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ABSTRACT

Turbulent combustion is a very active and challenging research topic. A
spherically expanding flame immersed in a turbulent field is one way to gain fundamental
insight on the effect of turbulence in combustion. This kind of experiment is conducted
inside a fan-stirred flame bomb, but there is only a handful of these devices around the
globe. The list is even shorter if demanding conditions are to be tested, i.e. high pressure,
high temperature and intense turbulence. A new fan-stirred flame bomb was designed and
built to address this shortage.

Existing fan-stirred flame bombs were studied first to learn their salient
characteristics. This literature review was then used as guidance in the design of
turbulence generation elements. A few options of impellers were explored. The flow field
produced by the chosen impeller was measured with Laser Doppler Velocimetry (LDV).
A detailed exposition of the vessel engineering ensued.

Before turbulent experiments were attempted, a validation of the rig accuracy and
worthiness was made. The setup demonstrated excellent repeatability and agreement with
benchmarks. Finally, a demonstration of the new apparatus was made by testing a lean
mixture of syngas. The experiment matrix using hydrogen and H2/CO mixtures included
three levels of pressure (1, 5, and 10 bar) and three levels of turbulence fluctuation rms
(1.4, 2.8, and 5.5 m/s). General trends of the effect of turbulence were in line with
expectation, but not enough information was obtained to gain insight on the role of

pressure.
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INTRODUCTION

The rigorous study of the effect of turbulence in combustion is fairly recent [1]
despite how ubiquitous and immemorial combustion applications are. In his seminal work,
Damkohler offered a few reasons to this tardiness: the lack of a quantitative description of
turbulence, which only existed for one simple case at the time; and the disconnect between
the communities interested in the study of combustion and turbulence. Damkahler insisted
that any attempt to comprehend the effect of turbulence on flame propagation must start
with numerical data on the turbulence.

While there is significant progress on the understanding of fundamental aspects
turbulent combustion and the underlying physical constitutive relations are known,
namely, conservation of species, mass, energy, and momentum, the sheer number of scales
and species to be solved is computationally prohibitive for the foreseeable future [2].
There is now a sizeable combustion community working on many fronts to develop a
predictive model that can handle relatively unstudied chemical compositions at high
pressures and Reynolds numbers [3].

The development of models from canonical flames and idealized laboratory
conditions may take longer to impact the technology of practical applications, as opposed
to those efforts channeled to improve the performance of a specific device. However,
simpler experiments that are amenable for both meticulous measurements and high fidelity
modeling provide a more sound approach to build fundamental understanding [4].

The search of a better understanding of turbulent combustion is not driven by

purely academic interests. Environmental concerns and resource depletion, among other



factors, are pushing combustion applications to improve performance while reducing
pollutant emission. An specific example from the automotive industry illustrates: current
regulation for model year 2025 compels vehicle manufacturers to average 54.5 miles per
gallon (mpg) among their overall fleet offer [5]. This is an ambitious goal considering that
the mileage of best-selling vehicle in the USA averages roughly only half that.
Unconventional fuels, novel strategies, and more demanding operating conditions are
being considered to close the performance gap [3]. A better understanding of turbulent
combustion could help to cope with this exigence.

Spherical flame experiments can support the advance of turbulent combustion
science by producing measurements for conditions and species that are outside the borders
of current numerical simulation capabilities or for which little is known in literature.
Worldwide, there are few fan-stirred flame bombs that are capable of testing conditions
higher than ambient temperature and pressure and that are also able to produce turbulent
flow fields that are relevant to practical devices. Table 1 offers a summary of the devices
found in literature and Figure 1 displays the variety of shapes and sizes encountered in
fan-stirred flame bombs.

There are bombs that operate at elevated pressure. An extreme example is the rig
built by Weil machined out of single piece of steel (ID 6 in Table 1). Some others can
withstand temperature above ambient and are better suit for the study of liquid fuels. Few
can stir with a turbulence fluctuation rms greater than 5 m/s. Only one facility combines

all three capabilities and stands out in green in Figure 2 (ID 3 in Table 1).



Table 1 Fan-stirred flame bomb survey.

Format & dimensions  Internal Max. Max. Turb.
ID Institution volume temp. pressure rms
mm liters K bar m/s
1 U Leeds 1% gen. [6] 3 ,0?3’5"“3%"05 223 300 1 16
2 GM/UMI [7-9] 3 gggefg’% 10.6 300 5 25
3 U Leeds 2" gen. [10] Sgpggge 28.73 600 15 11.9
4 UMILY] Szhle{)%'d 0.8 300 1 18
3 intersecting cylinders
5  Kyushu U [12, 13] 5265 35.0 300 10 3.2
6  KIT [14, 15] ’ '”te;segcé'”f fgcl)mders 2.28 300 70 35
7 TawanNCU[1619] ..o 21?'?;’20 w0 266 300 10 8.3
8  Princeton [20, 21] i m'”felrﬂ 1.29 300 30 6.0
” Cylinder
9 TAMU 1% gen.[22, 23] 5305 | 356 25.9 300 1 15
10 U d’Orléans [24] sgpggge 4.2 473 10 2.8
11 CNRS-ICARE [25] S{;QZ;& 93.4 573 20 37
12 This work i gggeff% 33.8 473 10 5.5
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Figure 1 Interior volume of fan-stirred flame bombs. The ID number matches the order listed in Table 1.
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Figure 2 Domain of operating conditions of flame bombs listed in Table 1. The entry
of Karlsruhe Institute of Technology has been omitted.

A new apparatus could help bridge the gap in testing facilities. The objective of
this thesis was to design and build a fan-stirred flame bomb for the study of turbulent
combustion at elevated pressure and temperature. A detailed description of the device
design is offered first, followed by a description the turbulence characterization. Then, a
study of syngas is presented to demonstrate the capabilities of newly developed device.

The results are discussed, and recommendations for future work are offered.



STIRRING OPTIMIZATION

The Turbomachinery Laboratory at Texas A&M University has successfully built
and operated two high-pressure laminar flame bombs and one fan-stirred flame bomb. The
present work will focus on the optimization of stirring and other unique features of the
turbulent flame bomb and refer the reader to previous documents for details shared with
quiescent flame bombs [26-28].

Flow characterization methods and conventions

The turbulent field produced by the stirring fan was scanned with a 2-dimensional
solid state LDV system in a similar fashion to [23]. The laser velocimeter measures two
orthogonal components at one “point” in space. Strictly speaking, the measurements
belong to a finite space called probe volume, not to a point, but this is fairly small. The
probe volume is the tridimensional ellipsoid defined by the crossing of two laser beams.
Every time! that a particle crosses the fringe pattern created inside the probe volume, a
velocity measurement is made. The probe volume dimensions for the emitting optics used
in this study are 3.3-3.5 mm long with a diameter of 161-170 um. If the region of interest
is systematically scanned with these “point” measurements, a statistically stationary
ensemble of the flow field can be constructed.

The LDV unit employed combines the emitting and receiving optics in one device.

The LDV unit has two solid state lasers (532 and 561 nm) rated at 300 mW each. The

1 Not each and every particle that crosses the probe volume renders a valid signal. A valid frequency burst
of scattered light has to meet certain parameters.
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stand-off lens chosen for the emitting optics forms probe volumes 512.3 mm away from
the unit. The device collects the backscattered light of particles crossing the probe volume.
A 2-dimensional LDV acquisition produces a pair of orthogonal velocity time

series, which will be called U(x,t) and W(x,t). In the convention adopted here, t is the

time stamp and x denotes the position vector X = Xi + yj+zR ; Where the origin of the
coordinate system coincides with the center of the bomb. Here is also established that
W(X,t) should point along the cylindrical axis of the vessel in Figure 3 and G(X,t) is

aligned with the X axis of the same figure. Therefore, G(x,t) and W(x,t) are components

of the tridimensional velocity &(x,t) so that &(x,t)=0(x,t)i +V(x,t)j+W(x,t)k. The
notation implemented in this work will use tilde ~ to denote instantaneous, bold to

distinguish vectors, and hat ~ for the orthogonal unity vectors along the X, Y, and Z

directions.

The V(x,t) component along the line of sight of the LDV transceiver, i.e. along the
Y axis in Figure 3, cannot be resolved by this 2-dimensional laser system. In other words,
the setup described above only measures velocities in XZ planes of the form
&(x,t) =0(x,t)i +W(x,t)K . The missing component, V(x,t), would be best handled by a
separate LDV system with an optical axis perpendicular to the first 2D LDV system. It is
reasonable to expect, however, that V(x,t) has similar magnitude to G(x,t) due to
geometrical symmetry.

A velocity time series, say U(X,t), can be decomposed into a mean value, U (X),

and its fluctuations, u’(x,t), about this mean value. This is known as Reynolds

7



decomposition and is defined in equation (1). The decomposition of an arbitrary set of
speed measurements is illustrated in Figure 4 and Figure 5. The mean speed U(X), is
simply the arithmetic mean of all the velocity observations at point x as written in (2).

The mean speed of the entire interrogated region, U , is obtained with (3).

a(x,t) =U(x)+u’(x,t) 1)
1 n=N

U(x):U(x,t):W acx,t,) (2

1 m=M
= U (x 3
2 U(x,) ®)

Where

N is the total number of velocity measurements taken at

location X.
M is the total amount of positions scanned within the region

of interest.

The fluctuating part of the local velocity is often reduced to its root mean squared
value, as exemplified for u’(x,t) in (4). Global results of turbulence fluctuation rms for

all the points measured can be condensed as (5).

U () = U7 (x,1) = Zu'Z(x (4)

m=M
’
u —

1
=— ) u _(x 5
rms M rms( I’TI) ( )



Figure 3 Sketch of LDV transceiver and bomb. The LDV Z axis points along the
cylindrical axis of the vessel. The origin of the coordinate system is the bomb center.

Speed
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Figure 4 Arbitrary speed time series.
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Figure 5 Graphical representation of the Reynolds decomposition of an arbitrary
speed time series into a mean value and its fluctuations.

Local planar mean velocity |C(x)| and global planar mean velocity C can be

computed with expressions (6) and (7) respectively. A global planar turbulence fluctuation

rms c;.. can be computed once u,

ms and w; . are known with (8).

c= \/u (x) +W2(x)

6
> ©)
U?+w?
C= 7
> ™
urZ +W12
C, — rms rms 8
rms 2 ( )
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Effect of impeller diameter in turbulence

A study showed that the first attempt of fan-stirred bomb at Texas A&M
University produced modest turbulence fluctuation rms compared to analogous devices
elsewhere [23, 29]. Figure 6 collects the response of the turbulent field to the fan rotational
speed. A steeper line implies that higher turbulence fluctuation is produced for a given fan
speed. The first generation of fan-stirred bomb at Texas A&M University was able to spin
relatively fast, but other research groups attained higher levels of turbulence rms even at
lower shaft speeds. This fact motivated the search for improved stirrers. The impeller
designed for the first generation of fan-stirred flame bomb is shown in Figure 7 while its

mounting configuration can be seen in Figure 8.

=
e}
1
1

I
» O
T T T T

e =
o N
T T T T

Turbulence fluctuation rms, m/s

K 2K 4K 6K 8K 10K 12K 14K 16K 18K
Fan speed, rpm

Figure 6 Turbulence fluctuation rms and fan rotational speed of several fan-stirred
bombs. ID tags as specified in Table 1.
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L

Figure 7 Backward-curved, three-bladed impeller for the first generation of fan-
stirred flame bomb at Texas A&M University. The pitch is 20°. Dimensions are in
inches.

“

Figure 8 Sketch of the interior of the first generation flame bomb with impellers. The
internal length of the bomb cylindrical body, perpendicular to the page, is 14 in.
Drawn to scale.

12



Figure 9 Impeller of University of Leeds versus the three-bladed impeller at Texas
A&M University [30].

@12.00

Figure 10 Juxtaposition of impellers in a 12 in diameter bomb. Drawn to scale.
13



A review of the impellers used in other flame bombs revealed that three-bladed
impeller was considerably smaller. The best performer in Figure 6 is the cylindrical bomb
built by the University of Leeds [30]. This top performer is compared in Figure 9 side by
side with the three-bladed impeller used in the first generation of Texas A&M fan-stirred
bomb. Their respective bombs have very similar internal dimensions, but the impeller
themselves are contrasting. The comparison is made graphically in Figure 10.

A second impeller was created for the first generation bomb to test the effect of
impeller size on turbulence generation. A simple 8-bladed radial design was chosen,
Figure 11. This kind of impeller has been used by other groups [12, 19]. The radial
impeller diameter was increased 37%, but axial length was kept identical to the three-

bladed impeller. The total blade surface area almost folded in five.

=

k — =i —1

G400

Figure 11 Radial impeller tested in first geneneration flame bomb at TAMU

The flow field driven by the three bladed impeller and radial impeller were

qualitatively similar. The radial impeller had significantly higher mean speed in both

14



measured components. The overall planar mean speed C increased from 0.2 m/s for the
original three bladed impeller to 1.2 m/s for radial impellers when both were driven at
8000 rpm. In terms of turbulence fluctuation, radial impeller was also a more vigorous

!

stirrer. The overall average planar of turbulence fluctuation rms ¢/, was increased four

folds as it leaped from 1.5 m/s to 6.5 m/s with the alternative set of impellers.
The linear dependence of the turbulence fluctuation rms to the fan rotational speed
has been confirmed by the fan-stirred flame bomb literature multiple times in some variant

of expression (9) over the years [8, 10, 14, 19].

!
Crms ~ (9)
Where
Crs m/s  volumetric average of turbulence fluctuation, a scalar.
® rad/s fan angular velocity.

Equation (10) is the simplest expression that captures the dependence of ¢/, on
o . For dimensions to agree, the scaling factor introduced in (10) must have length units.

For convenience, we’ll name this scaling factor the “effective radius” or r, . A slope fit

toa c

rms

Vs. o curve similar to Figure 6 yields the magnitude of this newly minted
effective radius. The effective radii and other figures for the surveyed bombs are listed in
Table 2. For the cases presented here, effective radius was found to be a fraction of
physical fan radius, approximately 17%.

Ce Rl (10)

rms
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Table 2 Turbulence generation details on several fan-stirred flame bombs.
Maximum ot Length  Impeller NUMber  Egfective

ID Institution Crs Scale diameter ~ Of fans radius
m/s mm mm mm

1 U Leeds cyl. [6] 16 38-42 187.5* 4 16.54f
2 GM/UMI [7-9] 22 25.40 135 4 7.26

' (9.55%)

3 U Leedssph. [10] 11.9 20 1508 4 11.36
4 UMI [11] 1.8 6.9 48 4 2.37
5  Kyushu U [12, 13] 32 10.3 200 2 8.84
6 KIT [14, 15] 3.5 3.9 45 8 2.56
7 Taiwan NCU [16-19] 8.3 15-45 116 2 5.17
8  Princeton [20, 21] 5.3 4 69 4 6.79
73.9 2.15

st -

9 TAMU 1% gen.[22, 23] 15 20-27 (106" 4 776
10 U d’Orléans [24] 2.8 3.4 40 6 1.64
11 CNRS-ICARE [25] 3.7 16 130 8 7.48
. 6.60

12 This work 55 16 124.5 4 (10.07%)

* The references on this bomb report 147 mm mean diameter. To be consistent with the comparison of other
bombs, the outer diameter has been estimated to 187.5 mm. See sketch at appendix.

+ Measured with LDV. Previous publications on the apparatus using hot wire anemometry reported
significantly lower ¢’ [6, 31]. The effective radius of hot wire measurements is 7.2-7.5 mm.

T rerr = 7.26 mm for fans blowing toward the center of the vessel, and res = 9.55 mm for reverse operation.

8 Actual diameter is not found in the reference. Outer diameter guessed is offered here based on pictures
and dimensions of other features.

I This group has several cruciform bombs. To the author knowledge, no detailed characterization has been
released for the spherically expanding flame bomb [16, 18], despite the fact that dimensions are not
identical to previous downward propagating flame version. Wording in [17] imply that the impeller
remained unchanged from [19].

# Values in parenthesis correspond to the radial impeller, Figure 11.

A Values in parenthesis correspond to the plug impeller.
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The effective radius artifact makes the comparison among fan-stirred bombs
straightforward and seems to make reasonable predictions despite the disparate nature of
the fans, bomb shape and dimensions surveyed, as supported by Figure 12. Larger
impellers seem associated with more intense turbulence fluctuation rms but at least one
apparatus, ID 5 in Table 2, did not conform to the trend showed by the rest of the
population. Bomb ID 5 has the largest fan impeller in the table, but only has two fans

installed, while most bombs have at least 4 agitators.

=
(o]

| Slope: 0.17137 [
Intercept: -2.07318

=
N DN O
T T T
1

=
o
T T

| |
Ouitlier |

Turbulence effective radius, mm

0 | L 1 L 1 L 1 L 1 L 1
0 20 40 60 80 100

Fan radius, mm

Figure 12 Turbulence effective radius as a function of fan radius. Outliers have been
excluded from linear regression.

Figure 13 was made considering the total amount of fans installed in each rig by

making the horizontal axis the product of fan count and fan radius. This product is also
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correlated to better stirring. Interestingly, the outlier in Figure 12 and Figure 13 is not the
same device. The outlier point in Figure 13 is ID 11 in Table 2, the largest bomb by
volume. Bomb ID 11 has 8 fans, @ 130 mm each, to agitate 93.4 liters of internal volume.

The next largest vessel is 2.7 times less voluminous.

=
(o]

T T T T T T T T T T
[ Slope: 0.04648 m
| Intercept: -2.55587

N =
N M O
T T T
1

=
o
T T

. -
Outlier_

Turbulence effective radius, mm

0 L | L | L | L | L |
0 100 200 300 400 500

Cummulative fan radius, mm

Figure 13 Turbulence effective radius vs the product of fan radius and the total
number of fans installed.
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Effect of impeller design

The study of other bombs in literature and their stirring fans showed that the
impeller should be larger than previously attempted in the first generation of fan-stirred
flame bombs at Texas A&M University. There are of course limitations on how large the
impeller can be. The impeller should preferably be small enough to fit through the vessel
window bore to facilitate assembly, i.e. @ < 6.747 in. Five impeller designs of similar
diameter were evaluated. Four designs were custom made for this study, and their
geometries and dimensions are shown in Figure 14.The fifth stirrer was a commercial leaf
blower / vacuum impeller, Toro 127-7092. The blower impeller is made of magnesium
and has backward curved blades. Its diameter is 4.9 inches and the axial length is 1.96
inches. Only one axial design was tested and the rest were centrifugal fans. It was decided
that the maximum velocity would be reduced from 24,000 rpm to 10,000 rpm. A low shaft
surface speed permits the second generation fan-stirred bomb to use of lip seals, which are
relatively inexpensive and require no ancillary hardware to run. The test conditions were
limited by the available power.

Power consumption results are plotted in Figure 15. The radial design, or paddle
wheel was the most onerous to run. The axial and backward curved impellers also imposed
a load greater than the motor continuous service capacity at 6000 rpm, but they were still
manageable momentarily. The plug and blower impellers were chosen for a LDV

characterization from 0-6000 rpm.
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Figure 14 Custom impeller prototypes tested. From left to right radial, axial, backward curved, plug design.
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Figure 15 Power consumption of DC motor when driving different impeller
candidates. The lip seals were not installed during measurements.
LDV characterization

The flow field of the leaf blower impeller and the custom plug impeller was
characterized with LDV measurements inside a central cubic region of 88x88x88 mm
with a grid spaced at 22 mm. The plug fan flow field main features are summarized in
Table 3. The linear dependence of turbulence fluctuation is evident in u’ and w’, and in
consequence, c¢’. The same cannot be said about the mean components U and W . The
horizontal mean speed U increases geometrically with angular velocity, while the
magnitude of W does not even behave monotonically. There is a marked anisotropy in the

turbulence fluctuation as u’ is only % of w'. The disparity between u" and w' is confirmed

by a nonzero shear stress YW . The flow field is however fairly homogenous. In general,

the distribution of the turbulence fluctuation around the mean speed resembles a normal
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distribution. There is almost no skewness and the flatness is close to 3.0 expected for a

normal distribution. The mean velocity becomes larger proportion of the turbulence rms
as fan speed increase, shows the inverse turbulence intensity C/c’.

The LDV collected velocity measurements at each location for at least 5 seconds
after the flow became statistically stationary. This acquisition period is many times longer
than the integral time scale. The measurements can be assembled to form a 2D quiver plot
such as Figure 16. The collection of these quiver plots shows the flow towards the suction
of the impellers. This is not surprising; in average, the flow will always converge towards
the suction and move away the trailing edge of the impeller, if sufficiently long averages
are taken. The same pattern was recognized with both impellers (i.e. plug and leaf blower)

at all tested motor speeds. The rest of the quiver plots was left as appendix material.

Table 3 Flow field characterization of plug fan. Effective radius resf = 10.07 mm.

2k 4k 6k

rpm rpm rpm
U -0.1784 -0.5354 -1.5134
w -0.1167 -0.4385 -0.2293
u’ 1.6925 3.4937 5.2299
w 2.2428 4.6451 7.0302
u'w' -0.1377 -0.6079 -0.8072
U e -0.0093 0.0153 -0.0072
W, omess 0.0326 0.0206 0.0045
Uatness 3.3017 3.3868 3.2872
Wiainess 2.9008 3.0155 2.8892
C 0.1508 0.4893 1.0823
c’ 1.9907 4.1157 6.2090
Inverse intensity C/c’ 0.0757 0.1189 0.1743
Isotropy u'/w' 0.7600 0.7553 0.7491
Homogeneity std. dev. 0.0827 0.0856 0.0842
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Figure 16 Quiver plot of the mean flow produced by plug fans spinning at 6000 rpm
at the central plane. The length of the arrows indicate the relative magnitude.

The plug fan and the other custom prototypes were 3D printed in polylactic acid

(PLA), see Figure 17. Excessive vibration was observed at 8000 rpm and for this reason

it was not deemed safe to make a characterization at that speed. The leaf blower impeller

was installed in two positions along the shaft. The first was at the shaft tip, away from the

bomb walls and the second position was close to the wall, leaving only a small clearance

between the wall and the impeller blades, as shown in Figure 18
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Figure 17 3D printed impeller prototypes.
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Figure 18 Leaf blower impellers installed in bomb, top view. The top end cap was
removed to take this image.
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Next on the LDV characterization results is the leaf blower fan, Table 4. A
substantially higher mean velocity in the horizontal direction was observed U compared
with the plug design. This in turn makes the inverse turbulence intensity C/c’ about
21.5% in average. The leaf blower, when installed at the shaft tip, closest to the bomb
center of the wvessel, generates slightly less anisotropic turbulence fluctuation.
Interestingly, u’ is larger than w', in contrast with the plug fan case. The characteristic
turbulence ¢’ is produced by the leaf blower is markedly lower than that of the plug fan.
As a matter of fact, the effective turbulence effective radius is only 6.6 mm compared to
10.07 mm, despite the fact that both impellers pull nearly the same power from the electric

grid to run. The standard deviation of the flow field turbulence homogeneity is 10 %.

Table 4 Flow field characterization of blower fan. Effective radius reff = 6.6 mm.

2k 4k 6k 8k 8k (wall)

rpm rpm rpm rpm rpm
U -0.3729 -0.7957 -1.5719 -1.6218 -2.5139
W -0.0226 -0.0665 -0.0325 0.0572 0.0316
u’ 1.5558 3.0794 4.6967 6.0741 5.4113
w' 1.2275 2.4694 3.676 4.9193 5.3317
u'w' -0.0075 -0.1081 -0.2822 -0.2149 -0.0908
Ul emmess 0.0247 0.0777 -0.0029 0.0407 0.0046
W, ouess 0.0003 0.0035 -0.0007 0.0054 -0.0025
U atness 3.0476 3.1399 3.2198 3.1441 3.1312
Wiatness 3.1327 3.1078 3.1793 3.0707 3.0235
C 0.2642 0.5646 1.1117 1.1475 17777
c’ 1.4026 2.7936 4.221 5.5316 5.3769
Inverse intensity C/C' 0.1883 0.2021 0.2634 0.2074 0.3306
Isotropy u’/w' 1.2719 1.2485 1.2786 1.2366 1.0157
Homogeneity std. dev. 0.0957 0.0974 0.1087 0.0971 0.1002
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Fan-stirred flame bombs aspire to produce a region of isotropic homogenous
turbulence with negligible mean flow. The unbalance between the horizontal and vertical
components of the turbulence fluctuation is therefore unfavorable. Fortunately, this kind
of cylindrical bomb with tetrahedral fan configuration can adjust the relative importance
of the horizontal and vertical rms values by sliding the impeller along the shaft closer or
away from bomb center, Figure 19. As the blades come closer to the bomb wall, the later
acts as shroud or housing that favors the flow along the cylindrical axis. The first 4
columns in Table 4 were done with the impeller installed at the tip of the shaft. The
impellers were then slid towards the wall the measurements at 8000 rpm were repeated.
The flow became isotropic while still homogenous. The overall inverse intensity was

negatively affected, since it increase from ~21% to 33%.

Open gap Close clearance

Figure 19 Comparison of impeller installation position. On the left, the impeller is
installed at the tip of the shaft, closest to the bomb center. On the right, the impeller
has only a small clearance with the bomb cylindrical wall.
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The temporal coherence of the flow field was studied by computing
autocorrelations, Table 5. A computer program was written in Fortran and the source code
has been included in the appendices. It was found that at the center of the bomb,

coordinates [0, O, 0], the integral time scale of both,u’(x,t) and w/(x,t), decreased

monotonically with fan shaft speed regardless of the fan design. However, such
dependency was not observed at the point [-44, 44, -44], especially in the case of the
blower fan installed at the tip of the shaft. There, at one of the corners of the cubic region

scanned with LDV, the time scales of W'(x,t) were consistently short, while those of
u’(x,t) were longer and with more spread.

The LDV is an instrument that needs no calibration and is particularly suitable to
the study of the temporal coherence of the flow. However, LDV is usually not the best
tool to investigate the length scales unless under special conditions. Figure 20 offers
autocorrelation plots for the leaf blower fan installed with close clearance to the wall. The
self-correlations have been smoothed with the Savitzky-Golay method using 32 points per
window to fit a 2" order polynomial. The integral time scale is numerically equal to the
area below the autocorrelation curve, from null delay to the first zero crossing. The rest of
the self-correlation plots are left in the appendices. The parallel Fortran code written to

compute integral time scales is also part of the appendices.
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Table 5 Integral time scale of selected locations expressed in milliseconds.
Coordinates in millimeters.

u'(x,t) w(x,t) u'(x,t) w(x,t)

[0,0,0] [0,0,0] [-44, 44, -44]  [-44, 44, -44]
Plug, 2000 rpm 14.29 12.60 12.42 21.04
Plug, 6000 rpm 3.85 4.40 5.01 5.46
Blower, 2000 rpm 34,51 11.20 8.39 2.94
Blower, 4000 rpm 14.46 8.68 10.12 4.44
Blower, 6000 rpm 11.46 5.88 13.78 2.40
Blower, 8000 rpm 8.85 3.13 4.70 2.27
Blower, 8000 rpm, at wall 4.64 4.29 6.39 2.75

Leaf blower impeller close to wall, 8000 rpm, [0,0,0]
12—

T T T
u'r=4.64ms |

—— W r=4.29ms |

1.0
0.8 -
0.6 -
0.4 -

0.2

Autocorrelation, dimensionless

0.00 0.02 004 006 0.08 0.10
Autocorrelation delay, sec

Figure 20 Autocorrelation of turbulence fluctuation at vessel center. The leaf blower
fan was installed with a close clearance from the wall.
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APPARATUS DESIGN
Optical setup and blast room
A schlieren set up was designed with plano-convex lenses to collimate the light
coming from a mercury arc lamp. Flat mirrors on kinematic mounts were used to steer the
light from the light source, though the vessel and into de camera. The blast room layout at
Texas A&M Turbomachinery Laboratory was modified to accommodate the new rig and

optimize the resource share with the existing devices. A view of the blast room is offered

in Figure 21.

Figure 21 Blast room layout. The new fan-stirred flame bomb of the present work is
at center. An existing, heated, stainless steel, laminar flame bomb is partially visible
in the back.
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Stirring assembly

Stirring the contents of a pressure vessel with fans is not trivial task. A penetration
to the vessel must be made to drive the shafts with seals that allow the best possible control
of the composition of the gaseous mixture inside the vessel without leaking and also that
consistently survive the blast of confined deflagration. In addition, the stirring assembly
IS expected to run at a maximum speed of 10,000 rpm at temperatures above ambient.

The selection of the motor is constrained to a number of factors such power
demand, ease of assembly, maintenance and operation. During design, it was chosen to
mount the motor directly on the vessel. The motor had to be strong enough to drive the
fan and overcome the seal friction while being light enough to be easily handled by one
person and flange-mounted directly on the bomb. It was decided to motorize the shaft with
two different motors to cover the range of desired speed. To run in low range, from 0 to
6000 rpm, a DC brushed motor was chosen. The DC motor main characteristics are listed
in Table 6 and its physical dimensions detailed in Figure 22. The DC motor is nominally
rated 323 W (0.429 hp), although it can handle overloads for short periods of time. The
DC motor control, KB Electronics model KBMD-240D, was upgraded with a heatsink to
increase the deliver up to 745.7 W (1 hp).

The higher end of the speed range, 8,000 - 10,000 rpm, is powered with a router
motor pack. Some relevant figures about the router motor pack are collected in Table 7.
The motor pack has a built-in speed controller that allows adjusting the rotational speed
from 8,000 to 24,000 rpm, albeit no very precisely. A fixed router base, Dewalt DW6184,

permits a convenient coupling with the receiving flange of the stirring assembly.
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Table 6 Technical specifications of Ametek Pittman 1D33005 DC brushed motor.

02.88

Specification

Supply Voltage 90 Vdc
Continuous Stall Torque 7.50 Ib-in
Speed @ Cont. Torque 6000 rpm
Current @ Cont. Torque 833 A
Continuous Output Power 323 W
0.429 hp
Maximum speed 6000 rpm
Peak Current 33.20 A
Peak Torque 37.50 Ib-in
Weight 7.20 Ibs

— $3.88

4¥ @ .22 THRU ALL
F 5.78

=
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Table 7 Technical specifications of Dewalt DW618 motor.

Specification

Supply voltage 125 Vac
Power 2.25 hp
No-load speed 8-24 krpm
Current 12.00 A
Collet diameter Ya,% In
Weight 10.1 Ibs
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Figure 22 DC brushed motor. Pittman ID33005. Dimensions in inches.
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The fan shaft was designed to a maximum speed of 10,000 rpm. An excerpt of the

shaft engineering drawing is presented in Figure 23. The critical speed was estimated with

the Rayleigh—Ritz method, following expressions (11) through (14). The fan weight was

modeled as a lump load applied at the tip of the shaft. The shaft was approximated to a

cantilever beam 6.5 in long in this analysis, which corresponds to the distance from the

guide bearing to the shaft tip.

Where:

_%0 [1

crit
T\ O

st

N

5st = 5shaft + 5

fan

3
mshaft L

St = ——
shaft 8E|

m fan L3
5fan =
3El

Nerit 11,798 rpm  shaft critical speed

Ost 6.48 um total shaft static displacement

Oshaft 2.33 um  shaft displacement under its own weight

Ofan 415 upm  shaft displacement due to the weight of the impeller
msnat~ 0.258 kg mass of shaft (cantilever end)

Mfan 0.173 kg mass of impeller (early prototype)

L 16.51 cm  cantilever length of shaft (6.5 in)

E 196 GPa modulus of elasticity

I 3.12E-9 m*  area moment of inertia

(11)

(12)

(13)

(14)

The numbers have been scaled for reading convenience. Proper unit concordance

must be enforced in computation.

32



1 ®.875)

+0003 +.0003
®.8873 G — — D873 5o

32
+.000
32, @ U

| o +0015
40 Pe25 s

. 05 % 45°
SEAL SEAT
tt—_— L
ACHINING
PERMISIBLE CENTER
T VPERMIS\BLE

05 ¥ 45°

1.75 &80

Figure 23 Fan shaft drawing detail.

A hammer impact test was performed to a stirring assembly, and the natural
frequency acquired was 176 Hz with the Toro leaf blower impeller installed at the tip of
the shaft. This corresponds to a critical speed of 10,560 rpm which confirms that the
approximations taken for the Rayleigh—Ritz calculation were reasonable. A different
configuration, with the leaf blower installed with a close clearance the bomb interior wall,
produced a natural frequency of 448 Hz. The alternative fan location critical speed, 26,880
rpm, is much higher and well away from the operation range of the stirring assembly.

The rotary assembly was built with inherently balanced elements, however the
assembly as a whole was not dynamically balanced. The shaft was machined without
keyways. Keyless torque couplings, adapters, and locknuts were chosen. With these
elements it was possible to adjust the location of the impeller along the shaft. This
flexibility was needed to accommodate different impeller geometries in the stirring
assembly. The motors were chosen to have the same shaft diameter, so that a single

coupling could be used for both.
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Figure 24 Stirring assembly cross section.

The bellows coupling can be slid to facilitate assembly, colored yellow in the
assembly cross section Figure 24. With the proper machining tolerances, keyless shaft-
hub connector provides a very secure interference fitting with the impeller at any position
along the shaft. The keyless connector has been colored bright red in the assembly view,
Figure 24.

The primary seal around the shaft and the bomb penetration is a spring-loaded
PTFE lip seal, shown in bright green in Figure 25. The lip seal has a flanged profile that
is clamped between the bomb body and the bearing housing to ensure that the seal does
not spin with the shaft. The lip seal material is chemically inert at elevated temperatures
and pressures and is capable of running without lubrication at high surface speeds. It is
rated for 3000 psi at maximum rotary surface speed of 1500 ft/min. The shaft was ground
to surface finish of Ra 6 pin as recommended by the seal manufacturer. Secondary
containment seals have been placed in tandem. A pair of o-rings closes the static path,
while a v-ring, orange in Figure 25, keeps contaminants out of the bearing cavity and

weakly assists vacuum seal.
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Figure 25 Bomb and stirring assembly detail cross section.

A cage is created with 6 standoff bolts that serve multiple purposes as they secure
the bearing housing lid, enclose the shaft coupling and provide a mounting structure for
the motor receiving flange. The concentric design makes robust assembly because the
maximum possible misalignment of the shafts is limited by the clearance and machining
tolerances. Nevertheless, the metal bellows coupling absorbs and accommodates any
leftover misalignment.

Windows

Two sets of orthogonal windows is a key feature of this apparatus. Orthogonal
lines-of-sight enable optical techniques that potentially resolve the 3D structure of the
flame in tomography or even stereoscopy, as opposed to the 2D projection of schlieren
imaging. For example, the instantaneous flow field at a given cross section can be rendered
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using PIV or the concentration of a specific species can be mapped across the flame at any

time applying planar laser induced fluorescence. Two windows are visible in Figure 26.

Figure 26 Turbulent flame bomb during assembly. Plumbing and wiring work is
missing in this picture.

Figure 27 Exploded cutaway view of the window subassembly.

36



The window substrate is padded with 1/32-inch thick PTFE gaskets and is gently

clamped inside the cell. The clamp does not need very strong because it function is to

retain the substrate in place in vacuum. A couple of circumferential o-rings shut the gas

path. The o-rings glands are highlighted in yellow in Figure 27. This arrangement makes

the viewport airtight and keeps the window in a low-stress state.

The quartz window substrate was designed for a pressure of 3000 psi using the

following expression [32]:

Where,
tw 3.50
) 5.00
Kw 0.75
fs 7.58
AP 3000
oy 8700

in
dim
dim
psi
psi

t =05, [k f 2 (15)

window thickness

aperture diameter

support condition (clamped = 0.75, unclamped = 1.25)
safety factor

pressure differential

fracture strength

A 7.6 safety factor was chosen exacting a minimum thickness of 3.5 in. according

to equation (15) Simulations show an overall low level stress with a maximum tension

stress of 2.3 ksi on the center of the exterior face when an internal pressure of 3000 psi is

applied; see Figure 28 and Figure 29.
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Figure 28 Contour plot of von Mises stress of window assembly, front view.
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Figure 29 Von Mises stress of window assembly, cutaway view.

Pressure vessel
The vessel is intended to perform spherical flame experiments at 10 atm prior to

ignition. An instantaneous peak pressure of roughly 10 times the initial pressure is
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expected typically in closed volume combustion. Therefore, the design maximum pressure
was chosen to be 100 atm (1,469.6 psi).

The material chosen for this apparatus has the ASTM specification A182 F 6A. It
is a forged martensitic stainless steel. The steel was hardened to reach a Class 4
designation with the heat treatment specified in Table 8. The mechanical properties of
A182 F 6A in its Class 4 hardened condition are summarized in Table 9. The material was
shaped into seamless rings. The construction of the pressure vessel out of forged cylinders

eliminates welding procedures.

Table 8 Heat treatment requirements for ASTM grade F 6A class 4 [33].

Heat Treatment  Minimum Austenitizing Cooling Quenching Cool Minimum
Type Solutioning Media Below Tempering
Temperature, Temperature
°F[°C] °F[°C] °F[°C]
Anneal Not specified Furnace cool N/A N/A
Normalize and Not specified Air cool 400 [205] 1000 [540]
temper

Table 9 Tensile and hardness requirements for ASTM A182 F 6A class 4 [33].

Tensile Strength,  Yield Strengthf, Elongation in 2 in. Reduction of  Brinell Hardness
min, min, [50 mm] or 4@, min, Area, min, Number,
ksi [MPa] ksi [MPa] % % HBW
130 [895] 110 [760] 12 35 263-321

1 Determined by the 0.2 % offset method.

According to the ASME pressure vessel code UG-27 [34], the formulas for the
circumferential and longitudinal stress in cylindrical shells subject to internal pressure are

given in equations (16) and (17) respectively.
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Where
E 1.00
P 1500
R 7.0
S 55
t

dim
psi
in
ksi

in

PR

t=—— 16
SE -0.6P (16)

(- PR -
2SE +0.4P

joint efficiency. Seamless-forgings have no joints,
therefore efficiency is 1.0.

internal design pressure.

inside radius of the shell course under consideration
maximum allowable stress value. Chosen as % of yield
strength.

minimum required thickness of shell

The minimum cylinder thickness found for circumferential stress and longitudinal

stress is 0.3947 in and 0.19 in. The vessel was built with a wall thickness of 3.5 in, which

yields a safety factor of 8.9.

The minimum thickness of un-stayed flat heads, cover plates and blind flanges

shall conform to the requirements given the ASME Pressure Vessel Code Section VIII

UG-34 [34]. The minimum required thickness of flat unstayed circular heads, covers and

blind flanges shall be calculated by the following formula:

Where
C 0.25
d 14
E 1.0
P 1500

dim

in

dim

psi

t=d./CP/SE (18)

a factor depending upon the method of attachment of
head, shell dimensions, and other items as listed in (d)
below, dimensionless. End cap factor 0.25.

diameter, or short span, measured as indicated in Figure
UG-34

joint efficiency. Seamless forging efficiency of the joint
is 1.0

internal design pressure.
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The endcap does not have constant cross section; it is thinnest at the bolt flange,
2.5 inches, and much thicker in around the retaining ring thread and vent opening.
Plugging the bolt flange thickness into equation (18), produces a safety factor of 1.63. The
highest stress areas are very localized and limited to the fillet between the bolt flange and
the cylindrical projection that is inserted into the bomb body, see Figure 30. For this
reason, the fillet radius was generously sized to 0.4 in, which make it the largest fillet

feature among all the bomb components.

wvon Mises (ksi]
6.420e+001
5.886e+001
_ 5.352e+001
. 4.818e+001
. 4.284e+001

_ 3.750e+001

3.216e+001
2.682e+001
[ L 2.148e+001

_ 1614e+001

Node; 97900
1.080e+001 K ¥, Zlocation: [0.261-2.747.03 in

Value: 5.328e+001 ksi
5.457e+000

1.168e-001

—P Vield strength: 8.998e+001

T I

Figure 30 Von Mises stress plot of end cap, side view.
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Figure 31 Von Mises stress plot of end cap, top view.
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Fasteners

The selection and design of fasteners was done following the guidelines of the
Machinery’s Handbook [35]. The typical bolt strength is 170 ksi. For the minimum
engagement length, the fact that the internal threads are machined into the forged stainless
steel with a lower strength has to be considered. The forged rings strength is 110 ksi and
the engagement length has been corrected so that the bolt would fail before the internal
threads strip. The minimum engagement requirement was relaxed in the case of the
bearing housing thread since it has a very generous safety factor. Table 10 summarizes the
fasteners engineering.

The endcaps have an 8-in-diameter breech and retaining ring, Figure 32. The
retaining ring holds in place accessories fitted at the breech, of which the simplest option
is a plug blank, as presented in Figure 33. The thread chosen for these elements is a
standard 10-3 BUTT 3A buttress screw, known for being particularly strong in one

direction. Table 11 details the features of the lead screw design.
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Figure 32 End cap and retaining ring.

Figure 33 Detail cutaway showing the retaining ring in magenta and a blank plug
disk in light green.
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Table 10 Fasteners calculations.

Application Thread Number  Q, corrected Fastener  Pressure, Total Load Fastener,  Safety
of engagement  strength, load, per load factor
fasteners length, fastener,  capacity,
in ksi psi Ib Ib
Ib

Window clamp  8-32 UNC 2A 8 0.137 180 15 416 52 2,522 485
Housing cover 1/4-20 UNC 2A 12 0.182 170 3,000 9,425 785 5,410 6.9
Side port 5/16-18 UNC 2A 6 0.238 170 3,000 4,455 742 8,913 12.0
Window cell 9/16-12 UNC 2A 12 0.442 170 3,000 107,355 8,946 30,931 3.5
Spark plug 1/2-14 NPT 1 110 3,000 1,663 1,663 51,277 30.8
Expansion joint  7/8-9 UNC 2A 12 0.705 170 3,000 235,619 19,635 78,495 4.0
End cap 1-8 UNC 2A 12 0.802 170 3,000 461,814 38,485 102,977 2.7
Bearing housing 2 1/4 -10 UNS 2A 1 1.853 110 3,000 2,356 2,356 400,311 169.9
Retaining ring 10-3 BUTT 3A 1 0.1439 63.5 3,000 235,619 235619 3,928,462 16.7

+ Shear strength of buttress thread elements.
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Table 11 Dimensions for 10-3 BUTT Class 3 buttress thread.

Symbol  Value Unit Formula Description

D 10 in D=10 Major diameter (nominal)

tpi 3 threads/in tpi =3 Threads per inch

p 0.3333 in/thread p=1/tpi Pitch

H 0.2969 in H =0.89064 * p Height of sharp V-thread

h 0.2 in h=06*p Basic height of thread engagement

r 0.0238 in r=0.07141*p Root radius

S 0.0275 in $=0.0826 *p Root truncation for either round or flat root
S 0.0309 in S=0.0928 *p Flat width of flat root form

G 0.0093 in G =0.0093 Allowance

he 0.1954 in he=h-05*G Height of thread engagement

f 0.0484 in f=0.14532 *p Crest truncation

F 0.0544 in F=0.16316 *p Crest width

Dn 10.0418 in Dn=D +0.12542 * p Major diameter of internal thread
Ds 9.9907 in s=D-G Major diameter of external thread
En 9.8 in E.=D-h Pitch diameter of internal thread

Es 9.7907 in Es=D-h-G Pitch diameter of external thread

hn 0.2209 in h, =0.66271 * p Height of thread of internal thread
hs 0.2209 in hs =0.66271 * p Height of thread of external thread
Kn 9.6 in Khn=D-2%*h Minor diameter of internal thread
Ks 9.5489 in Ks=D-1.32542*p -G Minor diameter of external thread
Lsas 0.2438 in/thread Las =H-f-05*G Shear length per thread under 45 degree flank
Ls 0.2737 in/thread Ls = Las * (1 + tan(7°)) Shear length both flanks, 7° and 45°
As 8.5913 in?/thread As=m*Ds* L Shear area per thread
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RIG VALIDATION
Hydrostatic test
A hydrostatic test was performed on April 18" 2017 by FESCO, Ltd. The vessel
was filled with water and then pressurized 2000 psi with a pneumatic pump, Figure 34,
Figure 35, and Figure 36. No leaks or pressure loss were observed, however, one quartz
window fractured. Even in its broken state, the window did not disintegrate; it continued
to hold pressure without releasing water. The hydrostatic test was considered successful
as the worthiness of the vessel was verified. As a corrective measure, PTFE gaskets were
added to the window assembly to avoid direct contact between metal and quartz on the

flat faces and minimize stress concentration, as shown in Figure 27.

Location: Texas A&M University
Test Description: Hydrostatic Pressure Test - PhD Project
Date: 4-18-17
Serial# 6778
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Figure 34 Hydrostatic test pressure trace.
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Figure 35 Pneumatic pump and pressure transducer with data log

Figure 36 Water level while preparing the vessel for hydrostatic test.
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The subsequent investigation showed that the quartz substrate failed due to contact
stress. A fractrographic inspection by Dr. Miladin Radovic (TAMU) identified the origin
of fracture and propagation direction, Figure 37. The fail started at the exterior window
seat, the annular region at the bottom of the window cell socket where window substrate
is supported. The fracture then branched from this point. All the quartz pieces present
inclusions and defects observable with naked eye. These defects weaken the material,

however it was shown that the failure started elsewhere.

Fracture J "

origin

Figure 37 Fracture propagation.
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Laminar flame speed validation
Since this is a new device, a validation diligence is necessary. A series of
experiments with hydrogen were chosen as a figure of merit. The bomb was able to
reproduce results obtained in the past by this group [36] with excellent repeatability,

Figure 38.
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Figure 38 Laminar flame speed of hydrogen at 1 atm and room temperature.
Continuous lines are recent kinetics models for hydrogen and syngas [37, 38].

The maximum operating pressure is 10 atmospheres. This figure refers to the
pressure of reactants prior to ignition. The competence of the bomb under static load was
judged with the hydrostatic test disclosed elsewhere in this text. A conservative rule of
thumb estimates that the pegging pressure, i.e. the momentarily peak pressure, will be

tenfold the initial pressure for closed volume combustion. Before commissioning the
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bomb for operation at 10 atmospheres, trial experiments with aluminum window plugs
where performed, Figure 39. The trials with aluminum window plugs were successful,

Figure 40, and the window cells were again fitted with quartz substrates.

Figure 39 The quartz substrate (left) been substituted by aluminum blank (right).
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Figure 40 Pressure trace of ST Run 43. Reactants pressure was 10 atm.

Stoichiometric hydrogen in air.
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NOx formation

It was noticed that, after the high-pressure experiments, the combustion products
when seen through the window immediately after a run had a distinctively yellow/greenish
coloration, see Figure 41. The yellow shade was more intense the higher the initial
pressure; in other words, combustion products of 10-bar experiments were decidedly
mustard while the coloration after 2-bar runs was barely perceptible. Moreover, if the
combustion gases were allow to sit in the bomb and cool down, the mustard hue faded
away gradually. The water that eventually condensed inside the bomb had a bright yellow
color while some surfaces were stained with a dark brown/rust patina. To minimize
condensation and the residue left behind, the combustion products were vented through
the ventilation system as quickly as possible. Even with the extraction system working, a

pungent, biting smell was perceived for a few seconds following the exhaust release.

Figure 41 Combustion products after a 10 bar experiment. The oxidizer for the left
side was O2:N2::1.0:3.76. The oxidizer for the right side was Oz:He::1:6.

53



Figure 42 Water condensed inside the bomb after 10-bar experiment. The oxidizer
was air (0O2:N2::1.0:3.76). Hydrogen was burned at ¢=0.5. Top view.

It was postulated that the mustard coloration was owed to the formation of nitrogen
oxides (NOx). The physical and chemical characteristics of nitrogen dioxide (NO>) in
particular fit the observations quite well, including the color (Figure 43). To test this
hypothesis, a simple test was devised; to substitute nitrogen in the oxidizer for an inert
gas: helium. A 10-atm run of hydrogen at an equivalence ratio of 0.5 was prepared with a
mixture of oxygen and helium in the following volume ratio: Oz:He::1:6. The combustion
products were odorless and colorless, see the right side of Figure 41. The condensate was
also transparent. It was concluded that the coloration in the air-burning experiments was
due to nitrogen oxidation. It can be said that, after the experiments, the bomb and the steam
generated therein, were acting as an unintended wet scrubber. Nitrogen dioxide is highly
soluble in water and decomposes in nitric acid promptly [39], which could explain why
the gas phase loses the yellow color while if enough time is allowed, leaving a tarnished

condensate behind.
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Figure 43 Overlayed pictures taken to the same sealed ampule containing 99.9%
pure NO2/N204 at different temperatures. From left to right -196 C, 0 C, 23 C, 35
C, 50 C. © Efram Goldberg / CC-BY-SA-3.0
Confinement effect

Flame bombs are finite volume devices, and therefore pressure is expected to
increase after combustion takes place. However, in the early stages of the flame
development, there is very little change in pressure. The current device demonstrated that
the pressure increase during the time the flame is being recorded is negligible, see Figure
44 and Figure 45. This claim was later confirmed during the analysis. A confinement effect
was not observable in the burned velocity-versus-stretch plots, see an example in Figure

46. This lack of observed confinement effect might be due to the fact that this new bomb
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diameter and volume are greater than former generations [26, 27] at Texas A&M

University.

Figure 44 First and last frame of run 58. The total elapsed time is 5 ms. This is a 2-
atm syngas experiment at equivalence ratio of 0.5.
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Figure 45 Pressure trace of Run 58. The flame silhouette reaches the edge of the field
of view well before 5 ms mark, when the increase in pressure is not perceptible.
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SYNGAS DEMOSTRATION

Experiment matrix

The fuel chosen to demonstrate the capabilities of the new rig was a mixture of
hydrogen and carbon monoxide in equal volumetric proportion. The effect of pressure on
the laminar flame speed of this particular mixture has been previously studied by this
group [36]. Only one equivalence ratio was studied in the present work, ¢=0.5. This
mixture is the approximate air fuel composition at which syngas is burned in gas turbines
[40]. The fans operated at 2000, 4000, and 8000 rpm to induce a planar turbulence
fluctuation ¢’ of 1.4, 2.8, and 5.5 m/s, respectively. Three levels of pressure, 1, 5 and 10
bar were explored, but not all combinations of shaft speed and pressure were attainable. It
was not possible to run experiments at 8000 rpm for 5- and 10-bar experiments. Both the
motors and the electrical installation proved to be insufficient to overcome the power
demand imposed by the lip seal at high pressure. All experiments were held at room

temperature. Leaf blower impellers placed near the wall stirred the gases.

The laminar flame speed, flame thickness and turbulent Reynolds number Re; for
the test matrix are in Table 12. The integral length scale of the turbulence, L., is typically
derived from spatial correlations computed from instantaneous snapshots of the flow field.
Particle Image Velocimetry (PIV) is the preferred tool for such analysis. Unfortunately,
PIV was not available for this study and L, was assumed to be equal to the length of the

leading edge of the impeller, i.e. 20 mm. The lack of information about the spatial

coherence also prevented the spectral analysis of wavelengths. The spectral distribution
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could have been used to estimate the energy dissipation rate. A crude approximation to
the energy dissipation rate can be obtained from the ratio of power taken from the electrical
grid and the mass trapped in the bomb. The average energy dissipation rate must be less

than such quotient since the motor and drive train power losses are unaccounted.

Table 12 Laminar flame properties and turbulent Re of test mixture at ® = 0.5,
L, =20 mm, T =300 K.

SL,u §V 5{1 ReT _ C’LT/
14
m/s pm pm 1.4 m/s 2.8 m/s 5.5 m/s
1 bar 0.269 649 107 1621 3242 6369
5 bar 0.130 195 45 8116 16,231
10 bar 0.081 142 36 16,185 32,370

The laminar flame thickness has multiple definitions. The thermal diffusivity thickness
0, , shown in Eq. (19), is derived from dimensional arguments as the ratio of the thermal

diffusivity of the fresh reactants and laminar flame speed. This definition is not the only
diffusive thickness, and some authors prefer to assess the flame thickness in terms of other
transport properties. In fact, it is not uncommon find all transport properties to be assumed
numerically equal in some derivations (i.e. & =D =wv ). This treatment is implicit in the
construction of Borghi diagrams, since curves of constant Reynolds number are shown up
as straight lines in the logarithmic space. The permute of momentum and thermal
diffusivity is defensible for air in a wide range of temperatures as the Prandtl number stays

somewhat close to unity (Pr=v/a ~0.7) and allows expression (20) for the Reynolds

number.
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0,=—"—=— (19)
PSS,
u'L,
Re, |Pr=1 - K (20)
Where
o, m thermal diffusivity flame thickness.

A, W/m?-K  thermal conductivity of reactants
p, kg/m®  density of reactants
Co Jkg-K heat capacity at constant pressure
a m?/s thermal diffusivity

Other definitions of the flame thickness are formulated from the temperature

profile across the flame front. Figure 47 can be used to illustrate the temperature gradient
thickness o, which is obtained by extending a tangent line from the point of maximum
slope to intersect the steady state temperature line of reactants and products. This
temperature gradient definition, expressed in Eq. (21), is usually 5 times larger than the

thermal diffusivity thickness (i.e. 6, ~50,) and is useful as a first approach to set the

grid size in numerical simulations [41]. The total flame thickness &,,, , which measures

otal ?
the distance needed by the combustion products to reach the final equilibrium temperature

starting from the fresh gases temperature, is also depicted in Figure 47.
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Figure 47 Mock temperature profile of a flame. The steepest rise and steady state
temperature of the products and reactants define the thermal gradient flame
thickness, &, . The total flame thickness, J,, , is much larger.

Where
Oy m
Ot~ M
T, K
T, K
X m

so=— T @1)

ek

dx
thermal gradiente flame thickness.
total flame thickness
temperature of reactants.
equilibrium temperature of combustion products.
coordinate along flame propagation

All conditions tested in this work fall in the thin reaction zone as when represented

in a Borghi diagram like Figure 48.
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Figure 48 Borghi diagram with test conditions attained in this work

Results and discussion
A Photron high-speed camera, Fastcam SAL1.1 was used to acquire schlieren
images at 25,000 frames per second. Figure 49 provides one example of turbulent flame
picture. The still images were post-processed with a Matlab script that finds the edge of
the window and flame. The area occupied flame silhouette is tallied, and the radius of a
circle with the same area is calculated for every frame. With this information, it is possible

to plot the equivalent flame radius over time. The radius development of four repetitions
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of one test condition is displayed in Figure 50. In all repetitions shown in Figure 50,
acceleration is clearly noticeable as the flame grows. The stochastic nature of this
phenomenon is manifested the spread of repetitions. This behavior is in line with the

observations of other research groups.

Figure 49 Schlieren image of a syngas flame stirred at 2000 rpm. The initial pressure
was 5 bar. Approximately 0.6 ms have elapsed since ignition.
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Figure 50 Radius history of four test repetitions at 2000 rpm and 1 bar.

The effect of the fan speed on flame acceleration is larger than the scatter exhibited
by the runs. Three distinct groups of curves can be observed in Figure 51. The faster the
shaft speed the quicker the radius grows. Experiments at 2000 rpm presented more scatter
than those conducted at 4000 and 8000 rpm.

Figure 52 presents the results for all 4000-rpm runs. The effect of pressure is not
evident in the flame radius growth rate, at least when the fans spin at 4000 rpm. All tests
at this shaft speed collapse over the same region, regardless of the initial pressure. A

master plot of flame radius for all runs is provided in Figure 53.
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Flame radius, cm

16

Figure 52 Pressure effect on flame radius development. All runs at 4000 rpm.
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Figure 53 Flame radius as a function of time. All runs are included here.

Turbulent displacement velocity of the burned gases is obtained by numerical
differentiation of the radius-versus-time curves. This procedure yields noisy derivatives,
so the radii history was smoothed with a Savitsky-Golay method (2" order polynomial,
10 points per window). To further reduce the data, the repetitions were averaged.

The results at 1 bar for all shaft speeds are condensed in Figure 54. The promoting
effect of shaft speed on the turbulent displacement speed of the burned is confirmed. The
effect of pressure is not as straightforward. Figure 55 collects results for 1, 5, and 10 bar.
No conclusion can be drawn from the experiments done at 4000 rpm for the different
pressure levels, as previously observed in radius growth plots. At 2000 rpm, a difference
between the pressure treatments can be identified, but it does not line up with the
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expectation of laminar flame speed scaling. In Figure 55, the turbulent displacement speed
average for 1-bar tests is the highest, followed by the results at 10 bar, which are in turn
trailed by the 5-bar runs. This order does not correspond to their respective laminar flame
speed.

It has to be recognized that the amount of repetitions per treatment in this test
program is low compared to other authors. Goulier and coworkers tested 10 times per
condition [42], to cite an example. The inherent variability of the spherically expanding
flames in turbulent environment demands abundance of measurements to produce

statistically meaningful conclusions.

20 T T T T T
18 - R
16 R
14 J
. L
€ 12 E
4 10 i
%) L
8 J
6 J
4 —— 8000 rpm
2 I —— 4000 rpm ]
A —— 2000 rpm
O " 1 " 1 " 1 " 1 " 1 "
0 1 2 3 4 5 6

Flame radius, cm

Figure 54 Flame speed to the burned gases at 1 bar.
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Figure 55 Displacement velocity of burned gases stirred at 2000 and 4000 rpm for all
pressure levels.

68



CONCLUSIONS

The need of devices capable of measuring of fundamentals properties of turbulent
combustion at high temperature and high pressure was identified. To the author’s best
knowledge, prior to this contribution, there was only one fan-stirred flame bomb in the
world capable of creating a turbulence fluctuation intensity higher than 5 m/s that also has
access to elevated temperature and pressure.

Rough guidelines for the selection of impellers were formulated. In general, large-
diameter impellers are better stirrers in terms of the turbulence fluctuation produced. It
was found that the impeller design has a big impact on the power demanded to drive it. It
was also learned that it was possible to affect some properties of the flow by changing the
location of the impeller along the shaft. This last finding permitted to achieve near-
isotropic turbulence (i.e. u’/w' ~1.0) when the impeller was installed in close clearance
with the vessel wall. However, the ratio of turbulence fluctuation to average speed was
deteriorated and increased from 0.2 to 0.33.

The details of key features of the new fan-stirred flame bomb were exposed. In
terms of optical access, the bomb developed in this work is superior to the previous
generations built at the Turbomachinery Laboratory of Texas A&M University. The new
apparatus has 4 windows with a clear aperture of 5 inches arranged in two perpendicular
lines of sight. The windows will enable combustion diagnostics and flow measurement
techniques that were not possible past iterations.

The temperature operation ceiling is set by the elastomeric materials chosen for

the seals. In the as-built condition, 200°C should be within reach. Safety factors are in
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place to test combustible mixtures at 10-bar initial pressure. The highest turbulence
fluctuation rms used during the demonstration experiments was 5.5 m/s. These are not the
most demanding specifications achieved worldwide, but they are not trivial either.
Furthermore, preparations were made to modify the vessel and extended the experiment
domain.

The experiment setup as a whole was able to reproduce laminar flame speed
benchmarks and demonstrated excellent repeatability. The vessel also showed that the
entire field of view is usable without concerns of confinement. For the first time, the
presence of NOx was noticed and diagnosed in the flame bombs built at the
Turbomachinery Laboratory.

The new experimental apparatus demonstrated competence in a series of syngas
turbulent flame speed experiments. The full range of pressure domain was exacted without
issues, even at 8000 rpm. General trends of the effect of turbulence were in line with
expectation, but not enough information was obtained to gain insight on the role of

pressure.
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RECOMMENDATIONS FOR FUTURE WORK
The shortcomings of the present dissertation and the recommendations for future
work are listed below.

1. The turbulence characterization is not complete without measuring the length scale
and the spectrum distribution of energy. This information will enable more
sophisticated analysis and understanding. Systematic PIV measurements are
recommended.

2. The shaft and rotary seals were designed for 10000 rpm, however it was not possible
to attain the maximum speed at all pressure conditions. The load on the motor increases
with pressure due to the friction that the seal exerts on the shafts. A revised electrical
installation and more powerful motors are needed to spin the stirring assembly at
elevated pressures.

3. The limitations in the electrical installation and motor choice was also evident during
the characterization of the impeller prototypes. Gaps were left in the characterization
of impellers when the power required to drive them exceeded the power available in
motor and/or the laboratory electrical system. Future researchers may want to revisit
the characterization of the impellers as some of them have potential to produce
turbulent flows even more intense than those used in the present work.

4. The vessel was built with a large breech on each end cap. One possible adaptation of
this feature is to convert the closed-volume bomb into a vented deflagration device.
The venting of deflagrations is a worthy research topic on its own, but it could also be

exploited to access higher pressures in spherically expanding flame experiments.
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5. The heating capability of the device was not fully developed and will need to be
revisited by future researchers to unlock experimental conditions at elevated
temperature.

6. Applying advanced combustion diagnostics are perhaps the greatest task left to my
successors. | intentionally designed the bomb with two optical axes to enable laser
diagnostics and PIV flow measurements. | also left ports in excess for a purpose that |

cannot foresee, but | hope that they will be useful in the future.
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DC motor Performance chart at 90 VVdc
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All values are nominal at 25°C. Peak torque and peak current are theoretical values. Curves are shown for reference only. Visit www.pittman-motors.com.
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List of stirring assembly part numbers

Component

Model/part number

Manufacturer

Shaft

Bearing housing
Housing cover
Motor flange
Impeller adapter
Impeller

Guide bearing
Thrust bearing
Lip seal

V-ring

Lock nut
O-rings
Shaft-hub connector
Shaft coupling
Standoff bolts
Bearing spacers

TFSB-05 REV4.1

TFSB-06 REV3.0

TFSB-09 REV3.0

TFSB-10 REV3.2

TFSB-16 REV2.0

Metal Impeller Asm 127-7092
6203-2Z

3203 A-2ZTN9/C3
0102FFC18700625260SVM
400130

NSH-03

224, 222 (all viton)
Trantorque Mini 5/8 6410063
BC26-8-8-A

Standoff bolt 91075A033
CLBU30-40-12.7

Rave Gears and Machining
Rave Gears and Machining
TAMU Physics Machine Shop
TAMU Physics Machine Shop
Mattias Turner

Toro

SKF

SKF

Parker

SKF

Whittet-Higgins

Parker

Fenner Drives

Ruland

McMaster-Carr

Misumi
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Seamless rings heat treatment

J ’L { ‘ Ferrous & Non-Ferrous Metals Phone: 973.-276-5000
ZMH M@ Ifa s 8 Aluminum = Stainless Steel = Nickel Alloys

Fax: 973-276-5050
(E Carbon Steel = Alloy Steel = Tool Steel Toll-Free: 800-600-9290
(& Titanium « Magnesium = Moly = Tungsten E-Mail: salesiisteelforge.com
Trademarked Metals www.steelforge.com
75 Lane Road

Fairfield, New Jersey 07004

All Metals & Forge Group, LLC, maintains our files for a minimum of five years.

These test reports apply to our sales order: 63480-8

Customer: _Texas A&M University Customer Purchase Order: AM28-16-P009018
Date: May 12,2017 Heat or Lot Number: 1411B056

Material: Stainless Steel / A182 F6A Heat Treat Report: Quench & Temper
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The Specifications and additional information set forth in this certificate are accurate with respect 1o the materials described herein as of the date set forth above, Any subsequent therma-mechanical or similar
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ZZWH M,& tl'a/’s Ferrous & Non-Ferrous Metals Phone: 973-276-5000

‘Aluminum = Stainless Steel = Nickel Alloys Fax: 973-276-5050

F 0 r ; 8 (E Carbon Steel » Alloy Steel = Tool Steel Toll-Free: 800-600-9290
I y' 0 / Titanium = Magnesium = Moly = Tungsten E-Mail: sales@steelforge.com
Trademarked Metals www.steelforge.com

75 Lane Road
Fairfield, New Jersey 07004

All Metals & Forge Group, LLC, maintains our files for a minimum of five years.

These test reports apply to our sales order: 63480-8

Customer: Texas A&M University Customer Purchase Order: AM28-16-P009018
Date: May 12,2017 Heat or Lot Number: 1411B056

Material: Stainless Steel / A182 F6A Heat Treat Chart: Quench & Temper

Size: Item #1;21" od x 14" id x 18" long — (1 PC) / Item #2; 21" od x 8" id x Signature: _ - ANiGr
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Certificate of chemical analysis and mechanical properties

J’v
L J Ferrous & Non-Femous Metds Phane: §73-276-5000
: 0 Aurminum « Stanless Stoal = Nickel Aoys Fax: 973-276-5050
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T Metals www.steelforge.com
75 Lane Road
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Addvess  Department of Mechanizal Engineereg
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CERTIFICATE OF CHEMICAL ANALYSS AND PHYSCAL PROPERTIES
MMy DESCRIPTION B SPECHICATION QUANTITY MEAT/LOT NO.
3 Steel ) 4132 FGA
CLASS 4. ASTM A182 FORGED. C&T TO 110 KSI MIN YELD, SEAMLESE, ROUGH MACHNED
1 WITH A 250 RMS FINISH. UT TEST PER ASTA A385, ROUGH MACHINED SI2E = 21.250° 00 K 1c
V3750710 X 102507 LONG, 217 0d x 1470 x 15" lorg, Pt Kunber. 52512
Foeging - Smis Rokes Rings, Stadwes Stoel | A182 Fea
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12118056
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REMARKS

ALLTEST COUPONS USED ON THIS PO WILL BE RETAINED FOR A MAXIMUM PERIOD OF I YEAR FROM DATE OF DELIVERY.

VISUAL AND DIMENSIONAL INSSECTION: OK
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Window failure during hydrostatic test




Impeller of the cylindrical bomb at University of Leeds

182.51

Sketch of 2D projection of impeller constructed following written description and

available images [30, 31].
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Quiver plots: plug impeller at 2000 rpm
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Quiver plots: plug impeller at 4000 rpm
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Quiver plots: plug impeller at 6000 rpm
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Quiver plots: leaf blower impeller at shaft tip, 2000 rpm
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Quiver plots: leaf blower impeller at shaft tip, 4000 rpm
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Quiver plots: leaf blower impeller at shaft tip, 6000 rpm
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Quiver plots: leaf blower impeller at shaft tip, 8000 rpm
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Quiver plots: leaf blower impeller close to wall, 8000 rpm
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Autocorrelation code

The Fortran code below is written for parallel computation. It reads a comma-
separated file that contains the instantaneous velocity time series, U(x,t) and W(X,t).
Each row in the input data is expected to be in the following order: G(x,t,), W(x,t), t;.
The program computes the local average velocity (U(x) and W (X)), the turbulence
fluctuation (u’(x,t) and w'(x,t)), and then proceeds with the algorithm of autocorrelation.
The program control parameters, namely the total time shift or delay to carry the
autocorrelation, the number bins in which such delay will be segmented and the name of
the file containing the input data is kept in separate text file called “settings.txt”. This
allows a minimal interface to operate the program without the need of compiling every
time. The program outputs the correlation function in a file that will be named identical to
the raw data input file but with extension “.out”

LDV measurements are acquired at random time stamps. This makes very unlikely
to have measurements evenly spaced in time. One way to circumvent this peculiarity is to
use time intervals to compute the autocorrelations, as opposed to exact time differences.

This is also known as the slotted correlation method and has been described in [43].

program timescalesource
implicit none
include 'mpif.h'

integer :: myrank, peers, mpierr, errcode = 0, stat(MPI_STATUS SIZE)! MPI stuff
integer :: i = 0, k = 0, blanks = 0, starter, closer ! counters

integer :: bins, recs=0, ioerr = 0, reset(l) = 0, last_jump, msg_int (3)

integer :: turn = 0, no_jump(l) = 0, last _valid

character (len=50) :: buffer

character (len=:), allocatable :: filename

real :: max_shift, msg real(2), ave(2), dt, tic =0

real, allocatable :: raw(:,:), t(:), u(:,:), scratch(:,:), R(:,:), auto(:,:)
real, allocatable :: shift(:)

integer, allocatable :: counter(:)

! MPI initialization

call MPI_INIT (mpierr) ! Start up
call MPI_COMM SIZE (MPI_COMM WORLD, peers, mpierr) ! How many peers I have?
call MPI_COMM_RANK (MPI_COMM WORLD, myrank, mpierr) ! Who am I?
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! Rank 0 - Preliminary stuff

if (myrank==0)

tic =

then
MPI Wtime ()

! Read correlation settings

open (unit=777

read(777,*), max_shift !

read (777,

read (777,

close (unit=77
filename =

! Open data file
open (unit=888

! Data sanitization:

’

*

*

7

tri

’

)
)
)
)
m

file="settings.txt")
[s] Maximum time shift

, bins ! Integer - Total number of time slots

buffer

(buffer)

file=filename)

finding blank lines and amount of records

find blanks_ loop: do

read (888, *,iostat = ioerr) buffer

if (iocerr /= 0) exit find _blanks_loop ! end of file reached
if ( len trim(buffer) == 0) blanks = blanks + 1

recs = recs + 1

end do find blanks loop
! this has the gross total number of lines in file

rewind (888) ;
recs = recs
dt =

allocate (

!Reading data loop

raw(recs, 3),

iocerr = 0
- blanks

'rewinding file and clearing end-of-file flag

max_shift / bins

t(recs) )

(undetermined)

reading data loop: do

i =
if

if

i+1

(1 > recs)
read (888, *,iostat =
(icerr /= 0)

exit reading data loop
iocerr) raw(i,1l), raw(i,2), raw(i,3)
exit reading data loop !end of file found

end do reading data_ loop

close (unit=888)

last_valid =
t = raw(:,3)
t =t - t(l)
reset =

!
!

minloc

Time stamp reset detection
recs !

this stays in case no time reset found
temporarly holds time stamp

makes first entry the starting point (t = 0[s]

(t, MASK = t < 0) ! looks for negative time stamps

if (reset (1) /= 0 ) last_valid =

Sets let last record to be used in
no_jump = minloc (t, MASK =
last _jump = no_jump(l)-1

Information package preparation
allocate( scratch(last valid,3) )
ave =
scratch(:,1) =
scratch(:,2) =
scratch(:,3) =
deallocate(t) !

raw(l:last _valid, 1)
raw(l:last _valid,2)
t(l:last_valid)

if time stamp reset found,

Printing analysis setup

print¥*,

print¥*,

print*, 'Analyzing file: ', filename

print*, 'Total lines in file: ', recs, ' blank lines ', blanks

print*,

print*,

print*, 'Autocorrelation settings:'

print*, ' - Total number of time slots: ', bins

print*, ' - Maximum shift in analysis (longest lag): ', max shift, ' [sec]'
print*, ' - First time stamp: ', raw(l,3), ' [sec]’

print*, ' - Last valid time stamp: ', raw(last_valid, 3), ' [sec]"

print*, ' - Number of records in file: ', recs

print*, ' - Number of valid records: ', last_valid

print*, ' - Average of column 1: ', ave(l

print*, ' - Average of column 2: ', ave(2)

if (reset(l) /= 0 ) print*, ' - Number of points after time stamp reset: '

[sec]!

"unshifted"
t > t(last_valid)

reset (1)-1

series
- max_shift

this vector needs to be redefined
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! Checking setup
if (raw(last_valid,3) < max_shift) then ! You cannot shift beyond the last record time
print*, 'It is not possible to construct the autocorrelation'
print*, 'The maximum time shift has to be shorter'

print*, 'Last valid time stamp ', raw(last valid,3), ' [sec]'

print*, 'Requested maximum time shift of autocorrelation ', max_shift, ' [sec]'
errcode = 1

call MPI_Abort (MPI_COMM WORLD, errcode, mpierr) ! Game over!

else if (bins<peers) then
print*, 'The number of bins has to be greater than the number of processes'
print*, 'The maximum time shift has to be shorter'

print*, ' - Number of process: ', peers

print*, ' - Number of bins: ', bins

errcode = 2

call MPI_Abort (MPI_COMM WORLD, errcode, mpierr) ! Game over!
end if

! Broadcast basic problem setup variable to other processes
msg_int (1) = bins; msg int(2) = last jump; msg int(3) = last valid
msg_real (1) = max shift; msg real(2) = dt
call MPI Bcast(msg_int,3,MPI INT,0,MPI COMM WORLD,mpierr)
call MPI Bcast (msg_real,2,MPI_REAL,0,MPI COMM WORLD,mpierr)
call MPI_Bcast(scratch(l,1),size(scratch), MPI_REAL,0,MPI_COMM WORLD,mpierr)

! Everyone else receives data
else
call MPI Bcast(msg_int,3,MPI INT,0,MPI COMM WORLD,mpierr)
call MPI Bcast (msg_real,2,MPI_REAL,0,MPI COMM WORLD,mpierr)
bins = msg_int(l); last jump = msg_int(2); last valid = msg int(3)
max_shift = msg_real(l); dt = msg_real(2)
allocate (scratch(last_valid,3))
call MPI_Bcast (scratch(l,1),size(scratch),MPI_REAL,0,MPI_COMM WORLD,mpierr)
end if
! End of preliminary stuff
! By this point, everyone has a copy of the time series.

allocate( t(last_valid), u(last_valid,2), R(bins,2), counter(last valid), shift (bins) )
u = scratch(:,1:2) ! Velocity
t = scratch(:,3) ! Time stamp
R = 0 ! Autocorrelation vector initializaded
shift = dt * [(i, i = 0, bins - 1 )] ! Time shift vector
! Autocorrelation calculation
! Sweep time shift bins

do k = 1, bins

! Time shift bins distributed in round robin among processes

if (turn == myrank) then
starter = 1
closer =1
counter = 0

! Points sweep loop:
points_loop: do i = 1, last_jump

! Scrolls point by point until finds the first in bracket (inclusive)
starter_loop: do

if ( t(starter) < t(i) + shift(k) ) then
starter = starter + 1
cycle starter_loop

else if (t(starter) <= t(i) + shift(k) + dt) then ! starter in interval found
exit starter loop

else
! no points in time shift interval for this point
! skip to next point
cycle points_loop

end if
end do starter_ loop
'if (myrank == 1)print*, 'starter found: ', starter, 'bin: ', k, 'shift: ', shift (k)

! Scrolls point by point until finds the last in bracket
! At this point it is known that there is at least one point in bracket
closer_loop: do
if (t(closer) < t(i) + shift(k) + dt ) then
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closer = closer + 1
cycle closer_ loop
else
closer = closer - 1
exit closer_loop
end if
end do closer_ loop

counter (i) = closer - starter + 1 !
R(k,:) = R(k,:) + u(i,:) * sum( u(starter:closer,:), 1

end do points_loop

R(k,:) = R(k,:) / sum( counter ) ! Gets the average product
end if
! Process round robin control
turn = turn + 1 ! Scrolls turn
if (turn/peers == 1) turn = 0 ! Reset turn control to start over

end do

! Up to this point, the autocorrelation elements are available, but scattered
turn = 0
do i = 1, bins

! Everybody sends their respective info
if (myrank == turn) then
call MPI SEND( R(i,1), 1, MPI REAL,
call MPI SEND( R(i,2), 1, MPI REAL,
end if

o

, i, MPT_COMM WORLD, mpierr )
, itbins, MPI_COMM WORLD, mpierr )

o

! Root process collects
if (myrank == 0) then
call MPI_RECV( R(i,1), 1, MPI_REAL, turn, i, MPI_COMM WORLD, stat, mpierr
call MPI_RECV( R(i,2), 1, MPI_REAL, turn, i+bins, MPI_COMM WORLD, stat, mpierr
end if

! Process round robin control

turn = turn + 1 ! Scrolls turn
if (turn/peers == 1) turn = 0 ! Reset turn control to start over
end do
! Output
if (myrank == 0) then
print¥*,

print*, 'Done. Saving to file...'

k = len(filename)

open (unit=333, file=filename(l:k-4)//'.out' )
lopen (unit=333, file="r.out" )

allocate (auto(bins, 2))

auto(:,1) = R(:,1)/R(1,1)
auto(:,2) = R(:,2)/R(1,2)
do i = 1, bins
write(333,*) i, shift(i), auto(i,:)
end do

close (unit=333)

print*, 'Saved.'

print*,

print*,

print*, 'Adios!'

print*,

print*,

print*, 'Total elapsed time: ', MPI Wtime() - tic, ' [sec]'
printx*,

end if

call MPI_FINALIZE (mpierr) ! Apaga y vamonos!
end program

97



Autocorrelations and integral time scale of selected points
The autocorrelation plots shown here have been smoothed with a Savitsky-Golay

method using a 2" order polynomial and 32 points per window. Coordinates in mm.
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Autocorrelation, dim

Leaf blower impeller close to wall, 8000 rpm, [0,0,0]
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