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ABSTRACT 

 

Improvements in fiber quality phenotyping methods such as High Volume 

Instrumentation (HVI) and Advanced Fiber Information System (AFIS), have increased breeders 

ability to detect superior fiber quality; however, this also suggests that potential sources of 

superior fiber quality prior to the use of HVI and AFIS may have been overlooked. The purpose 

of this dissertation is to explore gains made in fiber quality according to HVI and AFIS, the 

stability of these fiber traits, and the feasibility of using genomic prediction to tap into potentially 

unexploited sources of variation for fiber quality traits.  

Genetic gains for HVI and AFIS fiber traits were analyzed using a population of 63 

cultivars from the obsolete US improved cotton cultivar collection that represents the past 100 

years of breeding efforts in the. All HVI and AFIS traits evaluated made statistically significant 

gains except for Length by number coefficient of variation, micronaire, and fineness. The 

statistically significant percent gains per year ranged from 0.267% to 0.025%. Many traits AFIS 

traits showed gains even though direct selection pressure was likely not applied for these traits, 

so it is inferred that these gains arose through correlations indicating genetic variation for traits 

unexploited.      

HVI traits and AFIS traits evaluated were highly stable across irrigated and dry 

environments tested in Corpus Christi and Weslaco, TX in a population consisting of germplasm 

from obsolete US improved cotton cultivar collection and germplasm with superior fiber quality 

developed by the Texas A&M Cotton Improvement Laboratory. It was found that selection for 

these traits in any environment would result in a similar list of genotypes.  
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Genomic prediction was performed using a population of consisting of germplasm from 

the obsolete US cotton cultivars collection and germplasm developed for superior fiber quality 

from the Texas A&M Cotton Improvement Laboratory. Prediction accuracies within the obsolete 

US cotton cultivars ranged from 0.24-0.56 for HVI and AFIS traits, and variation explained was 

less than previously reported heritabilities. Prediction accuracy for yarn quality was determined 

using a selection index created from HVI and AFIS parameters and correlated to yarn work-to-

break. Accuracy was determined to be 0.36.  
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1. INTRODUCTION 

 

US cotton breeding efforts must keep pace with current demands in cotton fiber 

quality if US cotton is to remain competitive in the global textile market. These demands 

come from the improvement of spinning technologies which require longer and stronger 

fibers for expanded textile portfolios, and faster and more rigorous processing. Current 

phenotyping advancements, such as High-Volume Instrumentation (HVI) and Advanced 

Fiber Information System (AFIS), allow breeders to rapidly and objectively quantity fiber 

quality traits. However, these technologies are recent in the scope of over a hundred years of 

breeding efforts in US cotton. Many previous methods of analyzing fiber quality were 

limited to subjectivity, length of time to phenotype, or lack of resources to implement widely 

into selection platforms. It is possible many sources of fiber quality variation remain 

unexploited.  

As genomic technologies advance, Plant breeders are provided with new tools to 

facilitate selection of favorable alleles. Genomic prediction is one such tool that utilizes 

molecular markers to detect genetic variation for the prediction of phenotypic performance. 

It is different from more traditional QTL analysis in that it is a multi-variate method, and 

allows for evaluation of multiple marker effects simultaneously (Meuwissen et al., 2001). 

This technique has application when genotyping is more affordable than phenotyping, and 

more recently has showed promise in identifying favorable alleles in germplasm collections 

(Yu et al., 2016; Thorwarth et al., 2018). 
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Upland cotton has a narrow germplasm base, which could allow for elite breeding 

programs to tap into unexploited standing variation within obsolete cultivars without taking 

as much of a yield drag associated with crosses to more unadapted germplasm. Developing a 

training population that represents the U.S cotton obsolete variety collection and 

phenotyping it using the latest high-quality fiber analysis techniques - HVI, AFIS, and mini-

spin will allow breeders to use phenotyping techniques that are much too costly and time 

consuming to evaluate this collection in its entirety. Genomic prediction will allow for the 

calculation of predicted phenotypic values within the collection, and the selection of fiber 

quality alleles which may have been overlooked in the past. The narrowness of the 

germplasm in this collection is ideal for use in genomic prediction, as relatedness is 

important in prediction reliability. This would allow breeders to rapidly develop higher fiber 

quality cultivars that are an important priority for producers.  

The following are evaluated in this dissertation: the gains made in cotton fiber 

quality, the stability of fiber quality traits, and the feasibility and application of genomic 

prediction for fiber quality. The genetic gains study reports the gains made in HVI and AFIS 

traits in the last 100 years of US cotton breeding efforts. This will allow for the evaluation of 

potential unexploited variation for fiber quality traits in the obsolete US cultivar germplasm 

collection. The stability study of HVI and AFIS traits will ascertain the feasibility of testing 

a population in limited environments while maintaining the ability to select accurately. The 

genomic prediction study will provide insights into the use of a modern molecular marker 

platform in genomic prediction for cotton fiber quality.  
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2. REVIEW OF THE LITERATURE  

 

By the beginning of the 20th century the cotton produced in the United States 

predominantly originated from accessions brought over in the early 1800s from the Mexican 

Highlands. Cultivation techniques during the time of introduction were limited in terms of 

insecticide, and farms were small allowing for fields to be surrounded by abundant natural 

habits. This resulted in more prolific pollinators, allowing for high rates of cross pollination. 

Selection of this material was mainly mass selection, as farmers went through their fields 

and selected bolls from the best plants for the subsequent planting years. Through this form 

of selection, distinct cultivars began to develop across the United States, and even more so 

as the art of plant breeding became more defined in the latter part of the nineteenth century 

(Smith et al., 1999). These early U.S. cultivars were Gossypium hirsutum, or upland cotton.  

Upland cotton, an allotetraploid (2n = 4x = 52), was formed during a polyploidization event 

1-2 mya from the joining of two diploid genomes: The A-genome Gossypium arboreum with 

the D-genome Gossypium raimondii (Wendel et al., 2009). Although the D-genomes 

progenitor is non-fiber producing, it is attributed with the majority of fiber quality alleles 

(Rong et al., 2007). The Mexican Highland introduction showed lots of phenotypic 

variation; however, U.S. Upland cotton has a very narrow genetic diversity according to 

molecular studies (Iqbal et al., 2001; Lubbers and Chee, 2009 and references therein).  

2.1. Population Structure of U.S. Improved Cultivars 

Population structure analyses of U.S. improved cultivars have been conducted using 

both SSRs and SNPs. Tyagi et al. (2014) reported a structure analysis conducted on 378 
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cultivars representing 14 cotton producing states, with material releases spanning from 1900 

to 2005. This study used 135 SSRs that were developed within the population to best 

identify the genetic variation. Hinze et al. (2016) reported a structure analysis conducted on 

372 U.S. improved cultivars using SSRs. This population was selected to represent four 

historical and geographical growing regions throughout the United States. This study used 

105 SSR markers that were developed by Yu et al. (2012) from a reference panel of various 

Gossypium species to characterize genetic diversity. The most recent study to analyze 

population structure of U.S. improved cultivars was completed by Hinze et al. (2017), and 

used SNPs as opposed to the SSRs used in the previous studies. Utilizing the CottonSNP63K 

array (Hulse-Kemp et al., 2015), this study genotyped 185 U.S. improved cultivars and 

26,324 SNPs. In the SSR studies, STRUCTURE (Prichard et al., 2000) was used to evaluate 

population structure, and in the SNP study, fastSTRUCTURE (Raj et al., 2014) was used. 

The software fastStructure uses efficient algorithms for approximate inference of the model 

underlying the STRUCTURE program using a variational Bayesian framework, and was 

developed to handle large genetic datasets (Raj et al., 2014).  

 In all studies, genetic variation was limited, but the SSR studies detected significant 

population structure whereas the SNP study did not. In both SSR studies, five 

subpopulations were identified that best described the genetic population structure, and were 

reported to roughly correspond to four geographical U.S. breeding regions: eastern, 

midsouth, western, and plains. It is interesting that SSRs were able to detect significant 

population structure and the SNPs were not, considering there are many folds more SNPs 

used in the analysis than in the SSR analyses. In Maize, SSRs are better at assessing 
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relatedness than SNPs at similar numbers of markers, but SNPs can be just as informative or 

more informative when their number exceeds the SSRs by some magnitude (Hamblin et al. 

2007, Inghelandt et al. 2010). This is attributed to more polymorphism in an SSR due to 

more alleles per locus. The question from the cotton population structure studies is: Are the 

SSRs better at detecting population structure or is the detection of significant structure in the 

SSR studies the result of a sampling bias due to the small number of SSRs used? In the 

Tyagi et al. (2014) and the Hinze et al. (2016) study, 135 and 105 SSRs were used 

respectively, however; the method of development of SSRs was different for each study. As 

mentioned earlier, the set of SSRs from Tyagi et al. (2014) were developed to characterize 

genetic variation within the population. This could be seen as bias in the selection of the 

markers. However, the Hinze et al. (2016) study used SSRs developed from a separate 

reference population, and both studies showed the same results with the detection of 5 

subpopulations. This lends credibility to the argument that the SSRs are better at detecting 

population structure than SNPs, because even though there over 26,000 more SNPs, the 

SSRs were able to detect populations structure. However, it is important to note that the SSR 

studies had twice as many individuals in the analyses as the SNP study. With more 

individuals in the population, this could lead to better representation and therefore separation 

of the subpopulations in the analyses. It is reported in the Tyagi et al. (2014) study that only 

half of the 378 cultivars used could be assigned to the five subgroups at a 70% membership 

threshold. Hinze et al. (2017) directly compared SSRs to SNPs for a subset of the material. 

There were 123 cultivars that were genotyped using the 105 SSRs and the 26,324 SNPs. 

Jaccard similarity matrices were calculated using both marker platforms and compared using 
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Mantel’s correlation r statistic. Mantel’s r was determined to by 0.509 indicating a positive 

but weak relation between the two matrices. The 123 cultivars used in this comparison were 

made up of 80 U.S. improved cultivars, and the rest were improved Gossypium hirsutum 

cultivars developed in other countries. In order to determine which platform is better at 

detecting a structure, a more direct analysis will need to be conducted in the future.  

2.2. Selection for Fiber Quality 

 Selection for fiber quality has varied through the years based on resources, and 

standardization protocols available to the breeder. Prior to standardization, fibers were likely 

still selected for, but the protocols used were respective to the breeder. It is likely breeders 

phenotyped fiber quality subjectively in the field, and by physically pulling on fibers to test 

for strength and judge length; however, these methods were highly subjective, and can be 

affected by the environment. A history of the standardization of fiber phenotyping methods 

is described in Ramey (1999). In summary, cotton staple length wasn’t standardized until 

1918 by the Cotton Futures Act. This was performed by a “pull” test, in which the fiber went 

through a process of pulling, lapping and discarding to develop a sample that was then 

measured. Although standardized, this method was still subjective. A mechanical test for 

fiber strength was implemented by Chandler in 1926. In this method, a combed bundle of 

fiber was wrapped and broken in a machine that could measure breaking strength. Using a 

cross sectional measurement of the wrapped fiber bundle and the breaking strength, tensile 

strength per square inch was determined (Richardson et al., 1937). The “gold standard” of 

fiber length and length distribution measurements was developed in 1932 called the Suter-

Webb sorter. This was a series of combs that allowed a highly skilled technician to slowly 
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comb out individual fibers and place in a length distribution (Webb, 1932). This was a 

tedious, slow task that was not efficient for use of screening large amounts of material in 

breeding programs. A more rapid length measurement technique was developed in 1940 

called the fibrogram, which takes a fiber beard, brushes it and passes it through a beam of 

light, and a sensor measures the light that passes through the sample. This information is 

utilized in the calculation of fiber length parameters in raw bundle fiber cotton samples 

(Hertel, 1940). The Stelometer was developed in 1953. This instrument utilizes a sample 

from a fibrogram beard and places it into a pendulum-style machine that accurately 

measures both strength and elongation (Hertel, 1953).  

The measurement for micronaire was developed in Lord (1956). The limitation of 

micronaire is the confounding of the variables fineness and maturity. The measurement is 

Krozney’s application of Darcy’s Law, with air flow through a bundle of fibers being 

inversely proportional to the specific surface of individual fibers in the sample, which in turn 

is directly proportional to maturity and fineness of cotton fibers. Micronaire is used in 

determining value of cotton, with measurements outside the range of 3.5 – 4.9 units 

discounted (Ramey, 1999). A low micronaire can be due to immature fibers, which are bad, 

or fine fibers, which are good, and a high micronaire can be due to mature fibers, which are 

good, or coarse fibers, which are bad (Hequet et al., 2006).  

High Volume Instrumentation (HVI) combined many measurements on a single, 

prepared bundle of fibers and was developed in 1968, but wasn’t widely implemented by 

either private or public breeding programs until the 1980s. HVI analyzes a bundle of fibers 

that is taken from each sample of a given weight. The list of traits characterizable by HVI 
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has evolved over the years, but now often includes length, length uniformity, strength, 

elongation, color, and micronaire. Advanced Fiber Information System (AFIS) was 

developed in the 1990s, and measured fiber properties on an individual fiber basis. In this 

system, individual fibers are blown across a beam of light, and sensors determine the light 

blocked and the time it take for the fiber to pass the beam. From this, fiber length 

distributions, seed coat neps, maturity, and fineness can be determined. AFIS doesn’t 

measure strength and elongation as with HVI, but AFIS does give more insight into fiber 

length properties and separates the confounding variables of micronaire, by measuring both 

maturity and fineness (Hequet et al., 2006). An advantage to length measurements in AFIS 

as opposed to HVI is in measuring short fibers. HVI uses a clamp that grabs the fiber 

sample, and many of the short fibers do not protrude far enough to be detected (Kelly et al., 

2015). AFIS sends the fiber through a beam using airflow, therefore not impeding short fiber 

measurements. AFIS is still considered high-throughput, but does require more time for 

sample preparation and is more expensive than HVI. 

2.3. Genetic Gains in Fiber Quality 

The U.S. improved cultivar collection represents over 100 years of breeding efforts. 

The methods of evaluating and selecting these cultivars based on fiber quality has evolved 

over time to the current methods of HVI and AFIS. As mentioned, HVI is used widely 

across every step in the breeding pipelines; however, AFIS is not. It is difficult to look 

through historical records to look at the gains made in fiber quality before the wide-spread 

use of HVI to do a comparative analysis, as phenotyping methods have varied and contained 

a degree of subjectivity. In 1936, Brown reported recognized standard commercial cotton 
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cultivars at the time. In this report, he identified information on where the cultivar 

originated, year it was selected, and ranges for both length and lint percent. There is no 

description of the methods used to identify how the values were determined, but it is likely 

reported from the breeders. Length was likely determined according to “pull” test as this was 

common for this time period. The paper reports on 28 upland cultivars that were selected 

from 1890 to 1931. The lengths range from 19.05 mm to 34.93 mm, and lint percent ranges 

from 31 to 45. When taking the data from this report and imputing into a linear regression 

model with year, there is no significant gains in either lint percent or length; however, there 

is a strong negative correlation between the two traits at -0.56, which is corroborated in a 

more direct analysis of this time period at -0.45 (Dunlavy, 1923). In general, selection for 

yield has negative effect on fiber quality (Miller and Rawlings, 1967). In looking at gains 

over time, Bridge et al. (1971) describes a comparative analysis of cultivars released from 

1922 to 1944 with three more recent cultivars released from 1959 to 1966. Cultivars were 

chosen based on their relative commercial importance at the time they were grown. This 

study concluded that emphasis for selection was placed on yield during this time period, as 

the cultivars from 1959 to 1966 performed much better than the older cultivars. Fiber 

properties such as length and strength were lagging in gains as many of the older cultivars 

were equivalent or possessed higher fiber quality. Bridge and Meredith (1983) reported a 

similar study again 12 years later using eleven of the same cultivars from the 1971 study, but 

adding more recent lines respective to publication, and one older line from 1910 for a total 

of 17 cultivars. The results were similar to the previous study, but they did report that the 

1910 variety had far inferior fiber length and strength. This was attributed to selection for 
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early maturing cultivars in that time period. Culp and Green (1992) conducted a study 

comparing both commercial and Pee Dee germplasm spanning from 1945 to 1978 to test for 

yield and fiber properties gains. Twenty-nine cultivars were chosen based on their 

performance in Southeastern yield trials and commercial production in South Carolina. They 

reported similar gains in yield to the Bridge and Meredith (1983) and Bridge et al. (1971) 

studies. In terms of fiber quality, they did not report overall gains, but did mention they were 

able to move fiber strength alleles forward in the program along with yield alleles. They 

attributed this to Beasley’s Triple Hybrid (Beasley, 1940). Triple Hybrid has been attributed 

throughout the literature to breaking some of the negative linkage between strength and 

yield, and was incorporated into many breeding programs (Green and Culp, 1990; Bowman 

and Gutierrez, 2003; and Bowman et al., 1996). Although many of these studies report the 

negative correlations between yield and fiber traits, there are reports of simultaneous gains 

for both yield traits and fiber quality traits. Bayles et al. (2005) reports gains in yield, length, 

and strength when looking at 12 cultivars released through the Oklahoma Agriculture 

Experiment Station from 1918 to 1982, and Schwartz and Smith (2008) reported gains in 

length and strength from 9 cultivars released from 1905 to 2002. Campbell et al. (2011) 

described gains in the Pee Dee program using 82 released cultivars from the 1980s to 2001. 

They report an increase in yield gains, but a decrease in fiber length and strength gains over 

time. This may be due to the fact that early efforts of the program where directed at 

increasing fiber quality traits but priority shifted to yield as the program evolved. The 

negative correlations between the traits are attributed to the decreasing in fiber quality over 

time. In this study, cultivars were separated into groups representing different breeding 
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cycles over time. Although it was found that fiber properties decreased over time, it was also 

found that the rate slowed through different breeding cycles. It was concluded that this 

supports the idea that negative correlation between fiber quality and yield is due to linkage 

and not pleiotropy, which supports earlier breeding strategies of intermating and 

backcrossing to breakup negative linkage to develop favorable genotypes for both traits 

(Miller and Rawlings, 1967; Meredith, 1977).  

As discussed, there are many conflicting reports of gains in fiber properties within 

the literature. It seems that these studies are subject to the populations used and the time 

periods evaluated. Many of the studies used a small number of diverse cultivars over varying 

time periods, and other studies evaluated gains from cultivar releases within specific 

programs. This makes it difficult to draw comparisons between the studies, and may lead to 

the differing conclusions, as populations were selected using different phenotyping 

platforms throughout time. Schwartz and Smith (2008) suggested inconsistencies in gains 

may be due to the ‘unavailability of objective measurement technology combined with the 

difficulty of integrating these genes into genotypes with other, more valuable traits, and the 

lack of economic incentive to do so.’ Whatever the causes for the inconsistency in gains, the 

variation and availability of high quality fiber phenotyping platforms leads to the hypothesis 

that there are potentially unexploited fiber quality alleles in historical U.S. obsolete cultivars.  

2.4. Stability of Fiber Quality Traits 

 There is a large genetic component for fiber quality traits from both HVI and AFIS 

and indicated by high heritabilities and is well documented (Braden and Smith, 2004; 

Dabbert et al., 2017; Hugie et al., 2017; Zeng and Bechere, 2017). Many studies have been 
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conducted to look at the interactions of genetic variation with environmental variation 

(GxE). This is important, as it determines the strategies a breeder uses for test site evaluation 

and selection. Geng et al. (1987) conducted a study evaluating 43 cotton cultivars from over 

18 years of breeding trails. Fiber phenotype data was taken for different length parameters, 

uniformity, and strength and was combined in an index to determine a quality score. This 

study reported that the trait quality score tended to be more stable with newer cultivars, and 

that as varieties with a higher quality score tend to be more stable. This leads to the idea that 

breeders can simultaneously improve fiber quality and stability.  

 Campbell and Jones (2005) described 8 commercial cultivars grown over 4 years at 5 

different sites throughout South Carolina for stability. Fiber data was analyzed using HVI. A 

large GxE for yield and strength, but not for other HVI traits. This study found a similar 

trend to the Geng et al. (1987) study, and reported that lower performing cultivars regarding 

strength were more variable across the environmental index. Geng et al. (1987) did not look 

at strength specifically, but did include strength in the quality score. Campbell and Jones 

(2005) found that the other HVI traits did not have a large GxE component. This indicates 

that Geng et al. (1987) result may be due strength. 

 Campbell et al. 2012 conducted a study looking at 82 released cultivars from the Pee 

Dee breeding program from 8 different breeding cycles, and analyzed fiber quality using 

both HVI and AFIS. They report GxE that the proportion of the sum of squares for GxE to 

the total sum of squares is significant for uniformity, micronaire and fineness. However; 

when dissecting GxE for the different breeding cycles they report that GxE is more 

significant for magnitude rather than rank changes, and that quality performance is generally 
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a stable trait. This is repeated by Ng et al. (2013), who conducted a study looking at the 

stability of cultivars selected for upper half mean length and strength. They found that these 

traits were highly stable, and had a high repeatability.  

 In evaluating these studies, there appears to be potential problem in selecting on 

obsolete cultivars for fiber strength. According to Geng et al. 1987 and Campbell and Jones 

(2005), varieties with lower strength have more variation across environments, which could 

affect values calculated from a combined analysis. This would cause a problem if the values 

were the desired outcome of the study; however, if selection of top individuals were the 

desired outcome of a study, then this may be fine as long as the top selected cultivars are of 

high enough value to be stable.  

2.5. Genomic Prediction 

 An important role of a successful breeder is to identify, create, maintain, and exploit 

genetic variation through efficient selection platforms to develop improved cultivars. As 

time has gone by, the tools available to a breeder to accomplish this task have evolved. 

Traditionally, phenotypic variation and pedigree information are used to infer genetic 

variation. Henderson (1984) developed mixed model equations for estimation of Best Linear 

Unbiased Predictors (BLUP) for offspring performance in animal breeding. These models 

utilize phenotypic data and pedigree information for calculations of genetic variance 

components, and estimation of breeding values. The base mixed model equation is 𝒚 =

𝑿𝒃 + 𝒁𝒖 + 𝒆, where y is a vector of phenotypic values, X is a design matrix for fixed 

effects, b is a vector of fixed effects, Z is a design matrix for random effects, u is a vector of 

random effects, and e is a vector of residuals. Henderson (1984) solution for 𝒃̂ and 𝒖̂ is the 
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following: [𝒃̂
𝒖̂

] = [𝑿′𝑿 𝑿′𝒁
𝒁′𝑿 𝒁′𝒁 + 𝜶𝑰

]
−1

[
𝑿′𝒚

𝒚′𝒁
] , where y, X, b, Z, and u are the same as 

described above with the addition of α, which is the ratio of residual variance and additive 

genetic variance (
𝜎𝑒

2

𝜎𝑎
2), and I, which is an identity matrix with columns and rows equal to the 

number of random effects. In this formula, the top portion of the equation which solves for 

the fixed effects is known as the BLUE, which is the best linear unbiased estimate, and the 

bottom portion of the solution for the random effect is the BLUP. In practice the additive 

genetic variance and the residual variance are not known, and are estimated using restricted 

maximum likelihood (REML) (Henderson, 1984). I is used in the assumption that all 

random effects are independent, but in genetics studies, this is not always true as family 

structure causes correlation. If pedigree information is known, then A-1 is substituted for I, 

where A is the pedigree relationship matrix. The variance of genetic effects is var(g) = A𝜎𝑎
2. 

BLUPs are used widely in animal breeding as resources are scarcer in terms of number of 

offspring and time for testing of progeny as opposed to plant breeding. Application of this 

concept was first used with molecular data in a simulation by Meuwissen et al. (2001), and 

describes a simulation study used as a proof of concept. The model used for the BLUP was 

𝑦 =  µ1𝑛 + ∑ 𝑋𝑖𝑔𝑖 + 𝑒𝑖 , where y is a vector of phenotypic values for each individual, µ is 

the overall mean, 1n is a vector of ones n individuals in length, Xi is the marker design 

matrix, gi is the genetic effects of the markers, and e is the error. In this study 𝜎𝑒
2 and 𝜎𝑎

2 are 

known, and gi was estimated using mixed models as described by Henderson (1984). This 

was the beginning of what is now known as genomic prediction.  
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 Early in genomic prediction, pedigree relationship matrices were calculated for use 

in the mixed model solutions for genetic effects. This was because identity-by-descent (IBD) 

is necessary to determine the pedigree relationship matrices used in BLUP calculations, and 

molecular marker data only provides identity-by-state (IBS) information (Isik et al., 2017). 

Eventually, studies emerged indicating that molecular marker data were effective in 

approximating LD and pedigree relationships (Habier et al., 2007; Hardy, 2003). VanRaden 

(2008), developed an efficient algorithm to calculate a genomic relationship matrix (G) that 

is equivalent to A from pedigree data using marker data, and is related to the inbreeding 

coefficient between individual i and j (fij), where 1-gij = fij. In this case var(g) is equal to 

G𝜎𝑎
2. The use of marker-imputed genomic relationship matrices, has been shown to be more 

informative at sufficient marker densities than pedigree-based relationship matrices 

(VanRaden, 2008; Hayes and Goddard, 2008; Engelsma et al., 2012; Albrecht et al., 2014). 

When the genomic relationship matrix is incorporated into the BLUP it is called the 

GBLUP.  

Another BLUP derivation is the ridge regression BLUP (RR-BLUP), with a base 

formula of 𝑦 =  𝟏𝒏µ + 𝑾𝒒 + 𝒆, where 1n is an identity matrix with n (number of 

observations) rows and columns, µ is the mean, W is the genotype matrix, q is a vector of 

the random marker effects, and e is a vector of the residual errors. Each column of W is 

coded as 0,1, or 2, then center and standardized by subtracting each element by the 2 pj 

which is the minor allele frequency, therefore causing the sum of the column to equal 0 

(centered). The genetic effect, and 𝒈̂ =  [𝑾′𝑾 + 𝜆𝑰]−1𝑾′𝒚, where λ is a shrinkage 

parameter that balances model complexity by goodness of fit. The genetic variance/ 
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covariance matrix is var(g)= WW’𝜎𝑞
2. Through standardizing and centering, this has been 

shown to be equivalent to the GBLUP (VanRaden, 2008; Goodard, 2009; Piepho, 2009; 

Habier et al., 2007; Hayes et al., 2009). The main difference is G matrix is calculated to 

become an n x n matrix, with n being the number of individuals, and WW’ is a p x p matrix, 

with p being the number of markers. In genomic prediction, often p is much greater than n; 

therefore, the GBLUP can be much faster computationally.  

 A limitation when using BLUPs is the assumption that all markers have equal 

variance, and marker effects are spread evenly throughout the genome. In order to alleviate 

this assumption, Meuwissen et al. (2001), developed Bayesian methods (Bayes A and Bayes 

B) to determine individual marker variances using prior distribution data of the markers 

themselves. The Bayesian model allows for departure from the infinitesimal model, as loci 

of large effects can be distinguished from loci with small effects or zero effect (de los 

Campos et al., 2013). Since the Meuwissen et al. (2001) paper, many different Bayesian 

models have been implemented by changing the categorization of priors, such as; Bayes Cπ, 

Bayes Dπ (Lorenz et al., 2011), Bayes Ridge Regression (de los Campos et al., 2009), 

Bayesian Lasso (Yi and Xu, 2008), and Empirical Bayes (Xu, 2007). 

 Bayesian methods still assume an additive model, however; not all traits may be 

additive in nature. A non-parametric model was proposed to better account for nonadditive 

effects called reproducing kernel Hilbert space RKHS (Gianola and van Kaam 2008). This 

model uses a square matrix of distances between the observations using the marker data, 

relaxing the assumption of linearity. Machine learning algorithms such as random forest 

(RF), support vector machines (SVM), and neural networks (NN), are non-parametric 
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models that can decipher complex interactions between variables, and is thought to be 

valuable when looking at traits with large epistatic interactions (Ogutu et al., 2011; Gianola 

et al., 2011; Howard et al., 2014).  

2.6. Comparison of Genomic Prediction Models 

 There have been many publications comparing models in both simulation and 

empirical studies. Meuwissen (2009) describes a simulation study where a genome of 10 

chromosomes with 1,000 SNPs per chromosome and 12 quantitative trait loci (QTL) were 

simulated and analyzed using Bayes B and GBLUP. The QTLs were simulated in an 

additive fashion with differing effect sizes. This study reported that the Bayes B had a higher 

prediction accuracy determined by Pearson’s correlation of predicted value with actual value 

by 2-6% depending on population size and marker density. It was found that the prediction 

accuracy for GBLUP increased at a faster rate than the Bayes B model as population size 

and marker density increased. The fact that Bayes B performed better is expected in this 

simulation, as the simulation better fit the assumptions of the Bayes B model. The GBLUP 

distributes all QTL effects evenly, holding more to the infinitesimal model. This simulation 

had QTLs of differing effects, which is better suited for Bayes B, as Bayesian models loosen 

the model assumptions of the GBLUP and allows for assignment of QTL with different 

effects by drawing on different prior distributions for each marker. This biased the study in 

favor of the Bayes B model. Even though this model performed better, the more rigid 

GBLUP model was still able to remain within 2-6% of the prediction accuracy.  

 Daetwyler et al. (2010) performed a similar simulation study, with the modification 

of changing the number of QTLs contributing to the trait. GBLUP and Bayes B were 
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directly compared in the simulation study, and again Bayes B performed slightly better than 

GBLUP as the simulation was created to better fit the Bayes B assumptions. What is added 

in information is the effect of the different number of QTL that contribute the trait. It was 

found that as QTL were added, the difference between the prediction accuracies between the 

models went down. The prediction accuracy for the GBLUP remained relatively the same 

for all numbers of QTL, but the prediction accuracy for the Bayes B model went down as 

more QTL were added. Again, this is reasonable, as the GBLUP assumes an infinitesimal 

model, so adding more QTL approaches this assumption. 

 Zhong et al. (2009) created simulation that began with empirical data from 42 barely 

lines. These 42 lines were genotyped with 1,605 markers, and additive QTLs of differing 

effects and numbers were added. Four different populations were created from the 42 lines: 

2 F2 populations from a round robin matting scheme, and two populations randomly mated 

for five generations. These populations were evaluated for different population sizes. Zhong 

et al. (2009) reported that the prediction accuracies of the BLUP methods and the Bayesian 

methods were similar in the F2 populations, and the Bayesian methods did slightly better in 

the randomly mated populations. However, the BLUP did slightly better when more QTL 

were added, which concurs with Daetwyler et al. (2010) findings. They then took the four 

different populations, and randomly mated them for 4 generations. They found that at lower 

numbers of QTLs that the random mating had less of a decrease in prediction accuracy for 

the Bayesian models than the BLUP models. Since this simulation began with 42 empirical 

founder lines. There was likely relatedness between the lines. Even though the QTLs were 

modeled closer to the assumptions of the Bayesian models, the LD was likely higher in the 
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original designs. This would have resulted in more correlation between values, which was 

likely identified in the BLUPs. As lines were further random mated, LD decreased, lowering 

the correlations and the genetic distances between the individuals and making the genomic 

relationship matrix less effective on the model. This seemed to allow the Bayesian models to 

begin to stand out as the simulation better fit the model assumptions.  

 Howard et al. (2014) compared parametric models to nonparametric models on data 

sets simulated with entirely additive QTL and entirely epistati QTL. Epistasis was simulated 

by creating interacting effects of adjacent markers. A broad array of both types of models 

were used, with BLUP, LASSO, ridge regression Bayes LASSO, the Bayes alphabet (A, B, 

C, and Cπ) for the parametric models, and Nadaraya-Watson estimator, RKHS, SVM, and 

NN for the non-parametric models. Prediction accuracies were determined using the 

correlation of predicted values with actual values. It was found that the parametric models 

performed generally better than the nonparametric models for the additive QTLs simulation; 

however, parametric models were not able to predict at all in the entirely epistatic 

simulations, but the non-parametric models were able to predict a little with prediction 

accuracies less than 0.4 at a heritability of 0.7 and less than 0.2 at a heritability of 0.3. By 

alleviate the linear assumptions, non-parametric models have the flexibility to look at the 

interaction between markers. Since the simulation only had epistatic interactions between 

QTL, this better suited the non-parametric models.  

 Iwata and Jannink (2011) compared the non-parametric models RF and SVM to 

parametric models RR-BLUP, Bayes A, Bayes B, and partial least squares regression. In this 

study, 863 lines from 9 U.S. barley programs were genotyped using 1,325 SNPs. Due to the 
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nature of this population, there was strong population structure. 100 additive QTLs were 

simulated at random maker positions with different heritabilities. Partial least squares was 

always the worst followed by RF, and all other models were more comparable throughout all 

heritabilities. This had complicated population structure, but the QTLs were simulated in a 

simple additive fashion. These results indicate that the population structure didn’t allow for 

contrast between the different models used in this simulated study. 

 Lorenzana and Bernardo (2009) performed a genomic prediction study on four maize 

populations and three barley populations using BLUPs and Empirical Bayes (E-Bayes). The 

populations were between 140 and 339 entries, and differing development methods of RILs, 

double haploids, F2s from test crosses with RIL populations, and F2s randomly mated for 

three generations then backcrossed. The markers used were different types and varied in 

number, with the most being a combination of 1,339 SSRs and RFLPs, and the least being 

107 RFLPs. The populations were phenotyped for many traits. They found that the BLUPs 

were comparable to the E-Bayes, and for many traits was slightly better. These populations 

had little marker data and relatively small population sizes compared with populations in 

simulated studies. In the simulated studies mentioned above, the lack of data points would 

predict that the Bayesian model would perform better. The populations in this analysis are 

representative of populations that a breeder would be working with for selection, and such 

were genetically related. This would have given an advantage to the BLUP as indicated by 

the Zhong et al. (2009) study. Also, the exact genetic architecture of complex quantitative 

traits is unknown. The Bayesian model is more flexible in this area; however, this was not 

enough to allow for it to stand out as superior. 
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 Heslot et al. (2012) conducted a genomic prediction study for barley, wheat, and 

maize in 13 different types of populations. Population sizes ranged from 332 to 761 entries, 

and the number of markers ranged from 319 to 2,146. This study included non-parametric 

models of RKHS, SVM, RF, and NN along with the parametric models of RR-BLUP, 

Bayesian LASSO, Bayesian Shrinkage Regression, Bayes Cπ, and E-Bayes. Again, the RR-

BLUP was comparable between all crops, populations and traits, and was the model 

recommended by the authors. This trend of comparability of BLUPs with other models is 

consistent throughout the literature with varying crops, populations, and number of markers 

(Heffner et al., 2011; Spindel et al., 2015; Crossa et al. 2013; Riedelsheimer et al., 2012; 

Huang et al., 2016). The rigidity of the BLUP appears to hold well under varying 

circumstances, and due to the rigidity is easy to make inferences. As models move from 

rigidity to flexibility, the ability to make inferences becomes more difficult, and run a risk of 

overfitting the model and therefore increasing the mean square error in application (James et 

al., 2014).    

2.7. Predictive Ability 

Attempts to understand the predictive ability in genomic prediction have been made 

in the literature (Daetwyler et al., 2008; Goodard, 2009; Goodard et al., 2011; Lian et al., 

2014; Karaman et al., 2016). Goodard et al., 2011 determined the formula: 𝑟2 ≈

𝑞2 (
𝑛𝑡𝑟𝑞2ℎ2

𝑛𝑡𝑟𝑞2ℎ2+𝑀𝑒
); where r2 is the squared correlation between the genetic value (µ) and 

predicted value (µ̂); q2 is the proportion of genetic variance explained by markers; h2 is the 

heritability of the trait; Me is the effective number of chromosome segments segregating in a 

population; and ntr is the training population size. This formula identifies the variables that 
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increase and decrease predictability, but there are implications within these variables that are 

connected to population structure (Guo et al., 2014, Wientjes et al., 2013, Lorenz and Smith, 

2015, etc). According to the formula, increasing Me will lower predictability; however, Me is 

directly affected by population structure. Increasing linkage disequilibrium (LD) in a 

population will effectively lower Me concomitantly, lowering the number of markers 

necessary to capture the informative regions segregating within a population (Elsen, 2016). 

LD begins to fix regions of the genome through associative mating and inbreeding. This in 

turn can limit the genetic variation lowering q2 as well as h2. 

The formula described by Goodard et al. (2011) was rewritten to 𝑅2 ≈

ℎ𝑀
2 (

𝑛𝑡𝑟ℎ𝑀
2

𝑛𝑡𝑟ℎ𝑀
2 +𝑀𝑒

) (Karaman et al., 2016); the only difference is the terms R2 which now 

represents the squared correlation between phenotype (y) and predicted value (µ̂) as µ is not 

observed in application, and ℎ𝑀
2  which is the proportion of variance explained by the 

markers, or the genomic heritability. The change from 𝑞2ℎ2 to ℎ𝑀
2  can be made as ℎ2 =

σµ
2

σ𝑦
2 , 

𝑞2 =
σ𝑞

2

σµ
2 , and ℎ𝑀

2 =
σ𝑞

2

σ𝑦
2 . Since 𝑟2 =

𝐶𝑜𝑣 (µ̂,µ)2

𝑉𝑎𝑟(µ̂)𝑉𝑎𝑟(µ)ℎ2 and 𝑅2 =
𝐶𝑜𝑣 (µ̂,µ)2

𝑉𝑎𝑟(µ̂)𝑉𝑎𝑟(µ)ℎ2, 𝑟2ℎ2 = 𝑅2. This 

formula implies that as the training population size is increased, R2 asymptotically 

approaches heritability. This is inherently true in that GEBVs are developed from genetic 

variation.  

These formulas do not account for differences among the training population with 

the validation population due to population structure. When there is imperfect LD between 

these populations there lies potential genetic variation that is unaccounted for by the 

reference population in the validation population. For example, if a set of QTLs lie within a 
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segment of a chromosome that is fixed within the training population due to LD, these QTLs 

will be amassed as a single value in regards to how they are fixed. If the validation set is 

segregating within this same region there is added genetic variation unaccounted for in the 

model. This will result in lower prediction reliability. Another assessment in the Karaman et 

al. (2016) study was the examination of an upper bound of reliability (UP) originally 

proposed by Campos et al. (2013). The UP is a limitation to the reliability of prediction 

based on an imperfect LD between the markers used to compute genomic relationships and 

QTL. Calculation of the UP is detailed in Karaman et al. (2016). In summary, let XR be the 

genomic relationship matrix of the reference population and R (XR) be the row space of XR. 

Let xv denote vector of relationships of individual in the validation population with those in 

the reference population, and is considered the sum of xv1 + xv2. The components of this 

summation are further broken down into 𝑥𝑣1 = 𝑸𝑋𝑅
′ 𝑥𝑣 and is in R (XR), and  𝑥𝑣2 = (𝑰 −

𝑸𝑋𝑅
′ )𝑥𝑣 and is orthogonal to R (XR), where 𝑸𝑋𝑅

′ = 𝑋𝑅
′ (𝑋𝑅𝑋𝑅

′ )−1𝑋𝑅
′ . UP of an individual in 

the validation population is then equal to the ratio of the inner products 
𝑥𝑣1

′ 𝑥𝑣1

𝑥𝑣
′ 𝑥𝑣

  multiplied by 

the heritability. 

2.8. Genomic Prediction in Germplasm Collections 

Recently, genomic prediction has been used successfully in application to germplasm 

collections with 33,844 photoperiod-sensitive sorghum accessions from the United States 

Department of Agriculture National Plant Germplasm System (USDA-NPGS) sorghum 

germplasm collection, consisting of entries from 33 countries and representing five sorghum 

races (Yu et al., 2016). In this study, authors reported prediction accuracies of 0.76, 0.84, 
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0.81, 0.75, and 0.90 for biomass yield, dry biomass yield, plant height, root lodging, and 

stalk number, respectively. The high levels of the prediction accuracies were attributed to 

optimizing a training population that best represented the germplasm collection. Therefore, 

increasing the upper bound for reliability. To achieve this, a reference panel of 962 

accessions was categorized and a training population was optimized from the results.  

Another study on application of genomic prediction on a germplasm collection was 

conducted in cauliflower (Thorwarth et al., 2018). This study was much smaller in scale than 

the Yu et al. (2016) study, with only evaluating 174 individuals randomly selected from the 

collection, but they still showed promising results with prediction accuracies up to .66 

depending on the trait. The Yu et al. (2016) study used a GBLUP only, but the Thorwarth et 

al. (2018) study compared two models; GBLUP and Bayes B. They found that both models 

had similar prediction accuracies, and could not determine which model was superior in 

their applications.  

The objectives of the study reported herein were to look at the feasibility of using modern 

genomic tools to select for fiber quality alleles in the obsolete U.S. improved cultivar 

collection. First, genetic gains of fiber quality traits using modern fiber phenotyping 

platforms HVI and AFIS was performed to identify if there is potentially untapped genetic 

variation in this material. Second, stability of fiber quality traits was evaluated to determine 

if training populations used in genomic prediction needed to be location specific. Third, 

evaluate the feasibility of using genomic prediction to identify cultivars with potentially 

beneficial fiber quality 
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3.  GENETIC GAINS OF COTTON FIBER QUALITY IN THE PAST 100 YEARS 

 

3.1. Introduction 

 The predominant genetic base of cotton grown in the United States can be traced 

from accessions brought over in the early 1800s from the Mexican Highlands (Lubbers and 

Chee, 2009). The highland introduction created a genetic bottleneck resulting in narrow 

genetic diversity according to molecular studies (Iqbal et al., 2001; Tyagi et al. 2014, Hinze 

et al. 2015). Tyagi et al. 2014 concluded that the low genetic diversity could allow for elite 

breeding programs to tap into unexploited standing variation within obsolete cultivars 

without suffering a yield drag as associated with crosses to more wild germplasm. 

  Since the Mexican introduction, farmers and breeders have made selections for fiber 

quality using the resources and techniques available at that time. These selection methods 

began with subjective field evaluations, evolving to quantifiable techniques that were slow 

and tedious and therefore not widely used throughout selections programs (See Chapter 1). 

In more recent years, high quality cotton fiber phenotyping methods allow for high-

throughput evaluation of bundle fiber samples through HVI, and individual fiber samples 

such as AFIS. Many of the traits measured by HVI and AFIS were not previously measured 

and therefore not selected on prior to their incorporation into breeding programs.  

 The US National Cotton Germplasm Collection currently maintains 6,302 upland 

cotton accessions consisting of 2,522 landraces and 3,780 improved cultivars (Campbell et 

al., 2010). The 3,780 improved cultivars represent over a hundred years of selection efforts 

for cotton improvement. As an inbreed crop, this collection also offers a snapshot of the 
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genetic merits of that time period and growing region. With the low differences in genetic 

diversity between elite breeding material and the fact that past selection efforts in cotton 

fiber quality were limited, this study looks to evaluate if genetic variation has been tapped 

into over the past 100 years of breeding efforts in cotton fiber traits. In this study a 

population was developed to represent 100 years of breeding efforts from different growing 

regions in the US, and a genetic gains analysis was conducted to determine gains in HVI and 

AFIS traits.  

3.2. Materials and Methods 

 Tissue samples were collected from young leaves, and DNA was extracted using a 

modified CTAB (cetytrimethylammonium bromide) method described by Zhang et al. 

(2010). A collection of cultivars from the USDA U.S. improved cotton cultivar collection 

was genotyped using Illumina® 63K SNP array (Hinze et al., 2015; Hulse-Kemp et al., 

2015). This population was developed to represent historical and geographically distinct 

breeding efforts in the United States. SNP markers were removed 1) when markers were 

non-polymorphic, 2) greater than 10 % of SNP calls were missing in population, 3) minor 

allele frequency was less than .03, and 4) heterozygosity of marker was greater than 10 %. 

After marker filtering, 20,491 high quality SNPs remained. Genetic diversity was analyzed 

by calculation of Identity by state (IBS) matrix, and performing a Principle Coordinate 

Analysis (PCoA) in R (R core team 2016). Individual cultivars were selected for genetic 

gains analysis that genetically best represented the U.S. improved cotton cultivar collection 

and breeding efforts over time from 1900-2015. Sixty-three cultivars were chosen based on 

these criteria (GGpop).  
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 GGpop was planted in a randomized complete block design (RCBD) in 2016 and 

2017 in Weslaco, TX at the Texas A&M AgriLife Research and Extension Center and in 

Corpus Christi, TX at the Texas A&M AgriLife Research and Extension Center. In 2016, 

three replications were used at both locations, and two replications in 2017 were used at both 

locations. Soil type at Weslaco is a Hidalgo sandy clay loam, a fine-loamy, mixed, active, 

hyperthermic Typic Calciustolls, and at Corpus Christi a Houston black clay, a fine 

smectitic, thermic Udic Haplustert. Normal cotton production practices were used in all 

trails, with furrow irrigation used in Weslaco, TX. Boll samples were randomly harvested 

from plots with 30 bolls taken from the first fruiting limb position in the middle of the 

fruiting zone. Fiber was ginned using 8-saw laboratory gins, with each rep ginned by a 

single gin, and fiber phenotyping was performed using High Volume Instrumentation (HVI) 

and Advanced Fiber Information System (AFIS) at the Fiber and Biopolymer Research 

Institute at Lubbock, TX. Traits analyzed are listed in Table 3.1. Phenotype data were 

analyzed with mixed linear models using lme4 package in R (Bates et al., 2015), and 

Empirical Best Linear Unbiased Predictors (EBLUPs) were calculated from models for each 

accession for each trait. EBLUPs were then regressed on years that cultivars were released to 

calculate genetic gains using the lm function in r. 

3.3. Results and Discussion 

All points in the PCoA depicted in Figure 3.1 are U.S. improved cultivars, and the 

black points represent the cultivars selected for this study. The distributions in Figure 3.1 

indicates that the cultivars selected for this study are well distributed and a good 
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representation of the genetic space of the U.S. improved cotton cultivar collection. Cultivars 

chosen for this genetic gain study are listed in Table 3.2. 

 The gains for all traits are listed in Table 3.3. Lint % is a yield component, and is 

used as a gauge of yield (Miller and Rawlings 1967). Lint% showed significant gains over 

the years at 0.174 % increase per year and a p < 0.001. The R2 was 0.42, which was the 

highest for any trait, showing the strongest relationship with year compared to any other 

trait. Yield is often the highest selection priority for breeding programs, and the strength of 

this model compared to others offers evidence of this.  

 Significant gains have been made in creating longer fibers. This is seen in gains for 

UHML, UQL(w), L5(n), L(w), and L(n) at 0.094, 0.098, 0.087, .103, .111 percent gain per 

year, respectively (Table 3.3), and all gains are significant with p <0.001. Increases are being 

made in the mean fiber length, as well as the longest fibers in a sample. These traits are also 

strongly positively correlated. UHML has a higher correlation with AFIS mean length based 

on fiber weight, L(w), at .96 than AFIS mean length based on actual length measurements 

regardless of fiber weight, L(n), at .85. This is likely due to UHML being a measurement 

taken by weight also. The significant gains show that the various selection methods have 

been effective for these traits. 

 Significant gains are also seen in reducing the short fiber content in samples. The 

short fiber content both by weight and length have shown to decrease per year (Table 3.3). It 

is interesting to note that percent decrease in SFC(w) is faster than the decrease in SFC(n) 

with a rate of -0.267 % and -0.146 % reduction in SFC per year, respectively. Both of these 

gains are significant with p > 0.001. It is not expected that selection intensity is greater for 
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SFC(w), or that direct selection for SFC in either form was performed much at all over the 

past 100 years of breeding efforts. Sutter-Webb method was developed in 1932 (Webb, 

1932), which allows for selection against SFC is too tedious to use as a selection platform. 

AFIS allows for selection against SFC, but wasn’t developed until the 1990s and is not 

widely utilized by breeding programs even today. Selection against SFC is likely a product 

of negative correlation with length measurements. The greater negative gains in SFC(w) 

over SFC(n) is a result in bias created in length measurements. SFC(w) has a stronger 

negative correlation with length measurements than SFC(n). Length by weight 

measurements calculate mass from an assumed uniform density, but not all fibers have the 

same density. Correlations in this study show that Maturity increases as length traits 

increase, meaning more secondary cell wall development in the fiber, thus denser fibers 

(Hequet et al. 2006). This causes an over prediction of longer fibers by weight, and an under 

prediction of SFC(w). Since, fibers have been getting longer over time through selection, the 

negative correlation of short fiber content is compounded by the under prediction of 

SFC(w). This gives the appearance that SFC(w) has a greater reduction in gain than SFC(n).  

Gains in the uniformity of length data are less clear than gains in length and gains in 

reducing short fiber content. There is a significant gain in Unif at 0.025 % gain per year 

which is significant at p < 0.001. The term uniformity as used in HVI (Unif) is misleading. 

The true uniformity of a length distribution should incorporate the short fibers in the 

measure and HVI doesn’t do a good job of calculating short fibers (Krowicki and Ramey 

1984). Unif is the measure of mean length by weight divided by the UHML multiplied by 

100. An increase in Unif would be the result in a greater rate of gain in mean length by 
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weight than UHML, or a decrease in UHML which would not be desirable. Since gains in 

AFIS percent L(w) are greater than UHML and L(w) is a similar measurement to the mean 

length that is calculated by HVI, then a better measure of uniformity is using the coefficients 

of variation for the fiber lengths within the sample (Table 3.3). The coefficients of variation 

for both L(w) and L(n) are determined by dividing the standard deviation by the mean 

length. The only difference between these traits is how mean length is determined, either by 

weight or by number. For these traits, breeders have improved L(w)CV by -0.044, p < 0.01, 

but L(n)CV of -0.02 was not significant, p = 0.345. The gain in L(w)CV is likely the product 

of the measurement. The mean length by weight is over-predicted, and as a result increases 

at a faster rate than L(n) (Figure 3.3). As breeders have selected for longer fibers over the 

past 100 years, the HVI measurement for mean length by weight, which is the denominator 

of the formula for L(w)CV, is over-predicted because the internal algorithm assumes 

uniform weight throughout the length of the fiber. This would result in a sharper decrease in 

L(w)CV according to the calculation of coefficient of variation. As L(n) is not biased by the 

assumption of uniform density, it is not affected by the increase in length over time, and 

therefore doesn’t affect the L(n)CV measurement over time. This concept was further 

explored by regressing L(w) to L(w)CV and L(n) to L(n)CV. Since L(n)CV has more 

variation than L(w)CV, the values were centered and scaled for direct comparison. L(w)CV 

did decrease at a higher rate as L(w) increased than L(n)CV as L(n) increased. The 

regression coefficient for L(w)CV/L(w) was -3.909 and the regression coefficient for 

L(n)CV/L(n) was -2.675, and the p-values for the coefficients were .089 and .332, 
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respectively. Thus, L(w), the denominator of L(w)CV, had a larger effect on the measure 

than L(n), the denominator of L(n)CV. 

HVI strength has a strong positive correlation with fiber length parameters, and also 

shows a positive gain of 0.157 % per year. When plotting the gains for HVI strength it was 

noted that data didn’t appear to have an entirely linear growth trend (Figure 3.4). To explore 

this, polynomial regression lines were fitted at 2,3, and 4 degrees, and polynomial models 

and the linear regression model were compared using the Akaike’s Information Criterion 

(AIC) to determine the best model. The AIC scores for the linear, 2nd, 3rd, and 4th degree 

polynomial equations were 261.17, 260.15, 262.13, and 262.13 respectively. The lowest AIC 

was for the 2nd degree polynomial equation indicating it was the best model in explaining the 

data, and is represented by the green line in Figure 3.4. This model best represents the data 

numerical, but also intuitively. Looking at the polynomial regression line, there appears to 

be a sharp increase in gains starting around the 1940s. This is the time that Beasley’s Triple 

Hybrid was developed, which was rapidly integrated into breeding programs and is 

attributed to breaking the negative linkage between strength and yield (Beasley 1940, Green 

and Culp 1990, Bowman and Gutierrez 2003, and Bowman et al. 2006). A few years later 

the invention of the Stelometer (Hertel 1953), gave breeders the ability to phenotype 

relatively efficiently for cotton fiber bundle strength. HVI Strength and Elongation have 

been reported to have negative correlation (May and Taylor 1998), and this holds true in this 

study as well, with a correlation of -0.38. In general, selection for elongation among 

breeders is not practiced (Benzina et al. 2007), which could explain the results of this study 
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in which elongation was found to have significantly reduced by -0.102 % per year with p < 

0.01.  

MIC is a trait that is confounded by maturity and fineness (Hequet et al. 2006). It is 

normally selected to remain within a range, as values of 3.7-4.2 will receive a premium 

price, and under 3.4 and over 5.0 will be penalized with a discount. As expected, there was 

no significant linear relationship with year, as selection pressure maintains this range. 

However, the major components of MIC, maturity and fineness, have seen significant gains. 

Mat. Ratio and IFC had a strong negative correlation of -0.95. Both of these traits showed 

significant gains (p <0.001) with a positive gain of 0.064 % per year with maturity, and a 

negative gain of -0.276 % per year for IFC. Fine did not show significant gains with p = 

0.1687; however, Std. Fine did show a significant negative gain of 0.064 % per year with p < 

0.001. Since Std. Fine is simply fineness divided by maturity, this gain is attributed mainly 

to the gain in maturity. Of these traits, the only one likely directly selected upon over the 

past 100 years is micronaire, as the test for micronaire was developed in 1956 (Lord 1956), 

but as mentioned, did not show significant gains. The significant gains made in Mat. Ratio 

and IFC are likely the result of indirect selection pressure. The traits that have the strongest 

correlations with Mat. Ratio and IFC, have made significant gains, and were directly 

selected upon, were Strength and Lint%. Strength seems the most reasonable contributor to 

these gains, as maturity is determined by secondary wall development in the fiber. As more 

cellulose is created, Strength should increase. Also, Strength is tested as a bundle of fibers, 

so the less IFC, the stronger the fiber bundle. If gains for these traits were the result of 

selection to increase Strength, it is expected to see a similar trend as Strength over time as 



 

45 

 

mentioned earlier. Polynomial regressions were run the same for Mat. Ratio and IFC as 

Strength. In both cases the lowest AIC was for the 2nd degree polynomial regression model. 

The same trend can be seen in Figure 3.4 for both Mat. Ratio and IFC as was displayed for 

Strength. Around the 1940s the rate greatly changes, with Mat. Ratio increasing, and with 

IFC decreasing. Indicating that improvements in these area are likely due to improvements 

in strength. 

 3.4. Conclusion 

 The population used in this study is a good representation of the material from the 

US National Cotton Germplasm Collection’s obsolete improved cultivar collection 

according to the marker platform used in this analysis. There have been steady gains in 

increasing fiber length parameters for both HVI and AFIS, and reducing short fiber content. 

HVI Unif has shown significant gains, but the coefficient of variation for length by number, 

which is the preferred measurement of uniformity by the author has not seen significant 

gains. There were significant gains seen in strength, and there appears to be a sharp increase 

in gains starting around the 1940s, which is consisted with the hypothesis that the 

development of Beasley’s Trible Hybrid contributed to the breaking of negative linkage with 

yield. Elongation has seen a significant decrease over the past hundred years, and is 

attributed to the negative linkage with strength. There have been significant gains in Mat. 

Ratio, and standard fineness, and reducing IFC; however, selection has not been directly 

used on these traits. It is likely that gains in these traits are from correlation with traits such 

as length and strength in which there has been direct selection pressure. Since correlation 

doesn’t explain all of the variation for these traits, it is probable that there is much untapped 
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genetic variation for these traits in the obsolete US improved material. Breeders may find 

value in looking to this collection to improve these fiber traits.  
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Table 3.1. Traits analyzed in genetic gains study. Sixty-three obsolete and near modern 

cultivars from the U.S. Cotton Germplasm Collection were grown at Corpus Christi and 

Weslaco, TX in 2016 and 2017. 

System Symbol Trait Unit Description 

Scale Lint % Lint Percent % Percent of seed cotton weight that is fiber 

weight 

 

 

 

HVI 

MIC Micronaire Unitless Test for fineness and maturity using 

relationship between airflow and linear 

density 

UHML Upper Half Mean 

Length 

mm Mean of the longest 50% of fibers 

Unif Length Uniformity % The ratio between the mean length and 

the upper half mean length. 

Strength Bundle Strength Kn x m/kg Force to break a bundle of fiber 

Elon Elongation % The percentage of change in a bundle 

length before rupture under a breaking 

load 

 

 

 

 

 

 

 

 

 

 

 

 

AFIS 

L(w) Length by Weight mm The mean length of the sample by weight 

L(w)CV Length variation by 

weight 

% A measure of the standard deviation of 

the fiber length within a sample by 

weight standardized by the average fiber 

length 

UQL(w) Upper Quartile 

Length by Weight 

mm The length that is exceeded by 25% of 

the fibers by weight 

SFC(w) Short Fiber Content 

by Weight 

% The percentage of fibers by weight that 

are shorter than 12.7mm in length 

L(n) Length by Number mm The mean length of the sample by 

number 

L(n)CV Length variation by 

number 

% A measure of the standard deviation of 

the fiber length within a sample by 

weight standardized by the average fiber 

length 

SFC(n) Short Fiber Content 

by number 

% The percentage of fibers by number that 

are shorter than 12.7mm in length 

L5(n) Length Exceeded 

by 5% of all fibers 

mm The Length that is exceeded by the 

longest 5% of the fibers in the sample 

based on the length-by number 

distribution. 

Fine Fineness mtex The linear density of fiber defined as 

mass per unit length 

IFC Immature Fiber 

Content 

% Percentage of fibers with less than 0.25 

degree of wall thickening 

Mat. Ratio Maturity Ratio % Percent of fibers greater than 0.5 degree 

of wall thickening minus IFC divided by 

200 and added to 0.7 

Std. Fine Standard Fineness No unit Fineness standardized by the maturity 

ratio 
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Table 3.2. Accessions used in this calculating genetic gains.  

Name Year 

Source for determining 

Year 

Mebane 1897 Smith et al., 1999 

Lone Star 1904 Brown, 1936 

Durango 1905 Smith et al., 1999 

Hartsville 1905 Bowman et al., 2006 

Half and Half 1906 Brown, 1936 

Meade Clean Seed 1912 Brown, 1927 

Express-432 1914 Brown, 1927 

Dixie Triump 1915 Brown, 1936 

Deltatype Webber 1915 Smith et al., 1999 

Cleveland W.R. 

Wannamaker's 1916 Brown, 1927 

New Boykin 1918 Brown, 1936 

Lightning express 1923 Brown, 1936 

Coker's Clevewilt 3 1932 Bowman et al., 2006 

Coker 100 wilt 1941 Smith et al., 1999 

Deltapine 14 1941 Bowman et al., 2006 

Bobshaw 1 1941 Bowman et al., 2006 

 Lankart 57 1950 Okelly, 1950 

Lockett 1 1950 Arnold, 1975 

Western Stormproof 1950 Bowman et al., 2006 

Auburn 56 1953 Smith et al., 1999 

Dixie King 1956 Smith et al., 1999 

Blight Master 1956 Ramey, 1966  

Fox 4 1958 Ewing, 1965 

Stoneville 213 1962 Bowman et al., 2006 

Del Cerro 1962 Bowman et al., 2006 

Pope 1964 Duncan and Pate, 1964 

Deltapine 16 1968 Jones, 1998 

Westburn 1969 Smith et al., 1999 

Delcot 277 1970 Sappenfield et al., 1972 

Coker 310 1971 PVP-7100021 

Coker 312 1972 PVP-7200100 

Stoneville 256 1975 PVP-7500102 

Deltapine 55 1975 PVP-7500103 

Acala SJ-5 1977 Bowman et al., 2006 

Cascot L-7 1977 PVP-7700043 
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Table 3.2. Continued. 

Name Year 

Source for determining 

Year 

DES 56 1978 PVP-7800041 

McNair 235 1978 PVP-7800068 

Dunn 219 1978 PVP-7900006 

PD 2165 1979 Harrell and Culp, 1979 

Stoneville 825 1979 PVP-7900024 

Paymaster 145 1980 PVP-8000080 

Earlistaple 7 1980 Culp and Harrel, 1980 

Deltapine 90 1984 PVP-8100143 

DP 50 1984 PVP-8400154 

PD-2 1985 Culp et al., 1985a.  

DES 119 1985 PVP-8500176 

PD1 1985 Culp et al., 1985b 

 HS 26 1986 PVP-8600087 

Acala Maxxa 1990 PVP-9000168 

Paymaster HS 200 1990 PVP-9000216 

DPL 5690 1991 PVP-9100116 

Georgia King 1991 PVP-9100257 

All-Tex Atlas 1992 PVP-9200188 

Ciano Cocorim 92 1992 Jasso and Solis, 1994 

MD51ne 1993 Meredith, 1993 

LA887 1993 PVP-9100065 

Acala 1517-99 2000 Cantrell et al., 2000 

PSC 355 2000 McPherson et al., 2000 

Arkot A306 2000 Bourland and Smith, 2001 

DPL 491 2001 PVP-200100159 

Phytogen 72 2001 PVP-200100115 

Tamcot Sphinx 2001 PVP 9600134 

UA48 2010 PVP-201100041 

Tamcot 73 2011 Smith et al., 2011 

Commercial 2015 Commercial company 
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Table 3.3. Gains per year in respective unit and as percent.  

Traits 

(Unit) 

Gains/Year 

(%) 

Gains/Year R2† Correlation‡ 

Lint% 0.1738*** 0.174*** 0.4211 0.6489 

Elon -0.1021** -0.102** 0.1552 -0.3939 

Strength 0.1572*** 0.157*** 0.3419 0.5848 

UHML 0.0940*** 0.094*** 0.2226 0.4718 

Unif 0.0251*** 0.025*** 0.3041 0.5515 

UQL(w) 0.0976*** 0.098*** 0.2514 0.5014 

L5(n) 0.0872*** 0.087*** 0.2347 0.4845 

L(w) 0.1028*** 0.103*** 0.3032 0.5506 

L(n) 0.1108*** 0.111*** 0.3531 0.5943 

IFC -0.2756*** -0.276*** 0.3137 -0.5601 

SFC(w) -0.2673*** -0.267*** 0.2887 -0.5373 

SFC(n) -0.1459*** -0.146*** 0.1808 -0.4252 

L(w)CV -0.0439** -0.044** 0.1205 -0.3471 

L(n)CV -0.0201 -0.02 0.0146 -0.1209 

MIC 0.0500 0.05 0.0422 0.2053 

Mat. 

Ratio 0.0645*** 0.064*** 0.3848 0.6203 

Fine 0.0282 0.028 0.0308 0.1756 

Std. 

Fine -0.0331* -0.033* 0.0644 -0.2538 

 

† Coefficient of Determination for the gains model 

‡ Pearson Correlation Coefficient for the trait with year. 

***, **, * Significance at p < 0.001, p < 0.01,  and p < 0.05 respectively  
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Figure 3.1. Plot of 1st and 2nd Principle Coordinates from Principle Coordinate analysis of 

the USDA’s U.S. improved cotton cultivar collection. The black dots indicate the 63 

accessions used in this genetic gains analysis. 
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Figure 3.2. Correlations among all traits analyzed for genetic gains. The brighter colors 

indicate a strong positive correlation, the lighter colors indicate a weaker correlation, the red 

colors indicate negative correlation, and the blue colors indicate positive correlation.  
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Figure 3.3. Plot of L(w) by L(n). For every 1 mm increase in L(w), L(n) only increases by 

0.7997 mm. The red line represents the regression line from the formula on the top of the 

plot. 
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Figure 3.4. Genetic gains for traits that exhibited a better fit with a 2-degree polynomial 

regression line. a) Genetic gains of HVI fiber strength are plotted against year. b) Genetic 

gains of AFIS fiber Maturity Ratio plotted against year. c) Genetic gains of AFIS fiber IFC 

plotted against year. In all plots the red line is the fitted linear regression line, and the green 

line is the fitted polynomial regression line with 2 degrees. The polynomial regression line is 

a better fit according to the AIC score for all plots.  

 

a 
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Figure 3.4. Continued. 
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4. STABILITY OF HVI AND AFIS TRAITS IN UPLAND COTTON 

 

4.1. Introduction 

 Understanding the stability of traits in target environments is essential for breeders 

success. Understanding of stability allows for breeders to make decisions such as how many 

years, locations, and replications are sufficient to distinguish between superior cultivars, and 

identify optimal testing environments. Allen et al. (1978) argued that correlations between 

environments for a trait is important in calculating potential gains in crop improvement, as 

gains are subject to the environment in which they are tested. Essentially, understanding 

stability will determine the applicability of gains across environments.  

Gossypium hirsutum, or upland cotton, provides 95% of the global cotton fiber 

production. The US is the largest exporter of upland cotton, and cotton is the number one 

export commodity of Texas, contributing 1.6 billion dollars to the Texas economy 

(Texasagriculture.gov). As spinning technologies develop and improve, there is increased 

demand for superior fiber quality; thus, genetic improvements of cotton fiber quality is 

becoming increasingly important. In a survey of cotton producers, an important priority 

listed that producers want from science is the improvement of fiber quality (pers. comm. 

Kater Hake, Cotton Inc., 2016). Determination of fiber quality is performed generally by 

High Volume Instrument (HVI), which is fairly cheap and measures the properties of a 

bundle of fibers (See Chapter 1). The classification system of US cotton has been described 

by Cotton Inc (www.cottoninc.com/fiber/quality/US-Fiber-Chart/Ratings-Of-Fiber-

Properties/) (Table 4.1). Advanced Fiber Information System (AFIS) technologies are more 

http://www.cottoninc.com/fiber/quality/US-Fiber-Chart/Ratings-Of-Fiber-Properties/
http://www.cottoninc.com/fiber/quality/US-Fiber-Chart/Ratings-Of-Fiber-Properties/
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recent in scope and provide analysis of the properties of individual fibers rather than a 

bundle of fibers as per HVI, and can be used to separate the confounding variables of the 

HVI trait micronaire, by measuring both maturity and fineness of fibers (Hequet et al., 

2006). A problem with acquiring AFIS data is cost. AFIS can cost as much as six times more 

per sample than HVI (https://www.depts.ttu.edu/pss/fbri/fee09.pdf). Understanding the 

stability of AFIS and HVI data will help breeders optimize program resources in utilizing 

this technology.    

 There is a large genetic component controlling fiber quality traits, both HVI and 

AFIS traits, as indicated by high heritabilities and is well documented. Dabbert et al (2017) 

looked heritabilities across varying temperatures and varying water deficits in Georgia, 

Texas, and Arizona, reporting that heritabilities between environments did not change 

substantially across environments for HVI fiber quality traits. Other studies measured 

heritabilities in similar locations, but had larger variation in heritability than the Dabbert et 

al. (2017) study. All studies still reported high heritabilities even though they were 

conducted in different states (Braden and Smith, 2004; Hugie et al., 2017; Zeng and 

Bechere, 2017). It is possible the larger variation in heritabilities is due to crosses more than 

environment. The purpose of this study is to look more into the GxE effect, stability, and the 

consequences of selecting top performing cultivars in one environment over another 

environment using HVI and AFIS determined fiber quality properties.  

4.2. Materials and Methods 

 The population used in this study contained 117 genotypes, consisting of 13 released 

cultivars from Texas A&M’s Cotton Improvement Lab, 71 previously released obsolete US 

https://www.depts.ttu.edu/pss/fbri/fee09.pdf
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improved cultivars, and 33 RILs from 5 different intraspecific crosses that were selected bi-

directionally for high quality and low quality using HVI upper half mean length (UHML) 

and strength parameters. This population was planted in a randomized complete block 

design (RCBD) in 2016 and 2017 in Weslaco, TX at the Texas A&M AgriLife Research and 

Extension Center and in Corpus Christi, TX at the Texas A&M AgriLife Research and 

Extension Center. In 2016, three replications were used at both locations, and in 2017 two 

replications were used at both locations. Soil type at Weslaco is a Hidalgo sandy clay loam, 

a fine-loamy, mixed, active, hyperthermic Typic Calciustolls, and at Corpus Christi soil type 

is a Houston black clay, a fine smectitic, thermic Udic Haplustert. Normal cotton production 

practices were used in all trails, with furrow irrigation used in Weslaco, TX. No irrigation 

was used at the Corpus Christi testing location. 

Boll samples were randomly harvested from plots with 30 bolls hand harvested from 

the first fruiting limb position in the middle of the fruiting zone. Fiber was ginned using 8-

saw laboratory gins, with each replication ginned on a single gin. Fiber samples were sent to 

the Fiber and Biopolymer Research Institute at Lubbock, TX where phenotyping was 

performed using HVI and AFIS. The traits used in this study from HVI were upper half 

mean length (UHML), fiber bundle strength (strength), elongation, and uniformity. AFIS 

traits evaluated were standard fineness, maturity ratio (maturity), and short fiber content by 

number (SFC). Definition of these traits are given in chapter 2. 

An Analysis of Variance (ANOVA) was calculated for each trait using the lm 

function in R (R core team, 2016), and Fisher’s LSD was used for multiple comparisons of 

means of cultivars for the combined analysis and each individual environment using the 
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function LSD.test from the Agricolae package in R (De Mendiburu, 2014). The top 20% 

from the combined analysis and each individual analysis was selected numerically from the 

lsmeans. These selections were compared between each analysis to determine if the selected 

cultivars overlapped between analyses. This comparison was accomplished in two ways: 1) 

which cultivars selected in one analysis were also selected in other analyses 2) which 

cultivars selected in one analysis were not in the top 20% selected numerically, but where 

within the Fisher’s LSD rank of the cultivars selected in the top 20% of the other analyses; 

therefore, making the differences insignificant. Spearman’s correlation was used to 

determine the strength of ranking of cultivars across each environment.  

Stability regression was calculated according to Eberhart and Russell (1966) using R. 

In summary, an environmental index was calculated by subtracting the mean of each 

location from the grand mean. The environmental index is then regressed to the genotype 

mean for each environment using the following formula: 𝑌𝑖𝑗 = µ𝑖 + 𝛽𝑖𝐼𝑗 + 𝛿𝑖𝑗, Where 𝑌𝑖𝑗 is 

the cultivar mean of the ith cultivar at the jth environment, µ𝑖 is the mean of the ith cultivar 

over all environments, 𝛽𝑖 is the regression coefficient that measures the response of the ith 

cultivar to varying environments (referred to the stability coefficient in this paper), 𝐼𝑗 is the 

environmental index at the jth environment, and 𝛿𝑖𝑗 is the deviation from the regression of the 

ith cultivar at the jth environment. Cultivars were then classified into categories of fiber 

ratings as determined by Cotton Incorporated’s classifications 

(www.cottoninc.com/fiber/quality/US-Fiber-Chart/Ratings-Of-Fiber-Properties/) (Table 4.1) 

with the exception of SFC. SFC values were separated into quartiles with the lowest SFC 

being in the 1st quartile and the highest SFC being in the 4th quartile. Standard fineness was 

http://www.cottoninc.com/fiber/quality/US-Fiber-Chart/Ratings-Of-Fiber-Properties/
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used in replace of fineness and is calculated as AFIS fineness divided by AFIS maturity 

ratio. The same rankings determined by Cotton Incorporated for fineness were used for 

classifying standard fineness. Stability coefficients for each cultivar were grouped according 

to classification for each trait, and ANOVA was used to determine if there was a significant 

difference in stability based on trait values. This stability analysis was applied to all traits 

with the exception of maturity, because 112 cultivars in this study were classified as mature 

and only 5 were classified to another group which was very mature. This did not allow for a 

fair comparison of multiple classes. The lack of variation in maturity is due to boll sampling 

method. Boll samples are taken from the first fruiting limb position in the middle the fruiting 

zone on each plant which insures a uniform maturity.   

4.3. Results and Discussion 

 HVI traits UHML, uniformity, and strength of these 117 genotypes were 

significantly affected by environment, genotype and GxE at p value < 0.001 in the combined 

analysis (Table 4.2). Elongation showed significant variation across genotypes (p value < 

0.001), but did not show a significant variation for environment or the interaction of 

genotype by environment (GxE). AFIS traits maturity, SFC, and standard fineness showed 

significant variation across genotypes with a p value < 0.001, and a significant GxE 

variation for maturity with a p value < 0.001, and SFC and standard fineness with a p value 

< 0.001. Maturity, standard fineness, and SFC significantly varied across environments (p 

value < 0.001 for maturity and standard fineness, and p value < 0.05 for SFC). 

The greatest contribution to total sum of squares (TSS) for all traits was genotype 

(Table 4.3). UHML had the largest genotypic contribution to TSS with genotypes 
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accounting for 80.64% of TSS. This was seven times greater than the second largest 

contributor to TSS for UHML, which was environment at 11.37%. The lowest genotypic 

contribution to TSS was for SFC at 42.33%. SFC also had the highest contribution of 

environment at 33.39. The largest contribution to TSS for GxE was with elongation at 

16.02%; however as mentioned above this was the only trait that did not have a significant 

effect for GxE. This is due to the higher residual error. Elongation also had the highest 

contribution for residual error to TSS of any traits at 33.48%. For all traits the largest source 

of variation comes from genotype, with environment and GxE contributing much less. 

Campbell and Jones (2005) reported similar results only for strength and elongation 

involving eight commercial cultivars in performance trails, with environment being the 

greatest source of variation for length and uniformity. Campbell et al. (2012) found that 

environment was the largest source of variation for all HVI traits. Both of these studies 

evaluated cultivars in more environments with 12 and 14 different environments evaluated 

respectively, which could lead to more variation for environmental effect. Another reason 

for the differences could be the populations evaluated. Campbell and Jones (2005), 

described eight elite commercial cultivars, which likely were comparable for fiber 

properties. Campbell et al. (2012) evaluated 82 released cultivars that represented the history 

of the Pee Dee cotton germplasm enhancement program. In evaluation of those same 

cultivars for genetic gains Campbell et al. (2011) found that fiber properties were a priority 

for selection in the beginning of the Pee Dee program, but switched priorities to yield and 

maintaining fiber quality. By switching priorities to maintaining fiber quality, the variation 

of fiber quality was likely limited in later released cultivars. In the population used in this 



 

68 

 

study, cultivars ranged from over a hundred years of breeding efforts in the US, with 

cultivars and germplasm lines developed through Texas A&M’s Cotton Improvement Lab 

resulting with a high selection priority on fiber improvement. The combination of historical 

cultivars with Texas A&Ms genotypes created a population with considerable variation for 

fiber quality traits among cultivars, which can be seen in the histograms provided in Figure 

4.1.  

 The results from the ANOVA of stability coefficients calculated according to 

Eberhart and Russel (1966) for genotypes assigned to different classes according to Table 

4.1 is provided in Table 4.4. The only traits with a significant difference in stability 

coefficients among the classes was for standard fineness and SFC. As indicated in Table 4.1, 

37 genotypes ranked as Fine, 75 genotypes ranked as Average, and only 5 genotypes are 

ranked as Coarse. To ensure that the significant differences were not the result of a sampling 

bias, as the Coarse class only had 5 genotypes, a Welch Two Sample t-test was used to 

compare stability coefficients only between Fine and Average class genotypes. The Welch 

Two-Sample t test indicated that there those stability coefficients were different (p value < 

0.01). The mean stability coefficient for the Fine class was .74 and the mean stability 

coefficient for the Coarse class was 1.11, suggesting that finer fibers are more stable than 

coarser fibers.  

For SFC, Fisher’s LSD was used to compare the classes to determine which classes 

were more stable than the others. There was a significant difference between very low SFC 

and low SFC with high SFC. The mean stability coefficients for the very low SFC and high 

SFC classes were .86, .97, and 1.16 respectively. The lower the stability coefficient is 
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interpreted as more stable as this means there is less difference in genotypes across 

environments. This indicates that genotypes with lower SFC are more stable than those with 

higher SFC. For both SFC and standard fineness, the tendencies for stability is favorable for 

the breeder. As improvements are made for both traits, improvements for stability should 

occur concomitantly. Campbell and Jones (2005) reported a similar trend for strength, where 

lower-strength genotypes were less stable than higher-strength genotypes; however, this was 

not observed in this study. Geng et al. (1987), used a quality score to compare stability 

coefficients and found that as the quality score increased so too did the stability. The quality 

score used length parameters, uniformity, and strength in the calculation. Again, all 

comparable traits in this study to the traits used to calculate the quality score in Geng et al. 

(1987) did not show more stability as quality improved. 

Spearman’s correlation coefficients were used to assess strength of ranking among 

genotypes across environments and are shown in Table 4.5. Correlations generally were high 

for all traits. The lowest correlations existed with elongation and SFC, with the lowest 

correlation being between Corpus Christi 2016 and Corpus Christi 2017 for elongation at 

0.51. The highest correlations were for UHML, strength, and standard fineness with an 

average correlation of 0.89, 0.90, and 0.90, respectively, with little difference between the 

highest correlation and the lowest correlations with differences of 0.06, 0.06, and 0.08, 

respectively. This shows that ranking doesn’t appear to change drastically between any 

environment for these traits. The lower correlations for elongation and SFC could be 

contributed to the lower proportion of variation attributed to genotype observed in Table 4.3. 

To further clarify, the top 20% of genotypes where selected numerically for each trait at 
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each environment and from a combined analysis across environments. The list of selected 

genotypes from each location were compared to each other to see which genotypes were on 

the same list. Fisher’s LSD was also calculated for each location and the combined analysis 

to check if genotypes not in the top 20% numerically on each list where still within the LSD 

grouping from the selected genotypes, which indicate that they are not different. UHML was 

by far the most consistent with selection within the environments (Figure 4.2). The top 20% 

selected numerically consist of a selection of 23 genotypes, and 21 of the selected genotypes 

were shared between all locations for UHML. Only one genotype was in the top 20% 

numerically at one location and not within the LSD of the top 20% from another location. 

For all fiber traits, there were few genotypes that were inconsistent across trials. The trait 

with the most inconsistency of genotypes that were not within the LSD of the top 20% in 

one environment, but were within the top 20% numerically of another environment was 

standard fineness with seven genotypes; however, this is still relatively few, and the 

inconsistency of the genotypes appears random. Maturity had the least overlap of top 20% 

numerically selected genotypes. Only 6 of the 23 genotypes where in the top 20% 

numerically between all environments; however, there were only two genotypes that were 

inconsistent by being out of the LSD with another environment, and for each of these 

genotypes was only inconsistent with one other environment. These data indicate that 

selection for these fiber quality traits could be performed in any of these environments with 

similar ability to obtain the highest quality genotypes, and that these fiber quality traits are 

highly stable across environments. The conclusion of Campbell et al. (2012) that the 
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significance in GxE for fiber quality is a product of magnitude and not rank change, which 

was substantiated by Ng et al. (2013) was further affirmed by the findings in this study.  

4.4. Conclusion 

 This study shows that fiber traits are highly stable in the environments tested. It was 

shown that selection for fiber quality traits in any of these environments would result in a 

comparable list of selected genotypes. This reaffirms the findings of both Campbell et al. 

(2012) and Ng et al. (2013) that discuss that GxE for fiber quality traits is more significant 

for magnitude rather than rank changes. This study also shows no differences in stability as 

fiber trait values change with the exceptions of AFIS’s standard fineness and SFC. For these 

traits the changes in stability for these traits favors the breeders as stability increases as fiber 

quality trait values improves. The lack of change in stability for the other fiber quality traits 

counters the opposing conclusions of Geng et al. (1987) and Campbell and Jones (2005). 

This study concludes that selection for these fiber quality traits can be adequality performed 

in just one year in either of these locations. This is beneficial to the breeder in reducing the 

necessary number resources used while still attaining accurate selections.    
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Table 4.1. Ratings of fiber traits and grouping of populations by ratings established by 

Cotton Incorporated (www.cottoninc.com/fiber/quality/US-Fiber-Chart/Ratings-Of-Fiber-

Properties/), with the exception of SFC, which is ranked and grouped by quartiles.  

Range Classification # of Cultivars in each Class 

Upper Half Mean Length (in) 

Bellow 0.99 Short 3 

0.99-1.10 Medium 36 

1.11-1.26 Long 54 

Above 1.26 Extra Long 24 

Fiber Elongation (%) 

Below 5.0 Very Low 0 

5.0-5.8 Low 5 

5.9-6.7 Average 59 

6.8-7.6 High 37 

Above 7.6 Very High 16 

Uniformity (%) 

Below 77 Very Low 0 

77-79 Low 3 

80-82 Average 51 

83-85 High 46 

Above 85 Very High 17 

Standard Fineness (Unit) 

Below 135 Very Fine 0 

135-175 Fine 37 

175-200 Average 75 

200-230 Coarse 5 

Above 230 Very Coarse 0 

Fiber Maturity Ratio (%) 

Below 0.7 Uncommon 0 

0.7-0.8 Immature 0 

0.8-1.0 Mature 112 

Above 1.0 Very Mature 5 

Fiber Strength (grams/tex) 

23 and below Weak 0 

24-25 Intermediate 3 

26-28 Average 31 

29-30 Strong 33 

31 and above Very Strong 50 

Short Fiber Content (%) 

1st Quartile Very Low 29 

2nd Quartile Low 29 

3rd Quartile Medium 29 

4th Quartile High 40 

http://www.cottoninc.com/fiber/quality/US-Fiber-Chart/Ratings-Of-Fiber-Properties/
http://www.cottoninc.com/fiber/quality/US-Fiber-Chart/Ratings-Of-Fiber-Properties/
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Table 4.2. Mean Squares from ANOVA of combined analysis of the 117 gentoypes for fiber 

quality traits. 

Source DF 

Mean Squares 

UHML Elongation Uniformity Std. Fine Strength Maturity SFC 

Env 3 0.68686** 54.092 196.371* 41.98** 260.024** 0.075671** 2900.83* 

Block 2 0.00564** 3.361* 5.009** 0.36 0.827 0.000757 104.99*** 

Genotype 116 0.12596*** 6.645*** 23.821*** 1350.5*** 112.827*** 0.01067*** 95.39*** 

GxE 348 0.00178*** 0.832 1.063*** 29.28*** 3.155*** 0.000477** 7.72*** 

Residuals 676 0.00121 0.895 0.789 17.02 1.932 0.00038 5.14 

*Significance at 0.05 

**Significance at 0.01 
***Significance at 0.001  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

74 

 

Table 4.3. Proportion of total sum of squares from the combined ANOVAs for the seven 

fiber traits used in study. Significance level is given from the F-test calculated in the 

ANOVAs. 

Source 

Proportion of Sum of Squares 

UHML Elongation Uniformity Std. Fine Strength Maturity SFC 

Env 11.37** 7.49 13.81* 0.07** 4.79** 12.02** 33.29* 

Block 0.06** 0.37* 0.23** 0.00 0.01 0.08 0.80*** 

Genotype 80.64*** 42.65*** 64.78*** 87.77*** 80.42*** 65.53*** 42.33*** 

GxE 3.41*** 16.02 8.67*** 5.71*** 6.75*** 8.78** 10.28*** 

Residuals 4.51 33.48 12.50 6.45 8.03 13.59 13.29 

*Significance at 0.05 

**Significance at 0.01 
***Significance at 0.001  
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Table 4.4. Mean squares and significance levels from ANOVAs calculated to determine 

differences in Eberhart and Russel (1966) regression coefficient between the different fiber 

ranking classes for different fiber traits.  

Source 

Mean Squares 

UHML Elongation Uniformity 
Standard 
Fineness Strength SFC 

Classes 0.123299 0.21526 0.37715 1.7845** 0.86688 0.4315* 

Residuals 0.092153 0.86058 0.25475 0.3076 0.48561 0.12053 
*Significance at 0.05 
**Significance at 0.01 
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Table 4.5. Spearman Correlations for traits between each environment. CC is abbreviation 

for Corpus Christi and W is the abbreviation for Weslaco. The two digit number represents 

the year at the respective location.  

UHML 

 CC16 W16 CC17 W17 

CC16 1.00    
W16 0.92 1.00   
CC17 0.87 0.88 1.00  
W17 0.90 0.90 0.86 1.00 

Elongation 

 CC16 W16 CC17 W17 

CC16 1.00    
W16 0.67 1.00   
CC17 0.51 0.55 1.00  
W17 0.55 0.70 0.63 1.00 

Uniformity 

 CC16 W16 CC17 W17 

CC16 1.00    

W16 0.86 1.00   

CC17 0.76 0.75 1.00  
W17 0.80 0.83 0.72 1.00 

Standard Fineness 

 CC16 W16 CC17 W17 

CC16 1.00    
W16 0.94 1.00   
CC17 0.87 0.89 1.00  
W17 0.89 0.92 0.91 1.00 

Strength 

 CC16 W16 CC17 W17 

CC16 1.00    

W16 0.92 1.00   

CC17 0.88 0.86 1.00  
W17 0.90 0.91 0.91 1.00 

Maturity 

 CC16 W16 CC17 W17 

CC16 1.00    
W16 0.88 1.00   
CC17 0.78 0.80 1.00  
W17 0.85 0.88 0.81 1.00 

SFC 

 CC16 W16 CC17 W17 

CC16 1.00    
W16 0.78 1.00   
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CC17 0.66 0.65 1.00  
W17 0.76 0.70 0.67 1.00 

 

 

Figure 4.1. Histograms of traits for population used in this study. 
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Figure 4.2. Venn Diagrams showing number of cultivars shared between location when 

selected by top 20% numerically for each trait labeled in the figure. The table below the 

diagram shows cultivars that were in the top 20% numerically at one environment, but were 

not within Fisher’s LSD of the top 20% at another environment. The environment where the 

Cultivar was cultivar was within the top 20% is indicated by O, and the environment where 

the cultivar was not within LSD of the top 20% is indicated by X.  
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Figure 4.2. Continued.  
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5. GENOMIC PREDICTION IN UPLAND COTTON 

 

5.1. Introduction 

 As genomic technologies advance, Plant breeders are provided with new tools to 

facilitate selection of favorable alleles. Genomic prediction is one such tool that utilizes 

molecular markers to detect genetic variation for the prediction of phenotypic performance. 

It is different from more traditional QTL analysis in that it is a multi-variate method, and 

allows for evaluation of multiple marker effects simultaneously (Meuwissen et al., 2001). 

This technique has application when genotyping is more affordable than phenotyping, and 

more recently has showed promise in identifying favorable alleles in germplasm collections 

(Yu et al., 2016; Thorwarth et al., 2018).  

 Techniques for measuring cotton fiber quality have evolved throughout the twentieth 

century and continues today. Early breeding work focused on field evaluation and consisted 

of subjectively evaluating cotton fibers for length and strength by human observation. 

Standardization came in the US Cotton Futures Act of 1918 for staple length, but this also 

only relied on subjective measurements. Objective measurement for strength was developed 

in 1926, length and length distribution in 1932, and bundle fiber strength and elongation in 

1953, but these techniques were stand-alone measurements and were slow and tedious (See 

Chapter 1). High Volume Instrumentation (HVI) combined many fiber quality 

measurements on a single machine. Developed in 1968, HVI wasn’t widely implemented 

into either private or public breeding programs until the late 1980s. HVI analyzes a bundle 

of fibers of a given weight that is taken from each sample, and has evolved over the years for 
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determination of upper half mean length (UHML), length uniformity, strength, elongation, 

and micronaire relatively rapidly (See Chapter 2). Modern breeding programs utilize HVI at 

all stages of the breeding process, and it is currently the industry standard. AFIS was 

developed in the late 1980s to evaluate fiber quality on a single fiber basis (Bragg and 

Shofner, 1993). This system can evaluate fiber length, length distribution, fineness, maturity, 

and neps (Williams and Yankey, 1996); however, it is more time consuming and higher cost 

than HVI. The higher cost and lack of general acceptance within the community prevents the 

wide use of this phenotyping method.  

HVI and AFIS are both used to predict fiber spinning quality and yarn properties 

(Faulkner et al. 2012), which is the goal of improving fiber quality. Evaluation of spinning 

quality and yarn properties requires a large sample of fibers, is time consuming, and 

expensive. A mini-spin protocol developed by Hequet and outlined by Joy et al. (2010), 

requires a smaller sample, but is still large compared with HVI and AFIS, time consuming, 

and expensive, which prevents it from being implemented at early stages in a breeding 

program.  

There has been more than 100 years of breeding efforts in the creation of the US 

improved cotton germplasm. Although fiber phenotyping techniques have been implemented 

during that time, early methods were subjective or the slow and tedious nature of data 

collection prevented analysis. As a result, many sources of potential fiber quality alleles 

likely have been overlooked. This study accomplishes three objectives: 1) Evaluate the 

feasibility of genomic prediction in upland cotton for fiber quality traits; 2) Evaluate the 

application of genomic prediction in obsolete US improved cultivars from the USDA cotton 
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germplasm collection; and 3) Evaluate the feasibility of using genomic prediction on a 

selection index developed from HVI and AFIS parameters for yarn work to break.  

5.2. Materials and Methods 

The population used in 2016 consisted of 128 genotypes that contained  74 

previously released obsolete US improved cultivars representing the different cotton 

growing regions throughout the US, 10 current commercial cultivars, 11 released cultivars 

and germplasm lines from Texas A&M’s Cotton Improvement Lab (CIL), and 33 inbred 

lines developed by the CIL that were selected bi-directionally for high quality and low 

quality using HVI upper half mean length (UHML) and strength parameters from five 

internal biparental populations as described by Hugie et al. (2017) The five internal 

biparental populations that gave rise to the 33 bidirectional inbred lines were derived from 

four parents,  TAM 03B182-33 (Smith et al. 2009), TAM 06WE-62-04, TAM 04SID842 (an 

interspecific derived breeding line), and Tamcot 22 (Thaxton and Smith, 2005). TAM 

03B182-33, TAM 04SID842, and TAM 06WE-62-4 which contain fiber quality alleles 

accumulated through decades of pedigree breeding and selection pressure for fiber length 

and strength, and Tamcot22 (PI 635877) is a released high yielding cultivar, which came out 

of the same program and contains excellent fiber properties. The population used in 2017 

consisted of the same genotypes along with 47 additional released obsolete US improved 

cultivars representing the different cotton growing regions throughout the US. These 

respective populations were planted in a randomized complete block design (RCBD) in 2016 

and 2017 at the Texas A&M AgriLife Research and Extension Center and in Corpus Christi, 

TX at the Texas A&M AgriLife Research and Extension Center in Weslaco, TX. In 2016, 
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128 genotypes in three replications were used at both locations, and in 2017, 174 genotypes 

in two replications were used at both locations. Soil type at Weslaco is a Hidalgo sandy clay 

loam, a fine-loamy, mixed, active, hyperthermic Typic Calciustolls, and a Houston black 

clay, a fine smectitic, thermic Udic Haplustert at Corpus Christi. Normal cotton production 

practices were used in all trials, with furrow irrigation used in Weslaco, TX. No irrigation 

was applied at the Corpus Christi testing location. 

Boll samples were randomly harvested from plots with 30 bolls hand harvested from 

the first fruiting limb position in the middle of the fruiting zone. Boll samples were ginned 

using 8-saw laboratory gins, with each replication ginned by a single gin. Fiber samples 

were sent to the Fiber and Biopolymer Research Institute at Lubbock, TX where 

phenotyping was performed using HVI and AFIS. The traits used in this study from HVI 

were upper half mean length (UHML) and strength, and the traits used from AFIS were 

length by number L(n), standard fineness, and short fiber content by number (SFC). An 

index was created from all HVI and AFIS traits to predict yarn work to break.  

For yarn quality testing the 128 genotypes from 2016 were also planted that year at 

the Texas AgriLife Research Farm near College Station, TX on a Westwood silt loam, a 

fine-silty, mixed, superactive, thermic Udifluventic Haplustepts integrated with Ships silty 

clay, a very fine, mixed, active, thermic Chromic Hapluderts. Normal cotton production 

practices, and furrow irrigation was used. This trial was planted in an RCBD with three 

replications. Plots were harvested with a one-row spindle picker modified for single plot 

harvest, and the three replications were bulked by genotype. Samples were ginned on a 21-
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saw laboratory gin and sent to the Fiber and Biopolymer Research Institute in Lubbock, TX 

for mini-spinning analyses (Joy et al. 2010). 

 Tissue samples were collected from young leaves, and DNA was extracted using a 

modified CTAB (cetytrimethylammonium bromide) method described by Zhang et al. 

(2010). Genotyping was performed using the Illumina® 63K SNP array (Hulse-Kemp et al., 

2015). SNP markers were removed 1) when markers were non-polymorphic, 2) greater than 

10 % of SNP calls were missing in population, 3) minor allele frequency was less than .03, 

and 4) heterozygosity of marker was greater than 10 %. After marker filtering, 20,045 high 

quality SNPs remained. 

 For all traits, Empirical Best Linear Unbiased Predictors (EBLUP) were calculated 

using lme4 package in R (Bates et al., 2015). Genomic prediction was performed in the 

GAPIT R package (Lipka et al., 2012), where a Genomic Best Linear Unbiased Predictor 

(GBLUP) model was calculated using a genomic relationship matrix (VanRaden, 2008) and 

the first three principal coordinates calculated from the marker data used as fixed effects 

covariates. Genomic prediction models were validated using bootstrap validations, where 

one-fifth of the population was randomly selected as the test set, and the rest were used as 

the training set. The bootstraps were run for 1,000 iterations. The mean prediction value for 

each genotype was then correlated to actual value to determine prediction accuracy.  

To evaluate the effects of population structure, fastStructure (Raj et al., 2014) was 

applied using the default settings and the prior argument set to simple. K-values of 1 to 10 

were evaluated for optimal K using the chooseK function. If the optimal K was determined 

to be 1, the process was repeated for K-values of 1 to 3 with the prior argument set to 
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logistic, and the chooseK function used again to identify optimal K. The K value indicates 

how many subpopulations are expected within the full population. This procedure was used 

on the entire population, and on a subset of the population created for the purpose of 

inducing population structure. The subset consisted of the 96 obsolete US improved cultivars 

and 24 of the bidirectional inbreds.  

To evaluate the effects of population structure on prediction accuracy, genomic 

prediction was performed two subset populations. These populations consisted of the 

obsolete US Improved cultivars and the bidirectional inbreds with one population containing 

highs and lows from the bidirectional inbreds for UHML, and the other containing highs and 

lows from the bidirectional inbreds for strength. In both subsets, genomic prediction was 

performed for the obsolete US improved lines only, then a series of substitution of obsolete 

US improved lines with the Texas A&M bidirectional inbreds at 5, 10, 15, and 20 percent 

substitution. Using this substitution method insured that changes in prediction accuracy were 

not the result of changes in population size, as population size was held constant at each 

varying percent substitution. This was performed randomly in each bootstrap iteration by 

randomly choosing an even number of the obsolete US improved lines to be removed that 

corresponded to the percent of substitution, and randomly choosing a pair of inbreds to 

replace them. A pair consisted of both a high-quality and a low-quality selection from the 

same cross. This analysis will be referred to as the inbred substitution analysis in further 

discussion.  

 Random forest was used to develop a selection index using HVI and AFIS data to 

predict yarn work to break with the randomForest package in R (Liaw and Wiener, 2002) 
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using default arguments. To identify which HVI and AFIS variables were most important 

the out of bag error rate (OOB) was used. The prediction accuracy and variation of 

prediction accuracy was determined by using 100 boot strap iterations for each addition of 

the traits in order of importance as determined by OOB. In each iteration 1/5th of the 128 

genotypes were selected as the test set, and the remaining genotypes were used to build the 

model. The best fit model was used to predict yarn work to break for all genotypes in the 

population, and a genomic prediction analysis was performed on determined trait values 

using same protocol described earlier. Prediction accuracy was determined by correlation of 

predicted value with the actual value from the 128 genotypes from which yarn was spun.  

5.3. Results and Discussion 

 The results from the genomic prediction analysis on the full population are shown in 

Figure 5.1. The correlation for UHML, strength, standard fineness, L(n), and SFC for the 

full population were 0.73, 0.71, 0.72, 0.63 and 0.48, respectively. However, these values are 

not consistent when breaking down the germplasm in different groups. Looking at the 

correlations between predicted value and actual value for the Texas A&M germplasm and 

the obsolete US improved cultivars separately from the same analysis shows that the 

prediction accuracies for the group were different than prediction accuracies of the whole. 

For UHML, strength, and L(n), the predictions accuracies for both groups were less than the 

prediction accuracies for the whole population. The prediction accuracies for the Texas 

A&M germplasm was 0.58, 0.54, and 0.60 for UHML, strength, and L(n) respectively, and 

the prediction accuracies for the obsolete US improved cultivars was 0.56 for both UHML 

and strength, and 0.54 for L(n). Standard fineness showed similar correlations for both the 
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whole population and the Texas A&M germplasm at 0.72 and 0.70 respectively. However, 

the obsolete US improved cultivars showed a correlation of 0.54. UHML, strength, L(n), and 

standard fineness all show population structure differences detectable by the phenotypic 

data, with the Texas A&M germplasm having superior fiber quality compared with the 

obsolete US improved cultivars. This can be seen clearly in Figure 5.1, and a t-test 

performed on these traits all showed significant differences (p value < 0.001). For the Texas 

A&M material, 33 of the 44 genotypes were developed from bi-directional selection for high 

quality and low-quality cotton fiber quality. Again, the parents were developed from decades 

of pedigree breeding and selection pressure for fiber length and strength, which putatively 

resulted in the accumulation of alleles for these traits. Even though the 33 inbreds were bi-

directionally selected, the CIL genotypes selected for low-quality were generally superior in 

regards to UHML, strength, L(n), and standard fineness, indicating that alleles for these 

traits are nested within the population structure. The phenotypic structure causes the inflated 

correlations for the whole populations as it creates more spread in the data. This is shown in 

simulated data (Figure 5.2). A simulated data set was created around the formula 𝑌 = 𝛽0 +

𝛽1𝑋 + 𝑒𝑟𝑟𝑜𝑟, where Y is the actual data value, β0 is the intercept equal to zero, β1 is the 

slope equal to one, X is randomly generated numbers split into two groups: the first group 

was between zero and 0.5, and the second group was between 0.5 and one, and the error is 

randomly generated numbers from a uniform distribution with a mean of zero and a standard 

deviation of 0.23. Since the error is random and uniform around zero the predicted values for 

Y (𝑌̂), were calculated from the same formula, with the error equal to zero. In the simulated 

data the correlations for the whole data set was 0.73, but the correlations for the groups 
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within the data set were less at 0.53 and 0.55. This is consistent with what is seen in the 

empirical fiber data for UHML, strength, L(n), and standard fineness.  

SFC had different correlations between the whole population and the two groups, 

with the whole population showing a correlation of 0.48 and the Texas A&M germplasms 

and obsolete US cultivars showing 0.73 and 0.24 respectively. Unlike the other traits, there 

is no clear population structure according to the phenotypic data for SFC in Figure 5.1, and 

the results of the t-test showed no significant difference (p value = 0.63) between Texas 

A&M germplasm and obsolete US cultivars. The prediction error appears to be distributed 

evenly in both groups, as evidenced by the dispersal around the line, however; the Texas 

A&M data is more distributed across the x axis and this may be the cause of the higher 

prediction accuracy for these genotypes.   

 Population structure analysis was determined using the marker data and performing 

fastStructure on the marker data for the full population. A K of one was identified as the 

optimal K in using both the simple and logistic priors’ argument, indicating no subclasses 

were identified and therefore no population structure was detected using the marker data. To 

look at the effects on prediction accuracy with varying degrees of population structure, an 

inbred substitution analysis was conducted, and the results of this analysis are shown in 

Table 5.1. For UHML, the prediction accuracy for the genomic prediction analysis on the 

obsolete US cultivars with no substitution was 0.55. This was similar to the prediction 

accuracies of populations where 5, 10, 15, and 20 percent of the obsolete US improved 

cultivars where substituted with the Texas A&M germplasm with prediction accuracies for 

the obsolete US cultivars of 0.56, 0.56, 0.54, and 0.54 respectively. For strength, the 
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prediction accuracy for the genomic prediction analysis on only the obsolete US cultivars 

was 0.55. The results of the inbred substitution analysis for strength showed similar results 

as UHML, as prediction accuracies for the 5,10, 15, and 20 percent substitutions were 

similar for the obsolete US cultivars at 0.57, 0.57, 0.57, and 0.55. These prediction 

accuracies are similar to the prediction accuracies for these cultivars in the genomic 

prediction model for the full population of 174 genotypes at 0.56 for UHML and 0.55 for 

strength. The marker data were evaluated using fastStructure on the population that had 20% 

of obsolete US improved cultivars substituted with the Texas A&M bidirectional inbreds to 

see if clear population structure was detectable in the molecular data. The optimal K was 

identified as one when using both simple and logistic priors, indicating no population 

structure detectable using the marker data. This indicates that population structure doesn’t 

appear to effect prediction accuracy, if the structure is not detectable in the marker data. 

Genomic prediction only looks at marker effects to establish predicted values. Previous 

research has shown that prediction accuracy can be diminished due to population structure 

(Wientjes et al., 2013; Habier et al., 2010), as linkage disequilibrium of trait alleles with 

marker alleles can confound the analysis. This doesn’t appear to be the case in this study; as 

structure was clearly present according to the phenotypic data, but was not detectable by the 

marker data. By squaring the prediction accuracy, the variation explained by the marker data 

can be calculated. The variation explained for the obsolete cultivars from the genomic 

prediction analysis on the whole population ranged between .06 to .31 for the various fiber 

traits, which is much less than the reported heritability for these fiber traits (Braden and 

Smith, 2004; Dabbert et al., 2017; Hugie et al., 2017; Zeng and Bechere, 2017; Ulloa, 2006). 
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Thus, there is likely much genetic variation that is unaccounted for by the markers used in 

this study, with some of this unaccounted for variation likely nested within population 

structure, which is also not accounted for by the markers used in this study.  

 The results of using the HVI and AFIS parameters to model yarn work to break are 

shown in Figure 5.3. The highest mean predictability for the 100 bootstrap iterations for 

each number of traits added by order of largest effect on OOB is 0.92 at five traits. The 

lowest variation for these predictabilities was 0.72 x10-3 also at five traits. The five traits 

with the largest effect on the OOB in order are AFIS fineness, HVI strength, HVI 

elongation, HVI uniformity, and AFIS standard fineness. Using the random forest model 

with these five traits, predictions were made for all individuals in the whole population for 

yarn work to break. Genomic prediction analysis was performed, and the results are shown 

in Figure 5.4. Prediction accuracies is largest for the whole population for the same reasons 

as discussed earlier from the combination of two distinct groups that have more spread than 

the individual groups. Prediction accuracy for the whole population, the Texas A&M 

cultivars, and the obsolete US improved cultivars, are 0.66, 0.42, and 0.36 respectively. It is 

too expensive to conduct spin test for large populations when cost per sample is 

approximately 130 dollars, and considering the large amount of land needed to produce 

enough fiber for spinning. This cost prevented the replication of spinning data in this 

analysis, and is certainly prohibitive to using yarn data in normal selection cycles of a 

breeding program. There is induced error involved in making a prediction on a prediction; 

however, the prediction accuracy for yarn work to break of .924 from using HVI and AFIS 

parameters allowed for confidence in moving forward in the analysis with genomic 
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prediction. The predicted yarn values for all genotypes calculated from the HVI and AFIS 

index data were used in the genomic prediction analysis. The accuracy of prediction was 

determined not by correlating the genomic prediction to the yarn prediction, but to the 

empirical data from the College Station trial from which spinning data were obtained. This 

allowed for the error involved from the prediction of the yarn work to break to be induced 

into the determination of the genomic prediction accuracy. Still, this analysis showed that 

the marker data was able to explain some of the genetic variation in yarn work to break. 

Yarn work to break is too expensive for use in breeding programs for selection, and 

therefore alleles for this trait cannot be directly selected; however, this technique does allow 

for some degree of selection for these alleles.  

5.4. Conclusion 

 The development of genomics has given breeders new tools to help move favorable 

alleles forward through selection. This study used new tools available to the cotton breeding 

community to evaluate the application of genomic prediction for fiber quality traits. HVI is a 

fiber bundle quality phenotyping method that has been implemented relatively recently in 

the scope of US cotton improvement efforts, and AFIS is an individual fiber quality 

phenotyping method that is not incorporated at many levels in breeding programs due to 

cost. Many genotypes in the USDA’s obsolete germplasm collection have never been 

phenotyped using either of these methods. Using the obsolete cultivars from this analysis as 

a training population, a breeder can revisit this collection to identify individuals with 

potentially beneficial fiber quality alleles. This study showed that genomic prediction is 
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effective in selecting for yarn quality alleles, which may have application as phenotyping for 

yarn quality is much more expensive than genotyping.  

Although this study determines that genomic prediction was successful at identifying 

some of the genetic variation for fiber quality, it was less than reported in the literature 

through phenotypic heritability studies. It was shown that although in this population there 

was clear population structure evident through phenotype, this structure was undetected in 

the marker data. The prediction accuracy was not diminished by adding varying levels of 

structure, which adds to the evidence that many favorable alleles are not represented in the 

marker platform. As marker platforms develop, this is expected to change. 
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Table 5.1. Genomic prediction accuracies of obsolete cultivars with varying levels of 

substitution with Texas A&M’s bidirectional inbreds. Obsolete US cultivars were replaced 

at varying percentages of population size with germplasm from Texas A&M that distributed 

a clear population structural difference than the obsolete cultivars determined 

phenotypically. Prediction accuracies are given for the obsolete US cultivars. In the last 

column on the right prediction accuracies are given for obsolete cultivars from the genomic 

prediction analysis of the whole population used in this study of 174 genotypes.  

Traits 
Obsolete 

Only 5% 10% 15% 20% 
Whole 
Population 

UHML 0.545 0.564 0.561 0.549 0.535 0.558 

Strength 0.547 0.570 0.568 0.570 0.550 0.550 
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Figure 5.1. Prediction accuracies for cotton fiber traits. Line drawn is the slope for 

correlation of 1 between predicted value and actual value. Prediction accuracy is given as 

correlation between predicted value and actual value for the full population (Whole), only 

the genotypes from Texas A&M Cotton Improvement Lab, and only the obsolete US 

improved cultivars from the results of the genomic prediction analysis for the full population 

(obs. US Imp). The green points correspond to the obsolete US improved cultivars, the black 

points correspond to the genotypes from Texas A&M Cotton Improvement Lab, and the red 

points correspond to the 10 current commercial cultivars.  
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Figure 5.2. Correlations for simulated predicted and actual data showing that the correlation 

for the whole population is increased when there are two different phenotypic groups that 

spread the data out more. Group one is represented by the green points and group 2 is 

represented by the black points. Correlations between predicted and actual simulated data is 

given in the bottom right of the plot.   
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Figure 5.3. Results from random forest analysis to model yarn work to break from HVI and 

AFIS parameters. The left plot shows mean predictability from the 100 bootstrap iterations 

as determined by correlation of predicted values to actual values for the addition of each 

parameter ordered by largest effect on the OOB. The right plot shows the variation of the 

predictabilities from the 100 bootstrap iterations for the addition of each parameter ordered 

by largest effect on the OOB.  
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Figure 5.4. Prediction Accuracy for yarn work to break. Line drawn is the slope for 

correlation of 1 between predicted value and actual value. Prediction accuracy is given as 

correlation between predicted value and actual value for the full population (Whole), only 

the genotypes from Texas A&M Cotton Improvement Lab (TAM), and only the obsolete US 

improved cultivars from the results of the genomic prediction analysis for the full population 

(obs. US Imp). The green points correspond to the obsolete US improved cultivars, the black 

points correspond to the genotypes from Texas A&M Cotton Improvement Lab, and the red 

points correspond to the 10 current commercial cultivars.  
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6. CONCLUSIONS 

 

This dissertation research indicated that genetic gains for both HVI and AFIS traits 

have been made in the past 100 years of breeding effort, even though selection for AFIS 

traits such as maturity, fineness, standard fineness, and immature fiber content is not widely 

implemented and was not available until after 1990. It is likely that gains in these traits are 

from correlation with traits such as length and strength in which there has been direct 

selection pressure, indicating there is potential standing variation for these traits that is 

unexploited in the obsolete US cultivar collection. It was determined that there is an increase 

in gains for strength that occurs around the 1940s. This supports the conclusions of Green 

and Culp (1990), Bowman and Gutierrez (2003), and Bowman et al. (2006) that Beasley’s 

Triple Hybrid (Beasley 1940) contributed to the breaking of negative linkage of fiber 

strength with yield around this same time.  

This work determined that fiber quality traits are highly stable across environments, 

reaffirming the findings of both Campbell et al. (2012) and Ng et al. (2013) who reported 

that GxE for fiber quality traits is more significant for magnitude rather than rank changes. 

Genomic prediction is applied to the environment in which the training population is 

evaluated in. If traits evaluated are unstable across environments, this will diminish 

predictability.  Fiber quality improvements were apparent regardless of selection 

environment.  

 Finally, this work determined that genomic prediction was successful in identifying 

some of the genetic variation for fiber quality; however, it was less than reported in 
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phenotypic heritability studies by Braden and Smith (2004), Dabbert et al. (2017), Hugie et 

al. (2017) Zeng and Bechere (2017), and Ulloa (2006). The molecular marker platform used 

in this study didn’t adequately account for all the genetic variation. The Texas A&M cotton 

material was determined to be superior in terms of fiber quality compared with the obsolete 

US improved cultivar collection. The addition of this germplasm into the obsolete US 

improved cultivar collection to generate clear population structure was identifiable 

phenotypically, but not molecularly. This study determined that genomic prediction is 

effective in selecting for yarn quality alleles, which may have application as phenotyping for 

yarn quality is much more expensive than genotyping. As molecular marker technologies 

continue to develop and better explain genetic variation, genomic prediction will become an 

increasingly valuable tool to breeders.  
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