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ABSTRACT 

The goal of this dissertation was to evaluate silver ion as a potential antibiotic alternative 

in broiler chickens. For this purpose, four experiments were conducted to evaluate silver ion in 

terms of in vitro antimicrobial efficacy, in vivo potential toxicity, and to evaluate its potential 

growth promoting effect. 

In experiment 1, an in vitro antimicrobial efficacy experiment was conducted using two 

separate silver carbene complexes (SCCs) with different carrier molecules, (SCC1 with a 

methylated caffeine backbone and SCC22 with a dichloroimidazolium backbone), and silver 

acetate were investigated against four important animal and human pathogen species. Both SCC1 

and SCC22 exhibited bacteriostatic and bactericidal effects against multidrug resistant 

Salmonella Typhimurium (poultry isolate), E. coli 843 and E. coli 1568 (swine isolates), and the 

poultry field isolates Salmonella Heidelberg, Salmonella Enteritidis, and Salmonella 

Montevideo. Ten hours incubation of CP with 40 µg/mL of all three products showed down 

regulation of virulence genes plc and netB, suggesting viable cells and silver can modulate the 

virulence. These data suggest that SCCs may represent a novel class of broad-spectrum 

antimicrobial agents, which may be used to reduce the burden of pathogenic bacteria in the 

gastrointestinal tract of poultry. 

In experiment 2, a preliminary in vivo study was conducted to investigate the potential 

acute oral toxicity of SCC1, SCC22, and AgAc on 300 7-day old broiler chickens in 2 

independent replicates trials. Compared to the control and SCCs, single administration of silver 

acetate at a dose 1000 mg/kg BW reduced (P < 0.05) BW after 7 and 14 days of administration, 

although the birds showed normal weight gain compared to the control. No adverse effects of 
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SCC1 and SCC22, and silver acetate on relative organ weight of vital internal organs, bone 

mineralization, or plasma enzymes (ALT, ALP, and GGT) and metabolites (blood urea nitrogen, 

creatinine, and total bilirubin) were noted compared to control group.  

Study 3 was a Clostridium perfringens challenge study to evaluate the potential effect 

silver acetate (AgAc) on starter broiler chicken performance and necrotic enteritis development. 

The in vivo efficacy of AgAc delivered either by adding into the feed (as a prophylactic model) 

or via drinking water (as a treatment model) during necrotic enteritis challenge and Infectious 

Bursal disease immunization was evaluated in two experiments. Whether AgAc was added into 

the feed (for 21 d) or in the water (4 d), there were no differences (P > 0.05) seen in bird 

performance, Clostridium perfringens enumeration, and lesion score compared to the positive 

and negative controls. These results suggest limitation effect of silver acetate on performance 

and reduce intestinal Clostridium perfringens colonization in broiler chickens, although the in 

vitro efficacy results showed bacteriostatic and bactericidal different enteric poultry pathogens. 

 In experiment 4, we further evaluated the potential effect of silver acetate in comparison 

to antibiotic and its selected alternatives (probiotic and prebiotic) on performance, energy and 

amino acids digestibility, intestinal histology, total bone mineral content (BMC) and density 

(BMD), and hepatic glutathione. Dietary supplementation of AgAc at 10 and 50 ppm did not 

show different effects on performance compared to the Control group during all production 

phases. Dietary AgAc supplemented at 250 ppm showed reduced BW (P < 0.05) compared to the 

Control, BMD50, and dietary AgAc at 10 and 50 ppm. Overall, using silver acetate in broiler 

diets could result in adverse effects at concentrations of 250 ppm, and lower concentrations did 

not show improvement on performance over the control or BMD50. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

 The use of antibiotics in livestock production is one of the potential contributors to the 

emergence of antibiotic resistant bacteria. In an effort to improve production efficiency (weight 

gain and feed conversion ratio), diets have been fortified with antibiotics, often at sub-

therapeutic doses. Long periods of exposure to these sub-therapeutic doses have induced 

bacterial populations to acquire genetic mutations or plasmids that allow them to survive in the 

presence of the antibiotics. Recognition of the contribution of antibiotics in feed to the 

emergence of antimicrobial resistance has led to a ban on the use of antibiotic growth promoters 

(AGP) in the European Union in 2006 (Castanon, 2007) and increased restrictions on the use of 

AGP in the United States. As of January 1, 2017, a new regulation of the Food and Drug 

Administration restricts an animal producer from using antibiotics as growth promoters if they 

are deemed a medically important antimicrobial with respect to human medicine. Banning AGP 

in European was almost immediately followed by health problems in broiler chickens, and an 

outbreak of Clostridium perfringens (CP) infections was seen (Castanon, 2007). Banning 

antibiotics from animal feed in the United States will likely cause the same challenge, which has 

promoted research into alternatives to AGP (Niewold, 2006) such as probiotics and prebiotics 

(Gardiner et al., 2004), organic acids (Partanen and Mroz, 1999), herbs and their extracts (Burt, 

2004). 

Silver (Ag+) is a white lustrous metal whose concentration in the Earth’s crust is about 

0.1 mg/kg (NRC, 2005). Silver is the second element of group 11 in the periodic table, which is 
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the group that has most if not all essential biologically trace elements, such as copper (Cu), zinc 

(Zn) and iron (Fe). Silver has no identified essential metabolic function as a trace mineral 

(Lansdown, 2007). Silver ion possesses antimicrobial properties and has been used as an 

antibacterial agent since before the discovery of penicillin to treat different human diseases 

(Klasen, 2000). The antimicrobial activity of silver ions is characterized by a high effectiveness, 

low toxicity to host cells, and rare development of resistance. Distinct from conventional 

antibiotics, silver is active under both aerobic and anaerobic conditions against a wide range of 

microorganisms including multidrug resistant bacteria due to its multifactorial mechanisms as an 

antimicrobial: inducing cell membrane damage, inhibiting respiratory enzymes, perturbing metal 

ion homeostasis, impact antioxidant status, and generating reactive oxygen species that 

eventually lead to damage of cellular components such as lipids and DNA. This could explain 

the scarce reported cases of resistance (Hindi et al., 2009). However, resistant against silver ion 

was reported (Silver 2003). Lansdown (2010 b) in his book mentioned six bacterial species that 

were reported to have resistance against silver, all of these bacteria were isolated from human 

infections (Salmonella Typhymirium, E. coli, Enterobacter cloacae, Klebsiella pneumonia, 

Aceniter baumannii, and Pseudomonas stutzeri). 

Both antimicrobial activity and toxicity of silver ion depend on bioavailability of silver 

ion in a biological system, which in turn (bioavailability of silver ion) depends on the delivery 

method, silver source, ionization, solubility and concentration of the biological ligands that can 

bind silver ion such as proteins, peptides and anions. Therefore, different silver-based 

formulations were synthesized based upon constant bioactive metal with a nontoxic carrier 

(Cannon et al., 2009).  
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Recently, N-heterocyclic carbene (NHCs) are being used as ancillary ligands to silver 

ions. NHCs are neutral 2-electron donors, with an ability to bond to both hard and soft metals. 

Silver N-heterocyclic carbene complexes (SCCs), a novel of silver-based compounds that 

gradually release silver ion, have gained a substantial amount of attention in human medicine as 

a result of exceptional antimicrobial efficacy (Melaiye et al., 2004) against a wide range of 

microorganisms including both Gram-positive and Gram-negative as well as fungi and even 

biosafety level 3 bacteria, with low toxic effects on mammalian cells (Hindi et al., 2009; Panzner 

et al., 2009).  

The effect of adding silver-based products to poultry in its ionic form has been studied 

decades ago in broiler chickens. These studies collectively showed that silver from silver acetate 

or silver nitrate is toxic at high concentrations (900 mg/kg practical diet in both poults and 

chickens [Jensen et al., 1974; Peterson and Jensen, 1975], 1500 mg/kg drinking water fed 

purified diet [Bunyan et al., 1968]). Depends on these and other publications, the NRC (2005) 

stated that the maximum tolerable level of silver in poultry with no adverse effect at 100 mg/kg 

feed. 

Scarce literature exists on the potentially less adverse effects of ionic silver on broiler 

performance, or potential in vivo efficacy using a disease model with chickens. This is mainly 

attributed to the fact that ionic silver could be more toxic than particulate silver as the 

dissociation rate of silver ion (Ag+) plays an important role in its biological activity. However, 

oral exposure to silver nanoparticles was reported to be very similar to exposure to silver salts 

such as silver acetate (Loeschner et al., 2011) and silver nitrate (van der Zande et al., 2012) in 

terms of organ distribution and elimination after oral exposure, or similar in terms of in vivo 

antimicrobial activity (Williams et al., 2015; Wilding et al., 2016; Lok et al, 2006; Hadrup et al., 
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2012), and in vitro efficacy and toxicity (Greulich et al., 2012), and even more so, in terms of the 

intestinal stress response (Bouwmeester et al., 2011). 

More recently, animal-antibiotic alternative researchers have evaluated silver in 

particulate form as a feed additive in animal production (poultry and swine) or as antimicrobial 

agent that can reduce Campylobacter jejuni infection, coccidiosis, and aflatoxin in broiler 

chickens (Sawosz et al., 2007, 2009; Fondevila et al., 2009; Pineda et al., 2012; Vadalasetty et 

al., 2018; Chauke and Siebrits, 2012; Gholami-Ahangaran and Zia-Jahromi, 2014). It has been 

hypothesized that since silver ion possesses antimicrobial activity, silver could potentially 

modify the microbiota profile of the gastrointestinal tract (GIT), increase nutrient utilization, and 

subsequently promote the bird performance in a manner resembling the action of antibiotic 

growth promotion. Saleh and El-Magd (2018) reported that dietary supplementation with silver 

nitrate (100 ppm) and particulate silver (50 ppm) for 12 days improved broiler performance body 

weight gain, feed intake, and feed conversion ratio. Vadalasetty et al. (2018), however, reported 

that the application of particulate silver via drinking water for 30 days in the concentration of 50 

ppm led to decrease the BW and WG (average body weight gain) with no impact on FCR. 

The main goal of this research is to evaluate new novel silver-based compounds, silver 

carbene complexes (SCCs) with different carrier molecules (SCC1 with a methylated caffeine 

backbone and SCC22 with a dichloroimidazolium backbone) along with silver acetate (AgAc) as 

a potential alternative therapy for gut infection in broiler chickens.  The specific objectives of 

this research include the following: 

1. Evaluate the in vitro antimicrobial efficacy of silver carbene complexes, SCC1, SCC22, and 

silver acetate against some enteric poultry pathogens 
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2. Evaluate potential in vivo toxicity of silver carbene complexes, SCC1 and SCC22, and silver 

acetate in broiler chickens 

3. Evaluation of the effects of silver acetate on performance and Clostridium perfringens-

induced necrotic enteritis in broiler chickens 

4.  Comparison study of silver acetate to probiotic, prebiotic, and antibiotic on full term broiler 

trial in terms of performance, ileal nutrient digestibility, bone mineralization, intestinal 

morphology, antioxidant status, and cecal microbiota population 

Literature Review 

Antibiotics as Growth Promoters 

 Shortly after the introduction of the therapeutic use of antibiotics which overlapped with 

intensive animal rearing, Moor et al. (1947) described for the first time the beneficial effects of 

feeding antibiotics at subtherapeutic levels to improve performance in poultry. The United States 

Food and Drug Administration (FDA) approved in 1951 the use of antibiotics as an animal feed 

additive without the prescription of a veterinarian (Jones and Ricke, 2003). There are 4 major 

mechanisms proposed to explain the mode of action of AGP: 1) inhibition of subclinical 

infections, 2) reduce growth-depression metabolites by the microbe (such as ammonia), 3) 

reduce microbial use of nutrients which lead to decrease nutrient competition, and 4) enhance 

uptake of nutrients as a result of improving the intestinal health (Gaskins et al., 2002).  All these 

mechanisms share a common hypothesis that AGP work directly or indirectly on intestinal 

microflora, whether commensal or pathogenic bacteria. Moreover, other mechanisms have been 

proposed for AGP, such as anti-inflammatory effects (Niewold, 2006).   

 In an effort to improve production efficiency (weight gain and feed conversion ratio), 

diets have been fortified with many introduced antibiotics. However, it was recognized that long 
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periods of exposure to these sub-therapeutic doses could induced bacterial populations to acquire 

genetic mutations or plasmids that allow them to survive in the presence of the antibiotics. 

Recognition of the contribution of antibiotics in feed to the emergence of antimicrobial 

resistance has led to a ban on the use of antibiotic growth promoters (AGP) in the European 

Union in 2006 (Castanon, 2007) and increased restrictions on the use of AGP in the United 

States. As of January 1, 2017, a new FDA regulation prohibits animal producers from using 

antibiotics as growth promoters if they are deemed to be a medically important antimicrobial 

with respect to human medicine. Banning AGP in Europe was almost immediately followed by 

health problems in broiler chickens, and outbreaks of Clostridium perfringens (CP) infections 

were documented (Castanon, 2007). Banning antibiotics from animal feed in the United States 

will likely cause the same challenges. This has stimulated new research into alternatives to AGP 

(Niewold, 2006) such as probiotics and prebiotics (Gardiner et al., 2004), organic acids (Partanen 

and Mroz, 1999), and herbs and their extracts (Burt, 2004). 

 Probiotics are defined as a live microbial feed supplement which beneficially affects the 

host animal by improving its intestinal balance (Fuller, 1989). The products of probiotics usually 

contain either a single bacteria strain or a mixture of strains of Bacillus spp, Bifidobacterium, 

Enterococcus, E. coli, Lactobacillus, Lactococcus, Streptococcus in addition live yeast species. 

Each has sole features that make them suitable for use as probiotics.  

Prebiotics are defined as a nondigestible food ingredient that beneficially affects the host 

by selectively stimulating the growth and/or activity of one or a limited number of intestinal 

bacteria (Gibson and Roberfroid, 1995). A variety of oligosaccharides and non-starch 

polysaccharides (NSP) have been consider as prebiotics, including fructooligosaccharide (FOS), 

mannanoligosaccharide (MOS), inulin, galactooligosaccharide, maltooligosaccharide, lactulose, 
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lactitol, xylooligosaccharide, glucooligosaccaride, soya-oligosaccharide, isomaltooligosaccharide 

(ISO), and pyrodextrins (Patterson and Burkholder, 2003). 

Silver Ion, Brief Historical Review  

 Silver ions (Ag+) have an atomic number of 47 and an atomic mass of 107.868 g/mole. 

The name of the element derives from the Anglo-Saxon “seolfor” and the Latin argentum. Silver 

ions are dissociated from different salts and from particulate silver. Silver is the second element 

of group 11 in the periodic table which includes many transition metals that are biologically 

important such as copper and zinc as trace minerals, and it was the third metal recognized after 

gold and copper to be used by the Ancients (Alexander, 2008). However, silver has no nutritional 

values in animal and human tissues (Lansdown, 2006). Silver occurs naturally as two isotopes 

Ag107 and Ag 109 in about similar proportions. Silver exhibits three oxidation states Ag (I), Ag 

(II) and Ag (III) but only compounds of the Ag (I) state are effective and stable to be as 

antimicrobial (Lansdown, 2006). Silver has been used as an antimicrobial agent in a variety of 

ways to control infections since ancient times (Russel and Hugo, 1994). There is no date reported 

for silver discovery, and no one has the honor to discover this metal as it is known since ancient 

time. Metallic silver in earliest time was used as a disinfectant to store and purify water, and it 

was reported that Alexander the Great (335 BC) stored and used water in silver vessels during 

his travels (White, 2002). Forms of silver such as silver nitrate and silver sulfadiazine have been 

therapeutically well-known since the 18th century (Klasen, 2000). The reputation of silver nitrate 

continued into the early 19th century, which led to its utilization as a treatment of different cases 

such as chronic skin ulcers, open wounds (Silver et al., 2006). German obstetrician, C.F. Crede, 

introduced a prophylactic 2% silver nitrate (AgNO3) eye solution to prevent ophthalmia 

neonatorum in newborns in 1880 (Klasen, 2000) and then he reduced the concentration to 1% as 
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because of the irritation the higher concentration affected. This was a highly effective therapy, 

reducing the incidence of ophthalmia neonatorium from 7.8% to 0.13% in 13 years (Alexander, 

2002). As a result of this effective therapy of silver, the use of silver nitrate as eye drops in 

newborn infants was broadly established throughout the world, this therapy was mandated by 

law and continued even after the introduction the antibiotics in several countries (Alexander, 

2002).  

However, many of these inorganic forms rapidly lose effectiveness since the silver 

cations are released rapidly at the infection site (Napoli et. al., 2013). Colloidal silver (metallic 

silver particles with >10% ionized silver ion) was introduced in the late 1800’s as alternative for 

the rapid dissociation from the silver anion and irritation that occur from the anion after 

dissociation (Gibbs, 1999). Other approaches were introduced in early 1970 based on 

complexing the silver ion with ancillary ligands for more stabilization (for example: silver 

sulfadiazine (Fox, 1968). After World War II, silver-based antimicrobials were abandoned with 

the discovery of penicillin and other antibiotics. The emergence of resistant organisms such as 

Pseudomonas aeruginosa occurred later and led to revival of the use of silver nitrate by Moyer et 

al. (1965). Advances in technology of silver chemistry during the last two decades was as race to 

synthesis new, safe silver-based products that able to sustain release bioactive silver ion with 

minimizing the potential hazard effect. 

N-heterocyclic Carbene 

 NHCs are neutral 2-electron donors, with an ability to bond to both hard and soft metals. 

Silver N-heterocyclic carbene complexes (SCCs), a novel of silver-based compounds that 

gradually release silver ion, have gained a substantial amount of attention in human medicine as 

a result of exceptional antimicrobial efficacy (Melaiye et al., 2004) against a wide range of 
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microorganisms including both Gram-positive and Gram-negative as well as fungi and even 

biosafety level 3 bacteria, with low toxic effects on mammalian cells (Hindi et al., 2009, Panzner 

et al., 2009). 

Silver as an Antimicrobial 

Metallic silver is not reactive with tissue or a microorganism unless it ionized, and it is 

very well known that Ag+ ion is the bioactive form of silver. The antimicrobial activity of silver 

ions is characterized by a high effectiveness, low toxicity to host cells, and rare development of 

resistance. Distinct from conventional antibiotics, silver is active under aerobic and anaerobic 

conditions against a wide range of microorganisms including multidrug resistant bacteria due to 

its multifactorial mechanisms as an antimicrobial: inducing cell membrane damage, inhibiting 

respiratory enzymes, perturbing metal ion homeostasis, impact antioxidant status, and generating 

reactive oxygen species that eventually lead to damage of cellular components such as lipids and 

DNA. This could explain the scarce reported cases of resistance (Hindi et al., 2009). 

The cytoplasmic membrane of the bacteria functions as a mechanical barrier protecting 

from outside adverse environment and has a biological function by exchanging nutrients with 

internal cytoplasm. Silver ion can readily interact with sulfdryl groups in thiol-containing 

compounds. The interaction of silver ions with bacterial inner and outer membranes reported as 

an important mechanism of silver ion to initiate its toxicity (Percival et al., 2005; Jung et al., 

2008; Randall et al., 2013). Jung et al. (2008) showed that the accumulation of silver ion in the 

bacterial cell wall is followed by the separation of the cytoplasmic membrane from the cell wall 

in both Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (E. coli), and 

carboxyl groups in glutamic acid and phosphate groups in teichoic acid are mostly responsible 

for binding of silver ions.  
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It was showed also that E. coli exposed to 10 µg/mL particulate silver on agar plates 

inhibited the bacterial growth by 70%, severe pitting in the cell membrane, and silver deposited 

as particles in the cell membrane with increase in cell wall permeability which led to reduce the 

uptake and exchange of essential nutrients such as phosphates, succinate, mannitol, and the 

amino acids glutamine and proline (Lansdown, 2010 b; Sondi and Salpopek-Sondi, 2004; 

Scheurs and Rosenberg, 1982). Kascatan-Nebioglu et al. (2006) treated Burkholderia dolosa 

with 5 µg/mL of silver carbene complex 4, bacteria demonstrated disruption of the bacterial cell 

morphology characterized by cell “ghosts” devoid of cytoplasm, the “ghost” cell membranes 

were studded with numerous electron dense clusters which likely representing outer membrane 

deposition of silver salts.  It has been demonstrated that after silver ions pass the bacterial cell 

membrane can be accumulated inside the cytoplasm and bind to different cytoplasmic 

components such as proteins, enzymes, and nucleic acids (Lansdown, 2006), and disturb the 

electron transport chain by uncoupling from the oxidative phosphorylation leading to deplete the 

ATP (Hidalgo and Domínguez, 1998). Silver from silver nitrate deposited as particles in E. coli 

and Pseudomonas aeruginosa induced irreversible DNA damage, degenerating cytoplasmic 

proteins, and loss the ability to replicate (Lansdown, 2010 b). 

Strictly anaerobic microorganisms have no electron respiratory chain which is different 

from aerobic bacteria (Thauer, 2015) consequently they cannot generate reactive products from 

reduction of O2, such as H2O2. Therefore, the Fenton reaction would not occur without H2O2, 

which affects the formation of hydroxyl free radical via Fenton reaction (Pesakhov et al., 2007). 

In aerobe and facultative anaerobe microorganisms, protection against free radicals can be 

provided by antioxidative enzymatic systems, which are responsible for the removal of ROS. 

Microorganisms with durable antioxidant defense system are thought to have a moderate or high 
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tolerance to the oxidative stress compared to strictly anaerobes which lack an antioxidative 

enzymes or because of antioxidative enzymes displaying low activity (Benov and Fridovich, 

1995). 

 Previous studies using silver nitrate under anaerobic and aerobic condition, against 

Staphylococcus aureus and E. coli showed that the effect of silver ion under anaerobic conditions 

is not as same as its activity under aerobic, yet it caused reduction in bacterial growth (Park et 

al., 2009). Bactericidal activities of silver zeolite and silver nitrate in anaerobic condition was 

examined against E. coli strain OW6 showed that under anaerobic conditions more cells were 

viable than in the presence of oxygen (Matsumura et al., 2003). Sütterlin et al. (2012) showed 

that a minimal bactericidal concentration (MBC) of silver ion for Gram-positive bacteria was 

more than 32 times higher than the MBC values for the Gram-negative bacterial cells. 

Bacterial Resistance to Silver 

 Metallic Silver and its products such as, silver nitrate and silver sulphadiazine have been 

practiced as broad-spectrum antibiotics to control infections usually associated with burns and 

chronic dermal wounds (Klasen, 2000).  Although there is doubting that bacteria can not develop 

resistance against silver ions, silver-resistant bacteria can occur (Gupta et al, 1999; Gupta and 

Silver, 1998) in a range of circumstances such as in chronic wounds, burns, dentistry, 

occupational exposure and water systems (Davis et al, 2005; Pruitt et al, 1998; Modak and Fox, 

1981). In fact, silver- resistant bacteria have been documented (Slawson et al., 1992) and 

molecular genetic basis for bacterial resistance to silver is mentioned in many published reports. 

However, only a few of these reports include data that support clarify resistance mechanisms 

against silver. The region of silver-resistant plasmid (pMG101) of Salmonella Typhymirium 

(isolate from burn ward at Massachusetts General Hospital) which determines the resistance to 
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silver (McHugh, 1975) was cloned and sequenced by Gupta, et al. (1999). This plasmid system 

contains 9 genes; seven genes were recognized and named, while the rest two genes are less 

recognized (unknown function). Resistance to silver initiate with silE gene which encodes for 

protein SilE. This protein is periplasmic protein that binds silver ions specifically at the cell 

surface. Therefore, it will work to protect the cell from taking up the silver into cytoplasm. The 

next 2 genes are silR (transcriptional responder) and silS (membrane kinase sensor). These genes 

encode proteins to direct or signal mRNA transcription in silver resistance. The rest 4 genes 

silCBAP are transcribed to form two parallel efflux pumps that protect the bacteria from silver 

ions that escaped from binding to SilE protein. These 2 efflux pumps actually consist of silCBA 

encode for a three-protein, membrane potential-dependent (SilCBA), cation/proton antiporter, 

and SilP protein which is function as ATPases (Silver, 2003). Although most heavy metal 

resistances result from either efflux pumping of the metal from the cytoplasm or by chelating it 

with metal-binding protein, silver resistance applied both binding and efflux. This complicated 

mechanisms to detoxify silver was first seen in silver resistant bacteria (Silver, 2003). Moreover, 

this mechanism could be alternative to another possible one which is proposed by Gadd et al 

(1989). Where the silver ion could be detoxified from the cell by binding to netallothionein and 

when this mechanism is fully occupied with silver ions, the bacterium may use the energy-

dependent ion efflux as a mechanism of resistance. The plasmid pMG101 has been shown to 

confer resistance to several heavy metals including mercury and silver, and when presented into 

E. coli allows for growth in more than 0.6 mM solution of silver ions (Gupta, 1999). Moreover, 

this plasmid confers resistance to several antibiotics, such as ampicillin, chloramphenicol, 

tetracycline, streptomycin, and sulphonamides. This suggests that the resistance against silver 

could be plasmid-mediator, and may be the activation of silver resistance system could be 
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developed from previous mercury and antibiotic resistance systems (cross-resistance). The 

protein SilE is 47% identical to  PcoE protein that found in E. coli plasmid copper resistance 

system (Silver, 2003) and it synthesized only when there is silver in the medium of growth 

(Gupta, 1999). Same analogues have noticed for the SilRS proteins, where they are homologous 

to sensor-responder proteins (PcoRS) that found in E. coli chromosome. These evidences suggest 

that silver resistant system may be evolved from preceding copper resistant system. In addition, 

there is controversial between some studies in terms of the true mechanism of resistance that 

bacteria possess against silver. Li et al. (1997) reported that efflux of silver was enhanced in 

mutants of E. coli which indicate that the resistance against silver could be as a result of bacterial 

mutation. However, this contrasts with both plasmid mediator route and with Maple et al. (1992) 

who reported that there were no resistant mutants of Staphylococcus aureus to silver. 

 In poultry, particulate silver has been introduced as antiseptic agent, feed additive, and 

possible development resistant is critical.  Interestingly, in a study to determine the carriage rate 

of silver resistance genes and their products (SilE, SilP, and SilS) in different E. coli populations 

(human vs birds) showed that 12% of human E. coli isolates but none of the avian isolates 

harbored silver resistance genes (Sütterlin et al., 2012). This is not surprisingly, since the wide 

use of silver products nowadays as an effective chemotherapeutic antibacterial agent in wound 

care products, medical devices, and purification of drinking water and many other silver-based 

applications. Treatment with Ag-NPs or silver acetate for long period at the doses below the 

minimum inhibitory concentration did not provide a sufficient selection pressure for evolving 

resistance through up-regulation of silver resistance genes silRS, silP and silCBA (Hadrup et al., 

2012). 
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Even though silver resistant bacteria have been reported, present evidences suggest that 

clinical threat is low and the true bacterial resistance is rare and erratic (Landsdown and 

Williams, 2007; Chopra, 2007; Wright et al., 2012). This is may be because the most studies for 

silver resistant derived from either burn wound infections that treated with silver nitrate or 

covered with a dressing has silver in it and from environments where the toxicity of silver is 

highly possible.  

Silver Absorption and Distribution 

 Silver is not a recognized trace metal but can accumulate in the human body at low 

concentrations (< 2.3 µg/L) by ingestion with food or drinking water, inhalation and 

occupational exposures (Lansdown, 2006). The skin, eye, brain, liver, kidney spleen, intestine, 

and bone marrow were recorded as main target tissues for silver deposition after absorption (U.S. 

EPA, 1985). Silver absorbed into the body as ionized form (Ag+) and it readily binds to 

intracellular proteins, especially serum albumins and macro-globulins for metabolism and 

distribution to different tissues. It was mentioned that the acute toxicity of silver to animals 

characterized by effects on the central nervous system leading mainly to respiratory paralysis. 

However, some studies mentioned silver is not absorbed into the brain and central or peripheral 

nervous systems in any species (Lansdown, 2007, Zheng et al., 2003). The effect of chronic 

exposure of animals to silver is limited to the argyria which is characterized by bluish 

discoloration of skin, eye and internal organs (U.S. EPA, 1985; Lansdown, 2010 a). In the 

dermis, silver deposition was proved to be as of inert precipitates of silver selenide and/or silver 

sulphide in the connective tissue surrounding the vascular tissue and glands of the papillary layer 

of the dermis but not epidermis (Tanita et. al., 1985; Sato et. al., 1999). These precipitates 

distribute as intracellular which is usually bound to lysosome or intercellular which precipitated 
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either as soluble or insoluble form. In the bone, no evidence was noticed that the deposition of 

silver in the bone caused osteoporosis although it was approved in vitro study that the silver 

binds to the hydroxyapatite complex and can displace calcium and magnesium ions (Gould et al., 

1987; Lansdown, 2009). Silver deposition in kidney (glomerular basement membranes, arteriolar 

endothelia and elastic laminae), without obvious structural damage also were reported (Berry, et. 

al. 1995; Walker, 1972). Creasey and Moffat (1973) reported the deposition of silver from silver 

nitrate in rat kidney as granules when silver was administered in the drinking water of 26 

weanling rats in the form of a 0.15% aqueous silver nitrate solution for periods of from 4 to 15 

weeks. The density of the silver deposits as granules increased towards the tip of the papilla of 

the rat kidney and could be recognized easily by naked-eye examination.  Although in vitro 

toxicity studies mentioned the cytotoxic effects of metallic silver and silver compounds in terms 

of carcinogenicity, in vivo studies indicate that silver is not carcinogenic in any tissue and must 

be placed in a “No Risk” category (U.S. Department of Health and Human Resources, 2010). 

The liver is considered the major tissue for silver deposition and elimination without hepatic 

damage except elevation in some hepatic enzymes (Trop et al., 2006). However, many other 

studies reported alteration in some plasma biochemical indicators for hepatotoxicity (ALT, ALP, 

AST, and GGT).  

The majority of silver is excreted in the feces (via biliary route) rather than in the urine 

regardless of the type of silver compound and the rout of administration (U.S. EPA, 1985). 

However, experimental studies in animal models have shown distinctions in biliary excretion of 

silver. For example, intravenous injection of silver nitrate was associated with biliary excretion 

patterns of 0.25, 0.05, 0.005 μg/kg/min in rats, rabbits, and dogs, respectively (U.S. EPA, 1992). 

The cumulative recovery of silver in feces after oral exposure was 98%, 99%, and 94% in rats, 
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mice, and monkeys, respectively. In human studies, the main route of silver excretion is detected 

via bile in to feces, although the urinary concentrations could be used as indicator of exposure 

(Landsman, 2010).   

Silver retention in liver, kidney, spleen, muscles, eggshells, and intestine has also been 

reported in previous in vivo studies where Ag-NPs were administered to hens or broilers (Chauke 

and Siebrits, 2012; Ahmadi and Rahimi, 2011; Gallocchio et al., 2017; Chmielowiec-

Korzeniowska et al., 2015; Kulak et al., 2018 a,b). Kulak et al. (2018) reported that the 

administration of Ag-NPs in the amount of 2.87 to 63.74 mg/bird for different time points does 

not cause silver to accumulate in the breast muscle. The ingestion of 2.87 mg/bird was found to 

result in the accumulation of this element in the wall of the small intestine and in the liver in 

dose dependent manner, while accumulation of silver in the heart of the chickens was not 

observed until the dose reached 22.5 mg/bird. Ognik et al. (2017) showed that broiler chickens 

received silver nanoparticles (0.5, 1.0, or 1.5 mg/kg body weight/d) via a tube into the crop in 3-

d periods (d 8–10, 22–24, and 36–38) or three 7-d periods (d 8–14, 22–28, and 36–42) particulate 

silver supplied via ingestion led to dose-dependent accumulation of Ag in the intestinal walls. 

In hens, administration of particulate silver could transfer to the liver and yolk.  

Gallocchio et al. (2017) used a 22-day in vivo study carried out by oral administration of 20 nm 

coated Ag-NPs to hens, with total dose received approximately 6 mg/kg of Ag-NPs, and atomic 

absorption spectroscopy was used for quantitative determination of residual total silver in 

different organs and matrices. The results showed that silver accumulated in livers (concentration 

ranging from 141 to 269 μg/kg) and yolks (concentration ranging from 20 to 49 μg/kg) but not in 

muscles, kidneys, and albumen. 
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Silver Toxicity 

Silver is not a recognized trace metal but can accumulate in the human body at low 

concentrations (< 2.3 µg/L) by ingestion with food or drinking water, inhalation and 

occupational exposures (Lansdown, 2006). Toxicity of silver to human and mammals is still 

under examination (Cannon et al., 2009). Silver is known to be one of the least toxic metals. Use 

in high doses by humans can cause a rare irreversible pigmentation of the skin (argyria) and/or 

the eyes (argyrosis) (Lansdown, 2006). The toxicity of silver compounds can be often linked to 

the carrier molecules (Gear et al., 1997), or partially to the shape and size of particulate silver 

(Kim et al., 2010). 

 The toxicity of silver in animal reported controversially both in vitro and in vivo studies. 

(Lansdown, 2006). Some studies related to silver toxicity and its compounds evidenced that 

silver has adverse effect on different tissues and cells (Fraser et al., 2004; Hollinger, 1996; 

Hidalgo and Dominguez, 1998; Hussain, et al., 1992; Hassanpour et al., 2015). However, other 

studies have reported that silver was not observed as a toxic metal inside the cell (Ghosh and 

Banthia, 2004, Alt et al., 2004, Lansdown, 2006). From in vivo and in vitro studies, there is a 

general agreement that the mitochondria are the main target of silver ions after absorption from 

the cell membrane (Stensberg, et al., 2011). This is because the mitochondria are susceptible to 

the permeability transition pathway. This pathway is characterized by the formation of 

proteinaceous pores in mitochondrial membranes, which results in mitochondrial swelling with 

abnormal metabolism and ultimately cellular apoptosis. The most common description of the 

events of toxicity before apoptosis can be generalized as oxidative stress. After uptake of silver 

ion in the mitochondria, it can stimulate the production of reactive oxygen species (ROS), 

because of disruption of the influx of ions and electrons across the mitochondrial membrane (as 
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the bacteria lack the mitochondria, these events accorded in the lipid bilayer cytoplasmic 

membrane). Silver can bind and modulate the glutathione (GSH) function as non-enzymatic 

antioxidant by an oligodynamic effect. This will increase ROS because of depleting GSH, and 

eventually lead to damage the cellular components such as proteins, lipids, RNA and DNA as 

ROS increase in the cell. 

Effect on Performance 

 Saleh and El-Magd (2018) reported that dietary supplementation with silver nitrate (100 

ppm) and particulate silver (50 ppm) for 12 days improved broiler performance body weight 

gain, feed intake, and feed conversion ratio. Vadalasetty et al. (2018), however, reported that the 

application of particulate silver via drinking water for 30 days in the concentration of 50 ppm led 

to decrease the BW and WG (average body weight gain) with no impact on FCR. Song et al. 

(2017) reported that the intestinal and plasma oxidative stress resulted in a reduction in body 

weight and feed intake with no effect on FCR, and dietary treatment with Zn, vitamin E as 

antioxidants, or their combination at different inclusion rates failed to alleviate the negative 

effect of dietary particulate silver (at 1000 mg/L drinking water for 42 days) on the body weight 

and feed intake of broiler chickens. 

Feeding a diet containing graded concentrations 10, 25, 50 and 100 and 200 mg/kg silver 

sulfate for 3 weeks did not affect growth performance and mortality of broiler chickens 100 mg 

Ag/kg as silver sulfate to one-day-old chicks did not adversely affect growth, mortality, 

hemoglobin concentration, and elastin content of the aorta (Hill et al., 1964). 

Felehgari et al. (2013) showed that silver nanoparticles fed to broiler chickens at 25 and 

50 ppm for 21 d did not affect the bird performance parameters BW, WG, and FCR. Similarly, 

Pineda et al. (2012) reported that providing silver nanoparticles to broiler chickens at 10 and 20 
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mg/kg in drinking water from d 7 to 36 did not affect bird performance BW, FCR and 

mortalities. 

 Kulak et al. (2018) and Ognik et al. (2016 a) demonstrated that oral administration of 

particulate silver to chickens effects the morphology and functioning of the gastrointestinal tract, 

as well as the parameters of immune and redox status accompanied with intestinal wall 

accumulation of silver, regardless the size and doses used. However, growth performance 

parameters of the chickens (body weight gain, feed conversion, and weight gain) did not affect 

significantly compared to the control. 

Higher dietary concentrations of silver induced signs associated with Cu and Se 

deficiency including depressed growth, hemoglobin and aortic elastin, increased mortality and 

heart weight, and exudative diathesis in chicks (Hill et al., 1964; Bunyan et al., 1968; Petersen 

and Jensen, 1975a, b). Peterson and Jensen (1974) showed that adding 900 ppm silver nitrate for 

4 weeks to a practical diet for chicks significantly depressed growth, reduced the copper content 

of blood, spleen, brain, liver and 50 ppm Cu supplementation only partially corrected the growth 

depression. 

 In turkeys, 100, and 300 mg Ag/kg diet did not affect the growth, and 900 mg Ag/kg diet 

induced gizzard musculature dystrophy, enlarged hearts, and decreased packed red blood cell 

volume, in addition to depressed growth performance (Jensen et al., 1974). 

Kulthong et al. (2012) orally supplemented 0, 50 100, 250, 500 and 1000 mg/kg/day for 

14 days did not significantly change in the rat body weight, liver weight and relative liver weight 

in all treatment groups. Felehgari et al. (2013) showed that silver nanoparticles fed to broiler 

chickens at 25 and 50 ppm for 21 d did not affect the bird performance parameters BW, WG, and 

FCR. Similarly, Pineda et al. (2012) reported that providing silver nanoparticles to broiler 
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chickens at 10 and 20 mg/kg in drinking water from d 7 to 36 did not affect bird performance 

BW, FCR and mortalities. 

Lethal Dose 

Silver from different compounds showed different LD50 values which mainly depend on 

animal species sensitivity for different silver-based products, rout and duration of administration. 

Venugopal and Luckey (1978) reported oral LD50 values for mice using colloidal silver and 

silver nitrate 100 mg/kg and 129 mg/kg, respectively. While for silver cyanide, the LD50 for rats 

was 125 mg/kg, and silver oxide with LD50 of 2820 mg/kg for rats. In a single oral acute toxicity 

study in 7-week-old rats, administration of silver ion from particulate silver and AgNO3 with 2 

and 20 mg/kg BW did not cause death or changing in BW (Park, 2013). Haque et al. (2013) 

reported no signs of toxicity were observed and animals remained alive, healthy, and agile when 

administered single oral dosages of 300 and 2000 mg/kg BW of dinuclear Ag(I)-NHC complex. 

Tamimi et al. (1998) worked on silver nitrate as the active ingredient in an anti-smoking 

mouthwash, the author reported: in rats, following oral administration, the LD50 was found to be 

280 mg of silver/kg of BW, while in rabbits the LD50 was found to be 800 mg of silver/kg of 

BW/day. Walker also identified silver nitrate at concentrations 308 mg of silver/kg BW (rat) in 

the drinking water induces death over the course of a few days (Walker, 1971). 

Maneewattanapinyo et al. (2011) reported at acute doses of up to 5000 mg/kg of BW/day, silver 

was not toxic when orally administered nanoparticulate to guinea pigs. There is no LD50 value 

available in the literature for chicken. 
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Effect on Relative Organ Weights 

 Vadalasetty et al. (2018) reported that the application of particulate silver via drinking 

water in the concentration of 50 mg/kg had no effect on relative organ weight of liver and heart, 

but significant interactions between age and treatment were observed for the relative weight of 

bursa and spleen, where a lower relative bursa at age 15 day, and for spleen at age 30 day were 

noticed for AgNP group. Hadrup et al (2012) examined the effect of administration particulate 

silver and silver acetate at 9 and 14 mg/kg BW, respectively, and no differences in relative organ 

weight of liver, kidney, spleen, and heart was noticed  

 Raieszadeh et al. (2013) evaluated the impact of adding 10, 20, 30, 50, and 70 ppm of 

particulate silver in drinking water for 26 days on broiler chicken heart and the 

echocardiographic assessment results showed that high dosage of particulate silver led to 

cardiovascular problems with decrease in myocardial contractility and increase in the internal 

diameter of left ventricle. Kim et al. (2008, 2010) found no histopathological changes in the heart 

after up to 13 weeks of treatment with 56–60 nm silver nanoparticles at doses up to 1000 mg/kg 

of BW/day. 

Effect on Serum Biochemicals 

Ag-NPs fed orally to rats at doses of 0, 50 100, 250, 500 and 1000 mg/kg/day for 2 weeks 

did not significantly alter the serum ALT or AST levels, suggesting no major loss of the 

parenchymal and other liver cell integrity, while the absence of any significant change in the 

ALP blood levels in all treated groups also suggested no significant damage to the biliary tract 

and so overall no serious liver dysfunction (Kulthong et al., 2012). Effect of silver on ALT and 

ALP serum or plasma enzymes in broiler chickens was studies in many studies using different 

rout of administration (feed or water). Administration of silver nanoparticles 5 mg/kg body 
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weight per day for first 3 days of weeks 2, 4, and 6 of life via a tube into the broiler chicken crop, 

particularly 5 nm lipid-coated nanoparticles led to a disturbance in protein catabolism in the 

organism, which was evidenced by the decrease in the activity of the liver enzymes AST and 

ALT and the decreased concentration of the main protein metabolism products (creatinine and 

urea) (Ognik et al., 2016). Ahmadi (2012) reported application 20, 40, 60 ppm Ag-NP diet for 42 

days reduced serum ALT and ALP. Elkloub et al. (2015) reported that administration of Ag-NPs 

at 2, 4, 6, 8 and 10 ppm/kg feed throughout broiler chicken’s growth trial period (7-35 days) did 

not affect the serum ALT levels significantly when compared to control group. Ahmadi (2009) 

reported administration of 300, 600, 900 ppm particulate silver in broiler feed for 42 days did not 

affect the liver enzymes ALT, ALP, AST. Sawosz et al. (2009) observed no effect of 

administration of nanosilver to chickens on the activity of AST, ALT or ALP. 

In a single oral dose, Park (2013) reported significant increases in the activities of AST 

and ALT were observed in the 20 mg/kg Ag+ (AgNO3)-treated group, but no effect on ALT with 

same dose of Ag-NP. However, the author suggested serum activity levels of both AST and 

ALT, which are indicators of liver damage, increased in rats treated with the high dose of Ag+ 

(20 mg/kg). The increased AST and ALT activities may be correlated with liver necrosis 

observed in rats treated with the high dose of Ag+ (20 mg/kg). However, the elevated activity 

levels of AST and ALT were not suggestive of severe damage. 

Effect on Histology 

 In rodent toxicity studies, it has been reported that oral ingestion of particulate silver at 

10 and 20 mg/kg for 28 days could lead to destruction of intestinal microvilli, reduce absorption 

capacity of nutrients and subsequently reduce growth performance (Shahera and Young, 2013). 

Another pathological change reported in a rodent stud by Jeong et al. (2010) were increased 
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numbers of goblet cells in the intestine that had released abnormal composition of mucus 

granules following the oral administration of 30 mg/kg of BW/day of nanoparticles for 28 days, 

but no adverse effect on performance was noticed.  

Other studies reveled no adverse effect on intestinal histology when applying particulate 

silver with different doses, exposure duration, and rout of administration in quails (Sawosz et al., 

2007), broiler chickens (Ahmadi et al., 2009), weaned pigs (Fondevila et al., 2009), and mice 

(van den Brule et al., 2016). Hadrup et al. (2012) reported that histological examination of the 

liver, kidneys, ileum and heart from six animals of both sexes from the control and the high-dose 

Ag-NP groups (9 mg/kg BW/day for 28 days) and of six females from the silver acetate group 

did not exhibit any differences compared with the vehicle control group. Ahmadi and Mehrdad 

(2009) have observed slight necrotic changes in liver of high dose Ag-NP-treated chickens. 

However, Ognik et al. (2016) have not noticed deviations from the normal structure of liver 

when using Ag-NPs with larger size with lower dose. Ahmadi et al. (2009) showed that 300, 600, 

900 ppm particulate silver in drinking water did not affect the liver histological structure. 

Loghman et al. (2012) evaluated the toxicity of particulate silver and observed pathological and 

morphological changes in the liver of broiler chickens administered at 4, 8, 12 ppm in drinking 

water, the author reported infrequent accumulations in the hepatocytes (cell swelling) and 

hyperemia at 4 ppm, while at 8 and 12 ppm showed dilated central vein, hyperemia with severe 

vacuolation fatty change. Similarly, in sub chronic toxicity (Amin et al., 2015) and acute toxicity 

(Cho et al., 2015) reported moderate to severe fatty changes of hepatocytes and cytoplasmic 

vacuolization when silver particulate administered to rats and mice. 

 Hadrup et al. (2012) in the kidney, no differences to the control group in absolute and 

relative kidney weights histological changes and apoptosis levels indicated no adverse effects of 
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Ag-NPs or silver acetate on kidneys at 9 mg/kg BW. In rabbit, after a single intravenous 

injection of 0.5 and 5 mg/kg BW Ag-NP the accumulation of silver was observed in all the tested 

organs including liver, kidney, spleen, lung, brain, testis, and thymus at 1 day, 7 day, and 28 day 

of measurement. The author mentioned that the liver and spleen seemed to be the major targets 

because of high accumulation of silver. However, histopathological changes in spleen were not 

significant when compared to liver and kidney which shoed mild histopathological changes, 

while spleen seemed to be the major target of Ag-NPs (Lee et al., 2015). 

Effect on Bone 

 In broiler chickens, Peterson and Jensen (1974) noticed that among mortalities weak 

bones were a noticeable clinical sign after feeding an industry-type diet supplemented with 900 

ppm silver nitrate for 4 weeks, while Jensen et al. (1974) did not mentioned such effect on young 

turkeys when fed the same concentration of 900 ppm, neither at lower concentration 100 and 300 

ppm. In a recent study done by Ognik et al. (2017), it has been found that administration of silver 

nanoparticles to intestine of chickens did not interfere with calcium (Ca) absorption but there 

was a decrease in the absorption of K and Fe. For the Ca ion, in rodent and broiler studies that 

have measured serum or plasma Ca (Kim et al., 2008, 2010; Park, 2013; Wen et al., 2017; Ognik 

et al, 2016; Sikorska et al., 2010), no difference was seen in the Ca levels after administration of 

silver nanoparticles. Ji et al, (2007), however, reported higher Ca level with higher silver dose in 

an inhalation study. While, Lee et al. (2013) reported decrease in serum Ca levels compared to 

control group after a single intravenous injection of AgNPs at 0.5 and 5 mg/kg BW. Sikorska et 

al. (2010) show that there was a tendency towards increasing mineral content of Ca, Cu, and iron 

in thigh bone of chicken embryo when administered 50 ppm particulate silver, indicating that 
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particulate silver may influence bone mineralization, and it could be speculated that particulate 

silver has the ability to stimulate the hydroxyapatite formation.  

In Vivo Efficacy of Silver  

 It has been hypothesized that since silver ion possesses antimicrobial activity, silver 

could potentially modify the microbiota profile of the gastrointestinal tract (GIT), increase 

nutrient utilization, and subsequently promote the bird performance in a manner resembling the 

action of antibiotic growth promotion. Sawosz et al. (2007) reported no major effect of colloidal 

silver on bacterial population in the digestive tract of quails, however, only a significant increase 

in lactic acid bacteria was observed with 25 mg/kg in drinking water. It has been observed in 

vitro that the proportion of coliforms in pigs’ ileal contents was linearly reduced with doses 0, 

25, 50, and 100 ppm colloidal silver, whereas no effect was observed on Lactobacilli proportion 

with same concentrations (Fondevila et al., 2009). In their in vivo study, the author reported no 

significant coliform reduction in ileal contents when 20 and 40 ppm of metallic silver 

nanoparticles were given to weaned piglets as metallic silver, however, the concentration of the 

pathogen Clostridium perfringens group was reduced with 20 ppm silver. The latter two authors 

hypothesized selectivity of silver ion over bacterial spp. could be possible. The selectivity of 

silver ion is documented that cell membrane is a key target of ionic silver making Gram-positive 

bacteria are in general to be less sensitive to ionic silver than Gram-negative bacteria due to 

differences in the structure of the cell wall. 

No effect of silver in particulate form on microbial population including Clostridium 

perfringens when broiler chicken supplemented 10 and 20 mg/kg drinking water for 22 days with 

no positive effect on bird performance BW and FCR (Pineda et al., 2012). Vadalasetty et al. 

(2018) reported that the application of particulate silver via drinking water in the concentration 
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of 50 mg/kg had no antibacterial effect on different intestinal bacterial groups including 

Clostridium perfringens, and had no effect on colonization of Campylobacter jejuni 

experimentally infected in broiler chickens although the in vitro results showed bactericidal at 

the same concentration used in vivo but this concentration led to decrease the BW. Hadrup et al. 

(2012) showed neither silver nanoparticle (9 mg /kg BW/day) nor silver acetate (14 mg/kg 

BW/day) affected the balance between the two main phyla of gastrointestinal tract bacteria in 

GIT of rates, Firmicutes and Bacteriodetes. The author suggested that silver nanoparticles and 

silver acetate in the applied doses did not disturb the microbiological balance of the 

gastrointestinal environment at the phyla level. 

Effect on Nutrient Utilization  

 To the best of our knowledge, there are scarce studies regarding effect of silver on 

nutrient utilization, such as effect on energy and amino acids digestibility’s. A study conducted 

by Saleh and El-Maged (2018) evaluated dietary silver nitrate (100 mg/kg feed) and particulate 

silver (50 mg/kg feed) on protein digestibility and the author reported a tendency to increase 

protein digestibility, and the nitrogen (N) content in the muscle tissue increased significantly in 

the chicks fed particulate silver and silver nitrate compared with that in the control group. Pienda 

et al. (2012) reported high N intake and more N retention per kg metabolic body size of broiler 

chickens with supplementation 10 ppm particulate silver for 4 weeks. 

Silver ion possesses antimicrobial properties and has been used as an antibacterial agent 

since before the discovery of penicillin and distinct from conventional antibiotics, silver is active 

against a wide range of microorganisms due to its multifactorial mechanisms as an antimicrobial.   

From the literature, researchers hypothesized that particulate silver could be employed as 

an alternative to antibiotics in animal production  (Sawosz et al., 2007, 2009; Fondevila et al., 
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2009; Pineda et al., 2012; Vadalasetty et al., 2018; Ahmadi and Kurdestani, 2010, Ahmadi, 2012; 

Saleh and El-Magd, 2018) did show very slight change in bird performance, and in vivo efficacy 

and that toxicity could be accorded at low doses preventing the silver being antibiotic alternative 

(Sawosz et al., 2007). However, research in to find a silver-based product that could be apply as 

antibiotic alternative are continuing, as it need further research in practical (Fondevila, 2010).   

 The main goal of this research is to evaluate new novel silver-based compounds, silver 

carbene complexes (SCCs) with different carrier molecules (SCC1 with a methylated caffeine 

backbone and SCC22 with a dichloroimidazolium backbone) along with silver acetate (AgAc) as 

a potential alternative antibiotic in broiler chickens.  The specific objectives of this research 

evaluate these products in terms of in vitro antimicrobial efficacy, in vivo potential toxicity, in 

vivo prophylactic and therapeutic efficacy against Clostridium perfringens-experimentally 

induced, and to evaluate silver acetate as a  potential growth promoter (dietary silver 

supplementation) and compared it to antibiotic and selected alternatives, probiotic (Bacillus spp) 

and prebiotic (yeast cell wall fractions from Saccharomyces cerevisiae) in terms of performance, 

nutrient digestibility, gastrointestinal histology, bone mineralization, and hepatic glutathione and 

related amino acids cysteine and cystine.  



 

28 

 

CHAPTER II  

IN VITRO ANTIMICROBIAL EFFICACY OF SILVER CARBENE COMPLEXES, 

SCC1 AND SCC22, AGAINST SOME ENTERIC POULTRY PATHOGENS, AND 

EVALUATION POTENTIAL MODULATION OF VIRULENCE GENES AND 

MORPHOLOGY OF CLOSTRIDIUM PERFRINGENS TYPE A UNDER ANAEROBIC 

CONDITIONS 

Introduction 

 Enteric diseases caused by opportunistic microorganisms are detrimental to animal 

production. This is because of the loss of productivity, increase potential human health risks 

related with foodborne diseases (Patterson and Burkholder, 2003) and increased prevalence of 

multiple drug resistance. One strategy followed by animal producers to reduce the enteric 

bacterial burden and subsequently promote the growth performance is to fortify diets with 

antibiotics, often at subtherapeutic doses. Long periods of exposure to these subtherapeutic doses 

have induced bacterial populations to acquire genetic mutations or plasmids that allow them to 

survive in the presence of the antibiotics. Recognition of the contribution of antibiotics in feed to 

the emergence of antimicrobial resistance has led to a ban on the use of antibiotic growth 

promoters (AGP) in European Union in 2006 (Castanon, 2007) and increased restrictions on the 

use of AGP in the United States. This has promoted research into alternatives to AGP (Niewold, 

2006). 

Silver has been used as an antimicrobial agent in a variety of ways to control infections 

since ancient times. Formulations of silver such as silver nitrate have been therapeutically well-

known since the 18th century (Klasen, 2000). However, many of these inorganic forms rapidly 

lose effectiveness since the silver cations are released rapidly at the infection site (Napoli et al., 
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2013). Colloidal silver (metallic silver particles with >10% ionized silver ion) was introduced in 

the late 1800’s as alternative for the rapid dissociation from the silver anion (Gibbs, 1999). Other 

approaches were introduced in early 1970 based on complexing the silver ion with ancillary 

ligands for more stabilization (for example: silver sulfadiazine (Fox, 1968)). 

 Recently, N-heterocyclic carbenes (NHCs) are being used as ancillary ligands to silver 

ion. NHCs are neutral 2-electron donors, with an ability to bond to silver forming more stable 

silver-based compounds because of the relatively strong silver-carbon bond (Johnson et al., 

2017) which leads to slow release of the cation by which systemic toxicity decrease and cation 

availability for antimicrobial purposes increase. Silver carbene complexes (SCCs), a novel of 

silver-based compounds that gradually release silver ion, have gained a substantial amount of 

attention in human medicine recently as a result of exceptional antimicrobial efficacy (Melaiye et 

al., 2004) against a wide range of microorganisms mainly isolated human including both Gram-

positive and Gram-negative as well as fungi and even biosafety level 3 bacteria, with low toxic 

effect on mammalian cell (Melaiye et al., 2004; Kascatan-Nebioglu et al., 2006; Leid et al., 

2012; Patil et al., 2011; Hindi  et al., 2008, 2009; Panzner et al., 2009 ab; Cannon et al., 2009). 

As a general role that a substance to introduce as feed additive, effectiveness of its 

antimicrobial activity, safety to the host with excreting potential positive effect should be 

evaluated as a first steps. In addition, the wide range antibacterial of SCCs scarcely reported their 

efficacy against animal-isolated pathogens, in particular under anaerobic conditions. 

Therefore, using a micro-dilution method, the in vitro efficacy of two SCCs with 

different carrier molecules (SCC1 with a methylated caffeine backbone and SCC22 with a 

dichloroimidazolium backbone) was investigated against the pathogenic bacteria that can cause 

illness in humans and that have been reported in the chicken gut microbiota (Oakley 2014), 5 
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Salmonella enterica, Escherichia coli, Clostridium perfringens, in addition to Staphylococcus 

aureus. These bacteria species are all known to cause significant numbers of foodborne diseases 

in humans (Scallan et al., 2011), in addition E. coil and Clostridium perfringens are pathogenic 

bacteria that can cause disease in animals and impact the general performance. In addition to 

growth inhibition of Clostridium perfringens, potential modulation of virulence and 

morphological changes were further investigated using RT-qPCR and transmission and scanning 

electron microscopies. 

Materials and Methods 

Silver Sources 

 Two separate SCCs in pure formulations with different carrier molecules, SCC1 and 

SCC22 (Figure 1) provided by the Department of Microbial Pathogenesis and Immunology 

(Texas A&M Health Science Center). These compounds have been previously synthesized and 

characterized (Panzner et al., 2009; Kascatan-Nebioglu et al., 2006; Hindi et al., 2008). SCC1 is 

an organic complex with a molecular weight of 375.13 g/mol with a solubility of 11 mg/mL in 

water, and SCC22 has a molecular weight of 375.99 g/mol with a solubility of 110 mg/mL in 

water. Silver acetate (AgAc) was purchased from Sigma-Aldrich with 99.9% purity and 

molecular weight 166.92 g/mol. 



 

31 

 

 

Figure 1 Chemical structures of silver carbene complex 1 (SCC1, molecular weight 375.13 

g/mol), silver carbene complex 22 (SCC22, molecular weight 375.99) and silver acetate 

(AgAc, molecular weight 166.92 g/mol) 

(Leid et al., 2012) 

 

 

 

Bacterial Species and Growth Conditions 

 The bacteria used in this study are listed in Table 2. All bacteria were provided by the 

USDA-ARS facility in College Station, TX. A mixed culture of four field isolates of Clostridium 

perfringens type A from different geographical locations confirmed with necrotic enteritis 

infection (2 isolates from Texas and Virginia and 2 isolates from Georgia) was prepared by 

combining equal volumes of each culture growing at the mid-log phase and tested in combined. 

To the author knowledge, almost no literature document silver activity facing geographically 

different strains of same species in combined. These isolates will be used further for future in 

vivo studies to induce necrotic enteritis. Thus, we tested in combination to closely mimic the in 

vivo antimicrobial examination. A Salmonella Typhimurium resistant to 14 antibiotics plus four 
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Salmonella spp. field isolates (5 strains in total), two resistant strains of E. coli (E. coli 843 

resistant to 5 antibiotics, E. coli 1568 resistant to 6 antibiotics, wild swine isolates) and a poultry 

field isolates E. coli, and Staphylococcus aureus (SA) tested in this study. These chosen bacteria 

are either important as animal or human pathogens with different biochemical properties that are 

obtained zoonotically from animal to test the hypothesis of wide range activity of SCCs. 

Minimum Inhibitory Concentration, Minimum Bactericidal Concentration (MIC and MBC) 

 The MICs of SCC1, SCC22, and AgAc were determined by a broth microdilution as 

described by Hindi et al. (2008) and Kascatan-Nebioglu et al. (2006) by using standard Clinical 

and Laboratory Standards Institute (CLSI) protocols for aerobic and anaerobic bacteria. Briefly, 

bacteria were streaked from glycerol frozen stocks onto blood agar plates and incubated 

overnight at 37°C. Bacteria from fresh overnight plates were suspended in standard Mueller-

Hinton broth, or Brucella broth for CP, to an optical density at 650 nm (OD650) of 0.25 and were 

grown in a shaking incubator, 200 rpm (not for CP), to an OD650 (OD625 for CP) of 0.4, which 

corresponds to ∼2 × 108 CFU/mL (∼108 CFU/mL for CP), confirmed by plating serial dilutions. 

The bacteria were diluted in the broth to a concentration of 105 (106 for CP) in 100 µL, which 

was added to 3 wells of flat bottomed 96-well microplate containing 100 µL of either SCC1, 

SCC22, or AgAc diluted in deionized distilled water to various concentrations from 10 mg/mL 

stocks. The dilutions for SCCs were prepared from 1 mg/mL stocks in DMSO with the final 

solution composition being 95% sterile water and 5% DMSO by volume. Solutions containing 

95% sterile water and 5% DMSO but no SCCs were used as the appropriate control. The final 

concentrations tested were 0.125, 0.25, 0.5, 1, 2, 4, 6, 8, 12, 16, 24, and 32 µg/mL. The MIC was 

determined as the lowest concentration at which each of the 3 wells were clear in two sets of 

plates after incubation for 18–20 h (24-48 h for CP) at 37°C. To determine the minimal 
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bactericidal concentrations (MBCs), 100 µL from each clear well was plated on blood agar, 

incubated for 20-24 h, and MBC was recorded as the lowest concentration with no growth. All 

MIC and MBC measurements for each bacterium were performed at least in duplicate. MICs and 

MBCs for CP were conducted under anaerobic conditions (Koy Laboratory Products INC, USA), 

in which 5% CO2, 5% H2, 90% N2, at 80% relative humidity was maintained, while Salmonella 

spp, E. coli strains and Staphylococcus aureus were tested under aerobic conditions. A stock 

solution was made by dissolving 10 mg of each compound in 1 mL of deionized distilled water 

(EASYpure® UV/UF, Barnstead). Then, 1:10 dilutions were made to prepare working stocks (1 

and 0.1 mg/mL). All dilutions were prepared at a concentration twice the desired final 

concentrations. 

Clostridium Perfringens Gene Expression of Virulence Genes 

 Clostridium perfringens genes involved in toxin production (plc and netB) were selected 

for a gene expression study. To prepare total cellular RNA for gene expression analysis, 0.5 mL 

of CP (108 CFU/mL) at the mid-log phase of bacterial growth was treated with SCC1, SCC22, or 

AgAc (40 µg/mL, slightly higher concentration than MBC at 32 µg/mL) for 10 h.  RNA was 

stabilized by adding 2 volumes of RNAprotect Bacteria Reagent (Qiagen). Cells were harvested 

by centrifugation (13,000 x g for 10 min) and bacterial cells were disrupted by resuspending the 

pellets in 200 µL of Tris EDTA buffer (10 mM Tris, 1 mM EDTA) containing 5 mg/mL 

Lysozyme (Sigma). Total RNA was extracted by RNeasy® Protect Bacteria Mini Kit (Qiagen) 

according to the manufacturer’s instructions. The quantity and quality of total RNA was 

determined using a Nanodrop ND-1000 spectrophotometer (NanoDrop Technology, Wilmington, 

DE). Total RNA was then reverse-transcribed to first-strand cDNA using EasyScript PlusTM 

cDNA Synthesis kit (Lamda Biotech, Carlsbad, CA). 
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The sequence of CP strain 13 (http://www.ncbi.nlm.nih.gov/nuccore/BA000016.3) was 

used to design the primers (Table 1) for this study that produced PCR amplicons of 100–150 bp 

in length using the default setting of Primer 3 plus Input software. Each PCR reaction mixtures 

contained 1X iQTM SYBR Green Supermix (Bio-Rad), 100 ng of the cDNA template, and 300 

nM each of the forward and reverse primers. Thermal cycling conditions were as follows: 95°C 

for 5 minutes to activate the AmpliTaq DNA Polymerase, followed by 40 cycles of denaturation 

at 95ºC for 15 sec, annealing and extending at 60°C for 1 minute. The dissociation curve was run 

following the real time reaction to determine if the primers used in each reaction generated a 

specific product. 16S rRNA gene was amplified as a reference RNA of equivalent size for 

normalization. Data obtained were analyzed using the relative quantification method (2 -ΔΔCt) to 

calculate the relative level of mRNA expression. 

 

Table 1 Primers used in this study for plc and netB gene expression 

Target Primer Sequence (5’ – 3’) 

plc   F TGACACAGGGGAATCACAAA 

 R CGCTATCAACGGCAGTAACA 

netB F GGAAAAATGAAATGGCCTGA 

 R GCACCAGCAGTTTTTCCTTC 

16S rRNA F TGCACCAGGAACTAAAGCAA 

 R TTCCAAGTCCTGAGCAAGGT 
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Detection of netB Gene in Clostridium perfringens Type A 

Detection of the netB gene (encoding necrotic enteritis toxin B, NetB) of each of the four 

Clostridium perfringens isolates was performed using specific primers as previously described 

by Keyburn et al. (2008) with minor modifications. Briefly, DNA was isolated from each strain 

using UltraClean™ Microbial DNA Isolation Kit (MO BIO, Laboratories, Inc., USA) following 

the instruction of the manufacturer. PCR was performed in a 25 µL reaction mixture containing: 

1X PCR buffer (Bio-Rad); 2.5 mM MgCl2; 0.2 mM dNTP mixture; 2.5 units of Taq DNA 

polymerase (Bio-Rad); 50 pM of primers AKP78 (5´-GCTGGTGCTGGAATAAATGC-3´) and 

AKP79 (5´-TCGCCATTGAGTAGTTTCCC-3´) and 5 µL of template. Thermal cycling 

conditions were as follows: denaturation at 94ºC for 2 min; 35 cycles of denaturation at 94ºC for 

30 sec; annealing at 55ºC for 30 sec; and extension at 72ºC for 1 min; with the final extension 

step at 72ºC for 12 min. PCR products were electrophoresed and visualized on 1 % agarose gels. 

Positive netB CP strain was kindly provided by Dr. S. Pillai’s lab which was run along with 100 

bp DNA ladder (BioLabs). 
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Transmission and Scanning Electron Microscopy (TEM and SEM) 

 The four CP bacterial strains with a final concentration of ∼106 CFU/mL were subjected 

in combined to 100 µg/mL of SCC1 or SCC22 for 10 h at 37°C under anaerobic conditions. 

Bacterial suspensions were preserved for ultrastructural examination by the addition of an equal 

volume of a glutaraldehyde fixative containing 4% glutaraldehyde prepared in a 100 mM 

phosphate buffer, pH 7.3 with 100 mM sucrose buffer. Following primary fixation, suspensions 

were rinsed once in buffer then pelleted into 2.5% agar. Subsequent to agar solidification, 

samples were split into two groups. One group was post-fixed in 1% osmium tetroxide while the 

other group of samples had this post-fixation step omitted. The samples were further subdivided 

Lane 1: 100 bp standard, Lane2: Strain1, Line 3: starin2, Line 4: strain 3, Lane 5: 

strain 4, Lane 6: netB positive provided by Dr. Pillai’s lab, Lane 7: 100 bp stranded. 

~384 

1 

2 5 6 3 
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4 

Figure 2 Gel electrophoresis of Clostridium perfringens netB gene in 

four strains 
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again into sets; one that was embedded into epoxy resin through a step-wise dehydration and 

infiltration protocol for thin sectioning and examination via TEM and anther that was prepared 

for observation via SEM. Post-fixation in osmium tetroxide was omitted in the hopes that its 

absence for allow for the easier detection of nickel metal precipitates both visually and by 

Energy Dispersive X-Ray Spectroscopy (EDS, FEI Tecnai G2 F20-TEM with Oxford 

Instruments EDS detector). Nickel was detected in EDS for control and treated groups. All 

components of the fixation protocol used in this experiment were selected to eliminate the 

possibility X-ray overlap with those produced by silver atoms that might be present in the 

samples (Mollenhauer, 1964). 

Results and Discussion 

Minimum Inhibitory Concentrations and Minimum Bactericidal Concentrations 

 Results of the minimum inhibitory concentrations (MICs) and the minimum bactericidal 

concentration (MBCs) of SCC1, SCC22, and AgAc against the tested bacterial species are shown 

in Table 2. The results showed that the combined four wild isolates of Clostridium perfringens 

type A were sensitive to both SCCs treatment with the MICs for SCC1, SCC22, and AgAc using 

Brucella broth at 11, 21, and 48 µM/mL, respectively. Clostridium perfringens seems to be more 

sensitive to SCCs, in particular SCC1, than AgAc. Similarly, SCC1 and SCC22 exhibited 

bacteriostatic and bactericidal effects at lower concentrations than AgAc against multidrug 

resistant Salmonella Typhymirium, E. coli 843 and E. coli 1568, and the poultry field isolates 

Salmonella Heidelberg, Salmonella Enteritidis, and Salmonella Montevideo with MICs and 

MBCs ranging from 16-21 µM (6-8 µg/mL) and 16-32 µM (6-12 µg/mL), respectively. This 

could be credited to the fact the ligands act to stabilize corresponding silver complexes to a 

certain extent, thus controlling the release of the silver ion in the culture medium. On the other 
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hand, silver in a salt form such as silver nitrate could precipitate as insoluble AgCl salt, thus 

reducing the concentration of the biologically active silver ion in the media (Clement and Jarrett 

1994). However, MBC against Salmonella Kentucky was >85 µM for SCC1. This Salmonella 

serovar also showed the highest bactericidal effect values among gram negative bacteria for 

SCC22 (63 µM =24 µg/mL), and AgAc (73 µM=12 µg/mL). The MIC and MBC against the 

poultry field isolate E. coli for SCC1 and SCC22 were 21 and 42 µM, respectively. This suggests 

the functionality is for the silver moiety. The MICs against the poultry field isolate 

Staphylococcus aureus was 43, 43, and 24 µM for SCC1, SC22, and AgAc, respectively. Similar 

to CP, bactericidal effect against SA was > 32 µg/mL for the 3 products. 
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Table 2 Minimum inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of silver carbene 

complex 1 (SCC1), silver carbene complex 22 (SCC22), and silver acetate (AgAc) 

 SCC1 SCC22 AgAc  

Bacterial spp. MIC* MBC** MIC MBC MIC MBC Note  

Clostridium perfringens 11 >85 21 >85 48 >192 4 wild isolates, type A 

Salmonella Typhimurium  16 21 16 21 24 24 Poultry isolate, resistant,14 antibiotics1 

Salmonella Enteritidis  16 16 16 16 24 24 Poultry field isolate 

Salmonella Kentucky  32 >85 32 63 24 72 Poultry field isolate 

Salmonella Heidelberg  21 21 16 32 24 34 Poultry field isolate 

Salmonella Montevideo  16 16 16 32 24 34 Poultry field isolate 

Staphylococcus aureus 43 >85 43 >85 24 >192 Poultry field isolate 

E. coli  21 42 21 42 24 34 Poultry field isolate 

E. coli 843 16 16 16 16 24 24 Swine isolate, resistant, 5 antibiotics2 

E. coli 1568 16 16 16 16 24 24 Swine isolate, resistant, 6 antibiotics3 

* Minimum inhibitory concentration µM/ml 
** Minimum bactericidal concentration µM/ml 
1 Resistant to: clindamycin, cloxacillin, erythromycin, lincomycin, vancomycin, methicillin, nalidixic acid, novobiocin, penicillin G, 

rifampin, streptomycin, chlortetracycline, tetracycline, and sulfizoxazole (sulfisoxazole); 2 Resistant to: ampicillin, tetracycline, 

chloramphenicol, kanamycin, and sulfizoxazole; 3 Resistant to: ampicillin, tetracycline, kanamycin, streptomycin, gentamycin, and 

sulfizoxazol
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 It was previously reported that SCCs exhibit unique and broad-spectrum activity against 

both Gram-positive and Gram-negative bacteria, fungi, methicillin-resistant Staphylococcus 

aureus, Bacillus subtilis and biosafety level-3 bacteria such as Bacillus anthracis and Yersinia 

pestis. The present study demonstrates that SCCs can be effective as an antimicrobial even in the 

case of anaerobic Gram-positive Clostridium perfringens, and foodborne pathogens isolated 

from animals, with MICs values constant as previously reported for different bacterial species. 

Leid et al (2012) reported MICs for SCC1 and SCC22 against methicillin-resistant 

Staphylococcus aureus (MRSA) isolated from human septum and blood were 45.4 mg/mL. while 

MICs against the Staphylococcus aureus isolated from blood was 22.7 mg/mL for both SCC1 

and SCC22. The same author reported the MICs and MBCs of human clinically isolates of 

MRSA for SCC1 were 6 and 8 mg/mL, and SCC22 were 6 and 10 mg/mL. Panzner et al. (2009) 

reported that the minimum inhibitory concentration at which 90% of the strains tested fail to 

grow (MIC90s) of SCC1 and SCC22 against Burkholderia pseudomallei were 8 and 6 μg/mL, 

respectively. The MIC90s of SCC1 against strains of Pseudomonas aeruginosa and multidrug-

resistant organisms from the Burkholderia cepacia complex was 6 μg/mL (Kascatan-Nebioglu et 

al., 2006). 

MBCs against Clostridium perfringens type A were >85 µM for SCCs, and >192 µM for 

AgAc (> 32 µg/mL for all compounds). It is well known that Gram positive bacteria have higher 

MBC values than gram negative as the structure of cell wall is different. Sütterlin et al. (2012) 

showed that MBC of silver ion for Gram-positive bacteria was more than 32 times higher than 

the MBC values for the Gram-negative bacterial cells. On the other hand, under anaerobic 

condition silver ion could lose a major mechanism as antimicrobial, generating ROS. The 

oligodynamic effect of silver ion is well known as it can bind the thiol group when present inside 
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the cell and thus inhibit the activity of several enzymes. In the aerobic respiratory chain, which is 

identified as a primary site of ROS generation (Messner and Imlay, 1999), silver ions are known 

to inhibit thiol-containing enzymes (Lansdown, 2002) such as NADH dehydrogenase II. 

Clostridium perfringens is a Gram-positive, obligate anaerobe that uses nitrate (NO3) as the final 

electron acceptor in anaerobic respiration (Hasan and Hall, 1975). Additionally, the Clostridium 

perfringens genome does not contain enzymes for the tricarboxylic acid cycle or respiratory 

chain but contains anaerobic fermentation enzymes leading to gas production (CO2 and H2) 

(Shimizu et al., 2002). Thus, Clostridium perfringens cannot generate ROS as they do not reduce 

the O2 and subsequently generating reactive products such as hydrogen peroxide (H2O2) which is 

required for Fenton reaction to generate hydroxyl free radicals (Pesakhov et al., 2007). 

Additionally, there is no literature available evaluating SCCs against Gram positive restricted 

anaerobic bacteria. Previous studies using silver nitrate under anaerobic and aerobic condition, 

against Staphylococcus aureus and E. coli showed that the effect of silver ion under anaerobic 

conditions is not the same as its activity under aerobic conditions, yet it caused reduction in 

bacterial growth (Park et al., 2009). Bactericidal activities of silver zeolite and silver nitrate was 

examined against E. coli strain OW6 and showed that under anaerobic conditions more cells 

were viable than in the presence of oxygen (Matsumura et al., 2003). Moreover, Chen et al. 

(2017) reported that the 93% of the total cells (Pseudomonas aeruginosa) which were viable in 

suspensions treated with silver nanoparticles (5µg/mL) did not correspond to an increase in cell 

death ratio but accelerated the transition to viable-but nonculturable (VBNC) status which plays 

a significant role in the survival of bacteria (Oliver, 2010). Under VBNC status the transport, 

biosynthesis and the ability to utilize substrates are still continued but accompanied by a 

reduction in metabolic activity levels to minimize cellular energetic requirements (Quirós et al., 
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2015), which is a survival strategy of many bacteria in response to adverse environmental 

conditions. 

Clostridium Perfringens Gene Expression of Virulence Genes 

As the 4 tested isolates of combined CP showed no detectable cidal effect at up to 32 

µg/mL after 24 h incubation for all products, which clearly indicates bacteria were not 

introduced to a viable but non-culturable (VBNC) state. We further investigated silver ion effects 

during the first 10 h of treatment initiation by treating the bacterial cells with a slightly higher 

than MBC (40 µg/mL) to see if silver ion from different carrier molecules could induce an earlier 

VBNC state with this higher concentration and potentially induce virulence modulation. The 

microorganism gene expression after a stress treatment could give an indicator of viable cells. 

mRNA is turned over rapidly in living bacterial cells, with most mRNA species having a half-life 

of only a few minutes (Alifano et al., 1994). Detection of mRNA might therefore be a good 

indicator of living cells or those only recently dead at the time of sampling (Sheridan et al., 

1998). Thus, the expression of virulence genes of CP after silver treatment could give an 

indicator of silver ion interacting with viable cells. CP genes involved in toxin production (plc 

and netB) were thus selected for a gene expression study. 

 RT-qPCR revealed that the expression levels of plc and netB genes were down-regulated 

8.8- and 315-fold, respectively, in response to treatment with 40 μg/mL of SCC1 for 10 h at the 

mid-log phase of bacterial growth (Figure 3). Similarly, testing CP with 40 μg/mL depressed plc 

and netB gene expression by 1.86- and 48-fold for SCC22, 47- and 36-fold for AgAc.  

The results suggest decreased the pathogenicity of CP after being subjected to silver ion, 

and silver from all 3 products interact with viable CP. SCC1 and SCC22 induced more 

depression of netB compared to plc, and this could be attributed to netB being a plasmid gene, 
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while plc is a chromosomal gene. In addition, the carrier molecules, caffeine in SCC1, is known 

to induce mutations in bacteria and fungi by binding to DNA and interfering with normal cell 

cycle checkpoint functions (Selby and Sancar, 1990; Osman and McCready, 1998).
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Figure 3 Relative Gene expression of plc and netB of Clostridium perfringens treated with 

40 µg/mL of silver carbene complex 1 (SCC1), silver carbene complex 22 (SCC22), and 

silver acetate (AgAc) for 10 h 

Transcripts of the selected genes were quantified by RT-qPCR, and data were analyzed using the relative 

quantification method (2 -ΔΔCt) to calculate the relative level of mRNA expression. The relative expression 

ratio for each gene is presented as a log2. A ratio more or less than 0 indicates up/down regulation of gene 

expression. Error bars indicate standard deviation for 6 replicates. 
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Morphological Changes 

Transmission and scanning electron microscopy (TEM and SEM) along with Energy 

Dispersive X-Ray Spectroscopy (EDS) were performed to investigate possible structural changes 

and silver deposition that could appear when treating the bacterial cell with higher concentration 

(100 µg/mL) for 10 h. Examination of postfixed and non-postifxed samples by TEM revealed 

bacteria with similar ultrastructural characteristics (Figure 4, 1 to 3). 

 

1 

Figure 4 Micrograph of external morphology of Clostridium perfringens type A treated with 

100 µg/mL of silver carbene complex 1(SCC1) and silver carben complex 22 (SCC22) for 10 

h observed by transmission electron microscopy (TEM) 

Untreated bacteria (1, unosmicated (A) and osmicated (B), SCC1-treated bacteria (2, unosmicated (A) and 

osmicated (B), SCC22-treated bacteria (3, unosmicated (A) and osmicated (B) samples with electron dense 

granular material (arrows) on the outside of bacterial cell walls and within what appeared to be lysed bacteria 

(B Inset). Micron bars in B represent 0.5µm 

2 3 
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 Post-fixation in osmium tetroxide was omitted to enhance the observation of nickel 

particles by both visual and EDS observation. Examination of whole block faces of embedded 

bacteria using the combination of SEM and EDS did reveal the presence of silver at a higher 

percent in SCC22 treated bacteria (0.52 wt%, Table 3) compared with control and SCC1 treated 

bacteria. The very small amount of silver detected in control group that has not been treated by 

silver could be a minor contamination or it could reflect that the host could also subjected to 

silver ion. Nickel is an essential trace element for the genus Clostridia to synthesis carbon 

monoxide dehydrogenase which catalyzes the reversible oxidation of carbon monoxide to carbon 

dioxide as a source of energy (Diekert and Ritter, 1982). However, it is not clear if the nickel 

detected by EDS could be influx or efflux of the metal.  

SCC22-treated bacterial cells showed small dense staining aggregate clusters on the 

bacterial cells when bacteria were viewed using TEM. These structures were located on the 

along the exterior cell wall of live bacteria (Figure 4, 3A) and within the interior of lysed bacteria 

(Figure 4, 3 B inset). It seems that CP can be exposed to high concentrations of (accumulate) 

more silver with keeping integrated cell wall with no lysis. The lysed bacteria showed 

detachment the cell wall from cytoplasm membrane. The interaction of silver ions with bacterial 

inner membrane is an important mechanism of silver ion toxicity (Percival et al., 2005). Jung et 

al. (2008) demonstrated that the accumulation of silver ion in the bacterial cell envelope is 

followed by detachment of the cytoplasmic membrane from the cell wall in both Gram-positive 

and Gram-negative bacteria. These structures (electron dense particles) were further examined in 

detail by TEM and EDS (Figure 5) which failed to demonstrate the presence of nickel above 

background levels recorded in un-osmicated control bacterial samples, instead the silver ion was 

probably incorporated in relatively small amount. These results would indicate that growth 
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inhibition of bacterial cells can be accomplished without the accumulation of large 

concentrations of silver ions with the bacteria themselves. 

SCCs showed broad antimicrobial activity against all bacterial species tested including 

multidrug resistant pathogens Salmonella Typhymirium and E. coli isolated from poultry and 

swine, respectively. Both SCCs demonstrated inhibitory effects and virulence modulation against 

the Gram-positive anaerobic Clostridium perfringens type A which could have a high 

accumulation capacity for silver ion. These data suggest that SCCs may represent a novel class 

of broad-spectrum antimicrobial agents, which may be used to reduce the burden of pathogenic 

bacteria in the gastrointestinal tract of poultry. 

 

 

 

Table 3 Element composition and relative weight percentages (wt%) of each element when 

whole block faces of epoxy embedded bacteria examined by scanning electron microscopy 

(SEM) and energy dispersive X-Ray Spectroscopy (EDS), wt% sigma represents standard 

deviation 

 Control SCC1 SCC22 

Element wt% wt% sigma wt% wt% sigma wt% wt% sigma 

C 72.23 1.33 84.73 3.72 84.69 0.42 

O 27.54 1.33 12.30 3.78 14.11 0.42 

Al 0.04 0.06 2.63 0.33 0.25 0.02 

Si 0.10 0.05 0.29 0.16 0.41 0.02 

K 0.04 0.04 0.00 0.00 0.00 0.00 

Ag 0.04 0.11 0.05 0.34 0.52 0.05 
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Figure 5 Transmission electron microscopy image of electron dense particles seen 

within samples of silver carbene complex 22 (SCC22) treated bacteria and the 

accompanying EDS data for the particles observed in that area of the sample 



 

48 

 

CHAPTER III 

EVALUATION OF POTENTIAL IN VIVO TOXICITY OF SILVER CARBENE 

COMPLEXES, SCC1 and SCC22, AND SILVER ACETATE IN BROILER CHICKENS 

 

Introduction 

 Silver has been used as antimicrobial agent in a verity of ways to control infections since 

ancient times (Russell and Hugo, 1994). The antimicrobial activity of silver ions is characterized 

by high effectiveness, low toxicity to host cells and rare resistance of microorganisms to the 

presence of this metal. These features led to extensive use of silver-based compounds as unique 

antimicrobial agents and attracted animal-antibiotic alternative researchers (e.g. Sawosz et al., 

2007,2009; Fondevila, 2009; Pineda et al., 2012; Vadalasetty et al., 2018; Saleh and El-Magd, 

2018; Chiao et al., 2012) to use different silver formulations, mainly particulate silver, as 

alternative to antibiotics in animal production. The challenge of using silver as antimicrobial 

agent is the effective therapy with low toxic effect on host cells, which requires the therapeutic 

window being safe. Toxicity of silver to mammals is still under examination (Cannon et al., 

2009). Silver is known to be one of the least toxic metals. Use in high doses or misusing by 

humans can cause a rare irreversible pigmentation of the skin (argyria) and/or the eyes 

(argyrosis) (Lansdown, 2010 a). Silver is deposited in the basement membranes of various 

internal organs, but no adverse health effects occur (EPA, US, 1985). 

The toxicity of silver ion occasionally attributed either to the silver carrier molecules 

(Gear et al., 1997) or, in part, particle size in particulate silver form (Kim et al., 2008, 2010; 

McShan et al., 2013) which in both the dissociation rate of ionic silver (Ag+) plays a role 

determining silver bioactivities. The inorganic form of silver such as silver nitrate and silver 
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sulfadiazine is therapeutically well-known. However, this form rapidly loses its effectiveness 

since the silver cations will be released rapidly at the infection-site (Napoli et. al., 2013). In 

contrast, metallic silver in form of colloidal solution with size at nanodiameter scale is less toxic 

to eukaryotic cells owning to low absorbability, which lead to increase ion availability and 

extend antimicrobial effect (Choi et al., 2008).  

Therefore, different silver-based formulations were synthesized based upon constant 

bioactive metal with a nontoxic carrier (Cannon et al., 2009). Silver-N-heterocyclic carbene 

complexes or shortly silver carbene complexes (SCCs), a group of novel silver-based compounds 

capable of gradually releasing silver ions, possess two major features: significant wide 

antimicrobial activity and low toxicity on host cells. 

 In previous chapter (chapter 2), in vitro efficacy of two formulations of SCCs, silver 

carbene complex 1 (SCC1, with a methylated caffeine backbone) and silver carbene complex 22 

(SCC22, with a dichloroimidazolium backbone) in addition to silver acetate (AgAc) showed 

promising antimicrobial activity against different poultry enteric pathogens (aerobic, anaerobic, 

and multiantibiotic resistant strains). In terms of the latter (toxicity to host and safety) the study 

this chapter was conducted to evaluate the potential acute in vivo toxicity of these compounds 

prior including them in chicken feed or water to evaluate their in vivo antimicrobial efficacy. 
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Materials and Methods 

 All experiments were conducted under the Texas A&M University guidelines approved 

by the Institutional Animal Care and Use Committee (IACUC No. 2016015). All procedures 

were reviewed and approved by the USDA-ARS animal care committee (IACUC 2016015). 

Birds and General Management 

 A total of 300 Ross-308 (mixed sex) broiler chickens were obtained on day of hatch and 

caged in Petersime Battery Brooders (48 pens, 5 birds pen, 2 sq ft per pen) located in an 

environmentally-controlled rearing room at the USDA-ARS facility (College Station, TX). The 

room was thermostatically controlled, 24-hour lighting provided with relative humidity kept 

between 60-70%. Each brooder pen contained supplemental heat as required. Birds were fed ad 

libitum a commercial-type with a balanced minerals and electrolytes corn-soy broiler starter diet 

as a crumbled pellet with 22% protein and 3050 AME kcal/kg for a 21-day rearing period (Table 

4). Chicks received the standard vaccinations used by the hatchery. At the time of arrival to the 

experimental facility, all chickens were weighed in groups of 20 birds and an average body 

weight was calculated to distribute the birds. 
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Table 4 Feed composition of the basal diet 

Ingredients % 

Yellow corn, grain 62.0 

Soybean meal (CP, 48%) 32.0 

Soybean oil 2.2 

Limestone 1.4 

Sodium chloride (salt) 0.50 

Monocalcium phosphate 1.6 

DL-methionine 0.23 

L-Lysine·HCl 0.18 

Vitamin premix* 0.25 

Mineral Premix** 0.05 

Calculated composition  

ME (kcal/kg) 3050 

Crude protein  22 

Crude fat  3.92 

Calcium  0.95 

Available phosphorus 0.45 

Lysine  1.18 

Methionine  0.53 
* Provided the following per Kg of diet: vitamin A, 11 IU; vitamin D3, 3,850 IU; vitamin E, 45.8 

IU; menadione, 1.5 mg; B12, 0.017 mg; biotin, 0.55 mg; thiamine, 2.93 mg; riboflavin, 5.96 mg; 

d-pantothenic acid, 20.17 mg; B6, 7.15 mg; niacin,45.8 mg; folic acid, 1.74 mg; choline, 130.3 

mg. 

 **Trace minerals premix added at this rate yields (mg/kg): zinc, 60.0; manganese, 60.0; iron, 

60.0; copper,7.0; iodine,0.4. 

 

 

 

Experimental Design  

  The birds were used in two independent replicates over time. In each replicate trial, a 

total of 9 treatment groups (3 replicates/5 birds) arranged as 3 x 3 factorial (3 products and 3 

doses) with separate positive control pens. After an acclimation period (1 week), birds were 

weighed again, and doses were calculated based on body weight and acute oral toxicity using the 

limit dose procedure described by the Organization for Economic Cooperation and Development 

guideline No. 223, with minor modification regarding the limit does used. Ascending doses (10, 
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100, 1000 mg/kg body weight [BW]) of SCC1, SCC22, and AgAc were dissolved in deionized 

distilled water (EASYpure® UV/UF, Barnstead) and orally administered.  

The doses were chosen based on maximum tolerable level (MTL) of silver determined by 

NRC (2005) which is 100 mg/kg feed, thus, as we intended to use these silver-based compounds 

in later in vivo antimicrobial efficacy, we chose 10-fold higher and lower than MLT. In addition, 

there is no initial LD50 value using silver-based products in broiler chickens. This will give 

general initial insight of their tolerated toxicity to apply for further future studies regarding in 

vivo antimicrobial efficacy. 

Birds were fasted for 6 h prior gavage. A dose of distilled water served as a control. The 

dosing volume was 1.5 mL/100 g BW. For dose 1000 mg/kg BW (for all products SCC1, 

SCC22, and AgAc) administered within less than 1 h by about 1.5 ml/100 g BW. To eliminate 

stress factor that could be generated from catching the birds at dose 1000, other treatment groups 

including the control group were cached only as same as 1000 group. Birds were observed 

periodically for any mortality. Time of death was recorded for mortalities which then weighed 

and necropsied by a licensed poultry veterinarian. The observation continued for 2 weeks to 

investigate any potential prolonged effects of the treatments on bird performance parameters, 

some plasma enzymes and metabolites, relative organ weight, bone ash, and histological 

examination for various tissues as indicators. 

Data Collection 

  Body weight and feed consumption per pen were recorded to calculate weight gain (WG) 

and feed conversion ratio (FCR) at days 7, 14 and 21. One week after the administration of the 

silver treatment (d 14 of age), blood samples were taken from 6 birds via jugular vein (2-3 

birds/pen) and collected in lithium heparinized tubes. The 5 mL blood samples were centrifuged 
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(3000 × g for 20 min) and plasma stored at -20°C and examined for selected plasma indices: 

blood urea nitrogen (BU), creatinine (Creat.), total bilirubin (TB), total protein (TP), calcium 

(Ca), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and gammaglutamyl 

transferase (GGT) on an automatic blood chemical analyzer (Heska, Element DC™ Veterinary 

Chemical Analyzer, USA), using a commercially available kit (Heska). On day 21, chicks were 

weighed, euthanized using CO2, necropsied, and the weight of the liver, kidney, heart, and spleen 

were recorded for all birds, and portions of each organ (plus portions of the jejunum and ileum 

from six birds/treatment/replicate trial) were harvested and fixed in 10% neutral buffered 

formalin for histological examination (only six organs were chosen). Hematoxylin and eosin 

(H&E) were used for histological staining. Also, the right tibia was removed for total ash 

determination to evaluate bone mineralization. After tibias were dissected from the birds, muscle 

and cartilage were removed before being placed in 4 liters of petroleum ether for 48 h at room 

temperature. Following this, tibias were dried for 48 h in a forced draft oven at 105°C. Finally, 

tibias were ashed at 650°C for 23 h. Percent bone ash was calculated based on the dry bone 

weight and remaining ash. 

Statistical Analysis 

 SCC1, SCC22, and AgAc data were pooled from the 2 replicates into a combined data set 

and analyzed as 3X3 factorial. All data were analyzed using the GLM procedure of JMP Pro 12 

software (SAS, Institute Inc., Cary NC). Significant means were separated using Tukey’s HSD 

test at P < 0.05. Individual pens served as the experimental unit for production variables as well 

as plasma biochemistry, whereas individual birds were the experimental unit for the organ 

weights, histology, and bone ash. The control served as a reference treatment and was compared 

with the silver treatments by Dunnett's test (P < 0.05). For median lethal dose (LD50), a logistic 
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regression analysis was performed using JMP Pro 12 software where the SCC and AgAc doses 

were set as continuous variable (x) and the nominal variable (y) set as killed (succeed) or not 

killed (failed) proportion. Using the inverse prediction option with a probability of P = 0.50; the 

predicted value of LD50 was calculated for each product. 

Results and Discussion 

The goal of this research was to evaluate organic sources of silver ions with different 

carrier molecules (SCC1, SCC22, and AgAc) across a range of doses in terms of potential host 

toxicity using in vivo assay prior including them in broiler feed or water to evaluate their in vivo 

antimicrobial efficacy. Acute toxicity is the observation of adverse effects taking place in an 

animal within a short time of administration of either a single dose or multiple doses of a 

chemical given to the animal (Walum, 1998), and it can give more information about the 

biologic properties of a chemical compound than any other single test (Paget, 1983). In current 

study, acute oral toxicity using the limit dose test procedure described by OECD test No. 223 

guideline with minor modification regarding the limit dose used.  

Short-Term Observation  

LD50 and Mortalities. The SCC1 did not cause any mortality among the birds at any of the 

doses given up to 24 h and two weeks after exposure. In contrast, there were 4 mortalities (2 in 

each replicate) in SCC22 and AgAc treatment groups at the 1000 mg/kg BW. SCC22 also had a 

3% mortality in the dose 10 and 100 mg/kg BW in replicate 1 (Table 5). The computed LD50 of 

SCC22 and AgAc for 7-day-old chick in current study were calculated as 1925 and 1079 mg/kg 

BW, respectively. The SCC1 result suggests that the LD50 is greater than 1000 mg/kg BW.
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 Table 5 Acute oral toxicity of Ross 308 broiler chickens subjected to 10, 100, 1000 mg/kg BW of SCC1, SCC22 and AgAc at 

day 7 of age. The LD50 values were obtained as results of a logistic regression‡ 

* mg/kg body weight 
† TD=Time death in hours 
‡Logistic regression analysis was performed using JMP Pro 12 software where the SCC doses were set as continuous variable (x) and 

the nominal variable (y) set as killed (succeed) or not killed (failed) proportion. Using the inverse prediction option with a probability 

of P= 0.5; the LD50 was calculated for each product 

 Replicate 1 Replicate 2 Total  

 

No. 

birds 

No. 

rep 

BW 

(g/dose 

mg) 

Mortality 

%/No. 

TD 

(h)† 

No. 

birds 

No. 

rep. 

BW 

(g/dose 

mg) 

Mortality 

%/No. 

TD 

(h) 

No. 

birds 

No. 

rep. 

Mortality 

% 
LD50

* 

 

Control 

 

15 3 180/0 0/0 - 15 3 147/0 0/0 - 30 6 0 - 

SCC1               

10 15 3 173/1.73 0/0 - 15 3 147/1.47 0/0 - 30 6 0 

>1000 100 15 3 174/17.4 0/0 - 15 3 148/14.8 0/0 - 30 6 0 

1000 15 3 176/176 0/0 - 15 3 142/142 0/0 - 30 6 0 

SCC22               

10 15 3 175/1.75 3/1 12 15 3 146/1.46 0/0 - 30 6 3 

1925 100 15 3 176/17.6 3/1 10 15 3 143/14.3 0/0 - 30 6 3 

1000 15 3 182/182 13/2 8, 23 15 3 137/137 13/2 3, 20 30 6 13 

AgAc               

10 15 3 170/1.7 0/0 - 15 3 148/1.48 0/0 - 30 6 0 

1079 100 15 3 174/17.4 0/0 - 15 3 143/14.3 0/0 - 30 6 0 

1000 15 3 174/174 13/2 1, 20 15 3 137/137 13/2 3, 24 30 6 13 
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In vivo oral acute toxicity studies of silver carbene complexes are rare (Haque et al., 

2013). SCC1 has previously been shown to have a low toxicity to host cells in mice when 

administered via nebulization twice daily for a total of 5 days with 10 mg/mL concentration 

(Cannon et al., 2009). In vitro cytotoxicity of SCC1 was evaluated on primary cell culture of the 

respiratory epithelium by same author and 50% lethal dose was 289 µg/mL which was greater by 

48-fold than minimum inhibitory concentration of Pseudomonas aeruginosa suggesting wide 

therapeutic index of this silver formulation. SCC1 is formed from coupling the silver ion from 

silver acetate to methylated caffeine (Kascatan-Nebioglu et al., 2006). These derivatives are 

naturally occurring and are not toxic after the silver ion has disassociated. Preliminary toxicity 

studies showed the intravenous LD50 of the xanthinium iodide salt of methylated caffeine to be 

1.068 g/kg in rats (Panzner et al., 2009). In vivo oral acute toxicity study (sighting study) carried 

out by Haque et al. (2013) showed that 2000 mg/kg dose of dinuclear silver-NHC complex was 

an appropriate and safe dose for conducting main study to treat cancer cells in rats. 

 Similarly, there is scarce literatures investigated oral in vivo toxicity of SCC22 (Panzner 

et al., 2009). SCC22 are derivatives of 4, 5-dichloroimidazole. Anti-cancer studies using an 

ovarian cancer xenograft model in thymic nude mice has demonstrated that SCC5 (another 

dichloroimidazolium silver acetate derivative) can be administered in doses of 333 mg/kg 

subcutaneously with no acute toxicity observed (Medvetz et al., 2008). In a comparison study of 

SCC1 and SCC5 to treat pulmonary infection, SCC5 showed unexpected toxicity by increasing 

lung inflammation compared to SCC1 which was safe to deliver by nebulizing at 5 doses of 50 

mg within 12 h with minimal systemic toxic effect (Taylor et al., 2009).  

Silver ion from different compounds showed different LD50 values which mainly depend 

on animal species sensitivity for different silver-based products (with different carrier 
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molecules), rout and duration of administration. In the literature, there is no LD50 value available 

of sliver-based compounds in broiler chickens. Venugopal and Luckey (1978) reported oral LD50 

values for mice using colloidal silver and silver nitrate 100 mg/kg and 129 mg/kg, respectively. 

While for silver cyanide, the LD50 for rats was 125 mg/kg, and silver oxide with LD50 of 2820 

mg/kg for rats. In a single oral acute toxicity study in 7-week-old rats, administration of silver 

ion from particulate silver and AgNO3 with 2 and 20 mg/kg BW did not cause death or changing 

in BW (Park, 2013). Haque et al. (2013) reported no signs of toxicity were observed and animals 

remained alive, healthy, and agile when administered single oral dosages of 300 and 2000 mg/kg 

BW of dinuclear Ag (I)-NHC complex. Tamimi et al. (1998) worked on silver nitrate as the 

active ingredient in an anti-smoking mouthwash, the author reported: in rats, following oral 

administration, the LD50 was found to be 280 mg of silver/kg of BW, while in rabbits the LD50 

was found to be 800 mg of silver/kg of BW/day. Walker also identified silver nitrate at 

concentrations 308 mg of silver/kg BW (rat) in the drinking water induces death over the course 

of a few days (Walker, 1971). Maneewattanapinyo et al. (2011) reported at acute doses of up to 

5000 mg/kg of BW/day, silver was not toxic when orally administered nanoparticulate to guinea 

pigs. The LD50 of SCC22 1925 mg/kg BW is relatively higher than AgAc LD50. The oral acute 

toxicity of silver carbene compounds and silver acetate in broiler chickens appears to be higher 

in some instances than it is in laboratory animals.  

 Gross Necropsy and Clinical Signs. In replicate 1, upon gross necropsy of mortalities, the most 

common lesions we noticed were black-gray material found mainly in lung, eye, esophagus, 

trachea, increase mucus secretion in GIT, and very week bone to break.  

SCC22 mortalities following the administration of 10 and 100 mg/kg BW showed 

moderate congested liver, kidney, intestine, and gizzard which was filled with feed. The lungs 
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were congested and surrounded by black-gray material and blood spots. Increase accumulation 

of eye fluids which had significant amount of that described material. Weak bone was observed 

in the mortality at 10 mg/kg BW, and normal break bone in 100 mg/kg BW. No prior to death 

clinical signs were observed for these mortalities.  

 SCC22 early and late-mortalities in replicate 1 (following 1000 mg/kg BW 

administration) showed moderate congestion in internal vital organs, and excessive black-gray 

material found mainly in lung, eye, esophagus, and trachea. Soft and hard to break bones, and 

abnormal broken bone at the hip joint (which suggests sever bacterial infection) were also noted.  

Early-and late-mortalities of SCC22 showed excessive mucous which was fulling the entire GIT. 

Gizzard contained foamy fluid with slight congestion in proventriculous. For AgAc mortalities at 

1000 mg/kg BW, similar weak bone noticed, the mucus excretion was noted only in the 

duodenum with empty intestine, and more congestion was noticed in the lung and kidney of 

AgAc mortalities, and no black-gray material was observed. 

In replicate 2, the most common lesions of SCC22 and AgAc mortalities (at 1000 mg/kg 

BW) shared with replicate 1 observed were increase mucous secretion in the GIT and very weak 

bone to break. No black-gray material was observed in these mortalities. Late mortality (after 20 

h) of SCC22 at 1000 mg/kg BW showed white pseudo membrane-like structure, lining the 

interior surface of the crop; easy to remove, and the interior esophagus was covered with white 

cheesy material similar to (or suggesting) candidiasis lesion. Similarly, the late mortality of 

AgAc (24 h) showed similar lesion in the crop which appeared degenerated, but not in the 

esophagus (Figure 6). 
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Figure 6 Mortalities of silver carbene complex 22 (SCC22) and silver acetate (AgAc) at 

1000 mg/kg BW in replicate 2  

(1) SCC22 mortality after 3 hours of administration, (2) SCC22 mortality after 20 hours of 

administration; white cheesy material in the esophagus (arrow) and the crop looked dilated and 

degenerated (blue arrow), (3) AgAc mortality after 24 hours of administration; crop was 

contained white cheesy material (arrow) easy to remove but no lesion in the esophagus    

1 2 3 
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Ionic and nanoparticulate silver have been described in terms of tissue deposition 

following oral administration to be deposited in a wide range of organs including GIT, stomach, 

liver, kidneys, eye, lungs, muscle, brain, plasma (Olcott, 1947, 1948; Chang et al., 2006; 

Loeschner et al., 2011; Matuk et al., 1981). This deposition was described in microscopic studies 

following oral exposure [to both ionic and nanoparticulate silver] to be deposited as fine black 

granules or particles. These particles have been described to be 12 nm in diameter in the rat 

intestines and to contain sulphur and selenium in addition to silver (Loeschner et al., 2011). 

Particle deposition was described to increase both in number and size in rat eyes during the first 

weeks of silver ion administration, and the particles decreased in number and size when silver 

was withdrawn, although the particles were still present one year after the silver was withdrawn 

(Matuk et al., 1981).  

In current study, the gross black-gray material noticed in SCC22 mortalities in only 

replicate 1, is puzzling as no further histological examination was performed. However, it is not 

unlikely that silver could be deposited from blood vessels after entering the circulation.  Creasey 

and Moffat (1973) reported the deposition of silver from silver nitrate in rat kidney as granules 

when silver was administered in the drinking water of 26 weanling rats in the form of a 0.15% 

aqueous silver nitrate solution for periods of from 4 to 15 weeks. The density of the silver 

deposits as granules increased towards the tip of the papilla and could be recognized easily by 

naked-eye examination. 

The most that gross lesions that could be related to silver toxicity are the increase mucus 

secretion in the GIT and weak bones. Jeong et al. (2010) found oral administration of silver 

nanoparticles induced the discharge of mucus from goblet cells, mostly in the ileum. Leg 

weakness immediately prior to death was a common observation when broiler chickens fed 900 
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ppm silver nitrate for 4 weeks, and the mortalities (35%) constantly revealed blood in the 

abdominal cavity, mouth, trachea, and esophagus (Peterson and Jensen, 1975).  

The prior to death clinical symptoms of birds in SCC22 and AgAc at 1000 mg/kg BW in 

both replicates were similar: apparent lack of anxiety, dyspnea, tachypnea, close eyes gradually 

and continually with abdominal recumbency. Moderate uncontrolled vent pasty-diarrhea (similar 

to Salmonella pullorum infection) was also noted. This could be evidence along with the 

abnormal broken bone at the hip joint, (in addition to suggested candidiasis in replicate 2) which 

suggest high infection could be occurred as a result of immunosuppression induced by silver. 

Moreover, there was one chick died after 10 days of exposure on dose 1000 mg/kg of SCC22 and 

apparently it had a severe internal infection with normal eye fluids as evidenced by necropsy. 

Van der Zande et al. (2012) observed no immunotoxicity following the oral administration of 90 

mg/kg BW of silver nanoparticles or 9 mg/kg BW/day of ionic silver for 28 days. In addition, a 

decreased thymus weight was recorded following the administration of 9 mg/kg of BW/day (28 

d) of ionic silver (Hadrup et al., 2012) and it was suggested that the lower relative thymus weight 

in ionic silver (as silver acetate) treated group could indicate a stress-related immune alteration 

(Descotes, 2006). 

 Prior to death, birds showed very slow, irregular, labored respiration, along with 

uncontrolled-shivering like movement in the legs, wings and heads (continuous muscle 

contraction [noticed immediately after gavage, and was gradually decreased in severity prior to 

death as the bird looked exhausted]). Effects on the nervous system were reported in early 

studies including weakness, rigidity of legs, loss of voluntary movement, and respiratory 

paralysis following intravenous administration of high doses of silver compounds to dogs, guinea 

pigs, and rats (U.S. EPA, 1985). Rungby and Danscher (1984) found that 0.015% silver nitrate in 
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the drinking water for 125 days (14 mg/kg BW/day) induced hypoactivity in mice after a 10 day 

silver withdrawal period. It was previously reported that silver-induced neurotoxic effects may 

occur via secondary molecules that are released from the periphery (Hadrup and Lam, 2014).  

Long-Term Observation 

Clinical Signs and Performance. Clinical signs and mortalities were not observed for the rest of 

the birds up to trials termination. Necropsy after 14 days of administration did not show 

significant gross pathological lesion for all treatment groups. 

After 7 days of administration, dose and product main effects were observed on bird 

performance. Weight gain was reduced (P < 0.05) in a dose dependent manner for all products 

(Table 6). However, no differences were observed (P > 0.05) in the bird performance of SCC1 

and SCC22 compared to control group. Compared to the control and SCCs, AgAc at dose 1000 

mg/kg BW reduced (P < 0.05) BW and WG with non-significant decrease in FCR (P > 0.05). At 

d 21, the decrease product effect on BW of AgAc was significant (P < 0.05) compared to SCCs 

formulations, although the birds gained weight similar to that in control group with no effect on 

FCR. These results suggest that oral administration of a single dose of SCC1 and SCC22 at doses 

10, 100, and 1000 mg/kg BW did not change the BW, WG, and FCR compared to control group 

after 7 and 14 days of administration, demonstrating that SCCs did not negatively affect broiler 

growth when dosed acutely for short period.   

Cannon et al (2009) reported with repeated dosing of nebulized SCC1 (5 mg/dose SCC1, 

5 min exposure, twice daily) over a period of 5 days the animals exhibited no weight loss. Haque 

et al. (2013) reported no changes in body weight when administered single oral dosages of 300 

and 2000 mg/kg BW of dinuclear Ag (I)-NHC complex. Park et al. (2013) in male Sprague-
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Dawley rats up to 24 h after a single oral administration of silver nanoparticles (AgNP) and 

silver ions from silver nitrate (AgNO3) body weight changes were not observed.  

Although there are numerous oral toxicity investigations who reported no effect on body 

weight (Jeong et al., 2010; Kim et al., 2008, 2010; Van der Zande et al., 2012), some other 

investigation reported detrimental effects. Matuk et al. (1981) found that growth rates were 

retarded in rats administered 81 mg/kg of BW/ day silver nitrate in the drinking water for more 

than 8 months. The author also reported when silver was withdrawn, the body weight became 

normalized over the course of 10 weeks. Body weight gain decreased following the oral 

administration of silver acetate (9 mg/ kg BW/day) (Hadrup et al., 2012). Decreased body weight 

was observed in male rats only in a 13-week study of the oral administration of 500 mg of silver 

nanoparticles/kg BW/day (Kim et al., 2010). 
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Table 6 Performance (body weight, weight gain, and feed conversion ratio) of broiler 

chickens at d 14 and d 21 dosed with 10, 100, 1000 mg/kg BW of silver carbene complex 1 

(SCC1), silver carbene complex 22 (SCC22), and silver acetate (AgAc)1 

  d 14 d 21 

  
BW 

(g/bird) 

WG 

(g/bird) 

FCR 

(g:g) 

BW 

(g/bird) 

WG 

(g/bird) 

FCR 

(g:g) 

Product Dose       

Control 0 438 277 1.03 842 404 1.32 

SCC1 10 447 287 1.00 876 428 1.25 

SCC22 10 447 287 1.02 863 416 1.29 

AgAc 10 403 253 1.00 792 389 1.26 

        

SCC1 100 438 277 1.00 847 409 1.26 

SCC22 100 432 272 1.03 845 414 1.31 

AgAc 100 377 224 1.00 784 408 1.28 

        

SCC1 1000 420 260 1.01 838 419 1.29 

SCC22 1000 411 251 1.00 826 415 1.30 

AgAc 1000 358* 215 * 0.85 758 400 1.28 

        

SEM2  18.09 12.55 0.08 32.84 17.26 0.03 
        

Main Effects        

Product        

SCC1  435 a 274 a 1.01 854 a 419 1.27 

SCC22  430 a 270 a 1.02 845 a 415 1.30 

AgAc  379 b 231 b 0.94 778 b 399 1.28 

Dose        

10  432 276 a 1.00 844 411 1.27 

100  416 258 ab 1.01 826 410 1.29 

1000  396 243 b 0.96 807 411 1.29 

P-Value        

Product  0.001 0.001 0.522 0.013 0.333 0.448 

Dose  0.059 0.009 0.704 0.408 0.996 0.801 

Product X Dose  0.988 0.943 0.883 0.997 0.858 0.980 
a–b Means within a column for each product lacking a common superscript differ significantly (P 

< 0.05).1 Each value is the average of 3 replicates/trial with 5 chicks per replicate (n=6). 
2SEM=standard error mean.  

*Indicates comparing to control which served as a reference treatment and was compared with 

the silver treatments by Dunnett's test (P < 0.05) 
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Relative Organ Weight. Results of relative organ weights are presented in Table 7. Analysis of 

organ weight to body weight ratio is one dependable indicator for drug assessment in terms of 

toxicity (Michael et al., 2007). Compared to the control group, administration SCC1, SCC22 up 

to 1000 mg/kg BW did not affect the relative organ weights (P > 0.05) of liver, kidney, heart, 

spleen, [except, the relative organ weight of SCC1 at 100 mg/kg BW which showed lower 

relative weight, this could be attributed to the mild histological changes of 3 birds observed 

(discussed in histology section). These results agree with previous publication showed no 

adverse effect on elative organ weigh suggesting tolerated to acute exposure. Product main effect 

was found in relative weight of the kidney (P < 0.001) and liver (P < 0.009).  

The relative weight of the kidney in AgAc-treated birds was higher than SCC1 and 

SCC22 treatments. SCC1 also had lower kidney weight than SCC22. The relative weight of liver 

in AgAc was lower comparing to SCCs. This difference could be attributed to gender effect, as 

showed by Kim et al. (2008, 2010) that the toxicity on the kidney was gender dependent being 

more effect in females’ rats. In the kidney, it was reported that orally administered silver was 

found to be deposited in the glomerular basement membrane with no adverse effect (Walker, 

1972). Sardari et al. (2012) reported histopathological findings in kidneys (necrosis in Bowman’s 

capsule and proximal tubular cells in the kidney which potentially affect body fluid homeostasis) 

in rats when orally administered 1 or 2 mg/ kg of BW/day of particulate silver for 30 days. Park 

et al. (2013) reported with single oral administration of silver nanoparticles and silver ions (Ag+), 

with 2 and 20 mg/kg the absolute and relative weights of kidney and liver were not evidently 

different from control group. 
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Table 7 Effects of silver carbene complex 1 (SCC1), silver carbene complex 22 (SCC22), 

and silver acetate (AgAc) on the relative organ weights (as a percent of live body weight) of 

broiler chickens1 

  Liver (%) Kidney (%) Heart (%) Spleen (%) 

Product Dose     

Control 0 2.88 0.54  0.64  0.10 

SCC1 10 3.06 0.43 0.58 0.11 

SCC22 10 2.94 0.52 0.59 0.11 

AgAc 10 2.71 0.61 0.58 0.11 

      

SCC1 100 3.04   0.40 * 0.58 0.09 

SCC22 100 2.95 0.53 0.61 0.11 

AgAc 100 2.49 0.61 0.59 0.09 

      

SCC1 1000 2.94 0.48 0.60 0.10 

SCC22 1000 3.03 0.55 0.64 0.10 

AgAc 1000 2.67 0.64 0.63 0.12 

      

SEM2  0.123 0.046 0.028 0.01 
      

Main Effects      

Product      

SCC1  3.01 a 0.44 c 0.61 0.10 

SCC22  2.98 a 0.53 b 0.63 0.11 

AgAc  2.63 b 0.62 a 0.59 0.10 

Dose      

10  2.91 0.52 0.59  0.11 

100  2.83 0.51 0.59  0.10 

1000  2.89 0.56 0.63  0.10 

P-Value      

Product  0.009 <0.001 0.486 0.756 

Dose  0.771 0.317 0.054 0.503 

Product X Dose  0.838 0.885 0.919 0.223 
a–c Means within a column lacking a common superscript differ significantly (P < 0.05). 
1Each value is the average of 3 replicates/trial with 5 chicks per replicate (n=30).   

2SEM=standard error mean 

 

 

 

There was tendency with (P value 0.059) dose dependent effect on relative weight of 

heart. Hadrup et al. (2012) investigated the relative weight of heart but found no histological 
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changes neither relative weight change following the oral administration of 9 mg/kg BW of ionic 

or 14 nm nanoparticulate silver. Kim et al. (2008, 2010) found no histopathological changes in 

the heart after up to 13 weeks of treatment that silver nanoparticles at doses up to 1000 mg/kg 

BW/day administered. 

Blood Biochemistry. The results of some blood biochemistry are presented in Table 8. After 7 

days of administration, some blood biochemistry parameters were measured as indicator for liver 

and kidney damage. Across the doses of all products, there were no differences in the 

concentrations of plasma metabolites which indicate kidney damage BUN and Creat. 

Plasma Ca levels were affected in a product (P = 0.002) and dose (P = 0.003) manner, 

where AgAc caused increase plasma Ca levels compare to SCC1. Plasma Ca levels tended to 

increase for all products at doses 100 and 1000 mg/kg BW compared to low dose 10 mg/kg BW. 

Compared to the control, doses 100 and 1000 mg/kg BW of SCC22 and AgAc increased (P < 

0.05) the plasma Ca level. Ca could be an indicator for renal function and subsequently bone 

development. For the Ca ion, in rodent and broiler studies that have measured serum or plasma 

Ca+2 ( Kim et al., 2008, 2010; Park, 2013; Wen et al., 2017; Ognik et al., 2016 a; Sikorska et al., 

2010), no difference was seen in the Ca levels after administration of silver nanoparticles. Ji et 

al. (2007), however, reported higher Ca level with higher silver dose in an inhalation study. 

While, Lee et al. (2013) reported decrease in serum Ca levels compared to control group after a 

single intravenous injection of Ag-NPs at 0.5 and 5 mg/kg BW.  

SCC1, and SCC22, at any of the doses, did not affect the plasma enzymes that would 

indicate liver damage: ALT and ALP neither the serum metabolite total bilirubin (TB) after 7 

days of administration. The oral administration of ionic silver in the form of silver acetate (9 mg 

of silver/kg BW/ day) or nanoparticulate silver (9 mg of 14 nm particles/kg BW/ day) increased 
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the ALP level in plasma (Hadrup et al., 2012). The author also reported no histological effect on 

liver tissue. 

 Product and dose-dependent effects 7 days after single exposure were found in plasma 

GGT (P < 0.05), namely AgAc-treated birds had higher plasma GGT compared to those treated 

with SCC1. All products tended to decrease plasma GGT at high doses; however, no differences 

compared to control group. AgAc more rapidly releases its silver ions when compared with 

SCC1. The increased GGT activity seen with AgAc treatment (product effect) may indicate a 

reduced availability of glutathione (GSH) as a substrate, because silver ions readily bind to 

sulfur-containing enzymes. Silver nitrate (AgNO3) was reported to have significant effects on 

GSH contents reduction in plasma and cytosolic fraction of blood (Khan et al., 2011).  

It was reported previously that low antioxidant defenses are associated with raised GGT 

levels, mainly reduced levels of GSH (Koenig and Seneff, 2015). GGT is mainly needed to 

enable metabolism of glutathione and glutathionylated xenobiotics in the liver and lungs, and this 

is a simple explanation for its elevation in association with exposure to xenobiotics. Silver is 

considered as a xenobiotic (Lansdown, 2010 a). GGT, therefore, is an indicator of depleted 

supply of glutathione, especially in the liver, which leads to a cascade of problems related to 

amplify the oxidative stress (Koenig and Seneff, 2015). However, dose dependent effect in the 

present study of all products was found at high doses. At 1000 mg/kg BW serum GGT levels 

decreased compared to 10 and 100 mg/kg BW. Scarce literatures regarding GGT and silver ion 

are available. 
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Table 8 Effect of silver carbene complex 1 (SCC1), silver carbene complex 22 (SCC22), and 

silver acetate (AgAc) on some plasma biochemistry of broiler chickens at d 14 of age1 

 

 TP 

(mg/dL) 

Crtea. 

(mg/dL) 

BUN 

(mg/dL) 

TB 

(mg/dL) 

Ca 

(mg/dL) 

ALT 

(U/l) 

ALP 

(U/l) 

GGT 

(U/l) 

Product Dose         

Control 0 2.45  0.2 5 0.1 12.3  10 993 21.7 

SCC1 10   2.28 * 0.2 5 0.1 11.8  <10 >993 20.5 

SCC22 10 2.48 0.2 5 0.1 13.1 <10 >993 22.5 

AgAc 10 2.45 0.2 5 0.1 13.1 <10 993 25.0 

          

SCC1 100 2.38 0.2 5 0.1 13.1 <10 >993 21.7 

SCC22 100 2.50 0.2 5 0.1 13.3 * 10 >993 22.7 

AgAc 100 2.40 0.2 5 0.1 13.9 * 10 >993 24.0 

          

SCC1 1000 2.43 0.2 5 0.1 12.9  10 993 19.7 

SCC22 1000 2.52 0.2 5 0.1 13.2 * 10 993 20.8 

AgAc 1000 2.35 0.2 5 0.1 13.4 * 10 993 21.5 

          

SEM2  0.049 0.00 0.00 0.00 0.259 0.00 0.001 0.972 

 

Main  

Effects 

         

Product          

SCC1  2.36 b 0.2 5 0.1 12.6 b 10 993 20.7 b 

SCC22  2.50 a 0.2 5 0.1 13.2 ab 10 993 22.0 ab 

AgAc  2.40 b 0.2 5 0.1 13.4 a 10 993 23.5 a 

Dose          

10  2.40 0.2 5 0.1 12.6 b 10 993 22.6 a 

100  2.43 0.2 5 0.1 13.4 a 10 993 22.8 a 

1000  2.43 0.2 5 0.1 13.2 a 10 993 20.7 b 

P-Value          

Product  0.004 0.99 0.99 0.99 0.002 0.99 0.99 0.005 

Dose  0.688 0.99 0.99 0.99 0.003 0.99 0.99 0.0188 

Product X Dose  0.181 0.99 0.99 0.99 0.2157 0.99 0.99 0.679 
a-b Means with different superscript letters within each variable are significantly different at P < 

0.05. 
1 Each value is the average of 3 replicates/trial with 2 chicks per replicate (n=6).  

 2SEM=standard error mean.    

*Indicates comparing to control which served as a reference treatment and was compared with 

the silver treatments by Dunnett's test (P < 0.05).  
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There was a product main effect at day 14 (P = 0.004) in total plasma protein, where 

SCC1 and AgAc had a lower concentration than SCC22. Compared to the control, SCC1 at dose 

10 mg/kg BW reduced (P = 0.010) the total protein concentration, which also showed slightly 

decrease in serum Ca. this effect was expected as silver bind readily to serum proteins, however, 

no such effect at higher doses was seen. 

Bone Ash. The results for total bone ash determination are presented in Table 9. Bone 

mineralization was only evaluated for surviving birds at day 21. No interaction was found 

between products and the three increasing doses in the % ash content. Yet, there was a product 

main effect (P = 0.002), where SCC22 and AgAc had lower bone ash than SCC1. 

Summarizing the effect of AgAc on Ca seen either in serum or in bone mineralization as 

indictor of Ca deposition would be totally opposite to SCC1. In other words, SCC1 caused 

increased % ash and decreased serum Ca levels, which might indicate high precipitation Ca from 

the blood into bone. In contrast, AgAc (compared to SCC1) caused decrease % bone ash and 

increased serum Ca, which might indicate open the Ca channels in the bone and increase Ca in 

the serum. Both actions more likely occurred as a result of dissociation rate. However, toxicity of 

silver in chicks is more complicated than in different lab animals such as rats (Peterson et al. 

1973). This could be attributed to the less development kidney structures in birds.   
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Table 9 Effect of silver carbene complex 1 (SCC1), silver carbene complex 22 (SCC22), and 

silver acetate (AgAc) on bone ash percentage of 21-day old broiler chicken dosed with 10, 

100, 1000 mg/kg BW 

  Bone ash % 

Product Dose  

Control 0 49 

SCC1 10 49.04 

SCC22 10 47.27 

AgAc 10 48.89 

   

SCC1 100 49.54 

SCC22 100 48.56 

AgAc 100 48.25 

   

SCC1 1000 49.73 

SCC22 1000 49.01 

AgAc 1000 48.09 

   

SEM2  0.767 
   

Main effects   

Product   

SCC1  49.44 a 

SCC22  48.28 b 

AgAc  48.41 b 

Dose   

10  48.40 

100  48.78 

1000  48.94 

P-Value   

Product  0.021 

Dose  0.563 

Product X Dose  0.419 
a–b Means within a column lacking a common superscript differ significantly (P < 0.05). 
1 Each value is the average of 3 replicates/trial with 5 chicks per replicate (n=30).   
2SEM=standard error mean.
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Histology. List of each treatment group and a brief summary of histological changes observed in 

each organ is presented in Table 10. No significant histologic lesions were noted in the 

duodenum, ileum, and spleen when broiler chicken received SCC1, SCC22, and AgAc up to 

1000 mg/kg BW. This result is in line with previously reported studies which indicated no 

adverse effect on mucosa of small intestine. Hadrup et al. (2012) reported in subacute oral 

toxicity study for 28 days, no adverse effects occurred on mucosa of the gastrointestinal tract for 

both particulate silver and silver acetate when delivered at 9 mg silver/kg BW/day.  Wen et al., 

(2017) reported with a single i.v acute toxicity study for 24 h Ag-NP accumulated in main 

immune system organs including the thymus and spleen. Histopathology results also showed that 

mild irritations were observed in the thymus and spleen only in the Ag-NP-treated group rather 

than the ionic silver (Ag+) treated group. Similarly, with 28-day subacute study, no effect on 

spleen weight or histology, but Ag-NP reduced the spleen weight of the males compared to the 

control (Hadrup et al., 2012), and the author reported that silver acetate exhibited lower absolute 

weights of the female’s liver and the thymus.  

Some mild histopathological changes noted in liver and kidney. Within treatment groups 

of SCC1 (at 10, 100, 1000 mg/kg BW), and SCC22 (at 10 and 100 mg/kg BW) 66-100% of the 

birds exhibited mild hepatocellular vacuolation consistent with glycogen and microvesicular 

lipid (Table 10, Figure 7, B). However, these changes were not dose-dependent and therefore not 

suspected to be related to silver administration. In liver of poultry, deposition of sliver was 

studied to be the main site of silver retaining an accumulation (Chauke and Siebrits, 2015; 

Ahmadi and Rahimi, 2011; Gallocchio et al., 2017, Kulak et al., 2018 a,b). Pathological effect 

also studied by Ahmadi and Mehrdad (2009) who observed slight necrotic changes in liver of 

high dose Ag-NP-treated chickens. However, Ognik et al. (2016 b) has not noticed deviations 
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from the normal structure of liver when using Ag-NPs with larger size with lower dose. Ahmadi 

et al. (2009) showed that 300, 600, 900 in drinking water did not affect the liver structure. 

Loghman et al. (2012) evaluated the toxicity of Nano silver and observed pathological and 

morphological changes in the liver of broiler chickens administered at 4, 8, 12 ppm in drinking 

water at 4 ppm, the author reported infrequent accumulations in the hepatocytes (cell swelling) 

and hyperemia.  While at 8 and 12 ppm showed dilated central vein, hyperemia with severe 

vacuolation fatty change. Similarly, in subchronic toxicity (Amin et al., 2016) and acute toxicity 

(Cho et al., 2018) reported moderate to severe fatty changes of hepatocytes and cytoplasmic 

vacuolization when silver particulate administered to rats and mice. 

Three of the birds of SCC1 at 100 mg/kg BW showed mild, multifocal renal tubular 

degeneration and necrosis with minimal accumulation of pale basophilic material within the 

tubules. These changes were not noted in any other group and were considered incidental. The 

same group showed the lowest kidney relative weight. Two control birds and two birds in the 

highest treatment groups contained uroliths within the ureter surrounded by a mild to moderate 

amount of fibrosis (Figure 8). Again, these changes were not dose-related and were considered 

incidental, most likely associated with dehydration. In the kidney, it was reported that orally 

administered silver was found to be deposited in the glomerular basement membrane (Walker, 

1972).  The cause of uroliths in poultry is not fully known, but proposed mechanisms include 

reduced water intake and increased dietary Ca (Sakhaee et al., 2012). Plasma analysis from this 

study also found increased Ca levels in the AgAc-treated group (100 and 1000 mg/kg BW), 

which may explain the pathological changes in the kidney. However, our dietary Ca was 0.95% 

(lower than NRC recommendation 1%) and control urolitha was not expected to be seen which 

additionally had higher percentage than in AgAc (seen in 2/6). 
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Table 10 Brief summary of histological changes observed in liver and kidney after acute 

oral toxicity 

Group Liver Kidney 

Control NSF Large focal urolith in major ureter 

branch with mild surrounding 

fibrosis (2/6)33 

SCC1-10 mild (2)33% , moderate (4)66%  

hepatocellular vacuolation 

(glycogen and microvesicular lipid) 

NSF 

SCC1-100 mild (2/6)33%, moderate (2/6) 33%  

hepatocellular vacuolation 

(glycogen and microvesicular lipid) 

Mild, multifocal tubular  

degeneration, necrosis, and 

dilation/simplification (3/6) 50% 

SCC1-1000 mild (3/6) 50% hepatocellular 

vacuolation (lipid and glycogen) 

NSF 

SCC22-10 mild (3/6) 50% hepatocellular 

vacuolation (lipid and glycogen) 

NSF 

SCC22-100 mild (3/6) 50%, to moderate (1/6) 

16% hepatocellular vacuolation 

(glycogen and microvesicular lipid) 

NSF 

SCC22-1000 NSF (6/6) 100% mild multifocal heterophilic 

granulomas (1/6) 16% 

AgAc-10 NSF (6/6) 100% NSF 

AgAc-100 NSF (6/6) 100% multifocal uroliths in major ureter 

branches with mild surrounding 

fibrosis (1/6) 16% 

AgAc-1000 NSF (6/6) 100% Large focal urolith in major ureter 

branch with moderate surrounding 

fibrosis (1/6) 16% 

NSF= Non-significant findings 
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Figure 7 Histology of the liver tissue (H&E stains) in broiler chickens two weeks after 

single oral exposure to (A) deionized water - Control, (B) silver carbene complex 1 (SCC1) 

at 10 mg/kg BW - glycogen and lipid type vacuolation of hepatocytes 40x, (C) silver carbene 

complex 1 (SCC1) at 1000 mg/kg BW 

B 
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Figure 8 Histology of kidney (H&E stain) in broiler chickens two weeks after single oral 

exposure to deionized water (A)Control - urolith in major ureter branch 10X , (B) silver 

carbene complex 1 (SCC1) at 100 mg/kg BW - Renal tubular dilation and mild necrosis 

20x, (D) silver acetate (AgAc) at 100 mg/kg BW - Urolith in major ureter branch 
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Figure 9 Histology of spleen (H&E stain) in broiler chickens two weeks after single oral 

exposure to (A) deionized water - Control 4X, (B) silver acetate (AgAc) at 1000 mg/kg BW - 

Lymphoid nodule in spleen 20x 
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CHAPTER IV 

EVALUATION EFFECT OF SILVER ACETATE ON PERFORMANCE AND 

CLOSTRIDIUM PERFRINGENS-INDUCED NECROTIC ENTERITIS IN BROILER 

CHICKEN 

Introduction 

 Necrotic enteritis (NE) in broiler chickens is a bacterial infection caused by the Gram-

positive, spore forming; anaerobic Clostridium perfringens type A within 2-6 weeks of age 

(Cooper and Songer, 2010). CP is frequently found in the intestinal tract of healthy poultry, 

usually at levels lower than 102-104 CFU/g of intestine content verses 107 -109 CFU/g in diseased 

birds (Barnes et al., 1972; Craven et al., 2001). Both clinical and sub-clinical forms of NE are 

known to cause industry losses of approximately US$6 billion annually (Wade and Keyburn, 

2015). One strategy followed by animal producers to reduce or control the enteric bacterial 

burden of CP and subsequently promotes the growth performance; diets have been fortified with 

antibiotics as a growth promotor (AGP) (Yegani and Korver, 2008). Banning the use of AGP in 

European Union and increased restrictions and discouraging the use of AGP in the United States 

has a major impact on gut health in intensively reared broiler chickens (Castanon, 2007; 

Timbermont et al., 2011). 

Silver has been used as an antimicrobial agent in a variety of ways to control infections 

since ancient times (Russell and Hugo, 1994). Usually, silver has been used as ionic form (salts), 

mainly nitrate, sulphate or chloride. The antimicrobial activity of silver ions is characterized by a 

high effectiveness, low toxicity to host cells, and rare development of resistance (Silver, 2003). 

Formulations of silver nitrate have been therapeutically well-known since the 18th century 

(Klasen, 2000). However, many of these inorganic forms rapidly lose effectiveness since the 
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silver cations are released rapidly at the infection site (Napoli et. al., 2013). The extensive use of 

silver-based compounds attracted animal-antibiotic alternative researchers to evaluate silver in 

particulate form as a feed additive in animal production (poultry and swine) relying mainly on 

the broad antimicrobial activity of silver ion (Sawosz et al., 2007, 2009; Fondevila et al., 2009; 

Pineda et al., 2012; Vadalasetty et al., 2018). However, scarce literatures evaluated the potential 

effect of less adverse effect of silver salts on broiler performance, or potential in vivo efficacy 

through a course of a disease using chicken as a model animal.  

As was shown in previous chapters, silver acetate (AgAc) under anaerobic conditions 

exhibited bacteriostatic effect against CP with minimal inhibitory concentration (MIC) being 8 

µg/mL. In addition, subjecting Clostridium perfringens to 40 μg/mL of AgAc down regulated the 

expression of virulence genes of CP (plc and netB) by 47- and 36-fold respectively. In terms of 

its toxicity, using a single oral gavage, showed doses 10 and 100 mg/kg BW with less adverse 

effect compared to 1000 mg/kg BW. In poultry, maximum tolerable level (MTL) of silver 

determined by NRC (1980) is 100 mg/kg feed. The objective of this study was to evaluate the 

potential effect of AgAc (Sigma-Aldrich, 99.9% purity; molecular weight 166.8 g/mol) on 

broiler chicken performance, Clostridium perfringens colonization, and lesion score associated 

with NE, when delivered at levels up to the MTL. 

Materials and Methods 

All procedures in this experiment were approved by the Institutional Animal Care and 

Use Committee of Texas A&M University (IACUC 2017–0072). 

Birds and General Management  

  Two experiments were conducted at the same time in 2 separated rearing rooms at the 

USDA-ARS facility (College Station, TX). In Experiment 1, (Feed-added AgAc [F-AgAc]), a 
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total of 240 one-d-old straight run Cobb-500 broiler chickens was purchased from a commercial 

hatchery and placed in tow stainless steel battery brooder units (Alternative Design 

Manufacturing and Supply Inc.) Five birds by pen (2 sq. ft. per cage) were allocated inside 

environmentally controlled rearing rooms. The room was thermostatically controlled with a 24-

hour lighting provided. Birds were fed a corn-soy broiler starter diet (Table 11) either as a 

control (unsupplemented) or supplemented with graded concentrations of AgAc from the day of 

hatch until termination of the experiment (d-21).  

In Experiment 2, (Water-added AgAc [W-AgAc]), a total of 240 one-d-old straight Ross-

300 broiler chickens were purchased from a commercial hatchery and placed into two Petersime 

battery brooders (5 birds per pen) inside an environmentally controlled rearing room. The room 

was thermostatically controlled with a 24-hour lighting provided.  Each brooder pen contained 

supplemental heat as required. Birds were fed the control basal diet as in Experiment 1 from the 

day of hatch until termination of the experiment (d-21). In both experiments, feed and water 

were provided ad libitum. Birds were monitored daily with regard to general flock condition, 

temperature, lighting, water, feed, and any unanticipated events for the rearing facility. 
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Table 11 Feed composition of basal broiler starter diet used in both experiments 

Ingredients % 

Yellow corn, grain 62.0 

Soybean meal (CP, 48%) 32.0 

Soybean oil 2.2 

Limestone 1.4 

Sodium chloride (salt) 0.50 

Monocalcium phosphate 1.6 

DL-methionine 0.23 

L-Lysine·HCl 0.18 

Vitamin premix* 0.25 

Mineral Premix** 0.05 

Calculated composition  

ME (kcal/kg) 3050 

Crude protein  22 

Crude fat  3.92 

Calcium  0.95 

Available phosphorus 0.45 

Lysine  1.18 

Methionine  0.53 

* Provided the following per Kg of diet: vitamin A, 11 IU; vitamin D3, 3,850 IU; vitamin E, 45.8 

IU; menadione, 1.5 mg; B12, 0.017 mg; biotin, 0.55 mg; thiamine, 2.93 mg; riboflavin, 5.96 mg; 

d-pantothenic acid, 20.17 mg; B6, 7.15 mg; niacin,45.8 mg; folic acid, 1.74 mg; choline, 130.3 

mg. **Trace minerals premix added at this rate yields (mg/kg): zinc, 60.0; manganese, 60.0; 

iron, 60.0; copper,7.0;iodine,0.4. 

 

 

 

Experimental Design 

The in vivo efficacy of AgAc delivered either by adding into the feed (as a prophylactic 

model) or via drinking water (as treatment model) during necrotic enteritis challenge was 

evaluated. Birds in F-AgAc group were blocked based on initial body weight in 7 dietary 

treatment groups (6 replicates/5 birds each) as follows:  Positive Control (PC) (no AgAc and no 

challenge and no IBD, n=30), Negative Control (NC) (no AgAc, challenged, and IBD 

immunized n=30), and 5 dietary AgAc treatments (n=30/treatment) fed 20, 40, 60, 80, 100 
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mg/kg feed AgAc for 21-d rearing period and challenged. These concentrations were chosen 

based on our in vivo toxicity preliminary study. 

For the W-AgAc group, the same protocol was followed except the birds (Ross-308) 

received AgAc concentrations via drinking water for the last 4 days of the 21-d rearing period. 

Treated groups received AgAc fresh daily or as needed using a jack-waterer. Water consumption 

for the last 4 consecutive days was recorded to calculate amount of AgAc delivered. In both 

experiments, feed consumption and body weight (BW) per pen were recorded on d 10, 16 and 21 

to calculate weight gain (WG) and feed to weight ratio (FCR). Mortality and body weight of 

dead birds was recorded daily and used to adjust FCR. On d-21, all birds were euthanized using 

CO2, and necropsied to measure intestinal lesions associated with NE, and intestinal content 

from 12 birds per treatment were collected for Clostridium perfringens enumeration.  

Clostridium Perfringens Challenge 

Birds from both trials were administered a commercial infectious bursal disease vaccine 

(IBD, Bursa-Vac, Merck Animal Health, Summit, NJ) at 10X the recommended dose via the 

ocular route on day 10 in order to help induce NE by acting as immunosuppressive (McReynolds 

et al., 2004). Four field isolates of Clostridium perfringens type A from different geographical 

locations confirmed with NE infection (2 isolates from Texas and Virginia and 2 isolates from 

Georgia) were cultured separately on thioglycollate medium (Becton Dickinson) for 12 h then 

combined and provided to the appropriate treatment groups (McReynolds et al., 2004). Chicks 

were challenged via oral gavage (3 mL) with 107 CFU of CP/mL on days 16 and 17.   

Clostridium Perfringens Enumeration 

A section (~15 cm) of the small intestine cranial to Meckel’s diverticulum was removed 

and placed in 10 mL of anaerobic thioglycollate (Becton Dickinson). Then, the sample was 
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stomached for 30 sec, and 0.5 mL of small intestine contents transferred into 4.5 mL of 

thioglycollate medium. Ten-fold serial dilutions were performed and plated on Shahidi Ferguson 

Perfringens (SFP) agar supplemented with 50% egg yolk enrichment, Antimicrobic Vial K (12 

mg), and Antimicrobic Vial P (30,000 U) (Becton Dickinson). After the sample was plated, 10 to 

12 mL SFP agar base without egg yolk enrichment was overlaid and the plates incubated 

anaerobically for 24 h at 37°C. Colonies exhibiting typical colony morphology were counted and 

recorded (McReynolds et al., 2007). 

Lesion Score Associated with NE 

To evaluate the development of intestinal gross lesions associated with NE, scoring was 

performed as described by Prescott et al. (1978). The intestine (duodenum, jejunum, and ileum) 

were examined and scored to evaluate gross lesions associated with NE. The scoring was 

performed by a licensed poultry veterinarian who was blinded to the treatment group. Lesions 

were scored on a scale of 0-4. A score of 0 = normal healthy tissue with no gross lesions, a score 

of 1= thin-walled or friable tissue with a grey appearance, a score of 2 = thin-walled, with focal 

necrosis, and grey in appearance with minor amounts of gas production, a score of 3 = thin walls 

with sizable patches of necrosis, gas filled intestine, and small flecks of blood, and a score of 4 = 

defined by severe extensive necrosis, marked hemorrhage, and large amounts of gas in the 

intestine. 

Statistical Analysis  

 For performance and Log10 CFU Clostridium perfringens/gram bacterial recovery data 

were analyzed as One–Way ANOVA. Lesion scores were analyzed as nonparametric by 

Kruskal-Wallis test. Additionally, Feed-added AgAc and Water-added AgAc were compared to 

investigate any possible delivery effect on lesion scores and Log10 CFU/g bacterial recovery 
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associated with NE by Student t test (P < 0.05). Pairwise correlations were calculated for each 

delivery methods to investigate the relationship between the daily silver intake based on body 

weight and variables studied.  Interpretation of the size and strength of the correlation was 

according to Hinkle et al. (2003). All analyses were conducted using the JMP Pro 12 (SAS, Inc., 

Cary, NC) and when appropriate means were compared using Tukey’s HSD test at P < 0.05. Pen 

average was the experimental unit for all parameters studied. 

Results and Discussion 

Bird Performance 

 Performance results for F-AgAc group at days 1-10, 10-16 are presented in Table 12. 

Compared to the control, there were no differences (P > 0.05) in BW, WG, FCR, and mortality 

on days 10 and 16 when AgAc was fed at different dietary concentrations. On d 10, results 

showed low negative correlation (Table 16) between average daily silver intake (mg/kg BW) and 

BW (r = -0.33; P = 0.07), WG (r = -0.33; P = 0.07), and negligible negative correlations to FCR 

(r = -0.12; P = 0.59), and mortalities (r = -0.05; P = 0.79). Similarly, on d 16, there were low 

negative correlations between daily silver intake and BW (r = -0.36; P = 0.05), WG (r = -0.30; P 

= 0.10), and negligible negative correlations to FCR (r = -0.01; P = 0.96), and mortalities (r = -

0.08; P = 0.67).  
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Table 12 Performance of broiler chicken at d 0-10 and d 10-16 fed different concentration 

of silver acetate (AgAc)1 

 D 0-10 D 10-16 

Treatment BW WG FCR Mort BW WG FCR Mort Mort * 

PC 244 206 1.04 0 530 286 1.19 0 0 

NC 253 215 1.02 6.6 547 295 1.19 4.2 10 

AgAc20 262 225 1.05 10 562 300 1.21 5.5 13.3 

AgAc40 255 218 1.02 0 550 295 1.20 3.3 3.3 

AgAc60 259 221 1.05 10 553 294 1.21 0 10 

AgAc80 251 213 1.04 3.3 538 286 1.20 0 3.3 

AgAc100 244 207 1.03 6.6 528 284 1.20 3.3 10 

SEM 6.5 6.5 0.01 4 12.1 7.8 0.01 3.2 5.4 
1Each value reported is the mean of 6 replicates with 5 chicks per replicate (n=6) 
2Body weight (BW), weight gain (WG), feed conversion ratio (FCR) 
*Mortality from d 0-16 

 

 

 

Performance results for F-AgAc group at days 16-21 are presented in Table 13. On d 16-

21, the highest dietary silver concentration in F-AgAc group (100 mg/kg feed (9.1 mg AgAc/kg 

BW/day) did not affect the BW, WG, FCR, and mortalities when compared to control groups. 

Similar negative correlations were found on d 21 when compared to previous days except in WG 

which showed negligible positive correlation. 
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Table 13 Broiler chicken performance at d 16-21 after challenge with Clostridium 

perfringens and delivered different concentrations of silver acetate (AgAc) from d 0 in the 

feed1 

Treatment* n 

Daily 

AgAc intake 

(mg) 3 

Daily 

AgAc 

mg/kg 

BW4 

BW 

(g)2 

WG 

(g) 

FCR 

(g:g) 
Mortality Mortality* 

PC 6 0 0 819 289 1.29 0 0 

NC 6 0 0 823 275 1.31 9.7 16.6 

AgAc 20 6 1.5 1.9 805 244 1.34 8.3 16.6 

AgAc 40 6 3.1 3.7 844 294 1.30 6.6 10.0 

AgAc 60 6 4.6 5.4 842 289 1.32 4.2 13.3 

AgAc 80 6 6.0 7.2 842 304 1.31 10 13.3 

AgAc 100 6 7.2 9.1 791 262 1.31 0 10.0 

PSEM    18.8 14.8 0.02 5.2 7.7 
1Each value reported is the mean of 6 replicates with 5 chicks per replicate (n=6) 
2Body weight (BW), weight gain (WG), feed conversion ratio (FCR) 
3 Based on total feed consumption for 21 days. 
4 Average daily AgAc intake based on feed consumption for 21 d/average kg body weight, 

adjusted to mortalities. 
* Positive control (No challenge and no AgAc), Negative control (Challenge and no AgAc), and 

6 dietary treatments challenged and fed 20, 40, 60, 80, 100 mg AgAc/kg feed for 21 d rearing 

period. 

 

 

 

AgAc delivered for 4 days (18-21) in drinking water up to 100 mg/L water (20.9 mg 

AgAc/kg BW/day) did not affect (P > 0.05) the productive parameters BW, WG, FCR, and 

mortalities compared to control groups (Table 14). Results showed negligible positive 

correlations between daily silver intake and BW (r = 0.12; P = 0.51), WG (r = 0.14; P = 0.46), 

and negligible negative correlations to FCR (r = -0.20; P = 0.28), and mortalities (r = -0.15; P = 

0.41). 
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Table 14 Broiler chicken performance at day 16-21 after challenge with Clostridium 

perfringens and delivered different concentrations of silver acetate (AgAc) via drinking 

water for the last 4 days of a 21-day rearing period1 

1Each value reported is the mean of 6 replicates with 5 chicks per replicate (n=6) 
2Body weight (BW), weight gain (WG), feed conversion ratio (FCR) 
3 Based on total water consumption for the last 4 consecutive days.  
4Average daily AgAc intake for 4 days/average kg body weight, adjusted to mortalities. 
*PC=Positive control (No challenge no AgAc, and no IBD immunization), NC=Negative control 

(Challenge no AgAc, and IBD immunization), and 5 treatment groups challenged and delivered 

20, 40, 60, 80, 100 mg AgAc/L drinking water for the last 4 days of a 21-day rearing period 

 

 

 

 The very well toxicity profile for ionic silver has studied decades ago in broiler chickens 

in many studies in which ionic silver supplemented by either practical or purified diets and 

drinking water. These studies collectively showed that silver from silver acetate or silver nitrate 

is toxic at high concentrations (900 mg/kg practical diet in poult and chickens [Jensen et al., 

1974; Peterson and Jensen 1975], 1500 mg/kg drinking water fed purified diet [Bunyan et al., 

1968]). However, scarce literatures documented the potential effect of ionic silver on broiler 

Treatment* n 

DailyAgAc 

intake 

(mg)3 

Daily AgAc 

mg/kg BW4 BW (g)2 WG 

(g) 
FCR(g:g) Mortality 

PC 6 0 0 762 273 1.34 0 

NC 6 0 0 750 251 1.31 6.6 

AgAc 20 6 3.5 4.8 722 214 1.39 16.6 

AgAc 40 6 7.3 9.2 797 284 1.36 10. 

AgAc 60 6 11.3 13.8 819 308 1.29 10 

AgAc 80 6 13.3 18.0 743 249 1.29 13 

AgAc 100 6 16.0 20.9 766 252 1.36 6.6 

PSEM    24 24 0.04 5 
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chicken’s performance, and on controlling an experimental infection using less adverse 

concentrations. This makes comparing current result relatively hard.  

The performance results of current study collectively indicate whether AgAc included in 

the feed (from d 1 to 21) or drinking water (4 d) at the concentrations evaluated in this 

experiment had no negative effect on broiler chicken performance. A practical diet containing 

graded concentrations 10, 25, 50 and 100 mg/kg silver sulfate for 3 weeks did not affect growth 

performance and mortality of broiler chickens (Hill et al., 1964). Early silver studies in growing 

turkeys showed that adding 100 ppm (about 110 mg/kg BW/day) of silver nitrate or silver acetate 

(4 weeks) to the practical diet did not affect bird performance (Jensen et al., 1974). The results 

are also consistent with other studies using different forms of silver. Felehgari et al. (2013) 

showed that silver nanoparticles fed to broiler chickens at 25 and 50 ppm for 21 d did not affect 

the bird performance parameters BW, WG, and FCR. Similarly, Pineda et al. (2012) reported 

that providing silver nanoparticles to broiler chickens at 10 and 20 mg/kg in drinking water from 

d 7 to 36 did not affect bird performance BW, FCR and mortalities.  

It was reported the mechanism by which silver can induce adverse (toxic) effect on 

poultry (mainly reduce BW) is through interfering with metabolism and function of trace 

minerals such as copper (Cu) and selenium (Se) (NRC, 1980). Hill et al. (1964) reported that 50 

and 100 mg/kg of silver increased mortalities and reduced growth rate of chicks fed for 3 weeks 

a copper purified diet, and supplementation 10 and 25 mg/kg copper prevented the adverse 

effects of silver. The premix of our diet provided 7 mg/kg copper which could marginally 

prevented the potential adverse effect of silver as showed with low negative correlation between 

average daily silver intake and BW and WG. Following oral exposure to both ionic and 

nanoparticulate silver suspensions, silver has been reported to be deposited as particles in tissues 
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such as the epidermis, the glomeruli and the intestines. These particles, in the rat intestines, were 

found to contain sulphur and selenium in addition to silver (Loeschner et al., 2011). This led to 

the conclusion that Se and other mineral such as Cu are antagonistic to silver ion preventing the 

bioavailability. Similarly, the calculated Se in our corn-soy diet provided 0.15 mg/kg Se which 

could play a role to reduce toxic effects of silver ions by reducing their biological availability. In 

addition, it has been shown that the efficacy of silver can be affected by the interaction of the 

ions with chloride, which results in the formation silver chloride (AgCl) precipitate (Silver, 

2003). It is possible readily released silver ions from AgAc interacted with biologically-relevant 

compounds (such as organic material or chloride) in the drinking water, preventing their 

bioavailability. 

Beside no adverse effect, no positive effect of adding silver into the feed or water was 

notice. The metabolic interactions of silver with different essential metals which eventually lead 

to toxic effect and diminish silver bioactivity is contradicted (at least for this form of silver) to 

the hypothesis says: as silver ion possesses antimicrobial activity, silver could potentially modify 

the microbiota profile of gastrointestinal tract (Hadrup et al., 2012), and subsequently could 

promote the bird performance resembling the antibiotic growth promoter action (Sawosz et al., 

2007; Fondevila et al., 2009). Based on this hypothesis, silver availability in the GIT is a key 

factor to achieve this goal. Sawosz et al. (2007) reported no major effect of colloidal silver on 

bacterial population in the digestive tract of quails, however, only a significant increase in lactic 

acid bacteria was observed with 25 mg/kg in drinking water. No effect of silver in particulate 

form on microbial population including Clostridium perfringens when broiler chicken 

supplemented 10 and 20 mg/kg drinking water for 22 days with no positive effect on bird 

performance BW and FCR (Pineda et al., 2012). Vadalasetty et al. (2018) reported that the 
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application of particulate silver via drinking water in the concentration of 50 mg/kg had no 

antibacterial effect on different intestinal bacterial groups including Clostridium perfringens, but 

this concentration led to decrease the BW. Hadrup et al. (2012) showed neither silver 

nanoparticle (9 mg /kg BW/day) nor silver acetate (14 mg/kg BW/day) affected the balance 

between the two main phyla of gastrointestinal tract bacteria in GIT of rates, Firmicutes and 

Bacteriodetes. The author suggested that silver nanoparticles and silver acetate in the applied 

doses did not disturb the microbiological balance of the gastrointestinal environment at the phyla 

level. 

Clostridium perfringens Enumeration and Lesion Score 

 Following CP challenge at d 16 and 17, CP enumeration and lesion score were performed 

on d 21. In both F-AgAc and W-AgAc groups, all challenged treatments showed higher (P < 

0.05) CP enumeration than in unchallenged group which confirmed that the chickens were 

successfully colonized by the bacteria (Figures 10 and 11). Mortalities were only observed 

among the challenged treatments, except for highest dietary AgAc concentration (100 mg/kg 

feed). However, BW, WG, and FCR were not affected (P > 0.05). Although we used 4 different 

isolates of CP type A from confirmed NE outbreaks which screened previously for plc gene and 

were positive (Swaggerty et al., 2016), and further screened in this study for presence of netB 

gene the model did not sustain the expected negative effects on production parameters. Similar 

results found by (Fasina and Lillehoj, 2018; Fasina et al., 2016) who reported no effect of the 

challenge on BW, WG, and FCR, however, the challenge groups had 1.5-2-fold higher CP 

enumeration compared to control group. The author suggested that the mortalities with gross 

high lesion scores could be an indicator for establishment the infection.  
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Whether AgAc was added into the feed (for 21 d) or in the water (4 d), there were no 

differences (P > 0.05) seen in Clostridium perfringens enumeration compared to challenged 

treatment (Figures 11 and 12). Pairwise correlation results showed negligible negative 

correlation between daily silver intake (mg/kg BW) and CP enumeration in both groups, F-AgAc 

(r = -0.20; P = 0.13) and W-AgAc (r = -0.23; P = 0.10).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Enumeration of Clostridium perfringens of necrotic enteritis experimentally 

induced in Cobb-500 broiler chickens fed different concentrations of silver acetate (AgAc) 

for a 21-day rearing period 

 

Birds were blocked in 7 dietary treatment groups (6 replicates/5 birds each) as follows:  

PC=Positive Control (no challenge no AgAc, and no IBD immunization), NC=Negative Control 

(challenged only and IBD immunization), and 5 dietary treatments challenged, IBD immunized, 

and fed 20, 40, 60, 80, and 100 mg/kg feed AgAc for 21 d rearing period. Mean±SEM, mean 

values of bacterial enumeration= the average log10 CFU Clostridium perfringens/gram med-

ileum content recovered from average 2 birds/pen (n=6) 
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Birds were blocked in 7 treatment groups (6 replicates/5 birds each) as follows:  PC=Positive 

Control (no challenge no AgAc, and no IBD immunization), NC=Negative Control (challenged 

only and IBD immunization), and 5 dietary treatments challenged, IBD immunized, and 

delivered 20, 40, 60, 80, 100 mg/kg water AgAc for the last 4 days of a 21-day rearing period. 

Mean±SEM, mean values of bacterial enumeration= the average log10 CFU Clostridium 

perfringens/gram med-ileum content recovered from average 2 birds/pen (n=6) 
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Figure 11 Enumeration of Clostridium perfringens of necrotic enteritis experimentally 

induced in Ross 308 broiler chickens delivered silver acetate (AgAc) via drinking water 

for the last 4 days of a 21-day rearing period 
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Similarly, whether AgAc was added into the feed or in the water, there were no 

differences (P > 0.05) seen in lesion scores compared to challenged treatment (Table 15). In F-

AgAc group, pairwise correlation results showed negligible positive correlation between daily 

silver intake (mg/kg BW) and lesion score (r = 0.14; P = 0.14), and negligible negative 

correlation (r = 0.04; P = 0.65) in W-AgAc group. 

 

 

 

Table 15 Lesion scores for broiler chickens challenged with Clostridium perfringens and 

delivered silver acetate (AgAc) in feed and water 

AgAc mg/kg***  

Method2 PC* NC** 20 40 60 80 100 PSEM 

F-AgAc 0.63 0.79  0.91  0.83  0.86  0.68  1.1 0.10 

W-AgAc 0.30  0.40  0.24  0.49  0.18  0.15  0.39  0.09 

*Positive control (No challenge and no AgAc, and no IBD immunization), **Negative control 

(Challenge no AgAc, and IBD immunization), *** 5 dietary treatments of silver acetate at 20, 40, 

60, 80, and 100 mg/kg feed  
1The intestine (duodenum, jejunum, and ileum) were examined and scored to evaluate gross 

lesions associated with NE. To eliminate bias, a licensed poultry veterinarian blindly scored all 

tissues for lesions. Lesions were scored on a scale of 0-4. A score of 0 =  normal healthy tissue 

with no gross lesions, a score of 1=  thin-walled or friable tissue with a grey appearance, a score 

of 2 =  thin-walled, with focal necrosis, and grey in appearance with minor amounts of gas 

production, a score of 3 =  thin walls with sizable patches of necrosis, gas filled intestine, and 

small flecks of blood, and a score of 4 = defined by severe extensive necrosis, marked 

hemorrhage, and large amounts of gas in the intestine (Prescott et al., 1978). 
2 lesion score in Feed-added AgAc (F-AgAc) and Water-added AgAc (W-AgAc) 

 

 

 

In F-AgAc group, lesion score of 2 (thin-walled, with focal necrosis, and grey in 

appearance with minor amounts of gas production), was observed in all dietary silver treatments 

with minor incidence percentages (2/21 (9.5%) in concentration 20, 1/22 (4.5%) in concentration 

40, 2/23 (8.7%) in concentration 60, 1/21 (4.8%) in concentration 80, 2/24 (8.3%) in 

concentration 100. In addition, 2/24 (8.3%) in concertation 100 showed lesion score of 3. No 
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such score lesion was observed in W-AgAc group. The intestinal lesions of the W-AgAc group 

had lower (P < 0.05) lesion scores compared with the F-AgAc group at all concentrations tested 

including positive and negative controls when subjected to Student t test (data not showed). 

Positive controls (unchallenged) in F-AgAc and W-AgAc showed lesion scoring of 0.64, and 

0.30, respectively. However, these lesion scores in both positive controls were not different from 

their corresponding challenged groups (P > 0.05). 

 

 

Table 16 Pairwise correlations between daily silver intake (mg/kg BW) and studied 

responses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 r P value 

F-AgAc   

Day 0-10   

Body weight -0.33 0.07 

Weight gain -0.33 0.07 

FCR -0.10 0.59 

Mortalities -0.05 0.79 

Day 10-16   

Body weight -0.36 0.05 

Weight gain -0.30 0.10 

FCR -0.01 0.96 

Mortalities -0.08 0.67 

Day 16-21   

Body weight -0.06 0.74 

Weight gain 0.21 0.26 

FCR -0.21 0.25 

Mortalities -0.08 0.66 

CP enumeration -0.20 0.13 

Lesion score 0.14 0.14 

W-AgAc   

Day 16-21   

Body weight 0.12 0.51 

Weight gain 0.14 0.46 

Feed conversion ratio -0.20 0.28 

Mortalities -0.15 0.41 

CP enumeration -0.23 0.10 

Lesion score -0.04 0.65 



 

95 

 

Controlling pathogen infections in the gastrointestinal tract of animals using silver-based 

compounds, in particular silver salt forms, are scarcely reported.  Although, in vitro antibacterial 

efficacy of AgAc against Clostridium perfringens type A was a bacteriostatic effect with MIC 

being 8 µg/mL, it seems that in vivo efficacy of AgAc, to reduce bacterial colonization in the 

intestine, was limited. Similar results found by Vadalasetty et al. (2018) who reported that the 

application of particulate silver via drinking water in the concentration of 50 mg/kg had no 

antibacterial effect on different intestinal bacterial groups including Clostridium perfringens and 

had no effect on colonization of Campylobacter jejuni experimentally infected in broiler 

chickens although the in vitro results showed bactericidal at the same concentration used in vivo.  

 Regardless the lesion scores observed in the PC of both experiments, which could 

explain the ubiquitous of Clostridium perfringens in the environment, AgAc in both delivery 

methods did not decrease or increase the lesion scores compared to lesion scores of challenged 

groups. Although there were no significant differences in Clostridium perfringens enumeration 

in both delivery methods groups, the intestinal lesions of the W-AgAc group had lower (P < 

0.05) lesion scores compared with the F-AgAc group at all concentrations tested including 

positive and negative controls.  

The lesion score of 2 and 3 noticed in small number of birds in F-AgAc group increased 

the overall average of lesion score compared to W-AgAc. This could indicate (although low 

number of chickens showed these lesion) that silver could exert its toxicity when supplemented 

for prolong period at low levels which limiting the use of silver as an antibacterial agent in 

animal production (Sawosz et al., 2007). However, as the positive and negative controls showed 

difference in lesion score, the difference seen in lesion score may be due to an effect of strain, 

rather than an effect of silver administration. It was reported different immunological pathways 
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are involved in genetic determinants outside the chicken B complex which have a significant 

impact on birds being either resistant or susceptible to NE (Kim et al., 2014). Therefore, it was 

strongly suggested that different broiler strains have been shown to have different resistance to 

pathogens such as Clostridium perfringens (Swaggerty et al., 2016). 

It was proposed that that the understanding of the potential behaviors of silver ions 

(whether it dissociated from salts or particulate silver) is not comprehensive in terms of their 

chemical and biochemical behavior in a biological system (Behra, et al., 2013). The in vivo 

antimicrobial efficacy of silver ion seems to be hindered by its interactions which probably 

explain the clearer effect on metabolic processes. The results of current study suggest limitation 

effect of silver acetate on performance; reduce Clostridium perfringens colonization and lesion 

score in broiler chickens. 
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CHAPTER V 

COMPARISON STUDY OF SILVER ACETATE TO PROBIOTIC, PREBIOTIC, AND 

ANTIBIOTIC IN FULL TERM BROILER PERFORMANCE 

 

Introduction 

 The use of antibiotics in livestock production is one of the potential contributors to the 

emergence of antibiotic resistant bacteria. In an effort to improve production efficiency, diets 

have been fortified with antibiotics, often at sub-therapeutic doses. Long periods of exposure to 

these sub-therapeutic doses have induced bacterial populations to acquire genetic mutations or 

plasmids that allow them to survive in the presence of the antibiotics. Recognition of the 

contribution of antibiotics in feed to the emergence of antimicrobial resistance has led to a 2006 

ban on the use of antibiotic growth promoters (AGPs) in the European Union and increased 

restrictions on the use of AGPs in the United States. As of January 1, 2017, a new regulation of 

the Food and Drug Administration (FDA) restricts an animal producer from using antibiotics as 

growth promoters if they are deemed a medically-important antimicrobial with respect to human 

medicine. Banning AGPs in European was almost immediately followed by health problems in 

broiler chickens, and an outbreak of Clostridium perfringens (CP) infections was seen (Castanon, 

2007). Banning antibiotics from animal feed in the United States will likely cause the same 

challenge, which has promoted research into alternatives to AGP (Niewold, 2006) such as 

probiotics (Gardiner et al., 2004), organic acids (Partanen and Mroz, 1999), herbs and their 

extracts (Burt, 2004). 

Recently, it was hypothesized that particulate silver could be employed as an alternative 

to antibiotics in animal production (Sawosz et al., 2007, 2009; Fondevila et al., 2009; Pineda et 
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al., 2012; Ahmadi and Kurdestani, 2010, Ahmadi, 2012). It was hypothesized that as silver ion 

possesses antimicrobial activity, silver could potentially modify the microbiota profile of 

gastrointestinal tract, increase nutrient utilization, and subsequently could promote bird 

performance, resembling an antibiotic growth promoter action (Saleh and El-Magd, 2018; 

Hadrup et al., 2012; Sawosz et al., 2007; Fondevila et al., 2009; Pienda et al. 2012). In most of 

these studies, and in the results from chapter 4, in vivo efficacy of adding silver did not show 

significant alteration in the GIT population (CP in our study). The effect of silver on nutrient 

utilization is scarcely reported on energy and amino acids digestibility. Similarly, scarce reports 

exist regarding potential effects of dietary silver on bone mineralization in broiler chickens 

(Sikorska et al., 2010), although there is evidence that silver can distributed to both soft tissues 

and bone (Lansdown, 2010 a).  

  On the other hand, silver could exert toxicity, even at small doses, limiting the use of 

silver as an antibacterial agent in animal production (Sawosz et al., 2007). The mechanism by 

which silver can induce adverse (toxic) effects on poultry (mainly reduced BW) is through 

interfering with metabolism and function of trace minerals such as copper (Cu) and selenium 

(Se) (NRC, 2005), which are components in the antioxidant system. From in vivo and in vitro 

studies, there is a general agreement that the mitochondria are the main sensitive target of silver 

ions after absorption from the cell membrane (McShan et al., 2014; Stensberg, et al, 2011). After 

uptake of silver ion in the mitochondria, it can stimulate the production of reactive oxygen 

species (ROS), because of disruption of the influx of ions and electrons across the mitochondrial 

membrane. In addition, silver can bind and modulate the glutathione (GSH) function as a non-

enzymatic antioxidant by oligodynamic effects which lead to increase ROS production and 

increased susceptibility to cellular damage. 
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Silver-induced oxidative stress damage in broiler intestines (jejunum), breast muscles, 

liver, and plasma has been reported by some researchers using particulate silver (Song et al., 

2017; Ognik et al., 2016 a, 2017; Kulak et al., 2018 ab; Ahmadi, 2012). Song et al. (2017) 

reported that the intestinal and plasma oxidative stress resulted in reduction in body weight and 

feed intake with no effect on FCR, and dietary treatment with Zn, vitamin E as an antioxidant, or 

their combination at different inclusion rates failed to alleviate the negative effect of dietary 

particulate silver (at 1000 mg/L drinking water for 42 days) on the body weight and feed intake 

of broiler chickens. This results in agreement (in terms of reduction BW) with Paterson et al. 

(1974) when fed broiler chickens silver acetate or nitrate for 4 weeks at 900 mg/kg feed.  

While Kulak et al. (2018) and Ognik et al (2016 ab) demonstrated that oral administration 

of particulate silver to chickens effects the morphology and functioning of the gastrointestinal 

tract, as well as parameters of immune and redox status accompanied with intestinal wall 

accumulation of silver, regardless the size and doses used which were below the MTL. In rodent 

toxicity studies, it has been reported that oral ingestion of particulate silver at 10 mg/kg for 28 

days could lead to destruction of intestinal microvilli, reduce absorption capacity of nutrients and 

subsequently reduce growth performance (Shahera and Young, 2013). Other pathological 

changes reported in a rodent study by Jeong et al. (2010) were increased numbers of goblet cells 

in the intestine that had released an abnormal composition of mucus granules following the oral 

administration of 30 mg/kg of BW/day of nanoparticles for 28 days. Both, oxidative stress and 

mechanical injury events could lead to impairment of the intestinal epithelium nutrient 

absorption function.  

Silver is absorbed into the body in its ionized form (Ag+) and it readily binds to 

intracellular proteins, especially serum albumins and macro-globulins for metabolism and 
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distribution to different soft tissues and bone (Lansdown, 2010 a). Nano-Ag (50 ppm) was 

deposited in embryo thigh bones, but did not affect the structure, bone mineral content, or 

mechanical properties of the bone (Sikorska et al., 2010). Considering silvers role in bone 

mineralization and the relatively high metabolic rate of modern broiler chickens, bone toxicity of 

administration silver-based products as an antibiotic alternative is important to study. 

Silver acetate has been shown in vitro to have positive antimicrobial effects against a wide range 

bacterial species Clostridium perfringens type A, Salmonella spp., and E. coli isolated from both 

poultry and swine (chapter 2). However, results from chapter 4 did not show positive or negative 

effects on performance, and did not reduce necrotic enteritis which agreed with many previous 

studies. 

   As a part of evaluating the ability of silver to serve as a replacement of antibiotics, this 

study was designed to investigate the effects of dietary silver acetate and compare it to a well-

known antibiotic growth promoter, and alternative probiotic and prebiotic products using growth 

performance, ileal digestibility of energy and amino acids, histological changes, bone 

mineralization, and hepatic glutathione characteristics as variables in a six week grow-out trial. 

Materials and Methods 

 All procedures in this experiment were approved by the Institutional Animal Care and 

Use Committee of Texas A&M University. 

Birds and General Management 

  A total of 952 male day-old broiler chicks (Cobb 500) were procured from a commercial 

hatchery and transported to the Texas A&M Poultry Research Center. Birds were weighed on d 0 

and randomly distributed among 56 floor pens (17 birds per pen with 8 replicates per treatment) 

with recycled litter of pine shavings in a complete randomized block design. Each pen measured 
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approximately 6’ x 6’ and was equipped with hanging feeders and nipple drinkers. Feed and 

water were provided ad libitum. Birds were observed daily with regard to general flock 

condition, temperature, water, feed, and unanticipated events for the house, and mortality for 

each pen. A continuous lighting program was provided for the entire experimental period. 

Temperature was thermostatically controlled at 33°C during the first 3 d, and then weekly 

reduced from 2°C to 3°C until reaching 24 - 26°C. All chickens were received the standard 

vaccinations by the hatchery. 

 Dietary Treatments  

Bird were fed a commercial corn-soybean basal diet in 3-phase feeding program starter 

consisting of starter (d 0-d 21), grower (d 21-d 35), and finisher (d 35-d 42) phases (Table 17). In 

each phase, dietary treatments consisted of a control basal diet (Control) without antibiotic or 

alternative supplementation, basal diet supplemented with 50 ppm antibiotic (bacitracin 

methylene disalicylate, BMD50), basal diet supplemented with 250 ppm Saccharomyces 

cerevisiae yeast cell wall (YCW) prebiotic (Safmannan, SAF250), basal diet supplemented with 

500 g/ton 2x106 of a single bacterial strain of Bacillus spp. probiotic (Envera Go plus, Go+), and 

basal diets supplemented with 10, 50, and 250 ppm silver acetate (AgAc10, AgAc50, and 

AgAc250, respectively).  
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Table 17 Feed Composition and calculated nutrients of basal diet 

Ingredient (%) Starter (d 0-d 21) Grower (d 21-d 35) Finisher (d 35- d 42) 

Yellow corn 60.7 62.3 73.0 

Soybean meal (48% CP) 31.9 31.2 21.5 

DL-Methionine 0.23 0.23 0.13 

Lysine-HCL 0.18 0.06 0.18 

Soybean oil 2.06 2.75 1.97 

Limestone 1.44 1.41 1.46 

Monocalcium diphosphate 1.55 1.32 1.15 

Sodium chloride (salt) 0.51 0.36 0.30 

Vitamin Premix 1 0.25 0.25 0.25 

Mineral Premix 2 0.05 0.05 0.05 

Calculated nutrient content 

Crud protein (%) 22.00 20.50 18.3 

ME (kcal/kg) 3050 3100 3150 

Methionine (%) 0.55 0.55 0.55 

Methionine+Cystine (%) 0.92 0.91 0.90 

Lysine (%) 1.30 1.19 1.19 

Crude fiber (%) 2.14 2.13 2.13 

Calcium (%) 0.95 0.9 0.85 

Available Phosphorus (%) 0.45 0.40 0.35 

Sodium (%) 0.22 0.16 0.16 

Chloride (%) 0.36 0.16 0.16 

Potassium (%) 0.92 0.91 0.90 

Titanium dioxide (%) 0.20 - 0.20 
1Vitamin premix added at this rate yields per kg of diet: 11,023 IU vitamin A, 46 IU vitamin E, 

3,858 IU vitamin D3, 1.47 mg menadione, 2.94 mg thiamine, 5.85 mg riboflavin, 45.93 mg 

niacin, 20.21 mg d-pantothenic acid, 7.17 mg pyridoxine, 0.55 mg biotin, 1.75 mg folic acid, 

0.017 mg vitamin B12, 130.6 mg choline. 2Mineral premix added at this rate yield per kg of feed: 

7 mg copper, 0.4 mg iodine, 60 mg iron, 60 mg manganese, 60 mg zinc. 

 

 

 

Bird Performance 

Feed consumption and body weight (BW) per pen were recorded on d 21, 35 and 42 to 

calculate weight gain (WG) and feed conversion ratio (FCR). Mortality and body weight of dead 

birds was recorded daily and used to adjust FCR. Broiler productivity index (PI) was calculated 

with the following equation: 
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PI=Livability (%)×
BW(kg)/Age(days)

FCR
) ∗ 100 

Energy Digestibility Determination 

Birds were offered ad libitum the diets containing the titanium dioxide for 3 consecutive 

days (19, 20, and 21 and 40, 41 and 42) of the experiment as an inert indigestible marker. On d 

21, and 42, 2 birds per pen (total 8 pooled samples) were euthanized using CO2 and the contents 

of the ileum were collected and pooled per pen for the determination of apparent ileal digestible 

energy and further for apparent amino acid digestibility. The ileum was defined as that portion of 

the small intestine extending 4 cm from the vitelline diverticulum to a point 4 cm proximal to the 

ileo-caecal junction. The digesta were frozen (-20°C) immediately after collection and 

subsequently freeze-dried. The dried ileal digesta samples were ground using a coffee grinder 

(Mr. Coffee, Sunbeam Products Inc., Boca Raton, FL) and stored until chemical analyses. Feed 

and ileal digesta samples were analyzed following Short et al. (1996) procedure to determine the 

concentration of titanium dioxide. Briefly, using porcelain crucibles 0.3 g of dried ileal or feed 

samples were ashed for 13 h and then titrated with 10 mL sulfuric acid (7.4 M). Samples were 

gently boiled until completely dissolved and poured into clean beakers containing 25 mL 

distillated water. Beaker contents were subsequently poured in 100 mL volumetric flasks and 

titrated with 20 mL hydrogen peroxide (30%) and diluted to 100 mL using deionized distillated 

water. Samples were analyzed using a Spectrophotometer (Genesys 10S UV-Vis, Thermo Fisher 

Scientific, Waltham, MA) at 410 nm. Gross energy of feed and ileal digesta samples were 

determined using a bomb calorimeter (Parr 6300, Parr Instrument Company, Moline, IL). 

Apparent ileal digestible energy (AID) was calculated with the following equation: 

AID=Gross energy of feed-(Gross energy of ileal digesta ×
[TiO2] feed

[TiO2] ileal digesta
)  
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Where TiO2 feed and TiO2 ileal digesta = concentration of TiO2 in the diet and digesta samples 

(g/kg). 

Amino Acids Digestibility Determination 

On day 21 and 42, samples of digesta and feed were hydrolyzed for 24 h with 6 N 

hydrochloric acid (HCl) at 110 °C for determination of amino acids concentration using Alliance 

HPLC System e2695 model (Waters Corporation, Milford, MA). The chromatography was 

performed on a Supleco C18 column (15 cm × 4.6 mm, 3 μm, Sigma) at room temperature and 

detected by Waters 2475 fluorescent detector excitation at 340 nm and emission at 450 nm. 

Amino acids standard (Sigma) was used, and Empower 3 advanced software (Waters) was used 

to control the system operation and results management. Amino acid digestibility coefficients 

(AADC) were calculated according to the following equation: 

AADC % = 100 – (( 
[TiO2] feed x AA ileal digesta

[TiO2] ileal digesta x AA feed
) X 100) 

Where, AA ileal digesta and AA feed = concentration of amino acid in the ileal digesta and feed 

samples (g/kg) as fed, TiO2 feed and TiO2 ileal digesta = concentration of TiO2 in the diet and 

digesta samples (g/kg). 

 Histology of Small Intestine 

On d 21 and d 42, 8 birds/treatment were randomly selected and small intestine was 

harvested for histological examination. Portions of small intestines (duodenum distal loop), mid-

jejunum from the end of pancreatic loop to Meckel’s diverticulum, and mid-ileum from Meckel’s 

diverticulum to the ileo-cecum junction) were fixed with 10% formalin solution and were 

prepared using standard paraffin embedding procedures by sectioning at 5 μm thickness, and 

staining with hematoxylin and eosin.  
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 Bone Mineralization Analysis 

On d 42 of the experiment, eight birds per treatments were randomly selected and 

euthanized using CO2. Total bone mineral content (BMC) and bone mineral density (BMD) 

were obtained using a Dual X-ray absorptiometry (DXA) scan (GE Lunar Prodigy, Boston, MA) 

located at the Applied Exercise Science Laboratory of Texas A&M University. Bone mineral 

content is defined as the total bone mineral found in a specific area measured in grams. Bone 

mineral density is derived using BMC (g) divided by an area (cm2) of interest. Chickens were 

placed in prone position with their wings and legs at the sides of the body throughout the scan. 

Data were analyzed using the small animal <20 kg software (GE Lunar Prodigy, Boston, MA). 

Hepatic Glutathione, Cysteine and Cystine 

 At d 42 of age, 8 birds/treatment (1 bird pen) were randomly selected and euthanized 

using CO2 for measurement total glutathione (reduced (GSH) and oxidized (GSSG) glutathione) 

and cysteine/cystine concentrations in liver as an indicator for antioxidant status using HPLC (o-

phthalaldehyde (OPA) method) as described previously (Hou et al., 2018). Liver portions were 

removed and immediately frozen in liquid nitrogen and stored at −80°C. Extraction of 

GSH/GSSG, and cysteine/cystine from liver tissues were conducted by homogenizing the tissue 

(100 mg) with homogenization buffer containing 50 mL of 12 mM iodoacetic acid + 50 mL of 

1.5 M perchloric acid (HClO4) in a glass homogenizer. The solution transferred to 15-mL 

polypropylene tubes, and the homogenizer glass was rinsed with 1.5 mL of homogenization 

buffer, and all homogenate combined, and then, 0.75 mL of 2 M K2CO3 were added, centrifuged 

at 3000 g for 5 min and the supernatant used for derivatization with iodoacetic acid to S-

carboxymethyl. For GSH/cysteine analysis, 50 μL of 100 μM GSH/100μM cysteine standard (or 

sample) and 100μL of 40 mM sodium borate were added into a 4-mL glass vial. For 
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GSSG/cystine analysis, 50 μL of 50 μM GSSG/ 50 μM cystine standard (or sample) and 100 μL 

of 28 mM 2-mercaptoethanol were added into a 4-mL glass vial. The vials vortexed for 10 sec, 

and after 10 min, 50 μL of 25 mM iodoacetic acid to each vial was added, vortexed for 10 sec. 

After 5 min, 0.1 mL of 1.2% benzoic acid and 1.4 mL of HPLC H2O to each vial were added, 

and then vials placed in the autosampler. The autosampler was programmed to mix 25 μL of 

sample (or standard) with 25 μL of the o-phthalaldehyde (OPA reagent) solution for 1 min and 

then deliver the derivatized solution into the HPLC column without any delay. 

The samples were subjected to chromatography using a Waters HPLC apparatus 

consisting of a Model 600E Powerline multisolvent delivery system with 100-μL heads, a Model 

712 WISP autosampler, a Waters 2475 Multi λ Fluorescence detector, and a Millenium-32 

Workstation. A Supelco C18 guard column (4.6 mm × 5 cm, 20–40 μm, Sigma) and a Supelco 

C18 column (4.6 mm × 15 cm, 3 μm, Sigma) were used to determine the amount of GSH/cysteine 

and GSSG/cystine in nanomole per milligram tissue. The amount of GSH/cysteine and 

GSSG/cystine in an unknown sample was calculated by the Waters Workstation on the basis of 

known amounts of GSH/cysteine and GSSG/cystine standards, and hepatic total GSH calculated 

as the sum of GSH and 2 GSSG. 

 Statistical Analysis 

Collected data were analyzed as one way- ANOVA using the GLM Procedure of JMP for 

a complete randomized block design where treatment diets were used as the fixed factor in the 

model. When significance was detected, contrast means were compared using Student t test (P < 

0.05). 
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Results and Discussion 

Performance 

Dietary supplementation of AgAc at 10 and 50 ppm did not show different effects on 

BW, WG, mortality, and FCR compared to the Control unsupplemented diet during all 

production phases (Table 18). In the grower phase, inclusion BMD50 improved the BW (P < 

0.05) compared to all inclusion rates of AgAc.  

Diet supplemented with BMD50 improved FCR by 6.5% in the starter (P < 0.05), 2.5% 

grower, and 2.4% finisher (P > 0.05) phases when compared to the Control group. No such 

improvement was observed in chicks fed AgAc at all concentrations tested. Dietary AgAc at 250 

ppm reduced BW (P < 0.05) compared to the Control diet, BMD50, and dietary AgAc at 10 and 

50 ppm in all phases of production. Dietary AgAc at 250 reduced WG in a dose dependent 

manner during the starter and grower phases. Dietary AgAc at 250 ppm also reduced (P < 0.05) 

the productivity index in starter, grower, and finisher phases when compared to the control, 

BMD50, and AgAc at 10 and 50 ppm. No significant effect was noticed on FCR among 

treatment groups in grower and finisher phases. 
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Table 18 Effect of dietary treatments (bacitracin methylene disalicylate (BMD50), Safmannan (SAF250), Envera Go plus 

(Go+), and silver acetate (AgAc) at 10, 50, and 250 mg/kg feed on bird performance of male broilers 

a-c Values within rows with different superscripts are significantly different at P<0.05 
†Productivity Index (PI)=Livability(%)xBW(kg)/Age(days)/FCRx100 
* Total mortality from d 0 to d 42 

Mean±SD 

 

    Treatment      

D 0-21  PC BMD50 SAF250 GO+ AgAc10 AgAc50 AgAc250 P value 

 BW (g) 879±31 a 884±32 a 881±31 a 831±30 bc 870±15 ab 850±34 ab 814±38 c 0.001 

 WG (g) 835±31 a 840±31 a 837±31 a 786±30 bc 825±15 a 806±34 ab 770±38 c 0.001 

 FCR (g:g) 1.32±0.04 b 1.24±0.04 a 1.27±0.03 ab 1.33±0.04 b 1.32±0.05 b 1.32±0.03 b 1.32±0.04 b 0.049 

 PI† 301±16 ab 307±31 a 310±23 a 278±12 cd 292±18 abc 284±10 bcd 265±20 d 0.002 

 Mortality (%) 0.75±2.1 4.5±4.2 0.75±2.1 1.5±2.7 2.3±3.1 2.3±3.1 4.5±5.3 0.220 

D 22-35          

 BW (g) 2162±64 ab 2213±68 a 2139±93 b 2137±51 b 2138±78 b 2123±89 b 2010±56 c 0.001 

 WG (g) 1090±51 ab 1129±46 a 1065±74 b 1116±51 ab 1077±70 ab 1084±62 ab 997±36 c 0.001 

 FCR (g:g) 1.61±0.03 ab 1.57±0.08 a 1.61±0.03 ab 1.63±0.04 b 1.63±0.04b 1.62±0.04ab 1.62±0.03ab 0.206 

 PI 369±13 ab 372±26 a 368±26 ab 355±16 ab 358±9 ab 350±13 b 324±20 c 0.001 

 Mortality (%) 0.88±2.5 1.0±2.8 0.0±0.0 1.88±3.5 0.0±0.0 2.8±3.8 2.0±3.7 0.387 

D 36-42          

 BW (g) 2881±99 a 2905±117 a 2843±134 a 2863±69 a 2840±108 a 2839±123a 2679±94 b 0.002 

 WG (g) 718±61 691±53 735±79 725±30 701±71 717±51 669±58 0.453 

 FCR (g:g) 1.71±0.03ab 1.67±0.05a 1.73±0.06ab 1.71±0.03ab 1.71±0.04ab 1.74±0.04 ab 1.71±0.06ab 0.115 

 PI 382±17 a 384±24 a 383±33 a 379±17 a 375±15 a 365±10 a 340±32 b 0.001 

 Mortality (%) 1.88±3.4 0.0±0.0 0.0±0.0 0.0±0.0 1.0±2.8 0.0±0.0 1.0±2.8 0.478 

 Total Mortality* 3.0±4.5 5.3±5.1 0.86±2.3 3.0±4.5 3.0±4.5 4.5±4.2 6.8±6.8 0.308 
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Apparent Ileal Digestibility of Energy 

Results of apparent ileal digestible energy at days 21 and 42 are presented in Figures 12 

and 13, respectively. There were no statistical differences (P > 0.05) between dietary treatments 

in apparent ileal digestibility of energy. Dietary supplementation with prebiotic (yeast cell wall) 

increased (P < 0.05) the digestible energy at day 21 compared to BMD50 and all AgAc inclusion 

rates. 
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Figure 12 Effect of dietary treatments (bacitracin methylene disalicylate (BMD50), 

Safmannan (SAF250), Envera Go plus (Go+), and silver acetate (AgAc) at 10, 50, and 250 

mg/kg feed) on apparent ileal digestible energy of male broilers at 21 d of age 
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Figure 13 Effect of dietary treatments (bacitracin methylene disalicylate (BMD50), 

Safmannan (SAF250), Envera Go plus (Go+), and silver acetate (AgAc) at 10, 50, and 250 

mg/kg feed) on apparent ileal digestible energy of male broilers at 42 d of age 
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Apparent Ileal Digestibility of Amino Acids 

Apparent ileal amino acid digestibility coefficient percentages at days 21 and 42 are 

presented in Tables 19 and 20, respectively. On d 21, AgAc supplementation at 10 and 50 ppm 

improved most amino acid digestibility coefficients relative to the control and coefficients were 

similar to the BMD50, SAF250, and Go+ treatment group, where dietary BMD50, SAF250, and 

Go+ improved (P < 0.05) all amino acid digestibility coefficients compared to Control group. 

 However, when silver acetate was supplemented at 250 ppm amino acids coefficients 

were reduced compared to the BMD50, SAF250, and most amino acids in Go+ treatment groups. 

On day 42, the inclusion of BMD50 improved the amino acid digestibility coefficient 

relative to the Control. The digestibility coefficients for lysine, threonine, isoleucine, leucine, 

valine, phenylalanine, serine, glycine, alanine, arginine, tyrosine, and glutamic acids were 

significantly increased (P = 0.001). Dietary Go+ at 500 g/ton had no effect on all amino acid 

digestible coefficients when compared to the Control group. Although dietary SFA250 improved 

all amino acid digestibility coefficients at day 21 (starter phase), it had the lower digestibility at 

day 42 (finisher) for all amino acids comparing to the Control, BMD50, and Go+ treatment 

groups. These results suggest that the host might respond to these feed additives at the early 

stage of life and not at later stages. The antibiotic BMD50 improved amino acid digestibility 

coefficients at both day 21 and 42 compared to the both probiotic and prebiotic. 

For the AgAc treatments, values were largely unchanged when compared to the Control. 

There was a significant reduction in methionine digestibility at the AgAc10 level, however, 

AgAc50 and AgAc250 was similar to both the Control and BMD50 treatments. There was a 

reduction in digestibility coefficients for histidine, threonine, and aspartic acid with the AgAc250 

level, when compared to the Control. 
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Table 19 Effect of dietary treatments (bacitracin methylene disalicylate (BMD50), Safmannan (SAF250), Envera Go plus 

(Go+), and silver acetate (AgAc) at 10, 50, and 250 mg/kg feed on apparent ileal amino acid digestibility coefficient 

percentages of male broilers at 21 d of age 

Amino acid PC BMD50 SAF250 GO+ AgAc10 AgAc50 AgAc250 P value 

Lysine  86±1.2 c 97±0.3 a 98±0.2 a 92±1.9 b 92±0.7 b 96±0.5 ab 87±0.8 c <0.001 

Methionine  90±1.0 e 98±0.3 ab 98±0.3 a 94±1.9 cd 95±0.4 bcd 97±0.3 abc 92±0.5 de <0.001 

Threonine  69±2.2 c 96±0.8 a 97±0.5 a 82±5.1 b 89±1.6 ab 92±1.6 a 81±1.6 b <0.001 

Isoleucine  80±1.7 d 96±0.4 a 98±0.2 a 88±3.1 c 90±1.2 bc 95±0.5 ab 85±1.1 cd <0.001 

Leucine  82±1.6 d 97±0.4 ab 98±0.2 a 89±2.9 c 92±0.9 bc 96±0.6 ab 88±1.0 c <0.001 

Valine  79±1.7 d 96±0.6 ab 97±0.3 a 87±3.4 c 89±1.3 bc 94±0.8 ab 84±1.1 cd <0.001 

Histidine  81±1.2 c 98±0.4 a 98±0.4 a 90±3.2 b 94±0.9 ab 96±0.6 a 90±0.9 b <0.001 

Phenylalanine  83±1.4 d 97±0.5 ab 98±0.2 a 89±2.8 c 92±1.1 bc 95±0.7 ab 87±1.1 c <0.001 

Serine  79±1.6 d 97±0.6 ab 98±0.3 a 87±3.4 c 91±1.3 bc 95±0.6 ab 85±1.3 c <0.001 

Glycine  75±1.77 c 94±0.5 a 97±0.4 a 84±3.6 b 84±1.3 b 93±0.8 a 78±1.1 bc <0.001 

Alanine  80±1.7 d 96±0.5 ab 98±0.2 a 88±2.9 c 90±1.1 bc 95±0.8 ab 86±1.1 c <0.001 

Arginine  87±1.1 d 98±0.4 a 98±0.2 a 92±2.2 bc 95±0.9 abc 97±0.7 ab 91±0.8 c <0.001 

Tyrosine  74± 1.7 d 95±0.4 a 96±0.3 a 87±3.4 bc 83±1.3 c 91±0.7 ab 73±1.6 d <0.001 

Glutamic acid  86±1.5 d 98±0.4 a 98±0.2 a  90±2.5 bcd 94±0.9 abc 96±0.7 ab 90±0.9 cd <0.001 

Aspartic acid  78±1.9 c 96±0.6 a 98±0.3 a 86±3.7 b 91±1.5 ab 94±1.2 a 85±1.4 b <0.001 

Mean±SEM, each value is the mean of 8 samples 
a-c Values within rows with different superscripts are significantly different at P < 0.05 
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Table 20 Effect of dietary treatments (bacitracin methylene disalicylate (BMD50), Safmannan (SAF250), Envera Go plus 

(Go+), and silver acetate (AgAc) at 10, 50, and 250 mg/kg feed on apparent ileal amino acid digestibility coefficient 

percentages of male broilers at 42 d of age 

Amino acid Control BMD50 SAF250 GO+ AgAc10 AgAc50 AgAc250 P value 

Lysine  83±1.6 bc 92±1.1 a 73±1.4 d 82±1.4 bc 81±2.2 c 88±0.5 ab 86±0.5 bc 0.001 

Methionine  91±0.8 a 93±0.6 a 85±1.2 c 93±0.7 a 87±1.4 bc 90±1.1 ab 90±2.1 ab 0.001 

Threonine  74±2.2 bc 89±1.5 a 58±3.5 d 77±2.0 ab 66±4.8 bcd 72±2.7 bc 61±4.0 cd 0.001 

Isoleucine  81±1.5 b 91±1.0 a 70±2.0 c 82±1.6 b 78±2.8 b 82±1.2 b 78±1.4 b 0.001 

Leucine  82±1.4 b 93±0.9 a 72±1.9 c 83±1.4 b 80±2.6 b 86±0.9 b 81±1.2 b 0.001 

Valine  81±1.2 b 90±0.9 a 70±2.1 c 82±1.5 b 77±2.7 bc 76±1.9 bc 76±1.7 bc 0.001 

Histidine  84±1.5 ab 93±1.1 a 71±2.3 c 85±1.2 ab 78±2.9 bc 80±1.7 bc 71±3.5 c 0.001 

Phenylalanine  81±1.2 b 92±0.8 a 69±2.3 c 83±1.5 b 80±2.7 b 84±1.3 b 79±1.6 b 0.001 

Serine  80±1.7 b 92±1.1 a 66±2.6 c 82±1.7 b 75±3.3 bc 82±1.5 b 75±2.1 bc 0.001 

Glycine  81±1.5 bc 90±1.2 a 68±2.1 d 83±1.4 ab 72±3.9 cd 80±1.5 bc 73±2.2 cd 0.001 

Alanine  80±1.4 b 92±0.9 a 70±1.9 c 83±1.4 b 80±2.7 b 84±1.4 b 79±1.5 b 0.001 

Arginine  86±1.2 b 95±0.8 a 75±2.1 c 88±1.2 b 83±2.5 b 87±1.0 b 84±1.5 b 0.001 

Tyrosine  82±0.8 bc 89±1.1 a 74±1.5 d 85±0.9 ab 78±1.9 cd 80±1.4 bcd 79±1.6 bcd 0.001 

Glutamic acid  86±1.0 b 94±0.8 a 79±1.7 c 88±1.2 b 85±1.8 b 87±1.1 b 82±1.3 bc 0.001 

Aspartic acid  84±1.2 ab 92±1.2 a 72±1.9 c 86±1.3 ab 75±3.6 c 80±1.5 bc 74±1.9 c 0.001 

Mean±SEM, each value is the mean of 8 samples 
a-c Means within rows with different superscripts are significantly different at P < 0.05 
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Histology of Small Intestine 

Histomorphologic assessment of intestinal samples at day 21 and 42 revealed no 

significant abnormalities apart from minimal to mild enteritis in the duodenum and jejunum 

associated with infiltration of the lamina propria by lymphocytes and plasma cells and expansion 

of villus enterocytes by coccidian microgametes, macrogametes, schizonts, and oocysts. Few 

animals from all groups exhibited these signs with no significant association with treatment. 

Villus length and crypt morphology were within normal limits and no pigmentation was 

observed within enterocytes. 

Bone Mineralization  

Bone mineral content and bone mineral density results are presented in Figures 14 and 

15, respectively. For total bone mineral content, neither the BMD50 treatment nor any of the 

AgAc treatments were different when compared to the Control. There was a dose-related 

response among AgAc treatments, in which the mineral content of AgAc250 was significantly 

lower than AgAc10 and AgAc50. Bone mineral density values were highest in the AgAc50 

treatment, significantly higher than the BMD50, SAF250, and Go+ treatment groups. Dietary 

SAF250 and Go+ did not affect the bone mineral density and content when compared to Control 

group. Similar to what was seen with total mineral content; AgAc250 had a reduced density 

when compared to both the Control and AgAc50 treatments.  
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Figure 14 Effect of dietary treatments (bacitracin methylene disalicylate (BMD50), 

Safmannan (SAF250), Envera Go plus (Go+), and silver acetate (AgAc) at 10, 50, and 250 
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Hepatic Glutathione, Cysteine and Cystine 

 Results of total glutathione, reduced (GSH) and oxidized (2 GSSG), and the related 

amino acids cysteine and cystine are presented in Table 21. The results showed that dietary 

AgAc at 10 and 50 ppm for 42 days did not affect (P > 0.05) hepatic total GSH compared to 

other treatment groups. Dietary AgAc at 250 ppm reduced (P < 0.05) hepatic total GSH 

compared to Control, BMD50, SAF250, and Go+ treatment groups. There was no adverse effect 

of dietary AgAc at 10, 50, and 250 ppm (P > 0.05) on hepatic cysteine concentrations compared 

to Control and other treatment groups. Similarly, there was no effect on hepatic cystine 

concentrations at 10 and 50 ppm when compared to other treatment groups. Dietary AgAc at 250 

ppm, however, showed the lowest hepatic cystine concentrations when compared to all other 

treatment groups, in which the cystine concentration in all 8 samples averaged 0.001 vs 0.06 

nmol/mg tissue for the Control. 

 

 

 

Table 21 Effect of dietary treatments (bacitracin methylene disalicylate (BMD50), 

Safmannan (SAF250), Envera Go plus (Go+), and silver acetate (AgAc) at 10, 50, and 250 

mg/kg feed) on liver concentrations of total glutathione (reduced (GSH) and oxidized 

(GSSG), cysteine and cystine of male broilers at 42 d of age 

Treatment 
Total GSH  

(nmol/mg tissue) 

Cysteine  

(nmol/mg tissue) 

Cystine  

(nmol/mg tissue) 

Control 2.81±0.45 ab 0.11±0.02 0.06±0.01 abc 

BMD50 2.85±0.41 ab 0.09±0.03 0.04±0.01 c 

SAF250 2.68±0.39 ab 0.14±0.03 0.07±0.01 ab 

Go+ 3.37±0.45 a 0.17±0.05 0.08±0.01 a 

AgAc10 2.29±0.32 bc 0.07±0.02 0.06±0.01 abc 

AgAc50 2.33±0.17 bc 0.09±0.01 0.05±0.01 bc 

AgAc250 1.58±0.29 c 0.09±0.02 0.001±0.00 d 
a-c Means within a column with different superscripts are significantly different at P < 0.05 

Mean±SEM (n=8) 
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The purpose of this study was to investigate the potential effects of dietary silver acetate 

supplemented feed on broiler performance, energy and amino acid digestibility, intestinal 

histology, bone mineralization, and hepatic antioxidant status compared with an antibiotic 

growth promotor. The NRC (2005) stated that silver is a relatively nontoxic element when 

consumed with a diet that contains rich amounts of copper, selenium, and vitamin E, as the 

mechanism by which silver induce adverse (toxic) effect on poultry (mainly reduce BW) is 

through interfering with metabolism and function of such trace minerals (components of 

antioxidant system). The maximum tolerable level (MTL) of silver with no adverse effect on 

poultry was set at 100 mg/kg feed. Thus, based on NRC recommendations, the addition of silver 

as growth promotor should be within this range of inclusion to avoid toxic effects.  

The results showed that dietary supplementation of AgAc at 10 and 50 ppm did not show 

different effects on BW, WG, mortality, and FCR compared to the control unsupplemented diet 

group during all phases. The result is consistent with previous 21-d-battery study (chapter 4) 

when broiler chicken fed gradient concentration of AgAc 20, 40, 60, and 100 mg/kg feed. The 

results are also consistent with other studies using particulate silver (Felehgari et al., 2013; 

Pineda et al., 2012; Ahmadi, 2012; Kulak et al., 2018). Ahmadi (2012) showed that the addition 

of Ag-NPs to broiler diets (20, 40, 60 ppm) did not improves performance in comparison with a 

control treatment with respect to body weight, feed intake, feed conversion ratio and feed 

efficiency of broilers through a 42-d trial period. 

 In all these studies, the inclusion rate of particulate silver was below the MTL, and the 

diets contained adequate mineral and vitamin premixes. Diet composition (adequate mineral and 

vitamins premix) could be the reason for no significant positive effects of adding silver at these 
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concentrations. In contrast, Saleh and El-Magd (2018) reported that dietary supplementation with 

silver nitrate (100 ppm) and particulate silver (50 ppm) for 12 days improved broiler 

performance body weight gain, feed intake, and feed conversion ratio. Vadalasetty et al. (2018), 

however, reported that the application of particulate silver via drinking water for 30 days in the 

concentration of 50 ppm led to decrease the BW and WG (average body weight gain) with no 

impact on FCR. Ahmadi and Rahimi (2011) also reported negative effect of particulate silver 

when supplemented in drinking water (4, 8, 12 ppm) for 42 days on BW and FCR of broiler 

chickens. 

Dietary AgAc at 250 ppm reduced BW (P < 0.05) compared to the Control diet, BMD50, 

and dietary AgAc at 10 and 50 ppm in all phases of production. Dietary AgAc at 250 reduced 

WG in a dose-dependent manner during the starter and grower phases. In turkeys, 300 mg silver 

acetate/kg diet depressed growth performance (Jensen et al., 1974). Song et al. (2017) reported 

that the intestinal and plasma oxidative stress resulted in a reduction in body weight and feed 

intake with no effect on FCR, and dietary treatment with Zn, vitamin E as antioxidants, or their 

combination at different inclusion rates failed to alleviate the negative effect of dietary 

particulate silver (at 1000 mg/L drinking water for 42 days) on the body weight and feed intake 

of broiler chickens. Peterson and Jensen (1974) showed that adding 900 ppm silver nitrate for 4 

weeks to a practical diet for chicks significantly depressed growth, reduced the copper content of 

blood, spleen, brain, liver and 50 ppm Cu supplementation only partially corrected the growth 

depression. This result indicates that exceeding the recommended dose of MTL in broiler could 

result in adverse effect and the diet mineral premix added in this trial did not attenuate the 

adverse effect on BW and WG. 



 

120 

 

Results in this study indicated that dietary supplementation of AgAc at all concentrations 

did not affect (P > 0.05) the apparent ileal digestible energy on day 21 and 42. Similar results 

were found by Pienda et al. (2012) who reported that no treatment effects on intake of 

metabolizable energy (ME) when particulate silver at 10 and 20 ppm was supplemented in 

drinking water for 4 weeks. 

There is no literature available evaluating the effect of dietary silver on apparent amino 

acid digestibility. A study by Saleh and El-Maged (2018) evaluated dietary silver nitrate (100 

mg/kg feed) and particulate silver (50 mg/kg feed) on protein digestibility and the author’s 

reported increased protein digestibility, and nitrogen (N) content in the muscle tissue in the 

chicks fed particulate silver and silver nitrate compared with that in the control group. Pienda et 

al. (2012), reported high N intake and more N retention per kg metabolic body size of broiler 

chickens with supplementation of 10 ppm particulate silver for 4 weeks. The results of amino 

acid digestibility coefficients on d 21 of the current study showed that AgAc supplementation at 

10, 50, and 250 ppm increased most amino acid digestibility coefficients relative to the Control. 

It is probable that the increased N intake, retention and content in muscle tissues observed by 

Pienda et al. (2012) was due to increased amino acid digestibility. However, on day 42, most 

amino acid digestibility coefficients for AgAc treatments were not different from the Control. 

This inconsistent effect was not seen for BMD50 which showed increases amino acid 

digestibility coefficients for both days 21 and 42 when compared to the Control group.  

Results of amino acid digestibility on d 42 showed a reduction in digestibility coefficients 

for histidine, threonine, and aspartic acid with the AgAc250 level, when compared to the 

Control.  The reason behind this effect is not clear as no literature is available to compare with. 

However, histidine is known to have a strong association with silver, readily forming chelates. 
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The high levels of silver in the AgAc250 diet may have potentially become bound with histidine 

residues in the GI tract, leading to the reduction in the digestibility coefficient seen at that dose. 

Kulak et al.  (2018) and Ognik et al. (2016 ab) demonstrated that oral administration of 

particulate silver to chickens effects the morphology and functioning of the gastrointestinal tract, 

as well as the parameters of immune and redox status accompanied with intestinal wall 

accumulation of silver, regardless of the size and doses used. In rodent toxicity studies, it has 

been reported that oral ingestion of particulate silver at 10 and 20 mg/kg for 28 days could lead 

to destruction of intestinal microvilli, reduce absorption capacity of nutrients and subsequently 

reduce growth performance (Shahera and Young, 2013). Another pathological change reported 

in a rodent study by Jeong et al. (2010), were increased numbers of goblet cells in the intestine 

with abnormal composition of mucus granules following the oral administration of 30 mg/kg of 

BW/day of nanoparticles for 28 days. On the other hand, some studies reveled no adverse effect 

on intestinal histology when applying particulate silver with different doses, exposure duration, 

and route of administration in quail (Sawosz et al., 2007), broiler chickens (Ahmadi et al. 2009), 

weaned pigs (Fondevila et al., 2009), and mice (van den Brule et al., 2016). In the present study, 

histological analysis of the tissue samples from the duodenum, jejunum, and ileum of the chicks 

receiving AgAc at all concentrations showed no significant histological abnormalities on day 21 

and day 42. 

Ognik et al. (2016 b) reported the histological analysis of tissue samples from the 

jejunum of chicks receiving particulate silver and silver acetate (5 mg/kg BW/day) with no 

deviations from the norm; the villi were slender, finger-shaped and regular, which indicates that 

the silver nanoparticles had no negative effect on the histological picture of the jejunum. Ag-

nanoparticles did not show any damaging properties on enterocytes of duodenal villi of quail 
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when particulate silver was added to drinking water at concentrations of 0, 5, 15 and 25 mg/kg 

for 12 days (Sawosz et al., 2007). Ahmadi et al. (2009) reported no adverse effect on intestinal 

histology when silver NP was fed at 300 ppm. 

For the current study the results of bone mineralization indicated that silver from silver 

acetate could interfere with bone formation. In broiler chickens, Peterson and Jensen (1974) 

noticed that among mortalities weak bones were a noticeable clinical sign after feeding an 

industry-type diet supplemented with 900 ppm silver nitrate for 4 weeks. Jensen et al. (1974) did 

not mention such effects on young turkeys when fed the same concentration of 900 ppm, nor at 

lower concentrations of 100 and 300 ppm. In our previous work with acute oral toxicity of silver 

acetate (chapter 3), the mortalities at dose 1000 mg/kg of BW showed very weak and pliable 

bones, and AgAc (100 and 1000 mg/kg BW) increased plasma Ca levels compared to control. In 

a recent study done by Ognik et al. (2017), it was found that administration of silver 

nanoparticles to intestine of chickens did not interfere with Ca absorption but there was a 

decrease in the absorption of K and Fe.  

As was seen in this study, bone mineral content among AgAc treatments did not differ 

from the Control or BMD50 treatments. However, AgAc250 was reduced bone mineral content 

relative to the AgAc10 and AgAc50 doses. This suggests that at lower concentrations, AgAc 

does not have a negative impact on Ca utilization, but there may be an impact on bone 

mineralization and density as the dose increases. Similar results by Sikorska et al., 2010  showed 

a tendency (P > 0.05) towards increasing mineral content of Ca, Cu, and iron in thigh bone of 

chicken embryo, indicating that particulate silver may influence bone mineralization, and it could 

be speculated that particulate silver has the ability to stimulate the hydroxylapatite formation It 



 

123 

 

was also shown in an in vitro study that silver binds to the hydroxyapatite complex and can 

displace calcium and magnesium ions (Gould et al., 1987; Lansdown, 2009).  

In this study, the AgAc250 treatment had the lowest digestibility for histidine 

(significantly lower than both Control and BMD treatments). Histidine is known for being 

involved in Zn uptake (Wapnir et al., 1983). Given that Zn is critical in bone formation and 

affects bone mass (Nielson et al, 1966; Yamaguchi, 1998), there may be a relationship between 

reduced levels of histidine and the impact seen on the bone parameters at the high levels of 

dietary AgAc. This hypothesis needs more investigation. Data showed that using dietary silver as 

silver acetate in broiler diets could result in adverse effects at concentrations as low as 250 ppm, 

and low concentrations (< 50 ppm) did not show improvement in productive parameters over the 

PC or similar to BMD50; these could be limitations for using this form of silver as an antibiotic 

alternative.  

Glutathione (GSH, L-Ƴ-glutamyl-L-cysteinyl-glycine) is the predominant low-

molecular-weight thiol in animal and plant cells (Wu et al., 2004). Glutathione is  a  significant  

endogenous  antioxidant  involved  in  many  vital  cellular  functions  (Meister, 1983) such as  

protection from   the   actions   of   free   radicals   and  reactive  oxygen  species (Enkvetchakul 

et al., 1995). Glutathione is a tripeptide consisting of glutamate, cysteine, and glycine with 

cysteine being the rate limit amino acid for GSH synthesis. Because of the cysteine residue, GSH 

is readily oxidized nonenzymatically to oxidized glutathione or glutathione disulfide (GSSG) by 

electrophilic substances (such as free radicals and reactive oxygen/nitrogen species). Cellular 

GSH concentrations are reduced significantly as a result of many conditions such as protein 

malnutrition, oxidative stress, and many pathological conditions (Wu et al., 2004).  
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It was reported previously that silver ion induce oxidative stress damage in broiler 

chickens tissues such as intestines, breast muscles, liver, and plasma (Song et al., 2017; Ognik et 

al., 2016 a; Kulak et al., 2018), although studies regarding silver induce oxidative stress are 

somewhat contradictory (Ebabe et al., 2013; Munger et al., 2014). Kulak et al. (2018) reported 

that administration of Ag-NPs at dose of 9.47 mg/bird can induce oxidative reactions in the 

blood, small intestinal wall, liver and breast muscle of chickens and can increase in the content 

of the oxidized form of glutathione which leads to depletion of the relative amount of the 

reduced form of glutathione. The author reported no effect on bird performance. Ognik et al., 

(2016 a) reported that administration of particulate silver (lipid-coated or uncoated) at 5 mg/kg 

BW did not significantly affect the total glutathione (GSH+GSSG) in blood serum of broiler 

chickens at 24 and 38 days of age. The results of the current study showed that dietary AgAc at 

10 and 50 ppm for 42 days did not affect the hepatic total GSH compared to other treatment 

groups. Dietary AgAc at 250 ppm reduced hepatic total GSH compared to Control, BMD50, 

SAF250, and Go+ treatment groups. There was no adverse effect of dietary AgAc at 10, 50, and 

250 ppm on hepatic cysteine concentrations compared to Control and other treatment groups. 

Similarly, there was no effect on hepatic cystine concentrations at 10 and 50 ppm when 

compared to other treatment groups. Dietary AgAc at 250 ppm, however, showed the lowest 

hepatic cystine concentrations when compared to all other treatment groups.  
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CHAPTER VI 

CONCLUSION 

 The poultry industry community and researchers are searching for suitable antibiotic 

alternative after the adoption of the veterinary feed directive implemented in January 2017. 

Silver was introduced recently as an antibiotic alternative option, however, its registration as a 

feed additive is an early requisite before being applied in practice (Fondevila, 2009). 

In experiment 1, the in vitro antimicrobial efficacy experiment was conducted using two 

silver ion forms, two separate silver carbene complexes (SCCs) with different carrier molecules 

(SCC1 with a methylated caffeine backbone and SCC22 with a dichloroimidazolium backbone), 

and silver acetate were investigated against four important animal and human pathogen species. 

SCC1 and SCC22 exhibited bacteriostatic and bactericidal effects against multidrug resistant 

Salmonella Typhimurium (poultry isolate), E. coli 843 and E. coli 1568 (swine isolates), and 

poultry field isolates of Salmonella Heidelberg, Salmonella Enteritidis, and Salmonella 

Montevideo with MICs and MBCs ranges from 16-21 µM (6-8 µg/mL) and 16-32 µM (6-12 

µg/mL), respectively. Clostridium perfringens type A (CP) was sensitive to both SCC1 and 

SCC22 with the MICs being 11 (4 µg/mL) and 21 µM (8 µg/mL), respectively. These values 

were comparable to the MICs and MBCs for silver acetate. The MBCs against CP was >85 µM 

for SCCs, and >192 µM for AgAc (>32 µg/mL for all compounds). Ten hours incubation of CP 

with 40 µg/mL of all three products showed down regulation of virulence genes plc and netB, 

suggesting viable cells and silver can modulate the virulence. Treating the CP with higher 

concentration (100 µg/mL) of each SCC for 10 h inhibited more bacteria compared to the 

untreated bacterial cells, however, no differences in the ultrastructure of lysed bacteria was seen 

and this concentration might not induce viable but non-culturable states as suggested by 
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transmission electron microscopy findings. SCCs showed a broad antimicrobial activity against 

all bacterial species tested including multidrug resistant pathogens. Both SCCs demonstrated an 

inhibitory effect against the Gram-positive anaerobic Clostridium perfringens type A which 

could have a high accumulation capacity for silver ion. These data suggest that SCCs may 

represent a novel class of broad-spectrum antimicrobial agents, which may be used to reduce the 

burden of pathogenic bacteria in the gastrointestinal tract of poultry. 

The challenge of using silver as an antimicrobial agent is the effective therapy with low 

toxic effect on host cells, which requires the therapeutic window being safe. The preliminary in 

vivo study (chapter 3) was conducted to investigate the potential toxic effect of SCC1, SCC22, 

and AgAc on 300 7-day old broiler chickens in 2 independent replicates trials using acute oral 

toxicity, prior to including them in chicken feed or water to evaluate their in vivo antimicrobial 

efficacy. Determination of the median lethal dose (LD50), bird performance, relative organ 

weight, bone mineralization, blood biochemistry, and histological changes were evaluated. Over 

the following 24 h and 14 days, none of the products at any given dose caused 50% mortality. 

During the two-week observation period after dosing with SCC1 and SCC22, no differences 

were observed in bird performance for these silver formulations and the control group. 

Compared to the control and SCCs, single administration of silver acetate at dose 1000 mg/kg 

BW reduced (P<0.05) BW after 7 and 14 days of administration, although the birds showed 

normal weight gain after 14 days of administration compared to the control. In addition, no 

adverse effects of SCC1, SCC22, and AgAc on relative organ weight of vital internal organs, 

bone mineralization, or plasma enzymes (ALT, ALP, and GGT) and metabolites (blood urea 

nitrogen, creatinine, and total bilirubin) were noted compared to the control group. Gross and 

histological examination after 14 days of administration did not show any significant 
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pathological changes in jejunum, ileum, spleen, liver, and kidney. Gradual release of silver ions, 

appear to be well tolerated by broilers as judged by indicators of LD50, performance, and blood 

biochemistry, supporting the safety and efficacy of SCC products for use in broiler feed as an 

alternative to traditional antibiotics. 

The objective of the third experimental study was to evaluate the potential effect of silver 

acetate (AgAc) on broiler chicken performance and necrotic enteritis development. The in vivo 

antimicrobial efficacy of AgAc delivered either by adding into the feed or via drinking water 

during necrotic enteritis challenge and Infectious Bursal disease immunization was evaluated in 

two experiments studies. Five concentrations of AgAc up to the maximum tolerable level set by 

NRC (20, 40, 60, 80, and 100 mg/kg feed) were fed. Whether or not AgAc was added into the 

feed (for 21 d) or in the water (4 d), there were no differences (P > 0.05) seen in bird 

performance, Clostridium perfringens enumeration, and lesion score compared to the positive 

and negative Controls. These results suggest limitations on the effect of silver acetate on 

performance and reduced intestinal Clostridium perfringens colonization in broiler chickens, 

although the in vitro efficacy results showed bacteriostatic and bactericidal against different 

enteric poultry pathogens.  

 In experiment 4, we further evaluated the potential effect of silver acetate in comparison 

to an antibiotic and its selected alternatives (probiotic and prebiotic) on performance, energy and 

amino acid digestibility, intestinal histology, total bone mineral content and density, and hepatic 

glutathione. Dietary supplementation of AgAc at 10 and 50 ppm did not show different effects 

on performance compared to the Control group during all production phases. Dietary AgAc 

supplemented at 250 ppm showed reduced BW (P<0.05) compared to the Control, BMD50, and 

dietary AgAc at 10 and 50 ppm. There were no differences among groups in apparent ileal 
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digestible energy. On d 42, there was a reduction in amino acid digestibility coefficients for 

histidine, threonine, and aspartic acid with the AgAc250 ppm treatment, although no 

histopathological changes were observed in duodenum, jejunum, or ileum. For bone 

mineralization, the bone mineral content of birds fed AgAc250 ppm was significantly lower than 

AgAc10 and AgAc50. AgAc250 had a reduced bone mineral density when compared to both the 

Control and AgAc50 treatments. These results suggest that using silver acetate in broiler diets 

could result in adverse effects at concentrations of 250 ppm, and lower concentrations did not 

show improvement in performance over the Control or BMD50, and probiotic and prebiotic 

alternatives. Results from chapter 4 (adding silver in feed for 21 days) and from chapter 5, 

(adding silver for 24 days) are in line with other publications using particulate silver which 

showed no significant effects, suggesting the limitation of using this inorganic form as an 

antibiotic alternative, and further chronic and subchronic toxicity studies are still required for 

future studies to fully elucidate the mechanism of action of silver carbene complexes. 
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