ALGORITHMS FOR COMPUTING EDGE-CONNECTED SUBGRAPHS

A Thesis
by
XU WEN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee,  Sergiy Butenko
Committee Members, Lewis Ntaimo

Ursula Miiller-Harknett
Head of Department, Mark Lawley

December 2018

Major Subject: Industrial Engineering

Copyright 2018 Xu Wen



ABSTRACT

This thesis concentrates on algorithms for finding all the maximal k-edge-connected compo-
nents in a given graph G = (V, E') where V' and E represent the set of vertices and the set of edges,
respectively, which are further used to develop a scale reduction procedure for the maximum clique
problem. The proposed scale-reduction approach is based on the observation that a subset C' of
k + 1 vertices is a clique if and only if one needs to remove at least k£ edges in order to disconnect
the corresponding induced subgraph G[C] (that is, G[C] is k-edge-connected). Thus, any clique
consisting of £ 4 1 or more vertices must be a subset of a single k-edge connected component of
the graph. This motivates us to look for subgraphs with edge connectivity at least k£ in a given
graph G, for an appropriately selected k value.

We employ the method based on the concept of the auxiliary graph, previously proposed in
the literature, for finding all maximal k-edge-connected subgraphs. This method processes the
input graph G to construct a tree-like graphic structure A, which stores the information of the edge
connectivity between each pair of vertices of the graph G. Moreover, this method could provide
us the maximal k-edge-connected components for all possible k£ and it shares the same vertex set
V' with the graph G.

With the information from the auxiliary graph, we implement the scale reduction procedure
for the maximum clique problem on sparse graphs based on the k-edge-connected subgraphs with
appropriately selected values of k. Furthermore, we performed computational experiments to eval-
uate the performance of the proposed scale reduction and compare it to the previously used k-core
method. The comparison results present the advancement of the scale reduction with k-edge-
connected subgraphs. Even though our scale reduction algorithm based has higher time complex-

ity, it is still of interest and deserves further investigation.
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1. INTRODUCTION

This thesis focuses on algorithms for computing maximal k-edge-connected subgraphs in a
given graph and the use of such subgraphs in solving the classical maximum clique problem. We
deal with a simple undirected graph G = (V, E), where V' = {vy,...v,,} and E = {(v;, v;) : v; #
v;} represent the set of vertices and the set of edges, respectively. The number of vertices and
edges are denoted by |V| or n and |E| or m, respectively. If H = (U, F'), where U C V and
F C FE and all edges in F' have both endpoints in U, then H is a subgraph of G. If F' includes
all the edges from E that have both endpoints in U then H is the subgraph of G induced by U,
denoted G[U].

Two vertices are said to be connected when there exists one or more paths from one vertex to
the other. A graph is called connected when every pair of vertices are connected; otherwise, the
graph is disconnected; see Figure 1.1.

The vertex connectivity, denoted by x(G), is the minimum number of vertices which must be
eliminated to disconnect the graph. The edge connectivity A(G) is the least number of edges that
must be deleted for disconnecting the graph. Figure 1.2 shows examples of a 2-edge-connected
graph and a 3-edge-connected graph. Moreover, the local vertex connectivity, denoted by xq(s, t),

is the minimum number of vertices that must be removed to destroy all paths from the vertex s to

1 (5) 1 (5)
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Figure 1.1: A connected graph (left) and a disconnected graph (right).
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Figure 1.2: A 2-edge-connected graph (left) and a 3-edge-connected graph (right).

the vertex ¢, and the local edge connectivity A (s, t) is the least number of edges to be removed so
that no path from the vertex s to the vertex ¢ left.

Introduced by Luce and Perry [2], the clique concept formalizes the notion of a group of people
who all know each other in graph-theoretic terms. Since then, this concept has been playing a more
and more important role in Graph Theory, Computer Science, and Operations Research.

Formally, a subset of vertices C' of the graph G is a clique if any two vertices from C' are
connected by an edge; see Figure 1.3 for an illustration. In particular, C' is a maximal clique if it
is not the subset of a larger clique, while C' is a maximum clique if there does not exist a clique
whose cardinality is larger than |C|. Moreover, the cardinality of a maximum clique in the graph
G is called the clique number of graph G, written as w(G).

A clique can be equivalently characterized using the so-called elementary clique-defining prop-

Figure 1.3: Example of cliques consisting of 8 and 6 vertices, respectively.



erties, which provide alternative definitions of a clique using other graph-theoretic concepts, such
as distance, diameter, degree, etc. Pattillo, Youssef and Butenko [1] proposed a framework that
uses such elementary clique-defining properties for describing a variety of cliqgue relaxation mod-
els, aiming to address the overly restrictive nature of a clique in modeling clusters in complex

networks as illustrated in Table 1.1.

Table 1.1: Alternative clique definitions based on elementary clique-defining properties [1].

Parameter Definition

Distance dg(v, V') = 1forany v, V';€ C
Diameter diam(G[C]) = 1;

Domination D = {v} is a dominating set in G[C],for any v € C,
Degree IG[C) =|C] -1,

Density p(G[C]) =1,

Independence Number | o(G[C]) = 1;

Vertex Cover Number | 7(G[C]) = |C] — 1;

Chromatic Number x(G[C]) = |C|;

Clique Cover Number | X(G[C]) = 1;

Vertex Connectivity k(G[C]) =|C| - 1;

Edge Connectivity AMG[C]) =1|C] - 1;

In particular, the connectivity of graph can also be used to express an elementary clique-
defining property. The elementary clique-defining properties based on the edge connectivity is
obtained using the following observation. If a subset of vertices C' is a clique, then the correspond-
ing induced subgraph has the edge connectivity of |C'| — 1. Thus, the graph G[C| requires removal

of at least |C| — 1 edges to disconnect it,

AG[C]) = |C| - 1.

Here, A\(G) denotes the edge connectivity of graph G and G[C] is the subgraph induced by C
in G. Moreover, if we have a subset of vertices C' such that G[C] has the edge connectivity |C| — 1,

then C'is a clique. Hence, we can state the following elementary clique defining property.



Proposition: A subset C' of k vertices is a clique if and only if A(G[C]) = k — 1.

In this thesis we are interested in finding large subgraphs of a given graph G with edge con-
nectivity of at least k£ in G, where £ is a fixed positive integer. This corresponds to relaxing the
elementary clique defining property in the proposition above to a subset of vertices of an arbitrary
cardinality. Moreover, the connectivity of the subset C' is computed with respect to graph G rather
than the induced subgraph G[C], making the k-edge-connected subgraph a weak clique relaxation
according to the terminology used in [1].

Definition: Given a simple, undirected graph G = (V, E) and a fixed positive integer k, a
subset of vertices C' is called a k-edge-connected set if Ag(s,t) > k for any pair of vertices
s,t € C. A k-edge-connected set is maximal (corresponds to a k-edge-connected component) if it
is not s subset of a larger k-edge-connected set in G.

Problem Statement: Given the graph G = (V, E) and the positive integer k, the maximum
k-edge-connected set problem is to find a k-edge-connected set of maximum cardinality in the
graph. This maximum cardinality will be denoted by w,(G).

The objectives of this thesis include:

1. Designing, implementing, analyzing, and testing algorithms for the maximum k-edge-connected

set problem and the problem of finding all maximal k-edge-connected sets in a graph;
2. Developing methods for calculating an appropriate & in a practical setting;

3. Establishing methods for using k-edge-connected sets (with a suitable choice of k) in scale-

reduction and upper-bounding schemes for the maximum clique problem.

Intuitively, the choice of & should be related to the clique number w(G). Indeed, we are guaran-
teed to have a nonempty k-edge-connected set in the graph if &k < w(G), since a maximum clique
is a k-edge-connected set in this case. Picking a higher value of k£ could result in infeasibility of
the maximum k-edge-connected set problem. On the other hand, picking a small value for £ may

result in a very large maximal k-edge-connected sets, lacking in cohesiveness properties expected



of an interesting network cluster in practice. Determining a suitable, practically relevant value for
the parameter £ is an interesting and challenging problem.

On the one hand, as we just pointed out, the clique number can be useful in selecting an appro-
priate value of k. On the other hand, computing maximal k-edge-connected sets for different values
of k could be used for designing scale-reduction and upper-bounding schemes for the maximum
clique problem. More specifically, if we know that a clique of cardinality w exists in the graph
(e.g., found using some effective heuristic for the maximum clique problem), then all cliques of
cardinality at least w, including all the maximum cliques, are guaranteed to be subsets of the k-
edge connected components of the graph with £ = w — 1. Since the k-edge connected components
correspond to maximal k-edge-connected sets, this implies that the problem of finding a maximum
clique in the graph reduces to the problem of finding a maximum clique in each maximal k-edge-
connected set of the graph. As for upper-bounding, selecting a (high) value of k, such that the
graph has no k-edge-connected sets, shows that there is no clique of cardinality £ + 1 in the graph;
i.e., such a k provides an upper bound on the clique number.

We will use the following definitions in this thesis. A tree is an simple undirected graph without
cycles, in which any pair of vertices are connected by only one path. A union or a collection of
trees is called a forest.

A cut is defined as a partition which splits the set of vertices into two groups, usually noted as
S, §]_ An s-f cut is a cut that separates vertices s,the source vertex, and t,the sink vertex, so that
they belong to two different parts.

The edge density (or, simply, density) is one of the characteristics of a graph. A graph is
considered to be dense if its number of edges is relatively high and the graph is closer to a complete
graph; it is considered to be sparse if the number of edges in the graph is comparatively small. For
an undirected graph G, its density p(G) is calculated by:

2|E|

)= rvi— )



The chapters of this thesis are structured as follows. The remainder of this chapter discusses
some applications and provides a brief literature review on k-edge-connected set and the max-
imum clique problem. Chapter 2 describes the auxiliary graph method for finding maximal k-
edge-connected sets. The new scale reduction approach based on k-edge-connected sets for the
maximum clique problem is detailed in Chapter 3. Chapter 4 reports the computational results
of finding k-edge-connected sets and the effect of the auxiliary graph in a scale reduction proce-
dure for the maximum clique problem. Chapter 5 summarizes the results we have obtained and

discusses several further research directions.
1.1 Applications

The concept of a k-edge-connected set is a flexible and important bridge connecting the edge
connectivity and clique-like structures in subgraphs. Thus, k-edge-connected set is of a great
potential value for graph-based analysis applications, especially for network structure detection
and connectivity evaluation in areas like social networks, transportation systems, web networks,
and modern biology research.

One application of the k-edge-connected set is detecting clique-like structures (clusters) whose
members are densely related to each other. In some fields which can be represented by network sys-
tems, like railways, shipping schedules, airlines, etc., clique-like structures can show the frequent
commuted city blocks. In the social and economic networks, clique-like structures stand for the
cohesive communication communities or frequent trading groups. Moreover, clique-like structures
symbolize the specific structures for cells in some research areas for the modern biology.

Another application refers to the evaluation of the connectivity for a network. "Graphs operate
at the interface of structure and function" [3]. We could consider the vertices in V' as the individ-
uals of interest, and the edges in £ as the relationships between the individuals. Therefore, the
graph-theoretic connectivity analysis can operate at both entire network and individual perspec-
tives. An example from land ecology can account for both perspectives [4]. For applications at the
level of networks, functional connectivity analysis has been employed for evaluating connectivity

conversion of a specific species. From the individual level, the functional connectivity analysis is



also a great tool for selecting the most important patches in a habitat network.

Furthermore, if we know the edge connectivity of the subgraphs, then the upper bound of edge
connectivity for graph G is also known. As a result, the sampling approximation and some other
statistical methods can be applied for providing reasonable estimations of the edge connectivity
of graph G through computing the edge connectivity of subgraphs. This process is less time-
consuming and more flexible for implementation than interpreting measurement data of the entire

graph.
1.2 Literature Review
1.2.1 Edge Connectivity

Connectivity is one of the basic definitions of graph theory as well as a significant measure
of the reliability and stability of the network, in Mathematics, Computer Science and Operation
Research areas [5].

The concept of a k-edge-connected graph was first introduced by Jordan in 1869 [6]. During
the past 50 years, the methods for searching k-edge-connected components and computing edge-
connectivity algorithms have been extensively researched and studied.

The first method which has been applied to compute the edge-connectivity is depth-first search
(DFS). In 1972, Tarjan proposed an algorithm with DFS for finding all components with \(G) = 2
in a graph G in linear time [7]. In a few years, the problem of computing 3-edge-connected com-
ponents was solved by reducing the edge connectivity problem to the vertex connectivity problem
and employing Tarjan’s method on the reduced problem.

In 1975, Even and Tarjan [8] used the min-cut to compute the edge-connectivity.

Theorem 1 (Max-Flow Min-Cut Theorem). The maximum value of the flow from a source vertex

s to a sink vertex t in a capacitated network equals the minimum capacity among all s — t cuts.

Most edge connectivity algorithms proposed later were based on this result, according to which
the min-cut can be calculated using the max-flow algorithms. This approach computes \(G) of a

graph G = (V| F) through comparing all possible values of A(v,w), v,w € V and finding the



minimum one:

AMG) = min{A(v,w) |v,w € V}

Esfahanian and Hakimi [9] utilized the structure of the spanning tree to reduce the number of
calls to the max-flow algorithm to less than n/2. In 1987, the dominating set method was intro-
duced by Matula [10], who succeeded in reducing the complexity of edge connectivity algorithms
to O(mn), the same complexity level of procedure for computing A(v,w). Moreover, any im-
provement of the max-flow algorithms naturally contributes to the improvement for computing the
edge connectivity as well. In 1992, Nagamochi and Watanabe [11] proposed an algorithm which
can capture all k-edge-connected components in O(mn(min(k, m,/n)) time.

In general, the basic cut framework for finding k-connected components or k-edge-connected
sets could be improved by making reductions on the size of graph and reducing the number of calls
to the min-cut algorithm. Chang et al. [12] proposed a method named graph decomposition tree, in
which the leaves represent the corresponding subgraphs generated by iteratively cutting the edges
in the min-cut. This method runs in O(him) time (h is the level of the decomposition tree and [ is
a value smaller than m).

The cut tree (Gomory-Hu tree) is another way of summarizing the information regarding the
minimum cut for every pair of vertices [13]. The weight of each edge in the cut tree describes
the cardinality of the minimum cut between corresponding pair of vertices in the original graph
G. Moreover, the auxiliary graph introduced by Wang et al. [14] is also a tree structure, but the
information on the min-cut is replaced with the information on edge connectivity in this case.
These two methods store key information regarding the structure of graph, saving large amount of

time from repetitive computing applied in other cases.
1.2.2 The Maximum Clique Problem

The maximum clique problem (MCP) is one of Karp’s 21 original NP-hard problems [15].
Hence, there is no polynomial-time approach that could solve this problem, unless P = N P.

However, the maximum clique problem has been broadly applied for numerous practical set-



tings, i.e., economic and financial networks, scheduling optimization, bioinformatics research,
transmission analysis, etc. Over the past years, a large variety of methods for solving the MCP
have been proposed, and most of them could be divided into two types [16].

The first type is represented by effective exact methods which ensure optimality of the result but
are of huge computation complexity. Moreover, the majority of algorithms of this type are devel-
oped with the branch-and-bound (B&B) structure. A famous algorithm of this type was developed
by Carraghan and Pardalos in 1990 [17]. Many other B&B algorithms have been proposed and suc-
cesfully tested, including B&B algorithm by Babel and Tinhofer [18], Ostergad’s algorithm [19],
MCQ by Tomita and Seki [20], MCR by Tomita and Kameda [21], MCS by Tomita et al [22]
among many others.

The algorithms of the second type utilize the heuristic and metaheuristic methods, which could
run with reasonable time complexity but cannot guarantee the optimal solutions. Some of algo-
rithms for MCP of this type are greedy algorithms, like QUALEX-MS by Busygin [23] and the
deep adaptive greedy search (DAGS) by Grosso et al. [24]. Besides, some other heuristic ap-

proaches, like local search heuristics and various metaheuristics have been proposed [25].



2. THE METHOD OF AUXILIARY GRAPH

To compute the maximal k-edge-connected sets, the algorithms proposed by Wang et al. [14]
based on the auxiliary graph, will be used.

Given a directed or undirected, simple or multi-graph G = (V, E), Auxiliary Graph A =
(G, E,) is an undirected tree which stores information of graph G in the weight of edges of A.
The information of graph G is the number of edges from the min-cut between each pair of vertices
{vi,vj|vi,v; € E v; # v }.

According to the paper by Wang et al. [14], the auxiliary graph is built on the basis of the hierar-
chical structure of k-edge-connected components. Every k-edge-connected component is actually
the union of (k + 1)-edge-connected components. Hence, a natural tree-like graphic structure A
can be developed, in which the weight of an edge {s, ¢} represents the edge-connectivity A\ (s, t).

Like most of the algorithms for searching k-edge-connected subgraphs or computing the edge-
connectivity, this algorithm is also dependent on the max-flow (or the min-cut). With the demand
for computing the edge connectivity between every pair of vertices, the min-cut algorithm exe-
cutes 2n — 2 times. Thus, the time complexity for constructing the auxiliary graph is O(F'n),
where F’ represents the time for executing one round of s-t max-flow algorithm. For example, for
the algorithm proposed by Goldberg and Tarjan [26], this time is given by F' = O(n?). In the im-
plementation part of this chapter, the maximum flow algorithm proposed by Edmonds-Karp [27]
with running time of O(nm?) will be used. After the construction phase, a traversal of the auxiliary

graph in time O(n) is required for determining the k-edge-connected components.
2.1 Auxiliary Graph

As mentioned above, the auxiliary graph is a tree-like structure built on the basis of hierarchical
structure of k-edge-connected components [14]. A k-edge-connected component in a graph G =
(V, E) is a maximal subset of vertices V' C V such that the edge connectivity between any two

vertices in V" is at least k, thus every k-edge-connected component is actually the union of (k+1)-

10



Algorithm 1 Max FLow Algorithm by Edmonds-Karp [27]

Input:Given a flow graph G, source vertex s, sink vertex ¢
Create a residual graph G, from G, and set mazF' = 0
while 3 a path from source to sink in GG, do
set f = o0
for all e € path do
if c. < f then

f=ce
end if
end for
maxF+ = f
end while

return maxF’

3 5

Figure 2.1: An example of undirected connected graph.

Figure 2.2: The corresponding auxiliary graph for the graph in Figure 2.1 described in a rooted
tree.

11



Table 2.1: Information from the auxiliary graph.

Weight of Edges Corresponding Set of Vertices
{1,2,3,4,5}
{1,2,3,4,5}

3 {1}.{2,3,4}, {5}

N =

edge-connected components (it should be noted that a set consisting of a single vertex (singleton) is
assumed to be k-connected for any k). The collections of k-edge-connected components compose
a hierarchical structure.

Consider the example graph in Figure 2.1. Evidently, when k£ = 1, the 1-edge-connected
component is just the set of V' itself (assuming the graph is connected). When k& = 2, the 2-edge-
connected component is {1,2, 3, 4,5} which is the union of all the 3-edge-connected components
{1},{2,3,4}, and {5}. Furthermore, a singleton which is the set with only one element is also the
union of itself. However, singletons are not the connected components, so we could ignore them.

The natural hierarchical structure could also be explained from the perspective of the traditional
cut framework. The cardinality for the min-cut is always getting higher and higher when we itera-

tively cut out and search in the subgraphs with sufficient number of vertices, i.e.,

V| >k, |E| >k,
generated from previous cutting. It is known that the cardinality of the min-cut for the entire graph
G is always the smallest one among all the s-¢ cuts (by the definition of the min-cut). Thus, the
smallest carnality of remaining s-t-cuts is definitely higher than that of the min-cut.

The definition of the auxiliary graph tells us that A uses the same vertex set V' with the graph
G = (V, E). In the initial stage, the edge set of the auxiliary graph is empty £4 = {}. The edges
with weights are continuously added to A for building a tree-like graph and avoiding cycles. If
Ay, is the spanning forest of A based on edges of weight at least k, then the collection of vertex
sets of connected components in A; exactly corresponds to the collection of k-edge-connected
components of graph GG (with the components containing k or less vertices split into singletons).

Furthermore, we could obtain A;_; by adding the edges with weight of £ — 1. A;_; could lead

12



us to all the (k — 1)-edge-connected components of graph G. It is obvious that the maximum
weight of all the edges, denoted as h, is the minimum k& value such that all (k£ + 1)-edge-connected
components are singletons. The fact that two graphs share the vertex set makes this auxiliary graph
method much more efficient and user-friendly. In particular, we could create the sought induced
subgraphs using the auxiliary graph.

Furthermore, the auxiliary graph as a compact storage of the information, can be applied for so
many cases, i.e. for heuristic searching and optimization based on local connectivity. In particular,

we will use it for scale reduction procedure for the maximum clique problem in Chapter 3.
2.2 Description of the Algorithm

The input consists of a graph G = (V, ), arandomly picked source vertex s, and a sink vertex
candidate pool N. The CONSTRUCTION procedure firstly picks a sink vertex ¢ from all possible
candidates N — {s}. Then the max-flow algorithm runs for the min-cuts between s and ¢, (S, 7")
and (S’,T") (the results of s-t max-flow and ¢-s max-flow). Here, it needs attention that the max-
flow algorithm only runs on directed graph. Thus, each edge of an undirected graph G needs to
be changed to two directed edges which point in the opposite directions. Next, the cardinalities of
two min-cut are compared and the edge (s, ¢) is added to the graph A with weight of the smaller
cardinality of two min-cuts. After that, the procedure calls itself with two versions of input: the
first one is with s as source vertex and N N S as sink candidate pool and the second is with ¢ as
source vertex and /N N 7" as sink vertex candidate pool. The CONSTRUCTION procedure only
ends when N = {s}, that is, no sink vertex is available.

Wang et al. [14] proved the transitivity of the connectivity between edges, that the edge con-
nectivity between two vertices is actually the minimum weight from all the edges on the path
connecting them. This serves as theory foundation of retrieving edge connectives of graph GG from
the auxiliary graph A. For computing the edge connectivity of the graph GG, we just need a traverse
of A and find the minimum weight of all the edges; For k-edge-connected components, we are
supposed to keep the edges with weight at least £ and the collection of connected components with

at least k£ + 1 vertices is exactly what we want.
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Algorithm 2 Construction(G(V, E), s, N ) [14]

if N ={s} then
return
end if

Randomly pick a vertex ¢ from N — {s}
(,8,T) := s-t MAX-FLOW (G, s,1).
(', 8", T") := s-t MAX-FLOW (G, 1, s).

if 2/ < z then
r:=a,85:=58"T:=T

end if

Add edge (s,t) with weight x to A

CONSTRUCTION(G, s, N N S)

CONSTRUCTION(G,t, NNT)

2.3 Implementation and Analysis of the Algorithm
2.3.1 Finding the Min-Cut

For finding the min-cut for graph G, we operate a maximum flow algorithm and a depth first
search (DFS) [28]. With the input of graph G, the source vertex s and the sink vertex ¢, the maxi-
mum flow algorithm only runs when DFS could find next augmenting path. The next augmenting
path is the shortest path from the source vertex s to the sink vertex ¢ with a positive residual value.
Then we try to push flow from the sink vertex ¢ back to the source vertex s and keep updating the
residual capacities of edges in that path. This maximum flow algorithm terminates when no path
from s to ¢ with positive residual value is left. After that, a DFS is used to find the cut [S,T]. It
is known that the running time for the Edmonds-Karp maximum flow algorithm is O(nm?). The
DFS here runs in time of O(m + n). Hence, the running complexity for findig the min-cut is the

same with Edmonds-Karp maximum flow algorithm of O(nm?).
2.3.2 Constructing the Auxiliary Graph

In this stage, we build a rooted tree for describing the auxiliary graph. This rooted tree could

help us trace the vertices that could be connected in the original graph GG. The auxiliary graph A
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Algorithm 3 Minimum s-t cut [28]

Input:Given a flow graph G = (V, E), a source vertex s, target vertex ¢
function MINIMUM s-t CUT(G, s, t)
set flow = 0, vertex set S = {}, vertex set 7' = {}
while BFS reaches ¢ through edges with residual capacity > 0 do
setx =1
while © # s do
choose a neighbour y of x closer to the source
set capacity of edge (z,y)+ =1
set capacity of edge (y,x)— =1
r=y
end while
end while
push s onto stack L
mark s
while L not empty do
set x to top element of L
remove top element from L
for all neighbours y of x do
if edge(z, y) capacity >0 and y not marked then
push y onto stack L
mark y
end if
end for
end while
forally € V do
if y is marked and y € N, then
Addyto S
else
if y € N, then
AddytoT
end if
end if
end for
end function
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begins with the vertex set V' which is inherited from graph G = (V, E'), and an empty edge set
E’ = {}. Similar to what we discussed in previous section, a root vertex is chosen firstly and all
the vertices are added as candidates to the pool of the sink N, ;.

Then we iteratively choose a source vertex s and a sink vertex ¢ from their own candidate pools
(if not empty), find the minimum s-t¢ cut, add the edge (s,t) with weight of cardinality of the
min-cut to the graph A, and update the pools for the source and the sink vertices respectively.

The Construction procedure runs the min-cut function n times. Thus, the time complexity for

the auxiliary graph algorithm is O(n*m?) (the multiple of O(n) and O(nm?)).

Algorithm 4 Constructing the Auxiliary Graph [28]
Input:Given graph G = (V, F)
A= (V,E'") where £ = {}
Choose a root vertex for A
forallz € V do
end for
Nroot =V
add root to ()
while () is not empty do
set s to first element of ()
if size of N, < 2 then
remove first element of ()
else
set ¢ to be a vertex from N,\{s}
construct a flow graph F' of ¢
C(c,S,T) = MINIMUM S-T CUT(F, s,1)
add the directed edge(s, t) to £’ with weight = ¢
add t to Q)
for all x € N, do
if z € T then
add z to IV,
remove x from N,
end if
end for
end if
end while
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3. NEW SCALE REDUCTION APPROACH FOR THE MAXIMUM CLIQUE PROBLEM

3.1 Scale Reduction for the MCP

Large sparse graphs are very common in real-life applications, like social networks, citation
networks, communications, and web graphs.

The technique named “peeling" was proposed by Abello et al. [29], which could be considered
as a preprocessing before doing the exact searching for maximum clique. The peeling procedure
recursively deletes the vertices and the edges which are evidently not useful for the exact maximum
clique algorithms, i.e. the vertices whose degrees are smaller than a certain number k. Because
any vertex with degree lower than k could not exist in a clique with clique number of £ + 1 or
higher. Thus, "peeling" could help us sharply reduce the size of the large sparse graph GG, where
most of the vertices are of low degrees.

Verma et at. [30] proposed a new method for finding the maximum cliques using a scale re-
duction based on k-community structures. A k-community is defined as a subset vertices V'’ such
that every pair of endpoints for edges E’ have at least £ common neighbors in its induced subgraph
G = (V',F).

3.2 Scale Reduction Algorithm Based on £-Community

In this algorithm, the lower bound of the clique number wj,., is first captured by a greedy
heuristic through searching for the maximum degree of vertices in the graph G. After that, the
upper bound of the clique number w,p., Will be obtained through the linear or binary search in
UpperBound(G, wipwer, A). Moreover, the UpperBound is found by incrementing & from wjoyer
until that k-community is an empty set.

Then a scale reduction procedure ScaleReduction] (G, wyypper) is implemented for the maxi-
mum (wypper — 2)-community of graph G' which could dramatically cut down the size of |V|. If
the resulting graph G, is small enough, an exact MCP algorithm can be employed for a wiyer-

Here, the exact maximum clique algorithm proposed by Ostergard in 2002 [19] is used. The same
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process composed of scale reduction and exact MCP algorithm for a wjyye, 18 also employed for
each connected component of G- Moreover, the highest clique number among G, and all

the connected components of Gy, gives the clique number of graph G.

Algorithm 5 Algorithm to find a maximum clique of G [30]

Wiower <— HeuristicClique

Wypper <— UpperBound (G, Wipwer, A)

if Wiower < Wypper then
Gupper = Vupper, Eupper) <— ScaleReductionl (G, wypper)
if |Vipper] < K then

Wiower <— MaX {Wjower, FindMaxCliqueExact(G pper ) }

end if

end if

if Wipwer < Wypper then
Grower = Viowers Eiower) <— ScaleReduction2 (G, wipwer )
for each connected component G’ = (V', E') of Gyyer do
if |[V’| < K then
Wiower <— MaXx {Wiower, FindMaxCliqueExact(G")
end if
end for
if the clique number of each connected component is found then

Wupper < Wiower

end if
end if
return [Wlower > wupper]

3.3 Scale Reduction Based on £-Edge-Connected Sets

This thesis aims to replace the ScaleReduction procedure from original k-community based
search to k-edge-connected set based search. Similar to the original peeling procedure, it selects
the vertices which may be of use for the exact maximum clique algorithms, i.e. (k — 1)-edge-
connected set or k-edge-connected components from the auxiliary graph. Because any vertex from
a subgraph whose edge connectiviy is less than £ could never exist in a clique with clique number

of £ + 1 or higher. Hence, this new “peeling" procedure could also make a help in shrinking the
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size of the large sparse graph G which enables us to use the exact algorithm for the optimal result.

As mentioned before, all k-edge-connected sets (k is a fixed integer) and i-edge-connected sets
with 7 < k, could be found using the auxiliary tree algorithm. Thus, Gy and all connected
components for G, can be found at the same time, which could save time from repetitive
searching in ScaleReduction procedure.

Moreover, the upperBound(G, wjpwer, A) can be achieved from finding the maximum weight
for the edges in the auxiliary graph A = (G, E, ), avoiding significant amount of memory and time
for binary or linear search of the graph G. Hence, we could modify the original algorithm with
combining two ScaleReduction procedures together and obtaining the upperBound of w from the

corresponding auxiliary graph as illustrated in Algorithm 6 below.
3.4 Implementing Scale Reduction Based on k-Edge-Connected Set

The algorithm is modified with a substitute of the k-edge-connected set to the k-core or k-
community in the ScaleReduction procedure. Moreover, the linear search or binary search for
the upper bound for the clique number has been removed because we could use the maximum k&
number captured from the auxiliary graph.

Furthermore, we expect to observe the performance of new ScaleReduction procedure for a
large sparse graph GG. The test result analysis and the comparison between different methods could

motive us for new ideas for improvements.
3.4.1 Heuristic Clique Function

This greedy heuristic is used in [30]. It searches for a clique beginning from the vertex with
the maximum degree. Then, we add all the neighbours of this vertex into candidate sets. After that,
we repeat the same process for the elements in candidate set until is empty. If the size of candidate
set is greater than a certain number, we record the degree of that elements; otherwise, the number
of common neighbours between this element and the whole candidate sets is recorded.

Finally, the clique built on the vertex with maximum degree is found along with its size. More-

over, this clique number can be used as the lower bound in the maximum clique algorithm, wjye;--
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Algorithm 6 Algorithm to find a maximum clique of G

Wiower <— HeuristicClique
Wypper < UpperBound (A,max{weight[edges]})
if Wipwer < Wypper then
Grower = Viowers Eiower) <— ScaleReduction (A, wiwer )
for each connected component G’ = (V', E’) of Gyyer do
if |V'| < K then
Wiower <— MaxX {Wjower, FindMaxCliqueExact(G')}
end if
end for
if the clique number of each connected component is found then
Wupper < Wiower
end if
end if
return [Wiower, Wupper|

Thus, the input number of £ for the scale reduction procedure equals to wjoyer — 1.
3.4.2 ScaleReduction with the £-Edge-Connected Sets

Given the information from the auxiliary graph, the subset of vertices involved in edges with
weight at least £ can be obtained. Hence, we could create the induced subgraphs of the graph GG
with that set of vertices. However, some induced subgraphs still cannot satisfy the need that the
edge connectivity is at least k. Thus, one more step is required for removing the components with
less than k& + 1 vertices.

The original graph G is reduced through this process to the graph G’, whose size can be
achieved for comparing the peeling or scale reduction effect. Moreover, operating a BFS can
trace all the connected components with edge connectivity no less than k for us.

An example with the input graph G shown in Figure 3.1, will be used to illustrate this process.

e Step 1:

Build the corresponding auxiliary graph based on graph G and obtain the table summarizing

the edge weight information (Table 3.1).

e Step 2:
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Algorithm 7 Greedy heuristic algorithm for a maximum clique of G' [30]

function FINDGREEDYCLIQUE(G)
maxdegree := 0
for: .= 1tondo
if G.degree[i] > maxDegree then
maxDegree := G.degreeli]
next ;=1
end if
end for
candidates := G.adj[next|
mazxclique := 0
while candidates # () do
mazxdegree :=
next := candidate|0]
for i := 0 to cand_size(cand_size := candidates.size) do
if cand_size > 10000 then
temp := G.degree[candidates]i]]
else
temp := |CommonN eighbour(candidates|i], candidates)|
end if

if temp > maxDegree then
maxDegree := temp
next := candidates]i]
end if
end for
candidates := CommonN eighbour List(next, candidates)
end while
if Clique.size > maxclique then
maxclique := clique.size
end if
return clique
end function FindGreedyClique(G)
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Table 3.1: Information from the auxiliary graph

Weight of Corresponding Set of Vertices
Edges

{1’2’ 94’ ’6’7
(1,2,3,4,5,6,7
(1,2,3,4

5
5
5},
{1}, {2}, {3}, {4}, {5}, {6

3
3,
7
5

AN WO =

IR
). (6). (7)

Given an input k (e.g., k = 3), create induced subgraph of graph G with the vertex set

corresponding to edges of weight at least k£, as illustrated in Figure 3.2.

e Step 3: Remove vertices with less than £ neighbours and all the edges incident to them

(Figure 3.3).
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Figure 3.1: An input graph G

Figure 3.2: Created induced subgraph with & = 3

Figure 3.3: A 3-edge-connected set of graph G



4. COMPUTATIONAL RESULTS

This chapter describes the results of computational experiments conducted in order to 1) find
maximal k-edge-connected sets 2) evaluate the effect of the auxiliary graph method on scale re-

duction for the maximum clique problem. First, we describe the experimental setting.

e Test Environment:

Tools: C++ with MinGW (Minimalist GNU for Windows).
Computer specs: Intel Xeon E5600 2.40GHz 2 Processors, 12.0GB RAM.

e Test Instances:

A variety of graphs from the SuiteSparse Matrix Collection (former UF Sparse Matrix Col-
lection) by Tim Davis have been used for testing. We conduct the tests on the sparse and
connected graphs, mainly arising in the power industry. Table 4.1 provides the names, num-

ber of vertices, number of edges and the edge density of the graphs used for testing.

e Test Scenario:

Applying the scale reduction approach, we first implement the greedy heuristic for a lower
bound of the clique number wj,,.,- for the graphs we have chosen. Then we set the value of
k to be wjouer — 1. Next, we compare the scale reduction effect of k-core peeling and the
reduction based on k-edge-connected sets (k-ECS). In k-edge-connected peeling method,

we report all connected components obtained in the residual auxiliary graph.

4.1 Scale Reduction Effect

The result of scale reduction with peeling methods based on k-edge-connected sets and k-core
is shown is Table 4.5.

The comparison of number of vertices and number of edges in original graph G and in G5 g
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Table 4.1: Graph cases for testing. Source: the SuiteSparse Matrix Collection (former UF Sparse
Matrix Collection) by Tim Davis.

Graph Name Number of Vertices (n) Number of Edges (m)

bespwr(4 274 943
bespwr05 443 1033
bespwr08 1624 3837
bespwr09 1723 4117
bespwrl0 5300 13571
power 4941 6594
494 _bus 494 1666
685_bus 685 1967
1138_bus 1138 2596
qh768 768 2934
qh882 882 3354
6000

5000
4000

3000

2000

1000

o II II II I_ Il liw Bum Hum u
. {.\_’-«-_“' _&-_.‘25' X ‘p\_".'l ; p% 3 3 q_?s (3 .{AL-'Q";: \_!\::'-' "0\}‘-‘. K &"‘: . ‘,:_\."s
\&1.:5 ¢ (,_cf*qﬁ \__;'?Q .\”\?;n ’ ¢ = lq':’é') ’ 'ﬁk ’ ,&i‘ﬂu @f‘d

Figure 4.1: Scale reduction on the number of vertices.

are shown in Figure 4.1 and Figure 4.2 respectively. The scale reduction with £-ECS method shows

an evident effect of cutting down the size of graphs.
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Table 4.2: Scale reduction effect based on different peeling methods.

G BCs Glore
Graph Wiower n m n m n m
bespwr(4 274 943 66 239 73 259
bespwr05 443 1033 309 405 313 460
bespwr08 1624 3837 1139 1721 1158 1747
bespwr(09 1723 4117 1241 1910 1247 1918

6
3
3
3
bespwrl0 3 5300 13571 5016 7985 5027 7998
power 3 4941 6594 3293 4930 3353 5006
494 _bus 3 494 1666 270 361 277 369
685_bus 4 685 1967 254 546 255 557
1138_bus 3 1138 2596 652 963 671 991

5 768 2934 316 621 400 779

4 882 3354 84 222 100 254

16000

14000

12000

10000

000

6000

4000

= [ b e 112
o I I - [ [ | I- I- | | .
FUC A G A
A - S
L% ) L&) Py R bt

i W HS 0o oone

Figure 4.2: Scale reduction on the number of edges.

Moreover, the scale reduction effect differs. On the one hand, the reduction percentage differs
for different graphs. For example, for the graph gh_882, around 90% of vertices of GG are deleted,
while only less than 5% of vertices of graph becspwrl0 are removed. On the other hand, the re-
duction scale are not the same for the same graph in |V'| and |E|. However, we could observe the

similar trend for the scale reduction using the k-core method. Hence, both situations are normal
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and may be caused by some other natural factors like structure, density, etc.
4.1.1 Comparison with k-Core

Figure 4.3 presents the difference between the size after the peeling procedure by £-ECS and
k-core. This figure shows that the scale reduction based on the £-ECS method does improve the

performance of reducing the size of graphs compared to k-core.
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Figure 4.3: Difference between the number of vertices and edges left from scale reduction.

4.2 Connected Components

Table 4.3 summarizes the values of wj,y.- and the number of k-edge-connected components
for each graph, where k& = wj,yuer — 1. Table 4.4 lists the number of vertices and edges in each
k-edge-connected component in the graph after peeling with the corresponding & value.

Evidently, most of the graphs that have more than one k-edge-connected components have

Wiower > 3. This is reasonable because we do the scale reduction based on & = wjgyper — 1.
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Table 4.3: Summary of wj,,e values and the number of k-ECS components, where k = wjoyer — 1.

Graph Name Wiower  #k-ECS Components Running Time

(CPU seconds)
bespwr(4 6 2 0.079
bespwr05 3 1 0.177
bespwr08 3 1 4.078
bespwr(9 3 1 4.663
bespwrl0 3 1 127.487
power 3 1 100.614
494 _bus 3 1 0.213
685_bus 4 6 0.448
1138_bus 3 2 1.482
gh768 5) 2 0.532
gh882 4 6 0.751

Table 4.4: List of connected components after scale reduction with (wjoyer — 1)-ECS.

Gros Connected Components (n, m)
Graph n m #1 #2 #3 #4 #5 #6
bespwr04 66 239 (12,41) (54, 198)

bespwr05 309 455 (309, 455)

bespwr08 1139 1721 (1139, 1721)

bespwr09 1241 1910 (1241,1910)

bespwrl0 5016 7985 (5016, 7985)

power 3293 4930 (3293, 4930)

494 bus 270 361 (270,361)

685_bus 254 546 (81,279)  (29,63) (34,85) (62,137) (23,42) (25,40)
1138_bus 652 963 (648,959) (4, 4)

qh768 316 621  (282,564) (34,57)

qh882 84 222 (14,37) (1437)  (1437) (1437) (1437) (14,37)
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Table 4.5: Scale reduction effect of k-ECS.

G os Diff
Graph Wiower n m n m n m
bespwr04 6 274 943 66 239 208 704
bespwr05 3 443 1033 309 405 134 578
bespwr08 3 1624 3837 1139 1721 485 2116
bespwr(09 3 1723 4117 1241 1910 482 2207
bespwrl0 3 5300 13571 5016 7985 284 5586
power 3 4941 6594 3293 4930 1684 1664
494 _bus 3 494 1666 270 361 224 1305
685_bus 4 685 1967 254 546 431 1421
1138_bus 3 1138 2596 652 963 486 1633
gh768 5 768 2934 316 621 798 3132
gh882 4 882 3354 84 222 452 2313
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5. DISCUSSIONS AND CONCLUSIONS

The proposed new scale reduction approach based on the k-edge-connected sets presents im-
provement in performance of scale reduction effect compared with the previous one based on k-
core method. Though the improvement effect varies in different cases, the similar trend discloses
that the variations may depend on the structure or some other factors of the graph. While this new
scale reduction approach requires longer computational time compared with previous one based
on k-core method.

Considering the existing possibilities of improving the proposed approach, as well as the par-
allelization, we could deal with the setback of larger time complexity in scale reduction with k-
edge-connected sets. Several further ideas could be used for optimizing the proposed algorithm
for finding the maximum clique in large sparse graphs. On the one hand, we could reduce the time
complexity of the algorithm for building the auxiliary graph. This task could be accomplished in at
least two ways. One of them is replacing Edmonds-Karp’s max-flow function with time complex-
ity of O(nm?) with a more up-to-date and faster max-flow function. The other way is parallelizing
the implementation. For example, Haakonsen [28] proposed a parallel version of the construction
procedure and achieved an obvious improvement in the running time.

Thus, though we have shown the improvement of performance of this approach compared to

the previous ones, future research could yield further improvements.
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