
EMUEDGE: A HYBRID EMULATOR FOR REPRODUCIBLE AND REALISTIC EDGE

COMPUTING EXPERIMENTS

A Thesis

by

YUKUN ZENG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Radu Stoleru
Committee Members, Dilma Da Silva

I-Hong Hou
Head of Department, Dilma Da Silva

December 2018

Major Subject: Computer Science

Copyright 2018 Yukun Zeng

ABSTRACT

Numerous recent research efforts have been devoted to edge computing due to its key role in

enabling emerging IoT applications. Prior to deploying edge technologies to real world environ-

ments, they need to be adequately tested, validated and tuned on a testing platform. However, to

the best of our knowledge, a testing platform for edge computing that provides both networking

and computing realism with low costs is still missing. In this thesis, we propose EmuEdge, a

hybrid emulator based on Xen and Linux’s netns for full-stack edge computing emulation. Sup-

porting both containers and VMs, EmuEdge is the first that takes advantage of both OS-level and

full system virtualization in edge computing emulation. The hybrid design of EmuEdge ensures

on-demand isolations on both computation and networking while maintaining the flexibility of

scaling with lightweight containers. Besides, our system supports real-world network replay and is

fully configurable with EmuEdge APIs. Through extensive experiments, we prove that EmuEdge

provides realistic computation isolation and network fidelity comparing to state-of-the-art emula-

tors. We also demonstrate EmuEdge’s compatibility with an actual edge computing platform and

the emulation results are qualitatively similar to physical experiments.

ii

DEDICATION

To my beloved families and Yang,

you are the ones who always understand.

iii

ACKNOWLEDGMENTS

First and foremost, my sincere gratitude to the greatest advisor in the world, my dear fellow

BMWer, Prof. Radu Stoleru for his advice and guidance throughout my Master’s study. His patient

instructions and tireless teachings lightened my way in the dark of research exploration.

Then it comes with my committee members, Prof. I-Hong Hou and Prof. Da Silva, this thesis

wouldn’t have been done so perfectly without their valuable insights and comments. With that

being said I also wish I am not the worst student they’ve ever advised, which feels so true to

myself.

Furthermore, I would like to thank all the CSE and OGAPS officers for their help all the way

in the final examination process.

Thanks for Stoleru Group (LENSS), including Mengyuan, Wei, Chen, Ala, Akshay, Keishla,

Liuyi, Mahima and others I may have missed. Their future feedbacks on my defense dry-run are

greatly appreciated and I wish them good luck in finding the next coffee guy master student.

Special thanks to Mengyuan for his beautiful plots to appear in our paper, this thesis also

owes him a huge debt. Also to Bingqian for her questionless contributions in the preliminary

experiments, most of the experiments I insisted on running actually make no perfect sense.

Thanks also to the previous researchers in Mininet, Xen, Linux, Open vSwitch and many oth-

ers, those are the giant shoulders that our work stands on.

Thanks to my past advisor Prof. Xuefeng Piao and my previous lab mates, their hardworking

spirit still encourages me to work along the night today.

Thanks to my best friend in US: Lei Gao, Guanlun Zhao and the mysterious man who came

from the same alma mater as Lei. I would miss so much fun if living a life without them.

And of course, many thanks to my families in China, who’ve always been my harbour in the

storm no matter where I am. Lastly, I must thank one name in particular. Which is the best

colleague, coauthor, friend and my second family, Yang Liu, whose unconditional support makes

my MS journey possible.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Radu Stoleru and Pro-

fessor Dilma Da Silva of the Department of Computer Science and Engineering and Professor

I-Hong Hou of the Department of Electrical and Computer Engineering. Part of this thesis is

rewritten from a paper manuscript (in submission) coauthored with Mengyuan Chao and Radu

Stoleru. All other work conducted for the thesis was completed by the student independently.

Funding Sources

This work was performed under the following financial assistance award 70NANB17H190

from U.S. Department of Commerce, National Institute of Standards and Technology.

v

NOMENCLATURE

OGAPS Office of Graduate and Professional Studies at Texas A&M
University

TAMU Texas A&M University

IoT Internet of Things

AR Augment Reality

VR Virtual Reality

SDN Software Defined Network

OS Operating System

VM Virtual Machine

NIC Network Interface Controller

MStorm Mobile Storm

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. xi

1. INTRODUCTION AND LITERATURE REVIEW .. 1

1.1 Motivation . 1
1.2 Related Work and Background . 5

1.2.1 Edge Computing Experimental Tools . 5
1.2.2 EmuEdge Objectives . 7
1.2.3 Xen Architecture . 8

1.3 Our Approach . 11
1.4 Introduction . 12

2. PRELIMINARY OBSERVATIONS ON VIRTUAL MOBILE STORM .. 14

2.1 Case Study on Mobile Storm . 14
2.2 Mobile Storm Setup with VMs on Xen∗ . 16

2.2.1 Deploying Mobile Storm on Xen. 16
2.2.2 MStorm Networking on Xen . 17
2.2.3 Traffic Pattern Analysis in Mobile Storm . 19

2.3 Quantifying Network Inequivalence . 21
2.3.1 Master-to-Slave Network Characteristics . 22
2.3.2 Slave-to-Slave Network Characteristics. 22
2.3.3 Slave-to-Master Network Characteristics . 23

2.4 Conclusion . 24

3. EMUEDGE: DEFINING NETWORKS ACROSS HETEROGENEOUS NODES. 26

vii

3.1 Introduction . 26
3.2 EmuEdge Architecture. 28

3.2.1 Design Overview . 29
3.2.2 EmuEdge Reproduction Framework . 30

3.3 EmuEdge Implementation . 31
3.3.1 EmuEdge Components . 31
3.3.2 Network Realism . 33
3.3.3 Computation Realism . 36
3.3.4 Scalability and Extensibility . 37

3.4 EmuEdge User Interface . 39
3.4.1 Create Edge Network with EmuEdge Python API . 39
3.4.2 EmuEdge JSON API . 40

3.5 Experimental Evaluations . 41
3.5.1 Network Fidelity Validation . 42
3.5.2 Replaying Wireless Network . 46
3.5.3 Computational Realism Validation . 48

4. Reproducing edge computing Experiments . 51

5. CONCLUSIONS . 56

REFERENCES . 58

viii

LIST OF FIGURES

FIGURE Page

1.1 Xen internals and networking . 9
1.2 Physical equivalence to virtualized network in Figure 1.1 . 10

2.1 The development iteration of mobile storm . 14

2.2 Configuration time for setting up MStorm with different approaches 18

2.3 Network connectivity of a MStorm VM on Xen . 19

2.4 Physical(left) vs. virtual(right) MStorm cluster setup. 20

2.5 Master-to-Slave network characteristics . 22

2.6 Slave-to-Slave network characteristics. 23

2.7 Slave-to-Master network characteristics . 24

3.1 An overview of technology bound of existing testing platforms . 28
3.2 EmuEdge reality reproduction framework . 30

3.3 Bidirectional QoS approaches (red boxes represents tc egress control) 35

3.4 Extensible design of EmuEdge to support heterogeneous emulation 38

3.5 Network fidelity validation topologies . 40

3.6 Edge computing topology definition with EmuEdge JSON API . 41

3.7 Experiment testbeds . 42

3.8 Twoway bandwidth performance comparisons . 43

3.9 Forkout bandwidth performance comparisons. 44

3.10 Singlesw bandwidth performance comparisons . 44

3.11 Dumbbell bandwidth performance comparisons . 44

3.12 Tuned singlesw bandwidth in EmuEdge . 46

ix

3.13 Comparison between delays in EmuEdge non-emulated, norm approx, replay and
real-world wireless link . 47

3.14 Computational realism comparison between EmuEdge VM and Mininet containers . 48

4.1 Physical and hybrid (EmuEdge) setup of actual edge computing platforms in ex-
priments . 51

4.2 Throughput of physical and VM (EmuEdge) MStorm with workloads following
constant IAT pattern . 52

4.3 Throughput of physical and VM (EmuEdge) MStorm with workloads following
UR IAT pattern . 53

4.4 Throughput of physical and VM (EmuEdge) MStorm with workloads following
Gaussian IAT pattern . 53

4.5 Throughput of physical and VM (EmuEdge) MStorm with workloads following
Pareto IAT pattern. 54

4.6 Realistic scalability experiments on EmuEdge . 54

x

LIST OF TABLES

TABLE Page

1.1 Edge computing experimental platform features . 7

3.1 Control function support for different link metrics . 34

xi

1. INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

According to the statistics last March, the amount of Apps on Android and iOS has exceeded

5M and keeps growing continuously. Among those applications, computationally intensive ones

have begun to take lead. Typical future mobile Apps would be integrated with sensor-related func-

tions like face recognition, heart rate detection as well as other new technologies such as Machine

Learning, AR/VR, etc, enabling people to do more with their mobile devices with better user ex-

perience. However, the growing computational demands from applications also cast challenges to

mobile device processing capabilities due to their inherent limitations on volume and power. With

the same intention of traditional cloud computing systems [1, 2], mobile cloud computing [3, 4, 5]

was then proposed to augment mobile devices with additional computational capability from the

cloud by offloading computations to datacenters. Since most complicated computing tasks are of-

floaded to the cloud [6], mobile applications can provide indifferentiated services to devices with

limited computing power. Recently, a new computing paradigm called edge computing, is pro-

posed to further optimize cloud computing. As an extension of cloud computing, edge computing

can greatly reduce backbone traffic by bringing the control of computing applications, data, and

services away from the core to the edge of the Internet. Furthermore, exploiting computational

sources physically nearby can reduce service latencies since network time is shortened. Though

not until recent has edge computing been proposed and formalized, it is indeed a longheld idea to

offload computations to nearby devices. Soon after cloud computing is introduced, a virtual cloud

computing provider is proposed to enable file and computing resource sharing between vicinity

mobile devices [7], however, the actual experiments conducted only consist of rough Hadoop setup

on iPod Touches. Besides, dedicated mobile cloud platforms are also developed for different com-

putational needs such as portable MapReduce in [8, 9, 10] for batch processing and data analysis

workloads, Mobile Storm [11] for real-time stream processing. Such efforts in pushing intelli-

1

gence, data storage and processing capabilities closer to data originations (usually sensors, mobile

devices and smart appliances in IoT literature) formed a new computing paradigm called edge

computing, also referred to as edge-clouds, fog computing, cloudlets and etc. Edge computing can

be regarded as the extension of utility computing concept proposed in cloud computing [12], and

a key technology driven by market that various future applications would rely on [13]. Despite

various advantages of edge computing, several major challenges have to be resolved before it can

realize its full potential:

• Privacy and Security: edge computing is designed to fullfil the computational requirements

of IoT and is involved with billions of househeld devices that generate sensitive information.

Any communication on user privacy information should be well protected through encryp-

tion and data to be offloaded should be limited for privacy concerns.

• Programmability: datacenters in traditional clouds usually consist of homogeneous servers

in terms of both hardware and OS, therefore software and programs can be shared easily due

to the homogeneity. However, edge computing systems usually contains clusters of devices

running on heterogeneous hardware and OSes which require platform-specific programming

efforts. Therefore, a more general computing platform has became a necissity to resolve

programmability issues in edge computing.

• Offloading strategy: in edge computing, low-level IoT devices such as sensors can choose

to offload computations between edge, fog and cloud core. Intelligent strategies needed to

be proposed and studied to satisfy the distinctive constrains (e.g., latency, energy, etc) of

different edge computing applications.

Since no standard has been reached in this field yet, discussions on edge computing architec-

tures are still on going, research efforts are devoted to various directions such as resource allocation

[14, 15], computation offloading [16, 17, 18, 19] and security aspect [20, 21, 22]. However, be-

fore the actual deployment of the new research advances, or for example, a comprehensive edge

computing platform, they must be well debugged, tuned and validated in terms of scalability, effi-

2

ciency, fault-tolerance and etc. Therefore, in this thesis, we are specially interested in the testing

and validation of edge computing technologies, which is the key to facilitating the development of

the whole edge computing ecosystem.

Hassles with Edge Computing Development: though edge computing helps in satisfying

growing computing demands and reducing network traffic in the backbone, the testing and vali-

dation of such platforms are not easy if at all possible. Challenges in edge computing platform

validation process include the following aspects:

• Efficiency: an edge computing platform always consists of a cluster of heterogeneous mo-

bile devices and servers, operating on all of them manually in a test is inefficient, especially

in the case that interactions with the mobile devices could rarely be automated.

• Cost: with on-demand public cloud services like AWS and Google cloud we no longer have

to pay for large infrastructure bills for experiments on PC. However, this is not true with edge

computing scenarios. A large-scale edge computing experiment would require a cluster of

heterogeneous devices spanning from servers, PCs, mobile phones to IoT sensors, which

could turn into a huge cost.

• Heterogeneity: edge computing platforms are typically composed of heterogeneous devices

ranging from servers, network equipments, mobile devices to sensors, this means a high sys-

tem complexity and heterogeneity. This adds up to costs due to larger varieties of devices to

consider, and also reduces efficiency in requiring heterogeneous operations across platforms.

• Network Complexity: Different from previous cloud paradigms, edge computing naturally

involves with a wider range of devices which results in a network complication. If combined

with IoT infrastructures, an edge computing platform may be involved with hybrid networks

including sensor networks, mobile networks and backbone networks. This implies mobility,

different network protocols, complex topologies and traffic patterns as well as hybrid con-

nectivities with wired/wireless medium, all of which contributed to difficulties in validating

edge computing systems.

3

• Reproducibility: As motivated in Mininet [23], reproducibility is a major concern in net-

working researches. We argue that reproduction is the first and most significant step in

identifying and understanding a problem for both academia and industry, across all fields of

study. From the author’s experience in the industry, companies are willing to invest huge

manpower and funds purely for reproducing a customer bug. Reproducing a problem on

edge computing platform can be extremely hard due to the high heterogeneity and network

complexity.

Apparently, realistic testing of edge computing platforms will lead to tremendous monetary

and time costs. Therefore, an easy-to-deploy test environment has became a necissity in the devel-

opment and improvement of edge computing paradigms.

Despite numerous researches in edge computing field to improve the overall performance in

various aspects, few focused on easing the difficulties in debugging, testing and validation pro-

cess. iFogSim [24] is the pivoting test environment for edge computing, it models applications

as DAGs and simplifies all elements in edge computing as sensor or actuator, which brings up

many limitations and results in unrealism due to the nature of simulator. EmuFog [25] is a fog

computing emulator developed based on Maxinet [26], which enables customization of fog com-

puting infrastructure from scratch. However, EmuFog, Maxinet as well as their predecessors in

[23, 27, 28] mostly focus on network emulation such as topology design, traffic control while the

equally-important computation plane in edge computing are ignored. In this paper, we investi-

gate the possibility of testing, prototyping and emulating actual edge computing platforms within

lab settings in both computation and network perspective. After first identifying the differences

between the testing of traditional network systems and edge computing platforms, we present a

hybrid emulator called EmuEdge which extends from Mininet with support for distinctive edge

computing platform characteristics. Similar to Mininet, we hope our work can bring insights lead-

ing to a new edge computing development paradigm, where large scale physical experiments in

edge computing can be simplified to initing a topology definition file in a lab server.

4

1.2 Related Work and Background

In this section, we first present existing experimental tools for networking and edge computing

and summarize their advantages and disadvantages. Then, we outline the design objectives of

EmuEdge. Finally, we briefly introduce background on Xen [29], the full-system virtualization

technology adopted by EmuEdge to supplement heterogeneity vacancy in previous emulators.

1.2.1 Edge Computing Experimental Tools

The experiments for edge computing mainly consists of two parts: networking - with commu-

nication delay, bandwidth, drop rates and jitter as its metrics; and computing - with computation

delay and throughput as its metrics. Currently, most experimental tools for edge computing focus

on networking, as they are evolved from the previous networking experimental tools. In this sub-

section, we introduce related work on experimental tools for both networking and edge computing

by categorizing the existing work as follows:

Testbeds: The ideal way of testing a system is through reproducing the actual scenarios on

a physical testbed. There are several networking testbeds that can be adapted for edge comput-

ing experiments, such as NCR [30], Emulab [31], Deterlab [32], PlanetLab [33], StarBED [34],

GENI [35], etc. These testbeds make a large number of machines and network links available and

use tools such as Dummynet [36] and NIST Net [37] to configure network link properties such as

delays, drop rates, jitters [38]. There are also pure edge computing testbeds, such as Cumulus [39]

and the SCC TestBed [40], which consist of a large spectrum of heterogeneous devices, OSes and

network links. Although testbeds provide the most realistic experimental results, they are costly to

build and maintain. Besides are limited by practical resource and replication limitations, and lack

the flexibility to support experiments with custom topologies [38]. Additionally, the difficulty of

reproducing problems and errors on physical testbeds has always been an unresolved issue.

Simulator: Discrete-Event simulations have been widely applied in network researches, renowned

simulators such as Glomosim [41], NS-3 [42], OPNET [43] provide a cost-effective way for net-

work prototyping. Their experiments are reproducible and convenient, but the models for their

5

hardwares, protocols and traffic generation patterns may raise fidelity concerns [38]. Besides, al-

though these network prototyping tools are useful for edge computing simulation to some degree,

they are limited to network simulation by nature, other factors such as computational realism are ig-

nored. With the purpose of simplifying evaluation specifically for edge computing, iFogSim [24]

and its extension [44] are proposed to model IoT and edge computing environments and mea-

sure the impact of resource management strategies. However, they simulate the network behavior

through models based on assumptions and simplifications, which always leads to non-realistic re-

sults.

Emulators: Emulators are able to automatically configure and set up reproducible experi-

ments emulating real world scenarios. Comparing to simulators, emulation usually incurs simi-

lar infrastructure cost while achieving better realism since it can run real code without changes.

With recent advances in SDN such as Linux netem [45], Open vSwitch (OvS) [46] and Open-

Flow [47], configuring network topologies and link properties in emulators has become possible.

There are mainly two types of emulators. One supports container-based emulation, such as vEmu-

lab [48], NetKit [49], Trellis [50], CORE [51], Mininet [23] and its descendants Mininet-HiFi [27],

Mininet-WiFi [28] and Maxinet [26], which employ light-weight OS-level containers to achieve

good scalability by sharing a single kernel. Based on Maxinet, an edge computing emulation

framework named EmuFog [25] is also proposed to enable large-scale fog computing experiments

by augmenting the preceding work with fog infrastructure design capabilities. Container-based

emulators are cost-effective and promising in scalability, however they are based on partial virtu-

alization and cannot emulate heterogeneous OSes. The other type of emulators support full-system

emulation, such as ModelNet [52] and DieCast [53]. Such platforms use VMs as hosts to en-

able node heterogeneity and resource isolation. This is essential for edge computing emulation,

as there are usually lots of heterogeneous devices in an actual edge computing scenario. Besides,

full-system emulation supports live migration and cloning, which can be helpful in configuring and

scaling process.

Different from previous work, EmuEdge is a hybrid emulator that aims to combine the features

6

Type Simulator Emulator-Con Emulator-VM Testbed Hybrid
Example iFogSim EmuFog DieCast Cumulus EmuEdge
Topo flexibility X X X X
Link realism X X
Traffic realism X X X X
Resource realism X X X
OS realism X X X
Functional realism X X X X
Easy replication X X X X
Low cost X X X
Good Scalability X X X

Table 1.1: Edge computing experimental platform features

of simulators, testbeds and emulators together, thereby providing varying degree of realisms for

realistic and reproducible edge computing experiments.

1.2.2 EmuEdge Objectives

In order to create realistic and reproducible edge computing experiments, a platform needs to

have the following characteristics:

Topology flexibility: The platform should be able to easily create experiments with different

topologies or even dynamically changing topologies at runtime.

Traffic realism: The platform should be able to generate and receive real, interactive network

traffic to and from the Internet/local network. The traffic between two hosts should go through

network devices (switches or routers) the same way as in the real world.

Link realism: The platform should be capable of controlling the link quality of each link, such

as delay, bandwidth, drop rate, etc., according to the real world link quality trace.

Resource realism: The platform should be able to emulate heterogeneous devices in the edge

computing paradigm by allocating isolated computing resources to different hosts based on their

actually available resources.

OS realism: The platform should be able to emulate devices with different OSes in the edge

7

computing paradigm by installing different hosts with different OSes.

Functional realism: The platform should be able to execute the same code as in the real

devices.

Easy replication: It should be easy and fast to replicate an experimental setup and run an

experiment.

Low cost: It should be inexpensive to set up different experiments in both money and time.

Good Scalability: The platform should incur little overhead, so that it can scale well when the

required hosts increases.

Table 1.1 shows the comparison of above characteristics between exiting experimental tools

and our EmuEdge. As we can see, simulators such as iFogSim can provide flexible topology, easy

replication, good scalability with low cost. However, simulators are usually limited in fidelity

due to their simplified models and unrealistic assumptions. Although the experimental results of

testbeds such as Cumulus are convincing, they lack flexibility and are costly to setup and maintain.

Container-based emulators such as EmuFog can ensure the link, traffic and functional realism with

low costs and good scalability. However, they are typically based on OS-level virtualization, which

cannot support OS heterogeneity and has no guarantees on resource realism. VM-based emulators

such as DieCast [53] generally provide better resource and OS realism. However, they are usually

considered to have inferior scalability and incur higher costs.

Different from all existing platforms, our goal is to design a new emulator platform that

achieves all the above characteristics. With a VM-based emulator as its main component, EmuEdge

also supports container-based hosts and allows real devices to be added to the emulation. More-

over, it enables configuring the network topology and link properties based on the synthetic traces

generated by different simulators. To achieve this goal, EmuEdge employs Xen virtualization,

which is briefly introduced in the following subsection.

1.2.3 Xen Architecture

First proposed in [29], Xen is now the state-of-the-art opensource virtualization platform that

is adopted widely, majorly due to its scalability, OS neutrality, high performance and lightweight

8

Figure 1.1: Xen internals and networking

features. The fact that Xen is adopted in various public clouds like AWS, GoGrid and Aliyun

makes it possible to deploy and scale Xen-based platform leveraging pay-as-you-go services.

Xen Basics: Generally, a Xen instance can be divided into several levels as shown in Figure 1.1.

The two distinctive components of Xen are domain and hypervisor. In Xen, a running VM instance

is usually referred as a domain. Xen Hypervisor is a software layer that manages all hardware

resources of the physical machine, except I/O devices. Xen allows domains to directly control

physical devices such as NICs, disks, using PCI Passthrough. A special domain, namely Dom0,

is designed as a control domain that contains drivers for all devices as well as a toolstack for

managing DomUs (guest VMs).

Xen Networking: Xen is also equipped with powerful networking capabilities, Linux bridge is

the standard networking mode adopted in Xen. On boot, Xen Dom0 creates a bridge, for example

xenbr0, that connects to each physical NIC. Per startup of a new DomU, Xen generates a virtual

interface (mostly referred to as vif) in Dom0 that links to the virtualized NIC in DomU and con-

9

nects it to a specified bridge created before, thereby all traffics from DomUs can be directed to the

specified physical interfaces. With recent advances in SDN, another networking approach based on

OvS [54] is also introduced in Xen, which differs from the standard mode in that the Linux bridge

is replaced with a OvS switch to support more SDN features such as OpenFlow [47]. Bridges and

OvS switches can also be created independent from physical interfaces, thereby enabling internal

LANs between multi VMs. The case in Figure 1.1 is actually equivalent to Figure 1.2, through

xenbr0, all Dom0 and DomUs are bridged to the same external subnet with physical NIC eth0.

Figure 1.2: Physical equivalence to virtualized network in Figure 1.1

VM Snapshot/Clone†: one major advantage of VM comparing to other lightweight virtualiza-

tion approaches is the live migration capability. Snapshot captures disk and memory state of the

VM and has now become a standard in virtualization due to its importance in healthy state backup

and restore. Interestingly, we found it equally useful in accelerating edge computing platform vali-

dation on EmuEdge. A snapshot of a well-configured VM instance (e.g., ready to run applications)

can be scaled quickly to hundreds which could save us from manually repeating operations on

physical devices. While several types of Snapshot are supported in Xen, we are mainly concerned

about:

• Disk-only snapshots: as suggested by the name, disk-only snapshots only captures metadata

and virtual disk storage for a VM, allowing exporting and restoring VM states for backup

purpose. This type of snapshots require no support from VM itself and is crash-consistent.

†Snapshot is a feature of XenServer that Xen Project doesn’t official support, however through LVM2 tools Xen
can achieve the same functionalities as illustrated at https://wiki.xenproject.org/wiki/Xen_FAQ_High_Availability

10

https://wiki.xenproject.org/wiki/Xen_FAQ_High_Availability

• Disk and memory snapshots: besides VM configuration information and storage data, disk

and memory snapshots captures the VM RAM state exactly by the time the snapshot is made.

Therefore a VM instance is able to restore to a previous running state as is without rebooting.

This kind of snapshot usually requires support from the host OS, but it is commonly provided

in mainstream OSes.

In fact, snapshot is treated as a special VM that needs further provisioning for booting. XenAPI

provides the same clone API for snapshot and vm. VM clone can be regarded as the process of

snapshotting a VM and provisioning. Another Xen operation called copy may seem to be synonym

of clone at the first glance, but they actually differ significantly. clone leverages Copy-on-Write to

reduce operation time while copy incurs an immediate copy of the entire disk. In EmuEdge, VMs

typically boot and scale through cloning a well-configured snapshot for its performance superiority.

1.3 Our Approach

At the first glance, both simulators and emulators can significantly reduce the cost of notori-

ously expensive edge computing testing thereby facilitating the development process. However,

simulators usually require additional efforts to accomodate real systems and they are usually too

simplified to capture real world details. Previous emulators such as Mininet can either be sat-

isfactory for edge computing due to higher heterogeneity. Therefore, we propose EmuEdge, a

new emulator designed for heterogeneous edge computing environments for better realism in both

computation and network perspective. With EmuEdge, we promote the significance of on-demand

realism in achieving faithful emulations with low cost.

Computation realism is the degree of computation isolation and heterogeneity. Higher degree

of such realism can be applied when a computational intensive node is to be emulated such as a

Hadoop slave node while a lower level may be sufficient for a network bounded device.

Network realism represents the degree to which EmuEdge links behavior like real world ones.

EmuEdge provides several approaches for users to emulate real world link qualities, such as rate

limiting, random losses and network replay from traces.

11

Hybrid integration is the ability of EmuEdge to combine virtual topologies with physical

nodes. Physical nodes connecting to EmuEdge can interact with internal topologies through real

links therefore specific hardware issues may be also discovered through EmuEdge experiments.

External nodes integrated to EmuEdge are also considered the highest degree of realism.

1.4 Introduction

The major contributions of our work can be summarized as follows:

• We comprehensively studied the possibility of heterogeneous edge computing platform emu-

lation through Xen in terms of scalability and realism. The experiment results demonstrated

great gap on network performance between virtual and physical environment.

• Design and implementation of EmuEdge, a hybrid edge computing emulator which extends

traditional emulators with heterogeneous system and hardware integration support for real-

istic edge computing experiments with low costs.

• Comprehensive approaches with link asymmetry and quality control, QoS tuning, network

trace replay to address the network equivalence between EmuEdge and real-world.

• Two suites of APIs to easily define, interact and share edge computing prototypes with full

details such as network topology, link qualities and VM configurations.

• Emulation fidelity validation of EmuEdge with a practical edge computing platform, in

which our measured results reflected the real world performance with high fidelity.

The remainder of this paper is organized as follows: In Chapter 2, we present our preliminary

thoughts on leveraging full-system virtualization for edge computing emulation as well as the

challenges and limitations in our approach. Afterwards, we tackle these problems in Chapter 3

with a comprehensive design of a novel hybrid emulator called EmuEdge. Besides, we also showed

the performance realism of EmuEdge in both network and computation perspective comparing

with state-of-the-art emulators and real-world experiments. In Chapter 4, we demonstrate the

compatibility of EmuEdge with actual edge computing applications. Finally we conclude our

12

work with a comprehensive discussion on both advantages and current limitations of EmuEdge in

Chapter 5.

13

2. PRELIMINARY OBSERVATIONS ON VIRTUAL MOBILE STORM

Motivated by various difficulties of general testing and validation process in development of

edge computing systems that rely on both networking and computation, we aim to develop a system

based on Xen to extend the idea of SDN prototyping and emulation systems such as Mininet [23]

to more realistic heterogeneous platforms.

In this chapter, we manage to emulate heterogeneous edge computing platforms with Xen, fol-

lowing the full-system virtualization choice of DieCast [53]. Then in our preliminary experiments,

an actual edge computing application called MStorm [11] is successfully deployed on Xen. How-

ever, we also observed the network inequivalence between emulated system and real-world, which

indicates the unrealisms to validate a practical edge computing system on Xen.

Figure 2.1: The development iteration of mobile storm

2.1 Case Study on Mobile Storm

Mobile Storm is a distributed real-time streaming processing platform on the edge of network

[11]. Instead of offloading to the cloud, Mobile Storm is designed for mobile devices to offload

14

computational tasks to nearby computing resources, thereby greatly reducing backbone network

traffics and improving real-time stream processing performance. In this section, we consider a

software lifecycle of a typical edge computing platform Mobile Storm, where it’s being iteratively

developed, tested, debugged and finally released. The workflow described above can be shown

specifically in Mobile Storm’s case as in Figure 2.1.

Complexity of Interacting with Mobile Devices: in the validation process of each Mobile

Storm development iteration, we have to repeatedly install, configure and start applications on mul-

tiple devices ranging from a master server to several mobile devices as shown in Figure 2.1. On the

server side, the workflow described above can be somehow automated through scripts. However,

with heterogeneous mobile devices, a perfect automation is not possible and the workflow turned

into a complex set of hands-on interactions. With Mobile Storm, the average time needed for the

whole deployment workflow is approximately 1 minute per device. This might seem minor at the

first glance, however, in a scalability experiment where hundreds of devices are needed, hours will

be taken to simply setting things up. The trial and error cost thus become tremendous for edge

computing platforms such as Mobile Storm.

Reproducibility Concerns: like most edge computing platforms, the Mobile Storm system is

fragile due to its mobility nature. This could be attributed primarily to two aspects:

• Incompleteness of Mobile OS: most of the OSs running on mobile devices, such as An-

droid, have to trade off reliability and completeness for limited computing capabilities and

energy constraints.

• Unreliable Network: network communications in the case where mobile devices are present

rely heavily on unreliable wireless networks.

Therefore, any differences in OS configurations and network conditions might lead to software

errors. Reproducing and correcting those platform-specific and network-specific problems requires

at least similar OS and network conditions, if not exactly the same condition.

Cost Analysis: the Mobile Storm platform requires a server to run ZooKeeper and the master

15

server, this could be on any laptop or lab PC platform-independent thus we ignore the costs on

the server side. However, the scalability and compatibility of Mobile Storm have to be tested with

multiple heterogeneous mobile devices. Using a state-of-the-art mobile device such as Galaxy S8

would result in a cost of $599 per device, this can accumulate easily to tens of thousands when

scaling over 16 devices.

System Heterogeneity: an ideal validation of a Mobile Storm system should include tests

on heterogeneous devices. Besides, reproducing real-life software errors often requires us to go

beyond the experiment setup and debug on specific device models, which is especially true in in-

dustry product development. The need for additional heterogeneous devices would further increase

costs.

2.2 Mobile Storm Setup with VMs on Xen∗

Observed the difficulties in validating and debugging Mobile Storm with physical devices, we

seek to ease the process with virtualization. The most original ideas we have is limited to the

scope of Mobile Storm virtualization by simply replacing physical devices with VMs to reduce the

hardware costs, however this indeed inspired our following work on the design and implementa-

tion of EmuEdge. In the following sections, we will first walk through some internal designs of

Xen which are fundamental to understanding our work. Then the Mobile Storm networking and

deployment details on Xen will be discussed. Finally we compare between physical and virtual

approachs for Mobile Storm deployment and summarize the limitations of the virtual approach.

2.2.1 Deploying Mobile Storm on Xen

Similar to the development flow show in Figure 2.1, the Mobile Storm code will be compiled

and packaged for installment on devices. However, with Xen Snapshot, the tedious repetitions

on different mobile devices now turn into a simple clone process. The advantages of leveraging

virtualization over physical devices in validation environment setup time are shown in 2.2. The

∗The experiments in this paper are conducted on XenServer instead of the open source Xen Project. XenServer
is a commercial distribution of Xen provided by Citrix Systems, Inc. We don’t discriminate between them since most
key concepts involved in the scope of this paper can apply to both.

16

cost of a typical small-scale virtualization setup is trivial, the Xen system demonstrates extraordi-

nary compatibility and 2 old PCs from 2006 (Intel Core 2 and 4GB RAM) were able to run Xen

and 5 Android VMs on top. In fact, any PC with virtualization support in CPU can be leveraged

for hardware assisted virtualization. Even better, paravirtualized VMs can be ran on PCs without

virtualization support, however OS kernel support will be needed in this case. With a larger exper-

iment scale, a tremendous amount of time can be saved. Figure 2.2 shows the configuration time

trend of 3 different setup approaches, with one physical and two different virtualization setup ap-

proaches. When scaling to a medium scale with 50 mobile devices, virtualization saved us ~47.5

min throughout the process. Furthermore, the difficulty in reproducing on specific hardware or

software configurations can be solved to some extent. With Xen it’s possible to instantly control

over computing capabilities like memory and CPU to emulate a device with limited resources, a

system specific errors might be reproduced by installing a new VM with target ROM (ROM refers

to the firmware on a mobile device in our case). However, Xen is still limited in platform spe-

cific emulations. From our experiences, applications on Mobile Storm that requires Snapdragon

API support simply crashes in VM due to incompatibility of CPU architecture. Though the batch

cloning process reduces configuration time by 80% comparing to manual setup, we attempted to

further improve efficiency by using XenServer Async API to issue tasks running in parallel. How-

ever, the Async API didn’t perform as expected and demonstrates large fluctuations with higher

time consumption on average. This probably can be attributed to the overhead of task scheduling

and I/O bottleneck for storage migration. We believe the Async XenAPI would still be useful

if heterogeneous workloads (such as combination of I/O and CPU bound tasks) are parallelized

through it.

2.2.2 MStorm Networking on Xen

As discussed in Section 2.1, edge computing systems like Mobile Storm are renowned for high

network complexity in multiple aspects. Both the testing, validation and possible reproduction

environment require a realistic network setup. A typical Mobile Storm scenarios as shown in the

left part of Figure 2.4 involves with several common network features with edge computing:

17

Figure 2.2: Configuration time for setting up MStorm with different approaches

• Hybrid Topology: The Mobile Storm network consists of a wired network through which

the router is connected to master server, and a wireless network that brings mobile devices

together.

• Mobility: The computational contributions from devices are totally at will and targeted users

are fully mobilized, which means they may leave and join at any time.

• Unreliability: Presence of interferences and noises in the wireless network can lead to unre-

liable wireless communications, such as delay, jitter, packet loss and corruption, intermittent

transmission, etc.

With the physical Mobile Storm network being discussed, we summarize that problems might

occur on a realistic Mobile Storm system due to the network complications. Therefore, an ideal

edge computing validation platform should be able to preserve network conditions as is instead

of purely connecting things together. From the topology perspective, virtualizing Mobile Storm

doesn’t change the network since all android VMs are running on the same subnet (10.0.0.0/24)

18

Figure 2.3: Network connectivity of a MStorm VM on Xen

with the router (10.0.0.1/24) and master server (10.0.0.2/24). Figure 2.3 shows the network status

of a slave node, PING activities proved that interconnectivities are well preserved.

However, this might not be the case in terms of network quality. Two major differences in

network that might greatly influence the realism of virtual Mobile Storm are:

Network Media: The right half of Figure 2.4 shows that in the virtualized system all Android

VMs are connected through the default linux bridge xenbr0 while in a physical cluster mobile

devices are connected through wireless networks. The supposedly wireless connections between

mobile devices become reliable in virtual Mobile Storm.

Centralized vs. Distributed Network Exit: All domains on xenbr0 relies on the centralized

physical interface eth0 to travel beyond XenServer while in physical setup distributed wireless

network interfaces are present on all mobile devices, this might bring unrealism on packet queuing.

2.2.3 Traffic Pattern Analysis in Mobile Storm

To better understand how network influences a edge computing platform like Mobile Storm, in

this section we aim to identify the common traffic patterns in Mobile Storm and demonstrate how

a network change can transform into a issue in a software’s perspective.

19

Figure 2.4: Physical(left) vs. virtual(right) MStorm cluster setup

Mobile Storm Components: typically a Mobile Storm system consists of a master server

and a cluster of mobile devices referred to as slave nodes. The master server runs ZooKeeper for

distributed coordination of slave nodes. Considered as a centralized task scheduler, the master

server collects heartbeats from slave nodes to gain a global knowledge of the cluster status, based

on which it can allocate and schedule tasks accordingly based on each slave node’s workload.The

network traffic patterns in actual Mobile Storm system can be categorized as follows:

• Master-to-Slave: a Master-to-Slave transmission happens when the master server transmits

scheduling decisions and task input data to slaves through the wireless link. In such trans-

missions, though the reliability can be guaranteed by using TCP, the instability of wireless

link might lead to high latencies in delivering scheduling decisions, low bandwidth would

also result in higher response time as the input data cannot be transmitted timely.

• Slave-to-Master: typical Slave-to-Master transmission includes the regular heartbeat from

slave to master server (sometimes referred to as status report), in some cases, the execution

results might also be returned to master server through the wireless link. Late arrivals of

heartbeat might lead to wrong scheduling decisions while delay of returning data lengthens

20

the average response time.

• Slave-to-Slave: one thing in common among various distributed and cloud computing plat-

forms is the interaction between different slaves. The intercommunication between those

slaves in the cluster can be transmissions for intermediate results, job/task migrations per

scheduling requests, etc.

Apparently from the discussions above, the performance of Mobile Storm will be greatly influ-

enced by the network. Under the wireless scenarios, duplication, corruption and loss of streaming

data or management information, delays may influence scheduling decisions, all of which might

result in performance degradation or even system failures. However, in the virtualized mobile

cloud, either the highly reliable wired network or virtual I/O between VMs on the same server can

correctly reflect the properties of a realistic wireless network. In the next section, we empirically

prove this argument and show different characteristics between virtualized and actual wireless net-

work in both 3 types of transmissions mentioned above.

2.3 Quantifying Network Inequivalence

In this section, we demonstrate the network quality gap between physical and virtual Mobile

Storm systems by measuring several common network metrics for each of the aforementioned

traffic patterns.

Measurement Metrics: in our experiments, bandwidth is measured to show the long-term av-

erage performance and capacity while two other metrics packet loss and jitter are chosen primarily

to reflect the reliability of the network.

Experiment Methodology: we regard each traffic pattern as a directional transmission to test

independently. For each pattern, we setup a pair of iperf server/client at the sender and receiver

respectively. Then we stress the network with different load (by controlling the sender rate from 5

MB/s to 60 MB/s) and measure the actual performance using metrics described above.

21

2.3.1 Master-to-Slave Network Characteristics

The metrics we measured under different traffic load for Master-to-Slave transmissions are

shown in Figure 2.5. The figure shows a promising bandwidth around 25 MBps for physical

Master-to-Slave network, this makes sense since the wireless media is preserved for the mobile

phone exclusively. However, with the rise of transmitting rate at the sender, the packet loss rate

and jitters also increase. In the meantime, variations in the wireless network become considerable

after the 25 MBps threshold is exceeded while the virtualized network remains stable the whole

time.

Figure 2.5: Master-to-Slave network characteristics

2.3.2 Slave-to-Slave Network Characteristics

The metrics we measured under different traffic load for Slave-to-Slave transmissions are

shown in Figure 2.6. Different from the other two patterns, an additional case is considered for

Slave-to-Slave traffic pattern. The underlying reason is that for Slave-to-Slave transmission in vir-

tualized environment, the slave nodes can be sitting on the same physical server or two different

servers.

Immediately after a short period of increasing bandwidth at the beginning in Figure 2.6, the

wireless network is overloaded and the maximum bandwidth that it can achieve stays at around

22

8MBps. From the reliability perspective, considerable packet losses and jitters are observed from

the start of wireless test. For the other two virtual network, they remained similar performance

comparing to Master-to-Slave virtual network. As expected, the bandwidth of transmitting between

VMs across two Xen servers (45 MBps) is lower than on one internal Xen network (52 MBps).

The unreliability of wireless network is highlighted by consistently high packet loss and jitters in

this case, which can be attributed to the share of the same wireless media by two mobile devices.

For short, the wireless link in the actual scenario yields much lower bandwidth, produces a lot

more jitters and packet losses, and is highly unstable.

Figure 2.6: Slave-to-Slave network characteristics

2.3.3 Slave-to-Master Network Characteristics

The metrics we measured under different traffic load for Slave-to-Master transmissions are

shown in Figure 2.7. Through the measurement figures, we can see that the results look better than

the Slave-to-Slave case in all metrics, thanks to fewer interferences and media share. However, the

bandwidth in this case is still not comparable to Master-to-Slave, for which we argue that it is a

common thing to have a lower uplink bandwidth for wireless routers.

23

Figure 2.7: Slave-to-Master network characteristics

2.4 Conclusion

The takeaways from our preliminary attempts of migrating to a virtualized testing and valida-

tion environment can be summarized from two aspects:

Advantages: the Xen virtualization approach we proposed in this section has the following

advantages:

• Handle Heterogeneity: different from the Mininet alike systems that leverages kernel-

bounded partial virtualizations, we based on Xen to provide much better heterogeneous sys-

tem support. Simply through installing target systems on VMs or configuring CPU/Memory

on Xen we can provide a better approximation for example to reproduce a software error in

specific case.

• Live Migration: the utilization of Xen Snapshot/Clone functionalities enable us to migrate

or backup VMs as is, this can be useful in sharing hardware/software configurations and

problem reproduction.

• High Efficiency: a Xen Snapshot can be also helpful in scaling an edge computing valida-

tion test, experiments showed in previous sections that the efficiency can be improved by

80% comparing the virtualization method to a manual operations.

Limitations: despite the advantages of our proposed solution, the current method does have

24

limitations that prevent it from emulating a realistic edge computing platform, in particular, the

following problems must be addressed before applying our solution in production:

• Scalability: the Xen based approach is most efficient comparing to manual setup when a

large scale of test is needed. However, a larger scale would require more computing capa-

bility especially when full-system virtualization is adopted. In Xen, memories allocated for

each VM are preserved even when the VM is idle, therefore a minimum of around 32GB

RAM would be necessary to emulate 30 VMs with 1GB RAM each (and around 2GB for

management purpose in Xen Dom0).

• Unrealistic Network: in the simple Mobile Storm scenarios, it is shown that Xen is able

to bring VMs and external nodes together in a network. However, network conditions in

that case are much simplified in terms of network quality and is not a ideal reflection of real

world. Furthermore, edge computing platforms can have much more complexer network

topologies which cannot be defined easily on Xen.

In the following sections, a complete SDN based edge computing prototyping system called EmuEdge

will be presented. Designs and approaches will be described to resolve both problems we men-

tioned above.

25

3. EMUEDGE: DEFINING NETWORKS ACROSS HETEROGENEOUS NODES

In this chapter, we present the design and implementation of EmuEdge, a hybrid emulator

tailored specifically for edge computing prototyping from both computation and network perspec-

tive. The core idea of EmuEdge is to extend traditional Mininet alike system with compatibility for

hybrid virtual and physical nodes to support heterogeneous computing platforms in one network.

The remainder of this chapter will be organized as follows: First we motivate the need for a hybrid

edge computing prototyping platform and review the literature for related work. Then we discuss

insights and limitations of state-of-the-art solutions and set the goals for a more realistic emulation

system aimed specifically for edge computing prototyping. After that, we will present the design of

EmuEdge and demonstrate how it resolves the above-mentioned problems. Lastly we show some

basic use cases of EmuEdge as well as how we adopted it in realistic edge computing prototyping.

3.1 Introduction

The recent efforts in pushing data processing and analysis to the edge of networks have formed

a new computing paradigm called edge computing [55], which is also referred to as fog comput-

ing [56], mist computing [57], edge-clouds [58] or cloudlets [59]. As one of the fastest-rising tech-

nologies to support the resource-intensive yet delay-sensitive IoT and AR/VR applications [60],

edge computing has attracted the interests from both academia and industry. New proposals for

edge computing architectures, middlewares, algorithms and applications [14, 15, 16, 18, 19, 20, 21]

emerge constantly, which create great challenges for infrastructure providers to properly compare,

choose and test suitable solutions.

Before the actual deployment of new technologies, they should be sufficiently debugged, tuned,

and validated in an experimental environment. This is challenging because an edge computing

system usually involves: 1) much larger scale and geographic complexity; 2) hybrid network in-

frastructures (e.g., LTE, WiFi and Ethernet); 3) heterogeneous nodes ranging from sensors and

smartphones on the edge to rack servers in the backbone; and 4) interdependence of computation

26

and network. Therefore, a realistic edge computing platform validation is considered to be ex-

pensive and time-consuming, if at all possible. An easy-to-use test environment that is realistic in

both computation and network plane has become key to further edge computing development and

improvement.

However, among the existing research in the edge computing area, few focus on easing the diffi-

culty of experimenting new architectures and applications while ensuring the realism. iFogSim [24]

is a pivoting simulator for edge computing. It simplifies all elements in edge computing as sen-

sor or actuator and models applications as DAGs, which brings up many limitations in realism.

Network emulators such as Mininet [23] and its descendants [38, 28, 26] can also be adapted

to edge computing experiments. For example, EmuFog [25] is an emulator developed based on

MaxiNet [26] for edge computing emulation, which enables customization of edge computing in-

frastructure from scratch. However, it mainly improves Mininet on network plane such as topology

design, traffic control but overlooks the computation plane. Besides, edge computing systems are

usually composed of unreliable and high latency networks such as WiFi and LTE which cannot be

emulated faithfully in Mininet. Mininet-WiFi supplements Mininet with basic wireless network

and hardware integration support. However, it’s still limited by Mininet container hosts and fails

to support heterogeneous systems and computation realism. Cumulus [39] is a distributed and

flexible computing testbed prototype for edge cloud computational offloading, which leverages a

large spectrum of heterogeneous devices, communication methods, and OSs. Despite the realism

of using real infrastructures, the cost of building and running such a testbed can be huge and their

poor flexibility to change the topology is also a major concern. To the best of our knowledge, there

is no existing testing platform for edge computing that takes both the networking and computing

realism, as well as heterogeneity, into account, while incurring low costs for setting and running

up the experiments.

In this paper, we propose EmuEdge, the first hybrid emulator that combines full system virtu-

alization, container and physical infrastructures together to reproduce real world edge computing

platforms with high fidelity. Different from Mininet alike systems, we define reproducibility as

27

Figure 3.1: An overview of technology bound of existing testing platforms

the ability to replay a real world scenario in emulations with high fidelity, where fidelity is the

degree to which EmuEdge emulations match real world experiments. To that end, EmuEdge aug-

ments previous emulation solutions with better realism in both computation and network plane.

Through network replay and full system virtualization, unreliable wireless networks and heteroge-

neous computations in real world can be emulated in EmuEdge. As shown in Figure 3.1, previous

testing platforms are usually bounded to specific technologies with deliberate tradeoffs between

realism and costs. Different from other works, the hybrid design of EmuEdge enables on-demand

degrees of realism by supporting both physical and emulated nodes (container or VM), which we

consider as key to achieving high fidelity emulation with low costs.

3.2 EmuEdge Architecture

EmuEdge is an efficient and reproducible emulator designed specifically for hybrid edge com-

puting systems from both computation and network perspectives. EmuEdge augments Mininet

alike systems with better isolation and heterogeneity support, which allows it to emulate hybrid

edge computing platforms possibly composed of heterogeneous nodes with low costs. In this sec-

tion, we present the design of EmuEdge system as well as a framework of reproducing real-world

28

experiments on EmuEdge.

3.2.1 Design Overview

Similar to Mininet-HiFi, we adopted netns for network-bounded node virtualization. This en-

ables EmuEdge to have comparable scalability with Mininet alike systems. EmuEdge also provides

heterogeneous OS-level virtualization through Xen to combine the emulation of both computation

and network plane in an edge computing platform. Beyond that, EmuEdge supports physical

interfaces for external access. Thus, new components adding to existing infrastructures can be

integrated virtually and tested before actual deployment. With our extensible design, it is even

possible to extend EmuEdge with more heterogeneous nodes such as docker.

In our current implementation, the virtual hosts in EmuEdge can be both VMs and Mininet

alike containers. Each of the virtual hosts can be regarded as a blackbox with one or more ex-

posed virtual interfaces in the control domain (Dom0), such as vif1.0 in Figure 1.1. The hosts are

independent from each other in terms of network, i.e., they hold different information about the

network such as routing tables, ARP caches. The only exposure of a host is its external virtual

interfaces, which are managed by EmuEdge for network definition purposes. Network topolo-

gies, per-node network capabilities and link qualities are then defined with state-of-the-art SDN

(Software Defined Networking) solutions such as OvS [54], Linux Traffic Control [61] and Linux

netem [45].

Computation is an equally important part of a typical edge computing platform, however it’s

rarely taken into account in previous emulators. EmuFog [25], a descendant of Mininet tailored

for fog computing, is inherently limited to network bounded emulations. Computation bounded

experiments such as Hadoop testing are considered out of the scope for Mininet systems accord-

ing to [38]. To address this gap, we design EmuEdge to enable realistic computational emulation

through on-demand full system virtualization with Xen. Though it is usually considered that full

system virtualization is heavyweight, we argue that this tradeoff is sometimes necessary to support

heterogeneity and the cost can be reduced through a hybrid combination of container and VM. Af-

terall, the cost of EmuEdge is still miniscale comparing to a physical edge computing deployment.

29

Figure 3.2: EmuEdge reality reproduction framework

For example, the actual dollar cost for a field deployment for disaster response edge computing

solution in Disaster City [62] is USD 5,000 (excluding labor and hardware costs). However, with

EmuEdge, we are able to replay the captured network and hardware configurations with no addi-

tional costs besides several lab PCs. A reflection of real world experiment on EmuEdge is shown in

Figure 3.2, where physical nodes are mapped to virtual hosts. In EmuEdge, both wireless APs and

Ethernet switches are abstracted as OvS switches, and we differentiate the links primarily based

on link quality emulation through QoS and network trace replay.

3.2.2 EmuEdge Reproduction Framework

Besides the computational nodes in edge computing, we also stress the importance of network-

ing performance in edge computing. EmuEdge leverages OvS and Linux virtual interfaces such as

veth in order to customize network topologies in the virtual edge computing system. In addition

to that, both network shape and computation isolation of an edge computing system can be fully

controlled in EmuEdge. Figure 3.2 depicts the typical workflow of reproducing a field experiment

30

on EmuEdge. We envision the input of EmuEdge including both data collected from experiments

or synthetic trace generated by network simulators. Major input parameters that we handle in

EmuEdge include:

• Emulation Parameters: primarily composed of hardware configurations such as allocation

of CPU cores, memory, disk. In cases where high-fidelity computation virtualization is

needed, these parameters can be tailored more specifically, for example by configuring CPU

priority, cap and even affinity.

• Network Topologies: in EmuEdge, most common network components are virtualized,

such as router, switch, node and link. Therefore, a real world network topologies can be

defined as is, on EmuEdge.

• Network Traces: the most realistic traces that EmuEdge takes are experiment logs, through

which EmuEdge restores the traffic shape, link quality and mobility patterns of an actual

network scenario, thereby enabling high-fidelity and reproducible emulations.

• Synthetic Traces: due to many limitations in experiments EmuEdge can also work with

synthetic traces generated by simulators such as ns-3, which could further fulfill EmuEdge

with the capability of emulating corner cases that cannot be covered by actual experiments.

3.3 EmuEdge Implementation

Though the support for hybrid edge computing sounds tempting, implementing EmuEdge is

a tedious cove due to the heterogeneity of nodes in the system. In the following sections, we

will discuss more details on EmuEdge designs and show the typical workflows to interact with

EmuEdge.

3.3.1 EmuEdge Components

To create a heterogeneous edge computing prototype, EmuEdge should emulate both network

and computation devices. The virtual network infrastructures in an EmuEdge emulation follow

31

similar compositions with physical edge computing networks. We summarize the primary compo-

nents currently in EmuEdge as follows:

Network Interfaces: Network interfaces in EmuEdge are virtual Linux netifs that usually

belong to certain VMs or netns. Such a netif can be any virtual interfaces supported by Linux.

However, interface pairs that belong to Linux veth links are the most common netifs in EmuEdge.

EmuEdge designs the relationship between any nodes and network interfaces to be one-to-many

so that a device can be connected to different subnets.

Links: In the most common cases a link is a Linux veth pair that connects across different

netns, with each end of it being an independent Linux netif that can be attached to virtual switches.

veth link is an abstraction of wired link from real world with each end being the physical interface.

Not all peers on veth links can be controlled, for example, Xen VMs only expose one end of their

veth link to Dom0 while the other end is managed by the host OS.

Devices: A device is the abstraction of nodes that do not usually support networking func-

tionalities. Though, it is possible that a device can act like a router in real world, EmuEdge also

preserves such possibilities. Currently EmuEdge supported devices include VM and container.

The introduction of “heavy-weight” VM∗ in EmuEdge supplements container in supporting het-

erogeneity of edge computing systems and providing better realism in computation plane. In fact,

EmuEdge encourages container host usages as possible to improve scalability. However VM is

inevitable in most edge computing cases, such as for emulating an Android mobile device. As

already shown in Figure 3.4, the design of EmuEdge is flexible and can be extended with other

hybrid devices such as Docker.

Routers: Similar to container host, routers in EmuEdge are actually netns with private net-

work knowledge. However, routers usually have multi interfaces in different networks and support

various network functionalities such as DHCP, NAT, routing and forwarding, which are all sup-

ported in EmuEdge. For a normal router on EmuEdge, any connection from other nodes to router

requires an opening of new Linux netif, which is tedious and counterintuitive. Therefore, a new

∗“Heavy-weight” comparing to netns, Xen VMs are hardware-assisted and further optimized in multi aspects,
practically an Android VM starts in around 10s while a whole-system fast-clone takes less than 3s.

32

type of router called XenRouter is introduced which comes with an attached OvS switch. In this

way, nodes can join the router by connecting their netif with the switch.

Switches: OvS switch is the default software switch with Xen, it can provide the same net-

working semantics of an L2 hardware switch to bring virtual devices and other nodes together.

Physical: EmuEdge supports hybrid emulation. For example, we may connect EmuEdge

VMs to external routers by bridging them to arbitrary physical interfaces. EmuEdge does not

discriminate between physical and virtual interfaces, one can even integrate a physical wireless

NIC in the emulation. Multi-server emulation are also possible as long as they are interconnected.

3.3.2 Network Realism

We consider two types of network realism in EmuEdge. Topology realism reflects the network

architecture while traffic realism is primarily designed to match link qualities in real world. In

EmuEdge, the components in a network are categorized into nodes and links. Through OvS switch,

EmuEdge is able to define the network topologies as-is based on real world setup. Furthermore,

EmuEdge employs Linux tc and netem for link-based bidirectional traffic shaping. Replaying a

real-world scenario can be done by simply setting up an adjacency list topology and tuning network

quality parameters. The network quality parameters can also be a distribution pattern like normal

distribution or arbitrary distributions captured from reality.

Network Traffic Shaping: Testbeds and emulators are usually considered to be realistic pro-

totyping and experimenting platforms since they run real code in continuous time. However, in

this paper, we argue that they are not satisfactory for testing a complex real-world edge computing

system. The lab settings in both testbeds and emulators are too perfect to validate such systems es-

pecially when we consider the fault tolerance capabilities. For example, unreliability and mobility

in a real-world wireless network can barely be replayed on testbeds and emulators. In our devel-

oping experiences with DistressNet-NG [63], a mobile edge computing system based on resilient

broadband communications, an application that works well in testbeds might simply crash due to

intermittent or high-latency wireless transmissions in field deployment. Therefore, a fully control-

lable network environment is necessary to better approximate real-world scenarios, in addition to

33

Base Variation Correlation Distribution Replay
Delay X X X X X

Packet Loss X X
Packet Duplication X X
Packet Corruption X X
Packet Reordering X X

Table 3.1: Control function support for different link metrics

reproducibility and isolation. EmuEdge exposes functions for defining per-link network metrics

through traffic shaping as shown in Table 3.1. Every metric can be configured based and correla-

tion parameters. The base parameter is a fixed time for delay (also known as roundtrip time), or a

fixed random ratio for packet losses and others. Correlation control aims to emulate consistency in

real-world networks, for example, one packet loss implies the network is more congested thus the

probability of losing following packets would raise as a consequence. Both random variations and

variations following certain distribution can be added to a base delay for a link. EmuEdge relies

on netem for configuring above mentioned metrics therefore we refer readers to NISTNet [37] for

more details on traffic shaping internals. Moreover, EmuEdge provides a module for replaying a

delay trace to approximate real-world scenarios. Unfortunately EmuEdge is still limited in replay-

ing other metrics, however we argue that those are usually invisible from the application layer if

reliable protocols like TCP are applied therefore we focus on delay and mobility instead in this

paper.

Real-world Network Replay: Besides traffic shaping with approximate parameters and clas-

sic distributions†. EmuEdge also provides a tool suite that analyzes and summaries the delay traces

from real world for future replay in lab settings. Based on a trace file, e.g., PING logs, EmuEdge

calculates a distribution table, which is essentially a scaled and translated inverse to the trace

data cdf (cumulative distribution function) [37]. By combining the distribution table with statisti-

†netem supports normal, pareto and pareto normal distribution by default

34

cal metrics (e.g., mean, variation and correlation) learned from the trace, EmuEdge can replay it

through traffic shaping with high fidelity.

Rate Limiting for Network Tuning: An EmuEdge link without QoS control can easily trans-

mit data at 30Gbps while ordinary network cables are usually limited to around 100Mbps. To

deal with the inconsistency, EmuEdge supports rate limiting using tbf (Token Bucket Filter), with

which we can set bandwidth limits on links to approximate actual link performance. Interest-

ingly, besides pure rate limiting purpose, we discovered in practice that more accurate bandwidth

shaping can be achieved with careful tbf parameter tuning, which will be discussed more in the

experimental sections.

Figure 3.3: Bidirectional QoS approaches (red boxes represents tc egress control)

Dealing with Link Asymmetry: Link asymmetry is common in real life scenarios, for exam-

ple, ISPs always set tighter limits on upstream bandwidth for users. In EmuEdge, asymmetric links

between nodes are emulated through bidirectional traffic shaping, i.e., applying different QoS rules

on two directions of a virtual link. Integrating tc and netem in EmuEdge to shape bidirectional link

qualities is mostly trivial. Linux veth always comes in pair, therefore, bidirectional shaping be-

tween netnss and OvS switches can be simply achieved by applying egress shaping ‡ on both ends

‡Bidirectional shaping cannot be achieved with control on only one end of veth since Linux lacks the support of
ingress shaping.

35

of veth link as shown in the c1-switch (container to switch) connection of Figure 3.3. However,

VM nodes in EmuEdge are much isolated than netns, Xen Dom0 cannot control over veth ends in

DomUs. Therefore, we propose an intermediate shaping method to enforce link quality on VM

egress traffic as shown in vm1-switch connection of Figure 3.3. EmuEdge creates intermediate

ifb interfaces between eth0 in VM and its corresponding veth end p0 (also referred to as a port

on switch) in Dom0. By redirecting ingress traffic from ifb to p0, we can now control VM egress

through applying egress shaping on ifb instead of eth0. For fully controllable veth pairs such as

link between containers and switches, EmuEdge follows the tradition to avoid unnecessary ifb

overheads. Other possible approaches to achieve bidirectional shaping on VM related links might

also be available, such as associating each VM with a dedicated bridge or OvS switch, which might

result in even larger overhead. We consider the investigation of other such approaches and their

overheads out of scope in this paper.

3.3.3 Computation Realism

EmuEdge focuses majorly on two types of computational realism, which includes computation

heterogeneity and isolation. Multiple degrees of realism are supported in EmuEdge to achieve

proper computation realism with minimal costs. With physical integration undoubtedly being the

ultimate degree of realism, in this section we discuss the degree of realism brought by EmuEdge

container and VM, respectively.

Container: EmuEdge containers are essentially netns similar to Mininet hosts. Likewise,

EmuEdge containers provide exclusive virtual interfaces, ports and unique network knowledges to

processes. An EmuEdge container can be viewed as an independent host sharing the same kernel

with EmuEdge server. Partial computation isolation can be achieved by limiting CPU time on

EmuEdge containers through cgroup (linux control groups), which allows a group of processes

running, e.g., processes running in the same container, to be scheduled and managed as a whole

from the host system’s perspective. The lightweight OS-level virtualization nature of netns enable

us to scale large and fast within a PC while on the other hand limited us from heterogeneous system

support.

36

VM: Xen VMs are more isolated and realistic hosts available on EmuEdge due to its ability to

run heterogeneous systems on single machine. EmuEdge VM supports improved isolation in the

following aspects:

• CPU Cap: CPU cap is the cgroup counterpart in EmuEdge to limit maximum CPU time

that can be allocated to a certain VM. Careful CPU cap manipulation or other alternatives

(e.g., CPU priority) should be enforced to avoid possible starvations.

• CPU Masking: In addition to CPU time allocation, EmuEdge supports CPU masking which

provides better isolation by bounding dedicated physical cores with VMs. Proper masking:

1) provides more computation isolation among VMs; and 2)improves emulation efficiency

by reducing CPU resource contentions and context switches, especially when system over-

loading.

• Memory Allocation: Both dynamic and static memory can be defined for VMs on EmuEdge.

However, we usually allocate memories to VMs statically to provide a better isolated system,

which cannot be done on typical container based emulators.

Besides, VMs run on independent file systems naturally although the I/O throughput is shared

among them. We observed fair I/O behaviors among different running VMs with negligible varia-

tions.

3.3.4 Scalability and Extensibility

Easy Reproduction and Scaling: Reproducing problems in edge computing platforms are

costly and time consuming if at all possible due to their scale and complexity. Traditional net-

work emulators partially solved the reproducibility issue by simplifying the setup, scaling process

and providing a controllable environment. However, we consider those as stateless solutions. For

example, Mininet doesn’t support live migration of containers, which means we may have to re-

configure things to the previous state for repeatedly reproducing a scenario. EmuEdge takes ad-

vantages of Snapshot/Clone functionalities in Xen to help us capture a complete target status of a

37

Figure 3.4: Extensible design of EmuEdge to support heterogeneous emulation

VM for reproduction use. Additionally, a snapshot of a well configured machine can be fast cloned

and scaled. In the experimental section, we present how we ported realistic edge computing appli-

cations on EmuEdge. Through snapshotting and cloning, we observed a 80% of deployment time

reduction comparing to manual setup. A pure VM setup in EmuEdge does not scale as well as

container based solutions do, primarily due to the static memory allocation in EmuEdge§. For ex-

ample, the maximum number of 2GB RAM VMs that can be supported by a 32GB PC is 14 (with

partial resources reserved for Xen Dom0). However, we emphasize EmuEdge is an on-demand

system with the flexibility to virtualize most hosts as lightweight containers.

Extensibility: EmuEdge is designed with flexible architectures, and the relations between dif-

ferent EmuEdge components are shown in Figure 3.4. Through proper abstraction, EmuEdge sys-

tem enables standardized behaviors of network components with different implementation details.
§CPU is not the scalability bottleneck since it’s possible to overallocate vCPUs than available physical cores on

Xen.

38

So far, EmuEdge supports VM and container as virtual devices and five other types of Linux/Xen

network interfaces (netif). Adapting EmuEdge with additional virtualization platforms such as

docker would require trivial efforts.

3.4 EmuEdge User Interface

EmuEdge provides two easy-to-use approaches for fast heterogeneous edge computing proto-

typing: 1) an API suite including management functionalities for both netns, Linux netif and Xen

VMs; and 2) configuring edge computing prototype through JSON, with adjacency list based net-

work graph description. The JSON definition method can be easily adopted as interfaces to other

software such as a GUI for network topology definition, which we consider out of scope in this

paper.

3.4.1 Create Edge Network with EmuEdge Python API

Creating a network with EmuEdge API is easy and intuitive. With EmuEdge imported in an

interactive Python command line, we can create a simple Android VM plugged into a XenRouter,

get all elements ran and then cleared by:

xnet=xnet_interactive()

d1=xnet.create_new_dev("tandroid", "d1",

True, vcpu=2, mem=2048, vif_prefix="tap")

d2=xnet.create_new_dev("tcentos", "d2",

True, vcpu=2, mem=2048)

r1=xnet.create_new_xrouter("r1", "10.0.0.1/24")

xnet.connect(d1, r1)

r1.plug(xnet.session, d2)

xnet.start_all()

xnet.clear()

The create_new_dev API creates a vm using “android” snapshot as template and override it with a

new configuration of 2 fixed vCPUs and 2048 MB static memory. For XenRouter, the initialization

39

Figure 3.5: Network fidelity validation topologies

method assigned the ip "10.0.0.1/24" to the initial interface it has after creation.

3.4.2 EmuEdge JSON API

Besides the interactive Python API approach, a more intuitive way of predefining an EmuEdge

topology for batch prototyping and emulation is to use JSON object with adjacency list as the

topology graph. Comparing to the previous Python API, the JSON method is more concise and

straightforward. A front-end UI can be made with trivial efforts based on JSON API for even

more intuitive definition process. For different type of nodes, we have different properties in

configurations as shown in Figure 3.6.

Through EmuEdge JSON API, both the interfaces and their corresponding IPs can be defined.

Besides that, NAT and DHCP server can be configured at any certain interface on the router. In

EmuEdge, NAT function on a certain interface would open it as a WAN exit so that packets trans-

mitting over the router may be forwarded to external network through the NAT interface. As

discussed before, Xen Dom0 is unable to control the veth ends in DomUs which means we cannot

assign IPs to VMs directly. Therefore, DHCP server can be configured on routers in EmuEdge to

avoid manual efforts in setting IPs on every VM. The “neighbors” array is in fact an adjacency

list that defines network topologies. Each element of it is a directed link through a certain in-

terface to other nodes, possibly with link quality definitions. With tc (Linux Traffic Control) and

netem, EmuEdge supports bidirectional link QoS with a wide range of parameters, including delay,

packet loss, duplication, reorder, corruption and bandwidth. Furthermore, statistical correlations

40

Figure 3.6: Edge computing topology definition with EmuEdge JSON API

and distributions can also be set to better emulate a network. A real-world network trace can be

easily captured and translated into distributions for repeated replays on EmuEdge through our trace

analysis module.

3.5 Experimental Evaluations

In this section, we validate the effectiveness of EmuEdge from both computation and network

perspective. For network fidelity, we stress the importance of approximating real-world perfor-

mance and compare EmuEdge to state-of-the-art emulators with classic bandwidth experiments.

We later show EmuEdge’s configurability by tuning parameters to emulate more stabilized net-

works. Additionally, we replay a physical wireless link on EmuEdge to demonstrate its capabil-

ity of emulating real-world as is. Lastly we share some experiences on achieving computation

isolation and show that EmuEdge provides near-perfect isolation comparing to container based

emulators.

41

3.5.1 Network Fidelity Validation

To demonstrate the effectiveness of EmuEdge in ensuring network fidelity, we adopted vali-

dation tests as proposed in Mininet benchmark [38], where Mininet-HiFi was shown to have less

variations and higher reproducibility than testbeds in these experiments. Differently, EmuEdge

emphasizes the importance of emulation realism, and we define fidelity as the degree to which

our emulation environment matches real-world. Though it’s impossible to replay an experiment

exactly, even with testbeds, we argue that a qualitatively similar testing environment is sufficient

to discover most problems in reality.

In our experiments, the four network test topologies emphasizing on different network proper-

ties as shown in Figure 3.5 are applied in both physical, Mininet and EmuEdge setup. EmuEdge

is currently limited in connecting VMs directly, due to the fact that Xen VMs are bounded to OvS

switch/Linux bridge by default. Therefore for twoway test, we used a slightly different topology

from [38] where hosts connect to each other through a switch instead of direct link. The experiment

setup for our three comparison scenarios are as follows:

Figure 3.7: Experiment testbeds

• Testbed: As shown in Figure 3.7, for physical experiments, we used 4 ASUS Eee PC as the

42

hosts and two NetGear routers purely acting as switches. The connections between hosts and

routers are changed accordingly to experiment topologies. According to our measurements,

physical links maintain a consistent bandwidth from 90 to 95 Mbps.

• Mininet: we used Mininet version 2.2.1 with resource provisioning and link rate limiting,

Mininet hosts and switches are created accordingly based on topologies. Bandwidth limits

on links are set to 95 Mbps through TCLink.

• EmuEdge: since the EmuEdge containers are implemented similarly with Mininet, we omit

experiments for them and focus on EmuEdge VM hosts. We choose CentOS 7 as host OS

and applied the same bandwidth limits for EmuEdge links.¶

0 50 100 150 200 250
time (s)

86
88
90
92
94
96
98

100
102

ba
nd

wi
dt

h
(M

bp
s) Mininet

EmuEdge Tuned
Testbed

(a) Twoway bandwidth varying by time

86 88 90 92 94 96 98 100 102
bandwidth (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

Mininet
EmuEdge Tuned
Testbed

(b) Twoway bandwidth cdf

Figure 3.8: Twoway bandwidth performance comparisons

For each topology, we run iperf on all hosts for 300 seconds, at a 0.75Hz bandwidth log-

ging rate. We aim to show the long-term performance since we observed a converging process

for both Mininet and EmuEdge. Both the bandwidth measured over time at each iperf client and

their cumulative distributed functions (cdf) are shown in Figure 3.8–3.11. Different from Mininet

¶Both Mininet scripts and EmuEdge topologies for experiments are available at
https://github.com/ykzeng/emuedge/tree/master/topo/exps/.

43

0 50 100 150 200 250
time (s)

20
30
40
50
60
70
80
90

ba
nd

wi
dt

h
(M

bp
s) Mininet

EmuEdge Tuned
Testbed

(a) Forkout bandwidth varying by time

20 40 60 80
bandwidth (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

Mininet
EmuEdge Tuned
Testbed

(b) Forkout bandwidth cdf

Figure 3.9: Forkout bandwidth performance comparisons

0 50 100 150 200 250
time (s)

70

80

90

100

110

120

ba
nd

wi
dt

h
(M

bp
s) Mininet

EmuEdge Tuned
Testbed

(a) Singlesw bandwidth varying by time

70 80 90 100 110 120
bandwidth (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0
fra

ct
io

n

Mininet
EmuEdge Tuned
Testbed

(b) Singlesw bandwidth cdf

Figure 3.10: Singlesw bandwidth performance comparisons

0 50 100 150 200 250
time (s)

20

40

60

80

100

120

ba
nd

wi
dt

h
(M

bp
s) Mininet

EmuEdge Tuned
Testbed

(a) Dumbbell bandwidth varying by time

0 20 40 60 80 100 120
bandwidth (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

Mininet
EmuEdge Tuned
Testbed

(b) Dumbbell bandwidth cdf

Figure 3.11: Dumbbell bandwidth performance comparisons

44

benchmark, in almost all our experiments, the testbeds network demonstrated extraordinary stabil-

ity and fairness with trivial fluctuations. In the twoway test, Mininet demonstrated good fairness

and rate limiting capabilities apart from the beginning drop. However, the fluctuations of Mininet

differ a lot from reality and are much more substantial comparing to EmuEdge VMs. Then in the

forkout test, we noticed a fairness problem in Mininet, two links on the right of Figure 3.5b seem to

have shared a large portion of the h1-s1 link bandwidth unevenly. With EmuEdge, the bandwidth

splitted unfairly among links in the beginning, however it converges overtime and approaches the

testbeds performance closely in the last 100 seconds. In the case of singlesw test, both Mininet

and EmuEdge are performing badly with many sudden fluctuations though the cdf looks similar to

reality. Lastly in dumbbell test, EmuEdge demonstrates extraordinary fidelity and realism compar-

ing to Mininet, where both fluctuation and cdf match well with physical links. Similar to twoway

test, Mininet limits rate very well but with regular fluctuations, after the converging process. Over-

all, we consider EmuEdge significantly outperforms Mininet in terms of experiment realism while

maintaining similar fairness among shared links.

EmuEdge Network Tuning: Though EmuEdge yields good fairness and realism in above

experiments overall, we observed from Figure 3.10 that sometimes EmuEdge fluctuates too much

and does not converge well. This didn’t match well with real world and can lead to unconvincing

experiment results. Therefore, we modified our EmuEdge setup with well-tuned rate limiting

parameters, which can be easily done through EmuEdge JSON API. Besides bandwidth, burst

and limit are the other two major parameters to specify in EmuEdge for rate limiting purposes.

Based on our experience, we summarize that a lower burst size will set tighter upper limits on

instantaneous bandwidth thereby reducing fluctuations. Besides, limit is the length of packet queue

on outgoing queue, which also adds uncertainties into transmissions. By carefully tuning those

two parameters, we managed to stabilize EmuEdge singlesw bandwidth overtime as shown in

Figure 3.12. The tuned links behave much more similar to testbed, in fact the stability of it even

outperforms testbed. This inspires us that network bandwidth realism can be emulated for different

target environments by tuning EmuEdge links, however a more comprehensive study is needed to

45

investigate specific tuning methods.

0 50 100 150 200 250
time (s)

70

80

90

100

110

120

ba
nd

wi
dt

h
(M

bp
s) EmuEdge Untuned

EmuEdge Tuned
Testbed

Figure 3.12: Tuned singlesw bandwidth in EmuEdge

3.5.2 Replaying Wireless Network

Wireless networks add uncertainties into edge computing systems with delays, jitters and pos-

sibly intermittent transmissions due to host mobility. EmuEdge supports network trace replay to

faithfully recreate real-world networks within a server. Primarily two approaches are available for

such purposes in EmuEdge:

Normal approximation: EmuEdge is able to approximate normal distributed delays among

links. One can easily generate necessary stats information (e.g., mean and standard deviation) that

captures the normal distribution approximation based on a real-world network trace for normally

approximated EmuEdge replay.

Customized replay: Besides the default distributions provided, we can also define our own

distribution based on network traces through the EmuEdge trace analysis module. A customized

distribution table and statistical parameters will be generated and stored in EmuEdge dist_db. After

that, we can emulate the same link anytime by simply specifying the customized distribution to

emulate through EmuEdge JSON API.

46

As a proof-of-concept experiment, we demonstrate the above methods on EmuEdge to replay

the delays in a wireless link between a LinkSys AP and an Android mobile phone. For trace

collecting, we captured 1000 PING rtts in log file called wifi and then interact with the EmuEdge

trace analysis module by:

trace/rtt_log2dist.sh wifi

this analyzes the logs, generates distribution table and saves information in a distribution database,

which contains distribution tables and stats information such as mean, standard deviation. The

stats information are then used as parameters for normally approximated replay. For customized

distribution emulation, we simply set link distribution param distribution to be wifi in our target

EmuEdge topology. Then we start two Android VMs linked to virtual router with normal ap-

proximation and customized distribution respectively. Lastly, we run 1000 PINGs on both VMs

and physical Android phones to their corresponding virtual/physical routers. The rtt results are

presented in forms of probability density function and cdf in Figure 3.13.

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
delay (ms)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

pr
ob

ab
ilit

y
de

ns
ity

real world
replay
norm

(a) Probability density function

0 20 40 60 80 100
delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

real world
replay
norm
non emulated

(b) Cumulative distributed function

Figure 3.13: Comparison between delays in EmuEdge non-emulated, norm approx, replay and
real-world wireless link

The non emulated case can be regarded as EmuEdge baseline, i.e., pure EmuEdge link without

any alteration, we omitted it in probability density function due to its great gap from others. From

47

Figure 3.13a, it’s apparent that both normal approximation and customized replay can closely

mimic reality. The normal distribution approach fits even better than replay to some extent since

it’s purely approximated based on the exact (σ, τ) captured from reality. However, replay reflects

the actual link near-perfectly in terms of cdf as shown in Figure 3.13b while normal method is

statistically too ideal.

3.5.3 Computational Realism Validation

As discussed before, a realistic edge computing testing platform should be able to emulate both

computation and network to be practically useful. In this section, we validate the computation

realism of EmuEdge comparing to Mininet containers. We consider our experiments reflect full-

system vs. OS-level virtualization comparison since Mininet container adopts the same isolation

and resource management approach with other OS-level virtualizations such as LXC [64] and

Docker [65].

 160

 180

 200

 220

 240

 260

1 2 3 4

R
u
n
n
in

g
 T

im
e
 (

s
)

#Emulated Devices

EmuEdge
mininet

(a) Computation isolation

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 3 4

R
u
n
n
in

g
 T

im
e
 (

s
)

#Process at each host

EmuEdge
mininet

(b) Computation efficiency

Figure 3.14: Computational realism comparison between EmuEdge VM and Mininet containers

48

Computation Isolation: Isolation has always been a key factor to consider in virtualization

approach evaluation. Emulators that fail to provide adequate isolation for computational nodes

would yield unrealistic results. Ideally in an edge computing system, each physical node is com-

putationally independent, i.e., workloads on different nodes do not influence each other. Therefore,

we consider the case when multiple such nodes are emulated in a single PC. In our experiments,

two PCs with exactly same hardware (Quad core Intel i7 CPU and 32GB RAM) are used for

Mininet and EmuEdge emulation respectively. We argue EmuEdge containers would have similar

performance with Mininet since they are implemented similarly, therefore we focus on comparing

EmuEdge VM with Mininet container. For Mininet, CPULimitedHost are used to limit the host

within CPU time of one physical core, while EmuEdge VMs are configured with one dedicated

physical CPU core and 2GB memory. For each PC, we run multiple emulated nodes that are fully

occupied by CPU-intensive MapReduce [66] workloads. We then measure workloads execution

time on each node while increasing total number of node running. As shown in Figure 3.14a, both

EmuEdge and Mininet can guarantee resource fairness among different hosts, the execution time

variations between hosts in each run are negligible. However, with increasing number of emulated

computation nodes, the average execution time in Mininet containers demonstrate large fluctu-

ations while EmuEdge hosts run stably and independently. We argue the trivial execution time

increase in EmuEdge is due to system overloading, since the total CPU utilization of the system

exceeds 75% with 3 or more emulated devices.

Computation Efficiency: Interestingly, we also observed from Figure 3.14a that when both

PCs are stressed over 75%, the performance degradation of Mininet containers are significant that

it even exceeds the execution time in EmuEdge VMs utilization hits 100% with four emulated

nodes. This is against the fact that containers are much more lightweight than VMs and hence

should yiled less overhead and better performance. We are then inspired to further investigate

the performance between container and VM. Instead of adding computational nodes, we fixed the

number of nodes to 4 and attempt to stress them with more workloads in each run. The results

in Figure 3.14b show that our observation is no coincidence and containers tend to run slightly

49

slower than VMs under high utilization. The results seem to be contradictory with [67]. However,

we argue that VM vs. container performance results are bounded to specific cases. Moreover,

recent advances in virtualization have demonstrated through distributed operations on Xen, VM

can be actually lighter and safer than containers [68]. Particularly in our experiments, Mininet

containers are less efficient while overloaded since they suffer from higher centralized scheduling

overhead and context switches while EmuEdge VMs have better processor affinity.

Lesson Learned: Actually, the advantages of VM shown in computational realism doesn’t

diminish containers’ significance in emulation. In fact, we consider containers to be cost-effective

since it enforces considerable isolation with less overhead. Therefore, we again emphasize that

proper decisions in choosing emulation nodes are key to improving realism and reducing costs.

Generally, containers are sufficient for emulation of nodes that are network-bounded or Lo-Fi

computation-bounded. Meantime, applications requiring isolated resources or heterogeneous OSes

can be run with VMs. For example, a container might be enough for emulating a functional Apache

web server while several VMs with fixed CPUS and RAM is needed for emulating an edge cloud

to evaluate the worst case performance. Additionally, the hybrid nature of EmuEdge also enables

us to integrate existing infrastructures into our emulation, such as a remote AWS instance.

50

4. Reproducing edge computing Experiments

Through previous experiments, we demonstrated advantages of EmuEdge in performance fi-

delity comparing to Mininet and testbeds from both computation and network perspectives. How-

ever, we consider the experiment setups much more simplified comparing to actual edge computing

systems. Therefore, in this section, we deploy an actual edge computing platforms on EmuEdge

with hybrid infrastructures and real-world network interactions to further demonstrate the compat-

ibility and realism of EmuEdge. Figure 4.1 depicts the physical and hybrid setup for following

experiments, the hybrid setup can be fully virtualized with EmuEdge by using a Master Server

container.

Figure 4.1: Physical and hybrid (EmuEdge) setup of actual edge computing platforms in expri-
ments

Mobile Storm (MStorm) [11] is an online distributed stream processing system on Android.

Different from the datacenter counterpart [69], MStorm is designed for critical scenarios such as

military operations and disaster response, where networks are limited. The soldiers or responders

operate in teams and connect with each other over a manpack LTE or Wi-Fi access point. Due

to mission criticality MStorm need to be well tuned and validated before deployment. However,

51

field deployment of infrastructures and applications for MStorm is onerous and costly. To ease the

testing process of MStorm, We seek to replay real world MStorm setup on EmuEdge, therefore we

first consider the realism of MStorm emulation on EmuEdge.

Performance Realism: To validate the performance realism of virtual MStorm (vMStorm) on

EmuEdge, we run a benchmark application called RandomSentenceStats. In the application, multi

Android phones form a cluster and a source node will generate random sentences for statistical

processing by downstream nodes. At this moment, we limit the experiment scope to a single pro-

cessing node, thus the data generation and processing are done on the same device. To emulate

computational performance under different workloads, we generate the stream with inter-arrival

time (IAT) following different distributions and monitor overall system throughput. The exper-

iment results in Figure 4.2–4.5 show that the performance vMStorm (vm) perfectly matches the

reality (phys) under all scenarios. Also, we observed trivial throughput improvement on EmuEdge,

apparently due to more advanced hardware.

0 10 20 30 40 50 60
time (s)

5.5

6.0

6.5

7.0

7.5

8.0

th
ro

ug
hp

ut
 (t

up
le

s/
s) phys

vm

(a) Throughput of constant IAT

5 6 7 8 9 10
throughput (tuples/s)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

phys
vm

(b) Throughput CDF of constant IAT

Figure 4.2: Throughput of physical and VM (EmuEdge) MStorm with workloads following con-
stant IAT pattern

Scalability Realism: Besides single node performance, we investigate on how EmuEdge re-

flects system performance improvement when scaling and compare the results with an identical

52

0 10 20 30 40 50 60
time (s)

5.5

6.0

6.5

7.0

7.5

8.0

th
ro

ug
hp

ut
 (t

up
le

s/
s) phys

vm

(a) Throughput of UR IAT

5 6 7 8 9 10
throughput (tuples/s)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

phys
vm

(b) Throughput CDF of UR IAT

Figure 4.3: Throughput of physical and VM (EmuEdge) MStorm with workloads following UR
IAT pattern

0 10 20 30 40 50 60
time (s)

5.5

6.0

6.5

7.0

7.5

8.0

th
ro

ug
hp

ut
 (t

up
le

s/
s) phys

vm

(a) Throughput of Gaussian IAT

5 6 7 8 9 10
throughput (tuples/s)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

phys
vm

(b) Throughput CDF of Gaussian IAT

Figure 4.4: Throughput of physical and VM (EmuEdge) MStorm with workloads following Gaus-
sian IAT pattern

53

0 10 20 30 40 50 60
time (s)

5.5

6.0

6.5

7.0

7.5

8.0

th
ro

ug
hp

ut
 (t

up
le

s/
s) phys

vm

(a) Throughput of Pareto IAT

5 6 7 8 9 10
throughput (tuples/s)

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

phys
vm

(b) Throughput CDF of Pareto IAT

Figure 4.5: Throughput of physical and VM (EmuEdge) MStorm with workloads following Pareto
IAT pattern

0 10 20 30 40 50 60
time (s)

0
2
4
6
8

10
12
14

th
ro

ug
hp

ut
 (t

up
le

s/
s) #vm=1

#vm=2
#vm=3
#vm=4

(a) vMStorm Scalability

0 10 20 30 40 50 60
time (s)

0
2
4
6
8

10
12
14

th
ro

ug
hp

ut
 (t

up
le

s/
s) #phone=1

#phone=2
#phone=3
#phone=4

(b) MStorm scalability

Figure 4.6: Realistic scalability experiments on EmuEdge

54

physical cluster. In this experiment, the stream generation rate is fixed at 10 tuples/s following

uniform IAT. We apply higher computational complexity that a single node cannot handle and then

scale both clusters from 1–4 nodes. Figure 4.6 depicts the overall throughput of both systems. Ap-

parently due to heavier workload, the throughput of both single nodes are limited under 2 tuple/s.

With additional nodes, vMStorm matches physical performance with similar increase trend. Apart

from that, the fluctuations in throughput are also reflected in EmuEdge. Both clusters demonstrate

larger performance fluctuations with more nodes.

55

5. CONCLUSIONS

Despite the proposals of numerous prototypes and architectures, the tremendous costs of test-

ing heterogeneous edge computing systems have prevented it from realizing its value in the IoT

era. Built upon container based emulators, EmuEdge unsets the OS-level virtualization bound and

extend the emulation to hybrid setups supporting different degrees of realism. As shown in our

experiments, the introduction of VM enables better computation realism in terms of heterogeneity

support and computation isolation. On the network perspective, we aim differently than previous

emulators by reproducing networks close to reality through tuning and replaying network traces.

However, EmuEdge is still limited in several aspects:

Background Workload Realism: In edge computing, mobile nodes can handle both local

applications and offloaded computations at the same time. Therefore, the overall performance of

an edge computing platform can be greatly influenced by background workloads on edge nodes.

However, EmuEdge computational nodes are dedicated, which leads to the lack of background

workload realism.

Edge Nodes Compatibility: Full system virtualization supports a wide range of common

OSes running simultaneously within single machine, which enables much better heterogeneity on

EmuEdge. However, besides computation nodes running mainstream OSes such as Linux and An-

droid, edge computing involves other data collecting nodes such as sensors that cannot be emulated

virtually. Though, we argue this is a shortcoming of all emulators and a worthy tradeoff for better

realism comparing to simulators. Besides, it’s still possible to integrate those nodes through hybrid

EmuEdge setup.

Network Dynamics and Mobility: Real-world wireless networks, such as Wi-Fi and LTE,

usually change dynamically due to user motions and noises. For examples, signal strength at a

mobile device might change dramatically when the user moves between rooms and buildings. Cur-

rently EmuEdge replays wireless network assuming that variations in the network are consistent

in the long term therefore cannot emulate device mobilities perfectly. We are currently pursuing

56

other methods in tracing and replaying network dynamics to further improve EmuEdge realism.

Despite the current limitations, we envision the on-demand degrees of realisms on EmuEdge is

a key step to reproducible edge computing experiments. With EmuEdge, emulating an edge com-

puting system with heterogeneous OSes and close-to-reality network can be done in lab settings

with minimal costs. We hope this advancement could greatly facilitate the debugging and testing

process of edge computing platforms. Besides that, EmuEdge can be also regarded as a hybrid

extension of Mininet that fills the gap on computation plane. Therefore, it is possible to adapt

EmuEdge for general experiments that are bounded by both network and computation.

57

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, et al., “A view of cloud computing,” Communications of the ACM,

vol. 53, no. 4, pp. 50–58, 2010.

[2] P. Mell, T. Grance, et al., “The nist definition of cloud computing,” National institute of

standards and technology, vol. 53, no. 6, p. 50, 2009.

[3] Y. Wang, R. Chen, and D.-C. Wang, “A survey of mobile cloud computing applications:

perspectives and challenges,” Wireless Personal Communications, vol. 80, no. 4, pp. 1607–

1623, 2015.

[4] H. Qi and A. Gani, “Research on mobile cloud computing: Review, trend and perspectives,”

in Digital Information and Communication Technology and it’s Applications (DICTAP), 2012

Second International Conference on, pp. 195–202, ieee, 2012.

[5] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,” Future

generation computer systems, vol. 29, no. 1, pp. 84–106, 2013.

[6] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing: architec-

ture, applications, and approaches,” Wireless communications and mobile computing, vol. 13,

no. 18, pp. 1587–1611, 2013.

[7] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for mobile devices,”

in Proceedings of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social

Networks and Beyond, p. 6, ACM, 2010.

[8] E. E. Marinelli, “Hyrax: cloud computing on mobile devices using mapreduce,” Master’s

thesis, Carnegie Mellon University, Pittsburgh, PA, 2009.

[9] T. Kakantousis, I. Boutsis, V. Kalogeraki, D. Gunopulos, G. Gasparis, and A. Dou, “Misco:

A system for data analysis applications on networks of smartphones using mapreduce,” in

58

Mobile Data Management (MDM), 2012 IEEE 13th International Conference on, pp. 356–

359, IEEE, 2012.

[10] J. George, C.-A. Chen, R. Stoleru, and G. Xie, “Hadoop mapreduce for mobile clouds,” IEEE

Transactions on Cloud Computing, 2016.

[11] Q. Ning, C.-A. Chen, R. Stoleru, and C. Chen, “Mobile storm: Distributed real-time stream

processing for mobile clouds,” in Cloud Networking (CloudNet), 2015 IEEE 4th International

Conference on, pp. 139–145, IEEE, 2015.

[12] Armbrust, M. and Fox, A. Griffith, R. Joseph, A.D. Katz, R. Konwinski, A. Lee, G. Patterson,

D. Rabkin, A. Stoica, I. et al., “A view of cloud computing,” Communications of the ACM,

vol. 53, no. 4, pp. 50–58, 2010.

[13] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing-a key

technology towards 5g,” ETSI white paper, vol. 11, no. 11, pp. 1–16, 2015.

[14] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and computational

resources for multicell mobile-edge computing,” IEEE Transactions on Signal and Informa-

tion Processing over Networks, vol. 1, no. 2, pp. 89–103, 2015.

[15] J. Plachy, Z. Becvar, and E. C. Strinati, “Dynamic resource allocation exploiting mobility pre-

diction in mobile edge computing,” in Personal, Indoor, and Mobile Radio Communications

(PIMRC), 2016 IEEE 27th Annual International Symposium on, pp. 1–6, IEEE, 2016.

[16] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for mobile-

edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp. 2795–

2808, 2016.

[17] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource allocation for mobile-

edge computation offloading,” IEEE Transactions on Wireless Communications, vol. 16,

no. 3, pp. 1397–1411, 2017.

59

[18] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for mobile-edge com-

puting with energy harvesting devices,” IEEE Journal on Selected Areas in Communications,

vol. 34, no. 12, pp. 3590–3605, 2016.

[19] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation

offloading,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[20] S. Ramgovind, M. M. Eloff, and E. Smith, “The management of security in cloud computing,”

in Information Security for South Africa (ISSA), 2010, pp. 1–7, IEEE, 2010.

[21] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et al.: A survey and

analysis of security threats and challenges,” Future Generation Computer Systems, vol. 78,

pp. 680–698, 2018.

[22] I. Stojmenovic, “Fog computing: A cloud to the ground support for smart things and

machine-to-machine networks,” in Telecommunication Networks and Applications Confer-

ence (ATNAC), 2014 Australasian, pp. 117–122, IEEE, 2014.

[23] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for software-

defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in

Networks, p. 19, ACM, 2010.

[24] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A toolkit for modeling

and simulation of resource management techniques in the internet of things, edge and fog

computing environments,” Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296,

2017.

[25] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran, “Emufog: Extensi-

ble and scalable emulation of large-scale fog computing infrastructures,” arXiv preprint

arXiv:1709.07563, 2017.

[26] P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and H. Karl, “Maxinet:

Distributed emulation of software-defined networks,” in Networking Conference, 2014 IFIP,

pp. 1–9, IEEE, 2014.

60

[27] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown, “Reproducible network

experiments using container-based emulation,” in Proceedings of the 8th international con-

ference on Emerging networking experiments and technologies, pp. 253–264, ACM, 2012.

[28] R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, and C. E. Rothenberg, “Mininet-wifi: Em-

ulating software-defined wireless networks,” in Network and Service Management (CNSM),

2015 11th International Conference on, pp. 384–389, IEEE, 2015.

[29] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield, “Xen and the art of virtualization,” in ACM SIGOPS operating systems review,

vol. 37, pp. 164–177, ACM, 2003.

[30] L. Pridmore, P. Lardieri, and R. Hollister, “National cyber range (ncr) automated test tools:

Implications and application to network-centric support tools,” in AUTOTESTCON, 2010

IEEE, pp. 1–4, IEEE, 2010.

[31] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb,

and A. Joglekar, “An integrated experimental environment for distributed systems and net-

works,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 255–270, 2002.

[32] J. Wroclawski, T. Benzel, J. Blythe, T. Faber, A. Hussain, J. Mirkovic, and S. Schwab, “De-

terlab and the deter project,” in The GENI Book, pp. 35–62, Springer, 2016.

[33] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman,

“Planetlab: an overlay testbed for broad-coverage services,” ACM SIGCOMM Computer

Communication Review, vol. 33, no. 3, pp. 3–12, 2003.

[34] T. Miyachi, K.-i. Chinen, and Y. Shinoda, “Starbed and springos: Large-scale general purpose

network testbed and supporting software,” in Proceedings of the 1st international conference

on Performance evaluation methodolgies and tools, p. 30, ACM, 2006.

[35] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, R. Ricci, and

I. Seskar, “Geni: A federated testbed for innovative network experiments,” Computer Net-

works, vol. 61, pp. 5–23, 2014.

61

[36] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM Computer Communica-

tion Review, vol. 40, no. 2, pp. 12–20, 2010.

[37] M. Carson and D. Santay, “Nist net: a linux-based network emulation tool,” ACM SIGCOMM

Computer Communication Review, vol. 33, no. 3, pp. 111–126, 2003.

[38] B. Heller, Reproducible network research with high-fidelity emulation. PhD thesis, Stanford

University, Stanford, CA, 2013.

[39] H. Gedawy, S. Tariq, A. Mtibaa, and K. Harras, “Cumulus: A distributed and flexible com-

puting testbed for edge cloud computational offloading,” in Cloudification of the Internet of

Things (CIoT), pp. 1–6, IEEE, 2016.

[40] J. Dolezal, Z. Becvar, and T. Zeman, “Performance evaluation of computation offloading

from mobile device to the edge of mobile network,” in Standards for Communications and

Networking (CSCN), 2016 IEEE Conference on, pp. 1–7, IEEE, 2016.

[41] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: a library for parallel simulation of large-

scale wireless networks,” in ACM SIGSIM Simulation Digest, vol. 28, pp. 154–161, IEEE

Computer Society, 1998.

[42] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in Modeling and tools for

network simulation, pp. 15–34, Springer, 2010.

[43] X. Chang, “Network simulations with opnet,” in Proceedings of the 31st conference on Winter

simulation: Simulation—a bridge to the future-Volume 1, pp. 307–314, ACM, 1999.

[44] M. I. Naas, J. Boukhobza, P. R. Parvedy, and L. Lemarchand, “An extension to ifogsim to

enable the design of data placement strategies,” in Fog and Edge Computing (ICFEC), 2018

IEEE 2nd International Conference on, pp. 1–8, IEEE, 2018.

[45] S. Hemminger et al., “Network emulation with netem,” in Linux conf au, pp. 18–23, 2005.

62

[46] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker, “Extending network-

ing into the virtualization layer.,” in Proceedings of the 8th ACM Workshop on Hot Topics in

Networks, pp. 1–6, 2009.

[47] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner, “Openflow: enabling innovation in campus networks,” ACM SIGCOMM Com-

puter Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[48] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack, K. Webb, and J. Lepreau,

“Large-scale virtualization in the emulab network testbed.,” in USENIX Annual Technical

Conference, pp. 113–128, 2008.

[49] M. Pizzonia and M. Rimondini, “Netkit: easy emulation of complex networks on inexpen-

sive hardware,” in Proceedings of the 4th International Conference on Testbeds and research

infrastructures for the development of networks & communities, p. 7, ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering), 2008.

[50] S. Bhatia, M. Motiwala, W. Muhlbauer, Y. Mundada, V. Valancius, A. Bavier, N. Feamster,

L. Peterson, and J. Rexford, “Trellis: A platform for building flexible, fast virtual networks on

commodity hardware,” in Proceedings of the 2008 ACM CoNEXT Conference, p. 72, ACM,

2008.

[51] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “Core: A real-time network

emulator,” in Military Communications Conference, 2008. MILCOM 2008. IEEE, pp. 1–7,

IEEE, 2008.

[52] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase, and D. Becker, “Scal-

ability and accuracy in a large-scale network emulator,” ACM SIGOPS Operating Systems

Review, vol. 36, no. SI, pp. 271–284, 2002.

[53] D. Gupta, K. V. Vishwanath, M. McNett, A. Vahdat, K. Yocum, A. Snoeren, and G. M.

Voelker, “Diecast: Testing distributed systems with an accurate scale model,” ACM Transac-

tions on Computer Systems (TOCS), vol. 29, no. 2, p. 4, 2011.

63

[54] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,

J. Stringer, P. Shelar, et al., “The design and implementation of open vswitch.,” in NSDI,

pp. 117–130, 2015.

[55] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi, M. Barcellos,

P. Felber, and E. Riviere, “Edge-centric computing: Vision and challenges,” ACM SIGCOMM

Computer Communication Review, vol. 45, no. 5, pp. 37–42, 2015.

[56] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of

things,” in Proceedings of the first edition of the MCC workshop on Mobile cloud computing,

pp. 13–16, ACM, 2012.

[57] R. K. Barik, A. Tripathi, H. Dubey, R. K. Lenka, T. Pratik, S. Sharma, K. Mankodiya, V. Ku-

mar, and H. Das, “Mistgis: Optimizing geospatial data analysis using mist computing,” in

Progress in Computing, Analytics and Networking, pp. 733–742, Springer, 2018.

[58] I. Hou, T. Zhao, S. Wang, K. Chan, et al., “Asymptotically optimal algorithm for online

reconfiguration of edge-clouds,” in Proceedings of the 17th ACM International Symposium

on Mobile Ad Hoc Networking and Computing, pp. 291–300, ACM, 2016.

[59] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based cloudlets in

mobile computing,” IEEE pervasive Computing, vol. 8, no. 4, 2009.

[60] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “Its hard to share: Joint service

placement and request scheduling in edge clouds with sharable and non-sharable resources,”

tech. rep., Technical Report, December 2017.[Online]. Available: https://1drv. ms/b/s, 2018.

[61] W. Almesberger, “Linux traffic control-next generation,” in Proceedings of the 9th Interna-

tional Linux System Technology Conference (Linux-Kongress 2002), pp. 95–103, sn, 2002.

[62] T. A. E. E. Service, “TEEX Disaster City.” https://teex.org/Pages/about-us/

disaster-city.aspx, 2018. [Online; accessed 25-July-2018].

[63] E. Nunez, “DistressNet-NG: Resilient Mobile Broadband Communication and Edge Comput-

ing.” https://www.nist.gov/ctl/pscr/, 2017. [Online; accessed 25-July-2018].

64

https://teex.org/Pages/about-us/disaster-city.aspx
https://teex.org/Pages/about-us/disaster-city.aspx
https://www.nist.gov/ctl/pscr/

[64] M. Helsley, “Lxc: Linux container tools,” IBM devloperWorks Technical Library, vol. 11,

2009.

[65] D. Merkel, “Docker: lightweight linux containers for consistent development and deploy-

ment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[66] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Com-

munications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[67] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. De Rose, “Perfor-

mance evaluation of container-based virtualization for high performance computing environ-

ments,” in Parallel, Distributed and Network-Based Processing (PDP), 2013 21st Euromicro

International Conference on, pp. 233–240, IEEE, 2013.

[68] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata, C. Raiciu,

and F. Huici, “My vm is lighter (and safer) than your container,” in Proceedings of the 26th

Symposium on Operating Systems Principles, pp. 218–233, ACM, 2017.

[69] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,

K. Gade, M. Fu, J. Donham, et al., “Storm@ twitter,” in Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, pp. 147–156, ACM, 2014.

65

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction and Literature Review
	Motivation
	Related Work and Background
	Edge Computing Experimental Tools
	EmuEdge Objectives
	Xen Architecture

	Our Approach
	Introduction

	Preliminary Observations on Virtual Mobile Storm
	Case Study on Mobile Storm
	Mobile Storm Setup with VMs on Xen[1]
	Deploying Mobile Storm on Xen
	MStorm Networking on Xen
	Traffic Pattern Analysis in Mobile Storm

	Quantifying Network Inequivalence
	Master-to-Slave Network Characteristics
	Slave-to-Slave Network Characteristics
	Slave-to-Master Network Characteristics

	Conclusion

	EmuEdge: defining networks across heterogeneous nodes
	Introduction
	EmuEdge Architecture
	Design Overview
	EmuEdge Reproduction Framework

	EmuEdge Implementation
	EmuEdge Components
	Network Realism
	Computation Realism
	Scalability and Extensibility

	EmuEdge User Interface
	Create Edge Network with EmuEdge Python API
	EmuEdge JSON API

	Experimental Evaluations
	Network Fidelity Validation
	Replaying Wireless Network
	Computational Realism Validation

	Reproducing edge computing Experiments
	Conclusions
	REFERENCES

