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ABSTRACT 

 

Unconventional resources have come to play an increasingly important role in both 

the US and world energy supply. The success of their development is due to the wide 

application of hydraulic fracturing techniques, which create complex fracture geometries 

with large effective areas. A reliable characterization of the fracture/horizontal well 

system and resulting reservoir depletion becomes a challenging task for both analytic and 

numerical approaches. In this dissertation, we tried to combine a novel coordinate system 

together with a series of semi-analytic approximations, to reveal the direct relationship 

between production data and the transient drainage volume, and predict recovery. 

We first studied how a pressure front propagates in an infinite domain under fixed 

rate production, which is crucial to welltest analysis and drainage volume calculation. To 

avoid the expenses of numerical simulation, we developed an alternative approach by 

directly solving the propagation equation for the pressure “front” which can be derived 

using asymptotic ray theory. It draws upon an analogy between a propagating pressure 

front and a propagating wave front, making it applicable to pressure transient analysis. 

Next, we showed the development and validation of new asymptotic 

approximations to handle both variable rate drawdown and boundary effects. We extended 

the utility of the semi-analytic solutions to more realistic cases, including large changes in 

reservoir properties, pressure transient analysis with wellbore storage, and rate transient 

analysis in bounded reservoirs. This technique enables us to describe pressure propagation 

from fractured wells into the surrounding formations and a better drainage volume 
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characterization, which is useful for both well spacing calculation and multi-stage fracture 

spacing optimization.  

Finally, we proposed a data-driven model-free approach for production data 

analysis. It provides a simple and intuitive understanding of the transient drainage volume 

and instantaneous recovery efficiency, irrespective of the complexity of the reservoir 

depletion geometry. The novel drainage volume diagnostic plot yields better physical 

resolution and which can identify more detailed characteristics of the underlying flow 

geometry. The results of the analysis have been used for the characterization of hydraulic 

fracture and reservoir properties, including the prediction of fracture surface area, matrix 

permeability, and estimated ultimate recovery. 
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1 CHAPTER I 

INTRODUCTION 

 

Unconventional resources have come to play an increasingly important role in both 

the US and world energy supply (Holditch, 2013). The success of their development is 

due to the wide application of hydraulic fracturing techniques, which create complex 

fracture geometries with large effective areas. A reliable characterization of the 

fracture/horizontal well system and resulting reservoir depletion becomes a challenging 

task for both analytic and numerical approaches. 

In this study we introduce an analytic solution technique for the diffusivity 

equation, which provides a direct relationship between production data and the reservoir 

drainage volume (King et al., 2016). The analytic formulation provides for the direct 

calculation and extension of many simple well test, rate transient and well performance 

concepts such as depth of investigation, welltest derivative, drainage volume, flow 

regimes and well productivity. As with other analytic approaches, these solutions allow 

superposition in space and in time, which provides for the solution for multiple wells, 

multiple flow rates, and bounded and composite reservoirs (Wang et al., 2017). We 

validate our approach against well-known solutions in pressure and rate transient analysis 

usually solved in Laplace space, as well as those from numerical reservoir simulation with 

commercial simulators. Our study demonstrates that the new approach yields results very 

close to those reference solutions and indicates how to extend these solutions to problems 

with heterogeneity and complex fractured well geometry. The treatment we present is 
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faster than numerical finite difference simulation and allows for the development of 

fundamental relationships between reservoir performance and reservoir and well 

characteristics. Based on the understanding of capability of the analytic pressure 

approximation, we further propose a novel data-driven approach for production analysis 

of unconventional reservoirs without the traditional rate/pressure transient analysis 

assumptions of specific flow regimes (Wang et al., 2018). The approach relies on a w(τ) 

function, which is a drainage volume geometry function, to characterize the flow geometry 

from the transient drainage volume. The approach has been used to rank refracturing 

candidates (Yang et al., 2016) and to obtain optimal well spacing (Huang et al., 2017). In 

this study, we generalize the previous studies (Yang et al., 2015; King et al., 2016; Xue et 

al., 2016; Wang et al., 2017) to improve the amount of quantitative reservoir information 

obtained during the production analysis.  

 

1.1 Introduction 

Understanding how a pressure front propagates in reservoir formations is very 

important to welltest analysis and reservoir drainage volume estimation. Due to the large 

computational time and expenses of numerical simulation, an alternative approach has 

been developed by directly solving the propagation equation for the pressure “front” 

defined as the maximum pressure response for an impulse source. Such a propagation 

equation can be derived using asymptotic ray theory which has been used extensively in 

electromagnetic and seismic wave propagation (Virieux et al., 1994). The asymptotic 
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method draws upon an analogy between the propagating pressure front and a propagating 

wave, making it applicable to pressure transient analysis in the petroleum industry. 

The pressure front equation is in the form of the Eikonal equation, which is a high 

frequency asymptotic solution of the diffusivity equation in heterogeneous reservoirs and 

whose properties are well developed in the literature. Most importantly, the Eikonal 

equation can be solved very efficiently by a class of numerical solutions called the Fast 

Marching Methods (FMM) (Sethian, 1999) for a “diffusive time of flight” (DTOF, 

denoted as τ) that governs the propagation of the “pressure front” in porous media (Vasco 

et al., 2000; Kulkarni et al., 2001; Datta-Gupta and King, 2007). The DTOF can be used 

as a spatial coordinate to reduce the 3-D diffusivity equation into an equivalent 1-D form, 

leading to a comprehensive simulator for rapid performance prediction in reservoirs. 

Recently, papers on this specific subject have been published, providing a rapid 

approximation of drainage volume, pressure depletion and well performance without 

actually running conventional numerical simulations (Datta-Gupta et al., 2011; Zhang et 

al., 2013; Zhang et al., 2014; Nunna et al., 2015; Pasumarti et al., 2015; Xie et al., 2015b, 

a; Yang et al., 2015; Fujita et al., 2016; King et al., 2016; Li and King, 2016; Li, 2016; 

Yang et al., 2016; Iino et al., 2017; Wang et al., 2017; Wang et al., 2018). A better 

understanding of the drainage volume is of great help in well spacing and multi-stage 

fracture spacing optimization. Additional potential applications includes fixed or slowly 

variable rate drawdown in bounded reservoirs, drainage volume description, production 

data integration, etc. 
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The advantage of the approach is its capability to solve fluid flow in both simple 

and complicated reservoir geometries and with heterogeneity, in contrast to the simple 

situations that conventional methods are able to handle. Despite many successful 

applications, however, the accuracy of the approach still remains not fully tested or 

proven. This study is the first one that tests the accuracy and self-consistency of the 

approach. This research has pointed out limitations of the previous approach and has 

provided improved versions of the asymptotic solution, which involves both reflection and 

transmission processes when pressure fronts cross the interface between different porous 

media. Results calculated from the new equation were compared to those obtained via the 

conventional exact solutions in the Laplace domain as well as those from a commercial 

reservoir simulator, including a discussion of impact of inner boundary conditions, infinite 

acting radial flow with wellbore storage and skin factor, radial flow in bounded reservoir, 

radial flow in composite reservoir, etc. This study demonstrates that the new approach 

yields results very close to the solutions calculated via numerical inversion of Laplace 

transform or numerical reservoir simulations, indicating a high applicability of the new 

asymptotic solutions during pressure transient analysis. Therefore, we further propose a 

novel data-driven approach for production analysis of unconventional reservoirs to better 

characterize the underlying flow geometry, e.g., complex near fracture flow, linear flow, 

fracture interference, etc. The results of the analysis have been used for the 

characterization of hydraulic fracture and reservoir properties, including the prediction of 

matrix permeability, stimulated reservoir volume (SRV), and finally extended to the 

calculation of the estimated ultimate recovery (EUR). 
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1.2 Asymptotic Pressure Approximation for Fixed Rate Drawdown 

The propagation of pressure in a reservoir is fundamental to the understanding and 

prediction of reservoir performance. For reservoirs undergoing primary depletion, the 

governing equation is the diffusivity equation, which relates pressure drops and flow rates, 

both for the purpose of performance prediction and for the inversion of production data 

for reservoir and well characterization. Analytic solutions to the diffusivity equation 

under-lie the methodologies for both pressure transient analysis (PTA) and rate transient 

analysis (RTA) (Lee, 1982; Horne, 1995; Bourdet, 2002; Thambynayagam, 2011). 

Although these solutions are limited to simplified descriptions of reservoir properties and 

well configurations, they provide significant insight into reservoir and well characteristics. 

In contrast, numerical simulations are extremely flexible and are in principle able to 

integrate descriptions of the reservoir, wells, fluids and their interactions. Although 

extremely powerful, the many degrees of freedom within a simulator, and the 

corresponding non-uniqueness of a history match, often makes it difficult to gain the 

simple insights provided by the analytic approaches. These solutions are also potentially 

costly, especially for detailed simulation in 3-D, while an effective 1-D representation may 

be far more rapid to compute, whether using numerical or analytic techniques. 

Unconventional reservoirs provide us with new challenges in reservoir 

characterization, but also new opportunities for methods of analysis (Valkó and Lee, 2010; 

Ilk et al., 2011; Song and Ehlig-Economides, 2011; Cipolla and Wallace, 2014). These are 

reservoirs that are largely governed by primary depletion, but at sufficiently low 
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permeabilities that the clear distinctions between PTA and RTA are no longer applicable. 

The “short time” response of PTA, in which the reservoir is infinite acting, may now cover 

many years of production, while the “long time” response of RTA controlled by boundary 

dominated flow, may not have been achieved. In this chapter, a semi-analytic “asymptotic 

pressure approximation” is developed, which is an extension of the methodology of 

pressure transient analysis. It is sufficiently flexible to capture reservoir heterogeneity and 

complex fractured well configurations, while at the same time it provides overall 

characteristics as in PTA/RTA. As a numerical technique, this methodology has been 

applied to the investigation of unconventional reservoirs and the development of a 

comprehensive shale gas reservoir simulator (Datta-Gupta et al., 2011; Zhang et al., 2013; 

Zhang et al., 2014; Xie et al., 2015b, a; Fujita et al., 2016; Huang et al., 2017; Iino et al., 

2017). More recent work has applied the semi-analytic approach to the calculation of 

drainage volumes and instantaneous recovery ratios in unconventional reservoirs, to 

upscaling of reservoir flow properties, to pore scale carbonate reservoir characterization, 

and to the integration of well test data with geologic reservoir models (Nunna et al., 2015; 

Pasumarti et al., 2015; Yang et al., 2015; King et al., 2016; Li and King, 2016; Li, 2016; 

Xue et al., 2016; Wang et al., 2017; Wang et al., 2018). 

Despite these many successful applications, some questions are still not well 

resolved. In this chapter, I will try to provide answers to the most important two: What is 

the level of smoothly-varying heterogeneity required to retain accurate results? What are 

the integrability requirements of the analytic solutions and how reliable are they? I will 

focus on the examination of the key assumption that the pressure front propagation is 
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aligned with the τ contours as well as the validation of the proposed asymptotic pressure 

approximation. Therefore, the methodology of this chapter is divided into three sections. 

The first one is an introduction to the diffusive time of flight and its use as a spatial 

coordinate. By assuming that the pressure solution would always follow τ contours, the 3-

D diffusivity equation in space is converted to its 1-D form in the τ coordinate. In the 

second section, I will mainly discuss an exponential decay of the pressure time derivative 

along the τ coordinate and further develop the semi-analytic asymptotic pressure 

approximation, which contains a series of unknown An(t) functions to be determined by 

boundary conditions. The exponential trend is implied by the flux form of the diffusivity 

equation and describes the effect caused by the propagation of the early pressure front in 

a smoothly-varying formation heterogeneity. I will explore its validity through cases with 

permeability distributions at different variances and correlation lengths. The use of the   

coordinate as the basis of a formulation may be applied to either numerical or analytic 

calculations of pressure and rate. Numerous numerical applications can be found in the 

above references, but we will now emphasize the analytic calculations. There are two 

classes of calculations, fixed rate and variable rate drawdown. In this chapter, the 

asymptotic pressure approximation for a fixed rate drawdown is fully derived (King et al., 

2016). The third section is the comparison of the solution (pressure drop) accuracy 

between the spatial integral and the time integral approaches to the solution of the 

asymptotic pressure approximation. The asymptotic approximation will then be applied to 

a number of rate and pressure transient calculations to demonstrate and validate its utility 



 

8 

 

and characteristics. This will be followed by a discussion of the formulation and 

conclusions. 

 

1.3 Generalized Asymptotic Approximation for Variable Rate Drawdown and 

Bounded Reservoirs 

We have described a transformation based upon the Fast Marching Method (FMM) 

to describe the multi-dimensional diffusivity equation with heterogeneity as an equivalent 

1-D diffusivity equation. The analytic solutions have been developed for fixed rate 

drawdown in an infinite acting system, and are not sufficiently general to describe either 

variable rate drawdown or boundary effects, both of which are required to analyze more 

realistic production scenarios in actual reservoirs. There is still a need to continue 

developing and validating new asymptotic analytic approximations to handle these 

problems, which provide for a number of novel applications including rapid numerical 

simulation, reservoir and well characterization, sensitivity-based inversion using 

production data, and dynamic upscaling and downscaling. The novel semi-analytic 

asymptotic pressure approximation for the solution of an equivalent 1-D diffusivity 

equation is able to approximate the 3-D solution with heterogeneity. Earlier approaches 

have relied upon the numerical solution of the 1-D equation, and provide all the flexibility 

expected of a numerical approach (Zhang et al., 2013; Zhang et al., 2014; Xie et al., 2015b, 

a; Fujita et al., 2016). However, analytic solutions provide for the derivation of explicit 

relationships between the geometry of a propagating pressure “front” within a reservoir 

and pressure and rate measured at wells. In this chapter, I will further develop the proposed 
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asymptotic pressure approximation to address both the rate and boundary effects. I first 

extend the analytic treatment beyond simple fixed rate drawdown to variable rate 

drawdown during the infinite acting transient period and test the predictions against 

analytic and numerical synthetic cases. When boundary effects (interference) come into 

the picture, e.g., well interference, fracture interference, and pressure front arrival at 

boundary, those solutions become less accurate. Even for unconventional reservoirs, 

fracture interference will occur early in the life of a well. With a wider employment of 

infill drilling and closer well spacing in shale developments we also expect to see 

increased well interference effects. In order to resolve these influences during field 

production analysis, asymptotic approximations are further extended to handle 

interference with superposition in space and in time (Wang et al., 2017). 

In this chapter, I conduct a systemic validation of the semi-analytic solution 

technique and extend its utility to more realistic cases, including large changes in reservoir 

properties, pressure transient analysis with wellbore storage, and rate transient analysis in 

bounded reservoirs with fixed rate or fixed BHP production. This technique provides us 

with the ability to describe pressure propagation from fractured wells into the surrounding 

formations and a better drainage volume characterization, which is useful for both well 

spacing calculation and multi-stage fracture spacing optimization in unconventional 

reservoirs. Not only is it useful for the direct calculation of various welltest, rate transient 

and well performance concepts such as depth of investigation, welltest derivative, flow 

regimes and well productivity, but it is also helpful to predict pressure and flux spatial 

distributions at any time of interest. The study verifies that the new approach yields results 
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very close to those generated by commercial simulators, indicating its promising 

application to rapid field production data analysis. As with other analytic approaches, the 

derived asymptotic solutions satisfy superposition in space and time, which leaves room 

for further application to field cases with multiple wells and varying flow rates (Lee et al., 

2003). 

This chapter consists of two major sections of methodology, following a brief 

review of the asymptotic approximation for fixed-rate drawdown in an infinite domain as 

well as an introduction to the rate normalized pressure drop (RNP). In the variable rate 

drawdown section, superposition in time is utilized to develop a solution. Then, the 

asymptotic approximation is developed and tested with two special variable rate cases: 

fixed BHP drawdown and fixed rate drawdown with wellbore storage and a skin factor. 

Based on the asymptotic approximation and superposition theory, superposition time is 

defined in a general form for any flow geometry. This study demonstrates that 

superposition time reduces to material balance time when boundary dominated flow has 

been fully established within the reservoir or region of interest. The test results are 

discussed to develop conclusions on the application of superposition time and its 

approximation, material balance time, together with RNP in production analysis.  

In the boundary effects section, I first illustrate how to further derive the analytic 

solution for multi-well cases based on fixed rate drawdown solution of a single well with 

the help of superposition in space and in time. The steady state drainage volume of each 

well can also be estimated accordingly and the proposed solution is tested and compared 

to simulation results obtained from a commercial simulator. Then, the asymptotic solution 
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is extended to account for finite reservoir boundary effects. When a pressure front hits the 

boundary, it will be reflected and start moving towards the well. The reflection will be 

reflected again when it arrives at the well sandface and this reflection-transmission process 

goes on forever. Based on the Method of Images (Lee, 1982), we need to have an infinite 

number of exponential terms in the asymptotic solution to account for imaginary wells 

(reflections). However, I will show that in the current approach, only a minimal number 

of exponential terms is required to guarantee an accurate result. The asymptotic solution 

is generalized as well as the expression for the drainage volume. The new analytic solution 

is verified using the Fetkovich Type Curves (Fetkovich, 1980), which are widely used in 

decline curve analysis. Our treatment is faster than numerical finite difference simulation 

and allows for the development of fundamental relationships between reservoir 

performance and reservoir & well characteristics. Lastly, the generalized asymptotic 

approximation will be used for EUR prediction and the results will be validated against 

mechanistic simulations, e.g., bounded radial/linear flow as well as multiple transverse 

fracture wells (MTFW) cases. With the mechanistic models, I illustrate how the key 

features would show on diagnostic plots, e.g., linear flow, onset of fracture interference, 

partial completion effects, complex non-linear flow, and the development of the SRV. 

To sum up, this chapter is made up of two sections of methodology as described 

above, which address the most important two scenarios during production: rate and 

boundary effects. Tests on the newly developed asymptotic approximations are also 

performed to validate the derivations. At the conclusion of this chapter, they are ready for 

field production analysis. 
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1.4 Unconventional Reservoir Analysis 

Unconventional tight/shale reservoirs have come to play an increasingly important 

role in energy supply and conducting reliable analysis on them is a challenging task. Due 

to the ultra low permeability associated with these reservoirs, their exploitation relies on 

horizontal wells together with multistage hydraulic fractures to achieve an economical 

production rate. The complex hydraulic plus natural facture geometry, however, may 

result in a complex depletion pattern within the reservoir, and thus make the production 

analysis a challenging task for existing methodologies. Unlike conventional reservoirs, 

unconventional reservoirs usually have a very long transient period and a relative short or 

even no production under boundary dominated flow before well abandonment. We will 

develop a way to conduct both fast and reliable pressure and rate transient analysis on 

unconventional reservoirs. The proposed techniques should be applicable to the following 

two scenarios: The first one is for low permeability & long interference time, which will 

be quite enough for single well analysis; the other one is for boundary dominated flow, 

which is crucial to handle multi-well interference. Beyond that, a new production analysis 

workflow is necessary and it should be robust enough to remove or at least minimize the 

influence of outliers in noisy production datasets. This kind of powerful workflow is 

unavailable or incomplete in the current literature. 

With the asymptotic solutions derived in previous chapters, we further introduce a 

novel data-driven workflow for production analysis of unconventional reservoirs without 

the traditional rate transient and pressure transient (RTA/PTA) assumptions of specific 
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flow regimes. The approach uses a transient generalization of the Matthews-Brons-

Hazebroek method (Matthews et al., 1954) for the PSS drainage volume which relies on 

a w(τ) function to characterize the flow geometry from the transient drainage volume 

(Yang et al., 2015). Together with a calculated instantaneous recovery ratio, it has been 

successfully used to rank refracturing candidates (Yang et al., 2016) and to obtain optimal 

fracture spacing (Huang et al., 2017). Given well pressure and flow rate data, the transient 

well drainage volume with time can be calculated. The time evolution of the drainage 

volume can be inverted to derive the w(τ) function which then provides a high resolution 

diagnostic plot that can be used for quantitative analysis to obtain fracture surface area, 

matrix properties, stimulated reservoir volume (SRV), and additional reservoir and 

fracture characteristics that are not apparent in the usual rate and pressure transient 

analysis techniques.  

This chapter is organized as follows: I will first review the production analysis 

approaches for unconventional reservoirs in the general literature as well as the previous 

drainage volume calculation & inversion technique developed by our research group. 

Then, I will describe the improved production analysis for field data interpretation, which 

includes production data processing to obtain drainage volume vs. time calculation as well 

as a drainage volume geometry function inversion. The proposed methodology has been 

applied to field examples from the Montney shales successfully and the results are cross-

validated by the traditional PTA and buildup analysis. Various flow regimes can be 

observed from our novel diagnostic plot, e.g., linear flow, partial completion, as well as 

fracture interference (Wang et al., 2018). It also provides detailed characterization of 
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complex non-planar hydraulic fracture geometry, partial completion effects, the 

development and growth of the SRV, leading to the estimation EUR with given economic 

production rate. 

In short, the major advantage of the proposed approach is the data-driven model-

free analysis of production data without the presumption of specific flow regimes. It 

provides a simple and intuitive understanding of the transient drainage volume and EUR, 

irrespective of the complexity of the geometry of the reservoir depletion. 
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2 CHAPTER II 

ASYMPTOTIC PRESSURE APPROXIMATION FOR FIXED RATE 

DRAWDOWN 

 

2.1 Introduction 

The propagation of pressure in a reservoir is fundamental to the understanding and 

prediction of reservoir performance. For reservoirs under-going primary depletion, the 

governing equation is the diffusivity equation, which relates pressure drops and flow rates, 

both for the purpose of performance prediction and for the inversion of production data 

for reservoir and well characterization. Analytic solutions to the diffusivity equation 

under-lie the methodologies for both pressure transient analysis (PTA) and rate transient 

analysis (RTA) (Lee, 1982; Horne, 1995; Bourdet, 2002; Thambynayagam, 2011; Houze 

et al., 2015). Although these solutions are limited to simplified descriptions of reservoir 

properties and well configurations, they provide significant insight into reservoir and well 

characteristics. In contrast, numerical solutions are extremely flexible and are in principle 

able to integrate descriptions of the reservoir, wells, fluids and their interactions. Although 

extremely powerful, the many degrees of freedom within a simulator, and the 

                                                 

Material adapted with permission from “Asymptotic Solutions of the Diffusivity Equation and Their 

Applications” by King et al., 2016: Paper SPE-180149-MS presented at SPE Europec featured at the 78th 

EAGE Conference and Exhibition held in Vienna, Austria, 30 May–2 June 2016. Copyright 2016, Society 

of Petroleum Engineers. Further reproduction prohibited without permission. 
Material adapted with permission from “Quantitative Production Analysis and EUR Prediction From 

Unconventional Reservoirs Using a Data-Driven Drainage Volume Formulation” by Wang et al., 2018: 

Paper EAGE-46177 to be presented at EAGE 16th European Conference on the Mathematics of Oil 

Recovery held in Barcelona, Spain, 3-6 September 2018. Copyright 2018, Wang et al. Further reproduction 

prohibited without permission. 
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corresponding non-uniqueness of a history match, often makes it difficult to gain the 

simple insights provided by the analytic approaches. These solutions are also potentially 

costly, especially for detailed simulation in 3-D, while an effective 1-D representation may 

be far more rapid to compute, whether using numerical or analytic techniques. 

Unconventional reservoirs provide us with new challenges in reservoir 

characterization, but also new opportunities for methods of analysis (Valkó and Lee, 2010; 

Ilk et al., 2011; Song and Ehlig-Economides, 2011; Cipolla and Wallace, 2014). These are 

reservoirs that are largely governed by primary depletion, but at sufficiently low 

permeabilities that the clear distinctions between PTA and RTA are no longer applicable. 

The “short time” response of PTA, in which the reservoir is infinite acting, may now cover 

many years of production, while the “long time” response of RTA controlled by boundary 

dominated flow, may not have been achieved. In this chapter, I will review the 

development of a semi-analytic “asymptotic pressure approximation” which is an 

extension of the methodology of pressure transient analysis. It is sufficiently flexible to 

capture reservoir heterogeneity and complex fractured well configurations, while at the 

same time it provides overall characteristics as in PTA/RTA. As a numerical technique, 

this methodology has been applied to the investigation of unconventional reservoirs and 

the development of a comprehensive shale gas reservoir simulator (Datta-Gupta et al., 

2011; Xie et al., 2012a; Xie et al., 2012b; Zhang et al., 2013; Zhang et al., 2014; Fujita et 

al., 2016). More recent work has applied the semi-analytic approach to the calculation of 

drainage volumes and instantaneous recovery ratios in unconventional reservoirs, to 

upscaling of reservoir flow properties, to pore scale carbonate reservoir characterization, 
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and to the integration of well test data with geologic reservoir models (Nunna et al., 2015; 

Pasumarti et al., 2015; Yang et al., 2015; Li and King, 2016). 

This chapter will not focus on specific field applications. Instead I will apply the 

asymptotic pressure approximation to numerical or analytic problems for which solutions 

are available for validation. The focus will be on the development of the formulation and 

the validation of the approximate asymptotic pressure solutions of the diffusivity equation 

with fixed rate drawdown. 

This chapter is organized as follows. We begin with an introduction to the Eikonal 

equation, the diffusive time of flight, and its use as a spatial coordinate. This will be 

followed by a brief summary of the semi-analytic geometric solution to the diffusivity 

equation derived and applied in the previous literature for performance analysis of 

unconventional reservoirs with complex geometry as well as anisotropic formation 

properties (Xie et al., 2012a; Xie et al., 2012b; Zhang et al., 2013; Zhang et al., 2014). 

Next is the methodology which consists of three subsections. The first one is the new 1-D 

formulation of the diffusivity equation, which may be applied to either numerical or 

analytic calculations of pressure and rate. Numerous numerical applications have already 

been cited, above. The second section of methodology will describe and develop the semi-

analytic asymptotic pressure approximation. The asymptotic pressure approximation will 

then be applied to a number of rate and pressure transient calculations to demonstrate its 

utility and the nature of the asymptotic approximation. The third one will be a comparison 

of the accuracy between spatial integral and time integral on the asymptotic pressure 
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approximation. This will be followed by a validation of the formulation as well as a 

discussion on what we have learned through these tests. 

 

2.1.1 Eikonal Equation and the Diffusive Time of Flight 

The diffusive time of flight is determined from the solution of the Eikonal 

equation, which arises from the asymptotic (high frequency) limit of the diffusivity 

equation for the impulse pressure solution in a heterogeneous reservoir. This equation 

describes the propagation of a “pressure front” defined as the maximum of the pressure 

response for an impulse source or sink. Such propagation equations can be derived using 

asymptotic ray theory which has been used extensively in electromagnetic and seismic 

wave propagation (Virieux et al., 1994), and also for pressure propagation in porous media 

(Vasco et al., 2000; Kulkarni et al., 2001; Datta-Gupta and King, 2007). The asymptotic 

method draws upon an analogy between the propagating pressure front and a propagating 

wave, providing us with the ability to represent pressure propagation from wells, through 

potentially complex hydraulic fractures, and into heterogeneous reservoir formations. 

The diffusivity equation describes pressure transients within a heterogeneous 

porous medium. 

 
 

    ,
, 0t

p x t
x c k x p x t

t
 


  


 (2.1) 

Source and sink terms are not explicitly stated, but will appear as boundary conditions to 

the solution of the equation. The porosity and permeability may be heterogeneous, and we 

utilize the notation of a permeability tensor to represent directional permeability 
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anisotropy. We may apply a Fourier transform to Eq. (2.1) to obtain the diffusivity 

equation in the frequency domain: 

          , , 0tx c i p x k x p x         (2.2) 

The intent is to find a pressure solution that mimics the one found in wave propagation, 

e.g., a solution in terms of an asymptotic series. For transient pressure response, the 

concepts from diffusive electromagnetic imaging can be utilized to describe frequency 

domain solutions (Virieux et al., 1994). 

     

 0

,
i x k

k
k

A x
p x e

i







 






  (2.3) 

The leading terms of the high frequency limit    represent the most rapidly 

varying portion of the solution and corresponds to the propagation of a sharp front. The 

quantity  x  in the leading exponential term of the asymptotic solution is the diffusive 

time of flight (DTOF), which controls the phase of propagation of the pressure front. It 

has units of time . We will see once we develop the asymptotic pressure approximation 

that the quantity.  2 4 . provides a characteristic time of propagation of the pressure 

front. The quantities  kA x  control the amplitude of the pressure front. In practice we will 

not need to solve for these terms in the asymptotic expansion, but will instead close our 

equations with one or more constraints expressed in time. 
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We may substitute the asymptotic series into the diffusivity equation. In the high 

frequency limit, the leading order term is of order . It gives rise to the Eikonal equation 

for the diffusive time of flight. 

        tx k x x x c        (2.4) 

It is solved subject to the boundary condition of 0   at the wellbore. For instance, for 

radial flow in an isotropic homogeneous reservoir we have the solution: 

   t
w w

c
r r r r

k


      (2.5) 

The quantity  tk c   is recognized to be the hydraulic diffusivity. For 

heterogeneous media we solve the Eikonal equation using the Fast Marching Method 

(FMM) (Sethian, 1999), as described more fully in Zhang et al. (2013). Examples of the 

solution of the Eikonal equation using the FMM are shown in the next two figures. 

 

 
(a) (b) (c) 

Figure 2.1 Solutions to the Eikonal equation in a heterogeneous medium using the 

Fast Marching Method (a) τ2⁄4 in days (log scale) for a vertical well and (c) for a 

vertical well with an infinite conductivity fracture (b) log permeability field (Datta-

Gupta et al., 2011) 
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(a) (b) (c) (d) 

Figure 2.2 Solution to the Eikonal equation for a horizontal well with multistage 

hydraulic fractures in a homogeneous gas reservoir using the Fast Marching Method 

(a) Hydraulic fractures (τ ≈ 0) (b) τ2⁄4 ≤ 3 months (c) τ2⁄4 ≤ 6 months (d) τ2⁄4 ≤ 1 year 

(Datta-Gupta et al., 2011) 

 

Figure 2.1 shows the impact of heterogeneity and boundary conditions on the 

diffusive time of flight. In this figure the color scale of the data display has been 

thresholded to better display the DTOF contours. In Figure 2.1 (a), instead of obtaining a 

radial solution, as in a homogenous reservoir, Eq. (2.5), the contours of  now depend 

upon the spatial heterogeneity. The boundary condition of the calculation is 0   at the 

wellbore, wr r . Figure 2.1 (c) shows the solution for the DTOF for an infinite 

conductivity fracture. For infinite conductivity, 0
d

dr


  within the fracture and so the 

fracture is represented by the 0   contour. Again, the FMM shows the impact of spatial 

heterogeneity, but now from a fractured vertical well. 

Figure 2.2 shows the DTOF for a horizontal well with multiple stages of hydraulic 

fractures. Simple planar hydraulic fractures and uniform reservoir properties are used in 

this calculation. The 0   initial condition of the calculation is specified at the 

perforations of the wellbore. This case includes a large but finite fracture conductance 
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within the calculation. From Eq. (2.5),  in the fracture may be calculated analytically, 

while  in the reservoir is calculated by the FMM. 

A number of interesting features are apparent in this solution. In Figure 2.2 (b) and 

(c), the  contours close to the fractures are straight lines forming a diamond shape. Since 

we have a homogeneous solution, this solution may also be obtained analytically. With 

infinite conductivity fractures, the straight line segments of the diamond are parallel to the 

fracture. This shape is controlled by the early time propagation of the pressure front, i.e., 

locations where pressure drop caused by the early pressure front starts to be detected will 

form the specific shape. As time increases, the late time PSS pressure contours will 

approach an elliptical shape, consistent with the well-known contours of pressure around 

a fracture (Kucuk and Brigham, 1979). This is an example where the pressure front will 

lose the alignment with the  contours, and will be discussed in more detail in the section 

on validation. In Figure 2.2 (d) the  contours of each fracture begin to overlap at 1 year, 

indicating the potential onset of interference. Strong interference will occur where the 

pressure front from one fracture reaches the next, i.e., at twice this distance, with a factor 

of 4 increase in 2 . Since we have close to linear flow between fractures, the depth of 

investigation 
2

1
 

4 2

DOI

t

 
 

 
 indicates that we will have strong interference at twice the 

characteristic time, i.e., at 8 years. We will return to a more detailed discussion of 

interference and the impact of no flow boundaries in the next chapter. 
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A note on units. All equations are derived in fundamental units, although results 

may be presented either in a dimensionless form or in field units. If we had chosen to 

express the Eikonal equation in field units we would have: 

       3792 tx k x x x c        (2.6) 

Here permeability is in md, the units of  are hr  , and the diffusivity 
1

3792 t

k

c



  is 

in units of 2ft hr . The use of fundamental units simplifies the exposition. 

 

2.1.2 Geometric Pressure Approximation to the Diffusivity Equation 

Xie et al. (2012a) showed a simple way to find the analytic solution to the 

diffusivity equation. The first step is to expression the diffusivity equation, Eq. (3.1), in a 

mixed form as 

  t

p q
A r c

t r


 


 
 (2.7) 

where, the Darcy flux is, 

 kA r p
q

r





 (2.8) 

 A r  has different forms for linear, cylindrical, spherical flows, respectively.  

Following chain rule, one can derive 

 p

p p

Vq q q
A r

r V r V


  
 

   
 (2.9) 

Substituting Eq. (2.9) into Eq. (2.7) gives, 
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t

p

p q
c

t V

 


 
 or t

p

p q
c

t V

 
 

 
 (2.10) 

If we now neglect the Darcy flux beyond the drainage volume and assume that we 

have achieved pseudo steady state flow (PSS) within the entire drainage volume, then we 

can further obtain that 

 
w

t p

qp p

t t cV t

 
 

 
 (2.11) 

 ln

wf wf w

t p

d p d p q t
t

d t dt cV t

 
   (2.12) 

Eq. (2.11) was further used to determine pressure distribution and Eq. (2.12) was used for 

flow regime diagnostic, as shown in the literature (Xie et al., 2012a; Xie et al., 2012b; 

Zhang et al., 2013; Zhang et al., 2014).  

There are a number of issues and limitations with this approach. The first is that it 

gives the incorrect answer for the pressure transient except in 2D, even for homogeneous 

systems (Gupta, 2012). A major limitation is that the derivation is based on a fixed rate 

drawdown and infinite acting reservoirs. The authors did not describe or provide 

suggestions on how to extent the applications to variable rate drawdown or bounded 

reservoir problems. Thus, their analytic approach may not be applicable even for fixed 

BHP drawdown. In this study, we will resolve these issues and limitations. Chapter 2 

mainly focus on dealing with the first issue via a new approach as well as a new definition 

of drainage volume based on the entire domain. 
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2.2 Methodology: 1-D Diffusivity Equation and Properties 

The methodology section consists of three subsections. The first one is a review of 

the new 1-D formulation of the diffusivity equation, which may be applied to either 

numerical or analytic calculations of pressure and rate. The second section of the 

methodology will describe and develop the semi-analytic asymptotic pressure 

approximation. The asymptotic pressure approximation will then be applied to a number 

of rate and pressure transient calculations to demonstrate its utility and the nature of the 

1-D and asymptotic approximations. The third section will provide a comparison of the 

relative accuracy between the use of spatial integrals and time integration when 

developing solutions to the asymptotic pressure approximation. 

 

2.2.1 1-D Formulation of the Diffusivity Equation 

In this subsection, we transform the 3-D diffusivity equation for a heterogeneous 

porous medium into an equivalent diffusivity equation for flow along a 1-D streamtube of 

variable cross-sectional area. The formulation is based upon a transformation of the spatial 

variables into streamtube coordinates, with , the diffusive time of flight, as the spatial 

coordinate along the streamtube. The current development is an expansion of the 

derivation provided in the literature (Xie et al., 2012a; Xie et al., 2012b; Zhang et al., 

2013; Zhang et al., 2014). 
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2.2.1.1 Diffusivity Equation along a Streamtube 

We have noted a strong relationship between pressure contours and  contours. 

This is not surprising since the Eikonal equation must be satisfied at all orders of the 

asymptotic expansion, Eq. (2.3), which itself is obtained from the diffusivity equation. We 

may reduce the 3-D diffusivity equation, Eq. (3.1), to an equivalent 1-D form if we assume 

that ( , ) ( ( ), )p x t p x t , and then integrate the diffusivity equation over a streamtube 

volume from the well into the reservoir, up to a  contour, Figure 2.3.  

 

 
Figure 2.3 Streamtube geometry used to reduce the 3-D diffusivity equation to 1-D 

(reprinted with permission from Wang et al, 2018) 

 

The spatial integration gives us an equation for the average pressure in the volume. 

 
 

 
,

,t p w

p t
cV q q t

t


 


  


 (2.13) 
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Here  pV   is the streamtube pore volume up to the  contour. If we instead integrate the 

diffusivity equation over a thin volume at the  contour, we obtain the diffusivity equation 

for  ,p t , expressed in terms of the flux  ,q t . 

   

   

 
 

 , , ,1 p

t

p

dVp t q t q t
c where w

t V w d

  


   

  
  

  
 (2.14) 

To complete the derivation of the diffusivity equation, we need an expression for the flux. 

To obtain the flux, 
1

q n k p


    , we first obtain the inwardly directed normal area 

from the gradient of the streamtube pore volume up to the  contour. 

 
 

 

 
1

p

w
n V

x x


 

 
       (2.15) 

Let us not yet make the assumption     , ,p x t p x t . We can then express the 

pressure as a function of  and the two bi-streamfunctions,  and  (Bear, 1972). The 

inwardly directed flux can then be obtained. 

 

 

 

1

1
t

t

t

w p p p
q n k p k

p p p
c w k k

c

p
c w


   

    

    
   




   
           

   

    
         

    






 (2.16) 

It is important for the internal consistency of our method that none of the spatial 

heterogeneity of properties in x  explicitly enter into this equation for the flux. Instead the 
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impact of our reservoir heterogeneity appears solely through the function   w  , which is 

obtained as a consequence of the solution to the Eikonal equation. 

The approximation to the flux as solely a  gradient is the primary approximation 

that we make when transforming from the 3-D to the 1-D diffusivity equation. In specific 

applications, the validity of this approximation should be tested. However, in general, 

there are two instances in which we may justify this approximation. If the pressure and  

contours are exactly aligned, then the Darcy velocity is parallel to k   , and the two 

geometric terms,   k     and   χk    , will be exactly zero. Alternatively, if the 

transverse pressure gradients 
p






 and 

p






 are small, then those terms may also be 

neglected. We will return to the justification of this approximation in the discussion. 

 

2.2.1.2 Diffusivity Equation: from 3-D to 1-D 

We may now substitute the flux into Eq. (2.14), to obtain the equivalent 1-D 

diffusivity equation. 

 

 
 

 , ,1
0

p t p t
w

t w

 


  

  
  

   
 (2.17) 

All of the spatial heterogeneity of the porosity, permeability and  have vanished from the 

formulation in favor of the quantity  w  , which first appeared in Eq. (2.14). To within a 

factor given by the diffusivity, it is proportional to the cross-sectional area of the 

streamtube. This interpretation is also consistent with the functional form of Eq. (2.17). 
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Figure 2.4 Analog between the w(τ) formulation in heterogeneous reservoirs and the 

circular drainage volume in a homogeneous reservoir 

 

We may make one additional simplification. If     , ,p x t p x t , then we may 

select the volume of integration of Figure 2.3 to be completely periodic, so that the 

streamtube covers the entire reservoir, as shown in Figure 2.4. This figure again 

emphasizes the interpretation of  w   as a cross-sectional area, where for the special case 

of radial flow in a 2-D homogeneous reservoir, r   and   2w rh  , to within 

overall constants. 

 

2.2.1.3 Flux Diffusivity Equation 

We may obtain another form of the diffusivity equation, which is often easier to 

solve than Eq. (2.17). Eqs. (2.14) and (2.16) provide us with expressions for 
p

t




 and .

p






 

However, integrability of the pressure requires that the mixed partial derivatives 
2 p

t



 
 and 



 

30 

 

2 p

t 



 
 must be equal. This integrability requirement leads to a diffusivity equation for the 

flux, which is of the same form as Eq. (2.17) but with    1w w  . 

 
 

 

 , ,1
0

q t q t
w

t w

 


  

  
      

 (2.18) 

We will return to this equation in the development of the asymptotic pressure 

approximation. 

 

2.2.1.4 Initial and Boundary Conditions 

The diffusivity equation requires one initial condition and two boundary 

conditions. The Eikonal equation requires one boundary condition. They are summarized 

in Table 2.1 for an infinite reservoir with skin. Some care needs to be taken if  0 0w  . 

This is never the case if we have a finite wellbore radius, but this situation will arise in the 

line source approximation where 0wr  . Earlier treatments set 0   at 0r  , but the 

current approach has improved accuracy for fixed rate drawdown solutions and for the 

definition of the drainage volume. The wellbore sandface flux is defined at 0  , wr r  

while the wellbore pressure drop is defined at the effective wellbore radius of 
wf  , 

,S

wr r e  where  1S

wf we r    to represent wellbore skin effects (damage or 

stimulation). 
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  x     , ,initp t p p t      ,q t  

Initial: 0t   – 0p   0q   

Wellbore Sandface Flux: 

wr r  
0    t sf

p
c w q




 


  sfq q t  

Wellbore Pressure Drop 

(with Skin): S

wr r e  wf    ,wf wfp p t    – 

Far Field:    – 0p   0q   

Table 2.1 Initial and boundary conditions for the Eikonal and Diffusivity Equations 

for an infinite acting reservoir 

 

This completes the description of the  w   methodology. In summary, we have 

assumed that pressure may be approximated using  as a spatial coordinate, 

    , ,p x t p x t , and the flux by a  gradient,  t

p
q c w 







. In other words, we have 

assumed that the pressure and  contours are identical. This has allowed us to reduce the 

3-D diffusivity equation to an equivalent 1-D form. It also allows us to obtain a diffusivity 

equation for the flux, which may be easier to solve than the diffusivity equation for the 

pressure, especially when utilizing analytic techniques. At this point in our methodology 

there is no restriction on the method of solution: either numerical or analytic. As cited 

above, numerous examples have utilized the numerical solution of these equations. Next, 

we will develop approximate “asymptotic” analytic solutions to these equations. 
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2.2.1.5 Pressure Drop as a Function of 𝜏 

Here we will test the fundamental assumption     , ,p x t p x t  as a function 

of reservoir heterogeneity, and return to it later for additional analysis. I will conduct the 

test twice: once when we look at the distribution of p  from ECLIPSE and   from FMM 

(in this section), and again when we look at the distribution of p t   from the 

asymptotic pressure approximation vs. ECLIPSE (end of this chapter). 

The heterogeneity examined throughout this dissertation represents the spatial 

variation of permeability only, since it is much more widely variable than porosity. Three 

different parameters will be used to describe the heterogeneity variance and distribution: 

the Dykstra-Parsons coefficient ( DPV ), the dimensionless correlation length ( DCLL ), and 

the Heterogeneity Index ( HI ).  

Dykstra-Parsons Coefficient The Dykstra-Parsons coefficient ( DPV ) is the most 

widely used measurement of permeability variation in the petroleum industry (Jensen et 

al., 1997). It is a dimensionless coefficient and its definition is given by an expression as 

(Dykstra and Parsons, 1950): 

50 84.1

50

DP

k k
V

k


  (2.19) 

where, a permeability distribution is descending sorted, 50k  is the median permeability 

and 84.1k  is the permeability at one standard derivation away. When  2

ln lnln ~ , ,k kk N    

as can be observed in many reservoirs, an alternative and simple equation can be used to 

estimate DPV  (Jensen et al., 1997): 
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 ln1 expDP kV     (2.20) 

where . ln k . represents the standard deviation of the natural log permeability. The 

Dykstra-Parsons coefficient varies from 0 to 1. According to the definition, a 

homogeneous reservoir has a DPV  value of 0; while for extremely heterogeneous 

reservoirs, DPV  may approach to 1. Most reservoirs have Dykstra-Parsons coefficients 

between 0.5 and 0.9 (Willhite, 1986). 

Dimensionless Correlation Length The dimensionless correlation length ( DCLL ), 

is defined as the ratio between the correlation length of the permeability and the distance 

from injector to producer (Jensen et al., 1997). Since all the reservoir models tested here 

only have one production well in the reservoir center, the reference distance is set to be 

the reservoir size. The correlation length is the maximum length between different 

locations where the permeability is still dependent, i.e., the range of influence of 

permeability on its neighboring values increases as the correlation length increases, and 

thus, a zero DCLL means a random spatial distribution of permeability.  

Heterogeneity Index Another useful parameter is the Heterogeneity Index ( HI ) 

or Gelhar-Axness coefficient (Gelhar and Axness, 1983), defined as: 

2

lnk DCLHI L  (2.21) 

HI has the advantage of combining both the heterogeneity variance and spatial correlation 

into a single parameter. 

Heterogeneous Reservoir Model Following Jennings Jr. et al. (2000), a stable 

semivariogram model which links power-law exponents to the strength of spatial 
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correlation is used to generate permeability semivariogram and control the spatial 

distribution. Here, permeability distribution is the only parameter to be changed and other 

properties remain fixed, as listed in Table 2.2. We have chosen DCLL of 0.02, 0.25, and 

1.00 in the reservoir models. Furthermore, DPV  is varied for 0.30, 0.60, 0.90 and a detailed 

procedure can be found in the work by Wang (Wang, 2013; Wang et al., 2014; Wang et 

al., 2016). The DTOF are generated using the FMM numerical scheme following Li and 

King (2016).  

 

 Property  Value  

 
DPV   0.30, 0.60, 0.90  

 
DCLL   0.02, 0.25, 1.00  

 HI   0.003 - 5.302  

Table 2.2 Reservoir heterogeneity parameters of the heterogeneous models 

 

In total, nine combinations of DPV  and DCLL  are selected to create heterogeneous 

reservoir models, with a vertical well located in the center of the reservoir. I will use them 

as examples to illustrate how well the pressure and  contours align with each other now 

and will return to these examples later for additional analysis. In this subsection, three out 

of the nine heterogeneous reservoir models to be shown are as follows: high heterogeneous 

reservoir with short correlation length ( 0.60, 0.210)DPV HI  , high heterogeneous 

reservoir with long correlation length ( 0.60, 0.840)DPV HI  , and low heterogeneous 

reservoir with short correlation length ( 0.30, 0.032)DPV HI  .  
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For the base case with 0.60DPV   and 0.210HI  , the logarithm of the 

permeability field and the corresponding  map are shown in Figure 2.5 (a) & (b). Figure 

2.5 (c) & (d) represent the pressure drop distribution from ECLIPSE during transient and 

PSS periods, respectively. Figure 2.5 (e) & (f) are the corresponding cross plots of pressure 

drop from ECLIPSE vs.   from FMM. A comparison between subplots (c) & (d) to (b) 

illustrates that pressure contours align well with   contours in general, especially during 

the infinite acting transient period when the pressure drop has not yet reached the 

boundary. During the PSS period, the pressure contours are smoother than the   contours 

and they are less well aligned near the reservoir boundary due to an extra pressure drop 

caused by the reflection of the pressure front. This alignment can also be observed in 

subplots (e) & (f), where the trend of pressure depletion along with   is less scattered 

during transient period in subplot (e), compared to PSS period in subplot (f), especially 

for large   closer to the boundary of the reservoir.  

If we keep the variance of heterogeneity as in the base case and increase the 

correlation length DCLL , we get case with 0.60DPV   and 0.840HI  , as shown in Figure 

2.6. A comparison between the current and base cases shows that increasing DCLL  will 

make the alignment somewhat less satisfactory at late time, since Figure 2.6 (f) is more 

scattered than Figure 2.5 (f), but with comparable results during the early transient. 
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(a) (b) 

        
(c) (d) 

   
(e) (f) 

Figure 2.5 Illustration of heterogeneous reservoir model with VDP = 0.6 and HI = 

0.210 (a) Log10 of permeability distribution; (b) diffusive time of flight distribution; 

(c) Pressure drop distribution during transient period; (d) Pressure drop 

distribution during PSS period; (e) Cross plot of pressure drop vs. DTOF during 

transient period; (f) Cross plot of pressure drop vs. DTOF during PSS period 



 

37 

 

If we keep the correlation length of heterogeneity as in the base case and decrease 

DPV , we get a case with 0.30DPV   and 0.032HI  , as shown in Figure 2.7. A 

comparison between the current and base cases shows that the decreasing DPV  will make 

the alignment even more satisfactory, both at early time and surprisingly, even at PSS. 

Through the above demonstration,     , ,p x t p x t  is a reasonable 

assumption for heterogeneous reservoirs, even for fairly large variance and long 

correlation lengths. However, once boundary reflection terms being to contribute, the 

finite difference simulation shows an additional pressure drop within the model that is not 

captured by a single  x  coordinate. This effect has been studied by other members of 

our research group (Huang et al., 2017) and an additional boundary reflection  x  

coordinate introduced. We will return to this discussion when studying bounded reservoir 

systems in the next chapter. 
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(a)  (b) 

        
(c) (d) 

  
(e) (f) 

Figure 2.6 Illustration of heterogeneous reservoir model with VDP = 0.6 and HI = 

0.840 (a) Log10 of permeability distribution; (b) diffusive time of flight distribution; 

(c) Pressure drop distribution during transient period; (d) Pressure drop 

distribution during PSS period; (e) Cross plot of pressure drop vs. DTOF during 

transient period; (f) Cross plot of pressure drop vs. DTOF during PSS period 
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(a) (b) 

        
(c) (d) 

  
(e) (f) 

Figure 2.7 Illustration of heterogeneous reservoir model with VDP = 0.3 and HI = 

0.032 (a) Log10 of permeability distribution; (b) diffusive time of flight distribution; 

(c) Pressure drop distribution during transient period; (d) Pressure drop 

distribution during PSS period; (e) Cross plot of pressure drop vs. DTOF during 

transient period; (f) Cross plot of pressure drop vs. DTOF during PSS period 
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2.2.2 Asymptotic Pressure Approximation 

The numerical solution of the 1-D diffusivity, Eq. (2.17), and its extension to 

include more complexity in fluid and rock properties, is a powerful and efficient approach 

for performance prediction. Its power and flexibility is in common with other numerical 

solutions, but it has the added efficiency obtained by reducing the 3-D flow equations to 

1-D (Zhang et al., 2014). However, it does not approach the ease of use and simplicity of 

interpretation provided by analytic techniques. In this subsection, I will show how we will 

develop such an analytic approach. 

To motivate the asymptotic expansion, let us first examine the fixed rate drawdown 

analytic solution to the flux diffusivity equation, Eq. (2.18), for the case of simple 

geometries in the line source approximation where   ~ mw    and 0m  . The restriction 

of 0m   ensures that we have a finite cross-sectional area at the wellbore. This analytic 

solution includes all of the simple flow regimes described in textbooks, but also includes 

the more exotic case of diffusion on a fractal geometry describing a fractured reservoir, 

where m  is not an integer (Barker, 1988; Lee et al., 2003). 

   , ,1
0m

m

q t q t

t

 


  

  
  

   
 (2.22) 

A dimensional analysis of this equation and the initial and boundary conditions for fixed 

rate drawdown (Table 2.1) shows that the flux may depend upon  and t only through the 

dimensionless Boltzmann ratio. 

2

4t


   (2.23) 
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This is true of the flux because it satisfies Dirichlet boundary conditions. However, 

because of the scaling of the Neumann boundary condition for pressure at the wellbore, it 

is only true of the pressure drop for 1m  , and then only in the line source limit. The space 

and time derivatives of the flux function can be expressed in terms of the derivative with 

respect to the Boltzmann variable. 

2

24

q dq dq

t t d t d

 

 

 
  

 
 (2.24) 

2

q dq dq

d t d

 

   

 
 

 
 (2.25) 

Based on the Boltzmann ratio, we may relate 
q

t




 to 

q






: 

2

q q

t t





 
 

 
. Hence, 

   
1

, ,1 1

2m m

q t q t

t

  

    



    
    

     
 (2.26) 

This equation may be integrated to within an arbitrary function of time. The solution is an 

exponential decay in 2 4t . 

 

    2 4
, ,1 1

~ ~ t

m

q t q t
e

w

 

   


 


 

 (2.27) 

We can examine the bounds of the solution for Eq. (2.18) for fixed rate drawdown. 

If we expand the derivative term then we can express the diffusivity equation as: 

       2

2

, ln , ,1
0

ln

q t d w q t q t

t d

   

   

   
   

   
 (2.28)  
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If we replace the expression 
 ln

ln

d w

d





 
 
 

 by either its upper or its lower bound, then we 

recover Eq. (2.22) with a value of m  given by the bound. If the lower bound has 0m   

then we no longer expect that the solution for the flux will be an exponential decay of the 

form 
2 4te  . We will see that this is the case for bounded systems. 

The motivation of the asymptotic expression has relied upon a specific functional 

form for  w  . However, Eq. (2.29) is more general that this may indicate. If we return 

to the asymptotic series of Eq. (2.3), the leading order term of the expansion is of the form 

 0

ie A x  . If the amplitude is slowly varying then we may transform from frequency 

to the time domain and we again obtain Eq. (2.29) but with a power law form for  0A t  

(Virieux et al., 1994). The expression  
2 /4

0

tA t e   is also recognized as the Green’s 

function for diffusion for an impulse solution (Ramey, 1966; Gringarten & Ramey, 1973). 

For arbitrary (non power-law)  w   this suggests the following asymptotic 

expansion for the pressure transient. 

 

 

 
 

2 4

0

, ,1 n t

t n

n

p t q t
c A t e

t w

 


 






   
   

   
  (2.29)  

The   nA t  are unknown functions to be determined by the initial and boundary 

conditions. Each bound in Eq. (2.28) has a spatial dependence given by the exponential 

decay of Eq. (2.29), although with different functions for  nA t . This indicates that all 

solutions with smoothly variable  w   will follow the same exponential trend. Truncating 
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the infinite series at one term is equivalent to the Born approximation in scattering theory 

(Jauch and Rohrlich, 1976). We will show that the first two terms in this expansion have 

specific interpretations.  

Combining Darcy’s equation Eq. (2.16) and Eq. (2.29), we get an expression for 

the flux evolution. 

 
   

 

       
2

2

4

1 1

0

, ,

1
1

2

t t

n t

n n

n

q t p tp
c w w c

t t t

w A t n A t e
t



 
 

 

 




 



   
   

     

  
    

  


 (2.30)  

Here, 1 0A  . Applying this expression at 0  , we obtain: 

 
   10

sfdq t
w A t

dt
   (2.31)  

Similarly, when applying Eq. (2.29) at 0   (neglecting skin), we get the expression for 

the pressure drop at the wellbore as: 

   
 0

wf wfd p t dp t
A t

dt dt


    (2.32)  

With skin, additional terms will arise. Eqs. (2.31) and (2.32) are very useful since they 

provide physical interpretations to  0A t  and  1A t . For fixed rate drawdown, the inner 

boundary condition requires 
 

0
sf w

dq t dq

dt dt
   and 

 
0

wfd p t

dt


 . Therefore  1A t  

must vanish, and  0A t  will describe the pressure transient at the wellbore and in the 

reservoir. For fixed BHP drawdown, the inner boundary requires 
 

0
sfdq t

dt
  and 
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 
0

wf wfd p t d p

dt dt

 
  . Therefore  0A t  must vanish, and  1A t  will describe the rate 

transient at the wellbore and in the reservoir. 

 

2.2.2.1 Flux and Pressure of the Drawdown Solution 

In this section, I will show how we derive the general solutions for both flux and 

pressure regardless of inner boundary condition, based on the proposed asymptotic 

solution Eq. (2.29) above.  

A first integral of this equation determines the flux. 

       
0

, ,sf n n

n

q t q t A t V t 




   (2.33)  

The flux solution is obtained by integrating its spatial gradient from the wellbore sandface 

   0, sfq t q t   , to a location in the reservoir. The solution is stated in terms of the 

incomplete volume moment integrals and the unknown  nA t . 

     
2 24 4

0 0

, n t n t

n pV t dV e d w e           (2.34)  

The volume moment integrals are known functions determined from the pore volume, 

 pV  . When applying this flux expression to the far field boundary res , res  , where 

 , 0resq t   we obtain an expression for the flux at the sandface: 

     
0

sf n n

n

q t A t V t




  (2.35)  

where, 
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     
2 4

0

,
res

n t

ren snV t V t d w e



       (2.36)  

For infinite systems, res  , but we will also apply this solution for bounded reservoirs. 

Substitute the flux expression, Eq. (2.33) into Eq. (2.30), we obtain the 

integrability condition for the asymptotic solution as: 

     
   

 

       
2

0

4

1 1

0

, ,
,

1
1

2

sf n n

n n

n

n t

n n

n

dq tq t dA t V t
V t A t

t dt dt t

w A t n A t e
t



 


 








 



  
   

  

  
    

  





 (2.37)  

which will provide a series of evolution equations which can be used to determine the 

unknown functions. Once we satisfy the integrability condition, then the infinite series 

represents the solution to the diffusion problem. It doesn’t mean we have to solve the 

equations in this way, but what it does show is that there is a set of equations that make 

the approximation consistent. Integrability condition is there for the formal structure of 

the equations and evolution equations will be used instead. We will return to this 

discussion in the next chapter. 

From Darcy’s equation we have the pressure drop within the reservoir. 

     
 

 
 

 

   
 

    

     

0

0

0

, , ,

, ,

,

wf wf

wf

t t wf sf n n

n

t wf n n n

n

t wf n n

n

d d
c p t c p t q t A t V t

w w

d
c p t A t V t V t

w

c p t A t W t



 



 
  

 


 

















    

   

  

 

 



 (2.38)  
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The solution is stated in terms of the incomplete pressure drop moment integrals and the 

unknown  nA t . 

 
 

    

 
 

 
 

2

2

4

4

, ,

wf

res

wf

wf

n n n

n t

n t

d
W t V t V t

w

d
d w e

w

d
d w e

w



 





   

   



   


 




  




  







   

   



  


 




  



 
      



 

 

 (2.39)  

Application of the pressure drop expression to the far field boundary res  , where 

 , 0resp t  , leads to the following expression for the pressure drop at the wellbore. 

     
0

t wf n n

n

c p t A t W t




   (2.40)  

where, 

   
 

    , ,

w

s

f

re

ren nsn n

d
W t W t V t V t

w












  

  (2.41)  

These expressions are only applicable for infinite systems since for bounded reservoirs the 

pressure drop at the boundary of the reservoir will not vanish. 

The general expressions for pressure drop in an unbounded reservoir can be expressed as 

follows: 

        

   
 

2

0

4

0

, ,

res

t n n n

n

n t

n

n

c p t A t W t W t

d
A t d w e

w

  



   

 


  







 


   

  

 
      



  

 (2.42)  
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In bounded reservoirs, the bottomhole flowing pressure is determined by the 

overall mass balance, which fixes the pore volume averaged pressure within the reservoir.  

 
 

     
0 0

res

w

w w res

t res t

Q t
p t Q t q t dt V w d

c V





 
 

   
    (2.43) 

According to the definition of average reservoir pressure, we know that: 

     

   
 

   
 

0,

0,

0

0

,

,
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wf res

wfx
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wf

Max
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p t V p t w d

p t w d p t w d













  

    





   

   



 

 (2.44) 

where,    , ,wfp t p t     for 
wf  . Substitute the pressure expression Eq. (2.42) 

into Eq. (2.44), we obtain that, 

 
 

   
 

   
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
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


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
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
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
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 
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 (2.45)  

where, we further define the (incomplete) average pressure drop moment integrals below: 

     
 

   

0,

, ,

,

wfM x

n n

n res

a

n

X t d w W t

X t X t





   



  




 (2.46)  

Lower limit is  0, wfMax   since it’s always in an integral starting from 0  .  

Boundary conditions are typically specified in terms of the flux or the pressure 

drop at the wellbore, or a combination of the two. For fixed rate drawdown we have 

already obtained the result that  1A t  must vanish. Combining Eq. (2.29) and Eq. (2.31) 
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we have showed the requirement for a fixed BHP drawdown, i.e.,  0A t  must vanish. For 

variable rate drawdown, e.g., in the analysis of wellbore storage, we will examine 

solutions that include combinations of  0A t ,  1A t  and  2A t , which will be fixed by 

the boundary condition at the wellbore. The discussion will be provided in Chapter 3. 

 

2.2.2.2 Infinite Acting Asymptotic Approximation of Fixed Rate Drawdown 

We will approximate this asymptotic expansion using the first term. We will show 

that this simplification provides an excellent approximation to known reference solutions. 

More importantly, this provides us with an analytic methodology that can be used for both 

heterogeneous and homogeneous problems, and for both pressure and rate transient 

analysis. We will see that the first term in the expansion is directly related to the drainage 

volume of a well. The second term describes the deviation of the pressure profile from a 

pseudo steady state (PSS) solution. We may expect that the higher order terms become 

more important for large . However, in this limit, it is instead more important to modify 

the exponential term in the expansion to represent finite reservoir boundaries. 

As a demonstration of the asymptotic formulation, we have performed finite 

difference calculations of the diffusivity equation for constant rate drawdown using 

ECLIPSE. We then cross-plot 
 ,p x t

t




 and  

2
/4x t

e


 for each cell in the reservoir model 

at a time before the solution is strongly impacted by finite size boundary effects. Two 

models were examined, with increasing variance in their heterogeneity, Figure 2.8. The 

calculation shows that for sufficiently smooth heterogeneity patterns, that we obtain 
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excellent agreement with Eq. (2.29). As heterogeneity increases, the scatter around the 

trend increases, but Eq. (2.29) still describes the overall trend. 

 

 
Figure 2.8 Numerical demonstration of the asymptotic pressure approximation for a 

well in the center of a heterogeneous reservoir model (reprinted with permission 

from King et al., 2016) 

 

This figure serves to validate several of our approximations: first that 

 
2 /4

0

t

t

p
c A t e

t







, which itself is based on     , ,p x t p x t  and 

   
 ,

, t

p t
q t c w


 







. Detailed examination of the simulation models shows that the 

most significant errors occur adjacent to low permeability cells, where the pressure front 

reflects from local no flow cell boundaries. Since the Eikonal equation was derived in the 

high frequency (early time) limit, we expect  x  to be the dominant spatial coordinate 

at early time, corresponding to the refraction and first passage of pressure depletion 

through the porous media. Barriers generate transverse flow where the terms that were 

neglected in the expression for the flux, Eq. (2.16), are locally not negligible. However, 
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Figure 2.8 still demonstrates that the exponential shows the overall trend. A further 

exploration of how heterogeneity impacts the accuracy of Eq. (2.29) will be provided in 

the validation subsection. 

 

2.2.2.3 Drainage Volume 

We began the development from Eq. (2.35) for the flux. The fixed rate drawdown 

boundary condition at the wellbore,  sf wq q t q   at 0  , fixed  1 0A t   and 

determines  0A t . 

         
2 4

0 0 0 0

0

,
res

res

t

w pA t q V t where V t V t dV e



       (2.47)  

Here, res   for an unbounded reservoir. Similarly to the flux, from Eq. (2.40), we 

derive that 

     
 

 
0

0 0

0

t wf w

W t
c p t A t W t q

V t
    (2.48)  

When developing the expression for the flux with fixed rate drawdown, we obtain 

the expression of  0V t , which we recognize to be the transient drainage volume for fixed 

rate drawdown. 

   
2 4

0

0

res

t

pV t dV e 



    (2.49)  

We recognize that the near well region is in PSS flow, 
2 /4 1te   . We may follow the 

discussion of Matthews et al. (1954) to relate the quantity 
1 Δ wft

d w

d pc

V q dt
  to the drainage 
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volume of the well. In the case of an infinite acting reservoir we can identify 

     
 2 22 44

0

0

res

wfwf t

d

t

pV Vt V t e d e


 


 

     as the instantaneous drainage volume, Figure 

2.9. 

The expression for  0V t  has an intuitive interpretation:  pdV   is a volume 

element in the reservoir and the exponential term indicates the timing of the contribution 

of that element to depletion within the reservoir. For instance, at early times, the 

exponential is only appreciable for locations close to the well. At late times, the 

exponential approaches 1, and all portions of a reservoir will be contributing to depletion 

(PSS limit). 

Before solving these equations for particular choices of  w  , we can examine the 

general form of the solution, as shown in Figure 2.9 and Table 2.3. This description is for 

a fixed rate drawdown in the absence of skin. From Eq. (2.47) the solution is given by

   0 0wA t q V t , where  0V t  has been identified as the drainage volume of the well. 

The thresholds and descriptions in Table 2.3 are adapted and generalized from discussions 

within Lee et al. (2003) and Kuchuk (2009).  
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Figure 2.9 Spatial profile of the fixed rate drawdown solution to the asymptotic 

pressure approximation in terms of the time derivative of the pressure drop, 

normalized to its value at the wellbore (τ = 0) (reprinted with permission from Wang 

et al, 2018) 

 

This figure is important as it explains our ability to describe the fixed rate 

drawdown pressure transient problem, which is diffusive, as if the pressure was a “wave” 

with a “front”. Following Lee (1982), we may define the depth of investigation for an 

impulse source as the location of the maximum pressure drop within the reservoir. For a 

fixed rate drawdown, this is the contour of maximum pressure change, 
2

2
0

p

t





. This 

contour has a finite speed of propagation and allows us to describe the pressure as if it 

were a wave, with a front at the depth of investigation. The specific expression or value 

for  DOI t  depends upon the flow geometry, and will be discussed in more detail, below.  
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Solution 

 
Exponential Range 

 

4t


 Range 

 

 Pseudo Steady 

State (PSS) 

 
2 /4 0.99te    

 
0.1

4t


  

 

 
Transient 

 
2 /40.99 0.018te    

 
0.1 2

4t


   

 

 Limit of 

Detectability 

 
2 /4 0.018te    

 
2

4t


  

 

 
Near Initial 

 
2 /4 0.018te    

 
2

4t


  

 

Table 2.3 Solution characteristics of the asymptotic pressure approximation for fixed 

rate drawdown based upon the time derivative of the drawdown pressure drop 

(reprinted with permission from Wang et al, 2018) 

 

PSS Limit At the wellbore, 0   and 
2 4 1te   . The well testing literature will 

evaluate the pseudo steady state (PSS) limit of transient solutions near the wellbore, for 

instance to derive the logarithmic limit of the Ei  function for transient radial flow. This 

limit is specified by  2 4 0.01t   for which we obtain 
2 4 0.99te   . Essentially, all 

volumes within the PSS limit contribute to the drainage volume of the well.  

Limit of Detectability Kuchuk discusses several definitions of the depth of 

investigation (Kuchuk, 2009). We will follow the formal definition for the depth of 

investigation provided by Lee et al. (2003), as discussed below. However, one of 

Kuchuk’s definitions corresponds to what we will characterize as the “limit of 

detectability”. We define this limit by  2 4 4t   where 
2 4 0.018te   , which describes 
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a detectable signature in the well test derivative. This limit is independent of the flow 

geometry, which makes it extremely useful in welltest interpretation.  

This separates the remaining contributions to the drainage volume into two 

regions. If  2 4 4t   and 
2 4 0.018te   , then there is only a negligible contribution to 

the drainage volume. There has also been a negligible pressure drop and so we can 

describe this volume as “near initial”. For values of  2 4t  in the range 

 20.01 4 4t   then we have the fully transient solutions, with contributions to the 

drainage volume from close to 100% to 0, depending upon the exponential term. This 

discussion is summarized in Figure 2.9. 

Depth of Investigation The characteristics of the solutions as described above are 

not specific to the geometry of the solution. In contrast, the depth of investigation will be. 

Following (Lee et al., 2003) and from Eq.(2.29), we can ask at what time does 

 ,p t t   reach a maximum value, i.e.,  2 20 ,p t t    . Substituting in the 

expression for the drainage volume gives the following relationship. 

 
 

 
 

 

2 22 2 4

0 00

1 t

DOI

V t
t d w e

V t V t





   






   (2.50) 

This reduces to the specific solutions 2 4 1 2,2 2,3 2DOI t   for linear, radial and 

spherical flow, but in general the ratio  2 4DOI t  need not be constant. For instance, for 

an infinite conductivity fracture, we will show that  2 4DOI t  varies between 1 2  at early 

time and 1 at late time. Comparison with Figure 2.9 shows that the depth of investigation 
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is well within the transient portion of the pressure profile. As such it will occur later than 

the limit of detectability and before the onset of PSS flow. 

The above description has been developed from the fixed rate drawdown solutions. 

In contrast, if we examine the fixed BHP solutions, then the leading order terms of the 

asymptotic expansion depend upon position, and pseudo steady state is never reached. In 

this case, PSS concepts such as drainage volume cannot be as directly applied to the 

interpretation. The only exception arises if we utilize superposition time, st , and the ratio 

of  Δ wf wp q . We may then define an apparent drainage volume as 

 

Δ1
.

wf

t

d s w

p
c

V t t q

 
  

  
 This will be discussed in more detail in the next chapter. 

For the remainder of this chapter, we will explore the implications of the 

asymptotic pressure approximation, Eq. (2.29), to pressure transient analysis. We will 

defer calculations and validation tests to the next section, where we provide specific 

examples and applications of the asymptotic formulation. 

At this point, it is worth contrasting the new solution approach with the standard 

methodology. Much of the well testing literature follows the foundational paper of Van 

Everdingen and Hurst (1949), which is based upon the use of the Laplace transform and 

solutions in terms of special functions for specific geometries and properties. The pressure 

drop and the welltest derivative at the wellbore are calculated by numerical inverse 

Laplace transforms and tabulated into type curves. In contrast, the current formulation 

does not require the use of the Laplace transform or of special functions. We start with a 

direct calculation of the drainage volume and the welltest derivative, without the need to 
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explicitly solve a pressure equation. We also have a prediction of the pressure drop and 

welltest derivative away from a well, which is useful for modeling well interference and 

flow barriers. Most importantly, the asymptotic approximation is not restricted to simple 

flow geometries or to homogeneous reservoirs. 

There is much in common with the welltest literature. Many of the most powerful 

techniques that are utilized in the literature (super-position, de-convolution, pseudo-

pressure, rate normalization…), may also be applied in the context of the asymptotic 

pressure approximation. In this chapter we have focused on the solution to fixed rate 

drawdown, as it serves as a foundation for these more complex methods of analysis, some 

of which will be touched upon in our applications. 

 

2.2.2.4 Properties of the Transient Solutions 

The asymptotic pressure approximation provides us with a general means of 

solving the fixed rate drawdown pressure transient equations. We recover the usual and 

exact results for the linear, radial, and spherical flow regimes, for which we have simple 

power law expressions for  w  . We also obtain new solutions for the transitions between 

these regimes for non power-law  w  , which are usually modelled using inverse Laplace 

transforms and type curves. The formulation also implies relationships that aid in the 

interpretation of diagnostic plots, specifically between the welltest derivative and the 

drainage volume of a well. 
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Welltest Derivative  Bourdet has defined the welltest derivative, 
wfp , in terms of 

the logarithmic time derivative of the pressure drop measured at the wellbore ( )wf   

assuming zero skin factor (Bourdet et al., 1983). This may be simply related to the 

drainage volume via Eq. (2.29). 

 
 

 ln

wf w
wf

t d

d p t q t
p t

d t cV t


    (2.51)  

This is an exceptionally useful equation as it allows us to determine the welltest derivative 

without first solving for the pressure drop. It also provides an intuitive means of 

understanding the welltest derivative, even in situations with complex flow geometry. 

As an example, consider the solution for the drainage volume and welltest 

derivative for infinite acting radial flow in a homogeneous reservoir (no skin). The 

reservoir pore volume out to a distance r  is given by 
2 2( )p wV r r h   , where 

 wr r   , which can be easily integrated to obtain 

     0 2 2d wV t h t r tV t       and 
 2 2 w

wf
wq

h t r t

t
p

   
 


. For the line 

source limit of infinite acting radial flow, 
4 4

w
wf

wq q

h kh
p



  
  , and we have been able 

to obtain the well-known equation for the welltest derivative for radial flow directly from 

the asymptotic formulation without the need to first solve for the pressure drop. 
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Pressure Drop Just as for the welltest derivative, Eq. (2.29) provides an expression 

for the time derivative of the pressure drop at the wellbore (with skin), which may be 

integrated to obtain the pressure drop. 

 
 

2 4

00

wf tw
wf

t t

q dt
p t e

c V t





    (2.52)  

We have taken advantage of the evolution equation of our formulation to express the 

pressure drop as a time integral from the initial pressure instead of as a spatial integral, 

Eq. (2.40). This equation provides an extension of the definition of a specialist plot to 

arbitrary geometry. For the example of infinite acting radial flow (in the line source limit), 

the integral gives a logarithmic dependence on time, as expected.  

A similar relationship may be obtained for the pressure drop within the reservoir. 

 
 

2 4

00

, tw

t t

q dt
p t e

c V t

 



    (2.53)  

For instance, for the line source limit of infinite acting radial flow, we obtain 

 
2

1Δ ,
4 4

wq
p t E

kh t

 




 
  

 
, which is again a well-known solution. An advantage of the 

asymptotic formulation is that it reduces the calculation of the pressure drop at the 

wellbore to a single integral, which may be performed either analytically or numerically, 

without the need to obtain a general solution within the reservoir. 

 

2.2.2.5 Shut-in Analysis 

As is usual, we may use super-position to model shut-in based upon pressure drop 

expression Eq. (2.52). Evaluated at the well we have: 
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     

   

2 24 4

0 00

p

wfp

p

wf wf

p

t t t

ws ws p wf p

t t

t t tt
t tw

t t t t

p
p t p t t p t dt

t

q dt dt
e e

c V t V t



 



 



 
 

 




      



  
   
   



 

 (2.54) 

where, wsp  represents the BHP change from the BHP at the beginning of shut-in, 
pt  is 

the total production time before shut-in, and 
pt t t    is the time interval after shut-in. 

This is the equivalent of (2.52) for drawdown. It provides an extension to the definition of 

a shut-in specialist plot to arbitrary geometry. 

The shut-in welltest derivative has been defined as: 

 
 

ln

pws

ws s

s p

t td p t
p t where t

d t t t

 
    

 
 (2.55) 

 
   

   

0 0

p pw
ws

t p p p

p

wf wf p

p p

t t t tq t t
p t

c t V t t V t t

t t t
p t p t t

t t

       
        

     

  
       

 (2.56) 

With this definition the welltest derivative is constant and equal to 
4

wq

kh




 for infinite 

acting radial flow. Eq. (2.56) expresses the shut-in welltest derivative in terms of the 

drainage volume, or equivalently, in terms of the drawdown welltest derivative. Again, as 

with Eq. (2.53), it may be evaluated without first solving for the drawdown or build-up 

pressure changes. 
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2.2.3 Spatial Integral vs. Time Integral 

Our methodology provides us with a test of internal consistency as we may 

calculate Δ ( , )p t  either by an integral in time, Eq. (2.53),  

 
 

 
 

2

2

4

1

00

4

1

00

,

wf

tw

t t

tw
wf

t t

q dt
p t e

c V t

q dt
p t e

c V t





 







 

 





 (2.57)  

or as an integral in  , Eq. (2.42).  

 
 

    

 
 

 

 
 

 
 

2

2

2 0 0

0

4

0

4

2

0

, ,

wf wf

w

t

tw

t

tw
wf

t

q
p t W t W t

cV t

q d
d w e

cV t w

q d
p t d w e

cV t w





   





  

 


 




 







  





 

  

 
     

 
  
 
 

 

 

 (2.58)  

The subscripts are temporarily used to distinguish between these two calculations: 

subscript “1” represents calculation via time integral while subscript “2” stands for 

calculation via spatial integral. 

In our specific applications, we will calculate the pressure drop and the welltest 

derivative by integral in time as well as integral in space, following Eqs. (2.57) and (2.58) . 

Generally they show very good agreement, demonstrating the internal consistency of the 

methodology, which will be demonstrated in this section below. The geometry parameters 

τ, Vp, and w(τ) of the cases are summarized in Table 2.4 below. 
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   pV   w   

Infinite Acting Radial 

Flow 
 wr r    2 2

wr r h    2A h     

Infinite Conductivity 

Fracture (Pillbox) 
r    24 fx r r h    2A h     

Infinite Conductivity 

Fracture (Ellipse) 
r    fr x r h    4 2A h      

Table 2.4 τ, Vp, and w(τ) for infinite acting radial flow and infinite conductivity 

fracture 

 

2.2.3.1 Comparison Examples 

Before showing the comparison between spatial and time integral results, it’s 

convenient to summarize the description of the methodology for fixed rate drawdown. Let 

us list the steps of the asymptotic pressure methodology. 

Steps: 

1. Solve the Eikonal equation to determine ,  pV   and  w   

2. If we want to predict a flux profile, solve for  ,q t  

3. Solve for the drainage volume,  0V t  and  wf tp  

4. If we want to predict a pressure profile, solve for the pressure drop,  Δ ,p t  

5. Solve for the bottomhole flowing pressure drop,  Δ wfp t  

For the purpose of constructing a diagnostic plot, only steps 1, 3 and 5 are required. Step 

1 may be performed analytically for the homogeneous problems, but otherwise we use the 

FMM. Steps 2 and 3 use a spatial integral of the reservoir volumes  pdV   weighted by 

the diffusion kernel. Steps 4 and 5 may utilize time integrals from the initial conditions or 

spatial integrals from the far field infinite acting reservoir boundary. 
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At this point we have described two ways to calculate the pressure drop, and in the 

next section we will show that the spatial integral is more accurate in general. Here, we 

will demonstrate our solution technique on a series of increasingly more interesting fixed 

rate pressure transient applications, using both approaches.  

Infinite Acting Radial Flow with Skin This is the most basic among all the flow 

regimes, and will be used to provide an example of the steps of the workflow. As described 

in Table 2.1, skin is represented using an effective wellbore radius at the corresponding 

value of  1S

wf we r     .  

Step 1: 

 

 

     

2 2

2 2

w

w

p wV r r h

w

r

r h

r

h A

 

 

        

 

  





 (2.59)  

where, 2 wA hr . 

Steps 2 and 3: 

     
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 (2.60)  

Steps 4 and 5: 
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 (2.61)  

In the line source limit it can be shown that the   dependence of the pressure drop integral 

reduces to the 1E  function at    wr r    . Eq. (2.61) becomes: 
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 (2.62) 

Eq. (2.62) shows that we have recovered the well-known line source solution. In the PSS 

limit at the wellbore, we may use the logarithmic approximation for the E1 function to 

obtain a constant value for the welltest derivative. Though Eq. (2.62), we demonstrate the 
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internal consistency of our methods via either spatial or time integrals, as expected for 

power law  w  . 

Infinite Conductivity Fractured Vertical Well (No Damage Skin)We start the 

analysis with an analytic graphical solution to the Eikonal equation and a calculation of 

 pV  . Two   contours are shown in Figure 2.10. 

 

 
Figure 2.10 Graphical solution to the Eikonal equation and the calculation of Vp(r) 

for an infinite conductivity fracture (top view) 

 

To determine  x  at any location, we may integrate 
d

dr
dr

 
 
 

 obtained from the 

characteristic directions for the Eikonal equation (This is the solution inherent in the use 

of the FMM.) For locations in the plane of the fracture, the minimum  path is directly to 

the fracture, r  . For any other location, the minimum  path is to the fracture tips, 

where again, r  , with r  as shown. The pore volume is the sum of the linear and 

radial contributions. 

Step 1: 
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 (2.63) 

where, 4 fA x h . This equation for  w   is identical to that of radial flow, above, 

although with a different expression for the area. 

For Steps 2 – 5, the expressions of flux and pressure are identical to the solutions of radial 

flow with finite radius, because they share the same form of  w   formula which is a 

linear term plus a constant term. We may also calculate the depth of investigation: 

2 2 21

4 4 2

fdoi doi

f

x tr

t t x t



 


 


 (2.64) 

It smoothly interpolates between a value of ½ at early time (linear flow) and 1 at late time 

(radial flow). 

Analytic expressions for the two functions required for a diagnostic plot are given 

in Eqs. (2.60) and (2.61). These solutions are tested against the inverse Laplace transform 

reference solution in Figure 2.11 (King et al., 2016), and both show excellent agreement 

with the reference (Gringarten et al., 1975; Bello and Wattenbarger, 2010; Kuchuk et al., 

2015). 
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Figure 2.11 Diagnostic plot validation for an infinite conductivity fracture (reprinted 

with permission from King et al., 2016) 

 

 
Figure 2.12 Graphical solution to the Eikonal equation and PSS flow in the vicinity 

of an infinite conductivity fracture (top view) 

 

We may also analyze PSS flow in the vicinity of the infinite conductivity fracture 

illustrated in Figure 2.12. As time increases, the pressure solutions near the fracture tips 

become increasingly smooth, eventually approaching an ellipse (Kucuk and Brigham, 

1979). Parallel and perpendicular to the axis of the fracture the solutions to the Eikonal 

solution are exact, providing us with the semi-major and semi-minor axes of the ellipse, 

from which we obtain an expression for  pV   to use at late time, e.g., the PSS period. 

     2fp f h xr V r x hr w             (2.65) 

During PSS period of flow, we can get the pressure profile as: 
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where, w wr  . 

Similarly, for an infinite conductivity fracture which has elliptical pressure contours 

during PSS, we obtain that: 
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Compared to radial flow at large distance, we know that 
2f

S

f w

x r r

x r e


 , and thus 

2 1
S

f wx r e
 , and we obtain that 2S

w fr e x   or  ln 2 w fS r x , which is the known 

solution (Prats, 1961). 

If we repeat for the  contour (pillbox) and calculate skin, we will get: 
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 (2.68) 

and the result is 2S

w fr e x    or  ln 2w fS r x , which is not correct. This means 

only the PSS geometry as shown gives the correct expression for the skin of the fracture. 
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Eq. (2.65) may also be used to infer the effective PSS flowing fracture area. If we 

return to the interpretation of    w     as a cross-sectional area, we may calculate 

the effective flowing area of the fracture from    0 fw x h   . In other words, only 

a fraction of  / 4  of the fracture area controls PSS production. This reduction in 

effective flowing area is consistent with the solution of the PSS Laplace equation using an 

elliptic-hyperbolic coordinate system to represent the pressure contours and streamlines 

of flow in the reservoir around the fracture. Outside this fraction of the area, streamlines 

are closely spaced in the reservoir, with increased local pressure drop and reduced 

contribution to the well productivity (Kucuk and Brigham, 1979). During early time, 

pressure drop align with pillbox shaped τ contour so that Eqs. (2.60) and (2.61) are the 

correct expressions for linear flow. During late time, correct skin can be obtain via 

elliptical τ contour. 

 

2.2.3.2 Validation of the Asymptotic Solution 

Throughout the dissertation, I will show how we apply the asymptotic pressure 

approximation to a series of examples in pressure and rate transient analysis, and to well 

productivity. These applications have three purposes: 

 To demonstrate or test the accuracy of the approximation against known 

solutions 

 To develop simple solutions which may replace the use of type curves 
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 To extend the infinite acting fixed rate and fixed BHP drawdown solutions 

to variable rate drawdown and bounded reservoirs 

The reference transient solutions will be solved using numerical inversion of the Laplace 

transform. Unlike the asymptotic formulation which supports both reservoir heterogeneity 

and complex well geometries, these solutions are restricted to piecewise homogeneous 

solutions in regular geometries. Nonetheless, they do provide validation tests and guidance 

on these extensions to the methodology. Most importantly, through various comparisons 

between asymptotic solutions and those reference (or, “exact”) solutions, we will have a 

better understanding of both the accuracy and error of our approximations, so that we will 

obtain guidance on where we may need to improve our analytic solutions. 

Infinite Acting Radial Flow (Finite Radius) Here, I use infinite acting radial flow 

with a finite wellbore radius as an example to display the dimensionless pressure 

calculated from either time integral Eq. (2.57) or spatial integral Eq. (2.58) in Figure 2.13. 

The error maps of both pressure time derivative and pressure spatial gradient w.r.t. results 

from numerical inverse Laplace transform are shown in Figure 2.14 and Figure 2.15, 

respectively. The parameters are expressed in the dimensionless form, i.e., D Dp t   and 

D Dp r  , where 
2

D

w

kh p
p

q






 , 1D

w w

r
r

r r


   , and 

2
.D

w

t
t

r


  The x and y-axis are 

dimensionless radius Dr  and dimensionless time Dt . In subplot (c), the red region 

represents the time and location that asymptotic solutions are greater than those from 

inverse Laplace transform and the black dashed curves in Figure 2.14 (c) and Figure 2.15 
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(c) represent the relation 2 4t     
2

1 4D Dt r  , at the depth of investigation for 

radial flow.  

From Figure 2.13 (c) and (f), we observe that both approaches are good 

approximations to the exact solution, with a maximum error less than 4%. This is the first 

validation of the asymptotic pressure solution for a non-trivial (non-self-similar) solution. 

Another observation is that the pressure calculated via spatial integral generally has a 

smaller error compared to the one from time integral. Furthermore, time integral tends to 

underestimate pressure drop while spatial integral tends to overestimate pressure drop, 

which can also be seen in Figure 2.11.  

From Figure 2.13 (a), (b), (c) and Figure 2.14 (c), we observe that once an error 

(in time) arises that it does not get corrected. D D
p t   has a relatively large error along the 

black dashed curve. The red region indicates the asymptotic solution underestimates 

D D
p t   inner the pressure front while the blue region indicates the asymptotic solution 

overestimates D D
p t   outside the pressure front  

From Figure 2.13 (d), (e), (f) and Figure 2.15 (c), we observe that errors in the flux 

at one time do not propagate to later times. For D D
p r  , the error range is much narrower 

compared to D D
p t  . Again, the maximum error is located along with the black dashed 

curve, indicating the maximum error of D D
p r   occurs right at the pressure front as is 

illustrated in Figure 2.15 (c). 
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 2.13 Dimensionless pressure distribution w.r.t tD vs. rD for (a) and (d) 

numerical inverse Laplace transform (exact); (b) and (c) asymptotic solution and 

error of pressure from time integral; (e) and (f) asymptotic solution and error of 

pressure from spatial integral 

 

 

 
(a) (b) (c) 

Figure 2.14 Dimensionless pressure time derivative distribution w.r.t tD vs. rD for (a) 

numerical inverse Laplace transform (exact); (b) asymptotic solution; (c) difference 

between asymptotic and exact solutions 
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(a) (b) (c) 

Figure 2.15 Dimensionless pressure spatial gradient distribution w.r.t tD vs. rD for (a) 

numerical inverse Laplace transform (exact); (b) asymptotic solution; (c) difference 

between asymptotic and exact solutions 

 

2.3 Validation of the Asymptotic Approximation via Simulation 

In this section, we will focus on the validation of transient pressure propagation 

using numerical simulation. The asymptotic approximations are infinite acting, while for 

the reference ECLIPSE cases, the reservoir size is finite and we may observe boundary 

effects during later times. The purpose is to validate our transient solutions as well as 

understand the necessity to develop further transient & PSS solutions. We will first 

examine the validation of the asymptotic solutions for homogeneous problems where 

 wr r   , and then return to the impact of heterogeneity where   is obtained from 

the solution to the Eikonal equation using the Fast Marching Method. 

 

2.3.1 Validation of the Asymptotic Approximation: Homogeneous Cases 

In this subsection, let’s begin the validation of the asymptotic approximation for 

the most fundamental case, i.e., infinite acting radial flow with fixed rate drawdown in a 

homogeneous reservoir, followed by an infinite conductivity hydraulic fracture case. The 

reservoir, fluid and wellbore parameters of both cases are listed in Table 2.5. 
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 Property  Value  Unit  

 Grid size  10×10×10  ft3  

 Grid number  51×51×1    

 h  10  ft  

 ϕ  0.3  -  

 k  0.5  md  

 μ  1.0  cp  

 
tc   1×10-5  psi-1  

 B  1.0  rb/bbl  

 
wr   0.5  ft  

 
fx   55  ft  

 
wq   10  bbl/day  

Table 2.5 Reservoir, fluid and wellbore parameters for infinite acting radial flow and 

a case with an infinite conductivity facture 

 

2.3.1.1  Infinite Acting Radial Flow 

In this case, we have a vertical well located in the center of the square reservoir. 

The smallest   value along the reservoir boundary is 1/238.4res hr   and the 

corresponding time for the boundary to be detectable at the well is 

 
2

2 16 15.4LOD rest d  . The flow rate is fixed and is sufficiently low that bottomhole 

flowing pressure constraints are not reached during the flow simulation. Figure 2.16 

illustrates the comparison of the distribution of the pressure drop time derivative between 

the asymptotic approximation and ECLIPSE at various times. We observe that both 

asymptotic approximation and ECLIPSE predict a circular propagation of pressure 

depletion during early time, as expected. At 0.52t d , we can see the mismatch between 

asymptotic solution and ECLIPSE is small with the maximum relative error of 2% near 
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the wellbore. At 4.26t d , the mismatch between asymptotic solution and ECLIPSE 

increases with the maximum relative error of 20% near the boundary. The observation 

shows the mismatch propagates towards the reservoir boundary during early time. At 

7.75t d , even though the time is earlier than LODt , we start to see large mismatch at both 

reservoir boundary as well as near well region, with the 30% maximum relative error near 

the boundary. Finally, at 20.10t d  which is a time later than LODt , we see a clear 

boundary effect near the well with the maximum relative error of 40%. In Figure 2.16 (f), 

(i), and (l), we can see that ECLIPSE predicts a higher pressure drop derivative than 

asymptotic solution near the boundary, as indicated by the red region in the plots, implying 

the pressure front has actually reached the boundary and the reflected front has started 

causing additional pressure drop near the boundary. Even though LODt t , we still see the 

large mismatch at both reservoir boundary and near well region, since LODt  only represents 

the time to detect boundary effect at the wellbore which would have already had additional 

pressure drop at most locations. It also implies that  0V t is also overestimated since it is 

calculated for infinite acting propagation which excludes reflections. This extra pressure 

drop is more obvious in subplot (l), because LODt t  and the reflected pressure front has 

already been detected at the wellbore and the infinite acting radial flow is no longer an 

accurate an approximation thereafter. The maximum prediction error of asymptotic 

approximation over ECLIPSE, can be as low as 2% when LODt t , while it can be as high 

as 40% when LODt t . We will illustrate how to resolve this issue in the next chapter. 
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(a) (b) (c) 

 
 

(d) (e) (f) 

 
 

(g) (h) (i) 

 
 

(j) (k) (l) 

Figure 2.16 Comparison of the distribution of the pressure drop time derivative 

between the asymptotic and ECLIPSE results at various times  
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(a) (b)  

 
(c) (d)  

Figure 2.17 (a) DOI time map from asymptotic solution; (b) DOI time map from 

ECLIPSE; (c) Cross plot of DOI time between asymptotic and ECLIPSE results and 

(d) DOI asymptotic prediction vs. time for infinite acting radial flow (reprinted with 

permission from Wang et al, 2017) 

 

Figure 2.17 (a) & (b) illustrate the prediction of time at depth of investigation by 

asymptotic approximation as well as ECLIPSE. For our analytic approach, it can be 

calculated directly from relation 2 4 1DOIt   for radial flow; while for ECLIPSE, it can 

be obtained by checking when 2 2 0p t     at each gridblock. Both subplots show a 

consistent map of DOIt , as is demonstrated in subplot (c). From Figure 2.17 (d) we once 
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again observe the characteristics of infinite acting radial flow period of this case, as is 

indicated by 2 14DODOI I t   , where      2

2 0DOI t V t V t  . 

 

2.3.1.2 Infinite Conductivity Fracture 

In this case, we have an infinite conductivity hydraulic fracture aligned with the x-

direction and located in the center of the reservoir. Figure 2.18 illustrates the comparison 

of the distribution of the pressure drop time derivative between the asymptotic and 

ECLIPSE results at various times. We here use dimensionless time 
2

4
D

f

t
t

x


  to 

distinguish early  1Dt   and late periods  1Dt  . At 0.14Dt  , we can see both 

asymptotic solution and ECLIPSE predict pillbox-shaped contours of pressure drop time 

derivative, and the mismatch between the two is small with the relative error of 5% near 

the fracture. Compared to the ECLIPSE simulation, the asymptotic solution tends to 

predict lower pressure drop time derivative for the pressure front propagating 

perpendicular to the fracture (red region) and a higher pressure drop time derivative for 

pressure front propagating from the fracture tips. At 0.70Dt  , both of asymptotic solution 

and ECLIPSE still predict pillbox-shaped contours, however, those given from ECLIPSE 

seem to shift from pillbox to ellipse and the mismatch grows with the relative error of 10% 

near the fracture. At 2.81Dt  , a late time, we observe different contour shapes between 

the two: asymptotic solution predicts pillbox-shaped contours while ECLIPSE now 

predicts elliptical ones, and the mismatch grows with the maximum relative error of 20% 
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near the fracture. At 5.61Dt  , we have similar observation on the mismatch with the 

maximum relative error of 20% near the fracture. We see an evolving difference between 

the two approaches from subplots (c), (f), (i), and (l). This issue, however, is not caused 

by the asymptotic pressure approximation. It is actually a result of the pillbox-shaped   

contour predicted from the solution of the Eikonal equation. If necessary, this discrepancy 

could be resolved through the use of superposition in space, as described for other 

examples in the next chapter. Even though, we can observe a good match from cross plots 

between pressure drop and   in Figure 2.19. The major difference occurs near the 

wellbore, as indicated by the flat trend of the blue dots.  

Furthermore, in Figure 2.19 (c) and (d) when 1Dt  , there are far more vertical 

(not horizontal) scatter in the plots even than those of cases with heterogeneity. This shows 

that τ is not as good a coordinate in this case, once 1Dt  . This has potential implications 

for the modeling of wells with multi-fracture. What is more important between multi-

fracture interference and single fracture superposition? The answer will depend upon the 

fracture spacing. According to the Midland Basin fracture job evolution by Pioneer (2016), 

as shown in Figure 2.20, we can see the cluster spacing reduces from 60 ft in 2013 to 30 

ft in 2015, and further down to 15 ft in late 2016 with an increasing amount of fluid and 

proppant. Compared to fracture half length (several hundred ft), the current facture cluster 

spacing is much smaller, and thus multi-fracture interference is more important and we 

will show relevant field analysis in Chapter 4. 
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(a) (b) (c) 

  

(d) (e) (f) 

  

(g) (h) (i) 

  

(j) (k) (l) 

Figure 2.18 Comparison of the distribution of the pressure drop time derivative 

between the asymptotic derivative and ECLIPSE results at various times for the case 

of an infinite conductivity hydraulic fracture (reprinted with permission from Wang 

et al, 2017) 



 

80 

 

  
(a) tD = 0.14 (b) tD = 0.70 

  
(c) tD = 2.81 (d) tD = 5.61 

Figure 2.19 Cross plots of pressure drop from ECLIPSE vs. DTOF at various times 

for the case of an infinite conductivity hydraulic fracture  

 

 
Figure 2.20 Midland Basin fracture job evolution (Pioneer, 2016) 
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Now, it is time to summarize what we have learned about infinite conductivity 

fracture case. Previously, I show that both reservoir heterogeneity and limit of Eikonal 

equation would not exactly follow the assumption of ( , ) ( ( ), )p x t p x t  to a certain 

extent. For infinite conductivity fracture case, notice that:  

 Eikonal solution is a pillbox at all 𝜏.  

 Eikonal equation gives the shape of the drainage volume  pV   at early 

time accurately. 

 Elliptical pressure solutions will arise at late time (Kucuk and Brigham, 

1979). 

 Early time PTA response is consistent with the pillbox shape as it 

reproduces the linear flow response with the full fracture area of 4 fx h . 

 Late time PSS response is consistent with the elliptical shape as it 

reproduces the fracture skin expression, consistent with the partial fracture 

area of 
fx h . 

The pressure contour is both a function of time and space, since we observe that it 

gradually changes from pillbox to ellipse near the fracture, according to ECLIPSE 

simulation result. It’s worth mentioning that the early time solution at any location in the 

reservoir still follows self-similarity, i.e., the first pressure changes at any location in the 

reservoir still retain their original pillbox shapes. Figure 2.21 shows a contour map of the 

logarithm of the dimensionless pressure drop time derivative at a late time of 1.99Dt  . 

Pillbox shaped contours (black solid curves) can still be observed deep in the reservoir, 
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beyond the depth of investigation (black dashed curve obtained from the simulator). In 

contrast, the pressure contours have already shifted to ellipses near the fracture, inside the 

depth of investigation. 

 

 
Figure 2.21 Contour of log of normalized dimensionless pressure time derivative of 

infinite conductivity fracture case 

 

Figure 2.22 (a) & (b) do not show a very consistent map of LODt . The mismatch 

can also be seen in cross subplot (c), where we observe that our asymptotic approximation 

tends to give larger DOIt  compared to the ECLIPSE result. Eikonal equation would always 

yield a pillbox shaped  contour which implies a strong radial flow regime starting at both 

fracture tips. This, however, cannot not be observed in the elliptical contours given by 

ECLIPSE. Once again, DOI  is calculated based upon asymptotic approximation as 

   2 0 4DOI V t V t t  , as shown in Figure 2.22 (d), where we conclude that the flow 
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regime during early time is very close to linear flow since DOI  is close to 0.5, and the 

flow regime trends to become more radial as time increases since DOI  is approaching to 

1. The radial flow is not fully established due to the small reservoir size.  

We can understand the discrepancy between   and the pressure contours using 

superposition in space, Figure 2.23. Consider the infinite conductivity fracture to be a 

distribution of multiple point sources instead of being a single source at the 0   contour 

(the entire fracture), as illustrated in Figure 2.23. Consider two points located along the 

same   contour: the blue dot is near the fracture tip while the green dot is perpendicular 

to the fracture. Consider the volume of influence of each. At the earliest increase of 

pressure, the volume of influence will just graze the fracture, and each point will 

experience the influence of just a single point. At this time, the   coordinate will still give 

a good representation of the depletion. However, as time increases, the green dot will be 

influenced by more discrete point sources along the fracture than the blue dot, and thus 

will have a greater pressure drop compared to the blue dot. The   coordinate controls the 

“first passage” early time response, but it will not capture the superposition effects and the 

evolution towards an elliptical contour. 
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(a) (b) 

 
(c) (d) 

Figure 2.22 (a) DOI time map from asymptotic solution; (b) DOI time map from 

ECLIPSE; (c) Cross plot of DOI time between asymptotic and ECLIPSE results and 

(d) DOI Boltzmann variable vs. time for case with infinite conductivity hydraulic 

fracture (reprinted with permission from Wang et al, 2017) 

 

 
Figure 2.23 Illustration of the impact of hydraulic fracture on different locations 

along the same DTOF contour 
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2.3.2 Validation of the Asymptotic Approximation: Simulation with Heterogeneity 

As mentioned in the last section, the accuracy of the assumption

( , ) ( ( ), )p x t p x t  is crucial to the accuracy of the asymptotic approximation. In this 

subsection, I will explore the limit of validity of this assumption through finite difference 

simulations with various levels of reservoir heterogeneity. The simulation time is early 

enough that finite size effects are not expected to be significant. The range of the LODt  is 

5.2 – 33.5 days. 

Some of the cases are selected and their permeability distributions, the 

corresponding DTOF and cross plots between 
 

 
2

/4x twq
e

V t


 from asymptotic 

approximation and 
 ,

t

p x t
c

t




 from ECLIPSE for each cell in the reservoir model before 

the solution is strongly impacted by finite boundary effects ( 0.52t d ) are displayed in 

Figure 2.24  1.00DCLL   and Figure 2.26  0.60DPV  .  

Figure 2.24 (a), (d), (g) show that permeability variance increases along with DPV  

at a fixed pattern, since they are generated with the same DCLL . As heterogeneity variance 

increases, Figure 2.24 (b), (e), (h) illustrate a growing range of DTOF and Figure 2.24 (c), 

(f), (i) display an increasingly scattered trend between asymptotic solutions and ECLIPSE 

results, especially near the wellbore (dark blue dots represent small τ). The color of each 

dots represent the  value, with blue corresponding to those near the well and red 

corresponding to those deep in the reservoir. 2R  is the coefficient of determination and is 

calculated based on the deviation of the points from the straight trend on the cross plots. 
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In Figure 2.24 (i), we can even observe two trends, which is caused by the high perm 

“channel” connected to the wellbore. To better understand the mismatch, I pick the case 

and plot the pressure drop,  w   and    ln lnd w d   vs. τ in Figure 2.25. From Figure 

2.25 (a), we know that p  is not a function of τ because of the large vertical scatter 

between p  and τ. In Figure 2.25 (b), we can see two drops of  w   curve at 1/21hr   

and 1/28 hr  , which correspond to the locations where pressure front first hits the 

boundary of the high perm channel and the boundary of the reservoir, respectively. Figure 

2.25 (c) reveals how the smoothness    ln lnd w d   varies along with τ, where the 

decreasing trend and negative values do great harm to the accuracy of the asymptotic 

solution. This ties back to the discussion of the analytic bounds with Eq. (2.28). If 

   ln ln 0d w d   , then we still expect to be bounded by the exponential trend. 

However, if    ln ln 0d w d   , then we expect a backwards going reflection term, 

which is not included in this analytic form. Later in Chapter 3 Subsection 3.3.2, I will 

show the analytic solution with strong reflectors. 
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(a) Log(k), VDP = 0.30 (b) DTOF, VDP = 0.30 (c) Cross plot, VDP = 0.30 

 
 

(d) Log(k), VDP = 0.60 (e) DTOF, VDP = 0.60 (f) Cross plot, VDP = 0.60 

 
 

(g) Log(k), VDP = 0.90 (h) DTOF, VDP = 0.90 (i) Cross plot, VDP = 0.90 

Figure 2.24 Log10 of permeability (first column), the corresponding DTOF (second 

column), and cross plot between asymptotic solutions vs. ECLIPSE results (third 

column) with LDCL = 1.00 and various VDP values 
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(a) ∆p (b) w(τ) (c) dlnw(τ)/dlnτ 

Figure 2.25 Illustration of (a) pressure drop, (b) w(τ) and (c) dlnw(τ)/dlnτ vs. τ for 

case with VDP = 0.90 and LDCL = 1.00 

 

Figure 2.26 (a), (d), (g) illustrate that as DCLL  decreases, the permeability of a grid 

block keeps losing its correlation with neighboring blocks until 0.02DCLL  , which 

indicates an random permeability distribution at grid resolution. As DCLL  decreases, 

Figure 2.26 (b), (e), (h) illustrate more coarse DTOF contours and Figure 2.26 (c), (f), (i) 

display a worse alignment between asymptotic solutions and ECLIPSE results, especially 

near the wellbore (dark blue dots represent small τ). To better understand the mismatch of 

the first case, I plot the pressure drop,  w   and    ln lnd w d   vs. τ in Figure 2.27. 

From Figure 2.27 (a), we know that p  is still function of τ because of the reasonable 

vertical scatter between p  and τ. In Figure 2.27 (b), we can see the trend of  w   curve 

is increasing until at 1/226 hr  , where pressure front first hits the reservoir boundary. 

Figure 2.27 (c) reveals how the smoothness    ln lnd w d   varies along with τ, where 

the strong decreasing trend and large negative values represent a series of strong 

reflections near the wellbore, which would definitely do great harm to the accuracy of the 
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asymptotic solution. Again, for strong heterogeneity we will need to use the analytic 

solutions with strong reflectors which will be shown in the next chapter. 

 

 
 

(a) Log(k), LDCL = 1.00 (b) DTOF, LDCL = 1.00 (c) Cross plot, LDCL = 1.00 

 
 

(d) Log(k), LDCL = 0.25 (e) DTOF, LDCL = 0.25 (f) Cross plot, LDCL = 0.25 

 
 

(g) Log(k), LDCL = 0.02 (h) DTOF, LDCL = 0.02 (i) Cross plot, LDCL = 0.02 

Figure 2.26 Log10 of permeability (first column), the corresponding DTOF (second 

column), and cross plot between asymptotic solutions vs. ECLIPSE results (third 

column) with VDP = 0.60 and various LDCL values 
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(a) ∆p (b) w(τ) (c) dlnw(τ)/dlnτ 

Figure 2.27 Illustration of (a) pressure drop, (b) w(τ) and (c) dlnw(τ)/dlnτ vs. τ for 

case with VDP = 0.60 and LDCL = 0.02 

 

  
(a) DTOF, VDP = 0.6 (b) Δp, VDP = 0.6 

  
(c) DTOF, VDP = 0.3 (d) Δp, VDP = 0.3 

Figure 2.28 DTOF and pressure drop for cases with (a) and (b) VDP = 0.6; (c) and (d) 

VDP = 0.6 at fixed LDCL = 0.25 
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Figure 2.28 shows DTOF and p  distributions with clear boundary effects from 

ECLIPSE for cases with 0.6DPV   and 0.3DPV   at fixed 0.25DCLL  . Comparing Figure 

2.28 (a) to (b), and (c) to (d), we can see that the τ and pressure contours align well with 

each other in the region close to the well and they have similar shapes; while near the 

reservoir boundary, we observe clear boundary effects in p  contours, where the extra 

pressure drop changed the shapes of p  contours so that their curvatures are different 

from τ contours. For systems with heterogeneity the second propagation depends upon the 

reflection magnitude and placement of heterogeneity. Once boundary reflection terms 

contribute, ECLIPSE simulation shows an additional pressure drop that is not captured by 

a single τ coordinate. Huang et al. (2017) introduced an extra boundary reflection 

coordinate to resolve this issue. 

 

  LDCL = 0.02 LDCL = 0.25 LDCL = 1.00  

 VDP = 0.30 0.984 0.997 0.997  

 VDP = 0.60 0.863 0.981 0.984  

 VDP = 0.90 0.895 0.911 0.948  

Table 2.6 Summary of determination coefficient R2 of all the nine heterogeneous 

cases 
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Figure 2.29 Summary of pressure drop derivative from asymptotic solution vs. 

ECLIPSE results for all the nine heterogeneous cases  

 

A summary of correlation coefficient 2R  and pressure drop derivative comparison 

of all the nine heterogeneous cases is provided in Table 2.6 and Figure 2.29 and Figure 

2.30. Again, the validation shows that for sufficiently smooth heterogeneity patterns, i.e., 

small variance and high correlation length, we obtain excellent agreement with Eq. (2.29) . 
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From Figure 2.30, we can generally observe a good trend of DPV  vs. 2R and DCLL vs. 2R , 

however, there is not a clear trend between HI  and 2R  according to this specific study. 

This means HI  is not a particularly useful measure for the validity of the FMM. By 

examining it in terms of both variance and correlation length, we see that cases with high 

variance but smooth at the grid block scale perform well until we get some sort of 

structured heterogeneity, i.e., a channel. 

 

  
(a) (b) 

Figure 2.30 Summary of R2 vs. HI, VDP, and LDCL of all the nine heterogeneous cases 

 

2.4 Discussion 

In this chapter, I have done a number of tests on   as a spatial coordinate as well 

as testing the accuracy of asymptotic pressure approximation under different 

circumstances. The key points we have learned so far are listed below. 

Let us first discuss the limits of validity of the fundamental assumption in the use 

of  x  as a spatial coordinate:     , ,p x t p x t  and its resulting expression for 
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Darcy’s flux    , t

p
q t c w 







, by examining circumstances in which the assumption 

may fail. This assumption need to be reasonably satisfied in order to reduce the 3-D 

diffusivity equation to an equivalent 1-D formulation. 

As a simple example of a violation of the assumption, consider the pressure drop 

at a location in a reservoir in the vicinity of a no flow barrier. The pressure drop can be 

represented as the sum of the pressure drops due to the direct front, which depends upon 

  ,x  and the reflected front, which depends upon a larger diffusive time of flight,  1 :x  

       1 1Δ , Δ , Δ ,p x t p x t p x t   . However, if 
   2 2

1 /4 /4x t x t
e e

  
, then the 

assumption of     , ,p x t p x t  is reasonable. 

As the second example that violates     , ,p x t p x t , where  Δ ,p x t  only 

depends upon a single  x , consider a finite conductivity fracture. The bi-linear flow for 

finite conductivity fractures have an early time 1/4t  pressure drop response (Bourdet, 

2002; Lee et al., 2003). However, all of the drainage volume approaches based on a single 

 x  have a 1/2t  pressure drop response, also at early time. If we return to the discussion 

of pressure depletion along streamlines, we can only approximate    , ,p p     if 

the solutions along adjacent lines are approximately the same. The same value of τ exists 

in the fracture and in the matrix, but the solutions at these two locations follow different 

pressure transients and have different pressure drops.  
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Under what circumstances will the asymptotic pressure approximation fail? We 

have already discussed that  w   must be “sufficiently smooth” and that 
 ln

ln

d w

d




 must 

be non-negative. We have already touched upon the question of smoothness. If 

Left Rightw w  at a change of properties then 0R   and the transmitted front dominates the 

solution. When reservoir heterogeneity has an extremely large variance of heterogeneity 

or uncorrelated distribution  0DCLL  , the value range of 
 ln

ln

d w

d




 becomes unbounded 

or even negative: the numerator scales as variance while denominator scales with the 

correlation length. Large variance usually means the range and contrast of permeability of 

adjacent locations is high in a statistical manner and uncorrelated distribution implies that 

it is highly possible that the permeability of each location does not depend on its neighbors. 

Both of these situations stand for a high contrast reservoir property which breaks the 

assumption of sufficient smoothness. If the distribution is correlated, i.e., the property 

change becomes smoother, 0.9DPV   can give a reasonably good match as demonstrated 

by one of the heterogeneous case in Figure 2.24 (h) and (i); however, if the distribution is 

uncorrelated, 0.6DPV   can yield a bad match as demonstrated by one of the 

heterogeneous case shown in Figure 2.26 (h) and (i). 

The bound on 
 ln

ln

d w

d




 is also useful to consider. If 

 ln

ln

d w

d




 is negative then as 

we extrapolate back to 0   the area in the diffusion equation diverges. We are not able 

to connect a front solution from this location back to the well. Instead we must introduce 

fronts which propagate in the opposite direction. If we can approximate these multiple 
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fronts as a single front reflecting backwards from an apparent barrier, then we recover the 

use of image wells. However, if not, then the simple analytic approximation will lose its 

utility.  

Beyond the discussion on the formation geometry or property heterogeneity, time 

also matters the accuracy of using τ as a spatial coordinate, especially for cases with 

multiple source points. Let’s once again take infinite conductivity hydraulic fracture as an 

example. The asymptotic solution yields satisfactory performance during early time 

 1Dt  , while for late time the alignment between τ and pressure may not be very 

satisfactory. τ only represents the propagation geometry for the first (or early) pressure 

front, which is a pillbox shaped contour. During late time when the pressure contour 

becomes elliptical, τ contours are no longer a good representative of the pressure contours, 

but τ is still a good approximation for the PTA results at any time since those are controlled 

by  w   and  pV   at the foot of the profiles, 2 4 4t  . In unconventional reservoirs, 

the proposed asymptotic approximation along with τ coordinate are still applicable before 

fracture-fracture interference (typically after several years of production) due to the 

reduction in fracture cluster spacing nowadays, e.g., from 60 ft in 2013 down to 15 ft in 

late 2016 in Midland Basin as reported by Pioneer (2016). 

For the asymptotic approximation part, we also saw the validation of the 

integrability and we learned that the spatial and time integrals are internally consistent in 

general. Both approaches are good approximations to the exact solution, with a maximum 

error less than 4%. However, a closer look at the comparisons to ECLIPSE references 

shows that spatial integral yields smaller error than time integral, especially near the 
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wellbore as shown by Figure 2.13 (c) and (f). Neither approximation is uniformly valid in 

time, but the time integral will accumulate the error while the τ integral does not. Thus, 

we may want to choose to calculate asymptotic solutions via spatial integral whenever 

possible. 

 

2.5 Chapter Summary 

We have formulated an asymptotic pressure approximation to the solutions of the 

diffusivity equation for slightly compressible systems. The formulation is based upon the 

use of the diffusive time of flight,  x , as a spatial coordinate, and the function  w   to 

characterize the geometry of an expanding pressure front within the reservoir. Both of 

these quantities are determined from a solution to the Eikonal equation. This is an 

extremely flexible approach as it can integrate the effects of reservoir heterogeneity and 

complex patterns of natural or hydraulic fractures. According to the study, we learn things 

that work as summarized below: 

I showed how to transform heterogeneous reservoirs into an equivalent 1-D 

diffusivity equation, which relates rates, pressure drops, and flow geometry. When used 

for performance prediction, rates and/or pressure drops are predicted from a model of the 

geometry determined from the Eikonal equation. It is a completely new approach to solve 

the PTA equations that are not restricted to simple geometries or to homogeneous reservoir 

descriptions, which is now expressed in the product of diffusion kernel  ,nK t  and 

unknown functions   nA t  controlled by boundary conditions. 
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We have changed the interpretation of τ coordinate. τ controls the characteristics 

of limit of detectability instead of depth of investigation. τ best represents the propagation 

geometry for the first pressure depletion, not necessarily the front as defined by the 

propagation of the depth of investigation 

If the reservoir characteristics of  w   are “sufficiently smooth” then the 

diffusivity equation may be solved by an analytic asymptotic approximation. The 

validation of the asymptotic approximation in the presence of heterogeneity has also been 

conducted. We learn that the asymptotic solution definitely works for reservoirs with small 

variance and highly correlated permeability. The accuracy of asymptotic approximation 

depends on how well τ works as spatial coordinate, especially for reservoir permeability 

with a random distribution and/or channel pattern. 

The asymptotic approximation allows us to develop a number of interpretations of 

our production data. and use leading order term  0A t  in the asymptotic series yields good 

results. At a fundamental level, the formulation allows us to relate the pressure drop seen 

at a producing well to depletion within the reservoir. As a consequence, the production 

data can be used to infer the instantaneous drainage volume of a well. It also provides a 

simple interpretation of the welltest derivative in terms of this drainage volume. 

Through the study, we also learned the following limitations and issues. 

For extremely heterogeneous cases, the sufficiently smooth assumption breaks 

down and 
 ln

ln

d w

d




 may no longer be non-negative. For those cases, 

 ln

ln

d w

d




 may be 
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used to determine if there are strong reflectors. If so, they require an extension to the 

asymptotic pressure approximation and will be provided in the next chapter. 

For cases with multiple source points, e.g., hydraulic fracture case, τ only 

represents the propagation geometry for the first (or early) pressure front, which is a 

pillbox shaped contour. During late time when the pressure contour becomes elliptical, τ 

contours are no longer a good representative of the pressure contours. This allows the τ 

contours to be used for PTA, but for PSS relationships τ is less accurate. 

When the sum of the pressure drops due to the direct front, which depends upon 

  ,x  and the reflected front, which depends upon a larger diffusive time of flight,  1 ,x  

give comparable exponential terms,
   2 2

1 /4 /4x t x t
e e

  
 , then the assumption of 

    , ,p x t p x t  is no longer reasonable and boundary effects come into the picture. 

When pressure front hits the boundary, the boundary effects will make the asymptotic 

approximations of infinite domain with single  x  less accurate, since it does not capture 

reflection terms including boundary terms. The development of strong reflectors will be 

provided in the next chapter and the idea was further applied by Huang et al. (2017) with 

an introduction of secondary  1 x .  

To sum up, in this chapter, I started to introduce our analysis with the fixed rate 

draw-down solution in an infinite acting reservoir. The approximation has been validated 

against a number of applications for which inverse Laplace transform reference solutions 

are available. Of course, our intent is not simply to re-derive classical results but to validate 

a formulation for use with complex fractured wells and heterogeneous reservoirs. In the 
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next chapter, I will show how to extend the fixed rate solution to variable rate drawdown 

and to finite reservoirs. The formulation also suggests how to bridge between the 

methodologies of pressure transient and rate transient analysis, generalized to more 

complex reservoir and well geometries. 
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3 CHAPTER III 

GENERALIZATION OF THE ASYMPTOTIC APPROXIMATION TO VARIABLE 

RATE AND BOUNDED RESERVOIRS  

 

3.1 Introduction 

The prediction of reservoir performance requires a good understanding of pressure 

propagation in the reservoir. The governing equation of this process is the diffusivity 

equation, which relates flow rates to pressure drops. It also satisfies the purpose of 

performance prediction and the inversion of production data for further reservoir and well 

characterizations. Analytic solutions to the diffusivity equation under-lie the 

methodologies for both pressure transient analysis (PTA) and rate transient analysis 

(RTA) (Lee, 1982; Horne, 1995; Bourdet, 2002; Lee et al., 2003; Thambynayagam, 2011; 

Houze et al., 2015). Although these solutions are limited to basic reservoir properties and 

simple well configurations, they are of great help in reservoir and well characteristics. In 

contrast, numerical solutions are extremely flexible and are able to integrate descriptions 

                                                 

Material adapted with permission from “Asymptotic Solutions of the Diffusivity Equation and Their 

Applications” by King et al., 2016: Paper SPE-180149-MS presented at SPE Europec featured at the 78th 

EAGE Conference and Exhibition held in Vienna, Austria, 30 May–2 June 2016. Copyright 2016, Society 

of Petroleum Engineers. Further reproduction prohibited without permission. 
Material adapted with permission from “Validation and Extension of Asymptotic Solutions of Diffusivity 

Equation and Their Applications to Synthetic Cases” by Wang et al., 2017: Paper SPE-182716-MS presented 

at SPE Reservoir Simulation Conference held in Montgomery, Texas, 20-22 February 2017. Copyright 

2017, Society of Petroleum Engineers. Further reproduction prohibited without permission. 
Material adapted with permission from “Quantitative Production Analysis and EUR Prediction From 

Unconventional Reservoirs Using a Data-Driven Drainage Volume Formulation” by Wang et al., 2018: 

Paper EAGE-46177 to be presented at EAGE 16th European Conference on the Mathematics of Oil 

Recovery held in Barcelona, Spain, 3-6 September 2018. Copyright 2018, Wang et al. Further reproduction 

prohibited without permission. 
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of the reservoir, wells, fluids and their interactions. Although powerful, large degrees of 

freedom within a simulator, and the corresponding non-uniqueness of a history match, 

often make it difficult to provide the simple insights as the analytic approaches. What’s 

worse, numerical simulations are often costly, especially for detailed 3-D reservoir 

simulation. In order to overcome these limitations, an effective 1-D representation may be 

needed for more rapid computation, whether using numerical or analytic techniques. 

Unconventional reservoirs provide us with not only new challenges in reservoir 

characterization, but also new opportunities for analysis techniques (Valko & Lee, 2010; 

Ilk et al., 2011; Song & Ehlig-Economides, 2011; Cipolla & Wallace, 2014). These are 

reservoirs that are largely governed by primary depletion, but at sufficiently low 

permeabilities that the clear distinctions between PTA and RTA are no longer applicable. 

The “short time” response of PTA, in which the reservoir is infinite acting, may now cover 

years of production, while the “long time” response of RTA controlled by boundary 

dominated flow, may not have been achieved before the well abandonment. I have shown 

how the semi-analytic “asymptotic pressure approximation” was developed and serves as 

an extension of the pressure transient analysis. It is sufficiently flexible to capture reservoir 

heterogeneity and complex fractured well configurations, while at the same time it 

provides overall characteristics as in PTA/RTA. As a numerical technique, this 

methodology has been applied to the investigation of unconventional reservoirs and the 

development of a comprehensive shale gas reservoir simulator (Datta-Gupta et al., 2011; 

Zhang et al., 2013; Xie et al., 2014; Zhang et al., 2014; Xie et al., 2015; Fujita et al., 

2015). More recent work has applied the semi-analytic approach to the calculation of 
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drainage volumes and instantaneous recovery ratios in unconventional reservoirs, to 

upscaling of reservoir flow properties, to pore scale carbonate reservoir characterization, 

and to the integration of well test data with geologic reservoir models (Yang et al., 2015; 

Pasumarti et al., 2015; Nunna et al., 2015; Li & King, 2016; King et al., 2016). 

In the last chapter, we have already illustrated the methodology to conduct PTA 

on infinite acting fixed rate drawdown. Here I will focus on the extension of asymptotic 

approximations to both variable rate and bounded reservoirs. 

This chapter is organized as follows. We begin with a discussion of the limitations 

of performing traditional RTA and the determination of EUR for unconventional 

reservoirs. Unlike conventional reservoirs, unconventionals will exhibit long periods of 

transient flow and no evidence of boundary dominated flow. A number of researchers have 

proposed specific empirical Decline Curve Analysis (DCA) models to be better suited to 

this situation, which we will review. We have developed a completely new method of 

analysis that is based upon fundamental solutions to the diffusivity equation, and which 

may replace the more empirical approaches currently in use. The methodology is separated 

into two major sections: I will first provide a detailed study regarding how our approach 

addresses variable rate production and determine a minimal number of asymptotic terms 

that is necessary to accurately approximate the infinite asymptotic series. Superposition in 

time will be used to provide reference solutions with which we will test the asymptotic 

approximations to variable rate drawdown. Then, I will extend our approach to bounded 

reservoirs and generalize the asymptotic approximation, where superposition in space (τ) 

is applied. It is a new result, as it allows to capture the transition from infinite acting to 
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bounded solutions, irrespective of geometry. This is the new technology that will allow us 

to perform PTA and RTA with further EUR analysis for unconventionals. I will provide 

various validation tests for the generalized asymptotic approximation. Finally, I will 

discuss what has been learned about these extensions to the asymptotic pressure 

approximation, and provide summary and conclusions. 

 

3.1.1  Pressure Transient Analysis 

In the last chapter, we discussed the solution for various cases with a fixed rate 

drawdown. When the well production is no longer at a constant rate, which is eventually 

the case for wells under production, following Lee et al. (2003), we need to compute the 

rate normalized pressure drop (RNP), defined as  

 
 

 

 

 
i wf wf

wf

w w

p p t p t
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 
   (3.1) 
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 
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wf

s

dRNP t
RNP t

d t
   (3.2) 

as well as superposition time ( st ). What superposition time says is what the time would 

have to be to get the right value of RNP as if it was on a fixed rate drawdown. According 

to the definitions, 
wfRNP  is directly correlated to the production data and can be calculated 

easily and specific expressions for superposition time depend upon the flow regime. The 

variable rate drawdown can be interpreted by plotting 
wfRNP  and its welltest derivative 

wfRNP  against st , so that it is converted to an equivalent fixed rate drawdown. If the flow 

rate variations are sufficiently smooth during infinite acting flow, then ~st t  (Winestock 
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and Colpitts, 1965). We will provide a more general definition for st  based upon the 

drainage volume that is not restricted to specific flow regimes. Our general definition of 

st  will show that for boundary dominated flow,    s e w wt t Q t q t  , where et  

represents the equivalent time (material balance time) which is the ratio between 

cumulative production and the instantaneous production rate. Palacio and Blasingame 

(1993) utilized et  for rate transient analysis during BDF while others researchers have 

used et  before the onset of BDF (Song and Ehlig-Economides, 2011). Based on our more 

general expression for st , we will show that et  is a good approximation to st  during 

infinite acting transients. 

Figure 3.1 shows an example of the analysis of a multiple transverse fracture 

horizontal well (MTFW) from the Fayetteville Shale performed by Song and Ehlig-

Economides (2011). They transformed the raw production data with varying rates and 

BHP shown in Figure 3.1 (a) to an equivalent fixed rate drawdown displayed as a 

Diagnostic plot in Figure 3.1 (b), and a general illustration of MTFW drawdown behavior 

using long time numerical simulation in Figure 3.1 (c). The Diagnostic plot was created 

by plotting 
wfRNP  and 

wfRNP  vs. et  on a log-log scale. The interpretation comes when 

you draw flow regimes through the data. On this particular plot, two flow regimes are 

identified: the black line has a ½ slope which indicates linear flow and the blue line has a 

unit slope, an indication of the stimulated reservoir volume (SRV) and pseudo pseudo 

steady state (PPSS) flow. Unlike analytic PTA that can only provide analysis on the simple 

flow regimes, or type curves, that include the transitions between simple flow regimes, 
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(a) Production Data 

 
(b) Diagnostic Plot 

 
(c) MTFW Drawdown Behavior 

Figure 3.1 Fayetteville Shale well (a) production data; (b) Diagnostic plot with RNPwf 

and RNP'wf and (c) illustration of long time drawdown behavior of the MTFW 

geometry (Song and Ehlig-Economides, 2011) 
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numerical simulation can be used to simulate solutions for linear flow, PPSS flow, pseudo 

radial flow, etc., and most importantly, the transition between these flows. The simulation 

results in Figure 3.1(c) show that the flow regimes for  the MTFW geometry, are not the 

simple infinite acting radial flow plus boundary dominated flow (Fetkovich, 1980) nor 

infinite acting linear flow plus boundary dominated flow (Wattenbarger et al., 1998). 

 

3.1.2 Rate Transient Analysis and Decline Curve Analysis for Conventionals 

In general, both rate transient analysis (RTA) and pressure transient analysis (PTA) 

are trying to take advantage of production data and conduct some interpretations, e.g., 

reservoir characterization, production prediction, EUR estimation, etc. RTA mainly 

focuses on the interpretation based on the fixed BHP drawdown while the fundamentals 

of PTA are largely relying on the fixed rate drawdown. They converged in recent years 

despite their different development paths (Houze et al., 2015).  

Decline Curve Analysis (DCA) is an example of RTA. It is an empirical technique 

that is widely used for analyzing the rate decline from the production history and thus 

enables us to forecast and predict EUR. There are two major categories of DCA 

techniques: the curve fit of production rate history with Arps’ decline curves and the type 

curve matching approach.  

Palacio and Blasingame (1993) presented a method to analyze gas well production 

data based on decline type curves analysis. They attempted to take the variable rate 

drawdown into an equivalent one with constant rate. They introduced time functions 

which can help to convert production data to the exponential ( 0b  ) of the Fetkovich 
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Type Curves. Agarwal et al. (1999) presented decline type curves for analyzing production 

data and estimating reserves for oil and gas wells. Those type curves were initially 

designed for wells with single hydraulic fractures and were then extended to take 

advantage of cumulative production to improve the type curve matching results. 

Palacio and Blasingame (1993) developed type curves for RTA based on pressure 

drop normalized rate (PNR) as: 

 
 

 

 

 
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q t q t
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 
 (3.3) 

However, using 
wfPNR  alone when the bottomhole flow pressure varies significantly did 

not remedy the problem. They introduced type curves that could be used for variable BHP 

drawdown by plotting 
wfPNR  against et . Following this idea, the Diagnostic plot of 

wfRNP  and its welltest derivative 
wfRNP  vs. material balance time et  will also show an 

equivalent fixed rate drawdown and thus make it straightforward and convenient to 

conduct PTA on the variable rate production history.  

Arps (1945) first collected the methods which had been used for many years for 

analyzing and forecasting well production. He summarized decline type curves based on 

an empirical correlation of production rate as well as cumulative production as a function 

of time, which can be expressed in a general form as: 

 
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 (3.4) 

where, iq  is the initial production rate, iD  is the initial decline rate, b  is the decline curve 

exponent varying between 0 (exponential decline) to 1 (harmonic decline).  
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Arps’ decline curves are simple analytic models and they helped build the 

foundation of DCA. However, as indicated by the time range in Figure 3.1, there is going 

to be an extended infinite acting period and it may even take hundreds of years to reach 

boundary dominated flow for unconventionals. Thus, the application of Arps’ decline 

curves to unconventionals may result in erroneous interpretation of b , e.g., if we only see 

infinite acting linear flow, the DCA will give 2b  ; if we treat SRV as the signal of BDF, 

we would underestimate the reservoir size as well as EUR. Therefore, the simple Arps’ 

decline curves are not suited for DCA on unconventionals. We will come back to the 

introduction of the state-of-the-art analytic approaches which are more sophisticated and 

applicable to analysis of unconventional reservoirs in the EUR prediction section.  

In 1970’s, Fetkovich realized that the Arps decline curve analysis can only be 

applied when the reservoir is under boundary dominated flow, while the initial infinite 

acting production period of the well is out of the scope of the analytical decline curve 

methods. Therefore, Fetkovich used the analytical infinite acting radial flow equation to 

generate transient flow patterns and combined it with the empirical decline curves of Arps 

(1945). By doing so, Fetkovich proposed a series of type curves which are applicable to 

both infinite and bounded systems. As illustrated in , decline curve dimensionless rate Ddq  

is plotted against decline curve dimensionless time Ddt  in terms of reservoir variables, and 

they are defined as (Fetkovich, 1980), 

1
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where, Dq , Dp  and Dt  are dimensionless variables used in PTA: 
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Figure 3.2 is made up of bounded radial flows with fixed BHP drawdown at various 

reservoir sizes (red curves) and Arps decline curves with various exponents (blue curves), 

respectively. The largest reservoir size is represented by the bottom curve and the smallest 

reservoir size is the top one. For the blue curves, the leftmost is exponential decline 

 0b  , the rightmost is harmonic decline  1b  , and hyperbolic declines lie in between. 

A match of production data with red curves will provide an estimate of reservoir pore 

volume, permeability and well skin; and a match of production data with the blue curves 

will help to evaluate reservoir depletion mechanisms (Arp’s exponent b) so that future 

performance can be forecast. 
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Figure 3.2 Illustration of both transient and boundary portions (0≤b≤1) of Fetkovich 

Type Curves 

 

Compared to Arps’, Fetkovich Type Curves provide more information when 

matching transient production data on decline curves. However, some limitations are still 

present when deriving the type curves: 

 Solutions are specific to a combination of infinite acting radial flow and 

circular reservoir outer boundaries, neither of which are present in 

unconventional reservoir developments (based on MTFW) 

 Boundary dominated portions of these solutions are still empirical, impacting 

the applicability of this solution to EUR determination 

 Slightly compressible fluid 

When extending the analysis to unconventional reservoirs, the first two are significant 

limitations. We are going to develop new analytic methods with physical (non-empirical) 

solutions that transition smoothly from infinite acting to boundary dominated flow, 

irrespective of the flow geometry. The intent is to remove two of the important restrictions 
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that limit the analysis for unconventional reservoir developments with complex flow 

geometries, as will arise with multi-stage fractured horizontal wells. 

 

3.1.3 Unconventional Reservoir EUR Prediction 

Predicting the long-term production performance and further estimating EUR in 

tight rocks and shale plays is an important and challenging task. Throughout the life of a 

production well, EUR estimate will be updated from time to time. The amount of data 

available and the technique used for production history matching and performance 

forecasting are crucial to a reliable EUR prediction.  

The traditional and popular methods are volumetric and material balance 

calculations. Volumetric calculations mainly relies on the areal extent and net-pay 

thickness of the reservoir, which are often difficult to get in tight reservoirs (Shanley et 

al., 2004). Material-balance method has been widely used to calculate hydrocarbon in-

place and estimate EUR of gas reservoirs due to its simplicity and power (Havlena and 

Odeh, 1963, 1964). The common use is a simple line plot of p Z  against cumulative gas 

production, which can be easily extrapolated to evaluate both gas in place and EUR. 

However, the applications to unconventional gas reservoirs are often unsatisfactory, 

primarily due to the requirement for boundary dominated flow (Lee and Sidle, 2010). 

Specifically, application of these methods usually requires an establishment of BDF in the 

reservoir so the entire reservoir is under the same depletion rate, which is almost 

impossible for unconventionals with extended infinite acting flow period. 
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The type curves (Palacio and Blasingame, 1993; Agarwal et al., 1999) are modern 

conventional analysis approaches, again based on BDF. Unconventionals have extended 

infinite acting flow, which have led to the following new DCA techniques like stretched-

exponential decline (SEPD) and Duong’s method, and they are briefly introduced below.  

Valkó (2009) proposed the stretched-exponential decline (SEPD) approach, which 

has two main advantages over the Arps’ decline curves. On one hand, it is applicable to 

both transient and boundary dominated flows. On another, the EUR estimate is finite for 

large production times. SEPD has a limited number of parameters to be determined and 

its capability was show through analyzing the effect of stimulation and re-stimulation 

treatments of over 10,000 wells in the Barnett shale by the author. Later, Valkó and Lee 

(2010) used this method for forecasting with the rate-time relation as: 

  exp

vkn
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w i
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t
q t q



  
    
   

 (3.10) 

where, iq  is the initial (or maximum) production rate, vkt  is the time on production in 

months, vk is a characteristic production time in months, and vkn  is the dimensionless 

time exponent. This method uses observed cumulative production along with theoretical 

cumulative production to estimate EUR. An iterative process is required to determine the 

values of iq , vk , and vkn . 

Duong (2011) proposed an empirical decline curve method for EUR estimate in 

the case of fracture dominant flow with negligible matrix contribution. This method was 

developed on the basis that for fracture flows, production rate and time have a power law 
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relation at a constant flowing bottomhole pressure. This means that rate/time plot on a log-

log scale forms a straight line. The rate/time equation in this model is 

 
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where, 
dga  is the intercept constant (1 time ), 

dgm  is the slope (dimensionless), q  is the 

rate at infinite time. The q  can be zero, positive, or negative (the abandonment rate 

should be set on the basis of economics). 
dgm  is always a positive value and 1dgm   

corresponds to shale reservoirs and 1dgm   may indicate a conventional tight well. Duong 

developed the method based on a dynamic expanding SRV so that it never reaches BDF. 

Therefore, the predicted EUR from Duong's model will be high unless using an extra 

constraint for boundary dominated flow. 

Mahmoud et al. (2018) examined a vertical well with a single fracture in a tight 

gas formation with a long production period of 44.14 years and compared the EUR 

predictions given by the different decline methods mentioned above. The match of the 

production rate history as well as the rate decline prediction trends (economic limit is set 

to be 20 Mscf/day) are shown in Figure 3.3 and the EUR estimates are illustrated in Figure 

3.4. From Figure 3.3, we observe that linear flow lasts for around 200 months and BDF 

becomes dominant thereafter since the data slope is close to unity. The SEPD method 

predicted an EUR of 17,241 MMscf, which is comparable to the Arps’ hyperbolic forecast 

of 17,607 MMscf. Similar estimates can also be observed from material balance and 

volumetric calculations in Figure 3.4. The Duong's method overestimated the EUR to be 

54,903 MMscf, which is at least three times larger than the other methods. The authors 
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argued that it is based on the expanding SRV assumption while the production history 

reaches BDF, however, an earlier cutoff of Duong’s method would give a much reduced 

EUR. Agarwal type curve analysis estimated the EUR to be 13,700 MMscf, which is 

obviously lower than the remaining methods, because the method is designed for 

conventional decline analysis and is not well suited for unconventionals with extended 

infinite acting. Beyond that, type curve analysis requires to convert production data to 

dimensionless parameters, when both reliable and representative reservoir and fluid 

average properties (permeability, viscosity, payzone thickness, compressibility, etc.) are 

always required. This, of course, will be very challenging for unconventional reservoir 

analysis. 

 

 
Figure 3.3 History matching and forecasting of the rate performance using Arps’ 

hyperbolic, SEPD, and Duong's decline methods (Mahmoud et al., 2018) 
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Figure 3.4 EUR prediction using different analysis methods (Mahmoud et al., 2018) 

 

3.2 Methodology: Extension to Variable Rate Drawdown 

In the first methodology section, I am going to show how to express superposition 

time with respect to the drainage volume irrespective of the flow regime. And I will further 

use these solutions as references for the application of asymptotic approximations for 

cases with variable rate drawdown. 

 

3.2.1 Superposition in Time 

For a multi-rate production history, as illustrated in Figure 3.5, superposition in 

time is often used to calculate pressure drop at a given time (indicated by the blue dashed 

line) using rate history as well as pressure drop from a fixed rate model, as illustrated by 

the equation below. 
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where,  up t  is the pressure drop for a constant production with unit rate drawdown, 

iwq  is the production rate starting at time it . The first row of Eq. (3.12) is the discrete form 

and second row is the integral form.  

 

 
Figure 3.5 Illustration of a production history with variable rate, adapted from 

Houze et al. (2015) 

 

According to the definition of the transient drainage volume,  up t  can be 

expressed as: 
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Substituting Eq. (3.13) into Eq. (3.12), we obtain that: 
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where, ( )wq t  is known from production history and ( )dV t  represents the drainage volume 

evaluated through the equivalent fixed rate drawdown. 

If we want to get the same value of  wfRNP t  as to get up  , what does the time 

have to be? To answer this question, we need to introduce superposition time  st  that 

says what the time variable would have to be to get the right value of  wfRNP t  as if it 

was on a fixed rate drawdown. With that in mind, we define superposition time in the 

equation below. 
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Substituting Eq. (3.14) into Eq. (3.15), we finally obtain the general definition of 

superposition time in an implicit form: 
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where the LHS is a function of superposition time st  and the RHS honors the previous 

production history  wq t  and drainage volume  dV t . We now have a new and general 

way of expressing superposition time. The    0dV t V t  asymptotic approximation 

allows to derive specific expressions for st . The more useful thing is not the formula: since 

we can construct our approximation to the drainage volume, we have a way of 

approximately calculating superposition time. What is new about this is because we have 

a model for the drainage volume that is not restricted to simple geometries, we have a way 
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of constructing superposition time for all times. We can then test it against what material 

balance time looks like and this will be described in more detail later in the chapter. 

In variable rate drawdown, we need to distinguish between smooth changes in flow 

rate at the sandface, and jumps in rate. For instance, for jumps in rate we have the 

following rate & BHP drop derivatives. 
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where,   is the Dirac delta function and   is the Heaviside step function. 

For an example, applying Eqs. (3.17) and (3.18) to a fixed rate drawdown problem, 

we obtain the following results. 
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Trivial fixed rate drawdown solution, as expected. 

For smooth changes in flow rate, we can represent the flow rate at the sandface as 

piecewise linear. 
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Next, I will show the applications of superposition in time to two cases: (1) infinite 

acting radial flow with fixed BHP drawdown, where rate has a jump plus a smooth 

transition period; and (2) infinite acting radial flow with wellbore storage and fixed rate 

drawdown, where the sandface flux changes smoothly from 0 to the fixed production rate 

wq . In both cases, we need to apply    0dV t V t  approximation to estimate drainage 

volume based on specific models. 

 

3.2.1.1 Infinite Acting Radial Flow with Fixed BHP Drawdown 

Let’s first apply the derived formula, Eqs. (3.18) and (3.22), to an infinite acting 

radial flow with fixed BHP drawdown. We represent this problem as a fixed rate 

drawdown with a fixed well rate wq  starting at 0t  , with a transition to fixed BHP 

control at 
pt t . The timing of the change in control depends upon the relative values of 

flow rate and BHP constraint. This gives us one jump at the start of production plus a 

smooth transition for Δp pt t t t   . 
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where, for infinite acting radial flow as shown in Eq. (2.60), we have: 

   0 4 2 wht h tV ant A Ad r        (3.24) 
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These linear equations can be solved for 
sfdq dt  first, then we may integrate 

sfdq dt  to get 
sfq . The diagnostic plot of dimensionless flux as well as its welltest 

derivative 
ln

sfD

sfD

D

dq
q

d t
   is shown in Figure 3.6, where we can see that the asymptotic 

solutions (red curves) match well with the inverse Laplace transform reference solutions 

(black dashed curves). 

 

 
Figure 3.6 Diagnostic plot validation of dimensionless flux generated by 

superposition in time and the exact solutions from inverse Laplace transform for an 

infinite acting radial flow with fixed BHP drawdown (reprinted with permission 

from Wang et al, 2017) 

 

3.2.1.2 Infinite Acting Radial Flow with Wellbore Storage and Fixed Rate 

Drawdown 

The second example is for infinite acting radial flow with wellbore storage and 

fixed rate drawdown. Flow rate starts at 0sfq   and increases smoothly. PSS boundary 

condition inside a liquid filled wellbore gives us the following relations: 
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     
 

1

0' 0

' '
'

'

t
j jw sf wf sf

t

jw tj

t t t tq q d p t dq
c dt

V dt dt V t t





      
   

 
   (3.25) 

or,  

 
   1

1 0' 0

' 1 ' '
'

t
sf w

w j j

j tj

dq V
q dt t t t t

dt V t t



 

  
            
   (3.26) 

Again, these linear equations can be solved for 
sfdq dt  first, then we integrate 

sfdq dt  to get 
sfq . Diagnostic plots of dimensionless flux and pressure are shown in 

Figure 3.7, where we can see that the asymptotic solutions (red curves) match well with 

the inverse Laplace transform reference solutions (black dashed curves). 

 

  
(a) Flux Diagnostic Plot (b) Pressure Drop Diagnostic Plot 

Figure 3.7 Diagnostic plots validation of (a) dimensionless flux and (b) dimensionless 

pressure generated by superposition in time and exact solutions from the inverse 

Laplace transform for an infinite acting radial flow with wellbore storage and fixed 

rate drawdown (reprinted with permission from Wang et al, 2017) 
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3.2.2 Asymptotic Solutions to Variable Rate Drawdown 

We have successfully used superposition in time to address examples with variable 

rate drawdown. For fixed rate drawdown the inner boundary condition requires 

 
0

sf w
dq t dq

dt dt
   and 

 
0

wfd p t

dt


 . Therefore  1A t  must vanish, and  0A t  will 

describe the pressure transient at the wellbore and in the reservoir. For fixed BHP 

drawdown, the inner boundary requires 
 

0
sfdq t

dt
  and 

 
0

wf wfd p t d p

dt dt

 
  . 

Therefore  0A t  must vanish, and  1A t  will describe the rate transient at the wellbore 

and in the reservoir. For variable rate drawdown, e.g., in the analysis of wellbore storage, 

we will examine solutions that include combinations of  0A t ,  1A t  and  2A t , which 

will be fixed by the boundary condition at the wellbore. So far, the asymptotic solutions 

we have examined are only for fixed rate drawdown with a changing bottomhole flowing 

pressure in Chapter 2, and I will show how to extend them to variable rate drawdown cases 

in this section. 

Figure 3.8 shows the comparison between ECLIPSE (black curves) and asymptotic 

solutions of pressure drop time derivative vs. product of τ and exponential term for a radial 

flow in homogeneous formation with fixed BHP drawdown, where we can see that both 

approaches show good alignment in the reservoir. This demonstrates the accuracy of the 

asymptotic approximation and shows that  1A t  is the leading term of fixed BHP 

drawdown in the absence of skin, as we will discuss in this chapter. 
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(a) Linear-Linear Scale (b) Log-Log Scale  

Figure 3.8 Comparison between ECLIPSE (black curves) and asymptotic solutions 

(red dots) of pressure drop time derivative vs. product of τ and exponential term for 

fixed BHP drawdown under (a) linear-linear scale and (b) log-log scale 

 

Let’s get started by a summary of the important expressions derived from the last 

chapter, which are for infinite domain and spatial integral instead of time integral is 

suggested to get solutions. The asymptotic expansion for the pressure transient in an 

infinite domain is: 

 

 

 
 

2 4

0

, ,1 n t

t n

n

p t q t
c A t e

t w

 


 






   
    

   
  (3.27) 

The diffusion kernel of the thn  order is defined as  
2 4, n t

nK t e     . It will be 

generalized later for bounded reservoirs. 

The time derivative of flux is: 

 
       

2 4

1 1 1

0

, 1
1 0

2

n t

n n

n

q t
w n A t A t e A

t t


 




  



   
         

  (3.28) 

The evolution expressions for the pressure drop (in the absence of skin) and flux time 

derivative at the sandface requires: 
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 
 0

wfd p t
A t

dt


  (3.29)  

 
   10

sfdq t
w A t

dt
   (3.30) 

The expressions for pressure drop and flux at the wellbore are: 

     
0

t wf n n

n

c p t A t W t




   (3.31) 

     
0

sf n n

n

q t A t V t




  (3.32) 

The average pressure drop is defined as: 

   ip t p p t    (3.33) 

The geometry parameters τ, Vp, and w(τ) of the infinite acting cases are summarized in 

Table 2.4. 

 

3.2.2.1 Infinite Acting Radial Flow with Fixed BHP Drawdown 

To obtain a fixed bottomhole flowing pressure, we have expressed the algebraic 

term on the right hand side of Eq. (3.27) with a diffusion kernel that vanishes at the 

wellbore. We are only looking at a one term solution. Since 
 

 0 0
wfd p t

A t
dt


  , we 

consider the leading term in the infinite series, which now becomes  1A t . As not all of 

the integrals for this case can be performed analytically, they will be left in a symbolic 

form. 
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Step 1: 

 

 

     

2 2

2 2w
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r r

V r r h
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 

 

        

 

 

   

 (3.34) 

where, 2 wA hr . 

Step 2: 

     

 
 

 

 
 

 
 

 
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4 4
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2 2 2
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sf t wf
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t A h e h tErfc
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q t c p
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 

 



 





        
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  
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 
      
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 

 

 

 







  

  

  
    

  

 

 

 



 (3.35) 

It is useful to contrast the rate normalized pressure drop calculated in this fashion, 

with the solution based upon a fixed well rate, Eq. (2.61) , because one is often used as an 

approximation to the other (Houze et al., 2015). 

 

 

 
1

1

1wf

BHP

sf t

p W t
RNP

q t c V t


   (3.36) 

   

 
0

0

1wf

Rate

w t

p t W t
RNP

q c V t


   (3.37) 

The fixed BHP results are shown in Figure 3.9 (a), and are in excellent agreement 

with the zero skin reference solution of Van Everdingen and Hurst (1949), in the limit of 

infinite reservoir size. 
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(a) (b) 

Figure 3.9 Comparison of (a) qsfD, q'sfD (red curves) of fixed BHP drawdown; (b) 

1/RNP of fixed rate (red curves) and BHP (green curves) drawdown with the 

corresponding exact solutions from inverse Laplace transform (black dashed curves) 

for an infinite reservoir 

 

The calculation of RNP at fixed rate is also included within the figure. With the 

presence of skin (not shown), or for sufficiently large time, the two expressions for the 

rate normalized pressure drop are fairly close. This is not a new observation, with the fixed 

rate calculation often being used as an approximation to the fixed BHP case. The 

approximate equality of these functions is also consistent with the use of the rate 

normalized pressure drop for smoothly variable rate in welltest interpretations (Winestock 

and Colpitts, 1965). For our approach, we don’t needed to use superposition in time to 

obtain this solution, because the asymptotic form captures this case. 
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3.2.2.2 Infinite Acting Radial Flow with Wellbore Storage and Fixed Rate 

Drawdown 

We have just showed that in the simplest fixed BHP drawdown, that the single 

 1A t  term gave excellent agreement with the exact solution for IARF. In the previous 

chapter we did the same thing for fixed rate drawdown with  0A t . Now we are going to 

examine the solutions for a less trivial inner boundary condition to see how well they 

work. Wellbore storage is an example where transient pressure depletion in the reservoir 

and PSS depletion in the wellbore are coupled. The boundary conditions for the reservoir 

will reference the flux at the sandface,  sfq t , which initially vanishes and then increases 

to the flow rate of the well, wq . The sandface flux is not specified but must be determined 

as part of the solution of the coupled problem. For the current description we will develop 

the equations for a fluid filled wellbore, although the form of the solution is the same for 

a rising liquid level (Hurst, 1953; Van Everdingen, 1953; Wattenbarger and Ramey, 1970; 

Lee et al., 2003). The reference solution follows Agarwal et al. (1970). The calculations 

that we are about to perform will allow us to examine the accuracy and performance of 

the different forms of the asymptotic pressure approximation with 1, 2, or 3 asymptotic 

terms. 

This problem is a useful one, as it allows us to study the impact of simultaneously 

changing the well rate and the bottomhole flowing pressure. We will first examine the use 

of the rate normalized pressure drop as an equivalent fixed rate drawdown, as suggested 
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by Winestock and Colpitts (1965) for smoothly varying production rates. Then, we will 

explore asymptotic pressure approximation with 1, 2, or 3 asymptotic terms. 

Applying this approach to the asymptotic formulation we have the starting 

equation for the RNP transient approach: 

 

 

 

2 4

0

1 n n t

t

nw w w

A tp q
c e

t q w q q t


 






     
      

    
  (3.38) 

If we only keep the first term in the asymptotic approximation, we obtain that: 

 
 

 
2

4

0

, 1 weff wr r tweff

t

dRNP r t
c e

dt V t

 
   (3.39) 

Here, 
S

weff wr r e  is the effective wellbore radius, and: 

 
 
 

   
,

, ,
i weff

weff wf weff

sf

p p r t
RNP r t and RNP t RNP r t

q t


   (3.40) 

As a result the expression for 
wfp  is modified: 

     ,wf sf weffp t q t RNP r t    (3.41) 

As in the reference calculation, we are using an effective wellbore radius for the 

skin, although other treatments, e.g., additive skin, are possible. Consequently the equation 

for the sandface flux is: 

 
 

 
 

2 2
4 4

0 00

weff w weff wr r t r r tw sf wf sf sf

t

w t

q q d p q dqdt
c e e

V dt V t V t dt

    



 
       (3.42) 

This solution for  sfq t  and the exact reference solution are shown in Figure 3.10 (a) with 

dimensionless parameters. The plot also includes the welltest derivative of 
sfDq  : 
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ln

sfD

sfD

D

dq
q

d t
  , where 

w

sf

sfD

q
q

q
 . The calculation in the figure is performed for a skin of 

zero, to better understand the solution. The comparison of the exact solution with the 

calculation based on the RNP  transient is excellent only except for the early time. This is 

because setting  1 0A t   is not consistent with the inner boundary of 0sfdq dt   for 

wellbore storage case, which means the approach is inconsistent especially during early 

period when the magnitude of 
sfdq dt  is relatively large. 

 

  
(a) Flux Diagnostic Plot (b) Pressure Drop Diagnostic Plot 

Figure 3.10 Comparison of Diagnostic plot of (a) qsfD, q'sfD (red curves) and (b) pwfD, 

p'wfD (red curves) by RNP transient and the corresponding exact solutions from 

inverse Laplace transform (black dashed curves) of wellbore storage solutions with 

zero skin 

 

Eq. (3.41) shows how to combine the solutions for  sfq t  and  ,weffRNP r t , Eq. 

(3.42). This gives the pressure drop and welltest derivative for the diagnostic plot, Figure 



 

131 

 

3.10 (b), where 
2 w

wfD

f

w

kh p
p

q B






  and 

ln

wfD

wfD

D

dp
p

d t
  . Figure 3.10 (b) shows the results 

based upon the RNP transients and has excellent agreement with the reference solution.  

From the comparison, we know that RNP transient approach suggested by 

Winestock and Colpitts (1965) gives an acceptable solution to this specific case. Next, I 

would like to explore asymptotic pressure approximation with 1, 2, or 3 asymptotic terms 

and see how our approach works for the wellbore storage case. 

 

3.2.3 Determining Number of Asymptotic Terms in the Approximation 

In the first section of this chapter, we have applied superposition in time to address 

variable rate drawdown problems and get the reference solutions for the wellbore storage 

case. In the previous section, I followed Winestock and Colpitts (1965) and showed the 

derivation for case with wellbore storage using an extension to the asymptotic solution for 

a fixed rate drawdown. The flux given by RNP transient approach shows some mismatch 

w.r.t. to the reference solution during early time. We will now solve the same problem but 

using the asymptotic form of the pressure evolution equation, Eq. (3.27) to better 

understand the number of terms that are necessary to accurately approximate the infinite 

asymptotic series. Fixed rate drawdown with wellbore storage is a good candidate for this 

discussion, because it has neither fixed rate nor fixed BHP drawdown at the wellbore 

sandface and we know that only keep the first unknown function in the series of   nA t

is not adequate for RNP transient approach. The integrability condition, Eq. (2.37), which 

gives evolution equations for the higher order terms, will be used during this process. 
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Boundary conditions are typically specified in terms of the flux or the pressure 

drop at the wellbore, or a combination of the two. For fixed rate drawdown we have 

already obtained the result that  1A t  must vanish. Similarly, we have also showed the 

requirement for a fixed BHP drawdown without skin, i.e.,  0A t  must vanish. For variable 

rate/BHP drawdown, e.g., in the analysis of wellbore storage, we will examine solutions 

that include combinations of  0A t ,  1A t and  2A t , which will be fixed by the boundary 

condition at the wellbore. The PSS boundary condition of wellbore storage case has been 

shown previously in Eq. (3.25), where we applied superposition in time to address the 

problem. 

In this section, I will explore all the possible combinations of the solution scenarios 

to this problem to obtain guidance on determining an adequate number of asymptotic 

terms for other variable rate/pressure drawdown solutions.  

 

3.2.3.1 Two-Term Asymptotic Approximation  

Following the previous exploration of fixed rate/BHP drawdown and the 

discussion on variable rate/BHP drawdown, we first explore wellbore storage case by 

taking the first two terms ( 1n  ) of flux and pressure drop expressions, we get four 

unknowns  0A t ,  1A t , 
sfq  and 

wfp . Since there are five equations, we will have 

different scenarios to solve this problem. The PSS boundary condition is a must-use one, 

otherwise the problem will reduce to the fixed rate drawdown problem. Thus, we have the 

following four scenarios for the two-term asymptotic approximation: 
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Scenario 1: ①②③⑤ 

Scenario 2: ①②④⑤ 

Scenario 3: ①③④⑤ 

Scenario 4: ②③④⑤ 

Next, I will illustrate the brief steps and results of each scenario. 

Scenario 1 Solve the above equations without using the flux evolution equation, 

we can get the expression for 
sfq  without  0A t  and  1A t : 

   0 1 1 0 1 0 0 1

1

w sf w

wf

t w

V V W VW q VW V W q
p

cV V

     
   (3.43) 

In order to eliminate 
sfq  from the equation, we substitute PSS boundary condition and 

rearrange the equation to obtain the 1st order ODE of 
wfp  as: 

     1 2 3
wf

wf

d p
fun t fun t p fun t

dt


    (3.44) 

where the prefactor functions are: 

   

 

 

0 1 1 0

1

1

1

2

3

t w

t

w

fun t c V V W VW

fun t cV

fun t q W

     







 (3.45) 

Together with the initial condition  0 0wfp  , the ODE can be solved directly for .wfp  

Then, 
wfd p dt  can be estimated accordingly.  0A t  is obtained from 

wfd p dt  

through pressure evolution equation and  1A t  can be calculated via pressure drop 
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equation. Next, 
sfq  can be obtained using PSS boundary condition and 

sfdq dt  is 

determined after that. 

 

  
(a) Flux Diagnostic Plot (b) Pressure Drop Diagnostic Plot 

Figure 3.11 Comparison of Diagnostic plots of (a) qsfD, q'sfD (red curves) and (b) pwfD, 

p'wfD (red curves) and the corresponding exact solutions from inverse Laplace 

transform (black dashed curves) for Scenario 1 of two-term asymptotic 

approximation 

 

The Diagnostic plots of 
sfDq  and 

wfDp  as well as the corresponding exact solutions 

from inverse Laplace transform are shown in Figure 3.11. We observe that this scenario 

gives accurate 
sfDq  and 

wfDp  values in general, especially before radial flow establishes. 

Thus, this scenario could be a candidate for variable rate/BHP drawdown analysis. 

Scenario 2 Solve the above equations without using the pressure evolution 

expression, we can get the expression for 
sfq  without  0A t  and  1A t : 

 

 

2

0 1 0 0 1

2

0 00

t wf wft w

sf

cV p d pcV VW V W
q

W w W dt

 
   (3.46) 
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In order to eliminate 
sfq  from the equation, we substitute PSS boundary condition and 

rearrange the equation to obtain the 2nd order ODE of 
wfp  as: 

       
2

2
1 2 3 4

wf wf

wf

d p d p
fun t fun t fun t p fun t

dt dt

 
     (3.47) 

where the prefactor functions are: 

   

   

   

   

1 0 0 1

0

0

0

1

2 0

3 0

4 0

t w

t w

t

w

fun t cV VW V W

fun t cV w W

fun t c w V

fun t q w W

 






 

 (3.48) 

Together with the initial conditions  
0

0 0 &
wf w

wf

t wt

d p q
p

dt cV



   , the ODE is solved 

directly for 
wfp . Then, 

wfd p dt  is estimated accordingly. Next, 
sfq  is obtained using 

PSS boundary condition and 
sfdq dt  is determined after that.  1A t  can be calculated 

based on 
sfdq dt  via flux evolution equation and  0A t  can be finally determined 

through pressure drop equation.  

The Diagnostic plots of 
sfDq  and 

wfDp  as well as the corresponding exact solutions 

from inverse Laplace transform are shown in Figure 3.12. We observe that this approach 

yields unstable 
sfDq  and only gives accurate 

wfDp  values before radial flow is established. 

Thus, this scenario is not appropriate for variable rate/BHP drawdown analysis. 
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(a) Flux Diagnostic Plot (b) Pressure Drop Diagnostic Plot 

Figure 3.12 Comparison of Diagnostic plots of (a) qsfD, q'sfD (red curves) and (b) pwfD, 

p'wfD (red curves) and the corresponding exact solutions from inverse Laplace 

transform (black dashed curves) for Scenario 2 of two-term asymptotic 

approximation 

 

Scenario 3 Combine all the expressions without using pressure drop equation, we 

can get the 1st order ODE of 
sfq  as: 

     1 2 3
sf

sf

dq
fun t fun t q fun t

dt
   (3.49) 

where the prefactor functions are: 
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fun t V V

fun t w V V

fun t q w V




 




 (3.50) 

Together with the initial condition  0 0sfq  , I solve the ODE for 
sfq  and thus 

sfdq dt  

can be obtained accordingly. Then,  1A t  is determined via flux evolution equation and 

 0A t  is estimated by combining pressure evolution equation and PSS boundary 
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condition. Finally, 
wfd p dt  is evaluated using pressure evolution equation and 

wfp  is 

calculated based on time integral.  

The Diagnostic plots of 
sfDq  and 

wfDp  as well as the corresponding exact solutions 

from inverse Laplace transform are shown in Figure 3.13. We observe that this scenario 

gives poor results and thus it is not appropriate for variable rate/BHP drawdown analysis. 

 

  
(a) Flux Diagnostic Plot (b) Pressure Drop Diagnostic Plot 

Figure 3.13 Comparison of Diagnostic plots of (a) qsfD, q'sfD (red curves) and (b) pwfD, 

p'wfD (red curves) and the corresponding exact solutions from inverse Laplace 

transform (black dashed curves) for Scenario 3 of two-term asymptotic 

approximation 

 

Scenario 4 Combine all the expressions except for flux equation, we can get the 

2nd order homogeneous ODE of 
wfp  as: 

     
2

2
1 2 3 0

wf wf

wf

d p d p
fun t fun t fun t p

dt dt

 
     (3.51) 

where the prefactor functions are: 
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 

   

   

1

0

1

2 0

3 0

wfun t V W

fun t w W

fun t w







 

 (3.52) 

Together with the initial conditions  
0

0 0 &
wf w

wf

t wt

d p q
p

dt cV



   , the ODE is solved 

directly for 
wfp . Then, 

wfd p dt  can be estimated accordingly. Next, 
sfq  is obtained 

using PSS boundary condition.  0A t  is determined by pressure evolution equation and 

 1A t  is calculated via pressure drop equation. Finally, 
sfdq dt  is obtained through flux 

evolution equation.  

 

  
(a) Flux Diagnostic Plot (b) Pressure Drop Diagnostic Plot 

Figure 3.14 Comparison of Diagnostic plots of (a) qsfD, q'sfD (red curves) and (b) pwfD, 

p'wfD (red curves) and the corresponding exact solutions from inverse Laplace 

transform (black dashed curves) for Scenario 4 of two-term asymptotic 

approximation 
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The Diagnostic plots of 
sfDq  and 

wfDp  as well as the corresponding exact solutions 

from inverse Laplace transform are shown in Figure 3.14. We observe that this scenario 

yields poor results and thus it is not appropriate for further analysis. 

A summary of all the different scenarios of wellbore storage case with 2-term 

asymptotic solution is listed in Table 3.1. The gray/white grid blocks mean the 

corresponding equation is included/excluded from the calculation. For the solution quality, 

red/orange/green is used for the qualitative assessments as bad/poor/good. Based on the 

demonstrations for these four scenarios, only the first one out of four scenarios of the two-

term asymptotic approximation could be used for variable rate/BHP drawdown analysis. 

 

Wellbore Storage 

(2-term) 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 

sf n n

n

q A V       

t wf n n

n

c p A W       

0

wf

t

d p
c A

dt



     

  10
sfdq

w A
dt

       

PSS Boundary 

Condition (ODE) 
    

Solution 

Quality 
 Unstable Poor Poor 

Table 3.1 Summary of equations to be solved in each scenario of wellbore storage 

cases with 2 asymptotic terms 
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3.2.3.2 Three-Term Asymptotic Approximation  

After exploring the results of two-term asymptotic approximation, we know  0A t  

plus  1A t  could be a choice for variable rate/BHP drawdown analysis. What if we have 

one extra term? Will it improve the solution accuracy? Let’s begin with the examination 

of the three-term asymptotic approximation and take the first three terms ( 2n  ) of flux 

and pressure drop expressions. There are five equations with five unknowns  0A t , 

 1A t  ,  2A t , 
sfq  and 

wfp , so all the equations will be used during the calculation. For 

the three-term asymptotic approximation, we end up with a 2nd order ODE of 
wfp . 

From the boundary condition, we know that 
sfq  can be expressed as: 

wf

sf w t w

d p
q q cV

dt


   (3.53) 

Take the time derivative of Eq. (3.53), we obtain that: 

2

2

sf wf

t w

dq d p
cV

dt dt


    (3.54) 

Combine flux evolution equation and Eq. (3.54),  1A t  can be related to 
wfp  as: 

 
 

2

1 20

wft w
d pcV

A t
w dt


  (3.55) 

From flux and pressure drop expressions, we can eliminate  2A t : 

     2 0 2 0 0 2 1 2 1 1 2

2

sf

wf

t

q W A t V W V W A t V W VW
p

cV

   
   (3.56) 
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Substitute pressure evolution equation, Eqs. (3.53) and (3.55) into Eq. (3.56), and 

rearrange to obtain the 2nd order ODE of 
wfp  as: 

       
2

2
1 2 3 4

wf wf

wf

d p d p
fun t fun t fun t p fun t

dt dt

 
     (3.57) 

where the prefactor functions are: 

   

     

   

   

1 2 2 1

0 2 2 0

2

2

1

2 0

3 0

4 0

t w

t w

t

w

fun t cV VW V W

fun t c w V V W V W

fun t c w V

fun t q w W

 


     







 (3.58) 

Together with the initial conditions  
0

0 0 &
wf w

wf

t wt

d p q
p

dt cV



   , the ODE is 

solved directly for 
wfp , and thus 

wfd p dt  can be estimated accordingly. Next,  0A t  

is obtained using pressure evolution equation, 
sfq  is calculated with Eq. (3.53) and 

sfdq dt  is determined after that. Then,  1A t  can be evaluated based on 
sfdq dt  via flux 

evolution equation and  2A t  can be finally determined through flux equation.  

The Diagnostic plots of 
sfDq  and 

wfDp  as well as the corresponding exact solutions 

from the inverse Laplace transform are shown in Figure 3.15. We observe that this 

approach only gives accurate 
sfDq  value during early and late periods and accurate 

wfDp  

value before radial flow establishes.  
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(a) Flux Diagnostic Plot (b) Pressure Drop Diagnostic Plot 

Figure 3.15 Comparison of Diagnostic plots of (a) qsfD, q'sfD (red curves) and (b) pwfD, 

p'wfD (red curves) and the corresponding exact solutions from inverse Laplace 

transform (black dashed curves) for three-term asymptotic approximation 

 

The boundary condition and the time derivative of boundary condition basically 

pin down  0A t  or  1A t  term or their combination. The  2A t  term is not anywhere near 

well-determined and a lack of having a clear control on it is what damaged the solutions. 

Once we start invoking  2A t , it really get pretty unstable. For  0A t  and  1A t , we got 

a physical control via evaluating the evolution equation at the wellbore. Based on the 

demonstration, three-term asymptotic approximation should not be used for variable 

rate/BHP drawdown analysis.  

 

3.2.3.3 One-Term Asymptotic Approximation  

After exploring the results of two/three-term asymptotic approximation, we know 

 0A t  plus  1A t  could be a choice for variable rate/BHP drawdown analysis while 

adding an extra term would make the solution unstable. What if we only have one term 
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for pressure transient? In the last section, we have seen the result of RNP transient 

approach based upon one term asymptotic approximation, but we haven’t fully explored 

all the scenarios for pressure transient yet. Will any of them give an improved accuracy?  

Following previous exploration, we now take the first term ( 0n  ) of flux and 

pressure drop expressions. Flux evolution equation is no longer available, so there are four 

equations with only three unknowns  0A t , 
sfq  and 

wfp . Again, PSS boundary 

condition is a must-use one, and we totally have the following three scenarios for the one-

term asymptotic approximation: 

Scenario 1: ①②⑤ 

Scenario 2: ①③⑤ 

Scenario 3: ②③⑤ 

Next, I will illustrate the brief steps and results of each scenario. 

Scenario 1 From flux and pressure drop expressions, we obtain the relationship 

between 
sfq  and 

wfp  as: 

 

 
0

0

sf t wf

V t
q c p

W t
   (3.59) 

Substitute Eq. (3.59) into PSS boundary condition and eliminate 
sfq , we obtain a 1st order 

ODE of 
wfp  as: 

     1 2 3
wf

wf

d p
fun t fun t p fun t

dt


    (3.60) 

where the prefactor functions are: 
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 

 

 

0

0

0

1

2

3

t w

t

w

fun t cV W

fun t cV

fun t q W









 (3.61) 

Together with the initial condition  0 0wfp  , the ODE can be solved directly for .wfp  

Then, 
wfd p dt  can be estimated accordingly. Next, 

sfq  can be obtained using Eq. (3.59) 

and 
sfdq dt  is calculated accordingly. Finally,  0A t  can be determined by pressure drop 

equation. 

The Diagnostic plots of 
sfDq  and 

wfDp  as well as the corresponding exact solutions 

from inverse Laplace transform are shown in Figure 3.16. We observe that this scenario 

gives accurate 
sfDq  and 

wfDp  values in general. Thus, this scenario could be a candidate 

for variable rate/BHP drawdown analysis. 

 

  
(a) Flux Diagnostic Plot (b) Pressure Drop Diagnostic Plot 

Figure 3.16 Comparison of Diagnostic plots of (a) qsfD, q'sfD (red curves) and (b) pwfD, 

p'wfD (red curves) and the corresponding exact solutions from inverse Laplace 

transform (black dashed curves) for Scenario 1 of one-term asymptotic 

approximation 
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Scenario 2 Combine flux and pressure evolution equations and eliminate  0A t , 

we connect 
sfq  to 

wfd p dt  as: 

 0

wf sf

t

d p q

dt cV t


  (3.62) 

Substitute Eq. (3.62) into PSS boundary condition and rearrange the expression, we obtain 

the formula of 
sfq : 

 
 

 
0

0

sf w

w

V t
q t q

V V t



 (3.63) 

sfq  can be calculated with Eq. (3.63) and 
sfdq dt  is determined accordingly. Then, 

wfd p dt  can be estimated via Eq. (3.62) and 
wfp  can be obtained via numerical 

integral. Finally,  0A t  is determined by pressure evolution equation. 

The Diagnostic plots of 
sfDq  and 

wfDp  as well as the corresponding exact solutions 

from inverse Laplace transform are shown in Figure 3.17. We observe that this scenario 

does not give accurate 
sfDq  value during early time nor 

wfDp  value during late time. Thus, 

this scenario should not be used for variable rate/BHP drawdown analysis. 

 



 

146 

 

  
(a) Flux Diagnostic Plot (b) Pressure Drop Diagnostic Plot 

Figure 3.17 Comparison of Diagnostic plots of (a) qsfD, q'sfD (red curves) and (b) pwfD, 

p'wfD (red curves) and the corresponding exact solutions from inverse Laplace 

transform (black dashed curves) for Scenario 2 of one-term asymptotic 

approximation 

 

Scenario 3 Combining pressure drop and pressure evolution equations, 

eliminating  0A t , we obtain a 1st order ODE of 
wfp  as: 

   1 2 0
wf

wf

d p
fun t fun t p

dt


    (3.64) 

where the prefactor functions are: 

 

 

01

2 1

fun t W

fun t




 

 (3.65) 

Together with the initial condition  0 0wfp  , the ODE can be solved directly for .wfp  

Then, 
wfd p dt  can be estimated accordingly. Next, 

sfq  can be obtained using PSS 

boundary condition and 
sfdq dt  is calculated accordingly. Finally,  0A t  can be 
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determined by pressure evolution equation. This approach always yields 0wfp   and 

sf wq q , and thus it cannot be used for analysis. 

A summary of all the different scenarios of wellbore storage case with 1-term 

asymptotic solution is listed in Table 3.2. Based on the demonstrations for these scenarios, 

only the first one out of three scenarios of the one-term asymptotic approximation could 

be used for variable rate/BHP drawdown analysis. 

 

Wellbore Storage 

(1-term) 
Scenario 1 Scenario 2 Scenario 3 

sf n n

n

q A V      

t wf n n

n

c p A W      

0

wf

t

d p
c A

dt



    

  10
sfdq

w A
dt

      

PSS Boundary 

Condition (ODE) 
   

Solution 

Quality 
 Poor Bad 

Table 3.2 Summary of equations to be solved in each scenario of wellbore storage 

cases with 1 asymptotic term 

 

3.2.3.4 Discussion on Number of Terms  

So far, we have tested the asymptotic solutions for fixed rate drawdown, fixed BHP 

drawdown, as well as wellbore storage cases with 1, 2, or 3 asymptotic terms. Table 3.3 
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summarizes the combinations of equations that provided the best solutions for these cases. 

The table lists five equations that we have worked with. The gray/white grid blocks mean 

the corresponding equation is included/excluded from the calculation. For the solution 

quality, red/orange/green is used for the qualitative assessments as bad/poor/good. For 

fixed rate drawdown,  1A t  must vanish and  0A t  will describe the pressure transient at 

the wellbore and in the reservoir. For fixed BHP drawdown in the absence of skin,  0A t  

must vanish and  1A t  will describe the rate transient at the wellbore and in the reservoir. 

The boundary condition and the time derivative of boundary condition basically pin down 

 0A t  or  1A t  term or their combination. For wellbore storage case that include 

combinations of  0A t ,  1A t and  2A t , the  2A t  term is not anywhere near well-

determined and a lack of having a clear control on it is what damaged the solutions. Once 

we start invoking  2A t , it really get pretty unstable. For wellbore storage cases that 

include  0A t  or a combination of  0A t  and  1A t , we got a physical control via 

evaluating the evolution equation at the wellbore, so the best scenarios give accurate 

solutions. 

 



 

149 

 

 
Fixed Rate 

Drawdown 

(A0 only) 

Fixed BHP 

Drawdown  

(A1 only) 

WBS 

(1-term) 

WBS 

(2-term) 

WBS 

(3-term) 

sf n n

n

q A V        

t wf n n

n

c p A W        

0

wf

t

d p
c A

dt



      

  10
sfdq

w A
dt

        

Boundary Condition Algebraic Algebraic ODE ODE ODE 

Solution 

Quality 
     

Table 3.3 Summary of the combinations of equations that provided the best solutions 

for fixed and variable rate drawdown and the wellbore storage with 1, 2, or 3 

asymptotic terms 

 

Throughout the full exploration of different combinations of equations for 

asymptotic approximation with 1, 2, or 3 asymptotic terms, we can summarize the 

following useful conclusions:  

 The exploration of solutions demonstrates that the one-term asymptotic 

approximation provides a good solution for variable rate drawdown 

analysis. However, in all the cases examined, the two-term solutions more 

accurately represent the specific boundary conditions of each case (except 

for fixed BHP drawdown where only one-term is used). 
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  We should not go beyond the two-term asymptotic approximation to 

determine the unknown functions   nA t , since the higher order terms are 

not as well-determined as the lower order terms, damaging the solutions. 

 The evaluation expressions have time derivatives. We know that time 

derivatives may be good at many times, but not at all times. Once we 

integrate through time over the less accurate times, then the results are not 

accurate. This impacts 
sfdq dt  strongly and 

wfd p dt  too, but less 

strongly.  Thus, we should exclude them in calculations if possible.   

 

3.2.4 Superposition Time and Material Balance Time 

We have successfully extended the asymptotic solutions to the prediction of 

variable rate drawdown, given the function  w   in the last section. However, when 

interpreting field data, the  w   function is not known, and we must find other ways to 

solve the pressure and rate flow equations. The usual approach for variable rate field 

analysis is to obtain an equivalent fixed rate reservoir response through the use of 

superposition time or material balance time. Earlier in this chapter, we showed a new and 

general way of expressing the superposition time in terms of the drainage volume 

regardless of specific flow regimes. Now, we return to the behavior of superposition time 

in the context of the approximation    0dV t V t  which allows us to derive specific 

expressions for the superposition time. I will first show the specific forms of superposition 

time for some simple models. Then, I will develop the connection between superposition 
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time and material balance time, and compare their capabilities in removing variable rate 

effects. 

 

3.2.4.1 Superposition Time Functions for Simple Models 

Table 3.4 summarizes the standard results of superposition time functions for 

simple models, which can be derived from Eq. (3.16) by substituting the corresponding 

drainage volume expressions. In this table, one result that is useful to point out specifically 

is that superposition time  st  reduces to material balance time  et  for boundary 

dominated flow since then  d resV t V , and from Eq. (3.16) we have: 

 

   

 

 

 0

'1
'

t

w w ws e
s e

res w res w res res w

q t Q t Q tt t
dt t t

V q t V q t V V q t
       (3.66) 

In the following applications, both superposition time and material balance time 

will be calculated using the nominal variable rate production history information. Then 

the rate normalized pressure drop at all the locations can be further evaluated based on Eq. 

(2.58): 

 
 

 

     

 
0 0

0

, , ,1
,

s s s

sf w t s

p t p t W t W t
RNP t

q t q c V t

  


  
    (3.67) 

The effectiveness of superposition time and material balance time in handling 

variable rate drawdown problems will be tested in the next section. 
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 Infinite Acting 

Linear Flow 

(IALF)  

( )

1
1

1 ( )

N t

wi wi
s i

i wN t

q q
t t t

q







    

 

 Infinite Acting 

Radial Flow 

(IARF) 
 

 
 

( )

1
1

1

ln ln
N t

wi wi
s i

i w

q q
t t t

q t







    

 

 Infinite Acting 

Spherical Flow 

(IASF) 
 

 

( )

1

1 1

1 1N t

wi wi

i ws i

q q

q tt t t



 


 


  

 

 Boundary 

Dominated Flow 

(BDF) 
 

 

 
w

s e

w

Q t
t t

q t
   

 

Table 3.4 Standard results for the superposition time functions for multi-rate 

drawdown and simple models (reprinted with permission from Wang et al, 2017) 

 

3.2.4.2 Comparison Examples for Superposition Time and Material Balance Time 

After validating the effectiveness of solving variable rate drawdown problems by 

either using asymptotic approximations or with the theory of superposition in time, we 

now move one step further to test the effectiveness of superposition time which is defined 

based on asymptotic approximation. In this subsection, we want to test the effectiveness 

of the analysis that compensates for rate effects by plotting RNP against superposition 

time st  or material balance time et . Three test cases are infinite acting radial flow, 

bounded radial flow, and a case with an infinite conductivity fracture, respectively. Both 

the infinite acting and bounded radial flow results are generated by our fixed rate/BHP 

asymptotic solutions, and the derivation of the bounded radial flow will be shown later in 

this Chapter. The results of infinite conductivity fracture case are from ECLIPSE 

simulation. Unless otherwise noted, the parameters used in these examples are given in 

Table 3.5, which are largely taken from Bourdet et al. (1983). 
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 Property  Value  

 qw  184.44 bbl/day  

 Δpwf  500 psi  

 ϕ  0.25    

 ct  4.20×10-6 psi-1  

 h  107 ft  

 rw  0.29 ft  

 μ  2.5 cp  

 k  10.9 md  

 Vw  2210 bbl  

 S  7.7 -  

 xf  250 ft  

Table 3.5 Reservoir, fluid and wellbore parameters for infinite acting radial flow 

bounded radial flow, and a case with an infinite conductivity facture 

 

Infinite Acting Radial Flow  Figure 3.18 shows the comparison of 1 wfRNP  w.r.t 

time, superposition time, and material balance time for infinite acting radial flow with both 

fixed rate (red curves) and fixed BHP (green curves) drawdown. We observe that 

superposition time removes variable rate effects as expected and material balance time is 

also effective in reducing the deviation of fixed BHP drawdown from the reference fixed 

rate drawdown. Despite this being an infinite acting system, et  is also effective in reducing 

rate effects. 
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(a) Time (b) Superposition Time 

 

 

(c) Material Balance Time  

Figure 3.18 Comparison of 1/RNP vs. time, superposition time, and material balance 

time for infinite acting radial flow (reprinted with permission from Wang et al, 2017) 

 

Bounded Radial Flow  Figure 3.19 shows the comparison 1 wfRNP  w.r.t time and 

material balance time for bounded radial flow. We now focus on the comparison during 

boundary dominated flow where superposition time reduces to material balance time. 

Material balance time (superposition time) successfully removes the late time variable rate 

effects, although deviations are still visible at early time.  
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(a) Time (b) Material Balance Time  

Figure 3.19 Comparison of 1/RNP vs. time and material balance time for bounded 

radial flow (reprinted with permission from Wang et al, 2017) 

 

Infinite Conductivity Fracture  In the case with an infinite conductivity hydraulic 

fracture under fixed rate/BHP drawdown via ECLIPSE simulations, material balance time 

is still effective during boundary dominated flow as indicated by subplots (a) & (b) in 

Figure 3.20, where RNP welltest derivative is defined as 
 ln

wf

e

dRNP
RNP

d t
   and drainage 

volume is calculated as 
 
1 wf

t

d e

dRNP
c

V t dt
 . We observe that RNP, RNP' and drainage 

volume from fixed BHP drawdown match well with those from the actual fixed rate 

drawdown when they are plotting against et . During the transient period, the maximum 

deviation between fixed BHP and rate drawdown is less than 6%, as illustrated more 

clearly in the linear-linear scale in subplot (c). 
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(a) Diagnostic Plot (b) Drainage Volume (Log-Log) 

 

 

(c) Drainage Volume (Linear-Linear)  

Figure 3.20 Diagnostic plot and drainage volume vs. material balance time for the 

case with an infinite conductivity fracture (reprinted with permission from Wang et 

al, 2017) 

 

3.2.4.3 Comparison of Superposition and Material Balance Time 

Generally speaking, superposition time must always generate a more accurate 

transformation of production data to an equivalent fixed rate drawdown than material 

balance time, with the only exception being during boundary dominated flow where 

superposition time reduces to material balance time as demonstrated by Eq. (3.66) 

previously. However, since material balance time only relies on the production history, it 

is more generally applicable than superposition time. Therefore, it is important to know 
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the quality of the approximation we make when we use material balance time instead of 

superposition time. Here, we will show the comparison between the two using two models: 

infinite acting radial flow (IARF) and bounded radial flow (BRF) under fixed BHP 

drawdown. Bounded radial flow model consists of two flow regimes: infinite acting radial 

flow during early time and boundary dominated flow during late time. Different 

superposition times are calculated based on six models as listed in Table 3.6. Note that 

superposition time given by boundary dominated flow (BDF) is material balance time and 

we are going to test its performance as a general approximation of superposition time. 

The comparisons are displayed in Figure 3.21 and Figure 3.22 for infinite acting 

radial flow and bounded radial flow, respectively. Again, the boundary dominated flow 

(BDF) model gives material balance time ( )et  while the remaining models yield 

superposition time ( )st  for the corresponding flow geometries. To better illustrate 

material balance time as an approximation to superposition time, BDF model together with 

a reference model are extracted from subplot (b) and plotted again in subplot (a). In both 

cases, x-axis is the actual superposition time of the given flow regime, while y-axis is the 

superposition time calculated by various models. In Figure 3.21 (a), we observe that et  

(purple curve) is very close to the unit-slope black-dashed line with an accumulating 

derivation w.r.t. time, indicating that it generally serves as a good approximation of st  for 

IARF, especially during early period. On the contrary, st  from BRF (light blue curve) has 

an exact match with black-dashed line during infinite acting period and a large deviation 

when boundary dominated flow establishes, which is definitely not a good representative 
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of st  for IARF. The advantage of using et  as an approximation instead of wrongly 

choosing another flow geometry to calculate st  is more obvious in Figure 3.21 (b), where 

we can see a large deviation between st  from the wrong models and the black-dashed line 

only except for et  from BDF (purple curve). Similarly, in Figure 3.22 (a), we observe that 

et  (purple curve) is very close to the unit-slope black-dashed line especially during 

boundary dominated flow period, indicating that it generally serves as a good 

approximation of st  for BRF. On the contrary, st  from IARF (red curve) has an exact 

match with black-dashed line during infinite acting period and a large deviation from the 

black-dashed line when boundary dominated flow establishes, which is definitely not a 

good representative of st  for BRF. Again, the advantage of using et  as an approximation 

instead of wrongly choosing another flow geometry to calculate st  is more obvious in 

Figure 3.22 (b), where we can see a large deviation between st  from the wrong models 

and the black-dashed line only except for et  from BDF (purple curve). Therefore, using 

et  instead of st  is a safe and sufficiently accurate approach for production analysis, 

especially when we are uncertain about the flow geometry and observe a clear signal of 

boundary dominated flow from production data. 
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 Superposition Time Model   Abbreviation  

 Boundary Dominated Flow   BDF  

 Bounded Radial Flow  BRF  

 Infinite Acting Linear Flow  IALF  

 Infinite Acting Radial Flow  IARF  

 Infinite Acting Spherical Flow  IASF  

 Infinite Conductivity Fracture  ICF  

Table 3.6 Summary of the superposition time models and the corresponding 

abbreviations 

 

 

  
(a) BDF and BRF (b) All Models 

Figure 3.21 Comparison between superposition time calculated by various models 

and the actual superposition time for infinite acting radial flow (reprinted with 

permission from Wang et al, 2017) 
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(a) BDF and IARF (b) All Models 

Figure 3.22 Comparison between superposition times calculated by various models 

and the actual superposition time for bounded radial flow (reprinted with permission 

from Wang et al, 2017) 

 

3.2.4.4 Comparison of Asymptotic Approximation and Models Using Superposition 

and Material Balance Time 

As mentioned earlier, the multiple-term asymptotic approximation should be able 

to solve problem with any kind of inner boundary conditions, e.g., variable rate drawdown. 

By combining Eqs. (3.32) and (2.58), we may obtain the expression for rate normalized 

pressure drop at any location within the reservoir below. 

 
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 (3.68) 

Taking fixed BHP drawdown as an example, we know that 1( )A t  is the only nonzero term 

and Eq. (3.68) can be further simplified. 
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 Property  Value  Unit  

 Grid size  10×10×10  ft3  

 Grid number  51×51×1    

 h  10  ft  

 ϕ  0.3  -  

 k  0.5  md  

 μ  1.0  cp  

 
tc   1×10-5  psi-1  

 B  1.0  rb/bbl  

 
wr   0.5  ft  

 
fx   55  ft  

 
wfp   4500  psi  

Table 3.7 Reservoir, fluid and wellbore parameters for homogeneous radial flow with 

a fixed BHP drawdown in a rectangular reservoir 

 

Next, I will compare the results evaluated by three models: model with fixed BHP 

asymptotic approximation, model using superposition time for infinite acting radial flow, 

and model using material balance time. The test case is chosen to be a fixed BHP 

drawdown in a homogeneous rectangular reservoir and the model parameters are listed in 

Table 3.7. Figure 3.23 illustrates the RNP time derivative difference between ECLIPSE 

and the three models and Figure 3.24 displays the direct comparisons with cross plots. 

From these results, we observe that material balance time has a little bit worse but close 

performance as superposition time. They successfully capture the pressure front 

propagation generated by a fixed BHP production well. When BDF occurs, the accuracy 

of their RNP prediction decreases faster than the asymptotic approximation, while the 

latter will still yield a relatively more accurate RNP time derivative distribution. Generally 
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speaking, our asymptotic approximation has the best performance among the three 

models. 

 

t = 2.0 days: 

 
(a) Asymptotic (b) Superposition Time (c) Material Balance Time 

 

t = 2.8 days: 

 
(d) Asymptotic (e) Superposition Time (f) Material Balance Time 

 

t = 4.5 days: 

 
(g) Asymptotic (h) Superposition Time (i) Material Balance Time 

Figure 3.23 Comparison of difference of RNP time derivative between ECLIPSE and 

models using asymptotic, superposition time, and material balance time solutions for 

fixed BHP drawdown at various times (reprinted with permission from Wang et al, 

2017) 
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t = 2.0 days: 

 
(a) Asymptotic (b) Superposition Time (c) Material Balance Time 

 

t = 2.8 days: 

 
(d) Asymptotic (e) Superposition Time (f) Material Balance Time 

 

t = 4.5 days: 

 
(g) Asymptotic (h) Superposition Time (i) Material Balance Time 

Figure 3.24 Cross plots of RNP time derivative between ECLIPSE results vs. models 

using asymptotic, superposition time, and material balance time solutions for fixed 

BHP drawdown at various times (reprinted with permission from Wang et al, 2017) 
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3.3 Methodology: Extension to Bounded Reservoirs 

In this section, we will discuss how the no-flow outer boundary affects our solution 

and how the asymptotic approximation may be generalized to solve this problem. Let’s 

begin the discussion with a very simple but informative model, i.e., a multiple-well case, 

as an example to illustrate the performance of the asymptotic approximation in handling 

well interference. I will then use a composite reservoir to illustrate how to deal with the 

pressure front reflection and transmission at the interface of different media. Finally, 

bounded reservoir models will be investigated to see how the Fetkovich Type Curves will 

arise as a special case of our approach. 

 

3.3.1 Superposition in Space 

3.3.1.1 Multiple-Well Drainage Volumes 

In the presence of multiple wells, e.g., two wells in an infinite homogeneous 

reservoir as shown in Figure 3.25, the asymptotic approximation can be further extended 

based on superposition in space. 

     1 1 2 2, , ,p x t p t p t      (3.70) 

Take the derivative w.r.t time, we obtain that: 

     1 1 2 2, , ,p x t p t p t

t t t

   
 

  
 (3.71) 

The leading order asymptotic approximation for fixed rate drawdown for each well gives: 

   
 

   
 

 2
2 21

2
1 41 41 2 2

0 02 211

,
p pptp t t tw w

p

t

p

q t q t tp x t
c e e

t V t V t t

t

t

       
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 (3.72) 
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where, 01V  and 02V  represent the drainage volume 0V  of Well-1 and Well-2, respectively.  

Evaluating the expression at Well-1 
1( )pt t , we obtain: 

 
 
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e
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  

  
 (3.73) 

Similarly, evaluating the expression at Well-2  2pt t , we get: 

 
   
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q dt qV t t V t t V t t

  
  

  
 (3.74) 

where, 1dV  and 2dV  are the well drainage volumes obtained for each well individually.  

With these analytic solutions, we can calculate total drainage volume and distinguish the 

contribution of each individual well easily.  

 

 
Figure 3.25 Illustration of a two-well interference problem (reprinted with 

permission from Wang et al, 2017) 

 

Two-Well Interference Case To demonstrate the proposed expressions for 

multiple-well drainage volumes, I choose a two-well interference case and the 

homogeneous reservoir, fluid and wellbore parameters are listed in Table 3.8. As shown 
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in Figure 3.26, two vertical producers are 550 ft away from each other 

1/2

12 12( 117.6 )L hr    and they have different production schemes: Well-1 starts 

producing at the beginning with a constant production rate and Well-2 will be opened for 

production 5 days later with a rate 4 times larger than Well-1. Simulation stops before the 

pressure front reaches the reservoir boundary, so the entire production is under infinite 

acting radial flow  

Drainage volumes of each individual well obtained from asymptotic solutions as 

well as ECLIPSE simulation results are shown in Figure 3.27. The ECLIPSE drainage 

volume is estimated by 
 
1 wft

d w

d pc

V t q dt


 . From the subplots (a) and (b), we observe that 

the drainage volume of the producers match well with ECLIPSE results in both log-log 

scale and linear-linear scale plots. Another observation is that well interference occurs at 

around 40t days , when the drainage volume of Well-1 increases slower than before in 

subplot (b). This time matches with the time of limit of detectability when pressure front 

from Well-2 arrives at Well-1 which can be estimated as 

2

1 1 12 16 41 .LODt t t t days      
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Figure 3.26 Illustration of the pressure distribution during well interference 

(pressure distribution at t = 40 days) of a two-well model 

 

 Property  Value  Unit  

 Grid size  5.5×5.5×10  ft3  

 Grid number  399×399×1    

 h  10  ft  

 ϕ  0.03  -  

 k  0.005  md  

 μ  0.2  cp  

 
tc   1×10-5  psi-1  

 B  1.0  rb/bbl  

 
wr   0.5  ft  

 
1wq   0.3  bbl/day  

 
1pt   0  day  

 
2wq   1.2  bbl/day  

 
2pt   5  day  

Table 3.8 Reservoir, fluid and wellbore parameters for a two-well model 
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(a) Log-Log Scale (b) Linear-Linear Scale 

Figure 3.27 Comparison of fixed rate drawdown solutions in a bounded reservoir: 

asymptotic solutions (dash) with reference solutions (solid) in (a) log-log scale and 

(b) linear-linear scale 

 

3.3.2 Generalized Asymptotic Solution to Bounded Reservoirs 

In the discussion of the validity of the asymptotic pressure approximation we noted 

that  w   should be sufficiently smooth and bounded: 
 ln

0
ln

d w

d





 
 

 
. However, for 

calculations with finite reservoirs  w   may decrease with  as the reservoir boundary is 

reached. For examples where  pV   and  w   are calculated by the FMM, or for 

composite reservoirs, they need not be smooth. In these cases we need to extend the form 

of the asymptotic pressure approximation. 

 

3.3.2.1 Spatial Discontinuities 

The exponential in Eq. (3.27) represents a pressure front moving outwards from 

the producing well, causing depletion in the reservoir. In electromagnetic wave 
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propagation, this corresponds to a transmitted front which is refracted through the medium 

(Jackson, 1998). A more complete solution should also consider reflection. In general, 

reflection from sharp changes in material properties are one of the instances where the 

transverse flux terms in the Darcy velocity are no longer negligible. However, we will 

restrict our current analysis to situations where the material changes are assumed to lie 

along  contours, in other words,  w   may be discontinuous. 

At a material boundary, the pressure and the normal component of the velocity 

must be continuous. We may express the continuity requirements in terms of pressure and 

flux, although it is simpler for us to work with the continuity of their time derivatives. 

 0 0
p q

and where discontinuity
t t

    
         

 (3.75) 

For a two-domain problem in an infinite reservoir, the fundamental equation has now been 

modified. 
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Here, R  and T  are reflection and transmission coefficients, respectively, and d  is the 

DTOF at the discontinuity in    .w   From Darcy’s flux, we may also calculate the time 

derivative of the flux. 
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Note that the functional form of the reflected front has been chosen so that 

 
2 22 /4 /4d t te e

      at the discontinuity. The two continuity requirements determine R  

and T . 
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The reflection coefficient varies between -1 and +1. The transmission coefficient is 

bounded between 0 and 2, and is always positive. For smooth properties, 0R   and 1T  . 

The formulation has an intuitive interpretation, as shown in Figure 3.28. The 

outwardly moving transmitted front originates at 0  , while the second exponential may 

be interpreted as a backwards moving front propagating from 2 d  . Although the 

amplitude of the outwards moving front may be modified at a material boundary, its 

contribution to the pressure drop always remains positive. In contrast, the reflected front 

may interfere either constructively or destructively with the transmitted front. For instance, 

to model a constant pressure boundary at d  , we have 0
p

t





 and 1R   . The 

reflected front acts like an injector and maintains the boundary pressure. In contrast, to 

model a constant no flow boundary at d  , we have 0
q

t





 and 1R   . The reflected 

front now enhances the pressure drop. The two-domain formulation has essentially 

introduced variable strength image wells into the solution. 
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Figure 3.28 Illustration of the pressure front interaction at the interface between 

porous media (reprinted with permission from Wang et al, 2017) 

 

From Eq. (3.76) we can evaluate the pressure drop at the wellbore. We have a 

second transient within the inner region which initially vanishes at the wellbore but which 

will eventually impact the measured pressure drop. This serves to re-define the drainage 

volume,  dV t , which in this case is related to but is not equal to  V t . 
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We also must revise the expression for  V t . 
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 (3.81) 

This follows from the flux integral. We will examine the resulting estimate of the drainage 

volume as part of the discussion of bounded reservoirs, below. 
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We now have two implementations of the asymptotic pressure approximation. If 

 w   is sufficiently smooth and not decreasing, then we may utilize the single domain 

formulation. Otherwise, the two-domain implementation will capture the contributions 

from the backwards moving front. This methodology can be extended to multiple large 

changes in  w  , however, in that case, the multiple jumps interact and the reflection and 

transmission coefficients become time dependent. In such a case it is recommended to use 

a numerical solution for the diffusivity equation instead of the asymptotic approximation. 

 

3.3.2.2 Composite Reservoirs 

Radially composite reservoirs arise in a number of field situations where the 

change of diffusivity is usually due to fluid or formation damage effects. Examples include 

heavy oil water injection, gas condensates, or a near-well “thick skin” region of formation 

damage (Muskat, 1949; Hawkins, 1956; Satman et al., 1980; Gringarten et al., 2000). In 

the following we test our solutions and utilize the solutions (numerical inverse Laplace 

transform) of Satman et al. (1980) for heavy oil water injection as the reference solutions. 

The calculations are performed for radial flow with a fixed rate drawdown and a 

finite wellbore radius,  2 2

p wV r r h   . We define the mobility ratio, M , as the ratio 

of the permeability in the inner region to the outer region, which will also be the ratio of 

inner to outer diffusivity, i M   . In the inner region, 
1

i

d

dr




 , while in the outer 

region, 
1d

dr




 . Hence, in the notation of the composite solution above, 
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Left Rightw M w  , to give the following expressions for the reflection and transmission 

coefficients. 

1 2

1 1

M M
R T

M M


 

 
 (3.82) 

 

  
(a) (b) 

Figure 3.29 Comparison of composite reservoir solutions (dash) with reference 

solutions (solid), dimensionless with respect to the inner region properties (reprinted 

with permission from King et al., 2016) 

 

The solutions have been described in the section on composite reservoirs, above. 

The comparison with the reference solutions are in Figure 3.29 and Figure 3.30. Overall 

the solutions show good agreement. The timing of the transition from inner to outer is well 

captured. Generally the solutions for 1M  , corresponding to reduced permeability in the 

outer region, are better than the solutions for 1M  . This may indicate that our current 

methodology is better at representing no flow boundaries than constant pressure 

boundaries. 
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(a) (b) 

Figure 3.30 Comparison of composite reservoir solutions (dash) with reference 

solutions (solid), dimensionless with respect to the outer region properties (reprinted 

with permission from King et al., 2016) 

 

In Figure 3.29, where the solutions are referenced to the inner region properties, 

the early time solutions are independent of M , and they are identical to infinite acting 

radial flow. Once the pressure front reaches the region boundary, three cases arise. If 

1M  , there is no change in properties. The solution continues to follow the infinite acting 

radial flow. Otherwise, when 1M   we have a reduction of permeability in the outer 

region, and the pressure drop increases relative to 1M  . The welltest derivatives are 

perhaps more informative; at late time they show the signature of infinite acting radial 

flow but now for a decreased permeability. The opposite trend is seen for 1M  . The 

timing of the transition from inner to outer region is identical in each calculation, as 

expected, since the time of propagation of the reflected front depends solely upon inner 

region properties 
2

2
,i i

D D

w t w

k h p k t
p t

q B c r



 

 
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 
. In Figure 3.30, the same data is plotted, 
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but now made dimensionless with respect to the outer region properties 

2

2
,D D

w t w

kh p kt
p t

q B c r



 

 
  

 
. For instance, this is how a thick region of skin would be 

analyzed. Comparison of the pressure drops show that for 1M   we have positive skin, 

and negative skin for 1M  , as expected. 

 

3.3.2.3 Bounded Reservoirs and Generalized Drainage Volume 

Fixed rate drawdown in a finite bounded reservoir is a special case of the 

composite reservoir with a no flow boundary at res  , i.e., for 1R  . The reference for 

this calculation follows Van Everdingen and Hurst (1949). 

Figure 3.31 demonstrates excellent consistency with the reference solution. In 

these plots the reference solutions are the solid lines and the asymptotic pressure 

approximation are the dashed lines. Figure 3.31 (a) and (b) are plots of the pressure drop 

and the welltest derivative, respectively. The size of the reservoir, eD res wr r r , is made 

dimensionless with respect to the wellbore radius. Time is made dimensionless with 

respect to the wellbore area, 2

wr . A value of 10eDr   is an exceptionally small reservoir, 

and the solution rapidly transitions from a finite wellbore radius  ~solution t  to 

boundary dominated flow  ~solution t . The period of the transition beyond infinite 

acting radial flow is best observed in the welltest derivative, Figure 3.31 (b). At a value of 

510eDr   there is a clear period of radial flow before the onset of boundary dominated 

flow. 
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(a) (b) 

Figure 3.31 Comparison of fixed rate drawdown solutions in a bounded reservoir: 

asymptotic solutions (dash) with reference solutions (solid) (reprinted with 

permission from King et al., 2016) 

 

The bounded reservoir case also provides insight as to the calculation of the 

drainage volume. If we return to Eq. (3.77) for the flux derivative in a composite reservoir, 

we have two terms corresponding to the outwardly and inwardly directed fronts. The 

contribution from the outwardly directed front is proportional to , and so we may 

consistently impose a fixed rate drawdown at the well, 0  . However, the reflected front 

is proportional to  2 res  . Once the reflected exponential becomes appreciable, the 

equations no longer support a fixed rate. This may be resolved through the use of an 

additional image well, this one located at 2 res   . This additional delayed outward front 

will cancel the reflection at the wellbore, but it itself will need to be cancelled at the outer 

no flow boundary. As a consequence we now have an infinite series of image wells. 

   
2 22 2 2 4 2 44 4 res rest tt te e e e

            (3.83) 
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This changes the definitions for  V t  and for the drainage volume,  dV t . 

        

     

2 22

2

2 4 2 44

0

1 2

res

res r

r

es

es

t tt

t

d

V t d w e e e

V t V t e





 





 
   





    

  


 (3.84) 

If we extend the definition of  w   beyond res  , then we may simplify the expression 

for  V t . 

   

   

     
2 4

0

0

2 2

2 2

t

res res res

res res

w w

w w

V t V t d w e 



    





  








   

  

  

 (3.85) 

 

 
 

(a) (b) 

Figure 3.32 Drainage volume calculations (reprinted with permission from King et 

al., 2016) 

 

Analysis shows that both  V t  and the denominator in the expression for  dV t  

scale as t  for large t, with the ratio approaching the pore volume of the reservoir. This 

is shown in Figure 3.32. 
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In Figure 3.32 (a) we plot both  V t  and  dV t , Eq. (3.84), with the reservoir 

volume as the reference. Figure 3.32 (b) contrasts the calculation of the drainage volume 

from Eq. (3.84), and includes the 1, 2 and 3 term approximations. We see that the one term 

approximation shows the impact of the finite size of the reservoir at earlier times than the 

full expression. Once we reach two terms, we have a good approximation. Once we have 

three terms, the approximation is excellent. The second and third terms are of the same 

magnitude at the wellbore, and so including both terms in the drainage volume calculation 

provides a consistent approximation. We see that the application of an infinite series to 

model a bounded reservoir does not appear to be necessary. 

 

3.3.2.4 Generalized Asymptotic Solution 

We can develop additional transient asymptotic solutions that satisfy different 

choices of boundary conditions through the more general form as well as the time 

derivative of the flux following Eq. (3.77): 

   
1

,
( )

t

p q
c A t K t

t w


 

 
   

 
 (3.86) 

     
 ,

t

K tq p
w c A t w

t t


 

 

   
   

    
 (3.87) 

This allows us to provide closed form solutions for both pressure and rate transient 

solutions, in both infinite and bounded reservoirs. As before, the function  A t  is to be 

determined subject to the initial and boundary conditions. Depending upon the specific 

boundary conditions, the equation for  A t  may be algebraic or it may be an ODE. Here, 
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 ,K t  is the diffusion kernel. Its form depends upon the inner and outer boundary 

conditions for each problem, but not the flow geometry, as summarized in Table 3.9. 

 

 
 ,K t   

Infinite 

Domain 

Bounded Reservoir:  

No Flow @ res   

 

 Fixed Rate  

@ 0   

2 4te 
 

   
2 22 2 /4 2 /44 ...res rest tte e e

            
 

 

Fixed BHP  

@
wf   

 
2

4

4

wf te
t

  
 

     

   

22

2

2

4 4

2 3

4

2

4 4

2 3
...

4

res

res wf

wf res wft t

res wf t

e e
t t

e
t

 

  

    

  


 

 


  


 
  

 

 

Table 3.9 Diffusion kernels for different inner and outer boundary conditions 

 

For instance, the kernel for fixed rate solutions ensures that 0q t    at a specific 

boundary. The example has already been given in Eq. (3.87) where 

 

 

2 4

2

w t
q wq

e
t V t t

  
  


, which must vanish at 0,   irrespective of the form of  w  . 

For bounded reservoirs with no flow outer boundaries, again 0,q t    but now at 

res  . The approximations to the kernels for bounded systems should always have an 

odd number of terms, since every pair of terms are of the same magnitude at the inner 

boundary, where we will measure and reference the solution. Although bounded systems 

require an infinite number of terms for an exact solution, the current solution methodology 

provides excellent approximations with the three terms shown. This is because the solution 

will be a ratio of infinite sums, as shown in the next examples. 
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Transient Analysis: Infinite Reservoirs with Fixed Rate or Fixed BHP 

Drawdown The solutions for infinite reservoirs are identical to those developed above, 

with the trivial modifications: 

     

   
0

, ,

,res

V t d w K t

V t V t

   




 (3.88) 

 
 

    

   

, ,

,

wf

res

d
W t V t V t

w

W t W t






 






 






 (3.89) 

     

   

, ,

,

wf

res

X t d w W t

X t X t





  



  




 (3.90) 

 
 

 

 

 

 
 

 

   

 

1

, ,1
,

wf

wf

w t

w t

p t W t
RNP t

q t c V t

p t W t W t
RNP t

q t c V t

 



 

 
 

 (3.91) 

Two cases arise. If we have a fixed rate drawdown, then the expression for 

 wfRNP t  predicts  .wfp t  Alternatively, if the BHP is fixed, then we have a prediction 

for the decline rate,  wq t . The expression for  ,RNP t  is useful when evaluating 

interference effects between multiple wells. 

Transient Analysis: Bounded Reservoirs with Fixed Rate or Fixed BHP 

Drawdown The bounded reservoir cases we will examine will have a no flow outer 

boundary at res   and either fixed rate or fixed BHP boundary conditions at the 
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wellbore, 0  . Again, the solution will be expressed for an arbitrary geometry. It is very 

important as it demonstrates how to extend the classic transient PTA/RTA boundary 

dominated DCA to the transition between infinite acting and boundary dominated flow 

and that it does this for arbitrary geometry. However, special cases of our results 

correspond to Fetkovich’s work on bounded radial flow (Fetkovich, 1980) and 

Wattenbarger’s work on bounded linear flow (Wattenbarger et al., 1998).  

The solutions are similar to those given above. Again, we will use the outer 

boundary of the reservoir as the reference for the flux integration. However, since the 

pressure drop at the outer boundary is not known, we will instead reference the pressure 

drop to the bottomhole flowing pressure drop. 

   
 

 

,
, 1w

V t
q t q t

V t




  
  

  
 (3.92) 

   
 

 

,
, w

wf

t

W tq
p t p t

c V t


     (3.93) 

To solve for  wfp t  in an unbounded reservoir we can take the limit of this equation to 

large   where  , 0p t  . However, for bounded reservoirs we do not have this 

relationship but we can instead relate the pressure solution to the average reservoir 

pressure drop, which is itself related to the cumulative production and the pore volume of 

the reservoir.  
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 
 

   

 

0

0

res

w

t res

w w

t

res

Q t
p t

c V

Q t dt q t

V w d





 





 


 







 (3.94) 

After some manipulation: 

 
 

 
w

wf

t res

X tq
p t t

c V V t

  
   

   
 (3.95) 

There are a number of useful results we can obtain from this relationship. First, we 

can use this solution to provide an extension of the definition of the well productivity, J  , 

to include the transient period before PSS or boundary dominated flow.. Just as we 

previously extended the definition of the drainage volume of the well from PSS to transient 

flow, this is a transient extension for the well productivity. This expression will reduce to 

a constant well productivity in the long time (BDF or PSS) limit. 

 

 

 
1 1wf

w t res

p p X t

J t q c V V t

 
 


 (3.96) 

These solutions have been written in the form where in the limit of infinite reservoir 

volume they will reduce to the previous expressions. 

These last two expressions may also be combined in the form of the flowing 

material balance relationship. 

 

 
 

 w w

wf

t res

q t Q t
p t

J t c V
  


 (3.97) 
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The ultimate (technical limit) recovery is obtained in the limit 0wq   for a specified 

wfp . 

wf t resUR p c V     (3.98) 

The economic limit (EUR) is obtained from the same expression with a cutoff value for 

wq . 

1
1 w

wf cutoff

q
EUR UR

J p

   
         

 (3.99) 

The general form of these solutions are applicable for either fixed rate or fixed BHP 

drawdown at the wellbore. 

Pressure Transient Analysis: No-Flow Outer Boundary Reservoir with Fixed 

Rate Drawdown  This case has a fixed flow rate so that  w wq t q  and  w wQ t q t  . 

From Eq. (3.97) we have an algebraic solution. 

 
 

 
1wf

wf

w t res

p t t
RNP t

q c V J t


  


 (3.100) 

In the long time limit   PSSJ t J  and 1 1wfRNP t , recovering the Arps 1b   solution 

(Arps, 1945). Fetkovich studied these solutions for radial flow (Fetkovich, 1980), and this 

is one of the cases studied by Wattenbarger for linear flow (Wattenbarger et al., 1998).  

It is important to return to our definition of the drainage volume. From the form of 

the solution to Eq. (3.86) with fixed rate drawdown, we now have a modified expression 

for the drainage volume. 
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 

 

 
     

0,1
0,

wft
d

d w

d p K tc
or V t V t K t

V t q dt V t


    (3.101) 

In other words, it is only after being properly normalized that  V t  can be interpreted as 

the drainage volume. All physical quantities are expressed as rational functions involving 

the diffusion kernel, which is why the three term approximation to the infinite sum of the 

kernel is as accurate as it is. These expressions may also be evaluated in the limit of an 

infinite reservoir, where only a one term diffusion kernel will arise. 

Rate Transient Analysis: No-Flow Outer Boundary Reservoir with Fixed BHP 

Drawdown  These cases have a variable flow rate so that  w wq t dQ dt . From Eq. 

(3.97) with a fixed BHP pressure drop, we now have an ODE for the cumulative 

production. 

 
1 1w

w wf

t res

dQ
Q p

J t dt c V
  


 (3.102) 

The solution may be expressed in terms of material balance time, et . 

 
   

1wf e w
wf e

w t res w

p t Q
RNP t where t

q t c V J t q


   


 (3.103) 

The solution may be obtained in the long time limit where   BDFJ t J  and we recover 

an exponential decay with decline rate of BDF

t res

J
D

c V



. This is the Arps 0b   solution 

(Arps, 1945).  

This expression is closely related to the expression for the rate normalized pressure 

drop for a fixed rate drawdown, although the diffusion kernels are different in these two 
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cases. If we approximate superposition time by material balance time, then this solution 

provides the following approximate expression for the transient drainage volume. 

   
1 1 1wf

t t

d e e res e

dRNP d
c c

V t dt V dt J t

 
      

 
 (3.104) 

This correctly reduces to the pore volume of the system once the transient terms become 

negligible. This approach is closely related to the calculation of the welltest derivative in 

production analysis by Song and Ehlig-Economides (2011). 

Bounded Radial Flow and Comparison to Fetkovich Type Curves Before 

explaining the results, let’s briefly review the key features of the Fetkovich Type Curves 

as illustrated in Figure 3.33. The transient period (red curves on the left portion) is 

generated by Fetkovich using the exact solution of bounded radial flow with various 

reservoir sizes and the BDF period (blue curves on the right portion) is obtained through 

Arps’ decline curves with the exponential decline curve at the leftmost and harmonic 

decline curve at the rightmost and the rest are all hyperbolic decline curves. The two series 

of dots are calculated by asymptotic approximation with fixed rate (orange dots) and fixed 

BHP (green dots) drawdown. We observe that the exponential decline corresponds to 

constant pressure drawdown while harmonic decline corresponds to constant rate 

drawdown, as expected. By adding additional exponential terms (reflections), we have the 

analytic solution which covers the entire period: transient, transition, and BDF. This 

means that our approach can be further used for EUR predictions. 
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Figure 3.33 Comparison of Fetkovich Type Curve and analytic solutions (reprinted 

with permission from King et al., 2016) 

 

Next, it is important to know the number of exponential terms that is necessary to 

obtain a sufficiently accurate result. For example, Figure 3.34 shows the comparison of 

using 1-exponential, 2-exponential, 3-exponential, and inf-exponential term asymptotic 

approximations when determining the distance to boundary for fixed rate drawdown with 

bounded radial flow. It is obvious that by using only one exponential term (without 

considering any front reflection at the outer boundary), we tend to have an earlier boundary 

effect as well as an underestimation of the drainage volume. If we use two exponential 

terms (considering one reflection at the outer boundary), the timing of the boundary effect 

seems fine although there will be an overshoot of the computed drainage volume during 

the transition period. Through comparison, three-exponential term is an excellent 

approximation of inf-exponential terms. Furthermore, three-exponential term also satisfies 

the fixed rate condition as what has discussed before. 
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Figure 3.34 RNP' and drainage volume vs. time calculated using asymptotic 1-

exponential, 2-exponential, 3-exponential, and inf-exponential term approximations 

for bounded radial flow (reprinted with permission from Wang et al, 2017) 

 

  
(a) ECLIPSE (b) 1-Exponential Term 

  
(c) 3-Exponential Term (d) Inf-Exponential Term 

Figure 3.35 Comparison of pressure drop time derivative distribution calculated 

from ECLIPSE and the asymptotic 1-exponential, 3-exponential, and inf-exponential 

term solutions for bounded radial flow (transition period) (reprinted with permission 

from Wang et al, 2017) 

 

1 term

too early

2+ terms
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(a) 1-Exponential Term (b) 3-Exponential Term (c) Inf-Exponential Term 

Figure 3.36 Comparison of pressure drop time derivative difference between 

ECLIPSE and asymptotic 1-exponential, 3-exponential, and inf-exponential term 

solutions for bounded radial flow (transition period) (reprinted with permission 

from Wang et al, 2017) 

 

A comparison between asymptotic approximation with various terms and 

ECLIPSE results will provide a proof of the claims above. Figure 3.35 and Figure 3.36 

show the comparison of pressure drop time derivative distribution during transition period 

and Figure 3.37 and Figure 3.38 display the comparison during BDF period. The 

observation is what has been expected, i.e., the 1-exponential term asymptotic solution 

has the largest deviation while inf-exponential term asymptotic solution has the smallest 

derivation from the ECLIPSE results during the whole simulation period. 3-exponential 

term solution is an excellent approximation to inf-exponential term, with small mismatch 

during transition period, as shown in the linear-linear scale drainage volume plot in Figure 

3.39. 
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(a) ECLIPSE (b) 1-Exponential Term 

  
(c) 3-Exponential Term (d) Inf-Exponential Term 

Figure 3.37 Comparison of pressure drop time derivative distribution calculated 

from ECLIPSE and asymptotic 1-exponential, 3-exponential, and inf-exponential 

term solutions for bounded radial flow (BDF period) (reprinted with permission 

from Wang et al, 2017) 

 

   
(a) 1-Exponential Term (b) 2-Exponential Term  (c) Inf-Exponential Term 

Figure 3.38 Comparison of pressure drop time derivative difference between 

ECLIPSE and asymptotic 1-exponential, 3-exponential, and inf-exponential term 

solutions for bounded radial flow (BDF period) (reprinted with permission from 

Wang et al, 2017) 
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(a) (b) 

Figure 3.39 Comparison of drainage volume vs. time (in log-log and linear-linear 

scale, respectively) between ECLIPSE and asymptotic 1-exponential, 3-exponential, 

and inf-exponential term solutions for bounded radial flow (reprinted with 

permission from Wang et al, 2017) 

 

3.3.3 EUR Prediction 

After exploring effect of the number of exponential terms on the accuracy of 

asymptotic solutions, we can further use it together with a specific forward model,   ,w   

to predict production performance and further estimate EUR. As illustrated in Figure 3.40, 

1 wfRNP  is plotted against wQ  and the PSS/BDF portion of data is fitted using a straight 

line. The EUR prediction is the x-axis value of the intersection between the straight line 

and 1 wfRNP  cutoff. The field application will be shown in the next chapter. Here, I would 

like to simply validate the asymptotic solutions with several synthetic forward models. 
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Figure 3.40 Illustration of EUR prediction 

 

3.3.3.1 Forward Model Validation 

In order to validate the proposed asymptotic pressure approximation, I will show 

the comparison between our solutions to the following ECLIPSE models: bounded radial 

flow (BRF) and bounded linear flow (BLF). 

 

  

(a) (b) 

Figure 3.41 Model overview of (a) bounded radial flow and (b) bounded linear flow 

(reprinted with permission from Wang et al, 2018) 
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 Property  Value  Unit  

 h  100  ft  

 
resr   255  ft  

 
resV   6.21×105  ft3  

 k  500  nd  

 ϕ  0.03  -  

 μ  0.2  cp  

 
tc   1×10-5  psi-1  

 B  1.0  rb/bbl  

 
wr   0.5  ft  

 
wq   0.03  bbl/day  

 
wfp   4500  psi  

 
prodt   1500  day  

Table 3.10 Reservoir, fluid and well properties of the bounded radial flow model 

(reprinted with permission from Wang et al, 2018) 

 

Bounded Radial Flow Both fixed rate and fixed BHP drawdown cases are 

modeled using the ECLIPSE reservoir simulator (Cartesian grid with inactive cells outside 

resr ) as well as the 1-exponential term and the 3-exponential term diffusion kernels (Eq. 

(3.100) for fixed rate and Eq. (3.102) for fixed BHP). The model is shown in Figure 3.41 

(a) and properties are listed in Table 3.10. The analytic solution in terms of   is obtained 

from the equation for the pore volume,  2 2

p wV r r h   , and from the solution to the 

Eikonal equation for a homogeneous medium,  wr r   , where tk c   is the 

diffusivity. res  is calculated from the distance to the boundary of the reservoir as 

 rres es wr r  . It will be used in the diffusion kernel as well as the upper limit of 

integration for the bounded reservoir solutions. The results are displayed in Figure 3.42, 

where the black dashed line is the linear regression line using ECLIPSE data during the 
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boundary dominated flow (BDF) period. The regression formula is also provided in the 

plot: for fixed rate, the slope is 1 t resc V  and can be used to estimate a reservoir pore 

volume of 5 36.20 10BDFPV ft  . For fixed BHP, the x-intercept is the estimate of 

ultimate recovery, 4 32.76 10BDFUR ft  . These estimates, as listed in Table 3.11, and are 

very close to the model 5 36.21 10resV ft   and theoretical 

4 32.79 10wf t resUR p c V ft      . 

 

  
(a) (b) 

Figure 3.42 ECLIPSE and asymptotic approximation results of bounded radial flow 

with (a) fixed rate and (b) fixed BHP drawdown (reprinted with permission from 

Wang et al, 2018) 

 

From Figure 3.43, we observe that the asymptotic approximation results match 

well with those from the ECLIPSE simulator, at both early and late time: our method of 

analysis is not restricted to BDF flow, but also captures the early time transient. Another 

observation is that both the 1-exponential term and the 3-exponential term diffusion 

kernels generate very similar 
wfp and 

wfRNP  results. However, a more detailed 
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examination of the drainage volume and the welltest derivative, both of which depend 

upon the time derivatives of the solution, show a better correspondence with the ECLIPSE 

reference solution with the 3-exponential term solution (Wang et al., 2017). 

 

 

 
Fixed Rate Drawdown  Fixed BHP Drawdown 

 

 Property  Value  Unit  Property  Value  Unit  

 Slope  0.9049  psi/stb  Slope  -6.54×10-8 1/psi/day  

 y-intercept 92.994  psi/stb  x-intercept 4920  stb  

 PVBDF  6.20×105  ft3  y-intercept 3.22×10-4 stb/psi/day  

       J  3.22×10-4 stb/psi/day  

       URBDF  2.76×104  ft3  

Table 3.11 Fixed rate and BHP drawdown results of bounded radial flow (reprinted 

with permission from Wang et al, 2018) 

 

Bounded Linear Flow Both fixed rate and fixed BHP drawdown cases are 

modeled using the ECLIPSE reservoir simulator as well as the 1-exponential term and the 

3-exponential term diffusion kernels. (Eq. (3.100) for fixed rate and Eq. (3.102) for fixed 

BHP). The model is shown in Figure 3.41 (b) and properties are listed in Table 3.12. The 

analytic solution in terms of   is obtained from the equation for the pore volume, 

pV rA , and from the solution to the Eikonal equation for a homogeneous medium, 

r  , res  was calculated from the distance to the reservoir boundary using 

2res resL  . It will be used in the diffusion kernel as well as the upper limit of 

integration in the solution integrals. The properties in the well cell of ECLIPSE were 

modified (permeability was increased and porosity was reduced) to minimize the impact 

of the Peaceman radial flow well connection factor on linear flow during the early transient 
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period. The results are displayed in Figure 3.43. Analysis gives that for the fixed rate, the 

estimated reservoir pore volume is 4 39.72 10BDFPV ft  , and for fixed BHP, the estimate 

of ultimate recovery is 34340 .BDFUR ft  These estimates, as listed in Table 3.13, are 

close to the actual model values of 4 39.9 10resV ft   and theoretical 

34460wf t resUR p c V ft     . Similar to bounded radial flow, we once again observe that 

the asymptotic approximation yield results matching well with those from ECLIPSE 

simulator and that both the 1-exponential term and the 3-exponential term diffusion kernel 

approximations generate very similar 
wfp and 

wfRNP  results. 

 

 

 
Property  Value 

 
Unit 

 

 
resL   300  ft  

 
resw   110  ft  

 
fx   55  ft  

 
resV   9.9×104  ft3  

 
wq   0.3  bbl/day  

 
prodt   1200  day  

Table 3.12 Reservoir, fluid and wellbore properties of the bounded linear flow model 

(all other parameters are the same as the BRF model)  
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(a) (b) 

Figure 3.43 ECLIPSE and asymptotic approximation results of bounded linear flow 

with (a) fixed rate and (b) fixed BHP drawdown (reprinted with permission from 

Wang et al, 2018) 

 

 

 
Fixed Rate Drawdown  Fixed BHP Drawdown 

 

 Property  Value  Unit  Property  Value  Unit  

 Slope  5.7771  psi/stb  Slope  -1.35×10-6 1/psi/day  

 y-intercept 230.4  psi/stb  x-intercept 773  stb  

 PVBDF  9.72×104  ft3  y-intercept 1.04×10-3 stb/psi/day  

       J  1.04×10-3 stb/psi/day  

       URBDF  4340  ft3  

Table 3.13 Fixed rate and BHP drawdown results of bounded linear flow (reprinted 

with permission from Wang et al, 2018) 

 

3.4 Discussion 

From fixed or variable rate drawdown cases, we can see that one term asymptotic 

solution is almost always adequate to provide accurate approximations to the infinite 

asymptotic series.  0A t  only vanishes in a single specific case (fixed BHP drawdown), 

and in that case  1A t  will be the leading term in the asymptotic expansion. However, in 
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all the other cases  0A t  is the leading term and the approximations 0 0

1

n n

n

A V A V


   

and 0 0

1

n n

n

A W A W


   are shown to be a good approximation, so that we can simply 

express 0 0t wf n n

n

c p A W A W     and 0 0sf n n

n

q A V A V    for the most inner 

boundary conditions: 

 The integrability condition will give evolution equations for each order of 

the expansion in terms of the lower order terms. If they are negligible then 

we can stop with the leading order term of the expansion; otherwise we 

need to include more asymptotic terms. 

 For fixed rate drawdown we can approximate the infinite sum with the 

 0A t  term, especially since  1 0A t   from the boundary condition. 

 For fixed BHP drawdown we cannot approximate the infinite sum with the 

 0A t  term, since  0 0A t   from the boundary condition. However, we 

can approximate the infinite sum with the  1A t  term. 

 For cases with variable rate and BHP drawdown,  0A t  is not zero, and we 

can approximate the infinite sum with the  0A t  term. However, this 

approximation may not be quite as accurate as for fixed rate drawdown 

since  1A t  is not zero. 

Under what circumstances will the treatment of variable rate finite reservoir 

transients be correct? At present we have tested the extension from the fixed rate infinite 
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acting solution with an emphasis on well performance. With an emphasis on field data 

interpretation, this may be adequate. However, the reference solutions also provide 

predictions of the profiles of pressure drop and flux, which warrant additional testing in 

future studies. 

When extending asymptotic solutions to address bounded reservoirs, consider the 

pressure drop at a location in a reservoir in the vicinity of a no flow barrier. The pressure 

drop can be represented as the sum of the pressure drops due to the direct front, which 

depends upon   ,x  and the reflected front, which depends upon a larger diffusive time 

of flight,  1 x :        1 1Δ , Δ , Δ ,p x t p x t p x t   . In the discussion of a composite 

reservoir we have assumed normal incidence to the change of properties so that the 

reflected front follows the same path as the original,    1 2  resx x    . In all other cases 

 1 x  has no relationship to  x  and the fundamental assumption appears to fail. 

However, if the strength of the reflected front is small ( 0R   and 1T  ) or if 

   2 2
1 /4 /4x t x t

e e
  

, then the assumption of     , ,p x t p x t  is reasonable. Stated 

otherwise, the maximum deviations will occur in the immediate vicinity of flow barriers 

where 1R   and    1 x x  , except in the direction of normal incidence where  1 x  

and  x  are directly related.  

The reflection coefficient varies between -1 and +1. The transmission coefficient 

is bounded between 0 and 2, and is always positive. For smooth properties, 0R   and 

1T  . In contrast, the reflected front may interfere either constructively or destructively 
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with the transmitted front. For instance, to model a constant pressure boundary at d  , 

we have 0
p

t





 and 1R   . The reflected front acts like an injector and maintains the 

boundary pressure. In contrast, to model a constant no flow boundary at d  , we have 

0
q

t





 and 1R   . The reflected front now enhances the pressure drop. The two-domain 

formulation has essentially introduced variable strength image wells into the formulation. 

When determining the number of image wells represented by 1, 2 and 3-exponential term 

approximations, we see that the one term approximation shows the impact of the finite 

size of the reservoir at earlier times than the full expression. Once we reach two terms, we 

have a good approximation and the approximation becomes excellent once we have three 

terms. The second and third terms are of the same magnitude at the wellbore, and so 

including both terms in the drainage volume calculation provides a consistent 

approximation. We see that the application of an infinite series to model a bounded 

reservoir does not appear to be necessary. This is very important as it demonstrates how 

to extend the classic transient PTA/RTA boundary dominated DCA to the transition 

between infinite acting and boundary dominated flow and that our asymptotic 

approximation does this for arbitrary geometry. With our analytic approach, one may 

easily conduct decline analysis for arbitrary geometry with calibrated  w   and assumed 

uncertain reservoir volume, in order to predict EUR. 
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3.5 Chapter Summary 

In this chapter, I illustrated how to extend our asymptotic solution to resolve the 

two major limitations of our methodology, i.e., constant rate drawdown and infinite 

domain drainage volume, and provide a systemic validation to the generalized asymptotic 

solutions. I started our analysis with the fixed BHP drawdown solution in an infinite acting 

reservoir. The approximation has been validated against a number of applications for 

which inverse Laplace transform reference solutions are available. Of course, our intent is 

not simply to re-derive classical results but to validate a formulation for use in complex 

fractured wells and heterogeneous reservoirs. The reference solutions include variable rate 

drawdown, as arises in production analysis and in problems with wellbore storage. 

Asymptotic solution extended to variable rate drawdown shows us two important 

conclusions:  

  0A t  is the leading term for all the variable rate cases besides fixed BHP.  

 Increasing the number of asymptotic terms beyond the leading order term 

 0A t  generally does not improve the solution. This is consistent with the 

earlier observation that the time integral accumulates error while the τ 

integral does not. 

Next, I showed how we developed a general analytic solution for bounded transient 

flow based upon an asymptotic pressure approximation which reduces to Fetkovich’s 

work on bounded radial flow and Wattenbarger’s work on bounded linear flow in those 

specific geometries. The methodology offers similar abilities for analysis without the 

restriction to specific flow regimes. The formulation also suggests how to bridge between 
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the methodologies of pressure transient and rate transient analysis, generalized to more 

complex reservoir and well geometries. Asymptotic solution extended to bounded 

reservoirs shows: 

 Three exponential terms required to account for reflected pressure fronts. 

 An infinite series is unnecessary. 

Then, I showed how to use the proposed asymptotic solution for EUR estimation. 

Our approach works for infinite acting transient flow and through the transition to 

boundary dominated flow, which extends the classic transient PTA/RTA boundary 

dominated DCA to physics based models for the transition between infinite acting and 

boundary dominated flow for arbitrary geometry. It was also validated by synthetic models 

and conventional simulations, where we see the physics-embedded analytic approach 

allows to predict declines and EUR at specific cutoffs together with reservoir volume 

uncertainty. 

To sum up, the major achievements and conclusions of this chapter are as follows: 

The asymptotic solution in resolving variable rate drawdown problems was 

extended and validated. 

 Material balance time is superposition time for boundary dominated flow 

and it is a reasonable approximation for other flow geometries. 

 The fixed BHP asymptotic approximation has a better performance in rate 

normalized pressure drop calculation than models using superposition time 

and material balance time. 

The asymptotic solution in handling boundary effects was validated. 
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 The definition of the drainage volume has been updated for bounded 

systems and the generalized asymptotic approximation works for bounded 

systems perfectly 

 It is very important as it demonstrates how to extend the classic transient 

PTA/RTA boundary dominated DCA to the transition between infinite 

acting and boundary dominated flow and that it does this for arbitrary 

geometry. Fetkovich’s work on bounded radial flow and Wattenbarger’s 

work on bounded linear flow can be replaced with our pure analytic 

solution which gives a better characterization of the transition to PSS  
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4 CHAPTER IV 

UNCONVENTIONAL RESERVOIR ANALYSIS 

 

4.1 Introduction 

A novel data-driven approach was previously introduced for production analysis 

of unconventional reservoirs without the traditional RTA/PTA assumptions of specific 

flow regimes. The approach relied on a w(τ) function, which is drainage volume geometry 

function, to characterize the flow geometry from the transient drainage volume. The 

approach has been used to rank refracturing candidates and to obtain optimal fracture 

spacing. In this chapter, I will show how we generalize the previous studies (Yang et al., 

2015; King et al., 2016; Sharma, 2016; Xue et al., 2016; Wang et al., 2017) to improve 

the amount of quantitative reservoir information obtained during the production analysis. 

Our approach uses a transient generalization of the Matthews-Brons-Hazebroek 

definition of the PSS drainage volume (Matthews et al., 1954). It is obtained from an 

asymptotic solution of the diffusivity equation in heterogeneous and/or fractured media. 

Given field pressure and flow rate data, we calculate the transient well drainage volume 

with time. The time evolution of the drainage volume can be inverted to estimate w(τ) 

                                                 

Material adapted with permission from “Quantitative Production Analysis and EUR Prediction From 

Unconventional Reservoirs Using a Data-Driven Drainage Volume Formulation” by Wang et al., 2018: 

Paper EAGE-46177 to be presented at EAGE 16th European Conference on the Mathematics of Oil 

Recovery held in Barcelona, Spain, 3-6 September 2018. Copyright 2018, Wang et al. Further reproduction 

prohibited without permission. 
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function, which provides a description of the underlying and potentially complex flow 

geometry and is then used for quantitative analysis.  

The proposed approach is a data-driven model-free analysis of production data 

without the presumption of specific flow regimes. It provides a simple and intuitive 

understanding of the transient drainage volume and instantaneous recovery efficiency, 

irrespective of the complexity of the reservoir depletion geometry. In the current study we 

develop an improved approach for the w(τ) inversion which yields better physical 

resolution and which can identify more detailed characteristics of the underlying flow 

geometry than previous studies, e.g., complex near fracture flow, linear flow, fracture 

interference, etc. The results of the analysis have been used for the characterization of 

hydraulic fracture and reservoir properties, including the prediction of fracture surface 

area, matrix permeability, SRV and extended to the calculation of EUR. The power and 

utility of the proposed methodology is first validated with synthetic examples and then 

demonstrated using a field example of a well from the Montney shale. 

Compared to the previous approach, the current work is based upon the identical 

theoretical models for interpretation, but with less restrictive assumptions made during the 

analysis. Beyond that, I will show how the proposed w(τ) inversion algorithm does a better 

job than the previous one in generating more stable w(τ) curves under varying field 

production conditions, which further enables us to identify more features. In addition, I 

will show how the interpretation leads to new approaches to production forecasts and EUR 

prediction based upon the bounded reservoir model solutions of the previous chapter. 
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4.1.1 Production Analysis for Unconventional Reservoirs 

Unconventional reservoirs are characterized by low permeability and long 

interference times and conducting reliable production analysis for them is a challenging 

task. The complex fracture geometry, as illustrated in Figure 4.1 (a), will yield complex 

depletion patterns within the reservoir shown in subplot (b).  

 

 
(a) Model Illustration 

 
(b) Pressure Distributions 

Figure 4.1 Multiple fractures in a naturally fractured reservoir (a) Model illustration 

and (b) Pressure distributions at 3 months, 1 year, and 3 years (Yang, 2017) 

 

Recently, a lot of papers have been published to reveal the physics and mechanisms 

that occur underground during hydraulic fracture stimulation and production process.  
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Kou et al. (2017) proposed a modified Hagen-Poiseuille equation considering the 

convective-diffusive nature of the overall transport in nanocapillary. Li et al. (2018) 

studied wettability alteration with complex fracture networks and Deng and King (2018) 

investigated the transition from spontaneous to forced imbibition naturally fractured 

reservoirs. Kou et al. (2018) studied proppant transport behavior in inclined planar 

fractures via large-scale simulations. These researches provided a better understanding of 

fluid transport in the matrix and would be helpful for designing a better proppant pumping 

scheme as well as production strategy for shales. 

Some other researches focused on developing more reliable and capable 

approaches, either numerical or analytic, to capture and predict unconventional reservoir 

performances.  

An et al. (2017) built a coupled flow-geomechanics model for organic-rich shale 

reservoirs, considering the impacts matrix shrinkage and stress changes on stress-

dependent permeability as well as gas production. Guo et al. (2017) presented the 

development of an efficient parallel simulator that considers non-isothermal fluid flow 

coupled with elastoplastic deformation. Liu and Valkó (2017) proposed a new algorithm 

to accurately and rapidly estimate the well production index with infinite-conductivity 

fracture based on the well-fracture configuration and thus enabled a quick optimization 

method for the well and fracture spacing. Guo et al. (2018) presented a fully coupled flow 

and geomechanics model to investigate the most relevant parameters affecting well 

performance and interference of tightly spaced horizontal wells. He et al. (2018a) 

developed an analytical model of multi-segment horizontal wells to estimate rate 
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distribution along horizontal wellbore and identify underperforming horizontal sections. 

Furthermore, He et al. (2018b) shed light on the importance of incorporating the effects 

of non-uniformity for better evaluation of well performance based on long-term 

production data.  

Our research group uses w(τ) to describe the complex geometry and depletion in 

unconventional reservoirs, and historically, we mainly got experience on how to do 

qualitative interpretation with w(τ), since the w(τ) interpreted from production data had 

oscillations and even negative values which made quantitative analysis a difficult task, 

especially for field cases (Yang et al., 2015; Sharma, 2016; Xue et al., 2016). In the 

previous chapters, I have shown the demonstrations that the asymptotic pressure 

approximation can be used to calculate pressure and rate transients given an underlying 

geometric function   pw dV d  . This has led us to explore the use of  w   as a 

diagnostic tool by solving an inverse problem given field data. The drainage volume 

 dV t  can be inverted for  w   where the drainage volume is determined from 

production data. Specifically, for variable rate drawdown: 

   
 

 max
2 4

0

1 wft

d t

d e e

dRNP t
V t e w d where c

V t dt



     (4.1) 

As an example, Figure 4.2 shows the drainage volume diagnostic plot calculated based 

upon the ECLIPSE simulation for a single-fracture model, as well as the corresponding 

pressure contours representing early time linear flow, intermediate time radial flow and 

late time boundary dominated flow. Different slopes of the  w   curve represent different 

flow regimes: slope = 0 stands for the region of linear flow; slope = 1 implies radial flow; 
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a sudden drop of  w   slope indicates the value of   where the pressure front reaches the 

outer boundary of the reservoir and 
pV  reaches a constant. 

 

 
Figure 4.2 Drainage volume diagnostic plot w(τ) vs. τ for a single-fracture in a 

bounded reservoir model, adapted from Sharma (2016) 

 

The  w   inversion based on production history has been successfully applied to 

a number of synthetic and field examples, although some simplifications needed to be 

implemented, especially when dealing with the field examples (Wang et al., 2018). Next, 

I will review the previous inversion methodology and provide a more robust approach. 

 

4.1.2 Previous Drainage Volume Calculation and Inversion 

In this section, we will review the steps of the previous drainage volume 

calculation and inversion. 

As illustrated in Figure 4.3 from Yang et al. (2015), both BHP & rate historical 

data are curve-fitted globally to capture the general features of the RNP curve and to 
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ensure a smooth drainage volume calculation. During this process, production details may 

be lost due to the global fitting procedure. 

 

 
Figure 4.3 Overview of previous drainage volume calculation, adapted from Yang et 

al. (2015) 

 

After obtaining drainage volume from field production data, now the drainage 

volume integral in Eq. (4.2) becomes a Fredholm integral equation. The only unknown is 

the drainage volume function  w  .  

   

   
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        

     



 



 (4.2) 

Here, it  are the times at which the drainage volume has been calculated, and  2j jt   

are the intervals over which  w   is discretized and is assumed piecewise constant. This 

relationship is based upon the depth of investigation for radial flow. This is the approach 

followed in Sharma and Yang’s work (Yang et al., 2015; Sharma, 2016). 
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Unfortunately, in this form, the inversion result is always unstable (oscillatory) 

because this problem is anti-diffusive and the matrix is near singular. Yang et al. (2015) 

provided a special treatment to the matrix elements along the main diagonal, to make the 

matrix semi-definite, as shown in Eq. (4.3). As illustrated in Figure 4.4, the oscillation is 

reduced and the  w   curve obtained from the inversion is also improved. However, 

unphysical non-positive  w   values may still be obtained. As shown by a field example 

in Figure 4.5 (a), for smooth and monotonic drainage volume, this algorithm yields smooth 

and positive  w   values which can be used for further analysis. However, when the 

volume drainage is non-monotonic, as we may obtain for unconstrained field cases, the 

algorithm will predict negative  w   values with an unstable trend, which will make the 

field formation interpretation almost impossible.  
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where, 
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Figure 4.4 Illustration of reduced oscillation in the previous drainage volume 

inversion (reprinted with permission from Wang et al, 2018) 

 

 

 
(a) Monotonic Drainage Volume 

 
(b) Non-Monotonic Drainage Volume 

Figure 4.5 Illustration of w(τ) inversion result by previous algorithm with (a) 

monotonic drainage volume; and (b) non-monotonic drainage volume 

 

Thus, in order to resolve the weaknesses of the previous approach, the major two 

targets for continuing this research are summarized below: 
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 Find an alternative approach to keep more pressure front propagation 

details and reduce the side effect caused by noisy data points when 

calculating drainage volume based on production data; 

 Treat the inversion problem as an optimization process rather than a well-

posed one to ensure a reliable and physical constrained  w   inversion 

result. 

 

4.2 Methodology: Improved Production Analysis 

In the methodology section, I will explain the important steps of the improved 

production analysis in details. According to the targets of the study, this section is divided 

into two parts: the first one is the production data processing, which is used to remove the 

outliers in the field production data and calculate drainage volume based on RNP time 

derivative; the second one is w(τ) drainage volume geometry function inversion, where 

regularized least squares optimization is employed to guarantee a positive and smooth w(τ) 

curve from inversion. 

 

4.2.1 Production Data Processing and Drainage Volume Calculation 

The proposed production data processing and drainage volume calculation 

workflow include two important steps. First, RNP is calculated based on BHP and rate 

data and RNP derivative outliers are removed via regression analysis. Then, the drainage 

volume is determined based upon the local RNP time derivative.  
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4.2.1.1 Removing Outliers via Regression Analysis 

Removing outliers via regression analysis applies a combination of modified 

Friedman’s Super Smoother (MFSS) and Moving Linear Regression Analysis (MLRA), 

as shown in Figure 4.6. The first step is to calculate RNP and et  based upon production 

data. The RNP obtained is labelled as raw data because they are usually scattered with a 

lot of noisy points. We have clear evidence that et  does not work well during the infinite 

acting period, since it is off the trend compared to st  as what we have demonstrated in the 

last chapter. If we plot the raw RNP and its welltest derivative data against et , we obtain 

a Diagnostic plot. For example, I conduct ECLIPSE simulation for the infinite 

conductivity hydraulic fracture case with variable rate drawdown, and production history 

is shown in Figure 4.7 (a). I further calculate RNP based on the production data and then 

estimate RNP' with re-ordered date points in ascending et  and a weighted central 

difference vs.  ln et  following Bourdet et al. (1983), as shown in Figure 4.7 (b), (c), (d), 

where RNP (red dots) and RNP' (green dots) are further connected in time. We can see 

the signature of the history w.r.t. et  is very erratic and et  is jumping back and forth in time. 

According to the definition, et  is very sensitive to instantaneous production rate and thus 

any changes in flow rate may result in non-monotonic RNP and RNP' curves w.r.t. et . The 

direct calculation of RNP time derivative  edRNP dt  based on RNP and et  will 

definitely generate a lot outliers. 
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To resolve the issue, MFSS is mainly used to estimate RNP time derivative from 

scattered and noisy production data. MLRA is then employed to filter out the outliers 

beyond a certain confidence interval based on the RNP time derivative estimates from 

MFSS.  

 

 
Figure 4.6 Illustration of removing outliers via regression analysis 
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(a) Production History  (b) Diagnostic Plot 

  
(c) RNP  (d) RNP' 

Figure 4.7 Comparison of (a) production history; (b) Diagnostic plot; (c) RNP; and 

(d) RNP' between variable rate drawdown (RNP: red markers with red curves; 

RNP': green markers with green curves) and the corresponding fixed rate drawdown 

(RNP: black solid curves; RNP': black dashed curves) for infinite conductivity 

hydraulic fracture case 

 

Data Smoothing When preparing field data for further pressure transient analysis 

(PTA), the first challenge is to estimate the pressure or RNP time derivative. We mainly 

used MFSS to pre-process the scattered RNP data by local linear regression with adaptive 

bandwidths (Friedman, 1984). The initial fixed-bandwidth smoothing is slightly adjusted 
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for better performance and to avoid data over-smoothing, compared to the bandwidth used 

in the original Friedman’s work. The slopes of the RNP from the final linear regression 

will be treated as the time derivative at each RNP point. The intermediate steps of local 

linear regression and modified Friedman’s Super Smoother are provided below. 

Given tn  data points 
1... tnx x  ( et ) and 

1... tny y  (RNP) from the production history 

with joint distribution  ,P X Y . We want to estimate the conditional expectation 

 |E Y X x  such that the squared error   
2

E Y f X  is minimized, where  f X  is 

the optimal function.  ,P X Y  can be generated from the relation 

 Y f X    (4.4) 

where   represents error.  

Then, in order to estimate  |E Y X x , we need to find the estimate  ˆ ˆf x y  in  

ˆ
i i iy y    (4.5) 

One way to estimate ˆ
iy  is to locally fit linear least squares regressions of the form 

  ˆˆ ˆ| ,i j j iE Y x x x N     (4.6) 

where ̂  and ̂  are the coefficients from local fit, iN  is the local bandwidth which 

represents the number of local data points around ix .  

Friedman (1984) originally chose to use 0.05 tN n , 0.2 tN n , and 0.5 tN n , 

but here I chose smaller bandwidths of 0.05 tN n , 0.1 tN n , and 0.2 tN n  to better fit 

for field cases with several hundred of data points, which are much larger than the 
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synthetic cases tested by Friedman. When N  is fixed, we can write the local linear 

estimator as: 

ˆˆˆ , 2,..., 2, 2,..., 2j i i j ty x j i N i N i N n N         (4.7) 

where ˆ
i  and ˆ

i  can be obtained from local fits to data points 2,..., 2i N i N   for each 

,ix 2,..., 2ti N n N  . ˆ
iy  and ˆ

i  are the initial estimates at the given bandwidth for 

RNP and RNP time derivative, respectively.  

An optimal bandwidth which minimizes the expected squared error 

    
22 |e N E Y f X N   (4.8) 

can be obtained by estimating  2e N  through leave-one-out cross-validation: 

     
2

2

1

1 ˆˆ |
n

cv i ii
it

e N y f x N
n 

  
   (4.9) 

which can be computed analytically as: 

   
 

 

2
2

2

2
2

1

2

1 1ˆˆ | 1
tn

i N

cv i i i N
it

j N

j i N

x x
e N y f x N

n N
x x




 

 
 


     

   
 

 




 (4.10) 

where 
2

2

1 i N

N j

j i N

x x
N



 

  . 

Minimizing  2

ĉve N  gives the cross-validated optimal bandwidth: 

   2 2

0
ˆ ˆmin

t
cv cv cv

N n
e N e N

 
  (4.11) 

Taking the locally adaptive bandwidths into consideration, Friedman (1984) 

proposed to minimize the estimate for: 
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     
2

2 , |e f N E Y f X N X   (4.12) 

with respect to both  f x  and  N x . In order to minimize Eq. (4.12), we first estimate 

Eq. (4.7) using local linear regression over specified values for N .  

The leave-one-out cross-validated residuals for each of these initial constant 

bandwidth estimates can be calculated by: 

   
 

 

2

2
2

2

1
ˆ 1 i N

i i i Ni

j N

j i N

x x
r y y

N
x x



 

 
 


    
 

 
 


 (4.13) 

Then, we need to smooth 
 i

r  against ix  with bandwidth 0.1 tN n  to estimate 

 ˆ , | ie f N x  which we use to find the optimal bandwidth at each point: 

    ˆ ˆ, | min , |cv i i i
N

e f N x x e f N x  (4.14) 

The optimal bandwidths  cv iN x  are then smoothed again with bandwidth 

0.1 tN n  against ix  and the two initial estimates (RNP time derivative) that have the 

closest bandwidths are selected. 

The second last smooth is then conducted though linear interpolation between 

these two initial estimates w.r.t.  cv iN x . Finally, the result of the interpolation (RNP time 

derivative) is then smoothed again with bandwidth 0.05 tN n . 

The key steps of MFSS of smoothing data and calculating RNP time derivative are 

briefly summarized in Figure 4.8. 
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Figure 4.8 Illustration of data smoothing procedure with modified Friedman’s Super 

Smoother 

 

Outlier Removal After obtaining the RNP time derivatives, MLRA is then 

employed to filter out the RNP derivative outliers beyond confidence intervals. Here, I 

will show the important steps following Jensen et al. (1997). 

Based on Eq. (4.7), an unbiased point estimator for estimating  | iE Y X x  can 

be expressed as: 

ˆˆˆ , 1,...,i i i iy x i N     (4.15) 

where, ˆˆ
N i Ny x    and thus  ˆ

iVar y  can be expressed as: 

   

  
 

 

2

2

2
2

2

ˆˆˆ

1ˆ

i i i i

i N

N i i N i N

i
j N

j i N

Var y Var x

x x
Var y x x

N
x x



 

 


 

 

 
 


     
 

 
 



 (4.16) 
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We can replace 2

  by its estimate as: 

 
2

2

22

ˆ

2

i N

j j

j i N

i

y y

N




 







 (4.17) 

and we obtain the following sample variance: 

 
 

 

 

2
2

2

2

2
2

2

ˆ
1

ˆ
2

i N

j j

j i N i N

i i N

i i
j N

j i N

y y
x x

Var y
N N

x x



 



 

 
  


  
 

 
 




 (4.18) 

The estimate for  ˆ
iVar y , combined with Student’s t-distribution  2,t a dof  

which has the confidence level a  and degree of freedom  2idof N  , can be used in 

the interval for the estimate of  | iE Y X x :  

   ˆ ˆ2,i iy t a dof Var y   (4.19) 

To take a confidence interval into account regarding a new response  *,ix y , we 

incorporate the variability of error  Var  . Due to the independence of the error, we 

obtain that: 

     
 

 

2

* 2

2
2

2

1
ˆ 1

i N

i i N

i
j N

j i N

x x
Var y Var y Var

N
x x

 


 

 
 


     
 

 
 


 (4.20) 

With sample values, this leads to the confidence interval: 
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 
 

 

 

2
2

2

2

2
2

2

ˆ
1

ˆ 2, 1

i N

j j

j i N i N

i i N

i
j N

j i N

y y
x x

y t a dof
dof N

x x



 



 

 
  


    
 

 
 




 (4.21) 

Here ˆ
iy  is the RNP time derivative under investigation, which is located at the interval 

center, and the other 
jy ’s refer to the remaining RNP derivatives estimated from linear 

regression analysis. The x ’s represent the corresponding times, and iN  is the number of 

data points in the interval. It will be used as a tolerance level in order to identity the RNP 

outliers.  

The key steps of MLRA are summarized in Figure 4.9 and Figure 4.10 displays an 

example of outlier removal using MLRA. As illustrated in Figure 4.10 (a), the red and 

blue dashed curves represent the upper and lower bounds of the RNP derivative estimate 

(black solid curve), and points fall outside of the bounds will be removed. The effect on 

the Diagnostic plot can be seen in Figure 4.10 (b), where the RNP welltest derivative 

become less scattered than before. 
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Figure 4.9 Illustration of outlier removal procedure with Moving Linear Regression 

Analysis 

 

  
(a) RNP Derivative  (b) Diagnostic Plot 

Figure 4.10 Illustration of (a) RNP derivative outlier removal and (b) Diagnostic plot 

before and after the outlier removal 
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4.2.1.2 Drainage Volume vs. Time Calculation 

As described in the last subsection, RNP is calculated based on field BHP and rate 

data and RNP time derivative is from the output of regression analysis. After that, the 

drainage volume can be determined based upon the local RNP time derivative w.r.t 

material balance time et : 

 

 
 

 

 
1 wf wf

t wf

d e e w

dRNP t p t
c where RNP t

V t dt q t


   (4.22) 

as exhibited in Figure 4.11. The RNP and RNP time derivative can be further used as 

Diagnostic plot for PTA and drainage volume vs. time relation obtained during the process 

will be used as input for  w   inversion. The drainage volume curve obtained is not 

monotonic, which indicates that it captures more details of rate and BHP change during 

the production history than a global fitting approach. Thus, we expect to see more flow 

geometry details in the  w   inversion results. 

 

 
Figure 4.11 Overview of proposed drainage volume calculation (reprinted with 

permission from Wang et al, 2018) 
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4.2.2 w(𝜏) Drainage Volume Geometry Function Inversion 

In the previous section, I have shown how to calculate drainage volume from noisy 

production data and the drainage volume obtained will be used as the input for w(τ) 

inversion. As shown in the chapter introduction, the previous w(τ) inversion algorithm is 

unsatisfactory for non-monotonic drainage volume, and thus a better approach is need to 

resolve this issue. In this section, I will first explain the steps to convert the inverse 

problem to an optimization process so that we will obtain a smooth and positive w(τ) result, 

followed by a validation with bounded linear flow model. Then, I will show how the most 

important factor, i.e., the length of production history, affects the w(τ) inversion results by 

conducting a sensitivity study on various length of production history used as the w(τ) 

inversion input. Next, after successfully interpreting w(τ) from production data, we can 

further use it as forward model to predict EUR under reservoir volume uncertainty. 

Finally, I will show the influences of reservoir volume uncertainty on EUR estimate with 

synthetic cases. 

 

4.2.2.1 Regularized Least Squares Optimization 

In order to resolve the previous inversion issues of generating unstable, 

nonpositive w(τ) values as well as unclear signals for non-monotonic drainage volumes, 

we now treat the problem as an optimization under constraints, and solve the integral 

equation as a regularized least squares optimization.  

We approximate  w   using the 4th order B-spline basis functions (Ramsay et al., 

2009), and the drainage volume expression now becomes: 
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       
2 4

10

basisn
t

d k k

k

V t e w d where w      






   (4.23) 

Here k ’s are the basis functions and the k ’s are their coefficients, which now become 

the unknowns.  

The objective function is shown in Eq. (4.24): the first term represents residual 

sum of square errors, the second term is a roughness penalty used to guarantee curve 

smoothness (Green and Silverman, 1994), subject to a non-negative  w   constraint.  

 

   

2 2

2 2

1
min subject to 0

2 2

1 1
min subject to 0

2 2

T T T T

w

w




 

  

    

α

α

V Aα w

α A A M α V Aα V V

 (4.24) 

where,      
2 4

1 2

0 0

, , , ,... ,i

t

T
t

ij j ij i j nA e d M d V V V
       

 

         V  and   is the 

weight of the roughness penalty term. Selecting   is not completely arbitrary.   is 

calibrated by residual which will make the two terms at a comparable magnitude. 

The   is discretized from 0 to infinity with the following discretization scheme: 

the first interval is from 0   to 1  and the last interval is from 
tn  to infinity, where all 

the 'j s  are generated with the detectability condition as: 

 
2

2 / 4 4 2j j j jt t    . The roundtrip time is 
jt  for a detectable pressure 

response to propagate from the well to location 
j , and back again. 
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4.2.2.2 Validation of the Drainage Volume Inversion 

The bounded linear flow model was chosen to validate the new inversion 

algorithm. The drainage volume calculated from ECLIPSE simulation was used as the 

input for the unconstrained/constrained inversion process to calculate  w  . The  w   

obtained from inversion can be used to back calculate the drainage volume as a validation 

of the internal consistency between inverse/forward computation. Figure 4.12 (a) shows 

that both the unconstrained and the constrained  w   inversions give results consistent 

with the input drainage volume computed from the ECLIPSE production data. However, 

in Figure 4.12 (b), we see very different inversion results depending upon the constraints. 

The new inversion algorithm yields both physical (positive) and smooth  w   values, 

consistent with the constant value expected for bounded linear flow. At res  , the  w   

from new algorithm leaves the linear trend due to the boundary effects. In contrast, the 

unconstrained estimate of  w   is oscillatory, non-positive over portions of the solution, 

and does not match the analytic constant value, even at small  . 
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(a) Drainage Volume (b) Diagnostic Plot 

Figure 4.12 (a) V(t) comparison among optimization input from ECLIPSE (black 

curve), unconstrained (green curve), and constrained (red curve) optimizations; (b) 

w(τ) comparison among unconstrained (green curve), constrained (red curve) 

optimizations, and analytic value (blue line)  

 

 
Figure 4.13 Comparison of w(τ) inversion results by SPADES (reference), previous 

algorithm, and new algorithm with non-monotonic drainage volume 

 

As a comparison with previous w(τ) inversion algorithm, we choose the non-

monotonic drainage volume as input and plot the inversion results in Figure 4.13. I further 

show the results from SPADES, an in-house software for unconventional reservoir 

production data analysis, as a reference. SPADES utilizes global curve fitting for drainage 

volume calculation plus previous w(τ) inversion algorithm, so the drainage volume input 
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for w(τ) inversion is different for SPADES. as illustrated in Figure 4.13. From the 

comparison, we know that SPADES yields smooth w(τ) and it captures the overall trend 

of w(τ) successfully. In the left part of w(τ) plot, we can see the previous algorithm is not 

stable; while new algorithm yields better resolution so it picks up more features (e.g., zero 

slope line which indicates linear flow). In the right part of w(τ) plot, we can see previous 

algorithm gives oscillatory trend and SPADES goes right in the middle; while the new 

algorithm still generates a stable curve which tends to compensate the oscillatory curve 

predicted by the previous algorithm. This demonstrates that the new algorithm gives 

positive and smooth w(𝜏) values which has a better resolution at small 𝜏 and picks up 

more features (clear signal) to identify flow geometry change. 

 

4.2.2.3 Production History Sensitivities 

The validation example indicates that our inversion algorithm appears to be both 

accurate and robust for both bounded reservoirs and cases with non-monotonic drainage 

volumes. However, when performing production analysis in a bounded system, we expect 

that the production response will be characterized by one or more flow regimes, long time 

boundary dominated flow, and the transitions between them. We now examine the impact 

of the length of the production history, ht , with specific attention to the transition to 

boundary dominated flow, for the bounded linear and bounded radial models described 

previously. We return to the concept of the limit of detectability, in this case, applied to a 

pressure front that propagates from the well to the reservoir boundary, and back again, 

2 res  . 
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 
2 22

4
4 4

res res
LOD

LOD

t
t

 
    (4.25) 

For our two model examples used for EUR prediction demonstration in the last 

chapter, we obtain 106.7LODt days  for bounded linear flow and 308.3LODt days  for 

bounded radial flow. During inversion, the diffusion kernel is set to be 1-exponential term 

since the reservoir size is not known a priori. The   intervals are generated with the round 

trip limit of detectability at each time:  
2

2 4 4j jt  . Various lengths of production 

history ht  compared to LODt  were used for  w   inversion and the results are shown in 

Figure 4.14 and Figure 4.15. From both plots, one may conclude that we start to observe 

the impact of the finite size of the reservoir once the production history reaches a time of 

2h LODt t . At earlier times  pV   continues to grow unbounded, while it approaches a 

finite value after this time. For these longer time cases,  w   also decreases at early  . 

Additional analysis has shown that this is a consequence of the approximation of the 3-

term exponential kernel  ,K t  with the 1-term exponential 
2 4te   during the inversion 

process. Although this is beyond the scope of the current study, this signature may provide 

information on reservoir size during the inversion process. 
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(a) (b) 

Figure 4.14 Comparison of bounded linear flow drainage volume inversion results 

using various lengths of production history for (a) w(τ) vs. τ and (b) Vp(τ) vs. τ 

(reprinted with permission from Wang et al, 2018) 

 

  
(a) (b) 

Figure 4.15 Comparison of bounded radial flow drainage volume inversion results 

using various lengths of production history for (a) w(τ) vs. τ and (b) Vp(τ) vs. τ 

(reprinted with permission from Wang et al, 2018) 

 

The drainage volume inversion above assumes we have no idea about the finite 

reservoir size and the entire production history is an infinite acting process. What if we 

know res  before conducting the inversion? Here, the bounded linear flow model is chosen 
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and the upper limit of   is set to be res . Drainage volume inversion results with 1-term 

and 3-term exponential kernels are illustrated in Figure 4.16 and Figure 4.17, respectively. 

Comparing these two figures with Figure 4.14, we observe that we now have sensitivity 

to finite reservoir size and having more accurate drainage volume give us nice, stable, and 

physically meaningful inversion results. Even at 0.6 LODt t  in Figure 4.17 (a), we have 

already seen the finite size effects, because  w   from inversion is both flat and close to 

the actual  w   (horizontal black dashed line). This means that the inversion process is 

actually more sensitive than the limit of detectability, which also goes back to the general 

claim that working in   is more precise than working in time. LODt  is very specifically 

looking at when is the welltest derivative of the reflection becoming about 1% compared 

to the value of unity.  

  

  
(a) (b) 

Figure 4.16 Comparison of bounded linear flow drainage volume inversion results 

using known τres and 1-term exponential kernel and various lengths of production 

history for (a) w(τ) vs. τ and (b) Vp(τ) vs. τ  
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(a) (b) 

Figure 4.17 Comparison of bounded linear flow drainage volume inversion results 

using known τres and 3-term exponential kernel and various lengths of production 

history for (a) w(τ) vs. τ and (b) Vp(τ) vs. τ  

 

4.2.2.4 EUR Prediction 

After obtaining physical  w   from inversion, we may take a step further and use 

 w   as a forward reservoir model to conduct production predictions for field and well 

development, e.g., EUR prediction. Here, we take the 10-HF MTFW case as an example 

and the model is shown in Figure 4.18 and properties are listed in Table 4.1.  
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 Property  Value  Unit  

 h  50  ft  

 
resL   2093  ft  

 
resw   1550  ft  

 
fx   102.5  ft  

 
fw   0.24  in  

 
sx   64.3  ft  

 
resV   6.21×105  ft3  

 
mk   200  nd  

 
fk   1000  md  

    0.06  -  

 μ  1.0  cp  

 
tc   1×10-5  psi-1  

 B  1.0  rb/bbl  

 
wr   0.5  ft  

 
wq   0.1  bbl/day  

 
wfp   4500  psi  

 
prodt   7.2×105  day  

Table 4.1 Reservoir, fluid and wellbore properties of 10-HF MTFW case (reprinted 

with permission from Wang et al, 2018) 

 

 

 
Figure 4.18 ECLIPSE model overview of 10-HF MTFW case (reprinted with 

permission from Wang et al, 2018) 
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We make the following two specific predictions: BHP performance prediction at 

a given fixed rate drawdown, and EUR prediction at a certain fixed BHP drawdown with 

a specific flow rate cutoff. We mainly focus on  w   inversion with production history 

from beginning until fracture interference, and then make predictions with our asymptotic 

approximations. We may choose either 1 or 3 exponential term(s) in the diffusion kernel 

during prediction process: staying with 1-exponential implies that we believe the reservoir 

is currently under infinite acting and the production is infinite; while with 3-exponential, 

we will handle the fracture interference by treating it as an equivalent BDF period within 

SRV. Note that res  is a necessary input for 3-exponential diffusion kernel and is chosen 

to be at the stagnation line between fractures as 2res fs  . The results are compared with 

those from ECLIPSE simulator are shown in Figure 4.19, where the black dashed lines 

represent so-called pseudo pseudo steady state (PPSS) which is the fracture interference 

period. We observe that 3-exponential asymptotic approximation predicts the trend of both 

BHP under fixed rate and 1/RNP under fixed BHP drawdowns successfully; 1-exponential 

asymptotic approximation also works until PPSS has fully established. This means that 

when performing reliable production predictions, we may choose either 1-exponential 

asymptotic approximation for pure transient period or 3-exponential asymptotic 

approximation for PPSS/BDF with an assumption of res . The latter one leads to a further 

discussion on reservoir volume sensitivities for EUR prediction. 
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(a) (b)  

Figure 4.19 Prediction results comparison between 1 & 3 exponential terms 

asymptotic solutions of 10-HF MTFW case (a) Δpwf vs. Qw plot for fixed rate 

drawdown; (b) 1/RNP vs. Qw plot for fixed BHP drawdown (reprinted with 

permission from Wang et al, 2018) 

 

4.2.2.5 Reservoir Volume Sensitivities 

For a given production history, the most important sensitivity for EUR prediction 

is the reservoir size. If the reservoir response reaches PSS/BDF, then this volume can be 

estimated. However, in unconventional reservoir analysis this volume is not generally 

observed, and must be treated as a sensitivity. If production time is too short, and the field 

response is still infinite acting, then the estimates of reservoir volume should be expected 

to diverge. If production time captures the transition to SRV, and approximate PSS flow, 

then the estimates of reservoir volume will be too low, as they do not include the 

contribution of volumes beyond the SRV.  

In this sensitivity study, detV  represent the reservoir volume detected from 

production history ht . LODt  is chosen to be the reference time. Theoretically, for bounded 

linear flow, it simply describes the time when boundary effect will be detected at the 
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wellbore; for 10-HF MTFW case, it refers to the time when two edge fractures start 

interfering each other. Since we are not quite certain on the actual reservoir size resV  when 

using h LODt t , we further select resV to be 1 (extreme lower estimate), 5, & 10 times of 

det .V  The corresponding reservoir boundary, res , can then be estimated assuming that 

   detw w   for region det  . Here, we choose bounded linear flow and 10-HF 

MTFW case as examples to show how reservoir volume influences the EUR prediction 

through 1/RNP vs. wQ  plot in Figure 4.20. We observe that, at a given production history 

of h LODt t , the EUR prediction uncertainty is not very sensitive to reservoir volume as 

long as the cutoff production rate is not too low compared to the one at the end of 

production history. On the other side, UR is very sensitive to reservoir volume, as what 

has been expected. It increases along with the reservoir size. Another important 

observation is that our asymptotic approximation has a good match with historical data for 

bounded linear flow model, since the actual res  is constant along reservoir boundary. For 

10-HF MTFW case, however, this is not the case since each individual fracture would 

have its own  contours and the overlap of  contours would result in complex res  along 

SRV boundary. Thus, the match with historical data is not perfect as shown in Figure 4.20 

(b). 
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(a) (b)  

Figure 4.20 Reservoir volume sensitivity for EUR prediction on 1/RNP vs. Qw plot of 

(a) bounded linear flow; (b) 10-HF MTFW case (reprinted with permission from 

Wang et al, 2018) 

 

4.3 Field Application: Montney Field 

In this section, I will take a well with multiple hydraulic fractures from Montney 

field as an example to evaluate the matrix permeability as well as predict EUR at different 

production cutoffs. For the matrix permeability, I will also conduct traditional PTA as well 

as buildup analysis to validate the one yielded by the asymptotic approximation. 

 

4.3.1 Field Introduction and Production Data Illustration 

The Montney field is located in British Columbia, Canada. The well of interest has 

a production history of nearly two years. The production history is illustrated in Figure 

4.21. The RNP vs. material balance time of the well is plotted in Figure 4.22. For Montney 

Well, material balance time doesn’t work well during the latter part of the production 

history, and generates outliers as indicated by the trend of jumping back and forth in time. 
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This is mainly caused by the large variations in production rate during the latter period 

shown in Figure 4.21. Thus, those data are not suitable for PTA analysis. 

Early time data was used for production analysis (green shadow) and six buildup 

(BU) periods can be found in the entire history. The production data will be interpreted 

using our new methodology. The first buildup will also be interpreted for comparison. 

As this is an example of gas production, adjusted (pseudo) pressures are used in 

both the Diagnostic and Specialized plots (Lee et al., 2003). This allows the analysis to 

proceed as if it were a slightly compressible (liquid) system. 

 

 
Figure 4.21 Overview of production history (reprinted with permission from Wang 

et al, 2018) 

 

 
Figure 4.22 Illustration of RNP vs. material balance time of Montney Well 
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 Property  Value  Unit  

 h  200  ft  

 nf  28    

 
fx   250  ft  

 
sx   182  ft  

 pi  4620  psi  

 
resT   190  oF  

 ϕ  0.045  -  

 Sw  0.25  -  

 Lw  5000  ft  

       

 Buildup Information  

 
lastq   2867  Mscf/day  

 p   1080  psi  

 
g   0.0183  cp  

 
tc   1.21×10-4  psi-1  

 
gB   0.0161  Mcf/Mscf  

       

 PTA Information  

 p   3350  psi  

 
g   0.0172  cp  

 
tc   2.06×10-4  psi-1  

Table 4.2 Reservoir, fluid and wellbore properties of Montney field (reprinted with 

permission from Wang et al, 2018) 

 

4.3.2 Traditional Pressure Transient Analysis 

4.3.2.1 Permeability Estimation from telf 

As described earlier, in PTA for a MTFW, the estimate of matrix permeability is 

based upon the time for the end of linear flow, obtained from the beginning of a transition 

away from the ½ slope line in the welltest derivative curve of the Diagnostic plot, Figure 
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4.23 (a). Obtaining the break is a challenging task in most cases because of the scatter of 

the data. It is really hard to find the end of linear flow in the red cloud of RNP  as shown 

in Figure 4.23 (a). An alternative approach is to work directly with the RNP  curve on the 

specialized plot, Figure 4.23 (b), but as discussed earlier, the signature for the end of linear 

flow is less obvious in comparison to the signature on the derivative plot. We have chosen 

to fit the data on the specialized plot (vs. et ) to estimate the time coming off linear flow 

as 1/218 2elft hr   256 ~ 400elft hr , as illustrated in Figure 4.23. This information 

can be further used for matrix permeability estimation following Song and Ehlig-

Economides (2011) as: 

2

3.0 0.6
64

g t s

m

elf

c x
k d

t


    (4.26) 

 

  
(a) Diagnostic Plot (b) Specialized Plot 

Figure 4.23 Pressure transient analysis for telf with (a) Diagnostic plot (b) Specialized 

plot (reprinted with permission from Wang et al, 2018) 
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Since we previously showed the approach for a better estimate of RNP', we can 

conduct PTA analysis with processed RNP' instead and both the Diagnostic and 

Specialized plots are shown in Figure 4.24. We now have a clearer trend of end of linear 

flow as well as a more obvious telf identification 1/217 1elft hr   256 ~ 324elft hr  . 

As shown in the Specialized plot, Figure 4.24 (b), it is better seen in the processed RNP' 

trend than the RNP trend. The matrix permeability estimation now becomes: 

2

3.4 0.4
64

g t s

m

elf

c x
k d

t


    (4.27) 

 

  
(a) Diagnostic Plot (b) Specialized Plot 

Figure 4.24 Pressure transient analysis for telf with (a) Diagnostic plot (b) Specialized 

plot using processed RNP' 

 

4.3.2.2 Permeability Calculation via Buildup Analysis 

Here we use the first buildup for pressure transient analysis. For the remaining 5 

buildups, the signature is not consistent with a linear response for the other shut-in periods 

and thus they are excluded from analysis. As demonstrated in Figure 4.25, buildup 1 is the 

only one which shows a clear ½ slope among all the six buildups. Following the usual 
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PTA analysis, data that shows the ½ slope line signature is identified in the Diagnostic 

plot and the slope vs. et  is used to calibrate properties, as shown in Figure 4.26. All the 

other quantities are known as shown in Table 4.2 and the slope in Figure 4.26 (b) can be 

determined as 1/230m psi hr  . This estimate of matrix permeability utilizes the fracture 

half length provided by the operator. 

2
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f f t
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 
    
 

 (4.28) 

 

  
(a) Buildups Data (b) Data Slopes  

Figure 4.25 Illustration of six buildup periods with (a) buildup data (b) data slopes 
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(a) Diagnostic Plot (b) Specialized Plot 

Figure 4.26 Buildup analysis with (a) Diagnostic plot (b) Specialized plot (reprinted 

with permission from Wang et al, 2018) 

 

4.3.3 Diagnostic Analysis based on the Drainage Volume 

The drainage volume was calculated from production data and was used as input 

for the  w   inversion, as shown in Figure 4.27, where we observe that the signature for 

fracture interference occurs at 
1/250fs hr  , as shown in the figure. Fracture interference 

in the drainage volume occurs when the drainage volumes from each fracture begin to 

overlap, i.e., at the stagnation line between fractures. We will use this value of   to 

estimate the matrix permeability. Another observation that  w   drops below its value 

near the wellbore at 1/230 hr  , implying the end of linear flow, which can be used to 

estimate 
elft  for comparison with the Diagnostic plot and Specialized plot for PTA 

analysis. Other observations from  w   drainage volume Diagnostic plot include linear 

flow near the wellbore and partial competition effects. Note that the partial completion 

effects are not resolved on the usual diagnostic plots and this is the interpretation by Xue 

et al. (2016) seen in other synthetic examples and field cases, and now observed here too.  
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(a) Drainage Volume (b) Diagnostic Plot 

Figure 4.27 (a) V(t) comparison among optimization input from field production data 

(black curve), unconstrained (green curve), and constrained (red curve) 

optimizations; (b) w(τ) comparison among unconstrained (green curve) and 

constrained (red curve) optimizations (reprinted with permission from Wang et al, 

2018) 

 

We can also see the performance of the different inversion algorithms in this field 

example. Although the input  V t  was calculated using the data smoothing and outlier 

described earlier, it is still not a smooth curve. However, the model  V t  obtained by the 

constrained optimization is monotonic, and  w   is positive, as expected physically. The 

unconstrained inversion is also shown as reference, and is not suitable for analysis. 

 

4.3.3.1 telf Estimation 

In the discussion above, the end of linear flow occurs at 1/230 hr  . The limit of 

detectability allows us to calculate the time coming off linear flow .elft  

 
2 22

4 225 15
4 4

elf elf

elf

t hr and t hr
t

 
      (4.29) 
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This is close to the value obtained previously, although clearly this value for   is 

easier to select than 
elft  on the Diagnostic plot or Specialized plot, while the latter one 

requires a careful linear regression analysis to find the right time on the Specialized plot.  

 

4.3.3.2 Permeability Calculation 

As shown in the discussion before, the signature for fracture interference occurs 

at 
1/250fs hr  . Based on Eikonal equation, we can estimate the matrix permeability as: 

2

3.7
22

s s
fs m t

fs

x x
k c d  



 
     

 

 (4.30) 

The result is close to those estimated from both buildup and PTA with end of linear flow 

during production.  

 

4.3.4 EUR Prediction 

After interpreting  w   from Montney well production data, we can further use it 

as forward model and estimate EUR for the well. We do not observe BDF in the field data, 

so only the near well  w   is calibrated by field history. As described previously, we 

choose the fundamental uncertainty in unconventionals, the reservoir size resV , to be 1, 5, 

& 10 times of detV  interpreted from production history and assume    detw w   for 

region det   in order to determine the corresponding reservoir boundary res . After 

performing production prediction with 3-exponential term asymptotic approximation, we 

plot the results in Figure 4.28. It shows an example of EUR prediction at a constant BHP 
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drawdown of 3500wfp psi   with two cutoff production rates, where the gray dots 

represent the raw production data and blue ones stand for the processed production data 

with the approach proposed for drainage volume calculation. The reservoir volume 

uncertainty won’t affect EUR estimate if the cutoff production rate 

4

, 3.36 10w cutoffq Mscf day   ( 31/ 400RNP ft psi hr ). Figure 4.28 is convenient for 

EUR predictions. For example, given a certain cutoff production rate 

3

, 6.72 10w cutoffq Mscf day   ( 31/ 80RNP ft psi hr ), the corresponding EUR 

uncertainty range can be estimated as 9 3 9 31.68 10 2.06 10ft EUR ft    , as listed in 

Figure 4.28 (a). If the cutoff production rate is lowered down to 

3

, 3.36 10 /w cutoffq Mscf day   ( 31/ 40RNP ft psi hr ), the corresponding EUR 

uncertainty range become as wide as 9 3 9 31.80 10 2.50 10ft EUR ft    , as listed in 

Figure 4.28 (b). This is an example to show how we can easily estimate EUR with various 

economic production rates via our proposed approach. If we take a further look at the 

uncertainty range of EUR vs. uncertainty range of resV  for both the Montney Well and 

previous synthetic cases in Figure 4.20, we can see that even though the unknown resV  is 

an order of magnitude uncertain, it would only result in an uncertainty of EUR prediction 

by a factor of 1.3. It is because the EUR is pinned down by the production history.  

Throughout the field application, we know in order to achieve a reliable EUR 

prediction, the proposed drainage volume calculation technique helps to remove outliers 

and provides a smooth RNP time derivative for drainage volume calculation; and the 

proposed w(τ) inversion algorithm guarantees a both smooth and positive w(τ) curve which 
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is both well-calibrated by production data and to be used as a forward model for EUR 

prediction. 

 

 
(a) EUR Prediction with qw,cutoff = 6.72×103 Mscf/day 

 
(b) EUR Prediction with qw,cutoff = 3.36×103 Mscf/day 

Figure 4.28 Montney well EUR predictions with (a) qw,cutoff = 6.72×103 Mscf/day and 

(b) qw,cutoff = 3.36×103 Mscf/day as well as reservoir volume uncertainty on 1/RNP vs. 

Qw plot 
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4.4 Discussion 

Let’s first talk about the advantage of using w(τ) diagnostic analysis based upon 

drainage volume inversion over the traditional PTA. We know that the diffusivity equation 

has a solution that is infinite acting even at 0t  . Thus, diffusion (pressure) goes 

everywhere once production occurs. It is important to know when the pressure drop is seen 

in the entire reservoir. The answer is actually right at the beginning. In traditional PTA, 

one may ask when we will see the additional contribution to the change of the welltest 

derivative curve. The answer is right at the limit of detectability. As mentioned in the 

previous chapters, working in   (space) is more accurate than working in time. The main 

reason is that the w(τ) inversion process is actually more sensitive than the limit of 

detectability ( LODt ), since LODt  is very specifically looking at when the welltest derivative 

of the reflection becomes about 1% compared to the value of unity, while for the inversion 

process it is not unnecessary to wait as long as LODt . Accordingly to the sensitivity tests 

on the length of production history used in the w(τ) inversion process, we don’t need to 

include production history until LODt  during inversion to detect the reservoir boundary 

from the novel w(τ) diagnostic plot. 

For Montney Well, 182sx ft  and 250fx ft , we will see the fracture 

interference before the transition from pillbox to eclipse, so the pillbox is good enough. 

Montney Well data were collected six years ago, and the cluster spacing is become smaller 

and smaller during the past several years. This means that the pillbox is even better suited 

for the tighter spacing nowadays. 
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If we knew the size of the reservoir, we can get a really good  w   inversion even 

in boundary dominated flow when we use 3-term exponential kernel. If we have no idea 

about the reservoir size, we will just assume the reservoir is infinite acting, and thus we 

have a model where the assumptions that go into the inversion are incorrect. Even though, 

we can still interpret the reservoir size information from the  w   Diagnostic plot. This 

is what we do when we do our field analysis.  

The proposed data-driven model-free approach is powerful in production data 

analysis for unconventional reservoirs. Compared to other popular and widely used PTA 

and RTA methods, it provides a simple and intuitive understanding of the transient 

drainage volume irrespective of the complexity of the reservoir depletion geometry. 

Unlike simple curve-fitting DCA or our previous studies, it has physical interpretation and 

yields better resolution, which can identify more detailed characteristics of the underlying 

flow geometry. Through Montney well application, we showed an improved quantitative 

interpretation for formation permeability from production data based on fracture cluster 

interference seen in the improved w(τ) plot, which is validated by buildup analysis and 

traditional PTA. Due to the improvements on numerical inversion for w(τ), we can easily 

make predictions on EUR at specified cutoffs using the interpreted w(τ) as a forward 

reservoir model. 

With the unknown reservoir volume being orders of magnitude uncertain, the 

unknown EUR is much tighter, because the EUR is pinned down by the history. 

 



 

250 

 

4.5 Chapter Summary 

In this chapter, I have shown how we proposed the approach for data-driven 

model-free analysis of production data without the presumption of specific flow regimes. 

The application to Montney well provides a simple and intuitive understanding of the 

transient drainage volume irrespective of the complexity of the reservoir depletion 

geometry. Beyond that, I explained how we developed an improved approach for the w(τ) 

inversion which yields better physical resolution and which can identify more detailed 

characteristics of the underlying flow geometry than previous studies, e.g., complex near 

fracture flow, linear flow, fracture interference, etc. The power and utility of the proposed 

methodology was first validated with synthetic examples and then demonstrated using a 

field example of a well from the Montney shale. 

The improved methods for both drainage volume calculation as well as w(τ) 

inversion which shows more detailed features: 

 The drainage volume calculation is no longer based on global curve fitting. 

 The proposed approach improves upon the numerical inversion for w(τ).  

 Inversion with 1-term exponential gives consistent w(τ) result until the well 

sees the boundary effects; inversion with 3-term gives consistent inversion 

results irregardless of boundary effects. 

 w(τ) inversion process shows sensitivity in detecting boundary size effects. 

I showed how we improved quantitative interpretation for formation permeability 

as well as successfully predicted EUR from production data for Montney well: 
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 The formation permeability interpretation is based on fracture cluster 

interference seen in w(τ) Diagnostic plot. The value is validated by both 

traditional PTA and buildup analysis. 

 Various flow regimes can also be observed from our novel diagnostic plot, 

e.g., linear flow, partial completion, as well as fracture interference, 

following the conclusions by some other researchers. 

 New methodology to predict EUR with reservoir volume uncertainty based 

on w(τ). 
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5 CHAPTER V 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

5.1 Summary and Conclusions 

In this dissertation, we have tried to combine the novel τ coordinate system with a 

series of semi-analytic approximations, in order to shed new light on the direct relationship 

between production data and the reservoir drainage volume, and further predict EUR. 

We have learned how a pressure front propagates in infinite reservoir formations 

under a fixed rate drawdown, which is very important to welltest analysis and transient 

reservoir drainage volume calculation. We successfully avoided expensive numerical 

simulations and developed an alternative approach by directly solving the Eikonal 

equation which captures the pressure front propagation. The analogy between the 

propagating pressure front and a propagating wave front, making it applicable to pressure 

transient analysis in the petroleum industry. The validity of this assumption was also 

explored using some cases either with extremely heterogeneous permeability or a multi-

point source. This chapter served as the foundation and starting point of the following 

study. 

Next, we have developed and validated new asymptotic analytic approximations 

to handle both variable rate drawdown and boundary effects, based on the fixed rate 

solutions. We conducted a systemic validation of the proposed semi-analytic solution 

technique and extended its utility to more realistic cases, including large changes in 

reservoir properties, pressure transient analysis with wellbore storage, and rate transient 
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analysis in bounded reservoirs with fixed rate or fixed BHP production. We used this 

technique to describe pressure propagation from fractured wells into the surrounding 

formations and a better drainage volume characterization, which have been applied for 

both well spacing calculation and multi-stage fracture spacing optimization in 

unconventional reservoirs. Not only is it useful for the direct calculation of various 

welltest, rate transient and well performance concepts such as depth of investigation, 

welltest derivative, flow regimes and well productivity, but it is also helpful to predict 

pressure and flux spatial distributions at any time of interest. 

Finally, we demonstrated the capability of the proposed data-driven model-free 

approach for production data analysis which does not require the presumption of specific 

flow regimes. The applications to synthetic models and field case showed that it provides 

a simple and intuitive understanding of the transient drainage volume and instantaneous 

recovery efficiency, irrespective of the complexity of the reservoir depletion geometry. In 

the current study we develop an improved approach for the w(τ) inversion which yields a 

better physical resolution and which can identify more detailed characteristics of the 

underlying flow geometry than previous studies, e.g., complex near fracture flow, linear 

flow, fracture interference, etc. The results of the analysis have been used for the 

characterization of hydraulic fracture and reservoir properties, including the prediction of 

fracture surface area, matrix permeability, and extended to the calculation of EUR. The 

power and utility of the proposed methodology was first validated with synthetic examples 

and then demonstrated with the Montney well. 

The important findings and conclusions are listed below: 
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 will serve as a good spatial coordinate such that     , ,p x t p x t  and 

   , t

p
q t c w 







, until we reach the following scenarios.  

 First, since   represents the propagation geometry for the first pressure 

front, it only gives satisfactory performance during early time  1Dt   for 

cases with a multi-point source like infinite conductivity hydraulic 

fractures.  

 Second, when boundary dominated flow established, again, a single series 

of   contours are no longer a good representative of the pressure contours, 

since it does not represent pressure front reflections at the boundary.  

 Third, the bi-linear flow for finite conductivity fractures have the 1/4t  

pressure drop response. However, all of the drainage volume approaches 

based on a single  x  have the 1/2t  pressure drop response, also at early 

time. The same value of τ exists in the fracture and in the matrix, but the 

solutions at these two locations follow different pressure transients and 

have different pressure drops. 

However, modifications and improvements can be made with a combination of asymptotic 

solutions with superposition theory or introduction of multiple   contours with 

superposition to improve or even overcome these imperfect sides. 

The asymptotic approximation allows us to develop a number of interpretations of 

our production data. At a fundamental level, the formulation allows us to relate the 

pressure drop seen at a producing well to depletion within the reservoir. As a consequence, 
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the production data can be used to infer the instantaneous drainage volume of a well. It 

also provides a simple interpretation of the welltest derivative in terms of this drainage 

volume. The asymptotic pressure approximation works well until  w   is no longer 

sufficiently smooth and that 
 ln

ln

d w

d




 becomes negative. Our study shows that when 

reservoir heterogeneity has a large variance of heterogeneity or uncorrelated distribution 

 0 ,DCLL   the value range of 
 ln

ln

d w

d




 becomes unbounded or even negative: the 

numerator scales as variance while denominator scales at correlation length. The 

successful generalization to variable rate and bounded reservoirs demonstrates the 

feasibility and capability of the generalized asymptotic approximation as well as its 

promising application to the analysis of field production data.  

The proposed data-driven model-free approach is powerful in production data 

analysis for unconventional reservoirs. Compared to other popular and widely used PTA 

and RTA methods, it provides a simple and intuitive understanding of the transient 

drainage volume irrespective of the complexity of the reservoir depletion geometry. 

Unlike simple curve-fitting DCA or our previous studies, it has physical interpretation and 

yields better resolution, which can identify more detailed characteristics of the underlying 

flow geometry. Through Montney well application, we showed an improved quantitative 

interpretation for formation permeability from production data based on fracture cluster 

interference seen in the improved  w   plot, which is validated by buildup analysis and 

traditional PTA. Due to the improvements on numerical inversion for  w  , we can easily 
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make predictions on EUR at specified cutoffs using the interpreted  w   as a forward 

reservoir model. 

 

5.2 Future Research Directions 

Based on the experiences obtained and lessons learned throughout various tests 

and comparisons, we would like to share several directions that are worth to be 

investigated in the future study, as summarized below: 

 Application of superposition theory for cases with a multi-point source or 

interference, including but not limited to cases with wells connected to 

finite or infinite hydraulic fractures (or even with natural fractures), early 

interference between fractures caused by close well/facture spacing due to 

infill drilling or refracturing, etc. 

 Application of superposition in time for  w   interpretation with buildup 

data, which has high resolution BHP data and zero production rate 

 Further enhanced discretization approach, which considers multiple 

transmission/reflection between each location and its adjacent neighbors 

with superposition algorithm and asymptotic solutions to reduce the 

mismatch between pressure front and 𝜏 contours caused by large 

heterogeneity 
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NOMENCLATURE 

 

Roman symbols 

A   cross-sectional area ( 2ft ) 

 nA t   pressure amplitude of the thn  order in the time domain (  2 /2
1

n
hr


) 

 nA x   pressure amplitude of the thn  order in the frequency domain (  2 /2
1

n
hr


) 

b   decline curve exponent (dimensionless) 

B   fluid formation volume factor ( rb stb ) 

gB   average gas formation volume factor ( Mcf Mscf ) 

tc   total compressibility (1 psi ) 

tc   average total compressibility (1 psi ) 

D   decline rate (1 hr ) 

h   payzone thickness ( ft ) 

HI   Heterogeneity Index (dimensionless) 

i   imaginary unit 

J   well productivity ( stb psi day ) 

BDFJ   well productivity under boundary dominated flow ( stb psi day ) 

PSSJ   well productivity under pseudo steady state ( stb psi day ) 

k   permeability ( md ) 

fk   fracture permeability ( md ) 
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mk   matrix permeability ( nd ) 

 ,K t  generalized diffusion kernel 

 ,nK t  diffusion kernel of the thn  order 

DCLL   dimensionless correlation length (dimensionless) 

resL   reservoir length ( ft ) 

wL   well lateral length ( ft ) 

m   exponent depending on flow geometry (dimensionless) 

M   mobility ratio between inner and outer domain (dimensionless) 

basisn   number of basis functions 

fn   number of hydraulic fractures 

tn   number of data points in the production history 

iN   number of data points in the interval i  

p   pressure ( psi ) 

p   average pressure ( psi )  

p   pressure in frequency domain ( psi ) 

ap   adjusted pressure for gas ( psi )  

Dp   dimensionless pressure drop (dimensionless) 

ip   initial reservoir pressure (psi) 

wfp   bottomhole flowing pressure ( psi )  
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wfDp   dimensionless bottomhole flowing pressure drop (dimensionless) 

wfDp   dimensionless welltest derivative (dimensionless) 

PV   reservoir pore volume ( 3ft ) 

q   flux ( stb day )  

Ddq   dimensionless decline-curve flux (dimensionless) 

lastq   last production rate before buildup period ( Mscf day )  

sfq   flux at sandface ( stb day ) 

sfDq   dimensionless flux at sandface (dimensionless) 

sfDq   dimensionless welltest derivative of flux at sandface (dimensionless) 

wq   flux at surface ( stb day ) 

,w cutoffq   cutoff production rate at surface ( Mscf day ) 

wQ   cumulative production ( 3ft ) 

r   distance ( ft ) 

DOIr   depth of investigation ( ft ) 

eDr   dimensionless reservoir radius (dimensionless) 

resr   reservoir radius ( ft ) 

weffr   effective wellbore radius ( ft ) 

wr   wellbore radius ( ft )  

R   reflection coefficient (dimensionless) 
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2R   coefficient of determination (dimensionless) 

S   skin (dimensionless) 

wS   water saturation (fraction) 

t   time ( hr )  

at   adjusted time for gas ( hr )  

Dt   dimensionless time (dimensionless) 

Ddt   dimensionless decline-curve time (dimensionless) 

et   material balance time ( hr )  

elft   time of end of linear flow ( hr ) 

ht   production history used for  w   inversion ( day ) 

LODt   time to detect roundtrip pressure front propagation under LOD ( day ) 

pt   total production time before shut-in or other rate change ( hr ) 

prodt   production period ( day ) 

st   superposition time ( hr ) 

 2,t a dof  Student’s t-distribution with confidence level a  and degree of freedom  

T   transmission coefficient (dimensionless) 

resT   reservoir temperature ( o F ) 

 V t   generalized time-dependent volume integral ( 3ft ) 

 ,V t  generalized incomplete volume integral ( 3ft ) 
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 dV t   generalized drainage volume ( 3ft ) 

detV   reservoir pore volume detected during inversion ( 3ft ) 

DPV   Dykstra-Parsons coefficient (dimensionless) 

 nV t   volume moment integral ( 3 /2nft hr )  

 ,nV t  incomplete volume moment integral ( 3 /2nft hr ) 

 pV    pore volume ( 3ft ) 

resV   reservoir volume ( 3ft ) 

wV   wellbore volume ( 3ft ) 

 w    derivative of pore volume with respect to   ( 3 1/2ft hr ) 

fw   fracture width ( in ) 

Leftw    w   at the outer edge of the inner domain ( 3 1/2ft hr ) 

resw   reservoir width ( ft )  

Rightw    w   at the inner edge of the outer domain ( 3 1/2ft hr ) 

 W t   generalized pressure drop integral ( hr ) 

 ,W t  generalized incomplete pressure drop integral ( hr ) 

 nW t   pressure drop moment integral (
 2 /2n

hr


)  

 ,nW t  incomplete pressure drop moment integral (
 2 /2n

hr


) 

x   Cartesian spatial coordinate vector 
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fx   fracture half length ( ft )  

sx   fracture spacing ( ft )  

 X t   generalized average pressure drop integral ( 3ft hr ) 

 ,X t  generalized incomplete average pressure drop integral ( 3ft hr ) 

 nX t   average pressure drop moment integral (  2 /23 n
ft hr


 ) 

 ,nX t  incomplete average pressure drop moment integral (  2 /23 n
ft hr


 ) 

ŷ   data estimate from linear regression analysis 

 

Greek letters 

   hydraulic diffusivity ( 2ft hr ) 

i   hydraulic diffusivity of the inner domain ( 2ft hr ) 

k   coefficient of the thk  basis function 

   Dirac delta function 

Δp   pressure drop (in time) ( psi )  

PSSp   PSS pressure difference (in space) ( psi ) 

up   pressure drop of the fixed unit rate drawdown ( psi stb day ) 

wsp   BHP change during shut-in period ( psi ) 

p   welltest derivative ( psi )  

Δt   shut-in time ( hr ) 



 

263 

 

Δ st   effective shut-in time ( hr ) 

   Heaviside step function 

   weight of the roughness penalty term (dimensionless) 

   fluid viscosity ( cp ) 

ln k   average of the natural log permeability (dimensionless) 

g   average gas viscosity ( cp )  

   Boltzmann variable (dimensionless) 

DOI   depth of investigation in terms of the Boltzmann variable (dimensionless) 

ln k   standard deviation of the natural log permeability (dimensionless) 

   diffusive time of flight ( 1/2hr ) 

DOI   depth of investigation in terms of the diffusive time of flight ( 1/2hr ) 

fs   fracture spacing in terms of the diffusive time of flight ( 1/2hr ) 

LOD   limit of detectability in terms of the diffusive time of flight ( 1/2hr ) 

d   diffusive time of flight at the discontinuity in   w   ( 1/2hr ) 

det   diffusive time of flight detected during inversion ( 1/2hr ) 

max   upper limit of diffusive time of flight during inversion ( 1/2hr ) 

w   diffusive time of flight at wellbore radius ( 1/2hr ) 

wf   diffusive time of flight at effective radius ( 1/2hr ) 

res   diffusive time of flight at reservoir boundary ( 1/2hr ) 
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   porosity (fraction) 

 k    the thk  basis function 

   bi-streamfunction (dimensionless) 

   bi-streamfunction (dimensionless) 

   frequency of the asymptotic expansion ( 1s ) 

 

Abbreviations 

1-D  one dimensional 

2-D  two dimensional 

3-D  three dimensional 

BDF  boundary dominated flow  

BLF  bounded linear flow 

BRF  bounded radial flow 

BU  buildup 

DCA  decline curve analysis 

DCL  dimensionless correlation length 

DOI  depth of investigation 

DTOF  diffusive time of flight 

EUR  estimated ultimate recovery 

FMB  flowing material balance 

FMM  Fast Marching Methods 

HF  hydraulic fracture 
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HI  Heterogeneity Index 

IALF  infinite acting linear flow 

IARF  infinite acting radial flow 

IASF  infinite acting spherical flow 

ICF  infinite conductivity fracture flow 

LOD  limit of detectability 

MFSS  modified Friedman’s Super Smoother 

MLRA  Moving Linear Regression Analysis 

MTFW multiple transverse fracture wells 

ODE  ordinary differential equation 

PSS  pseudo steady state 

PPSS  pseudo pseudo steady state 

PTA  pressure transient analysis 

PV  pore volume 

RNP  rate normalized pressure drop 

RTA  rate transient analysis 

SRV  stimulated reservoir volume 

UR  ultimate recovery 
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