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ABSTRACT 

The spatial and temporal monitoring of soil moisture from remote sensing platforms plays 

a pivotal role in predicting the future food and water security. That is, improving soil moisture 

estimation at remote sensing platforms has remarkable impacts in the fields of meteorology, 

hydrology, agriculture, and global climate change. However, remote sensing of soil moisture for 

long is hindered by spatial heterogeneity in land surface variables (soil, biomass, topography, and 

temperature) which cause systematic and random errors in soil moisture retrievals. 

Most soil moisture improvement methods to date focused on the downscaling of either 

coarse resolution soil moisture or brightness temperature based on fine scale ancillary information 

of land surface variables. Comparatively little work has been done on improving the 

parameterization of most sensitive variables to radiative transfer model that impact soil moisture 

retrieval accuracy. In addition, the classic radiative transfer model assumes the vegetation and 

surface roughness parameters, as constant with space and time which undermines the retrieval 

accuracy. Also, it is largely elusive so far the discussion on the non-linearity of microwave 

radiative transfer model and its relationship with energy and water fluxes.   

In order to address the above mentioned limitations, this dissertation aims to develop and 

validate a soil moisture modeling framework with associated improved parameterizations for 

surface roughness and vegetation optical depth (VOD) in the homogeneous and heterogeneous 

environments. To this end, the following research work is specifically conducted: (a) conduct 

comprehensive sensitivity analysis on radiative transfer model with space, time and hydro-

climates; (b) develop multi-scale surface roughness model which incorporates small (soil) and 

large (topography) surface undulations to improve soil moisture retrievals; (c) improve the 

parameterization of vegetation topical depth (VOD) using within-pixel biomass heterogeneity to 
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improved soil moisture accuracy; (d) investigate the non-linearity in microwave radiative transfer 

model, and its association with thermal energy fluxes.  

The results of this study showed that: (a) the total (linear + non-linear) sensitivity of soil, 

temperature and biomass variables varied with spatial scale (support), time, and hydro climates, 

with higher non-linearity observed for dense biomass regions. This non-linearity is also governed 

by soil moisture availability and temperature. Among these variables, surface roughness and 

vegetation optical depth are most sensitive variables to radiative transfer model (RTM); (b) 

considering the spatial and temporal variability in parameterization of surface roughness and VOD 

has improved soil moisture retrieval accuracy, importantly in cropland and forest environments; 

and (c) the soil moisture estimated through evaporative fraction (EF) correlates higher with VOD 

corrected soil moisture.   
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1 GENERAL INTRODUCTION 

 

1.1 Problem Statement 

The remote sensing sensors collect data using different parts of the electromagnetic 

spectrum. These measurements are often linked to geophysical variables (soil moisture, 

evapotranspiration, biomass, etc.,) using retrieval algorithms. The large difference between the 

dielectric constant of liquid water and dry forms the basis for remote sensing of the soil moisture 

at microwave frequencies (Schmugge et al., 1986). This difference will be reduced with addition 

of water to the dry soil, i.e., with increase in soil moisture. The passive microwave which allows 

for all day/night, and all weather proof observational capability unlike active radars, is an attractive 

option for large scale soil moisture monitoring. Nevertheless, the poor spatial resolution of passive 

microwave remote sensing, incorporates uncertainties caused due to spatial heterogeneity in 

observed geophysical variables. 

The importance of soil moisture is widely recognized in various hydrological and 

meteorological processes, e.g., evapotranspiration pattern and rate, run off, the weather prediction, 

flood forecasting, drought monitoring, crop yield, irrigation scheduling and many more. Therefore, 

it is critical to improve soil moisture estimates to reliably assess and make a decision support 

system which have direct relation to socio-economic impact.  

Research has shown, L-band (1.4 GHz-21cm) is considerably sensitive to shallow soil 

moisture (~ 3-5 cm) than other higher frequencies due to moderate atmospheric and vegetation 

attenuation. At L-band, the brightness temperature of a given land surface importantly depends on 

soil moisture, surface roughness, soil type, effective soil temperature, and vegetation optical depth. 

The structural features such as soil roughness and vegetation geometry are assumed spatio-

temporally constant. In addition, they are represented at satellite scale by plot/field scale estimates 
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which introduce large uncertainties (cite). Unfortunately, physical/semi-empirical models which 

account for spatial and temporal heterogeneity in geophysical variables is not common yet and 

even less common at satellite scales. Importantly, as environmental system is largely non-linear, 

it is unclear if the non-linearity observed at microwave frequencies relate to fluxes observed at 

thermal frequencies. 

1.2 Motivation 

The improvement in remote sensing of soil moisture is essentially a heterogeneity-scaling 

issue. Addressing this issue appropriately can better facilitate the research upon the land and 

atmosphere interactions. Motivated by the limitations discussed in section 1.1, this dissertation 

aims to address these limitations by (1) proposing better parameterizations for surface roughness 

and vegetation optical depth under heterogeneity; and (2) investigating the non-linearity in 

microwave radiative model, and its relationship with thermal fluxes. 

1.3 Research Objectives 

The overarching objective of the dissertation is to develop and validate a predictive soil 

moisture modeling framework with associated land surface interactions and improved 

parameterizations for dominant geophysical variables. To this end, the following objectives will 

be specifically pursued: 

1. Examine the first order, the second order, and the total sensitivity measures of the radiative 

transfer model parameters. This objective is explored under spatio-temporally varying conditions 

with different wetness conditions and vegetation type.  

2. Propose a framework for understanding the efficacy of a radiative transfer model (RTM) for 

soil moisture retrieval with different support scales, seasonality (time) and under land surface 

heterogeneity.  
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3. Develop and evaluate a new comprehensive surface roughness model by incorporating 

geophysical variables from different spatial and temporal scales. 

4. Incorporate and evaluate the impact of biomass heterogeneity on soil moisture retrieval 

accuracy.  

5. Quantify land surface interactions, and their variability with heterogeneity, hydro-climates, 

temporal scales and its relationship with thermal fluxes.  

In Section 2, the variability in first order, the second order, and the total sensitivity 

measures of the radiative transfer model parameters is explored under spatio-temporally conditions 

using two different field campaign data.  

In Section 3, the non-linearity in radiative transfer model is explored with varying support 

scales using four field campaign data from different hydro climates which provides theoretical 

framework for work in section 5. 

Section 4 proposes a spatio-temporally varying semi-empirical model for surface 

roughness which can be adopted at any spatial resolution.  

In Section 5, correction for biomass heterogeneity is presented, and its validation is 

conducted through LSM, insitu and EF estimated SM. In addition, an association between non-

linearity in microwave radiative transfer model and thermal fluxes is discussed under hydro-

climates, seasons, and land cover.  
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2 GLOBAL SENSITIVITY ANALYSIS OF THE RADIATIVE TRANSFER MODEL* 

2.1 Synopsis 

With the to-be launch of Soil Moisture Active Passive (SMAP) mission, it is very important 

to have a complete understanding of the radiative transfer model for better soil moisture retrievals 

and to direct future research and field campaigns in areas of necessity. Because natural systems 

show great variability and complexity with respect to soil, land cover, topography, precipitation, 

there exist large uncertainties and heterogeneities in model input factors. In this paper, we explore 

the possibility of using global sensitivity analysis (GSA) technique to study the influence of 

heterogeneity and uncertainties in model inputs on zero order radiative transfer (ZRT) model and 

also to quantify interactions between parameters. GSA technique is based on decomposition of 

variance and can handle non-linear and non-monotonic functions. We direct our analyses towards 

growing agricultural fields of corn and soybean in two different regions, Iowa, U.S.A (SMEX02) 

and Winnipeg, Canada (SMAPVEX12). We noticed that, there exists a spatio-temporal variation 

in parameter interactions under different soil moisture and vegetation conditions. Parameter 

interactions on average 14 % are observed in SMEX02 fields whereas 5% interactions are noticed 

in SMAPVEX12 fields. Also parameter interactions increased with vegetation water content 

(VWC) and roughness conditions. Interestingly, soil moisture shows an exponentially decreasing 

sensitivity function whereas parameters such as root mean square height (RMS height) and 

vegetation water content show increasing sensitivity with increasing moisture conditions. Overall, 

considering the SMAPVEX12 fields to be water rich environment (due to higher observed SM) 

and SMEX02 fields to be energy rich environment (due to lower SM and wide ranges of TSURF), 

 ____________________________________ 
 *This section is reprinted with permission from “Global sensitivity analysis of the radiative transfer model” by 

Neelam, M., and B. P. Mohanty (2015), Water Resour. Res., 51, 2428-2443, doi:10.1002/2014WR016534, 

Copyright 2015 American Geophysical Union. 
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our results indicate that first order as well as interactions between the parameters change with 

water and energy rich environments. 

2.2 Introduction 

Soil moisture (SM) plays a fundamental role in governing the hydrological and the 

terrestrial carbon cycle, and demands a global and consistent monitoring for the future food and 

water security. Several missions in the past (SSM/I, AMSR-E, and SMOS) have made available 

satellite-derived soil moisture using both the active and the passive remote sensing. The most 

commonly used system for modeling the complex soil-vegetation-atmosphere interactions for soil 

moisture retrieval is described by ‘‘Radiative Transfer Equation’’ (RTE) [Ulaby et al., 1986; Kerr 

and Njoku, 1990]. Modeling of RTE however requires characterizing the complex land-

atmosphere interactions in geophysical parameters which is a difficult task, since land surface 

parameters show a large heterogeneity, and not all of them are significant in describing the system 

at all scales. Thus, considering all parameters as significant and incorporating them into the model 

will result in either an over or an underdetermined system. Therefore, implementing RTE theory 

into practical soil moisture retrieval algorithm requires reducing the dimensionality by simplifying 

assumptions without compromising on the system information. This requires us to understand the 

model behavior and also the parameters which efficiently encapsulate all the processes. A 

sensitivity analysis (SA) is an effective methodology to attain this objective. SA can result in 

achieving factor fixing (FF) for non-influential parameters, or factor prioritization (FP) for 

important parameters, thereby reducing the output uncertainty. This also reduces number of 

parameters required for optimization hereby increasing computational efficiency without 

undermining the results [Saltelli et al., 2004]. Past studies [Davenport et al., 2005; Crosson et al., 

2005; Calvet et al., 2011] have performed sensitivity analysis on brightness temperature to 
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determine the influential parameters using the One-Factor-at-a-Time (OAT) algorithm. This 

algorithm also called as the Local Sensitivity Analysis (LSA), computes local response of the 

model by varying a parameter locally while the other input parameters are fixed at their nominal 

values. LSA only provides a rough estimation of parameter ranking using limited number of model 

evaluations. These results are, however, qualitative and not quantitative. Soil moisture (SM) plays 

a fundamental role in governing the hydrological and the terrestrial carbon cycle, and demands a 

global and consistent monitoring for the future food and water security. Several missions in the 

past (SSM/I, AMSR-E, and SMOS) have made available satellite-derived soil moisture using both 

the active and the passive remote sensing. The most commonly used system for modeling the 

complex soil-vegetation-atmosphere interactions for soil moisture retrieval is described by 

‘‘Radiative Transfer Equation’’ (RTE) [Ulaby et al., 1986; Kerr and Njoku, 1990]. Modeling of 

RTE however requires characterizing the complex land-atmosphere interactions in geophysical 

parameters which is a difficult task, since land surface parameters show a large heterogeneity, and 

not all of them are significant in describing the system at all scales. Thus, considering all 

parameters as significant and incorporating them into the model will result in either an over or an 

underdetermined system. Therefore, implementing RTE theory into practical soil moisture 

retrieval algorithm requires reducing the dimensionality by simplifying assumptions without 

compromising on the system information. This requires us to understand the model behavior and 

also the parameters which efficiently encapsulate all the processes. A sensitivity analysis (SA) is 

an effective methodology to attain this objective. SA can result in achieving factor fixing (FF) for 

non-influential parameters, or factor prioritization (FP) for important parameters, thereby reducing 

the output uncertainty. This also reduces number of parameters required for optimization, hereby 

increasing computational efficiency without undermining the results [Saltelli et al., 2004]. Past 
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studies [Davenport et al., 2005; Crosson et al., 2005; Calvet et al., 2011] have performed sensitivity 

analysis on brightness temperature to determine the influential parameters using the One-Factor-

at-a-Time (OAT) algorithm. This algorithm also called as the Local Sensitivity Analysis (LSA), 

computes local response of the model by varying a parameter locally while the other input 

parameters are fixed at their nominal values. LSA only provides a rough estimation of parameter 

ranking using limited number of model evaluations. These results are, however, qualitative and 

not quantitative, and understanding about the underlying model assumptions and processes are 

restricted in the LSA methods. Also, OAT method is suitable for factor fixing but not for factor 

prioritization [Saltelli et al., 2008]. In contrast, global sensitivity analysis (GSA) method, 

comprehensively evaluates model response to variations in inputs in the entire allowable parameter 

ranges. In this paper, for the first time we explore the GSA technique in remote sensing arena to 

evaluate the Zero Order Radiative Transfer (ZRT) model behavior and along with the parameter 

interactions. We use a variance-based Sobol method which is a widely used GSA technique 

[Saltelli et al., 2004]. This method quantifies the amount of variance each parameter contributes 

to the total unconditional variance. Despite its computational demand, it provides a comprehensive 

sensitivity analysis, and a nonlinear relationship between the parameters. It is important to realize 

the individual and interaction effects of soil moisture (SM), soil texture (Clay fraction (CF)), 

surface roughness (RMS height ‘S’ and correlation length ‘L’), vegetation parameters (vegetation 

water content ‘VWC,’ vegetation structure ‘B’ and scattering albedo ‘ω’) on brightness 

temperature (TB) to improve model and process understanding. For example, consider the similar 

scattering and screening effects of surface roughness and vegetation (increase TB and reduce soil 

moisture sensitivity) [Njoku and Chan, 2006] which makes it difficult to separate their individual 

impacts. We hypothesize that, there exists nonlinear interactions between these parameters which 
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need to be accounted for in modeling. We also hypothesize that, these interactions change with the 

local climate/climate zones since different parameters come into play under different conditions 

[Gaur and Mohanty, 2013; Joshi and Mohanty, 2010; Jana and Mohanty, 2012]. An understanding 

of these spatio-temporal interactions between parameters will result in improved modeling of 

radiative transfer processes. The objective of this paper is to examine the first order, the second 

order, and the total sensitivity measures of the ZRT model parameters. We explore this objective 

under spatio-temporally varying conditions with different wetness conditions and vegetation types. 

Our study focused on using two field campaigns, Soil Moisture Experiment 2002 (SMEX02) in 

Iowa and Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) in Winnipeg. 

Corn and soybean crops are selected for our analysis, since they are the major agricultural crops 

of the study regions in particular and North America in general. This analysis is carried out in 

climatologically similar (but locally different) regions such as Iowa, USA, and Winnipeg, Canada. 

We believe quantification of these interactions of geophysical parameters will help us direct our 

future soil moisture cal/val campaigns in areas which need more expertise to make accurate 

retrieval or predictions. 

2.3 Materials and Methods 

2.3.1 Climatology of Iowa and Winnipeg  

According to the Koppen climate classification, Iowa and Winnipeg fall under humid 

continental climate zone [Peel et al., 2007]. Such a climatic region is classified with large seasonal 

temperature differences, with hot and humid summers and cold severe winters with significant 

precipitation in all the seasons. Iowa and Winnipeg are categorized as Dfa (high 30s and low 40s 

latitudes) and Dfb (high 40s and low 50s in latitude) climate zones respectively. Iowa is mainly 

characterized by hot summers with an average temperature greater than 22°C in the warmest 
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months and an average temperature above 10°C over a span of four months. Winnipeg is 

characterized by warm summers with warmest month temperature below 22°C and with at least 

four months average temperature above 10°C.  

2.3.2  Soil Moisture Experiment 2002 (SMEX02) 

SMEX02 (Soil Moisture Experiments in 2002) was conducted in central Iowa from June 

24th- July 12th, 2002 to validate soil moisture retrieval algorithms for a range of soil and vegetation 

conditions from aircraft and satellite microwave instruments [Jacobs et al., 2004; Bindlish et al., 

2006; Narayan et al., 2004; McCabe et al., 2005; Famiglietti et al., 2008]. Central Iowa is mainly 

an agricultural region with two major crops, corn and soybean. This experimental site is being 

used to test retrieval algorithms since agricultural fields are uniform in vegetation type but differ 

largely in landscape patterns such as soil texture, vegetation conditions and topography. The 19-

day campaign collects wide range of soil and vegetation conditions for soybean and corn fields, 

thus forms an excellent database to perform spatio-temporal soil moisture sensitivity analysis.  

2.3.2.1 Field Measurements 

In this study, we selected four sampling days (DOY: 178, 182, 186 and 188) which best 

represent the soil moisture wetting and drying cycles under growing vegetation. For our analysis, 

we used ground measurements of volumetric soil moisture (VSM), soil temperature and vegetation 

water content from the same sampling days (except for 186, when VWC of 187 is used). Two 

rainfall events were observed in watershed with light showers on DOY_185/186, and more 

significant showers on DOY_187 elevating SM further. Ground sampling of VWC for corn and 

soybean noticed a significant increase from DOY_178 to188, with corn mean VWC increasing 

from 2.9 kg/m2 to 4.5 kg/m2, and soybean mean VWC increasing from 0.3 kg/m2 to 0.77 kg/m2. 

Grid board measurements of surface roughness, shows a wide range of RMS height (S) and 



 

 

10 

 

 

correlation length (L) for corn [S: 0.19-2.55cm; L: 0.55-26.9cm] and soybean [S: 0.21- 3.05 cm; 

L: 0-20.8cm]. These ranges represent the roughness conditions from rolled fields to ploughed 

surfaces [Álvarez-Mozos et al., 2006; Zhixiong et al., 2005].  

2.3.3 Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) 

SMAPVEX12 (Soil Moisture Active Passive Validation Experiment in 2012) was 

conducted in agricultural region south of Winnipeg, Manitoba (Canada) from June 6th to July 17th 

2012. This site is about 15 km × 70 km within the large Red River Watershed. The climate of 

Winnipeg is classified as extreme humid continental with great difference in summer and winter 

temperatures. The annual average precipitation is about 52cm, with most of the precipitation 

occurring between May to September. Because of the extremely flat topography and substantial 

snowfall this region is prone to flooding. The watershed is mainly characterized by agricultural 

land use with a wide range of crop and soil conditions. Soils of this region vary within a distance 

of few kilometers with heavy clays in the east to loamy sands in the west. The major agricultural 

crops of the region include cereals, canola, corn and soybean [Heather et al., 2012 SMAPVEX 

experimental report]. A total of fifty-five agricultural sites have been chosen for SMAPVEX12 

experiment of which soybean (15), canola (6), corn (10), spring wheat (14), winter-wheat (2), 

forage (1), bean (1) and pasture (6). Because of the favorable economic and environmental 

conditions early in season, more of the soybean fields were planted. Apart from field soil moisture 

measurements, SMAPVEX12 site is largely monitored with insitu soil moisture stations by United 

States Department of Agriculture (USDA), Agriculture and Agri-Food Canada (AAFC), Manitoba 

Agriculture, and Food and Rural Initiatives (MAFRI). Gravimetric and volumetric soil moisture 

data are collected almost every alternate day except for rainy days. With the wide range of soil 
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moisture, vegetation and texture conditions observed, SMAPVEX12 site provide an extensive data 

sets for development and validation of SMAP passive and active soil moisture retrieval algorithms.  

2.3.3.1 Field Measurements  

In this study, we use in-situ measurements of soil moisture, soil temperature, surface 

roughness and vegetation water content collected for soybean and corn fields. Soybean and corn 

fields show sharp variations in soil texture. Soybean fields show soil texture with sandy loam soils 

(Field ID: 14, 12, 11, 63, 82, 64, 52) to heavy clay soils (Field ID: 51, 114, 64, 51, 111, 123, 113, 

101, 103, 109, 112, 34). Whereas corn fields are mainly sandy (Field ID: 24, 72, 71) and sandy 

loam (Field ID: 54, 83, 94, 54, 83, 53, 93). For our study we carefully selected seven (DOY: 159, 

164, 169, 174, 181, 190 and 199) different wetness days from entire duration of SMAPVEX12 

campaign. As mentioned earlier, these wetness days were selected such that they fully represent 

the wetting and drying cycles of soil moisture under temporally varying vegetation conditions.  

2.4 Soil Moisture Retrieval Algorithm  

The theory behind microwave radiative transfer model for remote sensing of soil moisture 

is the large contrast between the dielectric properties of soil (~4) and water (~ 80). As the amount 

of water content increases in soil, the dielectric constant increases, while emissivity reduces. The 

brightness temperature (TB) of the soil surface is related to its physical effective temperature and 

emissivity such that:  

TB(θ,p) = (1-R(θ,p)) × Teff = e(θ,p) × Teff         (2.1)  

where subscript p is the vertical (V) or horizontal (H) polarization and θ denotes incidence angle 

of the measurement.  R(θ,p) is the p polarized reflectivity from the surface, Teff  is the effective soil 

temperature, e(θ,p) =1-R(θ,p) is the emissivity of the surface which depends on the dielectric constant 

(ε) of the medium. The dielectric constant (ε) of soil is determined by several quantities such as 
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moisture content, bulk density, soil texture composition, soil temperature and salinity. Of these 

quantities, ε is majorly influenced by soil moisture. The penetration depth δp of microwave 

radiation varies with soil moisture content, such that δp ~ λ for volumetric moisture SM~0.04 gcm-

3 and δp ~ 0.1 λ for very wet soils [Ulaby et al., 1986]. Several studies [Newton et al., 1982; 

Schmugge, 1983] relating to sensing depth, have led to the conclusion that soil moisture sensing 

depth δm is on the order of 0.1 λ or shallower. Thus, the brightness temperature shows sensitivity 

to the near surface soil moisture variations and reduced sensitivity to deeper soil moisture layers 

[Njoku et al., 1980]. Therefor any non-uniformity in temperature and dielectric constant profiles 

is significant only for the layer between the surface and the depth of δp, because beyond this depth 

contribution to the brightness temperature (TB) is very small.  

The most widely used radiative transfer model [Mo et al., 1982] under vegetation conditions is 

known as τ-ω model described in equation (2.2).    

𝑇𝐵(𝑝,𝑓,𝜃) =  𝑒𝑝,𝜃. 𝑇𝑒𝑓𝑓 . exp (−
𝜏𝑝,𝑓

cos 𝜃
) + 𝑇𝑐. (1 − 𝜔𝑝,𝑓,𝜃). (1 − exp (−

𝜏𝑝,𝑓

𝑐𝑜𝑠𝜃
)) +

𝑇𝑐. exp (−
𝜏𝑝,𝑓

𝑐𝑜𝑠𝜃
) . (1 − 𝜔𝑝,𝑓,𝜃). (1 − exp (−

𝜏𝑝,𝑓

𝑐𝑜𝑠𝜃
)) . 𝑟𝑝,𝑓,𝜃  (2.2)  

where 𝜏𝑝 is the nadir optical depth, 𝜔𝑝 is the single scattering albedo, 𝑟𝑝 is the rough surface  

reflectivity and Teff and Tc are the effective physical temperatures of soil layers and vegetation, 

respectively. The subscripts, p, θ and f denote the polarization, angle of incidence, and frequency 

of measurement. Thus the total upward microwave emission is a summation of: 1) upward soil 

emission attenuated by the vegetation, 2) upward emission from vegetation, 3) vegetation emission 

reflected by soil and attenuated through canopy (Fig. 2.1). Several models [Njoku and Kong, 1977; 

Wilheit, 1978; Burke et al., 1979] are proposed to calculate brightness temperature for non-

uniform dielectric and temperature medium. And a comparison between these different models 

[Schmugge and Choudhury, 1981] led to the conclusion that at longer wavelengths internal 
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reflections between the layered media can be ignored to calculate effective temperature. Thus for 

passive remote sensing at L-band, it is reasonable to assume the effective soil temperature to be 

equal to surface temperature (Teff ~TSURF). The tau-omega is considered to be Zero-Order 

Radiative Transfer (ZRT) model, since it ignores multiple scattering within the vegetation layer. 

These assumptions are considered reasonable during early hours (6 am local time) when soil 

temperature profile is more uniform and vegetation is in thermal equilibrium with soil (Teff 

~TSURF~ Tc).  Different models [Wang et al., 1983; Choudhury et al., 1979; Wigneron et al., 2011, 

Lawrence at al., 2013] formulated the smooth and rough surface reflectivity’s. The effective rough 

surface reflectivity in horizontal (H) or vertical (V) polarization is given by   

𝑅𝑟𝑠
𝐻,𝑓(𝜃) = [(1 − 𝑄𝑓) 𝑅𝑠

𝐻,𝑓(𝜃) + 𝑄𝑓 𝑅𝑠
𝑉,𝑓(𝜃)]𝑒−𝐺(𝜃)ℎ𝑓   (2.3 a) 

 𝑅𝑟𝑠
𝑉,𝑓(𝜃) = [(1 − 𝑄𝑓) 𝑅𝑠

𝑉,𝑓(𝜃) + 𝑄𝑓 𝑅𝑠
𝐻,𝑓(𝜃)]𝑒−𝐺(𝜃)ℎ𝑓      (2.3 b) 

where f and θ are frequency and angle of incidence of the measurement. 𝑅𝑠
𝑝,𝑓(𝜃) are smooth 

Fresnel reflectivity, Qf is a polarization mixing factor, hf is equivalent roughness parameter related 

to surface RMS height, and horizontal correlation length, G(θ) =cos 𝑛𝑝(θ) and n is an angular 

exponent. For model proposed in [Wang et al., 1983] assumes G(θ)=1 for Eq. 2.3 (a,b), whereas 

model in [Choudhury et al., 1979] assume G(θ) =cos 2(θ) and  Qf=0. Other empirical models 

[Wigneron et al., 2011] developed later consider correlation length to calculate equivalent 

roughness parameter. Model developed in [Lawerence et al., 2013] allows Qf and np to be 

calculated from RMS height ‘S’ and correlation length ‘L’. This avoids the assumption of constant 

values for these parameters and is polarization dependent. In this study we use, roughness model 

proposed by Lawrence et al. (2013).  

As mentioned earlier, canopy affects top of the atmosphere brightness temperature 

(ignoring atmospheric attenuation at L-band) by either radiating its own microwave radiation or 
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absorbing/scattering radiation emanated by the soil. These attenuation effects of vegetation are 

described by vegetation optical depth τ (λ, p) and single scattering albedo ω (λ, p, θ) in (2). These 

factors are dependent on frequency, polarization, incidence angle, vegetation water content and 

canopy structure [Mo et al., 1982; Ulaby et al., 1983; Jackson et al., 1990, 1991; Van de Griend et 

al., 2004; Wigneron et al., 2011]. The knowledge about the variability of ωp for H and V 

polarization are limited [Brunfeldt and Ulaby, 1986]. The difference between ωH and ωV, is 

essentially shown by vegetation exhibiting preferential orientation [Van De Griend et al., 1994]. 

The difference however is considered to be small, thus ωp is polarization independent.   
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Figure 2.1    Three layer Zero Order Radiative Transfer (ZRT) Model, where Ray 1: Soil 

Emissions Intercepted-Scattered by Vegetation; Ray 2: Vegetation Emission; 

Ray 3: Soil-Vegetation Reflection/Attenuation 
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Table 2.1    Parameter ranges of corn and soybean SMAPVEX12 fields for selected 

sampling days 
 

  

Parameters 

SMAPVEX12 

Crop 

Type 

DOY 

159 

DOY 

164 

DOY 

169 

DOY 

174 

DOY 

181 

DOY 

190 

DOY 

199 

Soil moisture 

(SM) (V/V) 

Corn 

 

0.02-

0.34 

 

0.07-

0.46 

0.1-0.45 0.05-

0.37 

0.012-

0.3 

 

0.03-

0.43 

0.03-

0.38 

Soy 

bean 

0.04-

0.47 

 

0.12-

0.57 

0.06-

0.52 

0.08-

0.59 

0.04-

0.41 

 

0.04-

0.45 

0.05-

0.40 

Clay fraction 

(CF) (%) 

Corn 

 

5 % - 38 % 

 

Soy 

bean 

4.5 % - 66 % 

RMS height 

(S) cm 

Corn 

 

0.3 - 1.7 

 

Soy 

bean 

0.2 – 2.0 

Correlation 

length (L) cm 

 

Corn 

 

4.5 - 23 

 

Soy 

bean 

5 - 23 

Surface Temp 

(TSURF) 

Kelvin, K 

 

Corn 293-

300 

281-

294 

288-293 287-295 292-298 291-

300 

291-296 

Soy 

bean 

292-

302 

281-

292 

287-293 286-292 290-298 292-

299 

292-299 

Vegetation 

Water Content 

(VWC) Kg/m2 

 

Corn 

 

no veg 0.01-

0.1 

0.1-0.39 0.15-

0.45 

0.5-1.5 1.7-2.4 2.2-4.22 

Soy 

bean 

no veg 0.03-

0.13 

0.04-

0.25 

0.05-

0.29 

0.05-

0.52 

0.08-

0.7 

0.17-2.7 

Vegetation 

Structure 

(B) 

 

Corn 0.1-0.15 

 

Soy 

bean 

0.05-0.1 

 

Scattering 

Albedo (ω) 

Corn 

 

0-0.05 

 

Soy 

bean 
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Table 2.2    Parameter ranges of corn and soybean SMEX02 fields for selected sampling 

days 

 

 

 

Parameters 

SMEX02 

Crop 

Type 

DOY 

178 

DOY 

182 

DOY 

186 

DOY 

188 

Soil moisture 

(SM) 

(V/V) 

Corn 

 

0.07-0.16 

 
0.05-0.15 0.06-0.27 0.11-0.37 

Soybean 
0.07-0.16 

 
0.04-0.14 0.05-0.23 0.1-0.29 

Clay fraction 

(CF) 

(%) 

Corn 

 

10 % - 40 % 

 

Soybean 
10 % - 40 % 

 

RMS height 

(S) cm 

Corn 

 
0.19-2.5 

Soybean 
0.21-3.05 

 

Correlation 

length (L) 

cm 

 

Corn 

 
0.56-26.9 

Soybean 
0.43-20.80 

 

Surface 

Temperature 

(TSURF) 

Kelvin, K 

 

Corn 
296.15-

318.5 
299-310 

296.15-

304.5 
295.85-299 

Soybean 
296.15-

320.65 

300.15-

312.55 

297.4-

310.75 

294.65-

309.65 

Vegetation 

Water Content 

(VWC) 

Kg/m2 

 

Corn 

 
1.97-4.27 2.25-5.23 3-6 3.5-6.05 

Soybean 0.2-0.47 0.27-0.66 0.32-0.69 0.4-1.43 

Vegetation 

Structure 

(B) 

 

Corn 0.1-0.15 

Soybean 0.05-0.1 

Scattering 

Albedo (ω) 

Corn 

 0-0.05 

 Soy 

bean 
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The single scattering albedo ω accounts for the canopy single volume scattering (Ray 2 and 3, 

multiple scattering is considered zero, Fig. 2.1) and total extinction properties exhibited by the 

canopy. It is defined as the ratio of canopy scattering efficiency to the total extinction efficiency 

(sum of scattering and absorption within canopy) [Mo et al., 1982; Ulaby et al., 1983a]. By fitting 

model to experimental observations for vegetated fields, several studies [Brunfeldt and Ulaby, 

1986; Pampaloni and Paloscia, 1986; Jackson, 1993] have estimated the value of single scattering 

albedo. The general consensus among these studies indicates that at 1.4GHz, ω is small and varies 

from 0.05 and 0.13.  

The vegetation optical depth τp is related to the vegetation thickness and extinction 

efficiency of the canopy. The amount of radiation that is not scattered or absorbed by the vegetation 

is represented by optical depth 𝜏𝑝, which describes the amount of radiation propagated through 

vegetation. Since canopy in essence acts as water cloud, τp is empirically related [Schmugge et al., 

1986, Saleh et al., 2007] to the integrated canopy water content VWC as total mass of water 

contained in the vertical column of the canopy per unit ground surface area. The canopy 

architecture, orientation, thickness and density of vegetation characterize the extinction efficiency 

of the vegetation. The vegetation optical depth commonly used in soil moisture retrieval 

algorithms is given by τp  = VWC × B,  [Jackson et al., 1991]  where B is vegetation parameter that 

depends on factors such as frequency, polarization, angle and vegetation type. Thus, the vegetation 

attenuation parameters τp,f and ωf,θ used in vegetation model are based on the assumption that 1) at 

L band, scattering albedo is small and multiple scattering may be ignored 2) the canopy reflectivity 

is zero, thus reflection losses at the boundary are not accounted, 3) due to small refractive index 

of vegetation layer, soil reflectivity is used in (2) instead of vegetation-soil reflectivity. Several 

soil moisture retrieval algorithms are developed and validated [Jackson, 1993; Owe et al., 2001; 
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De Jeu and Owe, 2003; Njoku and Chan, 2006; Jones et al., 2011; Santi et al., 2012] based on the 

above assumptions for soil and vegetation models. 

2.5 Global Sensitivity Analysis: Sobol Method  

Sensitivity analysis is generally used to identify and quantify the critical inputs (parameters 

and initial conditions) to a model. Several sensitivity techniques have been developed over time 

depending on the objective of the study and computational demand. When the input factors are 

known with little uncertainty, then sensitivity measure is computed by partial derivative of output 

function with respect to the input factors. This method as mentioned earlier is called local 

sensitivity analysis (LSA). LSA techniques are best suited for linear systems, since the impact on 

model output is studied by varying input factors one at a time and very close to the nominal values. 

On the other hand, land surface models (LSM) or in general any environmental model are rarely 

additive, since land surface processes are highly nonlinear and non-monotonic in nature, exhibiting 

higher order interactions between the parameters. In such cases using local SA methods are not 

suitable for quantitative analysis, since they fail to capture the heterogeneity in input factors. 

Therefore, techniques such as global sensitivity analysis (GSA) are used, which incorporate 

variability in the input factors through probability distribution functions using Monte Carlo 

simulations. Since, Sobol method is capable to handle non-linear and non-monotonic functions we 

use it to analyze our radiative transfer model. We briefly introduce the main concepts of Sobol 

method here for completeness. 

The concept behind variance based technique is to quantify the amount of variance due to 

each input factor Xi contributed towards the unconditional variance of the output V(Y). Suppose 

Y=f(X) is a model function, then Y is the output, X=(X1,X2,X3….XK) are K independent input 

parameters, each one varying over a probability distribution. Applying this configuration to our 



 

 

20 

 

 

analysis results in, Y as the output brightness temperature, f as the ZRT model, and XK as the input 

parameter vector with K=8, and [X1, X2, X3, X4, X5, X6, X7, X8]  as [Soil Moisture  (SM), Clay 

Fraction (CF), Surface Roughness- RMS height (S), Surface Roughness- Correlation length (L), 

Surface Temperature (TSURF), Vegetation Water Content (VWC), Vegetation Structure (B), 

Scattering Albedo (ω)].   

Sobol suggested that the function f can be decomposed into summands of increasing 

dimensionality;  

𝑓(𝑋1, 𝑋2, … . 𝑋7) = 𝑓0 +  ∑ 𝑓𝑖7 (𝑋𝑖) + ∑ 𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗) + ⋯ + 𝑓1….7(𝑋1, … .7)  𝑖<𝑗  (2.4) 

If each term in the above equation is square integrable with average zero and input parameters are 

not dependent, then 𝑓0 is a constant and is equal to the expectation value of the output and 

summands are mutually orthogonal. And this decomposition is unique [Sobol, 1993]. With the 

assumption that the parameters are mutually orthogonal, the total unconditional variance is; 

𝑉𝑇 = ∑ 𝑉𝑖7 + ∑ 𝑉𝑖𝑗 + ⋯ + ∑𝑉1,2,3,… 7 ;  𝑖<𝑗       (2.5) 

𝑉𝑖 = 𝑉[𝐸(𝑌|𝑋𝑖)];     𝑉𝑖𝑗 = 𝑉[𝐸(𝑌|𝑋𝑖, 𝑋𝑗 )] - 𝑉𝑖-𝑉𝑗     (2.6) 

where 𝑉[𝐸(𝑌|𝑋𝑖)]  is the expected amount of variance that would be removed if the true value of 

Xi is learnt,    𝑉𝑖𝑗 = 𝑉[𝐸(𝑌|𝑋𝑖, 𝑋𝑗 )] describes the joint effect of pair (Xi, Xj ) and is called second 

order effect, similarly higher order effects can be computed. 

GSA ranks the input parameters based on the amount of variance that would disappear on 

learning the true value of x*. For a nonlinear model, the total output variance is decomposed into 

variances caused due to first (fractional variance of Xi to output) and higher order (variance caused 

due to interactions between the factors, Xij, i≠j). 

Using first and other order variances, sensitivities indices 𝑆𝑖 are calculated by diving 𝑉[𝐸(𝑌|𝑋𝑖)]  

with total variance 𝑉𝑇.  
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First Order Sensitivity Measure: 𝑆𝑖 =
𝑉𝑖

𝑉
;      (2.7) 

Second Order Sensitivity Measure: 𝑆𝑖𝑗 =
𝑉𝑖𝑗

𝑉
 ;      (2.8) 

Total STi = Si + ∑ 𝑆𝑖𝑗𝑗≠𝑖  + . . . .        (2.9) 

where 𝑆𝑖 is the first order sensitivity index for factor Xi, which measures variance contribution of 

parameter Xi on total model variance, 𝑆𝑖𝑗 measures variance of interactions between parameters i 

and j, and STi is sum of main effects and all their interactions with the other parameters (up to kth 

order). The calculation of STi can be based on 𝐸[𝑉(𝑌|𝑋−𝑖)], variation of all parameters except Xi;  

𝑆𝑇𝑖 =  
𝐸[𝑉(𝑌|𝑋−𝑖)] 

𝑉(𝑌)
.           (2.10) 

For additive models,  𝑆𝑖 and 𝑆𝑇𝑖 are equal and sum of 𝑆𝑖(and thus 𝑆𝑇𝑖) is 1. For nonlinear models 

(or non-additive models) 𝑆𝑇𝑖 is greater than 𝑆𝑖 and ∑ Si<1 (∑ STi>1). The difference between 

𝑆𝑇𝑖 and 𝑆𝑖 is used to analyze the interactions between parameter Xi and the other parameters.   

2.6 Evaluation of the Parameters using Sensitivity Analysis  

A high value of 𝑆𝑖 implies Xi as significant parameter and should be given priority in 

estimation, whereas a low value of 𝑆𝑇𝑖 indicates that the parameter is not important either 

singularly or via interactions, and can be frozen to its optimal value (parameter fixing). We 

analyzed a time series Global Sensitivity Analysis (GSA) of Zero-Order Radiative Transfer (ZRT) 

Model to input parameters. The analysis was conducted for each of the four days in SMEX02 fields 

and for seven days in SMAPVEX12 fields. The field observations of SMEX02 and SMAPVEX12 

are significantly different w.r.t soil moisture, soil texture, soil temperature, surface roughness and 

vegetation water content. It is assumed that the field observations are true representative of 

variability observed. In this study, we assume uniform distribution for all parameters to reproduce 

the heterogeneity observed in the fields. Field observations are used to represent maximum (max) 
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and minimum (min) values. Tables 2.1 and 2.2 show parameter ranges of corn and soybean for 

SMAPVEX12 and SMEX02. All fields of corn (or soybean) did not show a similar growth trend, 

which may be due to irregular planting periods. In addition, not all fields were sampled on all 

sampling days, and this has resulted in irregular ranges for VWC. Since we want to study the 

sensitivity analysis for growing vegetation, we used higher VWC values than previous sampling 

day. It is assumed that parameters such as Clay Fraction (CF), Surface Roughness RMS height 

(S), Surface Roughness Correlation Length (L), Vegetation structure (B) and scattering albedo (ω) 

are static during our analysis period, and same range is considered for all sampling days. Since, 

there were no major agricultural practices during the growing cycle, our assumption on similar 

surface roughness on all days holds valid.  

To estimate first order and total sensitivity indices 𝑆𝑖, and 𝑆𝑇𝑖 for k parameters with N 

sample size requires N (k+2) model evaluations, i.e., for K=8 parameters and N=30,000 sample 

size, we performed 3,00,000  model evaluations. While computing Sobol indices, we employ 

Sobol quasi random sampling instead of standard Monte Carlo sampling schemes. To avoid 

lumped sampling or clustering, quasi random sampling adds samples to the sequence away from 

the earlier sampled points and fills the unit hypercube uniformly. Also quasi random sampling 

results in faster convergence rate of 1/n as compared to 1/√𝑛, which is necessary to reduce 

computational demands.  

2.6.1 Bootstrapping 

In order to build confidence intervals for the first order and total Sobol sensitivity indices, 

we use bootstrap technique with resampling (Efron et al., 1993), since it is computationally very 

demanding to repeat N.(k+2) model runs several times. The N samples used for the model 

evaluations were sampled 1000 times with replacement, and sensitivity indices were calculated 
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each time. The 95 % confidence intervals were then constructed on the distributions obtained for 

Si’s and STi’s using percentile method.  

2.7 Results and Discussions  

We analyzed our results at N=30,000, where the sensitivity indices were found to be 

stabilized (Fig. 2.2). In the following sections, we present and discuss the Sobol sensitivity indices 

for each parameter for SMAPVEX12 and SMEX02. For each parameter, a spatio-temporal 

variation in first order sensitivity index along with parameter interactions is presented. We also 

discuss the influence of soil moisture range on sensitivity measures. Tables 2.3 and 2.4 present 

first order and total sensitivity indices along with their 95% confidence intervals which are 

obtained through bootstrapping. We calculated the sensitivity indices of all parameters for 0.05 

V/V increment in SM for selected days, and observed how parameter sensitivity changes for 

narrow range of SM; Fig 2.7(A-E). Though SMAPVEX12 and SMEX02 are climatically similar 

regions, they exhibited varied field conditions. SMAPVEX12 fields showed large variation in soil 

moisture (0.02-0.59) and clay fraction (0.045-0.66), whereas SMEX02 fields showed large 

variation in vegetation water content (1.9 - 6.05) and surface roughness. 
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Figure 2.2    Evolution of first order sensitivity index for Soil Moisture (SM), Clay fraction 

(CF), RMS height(S), Correlation length (L), Surface Temperature (TSURF), Vegetation 

Water Content (VWC), Vegetation structure parameter (B), Scattering Albedo (ω). 
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2.7.1 First Order Sensitivity Measures 

2.7.1.1 Soil Moisture (SM) 

In general, brightness temperature showed higher sensitivity to SM in SMAPVEX12 than 

in SMEX02 due to wider SM ranges in case of SMAPVEX12 fields. A clear temporal variability 

in SM sensitivity due to wetting and drying cycle can be seen in both the fields. As expected, there 

is a decrease in SM sensitivity with increase in VWC, Figs. 2.3 and 2.5 (SMEX02: DOY_186, 

188; SMAPVEX12: DOY_199). We also noticed that SM sensitivity to brightness temperature 

does not increase linearly with increase in SM. For example, DOY_164 and, 169 show high SM 

(max: 0.45 v/v) observed in corn fields for SMAPVEX12, however this increase in SM is not 

reflected in increased SM sensitivity to brightness temperature. Similar features are observed for 

DOY_188 during SMEX02. To analyze this behavior further, we calculated sensitivity indices for 

0.05 V/V range in SM for selected days (Fig 2.7(A-E)). Soil moisture shows a decreasing 

exponential function (R2~0.99) with very low sensitivity from 0.2 V/V onwards.  Soil water in the 

range of 0.01-0.1V/V are tightly bound by adhesion forces to soil particles, thereby exhibiting 

emissitivities which are close to dry soil 0.95, but with increase in SM the unbound water also 

called as ‘free water’ increases thus reducing emissivities steeply to 0.6 for SM 0.2 V/V, beyond 

which there are no significant changes. This is because after a certain SM value (‘transition soil 

moisture’) any further increase does not influence emissivity significantly [Schmugge et al., 1974]. 

However, the transition soil moisture changes with soil texture, being higher for more clayey soils. 

SM shows higher sensitivity in lower clay soils with steep decrease in SM sensitivity with increase 

in SM ranges, whereas in higher clay soils the SM sensitivities are small and decreases less steeply 

(Fig 2.7 (C, D)). The increased dominance of texture in higher clay soils and higher sensitivity to 

roughness effects with increasing SM is also a reason for low SM sensitivity Fig. 2.7 (A-F).  
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A)  

B)  

C)  

 

Figure 2.3    SMEX02 Corn Fields A) First Order Si (left) and Total Sensitivity STi (right), 

B) Second Order Sensitivity Measures Sij, C) Total Parameter Interactions for 

DOY_178/182/186/188. Sum of sensitivity indices are mentioned on top of bars. 
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2.7.1.2 Clay Fraction (CF) 

Compared to other parameters, brightness temperature shows consistently small sensitivity 

to CF in field condition for both SMAPVEX12 and SMEX02 when compared to other parameters. 

Higher CF sensitivities are realized in soybean fields in SMAPVEX12 due to higher CF % 

observed. As expected, CF signature is more visible in bare and dry conditions. Analyzing the CF 

sensitivity for increasing SM ranges, it is noticed that CF shows a concave sensitivity function 

with highest sensitivity noticed around 0.15-0.2 V/V for higher clay soils (soybean field in 

Winnipeg) and around 0.1-0.15 V/V for lower clay soils (corn fields in Winnipeg and SMEX02 

fields). Soil texture is important, since it determines particle surface area, size and shape which 

influence the amount of bound and free soil water. Thus, sensitivity of CF increases till transition 

SM since it determines surface area for bound water. Beyond the transition SM, influence of CF 

through adhesion forces reduces, thereby reducing the sensitivity of CF with increase in SM. As 

this transition SM is higher in higher clay soils (SMAPVEX12) we notice a peak around SM range 

0.15-0.2 V/V   

2.7.1.3 Surface Roughness (S and L) 

In general, significant surface roughness effects are noticed in SMEX02 fields than 

SMAPVEX12. Interestingly, for a similar surface roughness, brightness temperature shows higher 

sensitivity to roughness parameters (S and L) on wet days (SMAPVEX12: DOY_164, 169 and 

SMEX02: DOY_188) than on dry days. Analyzing the sensitivity of both RMS height ‘S’ and 

correlation length ‘L’ w.r.t. SM ranges, resulted in an increasing sensitivity function for S and L 

with increasing SM. As expected sensitivity indices of RMS height S is higher than L. But, surface 

roughness parameters (S and L) show different sensitivity functions w.r.t SM and soil texture (Fig 

2.7 (A-F)). We notice, a linear sensitivity function in case of higher clay soils, (R2~0.97: CF 0.05-
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0.66, soybean in Winnipeg) and a logarithmic function in case of lower clay (R2~0.94; CF 0.05-

0.38, corn in Winnipeg) best fit the analysis. In case of soybean fields (Winnipeg, higher clay 

soils), S overrides SM and CF sensitivity curves around 0.05-0.1 V/V and 0.25-0.3V/V, 

respectively, whereas in case of corn fields (Winnipeg, low clay soils) S overrides SM and CF 

sensitivity around 0.1-0.15 V/V Fig. 2.7(C-D). Thus, the roughness observed before S overriding 

CF sensitivity could be accounted due to dielectric volume scattering in soils, whereas after which 

roughness effects are contributed mainly due to surface contributions (S and L). With further 

increase in SM, spatial variability of SM in horizontal direction due to lateral conductivity starts 

to dominate. This is clearly noticed with correlation length (L) overriding SM and CF sensitivity 

at 0.2-0.25 V/V and 0.35-0.4 V/V, respectively in soybean (Winnipeg, higher clay soils), whereas 

in case of corn (Winnipeg, lower clay soils) L overrides SM and CF sensitivity around 0.2-

0.25V/V, Fig. 2.7(C-D). However, in Iowa, due to higher roughness conditions and lower CF 

range, S and L overrides SM at all moisture conditions (Fig 2.7. (A-B)). Chauhan et al. (2002) also 

found that surface roughness gain more impact in wetter conditions. Our results are also supported 

by, Wigneron et al. (2001), who proposed surface roughness may be a contribution of dielectric 

roughness and physical roughness. And, according to Panciera et al. (2009) higher roughness 

conditions are observed in clayey soils than sandy soils due to higher moisture heterogeneity 

exhibited by clayey soils. 
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A)  

B)  

C)  

Figure 2.4    SMEX02 Soybean Fields A) First Order Si (left) and Total Sensitivity STi 

(right), B) Second Order Sensitivity Measures Sij, C) Total Parameter Interactions for 

DOY_178/182/186/188. Sum of sensitivity indices are mentioned on top of bars. 
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2.7.1.4 Surface Temperature (TSURF) 

Surface temperature effects are much less realized in SMAPVEX12 fields but shows 

significance on dry days of SMEX02 fields (DOY_178, 182) (Fig. 2.3(A), 2.4(A)). This is due to 

wide and higher ranges of TSURF observed in SMEX02. Also, TSURF shows a decreasing 

sensitivity function with increasing SM as expected. TSURF does not participate in any second 

order interactions. For any TSURF range, it shows higher sensitivity at lower SM ranges and 

gradually decreasing with increasing SM.   

2.7.1.5 Vegetation Water Content (VWC) 

Sensitivities of VWC exhibits clear spatio-temporal variation, with higher interactions 

observed on higher VWC and wet days. Due to wider and higher VWC ranges observed in 

SMEX02 fields, high first order sensitivities are observed in SMEX02 than in SMAPVEX12 (Figs. 

2.3, 2.4, 2.5, and 2.6). We notice a consistency w.r.t VWC range and sensitivity between SMEX02 

(DOY_178) and SMAPVEX12 (DOY_199), indicating the first order sensitivity of VWC remains 

similar with observed VWC ranges irrespective of other field conditions, however with different 

higher order interactions. A significant contribution from VWC is realized in case of corn plants 

all days of SMEX02 and SMAPVEX12 (DOY_181-199).  Also, an increasing sensitivity function 

for VWC at higher SM ranges is observed Fig.2.7 (A, E, F). Vegetation shows an exponential 

growth in the SMAPVEX12 fields where significant VWC is noticed on last three sampling days 

of SMAPVEX12. The increased sensitivity to VWC for soybean on DOY_199, when mean 

(VWC) > 1kg/m2 is observed, which otherwise is not noticed on other sampling days of 

SMAPVEX12. 
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2.7.1.6 Vegetation Structure (B) 

Corn fields show more sensitivity to B parameter than soybean fields, due to the definite 

vertical structure of corn plants (Fig. 2.3), which is otherwise hardly noticed in soybean plants. 

The B parameter shows a gradual increase in its sensitivity with growing vegetation (VWC) and 

SM. With growing vegetation, there is a progressive change in canopy structure i.e., length, 

thickness and size of leaves, stalks, etc. This changing canopy structure modifies soil radiation 

through scattering and adds its own emissions, this result in soil and vegetation interactions as 

observed. The first order effects are realized for corn on all sampling days (SMEX02) and 

DOY_190,199 (SMAPVEX12).  We clearly notice the interception/scattering of soil radiations by 

B through (SM, B) is for grown corn plants which otherwise not seen in soybean. Also, an 

increasing sensitivity function of B with SM is observed Fig. 2.7 (A, E, F). 

2.7.1.7 Single Scattering Albedo (ω)  

Similar to B parameter, brightness temperature shows primarily no sensitivity to albedo in 

soybean plants but its influence is realized in corn plants.  Like VWC and B, albedo also shows 

increasing sensitivity with growing vegetation. Also, we noticed albedo did not participate in any 

higher order interactions. Nevertheless, this might not be the case at higher albedo values which 

are common in bushy and structured plants. However, unlike VWC and B, albedo shows a 

decreasing sensitivity with increasing SM. Therefore, assuming a constant look-up table for albedo 

and B, under all SM conditions, VWC and vegetation types will compromise SM retrieval 

accuracy. Because, B and albedo show increasing sensitivity with growing vegetation, a combined 

parameter dependent on VWC can be developed.   
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2.7.2 Second Order Interactions 

SMEX02 fields show more of higher order interactions than SMAPVEX12 fields, due to 

higher VWC and roughness conditions observed in SMEX02 fields. In the following discussion, 

an overview of total interactions and second order interactions are presented. In past environmental 

studies using GSA, interactions are sufficiently captured by second order interactions, however in 

this soil moisture study we notice interactions greater than second order are also significant. 

2.7.2.1 Interactions of Soil Moisture (SM, VWC), (SM, B), (SM, S) and (SM, L):  

The upward soil emission contributing to the brightness temperature is interrupted by 

vegetation, thus determining the amount of soil radiation passing through canopy. This 

interception of soil emissions by vegetation water content (VWC) and vegetation structure (B) is 

reflected through interactions between (SM, VWC) and (SM, B). As such, a consistent (SM, VWC) 

interactions are seen on all sampling days in corn (SMEX02) and on DOY_181-199 

(SMAPVEX12), clearly displaying the shielding effect of grown canopy which are otherwise not 

observed in early stages of field campaign of SMAPVEX12. Apart from VWC, vegetation 

structure (geometry, orientation and thickness etc.) also play a significant role in screening soil 

emissions and interception of rainwater, displaying an interaction of (SM, B) on DOY_186,188 

(SMEX02) and DOY_199 (SMAPVEX12). Also, the influence of B parameter increases with 

growing canopy. Interestingly, an increase in SM on DOY_188 did not result in increased (SM, 

VWC) interactions, but produced interactions between surface-roughness with vegetation, 

discussed below. The scattering of soil emission by surface roughness (RMS (S) and (L)) are 

realized through interactions of (SM, S) and (SM, L). The scattering of soil radiations by RMS 

height (S) is realized on all sampling days, whereas (SM, L) is realized only on higher SM 

conditions and smaller L values (SMEX02 fields (DOY_182-188). This is because, the 
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connectivity of soil water flow in horizontal direction starts to influence at higher SM conditions. 

The correlation lengths (L) which is the periodicity of surface will then define soil water flow, 

thereby displaying (SM, L) interactions. Whereas, the (SM, S) are expected in all conditions due 

to the scattering influence of random roughness (S) on soil emissions. This can also be realized 

through Fig. 2.7 (A-F) where increase in SM, sensitivity of surface S and L parameters increases.  
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A)  

 

B)  

C)  

Figure 2.5    SMAPVEX12 Corn fields a) First Order Si (left) and Total Sensitivity STi 

(right), b) Below: Parameter interactions, c) Second Order Sensitivity Measures Sij for 

DOY_178/182/186/188. Sum of sensitivity indices are mentioned on top of bars. 
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A)  

B)  

C)  

 

Figure 2.6    SMAPVEX12 Soybean fields A) First Order Si (left) and Total Sensitivity STi 

(right), B) Second Order Sensitivity Measures Sij , C) Parameter interactions,  for 

DOY_178/182/186/188. Sum of sensitivity indices are mentioned on top of bars. 
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Figure 2.7    First Order Sensitivities of Parameters (Si) on Y-axis and  Soil Moisture (SM) 

ranges on X-axis,   A) SMEX02 Corn DOY: 178,  B) SMEX02 Soybean DOY: 178,  C) 

SMAPVEX12 Corn DOY: 159,  D) SMAPVEX12 Soybean DOY: 159,  E) SMAPVEX12 

Corn DOY: 199, F) SMAPVEX12 Soyeban  DOY: 199. 
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Figure 2.8    Proposed conceptual diagram, where interactions observed in the Energy rich 

environments are different and higher than those observed in Water rich environments. 

Different parameters are represented by different colors, where parameter’s contribution 

is represented by circle size and parameter interactions by the arrow thickness. 
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2.7.2.2 Interactions of Surface Roughness (S, L), (S, VWC), (S, B) and (L, VWC)   

An interaction of (S, B), (S, VWC) and (L, VWC) are noticed only in corn (SMEX02) 

which are otherwise not noticed in soybean (Iowa), due to prominent vegetation structure and 

higher VWC observed in corn plants which participate in scattering soil radiations. However, none 

of these interactions are observed in SMAPVEX12 fields due to small VWC and surface 

roughness. Therefore, we can expect to see interactions between surface roughness and vegetation 

parameters in structured plants with significant VWC.  Also, a consistent (S, L) interaction is 

realized on all sampling days in SMEX02 and SMAPVEX12 fields emphasizing their underlying 

correlation.  

2.7.3 Total Interactions, Linearity and Non-Linearity 

For additive models, first order and total order sensitivity indices are equal and sum to 1 

[Satelli et al., 2004]. In SMAPVEX12 fields, ZRT model behave almost linearly with non-linearity 

increasing with growing canopy displaying lower and higher order interactions. Higher and lower 

order interactions of almost ~ 2% each are seen on all sampling days, and increasing up to ~ 6 % 

at the end of field campaign (Fig. 2.5 and 2.6 (B)). Total interactions of ~ 5% are seen on almost 

all days but increases up to ~10 % on DOY_199 in SMAPVEX12 fields (Fig. 2.5 and 2.6 (C)).  In 

case of SMEX02 fields, ZRT model behaves a lot more nonlinearly, because of higher VWC and 

roughness conditions. In case of corn fields, first order effects are contributed by vegetation 

whereas in soybean fields first order effects are contributed by roughness conditions, which are 

otherwise shielded by corn plants and displayed through second order interactions (Fig. 2.3 and 

2.4 (B)). Higher and lower order interactions of 7% each are noticed with total interactions of ~15 

% in SMEX02 fields (Fig. 2.3 and 2.4 (C)), that is quite significant in the context of soil moisture 

retrieval.  
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2.8 Summary and Conclusions 

GSA method is particularly useful for non-linear models with higher order interactions. 

Using GSA for Zero-Order Radiative Transfer (ZRT) model resulted in primarily four parameters 

(SM, VWC, S and L) in Iowa region and one parameter (SM) in Winnipeg region to be sensitive 

to brightness temperature, with temporal variation. Also, parameter interactions increased with 

VWC and roughness conditions. An interception of soil emissions by growing vegetation are 

realized through interactions of (SM, VWC), (SM, B) and (S, VWC). A clear distinction between 

the similar influence of surface roughness and vegetation parameters are achieved along with 

spatio-temporally varying parameter interactions which can enhance our understanding of ZRT 

and improve soil moisture retrievals. Based on our analysis of GSA for ZRT model under different 

spatio-temporal conditions, we have proposed a conceptual model (Fig. 2.8). Considering the 

SMAPVEX12 fields to be water rich environment (due to higher observed SM) and SMEX02 

fields to be energy rich environment (due to lower SM and wide ranges of TSURF), our results 

indicate that first order effects of parameters changes with water and energy rich environments. 

Particularly, parameter interactions were observed to be higher and diverse in energy rich 

environments (SMEX02) than water rich environments (SMAPVEX12). Even under the similar 

vegetation effects, DOY_199 (SMAPVEX12) and DOY_168 (SMEX02) we observe reduced 

parameter interactions in water rich fields (SMAPVEX12) than SMEX02 fields. Accounting for 

observed parameter interactions in tau-omega model and its contribution towards improving 

retrieved soil moisture accuracy is beyond the scope of this paper. Future work can include 

developing an environment based (water or energy rich) tau-omega model, with evolving first 

order and higher order interaction effects. In summary:  
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1) Attenuation of soil emission by vegetation (VWC, B) can be significant in structured plants 

(corn). And, this attenuation/scattering appears to increase with roughness and SM 

conditions.  

2) The effects of B and albedo are not realized in soybean plants but show significant 

contribution in structured vegetation such as corn plants. These parameters show increasing 

sensitivity with increasing VWC and SM. Thus, assuming a constant value of B under all 

SM and VWC conditions will affect soil moisture retrieval accuracy.  

3) For similar surface roughness conditions, sensitivity to roughness parameters is higher in 

wet soils than dry soils. Because of only skin depth emission in case of moist soils, 

radiations are more perturbed due to surface roughness in wet soils than in dry soils.  

4) SM and TSURF show a monotonically decreasing sensitivity function, whereas VWC, S, 

L and B show a monotonically increasing sensitivity function with increase in SM. CF 

sensitivity shows an increasing function up to the transition SM, after which it drops 

exponentially with increase in SM. This peak observed at the transition SM changes with 

the percentage of clay fraction. 

5)  SM derived from brightness temperature pixels representative of wide SM conditions are 

more accurate than pixels representative of narrow(&higher) range of SM conditions, since 

SM retrieval accuracy will be compromised due to higher sensitivity to other parameters 

at narrow SM ranges.  
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3 UNDERSTANDING RADIATIVE TRANSFER MODEL ACROSS SPACE, TIME 

AND HYDRO-CLIMATES 

3.1 Synopsis 

A framework is proposed for understanding the efficacy of a radiative transfer model 

(RTM) with different support scales, and hydro-climates and aggregation (scaling) methods. In 

this paper, the sensitivity of brightness temperature TB (H- and V-polarization) to physical 

variables (soil moisture, soil texture, surface roughness, surface temperature, and vegetation 

characteristics) is studied using global spatial sensitivity analysis (GSSA). The impact of upscaling 

from 800 m to 1.6 km, 3.2 km, 6.4 km, and 12.8 km on radiative transfer model (RTM) is illustrated 

using linear and inverse distance weighted upscaling methods for four different soil moisture field 

campaigns. Our results indicate that the sensitivity of brightness temperature (V- or H-

polarization) is determined by the upscaling method and heterogeneity observed in the physical 

variables. Under higher heterogeneity, the TB sensitivity to vegetation and roughness followed a 

logarithmic function with increasing support scale, while an exponential function is followed under 

lower heterogeneity. The sensitivity to surface temperature always followed an exponential 

function with support scale under all heterogeneity conditions. The sensitivity of TB at H- or V- 

polarization to soil and vegetation characteristics varied with the spatial scale (extent and support) 

and the amount of biomass observed. Thus, choosing H- or V-polarization algorithm for soil 

moisture retrieval is a tradeoff between support scales, and land surface heterogeneity. For 

undisturbed natural environments such as SGP’97 and SMEX04, the sensitivity of TB to variables 

remain nearly uniform and are not influenced by extent, support scales or upscaling method. On 

the contrary, for anthropogenically-manipulated environments such as SMEX02 and 
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SMAPVEX12, the sensitivity to variables are highly influenced by the distribution of land surface 

heterogeneity and upscaling methods. 

3.2 Introduction 

The remote sensing community aims to develop soil moisture products at various 

resolutions, as soil moisture finds application from local (e.g., crop water management), regional 

(e.g., flood and drought forecasting) to global scale (e.g., meteorology, climate dynamics) [Moran 

et al., 2015]. The active or passive sensors used for estimating soil moisture come with their own 

challenges such as accuracy, coarse resolution, Radio Frequency Interference (RFI), high 

sensitivity to vegetation/roughness, spatio-temporal coverage, big data challenges, etc., [Spencer 

et al., 2010, Mecklenburg et al., 2016]. Developing fine resolution soil moisture products can be 

achieved either by downscaling retrieved coarse-resolution soil moisture or downscaling observed 

brightness temperature (TB) followed by soil moisture retrieval [Merlin et al., 2012, Das et al., 

2014, Wu et al., 2014, Molero et al., 2016]. Several scaling algorithms have been developed in 

past using data fusion techniques integrating information from various scales 

(point/airborne/satellite), platforms (MODIS/LANDSAT/AVHRR etc.) sensors (active/passive), 

frequencies (P, L, C, and X), and land surface variables (surface temperature, NDVI etc.) [Piles et 

al., 2009, 2011, Shin et al., 2013, Song et al., 2014, Djamai et al., 2015]. For most cases, coarse-

scale knowledge is estimated from smaller spatial scale features in which upscaling has reduced 

to the problem of change of support scale. Western and Bloschl [1999] defined the scale triplet 

(support, spacing, and extent) where, support is referred to area (or volume) integrated by 

individual soil moisture measurements. The scaling methods incorporate their own conceptual 

model uncertainties apart from the uncertainties of products used for downscaling/upscaling [Van 

de Griend et al., 2003, Dorigo et al., 2010, Merlin et al., 2015, Das et al., 2016]. Thus, for 
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downscaling/upscaling of either soil moisture or TB, it first calls for understanding the propagation 

of errors/uncertainties through scale and heterogeneity of land surface variables.   

The two main issues that still undermine large scale monitoring of soil moisture are scaling 

and land surface heterogeneity [Njoku et al., 1996, Western et al., 2002, Entekhabi et al., 2010]. 

Scaling of microwave theory/models developed over small spatial scales to coarser spatial scales 

has been a subject of research for the past three decades. Most environmental processes are non-

linear in nature and the land surface variables (and their interactions) responsible for these 

processes vary across scales (space and time) [Ryu and Famiglietti 2006] resulting in complex 

scaling relationships. The sub-footprint landscape heterogeneity compromises the satellite-based 

soil moisture retrieval accuracy [Burke and Simmonds, 2003, Lakhankar et al., 2009, Roy et al., 

2016]. For example, within a hydroclimate, the heterogeneity in land surface variables observed 

at 30 m resolution will be different from 100 m, 1 km, 5 km, and so on, and will be different if 

observed at different time periods, frequencies, polarizations etc,. There can also be considerable 

effects on retrieved soil moisture if the extent of the analysis or footprint shape/size varies, 

changing the range of heterogeneity observed for land surface variables. Thus, model calibration 

of soil-vegetation parameters across land surface heterogeneity and scale pose a challenge for 

remote sensing retrieval of soil moisture. 

We hypothesize that, the varying heterogeneity in land surface variables (soil moisture, 

soil texture, surface roughness, surface temperature and vegetation characteristics i.e., vegetation 

water content, vegetation structure, and scattering albedo) through support scales, and different 

hydroclimates (across the USA) influence sensitivity of brightness temperature at V- and H-

polarization.  Thus, our objective is to propose a framework for understanding the efficacy of a 

radiative transfer model (RTM) for soil moisture retrieval with different support scales, and under 
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land surface heterogeneity. We performed the analysis using two-dimensional spatial maps of land 

surface variables as model inputs beginning from airborne 800 m and 1.5 km support scale. These 

variables are then upscaled to various supports (1.6 km, 3.2 km, 6.4 km, and 12.8 km) using two 

different averaging methodologies, to study the influence of upscaling methods on an RTM 

performance. Adopting global spatial sensitivity analysis (GSSA) [Lilburne and Tarantola , 2009, 

Saint-Geours et al., 2011, Sarrazin et al., 2016, Pianosi et al., 2016], the sensitivity to soil and 

vegetation characteristics across scales  are evaluated. 

3.3 Materials and Methods  

3.3.1 Heterogeneity Observed in Various Hydro climates  

The effects of varying heterogeneity on brightness temperature are studied in four different 

hydroclimates using data from field campaigns namely, SGP97 (Southern Great Plains’1997), 

SMEX02 (Soil Moisture Experiments’2002), SMEX04 (Soil Moisture Experiments’2004) and 

SMAPVEX12 (Soil Moisture Active Passive Experiments’2012). These field campaigns were 

conducted approximately over 4-8 weeks window, primarily to validate soil moisture retrieval 

algorithms over a wide range of soil and vegetation conditions [Cosh et al., 2008, Jackson et al., 

2010, McNairn et al., 2015, Moran et al., 2015]. The airborne remote sensing data for these field 

campaigns were observed at either 800 m or 1.5 km resolution, which is the base resolution for 

our analysis. The 800 m pixels are upscaled to support scales of 1.6 km, 3.2 km, 6.4 km, 12.8 km, 

and 1.5 km pixels are upscaled to 3 km and 9 km to coincide with Soil Moisture Active Passive 

(SMAP) target products. The variables such as soil moisture, surface temperature, vegetation water 

content, and soil texture are obtained from various sources, which are discussed under each field 

campaign. Variables such as surface roughness, vegetation structure, and single scattering albedo, 
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which are available only at sparse locations, are assumed to be scalars with a uniform probability 

distribution whose ranges are estimated from extensive field measurements.  

3.3.1.1 Southern Great Plains Experiment’1997 (SGP’97), Oklahoma  

The SGP’97 hydrology experiment was conducted in the sub-humid (Köppen climate 

classification-Cfa) region of central Oklahoma from June 18 through July 17, 1997. The 

topography of the region is moderately rolling and soils vary with a wide range of textures with 

large regions of both coarse and fine textures with an average annual rainfall and temperature of 

750 mm and 288.85 K, respectively. The land use is dominated by rangeland and pasture with 

significant areas of winter wheat and other crops. The L-band Electronically Scanned Thinned 

Array Radiometer (ESTAR) was used to measure soil moisture at 800 m × 800 m resolution. An 

800 m resolution daily effective soil temperature maps were generated using the ground based soil 

temperatures and grid based resampling program. The vegetation water content (VWC) map at 

800 m resolution was developed from normalized difference vegetation index (NDVI) values 

computed using the Landsat TM imagery collected on July 25, 1997 [Jackson et al., 1999]. A 

combination of soil geographic database (STATSGO) and soil texture samples were used to 

develop resampled texture map at 800 m resolution [Lakhankar et al., 2009]. 

3.3.1.2 Soil Moisture Experiment’2002 (SMEX02), Iowa   

SMEX02 experiment was conducted in Walnut Creek watershed, Iowa from June 23 

through July 12, 2002. This region is classified as humid climate (Köppen climate classification-

Dfa) with average annual rainfall of 835 mm and temperature 283 K. Considerable amount of 

variability in soil texture is observed in the region ranging from fine sandy loam to clay with the 

majority classified as silt loam with relatively low permeability [Jacobs et al., 2004]. Corn and 

soybean crops are the two dominant land covers of Iowa, covering approximately 50 % and 40 %, 

https://en.wikipedia.org/wiki/K%C3%B6ppen-Geiger_climate_classification_system
https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_classification
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respectively. The C- band Polarimeteric Scanning Radiometer (PSR-C) retrieved soil moisture at 

800 m × 800 m resolutions [Bindlish et al., 2006] was used for the analysis. A total of four days 

(DOY 178, 182, 186, and 188) are selected to capture the temporal variability in land surface 

heterogeneity due to crop growth, temperature, and soil moisture changes. The Soil Survey 

Geographic Database (SSURGO) and Landsat-7/5 E/TM derived vegetation water content at 30m 

were resampled to 800 m × 800 m grids. The average of surface and 1-cm depth soil temperature 

are interpolated through kriging to obtain coverage for a grid size of 800 m. 

3.3.1.3 Soil Moisture Experiment’2004 (SMEX04), Arizona 

The SMEX04 field campaign was conducted with a primary focus on Walnut Gulch (WC) 

Experimental Watershed near Tombstone, operated by the Agriculture Research Service (ARS), 

U.S. Department of Agriculture (USDA) between August 2 and August 27, 2004 [Cosh et al., 

2008]. The climate of this region is classified as semi-arid (Köppen climate classification- BSh), 

with mean annual temperature 290.85 K and receiving an average annual precipitation of 350 mm. 

The soils are generally well drained calcareous and gravelly loam with large percentages of rock 

ranging from nearly 0 % on shallow slopes to over 70 % on the very steep slopes. Vegetation of 

this region mainly comprises two-thirds of shrubs and remaining one-third is grassland. The 

polarimetric scanning radiometer (PSR) C-band retrieved soil moisture at regularly spaced grid of 

800 m resolution was used. The ground based temperatures (surface and 5 cm temperatures are 

averaged) and MODIS (MOD11A1) surface temperature product are interpolated (kriging) to 

generate 800 m resolution surface temperature map. The 800 m resolution vegetation water content 

map was developed by interpolating high resolution Landsat TM and regularly ground sampled 

VWC [Yilmaz et al., 2008]. The SSURGO data at 30 m was resampled to obtain soil texture map 

at 800 m resolution. A total of four days (DOY 221, 222, 225, and 226) are selected based on the 
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availability of datasets and to study temporal variability in land surface heterogeneity. The surface 

roughness data was collected extensively over the Walnut Gulch (WG) watershed and sparely over 

the entire SMEX04 region using a pin board. 

3.3.1.4 Soil Moisture Active Passive Validation Experiment’2012 (SMAPVEX12), Winnipeg 

SMAPVEX12 was conducted from June 6th to July 17th 2012 in Winnipeg, Manitoba 

(Canada) which is classified as having extreme humid climate (Köppen climate classification-Dfb) 

[Peel et al., 2007], with average annual precipitation and temperature of 521 mm and 289 K 

respectively. The region captures wide variety of variability in land cover and soil texture within 

few kilometers while moving from southeast to northwest [McNairn et al., 2015]. The agricultural 

crops (mainly cereals, soybeans, canola, and corn) dominate southeast with heavy clay soils, 

whereas the north and east see more of lighter sandy and loamy soils with mixed land cover 

including forest, perennial pastures along with few crop fields. The analysis is conducted for all 

days (DOY 164, 167, 169, 174, 177, 179, 181, 185, 187, 192, 195, 196, and 199) using Passive 

Active L-band System (PALS) derived soil moisture and surface temperature at 1.5 km resolution 

[Colliander et al., 2015]. The VWC available at 5 m resolution estimated from Normalized 

Difference Water Index (NDWI) using SPOT and RapidEye satellite overpasses were resampled 

to 1.5 km grids. 

3.3.2 Soil Moisture Retrieval Algorithm 

The approach followed in this study was based on forward modeling using a first-order 

radiative transfer model also called as tau-omega (τ-ω) model [Mo et al., 1982] described in 

equation (3.1).    
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𝑇𝐵(𝑝,𝑓,𝜃) =  𝑒𝑝,𝜃,𝑓 . 𝑇𝑒𝑓𝑓 . exp (−
𝜏𝑝,𝑓

cos 𝜃
) + 𝑇𝑐. (1 − 𝜔𝑝,𝑓,𝜃). (1 − exp (−

𝜏𝑝,𝑓

𝑐𝑜𝑠𝜃
)) +

𝑇𝑐. exp (−
𝜏𝑝,𝑓

𝑐𝑜𝑠𝜃
) . (1 − 𝜔𝑝,𝑓,𝜃). (1 − exp (−

𝜏𝑝,𝑓

𝑐𝑜𝑠𝜃
)) . 𝑟𝑝,𝑓,𝜃      (3.1) 

where 𝑇𝐵(𝑝,𝑓,𝜃) is brightness temperature [K]; 𝑇𝑒𝑓𝑓 is effective surface temperature [K]; Tc is 

effective vegetation temperature [K];  𝑒𝑝,𝜃 is the emissivity of the (rough) soil surface; 𝑟𝑝,𝑓,𝜃 is the 

rough surface  reflectivity; 𝜏𝑝,𝑓 is the nadir optical depth; 𝜔𝑝,𝑓,𝜃 is the single scattering albedo. The 

subscripts p, θ and f denote the polarization, angle of incidence, and frequency of measurement 

respectively. It is assumed that the canopy and soil temperature to be equal during morning thermal 

crossover which also corresponds to the planned time of observation for` SMAP around 6:00 h 

local sun time. The radiative transfer (equation 3.1) is essentially approximated as a summation of 

three components; 1) the direct emission by soil and one-way attenuation by canopy (the first 

term), 2) direct upward emission by canopies (the second term), and 3) emission by plants and 

reflected by soil and thereafter attenuated by vegetation (the third term). The formulation in 

equation (1) is based on the assumptions that; a) the single scattering albedo is small (less than 

0.2), and thus diffuse scattering is ignored; b) the air-vegetation reflectivity is assumed zero, thus 

ignoring losses at the boundary, and c) the refractive index of vegetation is approximately equal 

to air, which allows using the air-soil reflectivity in equation (3.1). The amount of soil microwave 

emission that is absorbed and scattered as propagated through canopy is given by the transmissivity 

of the vegetation and scattering albedo. The loss factor is dependent on the volume fraction of 

water in the canopy and the architecture of the vegetation. The extinction optical thickness 𝜏𝑝 is 

estimated as a product of vegetation water content (VWC) and structure of the canopy (b). Due to 

the complex geometry of the natural canopies, approximate values are estimated for canopy 

structure (b) from land cover data. The canopy water content is estimated using the Normalized 

Difference Vegetation Index (NDVI) and regression with ground sample vegetation data [Jackson 
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et al., 2004]. The  𝜏𝑝 and 𝜔𝑝 are polarization dependent because there may be differences in 

propagation of H-polarized and V-polarized wave under different canopy structures [Brunfeldt and 

Ulaby, 1986; Wigneron et al., 2011].  

3.3.3 Global Spatial Sensitivity Analysis: Sobol Method 

Global Spatial Sensitivity Analysis (GSSA) [Crosetto et al., 2000, Lilburne and Tarantola, 

2009, Saint-Geours et al., 2011] relies on Sobol methods [Sobol, 1993], which can deal with 

nonlinear and non-monotonic relationships between inputs and output [Saltelli, 2002, Saltelli, et 

al., 2004, 2008, 2010]. These methods are based on the functional decomposition of variance 

(ANOVA) of the model prediction (Y) into partial variances caused due to each model inputs (X) 

(either considered singularly or in combination) i.e.,  

𝑉(𝑌) =  ∑ 𝑉𝑖(𝑌) + ∑ 𝑉𝑖𝑗(𝑌) + . . . +𝑘
𝑖<𝑗  𝑉12..𝑘 (𝑌)𝑘

𝑖=1      (3.2) 

where 𝑉𝑖(𝑌) is the share of the output variance explained by the ith model input; 𝑉𝑖𝑗(𝑌) is the share 

of the output variance explained by the interaction of the ith and jth inputs, and k is the total number 

of inputs. The partial variances are explained as 𝑉𝑖(𝑌) = 𝑉[𝐸(𝑌|𝑋𝑖)], 𝑉𝑖𝑗(𝑌) = 𝑉[𝐸(𝑌|𝑋𝑖, 𝑋𝑗)] −

𝑉𝑖(𝑌) − 𝑉𝑗(𝑌)  and so on for higher order interactions, where E and V are the expectation and 

variance operators, refer appendix for more details. The so-called “Sobol” indices or “variance-

based sensitivity indices” are obtained as follows:  

First Order Sensitivity Index 𝑺𝒊 =
𝑉𝑖(𝑌)

𝑉(𝑌)
, the amount of variance of Y explained by input variable 

Xi; Second Order Sensitivity Index 𝑺𝒊𝒋 =
𝑉𝑖𝑗(𝑌)

𝑉(𝑌)
 , the amount of variance of Y explained by the 

interaction of the factors Xi and Xj (i.e. sensitivity to Xi and Xj not expressed in Vi nor Vj ); Total 

Sensitivity Index 𝑺𝑻𝒊 = 𝑆𝑖 + ∑ 𝑆𝑖𝑗𝑖<𝑗 + ∑ 𝑆𝑖𝑗𝑙 +𝑖<𝑗<𝑙 … 𝑆1,2,..𝑘 it accounts for all the contributions 

to the output variation due to factor Xi (i.e. first-order index plus all its interactions). In other words, 
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𝑆𝑇𝑖 index is defined as a summation of main, second, and higher order effects which involves the 

evaluation over a full range of parameter space. If 𝑆𝑖 and 𝑆𝑇𝑖 are equal and sum of 𝑆𝑖(and thus 𝑆𝑇𝑖) 

is 1, then the model is additive (linear) in nature, otherwise 𝑆𝑇𝑖 is greater than 𝑆𝑖 and ∑ Si < 1 or   

∑ STi >1, then the model exhibit non-linearity. Thus, linearity or non-linearity of model through 

time, scale and hydroclimate can be determined from summation of 𝑆𝑇𝑖’s indices.   

Let Y=f(X) be a spatial model, then Y is the model output and X are random independent 

model inputs, where X is composed of U and W with U defined as random vectors and W defined 

as two-dimensional spatial maps. Using the similar configuration, Y is the simulated  brightness 

temperature, f is the radiative transfer model, and XK is the input parameter vector with K= [X1, 

X2, X3, X4] as [Surface Roughness- RMS height (S), Surface Roughness- Correlation length (L), 

Vegetation Structure (B), Scattering Albedo (ω)] and W as spatial maps [Soil Moisture  (SM), Clay 

Fraction (CF), Surface Temperature (TSURF), Vegetation Water Content (VWC)]. The steps used 

to carry out the analysis are described in Figure 3.1. The variables such as RMS height (S) and 

correlation length (L) are sampled from a uniform distribution whose ranges are estimated from 

field measurements, Table 2.1. The variables such as vegetation structure (B) and scattering albedo 

(ω) are also sampled from a uniform distribution whose ranges are defined based on vegetation 

type. However, experimental data for these variables are limited and are obtained from past 

literature [Jackson et al., 1991, Choudhury et al., 1995]. The range of variability in surface 

roughness, vegetation parameter, and scattering albedo are assumed to remain constant at all 

scales. This assumption limits the extent of the study. However, there are no means to obtain and 

ascertain how those vary with scale. The spatial input variable at each support scale is defined as 

a real random variable with a uniform range for the number of pixels developed at that scale. That 

is, the numbers of pixels ‘n’ at each support scale are considered as equiprobable with each pixel 
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labeled with a unique integer in the set {1, ..., n}. The number of pixels decreases with increasing 

support scale, for example, the numbers of pixels at 800 m support scale are more than 4000, and 

at 12.6 km support scale there are about 50 pixels. The first order and total Sobol sensitivity indices 

are estimated with confidence intervals using the bootstrap technique with resampling [Efron and 

Tibshirani, 1994]. The number of samples N = 55,000 are used for model evaluations. Here, we 

discuss and present only total sensitivity indices.  

Current SMAP Level 2 and 3 radiometer based soil moisture algorithm [O’Neill et al., 

2015] uses vegetation and surface roughness parameters from the look up table by IGBP class, 

assuming sub footprint-scale homogeneity for vegetation and roughness parameters. However, 

surface roughness parameters change with soil type, vegetation conditions, wind speed, amount of 

precipitation etc. Similarly, vegetation parameters vary with growing season, vegetation type and 

structure. Due to the heterogeneous and dynamic nature of these land surface variables (varying 

with space and time), assuming them to be fixed parameters will introduce high errors into soil 

moisture retrievals. Since the range for vegetation and roughness variables are obtained from the 

respective field campaign conducted over few weeks, larger heterogeneities of land surface 

variables are possible to occur in real time as we have considered in our analysis.  

3.3.4 Upscaling methods: Linear Upscaling vs Inverse Distance Weighted (IDW) Upscaling 

Scaling is an important aspect, and is studied in various disciplines including hydrology 

[Bloschl and Sivapalan, 1995, Bloschl, 1999], meteorology [Raupach and Finnigan, 1995], 

ecology [Xie et al., 2007] and geography [Malenovský, et al., 2007]. The upscaling and validation 

of satellite soil moisture products are discussed in Crow et al. [2012], Qin et al. [2015], Chen et al. 

[2016], Chen et al. [2017], and Colliander et al. [2017]. The upscaling technique for any remotely 

sensed land surface variable depends on the heterogeneity exhibited by the variable and antenna 
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gain function, which plays a significant role in capturing the heterogeneity. In this paper, we 

investigate the difference in sensitivity of retrieval model to the land surface variables, when the 

variables are upscaled linearly and through Inverse Distance Weighted (IDW) to various support 

scales (0.8 km, 1.6 km, 3.2 km, 6.4 km, and 12.8 km). This is important because of three main 

reasons: 1) as the support scale changes (upscaling or downscaling) the heterogeneity of the 

landscape also varies. Thus, the processes which appear linear may become non-linear and vice-

versa. The variables that are important at one scale and hydro-climate may become trivial at other 

scale and hydro-climate, 2) the non-linearity of the radiative transfer model varies with 

heterogeneity observed for the retrieval scale. The non-linear retrieval model may show no scale 

effect, when the scale of analysis (support) is homogeneous [Hu and Islam, 1997, Garrigues et al., 

2006], and 3) the upscaling techniques become significant in heterogeneous landscapes to 

represent the non-linear effects [Drusch et al., 1999, Pachepsky et al., 2003, Jacobs et al., 2004, 

Famiglietti et al., 2008, Zhan et al., 2008, Brocca et al., 2010]. In case of homogeneous 

environment, the scaling methods do not significantly influence the output, as also validated in 

Wu and Liang Li [2009]. The use of an unsuitable upscaling method or inappropriate 

representation of spatial distribution can lead to potentially wrong decisions. An inappropriate 

upscaling can have even more profound impact if the result is used as an input for simulations, 

where a small error or distortion can cause models to produce false estimation. 

IDW is a deterministic nonlinear interpolation technique that uses the weighted upscaling 

of the attribute values from the nearby sample sub-grid to estimate the magnitude of the attribute 

at a higher support scale. The superior performance of IDW in comparison to other scaling methods 

are also discussed in Weber and Englund [1994], Moyeed and Papritz [2002], and Babak and 

Deutsch [2009]. The weight a particular sub-grid is assigned in the averaging scheme depends on 
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the distance of the sub-grid from the center of the coarser grid. It is an averaging method based on 

the principle that sample closer to the prediction location has more influence on prediction than 

sample farther apart. For gridded data, IDW approach can be realized as a-3dB function where 

higher weights are given to grid cells closer to the center of the pixel than grid cells further apart. 

This incorporates neighboring heterogeneity, which changes with support scale. For this analysis, 

the weight of the point changes with the inverse square of the distance known as Inverse Distance 

Squared (IDS) upscaling. This technique is also used in SMAP L1C [Chan et al., 2014] radiometer 

data product to average non-uniformly all the brightness temperature data samples that fall within 

the grid cell.  

3.4 Results and Discussion  

The spatiotemporal sensitivity of brightness temperature at V-polarization and H-

polarization to different land surface variables are observed to be similar in trend but with different 

intensities and rate. It is observed that the brightness temperature at V-polarization is more 

sensitive to soil moisture, soil texture (clay fraction), and surface temperature than H-polarization 

under all conditions (space and time). On the other hand, H-polarization is always observed to be 

more sensitive to surface roughness variables (S and L) than V-polarization under all conditions. 

The SMEX02 and SMEX04 field campaigns were conducted using Polarimetric Scanning 

Radiometer C-band (PSR/C), whereas SGP’97 and SMAPVEX12 were conducted using Passive 

Active L-band System (PALS) radiometer, as mentioned earlier. To evaluate the effect of 

frequency, the analysis was conducted for L-band and C-band simulated brightness temperature. 

However, only ~ 0.5 - 1 % difference in sensitivities to land surface variables was observed 

between L- and C-band simulated brightness temperatures. In the following sections we discuss 

the variability observed in sensitivity of L-band brightness temperature at V- and H-polarization 
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under: 1) Plant Structure, 2) Spatio-Temporal Scales, and 3) Upscaling and Environmental 

Heterogeneity.     
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Table 3.1    The mean values of land surface variables used in the analysis for 

various field campaigns. 

 

Variables SGP97 SMEX02 SMEX04 SMAPVEX12 

 Oklahoma 

(Sub-

Humid) 

Iowa (Dfa-

Humid) 

Arizona 

(Semi-

Arid) 

Winnipeg 

(Dfb-Humid) 

Mean Soil Moisture 

(v/v) 

0.14 0.19 0.07 0.25 

Mean Soil 

Temperature (K) 

298 315 319 290 

Mean Vegetation  

Water Content 

(kg/m2) 

0.32 1.9 0.09 1.4 

Root Mean Square 

height (cm) 

0.27-1.73 0.19-3.05 0.71-

23.28 

0.23-3.21 

Correlation length 

(cm) 

3.4-32.18 0.43-26.95 8.7-119.5 2.5-24.5 

Vegetation 

structure (unit less) 

0-0.15 0-0.15 0-0.15 0-0.15 

Scattering albedo 

(unit less) 

0-0.05 0-0.05 0-0.05 0-0.05 

Support scales (km) ESTAR: 

0.8, 1.6, 

3.2, 6.4, 

12.8 

PSR/C: 0.8, 

1.6, 3.2, 6.4, 

12.8 

PALS : 

0.8, 1.6, 

3.2, 6.4, 

12.8 

PALS : 1.5, 3, 

9 
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Figure 3.1    Methodology flowchart for implanting global spatial sensitivity analysis. 
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3.4.1 Plant Structure  

It is well understood that vegetation attenuates the microwave emission from the soil, and 

adds its own radiative flux to the total emission. The extent of attenuation depends on the amount 

of vegetation and its structure. A crop canopy may be divided into three main components: 1) 

leaves, 2) stalks, and 3) heads. The attenuation of radiation may thus occur at two layers, the upper 

layer consisting of heads, and a lower layer composed of leaves and stalks. The propagation 

characteristics are different for different canopies depending on the emission and scattering 

properties of these layers. Therefore, assuming polarization-independence may not be true 

especially for plants where vegetation biomass is concentrated in vertically oriented dipole-like 

stalks and row crops. For the zero order radiative transfer model (tau-omega model), the effects of 

vegetation are represented by vegetation water content (VWC), single scattering albedo (ω) and 

vegetation structure parameter (B), where VWC captures the amount of water content in biomass, 

‘B’ represents the canopy architecture, and ω represents scattering within the canopy.  

In canopies with vertical stalks, the attenuation will be smaller for horizontally polarized 

waves than vertically polarized waves except at a nadir incidence angle, where stalks are not 

visible, and appear only as small randomly oriented disks. [Fig 3.2]. For a horizontally polarized 

incident wave, the electric field vector E is normal to the axis of the stalk at all incidence angles, 

and for vertically polarized wave E is parallel to stalk thereby coupling strongly [Ulaby et al., 

1981]. This difference will be significant mainly over vegetation that exhibits some preferential 

orientation such as vertical stalks noticed for tall grasses, grains, wheat, corn, maize, forest etc. 

For vegetation with near horizontally oriented primary branches or broad leaf plants (soybean, 

bean, canola, sunflower etc.,) there is stronger attenuation for horizontally polarized wave than 

vertically polarized waves. It is reasonable to assume that the absorption/scattering loss factor will 
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be approximately polarization independent for canopy components whose sizes are much smaller 

than the wavelength of observation.  

For example, for SMEX04 (Arizona) the vegetation is mainly shrub dominated (whitethorn 

acacia, creosote bush etc.,) covering two-thirds of the watershed and grass (sideoats grama, 

lehmann lovegrass etc.,) occupying the rest with a total mean vegetation water content 0.087 

kg/m2. Due to the low vegetation and primarily random vegetation structure, the sensitivity to 

vegetation variables is insignificant for this region temporally, at all support scales and 

polarizations [Fig 3.3]. Similarly, SGP97 region (Oklahoma) which has dominantly rangeland and 

significant occupation of winter wheat crops with total mean vegetation water content 0.323 kg/m2 

shows the insignificant contribution of vegetation variables towards brightness temperature (V- 

and H-polarization) at all spatial scales [Fig 3.4]. SMEX02 (Iowa) has a total mean vegetation 

water content of 1.9 kg/m2. At 800 m scale, H-polarization was observed to be (~ 1- 4 %) more 

sensitive than V-polarization. With increasing support scale, V-polarization was observed to be ~ 

2 % (at 1.6 km) and ~ 15 % (at 12.8 km) more sensitive than H-polarization for vegetation water 

content (VWC) and vegetation structure (B) [Fig 3.5 (A)]. Under IDW analysis, H-polarization 

was always temporally more sensitive than V-polarization to vegetation water content by ~ 2 - 3 

% and vegetation structure (B) by ~ 3 - 9 %, except on DOY 188, where V- and H-polarization 

show same sensitivities [Fig 3.5 (B)]. That is, at lower vegetation water content (DOY 178, 182) 

and support scale of 800 m under linear upscaling and at all support scales under IDW where the 

heterogeneity in VWC is maintained, a higher sensitivity to VWC and B at H-polarization is 

noticed. For DOY 188, with higher vegetation water content and higher support scales under linear 

upscaling where the heterogeneity disappeared with support scales (moving towards extent mean 

value), a higher sensitivity to vegetation structure (B) at V-polarization is observed. This 
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confirmed that there is a stronger coupling with plants exhibiting definite vertical structures, and 

the coupling increasing with increasing vegetation water content and decreasing heterogeneity. 

SMAPVEX12 region shows a wide variety of agricultural crops such as cereals, soybeans, canola, 

corn etc., with total mean vegetation content water 1.4 kg/m2. Unlike in SMEX02, the sensitivity 

to vegetation structure (B) was always observed to be higher for H-polarization at all scales. We 

hypothesize that the amount of vegetation water content determines the sensitivity of H- and V-

polarization to B variable. To test the hypothesis, the analysis was conducted including pixels with 

higher vegetation water content than the observed within the SMAPVEX12 extent, which resulted 

in higher sensitivity to vegetation structure (B) at V-polarization. This may occur because with 

increasing VWC the dielectric constant of vegetation also increases thereby increasing the 

sensitivity to V-polarization due to stronger coupling as mentioned earlier. Thus, vegetation 

variable ‘B’ is a complex function of plant geometry and vegetation water content.  
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Figure 3.2    Propagation of an unpolarized microwave radiation incident on a lossy 

dielectric structured vegetation (top) and unstructured/bushy (bottom) vegetation. The 

unpolarized incident wave propagates through structured vegetation emitting H-polarized 

wave and V-polarized radiation through bushy vegetation. 
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3.4.2 Spatio-Temporal Scales in Different Hydro Climates 

3.4.2.1 Semi-Arid (SMEX04) Hydro Climate 

For semi-arid regions with low vegetation and lower evapotranspiration (lower latent heat 

flux and higher sensible heat flux), an increase in air and surface temperatures are observed, 

resulting in higher sensitivity to surface temperature. However, the heterogeneity in temperature 

is lost with upscaling due to lumped fluxes resulting in exponential (R2=0.99) decrease in 

sensitivity to surface temperature with support scale. Due to the rocky topography of SMEX04 

region, the observed surface roughness is highly random emphasizing the higher sensitivity to 

RMS height (S), which increased from ~ 11 % (~ 63 %) to ~ 38 % (~ 87 %) for V-polarization (H-

polarization), and correlation length (L) increased from ~ 1 % (~ 7 %) to ~ 5 % (~ 10 %). This is 

in contrast to SMAPVEX12 and SMEX02, where the surface roughness are more correlated due 

to regular agricultural practices resulting in higher sensitivity to correlation length (L) as well. The 

sensitivity to vegetation variables (VWC, B, and ω) and clay fraction are negligible across both 

polarizations (H and V), upscaling methods and spatio-temporal scales. 

 

3.4.2.2 Sub-Humid (SGP97) Hydro Climate 

For a more natural landscape with low density biomass as observed for SGP97, soil 

moisture is the most sensitive variable for V-polarization (H-polarization) ~ 96 % (~ 83 %) at all 

support scales under both linear and IDW upscaling. Due to the lower variability of roughness in 

SGP97 and lower biomass content, incorporating neighboring pixels via IDW or using linear 

upscaling did not influence the sensitivity measures with support scales. The sensitivity to land 

surface variables (clay, surface temperature, and scattering albedo) are insignificant (~1 %) at V-

polarization, whereas the sensitivity to surface roughness variables (S and L) at H-polarization are 

observed at ~ 8 % each and sensitivity to vegetation variables (VWC and B) are observed at ~ 2 
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% each [Fig 3.4]. To further explore the influence of varying extent, the analysis is repeated for a 

smaller extent over Little Washita (LW) watershed. To maintain statistically significant data 

points, the upscaling is conducted only up to 3.2 km support scale. Results indicated soil moisture 

(in both V- and H-polarization) to be still the most sensitive variable at all scales, however its 

magnitude has decreased slightly to ~ 94 % for V- polarization and ~ 80 % for H- polarization. 

Sensitivity to vegetation structure (B) increased to ~ 4 % and ~ 2 % for H- and V-polarization 

respectively at smaller extent than the sensitivities observed at larger extent. This could be due to 

the increased attenuation caused by higher biomass content (~ 0.41 kg/m2) for smaller extent than 

observed at larger extent (SM ~ 0.14 v/v and VWC ~ 0.32 kg/m2).   
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Figure 3.3    Scatter Soil Moisture Experiments 2004 (SMEX04), Total Sensitivity Index 

(TSI) for Brightness Temperature A) Linear Upscaling: V-polarization (left), and H-

polarization (right), B) Inverse Distance Weighted (IDW) Upscaling: V-polarization (left) 

and H-polarization (right). SM: Soil Moisture; CF: Clay Fraction; S: Root Mean Square 

Height; L: Correlation Length; TSURF: Surface Temperature; VWC: Vegetation Water 

Content; B: Vegetation Structure; ω: Single Scattering Albedo. 
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Figure 3.4    Southern Great Plains 1997 (SGP’97), Total Sensitivity Index (TSI) for 

Brightness Temperature under Linear Upscaling: V-polarization (left), and H-polarization 

(right). SM: Soil Moisture; CF: Clay Fraction; S: Root Mean Square Height; L: 

Correlation Length; TSURF: Surface Temperature; VWC: Vegetation Water Content; B: 

Vegetation Structure; ω: Single Scattering Albedo. 
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3.4.2.3 Humid-Dfa (SMEX02) Hydro Climate  

For SMEX02 the analysis is conducted for DOY 178, 182, 186, and 188, and the soil 

moisture sensitivity at 800 m followed a similar field scale pattern as observed in Neelam and 

Mohanty [2015]. Unlike SMEX04 and SGP97, the mean sensitivity to soil moisture across 

sampling days is ~ 28 % and ~ 13 % for V- and H-polarization respectively at 800 m which 

decreased to ~ 8 % and ~ 1 % at 6.4 km, and increased by ~ 1 - 2 % at 12.8 km [Fig 3.5 (A)]. 

Among other land surface variables, sensitivity to surface temperature followed a decreasing 

exponential function (R2=0.98) and nearly disappeared at 1.6 km for H- and at 3.2 km for V-

polarization. On the other hand, the sensitivity to surface roughness variables (S and L) followed 

a logarithmic function (R2=0.97) with increasing support scale. Similarly, vegetation water content 

(VWC) and vegetation structure (B) followed a decreasing (R2=0.99) and increasing (R2=0.94) 

logarithmic function. This is because of the greater variability in surface roughness, and vegetation 

variables observed particularly for anthropogenically-modified region such as SMEX02. Thus, the 

impact of these variables is observed longer with support scale following a logarithmic function 

compared to surface temperature that followed an exponential function. Under IDW upscaling, the 

sensitivity to land surface variables with support scales changed by ~ 1 - 2 %. Sensitivity to 

variables such as soil moisture, surface temperature and surface roughness remained uniform till 

6.4 km, which later decreased by ~ 2 % for soil moisture, surface temperature and increased for 

surface roughness by ~ 2 % at 12.8 km [Fig 3.5 (B)]. The uniformity in sensitivity to these variables 

till 6.4 km under IDW is similar to reasons explained above. However, for a selected extent the 

variability in some land surface variables attains saturation at a certain scale (6.4 km) resulting in 

decrease in sensitivity to those land surface variables upon further upscaling. The support scale at 

which this saturation is attained is dependent on the heterogeneity and extent of the analysis. The 
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sensitivity to vegetation water content remained uniform till 3.2 km and decreased ~ 1 % with 

increasing support scale, and sensitivity to vegetation structure (B) increased linearly (R2 =0.98) 

by ~ 6 % with scale. The sensitivity to clay fraction and albedo remained negligible under IDW 

and linear upscaling.  Except for DOY 178 which was a relatively dry day, where the sensitivity 

to clay fraction increased to ~ 3 % at V-polarization and ~ 1 % at H-polarization till 3.2 km. 

 It is important to note that we discuss only total sensitivity indices (TSI) of land surface 

variables. The increased sensitivity of a variable may also be due to increased interaction effects 

such as (S,B), (S,VWC), (S,SM), (L,VWC), (SM,B) with growing vegetation (increased 

interception and scattering) [Neelam and Mohanty, 2015]. This may also be one of the contributing 

factors for the high sensitivity to surface roughness (S and L) and vegetation structure (B). The 

sensitivity to scattering albedo is observed to be negligible at all scales. 

 

  



 

67 

 

 

 

 

 

Figure 3.5    Soil Moisture Experiments 2002 (SMEX02), Total Sensitivity Index (TSI) for 

Brightness Temperature A) Linear Upscaling: V-polarization (left), and H-polarization 

(right), B) Inverse Distance Weighted (IDW) Upscaling: V-polarization (left) and H-

polarization (right). SM: Soil Moisture; CF: Clay Fraction; S: Root Mean Square Height; 

L: Correlation Length; TSURF: Surface Temperature; VWC: Vegetation Water Content; 

B: Vegetation Structure; ω: Single Scattering Albedo. 

  



 

68 

 

 

 

3.4.2.4  Humid-Dfb (SMAPVEX12) Hydro Climate   

The SMAPVEX12 region observed lower biomass content and wide heterogeneity in soil 

moisture due to which a more gradual variability in sensitivity to land surface variables is noticed, 

unlike SMEX02. To maintain statistically significant sample points, the upscaling is conducted 

from 1.5 km to 9 km only. The sensitivity of V-polarization (H-polarization) to soil moisture 

showed ~ 74 % (~ 52 %) at 1.5 km, which decreased to ~ 61 % (~ 35 %) at 9 km [Fig 3.6]. The 

sensitivity to clay fraction remained uniform (~ 6 %) spatio-temporally for both V- and H-

polarization. A relatively high sensitivity to clay in SMAPVEX12 unlike other regions is due to a 

wide heterogeneity (~ 5 % to ~ 65 %) in clay fraction observed in this region. The sensitivity to 

surface roughness variables (S and L) is uniform at ~ 2 – 4 % at all scales unlike in SMEX02 where 

they increased with scale. This may also be due to higher surface roughness measured for SMEX02 

than SMAPVEX12. The sensitivity to vegetation structure and vegetation water content increased 

exponentially (R2=0.99) with scale. It is noteworthy that the sensitivity to VWC slightly increased 

with scale.  
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Figure 3.6    Soil Moisture Active Passive Experiments 2012 (SMAPVEX12), Total 

Sensitivity Index (TSI) for Brightness Temperature under Linear Upscaling: V-

polarization (left), and H-polarization (right). SM: Soil Moisture; CF: Clay Fraction; S: 

Root Mean Square Height; L: Correlation Length; TSURF: Surface Temperature; VWC: 

Vegetation Water Content; B: Vegetation Structure; ω: Single Scattering Albedo. 
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3.4.3 Upscaling and Environmental Heterogeneity  

The largest up-scaling effects are observed for scenes with high heterogeneity i.e., with 

strong gradients in land surface variables. The difference between the two (linear and IDW) 

upscaling methods are therefore more prominent in heterogeneous environments. A high 

correlation is observed between spatial heterogeneity in soil moisture and density of vegetation 

[Lakhankar et al., 2009, Said et al., 2012, Ye et al., 2014]. Thus, we classify the hydroclimates as 

heterogeneous and homogeneous environments based on biomass density. This also complements 

Mo et al. [1982] and Wigneron et al. [1995, 2017] who suggested that the total amount of biomass 

within the pixel is important in affecting the microwave response.   

 

3.4.3.1 Homogeneous Environment (Sub-Humid and Semi-Arid)  

SGP’97 (Sub-Humid) and SMEX04 (Semi-Arid) are more natural landscapes composed 

mainly of grasslands and shrubs, with low biomass content. For SGP97, a very small percentage 

of higher order interactions are observed, ~ 1 % for V- polarization and ~ 3 % for H- polarization. 

SMEX04 observed higher order interactions of ~ 5 % for V-polarization and ~ 9 % for H-

polarization. Due to the rough topography of SMEX04, a higher sensitivity to roughness variables 

(S and L) for H-polarization is observed which also led to increased higher order interactions than 

SGP97. Because of higher sensitivity to soil moisture and nearly linear (additive) behavior of 

radiative transfer model, these regions can be classified as homogenous environments. Due to the 

homogeneous environment, we do not observe large variabilities in sensitivity measures between 

linear and non-linear (IDW) upscaling methods [Fig 3.3 and Fig 3.4]. This allows, the land surface 

variables to be scaled linearly, which is also consistent with studies of Drusch et al. [1999], Crow 

et al. [2000]. Under homogeneous environments, SMEX04 and SGP97 can further be classified as 

energy rich and water rich environments respectively. SMEX04 that observed total mean soil 
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moisture ~ 0.07 v/v and higher surface temperatures ~ 319 K is classified as the energy rich 

environment and SGP97 that observed a relatively higher total mean soil moisture ~ 0.15 v/v and 

lower surface temperatures ~ 298 K can be classified as water rich environment. For homogeneous 

water rich environment, the sensitivity to land surface variables did not vary with either support 

scale or upscaling methods and but varied only by small percentages due to polarization 

differences. The sensitivity to land surface variables under homogeneous energy rich environments 

followed an exponential function with support scale and attained uniformity by ~ 3.2 km, 

emphasizing the linearity/homogeneity of the region.  
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Figure 3.7   The conceptual model describes the classification of environments as 

homogenous and heterogeneous environments based on density and heterogeneity in 

biomass (green). Each of these environments can further be classified as water (blue) and 

energy (red) rich environments. Top-Left quadrant represents heterogeneous water rich 

environment, where brightness temperature is most sensitive to vegetation and soil 

moisture with higher order interactions of ~5-10 %; Top-Right quadrant represents 

heterogeneous energy rich environment, where brightness temperature is most sensitive to 

vegetation and temperature with higher order interactions of > 10-15 %; Bottom-Left 

quadrant represents homogeneous water rich environment, where brightness temperature 

is most sensitive to soil moisture with no or very low higher order interactions; Bottom-

Right quadrant represents homogeneous energy rich environment, where brightness 

temperature is most sensitive to soil moisture and temperature with higher order 

interactions of < 5-10 %. The transition from homogenous to heterogeneous, energy rich to 

water rich and vice versa can occur through spatio-temporal scales (spatial: extent and 

support, time: day, month, seasonality, climate change etc.,) following land-use/land-cover 

change and events such as precipitation, evapotranspiration etc. The lasting transition 

from homogeneous to heterogeneous and vice-versa can also occur at the climate change 

temporal scales. 
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3.4.3.2 Heterogeneous Environment (Humid Dfa and Humid Dfb)  

SMEX02 (Humid Dfa) and SMAPVEX12 (Humid Dfb) are agricultural landscapes with a 

wide range of biomass content and observe tillage practices on a regular basis. In these regions, 

the sensitivity to land surface variables are complex and exhibited considerable higher order 

interactions (nonlinearities). SMAPVEX12 observed higher order interactions of ~ 6 % for V- 

polarization and ~ 10 % for H- polarization, whereas SMEX02 observed ~ 10 % for V-polarization 

and ~ 13 % for H-polarization. Because of lower sensitivity to soil moisture and higher non-linear 

behavior of radiative transfer model, these regions can be classified as heterogeneous 

environments. Due to the heterogeneous environment, there is significant gradient observed in the 

sensitivity of land surface variables as they are upscaled linearly from 800 m to 12.8 km. However, 

as they are upscaled non-linearly the gradient in sensitivity measures decreases [Fig 3.5 and Fig 

3.6]. Under heterogeneous environments, SMEX02 and SMAPVEX12 can further be classified as 

energy rich and water rich environments respectively. SMEX02 which observed mean soil 

moisture ~ 0.19 v/v and mean surface temperatures of ~ 315 K are classified as energy rich 

environment. On the other hand, SMAPVEX12 which observed a relatively higher mean soil 

moisture ~ 0.25 v/v and lower mean surface temperatures ~ 290 K is classified as water rich 

environment. For heterogeneous water rich environment (SMAPVEX12), the sensitivity to land 

surface variables followed exponential function with support scale, and for heterogeneous energy 

rich environment (SMEX02) the sensitivity to land surface variables followed a logarithmic 

function emphasizing the non-linearity/interactions of the region. Therefore, under heterogeneous 

environments upscaling method also determined the sensitivity to land surface variables.  

In this study, a comprehensive framework is proposed based on the preliminary work 

presented by Neelam and Mohanty [2015] [Fig 3.7] where the regions can primarily be classified 
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as homogenous and heterogeneous environments based on density and heterogeneity in biomass. 

Each of these environments can further be classified as water and energy rich environments. The 

transition from homogenous to heterogeneous, energy rich to water rich and vice versa can occur 

through spatial parameters (extent and support), time (day, month, seasonality etc.,) and 

hydroclimates.  For example, with a gradual increase in spatial scale (support, extent, and spacing) 

there will be a gradual change in land-cover/land-use thereby changing heterogeneity in land 

surface variables captured with varying spatial scale. Similarly, heterogeneity in land surface 

variables changes with temporal scales. For example, activities at monthly temporal scales such as 

seeding, irrigation, crop growth, harvesting, etc., and at seasonal scales such as spring, summer, 

fall etc., effects heterogeneity in biomass, water, temperature etc. Thus, the transitioning of 

environments occurs through spatio-temporal scales thereby changing the heterogeneity in land 

surface variables and their sensitivities to soil moisture retrieval algorithm.      

3.5 Summary and conclusion 

A comprehensive sensitivity analysis to study radiative transfer model using spatial maps 

is conducted for various field campaigns in multiple hydroclimates. The primary contribution of 

this work is to demonstrate how the sensitivity to spatial maps of land surface variables change 

under various hydroclimates (Arizona, Oklahoma, Iowa, and Winnipeg) and evolving scales 

(0.8km, 1.6 km, 3.2 km, 6.4 km and 12.8 km) for a given extent. The impact of non-linear upscaling 

is illustrated by comparison between linear and inverse distance weighted methods. The analysis 

resulted in environment specific most sensitive variables, SM in homogeneous, and VWC, B in 

heterogeneous environments. Though the magnitude of sensitivity varied temporally, the ranking 

among the variables did not change within the study period. The sensitivity to land surface 

variables in SMEX04 and SMAPVEX12 increased or decreased gradually following an 
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exponential function with increasing scale. While, for SMEX02 the sensitivities changed rapidly 

following a logarithmic function. The study emphasized that the observed heterogeneity and 

upscaling method will determine the sensitivity to land surface variables. This study is particularly 

relevant to establish the significant variables that can be used for downscaling and upscaling 

algorithms to various scales and under heterogeneous landscapes.  

The analysis assumed independence among the inputs variables which might not be true 

under natural environments. However, there are very limited studies in past that established a 

correlation among land surface variables. The future scope of this work can include analyzing the 

sensitivity of correlated land surface variables and its development with hydro-climates and scales. 

In summary:  

1) For vegetation with dominant vertical stalks, the attenuation will be smaller for 

horizontally polarized waves than vertically polarized waves except at a nadir incidence 

angle, due to stronger signal coupling.  

2) Both the degree of variability of the land surface variables, the model used to assess 

flux variability, and the upscaling technique will have an effect on the resolution – 

spatial variability relationship.  

3) No vegetation or low density vegetation regions followed an exponential function for 

sensitivity of land surface variables with linear upscaling, whereas high vegetation 

density regions followed a logarithmic function with spatial scale. 

The proposed generic model provides a basis to understand the soil moisture-vegetation 

coupling which varies through spatial parameters (extent and support), time (day, month, 

seasonality etc.,) and hydroclimates. 

  



 

76 

 

 

4 MULTI SCALE SURFACE ROUGHNESS FOR IMPROVED SOIL MOISTURE  

4.1 Synopsis 

Surface roughness parameterization plays an important role in passive microwave soil 

moisture retrieval. This paper proposes a new formulation for estimating surface roughness.  The 

proposed model incorporates the field-scale (micro) roughness, as well as topographic (macro) 

roughness. The performance of the model was evaluated by inverting the traditional tau-omega 

model for retrieving soil moisture. The study focused on the PALS (Passive Active L-band 

System) radiometer data collected  as a part of two Soil Moisture Active Passive Validation 

Experiments (SMAPVEX) i.e., SMAPVEX12 (humid Manitoba, Canada) and SMAPVEX15 

(semi-arid Arizona, USA) with highly different topography. The measured surface roughness and 

derived micro-roughness were observed to increase exponentially with clay fraction. This behavior 

was minimized with increase in Leaf Area Index (LAI). In the absence of vegetation, the 

contribution of topography towards surface roughness were observed. A higher surface roughness 

values were estimated for SMAPVEX12, which positively correlate with LAI and clay fraction 

and negatively correlate with wetness conditions. On the other hand, due to the high topographic 

variability in SMAPVEX15 region, the contribution of surface curvature (macro-topography) 

towards total surface roughness was significant. The consistently dry soil moisture conditions in 

this domain resulted in high micro roughness for SMAPVEX15. Nevertheless, a total surface 

roughness estimated for SMAPVEX15 region was less than for SMAPVEX12. The surface 

roughness formulation presented in this study can be extrapolated to any spatial resolution for 

improved soil moisture retrievals. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/radiometers
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4.2 Introduction 

Passive microwave remote sensing is an established technique for monitoring large-scale 

soil moisture [Mohanty et al., 2017, Wigneron et al., 2017]. ESA’s Soil Moisture Ocean Salinity 

(SMOS launched in 2009) and NASA’s Soil Moisture Active Passive (SMAP launched in 2015) 

are currently two dedicated L-band satellite missions for mapping global soil moisture at resolution 

~ 40 km every 2-3 days. The passive microwave soil moisture retrieval algorithms were originally 

developed and validated using the aircraft and truck based field experiments at L-band frequency 

conducted over various geographic domains [Schmugge et al., 1992; Jackson et al., 1991, 1999]. 

At L-band frequencies, vegetation water content (VWC) and soil surface roughness are found to 

be the most sensitive land surface variables influencing soil moisture retrieval [Neelam and 

Mohanty, 2015]. In the past, many semi-empirical models [Wegmuller and Matzler, 1999; 

Wigneron et al., 2011; Wang and Choudhury, 1981] were developed to characterize the soil surface 

roughness at a plot/field scale using root mean square RMS height (σ) and/or correlation length (l) 

parameters. These surface roughness parameters were evaluated using pin/grid board measured 

during field campaigns [i.e. Choudhury et al., 1982; Wang et al., 1982; Wigneron et al., 2001, 

2012; Panciera et al., 2009a; McNairn et al., 2015; among others]. In more recent studies [Kerr et 

al., 2012; Wang et al., 2015; Parrens et al., 2016; Colliander et al., 2016], the roughness parameter 

is represented as a function of moisture, vegetation cover, and precipitation, but did not incorporate 

the effect of topography. However, characterizing the dynamic aspects of surface roughness is 

complicated, due to its variability with agricultural practices, wind speed, organic debris, 

precipitation rate etc. that vary spatio-temporally. 

In this study we hypothesized that, at spatial scales of 1.5 km and 3 km the observed surface 

roughness is a combination of field-scale (micro) and surface topography (macro) roughness. The 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/field-experiment
https://www.sciencedirect.com/science/article/pii/S0034425716302309#bb0275
https://www.sciencedirect.com/science/article/pii/S0034425716302309#bb0090
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inclusion of macro features in estimation of surface roughness is based on studies, that have shown 

the importance of topography in altering the measured brightness temperature in several ways 

[Talone, et al., 2007; Kerr et al., 2003; Sandells et al., 2008; Flores et al., 2009]. For example, 

topography can vary the optical depth of the atmosphere with elevation, as well as the path length 

through vegetation and surface emissivity according to gradient of the surfaces. The soil moisture 

redistribution is also linked with topographic features (elevation, slope, curvature) [Burt and 

Butcher, 1985; Humphries, 1996], and this may influence its retrieval accuracy. Nevertheless, no 

consensus was established on parameterization of effective surface roughness which incorporates 

both field-scale roughness and topographic roughness from different spatial scales.  

Therefore, the aim of this study was to develop and evaluate a new comprehensive surface 

roughness model with geophysical variables obtained from different spatial and temporal scales, 

Fig 4.1. The new model defined the micro-scale roughness as a function of soil moisture, soil 

texture, and Leaf Area Index (LAI) and macro-scale roughness as a function of topography 

(curvature). This comprehensive surface roughness model was evaluated in a soil moisture 

retrieval algorithm with traditional models for vegetation and soil permittivity. The data from two 

field campaigns, the Soil Moisture Active Passive Validation Experiment (SMAPVEX) 2012 

(Manitoba, Canada) and 2015 (Arizona, USA) were used for validation purposes. The data 

collected during SMAPVEX12 was used in several earlier studies involving soil moisture retrieval 

algorithm development [e.g., Martens et al., 2015; Manns et al. 2015; Colliander et al., 2016; 

Barber et al., 2016]. The study site and data for SMAPVEX15 is also discussed in the works of 

Colliander et al. [2017] and Cai et al. [2017].  
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Figure 4.1    Conceptual figure describing the multi-scale surface roughness. The 

microwave radiation scattered through micro-roughness undergoes further constructive or 

destructive interference due to macro roughness (topography). 
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4.3 Materials and Methods  

4.3.1 Soil Moisture Active Passive Validation Experiments 2012 (SMAPVEX12)  

The SMAPVEX12 experiment was conducted in southern Manitoba (Canada) from June 

7th to July 19th, 2012 [McNairn et al., 2015]. The study domain was 12.8 km wide and 70 km long 

covering a variety of land covers and soil textures, Fig 4.2. The climate of this region is classified 

as humid continental (Köppen climate classification-Dfb) [Peel et al., 2007] with mean annual 

precipitation and temperature of 521 mm and 289 K respectively. The agricultural crops (mainly 

cereals, soybeans, canola, and corn) dominate the southeast portion that has heavy clay soils, 

whereas the north and east have more sandy and loamy soils with mixed land cover including 

forest, perennial pastures along with few row crop fields. The southern edge of the study area is 

more influenced by glacial till deposition with heavy clay soils (~ 65 %), dividing it from sandy 

(~ 90 %) soils to the west. The soil moisture stations were operated and maintained by Agriculture 

and Agri-Food Canada, the United States Department of Agriculture (USDA), Manitoba 

Agriculture Food and Rural Initiatives (MAFRI) and Sustainable Agriculture Environment 

Systems (SAGES). Along with station data, teams were deployed to collect soil moisture data 

manually in the fields (0-5 cm depth). The soil moisture sampling strategy was designed to collect 

measurements at 16 locations along two parallel transects across the field. Along with soil moisture 

measurements, ancillary variables such as surface roughness and vegetation were measured 

manually on non-flight days. The surface roughness parameters i.e., RMS height (σ) and the 

correlation length (l) were measured in the look direction of the UAVSAR (Uninhabited Aerial 

Vehicle Synthetic Aperture Radar), PALS (Passive Active L-band System), and RADARSAT-2 

sensors at two locations per field using a pin board (~ 1 m in length). Vegetation water content 

(VWC) was measured via destructive sampling of vegetation above the soil surface collected at 3 



 

81 

 

 

of the 16 soil moisture sampling points in each field.  The surface temperature was estimated using 

both in-situ sensors and an infrared (IR) sensor onboard PALS. The Leaf Area Index (LAI) data 

for the region was obtained from the combined Terra and Aqua MODIS (MCD15A3) product 

composited every 4-day at 1000 m resolution. The LAI data was divided by 10 to rescale between 

0 and 1 to obtain normalized LAI (NLAI).  During SMAPVEX12, LAI was obtained for 11 days 

i.e., DOY 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, and 201. Topography for the 

SMAPVEX12 experimental region was obtained from Shuttle Radar Topography Mission 

(SRTM) elevation data at a 30 m resolution. The topography of the SMAPVEX12 region was 

relatively flat; with elevation varying gently over ~ 80 m from north-west to south-east, Fig 4.2. 

The PALS (Passive Active L-band System) instrument [Wilson et al., 2001] was used to 

measure L-band brightness temperature on 17 days of the study. The instrument has a long history 

of providing L-band brightness temperature measurements in soil moisture field experiments [e.g., 

Njoku et al., 2002; Narayan, Lakshmi, & Njoku, 2004; Bindlish et al., 2009; Colliander et al., 

2012]. The measurements were conducted at low (1200 m) and high (2750 m) altitudes. The 

analysis is conducted using the measurements from the high altitude flights lines which mapped 

the whole experimental domain at about 1500 m resolution. The incidence angle of the instrument 

was fixed at 40 to match the SMAP observation angle [McNairn et al., 2015]. Pixels with more 

than 10 in-situ measurements and where the nearest measurement is no further than 500 m from 

the center of the pixel were selected for validation. This criterion avoids non-representative pixels 

from being used for soil moisture validation. 
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Table 4.1    Land cover categorization with respect to the original classes in the Agriculture 

and Agri-Food Canada (AAFC). 

 

No Land cover AAFC Class 

1 Unclassified Unclassified 

2 Water Water 

3 Urban Urban 

4 Shrub Shrub 

5 Wetlands Wetlands 

6 Pasture Grass, forage, crops, fallow, barren 

7 Cereals Barley, oats, rye, triticale, wheat 

8 Corn Corn, sunflower 

9 Canola Canola, flaxseed 

10 Soybean Soybeans, peas, potatoes, other vegetables, 

berries 

11 Broadleaf Broadleaf, nursery 
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4.3.2 Soil Moisture Active Passive Validation Experiments 2015 (SMAPVEX15)   

The SMAPVEX15 field campaign was conducted in a domain that included the Walnut 

Gulch (WC) Experimental Watershed near Tombstone, Arizona operated by the Agriculture 

Research Service (ARS), U.S. Department of Agriculture (USDA) and University of Arizona 

between August 2nd and August 17th, 2015 [Colliander et al., 2017]. The climate of this region is 

classified as semi-arid (Köppen climate classification- BSh), with mean annual temperature 290.85 

K and receiving an average annual precipitation of 312 mm. The data was collected over three 

main regions, the Walnut Gulch (WC) watershed in the east, Empire Ranch at the center, and the 

Santa Rita experimental range located in the western part of the study domain, Fig 4.3. The 

vegetation of Walnut Gulch (WC) is comprised of two-thirds shrubs and one-third of grassland. 

The Santa Rita Experimental Range has a traditional desert landscape dominated by cactus and 

large shrubs (whitethorn acacia, creosote bush etc.). Empire Ranch on the other hand, is an active 

cattle ranch region dominated by grassland (sideoats, grama, lehmann, lovegrass, etc.). A unique 

feature of arid and semi-arid soils is the presence of whitish layers called calcic horizons. These 

horizons may be very thin (~ 15 cm) in some soils, or thick (greater than 1 m) in others. Some of 

these soils may also contain layers of clayey soils above the white calcic horizon. These clay rich 

layers are called argillic horizons, which may be visible up to 50 cm deep, and contain more than 

fifty percent clay.  While the top soil of these regions was mostly sandy and gravelly, and contain 

large percentages of rock that range from nearly 0 % on shallow slopes to over 70 % on the very 

steep slopes. The topography of this region varied largely i.e., Empire Ranch has rolling 

topography (elevation: 1372 m-1884 m), Santa Rita has an elevation variation from 645 m-1170 

m, and elevations at Walnut Gulch varied from 1170 m-1884 m, Fig 4.3. The Leaf Area Index 

(LAI) for the experimental region varied spatially within 0.12 - 0.53.  However, there was only a 
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small and gradual change in Leaf Area Index (~ 0.014) from DOY 214 to 230. Since no significant 

change was observed in LAI, it was considered to be constant during the SMAPVEX15.  

The PALS was used to measure brightness temperature on 7 days i.e., DOY 214, 217, 220, 

222, 225, 228, and 230 at an effective resolution of about 1200 m for flights at an altitude of 2300 

m. The data was regridded to 500 m based on a 1 km SMAP EASE ver. 2 grid satisfying Nyquist 

sampling criterion as described in Colliander et al. [2017]. A criterion of at least 3 in-situ 

measurements was established for soil moisture retrieval validation. The brightness temperature 

was upscaled to 3 km support scales to satisfy this criterion. Surface temperature was estimated 

using in-situ sensors and the infrared (IR) sensor onboard PALS. The vegetation water content was 

estimated using destructive sampling during non-flight days.   

4.4 Soil Moisture Retrieval Algorithm 

The tau-omega model, an approximation of the non-linear radiative transfer theory is used to 

simulate brightness temperature (𝑇𝐵) under vegetation [Njoku and Entekhabi, 1996]:  

𝑇𝐵(𝑝,𝑓,𝜃) =  𝑒𝑝,𝑓,𝜃. 𝑇𝑒𝑓𝑓 . ϒ𝑝,𝑓,𝜃 + 𝑇𝑐. (1 − 𝜔𝑝,𝑓,𝜃). (1 − ϒ𝑝,𝑓,𝜃) + 

𝑇𝑐. ϒ𝑝,𝑓,𝜃. (1 − 𝜔𝑝,𝑓,𝜃)(1 − ϒ𝑝,𝑓,𝜃). 𝑟𝑝,𝑓,𝜃 (4.1) 

ϒ𝑝,𝑓,𝜃 = exp (−
𝜏𝑝,𝑓

cos 𝜃
) (4.2) 

where p, θ and f denote polarization, look angle and frequency respectively. This study considers, 

p = V-polarization, with constant look angle of 40º at 1.4 GHz frequency. The radiative transfer 

(equation 4.1) is essentially approximated as a summation of three components 1) the direct 

emission by soil and one-way attenuation by canopy (the first term), 2) direct upward emission by 

canopies (the second term), and 3) emission by plants and reflected by soil and thereafter 

attenuated by vegetation (the third term).  
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4.4.1 Vegetation 

The physical attributes of the vegetation that influence the soil emissivity are: the 

transmissivity of the vegetation ϒ𝑝,𝑓,𝜃, the single scattering albedo 𝜔𝑝,𝑓,𝜃 and the physical 

temperature of the canopy 𝑇𝑐. The transmissivity of vegetation at a constant look angle is given by 

equation (4.2) where,  𝜏𝑝,𝑓 is the optical thickness of the vegetation. The formulation in equation 

(4.1) is based on the assumptions that; a) the single scattering albedo is small (less than 0.2), and 

thus diffuse scattering is ignored; b) the air-vegetation reflectivity is assumed zero, thus ignoring 

losses at the boundary, and c) the refractive index of vegetation is approximately equal to air, 

which allows using the air-soil reflectivity in equation (4.1). The amount of soil microwave 

emission that is absorbed and scattered as propagated through canopy is given by the transmissivity 

of the vegetation and scattering albedo.  The loss factor is dependent on the volume fraction of 

water in the canopy and the architecture of the vegetation. The extinction optical thickness 𝜏𝑝 is 

estimated as a product of vegetation water content (VWC) and structure of the canopy (b). Due to 

the complex geometry of the natural canopies, approximate values are estimated for canopy 

structure (b) from land cover data. The canopy water content is estimated using the Normalized 

Difference Vegetation Index (NDVI) and regression with ground sample vegetation data [Jackson 

et al., 2004]. The  𝜏𝑝 and 𝜔𝑝 are polarization dependent because there may be differences in 

propagation of H-polarized and V-polarized wave under different canopy structures [Brunfeldt and 

Ulaby, 1986; Van de Griend et al., 2004; Wigneron et al., 2011]. For this study, it is assumed that 

b = 0.1 and   = 0.05 for SMAPVEX12 and SMAPVEX15 
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Figure 4.2    SMAPVEX12 field campaign domain and PALS flight lines. The ground truth 

soil moisture (represented by black dots) sampling strategy was designed to collect 

measurements at 16 locations along two parallel transects across the field. The variability 

of soil texture across the study region is represented by circles of different sizes.  The 

gradient in elevation is represented through different colors. The land covers selected for 

analysis in section 5.1 is represented by different symbols (star, triangle, and pentagon). 
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4.4.2 Soil  

The physical attributes that influence the microwave emissions from soils are surface 

reflectivity 𝑟𝑝,𝑓,𝜃 and effective soil temperature 𝑇𝑒𝑓𝑓 as given in equation (4.1). The reflectivity of 

soil can also be represented as (1 − 𝑒𝑝,𝑓,𝜃), where 𝑒𝑝,𝑓,𝜃is the soil emissivity. Soil surface 

reflectivity is determined by the dielectric constant (ϵ) of soil and the above surface geometric 

roughness parameters. The dielectric constant (ϵ) of soil is a non-linear function of several 

quantities including soil water content, bulk density, textural composition, and salinity, and of 

which soil water content is major determinant. The soil dielectric constant is estimated using the 

Mironov model [Mironov et al., 2009], due to its better performance under most soil textures 

[Bircher et al., 2012; Srivastava et al., 2015]. In practice, soil layers exhibit heterogeneity and non-

isothermal properties with depth [Njoku and Kong, 1977; Wilheit, 1978; Schmugge and 

Choudhury, 1981]. Thus, estimating non-uniform temperatures and dielectric properties of vertical 

soil profiles is complex. Hence, an average of the skin temperature (measured using hand-held 

sensors) and temperature at 5-cm depth (measured with permanently installed network) is used as 

𝑇𝑒𝑓𝑓 for SMAPVEX12 and SMAPVEX15. It is acknowledged that the deviation from actual 

temperature and texture profile up to L-band penetration depth may introduce an error in modeled 

brightness temperature. 
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Figure 4.3    SMAPVEX15 field campaign domain and PALS flight lines. The ground truth 

soil moisture (represented by white dots) data was collected over three main regions, the 

Walnut Gulch (WC) watershed in the east, Empire Ranch at the center, and the Santa Rita 

experimental range located in the western part of the study domain. The variability in soil 

clay fraction across the study region is represented by circles of different sizes. The 

gradient in elevation is represented through different colors. 
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4.4.3 Surface Roughness  

Equation (4.1) is based on the assumption that scattering (multiple reflections) within the 

soil medium is negligible and includes only surface reflection at transition layer of thickness h 

[Njoku and Entekhabi, 1979]. The surface roughness formulation that translates smooth reflection 

(Frensel reflectivity) to rough surface reflection combines statistical surface height variation 

parameters defined by standard deviation of surface height (σ) and surface correlation length (l) 

[Mo, Schmugge and Wang, 1987].  

A simple roughness model was first introduced by Choudhury et al. [1979], which involved a 

single roughness parameter, the root mean square (RMS) height ‘σ’ given as;  

𝑅𝑟 = 𝑅𝑠 𝑒(−𝐻𝑟𝑐𝑜𝑠2(𝜃))        (4.3) 

𝐻𝑟 = 4 𝑘2𝜎2          (4.4) 

where 𝑅𝑟 is the effective rough surface reflectivity, 𝑅𝑠is smooth surface reflectivity, 𝐻𝑟 is the 

roughness parameter, 𝜆 is the wavelength of observation and 𝑘 =
2𝜋

𝜆
 is the wavenumber. The single 

parameter 𝐻𝑟 was unable to match the measured angular variation in 𝑇𝐵. Thus, an extended two 

parameter model was proposed by Wang and Choudhury [1981] that introduced the polarization 

mixing parameter, Q, which has been refined by other investigators [Shi et al., 2005; Wigneron et 

al., 2011; Lawrence et al., 2013];  

𝑅𝑟(𝑝) = [(1 − 𝑄)𝑅𝑠(𝑝)  + 𝑄𝑅𝑠(𝑞)]𝑒(−𝐻𝑟(𝑆𝑀)𝑐𝑜𝑠𝑛(𝜃))    (4.5) 

where p and q denote horizontal and vertical linear polarizations respectively or vice-versa. Q is 

the polarization mixing factor. In some studies, Q is found to be equal to 0 at L-Band and increases 

moderately with frequency [Escorihuela et al., 2007; Montpetit et al., 2015; Saleh et al., 2007; 

Wigneron et al., 2001, 2007, 2011]. The factor n ranges from -2 to 2, and describes the dependence 

of roughness on incidence angle. The 𝐻𝑟 is an effective roughness parameter that accounts for; (1) 
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the spatial variations on the surface of the soil and, (2) the spatial variations in the dielectric 

constant of the soil layer (upto L-band penetration) which can be caused by non-uniformities in 

the soil moisture content, texture, density, etc. [Kerr et al., 2012]. The equation (4.4) is currently 

used by SMAP mission and during field campaigns to estimate surface roughness. Therefore, the 

surface roughness 𝐻𝑟 estimated using equation (4.4) according to each IGBP land cover class  

[O’Neill et al., 2015] Table 4.1, was used as an alternative to evaluate the performance of the 

proposed roughness model.  

4.5 Proposed Surface Roughness Formulation   

According to the Fraunhofer criterion a surface (an interface between two homogeneous 

non-scattering media in this case) may be considered as smooth in the microwave range if it 

satisfies [Ulaby, Moore and Fung, 2015];  

𝜎 <
𝜆

32 cos(𝜃)
    (4.6) 

where 𝜆 is wavelength of observation, 𝜎 is standard deviation of the surface height distribution, 

and 𝜃 is the angle of observation. However, the criterion is limited as it considers only the vertical 

roughness dimension “σ” and assumes that the horizontal wavelength "𝛬" of the soil features is 

larger than the observation wavelength, thus restricting validity of this criterion by Bragg limit:  

𝛬 <
𝜆

2 sin(𝜃)
               (4.7) 

For L-band (wavelength = 21 cm), a surface is considered smooth if 𝜎 < 0.85 𝑐𝑚 and 𝛬 <

16.33 𝑐𝑚. However, Bragg’s limit is not fulfilled for surfaces composed of stones, cracks, organic 

matter, and clods at small-scale or when there is topographic variability at large-scale. Thus, a 

comprehensive roughness model is proposed that encompasses roughness features (𝜎 𝑎𝑛𝑑 𝛬), 

which occur at small-scale (micro-) and large-scale (macro-) that influence surface reflectivity.  
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The proposed model is developed using proxy variables that control surface roughness variability 

at small-scale (micro) and large-scale (macro). 

4.5.1  Macro-Roughness (Large-Scale Roughness) 

The macro-roughness was described as the large scale undulations of the terrain observed 

within a footprint. These large scale undulations satisfy the Fraunhofer criteria (and Bragg limit). 

It is these large-scale deviations (elevated horizons) from the horizontal surface that contribute 

towards “roughness”. Furthermore, in the presence of topographic undulations there are different 

types of influences on the measured signal; (1) alteration of the incidence and polarization angles 

and thus the brightness temperature, (2) some facets could be hidden, (3) slopes, valleys, and ridges 

can interact radiatively, (4) with altitude the influence of the atmosphere is reduced, and (5) 

topography influences the hydrology and vegetation characteristics of the region resulting in 

different roughness. For example, water on steeper slopes reduces frictional and cohesive forces 

among the soil particles, thereby increasing soil water run-off along with other materials such as 

crumbs, stones, organic debris etc., and thereby changing small-scale (micro) roughness locally. 

Additionally, topography plays an important role in soil moisture distribution, i.e., the topographic 

convergence (curvature) or divergence determines variability in wetness conditions.  In this study, 

the topographic roughness (macro-roughness) was defined as the standard deviation of curvature, 

i.e., the second derivative of a surface, or slope of the slope. It was used to describe the shape of 

the slope, i.e., whether the surface profile is concave or convex. The curvature estimated in this 

study was a combination of profile and planform curvatures. The profile curvature affects the 

acceleration and deceleration of the flow, representing erosional and depositional activities. On 

the other hand, the plan curvature describes the convergence and divergence of the flow. Thus, 

considering plan and profile curvature together describes the flow more accurately. A positive 
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curvature indicates the surface is upwardly convex at that cell, whereas negative curvature 

indicates the surface is upwardly concave at that cell. For SMAPVEX12, 50 neighboring pixels, 

and for SMAPVEX15, 17 neighboring pixels were used to calculate the standard deviation in 

curvature.  

4.5.2 Micro-Roughness (Small-Scale Roughness) 

The micro-roughness was defined similar to the small-scale surface undulations. These 

surface undulations are typically measured using a pin-board or a grid board, where the variation 

in elevations of metal pins are considered due to rough surface underneath. However, due to the 

infeasibility to do these measurements operationally at airborne footprints (~ 1.5 - 3 km), proxy 

physical variables were used in defining surface roughness. Several factors such as the amount and 

rate of precipitation, soil water content, bulk density, composition of the soil, organic debris, wind 

speed, land cover, and tillage practices etc., influence soil roughness to various degrees. Of these 

factors, soil texture, wetness conditions and vegetation were used in this study due to their 

availability during the field campaigns. Starting with soil texture, if the composition of the soil is 

more clayey then the possibility of forming soil structures such as “peds” and “clods” occur more 

easily [Lyles and Woodruff, 1961; Allmaras et al., 1967]. This can occur either naturally or 

artificially based on wetness conditions. The high surface area and surface charge of clay particles 

play key roles in the formation of soil aggregates that otherwise would not occur in sand and silt 

soils with very low adhesion and cohesion powers. Additionally, clayey soils exhibit high swell-

shrink potential that varies with soil wetness conditions. Under dry conditions, these soils can 

develop deep cracks and shear planes. All these features may contribute towards surface 

roughness. Leaf Area Index (LAI) is another proxy variable that was used in determining soil 

surface roughness dynamically. Precipitation that controls roughness variability is intercepted by 
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canopy cover (LAI). This reduces the precipitation intensity before it reaches the soil surface as 

stem flow, canopy drip or through fall. LAI also controls the rate of evapotranspiration, 

subsequently changing soil wetness conditions. For example, for landscapes with high LAI the 

surface roughness is higher due to reduced run-off and higher organic debris. In addition, as 

organic matter decomposes to humus, a variety of compounds are released which “glue” soil 

particles together, thereby changing soil composition over time. Under low LAI, the impact of a 

precipitation event on run-off is higher with low organic debris. Previous studies by Escorihuela 

et al. [2007], Saleh et al. [2006], Wigneron et al. [2001], and Kerr et al. [2012], have shown the 

influence of soil moisture on the roughness 𝐻𝑟 parameter. Surface scattering has been observed to 

decrease with wetness conditions. Therefore, the influence of wetness conditions is incorporated 

through field sampled soil moisture collected using theta probes on flight days.  

Thus, the new total surface roughness 𝐻𝑛𝑒𝑤 formulation is composed of two roughness parameters 

‘𝐻𝑚𝑖𝑐𝑟𝑜’ and ‘𝐻𝑚𝑎𝑐𝑟𝑜’ as defined in equations 4.8-4.10.   

𝐻𝑛𝑒𝑤(𝑖) = 𝐻𝑚𝑖𝑐𝑟𝑜(𝑖) × 𝐻𝑚𝑎𝑐𝑟𝑜(𝑖)                (4.8) 

𝐻𝑚𝑖𝑐𝑟𝑜(𝑖) = exp (−
𝑆𝑀(𝑖) ×(1−𝑁𝐿𝐴𝐼(𝑖))

𝐶𝐹(𝑖)
)     (4.9) 

𝐻𝑚𝑎𝑐𝑟𝑜(𝑖) = (𝑠𝑡𝑑. 𝑐𝑢𝑟𝑣(𝑖))𝑎       (4.10) 

where, the micro (small-scale) ‘𝐻𝑚𝑖𝑐𝑟𝑜’ roughness parameter was defined as an exponential 

function of  soil moisture (SM), clay % and normalized leaf area index (NLAI) and the macro- 

(large-scale) ‘𝐻𝑚𝑎𝑐𝑟𝑜’ roughness parameter as the standard deviation of curvature, whereas ‘i’ is 

per pixel. The calibration parameter ‘a’ determines the scale of macro-roughness contributing to 

total surface roughness, and this parameter varies with environmental conditions (wetness, texture, 

topography, LAI).  
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Figure 4.4    The temporal dynamics of derived total-surface roughness (micro-roughness) 

with soil moisture (SM), clay percentage and Leaf Area Index (LAI) for SMAPVEX12. The 

Y-axis represents the magnitude of micro-roughness, X-axis represents time (Day of the 

Year- DOY), size of the circle represents the magnitude of soil moisture (SM), and color 

bar represents magnitude of LAI. At the top of each subplot, clay percentage and standard 

deviation in curvature for that pixel is shown A): Land cover 7, Middle: Land cover-9, 

Bottom: Land cover 10. 
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4.6 Results and Discussion  

The brightness temperature observed during the SMAPVEX12 and SMAPVEX15 field 

campaigns showed high temporal variability. The soil moisture was retrieved from V-polarization 

brightness temperature for pixels with vegetation water contents (VWC)   5kg/m2 using the 

algorithm. The performance of the new roughness model (H new) was evaluated with land cover 

specific roughness (H_LC) estimates (Table 4.1) by comparing the Root Mean Square Error 

(RMSE), unbiased (mean centered) Root Mean Square Error (ubRMSE), bias and Pearson 

correlation coefficient (R). The analysis was conducted w.r.t Day of the Year (DOY) and land 

cover (LC). As observed from Table 4.2 (A, B), the new surface roughness model significantly 

reduced soil moisture bias.  

The lowest RMSE’s for soil moisture retrieval was obtained using the new surface 

roughness [equations (4.8-4.10)] Table 4.2, with 𝑎 = 2 for SMAPVEX15 and 𝑎 = 0.5 for 

SMAPVEX12. In contrast, during SMAPVEX12 there was a consistent increase in LAI, Fig 4.4. 

The topography of SMAPVEX12 varied spatially, which resulted in a total surface roughness that 

is dominated by both micro-roughness and macro-roughness, and that varied spatio-temporally 

with wetness and vegetation conditions. Conversely, significant contribution of the macro-

roughness to total surface roughness was observed for SMAPVEX15. 
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Table 4.2    Performance metrics of retrieved soil moisture using the new surface roughness 

model (𝐇 𝐧𝐞𝐰) in comparison with soil moisture retrieved using land cover specific surface 

roughness (H_LC) analyzed for A) SMAPVEX12 and SMAPVEX15 with DOY and B) 

SMAPVEX12 and SMAPVEX15 with land cover (LC). RMSE stands for Root Mean 

Square Error, ubRMSE stands for unbiased RMSE, and R stands for Pearson correlation. 

A.1) SMAPVEX12 with DOY 

  
𝐇 𝐧𝐞𝐰 H_LC 𝐇 𝐧𝐞𝐰 H_LC 𝐇 𝐧𝐞𝐰 H_LC 𝐇 𝐧𝐞𝐰 H_LC 

DOY RMSE ubRMSE Bias R 

164 0.13 0.16 0.10 0.12 -0.08 -0.11 0.41 0.14 

167 0.07 0.08 0.07 0.08 0.03 0.02 0.70 0.61 

169 0.12 0.14 0.11 0.12 -0.05 -0.07 0.42 0.26 

174 0.12 0.14 0.11 0.12 -0.04 -0.06 0.47 0.36 

177 0.08 0.09 0.08 0.09 0.01 0.00 0.55 0.44 

179 0.08 0.07 0.05 0.05 0.06 0.05 0.65 0.59 

181 0.07 0.08 0.07 0.08 -0.01 -0.01 0.42 0.34 

185 0.06 0.06 0.06 0.06 0.00 0.00 0.39 0.33 

187 0.08 0.10 0.08 0.09 -0.03 -0.04 0.16 0.01 

192 0.04 0.05 0.04 0.05 -0.01 -0.01 0.64 0.58 

195 0.06 0.07 0.06 0.07 0.02 0.02 0.61 0.55 

196 0.05 0.06 0.05 0.05 0.01 0.01 0.63 0.58 

199 0.07 0.08 0.07 0.08 -0.01 -0.02 0.64 0.50 

201 0.03 0.03 0.03 0.03 0.01 0.01 0.88 0.88 
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Continued Table 4.2… 

A.2) SMAPVEX15 with DOY 
 

𝐇 𝐧𝐞𝐰 H_LC 𝐇 𝐧𝐞𝐰 H_LC 𝐇 𝐧𝐞𝐰 H_LC 𝐇 𝐧𝐞𝐰 H_LC 

DOY RMSE ubRMSE Bias R 

214 0.06 0.08 0.05 0.06 -0.02 -0.05 0.30 0.23 

217 0.04 0.04 0.03 0.04 0.02 0.01 0.00 0.00 

220 0.04 0.06 0.04 0.05 -0.01 -0.03 0.68 0.67 

222 0.06 0.07 0.05 0.06 -0.02 -0.04 0.36 0.38 

225 0.04 0.04 0.04 0.04 0.01 -0.01 0.36 0.49 

228 0.05 0.06 0.05 0.05 -0.01 -0.04 0.57 0.62 

230 0.04 0.04 0.04 0.04 0.01 -0.01 0.00 0.03 

 

B.1) SMAPVEX12 with LC 

 
𝐇 𝐧𝐞𝐰 H_LC 𝐇 𝐧𝐞𝐰 H_LC 𝐇 𝐧𝐞𝐰 H_LC 𝐇 𝐧𝐞𝐰 H_LC 

LC RMSE ubRMSE Bias R 

6 0.11 0.11 0.11 0.11 0.00 -0.01 0.27 0.27 

7 0.07 0.08 0.07 0.07 0.01 0.02 0.80 0.79 

8 0.12 0.17 0.08 0.10 -0.09 -0.13 0.80 0.77 

9 0.12 0.14 0.10 0.11 -0.07 -0.10 0.59 0.60 

10 0.05 0.06 0.05 0.06 0.02 0.00 0.83 0.82 

 

B.2) SMAPVEX15 with LC 

 
𝐇 𝐧𝐞𝐰 H_LC 𝐇 𝐧𝐞𝐰 H_LC 𝐇 𝐧𝐞𝐰 H_LC 𝐇 𝐧𝐞𝐰 H_LC 

LC RMSE ubRMSE Bias R 

7 0.05 0.06 0.05 0.05 0.00 -0.02 0.51 0.53 

10 0.04 0.06 0.04 0.05 0.00 -0.04 0.61 0.63 
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4.6.1 Land cover  

The landscape of SMAPVEX12 was dominated by agricultural crops (mainly cereals, 

soybeans, canola, and corn). The observed mean (standard deviation) of the Leaf Area Index (LAI) 

varied from ~ 0.81 (~ 0.56) on DOY 164 to ~ 1.41 (~ 0.53) on DOY 201. For similar textural and 

topographic features, a higher surface roughness was estimated for vegetation with higher LAI and 

this behavior is consistent across land covers, Fig 4.4 (Top, Middle, Bottom). The increase in 

canopy interception and stem flow is especially higher among vegetation with broad leaves. This 

interception by the canopy will determine roughness by altering the surface run-off. In addition, 

the plant litter, freshly fallen leaves or seasonal leaf off contribute towards organic debris. Thus, 

vegetation regulates surface (micro) roughness at a field scale through rainfall interception, organic 

debris, reduced run-off, etc. For SMAPVEX12, three land cover classes (7, 9, 10) are selected to 

analyze the variability in surface roughness. The cereal crops such as spring wheat, oat, and winter 

wheat were sampled under land cover 7, whereas canola and flaxseed were sampled under land 

cover 9. Land cover 10 included soybean, covering ~ 18.5 % of SMAPVEX12 study area. For land 

cover 10, a consistent increase in LAI with time was noticed which was not the case for land covers 

7 and 9 where LAI increased initially and later decreased.   
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Figure 4.5    The surface roughness measured using grid board in the look direction of, A) 

PALS (Passive Active L-band System), B) UAVSAR (Uninhabited Aerial Vehicle Synthetic 

Aperture Radar) during SMAPVEX12, is plotted as a function of clay percentage and crop 

type. 
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Typically, the LAI pattern begins with a lag increase early in the season, followed by a rapid 

increase of LAI until a maximum value is reached, then a decline of LAI is observed as leaves 

senesce and plants reach physiological maturity. This behavior is more evident in the case of winter 

wheat (land cover 7), where the LAI is higher before blossoming and decreases after tasseling. As 

for the soybean fields (land cover 10), the decrease in LAI with senesce is not observed for the 

duration of field campaign. For soybean, which is a row crop, during the initial stages of the field 

campaign with low levels of vegetation, a larger portion of the ground surface is exposed to 

precipitation (increased run-off). This may result in lower surface roughness for land cover 10 than 

for land covers 7 and 9 initially. However, this changed by the end of the field campaign, when 

higher surface roughness was estimated for land cover 10, Table 4.3. This may be due to higher 

LAI for land cover 10 (soybean-broad leaves), than for land covers 7 and 9 where LAI decreased 

(after tasseling) by the end of field campaign. Therefore, vegetation contributes in regulating 

surface (micro-) roughness at a field scale through rainfall interception, organic debris, reduced 

run-off, etc.  
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Table 4.3    Comparison of pixels selected from three land-cover classes- 7, 9, 10 during 

SMAPVEX12 to demonstrate the effect of clay %, standard deviation in curvature 

(std.curv), mean-Leaf Area Index (LAI) in determining the surface roughness. H_LC 

represents the land cover specific surface roughness. 

 

  

 
Land cover 7 Land cover 9 Land cover 10 

 Pixel-1 Pixel-2 Pixel-3 Pixel-1 Pixel-2 Pixel-3 Pixel-1 Pixel-2 

Clay % 61 % 40 % 10 % 35 % 15 % 9 % 65 % 23 % 

Std.Curv 0.17 0.17 0.20 0.21 0.19 0.21 0.18 0.18 

Mean_LAI 1.30 1.34 1.32 1.13 1.50 1.14 1.49 1.16 

H_LC 0.17 0.17 0.17 0.35 0.35 0.35 0.35 0.35 

𝐇 𝐧𝐞𝐰 
0.23-
0.34 

0.20-
0.30 

0.05-
0.22 

0.16-
0.31 

0.08-
0.28 

0.05-
0.25 

0.24-
0.33 

0.10-
0.27 
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Figure 4.6    The temporal dynamics of new surface roughness (𝐇𝐧𝐞𝐰) for shrub land (LC-

7) (clay % = 16.7) and grassland (LC-10) (clay % = 20 & 18.07) that varied with soil 

moisture (SM), and std.curv for SMAPVEX15, Table 4. The X-axis represents time (Day of 

the Year- DOY), color bar and size of the circle represents variability in std.curv and soil 

moisture respectively. 
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SMAPVEX15 is a natural landscape dominated by shrub land (LC-7) and grassland (LC-10) land 

covers as categorized by IGBP with constant roughness parametrizations, Table 4.1B [O’Neill et 

al., 2015]. Two pixels from each land cover type were selected, Table 4.4. For grasslands, in spite 

of higher LAI for Pixel 2 than Pixel 1 (other attributes are nearly similar), there was no significant 

difference in variability of estimated surface roughness. Therefore, for semi-arid regions with low 

(grass/shrub land) or no vegetation, the control of vegetation in regulating roughness is minimized.  

The variability in estimated surface roughness values are also supported by past studies, 

Wang et al. [2015], Park et al. [2015], and Parrens et al. [2016] who also found a high correlation 

between surface roughness and vegetation, i.e., higher 𝐻𝑟values for higher LAI regions, and lower 

𝐻𝑟values for shrubs, bare soils and deserts. 

4.6.2 Soil Texture  

In Table 4.3, two pixels from soybeans (LC-10), and three pixels from cereals (LC-7) and 

canola (LC-9) land cover category were selected from SMAPVEX12 to depict the effect of clay 

% on surface roughness. For soils with a high clay %, the ability to form aggregated structures 

(peds, clods) increased, which contributed towards regulating surface (micro) roughness, Fig 4.4 

(Top, Middle, Bottom). To confirm this behavior, the surface roughness measured under different 

soil textures was analyzed. From Fig 4.5 (A, B) it is apparent that, for crops with lower LAI values 

(i.e., winter wheat, wheat, canola, pasture, oats, and forage) the micro-surface roughness increased 

exponentially with the clay %. However, this behavior was not consistent for crops with higher 

LAI values (i.e., soybean and corn). A higher micro-roughness estimated for soybean and corn 

(higher LAI) in spite of low clay %, is attributed towards factors such as rainfall interception, and 

higher organic debris. The soil texture for SMAPVEX12 varied significantly, which also 

contributed towards wide range of estimated surface roughness. This is in contrast to land cover 
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specific roughness (H_LC) values which are constant, Table 4.3. For SMAPVEX15, the clay % 

for the validation pixels varied from 16 % - 25 %, which in addition to dry soil moisture conditions 

resulted in high micro-roughness for SMAPVEX15, Table 4.4.  

4.6.3 Soil Moisture  

The observed surface roughness is generally perceived as a combination of surface and 

volume scattering. The surface scattering is higher than volume scattering under high soil moisture 

conditions. But as soil dries, there will be an increase in both volume and non-specular surface 

scattering. This may be because of increase in the penetration depth of the signal under dry 

conditions at L-band, which enables both volume and multiple scattering in sub-surface. Therefore, 

decreasing soil moisture increases total surface roughness, as also shown in Figs 4.4, 4.5, 4.6. The 

effects of soil moisture on surface roughness was also discussed previously in, e.g., Potter, [1990], 

Zobeck and Onstad, [1987], Escorihuela et al. [2007], Panciera et al. [2009b] and Colliander et al. 

[2016].  

In Fig 4.7 and Table 4.5, two pixels are considered from SMAPVEX12 and SMAPVEX15 

with similar clay % (Pixel 1) and macro-roughness (std.curv) (Pixel 2), but different SM and LAI 

conditions. In spite of low SM and high std.curv, SMAPVEX15 showed smaller roughness 

variability compared to SMAPVEX12 for both Pixel 1 and Pixel 2 because of higher LAI.  
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Table 4.4   Comparison of four different pixels selected during SMAPVEX15 to 

demonstrate the effect of clay percentage, standard deviation in curvature (Std.Curv), 

mean-Leaf Area Index (LAI) in determining the micro-, macro- and total surface 

roughness. 

 Land cover 7 Land cover 10 

 Pixel-3 Pixel-4 Pixel-1 Pixel-2 

Clay % 16.7 % 16.7 % 20 % 18.07 % 

Std. Curv 0.35 0.27 0.41 0.47 

Mean LAI 0.50 0.70 0.28 0.71 

H_LC 0.42 0.42 0.85 0.85 

𝐇 𝐧𝐞𝐰 0.05-0.11 0.05 0.11-0.15 0.10-0.19 

 

 

  



 

106 

 

 

 

Figure 4.7    The temporal dynamics of derived total and micro-surface roughness for four 

different pixels (A, B, C, and D) that varied in soil moisture (SM), clay percentage and Leaf 

Area Index (LAI) for SMAPVEX15. The Y-axis represents the magnitude of land surface 

variables (total-roughness, micro-roughness, soil moisture, clay percentage and Leaf Area 

Index), while X-axis represents time (Day of the Year- DOY). 

 

 

 

  



 

107 

 

 

Table 4.5    Comparison of pixels similar in geophysical attributes (clay percentage and 

macro-roughness) from SMAPVEX12 and SMAPVEX15. Pixel-1 is similar in clay 

percentage and different macro-roughness, whereas Pixel-2 shows similar macro-

roughness and different clay percentages, resulting in different ranges of total surface 

roughness. 

 

 

 SMAPVEX12 SMAPVEX15 SMAPVEX12 SMAPVEX15 

 Pixel-1 Pixel-2 

Clay % 23 20 10 16.7 
Mean LAI 1.23 0.28 0.74 0.70 
Mean SM 0.20 0.05 0.20 0.08 
Std.Curv 0.18 0.41 0.21 0.27 

H_LC 0.35 0.85 ~ 0.35 0.42 
𝐇 𝐧𝐞𝐰 0.10-0.26 0.11-0.15 0.05-0.15 ~ 0.05 
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4.6.4 Topography  

SMAPVEX15 region with undulating topography showed higher variability in standard 

deviation of curvature (std.curv), than in SMAPVEX12. A pixel with a higher std.curv was 

assumed as a rough surface bouncing radiation in all directions as opposed to a pixel with lower 

std.curv surface (see Fig 4.1). Because of low or no vegetation in SMAPVEX15, the 

disaggregation of rocky hilltop occurs more easily under the topographic influence. For example, 

water tends to run-off higher areas and collect in lower areas more easily in the absence of 

vegetation, which leaves knolls dry with easily erodible topsoil. The disintegrated rocky debris 

will eventually level out to gravelly topsoil creating new micro-surface roughness.  

From Table 4.4, where Pixel 2 and Pixel 4 show nearly similar attributes (i.e., clay % and 

LAI), Pixel 2 exhibited higher surface roughness variability because of high std.curv. It is observed 

from the analysis, that the total variability in surface roughness is determined according to the 

variability in micro-roughness, with magnitudes scaled by macro-roughness. This may be 

attributed towards enhanced destructive interference of diffused scattering due to micro-roughness 

reducing the impact of roughness. In addition, regions with high topographic variability and low/no 

vegetation are generally associated with low soil moisture conditions, which result in high 

brightness temperatures. While, the ability of tau-omega transfer model to retrieve soil moisture 

from tau-omega model under dry conditions and its validation with ground truth data require lower 

𝐻𝑟 surface roughness values, which may otherwise result in saturated soil moisture values during 

optimization. The 𝐻𝑟values found in this study were found to be in agreement with measurements 

made in other studies [Mo et al., 1982; Wigneron et al., 2012; Wang et al., 2015; McNair et al., 

2015; Parrens et al., 2016], where low roughness values are obtained over shrubs, bare ground, 

and desert, and higher values are obtained for higher vegetation covers.  
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4.7 Conclusion  

A multi-scale roughness model was proposed to estimate surface roughness at different 

spatial scales using proxy variables (e.g., soil moisture, texture, topography, LAI). The novelty of 

this study, is it demonstrated the variability in surface roughness and defined the proxy land surface 

variables which can be used to map roughness dynamically. The performance of the model 

developed was evaluated by inverting the traditional tau-omega model for retrieving soil moisture 

from PALS data collected during two field experiments SMAPVEX12 and SMAPVEX15. This 

investigation validated that incorporating micro and macro-roughness in estimating total surface 

roughness improves passive microwave soil moisture retrieval. The degree of macro-roughness 

(a) contributing towards total surface roughness varies with local topography. The study 

corroborated that the micro-scale roughness increased exponentially with clay fraction under no 

or low vegetation, and decreased with wetness conditions. However, under higher LAI the effect 

of soil texture was not obvious and the micro-roughness increased with LAI under all soil textures. 

Thus, it may no longer be necessary to assume a constant 𝐻𝑟 specific to a land. The future work 

of this analysis can be extended to satellite scale, and can incorporate soil moisture or precipitation 

data from satellite or ground stations (SMAP/SMOS/GPM/SCAN).  
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5 ON RADIATIVE TRANSFER MODEL AND ITS RELATIONSHIP WITH 

THERMAL FLUXES THROUGH SPACE, TIME, AND HYDROCLIMATES 

5.1 Synopsis 

The spatio-temporal variability in terrestrial biosphere is found to contribute significantly 

towards uncertainty in microwave radiative transfer model (RTM) due to land surface (soil-

vegetation) interactions. In this work, we propose scaling of vegetation optical depth (VOD) based 

on the coefficient of variation (CV) observed for vegetation water content (VWC) within a pixel. 

The efficacy of VOD scaling on the retrieved soil moisture accuracy is explored using, i) ground 

soil moisture observations; ii) soil moisture estimated using a simple water balance; iii) Taylor’s 

Error Propagation (TEP) technique to estimate soil moisture errors. It is found that the soil moisture 

errors are reduced using scaled VOD especially over croplands (during growing season) and forest 

land cover classes. The TEP technique is further explored to classify the soil moisture errors into 

the first order (principal) errors due to the uncertainty in the land surface variables and into their 

interactions errors (second order).  Because these interactions are also the critical drivers of 

hydrological and metrological processes, we explored their relationship with evaporative fraction 

(EF), sensible heat (H), and vapor pressure deficit (VPD) analyzed over multiple land covers, 

hydroclimates, and temporal scales. It is found that, the land surface interactions increased with 

EF, and decreased with H and VPD. This relationship varied with availability of soil moisture. The 

effect of VPD on land surface interactions was significant under arid climate than compared to the 

temperate or continental climates. Generally, the land surface interactions were higher under 

temperate climate than other climate classes.   
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5.2 Introduction 

Vegetation plays a fundamental role in water, and carbon cycle sustaining biological 

productivity. The microwave remote sensing of soil moisture is affected due to the high sensitivity 

of brightness temperature to vegetation optical depth (VOD) which causes systematic and/or 

random errors in retrieved soil moisture (Wigneron et al., 2017). In addition to this, it still remains 

a challenge to account for the subfootprint-scale heterogeneity in vegetation water content (VWC) 

and obtain representative footprint-scale VOD values. VOD is directly proportional to VWC with 

a proportionality constant which is dependent on vegetation geometry. Currently, the soil moisture 

active passive (SMAP) mission uses VOD estimated through a non-linear aggregation of fine 

resolution of VWC [Zhan et al., 2008] upto ~ 9 km on EASE grid, beyond which the VOD is 

simply averaged to 36 km.  Several past studies [Chehbouni et al., 1995; Shuttleworth et al., 1997; 

O’Neill et al., 2006] found that simple average of VWC within a pixel may overestimate the 

effective VWC and demonstrated that empirically corrected VWC can improve soil moisture 

retrievals. Despite these advances, past work has not generally accounted for within pixel 

variability of VWC. In this study, we explored the coefficient of variation (CV) used in many 

ecological studies (Taylor, 1961) as a dominant diagnostic tool to quantify variability in VWC  

within a pixel. This metric conflates the separate patterns of mean and standard deviation in the 

face of spatial and temporal change in VWC.   

In addition to, the importance of mapping vegetation heterogeneity for soil moisture 

retrieval accuracy, the spatial and temporal variability in vegetation also plays a crucial role in the 

redistribution of water and energy fluxes (Koster and Suarez, 1992) mainly through, i) increase in 

direct transpiration; ii) evaporation from plants surfaces due to intercepted precipitation; iii) 

reduces runoff and increases water holding capacity of soils, leading to increased direct 



 

112 

 

 

evaporation from the soils. For example, evapotranspiration (ET) estimated for mean density of 

vegetation for a coarse pixel, will most likely be different from ET averaged using two adjacent 

fine resolution pixels with different vegetation densities (Rowe, 1993; Wood, 1997). Also, the 

temporal (seasonal) changes in vegetation (i.e., dormancy, leaf emergence, mid-season, and 

senescence) alter the canopy (and stomatal) conductance, that leads to non-linear redistribution of 

water and energy fluxes at the ground surface.  

Therefore, the natural environment is an intricate system formed of mutually interlinked 

components (soil, water, vegetation, and atmosphere). Understanding the whole ecosystem 

functionality depends on our capacity to understand the soil-water-vegetation-climate interactions 

and their impact on driving the water and energy fluxes (Avissar, 1995; Pielke et al., 1998). For 

example, plants absorb carbon dioxide through photosynthesis, and release water vapor through 

evapotranspiration, and influence vapor pressure deficit (VPD), and air temperature through their 

changing reflectivity (albedo). These feedback mechanisms change with soil wetness conditions, 

growth stage and density of vegetation, atmospheric gradient etc. Therefore, mapping and 

quantifying the land surface interactions operating on a wide range of spatial and temporal scales 

are extremely important. A classic microwave radiative transfer model (RTM) is used to 

characterize the soil-vegetation properties to estimate soil moisture (Njoku and Kong, 1977; Ulaby 

et al., 1986). This is a linear model, which ignores higher order non-linear interactions among soil 

and vegetation properties. A Taylor’s error propagation method is used to quantify the soil-

vegetation interactions observed in microwave RTM which are then associated with evaporation 

fraction (EF), sensible heat (H), and VPD. The soil-vegetation interactions are categorized as, i) 

within vegetation variables (e.g., VOD, scattering albedo (ω), ); ii) vegetation (i.e., VOD) and 

surface temperature (TS); iii) brightness temperature (TB) and vegetation variable (e.g., VOD or 
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scattering albedo (ω)); iv) between vegetation variables e.g., VOD and scattering albedo (ω). These 

interaction terms hereafter in the paper are referred to as land surface interactions. Since, 

vegetation water content and brightness temperature are also an indicator of the availability of soil 

moisture and fluctuations in surface emissivity, therefore interactions derived here are an 

indication of all vegetation-soil moisture-temperature-soil components. These interactions are also 

analyzed with the variability in the coefficient of variation (CV), and found to be strongly 

correlated. Based on our analysis, the Neelam and Mohanty, 2018 (submitted) model is validated 

and further extended to incorporate fluxes.  

The objectives of this paper are as follows, i) To improve the soil moisture retrieval 

accuracy by incorporating the within-pixel heterogeneity in VWC; ii) To map the variability in the 

soil-vegetation interactions in RTM with respect to hydroclimates, temporal scales, and different 

land covers; iii) To analyze the relationship between the soil-vegetation interactions with EF, H 

and VPD. In summary, we explore the relationship between land surface interactions observed at 

the L-band microwave frequencies, and fluxes like EF and H.  

5.3 Data 

5.3.1 SMAP Satellite Products 

The SMAP satellite L-band mission was launched by NASA in 2015 (Entekhabi et al., 

2010) to retrieve global soil moisture data (top 0-5 cm surface layer). The SMAP Level-3 (Version 

4, SPL3SMP) daily composites which are gridded on 36-km on Equal-Area Scalable Earth grid 

ver.2 (EASE-2) is used for the analysis (Chan et al., 2018). Currently, the passive soil moisture 

products are retrieved from SMAP TB radiometer data using the baseline Single Channel 

Algorithm (SCA) V-pol. This data is freely available at NASA National Snow, and Ice Data Center 

Distributed Active Archive Center (NSIDC DAAC) (http://nsidc.org/data/SPL3SMP). The 

http://nsidc.org/data/SPL3SMP_E
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SPL3SMP product brightness temperature, soil moisture along with ancillary data, i.e., vegetation 

optical depth, (VOD), albedo (ɷ), surface roughness (RC), and surface temperature (ST), are used 

in the soil moisture retrieval. The analysis is conducted according to each land cover class as 

defined by International Geosphere Biosphere Programme (IGBP), Table 5.1 and Fig 5.1.  
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Table 5.1    IGBP Land Cover Classifications 

ID MODIS IGBP Land Classification s h b ɷ Stem factor 

0 Water -- 0 0 0 -- 

1 Evergreen needleleaf forest 1.60 0.160 0.100 0.05 15.96 

2 Evergreen broadleaf forest 1.60 0.160 0.100 0.05 19.15 

3 Deciduous needleleaf forest 1.60 0.160 0.120 0.05 7.98 

4 Deciduous needleleaf forest 1.60 0.160 0.120 0.05 12.77 

5 Mixed forest 1.00 0.160 0.110 0.05 12.77 

6 Closed shrub lands 1.00 0.110 0.110 0.05 3.00 

7 Open shrub lands 1.10 0.110 0.110 0.05 1.50 

8 Woody savannas 1.00 0.125 0.110 0.05 4.00 

9 Savannas 1.56 0.156 0.110 0.080 3.00 

10 Grasslands 1.56 0.156 0.130 0.050 0.150 

11 Permanent wetlands 1.00 0 0 0 4.00 

12 Croplands-Average 1.08 0.108 0.110 0.050 3.50 

Wheat 0.83 0.083 TBD TBD TBD 

Mixed (Wheat, Barley, Oats) 1.08 0.108 TBD TBD TBD 

Corn 0.94 0.094 TBD TBD TBD 

Soybean 1.48 1.48 TBD TBD TBD 

13 Urban and built-up -- 0 0.100 0.030 6.49 

14 Cropland/natural vegetation mosaic 1.30 1.30 0.110 0.065 3.25 

15 Snow and ice -- 0 0 0 0 

16 Barren or sparely vegetated 1.50 0.150 0 0 0 
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Figure 5.1    The different IGBP land cover classes across continental USA. 
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5.3.2 Other Remote Sensing Products   

The Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) for topography, 

the State Soil Geographic (STATSGO) for soil texture and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) MCD15A3H for Leaf Area Index (LAI) across Conterminous United 

States (CONUS) at 1 km are used to estimate within pixel (36 km) topographic, textural and 

vegetation features i.e., mean and standard deviation of elevation, slope, curvature, % sand, % clay 

and LAI.  Terra/MODIS MOD13A3 NDVI data at 1 km and MCD12C1 (Landcover) at 500 m are 

used to estimate mean and standard deviation of vegetation water content from MODIS NDVI 

according to the formulation provided in SMAP L2 Algorithm Theoretical Basis Documents 

(ATBD) Zhan et al., 2008. 

5.3.3 Land Surface Models Soil Moisture 

The soil moisture simulated from three Land Surface Models (LSMs) (Noah, Mosaic, and 

VIC) are used for validation purpose. The Noah model has four soil layers: 0–10 cm, 10–40 cm, 

40–100 cm, and 100–200 cm. The Mosaic model has three soil layers: 0–10 cm, 10–60 cm, and 

60–200 cm. Three soil layers are used in the VIC model, with a 10 cm top layer and spatially 

varying depths for the other two layers. The topsoil layer 0-10 cm soil moisture from Noah, VIC 

and Mosaic models are used in the analysis. The first two models (Noah and Mosaic) emerged 

within the Soil Vegetation Atmosphere Transfer (SVAT) scheme for coupled atmospheric 

modeling with a focus on the energy and water flux exchange with little calibration. While the VIC 

model is designed as uncoupled hydrological model with focus on flood simulation and 

considerable calibration. As a result, all three LSMs are considered as both SVAT and semi-

distributed hydrological models (Lohmann et al., 2004). 
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Table 5.2    The AmeriFlux stations selected across CONUS for soil moisture validation. 

 

Site Latitude Longitude Elevation IGBP Climate 

Koppen 

Amargosa Desert Research Site 

(ADR) 

36.7653 -116.6933 842 BSV Bwh 

RCEW Low Sagebrush (Rls) 43.1439 -116.7356 1608 CSH Bsh 

Reynolds Creek Wyoming big 

sagebrush (Rws) 

43.1675 -116.7132 1425 OSH Bsk 

Santa Rita Grassland (SRG) 31.7894 -110.8277 1291 GRA Bsk 

Walnut Gulch Lucky Hills Shrub 

(Whs) 

31.7438 -110.0522 1370 OSH Bsk 

Sierra Critical Zone, Sierra 

Transect, Sierran Mixed Conifer 

(CZ3) 

37.0674 -119.1951 2015 
  

RCEW Mountain Big Sagebrush 

(Rms) 

43.0645 -116.7486 2111 CSH Bsh 

Southern California Climate 

Gradient - Pinyon/Juniper 

Woodland (SCw) 

33.6047 -116.4527 1281 OSH 
 

Santa Rita Mesquite (SRM) 31.8214 -110.8661 1120 WSA Bsk 

Walnut Gulch Kendall Grasslands 

(Wkg) 

31.7365 -109.9419 1531 GRA Bsk 

Sierra Critical Zone, Subalpine 

Forest, Shorthair (CZ4) 

37.0675 -118.9867 2710 ENF 
 

Rosemount-C7 (Ro2) 44.7288 -93.0888 292 CRO Dfa 

Valles Caldera Sulphur Springs 

Mixed Conifer (Vcs) 

35.9193 -106.6142 2752 ENF Dfb 

Valles Caldera Mixed Conifer 

(Vcm) 

35.8884 -106.5321 3030 ENF Dfb 

 

 

 

 

 

 

 

 

http://ameriflux.lbl.gov/sites/siteinfo/US-ADR
http://ameriflux.lbl.gov/sites/siteinfo/US-Rws
http://ameriflux.lbl.gov/sites/siteinfo/US-Rws
http://ameriflux.lbl.gov/sites/siteinfo/US-Whs
http://ameriflux.lbl.gov/sites/siteinfo/US-Rms
http://ameriflux.lbl.gov/sites/siteinfo/US-SCw
http://ameriflux.lbl.gov/sites/siteinfo/US-SCw
http://ameriflux.lbl.gov/sites/siteinfo/US-SCw
http://ameriflux.lbl.gov/sites/siteinfo/US-SRM
http://ameriflux.lbl.gov/sites/siteinfo/US-Wkg
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5.3.4 In-Situ Measurements 

5.3.4.1 USCRN 

The US Climate Reference Network (USCRN; Diamond et al. 2013) encompasses a 

number of sites located across USA. As these sites are located across a wide range of vegetation 

types and hydroclimates they are highly suitable for validation purposes. However, to avoid as 

much uncertainty, we consider stations that are within 10 km from the center of a SMAP pixel. 

This criterion reduces the number of validation stations from 150 to 20 stations within the CONUS. 

The soil moisture measurements from top 5 cm of soil profile are used to evaluate the performance 

of the proposed improved soil moisture product.  

5.3.4.2 AmeriFlux 

The flux and meteorological data measurements from AmeriFlux stations located spatially 

across 20 different sites are used in the analysis. Of which only 12 sites listed in Table 5.2 are used 

to evaluate the performance of improved soil moisture product. The daily and half-hourly data 

from 06:30 AM to 08:30 AM are used to estimate mean flux observations to be in synchronous 

with SMAP overpass. The eddy covariance method (EC) was used for flux observations at all sites. 

The data includes flux measurements (the latent heat (LE), sensible heat (H), and net radiation 

(Rn)) and meteorological variables (e.g., air temperature, relative humidity, saturated vapor 

pressure deficit, and precipitation). The AmeriFlux station US-Ro2 located in Minnesota (Latitude 

= 43.17, and Longitude = -93.09) and  Us-Vcs (Latitude = 35.92, and Longitude = -106.61) and 

Us-Vcm (Latitude = 35.89 and Longitude = -106.53) both located in New Mexico are used to 

evaluate the transferability of optimized parameters for sites with similar heterogeneity. The US-

Ro2 site is located in an agricultural site, farmed in accordance with the dominant farming practice 

in the region: a corn/soybean/clover rotation with chisel plow tillage in the fall following corn 
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harvest and in the spring following soybeans. The climate of this location is classified as 

continental humid (Dfa under Koppen classification). The other two sites, US-Vcm and US-Vcs, 

are located in 1200 km2 Jemez River basin with humid climate (Dfb) and landcover classified as 

Evergreen Needle leaf Forests. The field capacity for continental USA is obtained from NLDAS 

soil hydraulic parameters. 

5.4 Methods  

5.4.1 Soil Moisture Retrieval Algorithm  

The tau-omega model which is an approximation of the non-linear radiative transfer theory 

is used to simulate brightness temperature (𝑇𝐵) under vegetation (Mo et al., 1982):  

𝑇𝐵(𝑝,𝑓,𝜃) =  𝑒𝑝,𝑓,𝜃. 𝑇𝑒𝑓𝑓 . ϒ𝑝,𝑓,𝜃 + 𝑇𝑐. (1 − 𝜔𝑝,𝑓,𝜃). (1 − ϒ𝑝,𝑓,𝜃) + 

                    𝑇𝑐. ϒ𝑝,𝑓,𝜃. (1 − 𝜔𝑝,𝑓,𝜃) (1 − ϒ𝑝,𝑓,𝜃). 𝑟𝑝,𝑓,𝜃 (5.1) 

ϒ𝑝,𝑓,𝜃 = exp (−
𝜏𝑝,𝑓

cos 𝜃
)       (5.2) 

where p, θ, and f denote polarization, look angle and frequency respectively. This study considers, 

p = V-polarization, with constant look angle of 40º at 1.4 GHz frequency. The radiative transfer 

(equation 5.1) is essentially approximated as a summation of three components, i) the direct 

emission by soil and one-way attenuation by canopy (the first term); ii) direct upward emission by 

canopies (the second term), and iii) emission by plants and reflected by soil and thereafter 

attenuated by vegetation (the third term). The effective rough surface reflectivity 𝑟𝑝,𝑓,𝜃, hereafter 

defined as 𝑅𝑟 is first modeled using Choudhury et al. [1979], which involved a single roughness 

parameter, the root mean square (RMS) height ‘σ’ given as;  

𝑅𝑟 = 𝑅𝑠 𝑒(−𝐻𝑟𝑐𝑜𝑠2(𝜃)) (5.3) 

𝐻𝑟 = 4 𝑘2𝜎2            (5.4) 
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where 𝑅𝑠is smooth surface reflectivity, 𝐻𝑟 is the roughness parameter, 𝜆 is the wavelength of 

observation and 𝑘 =
2𝜋

𝜆
 is the wavenumber. The physical attributes of the vegetation that influence 

the soil emissivity are: the transmissivity of the vegetation ϒ𝑝,𝑓,𝜃, the single scattering albedo 

𝜔𝑝,𝑓,𝜃 and the physical temperature of the canopy 𝑇𝑐. The transmissivity of vegetation at a constant 

look angle is given by equation (5.2) where,  𝜏𝑝,𝑓 is the optical thickness of the vegetation, also 

referred to as VOD. The amount of soil microwave emission that is absorbed and scattered as 

propagated through canopy is given by the transmissivity of the vegetation and scattering albedo.  

The loss factor is dependent on the volume fraction of water in the canopy and the architecture of 

the vegetation. The extinction optical thickness 𝜏𝑝 is estimated as a product of vegetation water 

content (VWC) and structure of the canopy (b). Due to the complex geometry of the natural 

canopies, approximate values are estimated for canopy structure (b) from land cover data.  

The scaling method employed using VWC on vegetation optical depth (VOD) to account for 

within pixel VWC heterogeneity is, 

new VOD = original VOD (SNR) (5.5) 

where SNR is signal to noise ratio = 
 µ

𝜉
 , µ is the pixel mean and  𝜉 is the standard deviation of 

VWC derived from 1 km NDVI (MOD13A3) for each pixel. In addition to scaling VOD, the 

roughness model proposed by Neelam et al., 2018 is also used in the analysis. Currently for a given 

landcover, SMAP uses roughness parameter 𝐻𝑟 that is constant with spatio-temporal scales 

(SMAP ATBD, O’Neil., 2018). A brief description of roughness formulation proposed by Neelam 

et al., 2018 is given in equations 5.6-5.8, 

𝐻𝑛𝑒𝑤(𝑖) = 𝐻𝑚𝑖𝑐𝑟𝑜(𝑖) × 𝐻𝑚𝑎𝑐𝑟𝑜(𝑖) (5.6) 

𝐻𝑚𝑖𝑐𝑟𝑜(𝑖) = exp (−
𝑆𝑀(𝑖) ×(1−𝑁𝐿𝐴𝐼(𝑖))

𝐶𝐹(𝑖)
)           (5.7) 
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𝐻𝑚𝑎𝑐𝑟𝑜(𝑖) = (𝑠𝑡𝑑. 𝑐𝑢𝑟𝑣(𝑖))𝑎             (5.8) 

where, the micro- (small-scale) ‘𝐻𝑚𝑖𝑐𝑟𝑜’ roughness parameter is defined as an exponential function 

of soil moisture (SM), clay fraction (CF) and normalized leaf area index (NLAI) and the macro- 

(large-scale) ‘𝐻𝑚𝑎𝑐𝑟𝑜’ roughness parameter as standard deviation of curvature, ‘i’ is per pixel. The 

parameter ‘a’ determines the scale of macro-roughness contributing to total surface roughness 

which varies from 0-2.  

Therefore, in summary, we evaluate, i) SMAP soil moisture i.e., using SMAP VOD and 

SMAP surface roughness (h); ii) soil moisture estimated using SMAP VOD and new roughness 

(equation 5.8); iii) soil moisture estimated using new VOD (equation 5.3) and SMAP surface 

roughness (h) (equation 5.5); iv) soil moisture estimated using new VOD (equation 5.3) and new 

roughness (equation 5.8). The performance of these products are evaluated under different land 

covers, hydroclimates and temporal scales using three metrics as suggested by Entekhabi et al. 

(2010), i) unbiased root-mean-square error (ubRMSE); ii) root-mean-square error (RMSE); and 

iii) correlation coefficient (R).  

5.4.2 Error Propagation through Retrieval Algorithm 

The errors associated with soil moisture retrievals through remote sensing platforms are 

mainly contributed by uncertainties in land surface variables/parameters in the retrieval model, 

apart from shortcomings of theoretical knowledge of microwave theory. Taylor’s series expansion 

for error propagation is analyzed to evaluate the performance of radiative transfer equation. The 

equation is expanded under first and second order series assuming independence as well as 

correlations between land surface variables.  The correlation between land surface variables i.e., 

(scattering albedo, vegetation water content), (scattering albedo, brightness temperature), 

(scattering albedo, roughness), (vegetation water content, brightness temperature), (roughness, 
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vegetation water content), and (roughness, brightness temperature) estimated within each IGBP 

classification is used in the analysis. The measurement uncertainties in land surface variables are 

considered according to the SMAP ATBD algorithm. We consider two cases of vegetation water 

content uncertainty (sVWC =0.05 kg/m2, and =0.50 kg/m2).  

5.4.3 Taylor’s First and Second Order Propagation of Uncertainty 

The Taylor’s series expansion is an approximate derivative based technique which renders 

an analytical expression for the uncertainty of output given the uncertainties in the inputs. The 

function is assumed to be continuously differentiable up to second order, along with normality 

assumption for the inputs (Heuvelink and Burrough 1989). This technique provides high level of 

accuracy, and predicts the entire output distribution. The propagation technique is used to estimate 

root mean square error (RMSE) spatiotemporally for each soil moisture observation. Consider y 

be some function of n inputs 𝑥𝑖 with some distribution. Then, the first and second order Taylor 

series approximation expanded about the input means 𝑥̅𝑖 are shown in equation (5.9) and (5.10) 

below,  

𝑦 ≈ 𝑓(𝑥̅1, … , 𝑥̅𝑛) +  ∑
𝜕𝑓

𝜕𝑥𝑖
(𝑛

𝑖=1 𝑥𝑖 − 𝑥̅𝑖)  +  remainder   (5.9) 

𝑦 ≈ 𝑓(𝑥̅) +   ∑
𝜕𝑓

𝜕𝑥𝑖
(𝑛

𝑖=1 𝑥𝑖 − 𝑥̅𝑖) +  
1

2!
 ∑  𝑛

𝑗=1  ∑  𝑛
𝑖=1

𝜕2𝑓

𝜕𝑥𝑖 𝜕𝑥𝑗
 (𝑥𝑖 − 𝑥̅𝑖) (𝑥𝑗 − 𝑥̅𝑗)  +  remainder    

 (5.10) 

Based on Eqn (5.9), the first order Taylor’s variance (𝜎𝐹𝐹
2 ) is given as,  

𝜎𝐹𝐹
2 = ∑ ∑   𝑛

𝑗=1 {
𝜕𝑓

𝜕𝑥𝑖
  

𝜕𝑓

𝜕𝑥𝑗
 𝜎𝑥𝑖

𝜎𝑥𝑗
  𝜌 𝑖𝑗

}
 

𝑛
𝑖=1  (5.11) 

and the second order Taylor’s variance (𝜎𝑆𝐹
2 ) is based on Eqn (5.10),  
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𝜎𝑆𝐹
2 = ∑ ∑   𝑛

𝑙=1 {
𝜕𝑓

𝜕𝑥𝑘
  

𝜕𝑓

𝜕𝑥𝑙
 𝜎𝑘𝜎𝑙 𝜌 𝑘𝑙

}
 

𝑛
𝑘=1 +

1

4
 ∑ ∑  𝑛

𝑗=1
 𝑛

𝑖=1 ∑ ∑   𝑛
𝑙=1 {(𝜌 𝑖𝑘

𝜌 𝑗𝑙 
 𝜎𝑘𝜎𝑖𝜎𝑗𝜎𝑙 +𝑛

𝑘=1

 𝜌 𝑖𝑙
𝜌 𝑗𝑘

 𝜎𝑖𝜎𝑗𝜎𝑙𝜎𝑘)
𝜕2𝑓

𝜕𝑥𝑖 𝜕𝑥𝑗

𝜕2𝑓

𝜕𝑥𝑘 𝜕𝑥𝑙
 }

 

   (5.12) 

where 
𝜕𝑓

𝜕𝑥𝑖
 ,  

𝜕2𝑓

𝜕𝑥𝑖 𝜕𝑥𝑗
 , 𝜌 𝑖𝑗

  are the first, second derivatives and correlation coefficient of  f with 

respect to i and j inputs respectively, while 𝜎𝑥𝑖
 is the standard deviation in x. The total land surface 

interaction errors observed using RTM are estimated as the difference between the second (Eqn 

5.12) and the first (Eqn 5.11) order errors. They include lower order linear terms (
𝜕𝑓

𝜕𝑥𝑖
 ×  

𝜕𝑓

𝜕𝑥𝑗
), pure 

quadratic terms (
𝜕2𝑓

𝜕𝑥𝑖
2) and higher order interaction terms (

𝜕2𝑓

𝜕𝑥𝑖 𝜕𝑥𝑗
 ). These terms are assumed to 

represent within variable scattering and between variables scattering. The effect of correlation 

between land surface variables on total errors are analyzed are measured as the difference between 

the errors calculated with correlation and errors without correlations.  
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Figure 5.2    Variability in SMAP Soil Moisture Error (Left: First Order (A-B); Right: 

Second Order(C-D)) with Coefficient of Variation (CV) for two classes of uncertainties 

(Top: sVWC=0.05 kg/m2, Bottom: sVWC=0.5 kg/m2) 
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5.5 Results and Discussion 

The soil moisture error propagates through space and time due to heterogeneity and 

uncertainty associated with land surface variables used in the retrieval algorithm. As mentioned 

earlier, VOD (=VWC × B) contributes significantly towards soil moisture errors. And the 

Coefficient of Variation (CV) which measures the dispersion in data relative to the mean is used 

to estimate dispersion in VWC. The CV of VWC reflects both the spatial variability and temporal 

changes (seasonality, annual, human and/or natural interference). A significant trend was observed 

between total soil moisture errors and the land surface interaction errors (Eqn 5.12 - Eqn 5.11) 

with CV of VWC. It is observed that, the errors increased exponentially with increase in mean 

VWC, and followed a curvilinear path for variability in the standard deviation of VWC within a 

pixel. For CV > 1 the errors reduced rapidly, as shown in Fig 5.2. Therefore, CV =1 is considered 

as the transitional state to classify ecosystem into regimes based on vegetation density and land 

surface interactions. Since, CV of VWC is highly correlated with soil moisture errors and 

associated land surface interactions, it is therefore used to scale VOD. The ecosystem is classified 

into regimes namely, i) homogeneous regime (within pixel CV >1, with low land surface 

interactions); and ii) heterogeneous regime (within pixel CV<1, with high land surface 

interactions). It was further observed that, the variability in land surface interactions within each 

regime are controlled by the spatio-temporally evolving soil moisture and temperature dynamics. 

This led to classification of each homogeneous and heterogeneous regime into water-rich (WR) 

and water-limited (WL) domain based on soil moisture threshold.  

The results are discussed are three sections, i) validation; ii) land surface interactions. In 

the validation section, the efficacy of VOD scaling using Eqn 5.5 is discussed. The soil moisture 

retrieved using scaled VOD is validated using, i) reduced RMSE’s obtained using Eqn 5.11 and 
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5.12; ii) ground soil moisture from USCRN; iii) using soil moisture estimated through a simple 

water balance. The land surface interactions observed as difference between Eqn 5.12 and 5.11 are 

analyzed under, i) land cover; ii) ecosystem: homogeneous and heterogeneous; iii) climate: dry, 

temperate, and continental. 

5.5.1 Validation: Taylor’s Error Estimates    

The soil moisture RMSE’s are evaluated for SMAP VOD and scaled VOD (Eqn 5.5) using 

Taylor’s first and second order errors (Eqn’s 5.11 and 5.12). The soil moisture obtained using Eqn 

5.5 is termed as improved soil moisture (ISM). We consider two levels of VWC uncertainty i.e., 

sVWC = 0.05 kg/m2 and sVWC = 0.50 kg/m2, hereafter they are referred to as s1 and s2 

respectively. There is no difference between first and second order errors for s1 whereas, for s2 

these differences increased to an average of ~ 44 % and ~ 28 % with SMAP and ISM respectively, 

Table 5.1. A significant amount of these difference are due to forests and cropland classes. 

However, with ISM an average of ~ 40 % improvement in both first and second order errors is 

estimated for s1, whereas, for s2 an average improvement of ~ 27 % in first and ~ 31 % in second 

order errors are estimated.   

The effect of correlation is similar on first and second order errors with s1 and with s2, the 

effect becomes significantly different for first and second order errors. The effect of correlation is 

significant for forest classes (LC-1, 4, 5), and accounting for it reduced total errors during the 

winter, while increased during summer and no effect during spring and fall, Fig 5.5. For forests 

classes the seasonality in correlation between VWC and TB is evident (LC-4, 1, 5 and 2), as it 

decreased during summer due to increased photosynthetic activity after the winter dormancy and 

leaf offseason, Fig 5.4. And for land cover classes such as grasslands, croplands, and 

croplands/natural mosaic, the VWC_TB decreased twice, once during April to October which is 
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the growing season, and again during the winter season. The high positive correlation between 

VWC-TBV during winter for forest classes could be due to snow cover on leaves. The snow-

covered vegetation increases the scattering even though vegetation is under dormancy during 

winter. This also increases H_TBV during winters and decreases during the growing season 

because of the increased masking effect of vegetation, which reduces the effect of surface 

roughness on brightness temperature except for LC-10 (grasslands). In case of grasslands, the 

masking effect by vegetation is reduced due to low VWC (mean = 0.7 kg/m2) content, because of 

which the effect of roughness on brightness temperature is high. The evergreen needle forests (LC-

1) observe the lowest VWC_TBV correlation among other forest classes, because of its long, thin 

leaves of conifers shape in contrast to broad leaf vegetation, whereas LC-2 (evergreen broadleaf 

forests) and LC-4, 5 (deciduous broadleaf and mixed forests respectively) is the highest 

correlation. The mean variability in correlation and interactions errors are presented according to 

IGBP land covers in Table 5.2. For mixed forests (LC-5), woody savannas (LC-8) and 

cropland/natural mosaic (LC-14), behave similarly, though the magnitude of error is smaller for 

LC-8, and LC-14 due to their low VWC. The high positive correlation between the vegetation 

variables for these land covers suppresses the scattering error exhibited by VOD, Fig 5.3 and 5.5. 

Because of which uncorrelated errors are higher than correlated errors. In addition, due to the small 

effect of seasonality on these classes, when compared to other forest classes the errors remain 

nearly constant. The deciduous broadleaf forests (LC-4) and evergreen needleleaf forests (LC-1) 

show a similar trend with seasonality. However, this effect is prominent for LC-4 than perennial 

LC-1. Due to the flat leaves structure of deciduous broadleaf forests, higher vegetation scattering 

is observed, because of which the correlation between scattering albedo and brightness temperature 

(ɷ_TBV) is significantly negative than coniferous forests with scale/needle like vegetation. Unlike 
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LC-5 where high positive correlation led to error suppression, in case of LC-1, and LC-4 the high 

negative and zero correlation (no effect on error) enhances the error because of which correlated 

errors are higher than uncorrelated errors, Table 5.2. 

5.5.2 Validation: Ground and LSM Soil Moisture   

The improved soil moisture and SMAP soil moisture are validated using, i) using ground 

soil moisture from USCRN stations; ii) LSM’s soil moisture i.e., Mosaic, VIC, and Noah. The 

validation is conducted at two temporal scales, i) using daily data for crop growing season, i.e., for 

June, July, Aug and September; ii) the monthly. The performance metrics (unbiased RMSE, RMSE 

and bias) are evaluated according to different IGBP land covers, and hydroclimates. In addition, 

SMAP corrected for roughness using Eqns (5.6) and (5.8) is also evaluated. The performance 

metrics are improved with VOD corrected soil moisture as shown in Fig 5.9. Generally, soil 

moisture estimation is observed to improve for arid /semi-arid climate with grasslands and 

croplands land cover classes by refining soil roughness parametrization alone. On the other hand, 

forest classes and natural vegetation mosaics with temperate and continental climate, correcting 

for both soil roughness and vegetation improves soil moisture estimation as shown in Table 5.4.  

5.5.3 Validation: A Simple Water Balance  

A simple water balance model is adapted from Orth and Seneviratne (2015), where a 

dependency between evapotranspiration (𝐸 ) and soil moisture (SM) is given as;  

𝜆𝜌𝑤𝐸 

𝑅 
= 𝛽𝑜  (

𝑆𝑀 

𝐶𝑠
)

𝛾

  with γ >  0 and  𝛽𝑜  ≤ 0      (5.13) 

where 𝜆 is the latent heat of vaporization (in J/kg), 𝜌𝑤 is the density of water (in kg/m3), and R 

denotes net radiation. In Eqn (5.13), SM is scaled by soil water- holding capacity 𝐶𝑠 (in mm), such 

that the function operates on the degree of saturation. Another model parameter 𝛽𝑜 (unitless), 

allows to capture the evaporative resistance of the soil and the vegetation, while the parameter γ 
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(also unitless) ensures a strictly monotonic increasing function of evapotranspiration ratio. The 

data from 14 AmeriFlux stations (Table 5.2) are used in the analysis. The data from 11 Ameriflux 

stations are used to optimize the parameters in Eqn (5.13). The measurements which satisfy 50 % 

≥
𝐿𝐸+𝐻

𝑅−𝐺
≤ 100 %, where LE, H, R, G represent latent heat, sensible heat, net radiation and ground 

heat, are selected so they comply as close with energy closure (Wilson et al, 2002). These sites are 

located in regions are located in regions with VWC CV ranging from 0.3 and 0.6. The parameters 

𝛽𝑜 and γ optimized in Eqn (5.13) are transferred to sites Vcs, Vcm, and Ro2 with CV in the same 

range (0.3-0.6), Fig 5.8. The performance metrics in Table 5.4 indicates that, the ISM estimated 

after scaling VOD according to heterogeneity in VWC matches better with EF estimated SM. This 

also corroborates our hypothesis that, quantifying and incorporating vegetation heterogeneity 

(dominant variable) improves representation of soil water dynamics.  

5.5.4. Land Surface Interactions: Land Cover 

The trend in land surface interactions varies under different land covers, seasons, and hydro 

climates, however, the trend remains similar for s1 and s2. It is observed that, the mean trend in 

land surface interactions follow that of VWC, while the variability in trend is caused due to soil 

moisture, Fig 5.6. An ~ 15 % land surface interactions are reduced for each land cover class (higher 

for forests) by accounting for heterogeneity in VWC through CV.  

The land surface interactions are prominent for IGBP classes in the order of forests 

(evergreen needle leaf forests LC-1, evergreen broadleaf forests LC-2, deciduous broadleaf forests 

LC-4, mixed forest LC-5), woody savannas (LC-8) and cropland/natural mosaic (LC-12, 14) as 

shown in Fig 5.7, where an average of 0.35 m3/m3 interactions were observed with SMAP which 

reduced to 0.22 m3/m3 with ISM.   
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As mentioned earlier, a significant correlation between land surface interactions and CV is 

observed with higher interactions observed for CV < 1. This pattern reflects the signal trapping 

behavior of dense vegetation, [Dickinson, 1983], where the radiation reflected from soil surface 

and understory at lower layers of canopy interacts (i.e., absorbed or further scattered) with 

vegetation at higher levels in the canopy (e.g., trees) and this intensifies the interactions. In regions 

with high spatial variability in VWC, the signal trapping behavior is reduced which decreases 

interactions between the soil-vegetation components. These pixels are mostly observed in the 

mountainous regions ad for with land cover classes of savannas, shrublands and grasslands with 

VWC ≤ 2-3 kg/m2. 

5.5.5. Land Surface Interactions: Partition of Ecosystem 

A regime shift can result from a change in dominant feedback occurring at some critical 

threshold in soil-vegetation-atmosphere system. And these feedback mechanisms evolve 

spatiotemporally and eventually stabilize for a combination of land-atmosphere components.  The 

significance of vegetation in remote sensing platforms i.e., top-down approaches (truck-based 

radiometers, airborne, and satellite) and its impact on land surface interactions led to classify the 

ecosystem into fundamentally two regimes; i) homogeneous (CV > 1), and ii) heterogeneous (CV 

< 1). This classification is predominantly proposed on CV of VWC. It was further observed that, 

the variability in land surface interactions are conditioned on the combination of soil moisture and 

temperature variability. This led to further classify the regimes mentioned above as water rich 

(WR) and water limited (WL) based on SM threshold at 0.15 m3/m3. Below this SM threshold no 

land surface interactions are observed.  A higher soil moisture increased the nonlinearity of the 

system through higher land surface interactions, Fig 5.8. A conceptual design was already provided 

in Neelam and Mohanty, [2015, 2017] based on Monte Carlo Simulations. However, an 
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quantification of these interactions were not provided. In this paper, in addition to quantification 

of land surface interactions, their relationship with EF, H, and VPD is also discussed.  

5.5.5.1 Homogenous Regime 

The homogeneous regime observes negligible land surface interactions implying the 

environment is nearly linear here, Table 5.2. The grasslands (LC-10) and woody savannas (LC-8) 

are the only land cover class under this regime with visible land surface interactions. For 

homogeneous regimes, the interactions are driven by soil moisture and vegetation. This regime 

also covers shrublands and few pixels of croplands with no land surface interactions. 

 

5.5.5.2 Heterogeneous Regime 

The land cover classes for heterogeneous regimes are mainly forest (LC-1, 2, 4, 5), woody 

savanna (LC-8), and cropland (LC-12, 14). The heterogeneous regimes are characterized by high 

land surface interactions, which varies with magnitude of VWC, TS, and SM. For example, the 

effect of TS on land surface interactions are not observed except for mixed forests and croplands. 

That is, TS decreased land surface interactions for mixed forests and increased for croplands, while 

it had no effect on other land cover classes. The mixed forests which are predominantly at the 

border of Appalachian/blue ridge mountains (occupying the piedmont zone) skirting coastal plains 

show continuous presence of leaves with higher water table, and lower relative humidity. This may 

be attributed towards, the simultaneous contribution of vegetation, SM, and TS towards land 

surface interactions for mixed forests. In case of broadleaf forests, the wide leaf structure may 

result in higher within and with vegetation scattering when compared to coniferous or mixed 

forests which have needle like leaves. Thus, the land surface interactions for broadleaf forests are 

more vegetation controlled than SM. The relationship between land surface interactions and 

atmospheric variables i.e., EF, VPD, and H is unique for each land cover class under this regime. 
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For example, mixed forests and croplands behave widely different under WR conditions. For 

mixed forests the land surface interactions and EF (H and VPD) are inversely (directly) 

proportional.  Whereas, for croplands the interactions are directly (inversely) proportional to EF 

(H and VPD) for croplands, a behavior that is similar to WL conditions. And this difference may 

be attributed towards the density of biomass, i.e., the high TS and VPD can exert high stress on 

small plants (VWC ≤ 2 kg/m2) to transpire beyond its capability which can lead to false stress alert 

on plants to stop transpiring.  However, with increase in VWC this negative stress is removed. 

Therefore, for less densely vegetated regions, the land surface interactions are primarily controlled 

by soil moisture followed by a combination of temperature and vegetation. In case of WL regimes 

(homogeneous and heterogeneous), there are no significant land surface interactions realized. 

For heterogeneous WR regimes, EF is governed by vegetation heterogeneity and surface 

temperature than SM variability. While for homogeneous regimes, EF is observed to be strongly 

governed by SM variability than heterogeneity in vegetation and surface temperature. The EF, 

VPD, and H measurements also differ significantly based on regimes, Table 5.6. 

5.5.6. Land Surface Interactions: Climate 

The impact of SM and VWC variability on land surface interactions under homogeneous 

regimes is prominent in case of semi-arid climate, while under temperate climate zones no effect 

of SM on interactions are seen.  The increase in VPD and H decreased land surface interactions, 

and this relationship is more significant under arid climate followed temperate and continental 

climate. Each of the climate zones covers both homogenous and heterogeneous regimes (and also 

WR and WL). 
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5.5.6.1 Dry Climate 

The regions under dry climate have high annual temperature with potential evaporation 

and transpiration higher than precipitation. The dry climate is further classified as dry arid (desert-

BW(h,k)) and dry semiarid (steppe-BS(h,k)). This climate mostly observes the land covers such 

as grasslands, shurblands, barren and some croplands. The land surface interactions are ≤ 0.01 

m3/m3, and observed mostly for croplands under semi-arid climate. The interactions observed 

under this climate are soil moisture driven than vegetation. For regions under dry climates, a soil 

moisture deficit (SM ≤ 0.11 m3/m3) conditions along with high surface temperatures (TS ≈ 285 K) 

are observed during summer and spring (fall) season. The soil water in the range of 0.01- 0.1 m3/m3 

are tightly held by soil particles which restrains movement of water in and through soil matrix due 

to strong adhesive forces. The SM deficit conditions with high TS creates high VPD conditions 

which exerts stress on vegetation and soil to conserve water thereby limiting evapotranspiration 

(ET). As such, the chain of interactions between soil-vegetation-atmosphere is broken resulting in 

reduced coupled interactions. With increase in soil moisture, and decrease in temperature during 

winter season (SM ≥ 0.13 m3/m3 and TS ≈ 276 K), this behavior recedes increasing soil-vegetation-

atmosphere interactions. For regions with VWC ≥ 3 kg/m2 (SM ≥ 0.13 m3/m3), the exchange of 

water and energy fluxes are dominated by vegetation, i.e., interactions increased with EF and 

decreased with H. While, for regions with VWC ≤ 3 kg/m2 (SM ≤ 0.11 m3/m3), the exchange of 

fluxes are driven by soil i.e., interactions decrease with EF and increase slightly with H. 

5.5.6.2 Temperate Climate 

The regions with temperate climate have warm and humid summers with mild winters 

observed mainly along the eastern and western borders of USA. The subcategories of this climate 

are Cfa (humid subtropical) identified in southeastern USA, Cs (Mediterranean) in western coasts, 
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and Cfb (marine) identified sparely across USA. A wide variety of land cover types are sustained 

under this climate ranging from grasslands to forest classes.  

For humid and marine climate, the effect of temperature on interactions errors remains 

consistent across seasons for each land cover, while varies within season for Mediterranean 

climate. For humid subtropical climate (Cfa), the interactions increased with VPD and H, while 

no effect of EF is noticed. Since this region is not typically WL, the high VPD and H aids in driving 

the fluxes, increasing the land surface interactions. While for marine climate (Cfb), the land surface 

interactions decreased with VPD and H, Table 5.6. For regions under Mediterranean climate (Cs), 

generally, the land surface interactions are both TS and SM driven. All seasons except for winter, 

the land surface interactions are observed to decrease with TS. Also, the VPD and H are observed 

to decrease the land surface interactions, while EF increased them.   

5.5.6.3 Continental Climate  

The continental climate is further classified as hot (Dfa) and warm (Dfb) summers, based 

on average temperatures observed (Kottek et al., 2006). The land surface interactions under this 

climate are predominantly SM driven. A relatively higher impact of TS is observed for warm 

(Dfb).  There is no/weak effect of EF and H observed under Dfb, while the interactions decreased 

with VPD. Whereas, for Dfa the interactions decreased with H and increased with EF, while no 

effect of VPD is observed.
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Figure 5.3    Temporal variability in correlation among land surface variables for IGBP Classes that show maximum 

variability. 
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Figure 5.4    The variability in brightness temperature with mean VWC, different colors reflect the correlation between 

brightness temperature and vegetation water content (left), and monthly change (right). 
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Figure 5.5    The temporal variability in correlation errors for forest classes (IGBP - 1, 2, 4, 5). The small windows 

represent months, and two sections represent different vegetation uncertainty.  Left Panel: for vegetation uncertainty 0.05 

kg/m2, A) the effect of correlation on first order errors, Right Panel: for vegetation uncertainty 0.50 kg/m2 C) the effect of 

correlation on first order errors. 
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Table 5.3   The first and second order RMSE’s estimated for SMAP soil moisture and improved soil moisture (ISM) according to 

IGBP land cover class for vegetation uncertainties sVWC = 0.05 kg/m2 and 0.50 kg/m2. 

  
SMAP ISM 

 
First Second First 

Correlated 
Second 

Correlated 
First Second First 

Correlated 
Second 

Correlated 

IGBP 0.05 0.5 0.05 0.5 0.05 0.5 0.05 0.5 0.05 0.5 0.05 0.5 0.05 0.5 0.05 0.5 

1 0.08 0.24 0.08 0.62 0.08 0.24 0.09 0.62 0.05 0.16 0.05 0.39 
0.76 

0.05 0.16 0.05 0.39 

2 0.09 0.40 0.10 0.92 0.09 0.37 0.09 0.92 0.07 0.37 0.07 0.06 0.35 0.07 0.75 

4 0.11 0.37 0.11 1.00 0.12 0.37 0.12 1.03 0.07 0.26 0.07 0.61 0.07 0.26 0.07 0.63 

5 0.11 0.41 0.11 1.07 0.11 0.38 0.12 1.06 0.07 0.32 0.07 0.74 0.07 0.31 0.07 0.73 

6 0.02 0.08 0.02 0.10 0.02 0.08 0.02 0.10 0.02 0.07 0.02 0.09 0.02 0.07 0.02 0.09 

7 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 

8 0.06 0.23 0.06 0.38 0.06 0.22 0.06 0.38 0.04 0.18 0.04 0.27 0.04 0.17 0.04 0.27 

9 0.02 0.06 0.02 0.06 0.02 0.06 0.02 0.06 0.01 0.03 0.01 0.04 0.01 0.03 0.01 0.04 

10 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.00 0.01 0.00 0.02 0.00 0.02 0.00 0.02 

11 0.02 0.09 0.02 0.09 0.02 0.08 0.02 0.08 0.02 0.09 0.02 0.09 0.01 0.08 0.01 0.08 

12 0.02 0.06 0.02 0.07 0.02 0.06 0.02 0.07 0.01 0.03 0.01 0.04 0.01 0.03 0.01 0.04 

13 0.06 0.25 0.06 0.50 0.05 0.25 0.06 0.49 0.04 0.21 0.04 0.39 0.04 0.20 0.04 0.38 

14 0.04 0.17 0.04 0.25 0.04 0.16 0.04 0.25 0.03 0.12 0.03 0.17 0.03 0.12 0.03 0.17 

16 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 
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Figure 5.6    The temporal variability in interaction errors with mean vegetation water content (top) and mean soil moisture 

(bottom) for croplands classes (IGBP – 12 and 14) for vegetation uncertainty of 0.50 kg/m2 obtained from SMAP VOD (left) 

and CV scaled VOD (right). 
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Figure 5.7    The spatial variability of soil moisture for summer (jun-july-aug), A) SMAP soil moisture with H (equation 5.5), 

B) improved soil moisture (ISM) with H (equation 5.5), C) ISM with (equation 5.6). 
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Table 5.4    RMSE and unbiased RMSE estimated for SMAP and improved soil moisture 

(ISM) when EF estimated soil moisture is considered as true soil moisture. 

 

 

 

 

  

Month 
RMSE 

(Unbiased) 
SMAP 

RMSE 
(Unbiased) 

ISM 
ID Climate 

Jun 0.10 (0.08) 0.09 (0.03) US-Ro2 Humid-(Dfa) 
Jul 0.07 (0.04) 0.09 (0.02) US-Ro2  

Aug 0.14 (0.05) 0.07 (0.03) US-Ro2  

Total 0.10(0.07) 0.08(0.03) US-Ro2  

Jun 0.13 (0.04) 0.18 (0.03) US-Vcm Humid-(Dfb) 
Aug 0.13 (0.08) 0.05 (0.06) US-Vcm  

Sep 0.07 (0.05) 0.11 (0.04) US-Vcm  

Total 0.12(0.12) 0.12(0.08) US-Vcm  

Jun 0.09 (0.03) 0.11 (0.02) US-Vcs Humid-(Dfb) 
Jul 0.12 (0.06) 0.14 (0.04) US-Vcs  

Aug 0.14 (0.06) 0.05 (0.04) US-Vcs  

Sep 0.08 (0.08) 0.08 (0.06) US-Vcs  

Total 0.11(0.10) 0.10(0.07) US-Vcs  
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Figure 5.8    The evaporative fraction (EF) estimated soil moisture is evaluated against SMAP and VOD improved soil 

moisture. The transferability of optimized parameters in equation (5.13) is examined at three AMERIFLUX sites (US-Vcs, US-

Vcm, and US-Ro2). 
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Figure 5.9    The temporal (A) spatial (B) variability of RMSE and unbiased RMSE for SMAP and improved soil moisture 

(ISM) when USCRN, VIC, NOAH and VIC are assumed to be true soil moisture. 

. 
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Table 5.5    The performance metrics evaluated under different A) hydro climates and B) IGBP land cover classes for, 1) 

SMAP soil moisture (SMAP R & VOD); 2) soil moisture estimated using SMAP VOD and new roughness (NR); 3) soil 

moisture estimated using new VOD (NVOD) and SMAP (H); 4) soil moisture estimated using new VOD (NVOD) and new 

roughness (𝑯𝒏𝒆𝒘), where α is the macro-roughness scaling parameter. 
A) Hydroclimates 

Climate SMAP H & VOD SMAP VOD & 𝑯𝒏𝒆𝒘 

(α=0) 

SMAP H & NVOD SMAP 𝑯𝒏𝒆𝒘 (α=0) & 

NVOD 

SMAP 𝑯𝒏𝒆𝒘 (α=0.5) & NVOD 

ub 

RMSE 

RMSE bias ub 

RMSE 

RMSE bias ub 

RMSE 

RMSE bias ub 

RMSE 

RMSE bias ub 

RMSE 

RMSE bias 

BSk 0.08 0.10 -

0.06 

0.08 0.09 -

0.03 

0.09 0.13 -

0.09 

0.09 0.11 -

0.06 

0.09 0.14 -0.10 

BWh 0.06 0.07 -

0.04 

0.06 0.06 0.00 0.06 0.09 -

0.06 

0.06 0.07 -

0.03 

0.06 0.09 -0.07 

BWk 0.08 0.10 -

0.05 

0.09 0.10 -

0.01 

0.08 0.11 -

0.07 

0.08 0.10 -

0.04 

0.08 0.11 -0.08 

Cfa 0.16 0.16 -

0.02 

0.13 0.13 0.02 0.15 0.17 -

0.08 

0.13 0.14 -

0.06 

0.14 0.17 -0.09 

Cfb 0.12 0.17 0.12 0.11 0.18 0.14 0.09 0.12 0.07 0.07 0.11 0.09 0.08 0.10 0.06 

Csa 0.07 0.09 0.05 0.07 0.10 0.08 0.06 0.07 0.02 0.06 0.08 0.05 0.06 0.06 0.02 

Csb 0.12 0.17 0.13 0.10 0.18 0.14 0.09 0.11 0.07 0.07 0.11 0.08 0.08 0.10 0.06 

Dfa 0.08 0.34 0.33 0.08 0.34 0.33 0.10 0.24 0.22 0.09 0.22 0.20 0.09 0.22 0.20 

Dfb 0.08 0.10 0.05 0.08 0.11 0.06 0.05 0.06 0.03 0.05 0.07 0.04 0.05 0.06 0.02 
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Table 5.5 Continued… 

B) IGBP land cover classes 

IGBP 

Class 

SMAP H &VOD SMAP H &NVOD SMAP VOD & (𝑯𝒏𝒆𝒘) (α=0) 
SMAP (𝑯𝒏𝒆𝒘) (α=0) & 

NVOD 

ubRMSE RMSE bias ubRMSE RMSE bias ubRMSE RMSE bias ubRMSE RMSE bias 

1 0.10 0.13 0.08 0.07 0.09 0.05 0.09 0.14 0.11 0.07 0.09 0.06 

4 0.07 0.34 0.34 0.11 0.26 0.24 0.07 0.34 0.34 0.10 0.24 0.21 

5 0.07 0.26 0.26 0.07 0.16 0.14 0.06 0.27 0.26 0.07 0.15 0.13 

7 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.03 0.03 0.01 0.03 0.02 

10 0.08 0.09 -0.05 0.09 0.12 -0.08 0.08 0.08 -0.02 0.09 0.10 -0.10 

12 0.08 0.11 -0.08 0.08 0.17 -0.15 0.09 0.09 -0.02 0.08 0.14 -0.10 

14 0.04 0.33 0.33 0.03 0.23 0.23 0.04 0.30 0.30 0.03 0.21 0.21 
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5.6. Summary and Conclusion  

In this paper we attempted a technique to improve the soil moisture retrieval accuracy by 

incorporating the within-pixel heterogeneity in VWC. On observing a high correlation between 

the non-linear soil moisture errors and heterogeneity in vegetation, an effort was undertaken to 

map the variability in the non-linearity in RTM with respect to hydroclimates, temporal scales, 

and different land covers, and importantly with variables such as EF, H and VPD.  

1) The effect of the correlation among the land surface variables on soil moisture retrieval 

accuracy is higher for the first-order errors, and can reduce mean RMSE by 0.032 m3/m3 for 

the pixels with high VWC.    

2) Soil moisture retrieval errors are significant under heterogeneous/homogeneous water rich 

conditions (WR) with mean SM > 0.15 m3/m3, and lower for water limited (WL) conditions 

with mean SM < 0.15 m3/m3. 

3) The land surface interactions generally decreased with increase in VPD and H. However, this 

varied with SM, and TS conditions. This relationship is stronger under arid climate than 

temperate or continental climate. While, the land surface interactions increased with EF, and 

this relationship is stronger under WR conditions.   

Based on this work, we emphasize that the uncertainties and biases in predicted land-

atmosphere coupling can be improved with the threshold-based representation of vegetation-soil 

moisture-thermal fluxes.  
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6 GENERAL CONCLUSIONS 

The improvement in remote sensing of soil moisture is essentially a heterogeneity-scaling 

issue. Addressing this issue appropriately can better facilitate the research upon hydrological and 

metrological processes. 

The global sensitivity analysis work indicated that the total sensitivity (linear + non-linear) 

of land surface variables varied with hydro climates and time.  In addition, attenuation of soil 

emission by vegetation (VWC, B, ɷ) can be significant in structured plants (corn) and not realized 

in soybean plants. And, this attenuation/scattering appears to increase with roughness, SM and 

VWC conditions. Also, SM and surface temperature show a monotonically decreasing sensitivity 

function, whereas VWC, S, L and B show a monotonically increasing sensitivity function with 

increase in SM. CF sensitivity shows an increasing function up to the transition SM, after which it 

drops exponentially with increase in SM. This peak observed at the transition SM changes with 

the percentage of clay fraction. 

The impact of non-linear upscaling on the sensitivity of radiative transfer model to evolving 

spatial maps (0.8 km, 1.6 km, 3.2 km, 6.4 km and 12.8 km) of land surface variables under various 

hydroclimates (Arizona, Oklahoma, Iowa, and Winnipeg) is illustrated. The analysis resulted in 

environment specific most sensitive variables, SM in homogeneous, and VWC in heterogeneous 

environments. The sensitivity to land surface variables in arid and humid-Dfa climate classes, 

increased or decreased gradually following an exponential function with increasing scale. While, 

for humid-Dfb the sensitivities changed rapidly following a logarithmic function. The study 

emphasized that the heterogeneity and upscaling method will determine the sensitivity to land 

surface variables. 
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Section 4 describes a new surface roughness model which integrates roughness from 

different spatial scales i.e., from field-scale (micro-roughness) to foot-print (macro-roughness) 

scale. The primary contribution of this work is to demonstrate the improvement in soil moisture 

retrieval with spatio-temporally variable surface roughness over retrieval using constant roughness 

parameters.  

Section 5 explored 1) the effect of vegetation heterogeneity on soil moisture errors, which 

are found to be significant, 2) the effect of correlation among land surface variables is analyzed. 

And the correlation effect is observed to be higher for first-order errors, and can reduced mean 

RMSE by 0.032 m3/m3 for dense vegetation pixels, 3) the natural system can be broadly classified 

into homogeneous and heterogeneous regimes based on interactions observed. For homogeneous 

regimes fewer/no interactions are observed, whereas significant interactions are observed for 

heterogeneous regime, 4) the variability in land surface interactions decreased with increase in 

VPD and sensible heat. And this relationship is stronger under arid climate than temperate or 

continental climate. On the other hand, the land surface interactions increased with EF, and this 

relationship is stronger under WR conditions.   

To sum up, the soil moisture retrieval accuracy improved with surface roughness and 

vegetation optical depth parameterizations and a better physical understanding of land surface 

interactions and its variability with evaporative fraction (EF) and sensible heat (H) will shed some 

new insights on land-atmosphere coupling.   

The future work should investigate if land atmosphere coupling can be improved with the 

threshold-based representation of vegetation-soil moisture-energy fluxes in land surface models.   
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APPENDIX 

Consider a model defined as Y = f(X), where Y is the output, X = (𝑋1, … 𝑋𝑘) are k independent 

inputs, and f is the model function. If all the factors X are allowed to vary over their range of 

uncertainty, then the corresponding uncertainty of the model output Y is defined by its 

unconditional variance V(Y). The input factors are ranked based on the amount of variance 

removed from the output when we learn the true value of a given input factor Xi. That is 

𝑉𝑋~𝑖
(𝑌|𝑋𝑖 = 𝑥𝑖

∗), be the resulting conditional variance as it is fixed to its true value  𝑥𝑖
∗  taken over 

all 𝑋~𝑖(all factors but 𝑋𝑖). However, the true value 𝑥𝑖
∗ is unknown for each 𝑋𝑖. Hence, an average 

of 𝑉𝑋~𝑖
(𝑌|𝑋𝑖 = 𝑥𝑖

∗) measured over all possible values 𝑥𝑖
∗, will remove the dependence of 𝑥𝑖

∗ 

thereby resulting in 𝐸𝑋𝑖
[𝑉𝑋~𝑖

(𝑌|𝑋𝑖)].  Using the following property [Mood et al., 1974];  

𝐸𝑋𝑖
[𝑉𝑋~𝑖

(𝑌|𝑋𝑖)] + 𝑉𝑋𝑖
[𝐸𝑋~𝑖

(𝑌|𝑋𝑖)] = 𝑉(𝑌) 

Thus, a small 𝐸𝑋𝑖
[𝑉𝑋~𝑖

(𝑌|𝑋𝑖)] or a large 𝑉𝑋𝑖
[𝐸𝑋~𝑖

(𝑌|𝑋𝑖)], will imply that Xi  is an important factor.  

The conditional variance 𝑉𝑋𝑖
[𝐸𝑋~𝑖

(𝑌|𝑋𝑖)] is the first-order (e.g., additive) effect of Xi  on Y and 

the associated first-order sensitivity index of Xi  on Y measure is written as : 𝑺𝒊 =
𝑽𝑿𝒊

[𝑬𝑿~𝒊
(𝒀|𝑿𝒊)]

𝑽(𝒀)
; 

while 𝐸𝑋𝑖
[𝑉𝑋~𝑖

(𝑌|𝑋𝑖)] is customarily called the residual. As such 𝑆𝑖 is a number always between 

0 and 1.  

Sobol [Sobol, 1993] introduced the decomposition of model function f into summands of 

increasing dimensionality:  

𝑓 = 𝑓0 + ∑ 𝑓𝑖

𝑖

+ ∑ ∑ 𝑓𝑖𝑗

𝑗>𝑖𝑖

+ ⋯ + 𝑓12…𝑘  
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in which each individual term is square integrable over the domain of existence and are mutually 

orthogonal [Satelli et al., 2008]. These functions 𝑓𝑖1,,…𝑖𝑘,
  are associated with partial variances 

through:  

𝑉𝑖 = 𝑉(𝑓𝑖(𝑋𝑖)) = 𝑉𝑋𝑖
[𝐸𝑋~𝑖

(𝑌|𝑋𝑖)],  

𝑉𝑖𝑗 = 𝑉 (𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗)) = 𝑉𝑋𝑖𝑋𝑗
[𝐸𝑋~𝑖𝑗

(𝑌|𝑋𝑖, 𝑋𝑗)] − 𝑉𝑋𝑖
[𝐸𝑋~𝑖

(𝑌|𝑋𝑖)] − 𝑉𝑋𝑗
[𝐸𝑋~𝑗

(𝑌|𝑋𝑗)]  

and so on for higher order terms. Assuming all inputs to be independent, these terms are linked 

as:  

𝑉(𝑌) = ∑ 𝑉𝑖𝑖 + ∑ ∑ 𝑉𝑖𝑗𝑗>𝑖𝑖 + ⋯ + 𝑉12…𝑘.  Dividing both sides of the equation by unconditional 

variance V(Y), we obtain;  

∑ 𝑆𝑖

𝑖

+ ∑ ∑ 𝑆𝑖𝑗

𝑗>𝑖𝑖

+ ⋯ + 𝑆12…𝑘 = 1 

where, First Order Sensitivity Index 𝑺𝒊 =
𝑽𝒊(𝒀)

𝑽(𝒀)
; Second Order Sensitivity Index 𝑺𝒊𝒋 =

𝑉𝑖𝑗(𝑌)

𝑉(𝑌)
 ; the amount of variance of Y explained by the interaction of the factors Xi and Xj (i.e. 

sensitivity to Xi and Xj not expressed in individual Xi and Xj ); Total Sensitivity Index 𝑺𝑻𝒊 = 𝑆𝑖 +

∑ 𝑆𝑖𝑗𝑖<𝑗 + ∑ 𝑆𝑖𝑗𝑙 +𝑖<𝑗<𝑙 … 𝑆1,2,..𝑘; it accounts for all the contributions to the output variation due 

to factor Xi (i.e. first-order index plus all its interactions). 𝑆𝑇𝑖 can also be defined by decomposing 

the output variance V(Y), in terms of main effect and residual, conditioning with respect to all 

factors but one i.e., 𝑿~𝒊. The unconditional variance can be rewritten as; 𝑉(𝑌) −

𝑉𝑋~𝑖
[𝐸𝑋𝑖

(𝑌|𝑋~𝑖)] = 𝐸𝑋~𝑖
[𝑉𝑋𝑖

(𝑌|𝑋~𝑖)], dividing both sides by unconditional variance results in: 

𝑺𝑻𝒊 = 𝟏 −
𝑽𝑿~𝒊

[𝑬𝑿𝒊
(𝒀|𝑿~𝒊)]

𝑽(𝒀)
=

𝑬𝑿~𝒊
[𝑽𝑿𝒊

(𝒀|𝑿~𝒊)]

𝑽(𝒀)
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In other words, 𝑆𝑇𝑖 index is defined as a summation of main, second, and higher order effects 

which involves the evaluation over a full range of parameter space. For further details on 

computation of sensitivity indices please refer to Saltelli (2002).  


