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ABSTRACT 

 

In this dissertation, first, a flexible model is introduced using a mixture of the 

Negative Binomial (NB) distribution and a random distribution characterized by Dirichlet 

process (DP) (referred to as NB-DP). This modeling approach aims to provide a greater 

flexibility to the NB distribution in order to overcome different limitations of the NB 

distribution, such as modeling data with many zero observations and a long (or heavy) 

tail. Application of the NB-DP to two observed datasets indicated that the NB-DP model 

offers a better performance than the NB when data are characterized by many zero 

observations and a long tail. In addition to a greater flexibility, the NB-DP provides a 

clustering by-product that allows the safety analyst to better understand the characteristics 

of the data or domain. 

Second, a methodology is proposed to select the most-likely-true sampling 

distribution between potential alternatives, based on the characteristic of the data, before 

fitting the models. The proposed methodology employs two analytic tools: (1) Monte-

Carlo Simulations and (2) Machine Learning Classifiers, to design simple heuristics to 

predict the label of the most-likely-true distribution for analyzing data. Next, this method 

was first applied to investigate when the Poisson-lognormal is preferred over the NB. The 

results showed that the kurtosis, skewness and percentage of zeros are the main summary 

statistics needed to select a distribution between these two alternatives. Then, it was 

investigated when the Negative Binomial Lindley (NB-L) is preferred over the NB. The 

results showed that the skewness, coefficient of variation, kurtosis, variance-to-mean ratio, 
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and the percentage of zeros are among the most important summary statistics (or 

predictors) required to select a logical distribution between the NB and NB-L. 
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CHAPTER I  

INTRODUCTION* 

Regression models have different applications in highway safety. They can be used for 

estimating the number of crashes, exploring the system information, screening the 

variables, identifying hazardous sites and ultimately evaluating safety. As documented in 

Lord and Mannering (2010) and more recently in Mannering and Bhat (2014), research 

studies have been devoted to develop innovative and novel statistical models to estimate 

or predict the number of crashes and evaluate roadway safety. The statistical models 

specifically deal with unique characteristics that are associated with crash data. As such, 

heterogeneous crash data can often be characterized with high-dispersion, long (or heavy) 

tail and many observations with the value zero. These unique characteristics inspired 

researchers to propose new distributions and models that aimed to overcome the 

limitations associated with the most commonly used model in highway safety literature, 

the negative binomial (NB) model (also known as the Poisson-gamma model).   

                                                 

* Part of this chapter is reprinted with permission from Shirazi, M., Lord, D., Dhavala, S. S., Geedipally, S. 
R. (2016). A semiparametric negative binomial generalized linear model for modeling over-dispersed count 
data with a heavy tail: Characteristics and applications to crash data. Accident Analysis & Prevention, 91, 
10-18. Copyright [2016] by Elsevier.  DOI: https://doi.org/10.1016/j.aap.2016.02.020 ; and, Shirazi, M., 
Dhavala, S. S., Lord, D., Geedipally, S. R. (2017). A methodology to design heuristics for model selection 
based on the characteristics of data: Application to investigate when the negative binomial Lindley (NB-L) 
is preferred over the negative binomial (NB). Accident Analysis & Prevention, 107, 186-194. Copyright 
[2017] by Elsevier. https://doi.org/10.1016/j.aap.2017.07.002 
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This dissertation, first, contributes to crash data modeling by presenting a class of 

flexible models using a mixture of the NB and a random distribution characterized by 

Dirichlet process (DP) to analyze count/crash data (referred to as NB-DP in this 

dissertation). The goal of this modeling approach is providing a greater flexibility to the 

NB distribution to model data with many zero responses and a long tail. Then, this 

dissertation is continued with a discussion on selection of a sampling distribution. A 

methodology is presented to select the “most-likely-true” (or heuristics to be exact) 

sampling distribution between potential alternatives, based on characteristic of data. So 

far, in crash data analysis, the selection of sampling distributions and models have usually 

been accomplished at the post-modeling phase, using measures such as Goodness of Fit 

(GoF) statistics or statistical metrics such as the likelihood ratio test (LRT). These metrics 

are neither easy to compute nor practically doable on some instances when many 

alternatives exist and/or when the analyst deals with big data or datasets with a large 

number of zero responses. In addition, and most importantly, these metrics typically do 

not consider characteristics of data or the “logic” behind the model (Goodness-of-Logic 

or GoL, as illustrated by Miaou and Lord, 2003) in their model recommendations. The 

proposed approach in this dissertation, instead, targets designing heuristics for Model 

Selection that consider the characteristics of data to come up with the model 

recommendation.   

This chapter is divided into three parts. First, the research problem is described. 

Second, the research objectives are documented. Third, the dissertation outline is 

presented.  
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1.1 Research Problem 

This section is divided into two parts. First, the motivation behind the introduction of the 

NB-DP is described. Second, the motivation for Model Selection heuristics is documented.  

1.1.1. Modeling 

Recent research has shown that the NB model can be significantly affected by datasets 

characterized by a long (heavy) tail (Zou et al., 2015). According to Guo and Trivedi 

(2002), the NB regression model cannot properly capture the long tail because a negligible 

probability is assigned to large counts. A long tail can be caused by the data generating 

process itself (i.e., including observations with very large counts), or it can also be 

attributed to datasets that have excess zero observations. In this case, the long tail is created 

by shifting the overall sample mean closer to zero, which increases the spread of the 

observations (Lord and Geedipally, 2018).  

Over the last few years, a new series of models that mixes the NB distribution with 

other distributions have been introduced to analyze such datasets. The NB-Lindley (NB-

L) (Zamani and Ismail, 2010; Lord and Geedipally, 2011; Geedipally et al., 2012) and the 

NB-generalized exponential (NB-GE) (Vangala et al., 2015) generalized linear models 

(GLMs) are two examples of such models. Research studies show that these models 

perform better than the NB model when data are characterized by many zero observations 

or have a long tail.  

Looking closely at these statistical models, it would become apparent that a 

recurring theme in all these models (even NB itself) is to consider a mixing distribution at 
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the heart of the generative model to provide more flexibility in modeling. For example, 

one can see the NB as a mixture of the Poisson and gamma distributions or the NB-L as a 

mixture of the NB and the Lindley distributions; even the Lindley distribution itself is a 

mixture of two gamma distributions. There are primarily three major ingredients for 

eliciting such mixtures, which offer a greater degree of flexibility in model construction: 

1. The mixing weights: the mixing weights determine the relative weight of the 

individual mixing components. 

2. The shape and characteristics of the mixing components or the constituent members 

of the mixtures, and  

3. The level: in the context of hierarchical/multi-level modeling, at which level, the 

mixture distribution is elicited. 

A transportation safety analyst might have a preference to choose or rather not to 

choose a particular mixture. In all cases, the analyst is required to make certain assertions 

about the mixture components. One way to retain the modeling flexibility and yet not be 

overly concerned about the assertions is to express the uncertainty explicitly by 

considering a random mixing distribution. The Dirichlet process, a widely used prior in 

Bayesian nonparametric literature, allows such representation (Antoniak, 1974; Escobar 

and West, 1995). One way to think about the DP is as an infinite mixture distribution, 

where the number of unique components and the component characteristics themselves 

can be learned from the data. Taking this motivation in mind, in this research, instead of 

a fixed shaped (or standard) distribution, a random distribution defined by the DP is mixed 

with the NB distribution to provide more modeling flexibility in dealing with the 
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heterogeneous count data and handling the NB limitations when data are characterized 

with a heavy tail and many zero observations. The NB-DP modeling framework is 

introduced and applied to analyze two crash datasets collected in Indiana and Michigan. 

1.1.2. Model Selection 

As noted above, there has been a phenomenal growth in introducing novel distributions 

and models to analyze crash data over the last decade (see Lord and Mannering, 2010; 

Mannering and Bhat, 2014). Selecting the most appropriate and logically sound sampling 

distribution among all these alternatives plays a crucial role in modeling and further 

systematic safety analyses or evaluations, and has always been a subject of interest to 

safety scientists or researchers. So far, the comparison of distributions (or models) has 

usually been accomplished during the post-modeling phase - once data are fitted to all 

competitive alternatives, using measures such as the Goodness-of-Fit (GoF) statistics or 

the Likelihood Ratio Test (LRT). However, such metrics are neither easy to compute nor 

practically doable on some instances when many alternatives exist and/or when the analyst 

deals with big data or datasets with many zero observations. In addition, and most 

importantly, these metrics do not provide any intuitions into why one distribution is 

preferred over another or the logic behind the Model Selection (Goodness-of-Logic, as 

illustrated by Miaou and Lord, 2003). In this dissertation, these issues are addressed by 

proposing a methodology to design heuristics for Model Selection, based on 

characteristics of data, without any post-modeling inputs. 
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The methodology proposed in this study can be motivated first by looking at the 

characteristics of the Poisson and NB distributions. The analyst can choose between the 

Poisson and NB distributions just by looking at the mean (µ) and variance (σ2) of the data, 

before fitting the distributions or models. A general rule of thumb is that, when data show 

a sign of over dispersion (i.e., when σ2/µ >1), the analyst can move from ‘Poisson’ to 

‘NB’. In this case, the variance-to-mean-ratio (VMR) serves as a “heuristic” for Model 

Selection and the VMR greater than one as a “switching” point. Second, the research 

problem can be motivated by looking at the characteristics of the NB and NB-L 

distributions. Both of these distributions can handle over dispersion; however, the NB-L 

distribution is preferred when data are characterized by many zeros and/or have a heavy 

(or long) tail (Lord and Geedipally, 2011). Although we know the NB-L distribution 

performs better when data are skewed, it is not clear at what ‘point’, the analyst should 

shift from the ‘NB’ to the ‘NB-L’. In other words, it is not explicitly clear, for example, 

what the skewness of data should be to prefer the NB-L distribution over the simple NB 

distribution. Is skewness the only measure to look at while deciding so? We develop a 

systematic approach to answer such questions.  

The problem statement for the selection of sampling distributions can now be 

introduced: what are the “switching” points to move from one distribution to another when 

two or more competitive distributions are available? Can we predict the model to be used 

based on characteristics of the data, reflected in its summary statistics, to find the ‘most-

likely-true’ sampling distribution before fitting the model? In this dissertation, this topic 

is addressed by introducing a methodology that provides heuristics to select the ‘most-
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likely-true’ sampling distribution among its competitors, based on characteristics of data, 

reflected into certain summary statistics, before fitting the competitive models based on 

their distributions.  

1.2. Research Objectives 

The objectives of this dissertation are described below: 

First, the NB-DP model is introduced and its characteristics are documented and 

discussed. The model is introduced based on the Bayesian hierarchical modeling scheme 

using a mixture of the NB distribution and a random distribution characterized by the DP 

(referred to as NB-DP).  

Second, application of the NB-DP model to analyze data with many zero 

observations and a heavy tail is investigated. Two datasets, one collected in Indiana and 

the other in Michigan are used to accomplish this objective.  

Third, a methodology is proposed to design heuristics to decide between two or 

more competitive distributions based on characteristics of data in terms of the summary 

statistics. The designed heuristics can come up with the model recommendation only 

based on characteristics of data, without any post modeling efforts or inputs. 

Fourth, the proposed methodology is applied to investigate the “switching” points 

and designing heuristics to select the ‘most-likely-true’ distribution between (1) the 

Negative Binomial and Poisson-lognormal (PLN) distributions, and (2) the Negative 

binomial and Negative Binomial Lindley distributions to model crash or other safety 

related data. 
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1.3. Dissertation Outline 

The outline of this dissertation is as follows: 

Chapter II describes and documents the characteristics of the NB-DP modeling 

framework. The modeling approach is introduced and its advantage in providing greater 

flexibility is discussed. Then, it is described how the NB-DP model can be used to cluster 

data; next, the implementation of the model in a statistical software is discussed. 

Chapter III covers the modeling results of applying the NB-DP GLM (with 

lognormal base distribution) to analyze two datasets, one collected in Indiana and the other 

one in Michigan. The modeling results are compared with the NB and NB-L GLMs. 

Chapter IV documents a methodology to design heuristics for Model Selection 

based on characteristics of data. The motivations behind the proposed approach is 

described in detail. The characteristics of the proposed method and detailed algorithm is 

presented and discussed. Last, the benefits and advantages of the approach are discussed 

in greater details. 

Chapter V formulates heuristics to select a sampling distribution between the NB 

and PLN, and between the NB and NB-L distributions based on selected summary 

statistics of data. 

Chapter VI concludes the dissertation. It summarizes the key discussion points of 

the research performed in this work and provides avenues for further research.  
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CHAPTER II  

NB-DP GENERALIZED LINEAR MODEL* 

This chapter documents and describes the characteristics of the NB-DP modeling 

framework. The chapter is divided into five parts.  First, a background section is devoted 

to review and document the characteristics of the NB and NB-L GLMs and the Dirichlet 

process. Second, the NB-DP modeling framework is documented and discussed. Third, 

the NB-DP added advantage to cluster data is discussed. Then, the implementation of the 

model in a statistical software is described. Last, a brief summary of the chapter is 

provided.  

2.1. Background 

This section is divided into three parts. In the first section, the characteristics of the NB 

GLM is documented and reviewed. The second part documents the characteristics of the 

NB-L GLM. In the third section, the DP and its characteristics are described.  

2.1.1. NB GLM 

The NB distribution can be formulated given two different parameterizations (Geedipally 

et al., 2012): (1) a mixture of the Poisson and gamma distributions, or (2) a sequence of 

                                                 

* Part of this chapter is reprinted with permission from Shirazi, M., Lord, D., Dhavala, S. S., Geedipally, S. 
R. (2016). A semiparametric negative binomial generalized linear model for modeling over-dispersed count 
data with a heavy tail: Characteristics and applications to crash data. Accident Analysis & Prevention, 91, 
10-18. Copyright [2016] by Elsevier.  DOI: https://doi.org/10.1016/j.aap.2016.02.020 
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independent Bernoulli trials. The probability mass function (pmf) of the negative binomial 

distribution is defined as follows: 

P(Y = y| ϕ, p) =
Γ(ϕ + y)

Γ(ϕ)Γ(y + 1)
(p) (1 − p)  ;  0 < p < 1, ϕ > 0 (1) 

where p =  failure probability in each trial and ϕ = inverse dispersion parameter. The long 

term mean response of observations of the negative binomial distribution is equal to: 

μ =
(1 − p)ϕ

p
 (2) 

Taking Equation (2) into account, the parameter p can be reparametrized as a function of 

the mean response of the observation (μ) and the inverse dispersion parameter (ϕ) as, 

p =
ϕ

μ + ϕ
 (3) 

Given Equations (1) and (3) into account, the pmf of the NB distribution can be structured 

with the following notation (i.e., as a Poisson-gamma model) which is the common 

notation that is used in the context of crash data regression modeling. 

NB(y|μ, ϕ) ≡ p(Y = y| ϕ, μ) =
Γ(ϕ + y)

Γ(ϕ)Γ(y + 1)

ϕ

μ + ϕ
1 −

ϕ

μ + ϕ
 (4) 

In context of the NB GLM regression for crash data, the long-term mean response of the 

NB would have a log-linear relationship with covariates as follows: 

ln(μ) = β + β X (5) 

where β  = j  regression coefficient, X = d-dimensional observed covariates, and d= 

number of covariates. 
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2.1.2. NB-L GLM 

The NB-L model (Geedipally et al, 2012) is defined using a mixture of the NB and Lindley 

distributions as follows: 

P(Y = y| ϕ, μ, θ) = NB(y|ϕ, vμ)Lindley(v|θ)dv 
(6) 

The pmf of the Lindley distribution is defined as: 

Lindley(v|θ) =
θ

θ + 1
(1 + v)e        θ > 0, v > 0 

(7) 

The Lindley distribution is a mixture of two gamma distributions as follows: 

v~
1

1 + θ
gamma(2, θ) +

θ

1 + θ
gamma(1, θ) (8) 

Therefore, the NB-L model can be written as the following hierarchical model: 

y~NB(y|ϕ, vμ) (9-a) 

v~gamma(1 + z, θ) (9-b) 

z~Bernoulli(
1

1 + θ
) (9-c) 

ln(μ) = β + β X (9-d) 

Geedipally et al. (2012) showed that the NB-L model performs better than the NB model 

when data have many zero observations or characterized by a long tail. 
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2.1.3. Dirichlet Process 

There has been a phenomenal growth in theory, inference and applications concerning the 

DP and its related processes in the last decade; recent monographs on Bayesian 

nonparametric devoting significant portion on the DP and related processes is a testimony 

to that effect (Hjort et al., 2010; Mitra and Muller, 2015). On the application side, the DP 

has been applied in numerous fields ranging from network modeling (Ghosh et al., 2010) 

to Bioinformatics (Dhavala et al., 2010; Argiento et al., 2015) to Psychometrics (Miyazaki 

and Hoshino, 2009) to name a few. In particular, the application of the DP to account for 

over-dispersion in count data has been considered in Mukhopadhyay and Gelfand (1997) 

and Carota and Parmigiani (2002), with Binomial and Poisson based likelihoods.  

Traditionally, the Bayesian parametric inference mechanism considers a 

parametric distribution F (. |θ) , where θ is a finite vector of parameters, as a prior for the 

unknown parameter. However, constraining the model within specific parametric families 

could limit the scope of the inference. To overcome this difficulty, in context of the 

Bayesian nonparametric (or semiparametric) modeling, a random prior distribution is 

considered for the parameter as opposed to choosing a prior distribution from a known 

parametric family. The prior is placed over infinite-dimension space of distribution 

functions. In that sense, it gives more flexibility to the parameter inference mechanism by 

providing a wide range of prior distributions.  

The DP (Ferguson, 1973; Ferguson, 1974) is a stochastic process that is usually used as a 

prior in Bayesian nonparametric (or semiparametric) modeling. Escobar and West (1998) 
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define the DP as a random probability measure over the space of all probability measures. 

In that sense, the DP is considered as a distribution over all possible distributions; that is, 

each draw from the DP is itself a distribution.  

Let A , A , . . , A  be any finite measurable partitions of the parameter space (Θ). 

Let us assume τ be a positive real number and F (. |θ) be a continuous distribution over 

Θ. Then, F(. )~ DP(τ, F (. |θ)) if and only if (Escobar and West, 1998): 

F(A ), F(A ), … , F(A ) ~Dirichlet τF (A |θ), τF (A |θ), … , τF (A |θ)  (10) 

where τ is defined as the precision (or concentration) parameter and F (. |θ) as the base 

(or baseline) distribution. Note that based on the Dirichlet distribution properties, for each 

partition A ⊂ Θ, we have: 

E F(A) = F (A|θ) 

var F(A) =
F (A|θ) 1 − F (A|θ)

1 + τ
 

Therefore, the base distribution F (. |θ) and the precision parameter τ play significant 

roles in the DP definition. The expectation of the random distribution F(. ) is the base 

distribution F (. |θ). Likewise, the precision parameter τ controls the variance of the 

random distribution around its mean. In other words, τ measures the variability of the 

target distribution around the base distribution. As τ → ∞, we would have F(. ) → F (. |θ) 

while, on the other hand, as τ → 0, the random distribution F(. ) would deviate further 

away from F (. |θ). 
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Equation (10) defines the DP indirectly through the marginal probabilities 

assigned to finite number of partitions. Therefore, it gives no intuition on realizations of 

F(. )~ DP(τ, F (. |θ)). To simulate random distributions from the DP, however, 

Sethuraman (1994) introduced a straightforward stick-breaking constructive 

representation of this process as follows: 

γ |τ ~Beta(1, τ) , k = 1,2, … (11-a) 

ψ | θ ~ F (. |θ),    k = 1,2, … (11-b) 

p = γ (1 − γ ),     k = 1,2, … (11-c) 

F(. )~DP(τ, F (. |θ)) ≡ p δ  (11-d) 

where δ  indicates a degenerate distribution with all its mass at ψ . This construction, 

metaphorically, can be considered as breaking a unit length of stick iteratively (Ishwaran 

and James, 2001). First, the stick is broken at a random proportion γ ; an atom is generated 

from the base distribution (ψ ) and is assigned to the length of the stick that was just 

broken (p ). Then, recursively, the remaining portions of the stick are broken at new 

proportions (γ  , γ  ..); new atoms are generated from the base distribution (ψ , ψ , ..) and 

are assigned to each broken length of the remaining sticks (p , p , …).  

Given the stick-breaking construction of the DP (Equation 11), the mean and 

variance of  v ~F(. ) can be calculated as follows (Yang et al., 2010): 

E(v|p, ψ) = μ = p ψ  (12) 
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var(v|p, ψ) = v = p ψ − p ψ  (13) 

As indicated in Equation (11), theoretically, the stick-breaking construction of the 

DP includes infinite components (so called clusters); however, practically, the model can 

be approximated with its truncated version (TDP) by considering an upper bound on the 

number of components (M) as follows (Ishwaran and James, 2001; Ishwaran and 

Zarepour, 2002): 

γ |τ ~Beta(1, τ) , k = 1,2, . . , M (14-a) 

ψ | θ ~ F (. |θ),    k = 1,2, … . , M (14-b) 

p = γ (1 − γ ),     k = 1,2, … , M (14-c) 

F(. )~TDP τ, M, F (. |θ) ≡ p δ  (14-d) 

So far, several research studies have tried to estimate the required number of 

components (or clusters) (M) in the truncated version of the DP (Ishwaran and James, 

2001; Ohlssen et al., 2007). As a key point, first, the analyst needs to keep in mind that 

the number of mass points (M) in the TDP is correlated to the value of the precision 

parameter (τ). Theoretically, as the value of τ increases, the number of clusters that are 

shared by data points increases; hence, a larger value for the parameter M is required. 

Second, the model needs to be approximated to the level that it can be assumed that the 

effect of neglected clusters remains negligible (1 − ∑ p ≈ ε). Given these two 

rationales into account, Ohlssen et al. (2007) showed that the maximum number of clusters 
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can be approximated by Equation (15) as a function of τ and the desired ε- accuracy as 

follows:  

M ≈ 1 +
log (ε)

log
τ

1 + τ

 (15) 

Once the model is approximated to M clusters, p  needs to be modified using Equation 

(16) to make the model identifiable (i.e.: ∑ p = 1): 

p = 1 − p  (16) 

2.2. NB-DP GLM  

The NB-DP class of models can be motivated, first, by looking at the NB model as a 

mixture of the Poisson and gamma distributions. As an extension of the Poisson model, 

the Poisson-gamma was developed assuming that the Poisson parameter is measured with 

a random error; this random error itself is gamma distributed. The Poisson-gamma mixture 

is thought to be a better alternative to accommodate possible over-dispersion in data 

(Hilbe, 2011). Second, it can be motivated by looking at the NB-L model as a mixture of 

the negative binomial and the Lindley distributions. The NB-L model can overcome the 

NB limitations when data are over-dispersed and have many zeros. Essentially, as 

discussed in Chapter I, although mixture models are providing better alternatives, they 

assume the shape and density of the distributions to be fixed. However, we can obtain 

even more flexibility by assuming that the mixing distribution itself is random. Given this 
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motivation in mind, this dissertation plans to develop a model using a mixture of the NB 

and a random distribution characterized by the DP. 

The NB-DP distribution is defined as a mixture of the NB distribution and a 

random distribution characterized by the DP with a precision parameter τ and a base 

distribution F (. |θ) as follows: 

p Y = y|μ, ϕ, τ, F (. |θ) = NB(y|vμ, ϕ) dF v|DP τ, F (. |θ)  (17) 

The structure used to mix the NB distribution and the random distribution F(. ) is similar 

to the one that was used to introduce the mixture of the negative binomial and Lindley 

distribution (Geedipally et al., 2012). In this study, however, instead of the Lindley 

distribution, the NB distribution is mixed with a random distribution characterized by the 

DP to provide a more flexible model in order to better estimate the long term mean 

response of the negative binomial. Nonetheless, since the involved integration in NB-DP 

model does not have a closed form, the model cannot (or difficult) to be used with the 

format shown in Equation (17) to regress the count data. In order to solve this difficulty, 

the model was reformulated using the Bayesian hierarchical scheme as follows: 

y |v μ , ϕ~NB(v μ , ϕ) (18-a) 

v ~F(. ) (18-b) 

F(. )~DP(τ, F (. |θ)) (18-c) 

In context of the GLM regression for crash data, the long-term mean response of 

the NB-DP would have a log-linear relationship with covariates as follows: 
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ln(μ ) = β + β x         (19) 

where β  = j  regression coefficient, x  = d-dimensional observed covariates and d= 

number of covariates. Also, as noted in Section 2.1.3, the distribution of DP(τ, F(. |θ)) can 

be approximated by its truncated construction TDP(τ, M, F(. |θ)). Consequently, the NB-

TDP model framework can be seen as a hierarchical Bayesian model described below: 

y |v μ , ϕ~NB(v μ , ϕ) (20-a) 

γ |τ~Beta(1, τ) , k = 1,2, . . , M (20-b) 

ψ | θ ~ F (. |θ),    k = 1,2, … . , M (20-c) 

p = γ (1 − γ ),     k = 1,2, … , M (20-d) 

v ~F (. ) (20-e) 

F(. )~ TDP τ, M, F (. |θ) ≡ p δ  (20-f) 

ln(μ ) = β + β x  (20-g) 

The model in Equation (20) is referred to as a modeling framework in this 

dissertation since the base distribution F (. |θ) can have any desired distributions such as 

(1) lognormal, (2) skew-lognormal (3) Lindley, or (4) Generalized Exponential, etc. 

Hence, the framework can be used for a wide range or class of modeling approaches.   
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The model described above can be thought in context of the Generalized Linear 

Mixed Model (GLMM) (Booth et al., 2003), where the mixed effects or frailty terms (v ) 

are given a random distribution characterized by the DP with a precision parameter τ and 

a base distribution F(. |θ). One simple way to think about it is that if the precision 

parameter was infinite or very large, the distribution of mixed effects (v ) would be very 

close to the base distribution (i.e., simply v  would follow the base distribution). The 

precision τ, however, controls how much we know about the base distribution and in that 

sense the DP provides a random distribution to better accommodate the dispersion in data.  

2.3. Clustering by NB-TDP GLM 

In addition to providing a greater flexibility, there is an added advantage of an in-built 

clustering algorithm in the model (Equation 20). This unique clustering by-product is 

based on how sites shared the mixed effect mass points. In other words, each mass point 

can be considered as a cluster. The clustering advantage can be used for different purposes, 

such as detecting groups of units with unusual results (detecting outliers), examining the 

characteristics of clusters to develop crash modification factors or to implement an 

appropriate countermeasure, or sources of dispersion, as described above.  

In order to benefit from the clustering by-product, the hard-clustering information 

(i.e., the information about which two data points shared the same mass point or cluster) 

should be recorded at each iteration of the Markov Chain Monte Carlo (MCMC) sampling. 

Let Z  be the component of the association matrix which is 1 if the data points “m” and 

“n” belong to the same cluster and 0 otherwise in the q-th MCMC sample. By definition, 
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Z is symmetric and Z = 1. Now, the information in matrix Z can be used to elicit the 

clustering properties and perform further post-processing analyses (Ohlssen et al, 2007). 

For instance, the likelihood that site “m” and site “n” fall into the same cluster can be 

found by taking an average of Z  over all MCMC outputs. As another example, the 

matrix Z can be used to identify outliers. For this purpose, the variable W  is defined as 

W = ∑ Z . The variable W  shows the size of the cluster that the site “m” belonged 

to at the q-th iteration of the MCMC. Now, the mean of the cluster size can be found by 

taking an average of W  over all MCMC outputs. Then, choosing a threshold (say 3 for 

example), the potential outliers can be detected. 

2.4. Implementation of the NB-TDP GLM 

Given an appropriate choice for the DP base distribution, all stages of the model (Equation 

20) would involve only standard distributions. Therefore, the model can be implemented 

in a software program, such as WinBUGS (Spiegelhalter et al., 2003; Ohlssen et al, 2007) 

to estimate the coefficients. Based on how the Bayesian model was parameterized and the 

definition of the Dirichlet process, the base distribution is a non-negative distribution that 

the analyst believes the frailty terms on average could follow a priori. In this dissertation 

(in Chapter III) a lognormal distribution is used as the DP base distribution (i.e., 

ln(v ) ~N(μ , σ )). However, as disused in Section 2.2, a wide range of distributions can 

be used instead of the base distribution such as the Lindley or Generalized Exponential 

distributions.  
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Likewise, the analyst must make sure that the NB-DP model is identifiable (i.e., 

median(v ) = 1) to eliminate possible correlation between the intercept (β ) and frailty 

terms (v). This issue can be overcome, initially, by dropping the intercept from the model 

(β = 0); then, after the MCMC convergence, the log-median of the mixed effects can be 

used instead of the intercept. In Chapter III, another intuitive method is discussed to 

overcome the identifiability issue using the truncated centered Dirichlet process (TCDP) 

method based on (Yang et al., 2010) idea to constrain the mean and variance of the 

Dirichlet process. 

2.5. Chapter Summary 

This chapter documented the development of the NB-DP (or NB-TDP to be exact) GLM. 

This model mixes the NB distribution with a random distribution characterized by the DP. 

The model can be thought in context of the Bayesian hierarchical modeling framework, 

where the mixed effects are given a flexible distribution. In fact, each draw from the DP 

is a distribution and, in that sense, instead of being constrained to a particular shape or 

distribution, a range of distributions is considered as a prior for mixed effects. In that 

regard, it provides more flexibility for the model to capture the variation in the data as 

well as handling issues, such as a heavy tail or many zero observations. In addition to a 

greater flexibility, the NB-DP model groups the data points into finite number of clusters. 

The clustering information can provide further insights for the transportation safety 

analyst, such as a better understanding of the data at hand, identify safety issues and decide 
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on countermeasures. The next chapter describes the application of the NB-DP using crash 

data. 
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CHAPTER III  

APPLICATION OF THE NB-DP GLM* 

In this chapter, the performance of the NB-DP (or NB-TDP to be exact) GLM is evaluated 

using two datasets, one collected in Indiana and the other one in Michigan. This chapter 

is divided into Four parts. First, the characteristics of two observed datasets used for the 

analysis are described. Second, the applications of the NB-DP to these datasets to analyze 

crash data are documented and discussed. Third, a few remarks about implementation of 

NB-DP are discussed. In the end, a brief summary is provided. 

3.1. Data Description 

This section documents the statistics of the datasets that were used in this chapter. The 

datasets were used to compare the performance of the NB-TDP GLM with NB and NB-L 

GLMs. The first subsection briefly describes the summary statistics of the Indiana dataset. 

The second subsection summarizes the characteristics of the Michigan dataset. Both 

datasets are characterized by high dispersion and have a heavy tail. 

 

                                                 

* Part of this chapter is reprinted with permission from Shirazi, M., Lord, D., Dhavala, S. S., Geedipally, S. 
R. (2016). A semiparametric negative binomial generalized linear model for modeling over-dispersed count 
data with a heavy tail: Characteristics and applications to crash data. Accident Analysis & Prevention, 91, 
10-18. Copyright [2016] by Elsevier.  DOI: https://doi.org/10.1016/j.aap.2016.02.020 
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3.1.1. Indiana data 

The Indiana data contain crash, average daily traffic (ADT) and geometric design data 

collected for the duration of five-years from 1995 to 1999 at 338 rural interstate road 

sections in Indiana. This dataset has been extensively used by others (Anastasopoulos et 

al., 2008; Washington et al., 2011; Geedipally et al., 2012). Out of 338 highway segments 

in this dataset, 120 of them did not experience any crash (approximately 36% of sites are 

reported with zero crashes). Table 1 shows the summary statistics of the variables of this 

dataset (Geedipally et al., 2012; Shirazi et al., 2016b). The complete list of variables can 

be found in Washington et al. (2011). The Indiana dataset is characterized by a heavy tail 

that is caused by the data generating process of the data (i.e., the dataset includes 

observations with very large values). 

Table 1. Characteristics of the Indiana Data (Reprinted with Permission from Shirazi et al., 2016b). 

Variable Min Max Avg. Std. dev 

No. of crashes (5 years) 0 329 16.97 36.30 

Average daily traffic in 5 years (ADT) 9,942 143,422 30,237.6 2,8776.4 

Minimum friction on the road segment (5-year period) (FRICTION) 15.9 48.2 30.51 6.67 

Pavement type (1 if asphalt, 0 if concrete) (PAVEMENT) 0 1 0.77 0.42 

Median width (feet) (MW) 16 194.7 66.98 34.17 

Presence of the median barrier (1 if present, 0 if absent) (BARRIER) 0 1 0.16 0.37 

Interior rumble strips (RUMBLE) 0 1 0.72 0.45 

Segment length (miles) (L) 0.009 11.53 0.89 1.48 
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3.1.2. Michigan data 

The Michigan dataset includes 3,397 randomly selected (10% of the original dataset) rural 

two-lane highways segments in Michigan that contained single-vehicle crashes occurred 

in 2006; this sample was selected because of the WinBUGS memory limitation. The 

original dataset was collected from the Federal Highway Administration’s (FHWA) 

Highway Safety Information System (HSIS). The dataset was used previously in Qin et 

al. (2004) to introduce the zero-inflated models and in Geedipally et al. (2012) to develop 

the NB-L GLM. In this dataset, about 70% of segments did not experience any crash. The 

summary statistics of the data used in this research are shown in Table 2. 

Table 2. Characteristics of the Michigan Data (Reprinted with Permission from Shirazi et al., 
2016b). 

Variable* Min Max Avg. Std. dev. 

Number of Crashes (1 year) 0 40 0.717 1.782 

Annual average daily traffic (AADT) 250 19,990 4,531.77 3,290.66 

Segment length (miles) (L) 0.001 4.323 0.18 0.33 

Shoulder width (feet) (SW) 0 12 8.46 2.80 

Lane width (feet) (LW) 8 15 11.25 0.79 

Speed limit (mph) (SPEED) 25 55 52.49 6.34 

*Randomly selected 10% of the original dataset. 
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3.2. Modeling Results 

This section documents the detailed results of the application of the NB-TDP GLM to the 

Indiana and Michigan datasets. In this section, The NB-TDP modeling results is also 

compared with the NB and the NB-L GLMs. To fully specify the NB-TDP model, a 

normal prior was chosen for β and μ , a gamma prior for ϕ, and a uniform prior for σ  

and τ. Moreover, given Equation (15), if we assume ε = 0.01 and set the upper bound of 

the uniform prior that is considered for precision parameter τ to 5, the parameter M would 

approximately be equal to 27. Hence, to round up, we set M=30. The MCMC was 

performed with three different chains each with 30,000 iterations. The first 15,000 samples 

of each chain were regarded as burn-in samples and discarded from the MCMC outputs. 

The chains were diagnosed using the Gelman-Rubin convergence statistic as well as the 

visual observations of the history plots. All chains mixed well and the Gelman Rubin 

statistic was almost 1 for all parameter estimates.  

3.2.1. Indiana data 

In all models, the segment length was considered as an offset; thus, it is assumed that the 

number of crashes increases linearly as the segment length increases. Table 3 presents the 

modeling results for the Indiana data for the NB, NB-L and NB-TDP GLMs. Given the 

GoF statistics shown in this table, the NB-TDP model showed a better fit compared to 

other GLMs. A key point to compare different models together based on GoF measures, 

however, is to consider their complexities. The Deviance Information Criterion (DIC) 
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statistics penalize the model complexity in its estimates; hence, a more reliable option to 

employ when models are characterized by different complexities (as it is in our case).  

Table 3. Modeling Results for the Indiana Data (Reprinted with Permission from Shirazi et al., 
2016b). 

Variable 

NB NB-L NB-TDP 

value Std. dev value Std. dev value Std. dev 

Intercept (𝛃𝟎) -4.779 0.979 -3.739 1.115 -7.547 1.227 

Ln(ADT) (𝛃𝟏) 0.7219 0.091 0.630 0.106 0.9832 0.1168 

Friction (𝛃𝟐) -0.02774 0.008 -0.0275 0.011 -0.01999 0.008 

Pavement (𝛃𝟑) 0.4613 0.135 0.4327 0.217 0.3942 0.152 

MW (𝛃𝟒) -0.0050 0.001 -0.0062 0.002 -0.00468 0.002 

Barrier (𝛃𝟓) -3.195 0.234 -3.238 0.326 -8.035 1.225 

Rumble (𝛃𝟔) -0.4047 0.131 -0.3976 0.213 -0.378 0.150 

𝛂 = 𝟏/𝛗 0.934 0.118 0.238 0.083 0.301 0.085 

DICa 1900 1701 1638d 

MADb 6.91 6.89 6.63 

MSPEc 206.79 195.54 194.5 

a Deviance Information Criterion. 
b Mean Absolute Deviance (Oh et al., 2003). 
c Mean Squared Predictive Error (Oh et al., 2003). 
d Bold values show a better GoF. 
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It is worth pointing out that the DIC for flexible models needs to be calculated with 

some cautions as it may give rise to bi-modal marginal distributions for the estimates 

(Ohlssen et al., 2007). For this reason, WinBUGS does not calculate the DIC automatically 

for flexible models. However, similar to what was experienced in Ohlssen et al. (2007), 

only a few bimodal distributions were identified for the estimates; hence, the DIC measure 

for this model can also be calculated outside of WinBUGS. The approach discussed in 

Geedipally et al. (2014) for estimating the DIC was used in this research. As it is indicated 

in Table 3, for this dataset, the NB-TDP model showed a better DIC between the analyzed 

models.  

For all models, the 95% posterior credible region of none of the parameters 

includes zero; hence, all included variables are statistically significant. In addition, all 

coefficients have the same and intuitively reasonable sign. However, the estimated 

coefficient for each model is not necessary the same. In particular, as a key covariate to 

predict the number of crashes, different models estimated different ADT coefficients. The 

ADT coefficient is below 1 based on the NB and NB-L modeling results; it is, however, 

almost 1 based on the NB-TDP modeling results. Therefore, as the ADT increases, the 

number of crashes increases at a decreasing rate given the NB and NB-L estimate while 

almost linearly given the NB-TDP estimate. The Cumulative Residual (CURE) plot can 

be used to investigate this observation in detail. The cumulative residual plot estimates 

how well the proposed model fits data regarding key covariates (Hauer and Bamfo 1997). 

A better fit, then, occurs once this plot oscillates more closely around zero. For a better 

comparison, the CURE plot is usually adjusted to make the final cumulative value to be 
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zero. Figure 1 presents the adjusted CURE plot with respect to the ADT covariate (a key 

variable to estimate the number of crashes). Figure 1 shows that, with respect to the ADT 

covariate, both NB-L and NB-TDP models fit the Indiana data better than the NB model.  

 

Figure 1. CURE Plots for the Indiana Dataset for the ADT Variable (Reprinted with Permission 
from Shirazi et al., 2016b). 

As discussed in Chapter II, as a by-product of the NB-TDP GLM, data can be 

classified into finite number of clusters. This clustering property is based on how different 

sites share the mixed effect mass points (v). In order to benefit from the advantage of 

clustering, the partitioning information matrix needs to be recorded at each iteration of the 

MCMC, as discussed above. The matrix can be used to investigate similarities between 
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sites especially with regard to recognizing unobserved variables (note: in our model, the 

DP was elicited on mixed effects), or identifying safety issues and deploying 

countermeasures. 

Let the 338 sites in the Indiana dataset be marked in descending order of ADT 

values in numbers from 1 to 338. Figure 2 shows the heatmap representation of the 

partitioning matrix for the top 10 sites with the highest ADT values. The figure shows the 

likelihood that site “X” and “Y” fall into same cluster. For simplicity, the probabilities 

were rounded to the first decimal. A higher likelihood will be represented by a darker 

shade in the map. As observed in this figure, for instance, with relatively high probability 

(~60%), site “1” falls into the same cluster as site “2”, site “3” or several more. This 

information can offer insights to identify potential unobserved variables or safety issues 

and decide on appropriate countermeasures for the site “1”. On the other hand, the 

probability that site “1” falls into the same cluster as site “9” or site “10” is very small 

(~10%); hence, there are very few similarities between these sites. In short, the heatmap 

can be extended to the entire network and be plotted in a 338×338 dimension matrix, 

which can provide a great visual tool to investigate similarities or dissimilarities between 

sites, at least with regard to identifying unobserved variables or safety issues. It is worth 

pointing out that the NB-TDP GLM, on average, classified the Indiana data into 

approximately 10 clusters (note: the posterior estimation of the precision parameter 𝜏 is 

equal to 2.01).  
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Figure 2. Heatmap Representation of the Partitioning Matrix for the Top 10 Sites with the Highest 
ADT Values in the Indiana Dataset (Reprinted with Permission from Shirazi et al., 2016b). 

3.2.2 Michigan Data 

The functional form that was used in Qin et al. (2004) and Geedipally et al. (2012) to 

analyze the original dataset is used here in order to compare the models adequately. Unlike 

the Indiana data, the segment length was considered as a covariate in models (i.e., it is not 

an offset) similar to the original 2004 paper. However, as shown in Table 4, the coefficient 

of the segment length is almost 1 for all models; hence, the number of crashes increases 

Site 1 2 3 4 5 6 7 8 9 10 

1 1.0 0.6 0.6 0.6 0.6 0.2 0.6 0.6 0.1 0.1 

2 0.6 1.0 0.6 0.6 0.6 0.2 0.6 0.6 0.1 0.1 

3 0.6 0.6 1.0 0.6 0.6 0.2 0.6 0.6 0.1 0.1 

4 0.6 0.6 0.6 1.0 0.6 0.2 0.6 0.6 0.1 0.1 

5 0.6 0.6 0.6 0.6 1.0 0.2 0.6 0.6 0.1 0.1 

6 0.2 0.2 0.2 0.2 0.2 1.0 0.2 0.2 0.6 0.6 

7 0.6 0.6 0.6 0.6 0.6 0.2 1.0 0.6 0.1 0.1 

8 0.6 0.6 0.6 0.6 0.6 0.2 0.6 1.0 0.1 0.1 

9 0.1 0.1 0.1 0.1 0.1 0.6 0.1 0.1 1.0 0.6 

10 0.1 0.1 0.1 0.1 0.1 0.6 0.1 0.1 0.6 1.0 
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almost linearly once the segment length increases. Table 4 shows the rest of the modeling 

results. The sign for all the coefficients (those that are statistically significant) are the same 

as those found in Qin et al. (2004) and were left as is to be consistent with their work. For 

this dataset, unlike the Indiana data, different models estimated relatively similar 

coefficient values.  

Table 4. Modeling Results for the Michigan Data (Reprinted with Permission from Shirazi et al., 
2016b). 

Variable 

NB NB-L NB-TDP 

value Std. dev value Std. dev value Std. dev 

Intercept (𝛃𝟎) -3.581 0.6353 -3.508 0.6789 -4.222 0.6711 

Ln(ADT) (𝛃𝟏) 0.4521 0.03935 0.4491 0.04217 0.4739 0.04045 

Ln(L) (𝛃𝟐) 0.942 0.02659 0.940 0.02909 0.968 0.02835 

SW(𝛃𝟑) 0.00425a 0.0137 0.00491 0.0144 0.00400 0.0141 

LW (𝛃𝟒) 0.018 0.03664 0.018 0.03916 0.034 0.03878 

Speed (𝛃𝟓) 0.018 0.006298 0.018 0.006629 0.022 0.006836 

𝛂 = 𝟏/𝛗 0.6165 0.0617 0.0262 0.0202 0.0303 0.0209 

DICb 6223 5796e 5984 

MADc 0.682 0.689 0.665 

MSPEd 1.635 1.641 1.635 

a Italic means not statistically significant at the 5% level. 
b Deviance Information Criterion. 
c Mean Absolute Deviance (Oh et al., 2003). 
d Mean Squared Predictive Error (Oh et al., 2003). 
e Bold values show a better GoF. 
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Table 4 shows that the NB-TDP model fits data slightly better than the NB and 

NB-L models based on the MAD and MSPE GoF measures. Given the DIC measure, both 

NB-L and NB-TDP models (as a class of multi-parameter models) fit the Michigan data 

better than the NB model; as discussed above, the DIC is a better measure of fit for 

complex hierarchical models than GoF measures based on the model errors since it 

penalizes the model complexity. The posterior estimate of the precision parameter τ for 

this dataset is equal to 3.29 and data on average were classified into 21.34 clusters. Note 

that intuitively it is expected that the crash data be grouped into more clusters once the 

number of sites in the dataset increases. 

For this dataset, the DIC estimate for the NB-L model is better than the NB-TDP 

model. This is due the fact that, first, the NB-L mixture with its fixed distribution is 

specifically designed to accommodate data with many zeros (i.e., the NB-L distribution 

has a large density at zero). The NB-TDP model, on the other hand, provides more 

flexibility to capture the variation in data. Unlike the heavy tail in Indiana data which was 

characterized by high variation in dataset causing by large as well as small numbers of 

zero values (the range is 329 with ~36% zeros), the heavy tail in the Michigan dataset is 

characterized by a large number of zero values (the range is 40 with ~70% zeros). Second, 

we assumed a uniform distribution for the precision parameter and set the number of NB-

TDP mass points to 30. In this case, the precision parameter can adapt to the data, and 

these data can be grouped up to 30 clusters. For cases when the safety analyst would like 

to attain a better fit, the precision parameter can be centered to larger values and the NB-

TDP can be truncated with a larger number of mass points (clusters). The latter approach, 
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however, can be problematic to implement in WinBUGS due to its limitations; hence, the 

analyst should try other alternatives. Some alternative approaches to inference the 

Dirichlet process are discussed in Section 3.3.  

3.3. Discussion 

The application of the NB-DP or NB-TDP merits important discussion points. Recall that 

we have proposed a multi-level hierarchical model to account for over-dispersion and 

elicited a DP prior on the mixed effects to provide modeling flexibility. One of the critical 

choices we made was to truncate the Dirichlet process to have finite number of 

components. Statistical inference in such complex models is facilitated by employing 

simulation techniques, such as the MCMC. We coded the truncated model in WinBUGS 

to estimate the model’s coefficients (i.e., infer the parameters). There are several aspects 

that need to be discussed with building the model and the subsequent analysis undertaken 

in this work, namely, truncation and inference, centering and scaling of the Dirichlet 

process prior for identifiability and better convergence, and the clustering property. 

There are two major tasks involved in Bayesian model building: model elicitation 

and inference. Traditionally, except in very limited cases, Bayesian modeling in general 

and Bayesian nonparametric in particular, rely on MCMC for inference, as the models are 

generally non-tractable. One of the earliest approaches to inference under the full DP 

representation was due to the seminal work by Escobar and West (1995), followed by 

several others (Escobar and West, 1998; MacEachern and Muller, 1998). Inference in 

more complex models, however, was made possible due to samplers, such as the slice 
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sampling method (Griffin and Walker, 2011; Kalli et al. 2011). Another interesting avenue 

was considered by approximating the DP with a finite sum representation (Ishwaran and 

Zarepour, 2002). The advantage with the finite sum based approximation is that, the 

resulting model is much simpler and often can be fitted using standard software programs, 

such as WinBUGS. Consequently, the analyst can focus on trying several different models 

without worrying about writing a new sampler or debugging. However, such 

approximation comes at a cost: where to truncate? Fortunately, heuristics are available 

(Ishwaran and James, 2001; Ohlssen et al., 2007) to provide reasonable results, which may 

work very well in practice, as was the case in this study. However, the same benefit of 

finite sums representation can be achieved even without truncation, as it is the core idea 

behind retrospective sampling (Papaspiliopoulos and Roberts, 2008). In this case, a price 

that one needs to pay is that a significant amount of effort is required in designing and 

developing the samplers, as opposed to focusing more on model building. 

Another very useful approach to approximate inference, the Variational Inference, 

tries to approximate the true posterior with its closest parametric counterpart that is much 

more tractable analytically (Blei and Jordan, 2006). In fact, off late, approximate 

inferences as opposed to exact inferences are becoming popular, such as the Approximate 

Bayesian Computation framework (Beaumont et al., 2002; Pudlo et al., 2014) and the 

emerging methods under the umbrella of Big Data (Neiswanger et al., 2013; Bardenet et 

al. 2014; Quiroz et al., 2015). The approximate inference methods can also be found in 

the frequentist literature (see Bhat, 2014). The exact approaches to inference can be carried 

out when the analyst has reasonable understanding of the domain (or data) with respect to 
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model elicitation. The motivation for choosing approximate inferential methods is speed 

and agility, either in model building or fitting or both. In subsequent work in this area, we 

will focus on efficient inference mechanisms that exploit the model characteristics. 

An important challenge we faced in this work was the parameterization and 

identifiability. As discussed briefly earlier, the intercept term and the mean of the mixed 

effects are correlated. An alternative approach to solve the identifiability issue as well as 

to obtain a better convergence properties, is to model the mixed effects 𝑣  with the TCDP 

with constrained variance using the idea proposed in Yang et al. (2010), instead of simple 

truncated Dirichlet process. The TCDP model given the precision parameter τ and 

lognormal base distribution is structured as:  

ln(v ) ~TCDP τ, M, N μ , σ  

If and only if  

γ ~Beta(1, τ) , k = 1,2, . . , M (21-a) 

ψ |μ , σ  ~ N μ , σ ,    k = 1,2, … . , M (21-b) 

p = γ (1 − γ ),     k = 1,2, … , M (21-c) 

ω  ~ p δ  (21-d) 

ln(v ) =
ω − μ

V
 (21-e) 

where μ  and V  are defined in Equations (3) and (4) respectively. Therefore, 

median(v) ≈ 1 
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Using the TCDP, not only the median of the mixed effect would be approximately to 1, 

but we also control the variance of the DP to provide a better convergence. Although the 

TCDP model has a nice interpretation and showed very good convergence properties, its 

implementation in WinBUGS is very time-consuming for large-scale datasets due to 

WinBUGS coding limitations.  

Finally, one of defining characteristics of the DP is that it allows for ties in the 

observations as the DP is a discrete distribution almost surely. Consequently, during each 

iteration of the MCMC, the mixed effects are partitioned into clusters. This property of 

the DP is exploited to post-process MCMC samples to obtain clustering information 

(Medvedovic and Sivaganesan, 2002). The clustering information thus obtained can be 

used to gain further insights about the problem at hand (for example, which two sites are 

clustered together). In this regard, the NB-DP offers great opportunities for analyzing 

crash data in various different ways.  Another utility of the clustering information is to 

detect outliers.  For example, if one defines an outlier as belong to a cluster with no more 

two members in it, then in that regard, singleton clusters can be defined as outliers and can 

be inspected for potential risk factors.  In fact, the notion of outlier can be handled much 

more formally, as is done in Heinzl and Tutz (2013). Indeed, a rich class of models exist 

in Bayesian nonparametric, such as the Product Partition Models, when inference on the 

partitions is of primary interest (Mitra and Muller, 2015). 
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3.4. Chapter Summary 

In this chapter, the NB-DP was applied to two datasets that were characterized with a 

heavy tail and many zero observations. The results were compared with the NB and NB-

L models. The results showed that the NB-DP offered much greater flexibility and a better 

fit compared to the NB model. Although the NB-L might work better with the dataset with 

many zeros, the NB-DP is actually more flexible to capture the dispersion in data, 

especially when the highly dispersed dataset has a heavy tail, but smaller percentage of 

zero observations.  

As a closing note to this chapter, it must be noted that the primary goal in selecting 

a competitive model should not be based only on GoF measures. In addition to the GoF, 

the transportation safety analyst should examine other issues such as the data generating 

process, the relationship between variables and if the proposed model is logically or 

theoretically sound. The later characteristics are referred to as “Goodness-of-Logic” in 

Miaou and Lord (2003).  The next chapter describes the characteristics of a methodology 

to design heuristics to select the most likely true sampling distribution to model crash 

datasets. 
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CHAPTER IV  

MODEL SELECTION HEURISTICS: METHODOLOGY*  

This chapter is divided into five subsections. First, a brief introduction about the 

motivation for developing characteristics-based heuristics is provided. Second, the 

proposed methodology is documented and its characteristics is described. Third, the 

Monte-Carlo Simulation task that is a key step in designing heuristics is discussed. In the 

fourth section, a few remarks about the proposed methodology are covered. In the fifth 

section, a brief summary of the proposed methodology is provided.  

4.1. Introduction 

Safety scientists usually use post-modeling methods, such as the Goodness-of-Fit (GoF) 

statistics or the Likelihood Ratio Test (LRT), to decide between two or more competitive 

distributions or models. Such metrics require all competitive distributions to be fitted to 

the data before any comparisons can be accomplished. Given the continuous growth in 

introducing new statistical distributions, choosing the best distribution using such post-

modeling methods is not a trivial task, in addition to all theoretical or numerical issues the 

analyst may face during the analysis. Furthermore, and most importantly, these measures 

                                                 

* Part of this chapter is reprinted with permission from Shirazi, M., Dhavala, S. S., Lord, D., Geedipally, S. 
R. (2017). A methodology to design heuristics for model selection based on the characteristics of data: 
Application to investigate when the negative binomial Lindley (NB-L) is preferred over the negative 
binomial (NB). Accident Analysis & Prevention, 107, 186-194. Copyright [2017] by Elsevier.  
https://doi.org/10.1016/j.aap.2017.07.002 
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or tests do not provide any intuitions into why a specific distribution (or model) is 

preferred over another or what is often referred to as Goodness-of-Logic (LoG) (Miaou 

and Lord, 2003).   

In this chapter, a methodology is proposed to design heuristics for Model Selection 

based on the characteristics of data, in terms of descriptive summary statistics, before 

fitting the models. The proposed methodology employs two analytic tools: (1) Monte-

Carlo Simulations and (2) Machine Learning Classifiers, to design simple heuristics to 

predict the label of the ‘most-likely-true’ distribution for analyzing data. Not only these 

heuristics are easy to use and do not need any post-modeling inputs, but also, using these 

heuristics, the analyst can attain useful information about why one distribution is preferred 

over another when modeling data.  

4.2. Methodology 

At the heart of the proposed methodology lies a paradigm shift in how Model Selection is 

both viewed and treated. We can view Model Selection as a classification problem - that 

is, given a set of discriminating features of the data, we like to predict a model that must 

have produced the observed data. It becomes a binary classification problem when the 

number of alternatives is two. This way of looking at Model Selection as a classification 

problem was first introduced, according to the authors’ knowledge, by Pudlo et al. (2015), 

in the context of Approximate Bayesian Computation (ABC). 

Learning both the discriminating function and its arguments have traditionally 

been based on GoF or other Model Selection criteria such as the LRT, Akaike Information 
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Criteria (AIC) and the likes. The discriminating function in such methods, which favor 

one model to the other, is often a simple comparator. A benefit of viewing the Model 

Selection as a classification problem is that we can take computational approach to 

learning a complex discriminating function based on simple descriptive statistics of the 

data. 

To clarify the strategy, let us assume the analyst is interested in choosing between 

the Poisson and Negative binomial (NB) distributions, based on the population ‘mean’ 

and ‘variance’. We like to come up with a function that maps these two statistics to a label: 

‘0’ for Poisson and ‘1’ for NB. The choice of the labels is completely arbitrary. The ‘mean’ 

and ‘variance’ of the population would create a two-dimensional (a flat plane) predictor 

space (Ω) for making decisions. Now, the analyst’s task is to partition the predictor space 

and assign a label to each partition. We know that if the population VMR is greater than 

one (VMR>1), we may choose the NB distribution and if it is equal to one (VMR=1), the 

Poisson distribution will be the preferred sampling distribution to use. Hence, the predictor 

space (Ω) can be classified between the Poisson and NB distributions in a way that is 

shown in Figure 3. 
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Figure 3. Classifying the Poisson and NB Distributions Based on the Mean and Variance of the 
Population (Reprinted with Permission from Shirazi et al., 2017b). 

The decision based on the VMR statistic, in this case, serves as a heuristic to select 

the ‘most-likely-true’ sampling distribution between the Poisson and NB distributions.  It 

does not require fitting the models, estimating the model parameters, computing the test 

statistics, etc. It simply uses the descriptive statistics to arrive at a model 

recommendation*. When working with data, the ‘population’ VMR essentially is replaced 

with its ‘sample’ counterpart (VMR) and the decision based on observed data will be 

essentially the analyst best guess. Like any Model-Selection decisions, there is a chance 

that the decision based on a sample version of the VMR may be incorrect; this uncertainty 

can be quantified in terms of standard classifier performance metrics, such as false-

                                                 

* In Chapter V, it is shown that there are strong correlations between the decision based on the VMR heuristic 
and the LRT statistic. 
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positive-rate, Area under the Curve (AUC), and many others (Hastie et al., 2001; James 

et al., 2013).  

In the case of ‘Poisson’ vs. ‘NB’, we knew, theoretically, how the two-dimensional 

predictor space should be partitioned between the Poisson and NB distributions; however, 

what if such insight was not available to us? In the absence of readily available analytical 

insights to guide Model Selection, we resort to computational approaches. It will be 

assumed that the distributions under consideration can be classified by ‘m’ summary 

statistics. These summary statistics would create an ‘m-dimensional’ predictor space; then, 

the analyst can benefit from two analytic tools, (1) Monte-Carlo Simulations, and (2) 

Machine Learning Classifiers, to partition the assumed m-dimensional predictor space 

between the competitive distributions. 

Let us assume {A1, A2 ,…, Ar} and {S1, S2, …, Sm}, respectively, denote a set of 

‘r’ competitive distributions and ‘m’ types of summary statistics. We need to partition the 

m-dimensional predictor space that is created by the ‘m’ summary statistics, between all 

these ‘r’ distributions. Using Monte-Carlo Simulations, it is possible to simulate numerous 

datasets (say 100,000 datasets) from each of these ‘r’ distributions (or models) indexed by 

a label and record the assumed ‘m’ summary statistics for each. Next, a Machine Learning 

Classifier is trained to classify each simulated dataset to predict a model label. In the 

Machine Learning parlance, summary statistics are the features, the label (model) is the 

target. Each pair of the feature set and the target constitute a record. A Machine Learning 

Classifier learns a function that maps the features to a target, based on ground truth 

available in terms of the records.  
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There are several classifier methods, such as Logistic Regression, Support-Vector 

Machines, Decision Trees, Random Forests and many others (see Hastie et al., 2001; 

James et al., 2013) to accomplish the classification task.  Decision Trees (DT) (Breiman 

et al., 1984) provide a very intuitive partitioning of the predictor space (similar to the one 

shown in Figure 3) but could be less accurate compared to, say, Random Forests (RF) 

(Breiman, 2001). A classifier in the context of this study, essentially, uses the simulation 

data to build a predictive tool (or heuristics) to estimate the label of the ‘most-likely-true’ 

distribution for each partition of the predictor space. 

Let ‘N’ denote the number of datasets simulated from each distribution and ‘n’ 

denote the size of each dataset. Let S , ,  denote the m-th summary statistic that was 

recorded for the i-th dataset simulated from the distribution Aj. The detailed steps of the 

proposed methodology are described below: 

Step 1: Simulation- Preparation of Training Data  

1.1 Define the experiment boundaries such that the simulated datasets reflect the 

characteristics of the data found in practice. 

1.2 Repeat the following steps for ‘N’ iterations: 

1.2.1 Simulate the parameters of all competitive distributions {A1, A2, …, and 

Ar} from a prior distribution. 

1.2.2 Simulate a dataset of size ‘n’ from each competitive distribution within the 

experiment boundaries, given the parameters simulated in Step 1.2.1. 
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1.3 Compute and Record all the ‘m’ desired summary statistics for all datasets 

simulated in Step 1.2. 

1.4 Outline the vector Y (distribution labels) and matrix X (summary statistics) as 

follows. 
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Step 2: Classification 

Run a classifier method, such as a ‘Decision Tree’ or a ‘Random Forest’, over the 

summary statistics (matrix X) to classify the outcome ̶ the distribution labels (vector 

Y), i.e. partition the predictor space that is created by summary statistics among 

competitive distributions. 

As a closing note to this section, it should be pointed that most of the metrics that 

summarize the performance of a classifier can be interpreted in the classical hypothesis-



 

46 

 

testing parlance and can be used to measure the accuracy of the proposed heuristics. For 

example, false-positive-rate of a classifier is the type-1 error and true-positive rate is the 

power. In fact, we can obtain the Receiver-Operating-Characteristics (ROC) curves for 

the classifier and tune the classifier to obtain a desired power and type-1 error, where 

possible. 

4.3. Simulation Design   

The first task of the proposed methodology involves simulating numerous datasets from 

competitive distributions. This task requires designing an experiment that should represent 

the characteristics of the interested context; or in other words, addressing one of the most 

classic inferential questions in statistics: what is the target population? First, simulated 

data should represent the characteristics of the target population. For example, we know 

that the mean of crash data usually varies between 0.1 and 20; hence, the m-dimensional 

predictor space can be restricted to situations when the mean of the simulated data falls 

into that range. Second, the experiment should be designed in a way that competitive 

distributions have fair representations between simulated data. Sometimes, the fair 

simulation issue is easy to be addressed, perhaps just by simulating data using parameters 

that are selected from a Uniform distribution with the most common range seen in 

population. For example, we know that when modeling crash data with NB, the inverse 

dispersion parameter (ϕ) usually varies between 0.1 and 10; also, as noted earlier, we also 

know that the mean of crash data often varies between 0.1 and 20. Hence, we can use this 
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information and simulate data from NB for situations when ϕ~Uniform [0.1,10] and 

μ~Uniform [0.1,20]. 

However, in other practical situations, it may not be straightforward to generate 

representative datasets.  In such cases, it may be far easier to generate/simulate datasets 

from a reference distribution that is easy to simulate from than from a target distribution 

that is hard to express in the generative stage, a strategy that is widely used in importance-

sampling based statistical estimation techniques.  To clarify this point, for a moment, let 

us assume a hypothetical modeling problem. Let us assume the analyst is interested in an 

experiment to measure the effect of some random factors, such as the effect of smoking, 

on causing a disease such as cancer. In this situation, he or she may want to account for 

factors, such as the population age, and needs to have certain coverage. In reality, as is 

true with many cohort-studies, the distribution of age and other factors may not be as per 

the design. In that case, there is a discrepancy between the sample and the target 

population. However, this can be easily addressed by up weighting or down weighting the 

samples in accordance with their representation in the target population. Importance 

Sampling is one such technique that is useful when the cost of obtaining data from target 

population is difficult or impossible compared to another source.  Similar to this example, 

the experiment design issue in our case can also be expressed by ensuring that the 

controlled factors (such as the ‘mean’) are equally distributed over simulated datasets that 

are generated from all competitive distributions. In this case, the analyst seeks to 

discriminate the distributions based on other factors (such as ‘skewness’) when one or a 
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few factors (controlled factors such as ‘mean’) are equally distributed among competitive 

distributions.  

Let S  denote the vector of controlled factors in our experiment. The vector S  may 

include summary statistics, such as the ‘mean’ or ‘variance’ of the data. Let f  (S ) 

denote the ‘target’ (or desired) density for the collected factors. Likewise, let f  (S ) 

denote the ‘observed’ multivariate empirical (or kernel) density of the controlled factors 

simulated from the j-th distribution. Then, the importance weight (W ) of the simulated 

datasets can be expressed as: 

W =
f  (S )

f  (S )
 

Once the importance weights are estimated, they can be incorporated into the 

Classifier. Most Classifier packages in R have an option to pass importance weights, so 

that the importance of each dataset is altered in a way such that the controlled factors are 

distributed according to the target density between the competitive distributions. For that 

matter, any target distribution, not necessarily Uniform, so long as the support of f  is 

at least as large as f  can be used. In other words, the dataset importance for some 

datasets may be up weighed while for others it may be down weighted.  

4.4. Discussion 

The proposed methodology develops simple heuristics to select a model based on a few 

characteristics of the data, described in terms of the summary statistics, without the need 

to fit the models. This is accomplished by learning the patterns in the data that discriminate 
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one model with another. Key to this approach are (1) simulating datasets that closely 

represent the population under consideration and (2) using the simulated data to train a 

classifier that learns how to discriminate different models. The Model Selection was 

essentially treated as a classification problem. In fact, any Model Selection problems can 

be recast fundamentally as a classification problem and the label attached to a model is 

only notional. What is different though is the way in which classification is performed 

between in our proposed method and any Model Selection based on test statistics such as 

GoF, LRT and others. 

If we look carefully, two components are involved in Model Selection: (1) a test 

statistic and (2) decision criteria (or a rule) that maps the test statistic to a model label. In 

the classical approach to Model Selection, say for example based on the Likelihood Ratio 

Tests, one computes the LRT test statistic and if the LRT is above a certain threshold, one 

chooses the alternative model as opposed to the null model. The statistic used to make the 

decision is a very complex function of data. It requires computing the log-likelihoods 

under both models, which requires fitting those models to the data in the first place but the 

decision rule is very simple. More often than not, the distribution of the test statistic is 

known analytically, and the errors incurred due to the decision rule can be quantified in 

terms of type-1 error and power. However, in this research, we are proposing a 

computational approach to the Model Selection problem, with the intent to flip the 

complexity of each of the two tasks involved in the decision-making problem. That is, we 

like to keep the test statistics as simple as possible that does not require estimating models, 

but the decision can be as complex as it needs to be. The advantage is that, one has the 
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ability to explain why one model fits better than the other, unlike omnibus test statistics 

such as those based on LRT or Walds’ tests that do not provide any intuitions to the 

analyst.  

Separating the Model Selection task into (a) training a classifier based on summary 

statistics and (b) scoring a new dataset to predict the model label has another benefit, in 

the context of Big Data and Data Science automation. Without really fitting models and 

then selecting the models, we simply learn the Model Selection patterns and use those 

patterns to score a new dataset based on simple computations. This is particularly useful 

when large volumes of high velocity data have to processed and appropriate modeling 

techniques have to be applied. According to our knowledge, this is a small but a very 

important step in enabling Data Science automation. 

There is one more added advantage in such heuristics. When using classical tests 

or GoF statistics, not only the safety scientist should concern about the statistical fit but 

also about the model complexity. Many classical tests or GoF metrics do not consider 

complexity in their estimations and cannot be used when alternatives have different 

complexities. The proposed heuristics, however, can be employed even when the 

competitive models have different complexities. This is due to treating the Model 

Selection as a classification problem. Under this setting, model parameters are integrated 

out, and Model Selection will exclusively rely on classification probabilities.  

It should be pointed out that in addition to all theoretical advantages, the proposed 

heuristics can also be useful as easy and straightforward Model-Selection guidelines based 
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on characteristics of data for safety practitioners. Such characteristics-based guidelines 

have recently been a subject of interest in several studies in safety literature. As such, 

recently, guidelines based on characteristics of data have been proposed for selecting a 

reliable calibration sample size (see Shirazi et al., 2016a; Shirazi et al., 2017a). These 

kinds of guidelines are useful in better use of data and modeling resources in practice. 

4.5. Chapter Summary 

In this chapter, a systematic methodology was proposed to develop Model Selection tools 

(or heuristics, to be exact) to select a sampling distribution among its competitors given 

an input from selected summary statistics of data, without a need to fit the models. Unlike 

the most common GoF measures or statistical tests, the proposed methodology addresses 

the classical issue of Goodness-of-Logic and examines the characteristics of data to find 

the ‘most-likely-true’ distribution for modeling. The next chapter presents the results of 

the application of the methodology to design heuristics for model selection between 

different distributions. 
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CHAPTER V  

MODEL SELECTION HEURISTICS: APPLICATION* 

This chapter is divided into four subsections. In the first part, the proposed methodology 

to design heuristics is validated by finding the switching points (i.e.: Model-Selection 

heuristics) between the Poisson and Negative Binomial distributions using a Decision Tree 

classifier. The results of this part are compared to the results with the theoretical 

expectations (the VMR heuristic). In the second part, the methodology is applied to design 

Model Selection heuristics between the Negative Binomial and the Poisson-lognormal 

distributions, using the Decision Tree and Random Forest classifiers. In the third part, the 

methodology is employed to find heuristics for Model Selection between the Negative 

Binomial and Negative Binomial Lindley distributions, using the Decision Tree and 

Random Forest classifiers. Last, a brief summary is provieded. 

5.1. Poisson vs. NB Heuristics 

The probability mass function (pmf) of the Poisson distribution is defined as follows:  

Poisson(λ) ≡ P(Y = y| λ) =
λ × e

y!
 (22) 

                                                 

* Part of this chapter is reprinted with permission from Shirazi, M., Dhavala, S. S., Lord, D., Geedipally, S. 
R. (2017). A methodology to design heuristics for model selection based on the characteristics of data: 
Application to investigate when the negative binomial Lindley (NB-L) is preferred over the negative 
binomial (NB). Accident Analysis & Prevention, 107, 186-194. Copyright [2017] by Elsevier. 
https://doi.org/10.1016/j.aap.2017.07.002 
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where λ= the average number of events per interval. Note that λ = μ = σ  where μ and 

σ  represent the mean and the variance of the observations, respectively.   

As noted in Chapter II, the NB distribution is a mixture of the ‘Poisson’ and ‘gamma’ 

distributions. The pmf of the NB distribution is defined as follows: 

NB(ϕ, p) ≡ P(Y = y| ϕ, p) =
Γ(ϕ + y)

Γ(ϕ)Γ(y + 1)
(1 − p) (p)   (23) 

where p = ,  μ =mean response of observations, and ϕ = inverse dispersion parameter.  

The experiment was designed for datasets that have a mean that is between 0.1 and 

20. 100,000 datasets (N=100,000), each with 5,000 data points (n=5,000), were simulated 

from the Poisson and NB distributions. The following Uniform distributions were used to 

simulate the parameters of the Poisson and NB distributions. 

μ~ Uniform [0.1,20] ; for both Poisson and NB 

ϕ~Uniform [0.1,10] ; for NB only 

For each simulated dataset, 22 summary statistics were recorded. The recorded 

summary statistics include the value of mean (µ), variance (σ ), standard deviation (σ), 

variance-to-mean ratio (VMR), coefficient-of-variation (CV), skewness (skew)*, kurtosis† 

(K), percentage-of-zeros (Z), quantiles (Q) (or percentile) in 10% increments, the 10%, 

                                                 

* Skewness (skew) is the ratio of the third central moment (m ) and standard deviation cubed (σ ), i.e.: 
skew=  
† Kurtosis (K) is the ratio of the fourth central moment (m ) and the squared variance (σ ), i.e.: K=  
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20%, 30% and 40% inter-quantiles (IQRs) (or inter-percentile), and the range (R). Next, 

a Decision Tree classifier was used to classify the 22-dimensional predictor space that is 

created by the given summary statistics between the Poisson and NB distributions. Figure 

4 shows the results of the classification. As shown in this figure, the proposed heuristic is 

empirically found to be close to our theoretical expectations.  

 

Figure 4. Heuristic for Model Selection between the Poisson and NB Distributions Using a Decision 
Tree Classifier (Reprinted with Permission from Shirazi et al., 2017b). 

The classification problem between the Poisson and NB distributions can be seen 

in a binary-classification fashion. Let a dataset simulated from the NB distribution be 

labeled as a positive outcome (P), and a dataset simulated from the Poisson distribution as 

a negative outcome (N). This notation represents a test that indicates when the analyst 

should switch from a simple model (here ‘Poisson’) to a more complex model (here ‘NB’). 

The prediction of the classifier can either be True (T) when the classifier correctly predicts 

the label of the model, or False (F) when the prediction is incorrect. Taking this notation 

into account, the confusion matrix for the results of the classification problem can be 

structured as shown in Table 5.  
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Table 5. Poisson vs. NB: Confusion Matrix Based on the Results of the Decision-Tree Classifier 
(Reprinted with Permission from Shirazi et al., 2017b). 

Predicted 

Actual 

NB  Poisson  

NB  49.46% (TP) 0.08% (FN) 

Poisson  0.54% (FP) 49.92% (TN) 

The sensitivity* and specificity† of the classification is equal to 99.8% and 98.9%, 

respectively. The overall misclassification error (FP+FN) is equal to 0.62%. A close 

analysis on misclassified datasets showed that misclassifications only were appeared at 

the boundary of the proposed heuristic when the value of the VMR is close to the 

threshold. No misclassifications are observed as the value of VMR deviates further away 

from the threshold.  

The likelihood (or log-likelihood) ratio test reveals how likely data appear under 

the ‘alternative’ model than the ‘null’ model and is referred to the most powerful statistical 

test among its competitors, when some regularity conditions are met. If the value of log-

likelihood ratio is greater than some threshold, the analyst can select the alternative model 

with a specific power and a type-1 error. Let us assume the Poisson distribution be the 

‘null’ and the NB distribution be the ‘alternative’ hypothesis in constructing the log-

                                                 

* Sensitivity=TP/(TP+FN) 
† Specificity=TN/(TN+FP) 
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likelihood ratio test between these two distributions. The LRT statistic can be derived 

using Equation (24): 

LRT= −2 × LN
   “Poisson” 

   “NB” 
 (24) 

As the value of the LRT statistic becomes larger, the analyst can reject the ‘null’ 

hypothesis (here ‘Poisson’) with a much greater power. Interestingly, one can see a strong 

correlation between the LRT statistic and the VMR heuristic. To clarify this point, the 

LRT statistic was plotted against the VMR, for 10,000 randomly simulated datasets from 

the NB distribution, and was shown in Figure 5.  

 
Figure 5. Poisson vs. NB: Correlation between the Decisions Based on the VMR and the LRT 

Statistic (Reprinted with Permission from Shirazi et al., 2017b). 

 

Figure 5 indicates a strong correlation between the value of the VMR and the LRT 

statistic. In other words, the decision based on the value of the VMR heuristic closely 

follows the decision based on the LRT. In that regard, similar to log-likelihood test, as the 
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VMR gets further away from one, the analyst can reject the null model (here ‘Poisson’) 

with much greater confidence. This observation empirically establishes that VMR 

approximates LRT and that the approach to designing heuristics for Model Selection can 

reproduce well-established results. 

5.2. NB vs. PLN Heuristics 

This section is divided into three subsections. First: a brief background about the NB and 

PLN characteristics is provided. Second, Heuristics between NB and PLN are designed 

using the methodology described in Chapter IV. Third, the proposed heuristics are 

evaluated using observed data. 

5.2.1. Background 

Although both of the NB and PLN are appropriate when data express a sign of over 

dispersion, each of these distributions or models has its own positive and negative traits. 

As such, according to Lord and Mannering (2010), the PLN is more flexible than the NB 

to handle over dispersion and a better option for modeling skewed data. In a more detailed 

examination of these two alternatives, Khazraee (2016) states that the thick tail of the 

lognormal distribution, theoretically, can give the PLN a substantial boost when data are 

characterized by excessive large and/or unusual crash observations. The comparison of 

the NB and PLN models is not limited to the safety literature. In a research that was 

conducted to characterize the microbial counts in foods, Gonzaless-Barron and Butler 

(2011) showed that the PLN is a better alternative when data include observations with 
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large numbers, while the NB outperforms the PLN for data with small count observations, 

and/or those with larger amount of zero responses.  

Overall, the previous studies indicate that the PLN is a better alternative for data 

with larger skewness, and/or data that involve large count observations but fewer zero 

responses, while the NB is a more suitable option for the opposite circumstances. 

However, it is not explicitly clear when the analyst may need to switch from the NB to the 

PLN - or vice versa- and/or what characteristics should be observed a priori to select a 

logical distribution between these two alternatives. This section addresses this topic and 

ponders into this issue by providing guidelines and tools (or heuristics, to be exact) to 

select a logical distribution between the NB and PLN distributions and recognizing the 

most important summary statistics to make a Model Selection decision between these two 

sampling distributions.  

Both of the NB and PLN distributions are classified as a member of the Mixed-

Poisson family distributions, where the Poisson parameter is mixed with a distribution to 

accommodate the over-dispersed data. The NB and PLN are two common models used to 

analyze crash data in safety literature (Lord and Mannering, 2010; Aguero-Valverde, and 

Jovanis, 2008; Lord and Miranda-Moreno, 2008; Aguero-Valverde, 2013).  

As noted in Chapter II, the NB distribution can be structured as a mixture of the 

Poisson and gamma distributions as follows: 

y| λ~Poisson( λ) (25a) 

 λ|μ, ϕ~gamma(ϕ,
ϕ

 μ
) (25b) 
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The mean (m), variance (VAR) and variance-to-mean ratio (VMR) of the NB distribution 

are defined as: 

E(y) = m = μ (26a) 

V(y) = VAR = μ +
μ

ϕ
 (26b) 

VMR(y) = VMR = 1 +
μ

ϕ
 (26c) 

The PLN distribution is a mixture of the Poisson and lognormal distributions, 

which can be structured as the following hierarchical representation: 

y| λ~Poisson( λ) (27a) 

log ( λ)|υ, σ ~Normal(υ, σ ) (27b) 

Note that the mean (μ ) and variance (V ) of the lognormal distribution with 

parameters υ, σ  are equal to: 

E( λ) = μ = e  (28a) 

Var( λ) = V =  
e

e
 (28b) 

Therefore, the mean (m), variance (VAR), and variance-to-mean ratio (VMR) of the PLN 

distribution are defined as: 

E(y) = m = μ  (29a) 

V(y) = VAR =  μ + V  (29b) 

VMR(y) = VMR =  1 +
V 

μ 
 (29c) 
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5.2.2. Heuristics Results  

As noted in Chapter IV, simulation is a key step in designing Model Selection heuristics. 

It is essential to first make sure that the simulated datasets represent the characteristics of 

the target population, and then ensure that the alternative distributions have fair 

representations among simulated data. The first concern can be addressed by simulating 

data given the most common range observed in context population, in our case, the crash 

data population. The second concern can be addressed by ensuring that some summary 

statistics (referred to as control factors) are distributed similarly among the simulated 

datasets from alternative distributions (see Chapter IV). In other words, the analyst seeks 

to discriminate the distributions based on factors such as the ‘kurtosis’ and/or ‘skewness’, 

while the control factors such as the ‘mean’ or the ‘VMR’ are distributed similarly among 

simulated datasets.  

For the problem (or simulation) design, it is assured that the ‘mean’ and the ‘VMR’ 

of data are uniformly distributed among the generated datasets from both of these 

distributions, simply, by simulating the mean (m) and the VMR from a uniform 

distribution with a range that is the most common observed range in crash data, as shown 

in Equation (30a) and Equation (30b). 

m~Uniform(0.1,20) (30a) 

VMR~Uniform(1,25) (30b) 

Next, given the Equation (26a) and Equation (26c), the parameters of the NB distribution 

can be estimated as:  
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μ = m (31a) 

ϕ =
m

VMR − 1
 (31b) 

Similarly, given the Equation (29a) and Equation (29c), first, we have: 

μ = m (32a) 

V = (VMR − 1) × μ  (32b) 

Then, given the Equation (28a) and Equation (28b), the parameters of the PLN distribution 

can be derived as: 

υ = log 

⎝

⎛
μ

V + μ
⎠

⎞ (33a) 

σ =  log 
V 

μ
+ 1  (33b) 

Now, it is possible to simulate a dataset with a size of n=5,000 from the NB distribution 

given parameters derived in Equation (31), and from the PLN distribution given the 

parameters derived in Equation (33). The above procedure can be repeated for N=100,000 

iterations, for each one of these distributions. Each time, 22-types of summary statistics 

described in Section 5.1 was recorded. The detailed steps of the simulation protocol are 

described as follows: 

Repeat the following steps for ‘N’ iterations:  

1. Simulate the mean (m) and the VMR from the Equation (30a) and Equation (30b) 
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2. Find the parameters of the NB distribution from the Equation (31a) and Equation 

(31b) and the PLN distribution from Equation (33a) and Equation (33b). 

3. Simulate a dataset with a size of ‘n’ given the parameters derived in Step 2, from 

both of the NB using Equation (25) and the PLN using Equation (27).  

4. Record the 22 types of summary statistics described above. 

A Decision Tree classifier was used as a tool to partition the 22-dimensional 

predictor space that is created by the simulated summary statistics, and assign a label 

(either the NB or the PLN) to each partition. Figure 6 shows the outcome of the Decision 

Tree classifier. As shown in Figure 6, the population kurtosis and the percentage-of-zeros 

play a substantial role in deciding between the NB and PLN distributions. As seen in this 

figure, overall, the PLN is recommended for situations when data are more skewed but 

has fewer zero responses, while the NB distribution is a better option otherwise; these 

results confirm the trends observed and/or reported in previous studies in the literature 

(see Lord and Mannering, 2010; Gonzaless-Barron and Butler, 2011 and khazraee, 2016). 

Unlike previous studies, however, Figure 6 provides a more perspicuous characteristics-

based guidance on selecting a sampling distribution between these two alternatives.  
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Figure 6. Heuristic for Model Selection between the NB and PLN Distributions (Note: tree can be 
used for data with the characteristics of 0.1 < mean < 20 and 1 < VMR < 25). 

The output of a binary classifier can be either True (T) when it correctly classifies 

the label of the distribution, or False (F) when it misclassifies the label of the correct 

distribution. Let the PLN and NB distributions, respectively, be labeled as the positive (P) 

and negative (N) outputs of the binary classification. Such definitions represent a test when 

the analyst assumes the NB distribution as a base model, while he or she seeks to know 

when a shift to the PLN distribution is recommended. Table 6 shows the confusion matrix 

of the binary classification given such assumptions.  
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Table 6. NB vs. PLN: Confusion Matrix Based on the Results of the Decision Tree Classifier. 

Predicted 

Actual 

PLN NB 

PLN 41.50% (TP) 1.18% (FN) 

NB 8.50% (FP) 48.82% (TN) 

 

The overall misclassification error is equal to 9.68% and the sensitivity and 

Specificity of the classification are equal to 97.24% and 85.12%, respectively. The 

sensitivity of the classification is very high indicating that when the outcome of the binary 

classifier is the PLN distribution, there is a high chance that the classifier has correctly 

detected the label of the distribution. However, the specificity of the classification is not 

as high as its sensitivity, meaning that when the outcome of the classifier is the NB 

distribution, there are still some chances that the output label was detected incorrectly. 

When the output of the classifier is the NB distribution, the analyst may consider other 

tests as well to decide between these two distributions and/or can decide to choose an alter 

tolerance threshold to decide between the NB and PLN.   

Receiver-Operating-Characteristics (ROC) plots are another tool to evaluate the 

performance of a classifier (Hastie et al., 2001, James et al., 2013). The ROC plots are 

graphics that are used to display the performance of a binary classifier. The curve is 

created by plotting the true positive rate (sensitivity) against the false positive rate (1-

specificity) by varying the discriminating threshold. The overall performance of a 
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classifier is measured by the area under the ROC curve which is referred to as AUC 

measure. We expect the AUC to be between 0.5 (an AUC=0.5 represents a decision that 

is made completely by chance like flipping a coin) to 1 (an AUC=1 represents a model 

with no misclassification errors). The greater the value of the AUC, the better the 

performance of the classifier.  The ROC plot is shown in Figure 7 and the value of the 

AUC is equal to 0.93.   

 

Figure 7. ROC Plot of the Classification between NB and PLN Based on the Decision Tree Results. 

Although they are easy to interpret and use, decision trees may not be as accurate 

as other classifiers (say Random Forest) and can be non-robust (see Hastie et al., 2001, 

James et al., 2013). This means that a potential change in data could possibly result in 

altering in the final decision tree. The Random Forest classifier tries to overcome this issue 
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by building many trees, instead of one, to substantially improve the performance of the 

classification (see Hastie et al., 2001, James et al., 2013). 

For the Random Forest classification, the number of trees was set to 100. Unlike 

the Decision Tree classification, the outcome of a Random Forest classification cannot be 

shown graphically. However, the trained forest can be recorded and still be used as an easy 

characteristics-based Model Selection tool to select a distribution between the NB and 

PLN distributions, without any post-modeling efforts. Table 7 shows the confusion matrix 

of the binary classification between the NB and PLN, based on the results of the Random 

Forest classifier. The misclassification error is equal to 0.01% (for trained data), and the 

sensitivity and specificity of the classifier are almost equal to 100%. The ROC plot is 

shown in Figure 8 and the value of the AUC is almost equal to 1. Although not reported 

here, the Random Forest heuristic was tested for simulated test data and the 

misclassification error was less than 1.5% for the test data. 

Table 7. NB vs. PLN: Confusion Matrix Based on the Results of the Random Forest Classifier. 

Predicted 

Actual 

PLN NB 

PLN 50.00% (TP) 0.01% (FN) 

NB 0.00% (FP) 49.99% (TN) 
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Figure 8. ROC Plot of the Classification between the NB and PLN Based the Random Forest Results. 

As a by-product of the Random Forest classifier, the predictors (summary 

statistics) can be ranked by their importance. Figure 9 and Figure 10 show the importance 

of the summary statistics based on two criteria: (1) mean decrease Deviance Accuracy and 

(2) mean decrease Gini index (Hastie et al., 2001; James et al., 2013). As shown in these 

figures, kurtosis, skewness and the percentage-of-zeros are among the most important 

summary statistics to select a model between the NB and PLN distributions. 
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Figure 9. Importance of the Summary Statistics to Select a Distribution between the NB and PLN 
Based on the Mean Decrease Deviance Accuracy Given the Results of the Random Forest Classifier. 

 

Figure 10. Importance of the Summary Statistics to Select a Distribution between the NB and PLN 
Based on the Mean Decrease Gini, Given the Results of the Random Forest Classifier. 
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5.2.3. Evaluation with Observed Data  

In this section, two datasets are used to evaluate the proposed heuristics.  The first dataset 

includes information related to single-vehicle crashes that occurred on Michigan rural 

two-lane highway in 2006 used in Chapter III. As noted before, this dataset was utilized 

in several previous studies (Qin et al, 2004; Geedipally et al., 2012; Shirazi et al, 2016b). 

The dataset includes 33,970 segments, and the mean, variance, VMR, kurtosis, and the 

percentage-of-zeros of data are equal to: 0.68, 3.15, 4.62, 123.6 and 69.7%, respectively. 

The second dataset contains crash data that occurred between 2012 and 2014 on Texas 

urban four-lane arterials. This dataset also has been used in several studies (Lord et al., 

2016; Geedipally et al., 2017) in the past. The dataset includes 4,264 segments, and the 

mean, variance, VMR, kurtosis, and the percentage-of-zeros of data are equal to: 2.26, 

45.53, 19.27, 92.8 and 56.5%, respectively. The detailed summary statistics of the two 

datasets are shown in Table 8. 
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Table 8. Summary Statistics of the Datasets Used to Evaluate the NB vs. PLN Heuristics. 

Summary Statistics Michigan Dataset Texas Dataset 

Mean 0.68 2.36 

Variance 3.15 45.53 

Standard Deviation (Sd.) 1.77 6.75 

Variance-to-Mean-Ratio (VMR) 4.62 19.27 

Coefficient-of-Variation (CV) 2.60 2.86 

skewness (skew) 7.76 7.92 

kurtosis (K) 123.59 92.67 

Percentage-of-Zeros (Z) 69.6% 56.5% 

10% Quantile 0 0 

20% Quantile 0 0 

30% Quantile 0 0 

40% Quantile 0 0 

50% Quantile (Median) 0 0 

60% Quantile 0 1 

70% Quantile 1 1 

80% Quantile 1 3 

90% Quantile 2 6 

10% Inter-Quantile 1 1 

20% Inter-Quantile 1 1 

30% Inter-Quantile 1 3 

40% Inter-Quantile 2 6 

Range 61 120 
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Table 9 and Table 10, respectively, show the recommended models for the 

Michigan and Texas data based on the proposed heuristics and the log-likelihood metric. 

While the classical metrics require the distributions to be fitted to the data before coming 

up with the model recommendation, the proposed heuristics can be used without any post-

modeling inputs and/or efforts. The decision based on the proposed heuristics solely rely 

on characteristics of data. For both datasets, the PLN distribution is the favored 

distribution to model data, based on the classical log-likelihood metric and the proposed 

heuristics. Classical metrics, such as the log-likelihood, do not give any intuitions into 

why the PLN is preferred to the NB (addressing the Goodness-of-Logic issue). On the 

other hand, the proposed heuristics come up with the model recommendation by 

considering the characteristics of data; hence, in this case, the analyst can select a logical 

distribution to model data. For example, a large kurtosis value in both datasets plays a 

substantial role in choosing the PLN over the NB.     

Table 9. Model Selection for the Michigan Data Based on the Classical Statistical Tests and 
Proposed Heuristics. 

Method NB PLN Criteria 
Favored 

Distribution 

Log-Likelihood (LL)1 -36332.85 -36117.54 LL > LL  PLN 

Decision Tree Heuristic 2 
kurtosis= 123.6 

zeros=69.7% 

kurtosis > 73.6 

zeros < 78.7% 
PLN 

Random Forest Heuristic2 Using All 22 Summary Statistics 
Using the RF 

Heuristic 
PLN 

1Requires fitting the distributions. 
2 Do not require fitting the distributions. 



 

72 

 

Table 10. Model Selection for the Texas Data Based on the Classical Statistical Tests and Proposed 
Heuristics. 

Method NB PLN Criteria 
Favored 

Distribution 

Log-Likelihood (LL)1 -7462.91 -7432.35 LL > LL  PLN 

Decision Tree Heuristic 2 
kurtosis= 92.8 

zeros= 56.5% 

kurtosis > 73.6 

zeros < 78.7% 
PLN 

Random Forest Heuristic2 Using All 22 Summary Statistics 
Using the RF 

Heuristic 
PLN 

1Requires fitting the distributions. 
2Do not require fitting the distributions. 

5.3. NB vs. NB-L Heuristics 

This section is divided into three subsections. First, the characteristics of the NB-L 

distribution is briefly reviewed. Second, Heuristics to select a sampling distribution 

between the NB and NB-L are designed using the methodology described in Chapter IV.  

Third, the proposed heuristics are evaluated using observed data. 

5.3.1. Background 

The NB-L GLM was introduced in Chapter II. Here a brief review of the NB-L distribution 

is provided. The pdf of the Lindley distribution (Lindley, 1958) is defined as: 

Lindley(v|θ) =
θ

θ + 1
(1 + v)e        θ > 0, v > 0 (34) 

The random variable y is distributed by the NB-L (ϕ, θ) distribution if (Zamani and Ismail, 

2010; Lord and Geedipally, 2011): 
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y~NB(ϕ, p = 1 − e ) and λ~Lindley(θ) (35) 

The Lindley distribution, in fact, is a mixture of two gamma distributions as follows: 

λ~
1

1 + θ
gamma(2, θ) +

θ

1 + θ
gamma(1, θ) (36) 

Therefore, the NB-L distribution can be written in following hierarchical representation: 

y~NB y ϕ, p = 1 − e  (37-a) 

λ~gamma(1 + z, θ) (37-b) 

z~Bernoulli(
1

1 + θ
) (37-c) 

The mean of the NB-L distribution is equal to (Zamani and Ismail, 2010): 

μ = ϕ
θ

(θ + 1)(θ − 1)
− 1  (38) 

Lord and Geedipally (2011) showed that the NB-L distribution performs better 

than the NB distribution when data have many zeros or characterized by a heavy (or long) 

tail. However, it is not clear, at what point the NB-L distribution should be used instead 

of the NB distribution. In this section, we use the methodology described in Chapter IV to 

design Model Selection heuristics to select the ‘most likely true’ distribution for modeling 

crash data between these two distributions. 

5.3.2. Heuristics Results 

The experiment (or simulation boundaries) was designed for datasets with the 

following range for the ‘mean’ and ‘VMR’ of the population that is the most common 
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range observed in crash data. The mean of crash data was assumed to varies from 0.1 to 

20 and its VMR from 1 to 100, as follows: 

0.1 < mean < 20 

1 < VMR < 100 

100,000 datasets (N=100,000), each with 5,000 data points (n=5,000), were simulated 

from the NB and NB-L distributions. The following Uniform distributions were used to 

simulate the NB and NB-L parameters at each iteration of the simulation: 

μ~Uniform (0.1, 20); for both NB and NB-L 

~Uniform (0,0.5) *; for NB-L 

ϕ~Uniform (0.1,10); for NB 

By simulating the mean of the NB and NB-L distributions from a Uniform distribution, 

we guarantee that the distribution of the ‘mean’ of the simulated datasets generated from 

both these distributions is uniformly distributed. For each simulated dataset the same 22 

summary statistics described in Section 5.1 were recorded.  

Two classifier methods are used in this section to partition the predictor space into 

regions that are most likely to be covered by either the NB or NB-L distributions. First, 

the Decision-Tree classifier is used for a simple and easy to interpret but less accurate 

                                                 

* Note that for situations when the value of θ is smaller than or close to 1, simulation from the NB-L 
distribution would face some numerical problems and the NB-L random variable simulator may produce 

data with an infinite value. The range of the Uniform distribution for simulating the   parameter was 

chosen in way that would avoid such numerical difficulties. 
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classification. Figure 11 shows the results of applying the Decision-Tree method to 

partition the 22-dimensional predictor space between the NB and NB-L distributions. Out 

of 22 summary statistics used for the analysis, only the ‘skewness’ of the population was 

used by classifier in the decision tree to separate the NB-L distribution from the NB*. As 

shown in Figure 11, the tree involves only one splitting rule. Starting at the top of the tree, 

it is divided into two sections based on the value of ‘skewness’. The observations that have 

a ‘skewness’ of less than 1.92 are assigned to the left branch and the ‘NB’ label is assigned 

to them. On the other hand, when the value of the ‘skewness’ is greater than 1.92, the NB-

L distribution is recommended to be used. 

 

Figure 11. Heuristic for Model Selection between the NB and NB-L Distributions (Note: tree can be 
used for data with 0.1 < mean< 20 and 1 < VMR< 100) (Reprinted with Permission from Shirazi et 

al., 2017b). 

 

                                                 

* The skewness (20), kurtosis (19), CV (18), percentage-of-zeros (15), and VMR (14), respectively, were 
found to be the most important predictors to classify the 22-dimensional predictor space between the NB 
and NB-L distributions (Note: the number in parenthesis denotes the importance rate); However, the 
‘skewness’ of the population was the only variable used by the classifier in the decision tree.    
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The classification between the NB and NB-L distributions can be seen in a binary-

classification fashion. The confusion matrix for the results of the classification problem 

can be structured as shown in Table 11. The overall misclassification error (FP+FN) is 

equal to 5.90%. The value of the sensitivity and specificity of the classification is equal to 

89.96% and 99.21%, respectively. The ROC curve based on the results of this classifier is 

shown in Figure 12. The value of the AUC is equal to 0.941. 

Table 11. NB vs. NB-L: Confusion Matrix Based on the Results of the Decision-Tree Classifier 
(Reprinted with Permission from Shirazi et al., 2017b). 

Predicted 

Actual 

NB-L  NB  

NB-L  49.64% (TP) 5.54% (FN) 

NB  0.36% (FP) 44.46% (TN) 
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Figure 12. NB vs. NB-L: ROC Plot Based on the Results of the Decision-Tree Classifier (Reprinted 
with Permission from Shirazi et al., 2017b). 

As noted in Section 5.2.2, although it is simple and easy to interpret or use, there 

are some drawbacks with the simple Decision-Tree method. Trees can be very non-robust; 

i.e., a change in the data can cause a large change in the final estimated tree (James et al., 

2013). This issue, however, can be overcome substantially by aggregating over many 

decision trees instead of contracting only one, using methods like Random Forest. The 

Random-Forest classifier improves the performance of the simple Decision-Tree method 

by applying two tricks (James et al., 2013): (1) instead of using one decision tree, the 

Random Forest method aggregates the results of fitting ‘n trees’ from ‘n bootstraps’ of the 
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training data; (2) instead of using all ‘m’ predictors, only ‘p’ predictors (usually p=√m) is 

used at a time to form each decision tree.      

The Random-Forest classifier was trained over the simulated summary statistics to 

partition the 22-dimensional predictor space. The number of trees in the Random-Forest 

method was set to 100 trees. The importance of the predictors, i.e., the importance of each 

summary statistics to predict the model label between the NB and NB-L distributions, was 

measured based on their effect in mean-decrease of two criteria: (1) Gini Index, and (2) 

Deviance accuracy (Hastie et al., 2001; James et al., 2013). Table 12 shows the importance 

of the predictors (summary statistics) to partition the 22-dimensional predictor space 

between the NB and NB-L distributions, based on these two criteria. Figure 13 and Figure 

14 show the importance of summary statistics graphically. skewness, CV, kurtosis, VMR, 

and percentage-of-zeros were the top 5 predictors that decrease the Gini index the most, 

while skewness, kurtosis, percentage-of-zeros, 40% inter-quantile, and VMR were the top 

5 most important predictors to decrease the value of the Deviance accuracy. 
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Table 12. NB vs. NB-L: Importance of the Predictors (Summary Statistics) in Partitioning the 
Predictor Space Based on the Results of the Random Forest Classifier (Reprinted with Permission 

from Shirazi et al., 2017b). 

Predictor 

(Summary Statistics)1 

Mean-Decrease 

Gini 

Mean-Decrease 

Deviance 

Skewness (skew) 22022.1 22.3 

Coefficient-of-Variation (CV) 17958.2 15.7 

kurtosis (K) 16531.2 21.5 

Variance-to-Mean-Ratio (VMR) 10470.8 16.9 

Percentage-of-Zeros (Z) 6759.7 20.6 

10% Quantile 4750.5 10.2 

Range 3913.5 10.3 

20% Quantile 3337.5 11.8 

Standard Deviation (Sd.) 2142.0 14.7 

Variance 1866.7 14.6 

40% Inter-Quantile 1710.8 18.5 

90% Quantile 1305.3 15.9 

30% Inter-Quantile 1150.1 13.7 

30% Quantile 1109.7 8.9 

40% Quantile 1041.7 8.5 

Mean 879.4 13.0 

80% Quantile 740.4 11.7 

20% Inter-Quantile 592.3 13.2 

50% Quantile (Median) 420.6 8.1 

60% Quantile 378.8 7.7 

70% Quantile 367.5 8.0 

10% Inter-Quantile 310.5 8.8 
  1 Predictors were sorted based on Mean-Decrease Gini criteria 
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Figure 13: Importance of Summary Statistics to Select a Distribution between the NB and NB-L 

Based on the Mean Decrease Deviance Accuracy Given the Results of the Random Forest Classifier. 

 
Figure 14: Importance of Summary Statistics to Select a Distribution between the NB and NB-L 

Based on the Mean Decrease Gini Index Given the Results of the Random Forest Classifier. 
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Unlike the Decision-Tree classifier, the results of the Random-Forest classifier 

cannot be shown graphically. However, the trained forest can be saved, and employed as 

a simple and convenient heuristic tool to predict the model label. This is referred to as the 

RF heuristic tool in this research. The confusion matrix for the results of the Random-

Forest classification is shown in Table 13. The overall misclassification error (FP+FN) is 

equal to 0.04%. The value of the sensitivity and specificity of the classification is equal to 

99.9% and 100%, respectively. Both the sensitivity and specificity of the classification are 

high and the proposed tool can detect the ‘most-likely-true’ distribution between the NB 

and NB-L distributions with a good precision. The ROC plot based on the results of the 

Random-Forest classifier is shown in Figure 15. The value of the AUC is equal to 0.999. 

Table 13. NB vs. NB-L: Confusion Matrix Based on the Results of the Random-Forest Classifier 
(Reprinted with Permission from Shirazi et al., 2017b). 

Predicted 

Actual 

NB-L  NB  

NB-L  50.00% (TP) 0.04% (FN) 

NB  0.00% (FP) 49.96 % (TN) 
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Figure 15. NB vs. NB-L: ROC Plot Based on the Results of the Random-Forest Classifier (Reprinted 
with Permission from Shirazi et al., 2017b). 

5.3.3. Evaluation with Observed Data 

The main goal of this section involves comparing the results of the Model Selection based 

on our proposed heuristics against the Model Selection based on traditional Test Statistics. 

Three datasets were used to accomplish this objective. The first dataset includes the single‐

vehicle fatal crashes that occurred on 1,721 divided multi-lane rural highway segments 

between 1997 and 2001 in Texas. The second dataset involves single‐vehicle roadway 

departure fatal crashes that occurred on 32,672 rural two‐lane horizontal curves between 

2003 and 2008 in Texas. These two datasets were previously used in Lord and Geedipally 

(2011) to compare the NB and NB-L distributions for data with excess number of zero 
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responses. The third dataset involve crash data collected in 1995 at 868 four-legged 

signalized intersections located in Toronto, Ontario; this dataset has extensively been used 

in other research studies (see, Miaou and Lord, 2003; Lord et al., 2008; Lord et al., 2016). 

Table 14 shows the summary statistics of these datasets.  

Table 14. Summary Statistics of the Datasets Used to Evaluate NB vs. NB-L Heuristics (Reprinted 
with Permission from Shirazi et al., 2017b). 

Summary Statistics 
Texas Rural 

Divided Multi-
Lane Highway 

Texas Rural Two‐
Lane Horizontal 

Curves 

Toronto Four-
Legged signalized 

Intersections 

Mean 0.131 0.138 11.555 

Variance 0.171 0.204 100.363 

Standard Deviation (Sd.) 0.414 0.452 10.012 

Variance-to-Mean-Ratio (VMR) 1.303 1.458 8.685 

Coefficient-of-Variation (CV) 3.149 3.258 0.866 

Skewness (skew) 3.981 5.120 1.499 

kurtosis (K) 20.481 45.255 2.312 

Percentage-of-Zeros (Z) 89% 89% 1.84% 

10% Quantile 0 0 2 

20% Quantile 0 0 4 

30% Quantile 0 0 5 

40% Quantile 0 0 7 

50% Quantile (Median) 0 0 8 

60% Quantile 0 0 11 

70% Quantile 0 0 14 

80% Quantile 0 0 19 

90% Quantile 1 1 25 

10% Inter-Quantile 0 0 4 

20% Inter-Quantile 0 0 10 

30% Inter-Quantile 0 0 14 

40% Inter-Quantile 1 1 23 

Range 4 10 54 
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Table 15, Table 16 and Table 17 show the Model Selection results based on the 

classical tests and our proposed heuristics. To estimate the Chi-square and log-likelihood, 

data should be fitted to both NB and NB-L distributions. The proposed heuristics, on the 

other hand, can be used simply before fitting the distributions, based on inputs from 

characteristics of data. As shown in Table 15 and Table 16, both classical tests and 

proposed heuristics favor the NB-L distribution to model the Texas datasets. On the other 

hand, as shown in Table 17, for the Toronto dataset, the NB distribution is the favored 

distribution between these two options. 

Table 15. Model Selection for the Texas Divided Multi-Lane Rural Highway Segments Data Based 
on the Classical Statistical Tests and Proposed Heuristics (Reprinted with Permission from Shirazi 

et al., 2017b). 

Method NB NB-L Criteria 
Favored 

Distribution 

Chi-Square (χ )1 2.73 1.68 χ < χ  NB-L 

Log-Likelihood (LL)1 -696.1 -695.1 LL > LL  NB-L 

DT Heuristic2 - skewness>1.92 NB-L 

RF Heuristic2 - Using the RF Heuristic Tool NB-L 

1Requires fitting the distributions. 
2 Do not require fitting the distributions. 
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Table 16. Model Selection for the Texas Rural Two‐Lane Horizontal Curves Data Based on the 
Statistical Tests and Proposed Heuristics (Reprinted with Permission from Shirazi et al., 2017b). 

Method NB NB-L Criteria 
Favored 

Distribution 

Chi-Square (χ )1 57.47 11.68 χ < χ  NB-L 

Log-Likelihood (LL)1 -13,557.7 -13,529.8 LL > LL  NB-L 

DT Heuristic2 - skewness>1.92 NB-L 

RF Heuristic2 - Using the RF Heuristic Tool NB-L 

1Requires fitting the distributions. 
2 Do not require fitting the distributions. 

 
 

Table 17. Model Selection for the Toronto Four-Legged Signalized Intersections Data Based on the 
Statistical Tests and Proposed Heuristics (Reprinted with Permission from Shirazi et al., 2017b). 

Method NB NB-L Criteria 
Favored 

Distribution 

Chi-Square (χ )1 74.86 615.68 χ > χ  NB 

Log-Likelihood (LL)1 -2,988.825 -3,291.933 LL < LL  NB 

DT Heuristic2 - skewness<1.92 NB 

RF Heuristic2 - Using the RF Heuristic Tool NB 

1Requires fitting the distributions. 
2Do not require fitting the distributions. 
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Unlike the classical tests that do not provide any intuitions into why a specific 

distribution is favored to the other, using the proposed heuristics, the analyst can select a 

distribution that is most suitable based on the characteristics of data, reflected into the 

descriptive summary statistics. For instance, the value of the skewness plays an important 

role to select the NB-L distribution for the two Texas datasets (large skewness) and the 

NB distribution for the Toronto data (small skewness).  

5.4. Chapter Summary 

This chapter documented the application of the methodology described in Chapter IV to 

investigate under what circumstances the PLN is preferred over the NB, and vice versa, 

based on characteristics of data, reflected in the summary statistics. A decision tree was 

constructed and proposed as simple heuristics to select a distribution between these two 

alternatives. The kurtosis and percentage-of-zeros were the only summary statistics used 

by the classifier in the decision tree. Although Decision Tree classifiers are non-robust 

and potentially provide different tree splits, the results shown in Figure 6 can be used by 

practitioners as useful guidelines for selecting a “most-likely-true” sampling distribution 

between the NB and PLN. A Random Forest classifier was used to design a more accurate 

tool to select a distribution between these two options. As a by-product of a Random Forest 

classifier, the summary statistics can be ranked by their importance. Among the 22 types 

of summary statistics used in the analysis, kurtosis, skewness and the percentage-of-zeros 

were found the most important and critical summary statistics to select a model between 

the NB and PLN.  
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Next, the methodology was applied to propose heuristics to select the ‘most-likely-

true’ distribution between the NB and NB-L distributions. First, a Decision-Tree classifier 

was employed to design a simple decision tree to choose between the NB and NB-L 

distributions. The skewness of data was the only predictor used by the classifier in the 

decision tree among all the 22 summary statistics that were included in the analysis to 

distinguish these two distributions. Next, a Random-Forest classifier was applied to design 

a more accurate Model Selection tool (or heuristics). skewness, CV, kurtosis, VMR, and 

percentage-of-zeros were among the most important summary statistics needed to choose 

between the NB and NB-L distributions, based on the results of the Random-Forest 

classifier. The next chapter documents the highlights of the research accomplished in this 

work and provides avenues for further research. 
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CHAPTER VI  

SUMMARY AND FUTURE RESEARCH AVENUES 

This dissertation contributed to the crash data modeling by (1) documenting characteristics 

of a flexible model using a mixture of the NB and a random distribution characterized by 

Dirichlet process, and (2) Proposing a methodology to design characteristics-based 

heuristics to select a sampling distribution between potential alternatives. This chapter is 

divided into two parts. First, the dissertation effort is summarized and the key findings are 

documented and discussed. Second, a few avenues for further research are explained. 

6.1. Dissertation Summary  

Chapter II documented the characteristics of the NB-DP (or NB-TDP to be exact) GLM 

framework for analyzing count/crash data. As noted in Chapter II, the recurring theme in 

most statistical models to analyze count/crash data include considering a mixing 

distribution at the heart of the generative model to obtain a greater degree of flexibility. 

The shape of the mixing distribution, the mixture weights, and the level that the 

hierarchical model is constructed are the three major ingredients used by statisticians to 

provide flexibility in modeling. In most mixture models, the analyst have certain assertions 

about the mixture ingredients. Using a random mixing distribution, however, is one way 

to incorporate flexibility in modeling while not overly concerned about characteristics of 

the mixing distribution. Dirichlet process (DP), a widely used prior in Bayesian 

nonparametric (semiparametric), allows such representation. Each draw from the DP is a 
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random distribution itself. Hence, using DP, instead of being constrained to a particular 

shape or distribution, a random distribution will be used at the heart of a generative model.  

The proposed NB-DP model can be thought in context of the Bayesian hierarchical 

modeling framework, where the mixed effects in NB GLM are given a flexible distribution 

that follows the Dirichlet process. The NB-DP model allows a greater degree of flexibility 

to the model to capture the variation in the data as well as handling issues with datasets 

that are characterized by a long tail and/or include many zero observations. In addition to 

a greater flexibility, there is one more added advantage to the NB-DP (or NB-TDP to be 

exact). While modeling data, the NB-DP model partitions the data points into finite 

number of clusters. The clustering information provides further insights about the domain 

or data. As such, the safety scientist can obtain a better understanding about the 

unobserved variables, identify safety issues or decide on countermeasures.  

In Chapter III, the NB-DP was applied to study two observed datasets, one 

collected in Indiana and the other one in Michigan. Both datasets were characterized with 

a long (or heavy) tail. In addition, about 36% of the locations in the Indiana dataset, and 

70% of locations in the Michigan dataset did not experience any crash. The NB-DP GLM* 

was applied to the both datasets, and the modeling results were compared with the results 

obtained from the NB and NB-L GLMs. The modeling results indicated that the NB-DP 

offers a greater flexibility and a better fit compared to the NB model. The DIC value for 

the NB-DP model was better than the NB-L model when the models were used to fit the 

                                                 

* The model applied using a lognormal distribution for the DP base distribution. 
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Indiana data, while the DIC of the NB-L outperforms the NB-DP for the Michigan dataset. 

It was concluded that while the NB-L may work better with datasets with many zero 

observations, the NB-DP is more flexible to capture the dispersion in data, especially when 

the highly dispersed dataset is characterized by a long tail, but smaller percentage of zero 

observations. However, still further research is needed to better examine the NB-DP and 

NB-L using various other datasets. In addition, the NB-L and NB-DP should be examined 

when other distributions are considered instead of the DP base distribution to conclude a 

better comparison between the NB-L and NB-DP under different scenarios.  

Chapter IV documented a novel approach to design characteristics-based heuristics 

to select a sampling distribution among competitive alternatives given a few selected 

summary statistics of data. Using this method, the Model Selection problem is treated as 

a classification problem. The keys to this approach are (1) simulating datasets that closely 

represent the population under consideration and recording the summary statistics of each 

dataset, and (2) training a classifier over the summary statistics to learn the patterns in the 

data to discriminate one distribution from another. The proposed heuristics, once designed, 

can come up with the model recommendation without any post modeling inputs. In 

addition, unlike the most common GoF statistics or statistical tests, the designed heuristics 

can address the classical issue of Goodness-of-Logic.  In summary, the proposed heuristics 

have the following key characteristics: 

 Unlike the Goodness of Fit (GoF) statistics or typical statistical tests, these 

heuristics examine the characteristics of data – addressing the classical issue of 

Goodness of Logic (GoL) – to provide model recommendations. 
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 They can be used before fitting the distributions since only the characteristics of 

data, in terms of the summary statistics, are considered to come up with the model 

recommendation. 

 They can be used as quick characteristics-based guidelines for the safety analysts 

or practitioners to select a model between the potential alternatives. 

 The complexity of the potential alternatives is considered implicitly in such 

Model Selection perspective. 

 They can be used as quick heuristics when the analyst deals with high velocity of 

big data and prompt Model Selection decisions are needed periodically. 

Chapter V documented the application of the methodology described in Chapter 

IV to design heuristics to select a logical distribution between (1) the NB and PLN 

distributions, and (2) the NB and NB-L distributions. The NB and PLN distributions are 

the most popular and commonly used sampling distributions by safety analysts and 

practitioners (Lord and Mannering, 2010), mostly due to their simplicity, while the NB-L 

is a promising distribution to model crash data especially when the datasets are 

characterized by a long tail or many zero observations. The following points summarizes 

the results and the key findings: 

 NB vs PLN: A decision tree was constructed to select a logical distribution 

between the NB and PLN. The results are shown in Figure 6. Although Decision-

Tree classifiers are non-robust and may result in different tree splits in different 

experiments, Figure 6 can be used by safety analysts as useful characteristics-based 
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guidelines to select a sampling distribution between the NB and PLN. The overall 

results indicated that the PLN distribution should be used when data are more 

skewed but have less percentage of zero observations, while the NB distribution is 

likely a true distribution otherwise. Next, a Random Forest classifier was used to 

design a better heuristic. Although the results of a Random Forest classifier cannot 

be shown graphically, the trained forest can be saved and be used as 

characteristics-based heuristics to decide between the NB and PLN. The Random 

Forest classification indicated that between the 22 types of summary statistics used 

in the analysis, kurtosis, skewness and the percentage-of-zeros are among the most 

critical summary statistics to choose a sampling distribution between the NB and 

PLN.  

 NB vs. NB-L: A Decision-Tree classifier was employed to design a simple 

decision tree to choose a distribution between the NB and NB-L. Figure 11 

indicates the results. The skewness of data was the only summary statistics used 

by the classifier to discriminate these two distributions. Next, a Random-Forest 

classifier was applied to design a more accurate Model Selection tool (or 

heuristics) between these two distributions. The Random Forest classification 

indicated that the skewness, CV, kurtosis, VMR, and the percentage-of-zeros are 

among the most important summary statistics (or predictors) required to select a 

logical distribution between the NB and NB-L. 
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6.2. Future Research Avenues 

In this section, a few potential avenues for further research are explained. This section is 

divided into three parts. The first part describes the detailed steps of designing a simulation 

study to explore the performance of various models, under different scenarios that 

characterizes the mean, variance, and percentage of zeros of data. The second part explores 

an alternative NB-DP model when the DP base distribution follows a Lindley distribution. 

The third part describes a few avenues to extend the research for the Model Selection 

heuristics. 

6.2.1. Simulation Analysis 

Simulated data are often used to evaluate the performance of different modeling 

approaches under different scenarios. Since the analyst has a better control over the input 

and output of analysis, simulation studies, often, result in better or much reliable 

conclusions. In addition, the analyst can explore and analyze a wider range of scenarios. 

In most simulation studies in highway safety, a few positive independent variables are 

simulated from a known distribution (such as the lognormal distribution). Next, the crash 

data are simulated from a given distribution (such as the NB distribution) for a range of 

scenarios. Then, the simulated data can be altered to obtain the desired data needed for 

each analysis. After preparing the required data, alternative models are used to model the 

simulated data. The modeling results, then, are evaluated based on different metrics such 

as GoF statistics.  
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In this study, it was shown that the NB-TDP model outperforms the NB model 

when data has many zeros observations and/or is characterized by a long tail, using two 

observed datasets. The experiment with two observed data indicated that the NB-L and 

NB-DP perform similarly when data include many zero observations while NB-DP can be 

a better alternative when data are characterized by larger variation or include a few large 

or unusual numbers that could cause a long tail. However, it is not clear under what 

conditions (e.g. number of zeros, mean, or dispersion), the NB-DP outperforms the NB-

L. A simulation study can be designed to investigate the answer to this question. Potential 

scenarios to investigate are described below: 

 Low mean (µ=0.5), moderate mean (µ=5) and high mean (µ=10), 

 Low, moderate and high dispersion. 

 Different percentage of zero responses. 

The following simulation protocol can be used to simulate data and evaluate the 

performance of different models. 

Step 1: Simulating the Original Simulated Dataset 

1.1 Fit an NB GLM to a known dataset (say the Indiana dataset). Record the 

estimated coefficients for variables. 

1.2 Set the size of the original simulated dataset to a large number (say 50,000). 

1.3 Simulate a few independent variables (use the lognormal and Bernoulli 

distributions for simulating continuous and binary variables, respectively). 

1.4 Adopt the model intercept to reach the desired mean for simulated data. 
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1.5 Find the mean of the NB distribution at each site (μ ) given the estimated 

coefficients in Step 1.1, simulated data in Step 1.3 and adopted intercept in 

Step 1.4. 

1.6 Set the value of inverse dispersion parameter (φ) to desired value. φ=0.5, 2 

and 5 respectively denote high, medium, and low dispersion.  

1.7 Simulate a dataset with 50,000 data points from the NB GLM using 

simulated μ  in Step 1.5 and φ in Step 1.6.  

Step 2: Split the original Data into two Datasets one with all zeros and the other with no 

zero observation 

2.1 Put the data points with zero observation in D1 and data points with 

observations that are greater than zero in D2. 

Step 3: Sampling: generate data with the desired zero percentage. 

3.1 Set the size of the test dataset to N=1,000. 

3.2 Set the percentage of zeros to Z (%). (Z=20%, 30%, 40%, 50%, 60%, 70% 

80%, 90%). 

3.3 Randomly sample N× Z% data points from D1 dataset and N× (100-Z)% 

data points from D2 dataset. 

3.4 Merge data sampled in Step 3.3 together, and shuffle the combined dataset.  

3.5 Run NB//NB-L and NB-DP for the dataset generated in Step 3.4 and record 

the DIC and other GoF metrics. 

3.6 Evaluate the models based on the value of the different metrics collected in 

Step 3.5 
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6.2.2. NB-DP with Lindley Base Distribution 

As noted in Chapter II, the model in Equation (20) can be referred to as a modeling 

framework, since different distributions can be considered instead of F (. |θ). In this 

dissertation, a lognormal distribution was used instead of F (. |θ) assuming that the frailty 

terms on average follow a lognormal distribution a priori. Given the superior performance 

of the NB-L GLM when data have many zero observations, one interesting option to 

explore is to consider a Lindley distribution instead of F (. |θ). Equation (40) indicates 

this model.     

y |v μ , ϕ~NB(v μ , ϕ) (40-a) 

γ |τ~Beta(1, τ) , k = 1,2, . . , M (40-b) 

ψ | θ ~ Lindley (θ),    k = 1,2, … . , M (40-c) 

p = γ (1 − γ ),     k = 1,2, … , M (40-d) 

v ~F (. ) (40-e) 

F(. )~ TDP(τ, M, Lindley (θ)) ≡ p δ  (40-f) 

ln(μ ) = β + β x  (40-g) 

The simulation protocol explained in the previous section can be used to explore 

advantages of this model compared to the model that the lognormal distribution is assumed 

as the DP base distribution.  
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6.2.3. Further Research in Model Selection Heuristics 

In this dissertation, we proposed a method to select a logical distribution between potential 

alternatives to model crash data. There are a few avenues to improve or extend the 

proposed approach: 

 As noted in Chapter I, substantial efforts have been placed to propose various 

distributions and models to model crash data over the last decade (Lord and 

Mannering, 2010; Mannering and Bhat, 2014). In this dissertation, we proposed 

heuristics to select a logical distribution between the NB and PLN as well as the 

NB and NB-L. In the future, it is worth to extend the proposed methodology to 

design heuristics for other common distributions documented in Lord and 

Mannering (2010). 

 In this study, the proposed Model Selection approach was focused on univariate 

distributions, which form the sampling distributions of much complex generative 

models, such as the NB mixture with the Dirichlet process (NB-DP) or other 

parametric or semiparametric generalized linear models (GLMs). “How can we 

incorporate the covariates into the Model Selection problem?” would be a relevant 

to help in applying the above procedure in GLM scenarios. If any distributional 

assumptions on the covariates are made, then it is plausible to extend the present 

work by augmenting the summary statistics of the dependent variable with the 

independent variables. However, model misspecification and issues like 

heterogeneity (Mannering et al., 2016; Behnood et al. 2014; Shirazi et al., 2016b) 
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could be difficult to handle, but would be an interesting avenue to explore. The 

key to succeed in such settings involves recognizing and including relevant 

summary statistics, not only about observations but also the covariates, as well as 

the interactions between them. For instance, the correlation between covariates and 

the response variable is deemed to be a key factor (Shirazi et al., 2017b).  

 In this dissertation, the effect of the sample size on proposed heuristics was ignored 

assuming that the sample-size is large. However, the size of the dataset can be a 

critical factor itself to select one distribution over another. As such, Lord and 

Mannering (2010) suggested using the PLN distribution over the NB when data 

are characterized by small sample size and sample mean, due to the potential 

biased estimation for the NB dispersion parameter. Further analysis in context of 

heuristics is needed to consider the effect of the sample-size (Lord, 2006, Shirazi 

et al., 2016a, Shirazi et al., 2017a) on proposed heuristics. 
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