity and diabetes. In the quest for more effective therapies, a great deal of research has been 

conducted to elucidate the regulatory mechanism of cold-induced thermogenesis. Over the last 

decade, a large number of genes that can enhance or suppress cold-induced thermogenesis have 

been discovered, but a comprehensive list of these genes is lacking. To fill this gap, we examined 

all of the annotated human and mouse genes and curated those demonstrated to enhance or 

suppress cold-induced thermogenesis by in vivo or ex vivo experiments in mice. The results of this 

highly accurate and comprehensive annotation are hosted on a database called CITGeneDB, which 

includes a searchable web interface to facilitate broad public use [67]. The database will be updated 

as new genes are found to enhance or suppress cold-induced thermogenesis. It is expected that 

CITGeneDB will be a valuable resource in future explorations of the molecular mechanism of 

cold-induced thermogenesis, helping pave the way for new obesity and diabetes treatments. 

4.1 Introduction 

Cold-induced thermogenesis (CIT) is a process by which mammals increase their resting 

energy expenditure in cold temperatures. CIT can be activated in two types of adipose tissues: 

white adipose tissue (WAT), which mainly stores fat, and brown adipose tissue (BAT), which 

mainly releases stored energy[52]. Direct activation of BAT contributes to heat generation. In 

                                                

* Reprinted with permission from "CITGeneDB: A comprehensive database of human and 
mouse genes enhancing or suppressing cold-induced thermogenesis validated by perturbation 
experiments in mice" by Jin Li, Su-Ping Deng, Gang Wei, and Peng Yu, 2018. Database 
(Oxford). bay012-bay012, Copyright 2018 by authors 
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addition, induction of brown-adipocyte-like cells (beige or “brite”) in WAT depots in the process, 

called “browning,” also promotes heat production[75, 76]. Since the activation of CIT can 

significantly contribute to increasing resting metabolic rate in humans[77], which in turn reduces 

body weight, genes affecting CIT can be potential targets for antiobesity therapies. 

Many genes that can affect heat production during cold exposure have been discovered. 

For example, Okada et al. found that knockout of Acot11 increased oxygen consumption rates in 

both primary brown adipocytes and isolated BAT from the mutant mice, and up-regulated BAT 

thermogenic genes after exposure to a 4°C environment for 96 hours[78], indicating a suppressive 

role of Acot11 in BAT thermogenesis. As another example, knockout of Zfp423 decreased oxygen 

consumption of mouse subcutaneous WAT and down-regulated the expression of a number of 

WAT browning marker genes, such as Cidea and Elovl3, after exposing Zfp423-/- mice to 

progressively colder temperatures, suggesting that gene Zfp423 can promote the browning of WAT 

under cold-exposure conditions[79]. Besides these single-gene examples, some genes may 

function synergistically to control CIT. For example, the knockout of both Nova1 and Nova2 

increases thermogenesis in adipose tissue upon cold exposure, but the single knockout of Nova1 

does not show a significant effect[80]. These results suggest that the discovered genes may 

significantly contribute to uncovering the regulatory machinery of CIT. 

Despite the rapid progress experienced in this field, a complete list of the genes involved 

in CIT is still missing. For example, the Gene Ontology (GO) Consortium does not have the term 

“cold-induced thermogenesis,” and the most closely related term, “adaptive thermogenesis,” 

(GO:1990845) has only 16 annotated mouse genes, among which the majority (13 of 16) are 

actually annotated to a child term, “diet induced thermogenesis.” Of the four genes (Ucp1, Ucp2, 

Ucp3, and Pm20d1) directly annotated to “adaptive thermogenesis,” only two (Ucp1 and Pm20d1) 
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are annotated via experimental evidence (Inferred from Mutant Phenotype (IMP)), whereas the 

other two are annotated via phylogenetic transfer (Inferred from Biological Ancestor (IBA)). Since 

Ucp1 is involved in CIT according to the paper cited in GO for Ucp1, it should be annotated to 

“cold-induced thermogenesis” if GO had this term. These pieces of evidence confirm the 

incompleteness of CIT gene annotation in GO.  

This lack of completeness may be explained by the fact that research in the field of CIT 

has been booming since 2011 (Figure 4.1), two years after BAT was identified in human adults by 

positron-emission tomography/computed tomography (PET/CT)[81], and it may be difficult for 

Figure 4. 1 Amount of papers about “cold-induced thermogenesis” published per year 

since 2000. 

To examine the popularity of studies about thermogenesis in recent years, the number of papers 

was retrieved from the PubMed database by querying “cold” and “thermogenesis” in titles and 

abstracts on Dec. 11, 2017. The bars in the figure depict the number of papers relevant to CIT 

from 2000 to 2017. The number of papers published per year had been steadily relatively low 

before 2011, and the number increased between 2011 and 2017. 
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GO to keep up with the pace of progress in this specific area. Therefore, it is crucial to construct a 

complete list of genes enhancing/suppressing CIT, for the lack of completeness may hinder the 

progress of fully elucidating the mechanisms of CIT. 

To fill this gap, we curated papers from PubMed and Google in a semiautomatic fashion. 

The papers show that CIT is affected when given genes are perturbed (by knockout, knockdown, 

overexpression, etc.). In addition, we structured the genes, the PubMed identifiers (PMIDs) of the 

corresponding papers, and other important data into a database called CITGeneDB. 

In this section, we introduce our effort to curate CIT-related human and mouse genes based 

on retrieved publications from PubMed and Google. We worked to construct and describe CIT-

related data, after which we built the database CITGeneDB to host the important information of 

the curated CIT-related genes. In addition, we created a web interface for CITGeneDB to facilitate 

access to the metadata of these genes while also sharing them with various research communities. 

4.2 Methods 

4.2.1 CIT-related papers retrieval of all the human and mouse genes validated in mice 

experiments 

To construct a complete list of the potential papers for CIT-enhancing/suppressive human 

and mouse genes, all the human and mouse gene symbols were first retrieved from the HUGO 

Gene Nomenclature Committee (HGNC) and Mouse Genome Informatics (MGI). Each gene was 

searched against the PubMed database via PubMed API ESearch in Entrez Programming Utilities 

(E-utilities) using the query “<gene_symbol>[tiab] AND cold[tiab] AND (thermogenic[tiab] OR 

thermogenesis[tiab]) NOT Review[pt] NOT Comment[pt] NOT Editorial[pt] NOT News[pt] NOT 

Published Erratum[pt] AND eng[la]”. This search returned over 1,500 gene-paper pairs. Since a 

single paper may mention multiple genes and a gene may appear in multiple papers, we ended up 



 

 51 

with ~200 human and mouse genes in over 1,000 papers. These results were retained for further 

curation for the CIT-enhancing/suppressive genes. 

Some CIT-enhancing/suppressive genes may still be missing in the above search results 

because the titles, abstracts, and corresponding medical subject heading (MeSH) annotations used 

by the PubMed search for the papers describing these genes may not contain all of the keywords. 

To capture these missing genes, a second PubMed search for all the human and mouse genes was 

performed using the keywords but ignoring “cold,” which was used in the first search. This search 

returned ~5,000 additional gene-paper pairs, with ~3,000 additional papers for ~400 additional 

human and mouse genes. Since these additional genes may not be related to CIT, we kept only the 

genes found by querying “<gene_symbol> cold thermogenesis” on Google. For each of these 

genes, Google usually does well to rank a relevant paper (if there is one) as the first hit because it 

uses click-through rate[82], a very effective metric for ranking webpages. Here, we checked the 

top three webpages for each gene kept to further ensure a high recall. 

4.2.2 Curation of CIT-enhancing/suppressive human and mouse genes 

Our curation criterion for inclusion of a gene was that at least one thermogenesis 

phenotype, such as body temperature, energy expenditure, or oxygen consumption, must be 

significantly changed in vivo or ex vivo by the perturbation of the gene in an animal model or using 

tissues from an animal model in a cold-exposure condition. All animal models, such as knockout 

(including conditional knockout), overexpression, and drug/antibody inhibition, were considered, 

as long as the gene was perturbed. In other words, after the mice with a perturbed gene had been 

exposed to cold, some thermogenesis phenotypes were measured in vivo or were measured in 

harvesting tissues from the mice ex vivo. If any such phenotype was significantly changed, the 

perturbed gene was included. For example, the body temperature of Hdac3 conditional knockout 
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mice was significantly decreased in the cold condition[83], indicating that the gene can enhance 

heat production upon cold exposure. As another positive example, triglyceride storage of BAT 

harvested from Fabp4/5 double knockout mice shrank after a 4-hour exposure to a cold 

environment (4°C), demonstrating that Fabp4/5 together can promote CIT. To be stringent, genes 

that were tested only in vitro or without cold exposure were not considered. For instance, Bai et 

al. only studied Celf1 in vitro and not in a cold-exposure condition[84]; thus, Celf1 was not 

considered according to our curation criterion. 

For consistency, all official gene symbols were recorded on CITGeneDB. For mice, MGI 

(http://www.informatics.jax.org/marker) was used to look up official symbols. Although genes 

hosted on CITGeneDB were mostly from mice, there are studies with human genes introduced in 

mice for experimentation. For these human genes, HGNC (https://www.genenames.org) was used 

to look up the official symbols. 

To deal with special cases, we used the following approaches. When a large number of 

papers (e.g., >100) were returned for a gene by PubMed, the gene symbol usually was a common 

English word (e.g., JUN or NOV). In this case, it was not efficient to manually examine all the 

papers returned by PubMed, as mostly these symbols took their common English meaning in the 

returned papers. To overcome this limitation of PubMed, we instead searched the query term “gene 

<gene symbol> cold thermogenesis” on Google. Some papers could not be found by the above 

methods due to a lack of related keywords, but they still described genes enhancing/suppressing 

thermogenesis. In these cases, we manually added them to CITGeneDB. 



 

 53 

4.3 Results 

4.3.1 Statistics of enhancing/suppressive human and mouse genes in CITGeneDB 

CITGeneDB is a comprehensive resource of CIT-enhancing and -suppressive human and 

mouse genes. Only genes confirmed in perturbation experiments using mouse models are recorded. 

Some information about the experiments is included in the database, such as the official symbols 

of the perturbed genes and perturbation type. In addition, the PMIDs of the corresponding 

references for each gene are stored in the database.  

CITGeneDB currently has 95 CIT-enhancing genes and 47 CIT-suppressive genes. The 

perturbation type is knockout for most of these genes, with the exception of overexpression using 

adenovirus (e.g., HOXC10, PMID:28186086), point mutation (e.g., Tshr, PMID:18559984), 

deletion mutation (e.g., Kdm6b, PMID: 26625958), antibody neutralization (e.g., Acvr2b, 

PMID:22586266), and conditional transgenic overexpression (e.g., Wnt10b, PMID:15190075). 

Most genes can individually function in CIT, but some genes need to work synergistically to affect 

CIT. Mostly, they have redundant or similar functions, such as Fabp4/5, Nova1/2, and Adrb1/2/3. 

It should be noted that although our current study focuses only on CIT, the genes that were curated 

also may be involved in other types of thermogenesis. For example, Ucp1 is involved in diet-

induced thermogenesis. Moreover, CITGeneDB will be periodically updated when more human 

or mouse genes are found in new literature. Continuously updating this database will likely 

maintain its impact on obesity and diabetes research. 

4.3.2 Web interface for CITGeneDB 

To facilitate database access, we developed a web interface that allows users to browse and 

search. Users can select the number of entries (label 1) to show on a page (Figure 4.2). For each 

entry, the main information (label 2) includes “Official symbol” (from MGI or HGNC), “PubMed  
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Figure 4. 2 Web interface of CITGeneDB. 

To share the CIT-enhancing/suppressive genes, the CITGeneDB web interface was created. In 

the figure, label 1 is for setting the maximum number of entries on one page. Label 2 represents 

the main information of CIT genes including official symbols (the official gene symbol from 

MGI or HGNC), PMIDs of the papers supporting the thermogenesis role of the genes, Effect 

(whether the gene enhances or suppresses thermogenesis), Genotype (what genes were 

perturbed and how the genes were perturbed), and Phenotype (affected phenotypes supported 

by experiments). Label 3 provides the search box for the inquiry about CIT-

enhancing/suppressive genes. 
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IDs” (of the papers supporting the thermogenesis role of the genes), “Effect” (whether the gene 

enhances or suppresses thermogenesis), “Genotype” (what genes were perturbed and how the 

genes were perturbed), and Phenotype (affected phenotypes supported by experiments). Each 

column can be sorted alphabetically by clicking the corresponding information bars, and keywords 

Figure 4. 3 Search result example. 

When the keyword “Fabp4-cre enhancing” was searched, nine entries were returned. Acsl1, 

Cxcr4, Epas1, Gnas, Grb10, Jak2, Lpin1, Sirt6, and Vegfa were all demonstrated to enhance 

thermogenesis in cold conditions using the fabp4-cre-based conditional knockout mouse 

models. 
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can be searched in all the columns of the table via the search box (label 3) to obtain the 

corresponding entries. For example, the result entry is shown in Figure 4.3 for the search “Fabp4-

cre enhancing.” Nine entries were returned that have been experimentally tested as enhancing roles 

in thermogenesis upon cold exposure using Fabp4-cre-based conditional knockout mice.  
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5. SFMETADB: PUBLIC RNA-SEQ DATASETS WITH PERTURBED SPLICING 

FACTORS* 

Although the number of RNA-Seq datasets deposited publicly has increased over the past 

few years, incomplete annotation of the associated metadata limits their potential use. Because of 

the importance of RNA splicing in diseases and biological processes, we constructed a database 

called SFMetaDB by curating datasets related with RNA splicing factors [10]. Our effort focused 

on the RNA-Seq datasets in which splicing factors were knocked-down, knocked-out or over-

expressed, leading to 75 datasets corresponding to 56 splicing factors. These datasets can be used 

in differential alternative splicing analysis for the identification of the potential targets of these 

splicing factors and other functional studies. Surprisingly, only ~15% of all the splicing factors 

have been studied by loss- or gain-of-function experiments using RNA-Seq. In particular, splicing 

factors with domains from a few dominant Pfam domain families have not been studied. This 

suggests a significant gap that needs to be addressed to fully elucidate the splicing regulatory 

landscape. Indeed, there are already mouse models available for ~20 of the unstudied splicing 

factors, and it can be a fruitful research direction to study these splicing factors in vitro and in vivo 

using RNA-Seq. 

5.1 Introduction 

Due to the lack of fully structured metadata, the wide use of the valuable RNA-Seq datasets 

in public repositories such as ArrayExpress and Gene Expression Omnibus (GEO) may be 

restricted, despite structured metadata having been used elsewhere for raw data usability [85]. For 

                                                

* Reprinted with permission from "SFMetaDB: a comprehensive annotation of mouse RNA 
splicing factor RNA-Seq datasets" by Jin Li, Ching-San Tseng, Antonio Federico, Franjo 
Ivankovic, Yi-Shuian Huang, Alfredo Ciccodicola, Maurice S. Swanson, and Peng Yu, 2017. 
Database (Oxford) bax071-bax071, Copyright 2018 by authors 
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example, ArrayExpress is only a repository of datasets, and the completeness of metadata 

information relies on dataset submitters. Although submission facilities have been improving, 

metadata information of many datasets in ArrayExpress is still not well structured [86]. To fill this 

gap, manual curation has been devoted to developing and maintaining metadata databases [45]. 

For example, microarray and RNA-Seq datasets have been curated for the downstream analyses 

in Expression Atlas [87]. We previously launched the RNASeqMetaDB [5] database to facilitate 

the access of the metadata of public available mouse RNA-Seq datasets. In this section, we present 

a new database, SFMetaDB, as an update with metadata of RNA-Seq datasets related with splicing 

factors with either loss- or gain-of-function experiments. 

RNA splicing is a fundamental biological process in eukaryotes that substantially 

contributes to the overall protein diversity in a cell. According to GENCODE (Release 25) basic 

transcript annotation, 19903 human protein-coding genes encode 54896 isoforms by alternative 

splicing. The importance of alternative splicing is underscored by the distinct biological functions 

played by splicing isoforms. Recently, the splicing isoform function of a number of genes has been 

tested experimentally in a variety of biological contexts, including cancer. For example, two 

isoforms of CD44, a widely expressed cell surface marker, have recently been shown to be 

important in cancer development. The first isoform CD44V6 is required for the migration and 

generation of metastatic tumors in colorectal cancer stem cells and can initiate the metastatic 

process [88]. The second isoform of CD44, CD44V8-10, is an important marker for human gastric 

cancer and increases tumor initiation in gastric cancer cells [89]. Another example is NUMB, a 

gene that is critical for cell fate determination. Two splicing isoforms varying in the length of 

proline-rich region (PRR), PRRL and PRRS, were recently found to have opposite roles in 

hepatocellular carcinoma (HCC), suggesting that the alternative splicing of NUMB can serve as an 
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important biomarker for HCC [90]. In particular, PRRL promotes proliferation, migration, invasion 

and colony formation while PRRS generally works in the opposite way. 

Splicing isoforms may also play some critical roles in biological processes other than 

cancer. For example, MICU1 is a gene encoding an essential regulator of mitochondrial Ca2+ 

uptake, a process that is critical for energy production in skeletal muscle. Through the inclusion of 

a micro-exon (<15 bp) of this gene, an alternative splice isoform named MICU1.1 can be 

generated. It was found that the exclusion of this microexon causes a ~10x decrease of the Ca2+ 

binding affinity of MICU1 proteins. Therefore, alternative splicing is essential for the 

sustainability of Ca2+ uptake and ATP production of mitochondria, the energy source of skeletal 

muscle [91]. For another example, FANCE is a part of the Fanconi anemia (FA) complex, which 

functions in DNA interstrand crosslink repair. FANCE plays a critical role to regulate FANCD2, 

which is required in FANC-BRCA functions. Overexpression of an alternative splicing isoform 

FANCEΔ4 promotes degradation of FANCD2 and causes dysfunction of DNA repair [92]. 

Furthermore, VEGF-A is a gene that functions in angiogenesis, vasculogenesis, and endothelial 

cell growth. Two alternative splicing isoforms, VEGF-Axxxa and VEGF-Axxxb, are critical in 

nociception [93]. VEGF-Axxxa is increased with nerve injury and promotes nociceptive function. 

On the contrary, the overexpression of VEGF-Axxxb reduces neuropathic pain. In addition, the 

Fas/CD95 gene is critical in the physiological regulation of programmed cell death. Fas/CD95 has 

two splicing isoforms with inclusion or exclusion of exon 6, a membrane-bound receptor or a 

soluble isoform [94].  The membrane-bound receptor isoform promotes apoptosis while the soluble 

isoform inhibits apoptosis. 

Alternative splicing is commonly mediated by RNA splicing factors [95]. For example, the 

splicing factor NOVA1 regulates the alternative splicing of a series of genes in pancreatic beta 
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cells, and knockdown of Nova1 suppresses insulin secretion and promotes apoptosis [96]. 

Moreover, the splicing factor NOVA2 uniquely mediates the alternative splicing of many axon 

guidance related genes during cortical development [97]. As another example, the splicing factor 

PTBP1 suppresses Pbx1 exon 7 and the neuronal PBX1A isoform in embryonic stem cells (ESCs) 

during neuronal development [98]. 

In this section, we describe our recent effort in curating the metadata of RNA-Seq datasets 

from ArrayExpress and GEO, which were derived from studies using cell or animal models with 

a specific splicing factor being knocked-out, knocked-down, or overexpressed. We further 

launched SFMetaDB to facilitate access to the metadata of these datasets and share them with the 

biomedical community. 

5.2 Methods 

5.2.1 RNA-Seq dataset curation and SFMetaDB web server deployment 

We extracted 353 RNA splicing factors annotated in Gene Ontology (GO) (accession 

GO:0008380) [31] and Kyoto Encyclopedia of Genes and Genomes (KEGG) (entry mmu03040) 

[99] for mice. Then, we queried ArrayExpress [86] and GEO [41] using the official symbol of each 

splicing factor to search for related mouse RNA-Seq datasets and obtained a total of 214 datasets. 

Note that due to the limitation of the search function in ArrayExpress and GEO, many of these 

datasets were not directly relevant to the manipulation of these splicing factors despite that the 

symbols were mentioned in the metadata of these datasets. We chose to manually curate each 

dataset, providing a total of 75 datasets that have biological replications in which at least one 

splicing factor was knocked-out, knocked-down or overexpressed (along with the corresponding 

wild types/controls). Because some splicing factors were studied in more than one dataset, a total 

of 56 splicing factors were found. 
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To facilitate the access to these datasets, we launched the database SFMetaDB 

(http://sfmetadb.yubiolab.org/). When datasets were deposited in GEO, ArrayExpress imported 

the most metadata information from GEO, and the ArrayExpress description contained the link to 

the GEO webpage. Therefore, SFMetaDB used GEO accession ID if possible. The web server of 

SFMetaDB is freely available, and it presents the Accession ID, description, the number of 

samples, associated curated splicing factors, perturbation and PubMed references of each RNA-

Seq dataset. 

5.2.2 Domain structures analysis in RNA splicing factors 

The domain structures of the RNA splicing factors may guide us to identify the candidate 

splicing factors for future studies. Known RNA splicing factors are retrieved from GO term 

(GO:0008380) using R package GO.db [31] and KEGG pathway (entry mmu03040).  UniProt 

annotates the conservative Pfam domain families for the canonical sequences of the splicing 

factors [100]. From these domain annotations, we calculate the numbers of the splicing factors in 

Pfam domain families. Figure 5.1 plots the dodged barplots of the number of splicing factors in 

Pfam domain families using curated splicing factors and the total splicing factors. By comparing 

the domain families of the splicing factors with RNA-Seq datasets to the families of all the splicing 

factors, the splicing factors in not well-studied domain families can be the promising candidates 

for future RNA-Seq studies.  

5.3 Results 

The launch of SFMetaDB focuses on RNA-Seq datasets with perturbed splicing factors. 

Users can query a given splicing factor to identify the relevant datasets. A use case for MBNL 

splicing factors is shown as follows. MBNL1 is an important RNA splicing factor [101], thus we 

use MBNL1 to demonstrate the usage of SFMetaDB, which confirms the advantage of SFMetaDB 
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over ArrayExpress [10]. A query of MBNL1 on SFMetaDB returns the accurate datasets related 

with Mbnl1 loss- or gain-of-function experiments. Five datasets could be used for the alternative 

splicing analysis for MBNL1, and the potential targets of MBNL1 can be concluded from the 

datasets. For example, the dataset GSE39911 (i.e. E-GEOD-39911) includes biological replicates 

of various tissues, such as brain, heart and muscle, from Mbnl1-knockout mice and Mbnl1-

knockdown C2C12 mouse myoblasts.  

Figure 5. 1 The occurrence of Pfam domain families in splicing factors 
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However, ArrayExpress returned a total of 13 mouse RNA-Seq datasets with the query 

Mbnl1, and eight of them were not from Mbnl1 gain- or loss- of function experiments. Therefore, 

these datasets were eliminated in SFMetaDB. For example, the dataset E-GEOD-76222 is 

retrieved by ArrayExpress because of the appearance of Mbnl1 in its description, “Changes in the 

expression of alternative splicing factors Zcchc24, Esrp1, Mbnl1/2 and Rbm47 were demonstrated 

to be key contributors to phase-specific AS.” However, this dataset is about an ESRP knock-out, 

Figure 5.1 Continued. The occurrence of Pfam domain families in splicing factors 

The known RNA splicing factors are annotated in UniProt according to the Pfam domain 

families of the protein domains found in these factors. A splicing factor may have multiple 

domains that belong to multiple Pfam families, and a Pfam domain family may contain domains 

in multiple splicing factors. The Pfam annotations were retrieved for each of 353 splicing 

factors, and the number of splicing factors was calculated for each of the Pfam families. For the 

56 splicing factors that have curated datasets in SFMetaDB, the number of splicing factors was 

also calculated for the associated Pfam families. In the dodged barplots, the Pfam domain 

families are ranked by the number of the splicing factors which contain domains in the given 

families. Of the total 217 Pfam domain families annotated in UniProt, 26 Pfam domain families 

have ≥ 3 splicing factors annotated. The Pfam domain family with the most number of splicing 

factors is Pfam RRM_1 (PF00076). It contains 87 splicing factors, and 25 of these splicing 

factors have been studied according to our curation results. However, the splicing factors in the 

rest of the Pfam domain families have brought relatively less attention in RNA-Seq analysis, 

and they may be promising candidates for future studies. 
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thus it is not suitable for MBNL1 related alternative splicing analysis. The rest of eight retrieved 

datasets were considered not appropriate for RNA splicing analysis of MBNL1 by our manual 

curation of metadata information. In summary, no irrelevant datasets of a given splicing factor are 

shown in SFMetaDB, and SFMetaDB returned more specific results than ArrayExpress. 

Guided by SFMetaDB, users can perform potential target identification for a specific 

splicing factor. In addition, by integrating multiple datasets curated on SFMetaDB, users can form 

a more comprehensive view on how a splicing event is regulated across different biological 

contexts. As another use case, we show below a Pfam domain analysis among splicing factors (See 

Materials and methods). 

Only ~15% of known splicing factors have been studied with loss- or gain-of-function 

RNA-Seq experiments. Because splicing factors sharing similar domains tend to regulate common 

splicing targets, we determined what additional splicing factors may be prioritized for study by 

investigating the domain structures of the splicing factors using UniProt [100]. Among the 353 

splicing factors, 299 of them contained one or multiple conservative domains. Of these 299 

splicing factors, 190 have a single domain that belongs to a Pfam domain family, and the rest have 

domains that belong to more than one Pfam domain family. 

RNA splicing factors have highly conserved functional domains, and some domains are 

dominant among all the splicing factors. In Figure 5.1, the domain families are ranked by their 

number of occurrences in all the splicing factors. Pfam family PF00076 (RNA recognition motif) 

is the most dominant, and the splicing factors with domains from this family are relatively well-

studied (25 over the total 87). Splicing factors from five additional Pfam families are fairly well-

studied (≥ 3 splicing factors annotated), consisting of PF00271(Helicase conserved C-terminal 

domain), PF00270(DEAD/DEAH box helicase), PF00013(KH domain), PF00642 (Zinc finger C-
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x8-C-x5-C-x3-H type) and PF12414 (Calcitonin gene-related peptide regulator C terminal). 

However, three highly dominant families are not. Specifically, none of the 17 splicing factors with 

the Pfam family PF01423 (LSM domain) have been studied yet [102], and these splicing factors 

provide feasible candidates for future studies. For example, the splicing factor SNRPN has two 

mouse models from the International Mouse Strain Resource (IMSR) [103] that can be used for 

splicing analysis. In fact, twenty-five unstudied splicing factors have been identified with more 

than one mouse model from IMSR. Therefore, splicing factors that are non-homologous with 

already studied ones constitute promising candidates for comprehensive studies of splicing 

regulation. 
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6. RBPMETADB: PUBLIC RNA-SEQ DATASETS WITH PERTURBED RNA-BINDING 

PROTEINS* 

RNA-binding proteins may play a critical role in gene regulation in various diseases or 

biological processes by controlling post-transcriptional events such as polyadenylation, splicing, 

and mRNA stabilization via binding activities to RNA molecules. Due to the importance of RNA-

binding proteins in gene regulation, a great number of studies have been conducted, resulting in a 

large amount of RNA-Seq datasets. However, these datasets usually do not have structured 

organization of metadata, which limits their potentially wide use. To bridge this gap, the metadata 

of a comprehensive set of publicly available mouse RNA-Seq datasets with perturbed RNA-

binding proteins were collected and integrated into a database called RBPMetaDB [6]. This 

database contains 278 mouse RNA-Seq datasets for a comprehensive list of 163 RNA-binding 

proteins. These RNA-binding proteins account for only ~10% of all known RNA-binding proteins 

annotated in Gene Ontology, indicating that most are still unexplored using high-throughput 

sequencing. This negative information provides a great pool of candidate RNA-binding proteins 

for biologists to conduct future experimental studies. In addition, we found that DNA-binding 

activities are significantly enriched among RNA-binding proteins in RBPMetaDB, suggesting that 

prior studies of these DNA- and RNA-binding factors focus more on DNA-binding activities 

instead of RNA-binding activities. This result reveals the opportunity to efficiently reuse these 

data for investigation of the roles of their RNA-binding activities. A web application has also been 

implemented to enable easy access and wide use of RBPMetaDB. It is expected that RBPMetaDB 

                                                

* Reprinted with permission from "RBPMetaDB: A comprehensive annotation of mouse RNA-
Seq datasets with perturbations of RNA-binding proteins" by Jin Li, Su-Ping Deng, Jacob Vieira, 
James Thomas, Valerio Costa, Ching-San Tseng, Franjo Ivankovic, Alfredo Ciccodicola, Peng 
Yu, 2018. Database (Oxford) bay054, Copyright 2018 by authors 
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will be a great resource for improving understanding of the biological roles of RNA-binding 

proteins. 

6.1 Introduction 

A lack of fully structured metadata limits the wide use of valuable RNA-Seq datasets in 

public repositories such as Gene Expression Omnibus (GEO) [3] and ArrayExpress [86]. To fill 

this gap, manual curation has been shown to be an effective way to collect data resources [67] and 

has been applied to develop and maintain metadata databases[45]. For example, microarray and 

RNA-Seq datasets have been curated for the downstream analyses in Expression Atlas [87] and in 

epidermal development. We previously launched two databases, RNASeqMetaDB [5] and 

SFMetaDB [10], to facilitate access to the metadata of publicly available mouse RNA-Seq datasets 

with perturbed disease-related genes and splicing factors, respectively. In this section, we present 

a new database, RBPMetaDB, for the metadata of RNA-Seq datasets with perturbed RNA-binding 

proteins (RBPs). 

RBPs play a critical role in multiple cellular processes in eukaryotes. RBPs bind to double- 

or single-stranded RNA molecules and are potential key factors in biological processes, such as 

pre-mRNA splicing, RNA methylation, and protein translation [104]. Besides influencing each of 

these processes, RBPs also provide a link between them [105]. The perturbation of these intricate 

networks can destroy the coordination of complex post-transcriptional events and lead to disease. 

According to recent genomic data and evidence derived from animal models, RBPs play a 

crucial role in the pathogenesis of many complex human diseases, including neurological disorders 

[106], Mendelian diseases[107], and cancer [108]. These diseases have been demonstrated to have 

strong associations with aberrant functions or expression of RBPs, which can impact many 

different genes and pathways. Some diseases can be caused by loss of function of RBPs, such as 
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Fragile X syndrome, paraneoplastic neurologic syndromes, and spinal muscular atrophy [104]. For 

example, Fragile X syndrome can be caused by the deficiency of gene fragile X mental retardation 

(FMR1)[109]. Alternatively, some diseases can be caused by gain of function of RBPs, including 

myotonic dystrophy, Fragile X tremor ataxia syndrome, and oculopharyngeal muscular dystrophy 

(OPMD) [104].  For instance, OPMD is generated by the accumulation of aggregates in the nuclei 

of skeletal muscle fibers caused by mutants in the protein PABPN1 [110]. And a deficiency of 

PABPN1 can induce progressive muscle weakness in muscular dystrophy[111]. 

To investigate the functions of RBPs in biological processes or diseases such as the ones 

mentioned above, a large number of studies have been conducted, resulting in exponential growth 

of RBP-related papers in recent years (Figure 6.1). For example, more than 1,000 papers were 

Figure 6. 1 The rapid growth of papers related to RPBs in PubMed. 

Approximately 10,000 papers related to RPBs are indexed on PubMed according to the query 

of “RNA binding protein”[tiab] OR “RNA binding proteins”[tiab] at the time of writing. Since 

2012, the number of papers published per year has been increasing more rapidly than ever 

before. In 2017 alone, over 1,000 papers were published. 
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published in 2017 alone. Among the studies on RBPs, a large number of RNA-Seq datasets have 

been generated in loss- or gain-of-function experiments and are publicly available from online 

repositories like GEO [3]. However, because GEO does not have a stringent requirement for 

metadata of the submitted datasets, the metadata are non-uniformly maintained across different 

datasets, resulting in inconsistent dataset annotation and sometimes ambiguity. Such a deficiency 

makes it difficult to identify useful datasets with high precision and recall, which limits the wide 

use of the datasets. 

To address this challenge, we worked to curate RNA-Seq datasets from GEO and 

ArrayExpress with one or more RBPs being perturbed, e.g., by knock-out, knock-down, or 

overexpression. Important dataset annotations such as genotypes and PubMed references were 

manually curated to ensure high accuracy. Curated datasets can be used in gene expression analysis 

[55, 112] and alternative splicing analysis [27, 113] for biological hypothesis generation [13] via 

a signature comparison approach [11]. To facilitate the use of our curated datasets, the metadata 

information of these datasets was imported into a database called RBPMetaDB. It should be 

mentioned that our database differs greatly from Expression Atlas in the sense that the latter is not 

mainly about datasets where specific genes are perturbed and so are not guaranteed to be complete 

in this aspect. 

In this section, we describe our main curation methods used in constructing RBPMetaDB 

and the statistics of the database. To demonstrate the use of RBPMetaDB, a number of promising 

candidate RBPs have been identified by comparing RBPs with RNA-Seq datasets and all the RBPs 

annotated in Gene Ontology (GO). In addition, a web application has been developed to host the 

database to broaden the use of curated metadata and the original raw datasets among biomedical 

communities. 
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6.2 Methods 

6.2.1 Metadata curation of GEO/ArrayExpress RNA-Seq datasets and RBPMetaDB web 

application deployment 

To collect RNA-Seq datasets for RBPs from GEO comprehensively, we first extracted 

1,587 mouse RBPs annotated in GO (accession GO:0003723) [31]. Each of these RBPs was 

queried against GEO for mouse RNA-Seq data using the query (<official_symbol>[Title] OR 

<official_symbol>[Description]) NOT SuperSeries[Description] AND gse[Entry Type] AND 

"Mus musculus"[porgn:__txid10090] AND ("expression profiling by high throughput 

sequencing"[DataSet Type] OR "non coding rna profiling by high throughput 

sequencing"[DataSet Type])") and against ArrayExpress using the query (<official_symbol> AND 

organism:"Mus musculus" AND exptype:"sequencing assay" AND exptype:"rna assay"). These 

queries resulted in 1,194 unique datasets in mice. Due to the limitations of the search functions of 

GEO and ArrayExpress, many of these datasets do not have perturbed RBPs despite the official 

symbols of some RBPs being mentioned in the titles or descriptions of the datasets. To retain the 

datasets with perturbations of RBPs, we manually curated each dataset [46] and retained datasets 

with biological replications per comparison condition, with at least one RBP being knocked-out, 

knocked-down, or overexpressed (along with the corresponding wild-type or control samples) in 

mice. For the datasets that do not have associated PubMed IDs on GEO and ArrayExpress, we 

manually added the PubMed IDs. 

To facilitate access to these datasets, we launched a database called RBPMetaDB 

(http://rbpmetadb.yubiolab.org). RBPMetaDB is implemented using Flask 

(http://flask.pocoo.org), a microframework for web development in Python. The MySQL database 

is used for data storage. The website of RBPMetaDB is freely available, and it presents the 
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GEO/ArrayExpress accession numbers, descriptions, number of samples, associated curated 

RBPs, perturbation, and PubMed references for each RNA-Seq dataset.  

Figure 6. 2 The number of RBPs containing a domain from a Pfam family with RNA-

binding activity. 

Blue bars indicate the number of RBPs containing a domain from a family among all RBPs, 

and red bars indicate the numbers of RBPs containing a domain from a family among the RBPs 

with associated RNA-Seq datasets. Only families with a blue bar with ≥ 5 RBPs are shown. 
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6.2.2 Domain structure analysis of RBPs 

Protein domain structure analysis of RBPs was performed to identify critical RBPs for 

future studies. First, all RBPs annotated to the “RNA binding” GO term (GO: 0003723) were 

retrieved using the R package GO.db [114]. Using the UniProt annotation of the Pfam families 

assigned to the RBP protein domains [100], the number of RBPs with specific Pfam families was 

calculated using RBPs with the curated RNA-Seq datasets and using the total RBPs, respectively. 

To investigate the RNA binding effect, the number of RBPs of Pfam families with RNA binding 

activity was calculated, where RNA-related Pfam families were searched using the RESTful 

interface in the Pfam database. Figure 6.2 plots the number of RBPs with Pfam families specific 

to RNA binding for the RBPs with RNA-Seq data and all the RBPs. By comparing the domain 

families of the RBPs with RNA-Seq datasets to those of all the RBPs, the RBPs in relatively less-

studied domain families can be promising candidates for future RBP studies. 

6.3 Results 

6.3.1 Data statistics 

RBPMetaDB has 292 RNA-Seq datasets with 187 perturbed RBPs, which account for only 

~10% of all annotated RBPs. Among these 187 RBPs, over 30% of them have more than one 

corresponding RNA-Seq dataset. Approximately 90% of datasets in RBPMetaDB have only one 

perturbed RBP, meaning that most studies are small-scale and well-focused. Also, RBPs with 

RNA-Seq data tend to have DNA-binding activity. To systematically examine the DNA-binding 

activity of RBPs, the GO term “DNA binding” (GO:0003677) was used to extract the genes with 

DNA-binding activity. By overlapping with DNA-binding proteins, 66 RBPs with RNA-Seq 

datasets and 207 RBPs without RNA-Seq datasets were shown to have DNA-binding activity. 

Taking the total 1,587 RBPs as background, Fisher’s exact test showed an enrichment of DNA-
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binding activity in RBPs with datasets compared to RBPs without datasets (p-value< 5.8×107<D). 

Specifically, for RBPs in RBPMetaDB, the proportion between RBPs with and without DNA-

binding activity is 0.68 (66 over 97). On the contrary, the proportion of RBPs that do not have 

RNA-Seq datasets is only 0.17 (207 over 1,219). This large difference suggests that many datasets 

in RBPMetaDB were collected for their DNA-binding activity instead of RNA-binding activity, 
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and these datasets are likely to be underanalyzed for RNA-binding activity, providing a cost-

Figure 6. 3 Statistics of curated RNA-Seq datasets for RBPs. 

(a) The distribution of perturbation types: knock-out (KO), knock-down (KD), overexpression 

(OE), knock-in (KI), and other (e.g., point mutations of RBPs or treatment with inhibitors of 

RBPs) among all the curated datasets. The percentages are shown between parentheses. Knock-

out experiments are the most common. (b) The curated datasets are generated from research 

labs worldwide. The US is the dominant country with a contribution of 60.1% of all the datasets. 

(c) The number of associated publications for the datasets increased from 2010 to 2017. The 

slow-down of increase in 2016 and the drop in 2017 are likely due to the missing PMIDs 

annotation for a subset of the recently released datasets on GEO. 
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effective opportunity to reanalyze these datasets to study their related RNA biology. For example, 

Ezh2 is the most-studied gene, with 35 RNA-Seq datasets in RBPMetaDB. However, most studies 

of EZH2, as a catalytic subunit of Polycomb Repressive Complex 2 (PRC2), focus on its capacity 

for mono-, di-, and trimethylation of histone H3 on lysine K27 (H3K27me1/2/3) [115]. 

Figure 6.3a shows that the main RBP perturbation type of all the datasets in RBPMetaDB, 

is knock-out (~67%). The rest is knock-down (~18%), overexpression (~9%), knock-in (~3.5%), 

and other (~2.8%, e.g., treated with inhibitors or point mutation). Figure 6.3b shows that the US 

and Europe dominate the generation of RNA-Seq datasets for studying RBPs, with contributions 

of 60.1% and 23.4% of all the datasets, respectively. In addition, Figure 6.3c shows an increasing 

number of papers published about the RNA-Seq datasets in RBPMetaDB from 2010 to 2017. This 

increasing research interest worldwide will stimulate more investigation on RBPs. 

6.3.2 Comparison of RBPs using protein domain analysis 

Protein domains, as conserved protein structural units, typically characterize certain 

functional aspects of a protein, and proteins sharing similar domains tend to share similar 

functions. Since RBPs bind to RNAs, they should have RNA-binding domain. We therefore 

extracted the domain family information of all the RBPs according to Pfam domain family 

annotation[102]. Figure 6.2 shows the protein domain families ordered by the number of RBPs 

with a domain from a Pfam family, and only families with RNA-binding activities with ≥ 5 

annotated RBPs are shown. The most dominant domain family is RRM_1 (RNA recognition motif, 

PF00076) and the RBPs with domains from this family are relatively well-studied (34 in 

RBPMetaDB over all 164 annotated). RBPs with domains from four additional families are fairly 

well-studied, including DEAD (DEAD/DEAH box helicase, PF00270), KH_1 (KH domain, 

PF00013), dsrm (double-stranded RNA-binding motif, PF00035), and HA2 (helicase-associated 
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domain, PF04408). However, none of the RBPs with domains from two highly dominant domain 

families, LSM (PF01423) and GTP_EFTU_D2 (PF03144), has related RNA-Seq datasets yet, and 

they may be good candidates for future high-throughput sequencing studies.  

What’s more, among the RBPs without related RNA-Seq datasets, 140 RBPs already have 

one or more mouse models on the International Mouse Strain Resource (IMSR) [103]. For 

example, the gene Cleavage Stimulation Factor Subunit 2 Tau Variant (Cstf2t) has been 

demonstrated to be an important stage-specific regulator of Crem mRNA processing that controls 

Crem polyadenylation in mouse testis. Cstf2t can lead to an overall decrease of the Crem mRNAs 

generated from internal promoters in Cstf2t−/− mice [116, 117]. Therefore, these 140 RBPs can be 

promising candidates for RNA-Seq studies in the future. 

6.3.3 Web interface 

To facilitate the use of RBPMetaDB, a user-friendly website has been launched. The 

website allows users to access all the key information related to the curated RNA-Seq datasets, 

including the GEO/ArrayExpress accession numbers, dataset titles, numbers of samples, 

associated RBPs, perturbation types, and PubMed IDs (Figure 6.4). The contents in these fields 

are linked to the corresponding entries in GEO/ArrayExpress, metadata information for each 

dataset, MGI gene symbol, and PubMed, respectively. In the table view of the website, the first 10 

entries are shown by default, but the user can easily select the number of entries to be visualized 

from a pop-up menu on the left side (Label A). Each table has six columns about the metadata in 

RBPMetaDB (Label B), and all columns can be sorted in ascending or descending order by 

clicking column headers. The search boxes at the bottom of all the fields support field-specific 

search by regular expression (Label C). For example, to search for multiple gene symbols in the 

“RNA binding proteins” column, one can specify the gene symbols joined by “|”. By searching a 
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gene of interest, users can find all RNA-Seq datasets with the gene perturbed. Take as an example 

Figure 6. 4 Web interface of RBPMetaDB. 

The RBPMetaDB website presents information about the mouse RNA-Seq datasets with 

perturbed RBPs. Label A refers to the maximum number of entries shown on a page. Label B 

is about the relevant information for each RNA-Seq dataset including GEO accession numbers, 

titles of the datasets in GEO, number of samples, official gene symbols from Mouse Genome 

Informatics (MGI), perturbation types of the RBPs associated with a dataset, and PMIDs of the 

related papers. Label C refers to the field specific search boxes. 
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Figure 6. 5 A use case of RBPMetaDB for the mouse RPB METTL3. 

(a) Here is a use case of RPB METTL3 to demonstrate the advantage of RBPMetaDB over 

GEO. By using the keyword “Mettl3,” RBPMetaDB accurately returns six mouse RNA-Seq 

datasets with Mettl3 perturbed. (b) However, GEO returns 35 mouse RNA-Seq datasets without 

identifying which datasets are from experiments with Mettl3 perturbed. 

a

b
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METTL3, which is an important enzyme involved in the post-transcriptional methylation of 

internal adenosine residues in eukaryotic mRNA [118]— it can be demonstrated that RPBMetaDB 

greatly outperforms GEO in terms of search efficiency. When the keyword “Mettl3” is searched 

on RBPMetaDB, it returns six highly accurate mouse RNA-Seq datasets from Mettl3 loss- or gain-

of-function studies (Figure 6.5a). GEO returns 35 mouse RNA-Seq datasets with the query of 

“Mettl3” in dataset titles and descriptions (Figure 6.5b), but it is impossible to directly identify 

which RNA-Seq datasets are from loss- or gain-of-function experiments of Mettl3. On the 

contrary, RBPMetaDB does not return irrelevant datasets of a given RBP, and it returns more 

accurate results than GEO. 
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7. SUMMARY 

This dissertation has described integrated analysis methods using public data. Using public 

RNA-Seq data, differential gene expression analysis and differential alternative splicing analysis 

have identified conservative expression and splicing changes in mouse psoriasis. The findings 

provide a better understanding of gene expression and alternative splicing mechanism underlying 

human skin disease psoriasis. A new data mining paradigm of pairing data collection and data 

analysis has revealed key genes in epidermal development and cold-induced thermogenesis. The 

experimental validations have demonstrated the power of the proposed paradigm in the epidermal 

development and cold-induced thermogenesis. The combining of systematic data collection and 

data analysis was shown to be effective approach in data analysis. As another contribution in this 

dissertation, several data resource have been constructed. Public RNA-Seq data for splicing factors 

and RNA-binding proteins have been systematically annotated and collected. The metadata 

databases of the public data provided a precious data resource for studying splicing factors and 

RNA-binding proteins. To collect a comprehensive list of genes that regulate cold-induced 

thermogenesis, many biologists have been collaborated to annotate genes that induce cold-induced 

thermogenesis phenotype changes supported by perturbed experiments. The comprehensive list of 

regulatory genes provides promising candidates to study the underlying mechanisms of cold-

induced thermogenesis. In summary, this dissertation has developed several integrated analysis 

methods using public data, leading to better understanding of the mechanisms underlying psoriasis, 

epidermal development and cold-induced thermogenesis. This dissertation has also built data 

resources for splicing factors, RNA-binding proteins, and cold-induced thermogenesis. 
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