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ABSTRACT 

Fused Deposition Modeling (FDM) is an extrusion based additive manufacturing 

methodology. During the manufacturing process, a thread of thermoplastic material is 

melted through the extruder and solidified on the building platform to form a specific 

shape. Affordability and feasibility promote the development of FDM technology, 

nevertheless, the product quality problem hinders the future growth of this advanced 

manufacturing technique. Therefore, the focus of this dissertation is to realize FDM 

product and process development by establishing the relationship between 

manufacturing conditions and product quality and seeking an approach to optimize the 

process conditions with the lowest cost. To accomplish that, a hybrid 

experimental/numerical approach is proposed to model, predict, and optimize the 

thermal and mechanical behavior of the FDM process and the manufactured product. 

The proposed hybrid model had three major components: experimental, numerical, and 

prediction models. For the investigation of thermal behavior, both experimental and 

numerical models were used to analyze how extrusion temperature, platform 

temperature, printing speed and layer thickness affect the cooling time of the filament 

during the manufacturing process. After the accuracy of the numerical model was 

validated, a prediction model was developed to predict the dimensional accuracy and the 

residual stress of the fabricated part. For the investigation of mechanical behavior, 

experimental and numerical models were used to examine how the infill topology 
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impacts the modulus of elasticity for several FDM products. Then a prediction model 

was developed to predict the tensile behavior of parts given filament structure settings. 

For investigating process optimization, the numerical model provides an approximate 

representation of the original optimization problem. Then, the approximate solution can 

be iteratively updated by evaluation using the experimental model which is more 

expensive, but also more accurate. This process allows an optimum condition be 

predicted.  

The investigation of thermal behavior revealed that reducing extrusion temperature, 

slowing printing speed, and decreasing layer thickness could help lessen the vertical 

distortion and residual thermal stress, while the high platform temperature might have 

opposing effects on deformation and residual stress. The results from mechanical 

behavior analysis revealed that minimize the air gap, and triangular infill pattern would 

be beneficial to UTS/weight ratio. In addition, the finite element model developed in this 

study could be used to predict the product breakage location under high load, facilitated 

the redesign process to increase the strength of the products. Finally, it is demonstrated 

the optimization algorithm developed in this study is superior to traditional optimization 

algorithms in the area of additive manufacturing applications, reduced the cost by at 

least 72.4% when compared with experimental-only method, and costs less than half of 

the fellow surrogate-based method. The future directions of this study would be focused 

on increasing the accuracy of the predictive model and reduce the computation cost of 

the optimization algorithm.  



 

iv 

 

DEDICATION 

 

Dedicated to those who always love and support me 

 

 



 

v 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my advisors, Dr. Hsieh and Dr. Tai for their guidance and 

support throughout the course of this research. I also would like to thank Dr. Wen and 

Dr. Zou for serving on my committee and giving valuable comments on my research 

work. 

Moreover, I would like to acknowledge Texas A&M High Performance Research 

Computing for providing software support for our numerical simulation. I also want to 

extend my gratitude to Dr. Terry Creasy and Dr. Alex (Gwo-Ping) Fang for using tensile 

testing machines of their labs. 

My thanks also go to my friends and colleagues especially Bo Peng and Hongjin 

Wang and the department faculty and staff for making my time at Texas A&M 

University a great experience.  

Finally, I would like to express my deepest appreciation to my mother and father 

for their encouragement, patience and love. 



 

vi 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

This work was supported by a dissertation committee consisting of Professor 

Sheng-Jen Hsieh, Professor Bruce Tai, Professor Sy-bor Wen of Mechanical 

Engineering Department and Professor Jun Zou of the Department of Electrical & 

Computer Engineering. All work for the dissertation was completed independently by 

the student. 

Part of the data and analysis of this dissertation were already published in the 

Journal of Virtual and Physical Prototyping, Microelectronics Reliability, and SPIE. 

And the permission for reproduction was acquired. 

This work was partially supported by a Texas A&M University-CONACYT 

Collaborative Research Grant (No. 230308), by a gift from Rockwell Automation, and 

by the Additive Manufacturing Center for Mass Customization Production, which is part 

of the Featured Areas Research Center Program within the framework of Taiwan’s 

Ministry of Education (MOE) Higher Education Sprout Project. Any opinions, findings, 

and conclusions or recommendations expressed in this material are those of the author 

and do not necessarily reflect the views of the Texas A&M University, Rockwell 

Automation, or Taiwan’s the Ministry of Education (MOE). Graduate study was 

supported by Graduate Teaching Assistantship of Texas A&M University. 

 

 



 

vii 

 

NOMENCLATURE 

Acronyms 

ABS  Acrylonitrile Butadiene Styrene 

AE  Acoustic Emission 

AM  Additive Manufacturing 

ANN  Artificial Neural Network 

ANOVA  Analysis of variance 

ARC  Adaptive Response Correction 

DDM  Direct Digital Manufacturing 

DoE  Design of Experiment 

FDM  Fused Deposition Modeling 

FEA  Finite Element Analysis 

GA  Generic Algorithm 

H  Honeycomb 

HF  High-Fidelity 

IHCP  Inverse Heat Conduction Problem 

IR  Infrared 

LC  Lamina Composite 

LF  Low-Fidelity 

MS  Meso-structure 

PC  Polycarbonate 



 

viii 

 

PEEK  Poly-ether-ether-ketone 

PLA  Polylactic Acid 

PTAT  Proportion to Absolute Temperature 

R  Rectilinear 

RP  Rapid Prototyping 

RSM  Response Surface Methodology 

S/N  Signal-to-Noise 

SAMO  Surrogate-based Additive Manufacturing Optimizer 

SAO  Sequential Approximate Optimization 

SBO-MFM  Surrogate-Based Optimization Using Multi-fidelity Models 

SEM  Scanning Electron Microscope 

SM  Space Mapping 

STL  Stereolithography  

T  Triangular 

UTS  Ultimate Tensile Strength 

Symbols 

A   Cross-section area 

a    Variation of the measurement error 

b     Biased term 

C  Compliance matrix, Costs 



 

ix 

 

E  modulus of elasticity 

F  Force 

f  Frequency 

G  Shear modulus 

h    Convective heat transfer coefficient, Hypothesis 

k    Heat conductivity, Bending/twisting curvatures in the lamina, Iteration number 

L    Length 

P Perimeter 

Q  Radiation intensity, Stiffness Matrix 

q    Specific enthalpy 

q    Thermal energy generation 

R  Response 

S    Surrogate model 

s    Printing speed 

T    Temperature 



 

x 

 

t    Time 

W  Received radiation 

w  Weight 

z     Half thickness 

Greek Symbols 

ε    Strain 

γ    Shear Modulus 

ρ  density 

σ  Stefan-Boltzmann constant, Stress 

τ    Transmittance, Shear strain 

ν    Poisson’s ratio 

Superscripts 

n
  Real coordinate space of n  dimensions 

( )() k  At k th iteration 



 

xi 

 

Subscripts 

atm()  Atmosphere 

conv()  Convection 

diff()  Effective diffusion 

E()    Extrusion 

eff()  Effective 

exp()  Experimental 

g()    Glass transition 

obj()  Object 

p()    Platform 

ref()  Reflected 

sim()  Simulation 

tot()  Total  



 

xii 

 

()∞    Ambient 

 

 

 

 



 

xiii 

 

TABLE OF CONTENTS 

 Page 

ABSTRACT ....................................................................................................................... ii 

DEDICATION .................................................................................................................. iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

CONTRIBUTORS AND FUNDING SOURCES ............................................................. vi 

NOMENCLATURE ......................................................................................................... vii 

TABLE OF CONTENTS ............................................................................................... xiii 

LIST OF FIGURES ...................................................................................................... xviii 

LIST OF TABLES .......................................................................................................... xxi 

1. INTRODUCTION  ..................................................................................................... 1 

1.1. Motive ................................................................................................................ 1 

1.2. Fused deposition modeling mechanisms and applications ................................. 1 

1.3. Quality issues and difficulties of products fabricated by FDM ......................... 5 

1.4. Scope and research objectives ............................................................................ 9 

1.5. Sections overview ............................................................................................ 11 

2. LITERATURE REVIEW  ........................................................................................ 13 

2.1. Modeling of thermal extrusion process ............................................................ 13 

2.1.1. Analytical model ........................................................................................ 13 

2.1.2. Numerical simulation model ...................................................................... 17 

2.2. In-process monitoring techniques .................................................................... 19 

2.2.1. Embedded thermocouples .......................................................................... 19 



 

xiv 

 

2.2.2. Infrared thermography ................................................................................ 21 

2.2.3. Other techniques ......................................................................................... 24 

2.3. FDM process design ......................................................................................... 26 

2.3.1. Process parameters ..................................................................................... 26 

2.3.2. Influence of process parameters on dimensional accuracy ........................ 30 

2.3.3. Influence of process parameters on tensile strength ................................... 32 

2.4. Modeling of mechanical strength of FDM manufactured parts ....................... 35 

2.4.1. Conservative isotropic model ..................................................................... 35 

2.4.2. Orthotropic constitutive model ................................................................... 36 

2.4.3. Laminar composite model .......................................................................... 37 

2.5. Optimization with the application of FDM ...................................................... 39 

2.5.1. Parametric optimization ............................................................................. 39 

2.5.2. Methods of parametric optimization .......................................................... 40 

2.5.3. Recent advance on optimization of the FDM process ................................ 46 

2.5.4. Surrogate-based optimization using multi-fidelity models ........................ 48 

2.6. Summary .......................................................................................................... 53 

3. METHODOLOGY ................................................................................................... 55 

3.1. Introduction ...................................................................................................... 55 

3.2. Thermal behavior ............................................................................................. 59 

3.2.1. Experimental model ................................................................................... 59 

3.2.2. Numerical model ........................................................................................ 64 

3.2.3. Estimation of convective heat transfer coefficient and interfacial 
conduct resistance using artificial neural networks .................................................. 70 



 

xv 

 

3.3. Mechanical behavior ........................................................................................ 79 

3.3.1. Experimental model ................................................................................... 79 

3.3.2. Numerical model ........................................................................................ 83 

3.4. Development of surrogate-based additive manufacturing optimizer ............... 87 

3.4.1. Objective function ...................................................................................... 87 

3.4.2. Optimization algorithm .............................................................................. 88 

3.4.3. Optimization performance evaluation ........................................................ 90 

3.4.4. Case studies ................................................................................................ 91 

3.5. Summary .......................................................................................................... 92 

4. RESULTS AND ANALYSIS OF THERMAL BEHAVIOR OF POLYLACTIC 
ACID DURING THE FUSED DEPOSITION PROCESS .............................................. 95 

4.1. Experimental model ......................................................................................... 95 

4.1.1. Analysis of deposition temperature ............................................................ 95 

4.1.2. Analysis of ambient temperature ................................................................ 98 

4.1.3. Analysis of effective diffusion time ......................................................... 100 

4.2. Numerical model ............................................................................................ 104 

4.2.1. Grid independence test ............................................................................. 104 

4.2.2. Determination of convective heat transfer coefficient ............................. 105 

4.2.3. Validation of simulation results ............................................................... 111 

4.2.4. Simulation results on distortion and thermal stress .................................. 116 

4.3. Discussion ...................................................................................................... 119 

4.4. Summary ........................................................................................................ 120 

5. RESULTS AND ANALYSIS OF MECHANICAL BEHAVIOR OF FDM 
MANUFACTURED POLYLACTIC ACID PARTS .................................................... 122 



 

xvi 

 

5.1. Experimental model ....................................................................................... 122 

5.1.1. Analysis of stress-strain relationship ........................................................ 122 

5.1.2. Analysis of the modulus of elasticity and UTS ........................................ 124 

5.2. Numerical model ............................................................................................ 128 

5.2.1. Grid and time step independence test ....................................................... 128 

5.2.2. Results of effective elastic modulus on unidirectional samples ............... 129 

5.2.3. Analysis of stress concentration region on unidirectional samples .......... 130 

5.2.4. Analysis of effective elastic modulus on bidirectional samples .............. 132 

5.3. Formulation of knowledge-based library ....................................................... 134 

5.3.1. Implementing the knowledge-based library information system ............. 134 

5.3.2. Cross-validation with extrapolation and interpolation ............................. 136 

5.4. Summary ........................................................................................................ 139 

6. RESULTS AND ANALYSIS OF SURROGATE-BASED ADDITIVE 
MANUFACTURING OPTIMIZATION USING MULTI-FIDELITY MODELS ....... 140 

6.1. Case studies .................................................................................................... 140 

6.1.1. Case study 1—simple non-linear function ............................................... 140 

6.1.2. Case study 2—Gramacy & Lee function ................................................. 142 

6.1.3. Case study 3—Six-Hump Camel function ............................................... 144 

6.1.4. Case study 4—optimize tensile strength of FDM manufactured part ...... 146 

6.1.5. Case study 5—optimize strength and volumetric shrinkage of FDM 
manufactured part ................................................................................................... 147 

6.1.6. Case study 6—optimize the modulus of elasticity over building time of 
FDM manufactured part ......................................................................................... 148 

6.2. Discussions ..................................................................................................... 151 



 

xvii 

 

6.3. Summary ........................................................................................................ 154 

7. SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS ......................... 156 

7.1. Summary ........................................................................................................ 156 

7.2. Conclusions .................................................................................................... 158 

7.3. Future directions ............................................................................................. 159 

REFERENCES ............................................................................................................... 161 

APPENDIX A  CALIBRATION OF INFRARED SENSOR ........................................ 183 

APPENDIX B  THERMAL MODEL APPLICABILITY ANALYSIS ON 
ANOTHER FDM MACHINE ....................................................................................... 185 

APPENDIX C  EFFECT OF PROCESS PARAMETERS ON WALL WIDTH .......... 188 

 



 

xviii 

 

LIST OF FIGURES 

 Page 

Figure 1 A schematic of FDM system [3] .......................................................................... 3 

Figure 2 Numer of FDM machines sold between 2007 to 2014 ........................................ 4 

Figure 3 A schematic of the model used by Rodriguez ................................................... 14 

Figure 4 A schematic of contact area of a single filament [32] ....................................... 17 

Figure 5 An illustration of process parameters ................................................................ 26 

Figure 6 Structures of rectilinear, triangular, and honeycomb infill patterns .................. 28 

Figure 7 A typical non-linear neural network .................................................................. 43 

Figure 8 The flowchart of a typical SBO-MFM process ................................................. 49 

Figure 9 The flowchart for investigation of thermal behavior ......................................... 57 

Figure 10 The flowchart for investigation of mechanical behavior ................................. 58 

Figure 11 The flowchart of SAMO .................................................................................. 59 

Figure 12 A schematic of the experimental setup for thermal behavior analysis ............ 61 

Figure 13 A grey scale image of the temperature matrix taken by the infrared camera .. 62 

Figure 14 An example of the numerical model and its meshing scheme ......................... 68 

Figure 15 Locally refined mesh in the region of interest ................................................. 73 

Figure 16 The numerical model used in the determination of boundary condition ......... 73 

Figure 17 The topology of the ANN model used to determine boundary condition ....... 74 

Figure 18 Performance of the trained model .................................................................... 76 

Figure 19 An image of the experimental setup to determine boundary condition ........... 77 

Figure 20 An illustration of the points of interest in the boundary condition 
determination study .......................................................................................... 78 



 

xix 

 

Figure 21 The dogbone structure and its dimensions ....................................................... 79 

Figure 22 An example of bidirectional sample ................................................................ 80 

Figure 23 An image of the tensile testing process ........................................................... 82 

Figure 24 The conversion process from G-code to 3D FEA model ................................. 84 

Figure 25 A plot of deposition temperature over time under experimental condition 
No. 1 ................................................................................................................. 96 

Figure 26 Plots of deposition temperature over time for all experimental conditions ..... 98 

Figure 27 A plot of ambient temperature over time ......................................................... 99 

Figure 28 Results of S/N ratio of effective diffusion time under experimental 
condition ......................................................................................................... 102 

Figure 29 A plot of temperature distribution curves with regard to element size .......... 105 

Figure 30 Plots of calculated 
ph  (left) and 

ambienth  (right) in 100 networks .................... 106 

Figure 31 A plot of temperature history of two points under experimental and 
numerical conditions ....................................................................................... 106 

Figure 32 The cumulative probability function of estimation results with error 
induced from training for ph  (left) and h∞  (right) ......................................... 109 

Figure 33 The cumulative probability function of estimation results with error 
induced from testing for ph  (left) and h∞  (right) ........................................... 110 

Figure 34 A S/N ratio of effective diffusion time under numerical condition ............... 113 

Figure 35 A comparison of effective diffusion time in this study and previous 
literature .......................................................................................................... 115 

Figure 36 A contour image of z-direction distortion of the model ................................ 116 

Figure 37 A contour image of residual stress of the model ........................................... 117 

Figure 38 S/N ratio plots for distortion (left) and residual stress (right) ........................ 118 

Figure 39 Stress-strain curves for unidirectional samples under tensile testing ............ 123 



 

xx 

 

Figure 40 Stress-strain curves for bidirectional samples under tensile testing .............. 123 

Figure 41 An illustration of semi-crystalline polymer stress-strain curve ..................... 124 

Figure 42 S/N ratio analysis for UTS (left) and UTS/weight ratio (right) ..................... 127 

Figure 43 Plots of load force over node number (left) and time step (right) ................. 128 

Figure 44 Fracture point in experimental and numerical conditions for sample #1 to 
#9 .................................................................................................................... 132 

Figure 45 The ANN used to construct the knowledge-based library ............................. 136 

Figure 46 The flowchart of constructing the knowledge-based library ......................... 136 

Figure 47 The regression performance of the developed network ................................. 138 

Figure 48 Comparison of optimization error of SAMO, RAO, and ARC algorithms 
for case #1 ....................................................................................................... 141 

Figure 49 Gramacy & Lee function ............................................................................... 142 

Figure 50 Comparison of optimization error of SAMO, RAO, and ARC algorithms 
for case #2 ....................................................................................................... 143 

Figure 51  Six-Hump Camel function ............................................................................ 144 

Figure 52 Comparison of optimization error of SAMO, RAO, and ARC algorithms 
for case #3 ....................................................................................................... 145 

Figure 53 Plots of convergence steps and estimation error in 100 runs with random 
initialization process ....................................................................................... 154 

Figure 54 Schematic of experimental setup on Machine B............................................ 186 



 

xxi 

 

LIST OF TABLES 

 Page 

Table 1 The relationship between process parameters and increasing of vertical 
deformation ....................................................................................................... 32 

Table 2 The relationship between process parameters and increasing of tensile 
strength ............................................................................................................. 35 

Table 3 Summary of most recent (2014-2018) work on FDM process optimization ...... 48 

Table 4 Design of experiment for analysis of thermal behavior ...................................... 64 

Table 5 Material properties used in numerical modeling of thermal behavior ................ 69 

Table 6 Design of experiment for mechanical behivor investigation .............................. 81 

Table 7 The testing cases for developed SAMO .............................................................. 92 

Table 8 Results of effective diffusion time under experimental condition .................... 101 

Table 9 Results of ANOVA analysis on effective diffusion time under experimental 
condition ......................................................................................................... 103 

Table 10 Comparison of experimental, numerical, and literature value of effective 
diffusion time .................................................................................................. 111 

Table 11 The highest von Mises stresses for each condition in the developed 
simulation model ............................................................................................ 118 

Table 12 Tensile strength and the modulus of elasticity of all samples tested .............. 126 

Table 13 The modulus of elasticity of unidirectional samples obtained by MS 
approach and experiments .............................................................................. 129 

Table 14 The modulus of elasticity of bidirectional samples obtained by MS 
approach, LCT approach, and experiments .................................................... 134 

Table 15 Details of the SAMO attempted experimental runs and the corresponded 
response in Case 5 .......................................................................................... 147 



 

xxii 

 

Table 16 Details of the SAMO attempted experimental runs and the corresponded 
response in Case 6 .......................................................................................... 148 

Table 17 LF model results used to establish the surrogate model and the SAMO 
suggested HF model results ............................................................................ 150 

Table 18 Results of samples manufactured in the vicinity of the obtained solution ...... 151 

Table 19 The convergence data for different sampling strategy .................................... 152 

Table 20 The convergence data for low-fidelity model accuracy .................................. 153 

Table 21 The calibration results ..................................................................................... 184 

Table 22 Comparison of experimental and numerical values of effective diffusion 
time on Machine B .......................................................................................... 187 

Table 23 Measurement results of the wall width for all experimental conditions ......... 188 

Table 24 ANOVA results of the wall width ................................................................... 189 

 

 

 

 

 



 

1 

 

1. INTRODUCTION 1 

1.1.  Motive 

Additive manufacturing (AM), also known as 3D Printing, Direct Digital Manufacturing 

(DDM), Rapid Prototyping (RP), additive fabrication, or solid freeform fabrication, is a 

technique that could form selected surfaces using a fluid medium capable of changing its 

physical state in response to specific stimuli. Up to now, the most commonly used 

additive manufacturing systems are those based on extrusion, such as fused deposition 

modeling (FDM) [1]. An appropriate FDM process is vital since every manufacture 

process parameter could potentially affect the final part quality. 

The next few chapters would elaborate on the mechanisms, the applications of the FDM 

process and the reliability problem of FDM manufactured products. Finally, difficulties 

on quality improvement of FDM products would be addressed, and the nature of the 

research problem is summarized. 

1.2.  Fused deposition modeling mechanisms and applications 

Invented by S. Scott Crump [2], the technique of Fused Deposition Modelling uses a 

movable nozzle to deposit a thread of molten plastic material onto a surface. In a typical 

                                                 

1 Part of this section is reprinted with permission from ‘Experimental and numerical investigation of the 
thermal behaviour of polylactic acid during the fused deposition process’ by Xunfei Zhou, Sheng-Jen 
Hsieh & Yintong Sun Virtual and Physical Prototyping Vol 12:3 pp. 221- 233 (2017) and Modelling and 
estimation of tensile behaviour of polylactic acid parts manufactured by fused deposition modelling using 
finite element analysis and knowledge-based library’ by Xunfei Zhou, Sheng-Jen Hsieh & ChenChing 
Ting Virtual and Physical Prototyping (2017). Copyright 2018 by Taylor & Francis Group 
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process, a thermoplastic filament is first fed into the machine through a pinch roller 

driven by a step motor. Then the filament would be heated in a preheated liquefier 

chamber to its liquid state; in the meantime, the solid upper portion is continuously 

pushed into the chamber, works as a piston to force the melted part out of the nozzle. A 

gantry is commonly used to control the extrusion path with a nozzle located at the 

bottom of it. The gantry is capable of moving horizontally as the material is deposited on 

a building platform that can be moved in the vertical direction. After fabrication of each 

layer, the platform moves down and enables the building of the next layer on the 

previously finished layers, as shown in Figure 1. Therefore, FDM offers users the ability 

to create arbitrary and complex three-dimensional geometry without increasing 

manufacture difficulty.  
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Figure 1 A schematic of FDM system [3]2 

 

Due to affordability and feasibility, FDM has become the most popular Additive 

Manufacturing (AM) process worldwide since the early 2000s. According to research 

from Wohlers [4], Stratasys, a company founded by Crump et al., is the dominant 

company in the market, sold around half of all FDM machines. However, with the patent 

expired in 2007, the whole FDM industry started booming. In a comprehensive industry 

                                                 

2 Figure 1 is reprinted with permission from Kruth, J. P. (1991). Material incress manufacturing by rapid 
prototyping techniques. CIRP Annals-Manufacturing Technology, 40(2), 603-614. Copyright 2018 by 
Elsevier 
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survey conducted by Wohlers Cooperation [5], over 130k low-cost FDM-based 3D 

printers were sold in 2014, compared to only 66 sold in 2007, as indicated in Figure 2. 

 

 

Figure 2 Numer of FDM machines sold between 2007 to 2014  

 

The simplicity and the relatively cheap equipment of the FDM process render this 

technique's success in the field of tissue engineering, bio-engineering, and aerospace 

engineering. Scaffolds in tissue engineering are used to provide support for cell 

attachment and require hierarchical porous structures to achieve desired mass transport 

and mechanical functions [6], while 3D printer offers doctors the ability to print the 
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scaffolding layer by layer into a working tissue sample or organ [7]. In the fields of 

bioengineering, AM techniques including FDM could create 3D models for surgeons for 

practice and planning surgery [8], construct a dental model without traditional 

impression approaches [9], and produce microfluidic devices with biocompatible 

surfaces [10]. As a low-cost and flexible manufacturing technology, FDM is also 

successfully tested as a potential substitute to manufacture turbine blades [11, 12] and 

pump impellers [13]. Some of the influential companies view 3D printing as the future 

trend of manufacturing, General Electric (GE) Aviation plans a $3.5 billion investment 

in AM, aims to produce over 1 million additive manufactured parts for its LEAP and 

GE9X engines [14].  

1.3.  Quality issues and difficulties of products fabricated by FDM 

The quality of products is the most critical concern of the manufacturing industry. In 

general, the mechanical properties of plastic products fabricated by FDM are less than 

those made with traditional plastic processing methods. The tensile strength and 

compressive strength of acrylonitrile butadiene styrene (ABS) samples manufactured by 

FDM were 65%–72% and 80%–90% of those made by injection molding, respectively 

[15]. And the tensile strength of polypropylene homopolymerize samples manufactured 

by FDM exhibited a 20%–30% decay when compared with specimens produced by 

compressing molding of the same material [16]. However, with a proper post-treatment 

method, impellers fabricated by FDM could show a similar performance as the original 

impeller of a rotodynamic hydraulic pump, within a 2.5% deviation in the flow behavior 
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curve [13]. The variable properties and performance of FDM product are caused by the 

intermittent nature of the manufacturing process. Filaments are extruded and melted at 

the same time, and inaccurate control of such processes could create quality issues, such 

as layer shifting and weak infill. In addition, the machine deposits material in a 

directional way, resulting in anisotropic behavior of the manufactured parts.  

Apart from mechanical strength, another important aspect of FDM part quality is 

dimensional accuracy. Dimensional accuracy is defined as the fidelity of part geometry 

to the original computer design. Similar to mechanical properties, dimensional accuracy 

of the final part is dependent upon the process design parameters as well as the 

properties of the raw material. Dimensional error in the final part is mostly induced from 

warping [17] caused by residual thermal stress created by uneven heat distribution as 

well as shrinkage [18] during the cooling process [19]. Deformation of the part could 

potentially lead into inner-layer delaminating or crack, and even cause fabrication failure 

[17]. Uneven heat distribution or thermal gradients are inevitable in the FDM process. 

When the hot melted material is depositing on a previously solidified cool part, the 

temperature of the below layers will rise again, creating a large thermal gradient in the 

vertical direction. The repetitive heating and cooling near the extrusion region make 

residual stress accumulated inside of the part, leads to deformation of the part. 

Since both mechanical properties and dimensional accuracy are strongly dependent upon 

process parameters, a good understanding of this relationship would be necessary. 
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Moreover, with the thorough understanding of the process-product-property relationship, 

an optimization of the process can be performed to address the current quality issues 

associated with FDM technology. In this way, pre-process modeling and prediction 

approaches, in-process monitoring methods, and post-process analysis should be 

thoroughly investigated. 

As mentioned above, the application of FDM is hindered mainly due to uncertainty 

regarding dimensional stability and mechanical properties of the products. Therefore, 

those attributes should be optimized to increase the reliability of the FDM manufactured 

products. However, limited understanding of the FDM processes, especially the 

deposition process, dramatically hinders the future growth of FDM technology [20]. An 

in-depth knowledge of FDM processes could be gained through experiments and 

theoretically analysis so that a model can be constructed to quantify the relationship 

between input and output parameters. One of the first challenges in modeling extrusion 

behavior is the highly dynamic and complex heating, melting and solidification of 

materials during the FDM process. Analytical models are cost-effective but to develop 

an analytical model for such a complicated process requires underlying assumptions 

carefully selected. On the other hand, numerical models stem from the physics of the 

process and can demonstrate very detailed system behavior. However, they are time-

consuming to build, run, and need additional validation. 
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To optimize the FDM process, variables of interest should be obtained first. In-process 

monitoring is the integration of one or more sensor measurements, such as electrical, 

optical, and temperature, in determining the state of the processes [21]. The monitoring 

of process variable not only provides validation tool for predictive models but also 

facilities development of closed-loop control system. Currently commercialized FDM 

machines just applies closed-loop control in sub-systems of the printer such as nozzle 

and step motor while the overall control of printing is still open-loop [22]. The machine 

does not track the actual dimension of the product so that a small printing error would 

lead to increase dimension error in subsequent layers. Hence human efforts are required 

to monitor the deposition process. Several process monitoring techniques for FDM have 

been developed to date, including optical cameras [23], embedded thermocouples [24], 

and acoustic emission [25]. Nevertheless, there are limitations for these inspection 

methods: the scan quality of optical cameras is limited for surfaces with overhangs or 

undercuts; pre-embedded thermocouples can only measure temperature at a few fixed 

points, and the signal-noise ratio of the acoustic emission method is mostly dependent on 

the location of the sensor and the distance between the source and sensor. 

And finally, the optimization of FDM process involve various process parameters and 

complicate objective functions [26]. To apply traditional optimization techniques to it, a 

great amount of experiments need to be performed to find the global optimum condition. 

For instance, if the traditional response surface methodology was used to optimize a 4-

parameter 1-response problem, at least 30 experiment conditions need to be considered, 
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let alone additional replicate experiments to ensure repeatability. Considering the 

machine operation and material cost, as well as the time required to characterize the 

properties of the products, those techniques are expensive in nature. Difficulties of the 

traditional optimization methods, in the context of process improvement and product 

quality enhancement, are the main incentives for developing alternative cost-effective 

optimization algorithm which could benefit from pre-process property prediction 

approaches.  

1.4.  Scope and research objectives 

Mechanical strength and dimension accuracy are two of the most crucial factors for 

product development of FDM technology. However, the solid-liquid-solid change of 

material in the FDM process make it extremely hard to accurately model thermal and 

mechanical behavior of the manufactured products and predict the associated strength 

and accuracy. Multiple methods have been applied to model, predict, and optimize the 

thermal and mechanical behaviors, but there are limitations in these ways. An approach 

which is easy to perform, low cost and automated is required to predict the properties of 

the products and optimize the manufacturing process is essential to improve the quality 

of FDM fabricated products.   

The objectives of this study are focused on product and process improvement of FDM 

technology. To accomplish that, analysis, modeling, and prediction of thermal and 

mechanical behavior of the FDM process is necessary. To understand how process 
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parameters affect the transient temperature distribution and residual stress during the 

layer-by-layer manufacturing process, an experimental model will be first developed 

utilizing cost-effective infrared thermography. Transient thermal behavior will be 

characterized by spatial thermal history and temporal cooling rate of the extruded 

material. A parametric study would be conducted to evaluate the effect of process 

parameters on parts' thermal behavior. With the establishment of an experimental model, 

a numerical model will be used to simulate the heat transfer phenomenon during the 

same manufacturing process. The numerical model will be first validated with thermal 

history measurement results then it would be used to further investigate the influence of 

process parameters on residual stress and part deformation. 

A similar experimental-numerical approach would be applied to investigate the process 

parameters on tensile properties of the manufactured part. Tensile testing of parts with 

various infill topology design would be first performed. A meso-structure simulation 

technique is going to be developed to characterize the tensile behavior of numerical 

simulation models with the same filament geometry. The accuracy of the results will be 

validated by comparing the experimental results with the results obtained from the finite 

element simulations. And the performance of the proposed model would be compared 

against other existing modeling approach. 

Finally, the same hybrid model approach would be adopted to optimize the 

manufacturing process to enhance required properties of the product. The proposed 
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optimizer is developed to guide the decision-making process in optimization 

manufacturing conditions by combining cost-effective but less accurate numerical 

models with expensive but accurate experimental models. A numerical simulation based 

predictive model would first generate a series of design cases to approximate the 

solution to the original optimization process. Then iteratively, the optimizer would be 

updated with most recent performed experimental results and estimate the optimal 

solution. In summary, this research would provide the FDM industry with the knowledge 

to develop better monitoring techniques, more accurate modeling approaches, and much 

cheaper optimization method to address the quality of the manufactured parts.     

1.5.  Sections overview 

Sections are organized as follows: 

 Section 2 reviewed existing analytical and numerical modeling approaches for 

thermal behavior of the FDM process, current in-process monitoring approaches, 

infrared thermography as a methodology to describe surface temperature, up-to-

date mechanical strength modeling approaches, and methods used to optimize 

FDM process.  

 Section 3 describes the methodologies applied to understand and characterize the 

FDM process. 

 Section 4 shows and analyzes the experimental and numerical data describing the 

thermal behavior of the FDM process. 
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 Section 5 shows and analyzes the experimental and numerical data describing the 

mechanical behavior of the FDM products. 

 Section 6 present the results of the developed optimization algorithm with several 

case studies. 

 Finally, Section 7 draws the conclusion and presents the future work. 
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2. LITERATURE REVIEW 3 

2.1.  Modeling of thermal extrusion process 

2.1.1.  Analytical model 

The development of analytical models is critical for modeling and predicting thermal 

behavior that accounts for the quality of the products. An understanding of material 

property changes during the deposition process would enable optimization and control of 

such processes. Few analytical models have been established to predict the thermal 

history of a filament under extrusion. Rodriguez and Thomas performed a 2D transient 

heat transfer analysis of a single-road-width solidification process [27]. They assumed 

that filaments have a rectangular cross-section, the effects of conduction to the platform 

can be neglected, and any contact resistances between filaments are negligible. With the 

boundary condition set based on Figure 3, they derived that the transient temperature 

over the bead cross-section is 

 
2 2 2( )
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3 Part of this section is reprinted with permission from ‘Experimental and numerical investigation of the 
thermal behaviour of polylactic acid during the fused deposition process’ by Xunfei Zhou, Sheng-Jen 
Hsieh & Yintong Sun Virtual and Physical Prototyping Vol 12:3 pp. 221- 233 (2017) and Modelling and 
estimation of tensile behaviour of polylactic acid parts manufactured by fused deposition modelling using 
finite element analysis and knowledge-based library’ by Xunfei Zhou, Sheng-Jen Hsieh & ChenChing 
Ting Virtual and Physical Prototyping (2017). Copyright 2018 by Taylor & Francis Group 
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Where T  is temperature, subscript E stands for extrusion, t  is time, and other terms are 

defined based on the appendix of the original paper [28]. 

 

Figure 3 A schematic of the model used by Rodriguez 

 

However, Eq. 2.1 neglected heat transfer effect from the platform that could happen 

during the deposition process. Yardimci et al. [29] developed a more general 1D heat 

transfer analysis model where the governing equation is 
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 where ρ , q  , k  , h , effh stands for density, specific enthalpy, heat conductivity, 

convective heat transfer coefficient, and the ratio of road element volume to surface area 
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for convective cooling, respectively. Subscript ∞  denotes ambient condition while 

neigh denotes relevant neighbor road. Nevertheless, an analytical solution is difficult to 

obtain with various terms in Eq. 2.2 remain unknown. 

Bellehumeur’s research group [30, 31] tried to simplify Eq. 2.2 to a single road structure 

where lumped capacitance method could apply. With no neighbor roads and assumes 

heat capacity and conductivity remain constant, the third term on the right side can be 

neglected and becomes 
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After rearrangement of terms, Eq. 2.3 becomes 
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where A  is the cross-section area and P  is the perimeter of it. Solving Eq. 2.4 with the 

boundary conditions of  @ 0, 0ET T x t= = ≥  and  @ , 0T T x t∞= = ∞ ≥  , the solution 
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Costa et al. [32] further derived the analytical model for a multi-filament structure based 

on the governing equation of 

 
5
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where L  is the length of the filament, ( 1 5)iA i = −  is the area of contact, subscript 2 

stands for in contact with the building platform while other subscripts are in contact with 

neighbor filaments, as indicated in Figure 4. 
convA  is the area exposed to ambient air, 

equals to total surface area minus every other area of contact. φ  is 1 if the analyzed 

filament is the first one, if otherwise it becomes 0.  

It should be seen that all theoretical models addressed the manufacture condition with 

underlying assumptions that failed to consider phase transition heat generation/loss into 

their heat transfer governing equation. Moreover, for an actual multi-filament structure, 

they are either unable to obtain the solution [27, 29-31] or require additional computer-

aided computation[32]. 
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Figure 4 A schematic of contact area of a single filament [32]4 

 

2.1.2.  Numerical simulation model 

Numerical simulation of the thermal behavior of the deposition process in FDM was 

performed by several groups. Zhang and his coworkers [33, 34] developed a finite 

element analysis (FEA) model to study the effect of scan speed, road width, and layer 

thickness on part distortion. The simulations are performed in a stepwise thermo-

mechanical manner where elements were gradually added/activated. The initial 

temperature of any newly activated element was set at the extrusion head temperature 

and the temperature evolution after extrusion was solved through conduction with the 

                                                 

4 Figure 4 is reprinted with permission from Costa, S. F., Duarte, F. M., & Covas, J. A. (2008). Towards 
modelling of Free Form Extrusion: analytical solution of transient heat transfer. International Journal of 
Material Forming, 1(1), 703-706. Copyright 2018 by Springer 
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neighbor elements and the building platform as well as the convection with ambient air. 

They discovered through the developed model that the scan speed is the most significant 

factor affecting part distortions, followed by the layer thickness and road width. Their 

results were validated with experimentally results only qualitatively. Some other 

research groups [35, 36] employed a similar technique to evaluate the temperature 

evolution in the FDM process. In particular, Zhang et al. [37] proposed an adaptable 

three-dimensional transient mathematical model with a boundary adjusting finite 

difference method. the FDM process was viewed as sequential deposition of elements 

following a predefined pattern at time intervals. Their model is able to adjust the 

boundary area and condition with the deposition of each element. They found out 

temperature settings, including temperature of printing nozzle, heat plate and the 

environment, are crucial factors determining temperature variation.  

Costa et al. [38] examined the contribution of convection and radiation with the 

environment as well as the conduction inside of the product to the overall heat transfer 

effect. The mesh was generated for each individual filament with a circular cross-section 

shape with the deformation of a filament subjected to its own weight considered. They 

concluded that the highest impact of heat transfer was coming from thermal convection 

between the product and the environment, followed by heat conduction between adjacent 

filaments and the platform.  
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Dabiri et al. [39] presented fully resolved numerical simulations of the deposition of a 

filament of hot, viscous liquid, and its solidification process. The method was initially 

developed for direct numerical simulations of gas-liquid flow, but they successfully 

applied it to filament extrusion process. They simulated the injection of a hot viscous 

liquid onto a vertical plate where a Lagrangian front is used to track the surface of the 

injected melt. After contact with cooler building platform and previously deposited 

material, the melt cooled down and solidified, a zero velocity was then enforced on the   

cells which are the cells inside the injected material with the temperature below the 

melting point. 

Despite various approaches, their simulation results either completely lack validation 

with experimental results [35-39], or they were validated with indirect results of the 

thermal behavior, such as dimension accuracy [33]. 

2.2.  In-process monitoring techniques 

As introduced above, the development of in-process monitoring techniques would be 

beneficial for cross-validation with transient predictive model results and improvement 

of advanced schemes. The primary research interest in this area was focused on the 

temperature profile and the geometry. 

2.2.1.  Embedded thermocouples 

Embedded thermocouples become the natural choice of temperature measurement 

method. The temperature profiles of extruded filaments were monitored using 0.0118 
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mm K-type thermocouple in Sun et al.'s work [24]. One thermocouple was embedded in 

the foam of the base plate of the FDM 2000 machine and layers of filaments were 

deposited onto it. The temperature profiles they obtained showed that the temperature of 

the filament located on the bottom layer periodically rises above the glass transition 

temperature with the deposition of each additional layer. However, their conclusion can 

only apply to the specimen geometry they discussed, and their results were impacted by 

the response time of thermocouple. Kousiatza et al. [40] also deployed thermocouples to 

measure the temperature variation during the building process. Instead of embedding 

thermocouples in the building platform, they paused the manufacturing process in the 

middle, deployed thermocouples on top of the finished layer, and then continue 

manufacturing. The experimental results obtained in their study were compared against 

the prediction results generated by finite element analysis model, showing a good 

agreement. Monzon et al. [41] deployed two thermocouples on the axis of the 

rectangular samples. With only the bottom layer is in direct contact with the 

thermocouples, a progressive decrease of peak temperature was observed when the 

nozzle passed over the deployed sensors. 

Based on the above discussion, the thermocouple is a valuable temperature measurement 

device suitable for characterizing temperature of a few fixed points. However, the 

requirement of pausing the manufacturing process in the middle to deploy temperature 

sensors and the difficulty of removing them from the manufactured part limited the 

application of it to industry-level process monitoring. 
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2.2.2.  Infrared thermography5 

2.2.2.1 Theoretical background 

Infrared (IR) imaging [42], also can be called as thermography, is a technique that could 

capture the radiative energy emitted by objects and transform such energy into a 

temperature distribution by using an infrared camera or sensor [43]. Thermography can 

be categorized into two types--active and passive thermography. If no external energy is 

provided to the object under study, then the technique is called passive thermography, on 

the contrary, active thermography requires using an external heat source to generate 

temperature variation to the object under study. Several parameters and factors that 

could impact the temperature measurement results of modern IR camera systems are 

listed in Table 1.1 of Vollmer et al.'s book [44]. Among them, quantitative results can 

strongly depend on the emissivity of the object, distance of the camera to the object, size 

of the object, and ambient temperature. 

Emissivity is the efficiency with which an object emits infrared radiation when 

compared with a perfect emitter-blackbody, which has an emissivity value of 1. The 

relationship between total radiation intensity (all wavelengths) and the temperature is 

defined by the Stefan-Boltzmann law. 

                                                 

5 Part of this section is reprinted with permission from Zhou, X., Hsieh, S. J., Peng, B., & Hsieh, D. 
(2017). Cycle life estimation of lithium-ion polymer batteries using artificial neural network and support 
vector machine with time-resolved thermography. Microelectronics Reliability, 79, 48-58. Copyright 2018 
by Elsevier 
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 4Q Tεσ=   (2.7) 

Where Q  is radiation intensity, ε  is emissivity, and σ  is Stefan-Boltzmann constant. 

However, targets are not perfect radiators in reality which usually have an emissivity 

value below 1. For these targets, the temperature was measured from a combination of 

emitted, reflected, and transmitted radiation, as shown below.  

 4 4 4(1 ) (1 )
tot object reflection atomosphere

obj atm obj obj atm ref atm atm
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where 
totW  is the total radiation received by the camera, 

atmτ is the transmittance of the 

atmosphere. The detailed derivation process of Eq. 2.8 can be found in Usamentiaga's 

review paper [45]. Rearrange Eq. 2.8, it becomes: 
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Therefore, the following parameters must be supplied to calculate the surface 

temperature of object: the emissivity of the object objε , the reflected temperature refT , 

the transmittance of the atmosphere
atmτ , and the temperature of the atmosphere 

atmT . 

atmτ is generally estimated using the distance from the object to the camera and the 

relative humidity and usually very close to one. The temperature of the atmosphere can 

be obtained easily through the thermometer. However, as the emittance of the 
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atmosphere is very close to zero (1 − 
atmτ ), this parameter has little influence on the 

temperature measurement results. Alternatively, the emissivity of the object and the 

reflected temperature have a very high influence on the temperature measurement and 

must be measured very accurately. 

2.2.2.2 Application of thermography on FDM 

Thermography has the advantages of being non-intrusive, with fast response time, and it 

can provide temperature mapping of the entire surface. Hence, the application of it on 

AM technologies, especially FDM has been widely studied. Dinwiddie et al. [46, 47] 

used both mid-wave and long-wave IR cameras to measure various temperature profiles 

in thermoplastic parts. Two different FDM machines were involved in their study, one is 

desktop-level and another is Big Area Additive Manufacturing (BAAM) machine. They 

found out adding carbon fibers to Acrylonitrile Butadiene Styrene (ABS) increases the 

extruder temperature and kept the deposited layer hot for a long time for both machines. 

Seppala and Migler [48] utilized a mid-wave IR camera in conjunction with reflection 

correction and calibration techniques to measure the temperature profiles of the 

extrusion region during 3D printing. Since the total signal received by the camera 

composed of emitted and reflected energy from the object, reflected energy was 

subtracted to increase the measurement accuracy. It is found the reflected energy can be 

determined by passing the heated extruder over the build surface without extruding so 

that the reflection correction could then be performed. Based on their results, It is 

discovered the extruded material of their sample remained above the glass transition 



 

24 

 

temperature for approximately 1s. Compton et al. [49] performed a thermal analysis of a 

large-scale thermoplastic polymer composites during the manufacturing process. They 

placed one IR camera 1.2m away from a 1.542m length, 0.358m height composite wall 

to monitor the temperature evolution.  

However, there are still several difficulties associated with industrial applications of 

thermography as an in-process monitoring method. First and foremost, the field of view 

is limited for a fixed camera. For a stationary camera, the field of view could be easily 

obscured by a mounted nozzle and finished layer; therefore, observing inner surface 

temperatures would be difficult [50]. Second, the price of an infrared camera is usually 

too high for widespread application to commercialized 3D printers. For example, the 

FLIR SC-7600 mid-wave IR camera used in the study of Dinwiddie et al. [47] costs 

around $2000, which is twice the price of a typical desktop-level 3D printer. Therefore, 

it is essential to develop a low-cost monitoring technique for in-process surface 

temperature measurements and the monitoring of thermal behavior.  

2.2.3.  Other techniques 

An FDM process is prone to create over-fills and under-fills in the manufactured parts. 

Therefore, a high-level monitoring technique is required to detect those geometry defects 

and increase the reliability of the machine. Fang et al. [23, 51] deployed an optical 

camera to capture the image of each layer after it is built. The captured image was then 

compared with the expected image to identify any existing defects.  Similar work was 
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done by Baumann and Roller [52], where they placed a camera in front of the machine to 

detect detachment, missing material flow, parts deformation, surface error, and deviation 

from the model. Cheng and Jafari [53] applied a 3-D surface reconstruction algorithm 

called shape form profile to obtain 3D road shapes. Their vision module is able to 

calculate surface defects and then fed them to a control module to adjust process 

parameters in order to improve surface quality for the subsequent layers, as well as 

subsequent parts.  

Wu et al. [25] proposed to use acoustic emission (AE) technique to monitor FDM 

machine condition. The AE sensors were securely attached on the side surface of the 

extruder with vacuum grease. so that it could detect the stress waves generated from the 

source of emissions, such as crack, friction, and deformation. Stress wave signatures 

from the extruder were collected when the extruder was functioned normally, blocked, 

and semi-blocked. With the use of machine learning technique, they reached over 95% 

accuracy when detecting extruder blockage.   

Kantaros and Karalekas [54] embedded an optical sensor with a short fiber Bragg grating 

(FBG) at the midplane of FDM built specimens to record developed residual strains. A 

similar pause-embed-continue scheme as Ref. [40] was used to embed the sensors in the 

middle of a printing process. The stress results were then used to assess the effect of 

printing orientation and layer thickness.  
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Rao et al. [55] conducted online monitoring involved a sensor network including 

thermocouples, accelerometers, an IR temperature sensor, and a real-time miniature 

video borescope. The information they could obtain is platform temperature, extrusion 

temperature, ambient temperature, melt pool temperature, extruder vibration, table 

vibration, and video. 

2.3.  FDM process design 

2.3.1.  Process parameters 

In FDM, it is essential to select process parameters for achieving optimal product quality 

[56]. Usually, the desired process parameters are determined based on the operators’ 

experience or manufacturer’s recommendations. Nevertheless, it does not ensure that the 

selected process parameters would fabricate products with the optimal or near optimal 

performance for that specific machine and material. Furthermore, determining optimal 

parameters in an FDM process is complicated due to the presence of multiple conflicting 

parameters that will contribute to the final part quality and mechanical properties [57]. 

 

Figure 5 An illustration of process parameters 
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FDM process parameters can be categorized into product parameters and machine 

parameters. Product parameters determine how the 3D model get sliced or the geometry 

of the filament inside of a manufactured product. Some vital product parameters are 

listed and explained below, an illustration of them was also given in Figure 5. 

 Contour width: Sometimes referred to the perimeter width, is the width of the 

outside bead. 

 Raster/infill/extrusion/road width: The width of the infill raster material bead. 

The nozzle of larger diameter extrudes broader raster and vice versa. For a 

0.4mm diameter nozzle, a maximum of 0.5mm raster width can be used. 

 Air gap: To reduce the material cost and manufacturing time, the infill of each 

layer is not always pure solid. The air gap is defined as the distance between 

adjacent rasters of the same layer. In most 3D printing software, the setting of the 

air gap is done by changing infill density or infill percentage. 

 Raster angle/infill angle: It is defined as the angle of infill bead with regards to 

the horizontal axis of the bottom layer. Raster angle determines how much 

material is there in the direction of force. 

 Layer/wall thickness or layer height: Thickness of each layer. As FDM is a layer-

by-layer manufacture process, layer thickness plays an important aspect in final 

product quality. The lower the value, the thinner each layer is, the better surface 
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quality can be achieved. However, decreasing the layer thickness also means 

more layers will be needed to be printed and the manufacturing time would 

increase proportionally. 

 Infill pattern: Raster tool path inside of each layer. When using any infill 

percentage, a pattern is required to create a durable and robust structure inside 

each layer. There are several different infill pattern options, each has their unique 

advantages and disadvantages between mechanical strength, manufacturing time, 

and material cost. Some examples are rectilinear, triangular, and honeycomb 

structures, as illustrated in Figure 6. 

 

Figure 6 Structures of rectilinear, triangular, and honeycomb infill patterns 

 

FDM machine parameters determine the extrusion condition of the filament, mostly 

temperature, and speed. Below is an explanation of each individual parameter. 
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 Extrusion/nozzle/die temperature: The temperature of the heated extruder. It is 

evident that the temperature of the filament near the exit of extruder should be 

close to this value. However, when the filament is leaving the nozzle tip, the 

temperature of it would be already cooled below this value. Correct setting of 

extrusion temperature is of immense importance. If the extrusion temperature is 

too high, the material may not have enough time to solidify before it gets in 

contact with the below structure, leaving a blob in the manufactured part. If it is 

set too low, then too much force would be required to extrude, leading to rough 

surface quality. 

 Platform/envelop/bed temperature: The temperature of the building platform. A 

heated platform increases the temperature of lower layers, reduced the vertical 

temperature gradient and residual stress over the printing process, and thus 

prevent severe part deformation. However, if the platform was over-heated, the 

material could stay above its glass transition temperature for a longer time and 

would continue shift/flow when in contact with the bed and thus influence the 

dimension accuracy. 

 Printing speed: The speed nozzle is moving while extruding the filament to 

create the physical representation of the 3D model. Printing too fast could cause 

the material to cool quickly and create a large temperature gradient in the 

horizontal direction while printing too slow would increase the manufacturing 

time significantly. 
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2.3.2.  Influence of process parameters on dimensional accuracy 

Wang et al. [58] studied the effect of layer thickness, deposition style, support style, 

deposition orientation, and deposition position on each direction of dimension accuracy 

and mechanical strength by combining the Taguchi method with the Gray relational 

analysis. They concluded that an essential parameter to dimensional accuracy is the 

fused deposition layer thickness. With a mathematical model of the prototype warp 

deformation constructed, Wang et al. [17] investigated the effect of deposition layers 

number, the stacking section length, the chamber temperature, and the material linear 

shrinkage rate on part deformation value quantificationally. Sood et al. [59, 60] 

conducted investigations on the influence of part orientation, layer thickness, raster 

width, raster angle and air gap along with their interactions on the dimensional accuracy 

of FDM manufactured parts. Their results showed there are large numbers of conflicting 

factors independently or in interaction with others that could influence the dimensional 

accuracy, of which layer thickness played the most crucial role. Xinhua et al.[61] 

examined the effect of layer thickness, printing speed, extrusion temperature, filling 

style, raster width on the distortion of polylactic acid (PLA) thin-plate part. Their results 

showed the highest distortion of PLA thin-plate part occurs at four corners, and the 

dimension of the part is an essential factor for the distortion. It is concluded designing 

large dimension and thin part should be avoided in the practical application. Mohamed et 

al. [62] explained the optimization method of FDM process parameters using I-

optimality criterion. It is found out thickness deformation increases with an increase in 
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layer thickness and number of contours from low to high level. In comparison, thickness 

deformation decreases with the increase in the air gap, raster angle, build orientation, 

and road width. Nancharaiah et al. [63] used the Taguchi method to identify the key 

factors (layer thickness, road width, raster angle and air gap) that influence dimension 

accuracy of FDM parts. From the design of experiments and ANOVA analysis, it was 

found that layer thickness and road width affected the surface quality and part accuracy 

significantly.  In Zhang et al.'s work [64, 65], parameters such as line width 

compensation, extrusion velocity, filling velocity, and layer thickness are selected as 

input variables, while dimensional error, warp deformation, and built time were selected 

as output responses to optimize the FDM process. They discovered that the most 

significant influence on the performance indexes is line width compensation, followed 

by extrusion velocity, layer thickness, and filling velocity. 

In Table 1, the effect of process parameters on dimension accuracy in the previous work 

were reviewed, where ↗ stands for increasing of the corresponded parameter would 

increase distortion in the vertical direction and reduce dimension accuracy and ↘ 

denotes the contrary condition. It can be seen that most of the previous work were 

focused on product/geometry parameters while machine parameters were rarely 

considered. In addition, ABS received most of the attention while PLA, another popular 

material candidate in the industry was hardly examined. Lastly, different works have 

controversial conclusion regarding the effect of raster angle and width. This discrepancy 

can be explained by the effect of other fixed factor but need further investigation.  
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Table 1 The relationship between process parameters and increasing of vertical 

deformation 

Ref. Material Layer 
thickness 

Infill 
density 

Raster 
width 

Raster 
angle 

Extrusion 
temperature 

Platform 
temperature 

Printing 
speed 

[58] ABS ↗    270 75  
[17] ABS ↗    270 ↘  

[59] [60] ABS ↗ ↗ ↘ ↗    
[61] PLA ↗  ↗  ↗  ↘ 
[62] PC-ABS blend ↗ ↗ ↘ ↘    
[63] ABS ↗ ↗ ↘ ↘    

[64, 65] ABS ↗      ↗ 

 

2.3.3.  Influence of process parameters on tensile strength  

With the booming FDM industry, the determination of the mechanical strength of 

manufactured parts, especially tensile strength, by process design has become especially 

intriguing in the 21st century [66]. In 2000, Es-Said et al. [67] conducted tensile testing 

experiments on ABS specimens with various raster angles. They found out the tensile 

properties of the ABS samples varied with different orientations, with the highest 

ultimate and yield strengths in the 0° orientation, the direction where the tensile force 

applied. Since then, the effect of building orientation on tensile strength has been 

extensively investigated [68-70], and multiple research groups have concluded that raster 

direction coinciding with the direction of force improves tensile strength. Another early 

work conducted by Ahn et al. [71] applied a two-level experimental design, and the 

effects of air gap, bead width, model temperature, ABS color, and raster orientation on 

tensile strength were examined and confirmed. Subsequently, Sood et al. [72] concluded 

that layer thickness, orientation, raster angle, raster width and air gap also influenced the 

tensile performance of the FDM ABS prototype. They found that small raster angles 
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were not preferable because a long raster would be generated, which increased stress 

accumulation along the direction of deposition, resulting in more distortion and, 

therefore, weak bonding. They indicated that a non-zero air gap causes a flow of 

material towards the adjacent layers through the gap, increasing the bonding surfaces 

and causing the strength to improve with gap width. However, their conclusions were 

contradicted by those of other research groups. Masood et al. [73] performed similar 

experiments with the input parameters of air gap, raster width, and raster angle and 

showed the interaction of process parameter is complicated that the trend of tensile 

strength over one single parameter behaves differently on several levels of other 

parameters. Hossain et al. [74] focused on how modifying process parameters, such as 

build orientation, raster angle, contour width, raster width, and air gap, could improve 

the tensile strength of ABS specimen. They used the insight revision method, a visual 

feedback method that continues to reduce the air gap between adjacent rasters by 

tweaking other parameters. Similarly, Nidagundi et al. [75] considered layer thickness, 

raster angle, and orientation for tensile strength optimization, while Onwubolu and 

Rayegani [76] investigated layer thickness, part orientation, raster angle, raster width, 

and air gap on the tensile strength of test specimen. In contrast to investigations of ABS, 

Tymrak et al. [77] tested PLA specimens with various layer heights and building 

orientations. Their results indicated that desktop-level parts manufactured by FDM 

machines have comparable tensile strength and elastic moduli to those printed on 

commercial 3D printing systems. Recently, Chacón et al. [78] tried to characterize the 
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effect of build orientation, layer thickness and feed rate on the mechanical performance 

of PLA samples manufactured with a low-cost 3D printer. They discovered for flat 

printed samples, the variations of maximum tensile strengths were marginally 

significance, while a very small layer thickness value (0.06mm) usually resulted in high 

tensile and flexural strength. 

Similar to Table 1, Table 2 listed of how these process parameters affect the tensile 

strength of FDM manufactured parts, based on the summarized previous work, where ↗ 

denotes a positively correlation and ↘ indicates a negative correlation. It is 

demonstrated that the effects of process parameters were not uniform across the results 

from multiple research groups, and this discrepancy can be explained by the interaction 

between the investigated parameters and other processing conditions. For example, 

Chacón et al. [78] discovered that for the effect of layer thickness on the mechanical 

properties due to the build orientation was different for upright samples (layers were 

deposited perpendicular to the pull direction) and flat samples (the fused filament 

deposition is positioned in the same direction as the pull direction). Similarly, the study 

of Masood et al. [73] demonstrated that UTS of polycarbonate (PC) is negatively 

correlated with raster angle for raster width of 0.4064 mm and 0.6064 mm, where as in 

case of raster width of 0.8314 mm, the tensile strength increased with raster angle. 

Regarding the materials, PLA has advantages over ABS in structural stability and lower 

sensitivity to environmental conditions [79], but the mechanical behavior has not been 
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extensively studied [80], suggesting that further investigations are needed to improve 

understanding of the mechanical behavior of 3D-printed components using PLA. 

 

Table 2 The relationship between process parameters and increasing of tensile 

strength 

Ref. Material Layer thickness (mm) Infill density Raster width (mm) Raster angle Extrusion 
temperature 

[71] ABS  ↗ ↘  ↘  ↗ 
[72] ABS ↘ then ↗  ↗ ↘  ↗   
[74] PC    ↘   
[76] ABS ↘  ↗ ↘  ↗   
[75] ABS ↘ then ↗    ↘   
[77] PLA ↘ then ↗     
[78] PLA ↗ then ↘      

 

2.4.  Modeling of mechanical strength of FDM manufactured parts 

2.4.1.  Conservative isotropic model 

Although it is known that FDM manufactured parts showed anisotropic behaviors when 

subject to external force, it is the simplest way for the manufacturer to represent their 

material with an isotropic material model. With uniform material properties in all 

directions, Hooke's law in compliance format applies that define the stress-strain 

behavior for a 3D object 

 =ε Cσ   (2.10) 

where ,  ,  Cσ ε  stands for stress, the compliance matrix, strain, respectively. Writing Eq. 

2.10 in matrix form, it becomes 
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where ,  G,  γ τ  stands for shear stress, the shear modulus, shear strain, respectively. 

With the modulus of elasticity E  and Poisson’s ratio ν   known, it is possible to 

calculate the stresses at a given strain. In particular, if the material body was subjected to 

uniform stretching along the x-direction, the condition of tensile testing, only stress in 

the x-direction is non-zero,  /xx P F Aσ = =  Then the strain in x-direction becomes: 
xxε

= /xx Eσ . In the material specification sheet provided by Stratasys [81], usually, only the 

maximum stress is given, which is a conservative value. 

2.4.2.  Orthotropic constitutive model 

It is possible to develop a constitutive model with orthotropic properties, which has the 

modulus of elasticity, the shear modulus, and Poisson's ratio defined in all directions. 

Under such an assumption, Eq. 2.11 is converted to [82] 
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In this way, nine independent constants are required to define the material model 

completely. However, this approach has a few limitations [83]. The derived model is 

only valid for a specific set of process parameters. With the changing of building 

parameters such as raster angle and infill density, previous literature already 

demonstrated that the mechanical behavior of the parts would change significantly. 

Moreover, this model does not consider the usually inter-layer behavior of FDM 

manufactured parts. This model considered the part as a bulk material with different 

properties other than its raw material while neglecting the bonding formation across 

layers. Under complex loading conditions, this model is unlikely to perform well. 

2.4.3.  Laminar composite model 

A laminate is an organized stack of unidirectional composite plies, where all fibers in 

each layer in the same direction. An FDM manufactured product has a structure very 
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similar to laminar composite, while each layer could have their unique but uniform 

properties inside of each one. The difference is composite materials are bounded 

together in a solid body by some type of binding medium called matrix binder, while a 

layer-by-layer manufactured product is bound together through sintering filaments [31]. 

With Q  defined as the stiffness matrix, the in-plane stress for a thin laminar is defined 

as 
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  (2.13) 

So that it only requires the modulus of elasticity on two directions, major Poisson’s ratio, 

and the shear modulus to define. In the classical laminated plate theory, all three 

transverse strain components are zero and assume a linear distribution of strain in the 

thickness direction [84] 
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  (2.14) 

where z  is half thickness, k  is bending/twisting curvatures in the lamina, superscript 0 

indicates nominal stress in mid-plane.  
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2.5.  Optimization with the application of FDM 

The purpose of this section is to discuss the role that can be played by optimization 

technique in additive manufacturing process, specifically the FDM process. When 

talking about FDM optimization, it could be referring to either topology optimization or 

process parameter optimization. The former is aimed to optimal distributing of the 

material of each layer within a given volume to reduce material weight and increase 

mechanical strength. The later has a broader scope, focuses on optimal all process 

parameters to ensure quality of the product, increase strength, improve dimensional 

accuracy, and reduce material cost and manufacturing time.  To review the previous 

work on process parameter optimization, the generalized form of parametric 

optimization would be first introduced, followed by description of a few important 

optimization techniques, then in the end, advantages and disadvantages of most recent 

work on the FDM process parameter optimization would be presented. 

2.5.1.  Parametric optimization 

As introduced in Section.1, the incorporation of sensors is not achievable with black box 

controllers currently used in additive manufacture machines, therefore almost every 

FDM machine adopts open-loop control. The setting of manufacturing conditions would 

be constant throughout the whole process, resulted in a static system where stochastic 

parametric (static) optimization problem applies. The general form of static optimization 

problem is: 
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The objective is to find a set of parameters n∈x   that could optimize (maximize or 

minimize) the objective functions ( )pf x  . With the background of FDM, parameters x  

could be extrusion temperature, platform temperature, infill pattern and so on, and they 

are usually discretized into several levels instead of continuously change. To solve this 

problem, multiple approaches has been developed so far, which would be reviewed in 

the next subsection.  

2.5.2.  Methods of parametric optimization 

Due to the nature of discrete optimization problem with the background of FDM, 

gradient-based optimization techniques such as gradient descent or simultaneous 

perturbation could not be applied. Therefore, three categories of optimization methods 

were introduced in this subsection: model-approximation methods (response surface 

method and artificial neural network), iteration-based methods (sequential approximate 

optimization), and meta-heuristics methods (genetic algorithm) 

2.5.2.1 Response surface method 

It should be noted prior to (or even after) perform optimization, the exact form of 

objective functions ( )pf x  would be unknown. Response surface method (RSM) is aimed 
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to “guess” the analytical structure of objective functions by constructing an 

approximated metamodel (surrogate model). RSM consists of several steps:  

[1]. At first, sampling of the data points is performed to ensure a good representation of 

the studied design space was achieved 

[2]. Then the response of those data points would be collected from the investigated 

model 

[3]. When the coordinates and responses are known, regression or function fitting is 

performed 

[4]. The goodness-of-fitting needs to be carried out to test whether the obtained surrogate 

model is indeed a good fit 

[5]. The minima or maxima of the surrogate model is calculated through mathematical 

analysis 

RSM offers the ability of mapping multidimensional fitting models and could provide 

interaction effects between parameters. However, RSM is highly dependent on selection 

of a proper fitting model. And with the increasing of dimensionality of input parameters, 

extensive experiments need to be performed, which may be time-consuming.   
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2.5.2.2 Neural network model 6 

Unlike RSM trying to construct an explicit function to model the relationship between 

input parameters and output response, artificial neural network (ANN) model aims to 

build an implicit regression model. Finding a proper fitting function could be difficult 

for RSM when the problem is highly non-linear, but ANN has been demonstrated to be a 

good candidate to correlate such problems [85]. Typically, ANN model consists of 

multiple layers of interconnected linear or non-linear computing elements, called 

neurons. Those layers usually consist of one input layer, one output layer, and one or 

more hidden layers. There are many archetypes of a neural network, such as convolution 

neural network, recurrent neural network, and shallow neural network, while in this 

dissertation, a single layer shallow neural network was used [86].  

Consider a series of input parameters and the evaluated response on those data points 

{ },i ix y , 1, 2,...,i l=  in the n p×   domain. With a network topology of n m p− −

topology shown in Figure 7, the thj  neuron in the hidden layer accepts n  inputs 

multiplied by its weight ,i jw  between two nodes plus a biased term b , produces a sum of 

                                                 

6 Part of this section is reprinted with permission from Zhou, X., Hsieh, S. J., Peng, B., & Hsieh, D. 
(2017). Cycle life estimation of lithium-ion polymer batteries using artificial neural network and support 
vector machine with time-resolved thermography. Microelectronics Reliability, 79, 48-58. Copyright 2018 
by Elsevier 
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j i j i
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n w x b b
=

= + = +∑ wx   (2.16) 

Then a transfer function f , usually the sigmoid function, is applied to the weighted 

sum, generates its output to the output layer 

 
( )

1( )
1j ba f b

e− += + =
+ wxwx   (2.17) 

Then the same procedure repeats, and the estimated output would be equal to 

( )out out outf b+w a .   

 

Figure 7 A typical non-linear neural network 

 

ANN has two stages in its applications — training and testing. Under training stage, the 

algorithm would try to establish the relationship between inputs and known outputs. 

While for the testing stage, the algorithm started to use established network to make 
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predictions based on unfamiliar inputs. After established the ANN model with sampled 

data, the optimum condition can be located through loop every possible combination of 

input parameters. 

2.5.2.3 Sequential approximate optimization 

The main principle of sequential approximate optimization (SAO) [87] is to decompose 

the optimization process into a sequence of cycles, where in each cycle the previous 

function space was restricted to a sub-region and searching optimum value is conducted 

inside of the generated sub-region. It is primarily used in single objective optimization 

where the steps to perform SAO can be explained in detail as: 

[1]. Set 0k =  

[2]. Sampling the original design space x  to a certain data points ( )   1, 2,...k
i i n=x   

[3]. Evaluate the model response at ( )k
ix  as ( )k

iy  , change k  to 1 

[4]. Construct a sub-region ( )kr  followed a specific region relocation strategy 

[5]. Sampling the sub-region design space to a certain data points ( )kx   

[6]. Evaluate the model response at ( )kx  as ( )ky   

[7]. Construct a surrogate model ( )kS  based on dataset ( ) ( ){ , }k kyx   

[8]. Find the optimum condition of ( )kS at ( )k
optx   
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[9]. Return to step 4 if stopping criterial not met, increase k  by 1; otherwise, ( )k
optx would 

be the final optimum condition  

Following the steps above, in each iteration cycle, a sub-problem of optimization is 

created which is similar to RSM. Nevertheless, the difficulties of adopting SAO is to 

choose an appropriate region relocation strategy to ensure fast and reliable convergence 

of the algorithm. One possible strategy proposed in Jacobs et al.’s work [87] is to use 

( )k
optx  as the center point of ( 1)kr +  while the radius of the new sub-region can either be 

fixed or subject to change.  

2.5.2.4 Genetic algorithm  

The genetic algorithm (GA) is a meta-heuristic approach, where “heuristic” means to 

find by trial and error and “meta” means beyond or higher level. It has been inspired by 

the evolutional phenomenon that species with the best mutation becoming dominant 

after successive generations – “survival of the fittest”.  With the background of 

optimization, the data points with the worst response would be replaced by the mutations 

of data points with the best response after each iteration. A typical GA process is given 

below: 

[1]. Set 0k =  

[2]. Select a certain random data points ( ) ( )   1, 2,...k k
i i n= =X x  from the original design 

space x  
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[3]. Evaluate the model response at ( )k
ix  as ( )k

iy  , change k  to 1 

[4]. Compute the fitness value for each data point 

[5]. Identify several best and worst fitness values with data point of ( )
best , , 1, 2,k

j j J=x  and 

( )
worst , ,  1, 2,k

l l L=x    

[6]. If stopping criteria not met, replace ( )
worst ,
k

lx  by mutation and cross-over of ( )
best ,
k

jx  in 

( 1)k+X  , increase k  by 1; otherwise, return the fittest data point as the optimal 

location.  

Therefore, in each iteration of GA, the population or selected dataset is constantly 

updated by probabilistically selecting fitter individuals. The convergence rate of GA and 

the accuracy of solution highly depends on mutation and cross-over algorithms. Up to 

date, several mutation and crossover methods [88] have been proposed and each have 

their own strength and weakness. 

2.5.3.  Recent advance on optimization of the FDM process 

The optimization of the FDM process has been conducted for over a decade and 

Mohamed et al. [57] already reviewed the research carried out until 2014. Therefore, the 

aim of this subsection is to continue reviewing the most recent study on FDM 

optimization and identified the research gap. The optimization method, material, model 

input parameters, and the targeted responses from several research articles have been 

summarized in Table 3. From Table 3, several limitations of the current optimization 
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methods should be noted. Firstly, the types of material used are limited to ABS and 

PLA. As indicated by Mohamed et al. [57], FDM machine liquefier and extruder is 

already compatible with other thermoplastics such as PC, poly- ether-ether-ketone 

(PEEK), elastomer and nylon-12, therefore, considerable work can be accomplished in 

this area. Secondly, a vast majority of the work heavily relies on experiments and most 

of them are DoE and ANOVA based. With DoE strategies that aimed to reduce 

experimental runs, such as Taguchi design and partial factorial design, the required 

dataset size is indeed reduced. Nevertheless, they also possessed the drawback of 

relatively low prediction accuracy and unable to perform multi-objective optimization 

[57]. Alternatively, if adopting a full factorial design to build RSM, the number of 

required experimental conditions would be extremely high.  

Moreover, the experimental conditions for almost all the previous work were pre-

determined. If the sampled conditions, or the designed condition could not well represent 

the response surface, then the accuracy of their derived solution would be questioned. 

Lastly, optimizing the process parameters for mechanical properties was the focus for 

most of the recent work published, while the investigation of thermal behavior and 

building time is very rare. Therefore, it is imperative to develop an optimization 

algorithm that could use low-fidelity but cost-effective numerical model to infer the 

surrogate model and its optimum solution, and iteratively, this model would be corrected 

with high-fidelity model by conducting experiment until searched the real optimum 

solution.  
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Table 3 Summary of most recent (2014-2018) work on FDM process optimization 

Ref. Material Experimental 
or numerical 

Method Inputs Outputs 

[89] PLA Exp. DoE with Taguchi 
L8, then ANOVA 

Infill density, thickness, extrusion 
temperature, perimeter, printing speed, 
raster angle, and orientation 

UTS, elastic 
modulus, critical 
stress intensity 
factor 

[65] PLA Exp. DoE with uniform 
U17, then RSM 

Raster width compensation, printing speed, 
travel speed, and layer thickness 

Dimensional error 
on three directions 

[90] PEEK Exp. DoE with Taguchi 
L9, then range 
analysis 

Printing speed, layer thickness, printing 
temperature, and filling ratio 

UTS, elastic 
modulus, 
elongation 

[91] PLA Exp. DoE with partial 11 
runs, then ANOVA 

Extrusion temperature, layer thickness, and 
layer-design 

Intra- and inter-
layer strength 

[76] ABS Exp. DoE with full 
factorial F32, then 
Group Method for 
Data Handling 
(GMDH) network 
 

layer thickness, part orientation, raster angle, 
raster width, and infill density 

UTS 

[92] ABS Exp. DoE with 20 runs, 
then ANOVA, then 
GA on ANOVA 
fitted functions 

Infill density, horizontal orientation, and 
vertical orientation 

Strength and 
volumetric 
shrinkage 

[93] ABS Exp. DoE with 86 runs, 
then RSM, then GA 
on RSM fitted 
functions 

Raster width, orientation, raster angle, raster 
width, layer thickness, and infill density 

Build time, 
support material 
volume, and 
model material 
volume 

[94] ABS Exp. and 
Num. 

DoE with 32 runs, 
then GA. Numerical 
model validated with 
5 cases 

Seven different internal topology parameters Weighted 
response on part 
orientation 

[95] Nylon6–
Al–
Al2O3 

Exp. DoE with central 
composite full 
unblocked design of 
20 runs, then RSM 
and ANOVA 

Composition, mean barrel temperature, and 
extrusion temperature 

UTS and diameter 
variation 

 

2.5.4.  Surrogate-based optimization using multi-fidelity models 

Using multi-fidelity models to perform optimization is not rare in the research field of 

FEA. As FEA requires discretize the continuous model into discrete counterparts, the 

size of the part/mesh is critically important. Although smaller mesh size could bring 

higher prediction accuracy, the computation time would also increase expediently, 

making surrogate models an attractive option. However, even with a proper DoE 
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strategy, constructing a surrogate model with high-fidelity model could still be 

expensive. Hence, the concept of surrogate-based optimization using multi-fidelity 

models (SBO-MFM) is to replace direct optimization of a high-fidelity model by an 

iterative response corrective process on a low-fidelity surrogate model. The framework 

of an SBO-MFM process is illustrated in Figure 8. 

 

Figure 8 The flowchart of a typical SBO-MFM process  

 

As indicated by Koziel et al. [96], the SBO-MFM problem can be formulated as: 

 ( 1) ( )arg min( ( ))k kS+ =x x   (2.18) 

where ( ) ( )ks x  is the surrogate model constructed at the iteration number k . Several 

SBO-MFM algorithms have been developed so far, including: 



 

50 

 

[1] Parametric response correction methods, also called deterministic methods, such as 

space mapping [97] and manifold mapping [98] 

[2] Non-parametric response correction methods, also called non-deterministic methods, 

such as adaptive response correction method [99] and cokriging-based sequential 

design method [100].  

The difference between parametric response correction methods and non-parametric 

response correction methods is whether the correction term would be explicitly 

expressed in the analytical form. In the next section, two typical SBO-MFM algorithms, 

space mapping (SM) and adaptive response correction (ARC) would be reviewed. 

2.5.4.1 Space mapping method 

The principle of SM approach [97] is to exploit the speed of an efficient low-fidelity 

(LF) model and corrected it with a few slow but highly accurate high-fidelity (HF) 

model evaluations to effectively perform optimization. The implementation of this 

algorithm can be described as follows: 

[1]. Set k=0, identify one reasonable data point ( )
initial

kx   

[2]. Identify initial m  HF model data points ( )
HF, ,  1, 2, ,k

i i m=x   in the vicinity of ( )
initial

kx   

[3]. Evaluate their response in the HF model ( ) ( )
HF HF, ,  1, 2, ,k k

iR i m= =R    
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[4]. Find m  LF model data points ( )
LF, ,  1, 2, ,k

i i m=x  , so that their response 

LF LF, ,  1, 2, ,k k
iR i m= =R   lies in the vicinity of 

HF
kR , which meet the criteria of 

HF LF
k k ε− ≤R R     

[5]. Compute the transformation of ( ) ( ) ( )
LF, HF,
k k k

i iP=x x  , identify the optimum solution ( )
LF,opt
kx  

in the LF model 

[6]. Calculate ( ) ( ) ( )
HF, 1 1 LF,opt
k k k

m P+ −=x x  , where ( )
1
kP− is the inverse transformation of ( )kP   

[7]. Evaluate the HF model response HF, 1
k

mR +  at the newly added point ( 1)
HF, 1
k

m
+

+x   

[8]. Check the convergence criteria ( ) ( )
HF, 1 LF,opt

k k
mR R ε+ − ≤  ; if met, then { }( ) ( )

HF, 1 HF, 1,k k
m mR+ +x  is 

the optimum condition; if not, 1k k= + , return to step 2, and add  ( )
HF, 1
k

m+x  to dataset  

, ,  1, 2, ,k
HF i i m=x    

The SM algorithm described above is a one-point additive technique since at each 

iteration, the HF model would be evaluated once. And in total, the HF model would be 

evaluated m k+  times. A few variations of SM technique have been developed so far, 

such as multi-point space mapping [101] and corrected space mapping [102]. However, 

space mapping techniques have their own limitation which is associated with the 

develop of transform function ( )kP .  As indicated by Koziel et al. [99], the response may 

contain sharp minima corresponding to zeros of the transform function if the response is 

a highly non-linear function of the investigated parameters. In such cases, the 
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performance of the space-mapping algorithm may deteriorate with respect of both 

convergence rate and accuracy.  

2.5.4.2 Adaptive response correction 

ARC was introduced in 2009 [99] to alleviate the aforementioned difficulty of the 

standard SM algorithm. For ARC algorithm, in each iteration cycle, a correction term 

( )
ARC
k∆  is adaptively changed to compensate the difference between surrogate models 

developed on Multi-Fidelity Models. The details of one variation of ARC algorithm can 

be explained as follows: 

[1]. Identify enough data points initial , 1, 2,i i n=x 

 and evaluate their response 

initial
LF, , 1, 2,iR i n=   in the LF model 

[2]. Construct a surrogate model inital
LFS  bases on { }initial initial

LF,,i iRx  and set 0k =   

[3]. Sampling m  data points ( ) ,  1, 2, ,k
j j m=x   from parameter space ( )kx  with a proper 

DoE strategy 

[4]. Evaluate the response of ( )k
jx from the the LF and HF models to obtain ( )

LF
kR and ( )

HF
kR   

[5]. Construct two surrogate models ( )
LF

kS  and ( )
HF

kS  based on ( )
LF
kR and ( )

HF
kR , respectively 

[6]. Compute the ARC correction term ( ) ( ) ( )
ARC HF LF
k k kS S∆ = −  

[7]. Identify the current optimum point ( )
ARC,opt
kx from the ARC surrogate model 

( ) inital ( )
ARC LF ARC

k kS S= + ∆   
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[8]. Check the convergence criteria; if met, then ( )
ARC,opt
kx  is the optimum point; otherwise, 

increase k  by 1, update parameter space ( )kx , and return to step 3 

As illustrated in the above algorithm, the HF model is evaluated m  times at each 

iteration toward a total of m k× times, while the LF model is evaluated n m k+ × times. It 

is possible that the evaluation times of both HF and LF model could be further reduced 

with the developing of more advanced algorithm.  

2.6.  Summary 

From the above literature review, it is evident that three approaches exist for the current 

research of the mechanical and thermal behavior of FDM manufactured product and they 

all have certain limitations.  

For theoretical modeling of the process and product, over-simplified assumptions made 

the current models either unable to obtain the solution or require additional computer-

aided computation for actual cases. For numerical modeling of the process, most of the 

current work lack of validation from experimental data and thus leave their results 

questionable. Regarding experimental analysis, results from multiple groups are 

contradicted and focus majorly on ABS. Therefore, it is imperative to develop a hybrid 

model to analysis, model, and predict the thermal and mechanical behavior of the FDM 

process and products. 
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From the FDM optimization perspective, the existing research works overwhelmingly 

rely on performing pre-designed experiment with certain DoE strategies. With DoE 

methods, the material and machine operation cost would be extremely high, and a 

significant amount of time is spent on characterizing the properties of the products. 

Consequently, it is desired the combination of low-fidelity prediction model and high-

fidelity experimental model could reduce the overall cost to find the optimum 

manufacturing conditions.  
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3. METHODOLOGY7 

3.1.  Introduction 

The objectives of this study are to analyze, model, and predict the thermal and 

mechanical behavior of the FDM process in order to achieve better dimensional 

accuracy and mechanical strength. To accomplish these objectives, a methodology of 

three models is proposed. The three models involved in the study of both thermal and 

mechanical behavior are an experimental model, a numerical model, and a predictive 

model. 

For thermal analysis [103], the objective of the experimental model is to understand how 

process parameters affect the thermal history of an extrusion bead. In addition, the 

experimental model will provide the adequate variables to characterize the thermal-

driven extrusion process as well as the tool to validate the numerical model. The 

objective of the numerical model is to simulate the same process that the experimental 

model studied and developed an analysis of chracteristics that are hard to measures 

through the traditional experimental model.  The conventional imaging method is 

complicated to obtain temperature and distortion data of inner structurer since the field 

                                                 

7 Part of this section is reprinted with permission from ‘Experimental and numerical investigation of the 
thermal behaviour of polylactic acid during the fused deposition process’ by Xunfei Zhou, Sheng-Jen 
Hsieh & Yintong Sun Virtual and Physical Prototyping Vol 12:3 pp. 221- 233 (2017) and Modelling and 
estimation of tensile behaviour of polylactic acid parts manufactured by fused deposition modelling using 
finite element analysis and knowledge-based library’ by Xunfei Zhou, Sheng-Jen Hsieh & ChenChing 
Ting Virtual and Physical Prototyping (2017).. Copyright 2018 by Taylor & Francis Group 
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of view would be obscured by finished part while numerical approach would be a good 

supplement. First, the numerical model will be fed with the boundary, and initial 

conditions of the experimental model; among these conditions are: manufactured part 

geometry, deposited material temperature, platform temperature, ambient temperature, 

printing speed, and convective heat transfer coefficient of the platform and surrounding 

air. The experimental results used for the numerical model are the cooling time of 

extruded bead for each experimental condition. The experimental conditions will be used 

to validate the numerical model, and the experimental results will be used to validate the 

numerical model. Second, the parametric analysis will investigate the effect of printing 

parameters on temperature profiles during the printing process. Third, the simulation 

model will be used to predict the temperature, distortion, and thermal stress distribution 

of the FDM process. The flowchart of the investigation of thermal behavior is 

demonstrated in Figure 9. 
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Figure 9 The flowchart for investigation of thermal behavior 

 

For mechanical behavior [66], the objective of the experimental model is to understand 

how process parameters affect the mechanical strength of the product while the objective 

of the numerical model is to simulate the same process that the experimental model 

studied and analyze of how printing patterns would affect the final strength of the 

product. The information gathered from the experimental model would be the testing 

conditions and the geometry of each layer of the test specimen. After cross-validation, 

the developed numerical model could predict the strength and elastic performance of the 

manufactured part. The flowchart of the investigation of thermal behavior is 

demonstrated in Figure 10. 
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Figure 10 The flowchart for investigation of mechanical behavior 

 

With the establishment of predictive models, a surrogate-based additive manufacturing 

optimizer (SAMO) is established to expediate the optimization process to maximize or 

minimize certain products’ characteristics. The overall objective of SAMO is to reduce 

the number of experiments performed on additive manufacturing machines, and thereby 

making the optimization process more efficient. SAMO is developed to guide the 

decision-making process in optimization manufacturing conditions by combining cost-

effective but less accurate predictive models with expensive but accurate experimental 

models. Iteratively, the SAMO obtain the current manufacturing condition and the 

corresponded response and determines the next manufacturing condition to attempt.  An 

illustration of the SAMO optimization process is given in Figure 11.  
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Figure 11 The flowchart of SAMO 

3.2.  Thermal behavior 

3.2.1.  Experimental model 

3.2.1.1 Experimental material 

The experimental system was composed of the printing material, a 3D printer, and one 

infrared array sensor. The printing material was 100% polylactic acid (PLA) with an 

emissivity of 0.96 [104]. A desktop-level FDM-based 3D printer (Flashprint Dreamer) 

was used to manufacture all parts discussed in this paper, which has a platform size of 

230×150×150 mm and provides a part dimension error less than 0.2 mm. The 

temperature measurement device was one Melexis MLX90621 thermal infrared array 
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sensor. It is a cylindrically shaped infrared sensor with a diameter of 9.5 mm and a 

height of 13 mm. A 16x4 temperature matrix could be produced by this sensor with a 

maximum of 512 Hz data acquisition speed and a 60o x 16o field of view. The sensor 

was calibrated at 32 Hz to achieve a noise equivalent temperature difference at 0.4K 

with an accuracy of ±1°C or 3% of the temperature difference between object and 

ambient, whichever is larger. In addition, a PTAT (proportional to absolute temperature) 

sensor is integrated to measure the ambient temperature near the chip.  

3.2.1.2 Experimental setup 

The samples manufactured in this study were all cuboids with the same dimensions of 

100 (length) by 10 (width) by 5mm (height). The geometry of the samples was first 

constructed in Solidworks and saved as a high-resolution stereolithography (STL) file. 

Then, the model was sliced and converted to G-code with printing parameters varied 

using the Flashforge software provided by the manufacturer of the machine. The slice 

setting is as follows: the top three and bottom three layers were printed with a rectilinear 

infill pattern with an infill density of 100% to support the structure; the remaining layers 

were printing with an infill density of 0% and had a single-bead wall structure. This slice 

setting helps to eliminate the effect of inter-layer bonding on the thermal behavior when 

the middle layers were manufactured. 
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Figure 12 A schematic of the experimental setup for thermal behavior analysis  

 

Figure 12 is a schematic of the system setup during the experiment. The infrared sensor 

was first installed inside a custom designed, 3D-printed enclosure. The enclosure was 

then mounted on the extruder, with the sensor positioned 10 mm away from the nozzle 

tip. As a result, the sensor moves with the nozzle at the same speed, with its field of view 

following the newly deposited material, providing more local signatures of the freshly 

deposited layers than the stationary camera. The field of view of the camera was set 

normal to the x-z plane of the manufactured part and focused on the front side of the 

newly deposited layer, offering a pixel size of 0.72 mm. An illustration of the field of 

view of the sensor is provided in Figure 13, where the acquired temperature matrix was 

converted to a grayscale image. In Figure 13, the white areas indicate high temperatures, 

while the dark regions suggest low temperatures. For the manufactured samples, only the 
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freshly deposited layer was monitored; the most recently deposited material (deposition 

position) was located near the center of the bottom row of the temperature matrix. 

During the printing process, the monitoring system was controlled by an Arduino board 

connected to a workstation. The Arduino program coded on the board continually 

monitored the state of the sensor and received data from it. This system is cost-effective; 

the whole temperature monitoring system costs less than $100, which is much lower 

than the commercialized infrared camera. 

 

Figure 13 A grey scale image of the temperature matrix taken by the infrared 

camera 

 

3.2.1.3 Design of experiment 

To investigate the effect of printing parameters on temperature profiles during the 

printing process and to provide results for cross-validation for further numerical 

simulation, a parametric study approach was applied in the experimental model of this 

paper. Referring to the theoretical equations for temperature distributions during the 
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FDM process reviewed by Bellehumeur et al. [31], the process parameters included are 

the nozzle temperature, platform temperature, printing speed, and filament geometry. 

With filament width set as a constant variable, the nozzle temperature, platform 

temperature, printing speed, and layer thickness were chosen as the process parameters 

to investigate. Test parts were then designed based on those four parameters, where the 

Taguchi design of the experimental strategy was adopted. The analysis of variance 

(ANOVA) technique was then used to analyze the results. Three levels were applied to 

each parameter, representing high, medium, and low levels. A previous study [61] 

revealed that interactions between selected parameters were insignificant in uneven 

temperature field-induced distortion; therefore, in this study, an L9 orthogonal array was 

used for the most simplified design case, as represented in Table 3. Three replicates were 

performed for each experimental condition to reduce the effect of random noise. For the 

rest of the process parameters, the layer height and raster width of the solid infill layers 

were set to 0.3 and 0.4 mm, respectively, and the single-bead wall width (contour width) 

of the hollow layers was set as 1 mm. 
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Table 4 Design of experiment for analysis of thermal behavior 

No. Nozzle temperature 
(oC) 

Platform temperature 
(oC) 

Printing speed 
(mm/s) 

Layer thickness 
(mm) 

1 200 50 40 0.15 
2 200 60 60 0.2 
3 200 70 80 0.25 
4 210 50 60 0.25 
5 210 60 80 0.15 
6 210 70 40 0.2 
7 220 50 80 0.2 
8 220 60 40 0.25 
9 220 70 60 0.15 

 

3.2.1.4 Experimental response 

The transient thermal behavior of a sample during an additive manufacturing process can 

be characterized by the spatial thermal gradient at the onset of solidification, the cooling 

rate of the deposited material, or the cooling time of material [50]. In this study, the 

effective diffusion time was selected as the characteristic of the temperature evolution. 

Effective diffusion time [105], difft , is defined as the time interval in between when the 

plastic material is extruded and reaches the glass transition temperature, gT . This 

characteristic is convenient to measure and calculate, and more importantly, it is directly 

related to the bonding strength of the products, as demonstrated by Rodríguez et al. [27], 

which prolongs fiber solidification times, leading to increases in the bonding strength. 

3.2.2.  Numerical model 

A three-dimensional uncoupled thermal-structural finite element model was employed in 
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this study to simulate the FDM process. The commercial finite element model software 

ANSYS 17.2 was used for the simulation. Thermal analysis was first conducted to 

predict the temperature profile of a numerical model with the same geometrical 

dimensions of the sample. The temperature profiles were then used as the input of 

structural analysis, serving as the thermal load. The validation of the numerical results 

was performed by comparing the effective diffusion time with the experimental model. 

Since thermal stress is directly induced by an uneven temperature distribution, good 

agreement between the experiment and predictions of the temperature profile would 

support the applicability of the finite element model. 

3.2.2.1 Governing equation of the thermal analysis 

During the FDM process, plastic liquid beads, which quickly harden when they come 

into contact with the layers beneath them, are melted and extruded from the nozzle at a 

high temperature. The heat of the beads dissipates into the surroundings by conduction, 

convection, and radiation from the free surfaces. In addition, phase transitions of the 

polymer material also eject heat to the control volume. Under the transient state, the 

governing equation for energy balance inside of the printer can be described as 

 ( )p
Tc k T q
t

ρ ∂
= ∇ ∇ +

∂
   (3.1) 

Hence  p
Tc
t

ρ ∂
∂

 represents the change in thermal energy storage, ( )k T∇ ∇  represents 
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the transfer of thermal energy by conduction, and q  is thermal energy generation, which 

is composed of 

 convection radiation phasechangeq q q q= + +   (3.2) 

The following assumptions were made in the numerical simulation: 

[1] For a limited time interval, extruded material can be modeled as an element with 

finite volume and energy imposed on the simulation model. 

[2] Deposition speed of material is equal to extrusion speed of the nozzle, where travel 

speed of the nozzle is neglected. 

[3] The initial temperature of the material is equal to the deposition temperature. 

[4] Heat transfer from the bottom layer to the printing platform can be regarded as heat 

convection. 

[5] Radiation loss can be neglected. 

Assumption 1 is essential to this work because of the nature of extrusion melting 

technology. The melted polymer material is deposited continuously to form layers; for a 

discretized time step, a small volume of material would become ‘existent' to the 

simulation model. To simulate this sequential assembly process, the element birth and 

death feature of ANSYS is employed. ‘Element death' refers the case when the stiffness 

or conductivity of an element is reduced to a very low level, 1e-6, by default. Therefore, 

the properties of those ‘dead' elements would barely influence the surrounding elements. 
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In the same manner, if an element is ‘born' or reactivated, stiffness and other properties 

would be restored to the standard value. Assumption 2 was made by analysis of G-code. 

Travel of the nozzle (movement without extruding material) only occurred when printing 

the solid infilled bottom and top layers, while the deposition of hollow layers is a 

continuous extrusion cycle. Assumption 3 was made based on previous experimental 

results, which showed that the deposition temperature is at least 40°C lower than the 

nozzle temperature. Assumption 4 was made based on the theory of interface thermal 

conductance [106]. Interfaces between two highly dissimilar materials are the result of 

contact at a select number of discrete points, where heat transfers occur through 

conduction at contact points and convection and conduction of the fluid in the interstitial 

gaps. Since the mass of the platform is relatively large compared to that of the product, 

the temperature of the platform can be considered uniform and constant across the 

printing process; heat transfer on the filament-platform interface would be regarded as 

convection. Assumption 5 was made based on the findings of Costa et al. [38], who 

discovered that the effect of radiation loss is negligible in most FDM cases when the 

convective heat transfer coefficient is more substantial than 60W∙m-2∙K. 

3.2.2.2 Numerical model description 

The geometry of the simulation model was constructed to include only the hollow layers, 

with a dimension of 100 (length) by 10 (width) by 4.2 mm (height), as demonstrated in 

Figure 14. The 3D thermal element SOLID70 and the structural element SOLID45 were 
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used to mesh the domain with the element dimension of 1 by 1 mm by layer thickness in 

the thermal and structural analyses, respectively. The total element numbers varied from 

5964 to 3408, depending on the layer thickness settings. 

 

 

Figure 14 An example of the numerical model and its meshing scheme 

 

3.2.2.3 Initial and boundary conditions 

Numerical simulation in this study involves two steps—thermal and structural analysis. 

The following initial and boundary conditions were applied for thermal and structural 

analyses: 

[1] The initial temperature of an element is given based on correlations with the 

experimental results.  
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[2] In the structural analysis, the bottom surface was fully restrained in the x, y, and z 

directions.   

[3] The boundary conditions of the thermal model will be discussed in section 3.2.3. 

3.2.2.4 Finite element model material properties 

The material used in the simulation was polylactic acid, which is the same as the 

experiment. The density was set to temperature-independent values while pressure, heat 

capacity, and thermal conductivity were set to be temperature-dependent to include 

abrupt changes around the melting and glass transition temperatures. The thermophysical 

properties used in the simulation model are listed in Table 5. 

Table 5 Material properties used in numerical modeling of thermal behavior 

T(K) 298.15 310 320 330 340 350 360 
-3(kg m )ρ ⋅  [107] 1145.2 

1 1(W m K )k − −⋅ ⋅ [108] 0.111 0.178 0.195 
Young’s modulus(Mpa) 
 [107] 1280 

-1(K )β  [109] 47.4 10−×  
1 1(J K mol )pc − −⋅ ⋅  

[110] 
94.69 95.3 98.13 101.6 112.16 146.0 146.8 

 

T(K) 370 380 390 400 420 430 450 470 490 
1 1(J K mol )pc − −⋅ ⋅  148.2 149.05 149.81 150.57 152.09 152.85 154.37 155.89 157.41 
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3.2.3.  Estimation of convective heat transfer coefficient and interfacial conduct 

resistance using artificial neural networks8 

3.2.3.1 Problem formulation 

The accuracy of a numerical simulation model of the FDM process could greatly suffer 

from unrealistic treatment of boundary conditions [111]. It has been noticed that the 

thermal behavior of deposited filament is exceedingly dependent on convective cooling 

by air flowing through the manufacturing chamber. Bellehumeur et al. [31] discovered 

that from their theoretical model when convective heat transfer coefficient increased 

from 50 to 100W/m2∙K, a 25% variation on bond formation was induced.  Costa et al. 

[38] studied the effect of convection cooling on thermal diffusion time, they found out as 

convective heat transfer coefficient increased from 5 to 60W/m2∙K, the cooling time 

needed to reach glass transition temperature decreased from 66 to 3 seconds (22 times), 

and a further increase to 150W/m2∙K brings about a reduction of merely 2 times. 

Meanwhile, the part under manufacturing was also subject to heat conduction from the 

building platform. It is expected that convective heat transfer coefficient varies with the 

airflow rate inside of the chamber, building location, and the geometry of the 

                                                 

8 This section is reprinted with permission from Zhou, X., & Hsieh, S. J. (2018, May). Evaluating 
convective heat transfer coefficients in fused deposition process using infrared imaging and neural 
networks. In Thermosense: Thermal Infrared Applications XL (Vol. 10661, p. 106610K). International 
Society for Optics and Photonics. Copyright 2018 by SPIE 
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manufactured part [24]. While heat exchange with the support is controlled by both the 

thermal contact conductance and contact area [38].  

Experimental measurement of convective heat transfer behavior in an FDM process is 

challenging in nature, as air flow rate in the building chamber are not easy to control in a 

typical commercial 3D printer [20]. Moreover, this problem is known as an Inverse Heat 

Conduction Problem (IHCP), which is difficult to solve in nature. Typically, how to 

determine the temperature history inside solid bodies for known initial and boundary 

conditions as well as thermophysical properties is a very standard Direct Heat 

Conduction Problem (DHCP), while IHCP rely on temperature and/or heat flux 

measurements to estimate unknown boundary conditions appearing in the mathematical 

formulation of physical problems. Traditionally, inverse problems can be solved either 

as a parameter estimation approach or as a function estimation approach [112]. If the 

functional form of the unknown quantity was known, such as the governing equation is 

known, then the inverse problem can be reduced to the estimation of a few unknown 

parameters. The general parameter approach is to iterative the boundary condition on the 

established analytical/numerical model until the result is close enough to the transient 

temperate measurement data [113]. The procedure involved is needs a long computation 

time due to large numbers of iterations. And the inverse problem needs to be determined 

as a function estimation approach in an infinite dimensional space of functions if no 

prior information is available on the functional form [114]. With these difficulties, the 

previous study on numerical simulation of the FDM process rarely direct measure the 
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boundary conditions but tends to estimate those values based on semi-empirical 

equations of forced convection [103], but the accuracy of them remained unknown.  

Therefore, the objective of this study is to estimate the convective heat transfer 

coefficient from ambient air and interfacial conduct resistance from the building 

platform through a direct approach. The approach would use neural network to estimate 

those properties instead of the traditional iterative solutions [111].  

The numerical model used in this study has the identical geometry of that used in Figure 

12 and is constructed in ANSYS 17.2. The entire model is meshed with the SOLID70 

element, and the thermophysical properties of the material are taken from Table 5 as 

well. The mesh size was selected as 0.2mm in most regions except for the part of 

interest. Close to the location where two specific points were selected, the mesh was 

refined to better cross-check with the experimental data, as indicated in Figure 15. The 

specimen is considered fully manufactured and put on the heated platform. Therefore, all 

elements would stay activated. With the control volume approach, the governing 

equation of this scenario is 

 ( ) ( )p conv p p p
Tc V h A T T h A T T
t

ρ ∞ ∞

∂
= − + −

∂
  (3.3) 

And the initial condition is ( 0) iT t T= = , as shown in Figure 16 . With the sophisticated 

geometry that 3D printed product could be, the analytical solution to this problem is not 
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apparent. To estimate h  and ch  based on existing experimental measurement, ANN 

could be useful.  

 

Figure 15 Locally refined mesh in the region of interest 

 

 

Figure 16 The numerical model used in the determination of boundary condition 

3.2.3.2 Training of the ANN models 
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In this study, Matlab is employed to construct the networks, and only feed-forward 

networks were used. The Levenberg–Marquardt backpropagation algorithm [115] was 

used to minimize the mean square error between the actual and desired output by 

adjusting the weights and biases associated with links inside the network. During the 

backward pass, the error terms are computed, and the weights/biases are updated. ANN 

is prone to over-fit the data; therefore, the dataset was divided into three subsets—

training, validation, and testing. When the network begins to over-fit the data, the error 

on the validation set typically begins to rise, which stops the training when the error 

increases for a specified number of iterations [116]. The structure of the networks is 

shown in Figure 17. 

 

 

Figure 17 The topology of the ANN model used to determine boundary condition 
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As depicted in Figure 17, the network has a 2 7 2− −  topology where the input nodes are 

two characteristics of the temperature over time curves at two specific surface points. It 

should be noted it is possible that the entire temperature evolution curve can be used as 

the input data. However, considering the potential discrepancy between the experimental 

and numerical results that brought by measurement error and inaccurate initial condition, 

it is recommended that some typical features should be extracted from the temperature 

history curves. In this study, the time for the temperature to reach 5 degrees higher than 

the initial temperature was used ( 5t+ ).  Other possible approaches include approximation 

of the measurement data and use temperature difference of two curves at a specific time 

[117]. Only one hidden layer was used to construct the networks in this paper, and seven 

hidden nodes generated the best performance during the initial testing and screening 

process. And finally, the output of the network is convective heat transfer coefficient h∞  

and interfacial conduct resistance ph  .  

100 cases from the simulation data were used to train, validate, and test the network. In 

those cases, the ph  value varied from 500 to 5000, with an increment of 500 while the 

h∞  value ranged from 10 to 100, with an increase of 10. Those cases were divided into 

training, validation, and testing subsets with the ratio of 64:16:20, based on a rule of 

thumb. As the subsets were divided randomly, the network was trained and evaluated 

100 times, and the average obtained performance value was chosen to improve network 
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generalization. An example of the training performance is demonstrated in Figure 18, 

which showed the result is satisfactory. 

 

 

Figure 18 Performance of the trained model 

 

3.2.3.3 Experimental setup 

In this work, the manufactured part was heated from the platform while cooled by the 

ambient air. The response of the thermally excited surface was simultaneously 

monitored and recorded using an infrared camera. The sample has the same geometry as 

that used in Figure 12. The experiment was conducted using a Compix® model 222 

infrared camera (1 frame/second), which could produce images with a resolution of 160 



 

77 

 

by 120 pixels and was calibrated for a noise equivalent temperature difference at 0.1 K 

and accuracy of ±2 °C or 2%, whichever is larger. The test sample was positioned with 

the front side perpendicular to the view of the camera, at a distance of approximately 

130 mm, and then exposed to the thermal excitation, generating a pixel size of 0.5 by 0.5 

mm2. A picture of the experimental setup is given in Figure 19. 

 

 

Figure 19 An image of the experimental setup to determine boundary condition 

 

To mimic the manufacturing condition, the experimental procedure can be described as 

follows: maintain the platform and nozzle temperature at 60oC and 210 oC respectively 

through the machine controller and keep the ambient air temperature at 25 oC through air 



 

78 

 

conditioning; turn on the turbo and cooling fans and move the extruder above the desired 

sample position; quickly place the sample from outside to the desired location. In that 

way, the sample would be heated from ambient temperature to platform temperature in 

the experimental conditions. The two specific points of interest were determined to be in 

one pixel and two pixels above the platform, located in the middle of the front face, as 

shown in Figure 20. 

 

 

Figure 20 An illustration of the points of interest in the boundary condition 

determination study  
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3.3.  Mechanical behavior 

3.3.1.  Experimental model 

3.3.1.1 Specimen preparation 

The test specimen was created in Solidworks in STL format, and the geometry of it was 

set according to ASTM D638 [118] Type IV specimen geometry, which is shown in 

Figure 21.  

 

 

Figure 21 The dogbone structure and its dimensions 

 

Then, the STL file was sliced and converted to G-code with varied process parameters. 

In this work, two kinds of slice settings were used: the unidirectional model where all 

layers have the same slice setting, and the bidirectional model, where the top and bottom 

half layers have different slice settings, with an example given in Figure 22. Using a 

bidirectional model can accommodate a more efficient filling strategy—an adaptive fill 
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pattern with variable density. As explained by Stratasys Ltd. [119], on the contrary to 

traditional filling techniques where the entire part was filled with the same pattern, 

adaptive fill pattern allows a single part to have combinations of solid and sparse fill 

styles, and each region’s density can be adjusted independently. This filling strategy 

[119, 120] has the advantage of optimized strength, weight and performance, reduced 

building time and cost and enabled niche applications (e.g., end-use parts, fiber molding 

and thermoforming). Yet most current work focuses on uniform printing patterns across 

all layers. This experimental setting strategy could improve understanding of how the 

overall strength of the part is affected by each individual layer. To reduce the complexity 

of the experiment, only the printing pattern and infill density were chosen as parameters 

to investigate, while other process parameters remained constant over all experimental 

conditions. Three levels were selected for each variable, while Table 6 shows the design 

of the experiment. 

 

 

Figure 22 An example of bidirectional sample 
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Table 6 Design of experiment for mechanical behivor investigation 

Unidirectional Specimens 
No. Infill Density (%) Printing pattern 
1 20 Rectilinear 
2 20 Honeycomb 
3 20 Triangular 
4 50 Rectilinear 
5 50 Honeycomb 
6 50 Triangular 
7 80 Rectilinear 
8 80 Honeycomb 
9 80 Triangular 

Bidirectional Specimens 

No. Top Infill Density 
(%) 

Top Printing 
pattern 

Bottom Infill Density 
(%) 

Bottom Printing 
pattern 

1 20 Rectilinear 20 Rectilinear 
2 20 Honeycomb 50 Honeycomb 
3 20 Triangular 80 Triangular 
4 50 Rectilinear 50 Triangular 
5 50 Honeycomb 80 Rectilinear 
6 50 Triangular 20 Honeycomb 
7 80 Rectilinear 80 Honeycomb 
8 80 Honeycomb 20 Triangular 
9 80 Triangular 50 Rectilinear 

10 20 Rectilinear 20 Rectilinear 
11 50 Honeycomb 20 Honeycomb 
12 80 Triangular 20 Triangular 
13 50 Triangular 50 Rectilinear 
14 80 Rectilinear 50 Honeycomb 
15 20 Honeycomb 50 Triangular 
16 80 Honeycomb 80 Rectilinear 
17 20 Triangular 80 Honeycomb 
18 50 Rectilinear 80 Triangular 
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The specimens were manufactured in the same FlashForge Dreamer machine [121] used 

in a previous thermal behavior study, and three replicates were performed for each 

experimental condition to reduce the effects of random noise. During the manufacturing 

process, the extrusion and platform temperatures were kept at 210ºC and 60ºC, 

respectively. The layer thickness or slice height was set at 0.2 mm, with a total of 20 

layers. The horizontal build orientation was adopted for all parts manufactured in this 

study – all specimens are fabricated with the build direction parallel to the tensile load to 

be applied later. 

3.3.1.2 Tensile testing procedures 

For tensile behavior characterization, an Instron 5567 Universal Testing System was 

utilized. Figure 23 shows the experimental setup of the sample after it was stretched and 

broken.  

 

 

Figure 23 An image of the tensile testing process 
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The testing was performed in a displacement-controlled manner—the extensometer was 

used as the control device. The upper grip was travelled at 2.5 mm/min, which causes 

rupture within 0.5 to 4 min of testing time. The displacement, , L∆ , and force load, F , 

values were recorded every 0.1 s throughout the experiment, and the engineering stress 

σ and strain ε  values were calculated based on the following equations 

 
3 36 10 4 10

F F
A

σ − −= =
× ⋅ ×

  (3.4) 

 
333 10

L L
L

ε −

∆ ∆
= =

×
  (3.5) 

Where σ  and F have the units of Pa and N, respectively. In that way, the 

corresponding effective elastic modulus was obtained as the slope of the linear portion of 

the stress over strain curve. 

3.3.2.  Numerical model 

3.3.2.1 The Meso-structure model 

The commonly adopted orthotropic constitutive model considers the additive 

manufactured product as a bulk material, which prevents the reflection of in-product 

geometry and requires extensive experimental input for the settings of each printing 

process parameter. Therefore, a direct approach was considered in this study, which aims 

to depict the fiber structure of each layer. Very limited work [122, 123] has been 

performed on modelling the bead structure of the actual part, and the accuracy of the 
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results has not been satisfactory [123]. Considering that drawing the fibers manually for 

a part with complex geometry requires extensive time, this work developed an 

automated script to convert G-code to a finite element model ready for analysis in 

ANSYS. 

Since G-code depicts the movement of the nozzle during the printing process, Matlab 

was first used to convert G-code into a drawing script for a certain layer. Then 

AutoCAD was utilized to draw the structure of the infill pattern, in this specific layer, in 

a 2D model. Finally, the 2D filament geometry model was extruded to a 3D format with 

Solidworks, and then saved as a Parasolid file, which could be used as the geometric 

input for ANSYS. An example of this conversion process is demonstrated in Figure 24. 

 

 

Figure 24 The conversion process from G-code to 3D FEA model 
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Regarding the meshing scheme, two different element types were considered for each set 

of individual numerical simulation conditions, based on that which resulted in better 

mesh quality. The first is free meshing with the SOLID187 element, which is a higher 

order 3D, 10-node element. It has quadratic displacement behavior and is well suited to 

modelling irregular meshes. The second meshing scheme is sweep meshing, with the 

SOLID186 element that is a higher order 3D 20-node solid element that also exhibits 

quadratic displacement behavior. In this study, it is discovered sweep meshing is 

preferable with high infill density. The element size and time step for the solving step 

were selected based on grid and time step independence tests, as discussed later in 

section 5.2.1. 

The tensile testing process was simulated in a displacement-controlled manner, identical 

to the experimental conditions. The end of one grip was fixed at all conditions, while 

another end travelled at 2.5 mm/min. The uniaxial test data for the PLA filament was 

obtained from the literature [124], and the Poisson’s ratio of the filament was set as 0.36 

[108]. With the boundary conditions defined and material properties set, a transient 

structural analysis was performed for a total of 10 s. The sum of the nodal force in the x-

direction of the moving end was calculated and used as the numerical simulated load 

force, while the displacement was the travel speed multiplied by time. Hence, the 

engineering stress, strain, and effective modulus of elasticity could be calculated 

similarly as for the experimental conditions.  
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3.3.2.2 The Laminate composite approach 

Since there is a research gap with regards to cross-validation between the experimental 

and numerical data of the laminate composite (LC) modelling approach, this approach 

was employed to examine the accuracy and then compare with the MS model. The FEA 

model of this approach was constructed using only the neck region of the specimen 

(33×6×4 mm) in the experimental model. 

SHELL281, a 3D 8-node structural shell element that supports plasticity, was selected in 

ANSYS 17.2 to mesh the sample geometry. The FE model was meshed with an element 

size of 0.5×0.5×0.2, which was determined by refining the meshing to achieve 

appropriate compatibility for the FE results, resulting in a total element number of 

15840. The boundary condition was also defined as fully fixed on one end, while the 

other end travelled in one direction. In the solving step, a transient mechanical analysis 

was performed with the time interval of 0.1 s and a total of 300 steps to match the 

experimental data acquisition speed. 

In the LC model, the material properties of each layer vary with different values of 

printing parameters, and the experimental data must be input; therefore, it is unsuitable 

for validation with unidirectional samples. For the cross-validation of bidirectional 

samples, the material properties of the top and bottom ten layers were calculated based 

on previous unidirectional samples.   
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3.4.  Development of surrogate-based additive manufacturing optimizer 

In this section, the optimization methodology of the developed surrogate-based additive 

manufacturing optimizer (SAMO) is presented.  

3.4.1.  Objective function 

Given the nature of AM processes, most process parameters involved are discretized. 

For example, set the extrusion temperature in the FDM process to 202.1347°C is 

meaningless, since the temperature control system cannot reach such an accuracy. It is 

much more common that the setting of each parameter is partitioned in a certain range. 

Therefore, optimization of AM process is a discrete optimization problem with each 

parameter is selected from a range of positive integers. Recall Equation 2.14, the 

optimization problem with AM background can be formulated as:  
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where 1 2{ , , }nx x x=x   , min 1 2{ , , }L L L
nx x x=x   ,and max 1 2{ , , }U U U

nx x x=x   are all 

positive integer vectors. With the background of FDM, x  could be extrusion 

temperature, platform temperature, printing pattern, etc., while f ( )p x can be 

characteristics of the products or process, such as tensile strength, dimensional error, or 

building time. Sometimes it is required to perform multi-objective optimization that each 
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( ), 1, 2,pf p P=x   need to be either maximized or minimized. Under that condition, 

although it is possible to locate the Pareto front or a trade-off region that every solution 

in this region is not dominated by other solutions [125], the operator or end-user still 

need to select the solution based on his/her personal preference. Hence, in this study we 

will adopt the weighted sum approach to help the user making the decision. In this 

approach, the user would be asked for preference levels for multiple objectives (i.e. 

mechanical strength, building time, material cost) and maximum/minimum allowance 

limit for each objective. And the multi-objective optimization problem would be 

converted to a single-objective optimization problem with additional constraints.  
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3.4.2.  Optimization algorithm 

The algorithm developed in this study adopted the response correction approach and is 

specifically designed to reduce the high-fidelity experimental model evaluation times.  It 

can be summarized as follows: 

[1] Set 0k = , Identify enough data points ( ) , 1, 2,k
i i n=x   and evaluate their response 

( ) , 1, 2,k
i i n=R   in the LF predictive model 
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[2] Construct an ANN surrogate model ( )kS  bases on dataset of { }( ) ( ),k k
i ix R   

[3] Identify the current optimum point ( )
SAMO,opt
kx  with the weighted sum approach from 

the output values of the constructed ANN surrogate model 

[4] Evaluate the response of ( )
SAMO,opt
kx from the HF experimental model to obtain ( )

HF
kR   

[5] Check the convergence criteria; if met, then ( )
SAMO,opt
kx  is the optimum point; 

otherwise, increase k  by 1, update ANN training dataset { }( ) ( ),k k
i ix R , and return to 

step 2 

The key characteristic of the above algorithm is how to update the ANN training dataset 

{ }( ) ( ),k k
i iRx . One intuitive way is to directly add ( ) ( )

SAMO,opt HF{ , }k kx R  to the previous dataset. 

While a slightly more complicate approach is to first choose ( 1)k
i
+x  in a trust region of  

( )
SAMO,opt
kx  so that the criteria of ( 1) ( )

SAMO,opt
k k

i ε+ − ≤x x  could be met, then insert the 

previous optimum point ( )
SAMO,opt
kx to ( 1)k

i
+x .  The sampling strategy is take 5-10% of the 

levels possible on each parameter dimension with evenly space between each other. For 

example, if 1x  can vary between level 1 and 100 in its own dimension, then level 20, 40, 

…, 100 would be picked to construct the LF surrogate model. The optimizer is 

terminated if  ( 1) ( )
SAMO,opt SAMO,opt 4k k+ − ≤x x  or 50k >    
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3.4.3.  Optimization performance evaluation 

First of all, it should be noted the accuracy of the algorithm need to be evaluated by the 

difference of estimated optimum response and real optimum response with the following 

criteria 

 opt,est opt,real
est

opt,real

Error 100%
R R

R

−
= ×   (3.8) 

estError 0%=  means the algorithm successfully located the analytically optimum 

solution, while a high value means the accuracy performance of the developed algorithm 

is extremely low.  

One characteristic of the objective functions that could impact the accuracy of the 

optimization algorithms is the local optima. On those local maximum or minimum 

points, the partial derivatives are 0 and gradient-based algorithms are extremely easy to 

“trap” in them. With regard to the developed algorithm itself, both DoE or sampling 

strategy and randomness in step 1 could potentially affect the accuracy of the results. 

The DoE strategy is designed to allocate enough training points in the studied design 

space and apparently how to fill the design space would influence the final results. 

Morevoer, as constructing neural networks requires weights between neurons to 

initialized first, random initial weights would have their effect on accuracy of the 

algorithm.  
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Alternatively, recall the overarching goal of develop SBO-MFM is to reduce the cost 

and time for performing optimization, the criteria would then be the overall cost to 

conduct the experiment and perform numerical simulation. One way to estimate the 

overall cost is 

 overall overall exp sim

exp machine material testing sim computation

Cost C
( ) ( )

C C
n C C C n C

= = +

= + + +
  (3.9) 

Based on case study of industry level FDM machine [126, 127], with 30 minutes of 

manufacturing, one mechanical testing procedure, and 5 minutes of simulation on an 

average desktop computer, it is estimated that 

 

machine

material

testing

computation

Machine and labour cost Build up time=20$/hr 0.5hr=10$
Material cost Part weight=0.25$/g 2g=0.5$

50$ 
Computer and Labour cost Build up time=10$/hr 5min=0.83$

C
C
C
C

= × ×
= × ×
=

= × ×

  (3.10) 

And Equation 3.10 can be converted to  

 overall exp sim exp simC 60.5$ 0.83$C C n n= + = × + ×   (3.11) 

3.4.4.  Case studies 

The developed SAMO would be evaluated on several cases and compare against existing 

literature/methods on aforementioned criteria, where the details of those cases were 

summarized in Table 7.  
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Table 7 The testing cases for developed SAMO 

Case No. Function source 
Input 

parameter 
number 

Output 
parameter 
number 

Compare against Note 

1 A simple non-
linear function 1 1 SAO and ARC The most simplified 

condition 

2 Gramacy & Lee 
function [128] 1 1 SAO and ARC 

Semi-periodic function 
with multiple local 

optimum 

3 Six-Hump Camel 
function [129] 1 2 SAO and ARC Six local minima, two 

of which are global 

4 
Tensile strength 
of FDM parts 

[56] 
1 4 

Original 
literature method 

[56] 

Original method is 
group method for data 

handling and DoE 

5 

Strength and 
volumetric 

shrinkage of 
FDM parts [92] 

2 3 
Original 

literature method 
[92] 

Original method is DoE 
with 20 runs, then 

ANOVA, then GA on 
ANOVA fitted 

functions 

6 

Experiments on 
modulus of 

elasticity/building 
time 

1 2 Conducted 
experiment 

Self-conducted 
experiments based on 
developed predictive 

model 
 

For case #1 to #5, low fidelity numerical simulation model would be created by 

perturbate the original analytical function by a certain degree, typically with a deviation 

of 10%. While for case #6, the developed numerical simulation model would be used as 

the low-fidelity model for predict the modulus of elasticity and building time would be 

estimated by a pre-determined function.  

3.5.  Summary 

A hybrid model approach was proposed to investigate the effect of process parameters 

on thermal and mechanical behaviors, as well as optimize the manufacturing process. 

For investigation of thermal behavior, the objective of the hybrid model is to analyze 
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how extrusion temperature, platform temperature, printing speed and layer thickness 

would affect effective diffusion time. Taguchi design would be adopted in this study to 

reduce the experimental runs, and three replicates will be performed for each 

experimental condition. A low-cost IR sensor is used as the monitoring device and move 

along with the extruder/nozzle, provided information near the deposition region. The 

relationship between the effective diffusion time and process parameters would be 

analyzed by ANOVA and signal-noise ratio analysis, testing where those parameters 

would significantly affect the response and whether they are positively correlated or not. 

The numerical model would be constructed in an element activated in sequence way to 

mimic the additive manufacture process. The initial condition would be gathered from 

the experimental data, and the boundary condition is solved with an inverse heat transfer 

problem. After completing cross-validation, the numerical model could predict the 

residual thermal stress and vertical distortion. 

For the investigation of mechanical behavior, the objective of the hybrid model is to 

analyze how infill pattern and infill density would affect tensile strength of the product. 

Two types of specimens would be tested which are unidirectional specimens and 

bidirectional specimens. Bidirectional samples are used to evaluate how a combination 

of two infill patterns inside of one product would affect the final strength of it. Two 

approaches are made to numerically model the mechanical behavior — meso-structure 

model and laminar composite model. The meso-structure model aims to reproduce the 

geometry of infill patterns while the laminar composite model is used to compare the 
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performance. Finally, the developed predictive model will determine the tensile strength 

and elastic performance of the final product with infill patterns as the inputs.   

For optimization of the manufacturing process, the objective of the hybrid model is to 

reduce the number of experiments performed on additive manufacturing machines, and 

thereby making the optimization process more efficient. The hybrid model based 

optimizer is developed to guide the decision-making process in optimization 

manufacturing conditions by combining cost-effective but less accurate predictive 

models with expensive but accurate experimental models. Iteratively, the developed 

optimizer obtains the current manufacturing condition and the corresponded response 

and determines the next manufacturing condition to attempt. Therefore, the developed 

optimizer would be an efficient algorithm with reduced overall cost.  
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4. RESULTS AND ANALYSIS OF THERMAL BEHAVIOR OF POLYLACTIC 

ACID DURING THE FUSED DEPOSITION PROCESS9  

In this section [103], analysis for thermal behavior experimental and numerical model 

was performed. Characteristics of the material temperature distribution during the FDM 

process and the effect of process parameters on thermal diffusion time were evaluated in 

Section 4.1. Furthermore, Section 4.2 verified and validated the simulation model based 

on the experimental results. And in the end, the prediction results of part distortion and 

the accumulated residual stress were presented in this section as well. 

4.1.  Experimental model 

4.1.1.  Analysis of deposition temperature 

As indicated in Figure 13, the newly deposited material was located at the same pixel 

position in the acquired temperature matrix due to co-axial movement between the 

sensor and the nozzle. With the deposition temperature defined as the temperature of the 

material when in contact with the layer or platform beneath it, the deposition 

temperature could be analyzed with a plot of the temperature of that fixed pixel over 

                                                 

9 This section is reprinted with permission from ‘Experimental and numerical investigation of the thermal 
behaviour of polylactic acid during the fused deposition process’ by Xunfei Zhou, Sheng-Jen Hsieh & 
Yintong Sun Virtual and Physical Prototyping Vol 12:3 pp. 221- 233 (2017). Copyright 2018 by Taylor & 
Francis Group 
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time. An example of such a plot under experimental condition No. 1 is given in Figure 

25. 

 

Figure 25 A plot of deposition temperature over time under experimental condition 

No. 1 

 

Figure 25 demonstrated that under experimental condition No.1, the deposition 

temperature of PLA would not exceed 170°C in the hollow layers when the nozzle 

temperature was set as 200oC. This phenomenon was also observed in Dinwiddie et al.’s 

experiments [47], Seppala and Migler’s experiments [48], and Bellini’s simulations 

[130], where ABS or ceramics were used as the printing material. The discrepancy can 

be explained by the intensive cooling effect during the time interval between extrusion 

and deposition of the material. Second, it can also be observed that in Figure 25 the 

temporal deposition temperature profile could be separated into three regions based on 
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the spacing and shape of the data, where the first region lies in the time range of around 

0–300 s, the second lies around 300–700 s, and the third region is from 700 s to the end 

of the experiment. By examining the G-code, it is discovered that the first region 

occurred during the printing of the bottom three layers with a 100% linear infill pattern 

and the third region occurred during the printing of the top three layers with the same 

pattern. The hollow layers are the part-of-interest of this study; therefore, the data was 

cropped to only contain the second region for analysis in the following sections. Third, 

the peaks of the periodic deposition temperature data align with the time when the front 

filament was fully extruded (point A in Figure 12), while the troughs of the temperature 

profile match the end time when printing the back filament (point B in Figure 12). The 

formation of the periodic temperature signal was caused by the gradual change in the 

heat transfer conditions upon finishing the layer and when the field of view of the sensor 

was blocked by the front filament when the nozzle moved to the back. Finally, there is 

an increasing trend in the deposition temperature temporal profile. Plots of the peak 

temperatures while printing each hollow layer over time in all nine experimental 

conditions are given in Figure 26. 
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Figure 26 Plots of deposition temperature over time for all experimental conditions 

 

Figure 26 demonstrates that there were at least 8 degrees of temperature increment in all 

nine cases, which strongly contradicts the assumption that deposition temperature 

remains constant made in previous simulation literature [34, 130]. It is presumed that 

this invalid assumption would result in a discrepancy between simulation and 

experimental data. 

4.1.2.  Analysis of ambient temperature 

During the printing process, ambient air in the machine chamber was heated by the 

printing platform and nozzle. Ambient temperature was assumed to remain constant in 
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the previous literature [34, 130]; however, validation of this assumption through 

experimental data has not been provided. The ambient temperatures of condition Nos. 1 

and 9, which represent two extreme cases of nozzle temperature and platform 

temperature, were plotted in Figure 27. 

 

 

Figure 27 A plot of ambient temperature over time 

 

Figure 27 showed that increasing the nozzle temperature and platform temperature by 

20°C would lead to an approximately 3°C increase in the average ambient temperature. 

However, fluctuation of the ambient temperature was less than 2°C in both cases, while 
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further analysis of all 27 cases confirmed that overall temperature variation was less than 

±1oC. 

4.1.3.  Analysis of effective diffusion time 

A reference point was chosen to compare the effective diffusion time of all experimental 

conditions. In this study, for the layer heights 0.15, 0.20, and 0.25 mm, the center points 

of the front filaments of the 10th, 8th, and 7th layers were selected as the reference points, 

corresponding to the height of ¼ that of all hollow layers. 

Since the infrared sensor was moving along with the nozzle at the same velocity, the 

temperature data must be mapped to acquire the temporal temperature evolution of the 

reference point. Denoting the frame when the nozzle was located above the reference 

point as the reference frame with a frame number of 0, the time is 0, and the reference 

point occupied the pixel number 0 0( , )x y   in the initial frame. During the printing of the 

front filament of the layer where the reference point was located, the nozzle only moves 

along the positive x-direction; hence, the reference point would appear in frame number 

N at the pixel position 0 0( , )sx N y
f x

−
⋅∆

, where s  is printing speed (mm/s), f  is the 

frequency that thermography images were taken (Hz), and x∆ is the pixel size (mm). 

Therefore, temperature of the reference point at time t  would be 

 0 0( ) ( , , ) ( , , )r t t t
sT t T x y N T x N y N

f x
= = −

⋅∆
  (4.1) 
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Linear interpolation was performed to locate the temperature value at non-integer pixel 

numbers. Using the curve of temperature as a function of time, difft  was determined, and 

the results of all nine experimental conditions and three replicates are listed in Table 8. 

 

Table 8 Results of effective diffusion time under experimental condition 

diff  (s)t  1st replicate 2nd replicate 3rd replicate Avg. Std. 
1 0.1135 0.1140 0.1139 0.1138 2.95E-04 
2 0.0782 0.0781 0.0778 0.0780 2.15E-04 
3 0.0609 0.0608 0.0605 0.0607 1.98E-04 
4 0.0779 0.0775 0.0772 0.0775 3.43E-04 
5 0.0604 0.0598 0.0593 0.0598 5.47E-04 
6 0.1221 0.1238 0.1229 0.1229 8.13E-04 
7 0.0590 0.0591 0.0587 0.0589 2.01E-04 
8 0.1223 0.1214 0.1204 0.1213 9.51E-04 
9 0.0809 0.0839 0.0818 0.0822 1.52E-03 

 

Table 8 suggested that difft  of all experimental conditions was of the magnitude of 0.1 s. 

This result was compared to the study of Dinwiddie et al. [47], which used an IR camera 

to monitor another desktop-level 3D printer using ABS as the printing material. With a 

25.07 mm/s printing speed, they found that the temperature of the first layer dropped 

from 255°C to 115°C in about 0.3 s for a square sample with 4 inches (101.6mm) of 

length. However, theoretical models reviewed by Bellehumeur et al. [31] predict that 

diffusion time would be seconds, which contradicts the experimental observations. This 

discrepancy was believed to be caused by incorrect boundary conditions, temperature-
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independent thermophysical properties of the material, and the assumption applied in the 

theoretical models that the phase change effect is negligible. 

To analyze the effects of the printing parameters, an evaluation of signal-to-noise (S/N) 

ratio was conducted. In a parametric study, S/N ratio was designed to quantified how the 

response varies to noise factors and signal factors under different noise conditions. Since 

this study aims to prolong the diffusion time, characteristics ‘the larger the better’ were 

selected, and the S/N ratio was calculated based on 

 2
diff,

1

1/ 10log( )
p

i
i

S N t
p =

= − ∑   (4.2) 

where p is the number of replicates, of which there are three in this study. The results of 

the S/N ratio analyses are plotted in Figure 28. 

 

 

Figure 28 Results of S/N ratio of effective diffusion time under experimental 

condition 
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In Figure 28, the printing speed has the most significant influence on diffusion time, 

followed by platform temperature, extrusion temperature, and layer thickness. The S/N 

ratio results suggest that PLA would have the longest diffusion time at the nozzle 

temperature of 220oC, platform temperature of 70oC, printing speed of 40 mm/s, and 

layer thickness of 0.25 mm. 

Additionally, statistical analyses of the experiment result were performed using 

ANOVA. The results of ANOVA are listed in Table 9; the p-value of all four factors was 

lower than 0.05, indicating that they all significantly contribute to the response. The 

importance of factors for effective diffusion times was ranked as follows: printing 

speed>>platform temperature>nozzle temperature>layer thickness, which corresponded 

to the S/N ratio results.  

Table 9 Results of ANOVA analysis on effective diffusion time under experimental 

condition 

Source DoF Adj-SS Adj-MS F-value p-value 
Nozzle temperature 2 5.5000E-05 2.7000E-05 5.4660E+01 <0.001 
Platform temperature 2 1.2300E-04 6.1000E-05 1.2222E+02 <0.001 
Printing speed 2 1.6579E-02 8.2890E-03 1.6520E+04 <0.001 
Layer thickness 2 1.0000E-05 5.0000E-06 1.0210E+01 0.001 
Error 18 9.0000E-06 0.5000E-06   
Total 26 1.6775E-02    
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4.2.   Numerical model 

4.2.1.  Grid independence test 

The grid independence test for thermal analysis was performed to evaluate the effects of 

grid sizes on the results as shown in Figure 29. Four sets of mesh were generated with 

the element size varied from 0.25mm×0.25mm×Layer thickness to 2mm×2mm×Layer 

thickness. The test configuration is printing PLA material for 0.2s with the printing 

speed of 40mm/s. The deposition temperature, platform temperature, and layer thickness 

are 210oC, 60oC, and 0.15mm, respectively. In total, there is 8mm of material extruded, 

and the temperature distribution of it was used for compared the performance of the 

numerical model with different mesh numbers. In each layer, there are 3440, 864, 200, 

and 110 elements for element size of 0.25, 0.5, 1, and 2mm, respectively. It was 

observed the element size of 1mm and 0.5mm produced results with a percentage error 

of less than 3%. Hence, a domain with the element size of 1mm was chosen to reduce 

the computing time. Considering the element size divided by time step is the printing 

speed, which is a constant in this scenario; therefore, the grid independence test also 

served as the time step independence test.  
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Figure 29 A plot of temperature distribution curves with regard to element size 

 

4.2.2.  Determination of convective heat transfer coefficient10 

Based on the methodology introduced in section 3.2.3, convective heat transfer 

coefficient and interfacial conduct resistance were estimated using ANN [111].  The 

average values of them from 100 training processes are 2894 and 61.72 W/(m2∙K). The 

distribution of both values over those 100 networks were plotted in Figure 30, which can 

be seen that most of the data were concentrated near the average values while a few of 

them were far away. The random selected training/validation/testing caused such 

deviation between each constructed network. In addition, the temperature history of the 

                                                 

10 This section is reprinted with permission from Zhou, X., & Hsieh, S. J. (2018, May). Evaluating 
convective heat transfer coefficients in fused deposition process using infrared imaging and neural 
networks. In Thermosense: Thermal Infrared Applications XL (Vol. 10661, p. 106610K). International 
Society for Optics and Photonics. Copyright 2018 by SPIE 
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measured points under experimental and simulation conditions was given in Figure 31, 

which demonstrated that the deviation between them is small.  

 

Figure 30 Plots of calculated 
ph  (left) and 

ambienth  (right) in 100 networks 

 

 

Figure 31 A plot of temperature history of two points under experimental and 

numerical conditions 
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4.2.2.1 Uncertainty analysis 

One of the issues in solving IHCP is the estimation of the experimental uncertainty. 

Inverse results usually do not come with clear statements of the uncertainty due to the 

difficulties associated with the non-uniqueness of inverse solutions [131]. With regards 

to ANN models, it is demonstrated that prediction error comes from measurement 

uncertainty and uncertainty of the inferred network parameters [132]. However, the 

quantification of uncertainty in ANN is still challenging due to its parallel computing 

architecture, which consequently limits its application in solving the real-world 

problems. Therefore, investigation of quantifying the uncertainty in neural networks has 

never been ceased. In this study, the approach of Monte Carlo method, also known as 

resampling method would be used. It is a probabilistic-based approach which samples 

different realization of model inputs or parameters by assigning the probability 

distribution of each variable [133].  

The following assumptions are made to evaluate the time for the temperature to reach 5 

degrees higher than the initial temperature: 

[1] Noise equivalent error of 0.25K on both initial and end of temperature measurement 

based on infrared camera specification 
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[2] The surface temperature measurement values could be represented by continuous 

uniform distribution [117] 

 
1  for 

( ) 2
0    otherwise

T a T T a
f T a

 − ≤ ≤ += 


  (4.3) 

where a  is the variation of the temperature measurement error. 

[3] Temperature changes linearly inside of the measurement time interval 

With all these assumptions considered, a time measurement uncertainty of 0.16s was 

calculated for both input nodes of the network model. Two scenarios were considered 

for the sources that error could be induced. 

The first scenario is the error was induced from the training dataset. Since numerical 

simulation results instead of experimental measurement results were used to train the 

neural network model, less accurate cases in the simulation model could potentially arise 

the estimation error after neural network training [66]. Assuming an uncertainty of 0.16s 

exists for the training dataset, each node was then resampled 200 times with continuous 

uniform distribution followed for all 100 simulation conditions. Subsequently, 20,000 

(100 runs for average value for all 200 resampled inputs) neural networks were trained. 

The evaluation results with the experimental data as the input were sorted and plotted in 

Figure 32 as the cumulative probability function. 
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Figure 32 The cumulative probability function of estimation results with error 

induced from training for ph  (left) and h∞  (right) 

 

It is discovered that the shape of both cumulative probability functions resembles that of 

Gamma distribution. Therefore, distribution fitting was performed and two-sample 

Kolmogorov-Smirnov test was conducted to evaluate the goodness-of-fitting. With the 

null hypothesis that the original data and the fitted data are from the same distribution, at 

the significance level of 5%, the p-value of  ph  and h∞  is 0.6107 and 0.7787, 

respectively. The statistical testing results indicate that the null hypothesis was not 

rejected for both values. It is concluded that with the distribution of 

p Gamma(160.6878,20.2796)h    and Gamma(30.8877,1.7218)h∞  , and the 

uncertainty was 472.0 (14.4%) and 17.96 (33.8%) for ph  and h∞ , respectively. 



 

110 

 

Secondly, for error induced from testing scenario, it is assumed that the neural network 

model is trained properly and tested with experimental data with uncertainty. The 

experimental data was assumed to follow continuous uniform distribution and resampled 

1000 times. the resulted distribution curve was plotted in Figure 33. 

 

Figure 33 The cumulative probability function of estimation results with error 

induced from testing for ph  (left) and h∞  (right) 

 

It is observed that both resulted distribution curves seem to follow the shape of normal 

distribution. With Shapiro–Wilk test conducted, it is proved that both datasets were not 

significantly drawn from a normal distributed population at 5% level. And the 

uncertainty associated with ph   and h∞  is 495.3 (16.82%) and 30.42 (50.96%). 
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Through the above analysis, it is evident that the accuracy of h∞  is significantly impacted 

by the measurement error. It is expected that using high-performance infrared imaging 

device with a lower noise equivalent error (<20mK) could reduce the estimation 

uncertainty to below 5%. 

4.2.3.  Validation of simulation results 

The effective diffusion time was measured experimentally and simulated numerically 

under all nine conditions; the results are listed in Table 10. 

 

Table 10 Comparison of experimental, numerical, and literature value of effective 

diffusion time 

 diff, expt  
(s) 

expStd  
(s) 

diff, simt
(s) 

Bias 
(%) 

diff, sim, litt (s) 
(Zhang 2006) 

Bias 
(%) 

diff, theo, litt (s) 
 [30] 

Bias 
(%) 

1 0.1138 2.95E-04 0.0528 53.61 0.0709 37.66 2.8379 2394 
2 0.0780 2.15E-04 0.0685 12.19 0.0856 9.70 5.1339 6482 
3 0.0607 1.98E-04 0.1133 86.64 0.1447 138.35 11.5741 18968 
4 0.0775 3.43E-04 0.0761 1.82 0.0822 6.02 4.9297 6261 
5 0.0598 5.47E-04 0.0579 3.17 0.0744 24.42 5.9524 9854 
6 0.1229 8.13E-04 0.0993 19.24 0.1939 57.76 7.7553 6210 
7 0.0589 2.01E-04 0.0589 0.07 0.0697 18.28 5.5735 9363 
8 0.1213 9.51E-04 0.1280 5.51 0.0797 34.32 4.7799 3841 
9 0.0822 1.52E-03 0.0718 12.65 0.2564 211.97 10.2577 12379 

 

For layer heights of 0.15, 0.20, and 0.25 mm, the element in the middle of the front 

filament of the 7th, 5th, and 4th layer, respectively, was chosen to calculate diffusion time 
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during the simulation. The experimental and simulation values were generally of the 

same magnitude, and in 6 of 9 cases, the biases were less than 13%. However, 

significant discrepancies exist in case Nos. 1, 3, 6, and 9. We presumed that this 

difference was caused by inaccurate modeling of the platform heat transfer mechanism. 

One common feature of condition Nos. 3, 6, and 9 was that the platform temperature was 

set at the highest level, indicating that the boundary condition at high platform 

temperatures might require further improvements. With the reduction of the nozzle 

temperature, the temperature of the material upon deposition would decrease to a value 

closer to that of the platform, leading to a more dominant platform temperature effect. 

As a result, the discrepancy became huge in condition Nos. 1 and 3. The thermal contact 

resistance value we used between PLA-PLA interface was an estimated value based on 

experiments with other polymer materials. The availability of future experimental data 

regarding thermal contact resistance on the PLA-PLA interface will improve the 

accuracy of the simulation model. A S/N ratio analysis was also carried out using Eq 4.2 

for the numerical conditions. 
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Figure 34 A S/N ratio of effective diffusion time under numerical condition 

 

Figure 34 suggests that PLA would have the longest cooling diffusion time at a nozzle 

temperature of 220oC, a platform temperature of 70oC, a printing speed of 40 mm/s, and 

a layer thickness of 0.25 mm, which is consistent with the experimental results. 

However, the effect of layer thickness becomes the most significant factor rather than 

the printing speed, which can be explained using cases with low levels of layer thickness 

(Nos. 1, 5, and 9). Those simulation results were lower than the experimental results, 

where for the cases with the thickest layers (Nos. 3, 4, and 8), the simulation results were 

higher than the experimental results. This discrepancy enlarges the effect of layer 

thickness, causing it to surpass the impact of printing speed. 

Moreover, the results of the experiments and simulation models were compared to the 

existing literature. Zhang and co-workers presented their simulation result of the FDM 

process, which assumed that deposition temperature is equal to nozzle temperature [33]. 
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Under these assumptions, the effective diffusion time was evaluated based on the same 

geometry and material properties of the previously used model, and the results are 

shown in Figure 34. Li et al. [30] proposed using the lumped capacity analysis to model 

the cooling processes of the extruded filament in FDM process. The analytical solution 

they developed to predict diffusion time is 

 diff log( ) / ( )g p

d p

T T
t mv

T T
−

= −
−

  (4.4) 

with 
1 4 1

2
m αβ

α
+ −

=  ,
p

k
C v

α
ρ

=  , and 
p

hP
C Av

β
ρ

=   

where A and P represent the cross-section area of the filament and the perimeter of it, 

respectively. With the material properties of PLA evaluated at 400K and h set to only the 

forced convection value (88 W∙m-2∙K-1), the results from the theoretical predictions are 

also presented in Figure 35. 
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Figure 35 A comparison of effective diffusion time in this study and previous 

literature 

 

Figure 35 suggests that the simulation model of this paper generated better-correlated 

results with the experimental data compared with other methods. Taking the assumption 

that the deposition temperature is identical to nozzle temperature, the reviewed 

simulation model has a more substantial error. However, their results still had the same 

magnitude of 0.1 s. Alternatively, the existing theoretical model predicted the diffusion 

time one magnitude higher than the experimental model, suggesting that conduction 

between the platform and layers beneath the platform are the largest heat loss source.  
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4.2.4.  Simulation results on distortion and thermal stress 

Deformation and thermal stress distributions of the simulation model were obtained by 

applying temperature history of the nodes as the thermal load in the structural analysis. 

The contour of z-direction distortion of the model in condition No. 6 was plotted in 

Figure 36. It can be observed from the top view that the vertical distortion of the part 

was mostly uniform across the horizontal direction, and a distortion gradient only exists 

on four rectangular interior and exterior corners in each layer. For all nine conditions, 

the trend remained consistent when the time of the observation was right after the top 

layer was manufactured. The maximum vertical distortion values, however, were 

different for separate conditions, and they are listed in Table 11. 

 

 

Figure 36 A contour image of z-direction distortion of the model 
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Figure 37 A contour image of residual stress of the model 

 

Figure 37 demonstrates an example of the von Mises stress distribution of the simulation 

model in condition 6. Stress was concentrated near the corners, but the highest stress was 

near the most recently deposited material, where temperature gradient was the greatest. 

The highest von Mises stresses for each condition in the developed simulation model are 

also listed in Table 11. 
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Table 11 The highest von Mises stresses for each condition in the developed 

simulation model 

No. 1 2 3 4 5 6 7 8 9 

 

Distortion (mm) 0.147 0.200 0.215 0.227 0.154 0.204 0.213 0.230 0.158 
Stress (Mpa) 57.4 61.2 63.6 60.1 59.9 62.5 60.3 61.2 61.3 
 

The S/N ratio analyses were performed based on the results of Table 11 to evaluate the 

effect of printing parameters on the vertical distortion and maximum thermal stress. The 

smaller-the-better principle was adopted because we want to minimize the distortion and 

residual stress. 

 

 

Figure 38 S/N ratio plots for distortion (left) and residual stress (right) 

 

Figure 38 illustrates that the layer thickness is the most significant parameter affecting 

vertical distortion of the simulation models. Minimizing the vertical distortion of the 

simulation models is associated with the decrease of the extrusion temperature, printing 



 

119 

 

speed, and layer thickness, as well as the increase of the platform temperature. This 

result showed good agreement with the literature. Nancharaiah et al. [63] reported that 

using thinner layers could increase dimensional accuracy in experimental design. Sahu et 

al. [60] also discovered that reducing layer thickness leads to better dimension accuracy 

on the vertical side. Peng et al. [65] combined response surface methodology with a 

fuzzy inference system and found that lower filling velocity and extrusion velocity help 

reduce the warp formation. Xinhua et al. concluded that a low nozzle temperature is 

helpful to reduce the distortion on a PLA-made thin-plate [61]. 

Figure 38 compared the effect of four printing parameters on the maximum von Mises 

stress. All four parameters were positively correlated with the response, and the platform 

temperature had the most significant impact. This finding is consistent with Kantaros et 

al.'s experimental result, where they also reported that residual strain of the FDM part 

would decrease with layer thickness [54]. 

4.3.  Discussion  

For an FDM process using polymer materials, there are two non-included phenomena 

that could potentially affect the accuracy of a numerical prediction model. The first is 

structural relaxation. When a polymer material is cooled from above to below gT , the 

resulting glass is unstable, and the density will gradually increase with time [134]. The 

structural relaxation process towards thermodynamic equilibrium occurs rapidly at 

temperatures around gT , and it caused a 3% density value change for polystyrene resin. 
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The second phenomenon is the wetting/bonding process. In the FDM process, the 

bonding of filaments occurs when adjacent filaments come into contact, and the 

temperature is above gT . To the best knowledge of the authors, there is no existing 

literature that applies polymer bonding theory to the numerical simulation of FDM. 

Although for the model constructed in this paper, the impact of filament bonding on the 

experimental result was reduced to the minimum because the layers studied did not have 

an infill pattern (no inter-layer bonding); an accurate modeling is still required when 

considering the deposition pattern. Two dominant theories existed for modeling the 

bonding process—the healing theory [135] and the sintering theory [31]. Both theories 

predicted that the volume of the filaments would gradually decrease due to diffusion of 

the interface when they were brought into good contact at a temperature above the glass 

transition. This process could be adopted in the current numerical simulation by 

modeling density as a function of element activation time and nodal temperature. 

However, the correlation between printing parameters and function coefficient still 

requires intensive experimental and theoretical investigation. 

4.4.  Summary 

In this section, the thermal behavior of the FDM process was studied both 

experimentally and numerically; and the effects of nozzle temperature, platform 

temperature, extrusion speed, and layer thickness on effective diffusion time, maximum 

vertical distortion, and maximum thermal stress were evaluated. 
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In the experimental investigation, the thermal history of the FDM process was measured 

by a co-axial, low-cost, infrared sensor moving with the nozzle. The experimental results 

revealed that PLA would have the longest diffusion time at high nozzle temperature, 

high platform temperature, low printing speed, and high layer thickness. 

Based on the boundary condition measured by the experiments, a predictive finite 

element model for the FDM process was developed. For the same geometry model and 

printing parameters, the simulation model could predict the effective diffusion time with 

a bias less than 13% in six out of nine conditions, which was relatively lower than the 

existing simulation and theoretical prediction models in the literature. The developed 

numerical model revealed that reducing extrusion temperature, slowing printing speed, 

and decreasing layer thickness could help reduce the vertical distortion and residual 

thermal stress, while the high platform temperature might have opposing effects on 

distortion and residual stress. 
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5. RESULTS AND ANALYSIS OF MECHANICAL BEHAVIOR OF FDM 

MANUFACTURED POLYLACTIC ACID PARTS11  

In this section [66], analysis for mechanical behavior experimental and numerical model 

was performed. Analysis of tensile testing experimental data on unidirectional and 

bidirectional samples were first carried out in Section 5.1. Validation of the simulation 

model was conducted in Section 5.2 along with the stress analysis. Finally, Section 5.3 

presented of prediction results of stress-strain relationship.  

5.1.  Experimental model 

5.1.1.  Analysis of stress-strain relationship 

As mentioned in section 3.3.1, each specimen went through the tensile testing procedure 

with force-displacement data recorded. Therefore, stress-strain curves were plotted for 

each of them, which were shown in Figure 39 and Figure 40. 

 

                                                 

11 This section is reprinted with permission from Modelling and estimation of tensile behaviour of 
polylactic acid parts manufactured by fused deposition modelling using finite element analysis and 
knowledge-based library’ by Xunfei Zhou, Sheng-Jen Hsieh & ChenChing Ting Virtual and Physical 
Prototyping (2017).. Copyright 2018 by Taylor & Francis Group 
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Figure 39 Stress-strain curves for unidirectional samples under tensile testing 

 

Figure 40 Stress-strain curves for bidirectional samples under tensile testing 

 

For all samples, the behavior of the stress-strain curves was consistent with the nature of 

PLA—a semi-crystalline thermoplastic polymer. Linear elastic deformation first appears 

where amorphous regions elongated; then it follows with the formation of the neck 

where crystalline areas align; those crystalline regions start to slide (cold drawing); the 

fully drawn sample begins being stretched (strain hardening); and in the end, the fibers 

fracture. An illustration of this process was given in Figure 41, using a sample with 

rectilinear infill pattern with the infill density of 50%. The PLA samples manufactured 
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by FDM did not exhibit an obvious post-yield softening or neck formation effect. 

Moreover, the cold drawing region appeared to last for at least 1% of the strain change 

(natural draw ratio>1%). In this “stable-necking” region, the stress was approximately 

constant as the neck propagated along the length of the specimen. The long fracture 

strain of the samples in Figure 39 and Figure 40 indicated a strong interior molecular 

chain orientation phenomenon, which accompanied the extension and slippage 

phenomena. 

 

Figure 41 An illustration of semi-crystalline polymer stress-strain curve 

 

5.1.2.  Analysis of the modulus of elasticity and UTS 

For a semi-crystalline polymer, the slope of the tangent to the stress-strain curve at small 

stress values is usually taken as the modulus of elasticity [35], and the UTS is defined as 
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the highest point of the stress-strain curve. In this study, UTS and the modulus of 

elasticity values for all specimens are summarized in Table 12.  

As demonstrated in Table 12, the initial slopes of stress-strain curves, representing 

Young’s modulus E, showed significant differences, depending on the infill pattern. For 

most cases, there was no doubt that increasing infill density, the proportion of solid 

fibers to the air gap in the same cross-section area, increased the tensile strength. While 

comparison of different infill patterns revealed that the rate of UTS increase over infill 

density is rather low for rectilinear pattern. Previous research [136] showed that 0° raster 

orientation (raster parallel to the direction of pull force) possessed mostly the highest 

values for ultimate strength and was relatively insensitive to the increase of infill 

density. The filament geometry in Figure 6 demonstrated both triangular and honeycomb 

structure would have such a full or partial 0° raster in the middle of neck region while 

rectilinear pattern does not have. Therefore, in this case of rectilinear infilled samples, 

the inter-raster fusion bonds between adjacent rasters withstood most of the applied load 

with very few rasters pulled along their longitudinal axis. 
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Table 12 Tensile strength and the modulus of elasticity of all samples tested 

Unidirectional Specimens 

No. Printing pattern UTS 
(MPa) 

Modulus of 
elasticity in 
linear region 

(MPa) 

Weight 
(g) 

UTS/weight 
(MPa/g) 

1 20% Rectilinear 9.41±0.25 149.7±5.7 2.49±0.06 3.79 
2 20% Honeycomb 6.31±0.52 194.7±11.5 2.29±0.01 2.75 
3 20% Triangular 15.87±0.49 396.7±72.7 2.53±0.00 6.26 
4 50% Rectilinear 10.14±0.41 139.8±1.9 3.64±0.01 2.79 
5 50% Honeycomb 19.53±0.74 483.7±13.5 3.65±0.01 5.35 
6 50% Triangular 18.26±0.96 534.0±11.4 3.59±0.07 5.09 
7 80% Rectilinear 10.48±0.18 177.2±13.9 5.27±0.00 1.99 
8 80% Honeycomb 10.72±0.00 339.4±13.5 4.65±0.01 2.31 
9 80% Triangular 20.39±0.53 699.0±9.8 5.43±0.00 3.75 

Bi-directional Specimens 

No. Printing pattern 
UTS 

(MPa) 
 

Modulus of 
elasticity in 
linear region 

(MPa) 

Weight 
(g) 

UTS/weight 
(MPa/g) 

1 20%R + 20%R 9.57±0.08 139.6±4.5 2.40±0.01 3.99 
2 20%H + 50%H 12.35±0.03 249.4±3.8 3.06±0.02 4.04 
3 20%T +80%T 24.42±0.48 491.3±23.2 4.26±0.02 5.74 
4 50%R + 50%T 17.05±0.15 452.9±16.2 3.52±0.00 4.84 
5 50%H + 80%R 13.79±0.11 358.4±8.9 4.53±0.02 3.04 
6 50%T + 20%H 10.55±0.16 246.2±7.3 3.05±0.01 3.46 
7 80%R + 80%H 15.92±0.21 432.2±16.0 5.04±0.02 3.16 
8 80%H + 20%T 11.82±0.04 348.8±16.7 3.55±0.02 3.33 
9 80%T + 50%R 16.70±0.35 537.8±11.0 4.55±0.00 3.67 

10 20%R + 20%R 9.31±0.63 171.04±4.88 2.45±0.02 3.80 
11 50%H + 20%H 11.28±0.36 323.74±0.59 2.78±0.01 4.06 
12 80%T +20%T 25.20±0.20 482.13±6.62 3.85±0.00 6.54 
13 50%T + 50%R 17.54±0.07 521.51±0.67 3.79±0.01 4.63 
14 80%R + 50%H 14.47±0.10 397.39±0.35 4.23±0.02 3.42 
15 20%H + 50%T 9.10±0.22 286.07±6.41 3.01±0.00 3.03 
16 80%H + 80%R 17.10±0.14 476.08±7.19 4.95±0.04 3.45 
17 20%T + 80%H 12.91±0.15 369.41±3.56 3.81±0.04 3.39 
18 50%R + 80%T 16.55±0.15 558.77±2.98 4.86±0.06 3.41 
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For unidirectional specimens, the triangular infill pattern, especially at 20% infill 

density, possessed the highest strength/weight ratio—the part is both light and resistant. 

And for bidirectional samples, it appeared the tensile behavior varied slightly between 

the samples with layer structures reversed through comparing the results of sample #1-9 

and sample #10-18. To analyze the effect of infill geometries on bidirectional specimens, 

which have two distinct patterns at the cross-section area, the S/N ratio method could be 

applied, with the results plotted in Figure 42. Figure 42 shows that for bidirectional 

specimens, increasing UTS benefits from minimizing the air gap and using a triangular 

infill pattern. However, considering the strength/weight ratio, 20% infill density was the 

most cost-effective option. While the triangular infill pattern has better performance 

compared to the rectilinear infill pattern, the honeycomb structure seems to have the 

lowest strength of the manufactured parts. 

 

 

Figure 42 S/N ratio analysis for UTS (left) and UTS/weight ratio (right) 
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5.2.  Numerical model 

5.2.1.  Grid and time step independence test 

Similar to section 4.2.1, both grid and time step independence tests were performed on 

analysis of mechanical behavior. Mesh was generated with the size of 0.5 to 1.5 mm to 

evaluate size's effect on load force. The result of specimen #2's load force at 1s versus 

node number was plotted in Figure 43.  

 

Figure 43 Plots of load force over node number (left) and time step (right) 

 

It is observed that although the load force tends to increase with the node number, refine 

the mesh size from 0.6mm (total nodes of 22876) to 0.5mm (total nodes of 41689) only 

resulted in a difference of 1.72% in the result. Therefore, with computation time and 

accuracy both considered, the element size of 0.6mm was used in this study. In addition, 

the influence of time step on numerical results was investigated and plotted in Figure 43 
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as well. It is found time step only has a minimal impact on the calculated load force. 

Hence a time step of 1s was used.   

5.2.2.  Results of effective elastic modulus on unidirectional samples 

The effective elastic modulus of the numerical model was calculated based on the load 

force applied at 1 s (strain rate of 0.14%), compared with the modulus of elasticity in the 

linear region from the experiment. The results are shown in Table 13. 

 

Table 13 The modulus of elasticity of unidirectional samples obtained by MS 

approach and experiments 

No. Printing pattern 
Load force in 

numerical 
model (N) 

Numerical 
modulus of 
elasticity in 
linear region 

 

Experimental 
modulus of 
elasticity in 
linear region 

 

Error (%) 

1 20% Rectilinear 4.65 154.04 149.7±5.7 4.39 
2 20% Honeycomb 6.14 206.20 194.7±11.5 5.93 
3 20% Triangular 9.82 329.82 396.7±72.7 16.86 
4 50% Rectilinear 4.78 160.57 139.8±1.9 14.90 
5 50% Honeycomb 6.41 215.34 483.7±13.5 55.48 
6 50% Triangular 17.49 587.63 534.0±11.4 10.05 
7 80% Rectilinear 4.83 162.16 177.2±13.9 8.50 
8 80% Honeycomb 6.50 218.48 339.4±13.5 35.62 
9 80% Triangular 22.70 762.67 699.0±9.8 9.11 

 

Table. 11 lists the calculated and measured modulus of elasticity in two models, and in 

seven out of nine cases, the numerically calculated value is close to or within the margin 

of the experimental result. The error between the two approaches rose when the infill 
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fibres became denser in honeycomb structures, and it appeared finite element model 

tends to under-predict the effective modulus under those circumstances. The discrepancy 

suggested that both inter-layer and intra-layer filament bonding might play a vital role. 

From observing the manufactured part, it appeared filaments of adjacent honeycomb 

structure bonded firmly through the polymer sintering process [31], while miniature gaps 

and holes existed in the FEA model, potentially diminished the effective modulus. 

Moreover, the current FEA model could not accurately reflect the fiber bonding between 

layers. Scanning electron microscope (SEM) images [137] of the manufactured part 

revealed the presence of voids within the built specimen and ellipse-like shape of the 

filament which are difficult to recreate with the current meso-structure approach.    

5.2.3.  Analysis of stress concentration region on unidirectional samples 

Another outcome of tensile testing experiments is sample breakage—at the location with 

the most stress. This site can be the target of further investigations into increasing the 

strength or redesigns, while FEA could potentially reduce the experimental cost if 

performed beforehand. The normal stress distribution in each numerical model at 1 s is 

shown in Figure 44, along with photos of the experimental samples after the break.  

It is demonstrated that the developed model could predict the sample breakage point for 

8 out of 9 cases which indicates FEA has the potential to be used as a stress visualization 

tool for additive manufacturing applications. In cases with a rectilinear and honeycomb 

infill pattern, Figure 44 shows that simulation models predict the maximum stress to 
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occur where the infill raster is in contact with outside contours, which is consistent with 

the fracture locations shown in the post-experiment images except for sample #6. Sharp 

corners induce high stress intensity, so smoother junctions in those patterns could 

possibility increase the part strength. Alternatively, in the triangular infill pattern, a 

horizontal raster, which behaves like a backbone, was added in the printing direction. 

Therefore, the structure load is primarily shared among three horizontal rasters, and the 

crack usually appeared simultaneously on them.   
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Figure 44 Fracture point in experimental and numerical conditions for sample #1 

to #9 

 

5.2.4.  Analysis of effective elastic modulus on bidirectional samples 

The tensile behaviour results of the bidirectional specimens obtained by the MS model, 

LC model, and experiments are presented in Table 14. To verify whether the differences 

between the proposed approach and the existing numerical simulation approach are 

statistically significant, a hypothesis was constructed so that the mean within-case 
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difference (errors between the proposed MS and LC methods) was zero, using the t test 

[138] for paired errors in Table 5 at a significance level α = 0.05. With the expectation 

that the MS approach resulted in a smaller error than the LC approach when compared to 

the experimental values, the null hypothesis 0h  was set as 0MS LCerror error− ≥ , while 

the alternative hypothesis, 1h , was 0MS LCerror error− < . The resulting p-value was 

calculated as 0.01874, which indicated rejection of the null hypothesis. Therefore, the 

accuracy of the proposed MS approach was superior to the LC approach when predicting 

the effective modulus of elasticity of bidirectional samples. 

The discrepancy between numerical and experimental results indicates that bonding 

between the two structures was not perfect and/or stress perturbations exist due to abrupt 

changes of structure. It is possible that failure strain of the low elongation fiber might be 

increased to that for a high elongation fiber by isolating the individual critical fiber 

failures, such that broken fibers are uniformly distributed throughout the parts. 
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Table 14 The modulus of elasticity of bidirectional samples obtained by MS 

approach, LCT approach, and experiments 

No. Printing pattern 

Experimental 
modulus of 
elasticity in 
linear region 

 

Load 
force 
in MS 
model 

 

Modulus 
of 

elasticity 
in MS 

 
 

Error 
(%) 

Load 
force 
in LC 
model 

 

Modulus 
of 

elasticity 
in LC 

 
 

Error 
(%) 

1 20%R + 20%R 139.6±4.5 4.58 154.04 10.7 5.40 161.41 16.0 
2 20%H + 50%H 249.4±3.8 8.12 261.45 4.8 10.14 303.07 21.5 
3 20%T +80%T 491.3±23.2 13.76 443.29 9.8 12.90 385.55 21.5 
4 50%R + 50%T 452.9±16.2 13.67 440.26 2.8 9.11 272.40 39.8 
5 50%H + 80%R 358.4±8.9 10.24 329.79 8.0 9.69 289.56 19.2 
6 50%T + 20%H 246.2±7.3 9.29 299.19 21.5 10.67 318.94 29.5 
7 80%R + 80%H 432.2±16.0 8.13 261.98 39.4 9.14 273.26 36.8 
8 80%H + 20%T 348.8±16.7 9.48 305.48 12.4 12.07 360.77 3.4 
9 80%T + 50%R 537.8±11.0 16.68 537.52 0.0 12.91 385.88 28.2 

 

5.3.  Formulation of knowledge-based library  

5.3.1.  Implementing the knowledge-based library information system 

Although using the numerical simulation model to predict the tensile behavior of parts 

manufactured by FDM has an acceptable accuracy, a major drawback is the required 

processing time. Although the automated script reduced the time required to generate the 

finite element model, hours of computation time are still required to simulate the tensile 

testing experiment with a complex infill geometry. Moreover, it is impractical to 

purchase and install multiple professional numerical simulation software packages to 

merely estimate the tensile behavior of the designed products. Implementing a 

knowledge-based library in the 3D printing software is a feasible approach whereby the 

user could know the estimated strength shortly after the printing parameters in the design 
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phase were changed. Consequently, regressing techniques were considered to formulate 

the prediction library with the results of a finite number of numerical simulation cases. 

Multivariate linear regression was first tested in this work, but the accuracy was 

questioned. The technique used in this study is the well-known ANN approach, which is 

a good candidate to correlate non-linear dynamic problems [85]. Typically, ANN 

consists of multiple layers of interconnected blocks, called neurons, that are used as 

linear or non-linear computing elements. Those layers are typically one input layer, one 

output layer, and one or more hidden layers; in this work, only one hidden layer was 

used, and the number of neurons in it varied from 2 to 20. Five hidden neurons 

performed best during training; thus, a 2-5-1 network topology was adopted, as shown in 

Figure 45. With the help of ANN, a library of the mechanical strength of the part with a 

varied printing pattern could be then constructed, and Figure 46 depicts the process of 

constructing such a library.  
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Figure 45 The ANN used to construct the knowledge-based library 

 

 

 

Figure 46 The flowchart of constructing the knowledge-based library 

 

5.3.2.  Cross-validation with extrapolation and interpolation 

The accuracy of the numerical model for the current work is acceptable, with the 

involvement of machine learning technique while the accuracy of the predictive model is 

still questioned. Nine cases are relatively insufficient for building a training dataset; 



 

137 

 

therefore, nine more cases were included to build the training and testing subset, which 

was designed by interpolating and extrapolating the used infill density values, forming a 

dataset with three printing patterns and six different infill densities. Then, 18 cases were 

randomly divided into training, validation, and testing subsets with the ratio of 14:2:2, 

based on a rule of thumb. The subsets were divided, and the weights were randomly 

initialised. Then, the network was trained and evaluated 100 times, and the average 

performance value was chosen to improve network generalization. The resulting 

regression results were plotted in Figure 47, showing that the network achieved 

satisfactorily performance, with an average prediction error of 14.80% after 100 trials.  
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Figure 47 The regression performance of the developed network 

For engineering application, an estimation/prediction model with estimation error less 

than 10% is usually regarded as an accurate one [42, 139], which shows there is still 

room to improve for the current proposed estimation model. It is believed the reasons 

causing the slightly higher prediction error are small training dataset and propagation of 

error from the numerical model itself. It is well recognized that neural networks trained 

with small datasets often exhibit unstable performance behavior, such as sporadic 

fluctuations dues to the sensitive of network to the initial parameter values [140]. 

Moreover, network outputs can be affected by the order with which the training data is 

fed, leading to the potential of erratic outcomes [141]. Alternatively, less accurate cases 

in the simulation model (i.e. case #5 in Table 13) also arise the estimation error after 
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neural network training. Therefore, increasing training data for the knowledge base 

library, exploring other machine learning techniques, and improving the accuracy of 

numerical simulation model would be the next step of this work. 

5.4.  Summary 

In this section, the mechanical behavior of the FDM process was studied both 

experimentally and numerically; the effects of the printing pattern and infill density on 

the ultimate tensile strength-weight ratio and the modulus of elasticity were evaluated. 

The stress-strain curves of FDM products were measured by tensile testing experiments, 

and the results indicated that if the air gap was minimized, the triangular infill pattern 

would be beneficial to UTS/weight ratio. Of the specimens considered, the 20% 

triangular pattern had the highest UTS/weight ratio. In the numerical investigation, the 

meso-structure approach does not require input from the unidirectional specimen stress-

strain curves, and it could be used to predict the modulus of elasticity and breaking point 

in most cases. A knowledge-based library was constructed with the meso-structure 

numerical model and artificial neural network, and it could predict the modulus of 

elasticity of FDM manufactured polylactic acid with three infill patterns and any infill 

density with an average prediction error of 14.80%.  
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6. RESULTS AND ANALYSIS OF SURROGATE-BASED ADDITIVE 

MANUFACTURING OPTIMIZATION USING MULTI-FIDELITY MODELS 

This section evaluated the performance of the developed optimization algorithm on 

various conditions. Several case studies were first performed in Section 6.1 to compare 

the performance of SAMO against existing methods. Then Section 6.2 identified factors 

could influence convergence rate of the developed optimizer. 

6.1.  Case studies 

6.1.1.  Case study 1—simple non-linear function 

The optimizer developed in this study, SAMO, was first tested on a simple optimization 

problem— non-linear function with the form 

 2

1000( /10 3)Maximize    
( /10) 100

subject to      0 x 1000, where  is an integer

xy
x

x

+
=

+
≤ ≤

  (6.1) 

so that ( )y x  can be changed from 1.0029 to 67.1141. The performance of SAMO 

algorithm was compared against SAO which is an experimental-only method introduced 

in section 2.5.2.3 and ARC which is an SBO-MFM method introduced in section 2.5.4.2. 

For the SAMO approach, the design space was initially sampled 50 times and evaluated 

in LF model and then evaluate 1 time in HF model per iteration. For the SAO approach, 

neural network was used to establish the surrogate model, each relocated sub-region was 

sampled 15 times per iteration. For the ARC approach, it is discovered the initial LF 
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model need to be sampled 200 times to establish a reliable ANN surrogate model, and in 

each iteration of it, both LF and HF model need to be evaluated 5 times. The estimation 

error over iteration steps for all three methods were plotted in Figure 48, which shows 

that all three algorithms reached the point exactly as or close to the analytical optimal 

point. Although the SAMO converged slower which took 7 steps, with the overall 

experimental and simulation cost considered, SAMO only costs $465, while SAO and 

ARC cost $2722 and $1376, respectively. 

 

 

Figure 48 Comparison of optimization error of SAMO, RAO, and ARC algorithms 

for case #1 
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6.1.2.  Case study 2—Gramacy & Lee function 

Gramacy & Lee function [128] is a semi-periodic function with multiple local optimum 

(see Figure 49) by incorporated Sine function. It has the form of  

 

4sin(10 ( ))Minimize    ( ) ( ( ) 1)
2 ( )

where         ( ) / 500 0.5
subject to    0 x 1000, where  is an integer

z xy x z x
z x

z x x
x

π
= + −

= +
≤ ≤

  (6.2) 

and the optimum solution is -0.8683 when 24x =  .  

 

 

Figure 49 Gramacy & Lee function 

 

The SAMO, SAO, and ARC algorithms were applied, and their performances were 

compared. For the SAMO approach, same as Case #1, the design space was initially 
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sampled 50 times and evaluated in LF model and then evaluate 1 time in HF model per 

iteration. For the SAO approach, it is discovered that each relocated sub-region need to 

be sampled 25 times per iteration to ensure converge to the analytical optimum solution. 

For the ARC approach, it is discovered it converges to a local minimum instead of 

global minimum corresponded to 134x =  with the previous setting. And further increase 

the sampling rate does not solve this issue. Figure 50 shows the estimation error over 

iteration steps for all three methods. It is demonstrated that both SAO and SAMO could 

converge to the global minimum while ARC failed.  Moreover, the overall costs of all 

three methods are calculated. SAMO is still cost-effective with a value of $1251.5 and 

optimization with SAO and ARC cost $4537.5 and $2586.  

 

 

Figure 50 Comparison of optimization error of SAMO, RAO, and ARC algorithms 

for case #2 
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6.1.3.  Case study 3—Six-Hump Camel function  

Six-Hump Camel function [129] is a two-dimensional optimization test function which 

has six local minima, two of which are global in the entire region. And in the evaluated 

region, as shown in Figure 51, has 4 minima where two of them are global.  

 

 

Figure 51  Six-Hump Camel function 

 

The objective function of this problem is 
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The global minimum of y  is -1.0307 at (52.14)  and (48,86) . A comparison was made 

between the performances of SAMO, SAO, and ARC. The setting of each algorithm can 

be described as follows: for SAMO, the design space was initially sampled 10 times on 

each dimension with evaluation performed in LF model and then evaluate 1 time in HF 

model per iteration; with regard of SAO, 25 experiments were performed for each 

iteration; while in ARC algorithm, the parameter space need to be sampled at least 25 

times on each dimension to ensure convergence, and 25 experiments were needed for 

each iteration. Figure 52 demonstrated how the estimation error varied with iteration 

steps for each algorithm. It can be seen that although SAMO converged slower, but in 

each step of it, only one experiment run is needed which saved the experimental cost. 

With the calculation of overall cost performed, for case #3, SAMO only cost $627.5, 

while optimize with SAO and ARC need $6050 and $5056.25, respectively.  

 

Figure 52 Comparison of optimization error of SAMO, RAO, and ARC algorithms 

for case #3 
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6.1.4.  Case study 4—optimize tensile strength of FDM manufactured part 

As reviewed before, Rayegani and Onwubolu [56] studied how part orientation, raster 

angle, raster width, and air gap affect the tensile strength of FDM manufactured ABS 

parts. The model they established can be formed as 

 

1 2 3 4

1 2 1 3 1 4

2 3 2 4 3 4
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                       0.0011 0.0206 0.2293 
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  (6.4) 

SAMO was used to optimize this process with the help of LF model. The surrogate 

model was established with sample each dimension three times and loop through all 

possible combinations. For each iteration, HF model was evaluated once, with 4 

iterations in total. Table 15 presented the parameter combination to attempt after each 

iteration and the corresponded response. It can be seen that although in the end, the 

SAMO did not reach the exact solution with an error of 3.38% but compared with the 

original 20 experimental runs to establish such an analytical model, use of the RAMO 

reduced the overall costs from $1210 to $309.23.  
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Table 15 Details of the SAMO attempted experimental runs and the corresponded 

response in Case 5 

Iteration step a b c d Predicted 
Response 

Error 

1 1 7 9 0 32.64 11.44 
2 0 9 9 0 34.25 7.07 
3 0 9 0 0 36.86 0.00 

4 (final) 2 9 0 0 35.61 3.38 
 

6.1.5.  Case study 5—optimize strength and volumetric shrinkage of FDM manufactured 

part 

In this subsection, multi-objective optimization was performed with the SAMO. The 

optimization problem can be formulated based on Gurrala and Regalla’s study [92], 

which studies how infill density, horizontal orientation, vertical orientation affect the 

tensile strength and volumetric shrinkage of the FDM manufactured parts. 
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The values of 1w   and 2w  were picked based on user’s preference and subject to 

normalization. Considering the maximum value of ST and VS is 35.8868 and 7.9652, 
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respectively, and assume user prefer stronger parts over dimensional accuracy, 1w  is 

selected as 0.019 and 2w  is set as  0.037. With 3 sampling on each dimension initially, 

SAMO was used to optimize the manufacturing process. Table 16 listed the 

manufacturing condition SAMO recommended to attempt before convergence, showed 

SAMO reached convergence after only 5 runs. And the results is in close match with 

Rao and Rai’s study [26].  Compared with 20 experimental runs in the initial literature, 

the SAMO could reduce the optimization cost from $1210 to $325. 

Table 16 Details of the SAMO attempted experimental runs and the corresponded 

response in Case 6 

Iteration step a b c Predicted 
strength 

Predicted 
volumetric 
shrinkage 

1 9 5 9 35.80 5.80 
2 9 3 9 34.29 4.30 
3 9 4 7 29.54 3.89 
4 9 0 9 27.67 1.16 
5 (Final) 9 0 8 24.63 0.80 
Ref [26]  9 0 8.876 24.60 0.80 

 

6.1.6.  Case study 6—optimize the modulus of elasticity over building time of FDM 

manufactured part 

With the help of constructed meso-structure model introduced in Chapter 5, an attempt 

was made to optimize the modulus of elasticity over building time of FDM 

manufactured part. In this case, the objective function would be unknown, and the 

problem is formed as 
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the modulus of elasticitymaximize    ( , )
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subject to   1 20, where  is an integer
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x x
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=
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≤ ≤

  (6.6) 

where 1x  is infill density divided by 5 and 2x  is one of three infill patterns investigated 

(rectilinear, triangular, and honeycomb). LF model to predict the modulus of elastic is 

introduced in detail in Chapter 5 while LF model to predict the building time was based 

on a ANN model trained on actual measured time. The setting of LF model used to 

construct the initial surrogate model was listed in Table 17, which consists of 18 

different manufacturing conditions derived from the numerical simulation model.  

With the LF surrogate model available, SAMO started to suggest experimental run 

conditions. And after each part manufacturing and optimization process, SAMO took the 

input of the previous experimental results and suggested the next run to attempt. Those 

suggested process parameters were also shown in Table 17, it is seen that the algorithm 

converged with only 3 steps at the infill pattern of 100% triangular. Several other 

conditions have also been tested and their results were used to check whether the 

obtained condition is indeed optimum or how close to the true optima. The results were 

summarized in Table 18, demonstrated that the error of the SAMO obtained solution lied 

into the optimal state. 
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Table 17 LF model results used to establish the surrogate model and the SAMO 

suggested HF model results 

No. Printing pattern x1 x2 
Predicted modulus 
of elasticity (MPa) 

Predicted building 
 time (min) y 

 LF model evaluation results 
1 10% Rectilinear 2 1 95.57 8 11.95 
2 10% Honeycomb 2 2 114.07 8 14.26 
3 10% Triangular 2 3 215.66 9 23.96 
4 20% Rectilinear 4 1 154.04 9 17.12 
5 20% Honeycomb 4 2 206.20 9 22.91 
6 20% Triangular 4 3 329.82 10 32.98 
7 35% Rectilinear 7 1 123.67 11 11.24 
8 35% Honeycomb 7 2 161.13 12 13.43 
9 35% Triangular 7 3 546.59 11 49.69 

10 50% Rectilinear 10 1 160.57 12 13.38 
11 50% Honeycomb 10 2 215.34 14 15.38 
12 50% Triangular 10 3 587.63 12 48.97 
13 65% Rectilinear 13 1 147.62 14 10.54 
14 65% Honeycomb 13 2 212.42 16 13.28 
15 65% Triangular 13 3 698.42 14 49.89 
16 80% Rectilinear 16 1 162.16 15 10.81 
17 80% Honeycomb 16 2 218.48 18 12.14 
18 80% Triangular 16 3 762.67 16 47.67 

HF model evaluation results 
1 45% Triangular 9 3 625.16 12.41 50.38 
2 100% Triangular 20 3 1009.97 18.50 54.59 
3 100% Triangular 20 3 Algorithm converged!  

 

 

 



 

151 

 

Table 18 Results of samples manufactured in the vicinity of the obtained solution 

No. Printing pattern x1 x2 Predicted modulus 
f l i i  ( ) 

Predicted building 
 i  ( i ) 

y 
1 40% Triangular 8 3 572.2±9.7 11.83±0.07 48.37±0.87 
2 50% Triangular 10 3 534.0±11.4 12.42±0.09 43.00±0.97 
3 55% Triangular 11 3 649.3±9.2 13±0.09 49.95±0.79 
4 60% Triangular 12 3 697.6±11.9 13.83±0.13 50.44±0.98 
5 65% Triangular 13 3 690.9±7.9 14.42±0.09 47.91±0.62 
6 80% Triangular 16 3 699.0±9.8 15.67±0.07 44.61±1.02 
7 95% Triangular 19 3 895.0±18.2 18.03±0.12 49.64±1.05 

 

6.2.  Discussions 

The effect of sampling strategy and low-fidelity model accuracy on the convergence rate 

of the SAMO was analyzed based on a variation of case #5 
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In case #5, the uniform grid sampling strategy was adopted where parameters , ,a b c  

were sampled 3 times on each dimension with the equal distance (i.e. level 2,4, and 7), 

composed 27 LF data.  However, one may wonder would change the sampling strategy 

to random sampling or increase the grid interval has a huge impact on the convergence 

rate of the algorithm developed? Table 19 listed the results after the investigation. it 

appears that increase grid interval lead to the increment of estimation error, but the 
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convergence rate did not necessarily slow down. Alternatively, if the sampling strategy 

was changed from uniform grid interval to random sampling, the estimation error clearly 

increased, and with more data were used to construct the surrogate model, the optimizer 

converged faster. 

Table 19 The convergence data for different sampling strategy 

Total samples Grid interval Steps that the 
SAMO converges Converged at level Error (%) 

125 2 12 (9,5,9) 0 
64 3 3 (9,6,9) 0.30 
27 3 12 (9,5,9) 0 
27 4 3 (9,4,0) 0.2370 
8 4 13 (9,3,0) 0.9376 
8 5 8 (9,3,1) 10.74 
8 Random 19 (9,3,0) 0.9376 

27 Random 12 (9,6,9) 0.30 
64 Random 6 (9,4,0) 0.3070 

125 Random 3 (9,4,0) 0.3070 
 

For case study #1 to #5, the LF model was established with adding random noise to the 

original analytical model with a perturbation amplitude of 10%. It is intuitive to assume 

that if the perturbation amplitude was increased to create a less accurate numerical 

model, the convergence rate would decay and may not be able to converge to the global 

optimum. With the practical additive manufacturing cases such as Eq.6.7, the 

perturbation amplitude was gradually increased from 5% to 30%, and the results was 

recorded. To ensure a fair comparison, the uniform grid sampling strategy was adopted 

with three levels in each dimension, and the results were listed in Table 20. 
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Table 20 The convergence data for low-fidelity model accuracy 

Perturbation 
amplitude (%) 

Steps that the 
SAMO converges Converged at level Error (%) 

5 11 969 0.30 
10 12 959 0 
15 7 959 0 
20 6 959 0 
25 11 949 1.30 
30 6 969 0.30 

 

From Table 20, it is seen that contradicted to the previous presumption, SAMO had a 

very good noise tolerance ability. The major reason is ANN has the characteristics of 

extensive parallel interconnections and distributed information storage, make it ideal to 

be used to construct a surrogate model with good noise tolerance ability. Moreover, for 

practical AM problems, the response surface of input-output data seldom contains local 

optimum, so that the optimizer is more likely to converge even with noise-added data.  

As the subsets were divided and weights were initialized randomly in the training stage 

of ANN models, although the random seed was fixed in the previous study, additional 

tests were performed to investigate the effect of randomness in the performance of 

SAMO. A total of 100 test runs were conducted with uniform grid sampling strategy (4 

samples on each dimension) and the resulted estimation error and required steps to 

converge were plotted in Figure 53. 
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Figure 53 Plots of convergence steps and estimation error in 100 runs with random 

initialization process 

 

Based on Figure 53, most of the test runs showed a good performance, a majority of 

them had the estimation error less than 2% and could converge in less than 10 steps.  

It should be noted that one assumption made in this section was the input 

variables/parameters were independent from each other. If covariance or correlation 

exists between the input parameters, then the change of one parameter might influence 

how the system would respond to another parameter. Hence it is essential to perform an 

independence test prior to such an optimization process described in this section. 

6.3.  Summary 

In this section, the developed optimizer, SAMO, was tested on different theoretical and 

practical optimization problems. Compared with traditional optimization algorithm such 

as SAO and ARC, the SAMO is less likely to converge to a local optimum and tends to 

be more accurate. Moreover, given the consideration of overall experimental and 
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simulation cost to support the optimization process, SAMO showed exceptional cost-

effective characteristic. The results presented in this work showed SAMO could reduce 

the cost by at least 72.4% when compared with experimental-only method, and costs less 

than half of the fellow surrogate-based method.  

The robustness of SAMO was tested with response surface functions provided by 

previous researchers. It showed a very good noise tolerance ability when the low-fidelity 

model was added with increasing noise. Furthermore, the random neural network 

initialization process was discovered to have a small effect on the optimizer 

performance—a majority of 100 test runs showed an acceptable performance.  
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7. SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS  

7.1.  Summary 

Due to affordability and feasibility, Fused Deposition Modeling (FDM) has become one 

of the most popular Additive Manufacturing (AM) processes worldwide since the early 

2000s. However, low dimensional accuracy and inconsistent mechanical properties of 

the FDM products hinder the future growth of FDM technology considerably. The 

literature review revealed that multiple methods have been used to model, predict, and 

optimize the thermal and mechanical behavior of the FDM process and products. 

However, relying solely on experimental or numerical models is too expensive or 

provides only low-accuracy predictive results. Therefore, the focus of this dissertation is 

to develop a hybrid experimental/numerical model to analyze, predict and optimize the 

thermal and mechanical behavior of the FDM process and FDM manufactured products. 

For the investigation of thermal behavior, the effects of nozzle temperature, platform 

temperature, extrusion speed, and layer thickness on effective diffusion time were first 

evaluated using on the experimental model. A numerical simulation model was then 

established using information provided by the experimental model and validated using 

the experimental results. In particular, the boundary condition during the manufacturing 

process was obtained through solving an inverse heat transfer problem with the help of 

machine learning method. Therefore, a predictive model can be established to predict the 
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maximum vertical distortion, and maximum thermal stress during and after the 

manufacturing process with varying process parameters.  

For the investigation of mechanical behavior, the effects of printing pattern and infill 

density on ultimate tensile strength-weight ratio and the modulus of elasticity were 

evaluated using unidirectional and bidirectional samples. The stress-strain curves of 

FDM products were measured by tensile testing experiments, providing the outcomes of 

the experimental model. Similar to the investigation of thermal behavior, a numerical 

simulation model was established with information provided by the experimental model 

and validated using the experimental results. However, the approach adopted in this 

study required only very limited information from the experimental model, which is the 

structure of the tested sample. With the help of neural networks, a knowledge-based 

library was constructed to predict the tensile behavior of samples with any infill 

geometry.  

For the investigation of optimization approach, a surrogate-based additive manufacturing 

optimizer (SAMO) was established to expedite the optimization process to maximize or 

minimize certain products’ characteristics. The overall objective of SAMO is to reduce 

the number of experiments that need to be performed on additive manufacturing 

machines, and thereby make the optimization process more efficient. SAMO is 

developed to guide the optimization decision-making process by combining cost-

effective but less accurate predictive models with expensive but accurate experimental 
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models. The SAMO iteratively obtains the current manufacturing condition and the 

corresponded response and determines the next manufacturing condition to attempt. The 

developed optimizer was tested on different theoretical and practical optimization 

problems, and the results were compared with traditional optimization algorithms. In 

summary, this research provided the additive manufacturing industry with the 

knowledge to control, improve, and optimize the manufacturing process.  

7.2.  Conclusions 

The numerical and experimental models in this study both revealed that polylactic acid 

(PLA) has the longest diffusion time at high nozzle temperature, high platform 

temperature, low printing speed, and thick layer. For the same geometric model and 

printing parameters, the simulation model predicted the effective diffusion time with a 

bias less than 13% in six out of nine conditions, which was relatively lower than the 

existing simulation and theoretical prediction models in the literature. The developed 

numerical model revealed that reducing extrusion temperature, slowing printing speed, 

and decreasing layer thickness could help reduce vertical distortion and residual thermal 

stress, while a high platform temperature might have the opposite effect on deformation 

and residual stress. 

The experimental results from mechanical behavior analysis revealed that minimizing 

the air gap, and using a triangular infill pattern are beneficial to UTS/weight ratio. Of all 

the specimens considered, the 20% triangular pattern has the highest UTS/weight ratio. 
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In the numerical investigation, the meso-structure approach does not require input from 

the unidirectional specimen stress-strain curves, and it can be used to predict the 

modulus of elasticity and product breakage location in most cases.  

Using the same hybrid-model approach, SAMO was demonstrated to be superior to 

traditional optimization algorithms in the area of additive manufacturing applications. 

SAMO is less likely to converge to a local optimum and tends to be more accurate. 

Moreover, when considering the overall experimental and simulation cost to support the 

optimization process, SAMO was found to be exceptionally effective. The results 

presented in this work showed SAMO could reduce cost by at least 72.4% when 

compared with experimental-only method, and costs less than half of the fellow 

surrogate-based method. The robustness of SAMO was tested with response surface 

functions provided by previous researchers. It showed a very good noise tolerance ability 

when the low-fidelity model was added with increasing noise. 

7.3.  Future directions 

For an FDM process using polymer materials, two non-included phenomena could 

potentially affect the accuracy of a numerical prediction thermal and mechanical model; 

structural relaxation and the wetting/bonding process. For example, through analyzing 

SEM images of the manufactured product, a geometric coefficient can be introduced to 

correlate the inter-layer bonding. However, the correlation between printing parameters 
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and function coefficient still requires extensive experimental and theoretical 

investigation.  

Second, beyond increasing the accuracy of the proposed model, future directions of this 

work could include investigation of failure mechanism [142], compression behavior  

[143], and buckling behavior [144] of additive manufactured thermoplastic polymer 

parts with the help of finite element analysis. 

Third, future development of the optimizer could include identification of pareto front 

for multi-objective optimization problems. Although the current model could possibly be 

used for this purpose, the high-fidelity model evaluation times were extremely high, 

which would increase the overall cost. Fitting a generic algorithm into the surrogate-

model building process could potentially ease the cost.  

Last is the computation time of the optimizer could be enhanced. To acquire the 

optimum value through a neural network model, the current approach is very 

straightforward—loop through all possible combinations of the input parameters. 

However, when the network size became large or input dimensions increased to over 10, 

the computation cost was heavy. Advanced techniques that take the consideration of 

both computation time and the accuracy of the results into consideration could be 

developed.  
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APPENDIX A  

CALIBRATION OF INFRARED SENSOR 

The calibration of the infrared sensor used in section 4 was performed based on ASTM 

E2847–14 standard [145]. A heating plate was selected as the flatplate radiation source 

which was used for infrared thermometer calibrations. It was covered with black 

electrical tape (Commercial ElectricTM) to increase the emissivity. The thickness of the 

tape is 0.152mm, which is negligible to the overall board thickness, while the emissivity 

of the tape is 0.945 [146]. A fully calibrated Compix® model 222 infrared camera was 

used as the transfer standard, corresponded to scheme II of ASTM E2847–14. Both the 

infrared camera and the infrared sensor were set to emissivity of 0.945 and mounted on a 

mounting fixture, with their field of views concentrated on and normal to the center of 

the flatplate. The distance between the infrared camera and the infrared sensor to the 

heating plate was set to 15cm and 7cm from the radiation source, respectively, to ensure 

adequate target size. During the calibration process, the surface temperature of the 

heating plate was varied from 40°C to 120°C, with a roughly 10°C increment each time. 

For each temperature point, the temperature readings from both devices were collected 

and averaged over 30 seconds, and the results before the calibration were listed in Table 

21. It is seen that before calibration, the error between the two devices could be up to 3 

degrees. Therefore, a cubic regression was performed, and the resulted fitting equation is 
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where y and x  are the post- and pre- calibration values, respectively, and c  are the 

correlation coefficients, has the form of [1.55933225e+00, 8.60625197e-01, 

3.22146974e-03, -1.67403625e-05].  The results and error after performing calibration 

were also listed in Table 21, which demonstrated that the accuracy was greatly 

improved. 

 

Table 21 The calibration results 

Heating plate 
temperature 
settings (°C) 

Infrared camera 
reading (°C) 

Pre-calibration 
Infrared sensor 

reading (°C) 

Post-calibration 
Infrared sensor 

reading (°C) 

Difference after 
calibration (°C) 

40 39.56 39.49 39.54 0.02 
50 48.72 48.38 48.85 0.13 
60 58.56 57.16 58.15 0.41 
70 67.68 66.82 68.46 0.78 
80 78.62 75.72 77.93 0.69 
90 86.94 84.52 87.20 0.26 
100 97.54 94.30 97.33 0.21 
110 105.52 102.71 105.80 0.28 
120 114 111.01 113.89 0.11 
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APPENDIX B  

THERMAL MODEL APPLICABILITY ANALYSIS ON ANOTHER FDM 

MACHINE 

In section 4, the applicability of the developed finite element model was tested on one 

FDM machine-Flashforge Dreamer (Machine A) and the results were satisfactory. 

However, it is well known that FDM processes have variability between runs, between 

machines, and across time. This appendix section aims to numerically simulate the same 

process on a different FDM machine and the numerical data were compared with the 

experimental results to analyze the scalability and applicability of the established finite 

element model.  

The machine used in this section is a MTW Create 3D Printer (Machine B), which is 

also a desktop-level FDM machine. The machine has a building area of 250 x 315 x 

250mm and a building resolution of 0.01mm. It can be installed with two extruders, but 

the left extruder’s nozzle was removed and replaced with the same IR sensor used in 

section 4 to observe the temperature distribution of the filament came from the right 

extruder, as demonstrated in Figure 54. The IR sensor was located 19mm from the right 

nozzle, resulted in a 1.37mm pixel resolution. The fabricated samples’ geometry was the 

same, cuboids with the dimensions of 100 (length) by 10 (width) by 5mm (height) with 

hollow layers inside.  
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Figure 54 Schematic of experimental setup on Machine B 

 

The design of experiment methodology was similar to that of section 3.2.1.3. Six 

conditions were selected to observe the different between experimentally acquired 

effective diffusion time and numerically computed values. With the convective heat 

transfer coefficient and thermal conduct resistance determined to be 61 and 4296 

W/m2∙K, respectively. And the results were listed in Table 22.  

Based on the comparison of numerical and experimental results made in Table 22, it 

appeared that the developed numerical model can still reach less than 15% error on 

another FDM machine, demonstrated its applicability and scalability. Moreover, the 

obtained values on Machine B were still in the magnitude of ~0.1s, but were higher than 

those acquired on Machine A. It is suggested that the cooling effect on Machine B is not 

as strong as Machine A, possibility due to the structure difference and different cooling 

fan settings near the deposition region. 
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Table 22 Comparison of experimental and numerical values of effective diffusion 

time on Machine B 

No. 
Nozzle 

temperature 
(oC) 

Platform 
temperature 

(oC) 

Printing 
speed 

(mm/s) 

Layer 
thickness 

(mm) 

diff, expt  
(s) 

diff, simt  
(s) 

Error  
(%) 

1 200 70 60 0.2 0.139 0.133 4.44 
2 200 70 80 0.2 0.105 0.111 5.75 
3 220 70 80 0.2 0.119 0.111 7.06 
4 210 60 80 0.15 0.117 0.100 14.80 
5 200 70 80 0.25 0.113 0.123 8.98 
6 220 60 40 0.25 0.245 0.215 12.33 
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APPENDIX C  

EFFECT OF PROCESS PARAMETERS ON WALL WIDTH 

In the process parameter settings of section 4, the width of perimeter/wall of the hollow 

layers was set at 1mm for all experimental conditions. However, different process 

parameter might affect it after the parts were fabricated. To validate the assumption that 

wall widths of the manufactured sample were uniform under different experimental 

conditions, measurement of the widths was made, and statistical analysis of the results 

was conducted. 

For all nine experimental conditions, before the top solid layers of the samples were 

deposited, the wall width of the samples was measured at three random locations with a 

calliper (have a resolution of 0.01mm and accuracy of 0.02mm), and the results were 

presented in Table 23. 

Table 23 Measurement results of the wall width for all experimental conditions 

Width (mm) Location 1 Location 2 Location 3 Avg. Std. 
1 0.97 0.97 0.96 0.97 0.01 
2 0.96 0.98 0.99 0.98 0.02 
3 0.94 0.96 0.95 0.95 0.01 
4 1.00 0.96 0.99 0.98 0.02 
5 0.96 0.97 0.97 0.97 0.01 
6 0.98 0.99 0.97 0.98 0.01 
7 0.97 0.98 0.96 0.97 0.01 
8 0.97 0.99 0.99 0.98 0.01 

9 0.96 0.95 0.98 0.96 0.02 
 



 

189 

 

It can be seen in Table 23 that the average wall widths of all conditions were in the range 

of 0.95 to 0.98mm, slightly lower than the set value of 1mm but were very close. To 

further investigate if manipulation of the printing parameters altered the wall thickness, 

the analysis of variance (ANOVA) was conducted and the statistical analysis results 

were listed in Table 24. 

 

Table 24 ANOVA results of the wall width 

Source DoF Adj-SS Adj-MS F-value p-value 
Nozzle temperature 2 6.89E-4 3.44E-4 2.21 0.138 

Platform temperature 2 6.22E-4 3.11E-4 2 0.164 

Printing speed 2 0.00109 5.44E-4 3.5 0.052 

Layer thickness 2 4.67E-4 2.33E-4 1.5 0.25 

Error 18 0.0028 1.56E-4   

Total 26 0.00567    

 

In Table 24, the p-values of the four varied printing parameters were 0.138, 0.164, 0.052, 

and 0.25, respectively. With the significance level of 0.05 and the null hypotheses that 

all individual means are equal, the null hypotheses were accepted for all parameters 

investigated, showed there is no significant difference between the mean widths of the 

various experimental conditions. Therefore, the same wall width was used in the 

developed simulation models.  
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