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ABSTRACT 

 

Iron is a crucial nutrient in most living systems. It forms the active centers of many 

proteins that are critical for many cellular functions, either by themselves or as Fe-S clusters and 

hemes. However, Fe is potentially toxic to the cell in high concentrations and must be tightly 

regulated. There has been much work into understanding various pieces of Fe trafficking and 

regulation, but integrating all of this information into a coherent model has proven difficult.  

 Past research has focused on different Fe species, including cytosolic labile Fe or 

mitochondrial Fe-S clusters, as being the main regulator of Fe trafficking in yeast. Our initial 

modeling efforts demonstrate that both cytosolic Fe and mitochondrial ISC assembly are 

required for proper regulation. More recent modeling efforts involved a more rigorous multi-

tiered approach. Model simulations were optimized against experimental results involving 

respiring wild-type and Mrs3/4-deleted yeast. Simulations from both modeling studies suggest 

that mitochondria possess a “respiratory shield” that prevents a vicious cycle of nanoparticle 

formation, ISC loss, and subsequent loading of mitochondria with iron. 

 Work has also been done in understanding an accumulation of Fe in stationary grown 

yeast cells. This accumulated Fe was found to be localized to the cell wall, and can be used as 

cells are metabolically reactivating by being placed into fresh media. A maethematical model has 

been developed to describe the metabolism of oxygen and nutrients in the autocatalytic 

production of active cells, with subsequent deactivation of cells as nutrients became limiting. 

 E. coli have similar Fe contents relative to mitochondria, and they also appear to also 

employ a “respiratory shield”. This hypothesis was tested by either inhibiting respiratory 

complexes with CN, or by growing cells into a metabolically inactive stationary growth state. 
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The generated nanoparticles were not associated with ferritins, which is surprising given that 

much of the literature claims that ferritin Fe makes up a large portion of cellular Fe. 

 The iron content of murine hearts was also studied. Previous work from the Lindahl lab 

focused on murine brains and livers, which contain ferritin at young and old ages, while losing it 

in middle age. Hearts differ from these two organs, in that they mainly contain respiratory iron-

sulfur clusters, and only gain ferritin as the mice approach old age. 
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NOMENCLATURE 

 

MB Mössbauer 

TB Blocking temperature 

BPS Bathophenanthroline disulfonate 

DFO Desferrioxamine 

ISC Iron-Sulfur Cluster 

CD Central Doublet 

CIA Cytosolic Iron-sulfur assembly complex 

 Isomer shift 

EQ Quadrupole splitting 

 Linewidth 

EPR Electron paramagnetic resonance 

LMM Low molecular mass 

 Mrs3/4 cells 

WT  Wild type 

NHHS  Nonheme high-spin 

FTS  Flow-through solution 

LC-ICP-MS  Liquid chromatography with on-line detection by an inductively coupled 

plasma mass spectrometer 

LIP  Labile iron pool 

OXPHOS  Oxidative phosphorylation 

TCA  Tricarboxylic acid (cycle) 
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ODE  Ordinary differential equation 
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CHAPTER I  

INTRODUCTION 

 

Introduction and Instrumentation 

Iron is a critical nutrient for the proper function of nearly all living systems. Iron 

and iron-containing proteins participate in enzyme catalysis, electron-transfer reactions, 

substrate binding, DNA replication/repair, and a multitude of other reactions. In 

eukaryotic cells, mitochondria are central to Fe trafficking and regulation, as they are the 

only site of heme synthesis and a major site of Fe-S cluster (ISC) biogenesis (1). Fe is 

also trafficked through the cytosol to other sites, including ferritin/vacuoles and the 

nucleus (2). Ferritin is a 24-subunit heteromeric protein complex that is employed by 

mammalian cells and bacteria for storage of excess Fe (3). Yeast do not have ferritin, but 

they use vacuole organelles for the same purpose (4). 

 Environmental Fe is generally present in the insoluble ferric (Fe3+) state (4). 

Cells have evolved many methods of solubilizing this ferric Fe, either through reduction 

processes or through chelator complexes called siderophores. Yeast contain both high- 

and low-affinity Fe uptake pathways. The high-affinity uptake pathway involves the 

Fet3/Ftr1 heterodimer (5). Fet3 is a multicopper oxidase that oxidizes ferrous ions that 

are supplied by Fre1 (6). Ftr1 is a permease that imports this ferric ion into the cell. 

Before the ferric ions enter the cytosol, they are reduced to the ferrous state. Fet4 is the 

low-affinity transporter that also imports other metals besides iron (7). Fet4 imports iron 
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in the absence of oxygen, whereas the high-affinity Fet3 pathway requires oxygen to 

function.   

Once iron is in the cytosol, it is sent to a multitude of locations. As stated 

previously, one of the main traffic hubs for iron in the eukaryotic cell is the 

mitochondria, the “powerhouse” of the cell. Iron can presumably cross the outer 

membrane of the mitochondria through the porin proteins, but there are high-affinity and 

low-affinity pathways to bring iron across the inner membrane. The high-affinity 

pathway includes the mitoferrin homolog proteins Mrs3 and Mrs4 (8,9,10) whereas 

Rim2 is used in the low-affinity pathway (11,12). Once in the matrix of the 

mitochondria, Fe is in a low molecular mass pool (dubbed Fe580) that is implicated in 

mitochondrial ISC synthesis (10,13,14). This involves the building of a Fe2S2 cluster on 

the ISC scaffold protein. The sulfurs for these clusters originate from cysteine, in a 

reaction catalyzed by cysteine desulferase Nfs1. Electrons for the process are donated 

through the Yah1 ferroxidase protein (15). Such clusters are either installed into various 

target proteins or they are combined with another Fe2S2 cluster to form an Fe4S4 cluster, 

and that cluster is installed (1,3). 

In the ISC assembly machinery, there is a protein that has had a controversial 

story as researchers seek to assign a function to it. This protein known as frataxin, and 

yeast have a homolog known as Yfh1 (Yeast Frataxin Homolog 1) (16). This protein has 

been in search of a function since its discovery. There have been a host of hypothesized 

functions of this proteins, including iron storage, iron chaperoning to ISC assembly, to 

stimulating the rest of the ISC machinery for activity (17, 18). No matter what the actual 
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function of this protein, loss of frataxin in humans leads to the manifestation of a disease 

known as Friedreich’s Ataxia. This disease is manifested as an Fe overload disease, with 

the accumulated Fe characterized as Fe nanoparticles in the mitochondria. Other 

symptoms include loss of ISCs and respiratory ability, lethargy, mental retardation, and 

cardiomyopathy (19). In yeast, the previously discussed ISC mutant phenotype is 

manifested: a loss of ISCs and hemes, slowed growth, an increase of ROS damage, and 

an accumulation of Fe in the mitochondria in the form of nanoparticles. 

This Fe580 pool may also be used in heme synthesis, which are installed, along 

with ISCs, into the respiratory complexes, which reduce O2 to water while producing 

ATP during oxidative phosphorylation (13).  

Iron can also be trafficked into the yeast vacuole when cytosolic Fe is found to be 

in excess. Uptake of Fe into the vacuole is mediated by the Ccc1 protein, and 

presumably endocytosis (20,21). The iron brought into the vacuole is rapidly oxidized to 

Fe3+, and can potentially aggregate as Fe-polyphosphate nanoparticles. Vacuoles serve as 

dynamic storage for the cell. If the cell becomes Fe-deficient, the Fe3+ can be reduced to 

Fe2+ through the Fre6 protein (22), and then brought out through the Fet5/Fth1 

heterodimer, which is a multicopper oxidase/permease combination (23). The entire 

pathway is homologous in function to the cytosolic import pathway involving 

Fre1/Fet3/Ftr1.  
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Labile Metal Pools  

While the previous few paragraphs have looked into the large scale movement of 

Fe throughout the cell, much research has been done into understanding how the 

transition metals are moved throughout the organelles and stored. Many labile pools of 

the biological transition metals have been discovered, but the nature of these pools has 

provided a challenge for localizing and characterizing the ligand environment of these 

pools. There have been plenty of groups that have been focused on understanding these 

groups, and have developed fluorescent chelator probes for the task of locating the labile 

pools within the cell, to great effect (24). These probes can be tailor made for individual 

metals and placed in specific locales of the cell. These probes can then fluoresce upon 

the binding of the desired metal and detected with a high resolution instrument, giving a 

detailed “map” of metals within the cell (25). However, while these probes have been 

useful in localizing and detecting various metals, these new chelator probes lose possible 

information by chelating the metal away from its native ligand. In order to gain valuable 

insight into the ligand environment of the labile pool in question, separations must be 

used that preserve the native complex. The Lindahl lab has developed such a 

methodology that uses LC-ICP-MS (described below) in an anaerobic environment to 

separate and detect individual metal complexes from biological extracts (14), and efforts 

are being made to physically characterize them so that the exact identities of the ligands 

are known. 

 

 



 

5 

 

Dangers of Fe and the Need for Regulation 

While Fe may be critical to cell function and survival, Fe can also be lethal. Fe 

can participate in Fenton chemistry and Haber-Weiss chemistry to produce reactive 

oxygen species (ROS) and then regenerate the beginning ferrous ion (26). These are 

shown in reactions 1-3: 

2 2

2 2

2 2 2 2

( ) ( ) HO (1)

( ) ( ) (2)

Net Reaction

HO (3)

Fe II H O Fe III HO

Fe III O Fe II O

O H O O HO

 



  

   

  

   

  

These ROS can react rapidly in an indiscriminate manner with proteins, causing 

misfolding, or DNA, causing gene damage, and ultimately death of the cell. Thus, Fe 

must be tightly regulated within the cell. This is accomplished in yeast through a number 

of regulatory pathways which involve Aft1/2 (low iron response) and Yap5 (high iron 

response) (27,28). 

The Aft1/2 transcription factors initiate a Fe-deficient response. When cells are 

Fe-deficient, Aft1/2 localizes to the nucleus, where they bind the Fe-regulon, which is a 

set of genes that encode Fe-transport proteins. When Aft1/2 is bound in the nucleus, 

proteins encoding cellular Fe uptake (Fet3/Ftr1, Fet4) and trafficking (Mrs3/4) to the 

mitochondria are upregulated (27), and proteins that assist in degrading the vacuolar 

import proteins (Cth1/2) are also up regulated (29). As cells become Fe-replete, a sulfur 

containing species (X-S), gets exported from mitochondria by the Atm1 protein (30). 

This sulfur species is used by the cytosolic ISC assembly complex (CIA) and a 2Fe2S 

cluster is produced. This cluster binds to the Grx3/4 proteins in a homodimer complex 
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with the ISC in the middle. In the next step, one of the Grx proteins will be replaced with 

Fra2 (28). This Grx3/4:Fra2 heterodimer will then interact with Aft1/2 and exchange the 

Fe2S2 cluster. When Aft1/2 is bound with the ISC, it is localized in the cytosol of the cell 

after being exported from the nucleus by Msn5, though a study where Msn5 was deleted 

showed healthy Aft1 activity and translocation, so it is possible there is a secondary 

pathway for Aft1 export from the nucleus (31).  

In cases where Fe-trafficking genes in the cell are deleted/mutated, a multitude of 

phenotypes are evident, with the most common being an overload of Fe and a slow 

growth rate due to ROS damage. This cell damage can become cumulative and be 

observed tissues and organs in higher order organisms. Body phenotypes are observed 

with lethargy, potential mental retardation, and iron overload in organs, leading to 

cardiomyopathy and other complications (32). Some common Fe-related diseases in 

which Fe is dysregulated in the cell/body are Friedreich’s Ataxia, β-Thalassemia, and 

Hemochromatosis. Friedreich’s Ataxia presents itself when the frataxin protein (Yfh1 in 

yeast) (3, 16), is mutated or deleted. This protein is involved in mitochondrial ISC 

assembly, and loss of which leads to loss of assembly, Fe overload localized to the 

mitochondria, and a large excess of ROS damage in the cell (33). β-Thalassemia is 

characterized by a malfunction in the production of hemoglobin. This leads to a cascade 

of problems, stemming from a lack of red blood cells in the body (anemia). This cascade 

includes a lack of oxygen in parts of the body, pale skin, weakness, fatigue, and a host of 

additional complications. (34) Primary Hemochromatosis is characterized by a loss of 

the HFE gene, which is involved in Fe regulation in the body. Loss of this leads to iron 
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overload in the body, and patients need to be able to get rid of this iron, typically through 

blood transfusions (35). The overall goal of the research performed in the Lindahl 

laboratory is to understand the biological role of Fe in healthy and diseased cell states, 

and understand the chemistry involved in the trafficking and regulation of this critical 

biological metal. 

Studying and understanding the roles of Fe in biology in a meaningful way 

presents an interesting problem, as in vitro methods don’t necessarily translate to in vivo 

roles, as shown with in vitro studies of the Yfh1 protein demonstrating an iron storage 

function, where this does not appear to be the case (17,36). In the Lindahl laboratory, a 

suite of biophysical methods is employed to give a systems’ level understanding of Fe 

metabolism and trafficking in multiple from biological systems while preserving the 

integrity of these samples (37). Among these are Mössbauer spectroscopy, Electron 

Paramagnetic Resonance (EPR) spectroscopy, and Liquid Chromatography-Inductively 

Coupled Plasma Mass Spectrometry (LC-ICP-MS). Among these techniques, Mössbauer 

spectroscopy has exclusive sensitivity for Fe, specifically 57Fe. This technique can be 

used to detect 57Fe, regardless of the rest of the sample present. As such, there have been 

a litany of studies done in biological platforms to study and understand the types of Fe 

centers present in cells and how they respond to various perturbations 

(10,13,15,38,39,40,41).   
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Principles of Mössbauer Spectroscopy 

The Mössbauer effect, named after Rudolf Mössbauer, utilizes recoilless nuclear 

fluorescence of gamma radiation and is the most powerful technique for studying Fe. 

This is due to the high selectivity for the element that comes from the required energy 

overlap between source and sample. (42,43). Mössbauer spectroscopy is a nuclear 

resonance technique, similar to Nuclear Magnetic Resonance (NMR) spectroscopy, 

except that gamma rays are utilized to excite the nuclear spin as opposed to radio waves. 

The higher energy radiation is required because Mössbauer transition energies are much 

greater that NMR transition energies. Protons in the nuclei have a quantum mechanical 

property called spin angular momentum. These discrete states are called nuclear spin 

states (I). For a single proton, I has the value ½. These states are described by 

mathematical functions that have solutions only when I and another parameter that 

reflects magnetic properties, MI, have specific values. There are two spin functions 

associated with this I=1/2 state, MI=+1/2 and -1/2 (44). Assuming a proton in free space, 

these two functions will be degenerate. When placed in a magnetic field, the energies of 

these two degenerate functions will split. In NMR spectroscopy, the proton is placed in a 

magnetic field and exposed to radiation of increasing frequency. When the energy of the 

radiation matches the transition energy, resonance is achieved, the radiation is absorbed, 

and the NMR signal is generated/detected. The resonance energy is sensitive to the 

chemical environment of the proton. This sensitivity makes NMR spectroscopy useful to 

chemists even though all the activity occurs at the nucleus. The same basic mechanism is 

occurring in Mössbauer spectroscopy, but more spin states and transitions are involved. 
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The most common nucleus used in Mössbauer spectroscopy, the 57Fe nucleus contains 

26 protons and 31 neutrons, each with their spin angular momenta that either enhance or 

cancel with each other. This feature results in multiple I values (1/2, 3/2, 5/2…) The 

I=1/2 state is the lowest in energy and is designated as the ground state. From this, the 

first level excited state is the I=3/2 state. This first transition (1/2 -> 3/2) is what is 

detected by Mössbauer spectroscopy. The energy to induce the 57Fe transitions is 

provided by a 57Co gamma source. 

 

 

 

Figure 1.1: Basic Illustration of Mossbauer splitting, either with an electric field gradient to produce a 

quadrupole doublet (top), or in the presence of a magnetic field to produce a sextet signal (bottom) 
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Coordination Chemistry of Fe (44,45,46,47) 

 As a transition metal, Fe is easily found in a variety of oxidation states, with a 

maximum of 5 electrons able to be removed under physiological conditions. In 

biological systems, it is fallacious to use the term “free” iron, as at minimum Fe would 

be found as a hex-aqua complex. Common biological ligands for Fe contain O, N, or S, 

which contain the capability to “donate” electrons to the metal. Considering this, in 

proteins with metal centers containing Fe are typically coordinating the metal with 

amino acids like histidine, cysteine, and aspartic acid; as these contain the required 

atoms to coordinate Fe. In biology, the most common states of Fe are ferrous and ferric 

(Fe2+ and Fe3+ respectively), with the other oxidation states requiring special conditions 

to obtain in physiological conditions. The 3d orbitals of Fe have interesting shapes, with 

a node at the nucleus, and lobes along/between the axes. The geometries of orbitals give 

rise to certain preferences for complex shapes (octahedral, tetrahedral, square 

pyramidal…). For a free ferrous ion, the 5 3d orbitals are degenerate. Upon complexing 

the ferrous ion, the degeneracy changes depending on the number of ligands added, as 

well as the geometry of the molecule. The d orbitals are responsible for the superior 

catalytic properties of the transition metals, not just Fe. The d orbitals are weakly 

involved in bonding, allowing them to accept and donate electrons without an effect on 

stability of the bonds. This allows for weak substrate binding to the metal, which brings 

substrates close together spatially, increasing the probability of a chemical reaction to 

occur. All of these properties are what make transition metals such great catalysts, but 

this is a double edged sword. These metal catalysts can catalyze reactions that produce 
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ROS, which have deleterious effects on cells (48,49). We can further look at what types 

of Fe-centers and compounds that are common in biological systems. 

 

Types of Fe evident in biological samples (47) 

Almost all known biological Fe centers have been studied by Mössbauer 

spectroscopy, and a total review of all of them here would require more time and would 

distract from the goal of this work. Rather, a summary of the Mössbauer characteristics 

of each major Fe center will be discussed. Heme groups are found in multiple proteins, 

such as hemoglobin, myoglobin, cytochromes, and mitochondrial respiratory complexes. 

High spin (HS) and Low Spin (LS) ferrous and ferric hemes are common. Mononuclear 

ferrous and ferric complexes, typically coordinated by O, N, or S ligands, are also 

evident. The designation of HS or LS depends on the geometry of the complex and the 

ligands involved. Also commonly observed are Fe-S clusters. Fe2S2, Fe3S4, and Fe4S4 

core structures are found in biology. The overall oxidation state of the cluster is 

determined by the summation of the oxidation states of the individual Fe’s in the cluster 

(+2 or +3 per Fe) minus the sum of the sulfur charges (-2).  
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Figure 1.2: Mössbauer spectra of S. cerevisiae whole cells, with simulations of typical species. Gold: 

NHHS Fe3+, Green: HS Hemes, Cyan: Nanoparticles, Maroon: NHHS Fe2+, Purple: “Central Doublet” 

comprised of Fe4S4 Clusters and Low Spin Hemes 
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Aggregated Ferric ions 

Fe3+ aggregates as nanoparticles can be observed with internal magnetic fields 

that fluctuate and change direction due to thermal excitations (15,50,51). These 

fluctuations are much faster than the time of measurement by Mössbauer, which shows 

an average magnetic field of zero, and the resulting spectrum is a doublet. However, the 

magnetic features can be measured if the temperature is lowered enough. This “blocking 

Temperature” is the level at which half of the molecules in a population shows magnetic 

properties and half shows a doublet. This behavior is typical of superparamagnetic 

behavior. This behavior is observed in the mammalian Fe storage protein, ferritin. This 

protein is found in the cytosol and is a heterodimer made up of a combination of heavy 

and light subunits. This spherical protein has an 8 nm diameter core that is filled with 

Fe-oxyhydroxide nanoparticles as ferrihydrite (52). This material gives a similar signal 

as hemosiderin, as is discussed below. However, the blocking temperatures of these two 

materials are vastly different, allowing for characterization of these materials by 

collecting spectra at various temperatures. Fe-oxyhydroxide nanoparticles are also 

apparent in yeast (51) and human cells (40). These particles have low blocking 

temperatures (<4.2K), so that even at liquid He temperatures a doublet is evident. This 

low blocking temperature would indicate that the particles are smaller than in ferritin. 

This is corroborated by electron microscopy, which revealed an average particle size of 

2-4 nm (51).  
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Online and Offline LC-ICP-MS 

LC-ICP-MS is useful for separating out various complexes containing metals. In 

many studies in the Lindahl laboratory, the low molecular mass (LMM) complexes are 

studied, as these are thought to be labile metal pools used for trafficking within the cell 

(14,53). In the Lindahl lab, a novel system has been developed that employs a bio-inert 

HPLC system that is housed in an anaerobic glove box. Samples are separated using an 

SEC (size exclusion chromatography) column. As analytes elute off the column, they are 

fed to an ICP-MS. The ICP-MS allows for simultaneous detection of multiple elements, 

and we are detecting biologically relevant metals (Fe, Cu, Co, Mn, Mo, Zn), as well as P 

and S. This allows for determination of when complexes containing the desired elements 

are coming off the columns. By calibrating the system with known standards, a 

calibration curve can be produced that allows for approximation of the molecular weight 

of the unknown peak. 

Using the ICP-MS alone (called offline mode in the Lindahl lab), absolute 

concentrations of 57Fe in each sample can be determined. Then by taking the given 

concentration and applying the dilution factors used to make the sample run on the 

instrument, one can calculate the absolute concentration of each element of interest in 

the sample. 

Using WMOSS software, we can simulate individual Fe-containing species in the 

Mössbauer spectra and deconvolute the spectra into percentages of the whole sample. 

For example, a whole cell sample could be made up of 25% Fe-S clusters, 25% Non-

Heme High Spin (NHHS) Fe2+, and 50% NHHS Fe3+. Knowing these, the percentages 
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can be multiplied by the absolute concentrations obtained through ICP-MS to yield 

absolute concentrations of the three detected species. There is a synergy of all techniques 

discussed (Mössbauer spectroscopy, EPR spectroscopy, LC-ICP-MS, and ICP-MS) that 

allows for a complete picture of the “iron-ome” of a species or cell mutant strain being 

studied, allowing for a systems level model to be developed. 

 

Mathematical modeling  

The above techniques can be used to build Fe-omics studies, studies that 

characterize the movement, utilization, and regulation of Fe within the system of 

interest. Many studies done focus on only one part of Fe trafficking and regulation and 

cannot make insights into the other parts of the cell. One goal of the studies presented in 

this dissertation is the integration of all of the individual “pieces” into a systems level 

model. That is, a model that can monitor Fe trafficking and regulation as it is imported 

into the cytosol, trafficked into organelles and is speciated, either as ISCs, nanoparticles, 

isolated Fe3+, and so on. This model is implemented in the presented research through a 

system of ordinary differential equations (ODEs) and will be discussed in further 

chapters of this dissertation. Due to lack of specific information on certain 

species/processes as the modeling gets more complex, we rely on mesoscale modeling, 

and only focus on beginning and end products, for which data is attainable. For example, 

one may not know the exact details of ISC assembly in mitochondria, but the ISCs 

themselves, and their reported feedstock pool, can be measured; so one can use a 

simplified chemical reaction as a surrogate for the actual ISC assembly machinery.  
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This modeling approach isn’t new, as there are many groups out there that have 

applied modeling approaches to various problems, including Fe. However, this modeling 

approach claims novelty by grounding the model in experimental data, and allows for 

computational work to directly communicate to each other. Once a model is sufficiently 

developed, it can then inform experimental direction, with new data obtained used to 

augment the model. 

 

Transition to Projects 

 In this dissertation, multiple studies of Fe-related phenomena are reported, with 

a goal of understanding the regulation of iron import and trafficking in the cell and its 

response to various stimuli and perturbations. In the following chapters, the iron contents 

of Saccharomyces cerevisiae and Escherichia coli, as well as their responses to various 

stimuli and genetic perturbations were studied. 

 In S. cerevisiae studies, introduced below, the biophysical data collected from 

Mössbauer, EPR, and ICP-MS were integrated into an ordinary-differential-equation 

based model that can model various conditions and genetic strains, including WT cells, a 

strain in which the high affinity mitochondrial iron trasnporters Mrs3/4 are deleted 

(Mrs3/4ΔΔ), as well as a strain in which the yeast frataxin homolog (Yfh1) protein is 

under the control of estradiol. These studies helped to probe the regulatory pathways of 

yeast, as well as understand the role of oxygen in the ISC phenotype.  
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E. coli studies, introduced below, WT cells as well as mutants in which the ferric 

uptake regulator (Fur), and the various ferritins (FtnA, Bfr, and Dps) were deleted, were 

examined through the same biophysical and bioanalytical methods. 

 

Modeling Efforts to Determine Regulation Species in S. cerevisiae   

S. cerevisiae have many homologous systems for transporting metals relative to 

metals, so they are used as a model system for studying what happens in mammalian 

systems. Kaplan and co-workers (54,55), have monitored the cytosolic Fe species by 

installing Fe-requiring enzymes into yeast cells. This Erg25 enzyme is inactive under Fe-

deficient conditions, but activity develops in cells grown under increasing concentrations 

of Fe in the growth medium. This would suggest that the cytosolic Fe species 

qualitatively mirrors the concentration of Femed. This species is probably not directly 

proportional, as a large concentration of ferrous iron creates the possibility for reactive 

oxygen species (ROS) damage through Fenton chemistry. 

As mentioned above, Fe is toxic to the cell if present in excess concentration 

through Fenton chemistry and ROS damage. The regulation of this critical, yet 

dangerous micronutrient has been the subject of study, and some ambiguity. When 

studies first began on this regulation system, it was thought that Aft1/2 regulated cellular 

Fe import by “sensing” the cytosolic Fe pool, as it was depleted under Fe deficient 

conditions, and present under Fe-sufficient/excess conditions (56,57). However, studies 

conducted around 2004 by the Kaplan lab (54), found that a loss of mitochondrial ISC 

assembly was the main contributor to dysregulation of Fe trafficking and import into S. 
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cerevisiae cells. In a cell strain in which the yeast frataxin homolog (Yfh1) protein was 

deleted, it was found that cellular iron import was upregulated, yet the cytosolic protein 

indicated that the cytosol was Fe replete, contradicting the standing model that the Fe 

regulon was turned on in the absence of the cytosolic Fe pool. This led the Kaplan group 

to conclude that mitochondrial ISC assembly is the factor that controls Fe regulation 

through the Aft1/2 transcription factors. Additionally, the Kaplan and Lill labs have 

found that the transcription factor Yap5 binds ISCs and regulates the “high-iron” genes, 

such as CCC1, which implicates mitochondrial/cytosolic ISC assembly (57,58,59). 

An elaborate scenario has developed to explain how a mitochondrial-originated 

signal can be relayed to Aft1/2. Atm1 is an ATP-binding cassette half-transporter located 

on the inner membrane of the mitochondria which exports an unidentified sulfur 

containing molecule that is a byproduct of ISC synthesis (X-S) (60,61). X-S provides the 

required sulfur to cytosolic ISC synthesis and provides indirect control to Aft1/2 

activation of the iron regulon. It is thought that the sulfur is used to build a Fe2S2 cluster 

that is used to bridge the Grx3/4 homodimer with the Fe coming from the cytosolic Fe 

pool (62). These glutaredoxin proteins are critical for Aft1/2 dependent regulation, as 

deletion of these proteins leads to constitutive expression of the iron regulon proteins. 

Fra2 interacts with the Grx homodier to generate a heterodimer with the Fe2S2 bridging 

(63.64). This heterodimer then interacts with Aft1/2 to donate the Fe2S2 cluster, 

generating an Aft1/2:Fe2S2 heterodimer that localizes to the cytosol, which allows for 

unbinding of the iron regulon and down regulation of associated genes. Since this 

process appears to involve contributions from both the cytosolic Fe pool and 
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mitochondrial ISC assembly, it is possible that the cytosolic Fe pool can play a role in Fe 

regulation of the cell. 

 

 

 

 

Figure 1.3: Model of regulation of Fe in S. cerevisiae. X-S is generated from mitochondrial ISC 

assembly, and exported into the cytosol by Atm1 (top of figure). This X-S could then be used to make a 

Fe2S2 cluster in the cytosol, (red star). This cluster is then picked up and shuttled to the Aft1/2 proteins 

through the Grx3/4 and Fra2 proteins. From there, depending on whether Aft is bound with the cluster, or 

bound the Fe regulon, the low Fe response is mediated through the blue arrows leaving the nucleus. It is 

also conceivable that Yap 5 binds the cytosolic cluster through some yet to be discovered pathway 

(denoted with red dashed lines). 
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Multiple nutrient states with wild-type (WT) yeast have been studied. These 

studies mostly involved changing iron concentration in the growth medium and studying 

either the whole cell samples, or the isolated organelles that are major Fe traffic hubs 

(mitochondria, vacuoles) (65, 66). Mutants that attenuate ISC assembly and disrupt 

healthy Fe distribution in these traffic hubs, and the cell as a whole have also been 

studied (50, 51). In these cases, whole cell and isolated mitochondria yielded Mössbauer 

signals in which the majority Fe species were found to be Fe-nanoparticles, with a small 

portion due to NHHS Fe2+. These ISC-mutant phenotypes are characterized with these 

details, as well as these observations: a decline in both ISCs and hemes in mitochondria, 

an increase in ROS damage in mitochondria, an absence of vacuolar iron in cells grown 

on Fe-sufficient media, and an increase of cytosolic iron levels. 

While there is much information about the regulatory pathways within S. 

cerevisiae, little work exists that attempts to integrate all of the pathways together to 

produce a quantitative model that tracks the concentration and speciation changes of Fe 

within a cell. It is also unclear exactly what roles cytosolic Fe and mitochondrial ISC 

assembly play in regards to cellular Fe regulation. In this dissertation, a first generation 

ordinary-differential-equation (ODE) model that uses surrogate regulation equations to 

probe the regulatory pathways of S. cerevisiae is presented. This model simulates an 

exponentially growing cell containing 3 organelles (cytosol, mitochondria, and vacuoles) 

with Fe flowing in from the growth media. This model was used to understand cases in 

which more iron was available to the cell (increasing media Fe) as well as understand 
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genetic mutants in which the mitochondrial ISC machinery, mitochondria import, and 

vacuolar import was disrupted.  

 

Recovery of Mitochondrial Iron Contents in Mrs3/4ΔΔ Yeast Cells 

S. cerevisiae are a workhorse of eukaryotic biochemical studies due to the robust 

and quick growths of cell cultures relative to human cells, as well as their similarities to 

human systems. Specifically in the mitochondria, yeast and human mitochondria have 

conserved high affinity iron importers on the inner membrane. These proteins are known 

as mitoferrins in humans, and Mrs3/4 in yeast. These transporters are thought to be 

responsible for bringing in ferrous iron that accumulates in the matrix of the 

mitochondria as a low molecular mass (LMM) that has been characterized by Mössbauer 

spectroscopy (67,68,69,70,71,8,9,13). 

Single deletions of either Mrs3 or Mrs4 do not yield a phenotype, indicating that 

they serve redundant functions (9,13). Deleting both genes simultaneously results in a 

slow growth phenotype when these double mutants are grown in Fe-deficient media. 

Isolated mitochondria from these conditions contain limited amounts of hemes and ISCs 

(9). Double mutants (ΔΔ) grown in Fe-sufficient conditions rescue in growth rate and 

presence of hemes and ISCs (8,9,12,13,71). These studies did not provide a satisfactory 

mechanism to describe the recovery of these mutants under high Fe conditions. 

 A second phenomenon that arises under Fe sufficient growth is the accumulation 

of Fe in ΔΔ cells relative to WT, even as growth rate and hemes/ISCs have recovered 

(69,9,70). This would indicate that the iron regulon is activated (of which Mrs4 is 
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included), and whatever process is responsible for producing X-S is impeded. This 

accumulated iron is not found in mitochondria, as Mrs3/4 deleted mitochondria have 

decreased iron uptake and have half the Fe concentration of WT mitochondria. The 

presence of any Fe at all would indicate a secondary Fe import pathway into 

mitochondria, of which a candidate protein is Rim2 (11,12,72). 

 The question remains as to where the excess iron accumulates, and previous 

studies have proposed the vacuoles and cytosol. In ΔΔ cells, the rate of Fe import 

through the vacuolar Fe transporter Ccc1 is increased (70). Kaplan et al concluded that 

the activity of Ccc1 is higher due to a proposed signaling pathway between vacuoles and 

mitochondria that is involved in Ccc1 activity regulation (73). 

 In this study, Mrs3/4ΔΔ cells were examined using biophysical and bioanalytical 

methodologies that allow characterization of the iron contents of whole cells and isolated 

mitochondria. These methods included Mössbauer, EPR, UV-visible spectroscopy, and 

LC-ICP-MS. The results of these studies help provide insights into a molecular 

explanation of the recovery of ΔΔ cells when grown in Fe-sufficient media as opposed to 

Fe-deficient media. They also provide suggestions as to what species of Fe is deficient 

such that ΔΔ cells are dysregulated, even when grown in high Fe. 

 

Multi-Tiered Model 

 While applying the original modeling approach to the Mrs3/4ΔΔ strain, it was 

found that it was insufficient for accurately modeling the experimental data, so we 

developed a multi-tiered mesoscale model that can transfer fitting parameters from 
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simpler tiers that have more reliable or “harder” data to more complex tiers in which the 

data is “softer” as there are more manipulations and assumptions made to arrive at the 

experimental data one is fitting against at the more complex tier. 

The core assumption of our model is that the matrix of the mitochondria is 

mostly anaerobic under WT conditions, with the respiratory complexes installed at the 

inner membrane responsible for the reduction of molecular oxygen to water, thereby 

preventing oxygen from penetrating into the matrix. Although [O2] has not been directly 

measured for the mitochondrial matrix, there are 3 lines of indirect evidence to support 

this assumption. First, in vitro ISC assembly assays must be done in anaerobic 

conditions (74). Second, numerous enzymes that are present in the mitochondrial matrix 

are extremely oxygen sensitive (75, 76). Third, the nitogenase iron protein, another 

exquisitely oxygen sensitive protein, is active when expressed in the matrix (77). In our 

model, ISC mutant mitochondria have increased oxygen in the matrix because of a lack 

of ISCs and hemes, which play a critical role in respiratory complexes.  

In this study, an improved ODE-based model of iron trafficking and regulation in 

yeast is presented. This is accomplished through a multi-tiered examination and solving 

each model at an expanding steady state to simulate an exponentially growing cell. This 

novel approach to model building was used to fit WT respiring cells, Mrs3/4ΔΔ 

respiring cells (10) that have been characterized with Mössbauer, EPR, ICP-MS, and 

LC-ICP-MS. The model is currently being used to quantitatively understand the changes 

in Yfh1 deficient cells under various conditions (in prep). These Yfh1 cells are being 
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used as an experimental test of the assumption that oxygen plays a role in the ISC 

phenotype. 

 

Yeast cell wall acts to store iron for metabolically deactivating cells 

The cell wall (CW) is an often ignored organelle of the cell. About 20% of the 

genes in S. cerevisiae are involved in CW construction and maintenance (78,79,80,81). 

The cell wall provides more than structural support in the cell, as it is involved in cell 

reproduction, as well as the virulence of pathogens (82,83,84,85,86). The cell wall also 

plays a role in Fe metabolism. There are “Facilitator of Iron Transport” proteins 

(Fit1/2/3) that work to deliver Fe across the cell wall to the plasma membrane (87) and 

these Fit proteins are under the control of the Fe regulon. Data presented in this 

dissertation indicate the cell wall manifests as another traffic hub (along with cytosol, 

vacuoles, and mitochondria) of Fe in the cell as the cells transition to stationary state. 

This cell wall (CW) Fe can then be mobilized, released, and imported by metabolically 

reactivating cells. 

 

E.coli possess a respiratory shield similar to yeast mitochondria 

 Escherichia coli (E. coli) is a gram negative, rod-shaped, bacterium that is 

typically found in the intenstines of warm-blooded organisms. It is also the most well 

studied microorganism because of its ability to be used to express proteins and quick 

growth rate. However, the biophysical studies of E. coli have been lacking in 

consistency of preparation of sample. Many samples were grown to stationary growth 
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state as opposed to exponential state in the same way as the yeast studies, and the 

resulting Mössbauer spectra showed a large accumulation of nanoparticles, and many 

more focus just on isolated proteins rather than look at whole cell samples in a 

systematic basis. 

Under aerobic conditions, E. coli secrete siderophores in the environment that 

serve to bind the relatively insoluble ferric iron found in abundance. These siderophore-

iron chelates are then reimported with specific receptors on the exterior of the E. coli cell 

(88,89). Under anaerobic conditions, E. coli employ a system for importing ferrous iron 

(Feo) (90). However, for the studies presented here, the Fec system (91) will be the 

system used for Fe import, as ferric citrate is the primary form of Fe supplied to cultured 

E. coli. All of these genes are regulated by Fur. 

E. coli possess three ferritin-like proteins (FtnA, Bfr, and DPS) (92,93). The 

main storage protein of these three is FtnA, which binds thousands of iron ions as inert 

ferric oxy-hydroxide aggregates. Fe-Fur binding leads to production of FtnA and Bfr 

(94,95), with expression of these proteins increasing as the cell transitions from 

exponential to stationary phase (96). 

E. coli are also sensitive to the concentration of available oxygen. The Fnr 

transcription factor is needed for anaerobic growth (97). Fnr senses O2 and is 

responsible for regulation the shift between aerobic and anaerobic metabolism. Fnr is 

responsible for the regulation of ~300 genes, and is sensitive to dissolved [O2] between 

0 and 20 µM (98). The “switch” in Fnr is a Fe4S4 cluster that is converted to a Fe2S2 
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cluster under oxidizing conditions, which alters DNA binding affinity (97). In anaerobic 

conditions, FNR retains the Fe4S4 cluster and increases expression of Feo. 

Fe regulation in E. coli involves a poorly characterized labile Fe species, or pool 

(99,100,101). This labile Fe pool (LIP), is presumed to be low molecular mass and non-

proteinaceous. The LIP is thought to be used in both sensing of Fe levels of the cell, but 

also metalation of the apo target proteins. Exact chemical characterization of the LIP is 

difficult due to the fast ligand exchange reactions occurring between the Fe and the 

weakly bound ligands. Bohnke and Matzanke (100) isolated and characterized a non-

proteinaceous, negatively charged Fe complex that was accounted as 40 % of the E. coli 

LIP. This complex possesses a mass of ~2.2 kDa and had potential ligands of pentose, 

uronic acid, sulfonate, or phosphate esters. Imlay and coworkers used EPR to quantify 

the LIP, utilizing a membrane-permeable Fe chelator and quantifying the EPR signal 

associated with the chelate (101). The [LIP] was reported to be 15-30 µM in WT and 80 

µM in Δfur cells. Hohle and O’Brian reported that the LIP was representative of a 

maximum of 8% of total iron (102). The size of the LIP has been reported to increase 

with cyanide treatment and when grown under anaerobic conditions (103,104,105). 

There have been a handful of Mössbauer studies performed with E. coli over the 

past 40 years. Bauminger et al. reported in 1980 that spectra of E. coli exhibited a 

quadurople doublet with parameters characteristic of magnetically-ordered Fe3+ (106). 

Matzanke reported a second doublet in 1989 which made up 11-56% of the spectral 

intensity, with parameters matching those of non-heme high spin (NHHS) Ferrous 

complexes with oxygen and/or nitrogen ligands (107). Hudson reported in 1993 the 
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decomposition of the NHHS Fe2+ doublet into 2 distinct doublets. The Hudson group 

(108) reported that FtnA has a blocking temperature (TB) of 19-22 K, which is 

significantly different as compared to the magnetically ordered ferric species reported by 

Bauminger and that ferritin iron was not the source of the magnetically ordered species. 

Abdul-Tehrani et al (109) estimated the [Fe2+] species at ~200 µM. They commented 

that this was much higher than previous estimates of the LIP in E. coli, and higher than 

what is implied by the Fe2+-Fur dissociation constant. There have been studies that 

present even higher [LIP] (300-500 µM), estimated through assaying total acid-soluble 

non-heme iron in E. coli (110). Abdul-Tehrani et al explains this by concluding that the 

ferrous species observed in Mössbauer represents a different pool that what is “sensed” 

by Fur. Hristova et al. (111), reports a fourth doublet, comprising around 60% of the 

spectra, that is made up of Fe4S4 and Fe2S2 clusters, LS ferrous hemes, and possibly HS 

ferric hemes. Beilschmidt et al. described a similar doublet and only hypothesized the 

doublet to be exclusively due to ISCs (112). 

In this dissertation, we present a biophysical study of WT E. coli grown on two 

carbon sources, glucose and sodium acetate, as well as a mutant in which the ferric 

uptake regulation (FUR) transcription factor was deleted and grown with glucose 

exclusively. These cultures were also grown under varying ferric citrate conditions (1, 

10, or 100 µM). Experiments were also performed with cyanide treatment, as well as 

allowing cells to grow into stationary state as a means of studying changes of iron 

contents, focusing on the LIP. The goal of this study was to provide a systematic 

Mössbauer analysis of WT E coli, as opposed to using WT simply as a control for 
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genetic strains being analyzed. In addition to the Mössbauer study, labile metal pools 

were detected and characterized using LC-ICP-MS. The results presented provide new 

insights into the iron content of E. coli, and reveal an evolutionary connection between 

the iron content of E. coli, mitochondria, and perhaps all prokaryotes. 

 

Additional Projects 

In addition to the studies presented here, there are also additional studies 

presented in the appendices. Murine hearts have been examined at various stages of 

growth, and the iron contents characterized using Mössbauer, EPR, and ICP-MS 

(Appendix A (113)). I also present a study done in collaboration with the Rose group 

from the University of Texas at Austin in which Fe carbonyl clusters were studied with 

Mössbauer spectroscopy in the Lindahl lab (Appendix B (114)).  
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CHAPTER II  

MATERIALS AND METHODS 

Fe stock prep and Media components 

57Fe stocks  

57Fe powder (isoflex) was weighed and transferred to a small flask. The weigh 

boat was rinsed with trace metal grade hydrochloric acid (Sigma Aldrich) to ensure 

complete transfer of the powder. Aqua regia (3:1 TMG Hydrochloric acid and TMG 

Nitric acid) (Sigma Aldrich) was added to the flask with stirring until the powder was 

dissolved in acid. This solution was then transferred to a volumetric flask, and diluted to 

the mark with distilled, deionized water. This 80 mM stock was then aliquoted by 40 mL 

into 50 mL conical falcon tubes. 

 

57Fe citrate stocks  

For the preparation of 40 mM ferric citrate, 3 of the acid stocks prepared above 

were then thawed and transferred to a graduated cylinder for a starting volume of 120 

mL. Deionized, distilled water was added to 200 mL. This solution was then transferred 

to an Erlenmeyer flask. Sodium citrate (Fisher) was added in 3 molar excess (11.3 grams 

powder) to this solution and allowed to dissolve. The solution was then buffered to pH 5 

using additional sodium citrate. This solution was then transferred back to the graduated 

cylinder, and diluted to 240 mL with additional distilled, deionized water. This solution 

was then filter sterilized using a stericup/sterifilter system with a 0.22 µm filter (EMD 
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Millipore). The same procedure is used to prepare 56Fe citrate, with the exception that 

ferrous ammonium sulfate power (Fisher) is used in place of the acid stock solutions. 

 

Tryptophan 

 8 g of tryptophan was dissolved in 1 L of distilled, deionized water. This 

solution was stirred with a stir bar and stir plate until the tryptophan was thoroughly 

dissolved, then filter sterilized into a 1 L pre-autoclaved Pyrex bottle using a 0.22 µm 

sterifilter (EMD Millipore). This solution was used as a stock to add tryptophan to 

sterilized cell culture media.  

 

CuSO4  

10 mM CuSO4 was prepared in distilled, deionized water (.399g in 250 mL). 

This solution was then filter sterilized with a sterifilter/stericup system in a similar 

manner to the Fe citrate solution. This solution is used as a stock for providing Cu to 

sterilized cell culture media.  

 

Minimal media 

 This is used as a means of knowing the exact chemical make-up of the growth 

media of the cells. This media is made up with yeast nitogen base (YNB) (1.7 g/L) (MP 

Bio), Ammonium sulfate (5 g/L) (Fisher Sci), the desired carbon source glucose or 

galactose (20 g/L) (Fisher Sci) or glycerol ethanol (30 mL/L gly, 10 mL/L EtOH) 

(Sigma Aldrich gly, Fisher Sci EtOH).  
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For each strain, the required amino acids to overcome auxotrophies were added. 

For W303, adenine (50 mg/L), histidine (20 mg/L), uracil (20 mg/L), and leucine 

(100mg/L) (MPBio) were added. For BY4741 strains, these prior amino acids were 

added, as well as Methionine (30 mg/L). For YPH499 strains, all the W303 additions 

were made, as well as Lysine (30 mg/L). The YPH499 strain was the parent to the Gal-

YFH1 pGEV strain used in some studies, and all amino acids were added, with the 

exception of leucine, as it could cause the plasmid to come out. 

After this media mixture was autoclaved, the previously mentioned Fe, Cu, and 

tryptophan stocks were used for addition of those chemicals to the media. 

 

Rich Media  

This media (YPAD or YPD) contains plenty of nutrients, but is chemically 

undefined. YPAD media is made up with yeast extract (10 g/L) (Fisher), peptone (20 

g/L) (Fisher), glucose (20 g/L) (Fisher), and adenine (100 mg/L) (MP Bio). YPD is made 

up in the same manner, but with the exclusion of adenine in the media. Once the media 

was autoclaved, it was available for 57Fe addition, if the experiment at hand required 

such addition. 

 

Cell Plates 

Yeast 

Media plates were made by adding the required ingredients for either minimal or 

rich (YPAD or YPD) media, then adding 20% w/v agar. This mixture was then 
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autoclaved for 15 minutes to sterilize the media. Once complete and cool enough to 

handle, Fe, Cu, and tryptophan was added to the media (minimal media only), and the 

media was aliquoted into polypropylene petri dishes under sterile conditions and the gel 

plates were allowed to set up. Once the gel was solid, the plates were inverted, placed 

into a 30˚C incubator over night to remove excess water. The plates were then wrapped 

in parafilm and placed into a 4˚C refrigerator until used for cell growth.  

 

E. coli 

 LB media plates were made using published LB media recipes and adding 10% 

w/v agar. This mixture was steam sterilized in an autoclave, and plates were poured in 

the similar manner as above. Once plates were solid and ready, E. coli cells in frozen 

stock were streaked onto the plate, and the plates were then incubated at 37˚C for 12-16 

hours.  

 

Cell Stocks 

Yeast 

Single colonies from growth plates were inoculated into 50 mL sterile YPAD 

media in the presence of a Bunsen burner flame to maintain an aseptic environment. 

These small cultures were grown to high OD, then spun out of media in sterile conical 

centrifuge tubes. A small volume of sterile 15% glycerol was added to this cell pellet, 

and aliquots were taken and placed into screw cap vials. These vials were then placed 

into the -80˚C freezer until cell stocks were needed for cell plate growth. 
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E. coli 

Single colonies were grown in liquid M9 minimal media, then pelleted at 

12,000xg. This pellet was suspended in a sterile 50% glycerol solution, and aliquots 

were added to small (~2 mL) vials and these vials were placed into the -80˚C freezer 

until these stocks were needed for cell plate growth.  

 

Cell Growth 

Yeast 

Media plates were brought out of the refrigerator and allowed to come to room 

temperature. Then cell stocks were brought out of the -80˚C freezer. Using a sterile stick 

or sterile inoculation loop, stock was scraped out of the bottle and onto the cell plate in 

an aseptic environment. This initial volume of cells was streaked along the plate with 

additional sterile loops such that it was diluted out so that single colony growth was 

obtained. Plates would be placed into a 30˚C incubator for 3-6 days to allow for growth 

until single colonies were observed on the plate. The plates would be marked with date 

of inoculation, wrapped in parafilm, and placed into the 4˚C refrigerator until needed for 

liquid media experiments. Single colonies would be selected using a sterile inoculation 

loop to inoculate the single colony into a small volume of liquid growth media.  

Liquid medium was prepared in either minimal or rich conditions. Rich 

conditions used either YPD or YPAD containing media, depending on the cell type 

being grown (BY4741 could be grown in YPD, all other cells required YPAD, as they 
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would turn pink in YPD, indicating an adenine deficiency). This liquid media was 

autoclaved, and once cool, filter sterilized CuSO4, Ferric Citrate (56 or 57), and 

tryptophan were added to the minimal media. Small aliquots (50 mL) were inoculated 

with single colonies from agar plates. When these cultures were grown to high OD, 1 L 

cultures were inoculated. If doing whole cell experiments, these cultures would be spun 

down at 5000x G for Mössbauer, EPR, or ICP-MS analysis. Otherwise, this 1 L culture 

would be used to inoculate 24 L of media prepared in a 25 L glass fermenter.  

 

E. coli 

 Cells were maintained in 50% sterilized glycerol stock and plated onto LB 

media. Cells were grown in liquid M9 minimal medium. The initial culture (50 mL) was 

grown without added Fe, but 57Fe was added to the final 1 or 2L culture, depending on 

the experiment being performed. 

 

Mitochondria Isolation 

Cells were grown in the method described in Cell Growth. Cells were grown in 

a small (~50 mL) culture, inoculated into a 1 L culture, then finally inoculated into a 24 

L culture being maintained in a 25 L glass fermenter. Once cells reached an OD of 0.8 to 

1, they were spun down at 5000xG for 5 minutes per spin. This process was repeated 

around 4 times, as the maximum volume limit per spin was ~ 6 L. The cell pellet was 

then consolidated into a single centrifuge bottle. All future steps were then done inside 

an anaerobic, refrigerated glovebox (MBraun).  
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The cells are washed in Tris buffer, then washed in Tris-DTT buffer (10mM 

DTT) to start breaking down disulfide bonds in the cell wall. Cells were washing in SP 

buffer with 1 mM EDTA, then washed in SP-Lyticase to digest and remove the cell wall. 

The amount of lyticase was calculated such that 1000 units of enzyme were used per 

gram of cell. This suspension was sealed in a bottle with small aliquots with and without 

lyticase placed in 2 mL Eppendorf tubes, taken out of the box, and placed in the shaker 

at 30 C for 30 minutes. The aliquot with lyticase added was measured against the control 

at 600 nm, and the digestion in lyticase was considered complete when the OD600 of the 

lyticase cells was 30% of the control value. This value requires a 1:100 dilution of the 

cell solution. The bottle with the majority of cells was then centrifuged at 5000xG for 5 

minutes. Cells are washed one more time in SP buffer, then are suspended in a buffer 

containing 100 mL water, 100 mL 2xSH, and 10 µM PMSF. This suspension was then 

homogenized using a tight fitting dounce homogenizer for 25 strokes per 40 mL of 

suspension. This was centrifuged at low speed to get rid of cell debris, homogenized for 

another 25 strokes, then centrifuged at high speed (12,000x G) to obtain a crude 

mitochondria pellet. This crude mitochondria was layered on a prepared 15/20% 

Histodenz gradient prepared in 1xSH, and then spun at 30,000 rpm in the Beckman ultra 

centrifuge. The mitochondria are then collected from the 15/20% interface, washed in 1x 

SH buffer, then pelleted into a Mössbauer cup or EPR tube for further analysis.  
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Mössbauer Spectroscopy 

Low Field  

Low field (0.05 T) and low temperature spectra were run on a Model MS4 WRC 

instrument (SEE Co., Edina, MN). These instruments were equipped with heating coils 

on the sample rods, and were programmed for various temperatures for temperatures 

higher than ~5 K. The sealed 57Co source was affixed to a driver, where the velocity of 

the source was controlled using the W302 software (SEE Co.). The detector was 

controlled using W202 software (SEE Co.) 

To put samples into the instrument, helium gas was pumped into the sample 

space to break the vacuum. The sample rod can then be removed and a cap placed over 

the opening. The sample can be installed into the sample holder, and the frost from the 

instrument needs to be dusted off using a Chemwipe. The sample rod can then be 

reintroduced to the sample chamber while flowing helium at a positive pressure. The set 

screws on top of the sample rod must then be threaded, then the sample chamber set 

under vacuum. Once the maximum vacuum is achieved, a small amount of helium is 

allowed into the sample chamber to allow for heat exchange between the sample and the 

instrument cold head. The detection windows are then set in the W202 software, the 

velocity is set in the W302 software, and the spectrum is set to collect. 

 

High field 

(0-6 T) spectra were run on a Model LHe6T instrument (See Co., Janis). Use of 

this instrument requires liquid helium and a procedure to prepare the instrument for use. 
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The vacuum space of the instrument must be pumped out 5 days before the experiment 

begins using a turbo pump. 3 days before the experiment, the liquid nitrogen dewar 

inside the instrument needs to be filled. 2 days before the experiment, the sample space 

and liquid helium space must be pumped out with a roughing pump. The day before the 

experiment begins, fill the liquid helium space with liquid nitrogen. Once the sample rod 

reads liquid nitrogen temperatures, the sample can be introduced in the same manner as 

with the low field instruments. This method prevents liquid helium loss during the 

sample introduction if it isn’t introduced until after the helium fill. Monitor the signals 

from the 57Co source in W302. There is enough nitrogen in the helium space when the 

signals disappear. 

The day the experiment begins, before the helium fill, blow the remaining 

nitrogen out of the helium space with chilled helium gas. The helium gas is chilled using 

a copper coil submerged in liquid nitrogen. Monitor the signals in W202 to observe their 

return. Once the nitrogen has been removed, cycle the helium space and sample space 

with vacuum and chilled helium gas twice. Then pull vacuum on both spaces for 

approximately 20 minutes. Then fill the helium space with chilled helium gas. Once this 

is done, the helium fill can begin. This requires using the liquid helium transfer line to 

transfer helium from the liquid helium tank into the helium dewar inside the instrument. 

For the initial fill, there is an initial fill port on the instrument that has a tube going to the 

bottom of the dewar, ensuring an initial fill. As the instrument is cooled, the resistance at 

the instrument magnet can be measured. Once the resistance is at 5000 Ω, there is liquid 

helium on the magnet. Then monitor the helium level until it reaches about 75% full. 
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Then release the helium pressure, remove the transfer line, and cap the initial fill port, 

and attach a tygon tube line to the refill port as a vent for the gaseous helium escaping 

from the helium dewar. 

The magnet can be charged after 8 hrs. Turn on the magnet power supply, and 

allow 30 minutes for it to warm up. Then press the “PSH on” button to connect the 

power supply to the magnet. After the connection is established, charge the magnet by 

increasing the field. This is accomplished by pressing “output settings” then inputting 

the desired field. Wait for the power supply to ramp up the current to the desired setting, 

then press “PSH off”. This has disconnected the power supply from the magnet, and the 

power supply can be ramped down and shut off. To change the magnet field, the power 

supply is turned back on, ramped up to the previous field, reconnected with PSH on, and 

then change to the next desired field using output settings. 

Monitor the helium levels, and either refill the helium dewar when the level is at 

30%, or reconnect to the magnet and ramp the field back to 0 T. If the helium level 

decreases past 30%, it becomes likely that the magnet field becomes inhomogenous and 

the magnet could quench. If the refill is desired, use the helium transfer line and 

introduce the helium through the refill port on the instrument. 

Sample data collection is accomplished in the same way as described for the low 

field instruments. The windows are set in W202 software, and the sample velocity is set 

and data collection is accomplished with W302 software. Sample changes are done in 

the same way, by flowing chilled helium gas into the sample space to break the vacuum, 

the rod is removed, samples changed out of the holder, and the sample rod replaced 
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while flowing chilled helium gas to give positive pressure. Then set the windows and 

reset the spectrum. Sample changes should be done with purpose, as heat exchange 

between the chilled helium in the sample space and the helium dewar leads to increased 

consumption of liquid helium during this time.  

 

Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (LC-

ICP-MS) 

Online 

Cell extracts were prepared in a 2% Triton X-100 detergent mixed with 20 mM 

ammonium bicarbonate buffered to pH 8.5. The extracts were then passed through an 

Amicon filtration system with a 10 kDa cutoff membrane that has been soaked in buffer 

or in distilled, deionized, distilled water (DDD H2O). Argon gas was used to pressurize 

the chamber, and the extract was stirred while the flow through solution FTS was 

obtained. The FTS was then run through the size exclusion chromatography (SEC) 

column with 20 mM ammonium bicarbonate at pH 8.5 as the mobile phase, and the 

eluents were detected using the ICP-MS instrument (Agilient 7700X).  

 

Offline 

Packed cell/mitochondria pellets were obtained by spinning samples in short (3”) 

quartz EPR tubes. The pellet heights were marked on the tube, and pellets were removed 

with a known volume of DDD H2O. The tubes were filled with water to the mark, and 

this amount of water was removed and massed to determine pellet volume. Pellet 
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volumes were corrected with the packing efficiency of whole cells or mitochondria (41). 

The cell samples were digested in acid, and triplicate samples were made from this 

“master mix” and diluted to a known volume with DDD H2O. 

These samples were then placed on an automatic sampler. The ICP-MS was 

tuned, then standards (Inorganic Ventures) were made in serial dilutions as a calibration 

curve to approximate the concentration of the various analytes in the unknown samples. 

The true concentrations can be calculated by applying the various dilution factors (water 

to remove from tube, added acid, final water dilution) from digestion on to the ICP-MS 

analysis.  

 

Electron Paramagnetic Resonance (EPR) Spectroscopy 

Samples were prepared in 7.25” precision quartz EPR tubes (Wilmad Lab Glass). 

The samples were diluted in the minimal amount of Distilled, Deionized H2O and spun 

at 4000x G in a custom designed rotor to obtain a packed sample pellet. The samples 

were then analyzed using an X-band Elexsys spectrometer (Bruker Biospin Corp., 

Billerica, MA). Samples were introduced to the instrument in the following way: The 

chamber valve was closed, allowing helium flow. The brass cap was removed, and the 

sample was quickly wiped to remove any frost/water to keep from potentially icing the 

instrument. Once the sample was introduced, the valve was reopened to allow vacuum to 

be re-established in the sample chamber. 

Once the sample was in the chamber, the instrument was then tuned using the 

Bruker X EPR software. After tuning, the instrument was ready for operation. Typical 
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settings involved a frequency of 9.38 GHz, attenuation of 30 dB, .2 mW power, 300 s 

sweep time, 298 ms conversion time, 10 G modulation amplitude, 2550 G center field, 

and a 5000 G sweep width. The center field and sweep width could be adjusted to focus 

in on desired regions of the full sweep spectrum. If the sample was too concentrated, the 

attenuation needed to be increased to decrease the power, or the attenuation decreased if 

the sample was too dilute. 

 

Mathematical Modeling 

Models were written in either Mathematica 9 or Mathematica 10 software 

(wolfram.com). Ordinary differential equations were written into the notebook files as 

described in further chapters (154). The ODE’s written were solved to steady state 

conditions by solving over long times using the NDSolve routine and over multiple 

nutrient Fe conditions, as well as other conditions using the Table routine. Parameters 

were optimized using an error function that compared values simulated in the model to 

experimental data values obtained from offline ICP-MS and Mössbauer spectroscopy. 
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CHAPTER III 

MITOCHONDRIAL IRON-SULFUR CLUSTER ACTIVITY AND CYTOSOLIC 

IRON REGULATE IRON TRAFFIC IN SACCHAROMYCES CEREVISIAE*

 

Summary 

An ordinary differential equation-based mathematical model was developed to 

describe trafficking and regulation of iron in growing fermenting budding yeast. 

Accordingly, environmental iron enters the cytosol and moves into mitochondria and 

vacuoles. Dilution caused by increasing cell volume is included. Four sites are regulated, 

including those in which iron is imported into the cytosol, mitochondria, and vacuoles, 

and the site at which vacuolar Fe2+ is oxidized to Fe3+. The objective of this study was to 

determine whether cytosolic iron (Fecyt) and/or a putative sulfur-based product of iron-

sulfur cluster (ISC) activity was/were being sensed in regulation. The model assumes 

that the matrix of healthy mitochondria is anaerobic, and that in ISC mutants, O2 diffuses 

into the matrix where it reacts with nonheme high spin Fe2+ ions, oxidizing them to 

nanoparticles and generating reactive oxygen species. This reactivity causes a further 

decline in ISC/heme biosynthesis, which ultimately gives rise to the diseased state. The 

ordinary differential equations that define this model were numerically integrated, and 

                                                 

*This work was originally published in the Journal of Biological Chemistry. Joshua D. Wofford, Paul A. 

Lindahl, Mitochondrial iron-sulfur cluster activity and cytosolic iron regulate iron traffic in 

Saccharomyces cerevisiae, 2015, Volume 290, 26968-29677. © The American Society for Biochemistry 

and Molecular Biology  
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concentrations of each component were plotted versus the concentration of iron in the 

growth medium and versus the rate of ISC/heme biosynthesis. Model parameters were 

optimized by fitting simulations to literature data. The model variant that assumed that 

both Fecyt and ISC biosynthesis activity were sensed in regulation mimicked observed 

behavior best. Such “dual sensing” probably arises in real cells because regulation 

involves assembly of an ISC on a cytosolic protein using Fecyt and a sulfur species 

generated in mitochondria during ISC biosynthesis and exported into the cytosol. 

 

Introduction 

Iron is a critical component of virtually all living systems; it participates in 

enzyme catalysis, electron-transfer reactions, substrate binding, DNA replication and 

repair, and many other types of reactions. In eukaryotic cells, iron-rich respiratory 

complexes in mitochondria are filled with hemes and iron-sulfur clusters (ISCs). 

(115) Environmental iron is imported into cells where it is trafficked to various cellular 

compartments. How this traffic is regulated remains an enigma despite extensive 

investigations (28). Here, we use mathematical modeling to better understand iron 

regulation in yeast cells. 

Environmental iron is generally present as poorly soluble Fe3+ that is reduced to 

Fe2+ before it enters the cell (115). Iron enters through various importers, including a 

high affinity importer consisting of a permease (Ftr1) and a multicopper oxidase (Fet3). 

Imported iron is released into the cytosol, probably in the Fe2+ state. Little is known 

about cytosolic iron (Fecyt) because no trafficking species has been isolated or 
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characterized. This is unfortunate because Fecyt plays an essential role in iron trafficking, 

and it cannot be ignored in developing a mathematical model of iron trafficking and 

regulation. 

Kaplan and co-workers (54, 55) have indirectly monitored the concentration of 

Fecyt by genetically installing iron-requiring enzymes into Saccharomyces cerevisiae. In 

iron-deficient cells, the heterologously expressed enzymes are inactive because they lack 

iron at their active sites. The enzymes develop activity in cells grown on medium 

containing iron (Femed) at high concentrations. These reporter proteins develop activity at 

rates and to extents that are proportional to [Femed]. These and other experiments suggest 

that in WT cells, [Fecyt] qualitatively mirrors the concentration of [Femed]. We will 

assume this here, but not that [Femed] and [Fecyt] are directlyproportional; [Fecyt] is 

expected to be tightly regulated such that it changes modestly as [Femed] changes 

dramatically. 

Mitochondria are the major iron traffic hubs in eukaryotes. The organelle 

from respiring yeast cells grown in iron-sufficient medium contains 500–800 μM iron, 

most of which is present as Fe4S4 clusters and heme centers housed in respiration-related 

proteins (65). [Fe2S2]
1+/2+ clusters and Fe3+ phosphate oxyhydroxide nanoparticles are 

also present. Mitochondria from iron-sufficient fermenting cells contain iron at a similar 

concentration but in a different distribution; the concentration of iron associated with 

respiratory complexes is reduced ∼3-fold (implying a decline from ∼600 to 200 μM in 

iron). In contrast, the concentrations of nonheme high spin (NHHS) Fe2+ ions, NHHS 

Fe3+ions, and Fe3+ phosphate oxyhydroxide nanoparticles are increased to ∼130, 100, 
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and 200 μM, respectively. These latter three pools are probably related through redox 

and ligand exchange reactions. 

Vacuoles are another iron traffic hub in yeast. These acidic organelles 

dynamically store and mobilize iron. They are devoid of iron under iron-deficient 

conditions. Vacuoles from cells grown on iron-sufficient medium contain high 

concentrations of a NHHS Fe3+ complex in which the coordinating ligands are closely 

related to polyphosphate (66). A NHHS Fe2+ species evident in Mössbauer spectra of 

adenine-deficient whole cells may also be located in vacuoles (116). Under adenine-

sufficient conditions in which the vacuolar iron importer Ccc1 is either absent or 

overproduced, high levels of Fe2+ are present (66). 

Mössbauer spectra of whole yeast cells exhibit major contributions from both 

traffic hubs (13). In iron-sufficient WT cells, vacuolar iron exhibits a sextet that accounts 

for ∼70% of spectral intensity. Much of the remaining intensity arises from 

mitochondrial iron, including a central quadrupole doublet that arises from 

[Fe4S4]
2+ clusters and low spin Fe2+ hemes and quadrupole doublets that arise from high 

spin Fe2+ heme and NHHS Fe2+ ions. The intensity of the NHHS Fe2+ doublet in whole 

cell spectra is greater than can be accounted for by Fe2+ ions in mitochondria alone; 

Fe3+
cyt and vacuolar Fe2+ ions probably also contribute. 
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Figure 3.1: Chemical model of iron trafficking in and regulation in S. cerevisiae. Nutrient Fe3+ citrate 

(N) becomes cytosolic Fe2+ (C) as it enters the cell. C moves into the vacuole forming F2 (Fe2+), which 

oxidizes to Fe3+ (F3) and converts into nanoparticles (VP). C also moves into mitochondria, forming FM 

(Fe2+), which is used to generate FS. This component symbolizes ISCs and heme centers. FS is inserted 

into respiratory complexes, which function to maintain an O2-free environment in healthy mitochondria. 

Some O2 that diffuses into the matrix reacts with FM to generate mitochondrial nanoparticles and ROS. 

Red dots indicate the four regulated sites. 

 

 

 

We define iron-deficient conditions as minimal medium supplemented with 

bathophenanthroline disulfonate and 1 μM 57Fe3+ citrate. We define iron-

sufficientconditions as the same medium supplemented with 10–40 μM 57Fe3+ citrate, 

and iron excess conditions as the medium supplemented with ≥100 μM 57Fe3+ citrate. 
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Other researchers might use different media and supplement with Fe2+ rather than 

Fe3+ ions, making quantitative comparisons difficult. 

In our studies, the overall concentration of iron in cells grown on iron-deficient, 

iron-sufficient, and iron excess conditions is ∼ 200, 400, and 600 μM iron, respectively. 

Iron-deficient cells are largely devoid of vacuolar iron; their Mössbauer spectra are 

dominated by the central doublet and an unusually strong NHHS Fe2+ doublet (65). 

Mitochondria isolated from iron-deficient cells contain less iron than do mitochondria 

from iron-sufficient or iron-excess ones (∼400 μM versus 700–800 μM), but they 

contain similar levels of respiration-related ISCs and heme centers. This has 

ramifications for the mechanism of iron regulation. 

Fecyt is trafficked into the mitochondria via two paralogous inner membrane 

transporters, namely Mrs3 and Mrs4 (Mrs3/4) (69, 9). Imported mitochondrial NHHS 

Fe2+ ions are primarily used for heme and ISC biosynthesis. At higher [Femed], Fecyt is 

also trafficked into vacuoles through the Ccc1 importer (117, 21). These are the major 

iron traffic patterns in a yeast cell (Fig. 1). There are other secondary import and 

trafficking pathways but they will be ignored here. 

The best studied mechanism of iron regulation in S. cerevisiae involves Aft1 and 

Aft2 (56,57,118,119). These transcriptional activators control expression of 20–30 genes 

known as the “iron regulon,” including, but not limited to genes 

FET3, FTR1, FET5, FTH1, SMF3, ISU1, GRX4, MRS4, and CTH2. Aft1 and Aft2 have 

slightly different functions (56, 120), but these differences will be ignored here. In iron-

deficient cells, Aft1/2 monomers are located in the nucleus (121) where they are bound 
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to promotor sites and serve to activate the iron regulon. Under iron-sufficient and iron-

excess conditions, Aft1/2 release from these sites, exit the nucleus, and dimerize, thereby 

deactivating the iron regulon. Aft1/2 dimers bind a Fe2S2 cluster that bridges the two 

subunits (122). These events are part of a signal transduction regulatory pathway that 

originates in mitochondria (Fig. 2). 

The form of iron sensed by Aft1/2 has been considered since the mid 1990s, 

when Yamaguchi-Iwai et al. (56, 57) monitored Aft1 activity using Fet3 expression as a 

reporter. Fet3 expression increases under iron-deficient conditions relative to iron-

sufficient ones (supplemental Table S1 and Ref. 137). The Aft1/2-dependent regulatory 

system was initially assumed to sense Fecyt (117,21,56,57), but the situation changed 

starting in circa 2004 when Kaplan, Winge, and co-workers (54) determined that Aft1/2-

dependent iron regulation was sensitive to ISC biosynthesis in the matrix of 

mitochondria rather than to Fecyt. 

Deleting proteins that are involved in mitochondrial ISC biosynthesis, such as 

Yfh1, Atm1, and Yah1, affords an unusual phenotype that has been characterized 

extensively and has been used to probe the mechanism of Aft1/2-based regulation 

(16,15,51,123). The so-called ISC mutant phenotype includes: (a) increase of cytosolic 

and mitochondrial iron import rates, (b) accumulation of Fe3+ phosphate oxyhydroxide 

nanoparticles in mitochondria, (c) decline of both ISCs and hemes in mitochondria, (d) 

increase of ROS damage in mitochondria, (e) absence of vacuolar iron in cells grown on 

iron-sufficient media, and (f) increase of cytosolic iron levels. 
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These effects are absent when ISC mutant cells are grown anaerobically (15, 51). 

The iron regulon is active in such mutant cells, even when grown on high [Femed]. The 

discovery that [Fecyt] is not low in ISC mutant cells (123) raised the possibility that Fecyt 

may not be sensed in cellular iron regulation. 

 

 

 

 

Figure 3.2: Iron regulation pathways in S. cerevisiae. ISC assembly in mitochondria is thought to 

generate a sulfur-based species called X-S that is exported from the organelle, possibly through Atm1. X-S 

and Fecyt combine in the cytosol to generate a Fe2S2 cluster bridged between two glutaredoxin monomers 

(red star). This reaction is proposed to be the origin of Dual regulation. In the Aft1/2 signaling pathway 

(purple symbols) and under iron-sufficient conditions, the cluster is passed to Aft1/2 (via Fra2), which 

prevents activation of the iron regulon in the nucleus. Under iron-deficient conditions, cluster-free 

monomeric Aft1/2 activates the iron regulon including the Fet3/Ftr1 importer on the plasma membrane. 

Cth2, Fet5, and Smf3 are also regulated to control vacuole iron levels. Less is known about Yap signaling 

pathway (red symbols). An ISC is likely built on an unknown protein and transferred eventually to Yap5. 

Cluster-bound Yap5 activates Ccc1, which imports cytosolic iron into the vacuoles. 
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An elaborate scenario has developed to explain how a signal originating in 

mitochondria can be relayed to Aft1/2 in the nucleus (Fig. 2). Atm1, an ATP-binding 

cassette half-transporter on the inner membrane of mitochondria, is thought to export a 

sulfur-containing by-product of ISC assembly called “X-S” (60, 61). The identity of X-S 

is unknown, but it is thought to pass through a cavity sized for a small metabolite such as 

glutathione persulfide (124). X-S provides the sulfur required for cytosolic ISC 

biosynthesis and indirectly controls Aft1/2 activity and the iron regulon. The sulfur is 

probably used to build the Fe2S2 cluster that bridges a homodimer of Grx3/4 in the 

cytosol (62). These monothiol glutaredoxins are critical for Aft1/2-dependent regulation. 

The absence of Grx3/4 activates the iron regulon (63) as this disrupts the signal 

transduction pathway. Fra2 reacts with the Grx·Fe2S2·Grx homodimer to generate a 

Grx·Fe2S2·Fra2 heterodimer (122, 63, 64). This heterodimer donates its Fe2S2cluster to 

two Aft1/2 monomers to generate the Aft·Fe2S2·Aft homodimer, titrating away apo-

Aft1/2 monomers that would otherwise bind tightly to iron regulon promotor sites on 

DNA. In this way, ISC biosynthesis in mitochondria controls the activity of the iron-

regulon in the nucleus. 

Iron traffic into and out of vacuoles is also highly regulated, with Yap5 playing 

the dominant role (125). This iron-sensitive transcription factor is constitutively 

expressed in the nucleus where it is bound to the promoters of CCC1 (and other genes) 

to regulate expression (Fig. 2). Earlier studies suggested that Yap5 senses Fecyt (58), but 

a later study (55) found that it senses mitochondrial ISC synthesis activity. When ISC 

synthesis is blocked, Yap5 transcription levels decline, and vacuoles no longer fill with 
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iron (58). However, Yap5 is not controlled by Aft1/2, and the Yap5 signaling pathway 

does not involve Grx proteins. Yap5 contains seven cysteine residues that are used in 

iron sensing. Under high iron conditions, Yap5 uses them to bind two Fe2S2 clusters 

(59). This alters the conformation of the protein such that it binds DNA and 

promotes CCC1expression. 

Fet5 and Fth1, respective homologs of Fet3 and Ftr1, are also involved in 

regulating vacuolar iron. The Fet5·Fth1 complex on the vacuolar membrane exports iron 

to the cytosol. Expression levels of FET5 and FTH1 increase under iron-deficient 

conditions because they are part of the iron regulon (23). Smf3 is another iron exporter 

on the vacuolar membrane and is also part of the Aft1/2 system (118). Aft1/2-dependent 

activation under extreme iron-deficient conditions increases expression of CTH2 (58). 

Cth2 binds to and destabilizes CCC1 mRNA transcripts (126) preventing vacuoles from 

importing Fecyt. 

Iron traffic into mitochondria is also regulated. Deleting MRS3/4 affords 

mitochondria with reduced ISC and heme activities and lower iron concentrations 

(9, 69). Although the exact species imported by Mrs3/4 is/are unknown, members of this 

family transport small metabolites and cofactors (127). ΔMRS3/4 cells acquire more than 

normal amounts of iron because the Aft1/2-dependent iron regulon is activated due to 

low ISC activity (9, 69). Mrs4 expression in ΔYFH1 cells is higher than in WT cells, 

indicating an up-regulation of mitochondrial iron import under ISC mutant conditions. 

Activating Aft1/2 under iron-deficient conditions also enhances MRS4 expression (120). 
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Cells lacking Ccc1 are sensitive to high iron levels in the medium because Fecyt, 

which most likely engages in ROS-generating chemistry, is probably present at higher 

than normal concentrations. Overexpressing Mrs3/4 suppresses that sensitivity probably 

because it imports more Fecyt into mitochondria (70). Cells lacking Mrs3/4 up-regulate 

Ccc1 activity—evidence of what Kaplan calls a “mitochondrial vacuolar” signaling 

pathway (70). 

 

Materials and Methods 

A chemical model was developed to describe trafficking and regulation of iron in 

yeast cells (Fig. 1); reactions and rate expressions are listed in Table 1. Relevant data 

were obtained from WT and ISC mutant cells grown in batch culture under iron-

deficient, iron-sufficient, and iron excess conditions (supplemental Tables S1 and S2). 

Cells in these studies were generally harvested during exponential phase. 
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Table 3.1: Model reactions and rate expression, including optimized WT parameters 
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The concentrations of iron-containing components in exponentially growing cells 

should be invariant with time. In an expanding steady state, the increase in cellular iron 

caused by iron influx is counterbalanced by the dilution of cellular iron caused by 

increasing cell volume. The exponential growth rate of the cell, defined as α = (1/V) × 

(dV/dt), is an essential aspect of our model. When cells grow exponentially, α is constant 

which makes it particularly easy to evaluate. Assuming that the optical density of cells is 

proportional to cell volume, α equals the slope of the straight line that results when the 

natural logarithm of A600 is plotted versus time (lnODt = lnOD0 + αt). 

Modeling homeostatic regulatory systems that control cytosolic, mitochondrial, 

and vacuolar iron import on the molecular level is currently not feasible because many 

critical details remain unknown. Our goal was merely to explore essential aspects of the 

regulation at four key traffic sites. To do this, we used surrogate mathematical 

expressions—called “Reg functions”—to mimic regulatory behavior (66, 128). Reg 

functions can be viewed as valves that dynamically adjust between closed and fully 

opened to smoothly regulate traffic flow through a site. These functions are 

characterized by the iron species that they sense (S), the set point concentration at which 

the valve is half-opened ([S]sp), and the sensitivity of the response (sen). There are two 

types of Reg functions, called Reg−S and Reg+S, defined as follows. 
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When [S] > [S]sp, the Reg−S valve closes and cell growth dilutes S toward [S]sp. 

When [S] < [S]sp, the Reg−S valve opens to achieve the same effect. Reg+S behaves the 

same as Reg−S but in the opposite direction (closing the valve when [S] is low and 

opening it when [S] is high). A Reg−S function should be used when the homeostatic 

response opposes the perturbation. Thus, if the concentration of the sensed species is too 

high, the response of Reg−S would be to decrease flow. A Reg+S function should be used 

when the homeostatic response reinforces the perturbation; if the concentration of the 

sensed species is too high, Reg+S increases the flow. 

In addition to including regulation at the site of iron import into the cytosol, and 

at the two sites through which iron moves into mitochondria and vacuoles, the model 

includes a fourth regulatory site in which vacuolar Fe2+ (called F2) is oxidized to 

Fe3+(F3). There are a number of conditions and genetic strains (iron-deficient, adenine-

deficient, ΔCCC1, and CCC1 overexpression) in which F3 levels are low and F2 levels 

are high relative to iron-sufficient adenine-sufficient WT conditions 

(Refs. 65,66,116 and supplemental Table S1). The model regulates the rate of this 

oxidation to recreate the effect. 

We wanted to evaluate whether Fecyt (called C in our model) or mitochondrial 

ISC activity (proportional to the concentration of FS in our model) was sensed in 

regulation. To do this, three model variants were considered. The C-Reg variant assumes 

that all four regulatory valves exclusively sense C. For rates associated with importing 

iron into the cytosol (Rcyt) and into mitochondria (Rmit), Reg−C functions shut down 
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import when [C] is too high. For rates associated with importing C into vacuoles (Rvac) 

or oxidizing F2 to F3 (R23), Reg+C functions are needed. 

The FS-Reg variant exclusively senses the activity of ISC assembly in the 

mitochondria, which in our model generates FS (a substitute for X-S). Reg−FS functions 

regulate Rcytand Rmit, whereas Reg+FS functions regulate Rvac and R23. The Dual-Reg 

variant assumes that both C and FS are sensed at all four regulation sites. To control the 

rates of Rcyt and Rmit, we used the product of two Reg−S functions (see supplemental 

information for a derivation). A similar {Reg+C·Reg+FS} product function was used to 

control Rvac and R23. 

Inferring the appropriate Reg functions to describe the regulation of vacuolar iron 

requires some consideration. At the transcriptional level, CCC1 expression is regulated 

by Yap5 activity. The response to high [C] and/or [FS] is to increase flow into vacuoles, 

implying that Reg+C and Reg+FS functions should be used. At the translational level, 

CCC1 mRNA is degraded by Cth2 which is regulated, in turn, by Aft1/2. The cell 

response to low [C] and/or [FS] is to decrease flow through Ccc1 (via increasing Cth2-

associated Ccc1 degradation). This effect again implies use of Reg+ functions. Deleting 

Mrs3/4 causes Ccc1 activity to increase (70); thus Mrs3/4 can be viewed as inhibiting 

Ccc1—analogous to the overall effect of Cth2—again implying use of Reg+ functions. 

Finally, Smf3 and Fet5 export vacuolar iron into the cytosol, and an increase in either 

protein (which are both controlled by the Aft1/2-dependent iron regulon and thus are up-

regulated under iron-deficient conditions) causes loss of vacuolar iron. This has the same 

net effect as inhibiting CCC1 expression. In summary, although Yap5, Cth2, Mrs3/4, 
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Smf3, and Fet5 regulate vacuolar iron by different mechanisms, their effects can be 

collectively simulated using Reg+ functions. 

The model presumes a cell encapsulated by a semipermeable membrane 

surrounded by an environment containing Fe3+ citrate (N) and molecular oxygen (RO2). 

The in silicocell is composed exclusively of cytosol, mitochondria, and vacuoles such 

that Vcell = Vcyt + Vvac + Vmit. The model involves seven chemical components that 

contain iron and four that do not (Fig. 1). In addition to F2 and F3, vacuoles contain 

nanoparticles (VP). In addition to FS, mitochondria contain FM (NHHS Fe2+) 

and MP (mitochondrial nanoparticles). Other non-iron species include O2 and ROS in the 

mitochondrial matrix. Mass balance of iron requires that 

[ ] [ ] {[ 2] [ 3] [ ]} {[ ] [ ] [ ]} [1]cell cyt vac mitFe f C f F F VP f FM FS MP      

where fvac, fmit, and fcyt are fractional volume ratios (volume of the designated 

compartment divided by the volume of the cell). The ordinary differential equations that 

define the Dual-Reg variant of the model are given by the following equations. 
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 Ordinary differential equations for the C-Reg and FS-Reg variants were identical 

except that they lacked FS-sensed and C-sensed Reg functions, respectively. The model 

included 30 floating and 9 fixed parameters (Table 1 and supplemental Table S3). The 

exponential growth rate for cells that were transitioning smoothly from healthy to 

diseased state, for any point i along that transition, was calculated by solving 
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for αcurrent using the FS concentration from the previous point in the transition. 

Connecting growth rate to [FS] makes sense because FS represents mitochondrial 

respiratory complexes and hemes. These complexes control cellular energy and perhaps 

growth rate. 

The overall change in cellular iron is given by the following equation 

(see supplemental information for derivation). 
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The iron importers that contribute to the import rate Rcyt were viewed as a single 

collective Michaelis-Menten enzyme acting on substrate N. For cells in an expanding 

steady state, 

R [ ]
[ ] Reg Reg [13]

[ ]

cyt cell

cell C FS

cell

f N
Fe

K N
 


 

  

For Rcyt, fcyt, N, α, Kcyt, Reg−C, and Reg−FS values of 410 μM/h, 0.65, 40 μM, 0.2 h−1, 14 

μM (Table 1), 1, and 0.4, respectively, the concentration of cellular iron would be ∼400 

μM. 

Oxygen plays a major role in the ISC mutant phenotype, but how it acts on the 

molecular level remains uncertain. We hypothesize that the matrix of healthy 

mitochondria is nearly anaerobic and that [O2] in the matrix is higher in ISC mutants. 

Because of the activity of cytochrome c oxidase on the inner membrane, the 

concentration of O2 in the matrix of healthy mitochondria must be lower than in the 

cytosol (129). However, the magnitude of this difference is uncertain, and [O2] in the 

matrix has not been measured. ISC assembly assays require anaerobic conditions (130), 

as do a number of enzymes in the matrix, including aconitase (131), biotin synthase 

(132), and lipoic acid synthase (133), supporting our hypothesis. 
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Figure 3.3: Simulated concentrations of iron components in S. cerevisiae at increasing 

concentrations of iron in the growth medium. The Dual-Reg variant was assumed. The trace of [C] has 

been multiplied by 5 for ease of viewing. 
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Our model implies that anaerobic conditions arise in healthy mitochondria 

because most of the O2 that diffuses across the IM is rapidly reduced by the respiratory 

complexes. ISC mutants contain fewer functional respiratory complexes such that more 

O2 diffuses into the matrix. Once in the matrix, O2 reacts with a pool of NHHS 

Fe2+ (FM) that is used as feedstock for ISC biosynthesis (13, 134). Reaction of O2 with 

FM not only depletes a reagent needed for ISC biosynthesis; it also generates 

nanoparticles and ROS. The O2-dependent loss of FM reduces [FS] further, which 

causes more O2 to penetrate the mitochondrial inner membrane. A “disease spiral” 

results, transforming healthy mitochondria into the ISC mutant diseased state. All of 

these events are choreographed by our model. This disease spiral would occur regardless 

of the particular role served by the deleted protein in ISC biosynthesis; the only 

requirement is that loss of the protein leads to a decline in ISC activity. This situation is 

indeed observed in that the losses of various proteins, each with different functions in 

ISC biosynthesis, exhibit the same iron accumulation phenotype. 

Ordinary differential Equations 3–11 were coded into Mathematica 9 (Wolfram, 

Champaign, IL) and numerically integrated using the NDSolve routine and the 

parameters listed in Table 1. The large number of parameters precluded a rigorously 

systematic optimization of parameter space. Moreover, the data used in fitting 

(supplemental Tables S1 and S2) were sparse and had large uncertainties. Thus, 

parameters were initially adjusted at will to achieve the following desired qualitative 

behavior. Because [N] increased from iron-deficient conditions, we wanted [C] to 

increase modestly, [FS] and [FM] to increase quickly and then plateau, vacuolar iron to 
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increase once [N] reached iron-sufficient levels, and [F2] to increase initially and then be 

replaced by F3 whose concentration would increase sharply at higher [N]. We wanted 

mitochondrial and vacuolar nanoparticles, and mitochondrial ROS and O2 to remain at 

low concentrations throughout the entire range of [N]. In the ISC mutant state (created 

by lowering Risu), we wanted [MP] to increase dramatically, vacuolar iron to empty, and 

[C] to remain relatively invariant. Considerable efforts were made to achieve this group 

of behaviors for each variant. 

We then optimized parameters of the Dual-Reg variant by minimizing the 

following function, 
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where [S]i,j and [D]i,j are the simulated and experimental concentrations, respectively, for 

six components (j = F3, VP, FM, FS, MP, and NHHS, Fe2+) measured for 

experiments i = 1–18 involving WT, ISC mutant, ΔCCC1, and CCC1-UP fermenting 

cells (supplemental Table S2). Weighting factors wfi equaled 1 for each experiment 

except for that involving an ISC mutant. In this case, wfi equaled 10 so as to emphasize 

the ISC phenotype relative to other experiments. [Fe]cell,i is the whole-cell iron 

concentration for experiment i. The second term refers to the 43 comparisons listed 

in supplemental Table S1. Overall, there were 151 comparisons between experiment and 

simulation, with six comparisons weighted by 10 (205 comparisons with these weights 

included). 
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For fitting, each modeling parameter was increased and decreased while all 

others were held fixed. The minimum RMSD obtained was called RMSDmin. Optimized 

simulation values are given in Table 1. To evaluate sensitivities, RMSDs obtained when 

a given parameter was 10% greater (RMSD+) and 10% lesser (RMSD−) than its optimal 

value were averaged and divided by RMSDmin (supplemental Table S3). Once the Dual-

Reg variant was optimized, the C-reg and FS-reg versions were generated by removing 

the appropriate Reg functions. 

 

Results 

The optimized Dual-Reg variant simulated iron import and trafficking in 

exponentially growing fermenting WT cells with relatively high fidelity; RMSDmin was 

0.33, nearly half of that obtained using the FS-Reg variant (RMSDmin = 0.54) and four 

times less than obtained using the C-Reg variant (RMSDmin = 1.3). The total iron 

concentration in simulated cells ranged from ∼60 μM at [N] = 0.37 μM to ∼450 μM at 

[N] > 100 μM. This is similar to iron concentrations in real cells. The rate of iron import 

into mitochondria was nearly constant over the entire range of [N], and at low [N] this 

rate dominated cellular iron traffic flow (Fig. 3). Vacuoles were largely devoid of iron at 

[N] < 1 μM, but they were half-filled at [N] = ∼10 μM and completely filled by [N] = 

∼40 μM. At [N] > 5 μM, the flow of iron into vacuoles exceeded that into mitochondria. 

The simulated concentrations of mitochondrial iron species FM and MP were relatively 

invariant over the considered range of [N]; [FS] was similarly invariant except for a 

decline at low [N]. At [N] > 10 μM, the concentrations of all three mitochondrial iron-
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containing species plateaued near the means of highly scattered experimental values. In 

simulated healthy cells, mitochondrial O2 and ROS levels were near 0 throughout the 

range of [N] (not shown). Simulated vacuolar iron levels were near to experimental 

values over all [N] (Fig. 3). At low [N], F2 dominated vacuolar iron, but most of this 

oxidized to F3 at [N] > ∼5 μM. [VP] was near 0 at low [N], but it gradually increased as 

[N] increased. Simulated concentrations of C increased from 2.3 to 3.5 μM as [N] 

increased from ∼0.37 to 30 μM. At higher [N], [C] plateaued at ∼3.5 μM. We regard 

this as well regulated, in that an 80-fold change of [N] resulted in a ∼1 μM change in 

[C]. The collective NHHS Fe2+ species (0.65[C] + 0.1[FM] + 0.25[F2]) increased to ∼50 

μMnear [N] = 5 μM (mostly because of the accumulation of F2). At higher [N], these 

species collectively declined to ∼40 μM (mainly because of a shift from F2 to F3). This 

behavior is similar to what is observed experimentally. 

To simulate the ISC phenotype, we incrementally reduced the rate of ISC 

synthesis (Risu) from 250 μM/h, the rate for healthy cells, to 15 μM/h. The concentration 

plots of all species changed significantly at 30 < Risu < 100 μM/h (Fig. 4). In this regime 

[FS] declined and [FM] increased more dramatically than at higher Risu rates. These 

changes are easily rationalized, because Risu is the rate by which FM converts to FS. 

Other observed changes are secondary effects caused by shifts in regulation due to 

declining [FS]. These include a decline in vacuolar iron levels and increases in the rates 

of iron import into the cytosol and into mitochondria. 
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Figure 3.4: Simulated concentrations of iron components in S. cerevisiae at increasing rates by 

which iron-sulfur clusters and heme centers are synthesized. The Dual-Reg model variant is assumed 

along with [N]=40 µM.The diseased state is on the left; the healthy state is on the right. 
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At Risu < 30 μM/h, even more dramatic changes occurred, all associated with the 

ISC disease spiral. The primary event causing these changes was a decline of [FS] to 

concentrations below those required to maintain the matrix in an anaerobic state. The 

O2 that penetrates the matrix under these conditions reacts with FM, causing its decline, 

as well as an increase in ROS and MP concentrations. The loss of FM slows the rate of 

FS production further, leading to the spiraling effect. The decline in [FS] also causes 

cytosolic and mitochondrial import valves to open (and the vacuolar iron import valve to 

close) such that iron rushes into the cytosol, out of the vacuole and into mitochondria 

where it accumulates as MP. Some FM is not consumed in the ISC diseased state, such 

that the steady state ratio of [FM]/[Femit] is ∼7%. This is similar to the Mössbauer 

spectral intensity of mitochondria isolated from ISC mutant cells, which exhibit features 

of NHHS Fe2+ in addition to the dominating nanoparticles (15, 51). The origin of this 

NHHS Fe2+ as an expanded FM pool had been unexplained prior to this model. 

The disease spiral is delayed and moderated under micro-erophilic conditions 

(RO2 = 1 μM) (Fig. 5A). When the system lacks O2, FM cannot convert into 

nanoparticles, and [FS] only declines marginally. At Risu < 40 μM/h, low [FS] and an 

assumed low growth rate result in higher iron levels in the cell and mitochondria, such 

that [FM] increases dramatically, reaching 6 mM at Risu = 20 μM/h. Thus, the model 

predicts that the iron content of mitochondria isolated from ISC mutant cells grown 

under anaerobic condions will be dominated by NHHS Fe2+ rather than by nanoparticles. 

We are examining this prediction experimentally. 
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Most component traces of the C-Reg variant were similar to those of the Dual-

Reg variant, but vacuolar iron in the C-Reg variant did not empty as [FS] declined in 

simulating the ISC mutant state (Fig. 5B). Cellular iron in C-Reg cells increased largely 

because the growth rate declined, and vacuoles imported that iron because they could not 

sense the decline of [FS] in mitochondria. There was also no increase in the rate of iron 

import into mitochondria during formation of the ISC diseased state (Fig. 5C), in 

contrast to what is observed. 

The FS-Reg variant exhibited acceptable behavior overall except that [C] 

increased to exceedingly high (mM) levels under ISC mutant conditions (Fig. 5B). Such 

unrealistically high concentrations arise because there is no Reg−C valve to curtail the 

flow of iron in slowly growing cells in which the Reg−FS valve is fully opened. 

We next examined the ability of the Dual-Reg variant to reproduce the phenotype of 

nine genetic strains including ΔYFH1, ΔMRS3/4, Mrs3/4 overexpression, ΔCCC1, 

CCC1 overexpression, Aft1/2–1UP, ΔYFH1:ΔMRS3/4, ΔYFH1:MRS3/4 overexpression, 

and ΔCCC1:ΔMRS3/4 (supplemental Tables S1 and S2). We simulated each strain by 

only adjusting the rate(s) in our model that was(were) associated with the particular 

genetic modification. Rates for deletion strains were not assigned exactly to 0 because 

the cells contain secondary pathways that remain operational despite the deletion. The 

model implicitly includes all pathways of iron into the cytosol, into mitochondria and 

vacuoles, whereas the genetic strains perturb only a particular pathway. 
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Figure 3.5: Selected plots from simulations. A, concentrations of mitochondrial iron species under 

anaerobic growth conditions assuming the Dual-Reg variant. In the diseased state, [FM] is_20-fold higher 

than [MP]. B, [F3] (dashed purple line, right axis) simulated by the C-Reg variant does not decline in the 

diseased state. [C] (green line, left axis) simulated by the FS-Reg variant increases to unrealistically high 

concentrations in the diseased state. C, import rates simulated by the C-Reg variant are invarient in the 

diseased state: no accumulation of iron in mitochondria. D, simulation of [F2] and [F3] by the Dual-Reg 

variant in CCC1-UP cells that are adenine-deficient. [F2] is 

subtantially higher than [F3] as observed. 
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The most unusual simulated behavior was that of CCC1-UP, which showed high 

[F2] and low [F3] under conditions where the WT strain is dominated by F3 (Fig. 5D). 

This shift was due to a down-regulation of k23 in the simulated CCC1-UP strain, 

attributed to a more reducing vacuolar environment. In ∼65% of all literature cases 

reported in supplemental Table S1, model simulations “trended” in the observed 

direction and had reasonable quantitative agreement. Model simulations fitted even 

better to the Mössbauer-based data of supplemental Table S2. This overall ability to 

reproduce observed behaviors from the literature and from previous studies in our lab, 

although not uniformly successful, suggests that many aspects of this simple model are 

correct. 

Finally, we evaluated the sensitivity of model parameters (supplemental Table 

S3). The rate of iron import into mitochondria was the most sensitive parameter, 

followed by rate constants for O2 reacting with FM, for respiration and for nanoparticle 

formation. The rate of ISC/heme biosynthesis was also sensitive. The model was 

sensitive to the set point concentrations of FS and to Michaelis-Menten Km terms 

involving the import of cytosolic iron into mitochondria, the conversion of FM into FS, 

and the reduction of O2 in respiration. 

The optimized setpoint concentration for FS, averaged for all four sites, was 170 

± 30 μM. This was comparable to the average concentrations of FS in mitochondria 

(∼200 μM), and it suggests that the FS-Reg valves were opening and closing as 

designed. The average sen factor for FS-Reg functions was 8 ± 2, indicating the need for 

sensitive regulation. 
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In contrast, the model was relatively insensitive to parameters associated with C 

regulation. Set point concentrations for C were highly variable, including values of 27, 

80, 1.2, and 2 μM for cytosolic iron import, mitochondrial iron import, vacuolar iron 

import, and vacuolar Fe2+ oxidation, respectively. Those for cytosolic and mitochondrial 

iron import differed from the simulated range of C concentrations (2–4 μM). This means 

that under most circumstances, the C-Reg valves “controlling” import into the cytosol 

and mitochondria were fully opened such that these import rates were essentially 

controlled only by [FS]. C-regulation played a stronger role in vacuolar iron import and 

oxidation, especially with variations in [N]. 

 

Discussion 

Immediately following the discovery of Aft1-dependent regulation in 1995, 

cytosolic iron was commonly assumed to be the sensor of a classic homeostatic 

regulatory system for controlling iron import and trafficking in yeast cells. This 

assumption was based on the response of healthy WT cells to changes in the iron 

concentration of the growth medium. Starting in the early 2000s, cellular iron overload 

caused by defects in mitochondrial ISC activity revealed the importance of this activity 

in cellular iron regulation. The classic model predicted that the massive import of iron 

into ISC-defective mitochondria resulted from an iron-deficient cytosol, which 

stimulated iron import by activating the iron regulon. Unexpectedly, evidence suggested 

that the cytosol in ISC mutant cells is iron-replete. 
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Once it was established that events in the mitochondria impacted those in the 

nucleus, focus shifted to how such information was transferred from mitochondria to 

nucleus. In the last decade, many details regarding this mitochondrial → nuclear signal 

transduction pathway have been established. 

Included in this intellectual journey was the conclusion that cytosolic iron is 

NOT sensed in regulation. However, our study suggests that both cytosolic iron and 

mitochondrial ISC activity are sensed. Fecyt-sensing plays an important regulatory role 

when healthy cells are grown in iron-deficient, iron-sufficient, and iron excess medium 

(especially with regard to vacuolar iron import and oxidation). In these cases, the level 

of ISC assembly is relatively constant, such that the rates of iron import into the cytosol 

and mitochondria are largely invariant. This leads to the observed relative invariance of 

iron content in mitochondria. On the other hand, when mitochondrial ISC activity is 

attenuated or halted, FS-based regulation controls these iron import rates. 

Both Fecyt and mitochondrial ISC activity could be regulatory sensors if both 

were required to generate a single downstream signal for the mitochondrial-nuclear 

signal transduction pathway. This requirement would be fulfilled if Fecyt reacted in the 

cytosol with X-S that had been exported from the mitochondria to generate the 

Fe2S2cluster in the Grx·Fe2S2cGrx homodimer (see red star in Fig. 2). When Fecyt is 

limiting and X-S abundant, [Grx·Fe2S2·Grx] would be limited, which would activate the 

iron regulon. In this circumstance, Fecyt would play the dominant regulatory role. On the 

other hand, when X-S is limiting and Fecyt is abundant, [Grx·Fe2S2·Grx] would also be 

limiting, and the iron regulon would again be activated. However, [X-S] would play the 
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dominant regulatory role. It is only when Fecyt AND X-S are both abundant (relative to 

the amount of Grx available) that the iron regulon would not be activated. This is the 

situation found in healthy WT cells grown on iron-sufficient (or iron excess) conditions. 

These considerations were assumed in deriving the product function used in the Dual-

Reg variant. 

Remarkably, dual regulation was proposed in 2003 by Mühlenhoff et al. (9) 

based on their perceptive observation that both deletion and overexpression of Mrs3/4 

activated the iron regulon. They posited that deleting Mrs3/4 caused low levels of ISC 

biosynthesis (thereby stimulating the iron regulon), whereas overexpressing Mrs3/4 

caused low levels of Fecyt (also stimulating the iron regulon). Kaplan and co-workers 

(117, 21, 70) also interpreted particular experiments assuming that both cytosolic iron 

and ISC activity regulate iron traffic in yeast. 

ISC biosynthesis activity might regulate iron trafficking to help mitochondria 

import more iron when cells transition from fermentation to respiration. In the late 

1980s, Raguzzi, Lesuisse, and Crichton (135) hypothesized that vacuolar iron is 

mobilized during this metabolic transition. Respiring cells contain approximately three 

times the concentration of mitochondria as fermenting cells, indicating that the 

metabolic shift involves mitochondriogenesis (136). Some of the iron for this process 

comes from mobilized vacuolar iron. The trigger for mitochondriogenesis (perhaps low 

glucose levels) may not be perfectly coordinated to an increase in the rate of iron import 

into mitochondria. In this case, growing and dividing mitochondria might experience a 

transitory period in which insufficient ISCs are made. This might be sensed by a lower 
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than set point concentration of X-S in the cytosol, which might stimulate the ISC mutant 

phenotype (importing more iron into the cell, exporting vacuolar iron into the cytosol, 

and importing more Fecyt into mitochondria). The essential difference is that in healthy 

respiring cells, the imported iron can be used to make ISCs, whereas in ISC mutant cells, 

it cannot. Accordingly, the up-regulation of iron import, which generates nanoparticle 

iron in ISC mutant cells, is “earmarked” for ISC biosynthesis in healthy cells. In healthy 

cells, once sufficient ISCs are made, the signal (X-S) indicating this would attenuate 

further iron import and allow vacuolar iron stores to be replenished. In contrast, ISC 

mutant cells cannot use that iron to make ISCs, and so X-S is not made in sufficient 

amounts to shut down the coordinated import of iron into mitochondria; thus, vacuoles 

remain devoid of iron, whereas excessive iron pours into mitochondria, generating large 

amounts of nanoparticles and ROS as it reacts with O2. This leads to the iron 

accumulation phenotype that defines ISC-associated diseases. 

Mathematical models of biochemical processes in cells become increasingly 

insightful as the complexity of such processes and the amount of relevant information 

increases. Such models have the unique ability to integrate the pieces of the puzzle and 

allow the entire process to be viewed from a systems' level perspective. Modeling the 

progression from healthy to diseased states is a powerful way to understand the 

mechanism of diseases and to evaluate the efficacy of different treatments. We hope that 

further developments of this model will clarify the complex chemical relationships that 

collectively cause Friedreich's ataxia and other iron accumulation diseases and that such 

models might promote more effective treatments. 
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Supplemental Material 

Table 3.S1: Comparison between simulated values and literature data relevant to the model. Unless 

otherwise indicated, [N] = 40 µM and  = 0.2 hr-1.  

Experimental 

Condition  (Ref) 

Experimental 

Measurement 

Experimental Result 

Simulation 

Details 

Simulation vs. Experiment 

WT at Fe-deficient, 

Fe-sufficient  (9) 

FET3 expression 

4-5at Fe-deficient vs. Fe sufficient 

 

[Fe]med = 4, 40 

 

 
-C -FS 4

1

-C -FS 40

1

Reg Reg
1.6

Reg Reg

4.5

cell N

cell N

R
S

R

D





 
 

 



 

Yfh1     

Yfh1 (23, 121) 

Fermenting [Fe]mit 

 

5-15 time higher than WT 

Risu = 15 µM/hr 

  = 0.07 hr-1 

1

2

40

2

[ ]
16

[ ]

10

mit Yfh

mit WT N

Fe
S

Fe

D





 
  
 



 

Yfh1 (23) 

mRNA levels of 

Mrs4 

Levels were ~ 2.5 times increased 

relative to WT (Fig 1A, p 24476) 

Risu = 15 µM/hr 

  = 0.07 hr-1 

 

 
-C -FS Yfh1

3

-C -FS WT

3

Reg Reg
1.8

Reg Reg

2.5

mit

mit

R
S

R

D


 

 
 


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Table 3.S1 Continued 

Experimental 

Condition  (Ref) 

Experimental 

Measurement 

Experimental Result 

Simulation 

Details 

Simulation vs. Experiment 

Yfh1 (23) 55 55

super[ ], [ ]mitFe Fe
 

Mitochondria from Yfh1 contained 

40%-45% of cellular 55Fe; 

mitochondria from WT cells contained 

5 – 10% of cellular 55Fe. 

(Ratio is ca. 42/7.5 = 5.7) 

 

Risu = 15 µM/hr 

  = 0.07 hr-1 

 

 
1

4

4

[ ] [ ]
8.2

[ ] [ ]

5.7

mit cell Yfh

mit cell WT

Fe Fe
S

Fe Fe

D


 



 

Yfh1 (23) 

Aconitase and 

COX activities 

Aconitase activity was 41% of WT 

COX activity was 74% of WT 

Ave = 58% 

Risu = 15 µM/hr 

  = 0.07 hr-1 

1

5

5

[ ]
0.52

[ ]

0.58

Yfh

WT

FS
S

FS

D


 



 

Cu treatment to 

mimic ISC mutant 

(136) 

Mrs4 expression 2.1 vs. WT 

Risu = 15 M/hr 

  = 0.07 hr-1 

 

 
-C -FS

6

-C -FS

6

Reg Reg
1.8

Reg Reg

2.1

mit Cu

mit WT

R
S

R

D

 
 

 



 

Mrs3/4     

Mrs3/4 (23) [55Femit],[55Fesuper] 

Total cellular Fe was about 1.7 times 

that of WT cells.  

Rmit = 180 

M/hr 

3/4
7

7

[ ]
.88

[ ]

1.7

cell Mrs

cell WT

Fe
S

Fe

D

 



 

Mrs3/4 (23) [Fe]mit 

Percentage of cellular iron in mito was 

2.5% for Mrs3/4 and 4.0% for WT; 

the ratio was 0.62 

Rmit = 180 

M/hr 

 

 
3/4

8

8

[ ] [ ]
1.0

[ ] [ ]

0.62

mit cell Mrs

mit cell WT

Fe Fe
S

Fe Fe

D

 



 

Mrs3/4 (23) 

Aconitase and 

COX activities 

Aconitase activity was 60% of WT 

COX activity was 59% of WT 

Ave = 60% 

Rmit = 180 

M/hr 

3/4
9

9

[ ]
0.82

[ ]

0.60

Mrs

WT

FS
S

FS

D

 



 

Mrs3/4 (126) 

FET3 expression 

FTR1 expression 

FET3 = 2.2 vs. WT 

FTR1 = 1.9 vs. WT 

(microarray) 

Rmit = 180 

M/hr 

 

 
-C -FS cell Mrs3/4

10

-C -FS cell WT

10

Reg Reg R
.89

Reg Reg R

2.0

S

D


 

 
 


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Table 3.S1 Continued 

Experimental 

Condition  (Ref) 

Experimental 

Measurement 

Experimental Result 

Simulation 

Details 

Simulation vs. Experiment 

Mrs3/4 (126) 

[hemes], [Bio2] 

aconitase, SDH 

Hemes: 1.4 vs. WT 

(was 2-fold down in Fe-starved cells) 

Bio2: 2.5 vs. WT 

(was 1.7 fold lower in Fe-depleted 

mitos) 

Aconitase unchanged 

SDH unchanged 

(Ave ca. 1.5 fold down) 

Rmit = 180 

M/hr 

 [Fe]med = 4 

3/4
11

[ ] 4

11

[ ]
0.82

[ ]

0.67

Mrs

WT Femed

FS
S

FS

D





 
  
 



 

Mrs3/4 (126) 

Aconitase and 

SDH activities 

In mito preparations, no significant 

differences in the activities of 

aconitase and SDH.  

Rmit = 180 

M/hr 

3/4
12

[ ] 40

12

[ ]
0.82

[ ]

1.0

Mrs

WT Femed

FS
S

FS

D





 
  
 



 

Mrs3/4 (126) [Fe]mit 

Mitochondria had 2.1 fold less Fe than 

WT mitochondria 

Rmit = 180 

M/hr 

 [Fe]med = 4 

3/4

13

[ ] 4

13

[ ]
0.89

[ ]

0.48

Mrsmit

mit WT Femed

Fe
S

Fe

D





 
  
 



 

Mrs3/4 (126) [Fe]mit 

In mitochondria, no substantial 

changes in iron accumulation relative 

to WT; heme formation was similar to 

WT 

Rmit = 180 

M/hr 

3/4

14

[ ] 40

14

[ ]
0.89

[ ]

1.0

Mrsmit

mit WT Femed

Fe
S

Fe

D





 
  
 



 

Mrs3/4 (127) 

FET3, FRE1, 

FTR1 expression 

FET3 = 4.7 vs. WT 

FRE1 = 4.1 vs. WT 

FTR1 =3.5 vs. WT 

Ave = 4.1 

 

 

 

Rmit = 180 

M/hr 

 

 

 
-C -FS 3/4

15

-C -FS

15

Reg Reg
.89

Reg Reg

4.1

cell Mrs

cell WT

R
S

R

D


 

 
 



 

Mrs3/4 (127) [Fe]cell 2.8 vs. WT 

Rmit = 180 

M/hr 

 

3/4
16

16

[ ]
.89

[ ]

2.8

cell Mrs

cell WT

Fe
S

Fe

D

 


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Table 3.S1 Continued 

Experimental 

Condition  (Ref) 

Experimental 

Measurement 

Experimental Result 

Simulation 

Details 

Simulation vs. Experiment 

Mrs3/4 (127) [Fe]vac 4.0 vs. WT 

Rmit = 180 

M/hr 

 

3/4
17

17

[ ]
.84

[ ]

4.0

vac Mrs

vac WT

Fe
S

Fe

D

 



 

Mrs3/4 (127)  

FET3 expression 

Iron uptake 

FET3: 8.0 vs. WT 

Iron uptake: 14.8 times WT 

Ave: 11.4 

Rmit = 180 

M/hr 

 

 

 
-C -FS 3/4

18

-C -FS

18

Reg Reg
.89

Reg Reg

11.4

cell Mrs

cell WT

R
S

R

D


 

 
 



 

Mrs3/4 (127) [Fe]cell 2.0 vs. WT 

Rmit = 180 

M/hr 

 

3/4
19

19

[ ]
.89

[ ]

2.0

cell Mrs

cell WT

Fe
S

Fe

D

 



 

Mrs3/4 (127) Aconitase activity 0.25 times WT 

Rmit = 180 

M/hr 

3/4
20

20

[ ]
0.82

[ ]

0.25

Mrs

WT

FS
S

FS

D

 



 

MRS3/4 

Overexpression 

    

MRS3/4-over (126) 

FET3 expression 

FTR1 expression 

FET3 = 2.8 vs. WT 

FTR1 = 2.5 vs. WT 

(microarray) 

Rmit = 2340 

µM/hr 

[Fe]med = 4 

 

 
-C -FS Mrs3/4over

21

-C -FS

21

Reg Reg
0.61

Reg Reg

2.6

cell

cell WT

R
S

R

D

 
 

 



 

MRS3/4-over (126) 

[hemes], [ISC] 

aconitase, SDH 

Hemes: 1.7 vs. WT 

ISCs: 2 vs. WT 

Aconitase unchanged 

SDH unchanged 

Rmit = 2340 

µM/hr 

3/4
22

[ ] 4

22

[ ]
1.1

[ ]

1.8

Mrs over

WT Femed

FS
S

FS

D



 
  
 



 

MRS3/4-over (126) [Fe]mit 2.5 vs. WT 

Rmit = 2340 

µM/hr 

 [Fe]med = 4 

3/4
23

[ ] 4

23

[ ]
1.2

[ ]

2.5

mit Mrs over

mit WT Femed

Fe
S

Fe

D



 
  
 


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Table 3.S1 Continued 

Experimental 

Condition  (Ref) 

Experimental 

Measurement 

Experimental Result 

Simulation 

Details 

Simulation vs. Experiment 

MRS3/4-up (127) [Fe]cell [Fe]cell = 40% of WT 

Rmit = 2340 

µM/hr 

3/4
24

24

[ ]
0.55

[ ]

0.40

cell Mrs UP

cell WT

Fe
S

Fe

D

 



 

Ccc1     

Ccc1 (127) 

FET3 expression 

Iron uptake 

FET3: 0.67 times WT 

Iron uptake: 0.75 times WT 

Ave: 0.7 

 

Rvac = 510 

µM/hr 

 

 
-C -FS 1

25

-C -FS

25

Reg Reg
0.60

Reg Reg

0.70

cell CCC

cell WT

R
S

R

D


 

 
 



 

Ccc1 (127) [Fe]cell 0.59 times WT 

Rvac = 510 

µM/hr  

1
26

26

[ ]
0.60

[ ]

0.59

cell CCC

cell WT

Fe
S

Fe

D

 



 

Ccc1 (127) Aconitase activity 1.5 times WT 

Rvac = 510 

µM/hr 

 

1
27

27

[ ]
1.1

[ ]

1.5

CCC

WT

FS
S

FS

D

 



 

Ccc1 (127) [Fevac] 27% of WT value 

Rvac = 510 

µM/hr 

 

1
28

28

[ ]
0.54

[ ]

0.27

vac CCC

vac WT

Fe
S

Fe

D

 

  

Ccc1 

overexpression 

    

Ccc1 over (120) [Fevac] 2.2 times greater than in  WT vacuoles 

Rvac = 20,000 

µM/hr 

1
29

29

[ ]
2.2

[ ]

2.2

vac CCC over

vac WT

Fe
S

Fe

D

 



 

Ccc1 

overexpression 

(120) 

Aconitase activity Reduced relative to WT 

Rvac = 20,000 

µM/hr 

1
30

30

[ ]
0.79

[ ]

0.8

CCC over

WT

FS
S

FS

D

 



 

Aft1/2-1UP     

  



 

79 

 

Table 3.S1 Continued 

Experimental 

Condition  (Ref) 

Experimental 

Measurement 

Experimental Result 

Simulation 

Details 

Simulation vs. Experiment 

Aft1-1up (21) 

Aft2-1up 

Aft1Aft2 

FET3 expression 

FTR1 expression 

 

FET3: (25.2+3.7)  Up vs.  

FTR1: (5+2.6)  Up vs.  

FRE1: (4+3.5)  Up vs.  

Ave = 7.3 

[Fe]med = 0.4 and 

10,000 

 

 
-C -FS 0.4

31

-C -FS 10,000

31

Reg Reg
2.7

Reg Reg

7.3

cell N

cell N

R
S

R

D





 
 

 



 

Aft1-1up (117) 

Aft2-1up 

Aft1Aft2 

Mrs4 expression 

 

3.5  Up (ave) vs.  

 

[Fe]med = 0.4 and 

10,000 

 

 
-C -FS 0.4

32

-C -FS 10,000

32

Reg Reg
2.0

Reg Reg

3.5

mit N

mit N

R
S

R

D





 
 

 



 

Aft1-1up (117) 

Aft2-1up 

Aft1Aft2 

FET5 expression 

SMF3expression 

~ 2.6 Up (ave) vs.  (Fet5) 

~ 2 Up (ave) vs.  (Smf3) 

[Fe]med = 0.4 and 

10,000 

 

 
-C -FS 10,000

33

-C -FS 0.4

33

Reg Reg
574

Reg Reg

2.3

vac N

vac N

R
S

R

D





 
 

 



 

Yfh1Mrs3/4     

Yfh1Mrs3/4 

(23) 

55 55

super[ ], [ ]mitFe Fe
 

Mitochondrial iron concentration is 

decreased to almost WT levels 

(Ratio is ca. 1.0) 

Risu = 15 µM/hr 

Rmit = 180 

M/hr 

 = 0.07 hr-1 

1 3/4

34

34

[ ] [ ]
7.1

[ ] [ ]

1.2

mit cell Yfh Mrs

mit cell WT

Fe Fe
S

Fe Fe

D

 
 



  

Yfh1Mrs3/4 

(23) 

55 55

super[ ], [ ]mitFe Fe
 Mitochondrial iron concentration is 

13% of cellular Fe.  

Risu = 15 µM/hr 

Rmit = 180 

M/hr 

 [Femed] = 10000 

µM 

 = 0.07 hr-1 

1 3/4

35

1 3/4

35

[ ]
0.83

[ ]

0.13

mit Yfh Mrs

cell Yfh Mrs

Fe
S

Fe

D

 

 

 



 

Yfh1Mrs3/4 

(23) 

 

Cellular Fe is about 3.5 times WT 

cellular iron level 

Risu = 15 µM/hr 

Rmit = 180 

M/hr 

 [Femed] = 10000 

µM 

 = 0.07 hr-1 

1 3/4

36

1 3/4

36

[ ]
.49

[ ]

3.5

cell Yfh Mrs

cell Yfh Mrs

Fe
S

Fe

D

 

 

 


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Table 3.S1 Continued 

Experimental 

Condition  (Ref) 

Experimental 

Measurement 

Experimental Result 

Simulation 

Details 

Simulation vs. Experiment 

Yfh1Mrs3/4 

(23) 

Aconitase and 

COX activities 

Aconitase activity was 16% of WT 

COX activity was 45% of WT 

Ave = 30% 

Risu = 15 µM/hr 

Rmit = 180 

M/hr 

 = 0.07 hr-1 

1 3/4

37

37

[ ]
0.06

[ ]

0.3

Yfh Mrs

WT

FS
S

FS

D

 
 



 

Yfh1; 

MRS3/4over 

    

Yfh1;MRS3/4ove

r 

(127) 

[Fe]mit 2.5  vs. Yfh1 

Risu = 15 µM/hr 

Rmit=4000 

µM/hr  

 = 0.07 hr-1 

1 3/4

38

1

38

[ ]
2.3

[ ]

2.5

mit Yfh Mrs UP

mit Yfh

Fe
S

Fe

D

 



 



 

Ccc1;Mrs3/4     

Ccc1;Mrs3/4 

(127) 

FET3, FRE1, 

FTR1 expression 

FET3: 0.978 vs. WT 

FRE1: 1.374 vs WT 

FTR1: 0.834 vs. WT 

Ave: 1.1 

Rvac = 510 

µM/hr 

Rmit = 180 

M/hr 

 

 
-C -FS 1 3/4

39

-C -FS

39

Reg Reg
.24

Reg Reg

1.1

cell CCC Mrs

cell WT

R
S

R

D

 
 

 
 



 

Ccc1;Mrs3/4 

(127) 

FET3 expression 

Iron uptake 

FET3: 4 times vs. WT 

Iron uptake: 3.4 times vs. WT 

Ave: 3.7 times vs. WT 

Rvac = 510 

µM/hr 

Rmit = 180 

M/hr 

 

 
-C -FS 1 3/4

40

-C -FS

40

Reg Reg
.24

Reg Reg

3.7

cell CCC Mrs

cell WT

R
S

R

D

 
 

 
 



 

Ccc1;Mrs3/4 

(127) 

Whole cell iron 

1.6 times vs. WT 

 

Rvac = 510 

µM/hr 

Rmit = 180 

M/hr 

1 1

41

41

[ ]
.46

[ ]

3.7

cell Yfh Ccc

cell WT

Fe
S

Fe

D

 
 



 

Ccc1;Mrs3/4 

(127) 

[Fevac] 

2 times vs. WT vacuoles 

 

Rvac = 510 

µM/hr 

Rmit = 180 

M/hr 

1 1

42

42

[ ]
0.35

[ ]

2.0

vac Yfh Ccc

vac WT

Fe
S

Fe

D

 
 


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Table 3.S1 Continued 

Experimental 

Condition  (Ref) 

Experimental 

Measurement 

Experimental Result 

Simulation 

Details 

Simulation vs. Experiment 

Ccc1;Mrs3/4 

(127) 

Aconitase activity 

0.81 times vs. WT 

 

Rvac = 510 

µM/hr      Rmit = 

180 M/hr 

1 1

43

43

[ ]
0.84

[ ]

0.81

Yfh Ccc

WT

FS
S

FS

D

 
 


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Table 3.S2: Data from previous Mössbauer studies (All numbers are referenced from (66) and the 

references therein with the exception of ISC40) 

Experiment [N] [C] (S 

only) 

[F2] (S 

only) 

[F3] [VP] [FM] [FS] [MP] [O2] (S 

only) 

[ROS] 

(S only) 

Fe2+ Total 

Fe 

RMSD 

BPS 4 2.31 132 452 S 

1 D 

44.5 S 

1 D 

98.3 S 

33.6 D 

173 S 

334 D 

192 S 

48 D 

2.17 192.22 44.3 S 

56.0 D 

205 S 

153 D 

5.72 

WT1 7 2.58 121 688 S 

400 D 

67.5 S 

120 D 

103 S 

150 D 

181 S 

550 D 

191 S 

50 D 

2.06 192 42.2 S 

60.0 D 

268 S 

250 D 

3.66 

WT10 16 2.95 116 1004 S 

1000 D 

98.3 S 

1 D 

109 S 

152 D 

289 S 

107 D 

192 S 

310 D 

1.96 192 41.8 S 

65.0 D 

366 S 

395 D 

.931 

WT40 46 3.30 114 1277 S 

1180 D 

125 S 

180 D 

114 S 

152 D 

197 S 

213 D 

192 S 

254 D 

1.87 192 42.0 S 

44.0 D 

412 S 

440 D 

.616 

WT100 106 3.45 114 1390 S 

1400 D 

136 S 

80 D 

115 S 

170 D 

199 S 

215 D 

192 S 

192 D 

1.84 192 42.2 S 

30.0 D 

463 S 

470 D 

.319 

WT1000 1006 3.57 113 1480 S 

1440 D 

144 S 

120 D 

117 S 

132 D 

201 S 

220 D 

192 S 

200 D 

1.82 192 42.3 S 

26.0 D 

488 S 

455 D 

.279 

WT10000 10006 3.59 113 1491 S 

1460 D 

146 S 

140 D 

117 S 

112 D 

201 S 

135 D 

192 S 

200 D 

1.81 192 42.3 S 

40.0 D 

490 S 

440 D 

.262 

ISC40 (20) 46 31.5 56.9 7.19 S 

0 D 

16.8 S 

0 D 

803 S 

370 D 

 

103 S 

0 D 

7013 S 

7030 D 

3.68 7013 115 S 

20 D 

833 S 

1000 D 

.668 

DelC1 7 3.02 61.3 110 S 

36 D 

33.1 S 

 36.0 D 

56.8 S 

388 D 

221 S 

388 D 

83.7 S 

242 D 

1.63 83.7 22.9 S 

27.0 D 

89.2 S 

150 D 

4.92 

DelC10 16 3.32 92.9 178 S 

212 D 

53.2 S 

40.0 D 

58.2 S 

340 D 

227 S 

340 D 

83.5 S 

212 D 

1.58 83.6 31.2 S 

54.0 D 

120 S 

209 D 

2.84 

DelC20 26 3.46 109 215 S 

316 D 

63.9 S 

92.0 D 

58.9 S 

311 D 

228 S 

311 D 

83.5 S 

193 D 

1.57 83.5 35.4 S 

98.0 D 

136 S 

284 D 

2.24 

DelC40 46 3.58 124 249 S 

456 D 

74.1 S 

244 D 

59.4 S 

316 D 

231 S 

316 D 

83.5 S 

197 D 

1.56 83.5 39.3 S 

107 D 

181 S 

357 D 

2.52 

Cup1 7 1.71 944 192 S 

176 D 

274 S 

184 D 

83.1 S 

118 D 

149 S 

118 D 

194 S 

73.6 D 

2.59 194 245 S 

128 D 

396 S 

250 D 

1.64 

Cup10 16 1.87 1362 347 S 

372 D 

495 S 

516 D 

88.1 S 

141 D 

157 S 

141 D 

193 S 

87.4 D 

2.43 193 351 S 

305 D 

596 S 

565 D 

.472 

Cup20 26 1.96 1574 433 S 

608 D 

618 S 

1400 D 

90.3 S 

266 D 

161 S 

266 D 

193 S 

166 D 

2.36 193 404 S 

407 D 

702 S 

981 D 

1.29 

Cup40 46 2.04 1769 515 S 

1480 D 

736 S 

2088 D 

92.3 S 

437 D 

164 S 

437 D 

193 S 

271 D 

2.31 193 453 S 

828 D 

801 S 

1838 D 

1.84 

Cupade1 7 1.87 53.2 602 S 

156 D 

659 S 

168 D 

87.9 S 

130 D 

157 S 

130 D 

193 S 

80.5 D 

2.44 193 23.3 S 

269 D 

373 S 

385 D 

3.55 

Cupade40 46 2.63 16.4 1043 S 

1872 D 

1139 S 

1204 D 

104 S 

233 D 

182 S 

233 D 

192 S 

145 D 

2.04 192 16.2 S 

187 D 

599 S 

1019 D 

1.27 
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Table 3.S3: Optimized Parameters and sensitivities.  

Parameter 

  

Optimized 

Value 

Unit Sensitivity 

 Rmit 900 µMhr-1 1.15 

Rmit(Mrs3/4) 180 " 1.00 

Rmit(Mrs3/4-UP) 2340 " 1.00 

Rmit(Yfh1;Mrs3/4-UP) 4000* " 1.04 

    

kO2 52 hr-1 1.08 

kres 150 hr-1 1.07 

kmp 0.18 µM-1hr-1 1.06 

    

Kmit 12 µM 1.08 

KO2 9 " 1.07 

Kisu 610 " 1.07 

Kcell 14 " 1.00 

Kvac 5.5 " 1.00 

    

[FS]spcell 190 µM 1.08 

[FS]spmit 200 " 1.09 

[FS]spvac 190 " 1.02 

[FS]spvac(Ccc1) 170* " 1.00 

[FS]spvac(CCC1-UP) 170 " 1.00 

[FS]spvac(UP+Ad) 145 " 1.01 

[FS]sp23 210 " 1.00 

[FS]sp23(Ccc1) 110 " 1.00 

[FS]sp23(CCC1-UP) 150 " 1.00 
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Table 3.S3 Continued 

Parameter 

  

Optimized 

Value 

Unit Sensitivity 

[FS]sp23(CCC1-UP+Ad) 190 " 1.01 

    

[C]spcell 27 µM 1.05 

[C]spmit 80* " 1.00 

[C]spvac 1.2 " 1.00 

[C]spvac(Ccc1) 4.2 " 1.00 

[C]spvac(CCC1-UP) 0.2 " 1.00 

[C]spvac(CCC1-UP+Ad) .5* " 1.00 

[C]sp23 2 " 1.02 

[C]sp23(Ccc1) 2.3 " 1.00 

[C]sp23(CCC1-UP) 0.14 " 1.00 

[C]sp23(CCC1-UP+Ad) 2 " 1.05 

    

fssenmit 4 none 1.03 

fssencell 9 " 1.00 

fssenvac 8 " 1.00 

fssenvac(Ccc1) 7 " 1.00 

fssenvac(CCC1-up) 10 " 1.00 

fssenvac(UP+Ad) 10 " 1.00 

fssen23 10 " 1.00 

fssen23(CCC1) 10 " 1.00 

fssens23(CCC1-UP) 10 " 1.00 

fsens23(UP+Ad) 7 " 1.01 

    

csenmit 5 none 1.00 
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Table 3.S3 Continued 

Parameter 

  

Optimized 

Value 

Unit Sensitivity 

csencell 5 " 1.00 

csenvac 3 " 1.00 

csenvac(Ccc1) 5 " 1.00 

csenvac(CCC1-up) 4 " 1.00 

csenvac(UP+Ad) 4 " 1.00 

csen23 10 " 1.00 

csen23(CCC1) 2 " 1.00 

csens23(CCC1-UP) 5 " 1.00 

csens23(UP+Ad) 10 " 1.01 

    

Rvac 2200 µMhr-1 1.01 

Rvac(ccc1) 825 

(748?) 

" 1.00 

Rvac(CCC1-UP) 7920 " 1.00 

Rvac(CCC1-UP+Ad) 2200 " 1.00 

 Rvac(litdelta)

  

510 " 1.01 

Rvac(litup) 20,000* " 1.00 

    

Rcell 410 µMhr-1 1.00 

Risu 520 µMhr-1 1.00 

Risu(Yfh1) 15  " 1.03 

    

k23 7.3 hr-1 1.00 

k23(Ccc1) 0.74 " 1.00 
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Table 3.S3 Continued 

Parameter 

  

Optimized 

Value 

Unit Sensitivity 

k23(CCC1-up) 0.20 " 1.00 

k23(CCC1-UP+Ad) 66 " 1.00 

    

kvp 0.02 hr-1 1.00 

kvp(Ccc1) 0.06 " 1.00 

kvp(Ccc1-UP) 0.29 " 1.00 

kvp(Ccc1-UP+Ad) 0.22 " 1.00 

    

kros 0.014 µM-1hr-1 Fixed 

RO2 (aerobic) 100 µM Fixed 

RO2 (anaerobic) 1 µM Fixed 

healthy 0.2 hr-1 Fixed 

diseased 0.07 hr-1 Fixed 

fcyt 0.65 none Fixed 

fmit 0.10 none Fixed 

fvac 0.25 none Fixed 
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A. Derivation of Product Reg Functions 

This derivation assumes that X-S and Fecyt react to generate the Grx[Fe2S2]Grx 

homodimer, and that only the apo-form of Grx is active. Following the nomenclature in 

the text, X-S = FS and Fecyt = C. Also, A = the active form of Aft1/2; inactive forms 

include AC, AFS and AFSC. We assume that either substrate can bind first and that the 

binding strength does not change when the other substrate is bound. The dissociation 

equilibrium expressions for these binding events are… 

C

FS

C

FS

A C
AC A C K

AC

A FS
AFS A FS K

AFS

AFS C
AFSC AFS C K

AFSC

AC FS
AFSC AC FS K

AFSC

  

  

  

  

  

The fraction of Atot that is active depends on these binding constants and the 

concentrations of FS and C, as follows.  

1

1 1

1 1

1 1

Re Re

tot

tot

FS C C

tot

FS C C FS

tot

FS C C FS

tot

FS C

tot

FS C

FS C

tot

A A AFS AC AFSC

A FS A C AFS C
A A

K K K

A FS A C A C FS
A A

K K K K

FS C C FS
A A

K K K K

FS C
A A

K K

A

A FS C

K K

A
g g

A
 

   

  
   

   
   



 
    

 

  
    

  


   
    

   

   
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B. Derivation of cellular iron concentrations 

Multiply the ODEs associated with each of the 7 Fe-containing species in the 

model ([2] – [8]) by the fractional volume associated with each species whose 

concentration-change is described by the ODE. For example, both sides of ODE [2] are 

multiplied by fractional cytosolic volume (Vcyt/Vcell) because the component described 

by that ODE, namely C, is found in the cytosol.  We have… 

R [ ] [ ] [ ][ ]
Re Re Re Re Re e [ ]

[ ] [ ] [ ]

cyt cyt cytcell mit mit vac vac
C FS C FS C FS

cell cell cell cell mit cell vac cell

V V VN V R C V R Cd C
g g g g g R g C

V dt V K N V K C V K C V
           

    
[ ] [ ][ ]

Re Re [ ][ 2] [ ]
[ ] [ ]

mit mit mit mit isu mit mit
C FS mp

cell cell mit cell isu cell cell

V V R C V R FM V Vd FM
g g k FM O FM

V dt V K C V K FM V V
     

 

 

23

[ ][ 2]
Reg Reg [ 2]Reg Reg [ 2]

[ ]

vac vac vac vac vac
C FS C FS

cell cell vac cell cell

V V R C V Vd F
k F F

V dt V K C V V
       


 

[ ][ ]
[ ]

[ ]

mit mit isu mit

cell cell isu cell

V V R FM Vd FS
FS

V dt V K FM V
 


 

[ ]
[ ][ 2] [ ]mit mit mit

mp

cell cell cell

V V Vd MP
k FM O MP

V dt V V
 

23

[ 3]
[ 2]Reg Reg [ 3] [ 3]vac vac vac vac

C FS vp

cell cell cell cell

V V V Vd F
k F k F F

V dt V V V
      

[ ]
[ 3] [ ]vac vac vac

vp

cell cell cell

V V Vd VP
k F VP

V dt V V
   

The sum of these terms on the left-hand-side of the ODEs is  

[ ] [ ] [ ] [ ] [ 2] [ 3] [ ]cyt mit mit mit vac vac vac

cell cell cell cell cell cell cell

V V V V V V Vd C d FM d FS d MP d F d F d VP

V dt V dt V dt V dt V dt V dt V dt
     

 

This is identical to the derivative of the overall mass balance equation [1]. 
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[ ] [ ] [ ] [ ] [ ] [ 2] [ 3] [ ]cytcell mit mit mit vac vac vac

cell cell cell cell cell cell cell

Vd Fe V V V V V Vd C d FM d FS d MP d F d F d VP

dt V dt V dt V dt V dt V dt V dt V dt
      

 Indicating that the left-hand-side of the ODEs is equal to 
[ ]celld Fe

dt
. 

The sum of the last terms of the right-hand-side of the ODEs affords 

[ ] [ ] [ ] [ ] [ 2] [ 3] [ ]
cyt mit mit mit vac vac vac

cell cell cell cell cell cell cell

V V V V V V V
C FM FS MP F F VP

V V V V V V V
              

Simplifying yields  

 [ ] [ ] [ ] [ ] [ 2] [ 3] [ ]
cyt mit mit mit vac vac vac

cell cell cell cell cell cell cell

V V V V V V V
C FM FS MP F F VP

V V V V V V V

 

       
 

 

The sum of the terms within the parentheses is identical to the right-hand-side of 

[1], such that we can simply to [ ]cellFe  . Most (but not all) of the remaining terms of 

the summed ODEs cancel, finally yielding the equation 

[ ] R [ ]
Re Re [ ]

[ ]

cytcell cell
C FS cell

cell cell

Vd Fe N
g g Fe

dt V K N
 


   


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CHAPTER IV  

RECOVERY OF MRS3ΔMRS4Δ SACCHAROMYCES CEREVISIAE CELLS 

UNDER IRON-SUFFICIENT CONDITIONS AND THE ROLE OF FE 580* 

Michael J. Moore†, Joshua D. Wofford†, Andrew Dancis¶, and Paul A. Lindahl †,§,* 

†Department of Chemistry, Texas A&M University, College Station, TX 77843 USA 

¶Department of Medicine, Division of Hematology-Oncology, Perelman School of 

Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA  

§Department of Biochemistry and Biophysics, Texas A&M University, College Station, 

TX 77843 USA  

 

Summary 

Mrs3 and Mrs4 are mitochondrial inner membrane proteins that deliver an 

unidentified cytosolic iron species into the matrix for use in iron-sulfur-cluster (ISC) and 

heme biosynthesis. The Mrs3/4 double-deletion strain () grew slowly in iron-deficient 

glycerol/ethanol medium but recovered to WT rates in iron-sufficient medium.  cells 

grown under both iron-deficient and iron-sufficient respiring conditions accumulated 

large amounts of iron relative to WT cells, indicating iron homeostatic dysregulation 

regardless of nutrient iron status. Biophysical spectroscopy (including Mössbauer, EPR, 

and electronic absorption) and bioanalytical methods (liquid chromatography with online 

                                                 

* Reprinted with permission from Biochemistry. Michael J. Moore, Joshua D. Wofford, Andrew Dancis, 

and Paul A. Lindahl, Recovery of mrs3Δmrs4Δ Saccharomyces cerevisiae Cells under Iron-Sufficient 

Conditions and the Role of Fe 580, 2018, Volume 57, 672-683. © 2018, American Chemical Society 
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ICP-MS detection) were used to characterize these phenotypes. Anaerobically isolated 

mitochondria contained a labile iron pool composed of a nonheme high-spin Fe2+ 

complex with primarily O and N donor ligands, called Fe580. Fe580 likely serves as 

feedstock for ISC and heme biosynthesis. Mitochondria from respiring  cells grown 

under Fe-deficient conditions were devoid of Fe580, ISCs, and hemes; most iron was 

present as Fe3+ nanoparticles. O2 likely penetrates the matrix of slow-growing poorly 

respiring iron-deficient  cells and reacts with Fe580 to form nanoparticles, thereby 

inhibiting ISC and heme biosynthesis. Mitochondria from iron-sufficient  cells 

contained ISCs, hemes, and Fe580 at concentrations comparable to those of WT 

mitochondria. The matrix of these mutant cells was probably sufficiently anaerobic to 

protect Fe580 from degradation by O2. An ~1100 Da manganese complex, a ~1200 Da 

zinc complex, and a ~5000 Da copper species were also present in  and WT 

mitochondrial flow-through solutions. No copper complex of lower mass was evident.  

 

Introduction 

 Mitochondria are the major site of iron-sulfur-cluster (ISC) biosynthesis in 

eukaryotes, and the only site for the iron-insertion step of heme biosynthesis; thus, large 

amounts of iron must be imported into the organelle. (67,68) Mrs3 and Mrs4 (Mrs3/4) in 

Saccharomyces cerevisiae are paralogous mitochondrial inner membrane proteins that 

deliver cytosolic iron into the matrix, presumably for use in both processes 

(69,9,70,71,8). Mammals have homologs of Mrs3/4 called mitoferrin1/2 (138,139). The 
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iron species imported by these proteins is unknown, but the narrow channels in these 

proteins imply a small coordination complex (9,140,141).  

Mössbauer spectra of anaerobically isolated mitochondria reveal a pool of non-

heme high-spin (NHHS) Fe2+ in the organelle (13). The concentration of iron in this pool 

ranges from 60 - 200 M whereas the overall iron concentration in mitochondria ranges 

from 400 – 800 M (142, 65). The Fe2+ complex that composes this pool is selectively 

chelated when isolated mitochondria are treated with membrane-soluble 1,10-

phenanthroline (13). The same treatment inhibits ISC biosynthesis (143,144,134) 

suggesting that the Fe2+ complex is feedstock for ISC (and perhaps heme) biosynthesis 

(53).  

Size-exclusion chromatograms of low-molecular-mass (LMM) mitochondrial 

flow-through solutions (defined as solutions that pass through a 10 kDa cutoff 

membrane) from exponentially growing fermenting yeast cells exhibit a single iron-

associated peak of mass ~ 580 Da (53,14). The concentration of the so-called Fe580 

complex is of the same order-of-magnitude as the NHHS Fe2+ pool, raising the 

intriguing possibility that this complex comprises the pool and is the iron-containing 

substrate for ISC and heme biosynthesis. Flow-through solutions from mammalian 

mitochondria contain Fe580 along with a few other LMM iron species (14). 

Mitochondrial flow-through solutions from fermenting yeast cells harvested under 

stationary-state conditions exhibit a LMM iron species of mass ~ 1100 Da called Fe1100. 

Anaerobic incubation of such flow-through solutions for a few days causes Fe1100 to 

disappear and Fe580 to appear; thus, the two species appear to be related (14).  



 

93 

 

Deleting either MRS3 or MRS4 does not afford a growth phenotype, indicating 

that the two proteins possess redundant functions (69,9). However, deleting both genes 

simultaneously results in a strain (called ) that exhibits a slow-growth phenotype 

when grown in iron-deficient media. Mitochondria from iron-deficient  cells contain 

low concentrations of hemes and ISC-containing enzymes (9).  cells in iron-sufficient 

medium grow at WT rates and exhibit normal activities of ISC-containing enzymes 

(69,9,8,12). The molecular-level details of how such cells recover remain a puzzle.   

A second puzzle is why  cells grown under both iron-deficient and iron-

sufficient conditions accumulate large amounts of iron relative to WT cells grown under 

the same conditions (69,9,70). Such iron accumulation indicates that the Iron Regulon is 

activated and that cellular iron is dysregulated in  cells. The iron regulon consists of 

20 – 30 genes, including MRS4, that are involved in iron import, trafficking, and 

regulation. It is activated when WT cells are iron-starved (e.g. grown with the chelator 

bathophenanthroline disulfonate (BPS) in the medium) or in mutant cells in which 

mitochondrial ISC biosynthetic activity is defective (67,68). In WT cells, the iron 

regulon is deactivated under iron-sufficient conditions whereas in ISC-mutant cells (e.g. 

yfh1), it is activated regardless of the concentration of iron in the medium (54). This 

results in a massive accumulation of Fe3+ phosphate oxyhydroxide nanoparticles in 

mitochondria.22,23 Iron also accumulates in  cells, but not in mitochondria, as the 

absence of Mrs3/4 impedes iron import into this organelle (9,70). The iron concentration 

in  mitochondria is reportedly ca. half of that in WT mitochondria (9,70). The 

presence of iron in mitochondria from  cells implies the existence of an alternative 
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iron import pathway that does not involve Mrs3/4. This pathway may involve Rim2 

(12,54,11).  

Vacuoles are acidic organelles in yeast that store and sequester iron; they are 

another “hub” of iron trafficking and regulation. Ccc1 is the only known vacuolar iron 

importer of cytosolic iron (21). In  cells, the rate of vacuolar iron import through 

Ccc1 is greater than in WT cells, despite lower-than-WT concentrations of the Ccc1 

protein (70). Kaplan and co-workers concluded that Ccc1 activity is higher in  cells 

than in WT cells due to a proposed signaling pathway between mitochondria and 

vacuoles that regulates Ccc1 activity (70,73).  

In this study, we examined  cells using powerful biophysical and bioanalytical 

methods that allow in-depth characterization of iron content. These methods included 

Mössbauer (MB), EPR, and electronic absorption spectroscopies, as well as liquid 

chromatography linked to an online inductively coupled plasma mass spectrometer (LC-

ICP-MS). These results help explain, on a molecular level, how iron-deficient Mrs3/4 

 cells recover in terms of growth and mitochondrial function when placed in iron-

sufficient medium. They also suggest how iron might remain dysregulated in  cells 

even under iron-sufficient conditions for which they grow at WT rates. Collectively, this 

study provides new insights into iron trafficking and regulation in eukaryotic cells. 

 

Experimental Procedures 

A gamma construct was designed to knockout MRS3 in which 200 base pairs 

(bp) of the flanking 5’ and 3’ regions of the MRS3 coding sequence were juxtaposed on 
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either side of a BamHI site in the polylinker of vector pRS403. The plasmid was 

linearized with BamHI and transformed into W303 (MAT alpha ade2-1 his3-1,15 leu2-

3,112, trp1-1 ura3-1) selecting for histidine prototrophy. The correctness of the insertion 

was confirmed by colony PCR with primers (012302A 5’ aggcgattaagttgggtaac) from the 

vector and 022314A (5’ gcaatcattaagcaattgggcc) from the MRS3 flanking region 

generating the expected product of 435 bp. In a second step, 200 bp of 5’ and 3’ flanking 

regions of MRS4 were juxtaposed on either side of a BamHI site in the polylinker of 

vector pRS405. The vector was linearized with BamHI and transformed into the ∆mrs3 

strain, selecting for leucine prototrophy. The correctness of the insertion was confirmed 

by colony PCR with primers 012302A from the vector and 122314B (5’ 

tagttattgggtggcatatggg) from the MRS4 flanking region, generating the expected product 

of 247 bp. 

The double ∆Mrs3∆Mrs4 deletion strain () was identified and further 

characterized phenotypically. Deletion of MRS3 and MRS4 was confirmed via PCR 

analysis. To confirm that iron homeostasis was perturbed, non-repressing ferric 

reductase activity was assessed using a soft agar overlay assay. Strains were streaked on 

YPAD agar with 50 µM copper added, incubated overnight, and then 0.8% soft agar 

containing 1 mM BPS and 1 mM ferric ammonium sulfate was overlaid. The red color 

due to the Fe2+(BPS)3 complex developed rapidly and was markedly enhanced in the ∆∆ 

strain compared with W303 parent or ∆mrs3 and ∆mrs4 single mutants.  

WT and  cells were grown on YPAD agar plates for 3 days at 30 ºC. Cells 

were taken from plates and grown under respiring conditions in liquid minimal medium 



 

96 

 

containing 3% (v/v) glycerol, 1% (v/v) ethanol, 5 g/L ammonium sulfate, 1.7 g/L YNB, 

which lacked ammonium sulfate and copper sulfate, 100 mg/L leucine, 50 mg/L adenine 

hemisulfate dihydrate, 20 mg/L histidine, 20 mg/L uracil, 50 mg/L tryptophan, and 1 M 

copper sulfate. A 40 mM stock solution of 57Fe3+ citrate (pH ~5) was prepared as 

described14 and added to the growth medium. For BPS-treated medium, BPS was added 

to a final concentration of 25 M, followed by supplementation with 1 M (final 

concentration) of 57Fe3+ citrate.  

Fifty mL and 1 L cell cultures were grown in baffled flasks at 30 ºC with constant 

shaking. Cell growth was monitored by the optical density at 600 nm (OD600). For all 

experiments, single colonies from YPAD plates were inoculated into 50 mL of minimal 

medium. 50 mL cultures were grown to OD600 = 0.8 and immediately transferred into 1 

L of minimal medium. Growth was measured from the time of inoculation (t = 0) until 

cells reached stationary phase. Mutant and WT whole-cell samples were harvested at 

OD600 = 0.8 by centrifugation at 5000g for 5 min. Cells were washed 3 with unbuffered 

1 mM EGTA and then 3 with distilled water. Cells were subsequently packed by 

centrifugation into EPR tubes and Mössbauer cups, and then frozen in liquid N2 for later 

analysis. 

To prepare mitochondrial samples, 1 L cell cultures (OD600= 0.8) were used to 

inoculate 24 L of minimal medium in a custom-built iron-free glass/titanium bioreactor 

at 30 ºC with O2 gas bubbled through the medium (~1 L/min). Once OD600 = 0.8, they 

were harvested and mitochondria were isolated anaerobically in a refrigerated N2-

atmosphere glove box (MBraun, ~10 ºC, ~ 5 ppm of O2) as described (146,147,14). 
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Isolated mitochondria were packed into EPR tubes or Mössbauer cups as above. For 

UV-Vis studies, mitochondrial samples were thawed anaerobically inside glove boxes 

and loaded into 2 mm path-length custom quartz cuvettes (NSG Precision Cells, Inc.) as 

described (66). 

Metal concentrations of whole cells or mitochondria were analyzed by ICP-MS 

(Agilent Model 7700x). After collecting Mössbauer spectra, samples were thawed and 

packed into EPR tubes to measure sample volumes (ca. 200 – 300 L). Samples were 

then diluted with 250 L of high purity double-distilled-and-deionized water generated 

using a Teflon sub-boiling still (Savillex DST-1000). Fifty, 75, and 100 L aliquots from 

the resulting suspensions were transferred to 15 mL screw-top polypropylene Falcon 

tubes, digested with 250 L of concentrated trace-metal-grade nitric acid, and heated 

~16 hr at 90 ºC. Digested samples were diluted with high purity double-distilled-and-

deionized H2O to a final volume of 8.0 mL. Reported metal concentrations of whole 

cells and mitochondria were calibrated as described (14) and corrected using packing 

efficiencies of 0.70 for whole cells and 0.77 for mitochondria (50). 

For electronic absorption experiments, solutions of isolated mitochondria were 

packed under anaerobic conditions into EPR tubes by centrifugation, and the volume of 

packed organelles in each sample was determined.  Packed mitochondria were 

diluted 1:1 with SH buffer (0.6 M sorbitol, 20 mM HEPES, pH= 7.4) and transferred 

into cuvettes. Cuvettes were sealed with a rubber septum, removed from the glove box, 

and spectra were obtained at RT using a Hitachi U-3310 spectrometer with a Head-on 

photomultiplier tube.  Mössbauer spectra were obtained using an MS4 WRC 
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spectrometer (SEE Co., Edina, MN), simulated with WMOSS software, and calibrated at 

RT with -iron foil (50). Applied magnetic fields were parallel relative to the -

radiation. EPR spectra were collected using an X-band Elexsys spectrometer (Bruker 

Biospin Corp., Billerica, MA). 

For LC-ICP-MS experiments, mitochondrial samples were manipulated 

anaerobically in refrigerated N2 atmosphere glove boxes. Isolated mitochondria were 

washed twice with 20 mM ammonium bicarbonate pH 8.5 and solubilized with 2% (w/v) 

Triton X-100 in the same buffer. The resulting suspension was vortexed for 20 min, 

followed by centrifugation at 12000g for 15 min. The soluble mitochondrial extract was 

passed through a 10 kDa cutoff membrane in an Amicon stirred cell concentrator, and 

then the flow-through solution was injected onto two Superdex peptide 10/300GL 

columns (GE Healthcare Life Sciences) connected in series and equilibrated with 20 mM 

ammonium bicarbonate pH 8.5. Buffer was pumped through the columns at a flow rate 

of 0.350 mL/min for 166 min using an Agilent Bioinert HPLC (Tokyo, Japan). 

Chromatograms were acquired and analyzed, and columns were calibrated and cleaned 

as described (14). 
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Figure 4.1: Growth rates of WT (circles) and  (triangles) cells. A, WT1BPS and 1BPS; B, WT1 and 

1; C, WT10 and 10; D, WT40 and 40. Growth rates  in units of hr-1 (Table 1) are the slopes of 

the plotted lines.  

 

 

 

Results 

The Slow-Growth Phenotype of  cells.  

 and WT cells were grown in minimal medium containing 1, 10, or 40 M 

57Fe3+ citrate. Some batches containing 1 µM 57Fe3+ citrate were pre-treated with BPS to 

chelate endogenous iron and increase iron deficiency. We will refer to these cells as 1 

and WT1, 10 and WT10, 40 and WT40, and 1BPS and WT1BPS, respectively. The 

numbers refer to the concentration of nutrient 57Fe (in M) in the medium and BPS 

indicates the presence of the chelator. 57Fe was added to BPS-treated media to enrich 
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cells with this Mössbauer-active isotope. Glycerol/ethanol was exclusively used as the 

carbon source to force the cells to respire. Cells were harvested while growing 

exponentially. Exponential growth rates () were defined as the slopes of ln(OD600) vs. 

time plots.  

Under iron-deficient conditions,  cells grew substantially slower than WT 

cells, whereas under iron-sufficient conditions, they grew at WT rates (Fig. 1 and Table 

1). Thus, the slow-growth phenotype of  cells recovered as the iron concentration of 

the growth medium increased.  
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Table 4.1. Iron concentrations and iron-containing species in whole cells. Concentrations are in M. 

Iron concentrations and growth rates are averages of two independent experiments. Simulation parameters 

were (, EQ, and  units in mm/s): NHHS Fe3+ sextet in  spectra;  = 0.54 ± 0.05, EQ = 0.62 ± 0.08, D 

= 0.3 ± 0.1 cm-1, E/D = 0.29 ± 0.02,  =1.5 ± 1, Aiso = -220 ± 8 kG, and  = 0.8 ± 0.2; NHHS Fe3+ sextet in 

WT spectra:  = 0.56 ± 0.03, EQ = 0.42 ± 0.05, D = 0.5 cm-1, E/D = 0.33 ± 0.01,  =1.8 ± 0.5, Aiso = -228 

± 3 kG, and  = 0.4; CD:  = 0.45 ± 0.01, EQ = 1.11 ± 0.05, and  = 0.50 ± 0.15; NHHS Fe2+ doublet:  = 

1.23 ± 0.06, EQ = 3.07 ± 0.17, and  = 0.59 ± 0.16; high spin Fe2+ Heme Doublet:  = 0.87 ±0.11, EQ = 

2.22 ± 0.04, and = 0.49 ± 0.19; [Fe2S2]2+ Doublet:  = 0.30 ± 0.04, EQ = 0.44 ± 0.07, and  = 0.48 ± 0.19; 

Fe3+ nanoparticles:  = 0.50 ± 0.05, EQ = 0.50 ± 0.06, and  = 0.4 ± 0.04. The sum of all percentages of 

Mössbauer components was forced to equal 100%; however, 10% - 15% of spectral intensities were typically 

unaccounted for by these components. 

 

 

 

 

 

 

 

 

Sample Growth 

Rate α 

 

[Fecell] Sextet from 

High-Spin 

Fe3+ mainly 

in vacuoles 

 

Doublet 

due to 

[Fe4S4]2+ 

clusters and 

Low-Spin 

Fe2+ hemes in 

mito. and cyt. 

Doublet due to 

NHHS Fe2+  

pools in cytosol, 

mitochondria, 

and/or vacuoles 

Doublet due to 

High-Spin 

Fe2+ Hemes 

in 

mitochondria 

and cytosol 

Doublet due 

to [Fe2S2]2+  

clusters 

mainly in 

mitochondria 

Doublet due to 

Fe3+ nano- 

particles in 

mitochondria, 

vacuoles, and or 

cytosol 

 hr-1 [µM] % [µM] % [µM] % [µM] % [µM] % [µM] % [µM] 

WT1BPS 0.181 120 ± 20 0 0 69 84 12 14 12 14 7 8  --- 

WT1 0.184 200 ± 20 39 78 39 78 10 20 4 8 8 16  --- 

WT10 0.203 480 ± 30 39 190 39 190 11 50 5 20 6 30  --- 

WT40 0.202 880 ± 70 52 460 25 220 8 70 6 50 9 80  --- 

1BPS 0.060   360 ± 30 11 40 25 90 47 170 6 20 --- --- 11 40 

1 0.068   680 ± 70 50 340 16 110 20 140 3 20 --- --- 11 70 

10 0.150 2160 ± 60 50 1080 9 190 5 110 5 110 --- --- 31 670 

40 0.204 3920 ± 80 57 2230 4 160 3 120 3 120 --- --- 33 1290 
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Iron concentrations in  cells 

 We determined the absolute iron concentration in  and WT cells ([Fecell]) to 

help quantify the iron-dependent growth phenotype. These determinations are more 

difficult than measuring the ratio of iron concentration divided by protein concentration, 

as is typically reported. To determine absolute concentrations, known volumes of packed 

cells must be quantitatively transferred, dilution factors must be carefully measured, and 

packing efficiencies need to be measured and included in calculations (146). However, 

absolute concentrations once determined allow a more in-depth analysis than is possible 

using concentration ratios.  
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Table 4.2. Iron concentrations and components in isolated mitochondria. Data are from a single 

preparation for each strain and condition. Other conditions are described in Table 1.  

 

 

 

 

[Fecell] in  cells was substantially higher than in WT cells grown on the same 

medium (Table 1). This iron-overload phenotype was observed for all nutrient 

conditions examined, including those for which the growth rate of  cells matched that 

of WT cells. The iron content of isolated mitochondria was also determined (Table 2). 

Isolated  mitochondria were not iron-overloaded relative to the huge accumulation 

observed in ISC mutant cells (145,51). This indicates that the excess iron in  cells 

accumulates in non-mitochondrial locations such as vacuoles and/or cytosol.  

The massive accumulation of iron in  cells suggests that the iron regulon is 

activated under both iron-deficient and iron-sufficient conditions. Ironically, iron-

overloaded  cells “feel” iron deficient. To explain how the iron regulon might be 

Sample [Femit] Sextet:  

NHHS Fe3+ 

Central 

Doublet: 

 [Fe4S4]
2+ 

clusters and 

Low-Spin Fe2+ 

hemes 

Doublet:  

NHHS Fe2+ 

Doublet: 

high-spin 

Fe2+ hemes 

Doublet: 

[Fe2S2]
2+ 

clusters 

Doublet: Fe3+  

nanoparticles 

 [µM] % [µM] % [µM] % [µM] % [µM] % [µM] % [µM] 

WT1 430 15 60 42 180 18 80 4 20 21 90 --- --- 

WT40 690 0 0 57 390 30 210 2 10 11 80 --- --- 

1 690 9 60 6 40 8 60 --- --- --- --- 77 530 

40 740 0 0 63 475 15 110 11 80  --- --- 10 75 
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active in  cells under iron-sufficient conditions, we reasoned that the vast majority of 

accumulated iron must not be “sensed” by the cell or be part of the iron regulation 

mechanism. We further reasoned that the concentration of the sensed species in iron-

sufficient  cells, whatever it is, must be below its “set-point” concentration. One 

objective of this study was to identify iron-containing species present at sub-WT 

concentrations in  cells under all growth conditions; this species might sense iron 

status and be used in cellular iron regulation.  

 

Mössbauer (MB) spectra of whole cells and isolated mitochondria 

We turned to MB spectroscopy to determine the forms of iron that accumulated 

in  cells. The low-temperature low-field MB spectrum of WT1BPS cells was 

dominated by the Central Doublet (CD) (Fig. 2B, simulated by the green line). The CD 

arises from [Fe4S4]
2+ clusters and low-spin Fe2+ hemes; the two types of centers cannot 

be resolved by MB spectroscopy (147). 
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Figure 4.2: Mössbauer spectra of whole cells (A – H) and isolated mitochondria (I – L). A, 1BPS; B, 

WT1BPS; C, 1; D, WT1; E, 10; F, WT10; G, 40; H, WT40; I, 1; J, WT1; K, 40; L, WT40. 

Solid lines are simulations for the Central Doublet (green), NHHS Fe2+ doublet (blue), vacuolar high spin 

Fe3+ sextet (purple), Fe3+ oxyhydroxide nanoparticles (gold), [Fe2S2]2+ doublet (teal), and high spin Fe2+ 

heme doublet (brown). The temperature was 5 K and a field of 0.05 T was applied parallel to the gamma 

rays. The solid red lines are composite simulations assuming the area percentages listed in Tables 1 and 2. 
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A minor quadrupole doublet with parameters typical of NHHS Fe2+ was also evident; 

this feature is simulated by the blue line. All components and parameters used in 

simulations are listed in Table 1. MB spectra of respiring mitochondria are dominated by 

the CD. This feature dominates because respiratory complexes and respiration-related 

proteins (e.g. aconitase and cytochrome c) contain numerous ISCs and heme centers, and 

these complexes are highly expressed in respiring cells (142). Fe2S2 clusters are also 

prevalent in respiring mitochondria; they contribute a shoulder on the CD (65).  

We have previously assumed that all of the CD intensity in whole-cell MB 

spectra arose from mitochondrial ISCs and low spin Fe2+ hemes (13). However, non-

mitochondrial [Fe4S4]
2+ clusters, assembled by the CIA (cytosolic iron-sulfur cluster 

assembly system) (67,68) must contribute to the CD in whole-cell MB spectra – the only 

issue is how much. Our current MB spectra suggest that they contribute a quarter to a 

half of the overall CD intensity in the WT1BPS spectrum. A proportion of this magnitude 

is required to explain the presence of central-doublet-like intensity in the MB spectra of 

iron-deficient  cells (Fig. 2, A and C) even though the spectra of iron-deficient  

mitochondria (see later) are largely devoid of the CD. We have included formation of 

cytosolic ISCs in the summary mechanistic model of Fig. 3. CIA activity is reduced in 

 cells under iron-deficient conditions (9) suggesting that this activity is related to the 

severity of iron-deficiency. The stronger-than-expected CD doublet in the MB spectra of 

our iron-deficient cells may be due to the inclusion of 1 M 57Fe in the medium which 

may have been sufficient for normal CIA activity.   



 

107 

 

That a significant portion of the CD intensity in the WT1BPS and 1BPS spectra 

is due to cytosolic [Fe4S4]
2+ clusters is also consistent with the distribution of ISCs in 

human cells (148). Human cells contain ~70 proteins housing [Fe4S4]
2+ and/or [Fe2S2]

2+ 

clusters. If each ISC-containing protein were expressed at the same level (and if the 

distribution in human and yeast were similar), we calculate from published data (148) 

that ~40% of the iron associated with such clusters should be located in mitochondria, 

and ~60% in the cytosol and nucleus (combined). Although our assumptions may not be 

strictly correct, the calculated 40:60 distribution is remarkably similar to that needed to 

interpret our MB spectra.   

The MB spectrum of 1BPS cells (Fig. 2A) was dominated by the same two 

doublets, albeit with different relative intensities. On a percentagewise basis, the CD was 

about a third as intense as it was in the WT1BPS spectrum (Table 1). However, similar 

CD concentrations are suggested based on absolute iron concentrations. In such cases of 

apparent discrepancy, we rely in our analysis more heavily on percentage differences, 

since fitting MB spectra has fewer sources of error relative to absolute concentration 

determinations.  

Since the MB spectrum of 1 mitochondria (Fig. 2I) was largely devoid of the 

CD, we conclude that most ISCs exhibited by the 1BPS whole-cell spectrum are non-

mitochondrial. The model of Fig. 3 suggests that the absence of Mrs3/4 should cause 

NHHS Fe2+ species to accumulate in the cytosol of 1BPS cells and cause greater-than-

WT rates of cytosolic ISC production. The same blockage would cause a deficiency of 

ISCs and hemes within mitochondria.  
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The MB spectrum of WT1 cells (Fig. 2D) exhibited two major features, 

including the CD and a sextet due to vacuolar NHHS Fe3+ (149). More intense sextets 

are evident in the spectrum of WT10 and WT40 cells (Fig. 2, F and H). This component 

is simulated by the purple line above the spectrum of Fig. 2C. Confirming earlier reports 

(65), the MB spectrum of mitochondria isolated from WT1 cells (Fig. 2J) was dominated 

by the CD. As mentioned above, we assumed that about half of the CD in the whole-cell 

WT1 spectrum originates from ISCs in mitochondria and half from ISCs in the cytosol 

(and nucleus). The MB spectrum of WT1 cells also exhibited a NHHS Fe2+ doublet and 

a minor sextet suggesting a small amount of NHHS Fe3+ in WT1 mitochondria. Previous 

spectra of iron-deficient WT mitochondria also included a semi-resolved doublet due to 

[Fe2S2]
2+ clusters (65). Such a doublet (simulated by the solid teal line) fits nicely into 

this spectrum.  

The MB spectrum of 1 cells (Fig. 2C) was dominated by an intense NHHS 

Fe3+ sextet, indicating that the vacuoles are essentially filled with iron under these 

conditions. On a percentagewise basis, the intensity of the CD in the 1 spectrum was 

2.4-times lower than in the WT1 spectrum, while that of the NHHS Fe2+ doublet was 2 

times higher. Again, comparison of absolute concentrations differed slightly, with the 

CD concentration in both 1 and WT1 cells similar (and that of the NHHS Fe2+ 

doublet for 1 cells 7 times higher than in WT1 cells). According to the model of Fig. 

3, cytosolic iron should accumulate in 1 cells at the expense of mitochondrial ISCs. 

Higher-than-normal concentrations of cytosolic iron would also be expected to stimulate 

iron import into the vacuoles, (and stimulate cytosolic ISC production) consistent with 
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the spectrum. The central region of the 1 spectrum was poorly resolved, but the 

absorption that remained after removing known features was a doublet with parameters 

typical of Fe3+ oxyhydroxide nanoparticles.  

The MB spectrum of mitochondria isolated from 1 cells also exhibited a 

doublet due to such nanoparticles (Fig. 2I). A low-intensity NHHS Fe2+ doublet was also 

present but no CD was evident. This indicates that few [Fe4S4]
2+ clusters and/or low spin 

Fe2+ hemes were present in 1 mitochondria, and it suggests that most of the CD in the 

1 whole-cell MB spectrum (Fig. 2C) was due to non-mitochondrial ISCs assembled 

by the CIA. Similarly, the strong intensity of the NHHS Fe2+ doublet in the 1 whole-

cell spectrum is incompatible with NHHS Fe2+ species being located in 1 

mitochondria (too little is present in the mitochondria spectrum for this species to make 

a significant contribution to the NHHS Fe2+ doublet in the whole-cell spectrum).  
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Figure 4.3: The Mrs3/4 phenotype. Nutrient iron enters the cell and becomes cytosolic Fe2+. 

Cytosolic Fe2+ can enter vacuoles where most of vacuolar Fe2+ oxidizes to Fe3+. In WT cells, a small 

portion converts into nanoparticles. Some cytosolic Fe2+ converts into cytosolic [Fe4S4]2+ clusters. The 

remaining cytosolic Fe2+ enters WT mitochondria through the Mrs3/4 import pathway and through a slow 

alternative pathway, where it becomes the mitochondrial Fe2+ pool. Cytosolic Fe2+ can only enter  

mitochondria through the alternative pathway. Mitochondrial Fe2+ is feedstock for the biosynthesis of ISCs 

and heme centers, the majority of which are installed in respiratory complexes which catalyze the 

reduction of O2 to water. O2 is constantly diffusing into the matrix. In healthy WT cells, the activity of the 

respiratory complexes is sufficiently high to prevent O2 from diffusing in, but in iron-deficient  cells, 

the activity is too low to prevent penetration. In that case, O2 reacts with the Fe2+ pool to generate 

mitochondrial nanoparticles. The cell responds by increasing the expression of iron importers on the 

plasma membrane. Under iron-sufficient conditions, cytosolic Fe2+ concentration is high, allowing 

sufficient iron to enter mitochondria and generate sufficient respiration activity to re-establish anaerobic 

conditions in the matrix. However, the size of the mitochondrial Fe2+ pool remains sub-normal such that 

the iron regulon remains activated.  
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These results again support the model of Fig. 3 in which iron accumulates in the 

cytosol of 1 cells; the unusually high cytosolic iron concentration should increase the 

rate of iron import into vacuoles, and indeed the concentration of vacuolar Fe3+ in 1 

cells is 4-times that for WT1 cells. Most iron in 1 mitochondria are present as Fe3+ 

nanoparticles. The presence of some CD intensity in the whole-cell 1 MB spectrum 

suggests that cytosolic ISC assembly is functioning in  mutant cells grown under our 

iron-deficient conditions. Although 1 cells were iron-overloaded relative to WT1 

cells, 1 mitochondria contained about the same concentration of iron as in WT1 

mitochondria. Thus, the excess iron that flowed into 1cells did not localize to the 

mitochondria but rather remained in the cytosol or flowed into vacuoles.  

The WT10 cell spectrum (Fig. 2F) was dominated by the CD and the Fe3+ sextet; 

minor doublets due to high spin Fe2+ hemes and NHHS Fe2+ species were also evident. 

The corresponding 10 whole-cell spectrum (Fig. 2E) was far more intense, reflecting 

a higher iron concentration in the cell (Table 1). The spectrum was dominated by the 

Fe3+ sextet and nanoparticle doublet. The composite simulation of the 10 spectrum 

included intensity due to the CD, but this doublet was not resolved which made 

quantification difficult. 

The MB spectrum of WT40 cells (Fig. 2H) was similar to that of WT10 cells, 

except that the sextet was more intense and the CD was poorly resolved. The spectrum 

of mitochondria isolated from WT40 cells (Fig. 2L) exhibited a strong CD and NHHS 

Fe2+ doublet.  The spectrum is generally consistent with previous reports, but the NHHS 
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Fe2+ doublet is more intense than in previous MB of respiring mitochondria (13,142). 

We previously reported that the size of the NHHS Fe2+ pool was smaller in respiring WT 

mitochondria than in the organelle from fermenting WT cells; however, the intensity of 

the NHHS Fe2+ doublet in spectra of recently prepared mitochondria from respiring WT 

cells is similar to that from fermenting cells.  

The MB spectrum of 40 cells (Fig. 2G) was nearly identical to that of 10 

cells, again indicating the accumulation of nanoparticles and NHHS Fe3+. Surprisingly, 

the spectrum of 40 mitochondria (Fig. 2K) was devoid of nanoparticles but rather 

exhibited an intense CD. Thus, the nanoparticles and NHHS Fe3+ in 40 whole cells 

must be in a non-mitochondrial location. The spectrum of 40 mitochondria also 

exhibited significant intensity due to the NHHS Fe2+ pool (and perhaps some high spin 

Fe2+ hemes), but it was only about half as intense as in the WT40 mitochondria spectrum 

(Fig. 2L). We conclude that 40 mitochondria have returned to a “healthy” state (at 

least from an iron-centric perspective). On the other hand, 40 cells accumulated 

excessive iron, implying that the iron regulon was activated even though 40 

mitochondria exhibited a CD with roughly the same intensity as in WT mitochondria. 

This was unexpected because the iron regulon is regulated by the ISC activity in 

mitochondria (67,68). Here, the ISC level is near normal yet the iron regulon appears to 

be activated.  

We hypothesize that the slow-growth phenotype of 1 cells is due to the 

absence of respiratory complexes in mitochondria and that the WT growth rate of 40 

cells is due to their presence. How this transformation occurs simply by increasing the 
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nutrient iron concentration is puzzling, as is the reason why the cells continue to be iron 

dysregulated even though ISC levels are largely recovered. We investigated these issues 

further using electronic absorption and EPR spectroscopies.  

 

Electronic absorption and EPR spectra 

Mitochondria isolated from WT1 and WT40 cells exhibited Soret bands at ~ 400 

nm and  and  bands between ca. 500 – 600 nm (Fig. 4, A and C, respectively). These 

features are characteristic of cytochromes a, b and c. Mitochondria isolated from 40 

cells exhibited similar features (Fig. 4D), albeit with about half of WT intensity.  

 

 

 

 

Figure 4.4: Electronic absorption spectra of isolated mitochondrial suspensions. Mitochondria were 

isolated anaerobically from A, WT1; B, 1; C, WT40; and D, 40 cells.  Packed mitochondria were 

diluted 1:1 with buffer, transferred to a 2 mm pathlength quartz cuvette, sealed with a stopper, removed 

from the box, and spectra were collected.  We estimate a protein concentration of ca. 80 mg/mL in the 

sample based on previous results.13 Spectra have been offset for viewing. 
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Figure 4.5: EPR spectra of  (A – B) and WT (E - H) cells. A, 1BPS; B, 1; C, 10; D, 40; E, 

WT1BPS; F, WT1; G, WT10, and H, WT40.  Temperature in A, C, E, and G were 10 K while that in others 

was 4.2 K; intensities were temperature-adjusted to allow comparisons. Other parameters: average 

microwave frequency, 9.373 ± 0.003 GHz; microwave power, 0.2 mW; modulation amplitude, 10 G; 

Gain, 1000; conversion time, 0.3 sec. Displayed intensities on the left were adjusted as indicated for ease 

of viewing. None of the spectra on the right side was adjusted 
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Mitochondria from 1cells (Fig. 4B) were devoid of such features.  This 

indicates that hemes were not synthesized by  cells grown under iron-limited 

conditions, but were synthesized by such cells under iron-sufficient conditions.  

Low-temperature X-band EPR spectra of  and WT whole cells (Fig. 5) were 

dominated in the g = 2 region by a hyperfine split signal due to mononuclear S = 5/2 

Mn2+ species. This signal has been observed previously in spectra of yeast cells (65), and 

was found to arise from most of the Mn in the cell (quantified here at ~ 30 M, see 

Table 3). The presence or absence of Mrs3/4 did not influence the shape or intensity of 

that signal, consistent with the absence of an observed effect of Mrs3/4 deletion on 

cellular Mn concentration.  
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Sample        [Copper],  µM    [Manganese],  µM        [Zinc],  µM 

 cell mito cell mito Cell mito 

WT1BPS 120 ± 10 --- 21 ± 4 --- 310 ± 65 --- 

WT1 140 ± 20 110 24 ± 6 22 300 ± 20 250 

WT10 130 ± 10 --- 29 ± 3 --- 315 ± 60 --- 

WT40 140 ± 20 89 31 ± 11 27 330 ± 60 320 

WT Ave 130 ± 8 100 ± 15 26 ± 5 24 ± 4 310 ± 10 280 ± 50 

1BPS 290 ± 10 --- 32 ± 5 --- 240 ± 45 --- 

1 280 ± 30 63 25 ± 14 31 200 ± 50 180 

10 320 ± 40 --- 39 ± 8 --- 190 ± 30 --- 

40 320 ± 10 48 29 ± 7 34 250 ± 25 210 

 Ave  300 ± 20 56 ± 11 31 ± 6 32 ± 2 220 ± 30 200 ± 20 

Table 4.3. Copper, manganese, and zinc concentrations in  and WT cells and isolated 

mitochondria. Details as in Table 2. 
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Overlapping the Mn-based signal in all spectra was an isotropic S = ½ signal at g 

= 2.00. This signal was not assigned to a particular radical species, as there were too 

many candidates. Surprisingly, no g = 1.94 type signals from S = ½ [Fe2S2]
1+ or 

[Fe4S4]
1+ clusters were observed. Along with our MB spectra, this demonstrates that the 

vast majority of such clusters in whole yeast cells are in the oxidized S = 0 [Fe2S2]
2+ and 

[Fe4S4]
2+ states. Similarly, there were no EPR signals from low-spin Fe3+ hemes, 

suggesting that the majority of such centers in exponentially growing cells are in the 

Fe2+ state. Some WT EPR spectra exhibited low-intensity signals between g = 4 - 6 

(weak features between 1000 – 1300 G in Fig. 5) which probably arise from cytochrome 

c oxidase (147).  

The most prominent signal in the low-field region was at g = 4.3 arising from 

high-spin S = 5/2 Fe3+ species with a rhombicity parameter E/D ~ 1/3. This signal arises 

from vacuolar Fe3+(149). Its intensity in WT cells increased as nutrient iron increased, 

consistent with increasing amounts of cellular iron being stored in vacuoles. The 

intensity of the g = 4.3 signal exhibited by  cells was substantially higher than in 

spectra from comparable WT cells, consistent with the differences observed by MB. The 

intensity of the g = 4.3 signal from 40 cells was defined as 100%. The average 

intensities of the g = 4.3 signal from 1BPS, 1, and 10 cells were 2%, 34%, and 

53%, respectively. For comparison, the intensities of the same signal in WT1BPS, WT1, 

WT10, and WT40 cells were lower (0%, 9%, 8%, and 14%, respectively). We conclude 

that  cells contain substantially more vacuolar Fe3+ than in comparable WT cells, 

consistent with our MB analysis (Table 1).   
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LC-ICP-MS of Mitochondrial Flow-Through-Solutions 

We initially hypothesized that the Fe580 complex passes intact from the cytosol 

through Mrs3/4 and into the matrix. Thus, we expected to observe Fe580 in flow-through 

solutions of WT1 and WT40 mitochondria, but not in 1 or 40 mitochondria 

samples. Fe580 was indeed observed in flow-through solutions of WT1 and WT40 

mitochondrial extracts (Fig. 6, top panel, A and D), and not in 1 extracts (Fig. 6, top 

panel, B; two independent trials are shown). Unexpectedly, Fe580 was also observed in 

the 40 trace (Fig. 6, top panel, C), albeit with a lower intensity than in the WT40 trace 

sample, indicating a lower concentration. Quantification of areas indicates an [Fe580] 

concentration of 180 M in WT40 mitochondria and 100 M in 40 mitochondria. 

The presence of Fe580 in 40 mitochondria supports the idea that 40 mitochondria 

have recovered under iron-sufficient conditions and are “healthy” from an iron 

perspective. The trace of the 1 flow-through solution exhibited two weak LMM iron 

peaks, at 2700 and 2100 Da. These species were not investigated further.  
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Figure 4.6: LC-ICP-MS chromatograms of LMM flow-through solutions prepared from the soluble 

fractions of WT and  mitochondrial detergent extracts. Top panel, 56Fe detection: A, WT1; B, 1 

(replicate runs); C, 40; D, WT40. Trace intensities were adjusted as indicated for ease of viewing. 

Bottom panel, 56Fe (A and B), 34S (C and D), and 31P (E and F) detection of flow-through solutions from 

mitochondria harvested from WT40 cells harvested as cells were transitioning to stationary state: Traces 

A, C, and E were fresh, while traces B, D, and F were after 5-day incubation in a refrigerated glove box.   
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Relationship of Fe1100 to Fe580 

Mitochondrial extracts from fermenting yeast harvested at or near stationary-state 

contain an iron species called Fe1100 (14). This species converts into Fe580 in 

mitochondrial extracts that are allowed to sit in a refrigerated anaerobic glove box for 5 

days. The same phenomenon occurred in our current studies involving respiring yeast 

cells. One batch was harvested at OD600 = 1.0 (typically we harvest at OD600 = 0.8). The 

higher OD suggests that cells were transitioning from exponential to stationary state 

when they were harvested. The resulting LC-ICP-MS trace of the flow-through solution 

from mitochondria isolated from these cells was dominated by Fe1100 (Fig. 6, lower 

panel, A); some minor Fe580 intensity is evident. After 5 days in a refrigerated box, the 

same solution exhibited a strong Fe580 peak and no Fe1100 peak (Fig. 6, lower panel, B). 

This behavior indicates that the two LMM iron species are related – perhaps Fe1100 is a 

dimer of Fe580. Corresponding S and P traces did not exhibit peaks that comigrated with 

either iron peak (Fig. 6, lower panel, C - F) indicating that neither P nor S are associated 

with either iron complex. The coordinating atoms to the iron ions in these complexes are 

probably O and/or N.   
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Figure 4.7: Mn, Zn, and Cu LC-ICP-MS traces of flow-through solutions of soluble extracts of 

mitochondria isolated from WT and  cells. Traces A – E detected Mn, traces F – J detected Zn, and 

traces K - O detected Cu. Traces A, F, and K were from WT1 mitochondria. Traces B, G, and L were from 

WT40 mitochondria. Traces C, H, and M were from 1 mitochondria. Traces D, I, and N were from a 

different batch of 1 mitochondria. Traces E, J, and O were from 40 mitochondria.  
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Effect of Deleting Mrs3/4 on Copper, Manganese, and Zinc  

The average copper concentration in  cells was 2.3 fold higher that in WT 

cells (Table 3), regardless of the iron concentration in the medium. The average 

manganese and zinc concentrations in  cells showed little difference, relative to WT 

cells, across a range of nutrient iron concentrations; no trends were evident.   

In contrast, the average copper concentration in  mitochondria was about half 

of that in WT mitochondria. This suggests that copper is dysregulated in  cells, and 

that a deficiency of copper in  mitochondria either increases the rate of copper import 

into the cell or decreases the rate of copper export.  

LC-ICP-MS traces of flow-through solutions from mitochondria isolated from 

respiring WT and  cells exhibited the same LMM copper, manganese, and zinc 

species as reported previously from mitochondrial flow-through solutions from 

fermenting cells (14), including Cu5000, Mn1100, and Zn1200 (Fig. 7). These species are 

probably involved in metallating apo-metalloproteins in the mitochondria (14,150) and 

are generated at relatively constant levels regardless of metabolic state.  

Cu5000 intensities were reduced in  traces, relative to what they were in WT 

traces, consistent with the lower copper concentration in  mitochondria.  Minor 

copper species with masses between 200 - 2000 Da were present sporadically in some 

traces but not in others (Fig. 7, bottom panel, elution volumes between 27 – 42 mL), 

suggesting that they are isolation artefacts.  

The vast majority of copper in mitochondria has been proposed to be in the form 

of a labile nonproteinaceous LMM copper species called CuL (151). CuL is thought to be 
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imported from the cytosol through Mrs3 and another IM protein (Pic2) (152). CuL is 

thought to be stored in the matrix, and trafficked back to the IMS through an 

unidentified copper exporter on the IM. Our results provide no evidence supporting this 

concept. We are currently trying to identify Cu5000 and probe its physiological function.   

 

Discussion  

In this study, we used biophysical and bioanalytical methods to help understand 

the phenotype of yeast cells in which Mrs3 and Mrs4, the high-affinity iron importers on 

the mitochondrial IM, were both deleted. Under iron-deficient conditions,  cells grew 

slowly relative to WT cells, whereas under iron-sufficiency, they grew at WT rates. Our 

results can be explained using the model of Figure 3. Accordingly, under iron-

deficiency, the rate of iron import into mitochondria is too slow to prevent O2 from 

diffusing into the matrix. This is caused by an insufficiently large Fe2+ pool in the matrix 

which causes an insufficient quantity of ISCs, hemes, and thus respiratory complexes to 

be assembled. Insufficient respiratory complexes allow diffusing cellular O2 to penetrate 

the matrix. Once in the matrix, the O2 reacts with the Fe2+ pool to generate Fe3+ 

nanoparticles and ROS, thereby reducing the size of the pool further. This leads to a 

vicious cycle culminating in ROS-damaged mitochondria that contain few active holo-

respiratory complexes, and iron mostly in the form of nanoparticles. Mitochondrial 

membrane potential is probably also affected.  

In iron-sufficient  cells, the process reverses. Higher cytosolic iron 

concentrations increase the rate of iron import into mitochondria through the alternative 
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iron import pathway. This increases the size of the Fe2+ pool and the rate of ISC and 

heme biosynthesis. This allows respiratory complexes to be metallated and active. 

Normal respiratory activity returns, blocking O2 from entering the matrix. The 

anaerobicity of the matrix and membrane potential are re-established. Viewed from a 

broader biological context, our results illustrate the complex interrelationships between 

iron metabolism, oxygen, and respiration.   

Our results also offer some new insights as to why the iron regulon is activated in 

 cells under iron sufficient conditions, even though such cells grow at normal rates 

and their mitochondria appear relatively “healthy” (from an iron-centric perspective). 

According to regulatory control theory, the cell should contain a molecular sensor that 

monitors the iron status and controls cellular iron import (157,158). The concentration of 

the sensor should be below its normal set-point concentration under conditions when the 

rate of iron import into the cell is faster than normal. Since we observed greater-than-

WT iron import rates in  cells grown under both iron-deficient and iron-sufficient 

conditions, the sensor (whatever it is) should be below its WT concentration in these 

mutant cells grown under both conditions.  

Thus, we sought to identify iron species whose concentration was lower in 

mutant cells than in WT cells grown under equivalent conditions. We can eliminate 

nanoparticles as the sensor because they are present at higher-than-WT levels in mutant 

cells. Similarly, cytosolic iron concentrations in mutant cells appear to be higher than in 

WT cells, as evidenced by more intense NHHS Fe2+ quadrupole doublet in comparative 

Mössbauer spectra.  
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The most popular view is that the sensor is a sulfur-containing species called X-S 

that reflects the level of ISC activity in mitochondria. We previously used the 

concentration of mitochondrial ISCs as a proxy for X-S in our previous model of iron 

regulation (153). However, our current results do not favor using mitochondrial ISCs as 

a proxy for X-S-based regulation because mutant mitochondria isolated from  cells 

grown under high iron conditions contained near normal levels of ISCs.  

The only Fe-containing species (observable in our investigation) at lower-than-

WT concentrations in mutant cells were the mitochondrial Fe2+ pool and mitochondrial 

heme centers. We favor the mitochondrial NHHS Fe2+ pool as being the regulatory 

sensor but cannot exclude heme. The Fe2+ pool could conceivably work together with X-

S as a regulatory sensor (e.g. as substrates for the Fe2S2 cluster that eventually is 

transferred onto Aft1/2). In this way, either Fe2+ or X-S could regulate the assembly of 

clusters. We previously proposed a similar situation, except that cytosolic (rather than 

mitochondrial) Fe2+ was considered to be the sensor (151). Our current results dis-favor 

this because cytosolic Fe2+ concentration in  cells are probably higher than in WT 

cells. Viewed from a broader biological context, understanding iron regulation in 

eukaryotic cells is extremely important because dysregulation is associated with 

numerous diseases.  

 

Composition of the Mitochondrial NHHS Fe2+ Pool 

Our results provide strong evidence that the mitochondrial NHHS Fe2+ pool in 

exponentially growing yeast cells is composed exclusively of Fe580 (no other LMM Fe 
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complex was present). This species also appears to be present in mitochondria from 

mammalian sources (14). The iron concentration associated with the Fe2+ pool in yeast 

mitochondria ranges from 60 - 200 M (Table 1), depending on strain and growth 

conditions. We previously estimated the concentration of Fe580 in mitochondria to be in 

the same ballpark, ca. 100 M (14).  

Our current results suggest that the irons of Fe580 and Fe1100 are coordinated 

mainly by O and/or N donor ligands, not by S. In support of this, the EQ and  of the 

NHHS Fe2+ doublet in MB spectra of isolated mitochondria (3.07 mm/s and 1.23 mm/s, 

respectively) are typical of Fe2+ complexes with 4 - 6 O and 0 – 2 N donor ligands (155). 

These parameters are not typical of Fe2+ complexes with sulfur-based ligands.  

 

Mechanisms of Iron Passage through Importers 

We suggest two possible mechanisms by which cytosolic iron might pass into the 

mitochondrial matrix. In the “intact channeling” mechanism, Fe580 in the cytosol passes 

intact through Mrs3/4 channels. In the “unwrapping/rewrapping” mechanism, cytosolic 

iron enters the IMS through porins on the outer membrane and then docks on Mrs3/4. 

The iron dissociates from its coordinating ligands and the bare Fe2+ ion passes through 

the Mrs3/4 channels. Indeed, there are three conserved histidine residues in Mrs3/4 

which seem poised to transport such an ion (156). When the Fe2+ ion reaches the end of 

the channel on the matrix side, it coordinates with other ligands to generate the Fe580 

complex.  
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If intact channeling were operative, Fe580 should not have been observed in the 

flow-through solution of 40 mitochondria (but it was). If Fe580 was also channeled 

intact through the alternative import transporter, then Fe580 should have been present in 

the flow-through solution of 1 mitochondria (but it was not). One complication is that 

loss of membrane potential in 1 mitochondria might have prevented Fe580 import 

through the alternative importer; thus the intact channeling mechanism cannot be 

eliminated cleanly. However, we find it unlikely that both Mrs3/4 and the alternative 

iron import pathway import the same complex (since different proteins would have 

different channels). Also, the specificity implied by intact channeling seems contradicted 

by the ability of simple hexaqua Fe2+ ions to enter isolated mitochondria and be used for 

heme and ISC biosynthesis (71,8).  

The unwrapping/rewrapping mechanism implies the opposite in terms of 

specificity (i.e. any Fe2+ complex could serve as Fe2+ donor as long as the coordinating 

ligands were not bound so tightly that they could not dissociate within a reasonable 

timeframe). Whether Fe580 assembles in the matrix upon exiting the channel should 

depend, according to the unwrapping/rewrapping mechanism, on the metabolic state of 

the organelle. Fe580 may not form if the matrix is devoid of the appropriate coordinating 

ligand(s), or if the matrix region is not sufficiently anaerobic to maintain the Fe2+ state. 

Under stationary-state conditions, the metabolic state of the matrix may be different than 

under exponential growth conditions (e.g. the concentrations of potential coordinating 

ligands might vary) such that Fe1100 (or Fe2700 or Fe2100) might form instead of Fe580. 
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Viewed collectively, these considerations support the unwrapping/rewrapping 

mechanism, but further studies are required to establish either mechanism. 

 

Physiological Function of the Fe580 Mitochondrial Fe2+ pool 

Our results confirm and extend previous studies showing that there is a pool of 

NHHS Fe2+ in mitochondria (13), that this pool is feedstock for ISC and heme 

biosynthesis in the organelle (143,144,134), and that Fe580 comprises this pool (53,14). 

Although iron accumulates in mitochondria of cells in which YFH1 is deleted (145), iron 

does not accumulate in mitochondria of cells in which YFH1, MRS3, and MRS4 have all 

been deleted (69,9,71,8). This strongly suggests that the iron which accumulates in 

mitochondria of Friedreich’s Ataxia patients (deficient in frataxin, the human homolog 

of Yfh1) passes through mitoferrins1/2 (the human homologs of Mrs3/4). The iron 

oxidation state in nanoparticles is Fe3+ whereas that for the mitochondrial iron pool is 

Fe2+. This implies that Fe580 is an Fe2+ complex that reacts with O2 (in diseased 

mitochondria) to generate nanoparticles.  

Nanoparticles are often described as toxic to the cell, since ROS is formed in 

association with them. However, from a chemical perspective, nanoparticles should be 

benign and unreactive with O2. The reaction of Fe580 with O2 is more likely to be toxic 

and to generate ROS. Thus, the reaction chemistry of Fe580 is probably critical for 

understanding the pathophysiology of Friedreich’s Ataxia and perhaps other iron-

associated mitochondrial diseases. Our study is significant because it further 
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characterizes Fe580 and provides evidence for a model in which O2 is of critical 

importance for the iron-related reaction chemistry of mitochondria.  
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CHAPTER V  

A MATHEMATICAL MODEL OF IRON IMPORT AND TRAFFICKING IN WT 

AND MRS3/4 YEAST CELLS* 

Joshua D. Wofford and Paul A. Lindahl 

 

Summary 

Iron plays crucial roles in the metabolism of eukaryotic cells. Much iron is 

trafficked into mitochondria where it is used for iron-sulfur cluster assembly and heme 

biosynthesis. A yeast strain in which Mrs3/4, mitochondrial high-affinity iron importer 

proteins on the inner membrane, are deleted exhibits a slow-growth phenotype when 

grown under iron-deficient conditions. However, these cells grow at WT rates under 

iron-sufficient conditions. The object of this study was to develop a math model that 

could explain this recover on the molecular level. A multi-tiered strategy was used to 

solve an ordinary-differential-equations-based mathematical model of iron import, 

trafficking, and regulation in growing Saccharomyces cerevisiae cells.  At the simplest 

level of modelling, all iron in the cell was presumed to be a single species and the cell 

was considered to be a single homogeneous volume. Optimized parameters associated 

with the rate of iron import and the rate of dilution due to cell growth were determined. 

At the next level of complexity, the cell was divided into three regions, including 

cytosol, mitochondria, and vacuoles, each of which was presumed to contain a single 

                                                 

* This work has been submitted to BMC Systems Biology and is awaiting review. 
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form of iron. Optimized parameters associated with import into these regions were 

determined. At the final level of complexity, nine components were assumed within the 

same three cellular regions. Parameters obtained at simpler levels of complexity were 

used to help solve the more complex versions of the model; this was advantageous 

because the data used for solving the simpler model variants were more reliable and 

complete relative to those required for the more complex variants. The optimized full-

complexity model simulated the observed phenotype of WT and Mrs3/4 cells with 

acceptable fidelity, and the model exhibited some predictive power. The developed 

model highlights the importance of an Fe2+ mitochondrial pool and the necessary 

exclusion of O2 in the mitochondrial matrix for eukaryotic iron-sulfur cluster 

metabolism. Similar multi-tiered strategies could be used for any micronutrient in which 

concentrations and metabolic forms have been determined for different organelles within 

a growing eukaryotic cell.  

 

Introduction 

The complexity of biochemical processes as they occur in growing eukaryotic 

cells is enormous, often rendering the corresponding genetic phenotypes difficult to 

understand at the chemical level. One means of analyzing such systems is to develop 

ordinary-differential-equation (ODE4)-based kinetic models (159,160,161). In principle, 

such models can reveal on a quantitative basis whether observed phenotypic behavior 

could emerge from a proposed system of reacting chemical players and using a particular 

set of kinetic and thermodynamic parameters. This is a huge advantage relative to the 
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common practice of describing complex biochemical processes as a cartoon or scheme. 

Another advantage of math-based kinetic models is that all assumptions are explicit and 

available for public inspection; cartoons and schemes generally include hidden 

assumptions. The major disadvantage of math-based kinetic models is that a complete 

and accurate dataset, including rate-law expressions, rate-constants, and reactant 

concentrations, are required to solve them and endow them with predictive power. 

Rarely is all such information available, and available information is often less 

quantitative than desired.  

A common approach to circumventing this problem is to employ simplistic 

models (in terms of numbers of components and reactions) that nevertheless remain 

capable of generating observed cellular behavior and of explaining genetic phenotypes. 

Designing such models involves deciding which species and reactions to include, which 

to leave out, and which to combine into groups. Such decisions often boil-down to 

whether including an additional component or reaction is “worth” (in terms of 

generating the desired behavior) an additional adjustable parameter. Simple models with 

few adjustable parameters simplify realty but they can also provide fundamental insights 

into reality - by penetrating through the entangled and bewildering complexity of a 

highly complex system.  

Iron is critical for all eukaryotic cells (28,67). It is present in many forms 

including hemes, iron-sulfur clusters (ISCs), nonheme mononuclear species, and iron-

oxo dimeric centers. Such centers are commonly found in the active-sites of 

metalloenzymes. Iron plays a major role in energy metabolism; e.g. there are iron-rich 
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respiratory complexes located on the inner membrane of mitochondria. Mitochondria are 

the primary site in the cell where ISCs are assembled, and the only site where iron is 

installed into porphyrins during heme biosynthesis. For these reasons, mitochondria are a 

major ‘hub’ for iron trafficking.   

The cytosol also plays an important role in iron trafficking, in that nutrient iron 

enters this region prior to being distributed to the organelles. Most of the iron that enters 

the cytosol is probably in the Fe2+ state, but neither the oxidation state nor the 

concentration of cytosolic Fe has been established (162). The vacuoles are another 

trafficking ‘hub’ in yeast, as much of the iron imported into these cells (when grown on 

iron-sufficient media) is stored in these acidic organelles (70,135). Vacuolar iron is 

predominately found as a mononuclear nonheme high spin (NHHS) Fe3+ species, 

probably coordinated to polyphosphate ions (149).  

Iron is tightly regulated in cells, and some insightful math models involving iron 

metabolism, trafficking and regulation have been developed. Twenty years ago, Omholt 

et al. designed and analyzed a model of the IRP/IRE iron regulatory system in 

mammalian cells (163).  More recently, Mobilia developed a similar model that assumed 

scarce or unavailable data; they developed new methods to represent data by constrained 

inequalities (164,165). Chifman and coworkers developed a logical-rule-based math 

model of iron homeostasis in healthy mammalian cells, and a similar model for iron 

dysregulation in cancer cells in which the roles of the IRP-based regulation, the iron 

storage protein ferritin, the iron export protein ferroportin, the labile iron pool, reactive 

oxygen species, and the cancer-associated Ras protein were emphasized (166,167). 
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Mitchell and Mendes used ODE’s to model iron metabolism and regulation in a liver cell 

and its interaction with blood plasma (168). They emphasized the role of iron-regulating 

hormone hepcidin and the regulatory and storage systems mentioned above, and they 

simulated the effects of iron-overload disease. Their model was complex- involving 66 

adjustable parameters many of which were not experimentally determined. None of the 

above models included iron-sulfur cluster (ISC) synthesis, the role of mitochondria (or 

other organelles), and none modeled the cells as growing. In terms of biological 

emphasis, the model of Achcar et al. (169) is most relevant to the current study. They 

developed a model of iron metabolism and oxidative stress in yeast cells using a Boolean 

approach in which reactions were weighted. Their model included ISC assembly, as well 

as organelles such as mitochondria, vacuoles, cytosol, and nucleus. Their model was 

exceeding complicated (642 components and 1007 reactions) and was not ODE based 

(169). They modeled the development of Fe3+ (phosphate) oxyhydroxide nanoparticles 

in mitochondria of mutant cells lacking ISC assembly proteins (e.g. Yfh1, the yeast 

frataxin homolog), similar to the emphasis of our previous model (154). They included a 

reaction in which an unidentified species X converted nanoparticles into free iron, and 

hypothesized that X might be glutathione. Our model emphasized the role of oxygen in 

controlling nanoparticle formation.  

The iron content of yeast cells and the major organelles involved in iron 

trafficking have been analyzed using Mössbauer (MB) spectroscopy, the most powerful 

spectroscopic tool for interrogating the iron content of biological samples (44). If the 

absolute iron concentration of 57Fe-enriched cells and organelles are known, the absolute 
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concentrations of major groups of iron-containing species in such cells can be calculated 

using percentages obtained by MB. Such data is used here to develop an advanced math 

model of iron import and trafficking in eukaryotic cells.  

In WT cells, much iron enters mitochondria through Mrs3 and Mrs4, paralogous 

inner-membrane proteins (69,68). These “high affinity” iron-importers contain a small 

channel that allows a low-molecular-mass cytosolic iron species to enter the matrix. We 

have recently discovered a low-molecular mass species in mitochondria, designed Fe580, 

which might serve as feedstock for ISC assembly (14). Iron can enter mitochondria 

through alternative pathways, including one that involves Rim2 (12).   

Iron import in yeast is regulated according to the ISC activity occurring in 

mitochondria (54). When this activity is attenuated, for example by mutations in the ISC 

assembly machinery, the rate of nutrient iron imported increases. In yeast, iron 

regulation involves the Iron Regulon, a group of 20-30 genes whose expression is 

controlled by transcription factors Aft1/2 (122,120). This includes the Fet3/Ftr1 complex 

on the plasma membrane through which much cellular iron is imported. 

Yfh1 helps catalyze ISC assembly in mitochondria (170). This and other ISC 

mutant cells accumulate large quantities of iron in the form of Fe3+ nanoparticles (145, 

51). These cells import excessive iron because the iron regulon is activated in response 

to insufficient mitochondrial ISCs. Excess iron (in the form of nanoparticles) 

accumulates in mitochondria because the rate of iron import into the organelle increases 

due to activation of the iron regulon. The net rate of iron import into vacuoles is reduced 

such that these organelles contain little iron in ISC mutants. Actually, the iron export 
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rate is probably increased in these mutants. This is because the vacuolar membrane 

contains an iron-export complex (Fet5/Fth1) that is homologous to the Fet3/Ftr1 iron 

import complex on the plasma membrane, and both are controlled by the iron regulon 

(23).  

 

 

 

 

Figure 5.1: Strategy for optimizing a model of nutrient iron import, trafficking and regulation in 

growing eukaryotic cells. Top panel: C1 model in which all iron in the cell is treated as a single species 

and the cell is considered to be homogeneous. Middle panel: C3 model in which the cell is divided into 

three regions and each region is assumed to contain a single type of iron species. C4 model includes the 

reaction forming CIA. Bottom panel: C9 model in which the cell remains divided into 3 regions but the 

number of iron-containing species is expanded to 8.   
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Table 5.1. Growth rates, iron concentrations, and import rates in  and WT cells grown under 

different nutrient conditions. [N] refers to the M concentration of iron in the respiring medium, as 

described (10). The untreated medium was assumed to contain 1 M of endogenous iron. For each entry, 

the top number is datum or data-based estimates (R…-dat) and the bottom number is the corresponding 

simulated value (R…-sim). Concentrations are in units of M, rates are in units of M/hr, and cell is in units 

of hr-1. Data for cell and [Fecell] have been published (10) whereas  [Fecyt], [Femit], and [Fevac] were 

estimated as described in the text.  

 

 

 

 

We have developed a simple model (Figure 1, bottom panel) to illustrate the 

changes in iron import and trafficking that occur in ISC mutants relative to in WT cells 

(154). The core assumption of the model is that the matrix of healthy WT mitochondria 

is largely anaerobic, due to the ability of the respiratory complexes on the IM to quickly 

reduce much of the O2 that would otherwise diffuse into the matrix. Although dissolved 

[N] cell [Fecell] Rcell fcyt[Fecyt] fmit [Femit] fvac 

[Fevac] 

Rcyt - Rmit - 

Rvac 

Rmit Rvac 

WT          

1 0.18 

0.18 

120 

60 

22 

10 

79 

22 

41 

22 

0 

16 

18 

5.0 

9.2 

4.9 

0 

3.7 

2 0.18 

0.19 

200 

190 

37 

35 

75 

76 

43 

35 

82 

81 

17 

18 

9.9 

8.4 

19 

19 

11 0.20 

0.20 

480 

810 

97 

160 

200 

180 

56 

66 

220 

560 

52 

45 

14 

17 

56 

140 

41 0.20 

0.20 

880 

900 

180 

180 

310 

180 

69 

69 

500 

640 

77 

46 

18 

18 

130 

160 

          

1 0.06 

0.05 

360 

540 

22 

27 

110 

240 

69 

74 

180 

230 

8.1 

13 

5.2 

3.9 

14 

12 

2 0.068 

0.069 

680 

1,100 

46 

90 

130 

380 

69 

77 

480 

660 

11 

33 

5.9 

6.6 

41 

58 

11 0.15 

0.15 

2,200  

2,300 

320 

360 

280 

280 

72 

71 

1,800 

1,900 

52 

53 

13 

13 

340 

360 

41 0.20 

0.19 

3,900 

2,000 

800 

390 

230 

230 

74 

61 

3,600 

1,800 

59 

54 

19 

14 

920 

410 
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[O2] concentrations in the mitochondrial matrix have not been measured directly, three 

lines of evidence indicate that this space is anaerobic. Firstly, in vitro ISC assembly 

assays must be performed anaerobically (74). Secondly, numerous enzymes in the 

matrix, including aconitase, biotin synthase, and lipoic acid synthase are O2-sensitive 

(75,76). Thirdly, the nitrogenase iron protein which is exquisitely O2-labile remains 

active when installed in the mitochondrial matrix (77). According to our model, in ISC 

mutant mitochondria, the lack of ISCs and hemes cause a deficiency of respiratory 

complexes, and this allows O2 to diffuse into the matrix and react with a pool of Fe2+, 

forming nanoparticles.  

Relative to WT cells, Mrs3/4 cells (to be called ) grow slowly under iron-

deficient conditions but at WT rates in iron-sufficient media (69,67,68). The iron 

concentration of  cells is higher than in comparable WT cells, indicating that the iron 

regulon is activated. We recently found that mitochondria from iron-deficient  cells is 

dominated by nanoparticles whereas the iron content of mitochondria from iron-

sufficient  cells are quite similar to WT mitochondria – i.e. dominated by the ISC and 

heme centers that are found in respiratory complexes, and containing a substantial 

amount of a NHHS Fe2+ that might arise from Fe580 (10). Fe580 is present in 

mitochondria from iron-replete  and both iron-deficient and iron-replete WT cells. 

However, our previous model (154) was unable to reproduce the  phenotype.  

In this paper, we present an improved ODE-based model of iron trafficking and 

regulation in yeast, and use a multi-tiered strategy to solve it at an expanding steady-
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state. This model was able to explain both the  phenotype and the Yfh1 phenotype 

while also requiring fewer adjustable parameters relative to our previous model. 

 

Methods and Results 

As is typical of modeling biochemical processes within cells, the challenge was 

to generate a useful and insightful model despite sparse and imperfect data (164,165). 

Our strategy for doing this was to optimize the model at different levels of complexity. 

Model variants ranged from one that consisted of a single iron species and no cellular 

compartments to one that involved nine species in three cellular compartments. The 

parameters used to optimize the simpler variants were transferrable to the more complex 

models. This was an important insight because the data needed to solve simpler systems 

tend to be more reliable and complete relative to those required to solve more complex 

variants. A similar strategy could be applied for models involving the trafficking of other 

micronutrients. The only requirements are that the concentrations and metabolic forms 

of the micronutrient in the cell and in major organelles be known (at some reasonable 

level of accuracy) for different growth conditions and/or genetic strains.  

The complete chemical model is shown in Figure 1, bottom panel. We initially 

solved this model (to be referred to as C9, the nine-component model, including 

components C, CIA, F2, F3, VP, FM, FS, MP, and O2) at three simpler levels of 

complexity called C1 (the one-component model, with component Fecell), C3 (the three-

component model, including Fecyt, Femit, and Fevac), and C4 (the four-component model, 

including C, CIA, Fevac, and Femit). These model variants are illustrated in Figure 1, top 
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and middle panels. We solved the C9 model in this way because the data that were 

required to solve the simpler versions were more reliable and complete than those 

required to solve the C9 variant. Importantly, the parameters that were optimized using 

the simpler versions could be transferred to the more complex variants. This minimized 

the number of adjustable parameters that had to be assigned using less reliable or 

incomplete data. As far as we are aware, this multi-tiered modeling strategy has not been 

employed previously within the context of ODE-based models involving the trafficking 

of iron or any micronutrient within a growing eukaryotic cell. Code for all model 

variants was written using Mathematica 10 software (wolfram.com). ODEs were solved 

to steady-state using the NDSolve routine.  

 

Development of the C1 model 

Consider a population of cells growing exponentially on a nutrient form of iron 

called N which enters the cell through a transporter on the plasma membrane (Figure 1, 

top panel, red circle). Let Vcell represent the collective cell volume (within a culture) at 

time t. When cells are growing exponentially, Vcell will increase according to the 

relationship 

(1)cell
cell cell

dV
V

dt
 

where 
cell is the growth rate. During exponential growth 

cell will be constant in time. 

The optical density at 600 nm of an exponentially growing culture is proportional to Vcell 

such that the slope of the {ln(OD600) vs. time} plot affords 
cell . This parameter has been 
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determined for WT and  cells grown in medium containing 4 different concentrations 

of nutrient iron [N] = 1, 2, 11, and 41 M ((10)and Table 1). The 8 “data-based” 

determinations of 
cell will be called 

cell dat 
. For simulations, a continuous  function 

between N = 1 – 41 M was required, so we optimized 

max[ ]
(2)

[ ]
cell sim

N

K N


  



by fitting against the 
cell dat 

values using the error function 

, ,

1,2,11,41 , ,

21
(3).

4

cell sim N cell dat N

N cell sim N cell dat N

ERR
 

 

 

  

 





 Best-fit 
max and K

values are given in Table 2, and plots of 
cell are shown in 

Figure 2 (top). The plots show that the simulated growth rates of WT and  cells 

increased as the concentration of iron in the medium [N] increases, mirroring the 

experimental growth rates with acceptable fidelity (apart from the point associated with 

 cells at [N] = 41 M).  
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Table 5.2. Optimized parameters used in simulations.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Value 

(strain) 

units Sens. 

C1 

Rcell-max 180 (WT) 

390 () 

M hr-1 1.021 

1.049 

KN 4 M 1.062 

sens 2 none 1.043 

max 0.204  hr-1 1.068 

K 0.13(WT) 

3.9 () 

hr-1 1.047 

1.029 

C3 

Rcyt  230 (WT) 

480 () 

M hr-1 1.011 

1.024 

kmit(C3) 2.8(WT) 

1.6 () 

hr-1 1.001 

1.000 

Rvac-max  1140 M hr-1 1.000 

Kvac 11 M 1.001 

nvac 3 none 1.001 

C4 

Rcia-max 56 M hr-1 1.001 

Kcia 3.8 M 1.000 

ncia 3 none 1.000 

C9 

kmit 5.5(WT) 

1.2 () 

hr-1 1.000 

1.000 

Risu-max  180 M hr-1 1.005 

Kisu 220 M 1.021 

nisu 2.3 none 1.106 

kvp 1.1010-7 

(WT) 

2.3710-7 

() 

M1-nvp hr-1 1.000 

1.000 

nvp 2.4 none 1.001 

k23 5.2 hr-1 1.000 

[FS]sp 370 M 1.000 

n23 1.6 none 1.000 

kmp 0.09 M-1 hr-1 1.013 

kO2  25 hr-1 1.008 

kres 9 M-1 hr-1 1.010 
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Figure 5.2: Plots of growth rate (top), cellular iron concentration (middle), and the rate of iron 

import into the cell (bottom). Red circles and lines indicate data-based and simulated WT cells. Blue 

circles and lines indicate  cells. Data-based values and corresponding simulation values are given in 

Table 1.   
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In the C1 model, all iron in the cell is considered to be a single component called 

Fecell. The concentration [Fecell] is a function of moles (nFecell) and Vcell, namely [Fecell] = 

nFecell/Vcell. Since the cell is growing as chemistry is occurring, the time-dependent 

change of [Fecell] is given by the partial derivative 

constant V constant n

2

constant V constant n

constant V

[ ] [ ] [ ]

[ ] 1

( )

[ ] [ ] 1

cell cell Fecell cell cell

Fecell cell

cell Fecell Fecell cell

cell cell

cell cell

cell

d Fe Fe dn Fe dV

dt n dt V dt

d Fe dn n dV

dt V dt dtV

d Fe d Fe dV

dt dt V

 
   

 

  

  

constant n

(4).

[ ]

[ ]
[ ]

cell

cell

cell

cell cell cell

Fe
dt

d Fe
R Fe

dt


 
 
 
 
 
 
 
 
 
 
 
   
 

  

The first term on the right-hand-side of the last equation of (4) describes the rate of iron 

import at constant volume ( cellR

cellN Fe ) – i.e. for chemistry in a no-growth cell. 

The second term reflects dilution due to the growth of cells at constant moles of Fecell -

.i.e. for a growing cell devoid of chemistry. Under the expanding-steady-state condition, 

as would exist for a population of exponentially growing cells, [Fecell] is constant and the 

import rate Rcell equals the dilution rate,   

[ ] (5).cell cell cellR Fe 

 
[Fecell] was measured in WT and  cells grown under the four concentrations of 

[N] (10), and the product of this and corresponding 
cell dat 

 values afforded the “data-

based” Rcell-dat values listed in Table 1 and shown as the circles in Figure 2 bottom panel.  

We next assigned a rate-law expression to Rcell that depended solely on [N], such 

that a continuous Rcell-sim function could be generated at all [N]. The iron-importer on the 
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plasma membrane of yeast cells is saturatable by nutrient iron (5), and so we assigned 

the rate-law for Rcell-sim to the Michaelis-Menten function  

cell- max[ ]
(6)

[ ]

sens

cell sim sens sens

N

R N
R

K N
 



where sens is a sensitivity factor allowing for cooperative iron import. Rcell-sim was 

optimized by minimizing an ERR function similar to equation (3). The resulting 

optimized Rcell-sim simulation parameters are given in Tables 1 and 2. Optimized Rcell-sim 

was used to generate an ODE (based on the last equation in (4)) that could be used in 

kinetic modeling (see (S1) and (S2)). However, the current study focuses on the 

expanding steady-state condition, and so the ODEs were solved at infinitely long times 

for [N] ranging from 1 – 41. Plots of steady-state Rcell-sim vs. log2[N] are shown in Figure 

2 bottom panel. As expected, the simulated rate of iron import increased in both WT and 

 cells as the concentration of iron in the medium increased, with higher rates for  

cells since they accumulate more iron. The [N]-dependent increase in iron import rate is 

counterbalanced by the [N]-dependent increase in cell growth rate.  

 

Development of the C3 model 

We next subdivided the cell volume into mitochondria, vacuoles and all 

remaining compartments, such that  

(7).cell cyt mit vacV V V V  

 Here, “cyt” refers to cytosol plus all organelles besides mitochondria and 

vacuoles; there is insufficient published information to justify subdividing cyt into 
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additional cellular compartments. This collective compartment includes the iron content 

of the nucleus which contains a significant number of [Fe4S4] containing proteins (148). 

Topologically, cyt was treated as though it was exclusively cytosol i.e. surrounding 

mitochondria and vacuoles and being surrounded by the plasma membrane.  

Each cellular compartment in C3 was presumed to contain a single iron species, 

called Fecyt, Femit, and Fevac. The conservation of matter requires that 

[ ] [ ] [ ] [ ] (8)cell cyt cyt mit mit vac vacFe f Fe f Fe f Fe     

where fcyt,  fmit, and fvac are fractional volumes e.g. fmit = Vmit/Vcell. In an expanding steady-

state, these fractional volumes will be constant such that 

[ ][ ] [ ] [ ]
(9).

cytcell mit vac

cyt mit vac

d Fed Fe d Fe d Fe
f f f

dt dt dt dt
     

 
For the C3 model, N is imported into the cytosol forming Fecyt (

cytR

cytN Fe ). 

Some Fecyt is imported into mitochondria ( mitR

cyt mitFe Fe ) and some into vacuoles (

vacR

cyt vacFe Fe ). The rest remains in cyt. Based on this scheme, the time-dependent 

changes of the concentrations of the Fe species in each region are 

[ ] 1
[ ]

[ ] 1
[ ] (10).

[ ] 1
[ ]

cyt cyt

cyt mit vac cyt

cyt

cytmit mit

mit mit

mit mit

cytvac vac

vac vac

vac vac

d Fe dV
R R R Fe

dt V dt

fd Fe dV
R Fe

dt f V dt

fd Fe dV
R Fe

dt f V dt

 
    

 
 
 

   
 
 
   
  
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Fraction volume ratios in the second and third equations of (10) are required to 

conserve mass as Fecyt moves from one region to another. Under an expanding steady-

state, 

1
[ ]

1
[ ] (11).

1
[ ]

cyt

cyt mit vac cyt

cyt

mit

mit mit

cyt

vac

vac vac

cyt

dV
R R R Fe

V dt

dV
R Fe

V dt

dV
R Fe

V dt

 
   

 
 
 

  
 
 
  
  

  

The growth rate of each cellular region will equal the growth rate of the cell 

multiplied by the fractional volume of that compartment,  

(12).

cyt cell

cyt

mit cell

mit

vac cell

vac

dV dV
f

dt dt

dV dV
f

dt dt

dV dV
f

dt dt

 
 

 
 

 
 
 

 
 

Substituting (12) into (11) affords 

[ ]

[ ] (13).

[ ]

cyt mit vac cell cyt

mit

mit cell mit

cyt

vac

vac cell vac

cyt

R R R Fe

V
R Fe

V

V
R Fe

V







 
 

    
 
 

  
 
 
  
  
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Published fractional volumes were used to help solve these equations. The 

cellular content of fermenting (exponentially growing, nonbudding) S. cerevisiae was 

reconstructed in 3D and volume fractions were determined (171). Mitochondria and 

vacuoles occupied 1.7% and 5.8% of cell volume, respectively. Another study reported 

that the same two organelles occupied 1.6% and 7.8%, respectively (172). In a third 

study, vacuoles in yeast strain W303 (the same as used in our studies) accounted for 

10% of cell volume (173). And in respiring yeast cells, mitochondrial volume was 10-

12% of cell volume (174). Since the model developed here is of iron trafficking in 

respiring W303 yeast cells, we assumed fmit = 0.1, fvac = 0.1, and fcyt = 0.8.  

The relationships given in (13) are connected to (5). Substituting the last two 

equations of (13) into the first, and then simplifying and comparing to (5) affords the 

relationship 

1
(14).cyt cell

cyt

R R
f



This equation connects C1 and C3 models. The rate of iron import into cyt (Rcyt) equals 

the data-based rate of Fe import into the cell (Rcell) divided by the volume fraction fcyt. 

(Note that these rates describe the change of iron concentrations within the cell or 

cytosol, not the change in the number of moles of N imported. Since Vcyt < Vcell, [Fecyt] 

will increase faster than [Fecell] (in proportion to the ratio Vcell/Vcyt) even though the same 

number of moles of iron per hour are imported.) The rate-law expression for Rcyt-sim 

should also involve a Michaelis-Menten expression, with the same KN and sens as in (6) 

but with a maximal velocity that is 1.25-times (1/fcyt) faster.  
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The C3 model could not be solved fully until [Fecell] was separated into [Fecyt], 

[Femit], and [Fevac] components for each of the 8 growth/strain conditions investigated. 

To do this, we relied on conservation of matter equation (8) but also used published MB 

spectra and iron concentrations for WT and  cells and organelles (10, 65). The spectra 

were separated into contributions from the eight iron-containing components specified 

by the C9 model. Then we combined particular components into cytosol, mitochondria, 

or vacuoles locations (as dictated by the model of Figure 1). Finally, we summed the 

iron concentrations for all of the components assigned to each compartment to afford 

[Fecyt], [Femit], and [Fevac]. Results are given in Table 1.   

 

Development of the C9 model 

Before explaining how MB spectra were decomposed, we introduce the 

components of the C9 model. Component C represents cytosolic Fe, presumed to be a 

NHHS Fe2+ complex. This component can move into vacuoles and mitochondria, but it 

can also stay in cyt and react to form component CIA. CIA represents the sum of the 

ISCs and low-spin Fe2+ hemes in this collective compartment. Numerous ISCs are found 

in the cytosol and nucleus (171,175), justifying the inclusion of CIA in the model. FM 

represents the pool of NHHS Fe2+ ions in mitochondria, FS represents ISCs and heme 

centers in the organelle, and MP refers to mitochondrial nanoparticles. Components FM, 

FS, and MP have all been characterized experimentally. F2 and F3 are NHHS Fe2+ and 

Fe3+ species in vacuoles, and VP represent vacuolar nanoparticles; they have also been 

characterized experimentally (149,116). When C enters the vacuoles, this component 
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becomes F2 some of which oxidizes to F3. Some F3 converts into VP. When C enters 

mitochondria, it converts into FM, which serves as feedstock for FS. The FS metal 

centers are viewed as being installed into the respiratory complexes on the inner 

membrane, which then catalyze the reduction of O2 to water. FM can also react with O2 

in the matrix to generate MP and ROS. ROS exhibits the exact behavior of MP so is not 

formally included in the model. 

 

Decomposing MB features into Modeling Components  

MB spectroscopy detects all of the 57Fe in samples. However, resolution is 

limited so the spectra under consideration were subdivided into just four groups of iron 

centers, including NHHS Fe3+, NHHS Fe2+, the central doublet (CD), and Fe3+ 

oxyhydroxide nanoparticles. The CD represents [Fe4S4]
2+ clusters and low-spin Fe2+ 

heme centers; the two cannot be resolved. Other minor spectral features (HS Fe2+ hemes 

and [Fe2S2] clusters) can be resolved and quantified, but we decided to bundle them with 

the CD since they are not individually represented in the model. The absolute 

concentrations associated with each group were obtained by multiplying the associated 

percentages by [Fecell]. The conservation of mass requires that  

[ ] [ ] [ ] [ ] [ ]
(15).

[ ] [ ] [ ] [ ] [ ]

II III

cell cell cell cell cell

II III

mit mit mit mit mit

Fe Fe CD NP Fe

Fe Fe CD NP Fe

     
 

     

 These MB features were assigned to the following combinations of modeling 

components. 
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(16).

 Then these species were organized into the three cellular compartments by 

summing contributions as described by (17). 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] (17).

] [ 2] [ 3] [ ]
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mit
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  
 

   
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 The one component of the C9 model that could not be determined in this way 

with reasonable accuracy was C. Thus, we relied on published reports to estimate the 

concentration of cytosolic Fe2+. Petrat et al. (176) used a fluorescent chelator to quantify 

the concentration of labile iron in hepatocytes and liver endothelial cells at 5 – 7 M, 

and we assumed similar values for iron-sufficient WT yeast cells. We further assumed 

that the concentration of cytosolic Fe2+ increases with increasing nutrient iron 

concentrations, and that [C] in iron-sufficient  cells is higher than in WT cells 

(because the absence of  

Mrs3/4 should block import of C into mitochondria). Within these constraints, 

we assigned the concentrations of C to those listed in Table 3. MB spectral 



 

152 

 

decompositions, along with these relationships and assumptions, were sufficient to 

generate concentrations for all other modeling components (Table 3).  

 

 

Table 5.3: Estimated concentrations (in M) of the iron-containing components of the C9 model. For 

each entry, the top number is data-based while the bottom number is the corresponding simulated value. 

The sum of these concentrations, after multiplying each by their respective fractional volume, 

approximately equals [Fecell]. The sum of the concentrations of each species located in each compartment 

(cyt, mitochondria, and vacuoles) approximately equals [Fecyt], [Femit], and [Fevac], respectively.   

 

 

 

 

 

 

 

[N] [C] [CIA] [FM] [FS] [MP] [F2] [F3] [VP] 

WT         

1  2.5 

1.5 

92 

16 

60 

110 

320 

160 

0 

90 

60 

14 

0 

85 

0 

0 

2 3 

2.7 

84 

79 

80 

190 

290 

380 

60 

62 

96 

43 

780 

590 

0 

2.6 

11 4 

5.6 

250 

210 

140 

430 

380 

730 

30 

71 

320 

250 

1900 

540 

0 

320 

41 5 

6.0 

380 

220 

210 

470 

480 

750 

0 

75 

450 

290 

4600 

5200 

0 

440 

         

1 3 

2.6 

130 

310 

60 

3.6 

40 

0.8 

530 

580 

140 

2,300 

400 

57 

0 

0.6 

 2 4 

4.3 

160 

470 

60 

100 

40 

350 

530 

140 

1,300 

180 

3,400 

4,600 

170 

2,000 

11 8 

8.6 

340 

340 

85 

150 

300 

330 

300 

70 

950 

1,200 

11,000 

11.000 

6,400 

7,500 

41 10 

9.2 

280 

280 

110 

140 

560 

260 

80 

71 

1,000 

1,600 

22,000 

10,000 

13,000 

5,700 
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Solving the C3 model: 

Once [Fecyt], [Femit] and [Fevac] were determined, we determined rates of import 

into each compartment, Rcyt, Rmit, and Rvac as defined by (13). Data-based import rates 

Rcyt-dat, Rmit-dat, and Rvac-dat for the 8 conditions are shown as circles in Figure 3 and are 

tabulated in Table 1. The rate of iron import into “cyt” but not exported into 

mitochondria or vacuoles equals Rcyt – Rmit - Rvac. According to these rates, iron flows 

faster into the cyt of  cells, and slower into their mitochondria, relative to in WT cells. 

This makes sense because the absence of Mrs3/4 in  cells should hinder Fecyt from 

entering mitochondria.   
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Figure 5.3: Rates of iron import into the cytosol only (A), into the mitochondria (B), and into vacuole 

(C) according to the C3 model. Color coding is the same as in Figure 2.  
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 We next assigned rate-law expressions to Rmit-sim and Rvac-sim. We considered two 

forms for rate-laws, namely a mass-action form Ri = ki[*]n and a Michaelis-Menten form 

Vi[*]n/{KM+[*]n} where [*] indicates the concentration of one or more of the C9 

modeling components. The latter form was used only if the simpler mass-action form 

was unable to generate reasonable simulations to the relevant data-based rates. The 

simple mass-action form was acceptable for Rmit-sim whereas Rvac-sim required a Michaelis-

Menten term. The terms were optimized using an ERR function. One complication was 

that we used C rather than Fecyt as substrate for these processes. This was done so that 

the resulting rates would not change when solving the C9 model.  The following rate-law 

expressions were ultimately selected. 

max

[ ]

(18).[ ]

[ ]

mit sim mit

nvac

vac

vac sim nvac nvac

vac

R k C

R C
R

K C







 
 
 

  

 Optimized Rmit-sim and Rvac-sim values were used along with Rcyt-sim (obtained from 

C1 model), to construct a full set of ODEs (equations (S3) – (S5)) describing the C3 

model. Once combined in this way, all of the parameters associated with the three rates 

Rcyt-sim, Rmit-sim, and Rvac-sim were re-optimized against data-based rates using an ERR 

function. To do this, each parameter was increased and decreased by 10% as all other 

parameters were fixed; candidate values that lowered ERR were then fixed as the next 

parameter on the list was varied. The process was repeated for a second round except 

that each parameter was adjusted ± 5%. In the third and final round, each parameter was 

adjusted ± 1%. The final plots are shown in Figure 3.  
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The C4 model  

We next solved the C4 model which is identical to the C3 model except that 

[Fecyt] is separated into [CIA] and [C] components. To obtain [CIA], we subtracted the 

values of [C] given in Table 3 from [Fecyt], resulting in the CIA concentrations listed in 

Table 3. These values were multiplied by 
cell to generate Rcia-dat. We assumed a 

Michaelis-Menten expression to generate an Rcia-sim function that minimized differences 

with Rcia-dat with acceptable fidelity.   

 

Solving the C9 model 

The C9 model could now be solved. The derivative of (17) is 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]
(19).

[ ] [ 3] [ ]

cyt

mit

vac

d Fe d C d CIA

dt dt dt

d Fe d FM d FS d MP

dt dt dt dt

d Fe d F d VP

dt dt dt

 
  

 
 

   
 
 

  
 

 According to the mechanism of Figure 1, bottom panel, the rates of change in the 

concentrations of the two cyt iron species are  

[ ]
[ ]

(20).
[ ]

[ ]

cyt mit vac cia cell

cia cell

d C
R R R R C

dt

d CIA
R CIA

dt





 
      

 
  
  

 Adding the two equations of (20) affords the first equations of (19) and (10). The 

rate of change of the concentrations of the iron-containing species in the mitochondria is 

given by (21).  
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[ ]
[ ]

[ ]
[ ] (21).

[ ]
[ ]
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Vd FM
R R R FM

dt V

d FS
R FS
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d MP
R MP
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




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 
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 Summing the equations of (21) affords the second equations of (19) and (10). 

Similarly for vacuoles,  

23

23

[ 2]
[ 2]

[ 3]
[ 3] (22).
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 Summing the equations of (22) affords the third equations of (19) and (10). Thus, 

the ODE system for the iron-components of the C9 model “collapses” down to that of the 

C3 model when the components of the three regions are summed appropriately. In an 

expanding steady state, the left-hand-sides of (20), (21), and (22) equal zero such that 



 

158 

 

 

 23

23

[ ]

[ ]

[ 2]

(23).
[ ]

[ ]

[ ]

[ 3]

[ ]

cyt mit vac cia cell

mit

mit isu mp cell

cyt

vac

vac cell

cyt

cia cell

isu cell

vp cell

vp cell

mp cell

R R R R C

V
R R R FM

V

V
R R F

V

R CIA

R FS

R VP

R R F

R MP

















    
 
   
 
 
 

  
 
 

 
 
 

 
  
 
  

 Data-based and simulation-based values of Rcyt, Rmit, Rvac, and Rcia have already 

been obtained. Using the experimental values of 
cell and the values of model-component 

concentrations listed in Table 3, we constructed data-based rates for the formation of 

each C9 component using data from the 4 nutrient conditions in WT and  cells. Rvp-dat 

was then used along with 
cell and [F3] to generate R23-dat as defined in (23). The next 

step was to assign a rate-law expression to each of the remaining rates associated with 

the C9 model as listed in (23) – expressions that depended solely on other C9 

components. Once assigned, a system of ODEs could be defined in these terms (S6) – 

(S14) and integrated numerically to afford our final simulations. 
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Table 5.4: Rates of formation of each component of the C9 model, for different strains and nutrient 

concentrations. Data-based rates are the top entries; simulated rates are bottom entries. 

 

  

 

We first assigned rate-law expressions for the remaining C9 components that did 

not involve O2, namely Rvp and Risu. The expressions kvp[F3] and kisu[FM] were 

sufficient to simulate Rvp-dat and Risu-dat with acceptable fidelity. The simple rate-law R23-

sim = k23[F2] was unable to simulate the data.  The problem was that cells grown under 

low-iron conditions have an unusually high concentration of NHHS Fe2+, only a small 

percentage of which can be assigned to FM in mitochondria. Under these conditions, it 

seemed unlikely that this Fe2+ could be cytosolic, as there should be low concentrations 

of [C] (as given in Table 3). The only remaining option (in our model) to could account 

[N] RC RCIA Risu RF3 RVP RFM RFS RMP 

WT          

1 0.45 

0.26 

17 

3.0 

52 

29 

0 

15 

0 

0 

11 

19 

58 

29 

0 

16 

2 0.55 

0.52 

15 

15 

53 

73 

140 

110 

0 

0.5 

15 

36 

53 

73 

11 

12 

11 0.81 

1.1 

50 

43 

78 

150 

390 

910 

0 

65 

29 

87 

78 

150 

6.1 

14 

41 1.0 

1.2 

76 

44 

97 

150 

930 

1000 

0 

89 

42 

95 

91 

150 

0 

15 

          

1 0.12 

0.11 

8.0 

13 

2.4 

0.014 

24 

0.75 

0 

0 

3.6 

0.13 

2.4 

0.01 

32 

24 

2 0.28 

0.29 

11 

33 

2.7 

27 

230 

320 

12 

140 

4.1 

7.2 

2.7 

27 

36 

7.1 

11 1.2 

1.3 

51 

52 

45 

50 

1,600 

1,600 

960 

1,100 

13 

22 

45 

50 

45 

11 

41 1.9 

1.7 

57 

52 

110 

48 

4,500 

2,000 

2,600 

1,100 

22 

27 

110 

48 

15 

13 
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for the extra Fe2+ was component F2 in vacuoles. As cells become iron-sufficient, this 

effect disappears as [F3] increases. We presumed that the extra F2 converted into F3 

under these conditions. To coordinate this behavior with increasing cellular iron-

sufficiency, we incorporated a Reg+FS into the R23-sim rate-law expression, as we have 

done previously (154).  In summary, the following rate-law expressions were used in 

solving the C9 model.    

max

max

23 23 23

[ ]

[ ]

[ ]

[ ]

[ 3] (25).
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Effect of O2 

O2 plays a critical role in the C9 model as it reacts with FM to generate MP. O2 is 

constantly diffusing into the matrix (in accordance with rate RO2) and is reduced to H2O 

by cytochrome c oxidase on the inner membrane. We used [FS] as a proxy for oxidase 

activity such that the rate of respiration (Rres) was assumed to be proportional to both 

[FS] and [O2]. Collectively, these processes determine the dissolved O2 concentration in 

the matrix, as described by 
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2

2 2

[ ]
[ ] (26).O mp res cell

d O
R R R O

dt
   

 

Under an expanded steady-state condition  

2 2[ ] (27).O mp res cellR R R O     

RO2 was presumed to be proportional to the difference in the O2 concentration in the 

cytosol (called [O2]cyt – assumed to be fixed at 100 M) and the concentration of O2 in 

the matrix ([O2]). With rate-law expressions included, (27) becomes 

2 2 2 2 2 2([ ] [ ]) [ ][ ] [ ][ ] [ ] (28).O cyt mp res cellk O O k FM O k FS O O   

Rearrangement yields  

2

2 2

2

[ ] [ ] (29).
[ ] [ ]

O
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O mp res cell

k
O O

k k FM k FS 


  

 Since all numbers in (29) are positive, the term in the numerator serves to 

increase [O2] while those of the denominator serve to decrease it. [FM], [FS], and cell 

are controlled by other aspects of the model, and so those parameters were not altered in 

order to generate the behavior desired for [O2] vs [N] in WT vs.  cells. This behavior 

was essentially controlled by the three unassigned parameters, kO2, kres, and kmp 

contained in equation (29).  

The overall objective of the model was to assess, on a quantitative basis, the 

ability of the model of Figure 1 to explain how  mitochondria transition from a 

diseased state (dominated by nanoparticles, MP in the model) when cells are grown in 

low-iron media, to a healthy state (dominated by ISCs and hemes, FS in the model) 
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when they are grown in high-iron media. We also wanted WT mitochondria to be 

healthy regardless of the iron concentration in the growth medium. The only molecular-

level difference between WT and  cells should be the rates at which iron enters the 

mitochondria (Rmit) and cells (Rcyt) – which have already been set by solving the simpler 

versions of the model. The key to achieving this desired behavior, according to our 

model, was to vary the concentration of O2 in the matrix. In WT mitochondria, [O2] 

should be low at all [N] whereas in  mitochondria, [O2] should be high at low [N] and 

low at high [N].  We needed to generate an abrupt decline of [O2] in  mitochondria as 

[N] increases while keeping [O2] low in WT mitochondria at all [N]. And we needed to 

make this happen only by adjusting kO2, kres, and kmp.  

The [O2] concentration in the matrix has not been measured directly. We 

estimated [O2] to be in the ballpark of 1 – 10 M for iron-sufficient WT mitochondria as 

this value is similar to the KM for O2 reduction by cytochrome c oxidase (177). We had 

[MP] vs. [N] data that could be used to help optimize these parameters (especially kmp), 

but they were insufficient.  

We also considered the known behavior of Yfh1 cells, which we have 

explained using a similar model (154). Yfh1 mitochondria contain excessive levels of 

nanoparticles. The previous model explained the excessive nanoparticles as being due to 

a lack of FS (respiratory complexes), which allows for O2 to diffuse into the matrix, 

react with FM, and generate MP. This behavior (obtained by setting Risu = 0) provided 

another constraint on possible solutions for the current problem. Another consideration 
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was that respiring WT cells grown at all [N] do not accumulate MP in their 

mitochondria.  

After extensive trials, we obtained values of kO2, kres, and kmp (listed in Table 2) 

that generated the best overall behavior. However, despite our efforts to satisfy all of 

these constraints, we could not completely eliminate the formation of MP in WT 

mitochondria while also having MP accumulate at high levels in Yfh1 mitochondria. 

Two additional changes were required, namely to increase kmit of WT cells 2-fold and 

decrease kmit of  cells 1.3-fold, both relative to the values obtained by solving the 

simpler C3 version of the model. The adjustment of kmit in  cells was minor whereas 

the adjustment for WT cells implies that the concentration of iron in WT mitochondria is 

actually 2-fold higher than given by the data used for simulations. 
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Figure 5.4: Simulated concentrations of the iron-containing components in the C9 version of the 

model as a function of nutrient iron concentration (in M). Blue,  cells; Red, WT cells. The 

component plotted is indicated near to the trace.  
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Final Optimization and sensitivity analysis 

Once each parameter was optimized individually as described above, we re-

optimized the entire system by changing one component at a time while holding the 

others fixed, as described above. For the C1, C3/C4, and C9 model variants, the best-fit 

ERR values were 0.32, 0.39, and 0.72, respectively. A sensitivity analysis was 

performed for each parameter by taking the average of the  1% ERR values, and 

normalizing the average to the optimal ERR for that parameter (154). Highest sensitivity 

values (Table 2) indicate which parameters have the greatest impact on the overall fit of 

the model; nisu (Hill coefficient for ISC assembly), max (growth rate), and KN (KM for 

nutrient iron import) were the most sensitive.  

Simulation plots showing the concentrations of each iron-containing component 

of the C9 model (except for nanoparticles) is shown in Figure 4.  In line with 

expectations, simulated concentrations of most components increased as the nutrient iron 

concentration increased. Simulated concentrations of cytosolic and vacuolar components 

in  cells were higher than in WT cells, whereas the simulated concentrations of 

mitochondrial components FS and FM in  cells were lower than in WT cells.  

Vacuolar iron is dominated by F2 under iron-deficient conditions and by F3 under iron-

sufficient conditions.   
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Figure 5.5: “Waterfall” Plots of Mitochondrial oxygen and nanoparticle concentrations (in M).  

Optimized simulated [O2] (in panel A) and [MP] (in panel B) in mitochondria of  (solid blue line) and 

WT (solid red line) cells, plotted against the nutrient iron concentration (Log2[N]). Only certain 

parameters affected curve shape, as illustrated by the other traces in which the indicated parameters were 

altered ± 10% of their optimized values while holding all other parameters fixed. Changing other 

parameters yields traces (e.g. k23 in the white dashed line) that had no effect on the plots. Panel C is a plot 

of [MP] vs. Risu-max, the maximum rate of FS formation. Low Risu-max values simulate the slow rate of ISC 

assembly in yfh1Δ cells, while higher values reflect WT conditions. 
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Waterfall Effect on O2 and nanoparticles 

Simulations of mitochondrial O2 and nanoparticle concentrations are shown in 

the “waterfall” plots of Figure 5. This nonlinear effect simulates the observed behavior 

of  mitochondria. Mitochondria from iron-deficient  cells contain mostly 

nanoparticles and are responsible for the slow-growth defect. However, mitochondria 

from these cells recover when  cells are grown in iron-sufficient medium. The plot 

simulates this recovery. As [N] increases, [O2] levels decline because increasing 

concentrations of respiratory complexes (FS) prevent O2 from diffusing into the matrix 

and reacting with FM. This allows more FS to be made with allows even less O2 into the 

matrix. This vicious cycle leads to the observed nonlinear behavior. The same behavior 

is observed for the formation of nanoparticles (Figure 5, panel B). Other traces to either 

side of the best-fit [O2] trace represent the effect of increasing/decreasing one parameter 

while keeping all others fixed. Since the percentage change for each parameter was the 

same, the parameters that influence the shape of the “waterfall” more dramatically are 

located on the extremes. A similar waterfall effect is obtained by lowering Risu (Figure 5, 

panel C) which simulates the effect of lowering the Yfh1 concentration in yeast 

mitochondria (or the frataxin concentration in human mitochondria). WT mitochondria 

do not exhibit the waterfall effect because they can exclude O2 from the matrix at all [N] 

considered.  
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Conclusions 

Comparison to Previous Model 

The model developed here represents a major advance relative to our previous 

model (154). Both simulate iron import and trafficking in a growing yeast cell, both 

include the three regions (cytosol, mitochondria, and vacuoles), and both involve the 

import of a single nutrient iron form N. The major difference between the two models is 

their complexity level, method of optimization, and predictive power. The previous 

model included ~ 35 adjustable parameters (Table S2 of (154)) whereas the current 

model includes only 23 (Table 2). The previous model was optimized by guessing an 

initial set of values and minimizing an error function. However, the most important 

difference is that the previous model does not predict the waterfall behavior described 

above.  

Our current model was solved at different levels of complexity. We solved the 

simpler variants first, and discovered that the parameters obtained could be transferred to 

the more complex variants. This multi-tiered strategy was helpful because the 

parameters obtained by fitting the simpler models used more reliable data.  Another 

strategic difference in modeling approaches was that we excluded all but one Reg 

function in the current model. This made the current model more responsive to changing 

parameters and allowed better comprehension of inherent behavior.  

In the end, only four parameters differed between  and WT simulations, 

namely Rcyt-max, kmit, kvp, and K. All other assigned parameter values were identical 

between the two genetic strains. The ability of the model to reproduce  and WT 
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behavior with such few differences is remarkable. Moreover, we can easily rationalize 

why at least half of these parameters should be different. A 4.6-fold reduction of kmit for 

 cells makes sense because Mrs3/4, the high-affinity importers into mitochondria are 

deleted in this strain. Rcyt-max is 2-times higher for  cells because iron is dysregulated 

in these cells so expression of the Ftr1/Fet3 complex on the plasma membrane should be 

higher. Explaining why K should be 30-times higher in  cells is more difficult. K is 

a KM-like parameter which reflects the sensitivity of the growth rate to changes in the 

nutrient iron concentration [N]. For some reason, the growth of iron-deficient  cells is 

30 times less sensitive to increases in [N] than are comparable WT cells. Perhaps this 

reflects difficulties in flowing sufficient iron into iron-deficient  mitochondria to 

support robust respiratory cell growth. Why kvp is 2-fold higher in  cells is even more 

difficult to explain; it implies that the rate of vacuolar nanoparticle formation is faster in 

 cells than in WT cells. But why? The actual mechanism of vacuolar nanoparticle 

formation is undoubtedly more complicated than is represented in our current model. 

However, it is a tribute to the model that it has the ability to highlight this effect. 

 

Predictive Power of the model 

Mathematical models might have predictive power, but this is not guaranteed. 

This ability is related to how close the assumed mechanism and assigned kinetic 

parameters correspond to reality. We have attempted to make our model predictive by 

keeping it simple and well-grounded experimentally. This was a challenge given the 
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complexity of the process under investigation and the limited amount of relevant data 

available.  

Our model can be used to predict the effect of O2 on iron metabolism in yeast 

cells. It predicts that the iron in mitochondria of Yfh1-deficient cells that have been 

grown under microaerophilic conditions should predominantly be FM (i.e. NHHS Fe2+). 

We are currently examining a Yfh1-deficient strain of yeast, and found that this is indeed 

the case (data not shown). Our model also predicts that O2 should not affect vacuolar 

iron (it should still be present mainly as F3 (Fe3+) under microaerophilic conditions). 

However, this prediction is not realized by our current experiments, highlighting a 

deficiency in this particular aspect of the model. We believe that this iterative approach 

of predictiontestingremodeling will yield major new insights in understanding iron 

import, trafficking, and regulation in eukaryotic cells. We are currently using this 

approach in our studies of the Yfh1-deficient strain.  

Finally, the same strategy could be applied to model the import and trafficking of 

any micronutrient. The concentration of the nutrient (or its derivatives) in whole cells 

and in various organelles and cytosol should be known as should exponential growth 

rates. Obvious candidates include other metals such as Cu, Mn, Zn, Mo, Co. The same 

approach could be used to examine the import and trafficking of Pt anticancer drugs into 

human cells. A better understanding of how such drugs are trafficked intracellularly 

might provide new insights for treating cancer. 
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CHAPTER VI  

FERRIC IONS ACCUMULATE IN THE WALLS OF METABOLICALLY 

INACTIVATING SACCHAROMYCES CEREVISIAE CELLS AND ARE 

REDUCTIVELY MOBILIZED DURING REACTIVATION* 

 

Summary 

Mössbauer and EPR spectra of fermenting yeast cells before and after cell wall 

(CW) digestion revealed that CWs accumulated iron as cells transitioned from 

exponential to post-exponential growth. Most CW iron was mononuclear nonheme high-

spin (NHHS) Fe3+, some was diamagnetic and some was superparamagnetic. A 

significant portion of CW Fe was removable by EDTA. Simulations using an ordinary-

differential-equations-based model indicated that cells accumulate Fe as they become 

metabolically inactive. When dormant Fe-loaded cells were metabolically reactivated in 

Fe-deficient bathophenanthroline disulfonate (BPS)-treated medium, they grew using Fe 

that had been mobilized from their CWs AND using trace amounts of Fe in the Fe-

deficient medium. When grown in Fe-deficient medium, Fe-starved cells contained the 

lowest cellular Fe concentrations reported for a eukaryotic cell. During metabolic 

reactivation of Fe-loaded dormant cells, Fe3+ ions in the CWs of these cells were 

mobilized by reduction to Fe2+, followed by release from the CW and reimport into the 

cell. BPS short-circuited this process by chelating mobilized and released Fe2+ ions 

                                                 

* This work was originally published in Metallomics, reproduced from Ref # 288 with permission from the 

Royal Society of Chemistry 
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before reimport; the resulting Fe2+(BPS)3 complex adsorbed on the cell surface. NHHS 

Fe2+ ions appeared transiently during mobilization, suggesting that these ions were 

intermediates in this process. In the presence of chelators and at high pH, metabolically 

inactive cells leached CW Fe; this phenomenon probably differs from metabolic 

mobilization. The iron regulon, as reported by Fet3 levels, was not expressed during 

post-exponential conditions; Fet3p was maximally expressed in exponentially growing 

cells. Decreased expression of the iron regulon and metabolic decline combine to 

promote CW Fe accumulation. 

 

Introduction 

Although commonly considered an extracellular structure, the cell wall (CW) is 

actually an intracellular component of fungal cells (78,79,80,81). It is synthesized from 

cellular components that are under the genetic control of the cell - about 20% of the 

genes in Saccharomyces cerevisiae affect CW construction (178,179) – and the CW 

contributes to the cell's ability to survive and flourish. The CW provides structural 

support and rigidity, and it allows the cell to withstand high osmotic pressure. The CW 

allows cells to adhere to each other and to solid supports, and is involved in mating and 

morphogenesis (80). It affects the virulence of pathogenic fungi and thus has biomedical 

importance (180,83-86). 

The CW of budding yeast S. cerevisiae consists of an inner glucan frame linked 

to an outer layer of mannose-based glycoproteins (181-184). The frame includes chitin 

and β-1,3-glucans. Numerous mannose-based glycoproteins are in the outer layer, most 



 

175 

 

of which have N-linked glycosidic bonds anchored to the frame via β-1,6-glucan 

glycosylphosphatidylinositol (GPI) phosphodiester linkages (179). Mature GPI-CW 

proteins are linked to the frame via their C-termini. Their N-termini extend outward into 

the environment due to extensive glycosylation of serine and threonine residues in this 

region. 

About 80% of the proteins in the CW can be solubilized using SDS, implying 

that such proteins are not covalently linked to the frame (78-81,178-179). Most 

covalently linked manno-proteins are solubilized by gluconase. Other CW proteins are 

attached to the frame via poorly defined “alkali-sensitive linkages”; these proteins 

dissociate from the frame under alkali conditions. 

The CW constantly remodels as cells grow and divide, and its composition 

changes with the phase of the cell cycle and growth conditions. The CW acts like a filter 

to limit access of environmental species to cellular regions within the plasma membrane. 

Cell porosity refers to the degree to which such species pass through the CW and into 

the cytosol. CW porosity maximizes in the early-exponential phase of growth, and 

declines dramatically during post-exponential growth (79). Declining porosity is 

associated with increasing densities of mannan side-chains and disulfide bonds of the 

gluconase-solubilizable proteins of the outer layer. Porosity is not affected by the more 

abundant SDS-solubilizable mannoproteins. 

From the energy-dispersive TEM spectrum, Vainshtein et al.identified iron-

containing nanoparticles associated with the CW of yeast cells grown on medium 

containing high concentrations of iron (185). X-ray microanalyses suggested that these 
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particles are ferric oxides. To the best of our knowledge, this is the only published 

physical characterization of CW iron in yeast. Philpott and coworkers determined that 

ca. 40% of cellular iron is released upon treatment with Zymolyase (87), a mixture of β-

1,3-gluconase and proteases that catalyzes the disassembly of the CW and releases 

mannoproteins (186). This implies that a large percentage of cellular Fe can be found in 

the CW. The pH of the growth medium influences the amount and speciation of metals 

that accumulate in the CW (187). 

The only S. cerevisiae CW proteins known to be involved in Fe metabolism are 

the “Facilitator of Iron Transport” mannoproteins Fit1, Fit2 and Fit3 (87). These proteins 

are secreted by the cell and bound to the frame by β-1,6-glucan units through GPI 

anchors. They contain numerous serine and threonine residues that are heavily 

glycosylated. FIT1/2/3 genes are part of the Aft1/2-associated Iron Regulon (28). These 

genes are transcribed under Fe-deficient growth conditions but not under Fe-rich ones. 

Their expression levels change dramatically (60 to 230 fold) depending on the 

concentration of Fe in the medium (87). Strains lacking these proteins have difficulty 

importing Fe3+ siderophores whereas the import rates of other Fe3+ complexes are 

unaffected. Thus, the Fit1/2/3 proteins facilitate import of specific siderophores, rather 

than all Fe-species that enter the cell. Fit1/2/3-deficient strains behave as though they are 

Fe-deficient even in Fe-replete medium, another indication that these proteins help 

import Fe. Less CW Fe is found in Fit-deficient strains, again suggesting that the Fit 

proteins are involved in Fe import (87). However, other Fe import proteins must also be 

involved. Fit proteins apparently do not affect CW porosity. 
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Fe is an essential component of all eukaryotic cells. In yeast cells, environmental 

Fe must pass through the CW on its way to the cell interior. Much cytosolic Fe is 

trafficked to the mitochondria where it is used in the biosynthesis of iron-sulfur clusters 

(ISCs) and heme centers (1). Many such centers are installed into respiratory complexes 

contained within that organelle. Under Fe-sufficient and Fe-excess conditions, Fe traffics 

into vacuoles for storage (55). Mitochondria and vacuoles are the two established “hubs” 

of Fe trafficking in yeast (65). 

We recently reported that glucose-grown S. cerevisiae cells accumulate Fe in 

post-exponential stages of growth (128). Based on the spectral characteristics of the Fe 

that accumulated, we hypothesized that this Fe localized in vacuoles and/or 

mitochondria as mononuclear nonheme high-spin (NHHS) Fe3+ species and 

nanoparticles. At that time, we were unaware that the CW accumulates Fe. Once aware 

of this, we wondered whether the accumulated Fe in post-exponential cells might have 

actually localized in the CW rather than (or in addition to) vacuoles. In this paper, we 

show that this is indeed the case. Our results suggest that there are multiple types of 

Fe3+ species in the CW, and that CW Fe accumulates when metabolic activity is 

declining. CW Fe3+ is reductively mobilized and released from metabolically reactivated 

cells. Some of the resulting Fe2+ ions are reimported into such cells to support growth. 

The concentration of CW Fe is high, far greater than that found within the cytosol and 

internal organelles, indicating that the CW is a third “hub” in fungal iron trafficking. 
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Methods 

Yeast Strain and Media 

W303-1B (MATα, ura3-1, ade2-1, trp1-1, his3-11,15, leu2-3,112) cells were 

grown from frozen stocks on standard YPAD agar plates for 3-4 days. The medium 

contained 1% yeast extract, 2% peptone, 2% (w/v) glucose and 40 mg/L adenine 

hemisulfate dihydrate. Single colonies were used to inoculate YPD medium. YPD-

grown cells were used to inoculate synthetic minimal medium (MM) prepared as 

described (41) with 40 μM 57Fe3+ citrate added (128). We will refer to this medium 

as 57Fe40B0, where the superscript indicates the Fe isotope used, the first subscript 

indicates the final concentration of added Fe-citrate in μM, and the last subscript 

indicates the final concentration (also in μM) of added bathophenanthroline disulfonate 

(BPS). The Fe2+ chelator BPS is commonly used to generate Fe-deficient medium. Other 

MM-based media used include 56Fe40B0, 
57Fe1B21, Fe0B30, Fe0B100, Fe0B0, and Fe0B100-

NAB (Table S1). NAB indicates medium prepared with No Amino acids or Bases. Sterile 

deionized water (DW) was also used as a medium into which cells were inoculated. 

 

Fe-loaded and Fe Starved Cells 

A colony was used to inoculate 50 mL of YPD medium, and cells were grown in 

a shaker at ∼ 150 rpm and 30 °C until OD600 = 1.0. An aliquot was transferred 

to 57Fe40B0 medium, achieving OD600= 0.01. Cells grown for 5 days will be called Fe-

loaded or post-exponential. Another aliquot was added to 57Fe1B21 medium, again 
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attaining OD600 = 0.01. Cells harvested after 15 hrs (OD600≈ 1.0) or 5 days will be 

called Fe-starved. 

 

Cell manipulations and spectroscopy 

Cells were harvested by spinning at 2,500×g for 5 min. Cells were washed 3 

times with chilled 100 μM EDTA in 150 μM Tris pH 8.0 followed by 3 washings with 

chilled DW. Resulting cells were packed into 5 mm OD tubes by centrifugation at 

4,000×g for 5 min using an ultracentrifuge (Beckman Coulter Optima L-90K) and 

swinging-bucket rotor (SW 32 Ti). For metal analysis, packed cells were resuspended 

with an equal volume of DW. Resulting suspensions were incubated overnight in 200 μL 

of 30% trace-metal grade HNO3 (Fisher Scientific) at 95 °C, and then diluted with DW 

before analysis. Fe concentrations were measured by ICP-MS (Agilent 7700×) as 

described (146). A cell packing efficiency of 70% was used (50). Western Blots were 

performed as described (128). 

For Mössbauer (MB) studies, cells were loaded into MB cups by centrifugation 

at 5,000×g for 5 min and frozen in liquid N2. MB spectra were collected on either a 

model MS4 WRC or LHe6T spectrometer (SEE Co., Edina, MN). Both instruments 

were calibrated using α-Fe foil at RT. For UV-vis studies, packed cells were diluted with 

an equal volume of DW and then transferred to a 2 mm pathlength quartz cuvette (NSG 

Precision Cells, Inc.). Spectra were recorded on a Hitachi 3010 spectrometer possessing 

a Head-On photomultiplier tube. Absorbances were measured 6 times and results were 
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averaged and multiplied by 5 to yield the value expected if a 10 mm rather than a 2 mm 

path-length cuvette had been used. 

 

Dissolved O2 concentrations 

An O2 probe (24″ long FOXY-T-1000-RTD, Ocean Optics Inc, Dunedin FL) was 

placed in an iron-free custom glass/titanium bioreactor filled with 24 L 

of 57Fe40B0 medium at 30 °C. The reactor was inoculated with cells that had been grown 

overnight in YPAD similarly supplemented. Standard purity O2 gas was bubbled into the 

bioreactor at a fixed rate of ca. 500 mL/min. The paddle stir-rate was ca. 100 RPM. 

 

Measuring CW Fe release 

Cells were grown in the bioreactor for 5 days and then centrifuged and washed 

twice with water to remove residual medium. Cells were resuspended in water and 

aliquots were transferred into 50 mL plastic screw-top vials. The vials were centrifuged 

to yield pellets the volumes of which (ca. 5 mL) were determined from the height of the 

pellet and the mass of water needed to fill the vial to that height (after the experiment). 

The volume of the pellet was corrected for packing efficiency. Various treatment buffers 

(40 mL) were added to each tube at time 0, including: water, 100 μM EDTA (prepared in 

150 μM Tris buffer pH 8.0), and 100 μM EDTA plus lyticase (Sigma; 1000 U of lyticase 

activity per gram of wet packed cell in tube) in SP buffer (1.2 M sorbitol in 50 mM 

potassium phosphate pH 7.4). At 10 min intervals, 2 mL of solution were removed from 

each tube and transferred to microfuge tubes and centrifuged. Supernatants were saved 
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for metal analysis and pellets were washed twice with triple-distilled water or SP buffer 

(lyticase samples) that lacked chelators or lyticase. The volumes of these pellets and 

supernatants were measured, and Fe, Mn, Cu, and Zn concentrations were determined. 

At each buffer condition, the relationship Vpell•[Fepell] + Vsup•[Fesup] equalled a constant 

number of moles at each time point within an error of ± 10%. 

 

Results and Discussion 

Mössbauer and EPR characterization of iron-loaded post-exponential cells before and 

after CW digestion 

Iron accumulates in glucose-grown yeast cells as they transition from exponential 

to post-exponential growth (128). To test whether that Fe accumulated in the CW, we 

grew WT cells in 57Fe40B0medium and harvested them during exponential (OD600 = 0.2, 

0.4, and 0.7) and post-exponential (OD600 = 1.5, 5 days after inoculating) growth phases. 

Cells were washed 3 times with water, 100 μM EDTA, or EDTA plus lyticase, an 

enzyme that, like zymolyase, digests CWs. 
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Figure 6.1: Low field (0.05 T) low temperature (5 K) Mössbauer spectra of whole intact fermenting 

WT cells grown on 57Fe40B0 medium and harvested at different growth stages. (A) Harvested at 

OD600 = 0.4 (exponential stage) and washed with water; (B) harvested at OD600 = 0.7 (exponential 

stage) and washed with water; (C) same as B except treated with lyticase/EDTA; (D) black trace, 

harvested at OD600 = 1.5 (postexponential stage; 5 days) and water washed; (E) same as D except washed 

with EDTA; (F) same as D and E except treated with lyticase/EDTA. Red and blue trace in D are the same 

spectra as shown in E and F, respectively, scaled to the spectrum in black. Solid red line in A is a 

simulation consisting of NHHS S = 5/2 Fe3+ from vacuoles (green line; 74%; δ= 0.52 mm   s-1; DEQ = 

0.38 mm s-1; Aiso/gnbn = _228 kG; D = 0.5 cm-1; E/D = 0.33; Z = 3; Γ=0.7mms-1), HS Heme Fe2+ 

(orange line: δ=0.8mms-1; ΔEQ=2.4mms-1; G = 0.3 mm s-1), central doublet (gold line: δ = 0.45 mm s-1; 

ΔEQ = 1.15 mm s-1;Γ= 0.7mm s-1), and NHHS Fe2+ (purple line: δ = 1.26 mm s-1; ΔEQ = 3.0 mm s-1; Γ = 

0.6 mm s-1). The Y-axis scale for A, B, and C are the same. 
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Low-temperature (5 K), low-field (0.05 T) MB spectra of cells harvested at 

different times during exponential phase and washed in water (Figure 1, A and B) were 

similar to each other and to previous spectra of cells harvested in this growth phase 

(128). Exponential cells washed with EDTA exhibited similar spectra (data not shown). 

Spectra were dominated by a sextet due to NHHS Fe3+ in the vacuole (Figure 1, green 

line) followed by a central quadrupole doublet (gold line) due mainly to 

[Fe4S4]
2+ clusters and LS Fe2+ heme centers in mitochondria (13). Minor quadrupole 

doublets due to HS Fe2+ heme (orange line) and NHHS Fe2+ (purple line) were also 

evident. The average concentration of Fe in these samples was 370 ± 170 μM. Cellular 

Mn, Cu and Zn concentrations were also determined (Table 1). A portion of freshly 

harvested exponentially grown cells were treated with lyticase, but this had no 

significant effect on the spectrum (Figure 1C), suggesting that little if any Fe 

accumulated in the CWs of exponentially growing cells. 
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Table 6.1. Metal concentrations of WT cells grown to exponential and post-exponential phases, and 

subsequently treated with EDTA or lyticase. Concentrations are in µM. The MB spectrum of cells 

harvested 5 days after inoculation, in post-exponential mode, exhibited a percent effect 10-times greater 

than that of cells harvested during exponential growth (Figure 1D, black trace). Subsequent ICP-MS 

analysis indicated that such cells were indeed loaded with Fe (Table 1). Cells from the same harvest but 

treated with lyticase/EDTA and then washed 3 times with SP buffer afforded a MB spectrum (Figure 1, D 

and F, blue traces) that was only ca. 10% as intense as that of water-washed cells. Similar cells treated 

with EDTA alone exhibited a spectrum (Figure 1, D and E, red line) that was less intense than water-

washed cells but more intense than those washed with lyticase/EDTA 

OD600  Treatment [Fe] [Mn] [Cu] [Zn] 

0.2 Water 230 14 22 320 

0.4 Water 190 12 24 440 

0.7 Water 590 10 24 560 

0.7 Lyticase/EDTA 480 13 21 420 

1.5 Water 7400 12 32 620 

1.6 EDTA 4400 9 24 510 

1.5 Lyticase/EDTA 1800 8 30 600 

 

 

 

 

After the MB spectra of Figure 1 (and Figures 4 and and 5 see below) were 

collected, samples were pulverized and packed into EPR tubes while being kept in or 

directly above liquid N2. The 10 K X-band EPR spectrum of post-exponential cells 

showed dramatic changes upon lyticase/EDTA treatment (Figure 2, A vs. C). The 

spectrum of the water-washed sample (Figure 2A) exhibited intense features at g = 4.3 

and in the g = 2 region. The g = 4.3 signal is typical of paramagnetic NHHS Fe3+ species 

with rhombic symmetry. The signal in the g = 2 region was unusually broad as is typical 
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of Fe3+ oxyhydroxide nanoparticles found in mitochondria of yeast that are defective in 

ISC-related processes (188,15,51). The intensity at g = 4.3 was significantly diminished 

and the broad g = 2 signal was absent in the spectrum of the lyticase/EDTA-treated 

sample (Figure 2C). The EPR spectrum of the sample treated only with EDTA (Figure 

2B) was also devoid of the broad g = 2 signal and the integrated intensity of the sharper 

g = 4.3 derivative signal was reduced relative to that in the spectrum of water-washed 

cells. The decline in the intensity of these signals upon lyticase treatment suggests that 

CW Fe is heterogeneous, with mononuclear NHHS Fe3+ affording the g = 4.3 signal and 

superparamagnetic Fe3+nanoparticles affording the broad g = 2 signal. 

 

 

 

Figure 6.2: 10 K X-band EPR spectra of whole intact fermenting yeast cells. (A) Treated with water; 

(B) treated with EDTA; (C) treated with EDTA/lyticase. Other EPR conditions: microwave power, 0.2 

mW; microwave frequency, 9.645 GHz; modulation amplitude, 9.2 G; sweep time, 160 s. Samples were 

the same as those used to generate Fig. 1D, E, and F, respectively, obtained by transferring samples from 

MB holder to EPR tubes while maintained near 77 K. 
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The concentration of cellular Fe after lyticase-treatment was about 24% of that in 

water-washed cells (Table 1). Interestingly, the concentrations of Mn, Cu, and Zn 

did not increase in post-exponential cells, relative to concentrations of the same metals 

in exponential cells, and the concentrations of the same metals did not decline upon 

lyticase treatment. We conclude that Fe (but not Cu, Mn, or Zn) accumulates in the CW 

of post-exponential (but not exponential) cells and that the majority (75% - 90%) of the 

Fe in those cells is located in the CW. 

 

Rate of O2-dependent metabolism declines in post-exponential cells 

To evaluate whether post-exponential cells are metabolically active, we 

simultaneously measured cell density, as reported by OD600, and dissolved [O2] in the 

growth medium vs. time after inoculating 24 L of minimal medium with cells that had 

been grown overnight in YPAD. [O2] consumption was used as a reporter of metabolic 

activity. O2 gas was bubbled into the bioreactor at a fixed rate, with temperature and stir 

conditions also fixed. The resulting OD600trace (Figure 3, green dots) exhibited a lag 

phase followed by exponential growth and then a transition into the post-exponential 

state. The corresponding traces of dissolved [O2] (Figure 3, red dots) began high 

(because the reactor contained few cells and the bubbling rate was fast) and then 

declined as the concentration of cells and O2 consumption increased (overpowering the 

fixed bubbling rate). Towards the end of the experiment, dissolved [O2] gradually 

returned to near its initial concentration. 
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Figure 6.3: Model of cell growth and O2 consumption in a batch culture of WT fermenting S. 

cerevisiae. Upper panel: Plots of OD600 and [O2] in 57Fe40B0 medium vs. time after inoculation. Data 

are solid green (OD600) and red (O2) circles. Simulations are green (total cells), yellow (active cells), 

black (dormant cells), blue (nutrient concentration) and red (O2 concentration) lines. Lower panel: 

Chemical model showing generation of O2, consumption of O2 by active cells, self-replication of active 

cells, and interconversion of active and dormant cells as regulated by the nutrient concentration. 

 

 

 

 

 



 

188 

 

This final return of [O2] to near its initial concentration indicated that 

metabolically active cells converted into an inactive dormant state when nutrients 

became scarce. We assumed this in a chemical model (Figure 3, bottom and Table 2) in 

which metabolically active cells (CellA) self-replicate and metabolize O2 along with a 

hypothesized nutrient N. Dormant cells (CellD) were assumed only to convert into active 

cells when [N] levels were sufficiently high. This model was translated into ordinary 

differential equations (ODEs) [1] – [4]. 
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Reg-N functions (154) were used to regulate the rate at which metabolically active 

cells became dormant and dormant cells became active. Selecting initial parameters was 

complicated because the concentration of total cells at each time was unknown, as were 

the identity and concentration of N. For simplicity, we assigned cell concentration to 

units of OD600, such that the initial cell concentration was taken as 0.01 (the OD600 at the 

time of inoculation) and the final concentration was taken as 1.4 (OD600 at the time of 

harvesting). Given the assumed stoichiometry that 1 Nis required to generate 1 
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CellA (Table 2) and the need for a dramatic decline in [N] to prompt the conversion from 

CellA → CellD, we selected initial [N]0 = 1.5, just greater than the final OD600. This 

concentration was high enough to generate all of the cells in the experiment but low 

enough to decline dramatically (percentagewise) during the time-course of the 

experiment. 

  

 

Table 6.2. Model Reactions, Parameters and Sensitivities. Sensitivities were determined as described 

(154). 
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ODEs [1] – [4] were numerically integrated using the NDSolve routine 

in Mathematica 9 (http:\\www.wolfram.com). The model was optimized by adjusting 

parameters ka, kb, kd, km, ko, [N]sp, and sen (Table 2), minimizing the RMSD function 

defined in Appendix A (Electronic Supplementary Information) to the value 0.016. 

Simulations (Figure 3, upper panel, solid lines) fit the data acceptably well. The cells 

used to inoculate the culture were assumed to be dormant (CellD), so that their 

conversion to active cells (CellA) could generate the observed lag phase that preceded 

exponential growth. Self-replication of active cells and the consumption of O2 were the 

most sensitive reactions of the model, whereas the activation of dormant cells was the 

least sensitive (Table 2). The increase of dormant cells correlated well with the 

accumulation of large quantities of CW Fe. We conclude that cells accumulate Fe in 

their walls as they become metabolically inactive. 

 

Cell wall iron consists of a heterogeneous distribution of Fe3+ species 

To characterize CW iron further, we collected MB spectra of Fe-loaded dormant 

cells at 5, 15, 25, 50, 75, 100, and 150 K (all at 0.05 T parallel-applied magnetic 

field, Figure 4, A - G) and at perpendicular-applied magnetic fields of 0, 0.75, 1.5, 3, and 

6 T (all at 4.2 K, Figure 5). We also collected X-band EPR spectra of such cells at 10, 

20, 40 and 80 K (Figure 6, red, yellow, green, and blue lines, respectively). MB spectra 

were composed of sextet and doublet species, with the sextet representing the majority. 

Given the results of Figure 1 and Table 1, we presumed that all of the spectral absorption 

was due to CW Fe, and that the sextet and doublet arose from a paramagnetic S = 5/2 
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Fe3+ species and a diamagnetic S = 0 species, respectively. A small contribution to the 

sextet intensity was probably due to vacuolar mononuclear NHHS Fe3+ (S = 5/2) but this 

contribution could not be distinguished from the dominating CW Fe3+. A small 

contribution to the doublet intensity was probably due to superparamagnetic 

Fe3+ oxyhydroxide nanoparticles. (A portion of the doublet intensity could have arisen 

from an integer spin species with a very small hyperfine field, but this seems unlikely.) 

Any central doublet due to mitochondrial [Fe4S4]
2+ clusters and LS Fe2+ hemes was 

undetectable due to the dominance of the CW Fe and so we made no attempt to take this 

feature into account. The high-energy line due to HS Fe2+ heme, representing a few 

percent of the overall spectral absorption, was observed at low temperatures, but this was 

also ignored in fitting. 
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Figure 6.4: Temperature-dependent Mössbauer spectra of 57Fe-loaded cells (water washed). (A) 5; 

(B) 15; (C) 25; (D) 50; (E) 75; (F) 100; (G) 150 (all in K). A field of 0.05 T was applied parallel to the 

gamma radiation. The sample used was the same as in Fig. 1D. Overall simulations (red lines in A and F) 

were the sum of two simulated spectra, including an S = 5/2 species (Aiso/gnbn = -226 ±2 kG, D = 0.001 

±0.04 cm-1, E/D=0.26± 0.06, δ=0.52mms-1, ΔEQ=0.3±0.1mm s-1, η = 1–5 and Γ = 0.4–1.0 mm s-1) 

representing 60–70% of spectral intensity, and an S = 0 species (δ = 0.52mm s-1, ΔEQ = 0.47 mm s-1 and Γ 

=0.4–0.6 mm s-1 representing 25–36% of spectral intensity. With increasing temperature, spectral features 

broadened. 
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Figure 6.5: Variable-field 4.2 K Mössbauer spectra of 57Fe-loaded (water washed) cells. (A) 0; (B) 

0.75; (C) 1.5; (D) 3.0, and (E) 6.0 (all in T). Fields were applied perpendicular to the gamma radiation. 

Overall simulations (red lines) were generated using the same model as in the Fig. 4 legend. The sample 

was the same as used in Fig. 1D and 4. The simulation in A assumed an applied field of 0.02 T. 
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At 4.2 K and 0.05 T, diamagnetic and superparamagnetic species could not be 

distinguished. Collectively they represented ca. 30% of spectral intensity. As the 

temperature was raised, the shape of the spectra changed but the intensity ratio of the 

sextet to the main doublet remained about the same. This suggested that any 

superparamagnetic Fe contribution associated with the doublet has a Blocking 

temperature TB ≪ 4.2 K. At high applied fields (e.g. Figure 5E), a superparamagnetic 

species will magnetically split depending on the hyperfine field, whereas diamagnetic 

species will not do this. Thus we assigned the ill-resolved region in the middle of the 4.2 

K, 6T spectrum to diamagnetic species. Simulation of this region with an S = 0 

Hamiltonian indicated that ca. 20% spectral intensity was due to diamagnetic species. 

This implies that the superparamagnetic species accounts for ca. 10% of spectral 

intensity. This low percentage, along with the broad distribution in hyperfine fields, 

made it impossible to reliably simulate the superparamagnetic species at high field. 

The sample was transferred from a Mössbauer cup to an EPR tube while maintaining it 

at or near liquid N2 temperatures. The sample exhibited a g = 4.3 EPR signal due to the 

H.S Fe3+ species. The signal exhibited Curie-Law behavior in that the intensity of the 

product of signal intensity·temperature (S·T) was invariant between 10 K and 80 K 

(Figure 6). The broad g = 2 signal, which we assign to the superparamagnetic species, 

also seemed to exhibit Curie-Law behavior although there was a modest decrease in S·T 

at low T. 
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Figure 6.6: Temperature-dependent EPR spectra of 57Fe-loaded cells (water washed). Low-field 

spectra show the g = 4.3 signal while high-field spectra exhibit a broad g = 2 signal. Spectra were 

collected at 10 K (red line), 20 K (yellow), 40 K (green), and 80 K (blue). Signal intensities have been 

multiplied by temperature. The sample used was the same as in Fig. 1D, 4 and 5. Microwave power was 2 

mW and 0.2 mW for the low- and high-field spectra, respectively. Other conditions were as in Fig. 2. 

 

 

 

 

Compare the spectroscopic properties of the superparamagnetic nanoparticles to 

those of the 2 - 4 nm diameter nanoparticles in Yah1-depleted mitochondria (15). In 

Yah1-depleted cells, the superparamagnetic doublet had δ = 0.52 mm/s and ΔEQ = 0.62 

mm/s at 5 K; here, δ = 0.38 mm/s and ΔEQ = 0.50 mm/s. Like the current 

superparamagnetic species, Yah1-depleted nanoparticles had TB ≪ 5 K such that a 

superparamagnetic doublet was observed at all temperatures > 4.2 K. The EPR spectrum 

associated with nanoparticles from Yah1-depleted mitochondria also exhibited a broad g 

= 2 feature with anti-Curie-Law behavior. However, the inverse-temperature effect was 



 

196 

 

more dramatic for the nanoparticles of Yah1-depleted mitochondria than what we 

observed here. 

 

Kinetics of cell wall iron release by chelation and enzymatic digestion 

The experiments of Figure 1 show that CW Fe can be released under different 

wash conditions. To evaluate the rate of Fe release, we measured the concentration of 

cellular Fe as a function of time after treating Fe-loaded cells with water, EDTA at pH 8, 

or lyticase/EDTA at pH 8. We also monitored the concentration of Fe released into the 

medium. In all trials, we could account for > 90% of the released Fe. About 80% of CW 

Fe was removed by treating the cells with lyticase/EDTA for 1 hr (Figure 7, blue lines). 

The reaction was almost completed in 30 min. Equivalent treatment with EDTA alone 

(red lines) was less effective whereas treatment with water alone (black lines) was 

essentially ineffective. These results are qualitatively congruent with the MB/EPR 

experiments described above (however, the MB study suggests that EDTA is less 

effective in removing CW Fe, compared to EDTA/lyticase treatment, relative to the 

results of Figure 7). Similar results were obtained using EGTA rather than EDTA (data 

not shown). We estimate that over half of the CW Fe in dormant cells can be removed 

reasonably well by chelators such as EDTA at pH 8; this estimate assumes that all CW 

Fe is removed by enzymatic digestion. 
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Figure 6.7: Iron concentrations in WT post-exponential cells and the corresponding washes after 

various treatments. (A) [Fe]cell; (B) [Fe]wash. Data are solid circles. Black, washed with water only; 

red, washed with EDTA only; blue, washed with lyticase and EDTA. 

 

 

 

 

 

Metabolically Reactivated Fe-loaded cells grow using Fe mobilized from their internal 

stores AND from Fe in the medium, including trace levels of Fe in Fe-deficient 

medium 

To evaluate whether cells can utilize their internal Fe stores for growth, we grew 

cells on 57Fe40B0 medium for 4 days (into stationary phase). After washing 3 times with 

100 μM EDTA at pH 7, the resulting metabolically inactive 57Fe-loaded cells contained 

4.1 ± 0.4 mM Fe (n = 3) (less CW Fe is removed by EDTA at lower pH). 

These 57Fe-loaded cells were used to inoculate Fe-deficient Fe0B30medium, yielding 

OD600 ≈ 0.01 at the start of the experiment. The 30 μM concentration of BPS in the 

medium was >30 times that required to coordinate all cellular Fe and endogenous Fe in 
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the medium. The 57Fe-loaded cells in this experiment grew slowly, exhibiting a minimal 

doubling time (DT) of 4.8 hr (Figure 8A, solid circles). In contrast, cells growing on Fe-

sufficient minimal medium replicate ∼ every 2 hr (128). After 3 - 4 days, the culture that 

had been inoculated with 57Fe-loaded cells reached a final OD600 of 1.6 ± 0.3 (n = 2), 

slightly less than the final OD600= 2 attained by cells grown in standard Fe40B0 medium. 

The stationary-state cells contained only 57 ± 7 μM Fe (n = 2). In contrast, cells on the 

Fe-sufficient medium and harvested under exponential growth conditions contain 300 - 

400 μM Fe (128). 
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Figure 6.8: Growth of Fe-loaded or Fe-starved cells after transfer to various media. Solid circles, Fe-

loaded cells transferred to Fe0B30 medium. Open circles, Fe-starved cells transferred to Fe0B30 medium. 

Solid triangles, Fe-loaded cells transferred to Fe0B100. Open triangles, Fe-starved cells transferred to 

Fe0B100 medium. Panel B, growth of Fe-loaded cells transferred to various media inoculated at conserved 

cell density. Solid squares, transferred to 57Fe40B0 medium. Open squares, transferred to Fe0B100 

medium. Crosses, transferred to Fe0B100-NAB medium. Panel C, same as panel B, but a different 

experiment. Solid squares, transferred to 56Fe40B0 medium. Open squares, transferred to Fe0B100 

medium. Solid diamonds, transferred to Fe0B0 medium. Open diamonds, transferred to DW. 

 



 

200 

 

Had the 57Fe-loaded cells exclusively used their intracellular stores of 57Fe for 

growth, and not import any 56Fe from the Fe-deficient medium, they should have 

doubled 6 times and then stopped growing (4100μM ÷ (2)6 ≈ 57μM). The observed 

OD600 change indicates that they actually stopped growing after ∼ 7 doublings (1.6 ÷ 

(2)7 ≈ 0.01). This implies that about half of the Fe used by these cells originated from 

their 57Fe stores and half from the tiny amount of endogenous 56Fe in the 

Fe0B30 medium. This result was surprising because yeast cells are commonly thought to 

be unable to grow on Fe-deficient medium treated with BPS. If the endogenous Fe in 

BPS-treated medium is chelatable by (and kinetically accessible to) BPS, the tight-

binding nature of the Fe2+(BPS)3 complex implies that virtually all endogenous Fe in the 

medium should have been chelated by BPS. Perhaps some fraction of the endogenous Fe 

is inaccessible to BPS yet can be imported and used by cells. 

A second batch of 57Fe-loaded cells with an [56Fe]/[57Fe] isotope ratio estimated 

at ca. 0.05 was transferred to Fe0B30 medium, achieving an initial OD600 = 0.01. After 7 

doublings the resulting 56Fe/57Fe ratio in the harvested cells was 1.0 (25 μM 56Fe and 24 

μM 57Fe). The increase in cellular 56Fe must have originated from the trace amounts 

of 56Fe in the Fe0B30 medium as there was no other source of 56Fe in the experiment. In a 

third experiment, 56Fe-loaded cells were used to inoculate Fe0B30 medium. In this case, 

the final 56Fe/57Fe ratio in the harvested cells was 44 (62 μM 56Fe and 1.4 μM 57Fe), 

again consistent with the import of endogenous 56Fe from Fe-deficient media. In both 

cases, the final [56Fe]/[57Fe] ratios in the harvested cells reflected the relative amounts of 

the Fe isotopes in the Fe-loaded cells and in the endogenous Fe in the medium. We 



 

201 

 

conclude that Fe-loaded yeast cells can grow on their internal Fe stores AND on trace 

amounts of endogenous Fe present in Fe-deficient medium. 

 

Metabolically reactivated cells mobilize cell wall Fe3+ species 

We wanted to identify the type of internal Fe stores that are used by Fe-loaded 

cells to grow on Fe-deficient medium. Our approach was to use MB spectroscopy. 57Fe-

loaded cells were transferred into 3 different media, namely 57Fe40B0 (the control for 

which Fe stores should not be used), Fe0B100 (Fe-deficient, for which Fe stores should be 

used), and Fe0B100-NAB. The last medium was designed to prevent cells from growing 

in an iron-deficient environment, thereby eliminating the effects of cell growth and 

metabolic activity. In these experiments, the amount of Fe-loaded cells used to inoculate 

fresh media was much greater than in the first set of experiments, such that the 

OD600 immediately after inoculation was approximately equal to the OD600 when the Fe-

loaded cells (used for that inoculation) had been previously harvested. This allowed MB 

spectroscopy (which requires large quantities of cells) to monitor changes in cellular Fe 

content. 

The 57Fe-loaded cells initially contained 4.9 ± 1.5 mM Fe (n = 2). Surprisingly, 

the cells grew equally well on 57Fe40B0 and Fe0B100media. Thus, cells that were loaded 

with Fe in their CWs and vacuoles grew as fast and to the same final extent in Fe-

deficient media as they did in Fe-rich media; i.e. the absence of Fe in the medium did not 

limit the growth rate. The OD600 of these cultures increased from 1.7 at the time of 
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inoculation to 3.6 after 24 hr of growth (Figure 8B, solid and open squares, 

respectively). 

Despite the same growth rate, the concentration of Fe in the resulting harvested 

cells was quite different. The cells harvested from the 57Fe40B0 medium contained 3.9 ± 

0.9 mM Fe while those harvested from the Fe0B100 medium contained 1.3 ± 0.4 mM Fe 

(n = 2 for each condition). If dilution due to cell growth was the only factor affecting 

these final cellular Fe concentrations (i.e. if Fe had not been imported from or exported 

to the environment), the 57Fe40B0–grown cells would have contained 2.3 mM Fe after the 

24 hr incubation. The fact that they contained more Fe indicates that they (not 

surprisingly) imported Fe from Fe-rich Fe40B0medium. Thus, cells import environmental 

Fe even if they are not growth-limited by Fe. 

The Fe concentration in the cells harvested from Fe0B100 medium was 1.8-

fold less than that expected if they had grown and divided exclusively using their own Fe 

stores. Where did the rest of their Fe stores go? The simplest interpretation is that the Fe-

loaded cells mobilized and released ∼ 40% of their internal Fe stores when incubated in 

Fe-deficient medium for 24 hrs. We will show below that some of the released Fe 

coordinated to BPS and that the resulting Fe2+(BPS)3 complexes adsorbed onto cell 

surfaces. Counting this absorbed Fe as part of the Fe that was mobilized suggests that 

these cells actually mobilized much more than 40% of their internal Fe stores during 

growth after dormancy. Some of the mobilized Fe remained in the growth medium, some 

coordinated to BPS, and some was reimported into the cell. Only this latter portion 

supported cell growth. We conclude that a large portion of cellular Fe in post-
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exponential Fe-loaded (dormant) cells is rapidly mobilized when such cells are 

metabolically reactivated. 

The 57Fe-loaded cells that were transferred into Fe0B100-NAB medium barely 

grew during the same 24 hr period; the OD600 of the culture increased from 1.7 → 1.9 

(Figure 8B, crosses) whereas the concentration of Fe in these cells declined to 2.9 ± 0.9 

mM (n = 2). The extent of Fe loss was greater than could be explained by the effects of 

growth-associated dilution. Dilution would have caused the Fe concentration to decline 

only to ∼ 4.3 mM. Thus, nearly 30% of the Fe in the Fe-loaded cells must have been 

released and used to support growth after those cells were transferred to Fe-deficient 

medium. 
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Figure 6.9: Mössbauer spectra (5 K, 0.05 T) of whole WT yeast cells before (A) and after (B–E) 

switching growth media. Results from this experiment are also presented in Fig. 8B. (A) Fe-loaded cells. 

The blue line is a simulation of Fe3+ nanoparticles (δ = 0.53 mm s_1; ΔEQ = 0.52mm s-1; Γ = 0.45mm s-

1). The red line is a composite simulation including 20% absorption due to nanoparticles and 65% to 

NHHS Fe3+ (Aiso/gnbn = -235 kG; E/D = 0.33; D = 1.15 cm-1; δ = 0.55mms-1; ΔEQ = 0 mms-1; Γ = 

0.8mms-1). (B) Fe-loaded cells 5 days after being transferred to Fe0B100. Red line is a composite 

simulation including NHHS Fe3+ and the quadrupole doublet due to 57Fe2+(BPS)3. Simulation 

parameters are given in Table S3 (ESI†). (C) Same as B but after removing the quadrupole doublet due to 

57Fe2+(BPS)3. The green line is a simulation of the NHHS Fe2+ doublet and the red line is a composite 

simulation defined in Table S3 (ESI†). (D) Fe-loaded cells 1 day after being transferred to Fe0B100-NAB 

medium. Red line is a composite simulation. (E) Same as D but after removing the quadrupole doublet due 

to Fe2+(BPS)3. Green and maroon lines are simulations of the two NHHS Fe2+ species described in the 

text. The red line is a composite simulation. 
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We then used MB spectroscopy to investigate the type(s) of Fe centers mobilized 

by Fe-loaded cells when such cells are grown on Fe-deficient media. The low-

temperature low-field MB spectrum of 57Fe-loaded cells (Figure 9A) was dominated by 

a sextet representing 65% of total spectral intensity. A similar feature is present in the 

spectra of Figure 1D and 4A which we have shown to be due to CW Fe. This sextet was 

similar to that arising from vacuolar Fe (189) which is why we previously assigned it as 

such (128). Another 10% of the spectral intensity was due to a quadrupole doublet in the 

center of the spectrum (simulated by the blue line in Figure 9A). Both features are 

simulated collectively by the solid red line. The minor differences in simulation 

parameters relative to those used to fit the spectra of Figures 4 and 5 may reflect batch-

to-batch variation as well as uncertainties caused by fitting overlapping spectral features. 

Some of the intensity of Figure 9Aappears to be due to broad, unresolved and poorly 

characterized magnetic features similar to those described previously (128). MB 

parameters and total Fe concentrations for these samples are listed in Table S3. 

The MB spectrum of 57Fe-loaded cells that had grown for 24 hr on 

Fe0B100 medium (Figure 9B) was dominated by a narrow quadrupole doublet arising 

from the 57Fe2+(BPS)3 complex. This doublet, which represented 60% of spectral 

intensity, was simulated by the dotted line with δ = 0.38 mm/s and ΔEQ = 0.30 mm/s 

(13). Another 27% of the intensity arose from a NHHS Fe3+sextet, and another 10% 

from NHHS Fe2+ species (with δ = 1.3 mm/s and ΔEQ = 3.0 mm/s). These two minor 

features are highlighted by removing the dominating Fe2+(BPS)3 doublet contribution 

(Figure 9C). The NHHS Fe2+ doublet is simulated by the green line. The sextet in the 
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spectrum of Figure 9C is only ∼ 10% as intense as that in the spectrum of Fe-loaded 

cells (consistent with it originating from vacuolar NHHS Fe3+). We conclude that most 

(ca. 90%) of the Fe3+ species associated with the CW of Fe-loaded cells was mobilized. 

Some of this Fe helped cells grow on Fe-deficient Fe0B100 medium, some formed a 

complex with BPS, and some remained in solution. 

The presence of the 57Fe2+(BPS)3 doublet in the spectrum of Figure 9B would be 

easily explained had the cells been grown on BPS medium containing 57Fe. BPS is a 

membrane-impermeable Fe2+ chelator that turns cells pink due to the formation of 

Fe2+(BPS)3 on the CW and/or cell membrane surface (see SI of (190)). However, the 

cells used to generate the spectrum of Figure 9Bwere initially loaded with 57Fe and then 

transferred to medium that was essentially devoid of Fe (virtually all of the trace 

endogenous Fe was 56Fe). This demonstrates that the 57Fe used to generate 

the 57Fe2+(BPS)3 complex in this sample originated from 57Fe that had been associated 

with the CW of 57Fe-loaded cells that were used to inoculate the Fe0B100 culture. It also 

supports our earlier conclusion that Fe-loaded yeast cells can utilize their CW Fe for 

growth on Fe-deficient medium. Since BPS binds Fe2+ tightly, these results indicate 

that mobilizing CW Fe3+ species involves reducing it to the Fe2+ state prior to BPS 

coordination. 

The Fe-loaded cells that barely grew on Fe0B100-NAB medium exhibited a MB 

spectrum (Figure 9D) that was similar to that of Fe-loaded cells that had been transferred 

to Fe0B100 medium and harvested after 24 hr. Major spectral components were due to 

Fe2+(BPS)3 (48%), NHHS Fe3+ (24%), and two NHHS Fe2+ species (δ = 1.3 mm/s, 
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ΔEQ = 3.0 mm/s, 10%; δ = 1.1 mm/s and ΔEQ = 3.8 mm/s, 16%; green and maroon lines, 

respectively, in Figure 9E). The latter two doublets arise from a lack of adenine in the 

medium (191). Under adenine-deficient conditions, ADE2 mutant strains such as the one 

used in this study turn pink and accumulate two types of NHHS Fe2+ species called 

Fe2+
ON and Fe2+

ONS. Since adenine was not supplemented in the Fe0B100-NAB medium, 

the spectra of these cells included these doublets. 

MB spectra of Fe-loaded cells that had been incubated for 24 hr in Fe-deficient 

medium were dominated by the Fe2+(BPS)3 doublet. We suspect that this complex was 

adsorbed on the CW. Waste solutions obtained by washing such cells 3 times with 

EDTA-containing water and then 3 times in DW were pink due to the leaching of 

Fe2+(BPS)3 complex from the CW. We calculate that 30% – 40% of the CW Fe was 

washed away by these rinses. Additional washings were progressively less effective. The 

Fe2+(BPS)3 doublet observed in MB spectra arose from Fe2+(BPS)3complexes that 

remained on the CW after such washings. 

 

Iron-starved cells can extract endogenous iron from Fe-deficient growth medium but 

their growth rate and extent of growth is diminished 

Iron-starved cells should not grow as well on Fe-deficient medium as Fe-loaded 

cells since they lack Fe stores. To test this idea, Fe-starved cells were inoculated 

into 57Fe1B21 medium, which is essentially Fe-deficient medium but supplemented with a 

small amount of 57Fe. The cells grew for 15 hr, achieving an OD600 ≈ 1.0. They 

contained 130 ± 20 μM 57Fe (n = 2) upon harvesting. Although this was a moderate 
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concentration of Fe, these cells were still “Fe-starved” relative to Fe-loaded cells which 

contain ≥ 4 mM Fe. Similar Fe concentrations have been observed previously in Fe-

starved cells (65). In the previous study, MB spectroscopy revealed that the Fe in these 

cells was mainly in the form of mitochondrial Fe-S clusters and heme centers, with some 

NHHS Fe2+ ions present but no vacuolar NHHS Fe3+ species. This makes sense because 

vacuolar Fe3+ is a storage form of Fe that is not essential for cell metabolism. 

The Fe-starved cells were transferred to Fe0B30 medium such that OD600 was ≈ 

0.01 immediately after inoculation. They grew to a final OD600 of 0.8 ± 0.4 (Figure 8A, 

open circles) at which point they contained just 23 ± 2 μM Fe (Table S2) (n = 2), the 

lowest cellular Fe concentrations reported for S. cerevisiae. Since Fe-starved cells do 

not store Fe, these cells did not grow quickly or extensively under Fe-deficient 

conditions. Their minimal DT (5.7 hours) was longer than that of the Fe-loaded cells, 

and their ultimate cell density was half of that attained by Fe-loaded cells. The change of 

OD600 indicated that the Fe-starved cells doubled ∼ 6 times after they were inoculated 

into Fe0B30, whereas the change of cellular Fe implied that the little Fe initially 

contained in these cells would only allow ∼ 2.5 doublings. The Fe required for the 

additional ∼ 3.5 doublings must have originated from the trace endogenous 56Fe in the 

Fe0B30 medium. In support of this, the 56Fe/57Fe ratio in 57Fe-starved cells was 0.3 before 

inoculation and 4.4 after harvesting. This increase indicates that the cells imported much 

of their 56Fe from the Fe0B30 medium (virtually all of the endogenous Fe in that medium 

was 56Fe). Each growth and division cycle appears to have been associated with the input 

of ∼ 20 μM 56Fe and ∼ 3 μM 57Fe (Appendix B, Electronic Supplementary Information). 



 

209 

 

This experiment again demonstrates that yeast cells can grow using the tiny amount of 

Fe present in Fe-deficient BPS-treated medium. 

 

Effect of high concentrations of BPS on the growth of Fe-starved and Fe-loaded cells 

To examine the effect of higher concentrations of BPS on cell growth, we 

prepared Fe-loaded and Fe-starved cells, and then transferred them to Fe0B100 medium 

which contained 100 μM rather than 30 μM BPS. (We also standardized the incubation 

time to 5 days for both Fe-loaded and Fe-starved cells.) The Fe-starved cells barely grew 

on Fe0B100 (minimal DT = 21 hours), attaining a final OD600 of only 0.05 ± 0.02 (Figure 

8A, open triangles). The extent of growth implied just 2 doubling. Fe-starved cells that 

contained 130 ± 30 μM Fe at the time of transfer to Fe0B100 should have contained just ∼ 

30 μM Fe after 2 doublings if they exclusively used their own Fe for growth. This 

estimate (we did not measure this concentration) is reasonable because it is similar to the 

minimum cellular Fe concentration of S. cerevisiae reported above. 

The Fe-loaded cells grew on Fe0B100 medium with a minimal DT (5.1 hours) 

similar to that of cells grown on Fe0B30 medium. However, the final OD600 of the culture 

was only 0.79 ± 0.15 (Figure 8A, filled triangles), about half of that attained when Fe-

loaded cells were grown on Fe0B30 (Figure 8A, filled circles). Cells that began as Fe-

loaded at the time of inoculation contained 110 ± 10 μM Fe after growing 5 days on 

Fe0B100 medium. This is approximately twice the Fe concentration of equivalent cells 

that were transferred to Fe0B30 medium and grown to approximately the same stage. 
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Thus, cells grown on a more extreme Fe-deficient medium grew to half the culture 

density and contained twice as much Fe as cells grown on less extreme Fe-deficient 

medium. Why? One could argue that they ran out of endogenous Fe sooner because 

there was less of it - but if that were the case why didn't they grow on their internal Fe 

stores? 

We hypothesize that the CW iron in Fe-loaded cells is in a form that cannot 

support growth directly; it must first be mobilized and released into the environment 

before it can be reimported and used by the cell. Accordingly, BPS short-circuits this 

mobilization process by intercepting the mobilized Fe before it can be reimported into 

the cell, with higher concentrations of BPS in the medium more effective in doing this 

than lower concentrations. We further hypothesize that this Fe mobilization-reimport 

process requires metabolic energy, and that the cells stopped growing because they 

lacked the energy needed to drive mobilization. Thus, once CW Fe3+ is reduced, the 

Fe2+ becomes available for coordination to BPS for import into the cytosol. BPS at a 

higher concentration will react faster with mobilized Fe2+, forming more 

Fe2+(BPS)3 which can no longer be reimported into the cytosol or used in metabolism. 

The metabolic activity of the Fe-starved cells gradually declines, preventing further 

growth. 

 

Mobilized cell wall iron dissociates into the growth medium 

To further assess whether mobilized CW Fe dissociates from the cell and moves 

into the growth medium, we directly measured Fe in three MM-based media (Fe0B100, 
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Fe0B0, and 56Fe40B0) after each had been inoculated with 57Fe-loaded cells. The first two 

media lacked added Fe; their endogenous 56Fe and 57Fe concentrations were measured to 

be 230 nM and 8 nM, respectively. The third medium contained 40 μM of added 56Fe. 

We used DW as a fourth medium, which contained 43 nM 56Fe and 2 nM 57Fe prior to 

inoculation. 57Fe-loaded cells were inoculated into each medium to about the same cell 

density as when they had been harvested. OD600 was then monitored for 24 hr, and then 

cells were harvested and analyzed by ICP-MS and MB spectroscopy. The concentration 

of Fe in the media itself was measured at different times during the incubations to obtain 

direct evidence that Fe dissociates from cells. 

Cells in the first three media grew at similar rates and extents (Figure 8C, open 

squares, solid diamonds and solid squares, respectively), relative to each other and to 

cells grown in standard 57Fe40B0 medium (Figure 8B, solid squares). In the experiment 

of Figure 8C, OD600 increased regardless of media (n = 2 for 57Fe40B0; n = 3 for 

Fe0B100 and n = 3 for Fe0B0). This indicated one cell doubling. The concentration of Fe 

in the Fe-loaded cells that were incubated in Fe0B100 declined from 3.9 ± 0.7 mM before 

inoculation to 1.5 ± 0.2 mM thereafter (Table S2), similar to our previous results. There 

was a similar decline (to 1.2 ± 0.2 mM) in the Fe concentration of the cells incubated in 

Fe0B0. At face-value, these results suggest that the 57Fe-loaded cells that were incubated 

in Fe0B100 and Fe0B0 media respectively mobilized about 23% and 40% of their CW Fe 

into the media during the 24 hr period when they doubled. Cells actually mobilized more 

Fe because the 57Fe2+(BPS)3 that adhered to the CW (and was included in the measured 

cellular [Fe]) originated from Fe2+ that had also been mobilized. 
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The Fe concentration of 57Fe-loaded cells after growth on 56Fe40B0 medium was 

3.1 mM (Table S2, Figure 8C, solid squares), 21% lower than at the time of inoculation. 

However, since the OD600 doubled, the total amount of Fe in the entire population of 

cells must have increased by ∼ 52% while the 57Fe portion decreased by ∼ 57%. This 

indicates that CW 57Fe was mobilized and released as 56Fe was simultaneously imported. 

Hence, even under Fe-sufficient conditions, metabolically active cells mobilize and 

import CW Fe while they simultaneously reduce and import environmental Fe. 

Metabolically inactive cells placed in DW also lost Fe. The Fe concentration 

of 57Fe-loaded cells placed in DW for 24 hr decreased by 46% ({Fe3.9 × OD2.2 − Fe2.1 

× OD2.2} ÷ {Fe3.9 × OD2.2}) even though the cells barely grew (Figure 8C, open 

diamonds). We regard this as Fe leaching from the CW rather than metabolic 

mobilization. 
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Figure 6.10: Iron concentrations in growth medium before and after inoculation with 57Fe-loaded 

cells. Other results of this experiment are presented in Fig. 1C. Panel A, 57Fe concentration in media: 

solid squares, medium before and after 57Fe-loaded cells were transferred to Fe0B100 medium. The 

datum at t o 0 was of medium prior to inoculation. Other data are of the medium 0, 6, 12 and 24 h after the 

transfer and after cells were removed by centrifugation. Solid triangles, same but for Fe0B0 medium. 

Blank circles, same but for DW. Panel B, Fe concentration in 56Fe40B0 medium: solid circles, total [Fe]; 

open diamonds, [56Fe]; solid diamonds [57Fe]. 
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Loss of cellular Fe was confirmed by measuring the Fe concentration in media to 

which cells had been incubated. 57Fe concentrations in Fe0B100, Fe0B0, and DW media at 

different times after 57Fe-loaded cells were inoculated are shown in Figure 10A. Prior to 

incubation, the residual total Fe concentration in Fe0B100and Fe0B0 media was 0.24 μM 

(0.008 μM 57Fe) while that in DW was 0.045 μM (0.002 μM 57Fe). The OD600 was 2.1 

immediately after 57Fe-loaded cells were added. At different times, cells were removed 

by centrifugation and the Fe concentration in the medium was measured. Within 15 min 

of inoculation, the 57Fe concentration in Fe0B100 medium increased to 2 μM (Figure 10A, 

solid squares). Then the 57Fe concentration decreased, reaching 0.4 μM at 24 hr. The 

concentration of 56Fe in the medium dropped 0.12 μM over the first 12 hr (Figure 10B, 

open diamonds). A UV-vis spectrum of 57Fe-loaded cells that had been incubated for 24 

hr in Fe0B100 medium showed strong absorption at 535 nm (Figure S1, B vs. A) that 

reflected Fe2+(BPS)3 complexes associated with these unwashed cells. A corresponding 

MB spectrum revealed that > 90% of Fe associated with these cells 

was 57Fe2+(BPS)3 (Figure 11D). Much of that 57Fe2+(BPS)3 complex was removed by 

washing at high pH (see below, Figure S1, C and D and Figure 11E). We conclude 

that much of the CW Fe in Fe-loaded cells was mobilized and released into the Fe-

deficient medium after which a significant portion bound BPS and adsorbed on the CW. 
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Figure 6.11: Whole-cell Mössbauer spectra (5 K, 0.05 T) obtained from the experiment of Fig. 8C. 

(A) 57Fe-loaded cells; (B–F) 57Fe-loaded cells after 1 day incubation in the following media: (B) Fe0B0; 

(C) DW; (D) Fe0B100; (E) same as D, but cells were rinsed with 100 mM Tris-HCl buffer (pH 9.4) three 

times prior to obtaining the spectrum; (F) 56Fe40B0. Red and blue lines in A and C are the same as in Fig. 

9A. The green line in B simulates the Central Doublet (CD) while the red line is a composite simulation as 

defined in Table S3 (ESI†). The red line in D simulates the Fe2+(BPS)3 doublet, the green line in E 

simulates the CD, and the orange line in F simulates the NHHS Fe2+ doublet. 
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Whether the mobilized Fe2+ ions were “cleanly” released from the CW and then 

coordinated by BPS and readsorbed onto the CW, or whether BPS coordinated Fe2+ ions 

that remained loosely associated with the CW, is unknown. However, at least some of 

the mobilized Fe was released into the medium as evidenced by direct measurement. The 

kinetics of this experiment suggest an initial fast mobilization-and-release phase was 

followed by a slow-release phase that occurred as Fe was reimported into the cells. 

For the experiment involving Fe0B0 medium, the concentration of 57Fe in the medium 

increased to ∼ 2 μM immediately after incubation (Figure 10A, solid triangles), similar 

to the experiment involving Fe0B100 medium, but it then remained nearly invariant for 24 

hr rather than decline. Why the difference? Fe0B0 medium lacks BPS, and so in this 

medium the exported 57Fe stayed in solution rather than re-associate with the CW. 

Fe0B0–grown cells contained 1.2 mM Fe while Fe0B100-grown cells contained 1.5 mM 

Fe due to this association of Fe2+(BPS)3 with the CW. The 1.5 mM value might 

underestimate the magnitude of this effect because some Fe2+(BPS)3 complexes were 

removed from the CW during rinsing. In the absence of BPS, the mobilized 57Fe ions 

must have been imported into the cytosol where they were used to support cell growth. 

The rates of these two processes (CW Fe mobilization and release vs. Fe import into the 

cytosol) appear to be similar since the concentration of Fe in the medium was largely 

invariant for 24 hr. 

The low-temperature low-field MB spectrum of the corresponding cells after 24 

hr incubation (Figure 11B) was dominated by an Fe3+sextet along with significant 

intensity of the central quadrupole doublet that is primarily due to mitochondrial 
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respiratory complexes (green line). The MB spectrum of the original 57Fe-loaded cells 

used in this experiment (Figure 11A) exhibited an intense sextet and doublet, features 

which were strongly diminished in spectra of the post-incubation cells. This indicates 

that 57Fe-loaded cells exported nearly all of their CW Fe3+. Some mobilized CW Fe was 

likely used to synthesize the Fe/S clusters and heme centers giving rise to the central 

doublet in Figure 11B. 

Interpreting the effect of incubating Fe-loaded cells in DW proved to be difficult 

despite the absence of any cell-growth effects. Consistent with the decrease in cellular 

Fe, the 57Fe concentration in DW increased gradually (Figure 10A, open circles), 

indicating that 57Fe had exited the cells that had been placed in water. Consistent with 

that, the intensity of the corresponding MB spectrum declined (Figure 11C) to about half 

of that observed for Fe-loaded cells (Figure 11A). Curiously, the components in that 

spectrum and their relative percentages, before and after incubation in water, were nearly 

identical. Viewed naively, this would imply that all Fe in the metabolically inactive cells 

(not just CW Fe) was slowly released in proportion to the amount present. We conclude 

that metabolically inactive cells “leach” CW Fe but they do not mobilize it in contrast to 

metabolically reactivating cells. 

The overall concentration of Fe in the cells incubated in 56Fe40B0decreased ∼ 

20% after 24 hr of incubation (3.9 mM → 3.1 mM) during which time the cells 

underwent a single doubling. The 56Fe/57Fe ratio changed from 0.03 to 2.6, indicating 

both mobilization and release of 57Fe from the CW AND the import of 56Fe from the 

medium. Initially, [56Fe]1 = 0.1 mM and [57Fe]1 = 3.8 mM (the subscript indicates the 
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generation number) whereas after doubling, [56Fe]2 = 2.2 mM and [57Fe]2 = 0.9 mM. 

Thus in one doubling the cells increased [56Fe] by 2.1 mM and decreased [57Fe] by 2.9 

mM. This may seem like an extremely rapid rate of exchange, but the time required for 

that doubling event was far longer than takes place under standard exponential growth 

conditions (24 hr. vs. 2 hr.). 

The overall concentration of Fe in the 56Fe40B0 medium declined during the 24 hr 

incubation (Figure 10B, solid circles), consistent with the import of 56Fe into the cell and 

with the doubling of cellular content. In 56Fe40B0 medium, the concentration of 56Fe 

(open diamonds) declined while that of 57Fe (solid diamonds) increased during the initial 

15 min, again consistent with the import of 56Fe into the cell and the rapid loss of 57Fe. 

The total Fe concentration in the medium was invariant during this period, indicating 

that cellular and environmental Fe ions exchange at roughly equal rates. 

The MB spectrum of the 57Fe-enriched cells that had been incubated for 24 hr 

in 56Fe40B0 medium (Figure 11F) displayed just the 57Fe ions that were retained in the 

cells (imported 56Fe was MB-invisible and any released 57Fe was no longer associated 

with the cells). Consistent with a decrease in 57Fe concentration (5.2 → 0.7 mM; Table 

S2), there was approximately a 5-fold decline in overall spectral intensity. Much of the 

lost Fe appears to have been CW Fe3+ species. The spectrum displayed an increase in the 

NHHS Fe2+ doublet (Figure 11F, orange line) which may represent the reduced form of 

the mobilized CW Fe3+ species. 
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Fe2+(BPS)3 desorption from the cell wall depends on pH 

BPS is a negatively-charged chelator that should be unable to penetrate neutral or 

negatively charged cell membranes. This property is probably due to the large size of the 

molecule and to charge-charge repulsion involving negatively charged groups on the 

yeast CW (4). So why does [Fe2+(BPS)3]
4- adhere to the CW? We hypothesize that it is 

actually neutral or positively charged at the pH of the medium, which would facilitate 

CW binding via hydrophobic or electrostatic interactions. The pH of Fe40B0 medium 

dropped from 4.6 to 3.1 during the 24 hr experiments. The pKa of the sulfonic acid 

groups on Fe2+(BPS)3 are 2.83 and 5.20 (192) which implies that a portion of the 

Fe2+(BPS)3 molecules should be neutral at the pH of the experiment. 

Given these considerations, we endeavored to remove Fe2+(BPS)3from the CW 

by rinsing the pink cells with chilled 100 mM Tris at pH 9.4. At this pH, the complex 

should be negatively charged and, if our hypothesis is correct, no longer attracted to the 

CW or plasma membrane. Upon adding the high-pH buffer, the cells turned off-white 

and the washes turned an intense pink, indicating the large-scale release of the 

Fe2+(BPS)3 complex into the buffer (Figure S1, D). UV-vis spectra of the pink and off-

white cells confirmed that Fe2+(BPS)3 had been removed (Figure S1, C vs. B). MB 

spectra of the equivalent cells showed that most of the Fe2+(BPS)3 complex was gone; 

the remaining Fe exhibited features commonly associated with normal yeast cells, such 

as the central doublet and HS Fe2+/3+ features. However, these features were present at 

low levels (Figure 11 E vs. D, Table S2). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945443/#R4
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Nonheme high-spin Fe2+ forms transiently during initial stages of cell wall iron 

mobilization 

To investigate the kinetics and mechanism of Fe mobilization from 57Fe-loaded 

cells after being transferred into Fe0B100 medium, we collected MB spectra of these cells 

0, 0.5, 3 and 6 hr after transferring them into Fe0B100 medium. The 0.5 hr spectrum 

(Figure 12B) exhibited features similar to those of original 57Fe-loaded cells (Figure 

12A), except that the NHHS Fe2+ doublet was three-times more intense (see arrow 

in Figure 12B; Table S3). At that time, the Fe2+(BPS)3 doublet had barely begun to form 

(Figure 12B, pink line). At longer times, NHHS Fe2+ and 

diamagnetic/superparamagnetic Fe3+ features diminished as the intensity of the 

Fe2+(BPS)3 doublet increased (Figures 12C and S2). The NHHS Fe3+ sextet also 

decreased, perhaps with a slight delay relative to the other processes (Figure S2, open 

squares vs. solid circles and squares). The Fe2+(BPS)3 doublet had reached ∼ 50% of the 

total intensity by 6 hr (Figure 12D), eventually climbing to ∼ 90% by 24 hr (Figure S2, 

solid circles). These results demonstrate that an early step in CW Fe mobilization is the 

formation of NHHS Fe2+ from Fe3+ CW species, followed by BPS coordination. 
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Figure 6.12: Mössbauer spectra (5 K, 0.05 T) of 57Fe-loaded cells before (A) and at increasing times 

after (B–D) transfer to Fe0B100 medium. Time after transfer: (B) 30 min; (C), 3 h; (D) 6 h. Blue and 

green lines are simulations of the Fe3+ nanoparticle and Fe2+(BPS)3 quadrupole doublets, respectively. 

The red lines are composite simulations as defined in Table S3 (ESI†). The arrow in B indicates the 

position of the high energy line of the NHHS Fe2+ doublet. 
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The Iron Regulon is not expressed during the accumulation of cell wall iron 

We examined the level of Fet3p expression in various media and at different 

times. In cells grown on Fe0B100, Fet3p was expressed at all times (Figure 13, bottom 

panel). However, maximal expression was at 12 hr when the cells were growing 

exponentially (see Figure 8C). As cells entered stationary state, Fet3p expression 

declined to an extent similar to that observed previously (128). This is consistent with 

the decreased need for Fe under stationary growth conditions. In the absence of BPS, 

Fet3p expression was reduced. In 56Fe40B0 medium, cells did not express much Fet3p 

because Fe was abundant in the medium. In DW, cells did not express Fet3p because 

they were metabolically inactive. These measurements suggest that the Aft1/2-dependent 

iron regulon is not expressed under post-exponential conditions when the cell becomes 

dormant and Fe accumulates in the CW. Iron regulon proteins probably promote CW Fe 

mobilization via the reductive Fe uptake system. 
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Figure 6.13: Western blot showing Fet3p expression levels in WT cells in various media. Top panel, 

Fe-loaded cells transferred to Fe40B0, 56Fe40B0, and Fe0B0 media and harvested at the indicated times 

(in h) after the transfer. Bottom panel, same as top panel but with cells transferred to Fe0B100 and DW 

media. 

 

 

 

Conclusions 

The major conclusions of this study are summarized in the model of Figure 14. 

Iron accumulates in the walls of yeast cells that are declining in metabolic activity 

(transitioning from exponential to post-exponential growth stages). This phenomenon is 

probably prompted by the lack of certain metabolites (possibly glucose) within the cell. 

Metal ion accumulation appears specific for Fe in that Cu, Mn, and Zn do not 

accumulate in the CW. In metabolically dormant cells, CW Fe accounts for ∼ 90% of 

total cellular Fe; thus, the accumulation of CW Fe represents a huge perturbation of the 

Fe content of a yeast cell. 
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Figure 6.14: Model for iron accumulation into the cell wall. Metabolically active (exponentially-

growing) cells do not accumulate Fe in their CWs; Fe3+ from the environment is reduced by metabolic 

processes in the cell and it enters the cell as Fe2+. As cells transition into a post-exponential (or dormant) 

state, Fe3+ begins to accumulate in the CW. CW Fe can be removed by chelation or CW digestion. When 

dormant cells become metabolically active (by placing them into fresh media), the CW Fe3+ becomes 

reductively mobilized to the Fe2+ state. The Fe2+ is released from the CW where it can: (a) dissociate 

from the cell and diffuse into the environment; (b) enter the cytosol to support cell growth; or (c) chelate 

with BPS (if BPS is in the medium). A significant portion of the neutral Fe2+(BPS)3 species adsorbs onto 

the CW. 
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Our results show that the majority of CW Fe (∼70%) is present as mononuclear 

NHHS Fe3+ ions, with modest levels of diamagnetic Fe species (∼ 20%) and even less 

superparamagnetic Fe3+oxyhydroxide nanoparticles (∼10%). It is tempting to speculate 

that Fe initially accumulates as magnetically isolated mononuclear Fe3+species, then as 

Fe accumulates to a higher density, magnetic interactions develop that give rise to the 

diamagnetic and finally superparamagnetic species. The CW contains a large number of 

negatively charged phosphodiester bridges in both N- and O-carbohydrate side chains 

that anchor the protein to the CW (193). Fe coordinates other phosphodiester species 

(149) suggesting this mode of binding. Fe3+ may bind to various sites in the CW (194). 

Bound Fe may also serve to stabilize the CW structure. 

When dormant cells reactivate, CW Fe3+ species become mobilized regardless of 

the Fe concentration in the growth medium. Mobilization involves reduction to the 

Fe2+ state probably via a reaction catalyzed by surface ferric reductases (116). CW Fe 

may dissociate even when not reduced to Fe2+, but this is a different phenomenon that 

we call leaching. The reducing equivalents used for mobilization must originate from the 

metabolic activity of the cell (195). Mobilized Fe2+ is released from the CW; some is 

imported into the cytosol for cell growth and some remains in the environment. Thus, 

CW Fe becomes available as dormant cells awaken. If chelators such as BPS or EDTA 

are present in the environment, they will also coordinate mobilized Fe2+. Metabolically 

active cells can also import trace amounts of endogenous forms of Fe in Fe-deficient 

(BPS-treated) growth media. The cell does not discriminate strongly in its source of 

imported Fe - it simultaneously imports mobilized CW Fe AND endogenous Fe from the 
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medium. Given the scarcity of bioavailable Fe in the environment, the CW Fe 

accumulation-mobilization-re-importation process would have provided a selective 

advantage during evolution. 

Our results demonstrate that the CW should be regarded as a second storage 

compartment for Fe in S. cerevisiae and probably in other fungal cells. Its function in 

this regard is distinct from that of vacuoles; vacuolar Fe maintains intracellular 

homeostasis which allows metabolically active cells to survive in Fe-poor environments 

and it also sequesters potentially toxic forms of Fe. CW Fe helps reactivate dormant 

cells, by providing Fe regardless of the availability of Fe in the environment. Given the 

large extent of Fe accumulation, the CW should be regarded, along with mitochondria 

and vacuoles, as a major iron traffic “hub” in yeast. 

During exponential growth, the reductive Fe uptake system controlled by the 

Aft1/2-dependent iron regulon may reduce bound Fe3+ such that the Fe could be 

imported and not accumulate in the CW. After the cell enters post-exponential growth, 

the iron regulon is shut down and CW bound Fe cannot be reductively mobilized; thus it 

accumulates. The Fit genes are part of the iron regulon, and so their expression should 

also decline. If the Fit proteins facilitate passage of Fe across the CW and into the 

cytosol, we would expect that Fe should accumulate during post-exponential growth, as 

is observed. Conflicting with this expectation is the observed declinein CW Fe in mutant 

strains lacking Fit proteins (87). Further studies are needed to reconcile this situation. 

One practical ramification of our study is that researchers who measure Fe 

concentrations of whole fungal cells should not grow cells beyond exponential phase, 



 

227 

 

because the dominating contribution of CW Fe to the total cellular Fe could cause 

confusion. One should also be cautious in using BPS to generate Fe-deficient conditions. 

Doing so creates an Fe deficiency severe enough to turn-on the iron regulon (196,197) 

but not severe enough to fully abolish growth. Amazingly, yeast cells can import trace 

endogenous Fe from such media and use it for growth. 

Other fungal cells besides S. cerevisiae have CWs, and some connections with 

iron metabolism have been reported. Vainshtein et al. identified Fe nanoparticles in the 

CW of the pathogenic fungus Cryptococcus humicola (185). Cir1, the “master iron 

regulator” in the pathogen Cryptococcus neoformans, regulates CW biogenesis and other 

virulence factors (198). The polysaccharide capsule of these cells is a major virulence 

factor, and capsule production is enhanced under Fe-limiting conditions (83). In Candida 

glabrata, CW proteins CgCcw14 and CgMam3 are “pivotal virulence determinants” that 

are involved in iron metabolism (199). CgCcw14 is a cysteine-rich 

glycosylphosphatidylinositol-linked CW protein while CgMam3 is a putative hemolysin. 

Ferric reductase Cfl1 in Candida albicans is involved in CW integrity, morphogenesis, 

virulence and invasion into host cells (85). Mutant cells lacking Cfl1 overload with Fe, 

but whether the Fe accumulates in the CW or elsewhere was not investigated (86). We 

suspect that the CW Fe accumulation phenomenon discovered here is a general property 

of fungi, and that it promotes their survival. If so, inhibiting CW Fe may diminish the 

ability of pathogenic fungi to survive in a host (180). Deleting the Fet3 ferroxidases on 

the plasma membrane of pathogenic fungus Colletotrichum graminicola caused an 80% 

decline in chitin synthase and defects in the CW that reduced virulence. These proteins 
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are part of the reductive iron import system which is required for CW integrity/stability 

and pathogenic fungal virulence; indeed the ability to import Fe is considered a “key 

factor for pathogenicity”. Future studies should investigate whether pathogenicity is 

related to the ability of the CW to accumulate and/or mobilize Fe as such investigations 

may lead to improved treatments for fungal pathologies. 
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Summary 

The aim of this study was to better define the iron content of E. coli cells. 

Mössbauer and EPR spectra of cells prepared under different nutrient iron 

concentrations, carbon sources, growth modes, and O2 concentrations were collected.  

Wild-type (WT) cells and those lacking Fur, FtnA, Bfr, and Dps were investigated. The 

iron content of exponentially growing cells was dominated by iron-sulfur clusters and 

variable amounts of nonheme high-spin Fe2+ species. An unassigned residual quadrupole 

doublet was also observed. The iron in stationary-phase cells was dominated by 

magnetically-ordered Fe3+ due to oxyhydroxide nanoparticles, not ferritins. Cytosolic 
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extracts were isolated and analyzed using LC-ICP-MS. The low-molecular-mass Labile-

Iron-Pool (LIP) consisted of two iron complexes with masses of ~500 (major) and ~1300 

(minor) Da. They are probably high-spin Fe2+ species with mostly O ligands, few N, and 

probably no S ligands. The LIP in fur cells was dysregulated. The iron content of E. 

coli and its reactivity with O2 were remarkably similar to those of mitochondria. In both 

cases, a “respiratory shield” composed of membrane-bound iron-rich respiratory 

complexes appears to protect the LIP from reacting with O2. When exponentially 

growing cells transition to stationary phase, the shield deactivates as metabolic activity 

declines. Given the universality of oxidative phosphorylation in aerobic biology, the iron 

content and respiratory shield effects in other aerobic prokaryotes may be similar to 

those of E. coli and mitochondria.  

 

Introduction 

Iron is critical for virtually all living systems, including Escherichia coli, 

arguably the most extensively studied organism on the planet. This redox-active 

transition metal is found at the active site of numerous metalloenzymes, in the form of 

hemes, iron-sulfur clusters (ISCs), diiron-oxo centers, and mononuclear iron centers 

(203, 92). Certain forms of iron, especially mononuclear Fe2+ complexes, are dangerous 

to cells because they react with O2 or O2-derived species (e.g. H2O2) to generate highly 

reactive oxygen species (ROS) such as hydroxyl radicals (204). Thus, iron import, 

trafficking, and regulation are especially critical in aerobic living systems so as to 

minimize the dangers of this essential transition metal (205, 206).  
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The Ferric Uptake Repressor Fur is the “master regulator” of iron in E. coli and 

in many other bacteria (207). This iron-sensitive transcription factor regulates the 

expression of > 100 genes involved in iron import, trafficking, and storage as well as 

iron-dependent enzyme catalysis and metabolism. When cellular concentrations of iron 

exceed metabolic requirements, Fe2+ binds Fur. The resulting Fe2+-Fur dimers bind to 

promotor sites on the DNA called Fur boxes, which represses transcription of targeted 

genes. Under Fe-deficient conditions, Fur boxes are unbound which allows gene 

expression.  

Under aerobic conditions, E. coli secretes high-affinity siderophores into the 

environment, which bind aqueous Fe3+ and re-enter the cell as iron chelates via specific 

membrane-bound receptors and the TonB-ExbB-ExbD complex (89,208). Under 

anaerobic conditions, the Feo system imports Fe2+ ions (208). The Fec system imports 

ferric citrate (90); this form of 57Fe was added to the growth medium in the current 

study. All iron import genes are regulated by Fur (91). 

E. coli cells contain three types of ferritins which store iron under iron-replete 

conditions, including ferritin FtnA, bacterioferritin Bfr, and miniferritin Dps (92). The 

main iron storage protein is FtnA, a 24-subunit multimer that can bind thousands of iron 

ions as inert ferric aggregates. Fe2+-Fur binding stimulates expression of FtnA and Bfr 

(92); expression increases dramatically as cells transition from exponential growth to 

stationary state (96).  

Fur activation affects more than iron import and storage; it also promotes 

expression of several proteins involved in the TCA cycle and respiration. Fur regulates 
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anaerobic electron transport, heme biosynthesis, and cytochrome c maturation (210). Fur 

regulates expression of enzymes that protect against ROS damage, and it controls 

peroxidase and catalase activities by regulating heme biosynthesis (211, 212). Fur is 

induced during oxidative stress which represses iron uptake and limits Fenton chemistry 

(213). ∆fur cells contain less iron than wild-type (WT) cells and are deficient in iron-

containing proteins such as cytochrome c, ferritin, and ISC proteins (210, 109). For these 

reasons, ∆fur cells cannot respire effectively (214).  

Gene expression in E. coli is also affected by oxygenation state. FNR is an O2-

sensing transcription factor that regulates the shift between aerobic and anaerobic 

metabolism (97).  It regulates >300 genes, and is sensitive to dissolved O2 concentrations 

between 0 – 20 M (98). FNR contains a bridging Fe4S4 cluster that converts into two 

Fe2S2 clusters under oxidizing conditions; this conversion controls its DNA-binding 

activity. In the absence of O2, [Fe4S4]-containing FNR along with ArcA increases 

expression of the feo iron uptake operon to increase cellular Fe2+ levels under O2-limited 

conditions (105).  

Iron regulation and iron metalloprotein metalation in E. coli involves a poorly 

characterized labile iron pool (LIP) (99,100,215). The LIP is presumed to be composed 

of one or more low-molecular-mass (LMM) non-proteinaceous Fe2+ complexes in the 

cytosol. The LIP is thought to enter cells via the feo system (105). Estimates of the LIP 

concentration in WT cells are highly variable, with values of 1 (216), 10 (110, 217), 26 

(105), 15 – 30 M (103) and 140 M (218) reported for aerobic bacteria, and 177 M 

under anaerobic conditions (105). The size of the LIP increases under anaerobic 
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conditions due to altered regulation between Fe3+ and Fe2+ import into the cell (105). 

The LIP concentration reportedly increases with increasing iron concentrations in the 

growth medium (102).  

The fur system regulates cellular iron by binding Fe2+ ions from the LIP. 

Aqueous Fe2+ ions bind Fur with reported KD ~ 1 M (219, 102, 216) and ~ 10 M (217) 

for one-iron binding, and KD1 = 30 M and KD2 = 280 M for two-irons binding (218). 

Imlay and coworkers reported LIP concentrations of 80 M in fur cells (103), 

substantially higher than in WT cells.   

The LIP is difficult to characterize because weakly coordinated ligands undergo 

fast ligand-exchange reactions making such complexes difficult to isolate and study 

biochemically.  Böhnke and Matzanke (100) isolated and characterized a soluble 

nonproteinaceous negatively charged iron species from E. coli extracts that accounted 

for 40% of the LIP; they reported a mass of ~ 2.2 kDa and an association with a pentose 

or uronic acid, and possibly with sulfonate or phosphate esters.  

Mössbauer (MB) spectroscopy has been used intermittently to study the iron 

content of E. coli cells. In 1980, Bauminger et al. reported that low-temperature MB 

spectra of E. coli exhibited a broad quadrupole doublet characteristic of magnetically-

ordered Fe3+ ions (106). Nine years later, Matzanke et al (107) identified a second 

doublet, representing 11% - 56% of spectral intensity, with parameters typical of 

nonheme high-spin (NHHS) Fe2+ complexes coordinated by O and N ligands. Hudson et 

al (108) recognized that the Fe2+ doublet was composed of two subcomponents. They 

found that isolated FtnA has a Blocking Temperature (TB) of 19 - 22 K, which is higher 
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than that of magnetically-ordered Fe3+ species in E. coli whole cells. At temperatures 

below TB, magnetically-ordered Fe3+ will exhibit a magnetic spectrum, whereas above 

TB, they will exhibit a broad quadrupole doublet (220).  Because of this, these authors 

suggested that ferritin was not the source of the magnetically-ordered iron. However, a 

few years later, Abdul-Tehrani et al (109) concluded that the magnetically-ordered iron 

observed under stationary-state conditions indeed arose from FtnA. They also estimated 

the concentration of the Fe2+ species at ~ 200 M, significantly higher than most 

estimates of the LIP in E. coli, and higher than implied by the Fe2+-Fur dissociation 

constant. To explain this, they proposed that the Fe2+ species observed by MB represents 

a different pool than that used to bind Fur. Hristova et al. (111) reported a fourth doublet, 

representing ~ 60% of spectral intensity, that was attributed to a combination of 

[Fe4S4]
2+ and [Fe2S2]

2+ clusters, low-spin (LS) Fe2+ hemes, and possibly fast-relaxing 

high-spin (HS) Fe3+ species.  Beilschmidt et al. (112) assigned the same doublet 

exclusively to ISCs.  

In this paper, we probed the total iron content of WT E. coli and of genetic 

strains lacking Fur, FtnA, Bfr, and Dps. We used MB (and in some cases EPR) 

spectroscopy, and characterized the LIP in these cells using LC-ICP-MS. We found a 

dramatic change in the size of the LIP due to oxygenation state of the growth medium, 

and succeeded in isolating and partially characterizing the LIP. Our results impact the 

understanding of iron import and storage in E. coli, and suggest a reinterpretation of 

cellular iron homeostasis. They also reveal an unexpected connection to the iron content 

of mitochondria and other phylogenetically related aerobic prokaryotes.  
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Results 

Our initial objective was to better define the iron content of Escherichia coli 

using MB spectroscopy (and EPR). The word content not only refers to the 

concentrations of iron in such cells but also to a description of the major iron species 

contained therein. To do this, we collected MB (and in some cases EPR) spectra of 

whole, intact E. coli. Cells were grown on minimal medium using either of two different 

carbon sources, any of three different nutrient iron concentrations, and variable levels of 

exposures to O2. Some batches were harvested during exponential growth phase while 

others were harvested in stationary phase.  
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Table 7.1: Components assumed in simulating Mössbauer spectra of E. coli and the percentages of 

each component included in simulations.   

Mössbauer 

Component 

ISC Residual  Fe2+
LMM Fe2+

RET Fe3+ 

nanoparticles 

S = 5/2 

Fe3+ 

sextet 

 (mm/s) 0.45 ± 

0.01 

0.47 ± 

0.03 

1.33 ± 

0.01 

1.17 ± 

0.05 

0.55 ± 0.1 .54±.0

1 

EQ 

(mm/s) 

1.15 ± 

0.03 

0.72 ± 

0.13 

3.47 ± 

0.01 

2.99 ± 

0.05 

0.55 ± 0.1 .39±.0

1 

 (mm/s) 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.3 0.7 ± 0.1 0.5 ± 0.1 .4±.01 

       

Spectrum % % % % % % 

Fig. 1A 22 36 07 29 0 05 

Fig 1B 

(top) 

28 38 11 18 0 05 

Fig. 1B 

(bot) 

31 42 0 34 0 05 

Fig. 1C 0 0 0 0 0 05 

Fig. 3A 17 0 40 45 0 0 

Fig. 3B 11 0 30 54 0 0 

Fig. 3C 19 18 37 27 0 0 
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Table 7.1 continued 

Mössbauer 

Component 

ISC Residual  Fe2+
LMM Fe2+

RET Fe3+ 

nanoparticles 

S = 5/2 

Fe3+ 

sextet 

Fig. 4A 32 0 62 12 0 0 

Fig. 4B 05 20 32 44 0 0 

Fig. 4C 05 16 30 39 0 0 

Fig. 5A 10 29 15 44 0 0 

Fig. 5B 13 0 0 10 61 0 

Fig. 5C 30 32 09 15 0 10 

Fig. 5D 26 39 06 15 0 06 

Fig. 5E 13 0 0 10 76 0 

Fig. 5F 23 12 35 18 11 0 

Fig. 5G 31 15 13 37 0 0 

Fig. 7A 17 20 29 21 16 0 

Fig. 7B 17 20 16 21 29 0 

Fig. 7C 0 0 -13 0 13 0 

Fig. 8A 11 31 10 48 0 0 

Fig. 8B 0 0 100 0 0 0 

Fig. 8C 13 29 32 35 0 0 

Fig. 8D 13 29 0 35 0 0 
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The iron concentration of E. coli cells grown on glucose and harvested under 

exponential growth conditions increased with increasing iron concentration in the 

growth medium. Cells grown in media supplemented with 1, 10, and 100 M 57Fe3+ 

citrate contained 400 ± 200, 500 ± 100, and 1000 ± 100 M Fe, respectively (n = 2 for 

each condition).  WT E. coli cells harvested during exponential phase using acetate as 

the carbon source and in media supplemented with 1, 10, and 100 M 57Fe3+ citrate 

contained 600 ± 200, 900 ± 500, and 1600 ± 400 M Fe (n = 2), respectively. This is an 

average of ca. 1.6-times as much iron as in glucose-grown cells.  See Table S1 for a 

compilation of selected metals and phosphorus concentrations in these and other 

samples. 

 

Mössbauer spectra of exponentially growing cells:   

Low-temperature low-field MB spectra of glucose-grown and exponentially 

harvested cells were similar regardless of nutrient iron concentration (Figure 1A and 

Figure S1, A and B). The doublet simulated by the solid blue line in Figure 1 and 

referred to as the ISC doublet had parameters typical of S = 0 [Fe4S4]
2+ clusters and low-

spin Fe2+ hemes (the two cannot be resolved by MB). The ISC doublet represented as 

high as 30% of spectral intensity. The species simulated by the pink line in Figure 1 and 

referred to as the Residual doublet contributed to the dominant doublet in the spectrum; 

in some spectra it represented as much as 40% of the overall intensity (Table 1). The 

isomer shift  associated with the Residual doublet was close to that of S = 0 [Fe4S4]
2+ 
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clusters but the quadrupole splitting EQ was somewhat smaller than is typical; thus, we 

leave this species unassigned. The simulation of the dominant doublet, as it would 

appear at 6 T, was overlaid on the experimental 6 T spectrum in Figure S2. Although the 

spectrum was noisy, the fit provides evidence that both ISC and Residual doublets arose 

from diamagnetic S = 0 centers as expected for [Fe4S4]
2+ clusters and/or low-spin Fe2+ 

hemes. 
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Figure 7.1.  Low-temperature low-field (5 K, 0.05 T) Mössbauer spectra of WT E. coli harvested 

during exponential growth. A, glucose media supplemented with 100 M 57Fe3+ citrate; B, acetate 

media supplemented with 1 (top) and 100 M 57Fe3+ citrate (bottom);  Gold, blue, green and pink lines 

simulate Fe2+RET, ISC, Fe2+LMM , and residual doublets, respectively.  Simulation parameters are 

given in Table 1. Red lines in this and other figures are composite simulations assuming components and 

percentages given in Table 1. The presence of the Fe2+LMM doublet (20% intensity) in the spectrum 

from acetate-grown cells with 1 M Fe added is evident from the shift in the high-energy line of the 

NHHS Fe2+ doublet.  The spectrum in C is the sum of all six spectra in Figures 1 and S1, after removing 

contributions from the four major doublet. The red line in C is a simulation assuming parameters typical of 

S = 5/2 Fe3+ or ferritins (the two cannot be distinguished) with 5% of overall spectral intensity. Unless 

specified otherwise, the magnetic field was applied parallel to the gamma radiation. 
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The other major quadrupole doublet of Figure 1A had parameters typical of 

NHHS Fe2+ species in which Fe2+ is coordinated by 4 - 6 O and 0 - 2 N donor ligands 

(with few if any S donors). The doublet was broader than expected for a single species 

and so two subcomponents (Fe2+
RET and Fe2+

LMM) were used in simulations. The green 

and gold lines in Figure 1 simulates the two subcomponents, using parameters given in 

Table 1. Subscripts RET and LIP are explained below.   

Acetate-grown and exponentially harvested cells exhibited the MB spectra shown 

in Figures 1B and S1, C and D. Relative to growth on glucose, cells grew less than half 

as fast on acetate as on glucose; the average exponential growth rate  was 0.40 ± 0.04 

hr-1 for glucose-grown cells and 0.17 ± 0.03 hr-1 for acetate-grown cells (n = 3 for each). 

This is similar to a previous report which also found that both glucose- and acetate-

grown cells consumed O2 at about the same rate (221). E. coli cells convert acetate 

directly to acetyl-CoA which is then sent to the TCA cycle without involving glycolysis. 

In contrast, cells first convert glucose to acetyl-CoA via glycolysis (and pyruvate 

dehydrogenase). Thus, acetate-grown cells respire exclusively whereas glucose-grown 

cells both respire and ferment for energy production.  

MB spectra of acetate-grown cells were similar to those of glucose-grown cells, 

except that the ISC and Residual doublets were slightly more intense, consistent with the 

higher iron concentration in these cells. Acetate-grown cells, which are more respiratory 

metabolically, probably contain a somewhat higher concentration of iron-rich 

respiration-related proteins. We also observed a shift in the position of the Fe2+ doublet, 

depending on the iron concentration in the growth medium. For the sample grown with 1 
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M 57Fe3+ citrate added, the Fe2+
LMM species represented 20% of the spectral intensity 

(Figure 1B, upper spectrum) whereas for the sample grown with 10 or 100 M 57Fe3+ 

citrate (Figure 1B, lower spectrum), no Fe3+
LMM species was required to simulate the 

overall NHHS Fe2+ doublet.  

We searched for low-intensity features emanating from the baselines of the 

“wings” associated with the two spectra of Figure 1 and the four spectra of Figure S1. 

Such features, if present, might arise from paramagnetic centers such as S = 5/2 Fe3+ 

hemes or from superparamagnetic centers such as ferritins (at temperatures below their 

TB). To probe this, we summed the six spectra and removed the major spectral features 

described above. The resulting difference spectrum (Figure 1C) exhibited weak spectral 

absorption in the wings which could be simulated using parameters typical of either S = 

5/2 Fe3+ hemes and nonheme species, or of ferritins (below their TB). Magnetic features 

with S = ½ may have also been present, but they would be obscured by features in the 

central region of the spectra. Collectively, we estimate that magnetic features constituted 

roughly 5% of the overall spectral intensity. We include this estimate in the composite 

simulations of Figure 1, A and B.  

 

EPR Spectra: 

Glucose- and acetate-grown whole cells exhibited EPR signals in the low- (g = 6 

– 4) and high- (g ~ 2) field regions (Figure 2). Spectral decomposition identified three 

low- and three high-field signals (see Figure S2 for individual decomposed simulations). 

Low-field signals were typical of S = 5/2 hemes and nonheme Fe3+ species. High-field 
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signals included two gave = 1.94 type signals arising from reduced S = ½ [Fe4S4]
1+ and/or 

[Fe2S4]
1+ clusters, as well as an isotropic g = 2.00 signal arising from radical species. 

Similar spectra of whole E. coli cells have been reported (210) except that signals from 

[Fe3S4]
1+ centers were also observed in the previous study. Also the low-field signals in 

our spectra were more typical of those from dithionite-reduced cells in the previous 

study. All current signals except the radical were 2 - 10 times more intense in acetate-

grown cells than in glucose-grown cells (the quantified intensity of the radical was 

similar in both spectra). The overall spin concentration in the g = 2 region was ca. 60 

M for the acetate-grown sample and 20 M for the glucose-grown sample. We did not 

quantify the signals in the low-field region but expect concentrations of the same 

magnitude. Quantified spin concentrations suggest that these paramagnetic centers 

contribute 2% - 5% to the MB spectra in the central regions of the spectra and perhaps a 

similar percentage in the “wings”. Although these are ballpark estimates, they are 

consistent with the very minor intensity associated with paramagnetic centers in the MB 

spectra of Figure 1C. Most ISCs in WT E. coli cells are diamagnetic and oxidized (i.e. 

[Fe2S2]
2+ and [Fe4S4]

2+ clusters).  
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Figure 7.2: Low-temperature X-band EPR spectra of whole packed E. coli cells grown on glucose or 

acetate, and harvested under exponential growth conditions. Composite simulations are the red lines 

overlaying the data (black lines). Individual simulations are shown in Figure S2.  Temperature, 10 K; 

microwave frequency, 9.38 GHz; microwave power, 0.2 mW; time constant 0.293 sec; modulation 

amplitude, 10 G.  
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Intensity of the NHHS Fe2+ doublets is correlated to O2 levels during growth:  

In some spectra, the NHHS Fe2+ doublets were significantly more intense than in 

Figure 1 – reaching as high as 85% of overall intensity for the MB spectra in Figure 3. 

This variation was puzzling because batches were grown on the same medium, using the 

same concentration of nutrient 57Fe3+ citrate, and harvested in exponential phase at 

approximately the same OD600. Like Beauchene et al. (105), we found that the observed 

concentration of NHHS Fe2+ was strongly affected by the dissolved O2 concentration in 

the growing culture. Subtle changes in aerobicity (e.g. caused by differences in rotation 

rates of the shaker, or in volume ratios of liquid culture to flask capacity) affected the 

intensity of the Fe2+ features. Higher concentrations of NHHS Fe2+ species correlated 

with lower O2 concentrations.   
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Figure 7.3: Mössbauer spectra (5 K, 0.05 T) of three separate batches of WT E. coli cells grown in 

glucose under reduced O2 conditions. A, batch 1; B, batch 2; C, batch 3. Blue and green lines are 

simulations of the Fe2+
LMM and Fe2+

RET species, respectively.  
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fur cells have dysregulated Fe2+
LMM:  

We were surprised that modest changes in O2 had a significant effect on the 

concentration of NHHS Fe2+ in WT cells; we had expected that Fe2+ concentrations 

would be tightly regulated by Fur. To investigate this further, ∆fur cells were grown on 

glucose media supplemented with 1, 10, and 100 M 57Fe3+ citrate. No trends were 

apparent in terms of cellular iron concentration; however, only one batch for each 

condition were examined and so we only report the average of the three batches, namely 

400 ± 120 M Fe.  Like WT cells, ∆fur cells exhibited MB spectra dominated by NHHS 

Fe2+ and ISC doublets (Figure 4). However, overall spectral intensities were lower than 

in WT spectra, consistent with there being less iron in ∆fur cells. The most significant 

difference relative to WT spectra was the increased intensity of the Fe2+
LMM doublet 

relative to other features as the concentration of nutrient iron increased. This effect was 

not observed in WT cells; it implies that the iron species giving rise to the Fe2+
LMM 

doublet is not well regulated in ∆fur cells. 
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Figure 7.4: Mössbauer spectra (5 K, 0.05 T) of whole fur cells grown on glucose media and 

harvested during exponential phase. The concentration of 57Fe3+ citrate was: A, 1; B, 10, C, 100 µM.  
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Mössbauer spectra of cells harvested at stationary phase are dominated by 

magnetically-ordered Fe3+:  

WT cells harvested in stationary phase exhibited a broad quadrupole doublet with 

the parameters of magnetically-ordered Fe3+ (Figure 5B). This doublet was largely 

absent in spectra of cultures harvested during exponential growth (Figure 5A). The Fe2+ 

doublets were stronger in the spectra from exponentially growing cells, while the ISC 

and Residual doublets were comparable in both spectra. This suggests that species in the 

cell giving rise to these latter doublets are less susceptible than the cell’s Fe2+ species to 

the metabolic deactivation associated with the exponential  stationary shift. The 

overall percent effect nearly doubled in the spectrum of stationary phase cells relative to 

that of exponentially growing cells. This implies that stationary phase cells import iron 

even when the cells are not dividing. We have observed a similar phenomenon in yeast 

(128).  
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Figure 7.5: Mössbauer spectra (0.05 T) of whole E. coli cells grown on MM media, supplemented 

with 100 M 57Fe citrate, and harvested during exponential growth and stationary state. A, WT 

cells harvested during exponential growth.  B, same as A but cells were harvested in stationary state. C, 

ftnA cells harvested during exponential growth. D, same as C except collected at 100 K. E, same as C 

and D except harvested in stationary phase. Vertical lines between C and D highlight the Fe3+ sextet 

extending slightly from the baseline. F, ∆bfr∆dps cells harvested during exponential phase. G, same as F 

but harvested during stationary phase. Spectra A, B, C, E, F, and G were collected at 5 K. 
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We noticed that the magnetically-ordered Fe3+ doublet was similar to that arising 

from Fe3+ oxyhydroxide nanoparticles in mitochondria in which ISC assembly is 

impaired (128, 145) (see Figure S3B). Also, the high-field spectrum of the magnetically-

ordered material in E. coli (Figure 5 of reference 222) is remarkably similar to that of 

mitochondrial nanoparticles (50, 223). Thus, we assigned this spectral feature to Fe3+ 

oxyhydroxide nanoparticles.   

Some past investigators assigned the magnetically-ordered Fe3+ material to iron 

bound in ferritin cores (96, 99, 222); others were uncertain of this (106, 107, 112, 223). 

To settle the issue, we repeated the above experiment using three genetic strains of E. 

coli (∆ftnA, ∆bfr, and ∆bfr∆dps) in which ferritin-related genes were deleted. As above, 

a portion of a growing culture was harvested during exponential phase, and the 

remainder was harvested later in stationary phase. In the experiments involving ∆ftnA 

and ∆bfr, samples harvested during exponential growth exhibited little if any intensity 

from the magnetically-ordered doublet (Figure 5C for ∆ftnA and Figure S4A for ∆bfr) 

whereas those harvested during stationary phase were dominated by this material (Figure 

5E for ∆ftnA and Figure S4B for ∆bfr). The magnetically-ordered material in these 

spectra could not have originated from the major ferritin or bacterioferritin in E. coli 

since the corresponding genes had been deleted.  The ∆ftnA 5 K spectral baseline in 

Figure 5C suggested a hint of magnetic material (~ 5% of total intensity) in the wings. 

We collected a spectrum at 100 K and found that ca. half of the intensity remained, 

suggesting that no more than ~3% of cellular iron could be due to ferritins. We cannot 

identify the species involved, but it cannot be FtnA. We suspect that this magnetic 
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material corresponds to the HS S = 5/2 Fe3+ hemes and nonhemes in these cells 

(consistent with the EPR). In summary, our results indicate that no more than ~ 3% of 

cellular iron is due to ferritins in any experiment performed in this study. The iron 

concentration of FtnA cells increased from 1.2 mM  2.0 mM as cells transitioned 

from exponential to stationary phase. The iron concentration of Bfr cells increased 

from 1.6 mM  1.8 mM for the same transition. In WT cells, the iron concentration 

changed from 1.1 mM  1.3 mM for the same transition. We estimate that no more than 

ca. 50 M iron is bound to ferritins in cell harvested during exponential or stationary 

phases.  

The results of two experiments with the ∆bfr∆dps strain were qualitatively 

different from those of WT, ∆ftnA or ∆bfr cells. In both repeat experiments, the spectra 

of exponential and stationary phase were similar (Figure 5, F and G); nanoparticles did 

not form under stationary phase. These cells grew slowly and they may not have reached 

true stationary phase when they were harvested. The iron concentration of ∆bfr∆dps 

cells changed less during the exponential  stationary transition (980 M  880 M) 

compared to the other ferritin mutant strains.  

 

The iron content in E. coli is similar to that in mitochondria:  

We have studied mitochondria from yeast and human cells extensively using MB 

and EPR spectroscopies (e.g. (51, 50, 224)), and were surprised by the remarkable 

similarity to E. coli.  MB spectra of E. coli cells harvested during exponential state were 

similar to those of mitochondria isolated from respiring cells (compare Figure 1 to 
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Figure S3A), whereas MB spectra of E. coli cells harvested in stationary phase were 

similar to those of mitochondria isolated from yeast cells possessing a defect in ISC 

assembly (compare Figure 5, spectra B and E, to Figure S3, spectrum B).  

We have developed a chemical model that explains how nanoparticles form in 

mitochondria from ISC-defective mutants. Accordingly, nanoparticles in mitochondria 

are generated when a LMM complex called Fe580 reacts with O2 (Figure 6, top panel) 

(154, 10). Our model assumes that the matrix of the mitochondria is microaerophilic 

under WT healthy conditions, due to the ability of the iron-rich respiratory complexes on 

the inner membrane to hinder O2 from diffusing into the matrix and reacting with Fe580. 

In ISC-defective mutants, the respiratory complexes are less effective in this regard (due 

to incomplete metallation of these complexes). The O2 that diffuses into the matrix of 

unhealthy mitochondria then reacts with Fe580 to generate nanoparticles.  

The similar iron content of E. coli and mitochondria suggested a similar 

explanation for how nanoparticles are generated under stationary phase conditions. We 

hypothesize that the cytosol of exponentially growing E. coli cells is sufficiently 

reducing to maintain the Fe2+ state of a LMM complex called Fe500 (see below), and that 

this space is sufficiently oxidizing in stationary phase cells to support O2-dependent 

oxidation of Fe2+  Fe3+ oxyhydroxide nanoparticles.   
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Figure 7.6: Respiratory Shield Model for Mitochondria (top), and for E. coli and other prokaryotes 

(bottom). The respiratory shield consists of the ISC- and heme-containing respiratory complexes located 

in the inner membrane of mitochondria and the cytoplasmic membrane of E. coli and other prokaryotes. 

The shield is operational when cells are metabolically active, oxidizing nutrient carbon and passing 

electrons through the respiratory electron-transfer chain and reducing much of the local O2 diffusing by to 

water.  With the shield operational, the cytosolic regions become microaerophilic. This protects the labile 

Fe2+ pool in the cell from reaction with O2. When cells transition to stationary-state, they become 

metabolically less active, and the shield deactivates. Then, additional O2 diffuses into cytosol where it 

reacts more rapidly with the labile Fe2+ pool forming Fe3+ oxyhydroxide nanoparticles. A similar 

deactivation of the shield occurs when respiratory complex IV is inhibited by cyanide. The same 

fundamental structure is proposed for all aerobic prokaryotes.  
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In the case of E. coli transitioning into stationary phase, the low activity of 

respiratory complexes is caused not by insufficient ISC or heme centers, but by low 

metabolic levels. The flow of electrons through iron-rich respiratory centers can be 

restricted by insufficient reducing equivalents as well as by insufficient iron centers. We 

suggest that the respiratory complexes on the periplasmic membrane of E. coli constitute 

a “shield” that partially blocks O2 from crossing the membrane and penetrating the 

cytosol. This shield, when operational, maintains the cytosol in a microaerophilic 

(though not anaerobic) state. When exponentially growing cells transition to stationary 

phase, metabolic activity declines and the shield deactivates such that the cytosol 

becomes more fully oxygenated. 

 

Inhibiting respiratory complex IV with cyanide generates nanoparticles in E. coli:  

To test this hypothesis, we inhibited cytochrome c oxidase activity in 

exponentially growing cells by treating them with sodium cyanide, a known inhibitor of 

this respiratory complex. Cells were packed into MB cups before and after treatment. 

Prior to treatment, cells grew rapidly (exponential growth rate  = 0.26 hr-1) and after 

treatment they immediately stopped growing ( ~ 0 hr-1). After a 90 min incubation, 

13% of the NHHS Fe2+ had converted to nanoparticles, as observed in the difference 

spectrum (Figure 7C). The parameters needed to simulate the observed NHHS Fe2+ 

doublet were those of Fe2+
LMM. The other doublet was simulated using the parameters for 

the nanoparticle doublet (Table 1). That only the Fe2+
LMM doublet was affected suggests 

that the iron species giving rise to this doublet is particularly susceptible to oxidation by 
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O2 or its ROS derivatives. In this experiment, cyanide might have also inhibited enzymes 

other than cytochrome c oxidase (e.g. catalases, peroxidases), and this may have 

contributed to the observed oxidation.  

 

 

 

Figure 7.7: Mössbauer spectra (5 K, 0.05 T) of cyanide-treated E. coli cells. A, before treatment; B, 

after treatment. C is a difference spectrum of B – A. The solid red line in C is a simulation in which the 

Fe2+
LMM doublet in A is replaced by the nanoparticle doublet in B (13% of spectral intensity for each).  
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Mössbauer spectra of LMM flow-through solutions and retentate:  

We wondered whether the NHHS Fe2+ species in E coli that give rise to the 

Fe2+
RET and/or Fe2+

LMM doublets were bound to Fe2+-containing proteins or were non-

proteinaceous LMM Fe2+ complexes. Such structural differences would suggest different 

physiological roles. Small Fe2+ complexes associated with the LIP have been suggested 

to be used in iron trafficking and regulation, Fenton chemistry, and as substrates for 

ISC/heme assembly (109, 214, 105, 110, 103, 225, 226). Fe2+-containing proteins are 

commonly metalloenzymes with catalytic roles. To distinguish these, three MB samples 

were brought into an anaerobic glove box after their spectra had been collected. The 

average spectrum of the three samples exhibited a strong NHHS Fe2+ doublet (Figure 

8A) indicating a high concentration of the Fe2+ species. Samples were thawed, diluted 

with buffer, and lysed using glass beads. The supernatant fraction was passed through a 

10 kD cutoff membrane. The retentate and flow-through solutions (FTSs) were 

collected, and each was transferred to a MB cup and frozen. The retentate should contain 

any soluble Fe-bound metalloproteins whereas the FTS should be largely protein free. 

The MB spectrum of the FTS (Figure 8B) exhibited a sharp NHHS Fe2+ doublet which 

was simulated using parameters of the Fe2+
LMM doublet in whole-cell spectra (Table 1). 

This suggests that Fe2+
LMM is a LMM Fe2+ complex (which explains our nomenclature). 

A MB spectrum of the FTS was also collected at 6 T and 4.2 K (Figure S1, B). Although 

noisy, it could be simulated using a high-spin Fe2+ S = 2 Hamiltonian. 
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Figure 7.8: Mössbauer spectra (5 K, 0.05 T) of whole E. coli cells, and associated retentate and flow-

through solutions. A, sum of the spectra obtained of the three samples used in the experiment; B, FTS; C, 

retentate; D, same as C except after removing the Fe2+
LMM contribution.  
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The low-field 5 K MB spectrum of the retentate (Figure 8C) also exhibited the 

Fe2+
LMM doublet along with other features. The presence of the Fe2+

LMM doublet in the 

retentate was expected because we did not wash this solution (e.g. by adding buffer and 

re-concentrating) such that Fe2+
LMM would not have been removed. To highlight the 

other features in the retentate spectrum, we subtracted a simulation of the Fe2+
LMM 

doublet. The Fe2+
RET doublet was present in the resulting spectrum (Figure 8D) as was 

another broad doublet near the central region. This latter doublet was composed of the 

ISC and Residual doublets. The species giving rise to these doublets are high-molecular-

mass and almost certainly protein-bound.  

 

LC-ICP-MS chromatograms of flow-through-solutions reveal low-molecular-mass 

iron complexes:  

In some samples, a portion of the FTS was analyzed for metal concentrations. 

For one sample in particular, the concentration of LMM iron within the cell was back-

calculated from the iron concentration in the FTS. After multiplying by all dilution 

factors involved in obtaining the sample from whole cells, the concentration of LMM 

iron species within whole cells was calculated to be ~ 200 M.   

We then used liquid chromatography in conjunction with an online ICP-MS to 

detect Low-Molecular-Mass (LMM) iron species in soluble E. coli extracts, as a means 

of probing the LIP. FTSs from such extracts were passed through a size-exclusion 

column designed to resolve LMM peptides. The eluent flowed into an online ICP-MS. 
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Iron-detected chromatograms are shown in Figure 9; those of the other elements are 

presented in Figure S5.  

 

 

 

Figure 7.9: 57Fe-detected LC-ICP-MS chromatograms of flow-through solutions from exponentially 

grown E. coli cells. A, B, and C were glucose-grown cells in which media were supplemented with 1, 10 

and 100 M 57Fe3+ citrate, respectively. D, E, and F were the same iron concentrations for acetate-grown 

cells.   
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One major LMM iron species was detected in all chromatographs, with a mass of 

approximately 500 Da (to be referred to as Fe500). A second LMM iron species at 1300 

Da was evident as well, but was more intense in FTSs from acetate-grown cells. The 

intensities of Fe500 peaks did not vary systematically with the concentration of nutrient 

iron in cells grown on glucose, but in acetate-grown cells, the Fe1300 peak-intensity did 

increase with increasing nutrient iron levels. We do not understand the significance of 

these differences. In one experiment, the cells contained ~ 370 M Fe (at a collective 

volume of 1.42 mL), whereas the FTS contained 230 M Fe (volume of 600 L). This 

suggests that ~ 26% of total cellular Fe should have been LMM; this compares nicely to 

the MB percentage of Fe2+
LMM for this sample, namely 20%. We conclude that Fe500 and 

Fe1300 collectively give rise to the Fe2+
LMM doublet in the MB spectra of E. coli cells and 

constitute the LIP.  

 

Discussion 

The Labile Iron Pool in E. coli:  

In this study, we have isolated two low-molecular-mass Fe2+ complexes from E. 

coli, which we call Fe500 and Fe1300 (where subscripted numbers indicate approximate 

masses in Da). Fe500 was the primary component of the pool in all samples investigated. 

The concentration of Fe1300 was variable, with higher levels in samples grown on acetate 

as the carbon source and in samples grown under iron-replete conditions. The 

concentration of the LIP depended on the level of O2 exposure during cell growth. Under 
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more aerobic conditions, the LIP concentration in WT E. coli cells was ~ 50 M whereas 

under less aerobic conditions, the calculated LIP concentration exceeded 500 M.   

Our results suggest that these LMM Fe2+ complexes are not artifacts of isolation. 

Most importantly, the  and EQ parameters for the Fe2+
LMM quadrupole doublet 

exhibited by whole intact E. coli cells were the same as those for the doublet observed in 

MB spectra of isolated FTS. We generated the FTS from whole cells rapidly in a 

refrigerated anaerobic glove box to avoid oxidation to the Fe3+ state and to slow ligand-

exchange reactions. The intensity of the Fe2+
LMM doublet in whole cells varied with O2 

levels similar to the effect observed recently by Kiley and coworkers (105). Other 

evidence arguing against the artifactual origin of these LMM species is that the FTS Fe2+ 

quadrupole doublet was sharper than would be expected for adventitious Fe2+ which is 

generally broadened due to heterogeneity. Finally, the simplicity of the LMM 

chromatograms, which reproducibly exhibited only peaks from Fe500 and Fe1300, is 

inconsistent with chromatograms expected for adventitious iron which would likely 

afford variable results and multiple peaks. Aqueous Fe2+/Fe3+ solutions, which would 

likely be a component of adventitious iron, adsorb on the columns used (227) whereas 

the LMM iron complexes observed here passed through the column. Considered 

collectively, we conclude that we have isolated the physiological labile iron pool in E. 

coli, and that it consists mainly of one NHHS Fe2+ complex with an approximate mass of 

500 Da. A second species with a mass of ca. 1300 Da is also present. The low molecular 

mass of these complexes indicates that they are not iron-bound proteins. We don’t know 

the function of Fe500 or Fe1300 but speculate that they are involved in iron trafficking, 
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sensing, and/or regulation. They might also serve as feedstock for building ISCs and/or 

hemes or for activating various metalloenzymes. 

Comparing   and EQ parameters for the Fe2+
LMM doublet (1.33 mm/s and 3.43 

mm/s, respectively) to those from chemically defined high-spin Fe2+ complexes provides 

some insight into the coordination environment of Fe500. An Fe2+ coordinated to four 

carboxylate oxygens and two ether oxygens in an octahedral environment yields a MB 

doublet with   = 1.30 mm/s and EQ = 3.13 mm/s (228). [Fe(H2O)6](ClO4)2 exhibits a 

doublet with  = 1.34 mm/s and EQ = 3.4 mm/s (229). The parameters for high-

molecular-mass Fe2+
RET ( = 1.19 mm/s and EQ = 2.99 mm/s) are closer to those of 

Fe2+ complexes with 5-6 N and O donor ligands. For example, an Fe2+ complex with 

N3O3 coordination exhibits a doublet with  = 1.19 mm/s and EQ = 3.07 mm/s. Another 

complex with N4O1 ligation yields  = 1.196 mm/s and EQ = 3.047 mm/s (230). An 

Fe2+ complex with N4O2 ligation (including a tetraimidizole and an oxalate ligand) 

exhibits a doublet with  = 1.195 mm/s and EQ = 3.131 mm/s (231).  

 

The role of Fur in iron regulation:  

A popular notion is that only a small portion of cellular iron is present as labile 

Fe2+ - only to the extent required for regulatory sensing and trafficking. The idea is that 

the cell minimizes labile Fe2+ to limit Fenton Chemistry (102, 99). Consequently, the LIP 

is generally thought to be buffered in the low M range (98, 128, 225, 232, 233). This 

view is consistent with our results in which cells were grown under aerobic conditions. 

In these cases, the concentration of the LIP is ~ 50 M (or less).  
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The situation is different under microaerophilic conditions in which the LIP 

concentration can exceed 500 M. If KD for binding of Fe2+ to Fur equals ~ 1 M (216, 

102, 219), then > 98% of Fur would be bound with Fe2+ (at equilibrium) under all 

growth conditions. Under these conditions, how could Fur serve as a regulator? One 

possibility is that the KD for Fe2+ binding to Fur may be weaker than 1 M; higher values 

have been reported (217, 218), including one as high as KD = 280 M (218). There is 

more than one binding site on Fur, and perhaps sites that bind Fe2+ weakly (and have 

been largely ignored) may actually be physiologically relevant. Another possibility is 

that only certain Fe2+ complexes within the LIP bind Fur, and yet another possibility is 

that LIP levels in anaerobic/microaerophilic cells are not as tightly regulated as is 

generally assumed.     

Beauchene et al. suggested that expression of the feo genes that control iron 

import under anaerobic conditions might be controlled more by FNR and ArcA than by 

Fur (105). However, our results suggest that the concentration of Fe2+
LMM is Fur-

dependent. Its concentration in fur cells was significantly affected by the concentration 

of iron in the medium whereas its concentration in WT cells were not affected in this 

way. Without Fur, Fe2+
LMM does not seem to be well regulated.  

 

Where is ferritin iron?  

Abdul-Tehrani et al. (109) concluded from their MB study of iron-replete WT E. 

coli that half of the iron in cells harvested in stationary state was bound to the FtnA 

ferritin. They assumed that the magnetically-ordered Fe3+ material observed in MB 
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spectra of such cells arose from ferritin iron cores. During exponential growth, the 

concentration of iron in the cell was about half of what it was at stationary state due, 

they suggested, to the absence of the magnetically-ordered Fe3+ (i.e. FtnA-bound iron). 

This conclusion was reasonable because expression of FtnA increases 10-fold as 

exponentially growing cells transition to stationary state (109, 234).   

In contrast, we found virtually no evidence for iron-bound to ferritin in any E. 

coli sample studied, including iron-replete WT samples harvested at stationary state for 

which such iron ought to represent half of the iron in the sample. We observed an intense 

magnetically-ordered Fe3+ doublet in 5 K spectra of stationary-phase cells, and indeed 

this material represented over half of the iron in the samples. However, two aspects of 

our results establish that this material does not arise from FtnA-bound iron. First, the 

same doublet was observed in stationary-state cells lacking FtnA and Bft. The doublet 

had isomer shift and quadrupole splitting parameters typical of Fe3+ oxyhydroxide 

nanoparticles found in mitochondria. This assignment was reinforced by the Blocking 

temperature (TB) of the doublet, which, like mitochondrial nanoparticles, is < 5 K. This 

explains why we observed (in E. coli spectra) a broad doublet at 5 K and another group 

observed magnetic interactions for the same material at 1.7 K (109).  

Abdul-Tehrani et al. (109) observed less magnetically-order iron in ftnA cells 

than in WT cells when both were harvested at stationary phase.  Under our growth 

conditions, we observed similar spectra from WT and mutant cells – e.g. Figure 5, B and 

D, and Figure S4, B and D. We noticed that Abdul-Tehrani et al. harvested cells after 18 

hrs of growth which, according to plots in their article, were not fully in stationary 
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phase. One explanation that could reconcile the differences in our conclusions with 

theirs was that they harvested their ftnA cells slightly sooner than WT cells, such that 

the ftnA cells were transitioning to stationary phase whereas their WT cells were fully 

in stationary phase. The discrepancy could have been resolved had Abdul-Tehrani et al. 

reported spectra between 5 and 60 K. Magnetic features due to nanoparticles would 

collapse by 5 K whereas those due to FtnA would not collapse until ~ 30 K due to 

differences in TB.  

We also investigated whether ferritin iron could account for any iron in our 

spectra, and for this we searched the baseline. Although the baselines of our 5 K MB 

spectra were largely devoid of any features, some spectra exhibited very low-intensity 

features. The intensity of the baseline features represented less than ca. 5% of total 

cellular iron. Such features had characteristics (at 5 K and 0.05 T) of either ferritin-

associated iron or high-spin Fe3+ heme or nonheme centers – these two possibilities 

could not be distinguished. However, similar features were evident in spectra of samples 

in which FtnA had been deleted; in these cases, such features could not have originated 

from the deleted ferritin. Also, EPR spectra of packed E. coli cells exhibited three low-

field signals arising from S = 5/2 Fe3+ hemes and nonheme species. Such spin systems 

could certainly give rise to the MB spectral features emerging slightly from the baseline. 

Although we did not quantify the EPR signals, ballpark estimates were consistent with 

the tiny baseline intensities that we observed. The 100 K high-temperature MB spectra 

of ftnA cells exhibited similar magnetic features as observed at 5 K (but with reduced 

intensity). Collectively, our results demonstrate that no more than half of these minor 
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MB features, barely distinguishable from baseline, could arise from FtnA-bound iron; 

more likely is that they arise from high-spin Fe3+ hemes and nonheme species. We 

realize that our results and conclusions differ sharply from the well-documented view 

that ferritins play a major role in storing iron in E. coli, but we have been unable to find 

a flaw in our results or analysis.  

 

Connection to iron metabolism in mitochondria:  

Chemiosmotic coupling is as ancient a process as transcription and translation, 

and it is universally employed to generate energy in living systems (235). We propose 

that it has important consequences with regard to iron metabolism. Prior to the dramatic 

increase in atmospheric O2 due to the evolution of photosynthetic organisms, early 

prokaryotes used molecules other than O2 (e.g. NO3
-, SO4

2-) as terminal electron 

acceptors in chemiosmotic coupling. During that era, aqueous Fe2+ dominated the 

environment, and so these ancestral cells imported Fe2+ and trafficked it through the 

cytosol for use in ISC assembly followed by installation into various proteins - including 

respiratory complexes located on the periplasmic membrane. Once O2 appeared in the 

environment, it replaced these other molecules as the terminal electron acceptor in 

chemiosmotic energy coupling. This improved the thermodynamics such that more ATP 

could be generated per electron transferred but it also had negative consequences for iron 

trafficking, regulation, and storage.  

We hypothesize that the newly evolved OXPHOS process provided a 

“respiratory shield” for these early prokaryotes. The shield maintained the cytosol under 
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microaerophilic conditions even as the O2 pressure in the atmosphere increased. This 

allowed cytosolic Fe2+ ions to continue to be used in trafficking and regulation because 

they were shielded from oxidation to the nearly insoluble Fe3+ state. Fe3+ complexes are 

less labile but also less useful in iron trafficking. Maintaining the shield simply required 

that the organisms metabolize nutrients fast enough to generate a rapid flow of electrons 

to the respiratory complexes which in turn reduces O2 fast enough to limit its diffusion 

across the membrane and into the cytosol.  

At a later stage in evolution, an ancestor of -proteobacteria was engulfed by a 

proto-eukaryotic host, culminating in a symbiotic relationship in which mitochondria 

provided chemical energy to the host via OXPHOS (236). Mitochondria and their 

bacterial ancestors share similar iron-rich respiration-related proteins as well as a suite of 

proteins involved in ISC biosynthesis (237, 238-240).  

We report here that the iron content of E coli and mitochondria are remarkably 

similar, at least at the coarse-grain level probed by our methods. We have recently 

proposed that the mitochondrial matrix in healthy eukaryotic cells is microaerophilic, 

and that this provides a “safe space” for O2-sensitive enzymes (154, 10). This is 

especially important for ISC biosynthesis, an O2-sensitive process that occurs in the 

matrix. The matrix contains a pool of labile LMM NHHS Fe2+ (called Fe580) that gives 

rise to a quadrupole doublet in MB spectra (Figure S3, blue line) (14). Fe580 in 

mitochondria and Fe500 in E coli may serve as feedstock for ISC biosynthesis and 

possibly for the iron insertion step of heme biosynthesis. Although the two LMM 

complexes have different names, we cannot exclude the possibility that they are the 
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same complex. Isolated mitochondria also exhibit an ISC doublet (Figure S3, green line) 

with parameters that are nearly identical to those of the ISC doublet in E. coli spectra.  

Previous results from the Lindahl lab suggest that nanoparticles form in mitochondria 

when O2 penetrates the matrix and reacts with Fe580 (10, 14), as illustrated in Figure 6, 

top. O2 penetrates ISC-deficient mitochondria because the respiratory shield is disabled. 

Under these conditions, the respiratory complexes are probably not fully loaded with 

ISCs and heme centers, and are thus unable to transfer sufficient electrons from the TCA 

cycle to cytochrome c oxidase and then to O2. In healthy mitochondria, most of the O2 

that diffuses to the IM is reduced to H2O so that this diatomic molecule cannot 

overwhelm the matrix. We now propose an equivalent phenomenon in E. coli and other 

aerobic bacteria (Figure 6, bottom). Electrons generated by the metabolic activity of the 

cell are delivered to the inner membrane complexes and eventually to cytochrome c 

oxidase. This rapidly reduces much of the O2 that would otherwise diffuse into the 

cytosol. When the metabolic activity of the organism declines, as when cells transition to 

stationary state, more O2 penetrates the cytosol where it can react with Fe500 to form 

nanoparticles. The content and O2-associated reactivity of iron in mitochondria and 

bacteria are similar largely because both have respiratory shields. Other studies also 

suggest the presence of a respiratory shield in aerobic bacteria. Azotobacter vinelandii 

uses such a shield to protect nitrogenase, an extremely O2-sensitive enzyme (239). In 

fact, the nitrogenase iron protein remains active when expressed in the mitochondrial 

matrix of yeast (241).  
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Examining the iron content of all bacteria is not possible, but published MB 

spectra support a common iron content at least at the coarse-grain level. The MB spectra 

of Pseudomonas ariginosa whole cells (harvested after 44 hr of growth) exhibit the same 

features as observed for E. coli and mitochondria, namely a magnetically-ordered Fe3+ 

doublet, an ISC doublet, and a NHHS Fe2+ doublet (242). The 82 K MB spectrum of 

Proteus mirabilis consists of a broad magnetically-ordered Fe3+ doublet as well as a 

NHHS Fe2+ doublet (243). MB spectra of Erwinia chrysanthemi (grown on glucose, 

harvested in stationary state) exhibit a magnetically-ordered Fe3+ doublet (67% of 

spectral intensity) and a NHHS Fe2+ doublet (33% of intensity) (244).  

To provide further examine for this notion, we examined the MB spectrum of 

Gram-positive Bacillus subtilis harvested under exponential growth conditions. As 

predicted, the spectrum (Figure S4) was similar to those of E. coli and mitochondria. The 

MB spectrum of B. subtilis exhibited more magnetic iron than in E. coli or mitochondria, 

but the difference was just one of degree. Viewed collectively, these results provide 

strong support for a common coarse-grain iron content in aerobic prokaryotes and 

mitochondria. We predict that the iron contents of anaerobic prokaryotes have a greater 

percentage of NHHS Fe2+ but are otherwise similar.  

The respiratory shield might also serve to help regulate and store iron. 

Eukaryotes protect against Fenton chemistry by minimizing the concentration of Fe2+ in 

the cytosol, and by storing excess iron in ferritin (or in vacuoles, for fungi and plants). 

Iron stored in these ways is unable to engage in destructive ROS-generating chemistry. 

In ferritin cores, iron is stored as hematite, magnetite, and ferrihydrite (245). In yeast 
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vacuoles, it is probably stored as Fe3+ polyphosphate (149). In both cases, the 

mobilization of stored iron into the cytosol follows reduction to the Fe2+ state. It was 

reasonable to assume that E. coli and other prokaryotes use the same strategies. 

However, this does not appear to be the case. Metabolically-active E. coli grown under 

aerobic conditions do not store much iron, certainly not in ferritin cores. And under 

lower O2 conditions, they do not minimize the concentration of labile Fe2+ species in the 

cytosol – in fact they might even store iron as labile Fe2+. Thus, metabolically active E. 

coli avoid Fenton chemistry by a different strategy – by reducing the amount of O2 that 

diffuses into the cytosol via the respiratory shield. As strange as it sounds, E. coli and 

other bacteria store iron mainly as labile LMM Fe2+ when they are metabolically active 

and as Fe3+ oxyhydroxide nanoparticles when they are metabolically dormant. Ferritins 

must play more specialized and limited roles in storing iron in stationary-state E. coli 

cells.    

The concentration of O2 in the mitochondrial matrix, E. coli, and other aerobic 

prokaryotes has not been measured directly and so estimates vary. Unden and coworkers 

measured O2 consumption rates of bacterial cultures and calculated O2 diffusion rates 

(246, 247). They concluded that the O2 concentration in the cytosol of bacteria is 

essentially the same as in external aerobic environments. This conclusion implies that 

the respiratory shield is weak and ineffective, and it supports the view that a multi-

layered anti-oxidant system (involving SOD, catalases, peroxidases etc.) is continuously 

acting to prevent and repair ROS damage in healthy metabolically active cells. We do 

not claim that the respiratory shield is completely effective in preventing all O2 from 



 

272 

 

entering the cytosol or matrix, and we recognize the critical importance of the anti-

oxidant system; our dispute is one of degree. These protected spaces obviously contain 

some O2 and O2-derived ROS, as evidenced by enzymes (e.g. dioxygenases, superoxide 

dismutases, FNR) that are located in these spaces and use these molecules as substrates. 

We conclude that cells use both a respiratory “shield” and an anti-oxidant “sword” in 

their battle with O2. By locating the respiratory shield near their peripheries, cells reap 

the energetic benefits of using O2 in OXPHOS while minimizing its exposure to O2-

sensitive cytosolic species. We look forward to probing further this intriguing love-hate 

relationship – between aerobic cells and the molecule that they so desperately need but 

also poses an existential threat to their very existence.   

 

Experimental Procedures 

Cell Strains and Growth:  

A single colony of WT MG1655 E. coli cells was inoculated into 50 mL of M9 

minimal media that contained 0.2% (w/v) glucose and no added iron. Cultures were 

incubated overnight at 37 C in an incubator shaker (Amerex Instuments SteadyShake 

757 Gyromax) at ~200 rpm). For G1E, G10E, G100E, A1E, A10E, and A100E batches, 

cultures were used to inoculate 1 L of the same media (supplemented with 1, 10, or 100 

M 57Fe3+ citrate) in 2.8 L baffled Fernbach flasks (Corning).  Two 2 L of media were 

used for the cyanide-addition experiments and the exponentialstationary-phase 

experiments. For exponential growths, cultures were harvested at OD6oo between 0.5 and 

0.8. Stationary-phase samples were harvested at OD6oo ~ 1.2. The same procedure was 



 

273 

 

used for cell grown on acetate except that the media contained 0.4% (w/v) sodium 

acetate rather than glucose. Cells were grown and harvested at USC under the same 

conditions except that 1 L cultures were grown in 2.0 L baffle flasks.   

To prepare MB or EPR samples, harvested cells were centrifuged and washed once 

using 50 mL of 50 mM EDTA, 100 mM sodium oxalate, 100 mM NaCl, and 10 mM 

KCl. Washed cells were packed into either MB cups or EPR tubes (Wilmad Lab Glass, 

Suprasil precision quartz) and then frozen in liquid N2. Low-field MB and EPR 

instruments have been described previously (10).  High field (6 T, 4.2 K) MB spectra 

were collected with a model LHe6T (See Co.) Instrument calibrated using α-Fe foil at 

room temperature. EPR spectra were simulated using SpinCount software (Michael 

Hendrich, Carnegie Mellon).  

MG1655 ∆fur::kanR, ∆ftnA::kanR, ∆bfr, and ∆bfr::kanR∆dps::cmR cells were 

grown as described above for WT cells.  The ∆fur::kanR, ∆ftnA::kanR, and 

∆bfr::kanR∆dps::cmR mutations were constructed by replacing the indicated open 

reading frames in strain DY330 with kanamycin resistance cassette (kanR) from pKD4 or 

chloramphenicol resistance cassette (cmR) from pKD3 using the lambda RED system as 

described (248).  Mutations were moved by P1 transduction into the MG1655 or other 

strain backgrounds.  MG1655 ∆bfr was generated by removal of the kanR cassette from 

the MG1655 ∆bfr::kanR strain using the pCP20 plasmid as described (248).  WT B. 

subtilis cells were grown in glucose-containing M9 media and prepared for MB analysis 

as described above.   
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Cyanide addition experiments:  

A single colony of WT E. coli cells was inoculated into 50 mL of media. Once 

grown, these were inoculated into 2 L of MM containing glucose and 100 µM Fe citrate 

in a 2.8 L baffled flask and placed in the incubator shaker at 37 C and 200 rpm. Cells 

were harvested during exponential phase (OD600 ~ 0.65). Half of the culture was use to 

prepare a MB sample. The other half was incubated with 3.0 mM KCN (final 

concentration), and then used to prepare a MB sample after 1.5 hr incubation. 

  

Metal analysis and LC-ICP-MS experiments: 

 MB samples were thawed and transferred to 4 cm long x 3 mm ID glass tubes 

which were packed by centrifugation. The volume of the pellet was determined by 

marking the pellet-height, removing the liquid above the pellet, quantitatively 

transferring the pellet to a 15 mL screw-top plastic tube (using 200 L of 

distilled/dionized water), and determining the volume of water required to fill the tube to 

the mark. 300 µL of trace-metal-free grade nitric acid (Sigma Aldrich) was added. 

Samples were sealed with electrical tape and heated to 80 C for ~ 24 hr. Solutions were 

passed through a 0.45 m filter, and metal concentrations of the flow-through were 

determined by ICP-MS (Agilent 7700x) that had been calibrated using standard solutions 

of P, S, Cu, Mn, Zn, 56Fe, 57Fe, Co, Mo, and Ti (Inorganic Ventures). Instrument 

stability was verified using internal standards.   

 For LC-ICP-MS experiments, packed E. coli MB samples (~800 µL) were 

thawed in the glove box, and suspended in a 15 mL falcon tube containing 5.0 mL of 20 
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mM ammonium bicarbonate pH 8.5, ~100 mg lysozyme (Sigma Aldrich), and 2.0 mL of 

0.1 mm diameter acid-washed glass beads (Sigma). The suspension was vortexed for 5 

min, then placed in an ice bath for 5 min. This process was repeated twice. The lysate 

was then centrifuged for 15 min at 12,000g (Sorvall Evolution RC centrifuge, GSA 

rotor). One mL of supernatant was mixed with 1.0 mL of 2% (v/v) Triton X-100 

(Sigma), affording 1% final concentration of Triton, and the solution was vortexed for 

30 min. (The remaining supernatant was frozen at – 80 C.) The mixture was again 

vortexed, and spun at 12,000g for 15 min. The resulting supernatant (~2 mL) was 

passed through an Ultracel 10 kDa ultrafiltration disc, regenerated cellulose (EMD 

Millipore) using an Amicon filtration system. 300 µL of the FTS was injected onto two 

Superdex Peptide 10/300 GL (GE Healthcare) columns connected in series, equilibrated 

in 20 mM ammonium bicarbonate pH 8.5. Additional details of the LC-ICP-MS system 

are described elsewhere (227).  
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Supplemental Information  

Table 7.S1: Selected metal and phosphorus concentrations in exponentially growing E. coli cells. 

Results for WT cells are the average (± Std. dev.) of two independent determinations. Values for fur cells 

are the average of single determinations for batches grown with 1, 10, and 100 M 57Fe3+ citrate added to 

the media.  

 

 

Sample [Fe]cell 

(µM) 

[Mn]cell 

(µM) 

[Zn]cell 

(µM) 

[Cu]cell 

(µM) 

[Co]cell 

(µM) 

[Mo]cell 

(µM) 

[P]cell 

(mM) 

Glucose 1  µM 

Fe 

360 ± 

160 

16 ± 3 60 ± 20 10 ± 4 0.20  ± 

0.08 

0.4 ± 0.1 250 ± 10 

Glucose 10 

µM Fe 

540 ± 60 06 ± 4 40 ± 30 21 ± 9 0.18  ± 

0.06 

0.3 ± 0.1 250 ± 10 

Glucose 100 

µM Fe 

980 ± 20 09 ± 5 96 ± 4 40 ± 30 0.19  ± 

0.01 

1.1 ± 0.3 340 ± 40 

Acetate 1 µM 

Fe 

600 ± 

200 

12 ± 8 40 ± 30 20 ± 17 0.15  ± 

0.01 

0.4 ± 0.2 220 ± 10 

Acetate 10 µM 

Fe 

880 ± 

540 

09 ± 7  50 ± 40 08 ± 2 0.16  ± 

0.05 

0.5 ± 0.4 170 ± 50 

Acetate 100 

µM Fe 

1600 ± 

400 

13 ± 4 82 ± 6 13 ± 2 0.26  ± 

0.01 

3 ± 2 260 ± 10 

Fur 1, 10, 

100 µM Fe 

ave. 

400 ± 

120 

1.7 ± 0.5 9 ± 2 12 ± 4 0.2 ± 0.1 0.27 ± 

0.05 

170 ± 50 
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Figure 7.S1: Low-Field low-temperature (0.05 T, 5 K) Mössbauer spectra of E. coli whole cells 

grown in media containing glucose (A and B) and acetate (C and D). Samples used to generate A and 

C were supplemented with 1 M 57Fe3+ citrate while those used to generate B and D were supplemented 

with 10 M 57Fe3+ citrate.  
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Figure 7.S2: High-Field low-temperature (6 T, 4.2 K) Mössbauer spectra of E. coli whole cells (A) 

and flow-through solution (B). The solid red line in A is a three-term simulation comprised of the ISC 

and Residual doublets (using parameters in Table 1), both assuming S=0, and an Fe2+ species assuming S 

= 2, D = 3.25 cm-1, E/D = 0.27, ΔEQ = 3.47 mm/s,  = 2, Ax = -285 kG, Ay = -65 kG, Az = -325 kG, δ = 

1.30 mm/s, and Γ = 0.3 mm/s. The solid red line in B is a simulation of only the S = 2 species. The 

parameters used for the S = 2 site are typical of Fe2+ sites, but do not represent a unique fit of the current 

data. The field was applied perpendicular to the gamma radiation. Each spectrum was collected for over 

200 hr.   
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Figure 7.S3: Individual EPR simulations. Spectra in Figure 2 were decomposed into 6 signals with the 

following colored lines: magenta (g = 4.8, 4.0, 3.7), purple (g = 6.3, 5.4, 2.0), lavender (g = 4.8, 4.3, 3.6), 

turquoise (g = 2.08, 1.93, 1.88), green (g‖ = 2.04, g = 1.93), and blue (giso = 2.003). Other SpinCount 

parameters were: Field sweep, 4000 G; 1024 points; phi = 20; theta = 10; Deriv = 1; #Sig = 5; B1 = 90; 

Sym = 1. 
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Figure 7.S4: Mössbauer spectra (5K, 0.05 T) of mitochondria isolated from yeast cells. A, 

mitochondria isolated from respiring WT yeast cells (prepared as in 48); B, mitochondria isolated from 

iron-dysregulated (Aft1-1up) yeast cells (from 44). The gold line is a simulation with the same parameters 

as for the ISC doublet given in Table 1. The blue line is a one-term simulation assuming parameters 

similar to those of Fe2+
LIP and Fe2+

RET. The green line is a simulation assuming the parameters of the Fe3+ 

nanoparticle doublet given in Table 1. 
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Figure 7.S5 Mössbauer (5 K, 0.05 T) spectra of whole E. coli mutant cells devoid of various ferritin 

genes. A, ∆bfr, exponential growth; B, ∆bfr, stationary state; C, ∆bfr∆dps, exponential growth; D, 

∆bfr∆dps, stationary state. The ∆bfr∆dps experiment was repeated, and resulting spectra are given in 

Figure 5, F and G. 
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Figure 7.S6: LC-ICP-MS chromatograms of E. coli flow-through solutions detected by 31P, Mn, Zn, 

Cu, S, Mo, and Co. Peaks are designated by the element detected and a subscript specifying the apparent 

molecular mass (in Da) associated with the peak.  Apart from some variability in the copper peaks, the 

presented peaks were reproducible for the 6 traces examined.   
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.   

 

Figure 7.S7: Mössbauer spectra (5 K, 0.05 T) of WT Bacillus subtilis harvested during exponential 

growth conditions 
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CHAPTER VIII  

CONCLUSIONS 

 

Dual Regulation Model Characterization of WT and ISC mutants 

My graduate studies began by working to determine what species are used in 

regulating systems’ level Fe trafficking in S. cerevisiae. Using the mathematical model 

developed in Chapter III, the different proposed sensing mechanisms for regulation 

(cytosolic Fe, mitochondrial ISC assembly, or both in tandem) can be tested against data 

collected in the Lindahl lab. A cytosolic Fe sensing model appeared to fit WT data 

adequately, but it could not fit the ISC mutant behavior, as it could not sense the loss of 

FS assembly. On the other side, and an ISC sensed model could also fit WT behavior 

adequately, but it accumulated cytosolic Fe2+ to the same concentration of mitochondrial 

nanoparticles, contradicting the data that the Fe contents of ISC mutants were mostly 

nanoparticles, with only ~10% of the iron due to NHHS Fe2+. 

Our results suggest that both the concentration of cytosolic iron and 

mitochondrial ISC activity are important for cellular Fe regulation. Fecyt plays a role 

when healthy cells are grown in different media Fe conditions. In these conditions, ISC 

assembly is relatively constant, so that the import rates into the cytosol and mitochondria 

are constant. On the other hand, a lack of mitochondrial ISC assembly results in FS-

based regulation controlling import rates. This dual regulation model has been suggested 

by Lill (27), and other experimental data seems to support it. 
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Once the dual regulation model was established, it could then be used to attempt 

to reproduce data from other cell strains and conditions. Data were obtained from other 

studies in the lab and literature and can be found at table S1 in chapter III. It was found 

that the model could reproduce ~65% of cases studied, which was impressive given the 

relative simplicity of the model compared to the complexity of the Fe regulation and 

trafficking of the yeast cell. 

 

Systems’ level understanding of the recovery of ΔMrs3/4 mitochondrial iron and 

cell growth 

 The next study involved working with Dr. Moore to use Mössbauer spectroscopy 

to understand the systems’ level changes in Fe regulation of the ΔΔMrs3/4 (ΔΔ) cells 

compared to WT. The recovery of growth of ΔΔ cells under high iron provided an 

interesting problem, which Mössbauer spectroscopy was able to assist in solving. By 

analyzing mitochondria from these mutants, it was found that nanoparticles were 

dominating at 1 µM Fe, while the central doublet (indicative of Fe4S4 clusters and 

hemes) was the dominant species in mitochondria grown in 40 µM Fe. As these cells 

were grown in respiring media, the appearance of Fe species present in respiratory 

clusters at high Fe indicated a restoration of respiration ability, and cell growth. The next 

problem to think about was the cause of the continued Fe dysregulation in these cells. 

 We then compared the concentrations of each Fe species present in ΔΔ compared 

to WT. The only Fe-containing species that we could observe at lower than WT 

concentration in mutant cells at Fe-sufficient conditions was the mitochondrial Fe2+ pool 
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(Fe580) and mitochondrial heme centers. Fe580 could conceivably work with X-S in 

regulation, and is a candidate as the mitochondrial sensed species in this study. 

Nanoparticles, cytosolic Fe, and NHHS Fe3+ could be eliminated from consideration as 

the sensing species, as these were present in higher concentrations than WT cells. 

 Our results provide evidence that the mitochondrial Fe2+ pool in exponential 

growing cells is made up of Fe580. The iron concentration associated with the Fe2+ pool 

in yeast mitochondria ranges from 60-200 uM, depending on strain and growth 

conditions. Fe580 was previously determined to be present at a concentration of 

approximately 100 uM (14). Our current LC-ICP-MS results suggest that Fe580 is not 

associated with sulfur, and this is corroborated with the Mössbauer results, as the isomer 

shift and quadrupole splitting of the NHHS Fe2+ doublet is representative of an Fe center 

coordinated with O/N ligands (155). 

 

Multi-tiered modeling approach to transfer solutions from simpler tiers to more 

complex 

 When attempting to simulate the behaviors observed in the Mrs3/4 study 

(Chapter IV), the model presented in Chapter III was unable to simulate the ΔΔMrs3/4 

phenotype and a new multi-tiered model was developed that could do this. Both models 

simulate iron import and trafficking in an exponentially growing yeast cell, with 3 

regions of interest (cytosol, mitochondria, and vacuoles), and both involve the import of 

a single nutrient iron form N. The major differences lie in the complexity level, 

optimization method, and predictive power. The previous model included approximately 
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35 adjustable parameters, the current model has 23. Using the current model, the WT 

and ISC mutant behaviors were able to be simulated, as well as the Mrs3/4 behavior. The 

current model was used to simulate the recovery of mitochondrial Fe-S clusters and the 

loss of matrix O2 and mitochondrial nanoparticles, dubbed the waterfall. 

 The current model was solved at different levels of complexity. By solving the 

simpler variants first, and transferring these parameters to the more complex tiers, made 

for more reliable fitting, as more accurate data (like growth rates and cellular Fe 

concentrations) were available for the simpler tiers for fitting. Another strategic 

difference in modeling approaches was that we excluded all but one Reg function in the 

current model. This made the current model responsive to changing import parameters 

and allowed for better comprehension and interpretation of model behavior.  

 At the most complex tier, only four parameters differed between ΔΔ and WT 

simulations, Rcyt-max, kmit, kvp, and K. All other parameters were held constant between 

the simulations of these two genetic strains. The model’s ability to reproduce ΔΔ and 

WT behavior with minimal changes is impressive. We can easily rationalize why half of 

these parameters should be different. A 4.6x reduction of kmit for ΔΔ cells is reasonable 

because the high affinity transporters (Mrs3/4) are deleted. Rcyt-max is 2x higher for ΔΔ 

cells because of the constitutive activation of the Fe regulon, leading to higher amounts 

of Fet3/Ftr1. K  is a little more difficult to explain. This parameter is something like a 

Km that reflects the sensitivity of the growth rate to changes in the nutrient iron 

concentration. So the 30x increase in K would reflect a 30 time less sensitive cell strain 

to changes in N relative to WT. Perhaps this reflects the slow flow of iron into the ΔΔ 
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mitochondria to support respiratory cell growth. The 2x increase in kvp is even more 

difficult, because it would imply that the rate of VP formation is faster in ΔΔ vacuoles 

than WT. The actual mechanism of VP formation is more complicated than in 

represented in the current model, which has a simple order reaction mechanism. 

However, it is a credit to the model that is can simulate this effect as well, though further 

work is desired such that a more accurate “vacuole” can be simulated. 

 Mathematical models can inform experiment if they can make predictions about 

the system being studied. It is possible to over fit a reaction or system by using too many 

parameters such that a unique solution is not possible. We have attempted to give the 

model predictive power by grounding it in experiment and minimizing assumptions. 

This was challenging given the complexity of the system being investigated and limited 

amount of relevant data. 

 Our model can predict the effect of O2 on iron metabolism in yeast cells. It 

predicts that the iron in mitochondria of ISC deficient cells that have been grown under 

microaerophilic conditions should be mostly made up of FM. A Yfh1-deficient strain is 

being examined with our biophysical and bioanalytical tools as a test of this model (in 

prep). 

 Finally, similar strategies could be applied to model import, trafficking, and 

regulation of any micronutrient. The concentration of the nutrient in question in whole 

cells and organelles should be known as should cellular growth rates. Obvious 

candidates are the biologically-involved transition metals, such as Cu, Mn, Zn, Mo, and 
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Co. The next logical candidate for modeling studies is Cu, as Cu and Fe work in concert, 

both in trafficking and in cellular respiration. 

 

Cell Wall Fe accumulates as multiple forms, is chelatable, and used by cells during 

metabolic reactivation 

 Cells grown to stationary state accumulate Fe. This Fe is chelatable by EDTA, 

which is membrane impermeable, giving rise to a hypothesis that this accumulated Fe is 

located in the cell wall. This is further supported by the Fe levels further dropping with 

lyticase treatment to remove the cell wall. This lower Fe concentration in the remaining 

spheroplasts indicates that the accumulated Fe was located in the cell wall (CW Fe).To 

determine the chemical nature of this CW Fe, EPR and Mössbauer spectroscopy were 

employed. It was found that there were three species present, a diamagnetic species, a 

paramagnetic species, and a superparamagnetic species. 

 While cells were being grown, glucose levels (measured by Dr. Park), and 

oxygen levels were measured. Combined with OD600 data, a mathematical model was 

developed that described the metabolic deactivation and subsequent deactivation. This 

model describes the metabolic activation and reactivation as being glucose/oxygen 

dependent, with cells shifting to stationary state as their nutrient source ran low, and 

reactivating as glucose was reintroduced. Cells under exponential growth conditions are 

consuming nutrients and oxygen, and will shift to the dormant stationary state if 

nutrients become limiting. 
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E. coli possess similar Fe contents and the means to protect Fe relative to 

eukaryotic mitochondria 

 While the E. coli study in Chapter 7 is a departure from the studies of yeast and 

the integration of data into a system’s level mathematical model, the results found could 

potentially be used to further research into mitochondrial iron, and the nature of the 

LMM complexes. As has been found in previous studies (14), 2 LMM Fe species at 

1100 and 580 Da (Fe1100/Fe580) appear to be conserved between yeast, murine, and 

human mitochondria. With this new study, it would appear that E. coli could be added to 

that list. With the similarities in molecular mass, and the closeness of Mössbauer fitting 

parameters to yeast mitochondria, it is reasonable to suggest that the LMM complexes 

close to 500 Da (Fe580/Fe500) might be the same complex, and that they might serve as a 

feedstock for ISC and heme assembly in both mitochondria and E. coli. Future work into 

characterizing this complex through techniques like ESI-MS and NMR is needed. 

 Similar to the vicious cycle of iron import and nanoparticle/ROS formation, we 

propose an equivalent event in E. coli and other aerobic bacteria. Electrons generated 

through metabolic activity are delivered to inner membrane complexes, then to 

cytochrome c oxidase. This allows for rapid reduction of O2 threatening to diffuse into 

the cytosol. If the metabolic activity of the bacteria is disrupted, as what happens during 

the transition to stationary state or if cellular respiratory complexes are chemically 

inhibited (such as with cyanide), O2 penetrates into the cytosol, reacting with Fe500 to 

form nanoparticles. Other studies also suggest a respiratory shield that protects O2 

sensitive materials in other bacteria. Azotobacter vinelandii possesses such a shield to 



 

291 

 

protect nitrogenase, an extremely O2-sensitive enzyme (231). Relating back to 

mitochondria, the nitrogenase protein is active if expressed in the mitochondria matrix of 

yeast (234).  

 The respiratory shield might also help to regulate and store iron in addition to 

protecting it. Eukaryotes protect against Fenton chemistry by keeping the minimum 

amount of Fe2+ in the cytosol, storing the excess in ferritin/vacuoles in the Fe3+ state. In 

both cases, mobilization from these storage sites requires the reduction of Fe3+ to Fe2+. 

Our results indicate that E. coli use a different strategy. We hypothesize that E. coli, and 

possibly bacteria in general, prevent oxidative damage through Fenton chemistry by 

utilizing the respiratory shield. This would allow for the strange phenomenon of storage 

of Fe in a labile form, and aggregation of nanoparticles in a metabolically dormant state. 

It would appear that ferritins play a more specialized, limited role in storing Fe in 

stationary-state E. coli. 

 This study has also been supplemented by studying another aerobic bacteria, B. 

subtilis, and Mössbauer spectra similar to E. coli were obtained. This provides evidence 

for a hypothesis that all bacteria could possess similar iron contents, and possible the 

same LMM complexes for trafficking within the cell. 
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Conclusions 

 Mössbauer spectroscopy and other biophysical methods provide invaluable 

information of Fe contents, regardless of organism. The obtained data are useful in 

assembling models of understanding Fe related phenomena. In other studies, these 

mechanistic models are summarized and presented using cartoons, pictures of the 

researcher’s qualitative hypotheses. Mathematical models can be an improvement from 

these cartoons. These models provide a quantitative basis for testing the pathways 

proposed in the model, and could be used in the future as the summary figure that the 

cartoons typically serve as today. 

 In my graduate work, the mathematical modeling work has provided insight 

regarding an interesting phenomenon in the mitochondria of S. cerevisiae. The Fe-S 

clusters and hemes produced in the mitochondria consume oxygen in the respiration 

process. This keeps the matrix of the mitochondria relatively anaerobic, and provides a 

protective effect for the labile Fe2+ pool, that is used as a feedstock for Fe-S cluster and 

heme synthesis. However, if oxygen does come into the matrix, it can react with the 

labile pool, producing mitochondrial nanoparticles and ROS. This can become the 

dominating pathway if there are problems in Fe-S cluster assembly or in cellular 

respiration, which depletes this “respiratory shield”. Our studies in E. coli show that this 

respiratory shield is also acting in these cells, and possibly in all aerobic prokaryotes. 
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296. Čorić, I.; Holland, P. L. (2016) Insight into the iron−molybdenum 

cofactor of nitrogenase from synthetic iron complexes with sulfur, carbon, and 

hydride ligands. J. Am. Chem. Soc., 138, 7200−7211. 

297. Lopatin, V. E.; Varnek, V. A.; Bel’skii, V. K. (2002) Mössbauer 

spectroscopy study of the composition of carbido carbonyl clusters. J. Struct. 

Chem. 43, 608−614. 

298. Shechter, H.; Ron, M. Niedzwiedz. (1966) Mössbauer spectrometer 

calibration using 57Fe enriched metallic iron. Nucl. Instrum. Methods 44, 

268−272. 

299. Bernhardt, E.; Bley, B.; Wartchow, R.; Willner, H.; Bill, E.; Kuhn, P.; 

Sham, I. H. T.; Bodenbinder, M.; Bröchler, R.; Aubke, F. (1999) 

Hexakis(carbonyl)iron(II)undecafluorodiantimonate(V), [Fe(CO)6]- [Sb2F11]2, 

and hexafluoroantimonate(V), [Fe(CO)6][SbF6]2, their syntheses, and 

spectroscopic and structural characterization by single crystal X-ray diffraction 

and normal coordinate analysis. J. Am. Chem. Soc. 121, 7188−7200. 



 

338 

 

300. Site 4 exhibits a quadrupole doublet (the high-energy line is at 3 mm s−1 

at 0 T in Figure 7) with parameters typical of a high-spin Fe(II) ion with 

predominantly O/N ligand. The presence of this site is difficult to rationalize 

because the cluster is dominated by carbonyl ligands, which generally do not 

support such high oxidation states, and certainly not in high-spin configurations. 

The Fe(II) octahedral carbonyl complex [Fe(CO)6]2+ has been reported, but in 

this case the formally Fe(II) ion is low-spin and δ (−0.003 mm s−1) is far lower 

than that for site 4. Another indication that site 4 was an impurity was that the 

high-energy line of the site 4 doublet was substantially broader than the other 

spectral lines associated with the cluster 

301. Que, L. (2000) Aspects of 57Fe Mössbauer spectroscopy. Physical 

Methods in Bioinorganic Chemistry; University Science Books: Sausalito, CA, 

pp 287−319. 

302. Scott, A. D.; Pelmenschikov, V.; Guo, Y.; Yan, L.; Wang, H.; George, S. 

J.; Dapper, C. H.; Newton, W. E.; Yoda, Y.; Tanaka, Y.; Cramer, S. P. (2014) 

Structural characterization of CO-inhibited Mo- nitrogenase by combined 

application of nuclear resonance vibrational spectroscopy, extended X-ray 

absorption fine structure, and density functional theory: New insights into the 

effects of CO binding and the role of the interstitial atom. J. Am. Chem. Soc., 

136, 15942− 15954. 

303. Creutz, S. E.; Peters, J. C. (2014) Catalytic reduction of N2 to NH3 by an 

Fe-N2 complex featuring a C-atom anchor. J. Am. Chem. Soc., 136, 1105−1115. 



 

339 

 

304. Rao, L.; Xu, X.; Adamo, C. (2016) Theoretical investigation on the role 

of the central carbon atom and close protein environment on the nitrogen 

reduction in Mo nitrogenase. ACS Catal., 6, 1567− 1577. 

305. Danyal, K.; Dean, D. R.; Hoffman, B. M.; Seefeldt, L. C. (2011) Electron 

transfer within nitrogenase: Evidence for a deficit-spending mechanism. 

Biochemistry, 50, 9255−9263. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

340 

 

APPENDIX A  

MÖSSBAUER SPECTRA OF MOUSE HEARTS REVEAL AGE-DEPENDENT 

CHANGES IN MITOCHONDRIAL AND FERRITIN IRON LEVELS* 

 

Summary 

Cardiac function requires continuous high levels of energy, and so iron, a critical 

player in mitochondrial respiration, is an important component of the heart. Hearts 

from 57Fe-enriched mice were evaluated by Mössbauer spectroscopy. Spectra consisted 

of a sextet and two quadrupole doublets. One doublet was due to residual blood, whereas 

the other was due to [Fe4S4]
2+ clusters and low-spin Fe2+ hemes, most of which were 

associated with mitochondrial respiration. The sextet was due to ferritin; there was no 

evidence of hemosiderin, a ferritin decomposition product. Iron from ferritin was nearly 

absent in young hearts, but increased steadily with age. EPR spectra exhibited signals 

similar to those of brain, liver, and human cells. No age-dependent EPR trends were 

apparent. Hearts from HFE−/− mice with hemochromatosis contained slightly more iron 

overall than controls, including more ferritin and less mitochondrial iron; these 

differences typify slightly older hearts, perhaps reflecting the burden due to this 

disease. HFE−/− livers were overloaded with ferritin but had low mitochondrial iron 

levels. IRP2−/− hearts contained less ferritin than controls but normal levels of 

                                                 

* This work was originally published in the Journal of Biological Chemistry. Joshua D. Wofford, 

Mrinmoy Chakrabarti, and Paul A. Lindahl, Mössbauer Spectra of Mouse Hearts Reveal Age-Dependent 

Changes in Mitochondrial and Ferritin Iron Levels, 2017, Volume 292, 5546-5554, © The American 

Society for Biochemistry and Molecular Biology 
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mitochondrial iron. Hearts of young mice born to an iron-deficient mother contained 

normal levels of mitochondrial iron and no ferritin; the heart from the mother contained 

low ferritin and normal levels of mitochondrial iron. High-spin Fe2+ ions were nearly 

undetectable in heart samples; these were evident in brains, livers, and human cells. 

Previous Mössbauer spectra of unenriched diseased human hearts lacked mitochondrial 

and blood doublets and included hemosiderin features. This suggests degradation of 

iron-containing species during sample preparation. 

 

Introduction 

From an early stage of fetal development until the end of life, the heart functions 

unceasingly to pump blood throughout the body. This requires a high and sustained level 

of metabolic energy unrivaled by any other organ except perhaps the brain. 

Mitochondria, the organelle responsible for generating most of the chemical energy in 

cells, serve a critical role in cardiac function. Improving our understanding of cardiac 

physiology is important because heart disease is the most common cause of death in the 

Western world (249). The preponderance of iron-containing centers in respiration-

related mitochondrial proteins makes this metal a major player in cardiac physiology. 

Much of the iron that enters cardiomyocytes is used to build iron-sulfur clusters (ISCs) 

(251) and heme centers many of which are installed into mitochondrial respiratory 

complexes and respiration-related proteins. Excess cellular iron is generally stored 

within the core of cytosolic ferritin, a spherically shaped protein complex composed of 

variable ratios of H- and L-subunits (250). H-ferritin is especially important in cardiac 
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function (251,252). Besides storing iron, H-ferritin helps cells manage the metal (253). 

H-ferritin levels are significantly lower in mice hearts after a myocardial infarct (254). 

Such hearts contain spotty iron deposits and suffer from excessive oxidative stress. 

Deleting H-ferritin reduces the viability of cardiomyocytes and increases these deposits 

(254). Excessive iron and increased oxidative stress damage cardiomyocytes and 

contribute to heart failure (254). Mitochondrial ferritin (mt-ferritin) is highly expressed 

in heart mitochondria (255). It functions to sequester Fe2+ in mitochondria and thus 

protect the organelle from iron-dependent oxidative damage (256). 

Cardiomyopathy is common in iron-overload diseases such as hereditary 

hemochromatosis (HH) (257). HH initially impacts the liver, but eventually affects the 

heart, causing ROS damage especially to mitochondria (258-260). The most common 

cause of HH is a mutation in the HFE gene. HFE−/− mutant livers contain 4–6 times 

more iron than controls, whereas the iron content of mutant hearts is slightly elevated 

(261,262). Hemosiderin, a poorly defined iron-loaded breakdown product of ferritin 

(263), accumulates along with ferritin in mutant livers but not in mutant hearts 

(261,262). Hemosiderin is found in some iron-overloaded organs (263-265). 

Mössbauer (MB) spectroscopy has been used to investigate the iron content of 

hearts from patients with β-thalassemia, another iron-overload blood disease (266-268). 

The average iron concentration in the β-thalassemia heart is nearly 3 times higher than 

normal (259). MB spectra of β-thalassemia heart tissue exhibit features of ferritin, a 

high-spin Fe3+ species, and perhaps hemosiderin (259,266). The control MB spectrum 

was too noisy to evaluate because the heart was neither overloaded nor enriched in 57Fe. 
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Individuals with Friedreich's ataxia (FA) develop cardiomyopathy in conjunction with 

mitochondrial iron accumulation and ROS damage (269-270). FA arises from a 

deficiency in frataxin, a mitochondrial protein involved in ISC assembly (271). Eighty 

percent of FA patients die of cardiac disease (272). 

Mice in which frataxin was deleted in cardiac muscle exhibited the classical 

progression of FA (268,272-274). At 7 weeks, mutant mice became deficient in ISCs, 

and at 9 weeks, the iron concentration in mutant hearts increased and respiratory activity 

declined (275). At 10 weeks, the concentration of iron in mutant hearts contained nearly 

10 times more iron than WT hearts, which contained about 1.3 mM iron (274,276). The 

excess iron in the mutant cells flowed into mitochondria where it aggregated and 

generated ROS (271,273,275,277). 

MB spectroscopy was used to characterize the iron aggregates in hearts of 9-

week frataxin KO mice (271). The spectrum was noisy because mice were not enriched 

in 57Fe. It exhibited a single quadrupole doublet due to Fe3+ oxyhydroxide nanoparticles 

(271). The low-temperature MB spectrum of the liver from the same frataxin KO mice 

was dominated by a sextet due to ferritin (259,271). 

Cardiac failure is the most prevalent cause of death in the elderly and is 

commonly associated with impaired energy homeostasis (278,279). Aged mitochondria 

often have respiratory defects (280). Ischemia is associated with a decline in the EPR 

signal due to the Rieske ISC protein associated with respiratory complex 3+ (280). 

Iron-related proteins in mammals are primarily regulated by the IRP1/IRP2 

system (281). Under iron-deficient cellular conditions, IRP1/2 bind mRNA transcripts of 
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ferritin and TfR1. Doing so increases TfR1 expression and decrease ferritin 

levels. IRP2−/− mice accumulate large amounts of iron in the liver (281,38,282,283), 

whereas IRP2−/− brains contain WT levels of iron and WT MB features (38). 

MB spectroscopy is the most powerful spectroscopic tool for probing the iron 

content of biological materials, but it has not been applied extensively to vertebrate 

animals (44). MB is relatively insensitive and can only detect 57Fe, which accounts for 

just 2% of naturally occurring iron. As a result, spectra of unenriched mammalian organs 

are noisy, even when iron overloaded. Enriching mammals in 57Fe is inconvenient and 

costly. Nevertheless, we enriched mice with 57Fe for this study. In earlier studies, we 

used MB spectroscopy to characterize the iron content of brain and liver (38, 39, 284). 

Here we use MB to probe the iron content of healthy mouse hearts during development. 

We also investigate hearts from HFE−/− mice with hemochromatosis, hearts 

from IRP2−/− mice, and hearts from an iron-deficient mouse and her offspring. 

 

Results 

We wanted to characterize the iron content of healthy mammalian hearts at 

different developmental stages, and used MB spectroscopy as our primary tool. We 

enriched mice with 57Fe to improve spectral quality. Analyses were augmented by EPR 

spectroscopy and ICP-MS analysis. Mice were euthanized at different ages and 

immediately imported into a refrigerated anaerobic glove box where blood was flushed 

extensively with Ringer's buffer. Hearts and other organs were removed by dissection, 

and frozen in MB cups for later analysis. Low-field MB spectra were collected on whole 
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intact hearts from elderly (Fig. 1), young (Fig. 2), and adult (Fig. 3) mice. For each 

group, multiple spectra are shown to help distinguish sample-to-sample variations from 

age-dependent changes. Distinguishing this is a challenge for studies like this in which 

only small numbers of animals can be investigated. After collecting spectra, samples 

were analyzed for metal concentrations. These results, and the MB parameters used in 

simulations are compiled in Table 1. EPR spectra were collected (Fig. 4) on different 

heart samples that had been homogenized and packed into EPR tubes by centrifugation. 

 

 



 

346 

 

 

Figure A.1: Mössbauer spectra of hearts from elderly mice. All spectra presented in the text were 

collected at 5 K except for in C, which was collected at 100 K (and in Fig. 5D, which was collected at 70 

K). In all MB spectra presented in the text, a 0.05 tesla magnetic field was applied parallel to the gamma 

rays. The solid red lines overlaying spectra in all MB figures are simulations using parameters listed in 

Table 1. A, C60, raw spectrum (all other spectra have the blood doublet removed). The solid green, blue, 

and gold lines above the data are simulations of the blood, CD, and ferritin components, respectively. B, 

C60 with contribution from blood removed; C, same as B but at 100 K; D, C52; E, I104. 
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MB spectra were composed of three major features, including a sextet and two 

quadrupole doublets (Fig. 1A). One doublet had parameters (Table 1) of high-spin 

Fe2+hemoglobin. This doublet, simulated in green in Fig. 1, was assigned to residual 

blood. This so-called “blood doublet” (BD) was present in all raw spectra. The average 

relative intensity of the BD was 43%, with a standard deviation of just ±5% (n = 18). To 

view other spectral features better, we have removed the BD contribution from all 

spectra (except for that in Fig. 1A). The consistent high percentage of iron due to blood 

in our samples raises doubts that flushing by cardiac puncture is effective in removing 

blood from the heart itself. Nevertheless, knowing the percent contribution of the BD to 

the overall intensity of each spectrum and the absolute concentration of iron in each 

sample allowed us to calculate the concentration of iron within heart cells themselves for 

the first time. We have already done this for brain and liver; another group has done the 

same for liver and spleen (40). As such, the iron concentrations listed in Table 1 are 

probably the most accurate determinations for hearts from iron-sufficient mammals. The 

average iron concentration in the healthy heart samples (with blood excluded) was 400 ± 

200 μM (n = 11), depending on age. The approximate concentration of iron in young, 

adult, and elderly hearts was 300, 450, and 700 μM, respectively. 
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Figure A.2: Mössbauer spectra (5 K) of hearts from young mice. A, C00; B, C01; C, C02a; D, C02b; E, 

C03; F, C03D; G, C04a; H, C04b. 
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Figure A.3: Mössbauer spectra (5 K) of hearts from adult mice. A, C06; B, I08; C, C16; D, C24; E, 

C28; F, C28D 
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We assigned the sextet in heart MB spectra to Fe3+ aggregates in ferritin cores. 

The gold line above the data of Fig. 1A simulates the ferritin sextet using parameters 

in Table 1. To assess whether hemosiderin contributed to this absorption, we collected a 

100 K spectrum of the C60 heart. The baseline was devoid of sextet features (Fig. 1C), 

suggesting the absence of this degradation product. 

The other doublet in MB spectra of hearts, called the “central doublet” or CD, 

was simulated as the blue line in Fig. 1A using parameters in Table 1. The CD is due 

collectively to [Fe4S4]
2+ clusters and low-spin Fe2+ hemes; the two types of centers 

cannot be resolved by MB spectroscopy because they are diamagnetic and have similar δ 

and ΔEQ values. The CD dominates the spectrum of mitochondria isolated from brain, 

liver, and human cells (38,39,224), which allows us to assign this spectral feature to 

respiration-related complexes in that organelle. [Fe4S4]
2+ clusters and LS Fe2+ hemes are 

undoubtedly present in non-mitochondrial regions of the heart, but they are minor 

contributors to spectral intensity. We have quantified the intensity of the CD in the 

spectra of elderly hearts (Fig. 1) and find that it corresponds to 110–200 μM iron. 

The CD dominated the MB spectra of young hearts (defined as newborn to 4 

weeks) with an intensity that corresponded to 60–220 μM (Fig. 2 and Table 1). The 

intensity of the ferritin sextet was dramatically lower in spectra of young hearts than in 

those of elderly hearts; indeed the feature was absent in some spectra of young hearts. 

Adult hearts (Fig. 3, 6–28 weeks) exhibited even higher concentrations of the CD (220–

350 μM iron) and intermediate levels of ferritin (55–320 μM iron). 
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EPR spectra of packed mouse heart homogenates of different ages are shown 

in Fig. 4. The g = 2 region consisted of numerous overlapping signals including a gave = 

1.94 signal due to [Fe2S2]
1+ and/or [Fe4S4]

1+ clusters, a gave = 1.90 signal due to the 

[Fe2S2]
1+ cluster in the Rieske ISC protein, a radical signal at g = 2.00, and an 

unassigned resonance at g = 2.16. The same signals were observed in mouse brain and 

liver homogenates and in mitochondria isolated from these tissues (38,39). No age-

dependent EPR trends were apparent. 
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Table A.1: Metal concentrations in 57Fe-enriched mouse hearts (and livers), and associated 

Mössbauer parameters Metal concentrations are in µM, calculated by assuming a tissue density of 1.06 

g/ml. Masses of hearts are in mg; uncertainties are ~1 mg. Values in parentheses refer to the number of 

hearts in the sample. If more than 1 heart was used, the mass refers to the average. Entry indicated with 

bold and italics is the collective mass of 4–7 hearts that had been combined. This mass, on a per-heart 

basis, is an outlier relative to the other samples. Sample designations C, H, and I refer to C57BL/6, HFE-/-

, and IRP2-/- strains, respectively. The number that follows indicates the age of the mouse in weeks. 

Samples of the same age are distinguished with a and b. Samples from iron-deficient mice are 

distinguished by a subscript D. For ICP-MS analysis, each tissue was analyzed in triplicate; reported 

concentrations are averages; uncertainties are standard deviations. Cobalt and molybdenum concentrations 

were also determined but no age-dependent trends were apparent; average [Co] and [Mo] (n = 18) were 

0.16 ± 0.11 µM and 0.05±0.02µM, respectively. Isomer shifts δ, quadrupole splittingsΔEQ, and line 

widths Γ (all in mm/s) used in simulations were: central doublet (0.45±0.01, 1.15±0.02, and 0.44±0.07); 

low-temperature ferritin (-0.10±0.05, 0.44±0.07, and 0.77±0.14) with Heff=490±6 kG; blood (0.91±0.06, 

2.30±0.04, and 0.43±0.11); high-temperature ferritin (0.44, 0.70, and 0.55). Mössbauer spectra were 

calibrated against α-iron foil at room temperature. For convenience, the sum of the percent relative 

intensities for the three major MB components were forced to 100%; however, 10–15% of the actual 

spectral intensity cannot be accounted for by these three components. 

Sample  Mass of 

Heart 

(mg)  

[57Fe] [Fetot] [Cu] [Mn] [Zn] Central 

Double

t 

(%; 

µM)  

 

Ferritin 

(%; 

µM)  

 

Blood 

(%; 

µM)  

 

C00 (1 

day) 

65 (1) 240 ± 

3 

300 ± 8 10 ± 1 1.6 ± 

0.2 

31 ± 

7 

20; 60 20; 60 60; 

180  

C01 14 (7) 350 ± 

7 

470 ± 

10 

33 ± 1 4.9 ± 

0.1 

43 ± 

1 

38; 180 17; 80 45; 

210 

C02a 180 (1) 240 ± 

9 

290 ± 

10 

12 ± 

0.4 

2.3 ± 

0.1 

26 ± 

1 

53; 150 00; 00 47; 

140 

C02b 59 (2) 170 ± 

3 

240 ± 9 19 ± 2 3.3 ± 

0.1 

26 ± 

1 

46; 110 13; 30 41; 

100 

C03 ND ND ND ND ND ND 50; ND 0; ND 50; 

ND 
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Table A.1 Continued 

Sample  Mass of 

Heart 

(mg)  

[57Fe] [Fetot] [Cu] [Mn] [Zn] Central 

Double

t 

(%; 

µM)  

 

Ferritin 

(%; 

µM)  

 

Blood 

(%; 

µM)  

 

C04a 98 (4)  600 ± 

8 

710 ± 9 29 ± 

0.3 

8.9 ± 

0.2 

46 ± 

1 

40; 280 10; 70 50; 

360  

C04b 61 (2) 570 ± 

10 

610 ± 

10 

48 ± 1 11 ± 0.2 45 ± 

1 

44; 270 12; 70 44; 

270 

C06 140 (1) 620 ± 

1  

670 ± 

10 

42 ± 1 8.1 ± 

0.1 

43 ± 

1 

36; 240 17; 110 47; 

320 

C12 150 (3) 63 ± 1 610 ± 

10 

38 ± 1 5.8 ± 

0.1 

37 ± 

1 

31; 190 32; 190 37; 

230 

C16 ND ND ND ND ND ND 33; ND 28; ND 39; 

ND 

C24 240 (2) 950 ± 

8 

1050 ± 

8 

45 ± 1 7.7±0.1 47 ± 

1 

30; 320 28; 290 42; 

440 

C28 140 (2) 740 ± 

10 

780 ± 

10 

36 ± 

0.4 

5.8 ± 

0.1 

34 ± 

1 

28; 220 36; 280 36; 

280 

C52 250 (2) 700 ± 

10 

1100 ± 

20 

39 ± 1 8.1 ± 

0.1 

48 ± 

1 

22; 240 48; 530 30; 

330 

C60 130 (1) 650 ± 

30 

960 ± 

40 

40 ± 

10 

3.4 ± 

0.1 

34 ± 

1 

16; 150 41; 390 43; 

420 

  



 

354 

 

Table A.1 Continued 

 

Sample  Mass of 

Heart 

(mg)  

[57Fe] [Fetot] [Cu] [Mn] [Zn] Central 

Double

t 

(%; 

µM)  

 

Ferritin 

(%; 

µM)  

 

Blood 

(%; 

µM)  

 

C03D 

(pups) 

94 (4) 260 ± 

10 

310 ± 

20 

40 ± 2 24 ± 1 56 ± 

2 

54; 170 00; 000 46; 

140 

C28D 

(mom) 

390 (1) 740 ± 

5 

850 ± 5 48 ± 

0.3 

8.8 ± 

0.1 

49 ± 

1 

35; 300 13; 110 52; 

440 

H12 160 (3) 58 ± 2 640 ± 

20 

58 ± 1 9.9 ± 

0.2 

60 ± 

1 

27; 170 37; 240 36; 

230 

H12 

(liver) 

1600 (1) 1200 ± 

200 

5600 ± 

700 

29 ± 4 14 ± 2 90 ± 

2 

0.5; 30 90; 

5040 

9.5; 

530 

C12 

(liver) 

1300 (1) 20 ± 

90 

960 ± 

500 

60 ± 

30 

14 ± 6 120 ± 

70 

18; 170 60; 580 22; 

210 

          

I08 95 (2) 520 ± 

7 

560 ± 7 35 ±2 7.0 ± 

0.1 

32 ± 

1 

38; 210 10; 60 52; 

290 

I104 200 (1) 600 ± 

20 

800 ± 

30 

36 ± 1 7.7 ± 

0.3 

32 ± 

1 

30; 240 34; 270 36; 

290 
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MB spectra of HFE−/− hearts and matching controls are shown in Fig. 5, A and B, 

respectively. Spectra were noisy because the mice were enriched in 57Fe for only 4 

weeks. Relative to controls, the HFE−/− heart contained slightly more total iron, 

including more ferritin and less CD. In a qualitative sense, the HFE−/− heart appeared 

slightly older. The spectra of the HFE−/− liver and control (Fig. 5, C and E) were 

strikingly different, with only the HFE−/− liver overloaded with ferritin iron. The 70 K 

spectrum of the HFE−/− liver (Fig. 5D) was devoid of any sextet features in the baseline, 

confirming the absence of hemosiderin in this diseased liver. The HFE−/− liver contained 

significantly less CD than the control liver (notice the absence of spectral intensity 

between the two inner lines of the sextet of Fig. 5C), implying that the HFE−/− liver 

contains less mitochondria than WT livers. The MB spectrum of another diseased liver 

(Fig. 4F of Ref. 38) also showed a deficiency of mitochondrial iron. 
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Figure A.4: X-band EPR spectra of heart homogenates from mice of different 

ages. A, 4 weeks; B, 12 weeks; C, 32 weeks; D, 52 weeks; E, 60 weeks. EPR conditions: temperature, 4 K; 

microwave frequency, 9.37 GHz; microwave power, 0.2 milliwatt (30 dB); modulation amplitude, 10 G. 

Dashed vertical lines indicate the fields corresponding to g values of 2.16, 2.00, 1.93, and 1.86. 
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Figure A.5: Mössbauer spectra of 12 weeks HFE-/- hearts and livers versus controls. A, HFE-/- 

hearts; B, control hearts; C and D, HFE-/- livers; E, control livers. All spectra were collected at 5 K except 

for D, which was collected at 70 K. 
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Spectra of hearts from IRP2−/− mice (I08 in Fig. 3B and I104 in Fig. 1E) were 

similar to controls. The intensities of the ferritin sextets were slightly less in mutant 

spectra but the effect was modest. The intensities of the CD in the mutant spectra were 

comparable with (if not slightly stronger than) the same feature in the controls. The 

concentration of iron in I08 and I104 (Table 1) were slightly lower than in the controls. 

Like HFE−/− livers, IRP2−/− livers accumulated large amounts of ferritin iron; however, 

they contained more mitochondrial iron (see Fig. 4E of Ref. 38) than did HFE−/− livers. 

We fed a pregnant 57Fe-enriched mouse an iron-deficient diet starting 1 week 

before she gave birth to 4 offspring, and then continued to feed her that diet until the 

pups were 3 weeks old. Mother and pups were then euthanized and their hearts were 

examined by MB spectroscopy. The MB spectrum of the pup hearts (Fig. 2F) exhibited 

standard features of young hearts, i.e. an intense CD and no ferritin sextet. The MB 

spectrum of the 28-week-old heart from the mother (Fig. 3F) exhibited less than half as 

much ferritin as a control heart of the same age (110 versus 280 μM). Surprisingly, the 

CD of the iron-deficient heart was more intense than the control (300 versus 220 μM). 

 

Discussion 

This is the first Mössbauer study of the iron content of healthy 57Fe-enriched 

mammalian hearts. All previous MB studies have investigated diseased human hearts 

that were overloaded in iron. In those earlier studies, spectra from healthy controls could 

not be obtained because samples were not 57Fe enriched and so spectral intensities would 

have been exceedingly weak. 



 

359 

 

One advantage of obtaining MB spectra of whole hearts is the ability to 

distinguish iron due to blood in vessels permeating the heart ([Fe]B) from iron in the 

heart cells themselves ([Fe]H). The total measured iron in whole hearts was [Fe]T = 

[Fe]B + [Fe]H. Previous determinations of heart iron concentration probably 

overestimated [Fe]H by nearly a factor of 2 due to the large proportion of blood in the 

tissue. An exception is an earlier study from our group in which 40% of the iron in 

newborn to 6-week-old mice hearts was assumed to arise from blood; [Fe]H values 

between 450 and 720 μM iron were reported (284). Another study reported that hearts 

from 12-week-old mice contained 1.4–1.6 mM iron (286) (millimolar units calculated 

from those reported). In another study, heart iron concentrations of 1.1–1.5 mM (276) 

were reported. If 43% of those concentrations were presumed to be due to blood, 

[Fe]H would be between 630 and 900 μM, reasonably similar to the concentrations we 

obtained. Comparing samples more precisely would require matching ages and the 

concentration of iron in the diet. In other studies, hearts from WT mice reportedly 

contained 4 (262,287), 6 (262), 7 (271), and ∼100 mM (283) iron. These values 

overestimated the actual heart iron concentrations by factors of 10–200. 

Apart from blood, the two major forms of iron in heart tissues were ferritin and 

mitochondrial iron. Iron in hearts of young mice was mostly found in respiration-related 

ISCs and heme centers within mitochondria. The level of mitochondrial iron increased as 

young mice matured into adults, and then it stabilized or declined slightly in old age. As 

mice aged, their hearts accumulated increasing amounts of ferritin iron such that the iron 

content of elderly mice was dominated by this storage form of iron. 
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We used the overall concentration of iron in 57Fe-enriched hearts and the 

percentage of CD and ferritin as determined by MB spectroscopy to calculate the 

absolute concentration of these two features (Table 1 and Fig. 6). Age-dependent 

mitochondrial iron concentrations ([CD]age) were assessed by assuming the function 

in Equation 1. 

[ ]
[ ] [ ] [1]

g

age newborn

CD

CD age
CD CD

K age


 

  

A similar function was assumed to assess age-dependent ferritin iron 

concentrations, [FN]age. In this case, parameters [FN]newborn, [FN]g, and KFN were used. 

The optimized functions are given as the solid lines in Fig. 6. Total heart iron at any age 

(ignoring the blood contribution) was calculated as the sum of these two 

components, i.e. [Heart Fe]age = [CD]age + [FN]age. The best-fit parameters suggest that 

the heart from a newborn should contain about 60 μM mitochondrial iron and little 

ferritin, as observed. Mitochondrial iron should increase during the first 6 weeks, 

maximizing at 280 μM. Ferritin iron levels should increase more slowly over the first 24 

weeks, maximizing at 450 μM in adults and elderly. 

These trends, illustrated qualitatively in Fig. 7, are easily rationalized given the 

requirement of the heart to function unceasingly from before birth until death. This high-

energy requirement is satisfied by the high levels of mitochondria (and perhaps by not 

storing much iron). As hearts age, they store increasing amounts of ferritin iron. 
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Figure A.6: Heart iron concentrations (excluding blood) as a function of age. Black circle, total iron; 

blue circles, ferritin; red circles, central doublet. Values were obtained from Table 1. The solid red line is 

the best-fit simulation generated assuming Equation 1. The solid blue line is the equivalent for ferritin. The 

solid black line is the sum of the red and blue lines. Simulations were optimized against the data by 

minimizing root mean square deviation. Best-fit parameters (concentrations in µM) were: [CD]newborn, 

31; [CD]g, 250; KCD, 2.8 weeks; [FN]newborn, 0; [FN]g, 450; KFN, 14 weeks. Log2 numbers 0, 2, 4, 

and 6 refer to 1, 4, 16, and 64 weeks, respectively. 

 

 

 

 

Figure A.7: Illustration of how iron content changes with age in healthy mouse hearts. The opacity of 

the background reflects the overall iron concentration in the heart. The size of the mitochondria reflects 

the concentration of iron present in that organelle. The number of yellow hexagons represents the 

concentration of iron present as ferritin. 
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These age-dependent changes differ from those occurring in the developing brain 

and liver (38,39). The iron content of the newborn brain is dominated by ferritin iron, 

with modest levels of mitochondrial iron. This makes sense because the newborn does 

not use its brain extensively. Then, during the first few weeks of life, the animal opens 

its eyes, and begins to sense and interact with its environment, increasing its need for 

energy to drive brain function. To accommodate these needs, ferritin iron in the brain 

is transformed into mitochondrial iron. In fact, the overall iron concentration in the 

brain declines during the first few weeks of life, as the combined rate of 

mitochondriogenesis and brain volume growth outpaces the import rate of new iron 

(284). Gradually, as the animal ages, the brain, like the heart, accumulates iron in the 

form of ferritin. 

The changes in the iron content of the liver differ from those of brain and heart. 

The newborn liver contains very high concentrations of ferritin iron, much of which is 

exported from the liver during the first week of life (38). This burst of exported iron is 

most likely used to help other organs develop (including the heart but perhaps not the 

brain). In healthy mice raised under iron-sufficient conditions, the liver accumulates a 

modest amount of iron as it ages, but not an excessive amount (this might depend on the 

iron concentration in the diet). 

Another result that highlights an important difference between heart, brain, and 

liver is the absolute concentration of mitochondrial iron in these organs. The 

concentrations of mitochondrial iron in the developing brain and liver maximize at about 

110 and 180 μM, respectively, whereas it maximizes at about 280 μM in the heart. These 
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differences may again reflect the high and sustained level of chemical energy required 

by the heart relative to these other organs. 

Another difference between mouse hearts, brains, livers, and human Jurkat cells 

is the concentration of nonheme high-spin (NHHS) Fe2+ in these organs/cells. Jurkat 

cells are used for this comparison because they have been characterized by Mössbauer 

spectroscopy (224,40) and so the concentration of NHHS Fe2+ can be quantified. The 

concentration of such ions in the brain is 10 μM of 170 μM total iron (39). Their 

concentration in the liver is 20–40 μM of 300–650 μM total iron (38). In Jurkat cells, the 

concentration of NHHS Fe2+ is 40 μM of 400 μM total iron (224). By contrast, we had 

difficulty detecting the NHHS Fe2+ doublet in most heart spectra. The heart contains 

high levels of mt-ferritin, which is thought to sequester Fe2+. It is interesting to consider 

that the concentration of NHHS Fe2+ ions is so low in heart tissue because mt-ferritin 

sequesters these ions. 

It is also interesting to compare the total iron concentrations in heart, brain, liver, 

and Jurkat cells (given above). Heart, liver, and Jurkat cells contain about 400 μM iron, 

whereas the brain contains less than half of that concentration. Perhaps the danger 

associated with Fenton chemistry has minimized the use of this metal in the most 

complicated and delicate of all organs. 

Relative to age-matched controls, HFE−/− hearts contained slightly more total 

iron, including more ferritin and less mitochondrial iron; these differences were typical 

of somewhat older hearts, perhaps reflecting an increased burden on the heart due to 

hemochromatosis. The HFE−/− liver was iron-overloaded, as expected, but it also 
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contained lower than normal concentrations of mitochondrial iron, which was not 

expected. Given the literature suggesting that hemosiderin ought to be present in 

diseased livers, we were surprised not to detect it in our samples. 

The lack of IRP2 in IRP2−/− mutant mice should allow ferritin transcripts to be 

translated and TfR1 transcripts to be degraded quickly under all nutrient iron conditions. 

Under iron-deficient conditions, the absence of IRP2 should lead to insufficient cellular 

iron, whereas under iron-excess conditions, the same absence should lead to excess 

cellular iron. In our study, mice were fed iron-sufficient chow (but just barely so) and so 

cellular iron would be expected to be near normal levels. Consistent with this, mutant 

hearts contained about 85% of the iron found in WT hearts, with an iron content similar 

to that of WT hearts. Similarly, spectra of the brains of IRP2−/− mice were virtually 

indistinguishable from controls (38,39). By contrast, IRP2−/− livers were iron-overloaded 

with ferritin (38). Perhaps the IRP1 system is sufficient to retain iron homeostasis in the 

mutant heart and brain, whereas the liver relies more on the IRP2 system for regulation, 

and so dysregulation was more severe. Interestingly, the level of mitochondrial iron 

in IRP2−/− livers was substantially higher than in the HFE−/− livers, even though both 

livers were overloaded with iron. 

We also examined the effect of iron deficiency on a pregnant mouse and her 

offspring. As expected, the iron-deficient mother contained subnormal levels of ferritin 

iron, but normal levels of mitochondrial iron. A similar phenomenon was observed in 

spectra of iron-deficient brains (39), in which the CD was actually more intense than it 

was in spectra of iron-sufficient brains. The hearts of the 3-week-old pups from the iron-
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deficient mother contained normal levels of mitochondrial iron. This suggests that the 

iron-deficient mother does not limit the transfer of iron to her offspring during 

pregnancy or lactation. Interestingly, the iron-deficient mother also had a higher 

concentration of mitochondrial iron in the heart than did the iron-sufficient control. 

Our study provides “control” spectra for the published MB spectrum of a frataxin 

KO mouse heart (271). That spectrum contained only a doublet species due to 

Fe3+oxyhydroxide nanoparticles (no ferritin or CD was observed). It should also be 

compared with the MB spectrum of human Jurkat cells in which frataxin expression was 

knocked-down by RNAi (40). That spectrum also consisted of a nanoparticle doublet 

with parameters (δ = 0.48 mm/s, ΔEQ = 0.57 mm/s) very near to those reported for the 

frataxin KO heart doublet. We conclude that the type of nanoparticles in both mouse 

hearts and human Jurkat cells must be similar. 

Finally, we have pondered as to why previously published MB spectra of human 

hearts lacked the mitochondrial doublet and the blood doublet that we have observed 

with such strong intensities. Published spectra only exhibit features due to ferritin and 

hemosiderin. Our samples certainly contained ferritin, but none appeared to contain 

hemosiderin. Perhaps the iron associated with mitochondria and blood in published 

samples of human organs was converted into ferritin and/or hemosiderin iron during 

sample preparation. Few details of sample preparation were provided in those studies, 

but we suspect that the period between death and freezing samples for MB analysis was 

longer for human (days?) than mouse tissues (30 min). Also, embalming solutions and/or 

exposure to O2 might alter the iron content of human tissues. In contrast, our mouse 
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tissues were dissected immediately in an anaerobic and refrigerated glove box. They 

were flushed with an isotonic aqueous buffer, and were frozen within 30 min of death. 

Clearly there are advantages to using non-human mammals in MB studies besides the 

ability to enrich them with 57Fe. These advantages, along with the availability of many 

iron-related transgenic strains of mice, make these small mammals ideal for future MB 

investigations of iron-related diseases. 

 

Experimental Procedures 

All procedures involving mice were approved by the Animal Care and Use 

committee at Texas A&M University. The original C57BL/6 mice used in the study 

were a gift from Louise Abbott (Texas A&M University). IRP2−/− mice were a gift from 

Tracey Rouault (National Institutes of Health). C57BL/6 and IRP2−/− mice were bred as 

described (39). They were fed iron-deficient chow (Harlan Teklad, Madison, WI; 

number 80396) to which 50 mg of 57Fe3+ (Isoflex USA, San Francisco, CA) citrate per 

kg of chow was added. An iron-deficient pregnant mouse was raised similarly except 

that she was fed iron-deficient chow unenriched in 57Fe for 1 month, starting a week 

before giving birth. Water was distilled and deionized. Three 8-week-old 

male HFE−/− (B6.129S6-Hfe<tm2Nca>/J; 017784) mice and matching C57BL/6 controls 

were purchased from The Jackson Laboratory. These mice were fed iron-deficient chow 

to which 200 mg of 57Fe/kg of chow and 1.2 g of ascorbic acid/kg of chow were added. 

They were also given triple-distilled water to which 100 μM 57Fe3+ citrate and 1 

mM ascorbic acid had been added. These 6 mice were euthanized 1 month after arrival, 
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at 12 weeks of age. Mice were raised in iron-deficient cages, and euthanized with 

ketamine and xylazine, as described (39). Immediately after death, carcasses were 

imported into a refrigerated (8 °C) nitrogen-atmosphere glove box (Mbraun Labmaster) 

containing <10 ppm O2. Preparing samples anaerobically prevented any oxidation or 

degradation of iron centers in these samples. Animals older than 1 week were flushed by 

puncturing the heart with a needle, cutting the caudal vena cava, and flowing Ringer's 

buffer into the heart at 700 μl/min for 5 min per 10 g of animal mass. Organs were 

removed, weighed, transferred to MB cups, frozen, and removed from the box. EPR 

samples were prepared by thawing frozen samples anaerobically, adding ∼5 ml of 

buffer, homogenizing using a tissue grinder, transferring to an EPR tube, capping the 

tube, removing it from the glove box, and spinning the tubes to pack the material. MB 

spectroscopy was performed as described (39). Continuous-wave X-band EPR spectra 

were obtained using a Bruker Elexsys E500A spectrometer with a cryogen-free cooling 

system. After spectra were collected, samples were thawed and transferred quantitatively 

to 15-ml plastic tubes with screw-tops. An equal volume of concentrated trace metal-

grade nitric acid was added to each sample, and sealed samples were heated to 90 °C 

overnight. Samples were diluted with 6.0 ml of distilled deionized water and analyzed by 

ICP-MS (Agilent 7700x). 
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APPENDIX B 

STRUCTURES, INTERCONVERSIONS, AND SPECTROSCOPY OF IRON 

CARBONYL CLUSTERS WITH AN INTERSTITIAL CARBIDE: LOCALIZED 

METAL CENTER REDUCTION BY OVERALL CLUSTER OXIDATION* 

 

Introduction 

 Nitrogenase is an enzyme that catalyzes the six-electron reduction of dinitrogen 

to ammonia (289-292). The FeMoco active site contains a carbide in the center of this 

hetero-metallic cluster (291-292). Fe containing catalysts have become a recent synthetic 

target, with the goal of producing viable catalysts that are cheaper than existing 

counterparts that contain more expensive metals (293-295) There have been a number of 

attempts to synthetically model the FeMoco center of nitrogenase (296) as the interstitial 

carbide can provide stability to a synthetic cluster core to prevent fragmentation or other 

macroscale structural changes during catalytic turnover. Successful synthetic models of 

the FeMoco center could then provide cheap, long lasting catalysts.   

                                                 

* Reprinted in part with permission from Inorganic Chemistry. Subramaniam Kuppuswamy, Joshua D. 

Wofford, Chris Joseph, Zhu-Lin Xie, Azim K. Ali, Vincent M. Lynch, Paul A. Lindahl, and Michael J. 

Rose, Structures, Interconversions, and Spectroscopy of Iron Carbonyl Clusters with an Interstitial 

Carbide: Localized Metal Center Reduction by Overall Cluster Oxidation, 2017, Volume 56, 5998-6012. 

© 2017, American Chemical Society 
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Presented in this publication (114) is the synthesis of various hexa-iron clusters 

containing an interstitial carbide. These clusters were studied to provide precise X-ray 

structure data to dermie the nature and number of bridging carbonyls. Controlled 

oxidation of the negatively charged cluster with an otuer-sphere redox reagent provides a 

novel neutral-charge cluster. The various interconverted hexa- and penta- Fe clusters are 

studied with a number of spectroscopic methods to confirm 

My part of this study involved utilizing Mössbauer spectroscopy to characterize a 

reduced Fe6 cluster with an interstitial carbide and an oxidized produced (neutral charge 

overall) to determine the overall spin state of this cluster, as well as the nature of the Fe 

atoms present. 

 

Physical Measurements 

Mössbauer spectra were collected on a model MS4 WRC low field spectrometer and on 

a LHe6T spectrometer (SEE Co.; Edina, MN). Both instruments were calibrated using α-

Fe foil at room temperature. 
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Scheme B.1: Synthesis of the starting [Fe6]2– cluster 1 (top left), its neutral congener [Fe6]0 (2, top 

right), and the closed synthetic loop including the crystallographically defined five-iron clusters 

[Fe5]n (n = 0 or 2–), shown at bottom. Shown here as an example of the clusters being studied in the 

Mössbauer studies below. 

 

 

 

 

Results and Discussion 

Mössbauer Spectroscopy for 1 and 2 

A Mössbauer spectrum of the reduced cluster (NMe4)2[Fe6(μ6-C)(μ2-CO)4(CO)12] (1a) 

was collected at 5 K and 0.05 T (γ-rays parallel to the applied magnetic field). The 

spectrum (Figure 6) consisted of two partially overlapping quadrupole doublets. The 

solid red line is a simulation assuming the parameters delineated in Table 5. Sites 1 and 

2 represented 2/6 and 4/6 of the spectral intensity, respectively. Within the context of the 

two axial Fe sites plus four equatorial Fe sites described in the X-ray section, site 1 
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corresponds to the two axial irons and site 2 to the four equatorial irons. The isomer 

shifts associated with both sites are similar, suggesting that the corresponding irons have 

the same or similar oxidation states. The Mössbauer spectrum of the same cluster at 295 

K has been reported;(297) ΔEQ was 0.57 mm s–1 and δ was −0.004 mm s–1(we calibrated 

the reported value of δ = 0.22 mm s–1 vs sodium nitroprusside by subtracting 0.22 mm s–

1).(298) Minor differences observed between the δ and ΔEQ values are probably due to 

temperature-dependent shifts. 

 

 

 

Figure B.1: Mössbauer spectrum of a solution of 1a (A) and 2 (B) in frozen THF. Experiment 

conditions: (5 K, 0.05 T). 
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Table B.1: Mössbauer and parameters for 1a and 2 derived from low field (0.05 T) measurements at 

30 K, as well as DFT calculated charge parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    Mössbauer Parameters DFT 

Charges 

Cluster and Site  
(mm/s) 

EQ 

(mm/s) 
 
(mm/s) 

Area 

(%) Mulliken 

(NMe4)2 [Fe6(µ6-C)(CO)16] (1a) 

Site 1  (ax) 0.076 0.36 0.26 37 
0.035 

0.036 

Site 2  (eq) 0.064 0.57 0.27 63 

-0.080 

-0.085 

-0.081 

-0.083 

carbide – – – – -1.7 

[Fe6(µ6-C)(CO)18] (2) 

Site 1  (eq) -0.18 1.35 0.29 22 -0.30 

-0.32 

Site 2  (eq) -0.11 0.75 0.47 42 -0.20 

-0.20 

Site 3  (axial) 0.41 2.26 0.32 30 -0.0060 

-0.0097 

Site 4 1.2 2.8 .585 16 – 

carbide - - - - -1.7 
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Mössbauer spectrum of the oxidized cluster 2 was collected at 5 K (Figure 6B) 

and at 30 K (data not shown); the spectra were essentially indistinguishable. Both 

consisted of four quadrupole doublets, with parameters as listed in Table 5. The 

parameters for sites 1 and 2 are similar to those of trigonal bipyramidal Fe(CO)5 (δ = 

−0.09 mm s–1 and ΔEQ = 2.57 mm s–1) and tetrahedral [Fe(CO)4]
2– (δ = −0.18 mm s–

1 and ΔEQ = 0 mm s–1).(299) Thus, the isomer shift values for sites 1 and 2 suggest iron 

oxidation states between 0 and −2. Site 4 was not simulated in Figures 6 or 7, as it was 

ascribed to adventitious iron. 

To further investigate the magnetic properties of 2, Mössbauer spectra were 

collected at 4.2 K with applied fields ranging from 0–6 T (Figure 7). Spectra were fitted 

assuming that the spin state of the oxidized cluster was either S = 0 or S = 1. Site 4 was 

likely a paramagnetic contaminant,(300,301) so spectral intensity due to this site was 

ignored in the fitting. Simulations assumed two cluster sites, including one with δ and 

ΔEQ values that were the average of those parameters for sites 1 and 2 (Figure 7, yellow 

line), and the other with δ and ΔEQ values for site 3 (Figure 7, green line). The two sites 

represented 4/6 and 2/6 of the remaining spectral intensity, respectively. Simulations that 

assumed S = 0 (Figure 7, red lines) fit the spectra acceptably well at all applied fields, 

whereas those that assumed S = 1 did not. We conclude that the oxidized cluster is 

diamagnetic. 
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Figure B.2: Variable field Mössbauer spectra for a frozen solution of 2 in toluene. Experiment 

conditions: 4.2 K, 0→6 T fields, applied perpendicular to the γ radiation. 
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Conclusions 

The interstitial carbide in the FeMoco active site of nitrogenase has been a topic 

of much study, and its actual function has yet to be determined. Proposed functions of 

the carbide ligand include allowing for structural changes upon substrate/inhibitor 

binding (302), controlling the reactivity of the ligated iron center (303), or that the 

hydrogen and nitrogen based substrates bind directly to the carbide, resulting in 

structural changes (304).  

The results presented in this study favor the notion that the carbide is uniquely 

positioned to control structural changes that occur during redox changes of the cluster. 

The concept of “deficit spending” proposed by Seefeldt, Hoffman, and Dean (305), 

suggests that the P-clusters of nitrogenase donate elections to FeMoco then to the 

substrate, followed by a reduction that returns the P-cluster to its starting state. With the 

results presented here and in the full publication (114), it’s plausible that this mechanism 

would promote a redox-dependent disproportionation of election density in the cluster, 

reducing the Fe’s at the N2 or H2 binding site while the other Fe’s are oxidized. Through 

similar intracluster redox disproportionations (such as with product 2), certain iron sites 

in the cofactor might become powerful nucleophiles/reductants, capable of binding N2 

and reducing the N-N triple bond in the presence of protons.  

This study presents a novel, neutral hexa-Fe cluster produced from an 

outersphere oxidation of a negatively charged cluster using ferrocene. The formulation 

of this cluster is supported by interconversion among dianionic and neutral hexa- and 

penta- iron clusters using both outer-sphere and inner-sphere redox reagents. Substantial 
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context is provided by structural characterization of the 3 other iron-carbido-carbonyl 

clusters. From the collected Mössbauer spectra presented in this chapter, along with DFT 

calculations presented in the full article, it can be concluded that the overall spin state of 

the Fe6 cluster presented in this study is diamagnetic, which agrees with other known 

studies of iron-carbido-carbonyl clusters.  

The carbide is found to support an observation of unusual redox 

disproportionation within the cluster. While a narrow range of oxidation states (0.5 and 

0) is favored in in the negatively charged hexa-Fe cluster, the diamagnetic cluster 

exhibits a wider range of 2+ and 0 while maintaining the core µ6-C motif. 


