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ABSTRACT 

 

This dissertation aims at developing a new time-domain Propagator numerical 

method for full-wave electromagnetic wave propagation and scattering. An analytical and 

numerical solution of the full-wave time-domain Propagator method for electromagnetic 

fields is presented. A propagator is a subclass of Green’s function that, when integrated 

against the present time field throughout a volume of space, produces the field at a pre-

determined later time. A primary advantage of the Propagator method is that all 

electromagnetic field components are calculated at each numerical grid point and all 

components are in time synchronization. The numerical expressions, provided in one-, 

two-, and three-dimensions, are obtained by discretizing electric and magnetic field 

propagator integrals. The Propagator method discussed includes: (1) an extrapolation 

procedure in time, necessary to maintain constant spatial and time increments throughout 

an inhomogeneous numerical space, (2) boundary conditions, (3) a simple and effective 

first order absorbing boundary condition (ABC), described as the null boundary condition, 

(4) numerical dispersion relations and stability conditions providing the complete stable 

numerical equations, and (5) the total-field scattered-field formulation. Examples include 

plane wave reflection from and transmission through a planar boundary, and scattering 

and radar cross sections for multiple canonical dielectric objects. The proposed method 

shows good agreement with exact solutions and the results computed by other numerical 

methods including the Finite-Difference Time-Domain (FDTD) and Method of Moment 

(MoM). 
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1. INTRODUCTION  

 

Numerical techniques in computational electromagnetics fall into two categories: 

a frequency-domain method such as the Method of Moments (MoM) [1] and the Finite 

Element Method (FEM) [2] and a time-domain method such as the Finite-Difference 

Time-Domain (FDTD) method [3]. Each numerical method has its advantages and 

disadvantages. For example, the FDTD method is simple to implement a variety of 

electromagnetic phenomena, however, based upon its grid scheme, known as Yee’s 

algorithm [4], it has limitations, primarily due to its interleaving structure in which the 

electric and magnetic fields are not spatially coincident and they exist at different instances 

in time. The proposed time-domain Propagator method has a distinguishing advantage, all 

six electromagnetic field components are coincident in both time and space. Time 

coincidence and spatial collocation offer the potential for more precise calculation of high 

frequency circuit parameters and the equivalent electric and magnetic currents used for 

finding radar cross section (RCS) of a scatterer. Probably the most important advantage is 

that numerical expressions for other equations of science, such as Schrödinger’s equation 

of quantum mechanics [5] and the bio-heat equation for biological applications [6], 

combine seamlessly at every numerical grid point in the Propagator method mesh. 

A propagator is widely used in quantum mechanics [5], quantum electrodynamics 

[7], quantum chromodynamics [8], plasmonics [9], acoustic surface waves [10], ocean 

waves [11], geophysical waves [12], polymer physics [13], and almost every scientific 

discipline involving wave motion [14], [15], but it is virtually untouched in 
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electromagnetics literature due to complexities of the vector nature of the electromagnetic 

field. A complete time-domain propagator and corresponding dyadic Green’s function for 

Maxwell’s equations were first derived in [16], [17], along with analytical examples 

demonstrating the correctness of the result. The integral equation that completed the 

analytical development of the electromagnetic field Green’s function propagator 

expression was then derived in [18]. Based upon this work, the time-domain Propagator 

numerical method has been successfully applied to one-dimensional transmission line 

problems, such as nonuniform transmission lines [19], [20], multiconductor quasi-TEM 

line [21], and inhomogeneous transmission lines [22]. Although the complete closed form 

of the time-domain propagator has been derived, time-domain numerical expressions in 

two- and three-dimensions have only recently been developed in [23]‒[30]. 

A propagator is a subclass of Green’s functions that, when integrated against the 

field throughout a volume of space, produces the field at a pre-determined later time [31]. 

The Propagator method requires an integration that can be either analytical, involving a 

spatial integration of the propagator multiplied by the field that exists throughout a given 

region of space, or numerical, involving a numerical volume integration over the product 

of the discretized propagator function and field. In either case the integral operator 

produces the field that exists in a region of space after a given time increment. This can 

also be a recursive procedure, the present time field integrated against the propagator 

becomes a new present time field that is used to continue the process. For the 

electromagnetic field, the Green’s function propagator is found by a direct solution of 

Maxwell’s equations, yielding a 6 6  second order tensor expression [16], [17] that when 
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multiplied by the six previous time electric and magnetic field components and integrated, 

produces the six current time field components. 

Because the time-domain Propagator method involves an evaluation of an integral 

over known quantities, the Green’s function propagator and the initial field, it is best 

described as an evolution operator technique rather than the integral equation method such 

as the MoM [1] or FEM [2], or the differential equation method such as the FDTD [3]. It 

is also a direct calculation of the present time field from the previous time field without 

intermediate steps, as compared to for example the Method of Moments Marching on in 

Time [32] where the current must be found first and the field then calculated from the 

current. 

 

1.1 Outline 

In this section, the structure of this dissertation is briefly summarized. 

Chapter 2 reviews in detail a derivation of the analytical closed-form of propagator 

and Green’s function for Maxwell’s equation. Based upon the integral equation of 

electromagnetic Green’s function propagator, the full-dimensional numerical expressions 

are derived by evaluating numerically the surface integration and derivatives on the causal 

boundary. 

Chapter 3 presents numerical theories including the concept of physical time step 

that requires an extrapolation technique in time, the introduction of a simple absorbing 

boundary condition (ABC) and the analysis of boundary condition, numerical dispersion 

relations, and stability conditions. 
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In chapter 4, the total-field/scattered-field (TF/SF) formulation for the full-wave 

Propagator method is described in detail. Advantages of the TF/SF formulation include 

generation of a plane wave source, wide computational range and absorbing boundary 

condition. 

Chapter 5 illustrates numerical examples that include computation of reflection 

and transmission coefficients in one-dimensional structures and radar cross sections (RCS) 

of several dielectric objects in two- and three-dimensional space lattices. In order to 

demonstrate accuracy, the computed results are compared with other numerical method 

codes and exact solutions. 

Chapter 6 provides concluding remarks and recommended future research work. 
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2. TIME DOMAIN PROPAGATOR METHOD FOR MAXWELL’S EQUATIONS* 

 

2.1 Introduction 

 This chapter is intended to present a complete time-domain propagator solution 

for Maxwell’s equations in terms of a Green’s function, which can be found by means of 

a propagator. The Green’s function is a solution to an inhomogeneous differential equation, 

whereas the propagator is a solution to a homogeneous equation. Although the dyadic 

Green’s function can be found by an eigenfunction expansion method [33], solving the 

propagator with the relation between the Green’s function and propagator that causality is 

enforced is much more straightforward than the eigenfunction expansion. 

In this chapter, we review the introduction of a compact integral form of the 

propagator solution for the time-domain Maxwell’s equations and the derivation of its 

propagator and Green’s function found in [16]‒[18]. Based upon the derived Green’s 

function propagator, we obtain numerical expressions in each dimension. The present time 

field is found by simply evaluating the integral of the field-propagator product. Although 

the one-dimensional (1-D) propagator numerical expression is also an exact solution of 

Maxwell’s equations, the numerical two-dimensional (2-D) and three-dimensional (3-D) 

propagator expressions have a small numerical error due to numerical approximation of 

partial derivatives and a surface integration over a causal boundary. Since our objective is 

to use the direct Maxwell’s equations, which has a form that is different from the Green’s 

* Reprinted with permission from “A time-domain Propagator numerical method for 

computational electromagnetics” by J. Shin and R. D. Nevels, 2018, IEEE Journal on Multiscale 

and Multiphysics Computational Techniques, vol. 3, pp. 80-87, Copyright 2018 by IEEE. 
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function obtained with the standard solution to Maxwell’s equations via potentials, we 

refer to our Green’s function as a propagator in this literature.  

 

2.2 Time domain Propagator solution for Maxwell’s equations 

The time-domain Maxwell’s curl equations in a homogeneous region in terms of 

the electric and magnetic field intensities, E  and H , and the electric and magnetic current 

densities eJ  and mJ , are given by  

e
t




  


E
H J                                                    (2.1a) 

 m
t




  


H
E J                                               (2.1b) 

where ε and μ are the region permittivity and permeability, respectively. Equations (2.1) 

can be expressed as a general matrix equation, given by 

=  
t


  



F
S F J                                                      (2.2) 

which has a vector field F and vector current J, defined by 

T
          x y z x y zE E E H H H 

 F = , 

T

e m
  

 

 
 
 

J J
J =                           (2.3) 

and a 6 6  matrix of differential operator S , represented by 

1

1

0

0

 
 
 
   

S =




                                               (2.4) 
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Equation (2.2) can be solved by finding a free space dyadic Green’s function 

( , , ) G r rt t  by means of a propagator. Once G  is found, a present time field ( , )tF r  is 

determined by [18] 

0

0

0 0 0

'

0

1

1

( , ) ( , | , ) ( , ) ( , | , ) ( , )

n̂ ( , )
          ( , | , ) ,     ( )

ˆ( , ) n

F r G r r J r r G r r F r r

H r
G r r s

E r

t

v t v

t

s t

t t t t dt d t t t d

t
t t dt d t t

t

           

  
      

    

  

 




           (2.5) 

The first integral in (2.5) is the contribution due to the current source  0,J r t  and the 

second integral is contribution to the present time field due to the initial field  0 0,F r t . 

The third integral is the contribution from the field on the surface s bounding the volume 

of space in which the present time field is to be found. In a sourceless region, the current 

J  is zero and, due to the radiation condition, the third contribution goes to zero by 

extending the volume to infinity.  

The propagator is a solution to the homogeneous differential equation 

0,   


   


K
S K t t

t
                                             (2.6) 

subject to 

   , , ,   at time      K r r I r rt t t t                                 (2.7) 

and the Sommerfeld condition 0K  as r . However, a Green’s function is a solution 

to the nonhomogeneous differential equation 

   t t
t

 


     


G
S G I r r                                        (2.8) 
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The relation between the propagator and Green’s function is 

     , , , ,     G r r K r rt t U t t t t                                     (2.9) 

where U is the unit step function that enforces causality in the sense that the wave traveling 

forward in time is determined by the t t  part of the propagator. 

The 6 6  Green’s function propagator G  for free space Maxwell’s equations can 

be expressed in compact dyadic form in terms of 3 3  submatrices as [16], [18]  

11 12

21 22

 
  
 

G G
G

G G
                                                (2.10) 

with 

11 22
( ) [ ( ) ( )]

4 4

c R U c R U R

R R

  

 

    
  G G I                  (2.11a) 

2
12 21

( )

4

c R

R

 
 




   G G I                                               (2.11b) 

where  t t  is the time increment between the initial time t  and present time t, I  is 

the identity matrix, and δ is the Dirac delta function. A key observation is that the  

operator in (2.11a) only contributes to the field in the source region, otherwise it can be 

neglected [34]. Therefore, if the initial field is given in a sourceless volume region, only 

the first terms in (2.11a) and (2.11b) are required to propagate the field for one time step. 

If all that needs to be found is the sourceless time evolving field in an open region, it is 

sufficient to evaluate the only second integral in (2.5). Therefore, the present time field 

( , )tF r  is found by evaluating the propagator equation, 

       0 0 0 0

'

( , ) ( , | , ) ( , ) ,    F r G r r F r r    
v

t t t t d t t                          (2.12) 
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where a zero in the subscript represents the initial time and field. Equation (2.12) is the 

most compact closed-form of the time-domain propagator solution for Maxwell’s 

equations. The initial field 0F  can be a plane wave, an antenna current, a waveguide mode, 

an aperture source, or any given field in the volume. Below we extend the scalar 

propagator method, found in for example [31], to a full vector propagator method, and 

derive the tensor propagator for Maxwell’s equations.  

 

2.3 Propagator and Green’s function for Maxwell’s equations 

In order to find the time evolving field using (2.12), the Green’s function (2.10) 

for Maxwell’s equations must be found. The Green’s function can be found by means of 

a propagator. To find the Green’s function, we first find the propagator K , the solution 

of homogeneous Maxwell’s equations, by solving (2.6). To solve (2.6), the propagator K  

is expressed as a Fourier integral in terms of spectral dependence k , 

   , , , , j
pt t t t e d





   
k rK r r K k r k                                 (2.13) 

where in Cartesian coordinates ˆ ˆ ˆx y zk x k y k z  k  and the differential x y zd dk dk dkk  

are in terms of the spatial frequency components, and ˆ ˆ ˆxx yy zz  r . Substituting (2.13) 

into (2.6) gives 

0
p j

p p e d
t





 
  

 


k rK
S K k                                       (2.14) 
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where the 6 6  matrix operator pS , the spectral domain form of (2.4), can be expressed 

symbolically by 

 
1

1

0

0

k
S k =

k
p

 
 
   




                                           (2.15) 

Equation (2.14) yields the time dependence of pK  through 

0
p

p p
t


 



K
S K                                                    (2.16) 

A solution to (2.16) is 

 
0

pt
p e

S
K K                                                       (2.17) 

Substituting (2.17) into (2.13) and enforcing (2.7) gives 

 0
pt je e d 






  
S k rK k r r                                         (2.18) 

Using the standard Fourier transform representation of the delta function, (2.18) can be 

written as 

 

 
0 3

1

2

p jt je e d e d


 
 

 

  
k r rS k r

K k k                              (2.19) 

Equating coefficients of exp( )j k r in (2.19) gives  

 
0 3

1

2

pt je e


  
S k rK                                              (2.20) 

Substituting (2.20) into (2.17) yields 

 
3

1

2

p j
p e e





 
S k rK                                              (2.21) 
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where t t    is the time increment. By substituting (2.21) into (2.13), the propagator 

can be obtained by 

 

 
3

1

2

p j
e e d











 

k r rS
K k                                      (2.22) 

To solve (2.22), the exponential matrix term pe S  is expanded in the power series 

     

2 2 3 3

2! 3!

p p p
pe

  
    

S S S
I + S                                   (2.23) 

Summing the matrices on the right hand side of (2.23) creates a new 6 6  evolution 

operator matrix ( , )pe t S A k . The power series formed by summing the components of 

the A  matrix yield surprisingly simple closed form expressions 

 

 

 

 

 

 

2 2 2

11 44 2

2 2 2

22 55 2

2 2 2

33 66 2

12 21 45 54 2

13 31 46 64 2

23 32 56 65

( ) cos

( )cos

( )cos

1 cos

1 cos

1 cos

x y z

y x z

z x y

x y

x z

y z

k k k kc
A A

k

k k k kc
A A

k

k k k kc
A A

k

k k kc
A A A A

k

k k kc
A A A A

k

k k kc
A A A A

k

  
  

  
  

  
  

     

     

     













 

2

2 2
15 24 42 51

sinzjk kc
A A A A

k
      

 
 

                             (2.24) 
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 

 

2 2
16 34 43 61

2 2
26 35 53 62

14 25 36 41 52 63

sin

sin

0

y

x

jk kc
A A A A

k

jk kc
A A A A

k

A A A A A A

     

      

     

 
 

 
   

where 2 2 2 2
x y zk k k k   , and 1/c   and /    are respectively the phase 

velocity and intrinsic impedance of the homogeneous medium. 

The goal is now to find K  by (2.22), i.e., 

   
3

1
, , ( , )

(2 )

j
t t t e d








   
k r r

K r r A k k                               (2.25) 

Once the propagator K  is evaluated by (2.25) using the evolution operator matrix ( , )tA k

, the Green’s function propagator G  can be found by (2.9).  

The evolution operator matrix A  for the 1-D and 2-D cases can be found by 

respectively setting two and one of the spectral variables xk , yk , and zk  in (2.24) to zero. 

However, the 3-D propagator needs to be evaluated by (2.25) with all spectral variables. 

We first solve the 3-D propagator, and obtain for example, 

 
2 2 2

(3)
11 3 2

0

2

2 3 2

2

2

1 ( )cos( )
 

(2 )

sgn( ) ( )( ) 2 ( ) ( ) 3( )
      1

4 4

( ) 2 ( ) ( ) ( ) ( )
       +

4 4

jx x x
x y z

k k k kc
K e dk dk dk

k

R U c Rc R R c R x x

R R R

c R R c R x x c R

R RR





    

 

      

 


  

  
 

        
    
   

          
  

 


k r r

( )

4

c R

R

 



  
 
 

   (2.26) 

where 
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     
2 2 2

ˆ ˆ ˆ

( ) ( ) ( )

1,  0
sgn( )

1,  0

x x x y y y z z z

R x x y y z z

R
R

R

        

       

 
 

 

r r =

                               (2.27) 

By rejecting nonphysical solutions, where 0R  , and removing factors of 2 in front of the 

delta functions acting at the origin due to the spatial symmetry, we get 

2
(3)
11 2 3 2

2

2

( ) ( ) ( ) ( ) 3( )
1

4 4

( ) ( ) ( ) ( )
       +

4 4

c R R U c R U R x x
K

R R R

c R R x x c R

R RR

   

 

    

 

       
    
   

        
 

 

           (2.28) 

Other components of the propagator matrix (3)K  can be similarly found. Finally, all 

components of the 3-D Green’s function propagator matrix using (2.9) are 

 

 

 

2 2

(3) (3)
11 44 2

2 2

(3) (3)
5522 2

2 2

(3) (3)
33 66 2

3
1

3
1

3
1  

x x x x
G G L S T

RR

y y y y
G G L S T

RR

z z z z
G G L S T

RR

   
       

   

   
       

   

   
       

   

 

     

     

(3) (3) (3) (3)
12 21 45 54

2 2

(3) (3) (3) (3)
13 31 46 64

2 2

3
      

3
      

  

         
     

   

  

         
     

   

G G G G

x x y y x x y y
L S

R R

G G G G

x x z z x x z z
L S

R R

                    (2.29) 
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     

(3) (3) (3) (3)
23 32 56 65

2 2

3
      

  

         
     

   

G G G G

y y z z y y z z
L S

R R

                     

 

 

 

(3) (3) 2 (3) 2 (3)
15 24 42 51

(3) (3) 2 (3) 2 (3)
16 34 43 61

(3) (3) 2 (3) 2 (3)
26 35 53 62

(3) (3) (3) (3) (3) (3)
14 25 36 41 52 63 0


     


      


     

     

z z
G G G G P

R

y y
G G G G P

R

x x
G G G G P

R

G G G G G G

  

  

  

 

where 

 
       

 
   

   

 
   

2 3

2

4 4

4

4

44

c R R U c R U R
L U

R R

c R R
S U

R

U c R
T

R

c R c R
P U

RR

   


 

  




  



   




     
  

 

    
  

 

 


  
  

 

                    (2.30) 

We next obtain the 2-D Green’s function propagator. As an example, take the 2-D 

transverse magnetic (TM) to z case where all fields are zero except zE , xH  and yH . The 

field vector is expressed as 

      
T

z x yE H H  F =                                             (2.31) 

The 1st, 2nd and 6th row components of the 6 6  evolution operator matrix A  do not 

contribute because the field components xE , yE , and zH  are all zero. Setting 0zk   

gives 31 32 42 46 51 56 0A A A A A A       in (2.24). Replacing 
3 21/ (2 ) 1/ (2 )  , 



 

15 

 

(2)
33 11A A , 

(2)
34 12A A , (2)

35 13A A , (2)
43 21A A , (2)

44 22A A , (2)
45 23A A , (2)

53 31A A ,  

(2)
54 32A A , and (2)

55 33A A  results in the creation of a 3 3  2-D evolution operator 

matrix (2)A . Each component of the evolution operator matrix determines a corresponding 

2-D propagator matrix (2)
mnK  acquired by solving (2.25). For example, by substituting (2)

11A  

into (2.25), the propagator matrix element (2)
11K  can be expressed as 

( )(2) (2) ( )
11 112 2

1 1
cos( )

(2 ) (2 )

yx jk y yjk x x
x yK A d kc e e dk dk

 

   
 

   

    k       (2.32) 

where 2 2
x yk k k  . When (2.32) is evaluated, the Green’s function propagator (2)

11G  

becomes 

 
     

 
(2) (2)
11 11 3/22 2 2 2

( )

2 ( ) ( )

U c c U c
G U K

c c

      


    

 
    

 
   

                (2.33) 

The remaining terms of the 2-D Green’s function matrix, which can be obtained with the 

help of integral identities [35], [36], are 

     

 

     

 

(2)
12 3/22 2 2 2

(2)
13 3/22 2 2 2

(2)
(2) (2) 13
21 31 2

sin
2 ( ) ( )

cos
2 ( ) ( )

U c U c
G

c c

U c U c
G

c c

G
G G

       


    

       


    



 
   

 
   

 
    

 
   

 
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       

 

 

 

2 2
(2)
22 3/22 2 2 2

2
2 2 2 2

( ) cos sin ( )

2 2 ( ) ( )

cos(2 ) 1
       

2 ( ) ( )

 
    

 
   

 
 

  
   

 

U U c c U c
G

c c

U c

c c c

           

     

 

      

        

     

 

 

 

(2)
23 3/22 2 2 2

2
2 2 2 2

sin(2 ) ( )( )

2 2 2 ( ) 2 ( )

1
        

( ) ( )

  
  
  


 

  
   



U c c U c
G

c c

U c

c c c

        

     

 

     

   (2.34) 

       

 

   

 

(2) (2)
32 23

2 2
(2)
33 3/22 2 2 2

2 2 2 2 2

( ) sin cos ( )

2 2 ( ) ( )

cos(2 ) 1
        +

2 ( ) ( )

G G

U U c c U c
G

c c

U U c

c c c

           

     

   

      



 
    

 
   

 
 

 
   

 

 

Although we derived a relatively compact analytical form in 2-D, the Green’s function 

propagator is not analytically integrable across the singularities at 0   and c  . 

However, it will be shown that it is possible to obtain a 2-D propagator numerical 

expression. 
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2.4 Time Domain Propagator Numerical Expression  

The analytical time-domain propagator solution for Maxwell’s equations has been 

reviewed above. Given the analytical solution, we now derive the 1-D, 2-D, and 3-D 

Propagator method numerical expressions by solving the integral form (2.12) containing 

the derived each Green’s function propagator and the initial field. Although the 1-D 

Propagator equation has been derived in [16], for completeness we first review its 

derivation. We then present the derivation of 3-D and 2-D Propagator numerical equations, 

respectively. 

 

2.4.1 One-dimensional expression 

In order to derive the 1-D Propagator equation, consider the case in which 

0x yk k  . Because this is a 1-D case, zk k , 31/ (2 ) 1/ (2 )   and  

   
T

x yE H  F =                                                  (2.35) 

The evolution operator matrix elements except 11A , 15A , 51A , and 55A  do not contribute 

because nonzero fields for this case are only xE  and yH . By substituting 0x yk k   into 

above four elements in (2.24), (2.25) becomes  

   

   
 (1)

cos sin
1

sin cos(2 )

z

z z
jk z z

z
z z

k c j k c

e dkj
k c k c

  

 







  
   
  

K                (2.36) 

When (2.36) is substituted into (2.9), the Green’s function propagator can be easily 

evaluated analytically, yielding 
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 
   (1) (1)

5511
2

U
G G c c


         z z                                (2.37a) 

 
   (1) 2 (1)

15 51
2

U
G G c c


            z z                       (2.37b) 

where δ represents the Dirac delta function, and we define  z z z  for brevity.  

The time-updating electric and magnetic field can be found by solving (2.12) 

analytically with the 1-D Green’s function propagator (1)G  and the initial field at the 

previous time t', giving 

(1) (1)
0 011 15( , )x x y

z

E z t G E G H dz



   
                                  (2.38a) 

(1) (1)
0 05551( , )y x y

z

H z t G E G H dz



   
                                 (2.38b) 

where a zero in the subscript designates the initial field. Substituting the Green’s function 

propagator (2.37) into (2.38), the time-updating field components are written as 

             0 0
1

( , )  
2

x x yE z t U E c c H c c dz         




                 z z z z  (2.39a) 

            0
0

1
( , )  

2  

x
y y

E
H z t U c c H c c dz        







 
               

 
 z z z z   (2.39b) 

Because the spatial dependence of the 1-D Green’s function propagator is entirely 

contained in the delta function, (2.39) can be easily evaluated, resulting in 

         0 0 0 0
1

,
2 2

x x x y yE z t E z z E z z H z z H z z


                      (2.40a) 
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where /    is the intrinsic impedance at the point z and z c   is the numerical 

spatial increment. Equation (2.40) is the 1-D Propagator method equation. This 

representation can be described as the D’Alembert solution for a coupled set of first order 

homogeneous differential equations. Therefore, (2.40) is both a numerical expression and 

an exact solution to (2.2). In this expression, the numerical time step and spatial increment 

are fixed with the relation / t z c , where c is the speed of light. Equation (2.40) can 

be also interpreted as the present time field found by combinations of the previous time 

fields traveling at the speed of light from the causal boundary, which is at z z  . Fig. 2.1 

illustrates the 1-D numerical scheme for the present and previous time electric and 

magnetic fields in both time and space. Vertical and horizontal axes represent respectively 

time and space. The previous time fields at z z   will contribute to the current time field 

at the grid point z by traveling at the speed of light.  

 

 

Figure 2.1: 1-D Propagator numerical scheme of the present and previous time fields in 

time and space. 
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2.4.2 Three-dimensional expression 

The 3-D numerical expressions for the time-domain Propagator method can be 

found by evaluating the integral expression (2.12) with all components of the 3-D Green’s 

function propagator. As an example, the x-component of electric field is written as 

(3) (3) (3) (3) (3) (3)
0 0 0 0 0 011 12 13 14 15 16( , )x x y z x y z

v

E t G E G E G E G H G H G H d



       
 r r  (2.41) 

Here the components 12G , 13G , and 14G  in (2.41) will not contribute to the future time  

xE  field because the L and S terms in (2.30), which belong to the   operator, are zero 

outside a source free region. Substituting each component 11G , 15G , and 16G  into (2.41), 

the time-updating electric field is represented as 
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r

              (2.42) 

where 0r c , 0t t   ,      
2 2 2

       R x x y y z z , and the square bracket in the 

first integral and curly brackets in the second and third integrals contain respectively 11G

, 15G , and 16G . In order to compactly evaluate (2.42), the Cartesian coordinates are 

transformed to spherical coordinates. Expressing the resulting equation in spherical 

coordinates gives 
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   (2.43) 

where the initial fields are a function of r', θ', and ϕ'. Evaluating the Dirac delta function 

in (2.43) at 0r  reduces the volume integral to the spherical surface integral with a radius 

0r  and the unit step function enforces causality. The following three mathematical 

properties of the derivative of the delta function are used, 
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                               (2.44) 

where the superscript k in the parenthesis represents the kth derivative. Upon substituting 

(2.44) into (2.43), after simplifications, the time-evolving electric field becomes 
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The integration and derivative of the initial fields, which are a function of the position r , 

in (2.45), cannot be analytically evaluated, however it can be numerically evaluated.  

First, a numerical integration for a spherical surface integral that conveniently fits 

into a square grid lattice is provided by the weighted sum 

     
6

4
02

0 1surf

1 1
;   

64
m m m

m

f ds w f R r w
r 

     r r                      (2.46) 

where m denotes each position of six points on the spherical surface. Equation (2.46) has 

a small error factor, the fourth power of the radius of the sphere, and it includes values of 

the integrand at six equally spaced node points on the surface surrounding the point r  

where the updated field resides as shown in Fig. 2.2. To incorporate (2.46), we multiply 

and divide by 2
0r  on the right side of (2.45). The result is 
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In the spherical coordinate, a differential surface area ds  is 2 sinr d d   . Substituting 

the differential surface area ds  into (2.47) gives 
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With (2.46), the numerical expression of (2.48) becomes 
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Figure 2.2: A spherical volume in a square grid serves both as the region of integration for 

each field component and as the Propagator method numerical cell. 
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Next, partial derivatives with respect to r  of the initial time E and H fields in 

(2.49) are approximated by a three-point backward finite differencing, having the second 

order accuracy, given by 

                     
     0 0 0 2

0

3 4 2
 + ( )

2

   
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f r f r h f r h
f r O h

r
                      (2.50)  

where h is a grid spacing. In the second summation in (2.49), when 0,     , the cosθ  

term restricts respectively the yH  fields to ( , , 1)i j k   and ( , , 1)i j k   in z-axis on the 

spherical surface shown in Fig. 2.2. Similarly in the third summation in (2.49), the 

sin sin    term restricts the zH  fields to ( , 1, )i j k  and ( , 1, )i j k  in y-axis when 

/ 2    and / 2,  3 / 2    . Every set of coefficients we obtained using standard 

numerical differentiation and integration resulted in instability or significant dispersion 

either when a plane wave propagated in a homogeneous region or when it scattered from 

an object. Then we selected a ‘best guess’ set of trial coefficients, 1/ 6  for the electric 

field components and 1/ 2  for the magnetic field components, and proceeded with a 

dispersion and stability analysis. The 1/ 6  and 1/ 2  coefficients were chosen because they 

provide the expected dispersion equation. With those coefficients, (2.49) is numerically 

expressed as 
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where i, j and k represent grid points of the x-, y-, and z-axes respectively, and n is the time 

step. However, we observed that the numerical expression (2.51) still leads to instability. 



 

25 

 

Based upon the stability analysis that will be discussed in detail in section 3.6, it was found 

that the magnetic field in (2.51) must be multiplied by the factor 1/ 3  in order to satisfy 

the 3-D stability condition.  

Finally, (2.51) for the x-component of the electric field reduces to a stable 

numerical equation, given by 
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Other components of electric and magnetic field take a form similar to (2.52). After 

evaluating each field component in (2.12) in the manner presented above: 
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Although the numerical surface integration (2.46) delivers a high order accuracy, 

(2.52)-(2.53) reduce to 2nd order accuracy due to the numerical approximation of the 

derivative (2.50). Equations (2.52)-(2.53) imply that the time-stepped E or H field can be 

found by numerical evaluation of the surface integration of the previous time field and the 

derivative of the H or E field at appropriate positions on the spherical surface. 

 

2.4.3 Two-dimensional expression 

It has been shown that the 2-D Green’s function propagator cannot be analytically 

evaluated due to singularities at ρ = 0 and ρ = cτ. However, 2-D numerical Propagator 

equations can be inferred by comparison with the derived 1-D and 3-D expressions. We 

hypothesize that the present time field at each grid point can be determined by a numerical 

surface integration and differentiation lying on a causal boundary surrounding that point. 

The causal boundary is a sphere in 3-D, a circle in 2-D and in 1-D it is two points, one on 

each side of the grid point being updated.  

As an example, in the 2-D TM to z case, where the vector field components are 

zE , xH , and yH , the numerical expressions are 
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where i and j respectively represent grid points on the x-, and y-axes. Similarly with the 3-

D equations, the coefficient 1/ 2  in (2.54) was added to meet the 2-D stability condition. 

This will be also shown in section 3.6. 

Similarly, the Propagator equations for the 2-D transverse electric (TE) to z-

direction case where all fields are zero except xE , yE , and zH  fields, are   
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Fig. 2.3 illustrates a numerical grid scheme of the Propagator and FDTD method 

for the 2-D TMz case. In the Propagator method, all three electric and magnetic field 
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components reside at each numerical grid point as shown in Fig. 2.3(a) and all time-

stepping field components of zE , xH  and yH  are computed from the one time step back 

fields at each time step. For example, at the current time t n , both E- and H-fields are 

calculated at each grid in the numerical space from the previous time fields at 1t n   

located on the causal boundary.  

On the other hand, in the FDTD grid scheme, E- and H-fields are interleaved in 

space as shown in Fig. 2.3(b) and exist at different instances in time with a half time 

increment. The FDTD equations with a square grid cell x y      for the 2-D TMz case, 

for example, are  
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To compute the time-updating fields, for instance, the ( , )zE i j  field at the current time 

1/ 2t n   is calculated from the ( , )zE i j  field at the previous time 1/ 2t n   and the 

most recent values of xH  fields at ( , 1/ 2)i j  , ( , 1/ 2)i j   and yH  fields at ( 1/ 2, )i j , 

( 1/ 2, )i j  that encircle the ( , )zE i j  field. In the next time step 1t n  , the xH  and yH  

fields are computed from their one time step back fields at t n  and the recent stored 

values of zE  field at 1/ 2t n  , that exist a half spatial apart with them. 
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(a) 

 

(b) 

Figure 2.3: 2-D TMz numerical grid scheme of (a) the Propagator method and (b) FDTD 

method. 
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2.5 Summary 

This chapter presented the complete full-wave time-domain propagator equations 

for Maxwell’s equations. The propagator equations in all dimensions have been derived 

by numerically evaluating the integral form of the propagator solution containing the each 

dimensional Green’s function propagator and the initial field. The 2-D and 3-D propagator 

equations have been found by approximating the surface integration, respectively, over a 

circle and a sphere. It was shown that in the Propagator numerical scheme all 

electromagnetic field components are computed at each numerical grid point and at the 

same numerical time. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 

 

3. NUMERICAL METHOD THEORY* 

 

3.1 Introduction 

In the previous chapter, we presented the derivation of the time-domain Propagator 

solution of Maxwell’s equations and its numerical expressions. However, numerical 

methods for implementing boundary conditions, absorbing boundary conditions (ABCs), 

numerical dispersion relations and stability conditions must be developed in order to 

model diverse electromagnetic problems. The FDTD method has attracted the attention of 

many researchers since these methods were established and it is now widely used in 

computational electromagnetics. The time-domain Propagator method algorithm also 

needs to establish similar numerical methods. One distinguishing feature of the Propagator 

method, a concept of a numerical and physical time step, is useful for modeling 

propagation in both homogeneous and inhomogeneous dielectric mediums.    

This chapter introduces a numerical and physical time step along with an 

extrapolation technique in time, the development of boundary conditions in an 

inhomogeneous region including both the dielectric-dielectric and dielectric-perfect 

electric conductor (PEC) cases, and a simple absorbing boundary condition, described as 

the null boundary condition. The derivation of numerical dispersion relations from the nu- 

 

* Reprinted with permission from “A Propagator analysis of transmission line on an 

inhomogeneous substrate” by J. Shin and R. D. Nevels, 2017, Microwave and Optical Technology 

Letters, vol. 59, pp. 1411-1416, Copyright 2017 by John Wiley and Sons. 

* Reprinted with permission from “A time-domain Propagator numerical method for 

computational electromagnetics” by J. Shin and R. D. Nevels, 2018, IEEE Journal on Multiscale 

and Multiphysics Computational Techniques, vol. 3, pp. 80-87, Copyright 2018 by IEEE. 
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merical equations and the analysis of the stability conditions are also described. It is noted 

that in free space the 1-D equation has no dispersions, whereas the 2-D and 3-D numerical 

equations are subject to have numerical dispersion since they were numerically 

approximated.  

 

3.2 Numerical and Physical Time 

In the time-domain Propagator equations derived in the previous chapter, the 

previous time field contributes to the present time field at a grid point by traveling from 

the causal boundary at the velocity of light in the surrounding medium. However, the 

previous time field located in a dielectric material will contribute to the current time field 

with a proper phase velocity depending on a material property. In a homogeneous 

dielectric medium, having a constant relative permittivity r  and a relative permeability 

r 1 , the phase velocity is 

r r

c r r
v

t  

 
  


                                                (3.1) 

where c is the speed of light, ∆t is the numerical time increment and ∆r, where r represents 

x, y, or z, is the spatial increment between grid points on the Cartesian axes. In order to 

maintain uniform numerical spacing ∆r everywhere in the numerical grid, the time at 

which the field leaves the points r r  must be rΔt  . We define this to be the physical 

time increment ∆τ. Newton’s third order backward difference interpolation is adapted to 

find the fields leaving nearest neighbors at the previous physical time increment by using 

three surrounding known previous time values, and arriving at all grid points in the 
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numerical space at the same numerical time. Therefore the physical travel time between 

nearest neighbor points can be different as shown in Fig. 3.1 by the red lines, but the 

computational time increment is the same for all points in the numerical space. For 

instance, when a dielectric constant r 5  , the corresponding electric field at the physical 

time increment 5  t  is located between two and three steps back in the numerical 

time at the same point in space. This field component can be extrapolated by Newton’s 

backwards difference interpolation in time. 

 

Figure 3.1: Example of the fields traveling nearest neighbors in the physical time period. 

 

An example of Newton’s third order backwards difference interpolation that finds 

a nearest neighbor electric and magnetic field with third order accuracy in a medium with 

a dielectric constant r  is 
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where r 1    . The physical time electric and magnetic fields at a grid point in a 

dielectric medium are each extrapolated from the field values at three consecutive previous 

numerical times surrounding the physical time. 

Extrapolation in time to determine the electric and magnetic field in a dielectric 

medium has three important features. First, it permits a fixed spatial grid and numerical 

time increment throughout the numerical space. Second, the specific condition for 

achieving an exact calculation of electric or magnetic field, i.e. D’Alembert solution, in 

any medium is to require the velocity of the wave in that medium to satisfy /v z    . 

This condition is met by electric and magnetic field extrapolation in each distinct medium, 

as well as in a case where the dielectric constant changes from point to point. If there are 

multiple substrates, the medium with the lowest dielectric constant satisfies /v z t    

and therefore does not require extrapolation. Third, if the most recent three consecutive 

time steps are used in (3.2) then the allowed values of the dielectric constant are r1 9   

because the extrapolated time r t   lies within these three time steps, given by the 

square roots of 1, 4, and 9 multiplied by ∆t. However, for a higher relative permittivity, 

the three consecutive numerical intervals must come from farther back in time. Therefore 

(3.2) can always be used for any dielectric constant by simply shifting the extrapolation 

calculation to greater previous time intervals. For example, if a relative permittivity of the 
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material surrounding a particular grid point is in the range of r25 49  , the 

extrapolation equation becomes 
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where r 5    . 

As an example for a high relative permittivity, reflection coefficients for a 

dielectric slab where r 36   are computed by the 1-D Propagator method along with the 

extrapolation equation (3.3). Fig. 3.2 illustrates a comparison of reflection coefficients 

between the 1-D Propagator method and the exact solution. This result ensures that the 

Propagator solution maintains same order of accuracy even for higher dielectric constant 

values. 

 

Figure 3.2: Comparison of reflection coefficients for a dielectric slab ( r 36  ), between 

the Propagator method and exact solution. 
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In the above discussion of the extrapolation technique, Newton’s backward 

difference polynomial has been used to extrapolate the previous time electric and magnetic 

field components. The natural cubic spline is also a widely used interpolation method [37], 

which can in principle be applied to the time-domain Propagator method instead of the 

backwards differencing interpolation. However, when implemented with the cubic spline 

interpolation, it was found that the amplitude of a Gaussian pulse gradually decreases as 

it propagates. Fig. 3.3 shows a comparison of Gaussian pulse peak electric field as a 

function of propagation time when the fields are computed by the backward difference 

and cubic spline extrapolation formula in a homogeneous dielectric medium with r 2  . 

In each case, the Gaussian pulse, given by 

 
2

s exp 4 /E n         
                                          (3.4) 

propagates 500 time steps, where n is the time step and 20 . The value 20  was 

chosen to minimize numerical dispersion. It is shown in Fig. 3.3(a) that the pulse 

computed by Newton’s backward polynomial is well preserved, whereas the pulse 

computed by the cubic spline interpolation decays in amplitude and slightly widens. The 

decreasing amplitude of the pulse can be distinctly seen in Fig. 3.3(b). At 500 time steps, 

the amplitude decreases by 0.1% with Newton’s backward extrapolation, but with the 

cubic spline extrapolation it decreases by 5%. An almost linear decay suggests that the 

cubic spline interpolation is lower than the exact value by the same amount at every time 

step. In light of these results, we conclude that Newton’s backward difference method 

provides more suitable extrapolation of the physical time electric or magnetic field than 

does the cubic spline method. 
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(a) 

 

(b) 

Figure 3.3: Comparison of (a) Gaussian pulse propagated in space and (b) peak amplitude 

of Gaussian pulse in time for Newton’s backward and the cubic spline extrapolation in a 

homogeneous dielectric medium ( r 2  ).  
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3.3 Boundary Condition 

The Propagator method allows both electric and magnetic field components to 

compute at each node in a numerical space, including the node on the boundary between 

different mediums. Both the tangential and normal electromagnetic fields on an interface 

between two dissimilar contiguous mediums are subject to the boundary conditions that 

must be applied in a manner consistent with the numerical method. In the following, we 

derive a set of numerical boundary condition expressions for the Propagator method.  

Fig. 3.4 illustrates the 1-D numerical grid scheme for electric and magnetic fields 

in two different dielectric mediums including the boundary between them. Here 1z  is the 

last grid point in region 1 and 2z  is the first grid point in region 2. The electric and 

magnetic fields at the grid points 1z  and 2z  are written as 

         1
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where 1  and 2  are the respective intrinsic impedance of the two regions. Continuity of 

electric and magnetic field at the boundary is assured by requiring 
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Figure 3.4: 1-D numerical grid scheme of two different mediums and interface. 
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First observe that in (3.5a) the electric field at 1z z   is on the boundary and must 

be equal to the electric field at 2z z  in (3.5c), which is also on the boundary. Therefore, 

these two electric fields cancel out before the limit is taken when (3.5a) and (3.5c) are 

substituted into (3.6a). By taking the limit 1 2,z z z , we obtain the boundary equation for 

the magnetic field on the boundary as  

         2 1
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  (3.7) 

Similarly, substituting (3.5b) and (3.5d) into (3.6b) and taking the limit 1 2,z z z , after 

simplifications, yield the boundary equation for the electric field: 

         1 2
1 2

1 2 1 2

1
x x x y yE z E z z E z z H z z H z z


 

   
                

   (3.8) 



 

40 

 

Equation (3.7) and (3.8) are the 1-D boundary equations for the electric and magnetic 

fields. As a check, assume that the medium is uniform, 1 2    , then (3.7) and (3.8) 

reduce to the general 1-D Propagator method equations (2.40). 

An alternative boundary condition for a dielectric and PEC boundary is necessary. 

In the case where the second media is the PEC, the electric field must be totally reflected 

when it meets at the dielectric-PEC boundary. This can be realized numerically by setting 

the intrinsic impedance 2  at grid points on the PEC boundary to zero and forcing both 

electric and magnetic fields at grid points inside the PEC region to zero. As seen in Fig. 

3.5, application of these conditions in the case of a Gaussian plane wave in air and 

normally incident on a flat planar boundary results in a perfect reflection, with the 

reflection coefficient of 1   , and a magnetic field that is doubled at the boundary as 

expected. This can be also mathematically proved that, by inserting 2 0  and setting

    0x yE z z H z z       in (3.7) and (3.8). The electric and magnetic field at the PEC 

boundary become  

  0xE z                                                                                         (3.9a) 

       
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
                               (3.9b) 

with x yE H . 
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Figure 3.5: Time history of propagation with a Gaussian pulse in free space and PEC case. 

 

Since the 1-D Propagator method equations are the exact electric and magnetic 

field solutions to Maxwell’s equations, the numerical expression for both electric and 

magnetic field at the boundary point in an inhomogeneous medium has been developed. 

However, the exact boundary conditions in 2-D and 3-D cannot be derived because they 

have been numerically developed. Furthermore, the boundary equations based on the 

Cartesian system cannot be easily employed to simulate curved dielectric surfaces.  

A simple conformal technique for the time-domain Propagator method, which can 

be used to analyze curved dielectric surfaces, is presented below. The proposed conformal 

dielectric algorithm utilizes a linear average concept similar to the FDTD conformal 

technique [38]. This technique does not require calculations of areas or volumes. Our 

conformal technique takes into account a ratio of the area in 2-D or volume in 3-D in a 
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cell occupied by the two different dielectric regions as well as a time interval along axes 

embedded in multiple mediums. 

We present here the 2-D conformal technique for the time-domain Propagator 

method algorithm as an example. Fig. 3.6 illustrates the 2-D numerical grid scheme that 

includes a curved dielectric surface. The gray and white areas indicate two regions, 

designated 1 and 2, with different dielectric constants, and the red line represents the 

intersection between the two regions. 

 

(a)                                                                (b) 

Figure 3.6: (a) The 2-D numerical scheme including the curved dielectric surface and (b) 

the enlarged area of the dotted line section.  

 

Consider the time-updating field at the grid point (i, j) in Fig. 3.6 (b). We note in 

Fig. 3.6 (b) that the circular area consisting of the four grid points at ( 1, )i j , ( 1, )i j , 

( , 1)i j , and ( , 1)i j  overlays two dielectric regions. The ratio of occupied areas for each 
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region can be simply estimated with a linear average in x- and y-directions. Effective 

dielectric constants, 
eff
1 ( , )x i j  and 

eff
1 ( , )y i j , for medium coefficients are defined as 

 
   2 r2 2 r1eff

1

, ,
,

2

          


x

x x i j x x i j
i j

x

 
                     (3.10a) 

 
   2 r2 2 r1eff

1

, ,
,

2

           


y

y y i j y y i j
i j

y

 
                     (3.10b) 

where x  and y  are the cell sizes along the x- and y-directions, respectively. 

With (3.10), the time-stepping equations for the 2-D TMz electric and magnetic 

fields are expressed as 

   

1 1 1 1

, 1, 1, , 1 , 1

1 11 10 0

, 1 , 1 1, 1,eff eff
1 1

1

4

1 1
   

2 2 2 2, ,

   

   

  

   

    
 

     
    

n n n n n

z z z z zi j i j i j i j i j

n nn n

x x y yi j i j i j i j
y x

E E E E E

H H H H
i j i j

 

 

 (3.11a) 

 

1 1 1 1

, 1, 1, , 1 , 1

eff
1 1 1

, 1 , 1
0

1

4

,1
            

2 2

   

   

 

 

    
 

  
 

n n n n n

x x x x xi j i j i j i j i j

y n n

z zi j i j

H H H H H

i j
E E





                                             (3.11b) 

 

1 1 1 1

, 1, 1, , 1 , 1

eff
1 11

1, 1,
0

1

4

,1
            +

2 2

   

   

 

 

    
  

 
 

n n n n n

y y y y yi j i j i j i j i j

n nx

z zi j i j

H H H H H

i j
E E





                                             (3.11c) 

Another consideration is that the previous time electric and magnetic fields require 

the extrapolation procedure with effective relative permittivity. As mentioned in section 

3.2, the previous time fields surrounding the center point contribute to the present time 
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field by traveling with a phase velocity determined by the medium constitutive parameter. 

As shown in Fig. 3.6, the path to the point ( , )i j  from ( 1, )i j  and ( , 1)i j  is located 

entirely within the region 2, whose relative permittivity is r2 , thus the previous time 

fields at ( 1, )i j  and ( , 1)i j  travel with the phase velocity, r2/pv c  . However, the 

path to ( , )i j  from ( 1, )i j  and ( , 1)i j  occupies the two regions, whose dielectric 

constants are respectively r1  and r2 , therefore additional effective dielectric constants 

for the extrapolation procedure need to be defined. The effective dielectric constants with 

a linear average for the extrapolation process are defined as 

 
   2 r2 2 r1eff

2

, ,
,

     


x

x i j x x i j
i j

x

 
                          (3.12a) 

 
   2 r2 2 r1eff

2

, ,
,

     


y

y i j y y i j
i j

y

 
                          (3.12b) 

In (3.11), the previous time fields ( 1, )zE i j , ( 1, )xH i j , and ( 1, )yH i j  are 

extrapolated using (3.12a), and the fields ( , 1)zE i j  , ( , 1)xH i j  , and ( , 1)yH i j   are 

extrapolated using (3.12b). Note that the time-updating equations (3.11) are identical to 

the form used in the conventional Propagator method algorithm, except that it uses 

effective dielectric constants (3.10) and (3.12). This conformal technique can be directly 

extended to the 3-D case by taking into account a ratio of volumes.   

The example of calculating the radar cross section of a circular dielectric cylinder 

will be presented in chapter 5. This demonstrates the validity of the proposed conformal 

approach by comparing with analytical results. 
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3.4 Absorbing Boundary Condition 

One of the main issues with numerical methods that solve electromagnetic wave 

interaction problems is that the computational domain should be truncated in order not to 

have reflection of numerical waves from the outer boundary. Therefore, absorbing 

boundary conditions (ABCs) are needed that allow outward propagating waves to be 

absorbed as if the simulation is being carried out on an infinite computational domain.  

Like other time-domain numerical methods, the time-domain Propagator method 

requires ABCs that prevent outward traveling waves from reflecting from the outer 

boundary of the computation space. In general, ABCs fall into three categories: (1) 

boundary integral methods in which a Green’s function integral accounts for the open 

environment outside the numerical grid [39], (2) numerical-averaging methods such as the 

Liao ABC [40], and (3) absorbing-layer methods such as the perfectly matched layer 

(PML) developed by Berenger [41].  

To these we add the ABC that is described as a null boundary condition, which is 

uniquely suited for the numerical implementation with the propagator equations, which 

offer field coincidence in time as well as space. The null boundary condition is realized 

by simply setting all electromagnetic fields on the numerical outer boundary to zero.  

The effectiveness of the null boundary condition has been investigated by placing 

a source for both the total and incident field at the center of 2-D numerical space. The 

point source was excited by a Gaussian pulse. The inner boundary was set to be an ABC 

for the total electric field and the outer boundary was set to be an ABC for the incident 

field. The total minus incident field divided by the incident field was recorded along the 
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inner boundary. As shown in Fig. 3.7, no unpredictable reflections from the outer 

boundary was visually observed at greater angles. With the null absorbing condition, Fig. 

3.8 shows the percent absorption error in terms of wave angles. It is shown that the overall 

error between the coordinate axis at o0  and o45  is less than 0.06 %. This result confirms 

the effectiveness of the null boundary condition as a first order ABC for outward 

propagating waves. 

 

 

Figure 3.7: Total electric field when setting ABCs on the inner and outer boundary. 
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Figure 3.8: Error of total and incident electric fields as a function of ϕ degrees from the 

source point. 

 

3.5 Numerical Dispersion Relation 

A knowledge of the numerical dispersion relation for a time domain numerical 

method aids in improving the accuracy of the method, in understanding any non-physical 

artifacts in the numerical solution, and in some cases in establishing a stability condition 

for the numerical equations. In the following, we develop numerical dispersion relations 

for the 1-D, 2-D, and 3-D Propagator method based on Von Neumann’s method [3]. A 

derivation of the numerical dispersion relations in multiple dimensions involves 

substitution of a monochromatic plane wave into the propagator numerical equations. 

In 1-D Propagator method, monochromatic expressions for plane wave traveling 

in the positive z direction in the numerical grid for the electric and magnetic field can be 

expressed as 
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 
0

  
 zj n t k I zn

x xI
E E e


                                        (3.13a) 

 
0

  
 z

n j n t k I z

y yI
H H e


                                      (3.13b) 

where I is a node number, n is a time step, zk  is the z component of the numerical 

wavenumber and ω is a wave angular frequency. By substituting the plane wave 

expressions (3.13) into the 1-D propagator equations (2.40), the 1-D dispersion relation 

can be obtained as 

   zjk z j te e 
                                                (3.14) 

Equation (3.14) reduces to  

0     


  


z

t
k k

z c


                                            (3.15) 

where /  z t c  is the relationship between numerical time and spatial increments in a 

free space. This shows that the numerical wavenumber of the 1-D Propagator method is 

equal to the exact free space wavenumber.  

However, as described in the previous chapter, the previous time fields in a 

dielectric region must be extrapolated by the interpolation procedure. Substituting (3.2) 

and (3.13) into (2.40), after simplifications, we obtain the following relations: 

 
 

0 1D

0

1D

1 cos

sin

y z

x

z

H P k z
E

jP k z

   
 


                                     (3.16a) 

 
 

0 1D

0

1D

1 cos

sin

x z

y

z

E P k z
H

j P k z

  
 


                                       (3.16b) 

where  
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 

 
 

1D

2 3

1
1

2

1
                   2

2

 

   

 
   
 

 
      

 

j t

j t j t

P e

e e



 

 


 
 

                     (3.17) 

Substituting (3.16a) into (3.16b) yields 

   
2 2

1D 1D1 cos sinz zP k z P k z       
   

                             (3.18) 

Equation (3.18) can be rearranged to give  

   1D cos sin zjk z
z zP k z j k z e

 
                                     (3.19) 

With (3.17) and (3.19), the dispersion relation becomes 

 

 
 2 3

1
1
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1
                   2
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   

   

 
   
 

 
      

 

zjk z j t

j t j t

e e

e e



 

 


 
 

                     (3.20) 

Equation (3.20) is the general numerical dispersion relation of the 1-D Propagator 

algorithm in all dielectric regions of the numerical space. As the dielectric constant 

approaches that of free space 0 , (3.20) reduces to the exact free space expression 

(3.14), which is expected because for this special case the numerical equation becomes 

the exact D’Alembert equation. Alternatively as the space and time increments approach 

to zero ( 0t  , 0z  ), (3.20) becomes 

r
z r

t
k k

z c


  



 
                                           (3.21) 

That is, the 1-D numerical wavenumber becomes the wavenumber of the medium at nodes 

where the physical time interpolation is applied. 
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A numerical wavenumber for a dielectric medium can be found by solving (3.20). 

Fig. 3.9 shows the percent error of the numerical phase velocity relative to the exact phase 

velocity as a function of dielectric constant for different grid sizes. When the dielectric 

constant is 1, 4, and 9, the respective numerical phase velocity becomes the exact phase 

velocity in each case. For other values of dielectric constant, the numerical phase velocity 

is not the exact phase velocity, resulting in a small third order accurate numerical 

dispersion. However, as seen in Fig. 3.9, increasing the number of grid points per 

wavelength significantly improves the phase velocity error. 

 

 

Figure 3.9: Numerical phase velocity error relative to the exact phase velocity as a function 

of dielectric constant for several grid sizes. 

 

The dispersion analysis presented above can be readily extended to two and three-

dimensions. In 2-D case, we begin with monochromatic plane wave expressions for the 

TMz mode: 
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 
0,

     
 x yj n t k I x k J yn

z zI J
E E e                                    (3.22a) 

 
0,

     


x yj n t k I x k J yn

x xI J
H H e                                       (3.22b) 

 
0,

     


x yn j n t k I x k J y

y yI J
H H e                                      (3.22c) 

where I and J are respective node numbers for the x- and y-directions, and xk  and yk  are 

the numerical wavenumbers for x- and y-polarized field components. Substituting (3.22) 

into (2.54) provides, after simplification, the following relations: 

   0 2D 0 01 sin sin 0
2 2

j t j t j t
z x y y x

j j
E P e H e k y H e k x              

 
    (3.23a) 

 0 0 2Dsin 1 0j t j t
z y x

j
E e k y H P e 



       
 

                         (3.23b) 

 0 0 2Dsin 1 0j t j t
z x y

j
E e k x H P e 



       
 

                        (3.23c) 

where  

   2D

1
cos cos

2
x yP k x k y    

 
                                    (3.24) 

Rearranging (3.23) to a matrix form, we obtain the following homogeneous system of 

three equations with three unknowns 0zE , 0xH  and 0yH : 

 

     
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   
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2D

2D 0

2D 0

1 sin sin
2 2

sin 1 0 0

sin 0 1

j t j t j t z
y x

j t j t
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j t j t
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j j EP e e k y e k x

j
e k y P e H

j
e k x P e H

  

 

 

 





     

   

   

   
      

   
        
   
         

  (3.25) 
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Equating the determinant of this system to zero results in 

   
2

2 2
2D

1
sin sin

2

j t
x ye P k x k y        

   
                         (3.26) 

Expanding the left hand side in (3.26) yields  

       
2

2
2D 2D 2D 2D2 cos cos 2 sin 2 2 sin                 

j te P P P t t j t P t        (3.27) 

Equation (3.27), the left hand side of (3.26), has the real and imaginary parts, whereas the 

right hand side of (3.26) has only real values. Accordingly, the imaginary part in (3.27) 

must be zero. Setting the imaginary term in (3.27) equal to zero results in 

 2D cosP t                                                     (3.28) 

After inserting (3.28) into (3.26), (3.26) becomes 

     2 2 21
sin sin sin

2
     
 x yt k x k y                              (3.29) 

Finally, the general numerical dispersion relations of the 2-D TMz Propagator algorithm 

are 

     
1

cos cos cos
2
     
 x yt k x k y                                (3.30a) 

     2 2 21
sin sin sin

2
     
 x yt k x k y                             (3.30b) 

Consider the special case of a square cell gridding with     x y , then take the limit as 

∆ and ∆t approach zero. Equation (3.30a) reduces to 

 
2

2 2 2

2


   
 x yt k k                                              (3.31) 
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by taking first two terms of infinite series expansion of the cosine function. We note that 

the numerical time step for the 2-D Propagator is / ( 2 )  t c . By inserting this time 

increment into (3.31), (3.31) becomes to the ideal dispersion case: 

     
2

2 22 
   

 
x yk k k

c


                                        (3.32) 

Similarly, the dispersion relation (3.30b) also reduces to (3.32) by taking first term of 

infinite series of the sine function and inserting the 2-D numerical time increment. This 

shows that numerical dispersion can be reduced to any degree if we use a finer grid 

sampling. This can also be verified by calculating a numerical phase velocity using the 

numerical dispersion relations. 

Fig. 3.10 shows the normalized numerical phase velocity in terms of wave 

propagation angle   with respect to the axes. The phase velocity is calculated by the same 

method used in the FDTD [3]. As shown in Fig. 3.10, as the sampling density increases, 

the numerical phase velocity approaches that of free space having a maximum at 45 .  
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Figure 3.10: 2-D Propagator variation of numerical phase velocity for three sampling 

densities of the square unit cells. 

 

The dispersion analysis is now extended to the full three-dimensional case that 

includes all six coupled electric and magnetic field components. To derive the numerical 

dispersion relations of the 3-D Propagator method, we start with a monochromatic plane 

wave expressions for the six electric and magnetic field components. Substituting the 

plane wave expressions into (2.52)-(2.53) yields, after simplifications and rearrangement, 

the following homogeneous system of six equations along with six unknowns: 

11 15 16 0

22 24 26 0
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   
   

   
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      
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                           (3.33) 

where 
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 

 
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 
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      









  

  

  

                      (3.34) 

with 

     3D

1
cos cos cos

3
x y zP k x k y k z      

 
                           (3.35) 

Solving the determinant in (3.33) and equating it to zero results in 

     
2

2 2 2
3D

1
sin sin sin

3

j t
x y ze P k x k y k z          

   
               (3.36) 

When the left hand side in (3.36) is expanded, it is shown to contain real and imaginary 

terms. However, the imaginary part must be zero because the right hand side of (3.36) is 

a real-valued. The imaginary term provides the following condition: 

       3D

1
cos cos cos cos

3
x y zt P k x k y k z         

 
                  (3.37) 

Upon substituting (3.37) into (3.36), we obtain  

       2 2 2 21
sin sin sin sin

3
       
 x y zt k x k y k z                      (3.38) 

Equations (3.37) and (3.38) are the general form of the numerical dispersion relations for 

the 3-D Propagator method.  

Consider the special case of a cubic-cell lattice with       x y z , then take 

the limit as ∆ and ∆t go to zero. Both (3.37) and (3.38) reduce to 

 
2

2 2 2 2

3


    
 x y zt k k k                                          (3.39) 
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by taking first two terms of infinite series expression of the cosine function in (3.37) and 

the first term of the infinite series of the sine function in (3.38). Equation (3.39) also 

reduces to the ideal free space wave condition: 

       
2

2 2 22 
    

 
x y zk k k k

c


                                   (3.40) 

by inserting the 3-D numerical time step / ( 3 )  t c  into the left term of (3.39). This 

also illustrates that taking a finer grid sampling can minimize dispersion. 

 

3.6 Stability Condition 

The 1-D Propagator numerical equation is unconditionally stable, however, 2-D 

and 3-D equations have stability conditions that can be developed from the numerical 

dispersion relations. In this section, the stability condition will be investigated based upon 

complex-frequency analysis [3]. 

We first start with the 3-D Propagator equation. It was stated in section 2.5 that the 

coefficient 1/ 3  in (2.52)-(2.53) has been added to meet the stability condition. The 

following stability analysis shows the necessity of adding that coefficient. Consider the 

initially derived 3-D numerical expression (2.51) for the x-component of the electric field:  
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H H H H
 

  (3.41) 

The numerical dispersion relation from (3.41) and other field components can be written 

as 
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       2 2 2 2sin sin sin sinx y zt k x k y k z        
 

                      (3.42) 

where   is the numerical angular frequency. We first solve (3.42) for  . This yields  

 11
sin

t
 


                                                   (3.43) 

where 

     2 2 2sin sin sinx y zk x k y k z                                   (3.44) 

Here we allow for the possibility of a complex-valued numerical angular frequency, 

real imagj    . We note that the imaginary values of   will cause the field amplitude 

to exponentially decrease ( 0imag  ) or increase ( 0imag  ) with time. Given this basis, 

the numerical angular frequency   will have a complex value if   in (3.43) exceeds 1.  

In (3.44), the range of   is 0 3  , resulting in a complex-valued  . In order to have 

a real-valued   ( 0imag  ), the additional coefficient 1/ 3  is required in front of the 

square root of (3.44). This modification gives 

      2 2 21
sin sin sin

3
x y zk x k y k z                                  (3.45) 

After adding the coefficient 1/ 3 , the range of   in (3.45) became the range of 0 1 

, hence real values of   are obtained in (3.43) since 
1sin ( )

 is a real value. The addition 

of 1/ 3  not only provides the stable 3-D numerical expressions, but also it gives the 

numerical time step, given by 

3D
3

t
c


                                                         (3.46) 
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In a manner analogous to the above 3-D case, the stability analysis for the 2-D 

Propagator method starts with the originally found numerical expression that did not 

contain 1/ 2  in front of the magnetic fields, given by  

1 1 1 1
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                (3.47) 

With (3.47), the numerical dispersion relation is obtained as 

     2 2 2sin sin sinx yt k x k y      
 

                                 (3.48) 

Solving (3.48) for   yields  

 11
sin

t
 


                                                  (3.49) 

where 

   2 2sin sinx yk x k y                                            (3.50) 

In (3.50),   has the range of 0 2  , resulting in the possibility of having a complex 

value of  , which gives rise to numerical instability. In order to be in a stable range of 

, the coefficient 1/ 2  is required in front of the square root of (3.50). With this adjustment, 

the modified   becomes 

    2 21
sin sin

2
x yk x k y                                        (3.51) 

Equation (3.51) now is in the range of 0 1  , and therefore   will be a real value. 

Adding the coefficient 1/ 2  gives rise to the stable 2-D numerical expressions as well as 



 

59 

 

the numerical time step, given by  

2D
2

t
c


                                                         (3.52) 

Based upon the above stability analysis condition, the additional coefficients 1/ 3  

and 1/ 2  have been respectively added into the 3-D and 2-D Propagator method 

equations. Therefore, (3.46) and (3.52) are the stability conditions for our 3-D and 2-D 

numerical expressions respectively. 

We now consider the possibility of having an alternate value of the additional 

coefficient in the stable range. We first rewrite the 3-D equation for Ex field component, 

given by 
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S S

 
  (3.53) 

where S represents the stability limit coefficient that requires to be added. From (3.53) and 

numerical equations of other field components, the dispersion relation becomes  

       2 2 2 2

3D

1
sin sin sin sin       

 x y zt k x k y k z
S

                       (3.54) 

Solving for  , the numerical angular frequency is 

 11
sin

t
 


                                                    (3.55) 

where 

      2 2 2

3D

1
sin sin sin     x y zk x k y k z

S
                         (3.56) 



 

60 

 

From (3.55)-(3.56), 3DS should be 3D 3S   to maintain in the stable range, 0 1  . In 

other words, (3.53) will be unstable if 3D 3S  . We now present examples that show the 

stability limit for 3DS  is violated where 3D 3S  . 

Fig. 3.11 visualizes the propagation of a Gaussian plane wave pulse in x-plane cut 

when 3D 1 0S . , 1.4 and 3  at 100n  time steps. It is clearly seen that the pulse 

becomes unstable almost instantly in the case where 3D 1 0S .  and its amplitude gradually 

increases when 3D 1 4S . . The case where 3D 3S  , on the other hand, preserves pulse 

propagation. Therefore, it is evident that the additional coefficient, which should be 

3D 3S  , is required.  

 

 

Figure 3.11: Propagation of plane wave pulse in x-plane cut for several values of 3DS  in 

the unstable range at 100n  time steps. 
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Next, for the stability limit where 3DS  is in the unstable range, we consider all 

possible values of 3DS  in the stable range, 3D 3S  . Fig. 3.12 shows the 3-D Gaussian 

plane wave propagated up to 150 time steps in the x-plane cut for several values of 3DS  

within 3D 3S  . As shown in Fig. 3.12, the plane wave for 3D 3S   is well preserved, 

whereas for 3D 2 0S .  and 2.3, which are in the stable range, it decays in amplitude and 

the pulse velocity alters depending upon the value of 3DS . This result shows that any value 

of 3DS  in the stable bounds, other than 3D 3S  , cannot be a possible coefficient. This 

determines the 3-D numerical time increment, 3D( )t / S c    . 

From the results of Figs. 3.11 and 3.12, we conclude that the only possible 3-D 

coefficient is 3D 3S   and (2.52)-(2.53) are the ideal 3-D numerical expressions. 

 

 

Figure 3.12: Propagation of plane wave pulse in x-plane cut for several values of 3DS  in 

the stable range at 150n  time steps. 
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Similarly with the 3-D case, it can be shown that the only possible 2-D stability 

coefficient is 2D 2S   as below. The numerical equation of zE  field component for the 

2-D TMz case with the 2-D stability limit coefficient 2DS  can be written as 
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, 1, 1, , 1 , 1

1 11 1

, 1 , 1 1, 1,
2D 2D

1

4

          
2 2

   

   

  

   

    
 

     
    

n n n n n

z z z z zi j i j i j i j i j

n nn n

x x y yi j i j i j i j

E E E E E

H H H H
S S

 
               (3.57) 

The numerical dispersion relation is 

     2 2 2

2D

1
sin sin sin     

 x yt k x k y
S

                               (3.58) 

From (3.58), the numerical angular frequency   is 

 11
sin

t
 


                                                    (3.59) 

where 

    2 2

2D

1
sin sin   x yk x k y

S
                                    (3.60) 

In the unstable range where 2D 2S  , the propagation of a Gaussian plane wave 

at 130n  time steps is examined as shown in Fig. 3.13. Fig. 3.13 illustrates the 2-D 

Gaussian plane wave propagated up to 130 time steps in the x-plane cut for several values 

within 2D 2S   and 2D 2S  . The pulse becomes instantly unstable for 2D 1 0S .  and 

its amplitude for 2D 1 2S .  increases and becomes unstable as it propagates further time 

steps. On the other hand, the pulse for 2D 2S   travels as expected.    
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Figure 3.13: Propagation of plane wave pulse in x-plane cut for several values of 2DS  in 

the unstable range at 130n  time steps. 

 

Next we consider the cases in the stable range where 2D 2S  . As shown in Fig. 

3.14, all values including 2D 2S  , 1.5 and 1.6 do not become unstable as expected. 

However the amplitude of the pulse for the cases where 2D 1 5S .  and 1.6 decays as it 

propagates and the value 2D 2S   preserves the pulse propagation. In addition to the 

stability, the pulse velocity changes depending on the value of 2DS . For example, the plane 

wave for 2D 2S   propagated 99 x  spatial increments, from 10x to 109x , during 

140t  time steps, from 60t  to 200t , which gives rise to the velocity 

(99 /140 ) / ( 2 )     v x t x t , and for the value of 2D 1 6S .  its velocity becomes 

(87 /140 ) / (1.6 )     v x t x t  since it traveled 87x  in space during 140t  time steps. 

As a result, it can be concluded from these results that 2D 2S   is the only possible 
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coefficient, the numerical time step is 2D/ ( )t S c    , and (2.54) are the ideal numerical 

expressions for the 2-D TMz case. 

 

Figure 3.14: Propagation of plane wave pulse in x-plane cut for several values of 2DS  in 

the stable range at 200n   time steps. 

 

3.7 Summary  

In this chapter, the key numerical aspects of the Propagator method were presented 

for simulating diverse electromagnetic problems in multiple dimensions. These included: 

(1) the introduction of a physical time increment in a dielectric medium using Newton’s 

third order difference extrapolation technique in time, (2) the derivation of the exact 1-D 

boundary condition and application of the conformal boundary conditions for the 2-D and 

3-D cases, (3) the simple and effective null boundary condition, (4) the derivation of 

numerical dispersion relations in all dimensions, and (5) numerical stability conditions 

derived using a complex-frequency analysis. 
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4. TOTAL-FIELD / SCATTERED-FIELD FORMULATION 

 

4.1 Introduction 

The total-field / scattered-field (TF / SF) formulation not only aims at realizing a 

plane-wave source, but it also provides a number of features that allow an arbitrary 

incident wave, a wide computational dynamic range and an absorbing boundary condition 

at the outermost lattice points [3]. The TF / SF technique was successfully applied to the 

FDTD algorithm and it remains in use today. The time-domain Propagator modeling also 

requires the TF / SF technique in order to effectively generate a plane-wave source and 

achieve the null boundary condition.  

To illustrate the idea of the TF / SF formulation, the total-field / scattered-field 

zoning in a space lattice is shown in Fig. 4.1. In region 1, the total-field zone, we assume 

that total-field vector components including the interaction of the incident and scattered 

waves from any objects exist. A virtual surface that separates regions 1 and 2 is assumed 

to be included in the total-field region, and the interacting object is embedded within this 

region. In region 2, the scattered-field zone, we assume that only scattered-field vector 

components, total fields minus incident fields, exist. The outer lattice planes of region 2 

are truncated by the absorbing boundary condition. 

In this chapter, each dimensional TF / SF formulation for the time-domain 

Propagator method will be presented. 
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Figure 4.1: Total-field / scattered-field regions. 

 

4.2 One-dimensional formulation 

To illustrate the TF / SF formulation of the 1-D Propagator method, consider the 

1-D grid scheme containing xE  and yH  field components, as shown in Fig. 4.2. In Fig. 

4.2, upward directed arrows and solid circles represent respectively xE  and yH  fields. 

Assume that the boundary grid cells 0i  and 1i  between regions 1 and 2 are included in a 

total-field zone and the grid points 0 1i   and 1 1i  , just outside of region 1, are in a 

scattered-field zone.  

 

 

Figure 4.2: Total-field / scattered-field regions of the 1-D Propagator grid scheme. 
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First, consider a time-stepping xE  component at grid point 0i , the left boundary 

point between regions 1 and 2. Using the 1-D Propagator equation (2.40), the xE  field 

located at 0i  is calculated by 
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,total ,total ,scat ,total ,scat1 1 1 1
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     (4.1) 

In (4.1), the fields at 0 1i   are assumed to be stored as a total field, whereas the fields at 

0 1i   are assumed to be stored as a scattered field. However, if the grid points 0 1i  , 0i , 

and 0 1i   are in region 1 of Fig. 4.2, (4.1) is inconsistent with the equation: 
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     (4.2) 

Consistency of (4.2) can be realized by adding the incident field terms into (4.1), which 

are assumed to be stored in the computer memory. The modified xE  component at the 

point 0i  is written as 
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since 
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Equation (4.3) can be rewritten as a compact expression: 
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Left boundary point of Region 1 ( 0i i ) 
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where the curly bracket term denotes the time-stepping field to be calculated before adding 

the incident field correction term. The remaining yH  field component at the point 0i  is 

obtained in an analogous manner of (4.1)-(4.4).  

Regarding with the grid point 1i , the right boundary point between regions 1 and 

2 in Fig. 4.2, the modified field components at the right boundary point of region 1 can be 

acquired in a similar way as explained above, by adding the incident wave correction terms 

located at point 1 1i   in the scattered-field region. 

Right boundary point of Region 1 ( 1i i ) 
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Next, consider the time-stepping xE  component at the grid point 0 1i   located in 

the scattered-field zone, just outside left face of region 1 in Fig. 4.2. The xE  component 

at 0 1i   is updated by the equation: 
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In (4.7), the fields at 0i  are assumed to be stored as a total field, whereas the fields at 0 2i   

are assumed to be stored as a scattered field. However, if the grid points 0 2i  , 0 1i  , and 

0i  are in the scattered-field region 2, (4.7) is inconsistent with the equation: 
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The consistency condition of (4.8) can be achieved by subtracting the incident field 

terms into (4.7). The corrected xE  component at the point 0 1i   is expressed as  
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since 
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Therefore, the corrected equations of field components at the points 0 1i   and 

1 1i  , just outside of region 1, are expressed as 

Outside left face of Region 1 ( 0 1i i  ) 
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                        (4.11a) 

  1 1

,inc ,inc 11
(2.40b)

correction term

1 1
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n n n n

y y y x ii i i
H H H E


             (4.11b) 
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Outside right face of Region 1 ( 1 1i i  ) 

 
11

,inc ,inc1 1(2.40a)

correction term

1
  

2 2



 
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nnn n
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E E E H
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                        (4.12a) 

  1 1

,inc ,inc 11
(2.40b)

correction term

1 1
  

2 2

 



 
   

 

n n n n

y y y x ii i i
H H H E


            (4.12b) 

where the curly bracket term denotes the time-stepping operation before adding the 

incident field correction terms. Equations (4.5)-(4.6) and (4.11)-(4.12) are the TF / SF 

formulated equations of 1-D Propagator method.   

 

4.3 Two-dimensional formulation 

The TF / SF algorithm for the Propagator method can be extended to build two-

dimensional TM and TE problems. As an example of the TF / SF formulation for the 2-D 

Propagator modeling, this section discusses field modifications for the TMz mode.  

Fig. 4.3 illustrates the field component locations of the 2-D Propagator TMz TF / 

SF formulation. Region 1 and 2 are respectively assumed to be in the total-field and 

scattered-field regions. The interface between regions 1 and 2 is assumed to be included 

in the total-field region 1 and located in source-free vacuum. For the field notations, the 

solid circles, right and upward arrows represent respectively zE , xH , and yH  fields. 
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Figure 4.3: Total-field / scattered-field regions of the 2-D Propagator TMz grid scheme. 

 

In the 2-D Propagator grid scheme, we must account for three zones that involve 

interfaces, corners and just outside of the region 1 since the 2-D equation includes the 

fields at four grid points surrounding a center point. First consider the left boundary of 

region 1 and 2 located at 0i i  excluding two interface corners, 0 0( , )i j  and 0 1( , )i j . To 

compute each time-stepping field components at 0( , )i j , the previous time fields at 

0( 1, )i j  should be modified since they are in the scattered-field region 2. The total 

electric and magnetic fields at 0( 1, )i j  can be decomposed into 

0 0 0
, total , scat , inc1, 1, 1,

  
  

 z z zi j i j i j
E E E                         (4.13a) 

0 0 0
, total , scat , inc1, 1, 1,

  
  

 x x xi j i j i j
H H H                         (4.13b) 

0 0 0

, total , scat , inc1, 1, 1,
  

  
 y y yi j i j i j

H H H                         (4.13c) 
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for all time steps. To implement the consistency condition, the incident field components 

at 0( 1, )i j  need to be added into (2.54) as the correction term. The modified equations 

at the left boundary of region 1 are given by 

Left boundary of Region 1 ( 0i i ; 0 11,  . . . , 1j j j   ) 

 
11

,inc ,inc, , 1, 1,(2.54a)

correction term

1
    

4 2 2
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 
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 

nnn n

z z z yi j i j i j i j
E E E H


            (4.14a) 

  1

,inc, , 1,(2.54b)

correction term

1
   

4





 
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nn n

x x xi j i j i j
H H H                          (4.14b) 

  1 1

,inc ,inc 1,, , 1,
(2.54c)

correction term

1 1
    

4 2 2

 



 
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n n n n

y y y z i ji j i j i j
H H H E


              (4.14c) 

The field components located on the remaining interfaces of region 1 and 2 in Fig. 

4.3 can be adjusted in a same way by addition of the incident field terms positioned in the 

scattered-field zone. The followings are the modified equations at the right, top and bottom 

boundary of region 1: 

Right boundary of Region 1 ( 1i i ; 0 11,  . . . , 1j j j   ) 

 
11

,inc ,inc, , 1, 1,(2.54a)

correction term

1
    

4 2 2
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            (4.15a) 

  1

,inc, , 1,(2.54b)

correction term
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
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nn n

x x xi j i j i j
H H H                          (4.15b) 
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  1 1

,inc ,inc 1,, , 1,
(2.54c)

correction term
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            (4.15c) 

Bottom boundary of Region 1 ( 0j j ; 0 11,  . . . , 1i i i   ) 

 
11

,inc ,inc, , , 1 , 1(2.54a)

correction term
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 
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 
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            (4.16a) 

  1 1

,inc ,inc, , , 1 , 1(2.54b)

correction term
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            (4.16b) 

  1

,inc, , , 1
(2.54c)

correction term
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 
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 

n n n

y y yi j i j i j
H H H                          (4.16c) 

Top boundary of Region 1 ( 1j j ; 0 11,  . . . , 1i i i   )  

 
11

,inc ,inc, , , 1 , 1(2.54a)

correction term
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            (4.17a) 

  1 1
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correction term
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            (4.17b) 

  1

,inc, , , 1
(2.54c)

correction term
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n n n
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H H H                          (4.17c) 

Next, consider the left bottom corner at 0 0( , )i j  in Fig. 4.3. When computing the 

time-stepping total field at 0 0( , )i j , the previous time fields at 0 0( 1, )i j  and 0 0( , 1)i j  , 

located in the total-field region 1, and at 0 0( 1, )i j  and 0 0( , 1)i j  , located in the 
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scattered-field region 2, are required. The field components at 0 0( 1, )i j  and 0 0( , 1)i j  , 

just outside of the interface, need to be modified. By adding the correction term with the 

incident fields at 0 0( 1, )i j  and 0 0( , 1)i j  , the modified time-stepping fields at 0 0( , )i j  

are expressed as 

Left bottom corner of Region 1 ( 0i i ; 0j j )  

     11 1 1

,inc ,inc ,inc ,inc, , 1, , 1 , 11,(2.54a)

correction term
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                (4.18b) 
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correction term
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                (4.18c) 

With an analogous manner of (4.18), the field components located on the 

remaining corners at 0 1( , )i j , 1 0( , )i j  and 1 1( , )i j  are written as 

Left top corner of Region 1 ( 0i i ; 1j j ) 

     11 1 1

,inc ,inc ,inc ,inc, , 1, , 1 , 11,(2.54a)

correction term
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   1 1 1
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correction term

1 1

4 2 2

  

  

 
    

 

n n nn n

x x x x zi j i j i j i j i j
H H H H E


                 (4.19b) 



 

75 

 

   1 1 1

,inc ,inc ,inc 1,, , 1, , 1
(2.54c)

correction term
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Right bottom corner of Region 1 ( 1i i ; 0j j ) 
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correction term
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Right top corner of Region 1 ( 1i i ; 1j j )  

     11 1 1
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correction term
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   1 1 1

,inc ,inc ,inc, , 1, , 1 , 1(2.54b)

correction term
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We have modified equations of each field component positioned on the interfaces 

including corners between regions 1 and 2. In addition to the grid points on the boundary, 

we should take the grid cells located outside of region 1 into account. For outside four 
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faces of region 1, consistency conditions can be achieved by subtracting the incident field 

terms positioned on the interfaces. 

Outside left face of Region 1 ( 0 1i i  ; 0 1,  . . . , j j j ) 

 
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Outside right face of Region 1 ( 1 1i i  ; 0 1,  . . . , j j j ) 
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Outside bottom face of Region 1 ( 0 1j j  ; 0 1,  . . . , i i i ) 
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  1 1
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Outside top face of Region 1 ( 0 1j j  ; 0 1,  . . . , i i i ) 
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The 2-D Propagator TF / SF formulation for TMz case has been developed above. 

Although not shown here, the TF / SF formulation for the 2-D Propagator TEz case can 

also be developed in the same manner.  

As an example of the 2-D TF / SF formulation for the Propagator method, Fig. 4.4 

shows the total and scattered fields from a square dielectric cylinder having r 4   at two 

different time steps. In Fig. 4.4, the red box represents the boundary between the total-

field and scattered-field regions, and the black box indicates the square dielectric cylinder 

inserted within the total-field region. The total numerical space is discretized with 

200 200 , and the TF / SF region and object are respectively discretized with 50 50  and 
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30 30  from a center point. As shown in Fig. 4.4, the computed total and scattered fields 

are respectively observed in the total-field and scattered-field zones as expected.  

 

  

       (a)                                                                  (b) 

Figure 4.4: Total and scattered fields at (a) 120 time steps and (b) 175 time steps, from a 

centered square dielectric cylinder r( 4)  as an example of the TF / SF formulation for 

the 2-D Propagator TMz case. 

 

4.4 Three-dimensional formulation 

The TF / SF formulation discussed above can be readily extended to the 3-D 

Propagator lattices. The TF / SF regions in the 3-D Propagator Method compose six 

interface surfaces forming a rectangular box, as shown in Fig. 4.5(a) and six surfaces, 

outside of each face of the TF / SF interfaces. Each interface plane is decomposed into 

corners, boundary line and one interface surface, as shown in Fig. 4.5(b).  
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                                (a)                                                             (b) 

Figure 4.5: (a) Six interface surfaces and (b) a rear interface surface for the 3-D Propagator 

TF / SF formulation lattice. 

 

Consider first each surface of the TF / SF interfaces that does not contain 

boundaries. With the consistency conditions employed in the 2-D TMz mode above, the 

modified equations of six field components at each face are given by 

Rear surface of Region 1 ( 0i i ; 0 11,  . . . , 1j j j   ; 0 11,  . . . , 1k k k   ) 
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  1
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Front surface of Region 1 ( 1i i ; 0 11,  . . . , 1j j j   ; 0 11,  . . . , 1k k k   ) 
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 
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Left surface of Region 1 ( 0 11,  . . . , 1i i i   ; 0j j ; 0 11,  . . . , 1k k k   ) 

  1 1

,inc ,inc, , , , , 1, , 1,(2.52)
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,inc ,inc, , , , , 1, , 1,(2.53c)
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Right surface of Region 1 ( 0 11,  . . . , 1i i i   ; 1 j j ; 0 11,  . . . , 1k k k   ) 

  1 1

,inc ,inc, , , , , 1, , 1,(2.52)

correction term
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  1 1

,inc ,inc, , , , , 1, , 1,(2.53b)
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  1 1

,inc ,inc, , , , , 1, , 1,(2.53c)

correction term
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Bottom surface of Region 1 ( 0 11,  . . . , 1i i i   ; 0 11,  . . . , 1j j j   ; 0k k ) 
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  1
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  1

,inc, , , , , , 1(2.53e)

correction term
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Top surface of Region 1 ( 0 11,  . . . , 1i i i   ; 0 11,  . . . , 1j j j   ; 1k k ) 
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  1 1

,inc ,inc , , 1, , , , , , 1
(2.53a)

correction term
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correction term
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correction term
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  1

,inc, , , , , , 1(2.53e)

correction term
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Next, the consistency conditions for all field components at each boundary line 

excluding corners are given by 
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Rear left line of Region 1 ( 0i i ; 0j j ; 0 11,  . . . , 1k k k   ) 

   1 1 1

,inc ,inc ,inc, , , , 1, , , 1, , 1,(2.52)
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Rear right line of Region 1 ( 0i i ; 1j j ; 0 11,  . . . , 1k k k   ) 

   1 1 1

,inc ,inc ,inc, , , , 1, , , 1, , 1,(2.52)

correction term
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     11 1 1
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Front left line of Region 1 ( 1i i ; 0j j ; 0 11,  . . . , 1k k k   ) 

   1 1 1

,inc ,inc ,inc, , , , 1, , , 1, , 1,(2.52)

correction term
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     11 1 1
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1 1
+

6 2 3

  

   

 
    

 

nn n nn n

z z z z x yi j k i j k i j k i j k i j k i j k
H H H H E E


   (4.34f) 

Front right line of Region 1 ( 1i i ; 1j j ; 0 11,  . . . , 1k k k   ) 

   1 1 1

,inc ,inc ,inc, , , , 1, , , 1, , 1,(2.52)

correction term
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          (4.35b) 
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Bottom rear line of Region 1 ( 0i i ; 0 11,  . . . , 1j j j   ; 0k k ) 

    11 1

,inc ,inc ,inc, , , , 1, , , , 1 , , 1(2.52)

correction term
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                (4.36c) 
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correction term

1 1
+

6 2 3

 

  

 
   

 

nn nn n

z z z z yi j k i j k i j k i j k i j k
H H H H E


                   (4.36f) 

Bottom front line of Region 1 ( 1i i ; 0 11,  . . . , 1j j j   ; 0k k ) 

    11 1

,inc ,inc ,inc, , , , 1, , , , 1 , , 1(2.52)

correction term
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           (4.37a) 
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(2.53a)

correction term

1
+

6 2 3

   

  

 
    

 

n n n n n n

y y y y z xi j k i j ki j k i j k i j k i j k
E E E E H H


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    11 1

,inc ,inc ,inc, , , , 1, , , , 1 1, ,(2.53b)
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                (4.37c) 
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     1 1 1 1
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(2.53d)
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  (4.37e) 

    11 1
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                   (4.37f) 

Bottom left line of Region 1 ( 0 11,  . . . , 1i i i   ; 0j j ; 0k k ) 

     11 1 1

,inc ,inc ,inc ,inc, , , , , 1, , , 1 , 1,, , 1(2.52)

correction term
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                (4.38b) 

   1 1 1

,inc ,inc ,inc, , , , , 1, , , 1 , 1,(2.53b)

correction term
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                (4.38c) 
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correction term
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                  (4.38e) 

   1 1 1

,inc ,inc ,inc, , , , , 1, , , 1 , 1,(2.53e)

correction term
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                     (4.38f) 
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Bottom right line of Region 1 ( 0 11,  . . . , 1i i i   ; 1j j ; 0k k ) 

     11 1 1

,inc ,inc ,inc ,inc, , , , , 1, , , 1 , 1,, , 1(2.52)

correction term
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               (4.39b) 

   1 1 1

,inc ,inc ,inc, , , , , 1, , , 1 , 1,(2.53b)

correction term
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(2.53d)

correction term
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   1 1 1
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correction term
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                   (4.39f) 

Top left line of Region 1 ( 0 11,  . . . , 1i i i   ; 0j j ; 1k k ) 

     11 1 1

,inc ,inc ,inc ,inc, , , , , 1, , , 1 , 1,, , 1(2.52)

correction term
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   1 1 1
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                (4.40c) 
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   1 1 1

,inc ,inc ,inc, , , , , 1, , , 1 , 1,(2.53e)

correction term

1 1
+

6 2 3

  

  

 
   

 

n n nn n

z z z z xi j k i j k i j k i j k i j k
H H H H E


                   (4.40f) 

Top right line of Region 1 ( 0 11,  . . . , 1i i i   ; 1j j ; 1k k ) 

     11 1 1

,inc ,inc ,inc ,inc, , , , , 1, , , 1 , 1,, , 1(2.52)

correction term
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              (4.41b) 

   1 1 1
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1
+

6 2 3

  

  

 
   

 

n n nn n

z z z z xi j k i j k i j k i j k i j k
E E E E H


                (4.41c) 
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   1 1 1

,inc ,inc ,inc, , , , , 1, , , 1 , 1,(2.53e)

correction term
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Next, consider eight corners of the 3-D TF / SF interface. The consistency 

conditions at the corners are given by 

Bottom left rear corner of Region 1 ( 0i i ; 0j j ; 0k k ) 
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H H H H H E E


(4.42e) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53e)

correction term

1 1
+

6 2 3

   

    

 
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
(4.42f) 
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Bottom right rear corner of Region 1 ( 0i i ; 1j j ; 0k k ) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.52)

correction term

1
+

6 2 3
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
 (4.43a) 

     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53a)

correction term

1
+

6 2 3
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
 (4.43b) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53b)

correction term

1
+

6 2 3
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
(4.43c) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.53c)

correction term

1 1
+

6 2 3
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
(4.43d) 

     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53d)

correction term

1 1
+

6 2 3

    

   

 
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
(4.43e) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53e)

correction term

1 1
+

6 2 3

   

    
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H H H H H E E


(4.43f) 

Bottom left front corner of Region 1 ( 1i i ; 0j j ; 0k k ) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.52)

correction term

1
+

6 2 3

   

   

 
     
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
 (4.44a) 

     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53a)

correction term

1
+

6 2 3

    

   

 
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
 (4.44b) 
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     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53b)

correction term

1
+

6 2 3
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
 (4.44c) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.53c)

correction term

1 1
+

6 2 3

   
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 
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
 (4.44d) 

     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53d)

correction term

1 1
+

6 2 3

    

   

 
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
(4.44e) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53e)

correction term

1 1
+

6 2 3

   
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
(4.44f) 

Bottom right front corner of Region 1 ( 1i i ; 1j j ; 0k k ) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.52)

correction term

1
+

6 2 3

   

   

 
     

 
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
 (4.45a) 

     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53a)

correction term

1
+

6 2 3

    

   

 
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E E E E E H H


 (4.45b) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53b)

correction term

1
+

6 2 3

   

    
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
(4.45c) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.53c)

correction term

1 1
+

6 2 3

   

   

 
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
 (4.45d) 

     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53d)

correction term

1 1
+

6 2 3

    
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
(4.45e) 
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     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53e)

correction term

1 1
+

6 2 3

   
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
(4.45f) 

Top left rear corner of Region 1 ( 0i i ; 0j j ; 1k k ) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.52)

correction term

1
+

6 2 3

   
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
 (4.46a) 

     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53a)

correction term

1
+

6 2 3

    
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 
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
 (4.46b) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53b)

correction term

1
+

6 2 3

   
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
(4.46c) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.53c)

correction term

1 1
+

6 2 3

   

   

 
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
 (4.46d) 

     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53d)

correction term

1 1
+

6 2 3

    

   

 
     
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
(4.46e) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53e)

correction term

1 1
+

6 2 3

   

    
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
(4.46f) 

Top right rear corner of Region 1 ( 0i i ; 1j j ; 1k k ) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.52)

correction term

1
+

6 2 3

   

   

 
     
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
 (4.47a) 
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     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53a)

correction term

1
+

6 2 3
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
 (4.47b) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53b)

correction term

1
+
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
(4.47c) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.53c)

correction term

1 1
+

6 2 3
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 (4.47d) 

     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53d)

correction term

1 1
+

6 2 3

    
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
(4.47e) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53e)

correction term

1 1
+

6 2 3

   

    

 
     

 

nn n n nn n

z z z z z x yi j k i j k i j k i j k i j k i j k i j k
H H H H H E E


(4.47f) 

Top left front corner of Region 1 ( 1i i ; 0j j ; 1k k ) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.52)

correction term

1
+

6 2 3

   
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
 (4.48a) 

     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53a)

correction term

1
+
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
 (4.48b) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53b)

correction term

1
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
(4.48c) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.53c)

correction term

1 1
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 (4.48d) 
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     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53d)

correction term
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+
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(4.48e) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53e)

correction term
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+
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
(4.48f) 

Top right front corner of Region 1 ( 1i i ; 1j j ; 1k k ) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.52)

correction term

1
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     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53a)

correction term
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+

6 2 3
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 (4.49b) 

     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53b)

correction term
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(4.49c) 
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,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1,, , 1(2.53c)

correction term
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     1 1 1 1 1

,inc ,inc ,inc ,inc ,inc1, , , , 1, , , , 1, , , 1, , , 1
(2.53d)

correction term
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     11 1 1 1

,inc ,inc ,inc ,inc ,inc, , , , 1, , , 1, , , 1 , 1, 1, ,(2.53e)

correction term
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+
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(4.49f) 

Consistency conditions on the TF / SF interfaces were developed as above. Each 

plane outside of the TF / SF interfaces also needs to be modified by subtracting the incident 
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field term positioned on the interface. The consistency conditions on outside planes of 

region 1 are given by 

Outside rear face of Region 1 ( 0 1i i  ; 0 1,  . . . , j j j ; 0 1,  . . . , k k k ) 

  1

,inc, , , , 1, ,(2.52)

correction term
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            (4.50b) 
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 
11

,inc ,inc, , , , 1, , 1, ,(2.53e)

correction term

1 1
   

6 2 3



 

 
   

 

nnn n

z z z yi j k i j k i j k i j k
H H H E


            (4.50f) 

Outside front face of Region 1 ( 1 1i i  ; 0 1,  . . . , j j j ; 0 1,  . . . , k k k ) 

  1

,inc, , , , 1, ,(2.52)
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  1 1
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Outside left face of Region 1 ( 0 1,  . . . , i i i ; 0 1j j  ; 0 1,  . . . , k k k ) 

  1 1

,inc ,inc, , , , , 1, , 1,(2.52)

correction term
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  1
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  1 1

,inc ,inc, , , , , 1, , 1,(2.53e)

correction term

1 1
   

6 2 3

 

 

 
   

 

n nn n

z z z xi j k i j k i j k i j k
H H H E


            (4.52f) 

Outside right face of Region 1 ( 0 1,  . . . , i i i ; 1 1j j  ; 0 1,  . . . , k k k ) 

  1 1

,inc ,inc, , , , , 1, , 1,(2.52)

correction term
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Outside bottom face of Region 1 ( 0 1,  . . . , i i i ; 0 1,  . . . , j j j ; 0 1k k  ) 
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Outside top face of Region 1 ( 0 1,  . . . , i i i ; 0 1,  . . . , j j j ; 1 1k k  ) 
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  1
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An example of the 3-D Propagator TF / SF formulation is shown in Fig. 4.6, which 

illustrates the total and scattered fields in three orthogonal view planes, x-z, x-y, and y-z 

planes from the centered dielectric cube with a dielectric constant of r 4 . The red box 

represents the each boundary between the total-field and scattered-field regions, and the 

dielectric cube is inserted into the total-field region. The entire domain is taken to be

120 120 120  , and the size of the TF / SF region and cube are chosen to be respectively 

60 60 60   and 40 40 40   from a center point. As shown in Fig. 4.6, the simulated total 

and scattered fields are respectively observed in the total-field and scattered-field zones 

as expected.  
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(a)                                                              (b) 

 

(c) 

Figure 4.6: Total and scattered fields from the dielectric cube r( 4)  in (a) x-z (b) x-y, 

and (c) y-z planes through the center of the box at 120 time steps. 

 

4.5 Summary 

In this this chapter each dimensional TF / SF formulation for the time-domain 

Propagator method was presented. The purpose of the TF / SF implementation is to 

simulate effectively the plane wave source generation, the null boundary condition, and a 

wide computational dynamic range. The conventional numerical equations at the lattice 

point having both the total and scattered fields have been modified by adding or 

subtracting the incident field terms. 
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5. NUMERICAL RESULTS* 

 

5.1 Introduction 

The complete numerical solution for the full wave time-domain Propagator method 

has been derived, and numerical techniques including the extrapolation in time, the 

boundary condition, the absorbing boundary condition, the numerical dispersion and 

stability condition have been established. In this chapter, the validity and accuracy of the 

time domain Propagator method are demonstrated by showing various numerical 

examples.  

In 1-D, reflection and transmission coefficients for both lossless and lossy 

dielectric slabs are computed and compared with the FDTD and analytical solutions. The 

1-D Propagator equation is applied to several transmission line problems. In 2-D and 3-D, 

a Gaussian plane wave propagating in a free-space is first investigated. Then, diffracted 

and scattered fields from several dielectric objects are simulated and investigated. To 

demonstrate accuracy, far-field radar cross sections (RCS) of canonical objects using the 

near-to-far-field transformation technique [3] are calculated and compared with exact 

solutions and results obtained by other numerical methods.  

In each case, unless it is stated, the source is a Gaussian pulse plane wave, given 

by 

* Reprinted with permission from “A Propagator analysis of transmission line on an 

inhomogeneous substrate” by J. Shin and R. D. Nevels, 2017, Microwave and Optical Technology 

Letters, vol. 59, pp. 1411-1416, Copyright 2017 by John Wiley and Sons. 

* Reprinted with permission from “A time-domain Propagator numerical method for 

computational electromagnetics” by J. Shin and R. D. Nevels, 2018, IEEE Journal on Multiscale 

and Multiphysics Computational Techniques, vol. 3, pp. 80-87, Copyright 2018 by IEEE. 
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 
2

exp ( 4 ) /sE n     
 

                                            (5.1) 

where n is the time step and 10  . 

 

5.2 One-Dimensional Examples 

As the first 1-D example, a lossless dielectric slab having a width of 5 cm, a 

permittivity of 2 04  , and permeability of 2 0   is investigated. The x-polarized 

electric field along with the y-directed magnetic field is excited by a Gaussian wave 

propagating along positive z-axis. The numerical space contains 300 grid cells equally 

divided between the three sections, the dielectric slab and the free space regions on either 

side. The numerical grid size ∆z and time increment / t z c  are respectively taken to 

be 0.5 mm and 1.668 ps. 

Fig. 5.1 illustrates a comparison of a Gaussian pulse propagated 600 and 700 time 

steps with the Propagator method and the FDTD method. In the Propagator method, the 

previous time fields in the dielectric slab are extrapolated and the fields at the dielectric-

free space interfaces are computed by the boundary condition equations (3.7)-(3.8). In the 

FDTD case, a simple average of the dielectric constants for two different regions is applied 

on the dielectric interfaces. The pulse computed with the Propagator method equations 

reflected and refracted at the dielectric boundaries as expected without visible dispersion, 

whereas the wave calculated with FDTD showed numerical dispersion errors. Fig. 5.2 

shows a comparison of reflection coefficients obtained with the Propagator method, the 

FDTD method and the exact solution. The reflection coefficients are acquired by Fourier 
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transformation during a single 2,000 time step run of the propagator code. As shown in 

Fig. 5.2 and Table 5.1, when compared with the exact solution, the Propagator method 

reflection coefficients have an accuracy of up to five decimal places. Moreover, in the 

higher frequency range, the Propagator method results are more accurate than the FDTD, 

specifically by 2.16 % at 14 GHz and 3.7 % at 17 GHz. With respect to a computation 

time, the Propagator method takes about 20 % more time, than the FDTD does because of 

additional terms in (2.40) and extrapolating terms (3.2) that are stored in the memory. 

However, the Propagator method provides very accurate results due to its unique grid 

meshing and the field coincidence in time and space. 

 

 

                            (a)                                                                   (b) 

Figure 5.1:  Comparison of total electric field response between the Propagator and FDTD 

at (a) 600 time steps and (b) 700 time steps. 
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Figure 5.2:  Comparison of reflection coefficients for the lossless dielectric slab r( 4)  

with the Propagator method, FDTD, and exact solution. 

 

 
Reflection coefficients Computation 

Time [s] At 14 GHz At 17 GHz 

Theoretical 0.539602 0.541019  

Propagator 0.539594 0.541013 1.0127 

FDTD 0.551273 0.561073 0.8441 

 

Table 5.1: Comparison of reflection coefficients and computation time with the Propagator 

method, FDTD, and exact solution. 

 

Fig. 5.3 illustrates a comparison between the Propagator method and the exact 

reflection coefficient for plane wave incidence on a lossy dielectric slab having a 

conductivity of 0.1 S/m , a dielectric constant of  r 4  (real part) and the same width 

employed in the previous example. Here the numerical grid size and numerical time 

increment are respectively chosen to be ∆z = 0.25 mm and ∆t = 0.834 ps. The results are 

obtained by the 1-D lossy Propagator method equations [20]. As shown in Fig. 5.3, good 

agreement with the exact results for a broad frequency range is observed.  
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Figure 5.3:  Comparison of reflection coefficients for the lossy dielectric slab ( r 4  and 

0.1 S/m ) with the Propagator method and exact solution. 

 

The 1-D Propagator equation can be extended to various transmission line 

problems. As the first example, we investigate a behavior of a pulse excited on a 

transmission line with multiple dielectric substrates. Fig. 5.4(a) shows a transmission line 

configuration with two lossless sections, one having Teflon substrate with permittivity of 

1 02.1   and permeability of 1 0  , and the other having RT/duroid substrate with 

permittivity of 2 03.48   and permeability of 2 0  . The distributed inductance is 

taken to be 0.167 H/mL   in two sections and the capacitance is chosen to be  

0.14 nF/mC   in the first section and 0.232 nF/mC   in the second section. Figs. 5.4(b) 

and (c) show the rectangular and Gaussian pulses with an initial amplitude of 1 V, having 

propagated after 150 and 488 time steps. Rectangular and Gaussian pulses were chosen in 

order to determine the effectiveness of the Propagator method at two extremes in signal 

input, discontinuous and slowly varying. The total length of the transmission line is 10 cm 
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with 400 grid cells equally divided between the two substrates. The numerical grid size is 

therefore 0.025 cm z  and the numerical time increment ∆t is 0.834 ps. 

In the first substrate, the dielectric constant is r1 2.1 , so in one numerical time 

step ∆t the pulse propagates the physical spatial increment 1 r1/ 0.69l z z     . When 

the leading edge of the incident pulse intersects the material interface at 200z z  , it 

experiences partial reflection and transmission into the second medium where r2 3.48 . 

The reflection coefficient 0.126  is calculated numerically by taking the ratio of the 

peak values of the reflected and incident pulses. The transmitted pulse propagates with a 

different velocity so the physical distance traveled in this medium in one numerical time 

step is 2 r2/ 0.536l z z     . The transmission coefficient T 0.874  is obtained by 

taking the ratio of the transmitted and incident pulse amplitudes. The computed reflection 

and transmission coefficients are accurate up to four decimal places when compared with 

the exact results although not shown here.  

Also, as shown in Fig. 5.4(b), the sharp discontinuities in the leading and trailing 

edges of the rectangular pulse created in Teflon substrate region experience Gibbs 

phenomenon when encountering the dielectric discontinuity at the boundary with 

RT/duroid substrate, as expected to occur in actual practice. Both the rectangular pulse 

and the Gaussian pulse diffract, reflect, and propagate through the 400 cell numerical 

distance on the transmission line with two dielectric material substrates without 

distinguishable numerical dispersion.  
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       (a) 

 

        (b) 

 

        (c) 

Figure 5.4:  (a) Configuration with two sections of transmission line with different 

dielectric substrates, r1 2.1  and r2 3.48  , and time history of (b) rectangular pulse 

and (c) Gaussian pulse. 
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Another example is a transmission line with three sections, a Gallium nitride (GaN) 

substrate with a dielectric constant of r2 8.9  and relative permeability of r1 1   is 

sandwiched between two silicon dioxide (SiO2) substrates with dielectric constant of 

r1 3.9  and relative permeability of r2 1 . All three sections have an equal distributed 

inductance 0.167 H/mL  , and a center section with a capacitance 0.593 nF/mC   is 

sandwiched between two end sections with 0.26 nF/mC  . Here the center section is 

assumed to be a lossy transmission line with a distributed resistance R and the two end 

sections are lossless. As in the first example, the spatial and time increments are 

respectively 0.025 cm and 0.834 ps. The total transmission line is numerically discretized 

with 600 grid points and its length is 15 cm equally divided into three sections. Figs. 5.5(b) 

and (c) show comparisons of the analytical and propagator numerical reflection and 

transmission coefficients versus frequency for a low-loss, 0.1 /m R , and a high-loss, 

100 /m R , center section. The broad band frequency domain reflection and 

transmission coefficient results are obtained by Fourier transformation of the voltage 

during a single time domain run of the propagator code with a Gaussian excitation function. 

As expected, the maximum reflection coefficient 0.39   and minimum transmission 

coefficient T 0.92  for a low-loss line occur in odd multiples of a quarter wavelength 

width of the GaN substrate section. Zero reflection and maximum transmission T 1  

occur when the width of the GaN section is a multiple of a half wavelength. The 

Propagator method and exact results for both low-loss and high-loss cases shown in Figs. 

5.5(b) and (c) give excellent agreement over the frequency range 0-15 GHz.  
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 (a) 

   

 (b) 

  

(c) 

Figure 5.5:  (a) Configuration with three sections of transmission line, and comparison 

between analytical and Propagator method (b) reflection coefficients and (c) transmission 

coefficients versus frequency when R=0.1 Ω/m and R=100 Ω/m. 
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5.3 Two-Dimensional Examples 

Recall that the 2-D numerical expression for the time-domain Propagator method 

cannot be an exact expression, therefore it is expected to have a small numerical dispersion 

error. In the following, we first generate a plane wave source and observe the manner I 

which propagates in free space. Then we insert several dielectric objects into a numerical 

space and investigate how the incident plane wave diffracts and scatters from the objects.  

Fig. 5.6 illustrates propagation of the Gaussian plane wave excited by (5.1) with  

15  , which is chosen to minimize numerical dispersion error. Fig. 5.6(a) is the 

generated Gaussian pulse plane wave in 2-D numerical space and Fig. 5.6(b) is the time 

history of the propagating plane wave in x-directed cut. As shown in Fig. 5.6(b), the 

generated Gaussian plane wave propagates as expected without visible numerical 

dispersion. 

 

 

(a)      (b) 

Figure 5.6: (a) Excited Gaussian pulse plane wave and (b) time history of a traveling plane 

wave in free space in a 1-D x-directed cut at 80, 130, and 180 time steps.   

 



 

113 

 

We have simulated the plane wave pulse propagation in free space. We next insert 

several different dielectric objects into a numerical space for the 2-D TMz mode. As the 

first example, a dielectric rectangular cylinder having a dielectric constant of  r 4   and 

a relative permeability of r 1  is positioned at the center. Fig. 5.7 illustrates the excited 

Gaussian plane wave along with the rectangular cylinder and the simulation of the total, 

incident, and scattered electric field interacting with it at 120n   time steps. The entire 

numerical region and the cylinder are respectively discretized with 100 100  and 40 40  

in x- and y-axis. The electric and magnetic fields in the dielectric region are extrapolated 

by (3.2) and the average dielectric constant of the two materials is used on the interfaces. 

As shown in Fig. 5.7, when the plane wave pulse interacts the cylinder, a portion of it 

travels through it, some go around, and some of it scatters from the cylinder as expected.  

 

 

                                (a)            (b) 

Figure 5.7: (a) Generated Gaussian plane wave with the centered rectangular dielectric 

cylinder r( 4)  in a numerical region and (b) the total, incident, and scattered electric 

field at 120 time steps. 
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The computed total electric field is then compared with the result acquired by 

FDTD. A comparison between the Propagator method and FDTD method total electric 

fields in terms of time steps is illustrated in Fig. 5.8. The numerical time step in both cases 

is taken to be / ( 2 )  t c  and the fields are collected in front of the object along the 

center axis. Good agreement is observed as shown in Fig. 5.8. 

 

Figure 5.8: Comparison of time history of total electric field by the rectangular dielectric 

cylinder r( 4)  between the Propagator method and FDTD results. 

 

The next example is a circular dielectric cylinder, which has a dielectric constant 

of r 4  and a curved material boundary. To simulate the plane wave pulse interacting 

with the dielectric circular cylinder, a simple in-or-out approach is used to determine the 

material property. Each cell is ‘in’ a dielectric region if the distance from the dielectric to 

the center of the cell is less than a cell radius, or ‘out’ if it is larger than a cell radius. The 

numerical space is discretized with 100 100  cells and the cylinder radius r is 15 grid cells. 

As shown in Fig. 5.9, the plane wave diffracts and scatters from the cylinder as expected.  
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(a)      (b) 

Figure 5.9: (a) Generated Gaussian plane wave with the centered circular dielectric 

cylinder r( 4)  in a numerical region and (b) the interacted total electric field from the 

cylinder at 120 time steps. 

 

In the following, we compute the normalized bistatic RCS in terms of observation 

angle ϕ for several 2-D dielectric objects. The total-field / scattered-field formulation 

discussed in chapter 4 is implemented in the Propagator method code and the far-field 

RCS is obtained by the near-to-far-field transformation [3]. 

Consider first a square dielectric cylinder having a dielectric constant of r 4  

and a side length 0 /a   . Fig. 5.10 shows a computed RCS between the Propagator 

method and FDTD method for a plane wave scattered from a square cylinder. The source 

is a Gaussian plane wave, TM to z and propagating in the x-direction. The numerical 

spatial increment is chosen to be 1.06 cmx y     and numerical time step is taken to be  

/ ( 2 )t c    and / (2 )t c    respectively for the Propagator method and FDTD 

method. The total numerical space and the cylinder are respectively discretized with 

150 150  and 30 30  cells. The numerical space is truncated by the UPML [3] for the 
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FDTD and the null boundary condition for the Propagator method. For computation of the 

fields on the interfaces, a simple average dielectric constant of two regions was used in 

both the FDTD and Propagator method codes. In the Propagator method, when computing 

the current time fields, the previous time fields positioned in the dielectric area including 

the interfaces are extrapolated by (3.2) with r 4 . As shown in Fig. 5.10, the proposed 

Propagator method algorithm and FDTD are in very good agreement. Regarding the 

computation time it was 2.574 s for the Propagator method and 2.528 s for FDTD in 800 

time step run. In many situations, a drawback of the Propagator method is that, due to 

additional terms in the numerical expression and the field extrapolation procedure in the 

dielectric material, up to 10 % more computation time is required than with the FDTD. 

However, as mentioned earlier, the Propagator method fields at each grid point can be 

directly meshed with other equations of science, thus avoiding errors and additional 

computation caused by averaging the fields in space and time, as does the FDTD. 

 

Figure 5.10: Normalized bistatic RCS of a rectangular dielectric cylinder r( 4 ,

0 / )a   : comparison of the 2-D TMz Propagator method solution with the FDTD results. 
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In this example, we compute the normalized far-field RCS of the square dielectric 

cylinder with a dielectric constant of r 4  and a side length 00.2a   for the transverse 

to z electric (TEz) case, where the vector field components are zH , xE , and yE . A 

comparison of computed RCS for the square cylinder between the Propagator method and 

MoM results [42] is shown in Fig. 5.11. Each component of the fields is computed by the 

2-D TEz Propagator equations (2.55). The numerical space and the cylinder are 

respectively discretized with 200 200  and 40 40  cells. The computed Propagator 

method RCS gives excellent agreement with the MoM results as shown in Fig. 5.11. We 

note that, unlike the TM case, for the previous time fields on the interfaces, extrapolating 

with an average dielectric constant of two mediums gives better results. Based upon our 

numerous simulations, in the case where the electric field normal to the boundary exists, 

the previous time field located on the interface would need to be extrapolated with an 

average dielectric constant of two dielectric materials. 
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Figure 5.11: Normalized bistatic RCS of a rectangular dielectric cylinder r( 4,  

00.2 )a  : comparison of the 2-D TEz Propagator method solution with the MoM results. 

 

Next, we present second example comparing the Propagator method and MoM, 

the computation of RCS of a thin dielectric slab. Fig. 5.12 shows the comparison of the 

normalized bistatic RCS between the Propagator method and Richmond’s MoM results 

[43] for the thin dielectric slab having a dielectric constant of r 4 , a thickness of 

0T 0.05 , and a width of 0W 2.5 . The grid size of a numerical space is taken to be  

1.25 cmx y     and the dielectric slab is discretized with 200 4  grid cells in x-, and 

y-direction. As seen in Fig. 5.12, there is very good agreement between the two methods 

even at o0  edge on incidence.   
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(a) 

 

(b) 

Figure 5.12: Normalized bistatic RCS of a dielectric slab r( 4)  with a finite thickness 

and width at (a) normal and (b) grazing incidence: comparison between the 2-D TMz 

Propagator method and Richmond’s results. 
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We next investigate the case where there is curvature in a material boundary. Fig. 

5.13 shows a comparison between the Propagator method and exact analytical RCS results 

for a dielectric circular cylinder having a dielectric constant r 2  and a radius 00.1r 

modeled with 30 grid points. Our conformal technique presented in section 3.3 is 

embedded in the Propagator code to compute the previous time field at grid points on the 

intersection between the two regions. As shown in Fig. 5.13, the Propagator method RCS 

is in excellent agreement with the analytical solution. The accuracy of the Propagator 

method is attributed to the fact that each grid point is the center of a cell and is shared by 

an additional four neighboring cells in 2-D and an additional six in 3-D. Each cell will 

intersect the grid point from a different direction and, when the grid point is near the 

boundary, will contain a different portion of the cylinder, thus providing an average shape 

and position of the local cylinder boundary. 

 

Figure 5.13: Normalized bistatic RCS of a rectangular circular cylinder r 0( 2,  0.1 ) r  : 

comparison of the 2-D TMz Propagator solution with the exact solution. 
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5.4 Three-Dimensional Examples 

Based upon the numerical dispersion analysis, the 3-D Propagator method 

numerical expressions (2.52)-(2.53) are subject to have numerical errors. We first observe 

propagation of a Gaussian pulse plane wave excited by (5.1) using the 3-D Propagator 

equations (2.52)-(2.53). In (5.1), the value   is chosen to be 15   to minimize 

numerical dispersion. We simulate the incident pulse in free space with an x-polarized 

electric field and a y-directed magnetic field, yielding travel in the positive z-direction. 

Fig. 5.14 exhibits the time history of a propagating plane wave in a z-directed cut. 

Referring to Fig. 5.14(b), the incident field amplitude at 160 time steps is slightly 

decreased by 0.89 % due to numerical dispersion, and the pulse requires 30 time 

increments, from 130n   to 160 time steps, to propagate 17 grid cells in z-direction, from 

41 z  to 58 , which shows that the velocity in 3-D free space is (17 / 30 )pv t c     

with the 3-D numerical time step 3D / ( 3 )t c   . 

  

(a)                                                                 (b) 

Figure 5.14: Time history of a Gaussian plane wave traveling to z-axis in free space by the 

3-D Propagator method. 
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Next we insert a dielectric cube to investigate how the pulse interacts with the 

object. The dielectric cube having a dielectric constant of r 4  and a relative 

permeability of r 1  is positioned at the center of a numerical space 60 60 60   grid 

points, and it is discretized with 20 20 20   grid points. Fig. 5.15 illustrates the scattered  

xE  field, total minus incident field, from the cube in x-z, y-z, and x-y plane views through 

the center. 

 

   

(a)       (b) 

 

(c) 

Figure 5.15: The electric field scattered from a centered dielectric cube ( r 4 ) in (a) the 

x-z, (b) y-z, and (c) x-y planes through the center of the box. 
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Fig. 5.16 shows the normalized bistatic x-z plane RCS in x-z plane and y-z plane 

of a 3-D dielectric cube with a dielectric constant of r 4 , at the frequency where each 

side has a length 00.3a  . The Propagator method results are compared with those 

acquired by the MoM [44] and hybrid FEM-MoM [44]. An incident Gaussian pulse plane 

wave is traveling in z-direction and is x-polarized, with a y-directed magnetic field. The 

numerical spatial increment and time step are respectively taken to be  

0.5 cmx y z       and / ( 3 ) .t c   The numerical space and cube are discretized 

with 150 150 150   and 60 60 60   grid cells, respectively. Good agreement between the 

three set of results is observed in Fig. 5.16, although as expected MoM provides greater 

accuracy in the deep null. It was found that the 3-D structure requires a finer grid 

discretization than the 2-D case. 

 

5.5 Summary 

In this chapter, numerical examples were presented in 1-D, 2-D, and 3-D and the 

validity and accuracy of the time-domain Propagator method was demonstrated. In 1-D, 

both lossless and lossy cases were considered, and the computed reflection and 

transmission coefficients showed excellent agreement with the exact results. In the 2-D 

and 3-D cases, it was showed that the computed RCS of dielectric objects having both flat 

and curved boundaries via the proposed algorithm were in good agreement with the 

theoretical results and other numerical methods including the FDTD, MoM, and hybrid 

FEM-MoM.  
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   (a) 

 

  (b) 

Figure 5.16: Normalized bistatic RCS of a dielectric cube ( r 4 , 00.3a  ) in (a) x-z 

plane o( 0 )  and (b) y-z plane o( 90 ) : comparison of the 3-D Propagator solution 

with the hybrid FEM-MoM and MoM results. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 We proposed the complete full-wave time-domain Propagator method numerical 

algorithm for electromagnetic fields.  The Propagator method is a numerical evaluation of 

an exact solution to Maxwell’s equations in a homogeneous region. The derivation of the 

compact integral form of propagator and Green’s functions in all dimensions has been 

reviewed. Based on the derived analytical form of the Green’s function propagator, 

numerical equations in 1-D, 2-D, and 3-D have been obtained by numerically evaluating 

the volume integral containing the Green’s function propagator and initial field product. 

It has been shown that the 1-D solution is both an exact analytical and numerical solution. 

The 2-D and 3-D propagator solutions have been numerically approximated by evaluation 

of surface integrations and partial derivatives over the causal boundary, respectively a 

circle and a sphere. The ideal 2-D and 3-D numerical expressions have been found by an 

analysis of the numerical dispersion relations and stability conditions.  

A primary advantage of the Propagator method is that all electromagnetic field 

components are computed at each numerical grid point and at the same numerical time. 

Due to the spatiotemporal coincidence of the field, the 1-D boundary equations were 

derived and a simple and effective first-order ABC, described as the null boundary 

condition, was obtained. A conformal boundary condition that takes into account the ratio 

of areas in 2-D or volumes in 3-D occupied by different dielectric regions have been 

applied to the proposed method. It has also been shown that the numerical spatial and time 
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increments can be maintained throughout an inhomogeneous space lattice by applying 

Newton’s third-order backward difference interpolation in time with three consecutive 

time intervals. This extrapolation technique can be simply extended to higher relative 

permittivity by moving the time intervals farther back in time.  

Numerical dispersion relations have been derived, and it was shown that in free 

space the 1-D numerical equation has no dispersion, whereas the 2-D and 3-D equations 

have small dispersion errors, which can be minimized by use of finer sampling. Based on 

the numerical dispersion relations, stability conditions were investigated and consequently 

provided additional coefficients in the 2-D and 3-D numerical expressions.  

The total-field/scattered-field technique was formulated and incorporated into the 

Propagator method grid mesh. The advantages of implementing the TFSF formulation are: 

a robust plane wave source excitation, a null ABC, a wide computational range, and a 

significant reduction in the number of computations. 

Numerical examples have been presented that demonstrate the validity of the 

proposed Propagator numerical method. It was shown that the 1-D examples provide 

excellent agreement with exact solutions, up to three to four decimal points, for both 

lossless and lossy structures. In the 2-D and 3-D cases, electromagnetic wave propagation 

and scattering from canonical dielectric objects has been investigated. Accuracy was 

demonstrated by comparing the Propagator method RCS of several dielectric objects, 

including both flat and curved boundaries, with exact solutions and the results computed 

by other numerical methods. It is expected that the proposed method can be used to solve 
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any electromagnetic problem that can be solved by the other standard numerical 

techniques such as MoM, FDTD and FEM.  

 

6.2 Recommendations for future research 

Although we have developed Propagator method numerical expressions and 

related methods necessary for its numerical implementation in all three dimensions, many 

issues still remain. First, the boundary condition for dielectric and perfect electric 

conductor, which has been implemented in 1-D, to 2-D and 3-D cases must be extended. 

The conformal boundary conditions presented here enabled us to compute the 

electromagnetic fields in inhomogeneous dielectric regions, however special techniques 

or the development of tangential and normal boundary conditions in 2-D and 3-D cases 

are required to handle interfaces and edges of PEC surfaces.  

In 2-D and 3-D, we have simulated electromagnetic propagation in free space and 

in a simple dielectric media. However, there are many cases that have a loss term specified 

by the conductivity. In a lossy dielectric media, although the 1-D Propagator equations 

have been derived and verified in [20], due to the complications in the evolution operator 

matrix, 2-D and 3-D numerical equations have not yet been developed. Therefore the 

operator matrix and Green’s function propagator adding a loss term into Maxwell’s 

equations must be solved.  

An effective and viable time-domain numerical method should have the capability 

to analyze wave propagation in a dispersive material. Generally, frequency-domain 

methods are better suited to handle frequency dependent material than are time-domain 
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methods. However, in order to display the time evolution of wave propagation, frequency-

domain codes must be run many times in order to cover the frequency spectrum of an input 

signal. The FDTD method has been applied to dispersive media with a piecewise recursive 

convolution method developed by Lubbers et.al. [45], [46]. Debye, Lorentz and Drude 

dispersive media models with the recursive linear interpolation must be incorporated in 

the Propagator method. This will include mathematical development as well as numerical 

implementation.  

It is also suggested that applications where Schrödinger’s equation for quantum 

mechanics and bio-heat equation for biological applications involve the electromagnetic 

field should be investigated. The Propagator method mesh having all fields at each grid 

point and coincident in time is well suited for combining with those equations along with 

mathematical models. These multi-disciplinary applications could include the interaction 

of a quantum dot and the plasmonic dipole antenna with Schrödinger’s equation [47]‒[51] 

or designing of a microwave heart catheter for ventricular ablation applications adding the 

bioheat equation [6], [52], [53]. 
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