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ABSTRACT 

 

Correlative ecological niche models (ENMs) are essential for investigating distributions 

of species and natural phenomena via environmental correlates across broad fields, including 

entomology and pyrogeography featured in this study. Feature (variable) selection is critical for 

producing more robust ENMs with greater transferability across space and time, but few studies 

evaluate formal feature selection algorithms (FSAs) for producing higher performance ENMs. 

Variability of ENMs arising from feature subsets is also seldom represented. A novel FSA is 

developed and evaluated, the random subset feature selection algorithm (RSFSA). The RSFSA 

generates an ensemble of higher accuracy ENMs from different feature subsets, producing a 

feature subset ensemble (FSE). The RSFSA-selected FSEs are novelly used to represent ENM 

variability.  

Wildfire activity presence/absence databases for the western US prove ideal for 

evaluating RSFSA-selected MaxEnt ENMs. The RSFSA was effective in identifying FSEs of 15 

of 90 variables with higher accuracy and information content than random FSEs. Selected FSEs 

were used to identify severe contemporary wildfire deficits and significant future increases in 

wildfire activity for many ecoregions.  

Migratory roosting localities of declining eastern North American monarch butterflies 

(Danaus plexippus) were used to spatially model migratory pathways, comparing RSFSA-

selected MaxEnt ENMs and kernel density estimate models (KDEMs). The higher information 

content ENMs best correlated migratory pathways with nectar resources in grasslands. Higher 

accuracy KDEMs best revealed migratory pathways through less suitable desert environments. 
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Monarch butterfly roadkill data was surveyed for Texas within the main Oklahoma to 

Mexico Central Funnel migratory pathway. A random FSE of MaxEnt roadkill ENMs was used 

to estimate a 2-3% loss of migrants to roadkill. Hotspots of roadkill in west Texas and Mexico 

were recommended for assessing roadkill mitigation to assist in monarch population recovery. 

The RSFSA effectively produces higher performance ENM FSEs for estimating optimal 

feature subset sizes, and comparing ENM algorithms and parameters, and environmental 

scenarios. The RSFSA also performed comparably to expert variable selection, confirming its 

value in the absence of expert information. The RSFSA should be compared with other FSAs for 

developing ENMs and in data mining applications across other disciplines, such as image 

classification and molecular bioinformatics. 
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NOMENCLATURE 

AUCbgp Area Under the Curve (AUC) background/presence accuracy statistic; 

default AUC calculation of MaxEnt software environment using 

background and presence data as absences 

AUCdiff Model overfitting statistics calculated as training AUC (AUCtrain) minus 

testing AUC (AUCtest) 

AUCpa AUC presence/absence accuracy statistic; calculated outside of MaxEnt 

software environment using absence data as absences  

AUCpsa AUC presence only accuracy statistics; calculated outside of MaxEnt 

software environment using pseudoabsence data  

AUCpa_wrappertrain AUCpa wrapper train; derived from wrapper model training data; used in 

calculating wrapper data overfitting (see AUCpa_diff_wrapper) and 

evaluating wrapper data underfitting in conjuction with AUCpa_wrappertest 

AUCpa_wrappertest AUCpa wrapper test; derived from wrapper model testing data; random 

subset feature selection algorithm (RSFSA) wrapper for ranking models  

AUCpa_finaltrain AUCpa final train; derived from final model testing data; used in 

calculating final data overfitting (see AUCpa_diff_final) and in evaluating 

final data underfitting in conjunction with AUCpa_finaltest 

AUCpa_finaltest AUCpa final test; derived from final model testing data; used for 

evaluating RSFSA selected model performance 
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AUCpa_diff_wrapper AUCpa difference wrapper; derived from wrapper model data; model 

overfitting statistic calculated as AUCpa_wrapperrtrain minus AUCpa_wrappertest; 

smaller values optimal; RSFSA wrapper for ranking models 

AUCpa_diff_final AUCpa difference final; derived from final model training and testing 

data; calculated as AUCpa_finaltrain minus AUCpa_finaltest; used for 

evaluating RSFSA selected model performance 

AUCtest AUC derived from model testing data 

AUCtrain AUC derived from model training data; model underfitting is indicated 

when both AUCtrain and AUCtest are low 

AET Actual Evapotranspiration 

AICc Corrected Akaike Information Criterion (AIC) calculated for GLM and 

Glmnet models using null deviance and model fit deviance 

AICcbg Corrected Akaike Information Criterion (AIC) background statistic; 

niche model complexity and information statistic calculated from 

background point data (proposed in this study); smaller values optimal 

AICcbg_reg Corrected Akaike Information Criterion (AIC) background statistic- 

regression calculated; niche model complexity and information statistic 

calculated for a GLM or Glmnet model using a regression equation 

relating AICc to AICcbg for comparison with MaxEnt AICcbg 

AICcbg_wrapper AICcbg from wrapper model data; RSFSA wrapper for ranking models 
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AICcbg_final AICcbg from final model training data; used for evaluating RSFSA 

selected model performance 

BEE Background Evaluation Extent; area from which wildfire model training 

and testing data is derived; model projections less certain outside of this 

area 

CSME Climate Scenario Model Ensemble; assembly of niche models differing 

only in the climate scenario from which they were developed 

ENM Ecological Niche Model; a correlational ENM is the spatial projection of 

the distribution of a species or natural phenomenon on the basis of 

correlation between occurrence points and environmental features using 

a computer algorithm. 

ETRT Evapotranspiration Ratio; AET/PET 

Filter Search criterion in feature selection that does not require computation of 

the induction algorithm (e.g., classification algorithm) for which the 

features are being selected. An example filter is intervariable correlation. 

FSA Feature Selection Algorithm; an algorithm designed to search through a 

larger set of variables to find a smaller subset of more relevant and less 

redundant variables for improving performance of an induction 

algorithm, such as for classification or regression. 

FSE Feature Subset Ensemble; assembly of niche models differing only in the 

variable subsets from which they were developed 

GCM General circulation model for future climate scenarios 
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HE Hadley Global Environmental Model 2 – Earth System GCM 

KDE Kernel Density Estimate; nonparametric spatial point pattern method for 

analyzing a point intensity surface; often used with animal telemetry data 

for assessing frequency of utilization of an area and defining animal 

home ranges 

KDEM Kernel Density Estimate Model; KDE normalized from zero to one and 

calibrated using TSS 

MAE Multi-Algorithm Ensemble; assembly of niche models differing only in 

the classification algorithm from which they were developed 

MRSFS Multiple Randomized Sequential Forward Selection; type of sequential 

search strategy in feature selection involving multiple iterations of 

random sequential forward selection (SFS) 

MPE Model Parameter Ensemble; assembly of niche models differing only in 

the model parameters for the classification algorithm from which they 

were developed 

MTBS Monitoring Trends in Burn Severity; historical burn severity records 

PET Potential Evapotranspiration 

RCP Representative Concentration Pathway for CO2 future climate scenarios 

RSFSA Random Subset Feature Selection Algorithm; ensemble hybrid 

filter/wrapper feature selection algorithm using an unsupervised 

correlation filter and various subset wrappers (such as AUCpa_wrappertest or 



 

xii 

 

AICcbg_wrapper) for selecting and ranking models produced from variable 

subsets  

RSS Random Subset Selection; type of randomized search strategy in feature 

selection involving ranking the performance of randomly generated 

variable subsets 

SBS Sequential Backward Selection; type of sequential search strategy in 

feature selection that starts from many features and reduces to fewer 

features 

SFS Sequential Forward Selection; type of sequential search strategy in 

feature selection that starts from one to few features and builds to more 

features 

SWD Samples With Data format used for more rapid calculation of MaxEnt 

models using point presence and background data rather than raster data 

TSE Training Set Ensemble; assembly of niche models differing only in the 

training set data from which they were developed 

TSSpa True Skill Statistic presence/absence; calculated using absence data as 

absences; used for calibrating binary presence absence niche models  

TSSpsa TSS calculated using pseudoabsence data as absences; used for 

calibrating binary presence only niche models 

Wrapper Search criterion in feature selection algorithm that is derived from 

executing the induction algorithm (e.g., for classification) for which the 

features are being selected. The feature selection algorithm is said to be 
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“wrapped” around the induction algorithm when wrappers are utilized. 

An example wrapper is the accuracy of the induction model. 

β Beta regularization multiplier for determining restrictiveness of L1 

regularization in MaxEnt models, “0” equals no L1 regularization (no 

restrictions on model parameters), progressively higher numbers equals 

greater L1 regularization (high restriction on model parameters)  
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CHAPTER I  

INTRODUCTION* 

Overview 

Correlational ecological niche models (ENMs) are an important landscape ecological tool 

in spatially projecting species habitats from the relationship of occurrence points with 

environmental conditions and resources (Elith and Leathwick, 2009a; Franklin, 2010). The 

ENMs have wide applications in diverse fields of study, including invasive species (Elith, 2017), 

conservation (Elith and Leathwick, 2009b, Franklin, 2013), endangered species (Fitzgerald et al., 

2018), epidemiology (Escobar and Craft, 2016), phylogeography (Alvarado‐Serrano et al., 2014; 

Gavin et al. 2014), biological control (Mukherjee et al., 2012), global change (Hijmans and 

Graham, 2006; Ehrlén and Morris, 2015; Beaumont et al., 2015), agriculture (Beck, 2013; 

Hannah et al., 2013), forestry (Meentemeyer et al., 2008), taxonomy (Raxworthy et al., 2007), 

and restoration (Pollack et al., 2012). Although ENMs are most often employed in modeling the 

distribution of species (species distribution models), they are also used to model the spatial 

distribution of natural phenomena, such as wildfire activity (pyrogeography; Parisien et al., 

2012), migratory movement (Williams et al., 2017), and road mortality (Ha and Shilling, 2018), 

all three of which are used as case studies in this investigation. Applications for ENMs cross 

many taxa of biological disciplines, including (from most to least examples using the MaxEnt 

ENM algorithm), botany, herpetology, mammalogy, ornithology, entomology, bryology, 

arachnology, and ichthyology (Bradie and Leung, 2016). This investigation develops new  

 
* Background section modified with permission from Appendix A, Introduction, of Tracy JL, Trabucco A, Lawing 
AM, Giermakowski T, Tchakerian M, Drus GM, Coulson RN (2018) Random subset feature selection of ecological 
niche models for wildfire activity in western North America. Ecological Modelling 383:52-68. Copyright 2018 
Ecological Modelling. 
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presence/absence dataset of wildfire activity in western North America. The tools are then 

applied in entomological studies of fall migratory and roadkill phenomena for the declining 

monarch butterfly (Danaus plexippus). 

The choice of variables in ENMs is critical in that it can strongly influence model 

outcomes, sometimes to a greater degree than various landscape scenarios under study, such as 

climate change scenarios (Synes and Osborne, 2011). Consequently, the development of more 

robust ENMs requires methods to (1) select more optimal variables (feature selection) and (2) 

account for the variability arising from selected features (Synes and Osborne, 2011; Porfirio et 

al., 2014). Formal feature selection algorithms (FSAs) are well developed in the disciplines of 

text mining, image classification, and bioinformatics (Jović et al., 2015), but less extensively 

investigated for ENMs (but see Gobeyn et al., 2017). Feature selection is a data mining tool for 

screening large sets of features to find a smaller set of features with higher relevancy and lower 

redundancy that can improve the performance of various types of analyses, such as classification, 

regression, and clustering (Jović et al., 2015). Feature selection stands in contrast to feature 

extraction, such as principal components analysis, which achieves similar objectives through 

ordination of variables along orthogonal axes and retaining only the first few axes that explain 

the most variation in the dataset. Feature selection preserves the original variables, which can 

facilitate clearer interpretation of variable influence in the model (Guyon and Elisseeff, 2003; 

Jović et al., 2015). Although many studies have employed some form of feature selection for 

ENMs (see Background below), few have evaluated a formal FSA on ENM performance, and 

developed methods to account for ENM variability resulting from feature selection. In this study, 

a novel ensemble random subset feature selection algorithm (RSFSA) tool is developed for 

ENMs that is similar to the random sets feature selection method developed for image 
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classification (Garcia et al., 2006). This new tool is formally tested with the popular MaxEnt 

algorithm ENM (Phillips et al., 2006; Bradie and Leung 2016) for its ability to both improve 

model performance and represent model variability resulting from different feature subsets.  

Background 

The basic terminology of variable selection criteria and variable search strategies used in 

feature selection is reviewed below in the context of niche modeling, particularly for MaxEnt, 

and the proposed novel ensemble random subset feature selection algorithm. 

Selection Criteria  

Feature selection algorithms are divided into four approaches based on the types of 

selection criteria: (1) filter methods, (2) wrapper methods, (3) embedded wrapper methods, and 

(4) hybrid filter-wrapper methods (John et al., 1994; Kohavi and John, 1997; Somol et al., 2010; 

Tang et al., 2015, Jović et al., 2015). A filter criterion is derived from the data prior to running a 

niche model, while a wrapper criterion is derived from the results of the niche model (the FSA is 

said to be “wrapped” around the model; John et al. 1994), requiring much more time for 

computation. Embedded wrappers are wrappers integrated within a model, such as occur in the 

algorithms of MaxEnt and random forests. Hybrid filter-wrapper methods combine filters and 

wrappers for feature selection (Jović et al., 2015; Tang et al., 2015).  

Various types of filters are used to screen for the redundancy or relevancy of individual 

variables (univariate filters) or several variables (multivariate filters). An unsupervised filter is 

used to screen variables irrespective of the labeled class data (e.g., presence versus absence). An 

example is an unsupervised correlation filter that reduces variable redundancy by excluding any 

variables from a feature subset above a certain correlation threshold with the other variables. 

Such correlation filters have been used in conjunction with wrappers in several hybrid filter-
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wrapper feature selection approaches using MaxEnt (e.g., Lahoz-Monfort et al., 2010; Bellamy 

and Altringham, 2015). Supervised filters screen for variable relevancy using criteria for 

distinguishing between labeled class data, such as species presence versus absence from a 

location. For example, a supervised filter can rank individual variables based on assessing the 

mutual information of variable values with respect to presence versus absence classes (Guyon 

and Elisseeff, 2003; Liu and Yu, 2005).  

In contrast to filters, wrappers for ranking variable relevancy are derived from the 

computation of the niche model algorithm. Although they require increased computation time, 

wrappers are much more effective than filters in feature selection for optimizing model 

performance (Jović et al., 2015). A common example of a wrapper is a classification accuracy 

statistic used to rank the relevancy of an individual variable (univariate wrapper) or several 

variables (multivariate wrapper). Several variable selection strategies for MaxEnt have employed 

univariate wrappers derived from jackknife runs of the model with a single variable (singlet 

wrapper, this study), with all variables except for a single variable (leave one feature out, LOFO, 

wrapper; Liu et al., 2013b), or both (e.g., Parolo et al., 2008; Yost et al., 2008; Bradley et al., 

2010; Lahoz-Monfort et al., 2010; Bellamy and Altringham, 2015; Jueterbock et al., 2016; Zeng 

et al., 2016). Specific univariate wrappers used for ranking environmental variables with MaxEnt 

include the area under the curve (AUC) accuracy statistic (Parolo et al., 2008; Lahoz-Monfort et 

al., 2010; Bellamy and Altringham, 2015), the corrected Akaike information criterion (AICc) 

complexity statistic (Zeng et al., 2016), variable percent contribution statistic for the model 

(Jueterbock et al., 2016), training gain (Yost et al., 2008), and restrictiveness of the model 

projection area, requiring additional computation for model projection (Bradley et al., 2010).  
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Only a few studies have employed multivariate wrappers in feature selection with 

MaxEnt (e.g., Halvorsen et al., 2015, 2016; Jueterbock et al., 2016). Halvorsen et al. (2015, 

2016) utilized the R package MIAmaxent for performing both univariate and multivariate 

wrapper selections for MaxEnt models in two main stages. In the first stage, a univariate leave 

one feature out wrapper is used to evaluate each individual derived variable that MaxEnt 

generates from a given environmental variable (e.g., various linear, quadratic, threshold and 

hinge features; Wilson, 2009). In the second stage, a multivariate wrapper is used to evaluate 

entire sets of derived variables for a given environmental variable selected during the first stage. 

The wrappers used in both stages consists of an F-test statistic comparing the model made from 

leaving out single or multiple derived variables to models that include the left-out variables.  

Embedded wrappers are wrapper search criteria which are built into the niche model 

algorithm. They facilitate more rapid assessment of the effect of a variable on model 

performance, accomplishing feature selection and model fitting simultaneously (Tang et al., 

2015). The GARP niche model includes an embedded wrapper of the intrinsic correct 

classification rate (Anderson et al., 2003). Random forests and classification and regression trees 

(CART) also include embedded wrappers (Jović et al., 2015), and are commonly used in species 

distribution modeling (Elith and Leathwick, 2009a; Mi et al., 2017). The MaxEnt algorithm 

incorporates lasso L1 regularization of model variable coefficients for feature selection (Phillips 

and Dudík, 2008), which is a type of embedded wrapper (Tang et al., 2015). The embedded 

wrapper of MaxEnt is regarded as generally effective in feature selection for smaller sets of 

variables, but screening of larger sets is advised prior to using MaxEnt (Elith et al., 2011).  

Search Strategies  
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Search strategies for optimal models in feature selection algorithms are generally 

categorized as (1) exponential (or complete), including exhaustive search; (2) sequential, and (3) 

randomized (Liu and Yiu, 2005; Jović et al., 2015). Verbruggen et al. (2013) used an exhaustive 

search algorithm (Maxent Model Surveyor) for calculating wrappers of AUC on all possible 

subsets of eight variables (i.e., all variable subsets ranging from one to eight in size; 28 -1 = 255 

subsets). The latest version of the Maxent Model Surveyor (v.1.07) also calculates the AIC and 

Bayesian Information Criterion (BIC) (Verbruggen, 2017). Exhaustive exponential search 

strategies are generally not practical for large sets of variables. For example, there are 4.6 x 1016 

possible combinations of unique 15-variable subsets that can be made from 90 variables.  Other, 

more complex, exponential search algorithms can reduce the search effort, such as branch and 

bound (Liu and Yu, 2005), but they do not appear to have been used with niche modeling. In 

contrast to the exhaustive search strategy, the sequential and randomized search strategies 

discussed below cannot identify the uniquely most optimal features, but they represent a more 

rapid practical heuristic approach of identifying features that approach optimal from a large set 

of features (Jović et al., 2015).  

Feature selection for larger variable sets with MaxEnt and other niche models have 

typically involved sequential search strategies of either (1) sequential forward selection (SFS) 

(e.g.; Halvorsen et al., 2015, 2016), (2) sequential backward selection (SBS) (e.g., Yost et al., 

2008; Jueterbock et al., 2016; Zeng et al., 2016), or (3) a combination of the two (e.g.; Mouton et 

al., 2009; Bradley et al., 2010; Lahoz-Monfort et al., 2010; Bellamy and Altringham, 2015). In 

SFS, a variable or set of variables are added to a variable subset by trial and error to satisfy a 

wrapper criterion, such as increased model accuracy or reduced complexity. In SBS, the 

screening process proceeds in reverse, with an individual variable or set of variables removed 
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from a larger set of variables in accordance with a wrapper criterion. The R package 

MaxentVariableSelection utilizes an SBS search strategy with the multivariate wrapper criterion 

of relative variable contribution score and a wrapper for correlation with the highest contributing 

variable at each step (Jueterbock et al., 2016). These sequential search strategies are affected by 

the order in which variables are evaluated, and they are potentially subject to becoming trapped 

in local minima from choosing the best variable subset at the moment (Liu and Motoda, 1998; 

Jović et al., 2015). A variety of more sophisticated and time-consuming sequential search 

algorithms, such as sequential forward floating selection, can better avoid entrapment in local 

minima (Mayer et al., 2000; Liu and Yu, 2005; Somol et al., 2010), but they do not appear to 

have been implemented for niche modeling. 

The randomized search strategy that is used in this study incorporates randomness into 

the search procedure and can avoid entrapment in local minima that can occur with a sequential 

search strategy (Jović et al., 2015). In addition, the randomized search strategy facilitates 

exploration of a wider selection of variable subset combinations more quickly than possible with 

exclusively sequential search strategies described above, especially when using parallel 

processing (Breiman, 2001; Garcia et al., 2006). There are a wide variety of random search 

algorithms, such as the genetic algorithm (Liu and Yu, 2005). The GARP model incorporates an 

embedded genetic algorithm for ensemble niche modeling and has been widely used (Stockwell 

and Peters, 1999; Anderson et al., 2003). Simple genetic algorithms have also been used for 

feature selection with a variety of types of niche models of aquatic organisms, including decision 

trees (e.g., D’heygere et al., 2003) and habitat suitability index models (e.g., Gobeyn et al., 

2017). The random forests algorithm also uses a randomized search strategy for its embedded 

ensemble feature selection (Breiman, 2001).  The proposed random subset feature selection 
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algorithm in this study incorporates a type of randomized search strategy, here referred to as 

random subset selection (RSS), that Garcia et al. (2006) proposed for the random sets feature 

selection method (for details, see Chapter II and Appendix A, Methods, RSFSA). 

Types of Niche Modeling Ensembles  

At least five types of ensembles are used to represent niche model variability (Araújo and 

New, 2007; revised nomenclature here): (1) multi-algorithm ensembles (MAEs; Schumann et al., 

2009; Model Classes of Araújo and New, 2007), which only differ in the classification 

algorithm, such as MaxEnt versus random forests (e.g., Marmion et al., 2009); (2) training set 

ensembles (TSEs; Rokach 2005; Initial Conditions of Araújo and New, 2007), for which models 

differ only in the training data (e.g., bagging; Breiman 1996); (3) climate scenario model 

ensembles (CSMEs; part of Boundary Conditions of Araújo and New, 2007), a combination of 

models solely differing in climate scenarios, such as various General Circulation Models 

(GCMs), or variations of a given GCM, and CO2 emission scenarios (e.g., Beaumont et al., 2007, 

2008); (4) model parameter ensembles (MPEs; Model Parameters of Araújo and New, 2007), in 

which models differ only by the specified parameters of either the classification algorithm (e.g., 

beta regularization multiplier for MaxEnt) or component features (e.g., variable coefficients); 

and (5) feature subset ensembles (FSEs; Aly and Atiya, 2006; part of Boundary Conditions of 

Araújo and New, 2007), an assembly of models differing only in the feature subsets from which 

they were developed. Combinations of types of ensembles are often employed in niche 

modeling. The MAEs, TSEs, and CSMEs are probably most commonly used to represent niche 

model variability for deterministic niche models (same input features and training data always 

produces same results), such as MaxEnt (e.g., Zhang et al., 2015). Various stochastic niche 

models (same input features and training data produce different results) with built-in ensemble 
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feature selection (producing several models or model combinations) produce a combination 

MPE/TSE/FSE, such as Genetic Algorithm for Rule-set Production (GARP; Stockwell and 

Peters, 1999), GARP with Best Subsets (Anderson et al., 2003), and random forests (Breiman, 

2001). This study appears to be the first to solely employ FSEs in niche modeling. 

Objectives 

The main objectives of the study are to (1) demonstrate the novel ensemble RSFSA as a 

tool for developing higher performance ENMs from wildfire activity presence/absence data and 

illustrate the innovative use of FSEs to represent ENM variability (Chapter II); (2) establish the 

usefulness of RSFSA with typical pseudoabsence data for ENMs, comparing them with a novel 

KDE model for identifying monarch fall migratory pathways (Chapter III); and (3) illustrate the 

use of random FSEs developed using the correlation filter portion of the RSFSA for representing 

variability in ENMs of monarch fall road mortality where there is insufficient data to utilize the 

entire RSFSA (Chapter IV). 

In the first study (Chapter II) a large dataset of presence/absence data of wildfire activity 

in the western US serves ideally for demonstrating the ability of RSFSA to select wildfire 

activity ENMs with significantly improved performance (e.g., higher accuracy and information 

content) compared to random models using model training and testing data held out from the 

RSFSA. The RSFSA is also used in this study to identify a roughly optimal feature subset size 

(number of variables per model) beyond which little is gained in terms of model performance. 

Top ranked variables selected by RSFSA from an unusually large pool of 90 initial variables are 

compared to important variables identified in previous wildfire activity model studies. The utility 

of FSEs is demonstrated for characterizing variability in statistical comparisons of ENM 

performance among parameterizations of various regression-based ENM algorithms, including 
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MaxEnt, General Linear Models (GLM), and Glmnet algorithms. A combination of frequency of 

variable appearance in RSFSA selected FSEs and MaxEnt variable permutation importance is 

uniquely used to identify important influential variables for ENMs. In addition, FSEs are 

employed in statistically comparing wildfire activity ENMs from various current and future 

climate scenarios. Contemporary wildfire deficit maps derived from the wildfire activity FSEs 

are used to display widespread areas of high wildfire susceptibility across western North 

America. The FSEs of future climate wildfire activity ENMs reveal significant differences 

among current and future climate scenarios for specific ecoregions. 

In the second study (CHAPTER III), the use of RSFSA is further demonstrated in 

developing MaxEnt ENMs using pseudoabsence (presence only) data for monarch overnight 

roosts to identify fall migratory pathways of eastern monarch butterflies. The RSFSA results are 

also used to identify potentially important variables influencing migratory pathways. The 

migratory MaxEnt FSE facilitates a unique detailed comparison with performance characteristics 

of a substantially different novel spatial migratory model, a spatial point pattern Kernel Density 

Estimate model (KDEM), derived from spatial patterns rather than environmental correlates. The 

FSE of the MaxEnt ENM is utilized to facilitate a statistical comparison with a KDEM TSE.  

In the third study (CHAPTER IV), the stand-alone value of the multiple random 

sequential forward selection portion of the RSFSA is demonstrated for building random variable 

subsets of less than |0.7| correlation for developing an FSE to characterize variability in results of 

a MaxEnt monarch autumn roadkill ENM from Oklahoma to Mexico. In addition, the FSE is 

used in ranking average permutation importance of variables in the different roadkill ENMs. The 

results are used to recommend a roadkill mitigation assessment for monarch conservation. 
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CHAPTER II  

RANDOM SUBSET FEATURE SELECTION  FOR ECOLOGICAL NICHE MODELS OF 

WILDFIRE ACTIVITY IN WESTERN NORTH AMERICA*  

Synopsis 

Variable selection in ecological niche modeling can influence model projections to a 

degree comparable to variations in future climate scenarios. Consequently, it is important to 

select feature (variable) subsets for optimizing model performance and characterizing variability. 

A novel random subset feature selection algorithm (RSFSA) for niche modeling is used to select 

an ensemble of optimally sized feature subsets of limited correlation (|r| < 0.7) from 90 climatic, 

topographic and anthropogenic indices, generating wildfire activity models for western North 

America with higher performance. Monitoring Trends in Burn Severity and LANDFIRE wildfire 

data were used to develop thousands of MaxEnt, GLM and Glmnet models. The RSFSA-selected 

models performed better than random models, having higher accuracy (Area Under the Curve 

statistic; AUC), lower complexity (corrected Akaike Information Criterion; AICc), and, in some 

cases, lower overfitting (AUCdiff). The RSFSA-selected MaxEnt quadratic/hinge (β-

regularization 2) feature models generally had higher AUC and lower AICc outperforming other 

niche model parameterizations and methods. Feature subset ensembles of RSFSA-selected 15-

variable MaxEnt quadratic/hinge models were used to characterize variability in projected areas 

of large wildfires for three burn severities under current, 2050, and 2070 climate scenarios. 

Expert screening of variables before RSFSA did not improve model performance. Widespread  

 
 
* Modified with permission from Tracy JL, Trabucco A, Lawing AM, Giermakowski T, Tchakerian M, Drus GM, 
Coulson RN (2018) Random subset feature selection of ecological niche models for wildfire activity in western 
North America. Ecological Modelling 383:52-68. Copyright 2018 Ecological Modelling. 
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contemporary wildfire deficits and projected regional changes in wildfires highlight the need to 

manage fuel loads and restore natural fire regimes. The RSFSA is valuable for optimizing niche 

model performance and generating feature subset ensembles to characterize model variability 

across niche models of various feature subset sizes, modeling methods, and climate scenarios.  

Introduction 

Projected climate changes over the next century may increase the likelihood of large 

wildfires in western North America (Stavros et al., 2014; Barbero et al., 2015; Liu and 

Wimberly, 2016; Parks et al., 2016), impacting a variety of ecosystems (Guyette et al., 2014) and 

associated anthropogenic landscapes (Schoennagel et al., 2017). In addition, a broad-scale trend 

of anthropogenically decreased global fire activity has recently been detected (Andela et al., 

2017).  Niche modeling techniques serve as important tools in spatial modeling of current 

wildfire activity, including binomial logistic regression (Kalabokidis et al., 2002; Barbero et al., 

2014), MaxEnt (Parisien and Moritz, 2009; Parisien et al., 2012), boosted regression trees (Parks 

et al., 2015; Liu and Wimberly, 2015, 2016), random forests (Liu and Wimberly, 2016), and 

Gaussian linear regression (Robinne et al., 2016).  Several of these niche models have been used 

in projecting future increased trends in wildfire activity in western North America (Barbero et 

al., 2015; Parks et al., 2016; Liu and Wimberly, 2016). Higher quality niche models of wildfire 

activity at finer resolution are needed to better identify areas of decreased fire activity where 

action can be taken to restore more natural fire regimes and reduce wildfire risks to human 

assets. Both the selection of appropriate predictor variables and taking into account the effects of 

different sets of predictors are critical in developing better niche models of wildfire activity for 

both current and future climate scenarios. 
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The choice of predictor variables can produce great variability in niche model outcomes 

(Beaumont et al., 2005; Synes and Osborne, 2011; Braunisch et al., 2013; Harris et al., 2013; 

Porfirio et al., 2014). Synes and Osborne (2011) found that dissimilarities in outcomes due to 

different variable sets can be greater than dissimilarities resulting from niche model projections 

of different future climate scenarios. They concluded that dissimilar outcomes resulted in an 

unmanageable level of uncertainty in projections of both current and future climate niche 

models. In order to address this issue, they stressed the importance of developing better methods 

of selecting predictor variables and better representation of niche model variability related to 

variable selection. However, there is no standard for researchers to determine appropriate 

variable sets. For example, the size of variable sets of future wildfire activity models developed 

for the western US range in number from five variables (selected on the basis of previous 

studies) (Parks et al., 2016), to 28 variables, screened using a boosted regression trees model 

(Liu and Wimberly, 2016). 

 This study investigates a novel formal feature selection algorithm for screening and 

selection of variables to improve ecological niche modeling performance.  A variety of strategies 

have been previously employed in feature (variable) selection (also known as Input Variable 

Selection, IVS; Galelli et al., 2014) for niche modeling, especially using MaxEnt (e.g., Bradley 

et al., 2010; Halvorsen et al., 2015, 2016; Jueterbock et al., 2016; Zeng et al., 2016), which 

additionally includes a built-in feature selection strategy (Phillips et al., 2006). However, there 

are few examples of feature selection for niche modeling being characterized in the context of a 

formal feature selection algorithm (FSA; e.g., Jović et al., 2015; but see Gobeyn et al., 2017). An 

FSA is a data-mining tool for selecting a subset of variables with high relevancy and low 

redundancy for improving performance and efficiency of a variety of analyses, such as 



 

14 

 

classification, regression, and clustering (Jović et al., 2015). The smaller variable sets identified 

through feature selection can produce niche models with reduced complexity and overfitting, 

which can increase model generalization and transferability across space and time (Jiménez-

Valverde, et al. 2008; Warren and Seifert, 2011; Verbruggen et al., 2013; Moreno-Amat et al., 

2015). In addition, lower redundancy among variables can also facilitate model transferability 

(Dormann et al., 2013). Lower numbers of variables also reduce model computation time and 

facilitate interpretation (Jović et al., 2015).  

Several authors have drawn attention to the need for characterizing the variability of 

current and future climate niche models arising from the choice of predictor variables in order to 

produce more robust forecasts (e.g., Synes and Osborne, 2011; Porfirio et al., 2014).  However, 

characterization of feature-related niche model variability is seldom done, and this is made 

another focus of the study. Combinations of models that differ only in the feature subsets from 

which they were developed are known as feature subset ensembles (FSEs; Aly and Atiya, 2006; 

part of Boundary Conditions of Araújo and New, 2007). This study is the first to formally 

employ stand-alone FSEs in niche modeling. The feature subset ensembles are utilized to 

represent niche model variability arising from different predictor sets and facilitate comparisons 

across (1) different niche modeling methods for a given current climate scenario, and (2) climate 

scenarios for a given niche modeling method (see Chapter I, Background, for a more detailed 

review of feature selection and ensemble types in the context of niche modeling).   

The large set of fire presence and absence data for western North America is ideally 

suited for demonstrating new techniques involving both the application of a novel formal feature 

selection algorithm for niche modeling, and the representation of niche model variability arising 

from predictors through the use of feature subset ensembles. The available 31-year historical fire 
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data includes large fires of three burn severities (low, moderate, and high) that are not mutually 

exclusive within an area over such a long period, making them suitable for development of 

separate niche models. Separate niche models for each of the three burn severities also illustrate 

uncertainty in the type of burn severity projected for a given area. In addition, individual niche 

models for each burn severity, rather than a single multinomial model for all three burn 

severities, facilitates the development and evaluation of new ensemble feature selection 

techniques for commonly employed two-class regression-based niche modeling methods. These 

methods include presence-only MaxEnt niche models and presence/absence binomial logistic 

regression GLM and Glmnet niche models. Both MaxEnt and GLM have been previously 

utilized in spatial modeling of wildfire activity. MaxEnt is one of the most commonly used 

presence-only niche modeling methods (Elith et al., 2006; Merow et al., 2013), and it is 

particularly suitable for projecting the likelihood of fires in areas that may not have burned 

during a study period (e.g., Parisien and Moritz, 2009; Parisien et al., 2012). The lasso L1 

regularization of model variable coefficients built into MaxEnt (Phillips and Dudik, 2008) is 

generally effective in feature selection for smaller sets of variables. However, additional 

screening of larger variable sets is advised (Elith et al., 2011). To this end, the ability of a novel 

feature selection algorithm to identify smaller subsets of potentially important variables from a 

larger and more varied initial set of features than used for previous wildfire activity models is 

demonstrated, including 90 variables from the categories of climatic, topographic and 

anthropogenic indices. Many of these indices have been previously identified as important in 

wildfire activity models (e.g., Kalabokidis et al., 2002; Parisien and Moritz, 2009; Dillon et al., 

2011; Liu and Wimberly, 2016). The proposed novel FSA utilizes a randomized search strategy 

involving screening a large number of niche models developed from random feature subsets of 
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limited correlation and of a given size (e.g., Garcia et al, 2006). The algorithm identifies a 

feature subset ensemble of high performance niche models. The selected feature subset 

ensembles are employed to represent niche model variability in statistical comparisons of 

wildfire activity niche modeling results across various modeling methods and climate scenarios. 

This study has three main objectives: (1) demonstrate the ability of a novel random subset 

feature selection algorithm (RSFSA) (e.g., Garcia et al., 2006) to improve performance of 

wildfire activity models for western North America; (2) employ an innovative use of RSFSA-

selected feature subset ensembles in niche modeling to characterize wildfire activity model 

variability and provide a basis for comparing both niche modeling methods and model 

projections across climate scenarios; and (3) analyze ecoregion level projections of wildfire 

activity for three different burn severity classes (low, moderate, and high) under current and 

future 2050 and 2070 climate scenarios for both low and high estimates for CO2 emissions over 

western North America. 

Methods 

Study Area 

The study site consisted of the region in the western coterminous United States from 

which fire occurrence data (see below) was available for fires larger than 405 ha (generally west 

of ca. -93.5ºW longitude) (Figure II.1). This region was used as the background evaluation extent 

(BEE) for model training and evaluation. In order to incorporate portions of ecoregions 

extending across the US border into Mexico and Canada into the wildfire activity models, the 

projection area was extended beyond the background evaluation extent to include northern 

Mexico (generally north of ca. 16ºN latitude) and a portion of southwestern Canada (generally
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1. California Coastal Sage, 
Chaparral, and Oak 
Woodlands 

2. Southern and Baja California 
Pine-Oak Woodlands 

3. Central California Valley 
4. Coast Range 
5. Willamette Valley 
6. Strain of Georgia/Puget 

Lowland 
7. North Cascades 
8. Cascades 
9. Klamath Mountains 
10. Easter Cascades Slopes and 

Foothills 
11. Sierra Nevada 
12. Sonoran Desert 
13. Mojave Desert 
14. Central Basin and Range 
15. Northern Basin and Range 
16. Snake River Plain 
17. Middle Rockies 
18. Idaho Batholith 
19. Blue Mountains 
20. Colombia Plateau 
21. Columbia Mountains/North 

Rockies 
22. Canadian Rockies 
23. Northwestern Glaciated 

Plains 
24. Aspen Parkland/Northern 

Glaciated Plains 
25. Northwest Great Plains 

26. Wyoming Basin  
27. Nebraska Sandhills 
28. Western Cornbelt Plains 
29. Flint Hills 
30.  Central Great Plains 
31. High Plains 
32. Southern Rockies 
33. Colorado Plateaus 
34. Wasatch and Uinta 

Mountains 
35. Arizona/New Mexico 

Plateau 
36. Arizona/New Mexico 

Mountains 
37. Madrean Archipelago 
38. Chihuahuan Desert 
39. Southwest Tablelands 
40. Edwards Plateau 
41. Cross Timbers 
42. Texas Blackland Prairies 
43. East Central Texas Plains 
44. South Central Plains 
45. West Gulf Coastal Plain 
46. South Texas Plains 
47. Piedmonts and Plains  
48. Sierra Madre Occidental  
49. Sinoloa and Sonora Hills 

and Canyons 
50. Thompson-Okanogan 

Plateau 
51. Pacific and Nass Ranges 
52. Chilcotin Ranges and Fraser 

 

Figure II.1. Selected western US Level I and Level III Ecoregions (numbered; CEC 2005) over MaxEnt wildfire activity model 
projection area, including background evaluation extent within continental US for model training and evaluation (dark outline) 
(Tracy et al., 2018b). 
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south of ca. 58ºN latitude). In the interest of analyzing results across a commonly accepted 

ecoregion classification scheme for North America, projected burned areas were calculated for 

53 Commission for Environmental Cooperation (CEC, 2005) Level III ecoregions (46 within the 

background evaluation extent) that are encompassed by nine CEC Level I ecoregions (Figure 

II.1).  

Fire Occurrence Data 

Monitoring Trends in Burn Severity (MTBS, 2016) and LANDFIRE (2016) data was 

combined to obtain spatial occurrences of large wildland fires generally greater than or equal to 

405 ha in extent for each of the 31 years from 1984 to 2014. The MTBS data were derived from 

correlations of Landsat satellite derived spectral indices with ground-based burn severity indices 

(Key and Benson, 2006; Eidenshink et al., 2007; Finco et al., 2012). Data on prescribed fires was 

excluded from both databases in order to analyze only wildland fires. Raster wildfire 

presence/absence data for three burn severities of low, moderate and high at 30 m resolution 

were spatially aggregated to point data at 1 km resolution. All point data were spatially filtered to 

produce a minimum 10 km distance between points (e.g., Boria et al., 2014) in order to reduce 

spatial autocorrelation and the associated inflation of model performance (Veloz, 2009; 

Radosavljevic and Anderson, 2014) (Figure II.2) (for further details on burn severity classes and 

resampling burn data, see Appendix A, Methods, Fire Occurrence Data).  

Wildfire Activity Models 

Environmental Variables  

A total of 90 environmental predictor variables at one km resolution were assembled for 

model input, including 57 climatic indices, 16 topographic indices, and 17 anthropogenic indices
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B A C 

Figure II.2. Western continental US Level I and Level III Ecoregions (see Figure II.1 for number key; CEC 2005) and one km 
resolution rasters of low (A), moderate (B), and high (C) burn severity large wildfires from 1984 to 2014 that were aggregated 
from 30 m resolution Monitoring Trends in Burn Severity (MTBS) and LANDFIRE data rasters. Inset of raster data converted 
to fire presence points for wildfire activity niche model training and evaluation over the background evaluation area (Tracy et 
al., 2018b). 
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Table II.1. Ninety environmental predictor indices (30 arc second, one km resolution) used in 
developing MaxEnt wildfire activity models with 15 of 90 variables for three burn severities 
(Tracy et al., 2018b). 

Variable Index (Source) 
Grid Name 

Abbreviationa 

Variable Frequency in Four Selected 
Models for Each Burn Severity 

 
Low  

Mod-
erate  High 

Total 
 (% of 180)b 

57 Climatic Indices (for 1960–1990 derived from WorldClim [2017] of Hijmans et al. [2005]) 

19 Bioclim Indices (WorldClim, 2017) 
Annual mean temperature bio_1* 0 2 0 2 (1.1) 
Mean diurnal range (mean of monthly 
TMAX – TMIN) bio_2 1 1 1 3 (1.7) 
Isothermality (bio_2/bio_7) (× 100) bio_3 1 1 1 3 (1.7) 
Temperature seasonality (standard 
deviation × 100) bio_4 0 0 1 1 (0.6) 
Maximum temperature of warmest 
month bio_5* 0 0 0 0 (0.0) 
Minimum temperature of coldest 
month bio_6 0 0 0 0 (0.0) 
Temperature annual range (bio_5 – 
bio_6) bio_7 0 2 1 3 (1.7) 
Mean temperature of wettest quarter bio_8 1 1 3 4 (2.2) 
Mean temperature of driest quarter bio_9 3 2 1 6 (3.3) 
Mean temperature of warmest quarter bio_10* 0 0 0 0 (0.0) 
Mean temperature of coldest quarter bio_11 0 0 0 0 (0.0) 
Annual precipitation bio_12 0 0 0 0 (0.0) 
Precipitation of wettest month bio_13 0 0 0 0 (0.0) 
Precipitation of driest month bio_14* 1 0 1 3 (1.7) 
Precipitation seasonality (coefficient 
of variation) bio_15 0 0 3 3 (1.7) 
Precipitation of wettest quarter bio_16 0 0 0 0 (0.0) 
Precipitation of driest quarter bio_17 0 2 0 2 (1.1) 
Precipitation of warmest quarter bio_18 0 0 0 0 (0.0) 
Precipitation of coldest quarter bio_19* 1 0 0 1 (0.6) 
Subtotal  8 11 12 31 (17.2) 
19 Supplementary Climatic (suppclim) Indicesc,d 
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Table II.1. Continued.  

Variable Index (Source) 
Grid Name 

Abbreviationa 
Variable Frequency in Four Selected 

Models for Each Burn Severity 

Annual mean minimum temp. of 
coldest month (TMIN) tmin_ann* 0 0 0 0 (0.0) 

Quarterly mean monthly minimum 
temperature (4) 

tmin_winq, 
tmin_sprq*, 
tmin_sumq*, 
tmin_autq* 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
1 

0 (0.0) 
0 (0.0) 
0 (0.0) 
1 (0.6) 

Annual mean maximum temp. of 
warmest month (TMAX) tmax_ann* 0 0 0 0 (0.0) 

Quarterly mean monthly maximum 
temperature (4) 

tmax_winq*, 
tmax_sprq*, 
tmax_sumq*, 
tmax_autq* 

0 
0 
0 
1 

0 
0 
0 
0 

0 
0 
0 
0 

0 (0.0) 
0 (0.0) 
0 (0.0) 
1 (0.6) 

Annual mean monthly rainfall (P) 
(mm) prec_ann* 0 0 0 0 (0.0) 

Quarterly mean monthly rainfall 
(50%) (4) 

prec_winq*, 
prec_sprq*, 
prec_sumq*, 
prec_autq* 

1 
1 
3 
0 

0 
0 
3 
0 

1 
0 
2 
1 

2 (1.1) 
1 (0.6) 
8 (4.4) 
1 (0.6) 

Effective Warmth Index (from mean 
monthly temperatures × 10 above 5ºC) ew_indx 2 0 0 2 (1.1) 

Rivas-Martinez (RM) ombrothermic 
index (from monthly MTMP and P) ombro_index 0 0 0 0 (0.0) 
RM continentality index (TMAX – 
TMIN) × 10 (CONT) cont_index 2 0 1 3 (1.7) 
RM thermicity index (MTMP + 
TMX_COLD + TMN_COLD) × 10 therm_index 0 0 0 0 (0.0) 

Subtotal  10 3 6 19 (10.6) 

19 Actual and Potential Evapotranspiration (AET-PET) Indices (PET; Zomer et al., 2007; 
2008; AET; Trabucco and Zomer, 2010)d 
Total annual reference 
evapotranspiration from Hargreaves 
model (PETH) (mm) tpeth_ann 0 2 0 2 (1.1) 

Quarterly mean monthly PETH (4) 

peth_winq, 
peth_sprq*, 
peth_sumq*, 

peth_autq 

0 
0 
0 
1 

0 
0 
0 
0 

1 
0 
1 
1 

1 (0.6) 
0 (0.0) 
1 (0.6) 
2 (1.1) 
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Table II.1. Continued.  

Variable Index (Source) 
Grid Name 

Abbreviationa 
Variable Frequency in Four Selected 

Models for Each Burn Severity 
Thornwaite summer concentration 
thermal efficiency (summer 
PETH/annual PETH) × 1000 tpeths_tpetha 0 0 1 1 (0.6) 
Willmott and Feddema climate 
moisture index (from total annual 
PETH and PREC) × 1000 im_index 0 0 0 0 (0.0) 
Total annual actual evapotranspiration 
from Thornwaite-Mather water 
balance model (TMWBM) (AETT) 
(mm) taett_tann* 2 0 0 2 (1.1) 

Quarterly mean monthly AETT (4) 

aett_winq, 
aett_sprq*, 
aett_sumq*, 

aett_autq 

0 
0 
0 
1  

1 
3 
0 
0 

1 
1 
0 
1 

2 (1.1) 
4 (1.7) 
0 (0.0) 
2 (1.1) 

Total annual evapotranspiration ratio 
(AETT/PETH) × 10 etrt_ann 1 0 0 1 (0.6) 

Quarterly mean monthly AETT/PETH 
(4) × 1000 

etrt_winq, 
etrt_sprq, 
etrt_sumq, 
etrt_autq 

0 
1 
0 
0 

0 
1 
0 
0 

0 
1 
1 
0 

0 (0.0) 
3 (1.7) 
1 (0.6) 
0 (0.0) 

Modified Continentality index of 
Driscoll-Yee Fonge cont_dfmo 1 2 0 3 (1.7) 
Climate water deficit (tpeth_ann – 
taett_tann) cwd_ann* 1 0 0 1 (0.6) 

Subtotal  8 9 9 26 (14.4) 

16 Topographic Indices  
12 Geomorphologic Indices (derived from 15 arc second resolution HydroSHEDs grids of 
Lehner et al. [2008]; last 10 indices calculated using Geomorphometry and Gradient Metrics 
Toolbox for ArcGIS [Evans et al., 2014])d 

Elevation  elev* 3 1 3 7 (3.9) 

Slope slope* 3 4 4 11 (6.1) 
Martonne’s Modified Dissection 
Coefficient (Dissection, DISS), 3 km 
circular radius diss3kr* 2 1 1 4 (2.2) 
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Table II.1. Continued.  

Variable Index (Source) 
Grid Name 

Abbreviationa 
Variable Frequency in Four Selected 

Models for Each Burn Severity 

Topographic Position Index (TPI; = 
Slope Position Index, SPI), 3 km 
circular radius tpi3kr* 0 1 1 2 (1.1) 

TPI, 9 km circular radius tpi9kr 0 2 0 2 (1.1) 

TPI, 19 km circular radius tpi19kr 2 1 0 3 (1.7) 
Elevation Relief Ratio (ERR, = 
Surface Relief Ratio, SRR), 3 km 
circular radius err3kr* 1 0 0 1 (0.6) 
Compound Topographic Index (CTI, = 
Topographic Wetness Index, TWI) cti* 1 0 0 1 (0.6) 

Heat Load Index (HLI) hli* 0 1 2 3 (1.7) 

Integrated Moisture Index (IMI) imi 1 0 1 2 (1.1) 

Site Exposure Index (SEI) sei* 0 3 1 4 (2.2) 

Slope Cosine Aspect Index (SCAI) scai* 2 0 1 3 (1.7) 

Four Hydrogeomorphologic Indices (derived from 15 arc second resolution HydroSHEDs 
polyline river network shapefile of Lehner et al. [2008]) 

Distance to Streams (STRMDIST) strmdist* 0 1 0 1 (0.6) 
Distance to Low Flow Accumulation 
Areas (100–5,000 cells; 
STRMLOFLODIST) strmloflodist 1 0 0 1 (0.6) 
Distance to Medium Flow 
Accumulation Areas (5,000–60,000 
cells; STRMMDFLODIST) strmmdflodist 0 3 2 5 (2.8) 
Distance to High Flow Accumulation 
Areas (>60,000 cells; 
STRMHIFLODIST) strmhiflodist 11 2 3 6 (3.3) 
Subtotal  17 20 19 56 (31.1) 

17 Anthropogenic Indices 

11 Human Population Indices (popden; CIESIN [2016]; derived from popden, this study) 
Human Population Density per 1 km, 
Year 2000 (POPDEN) popden 0 1 1 2 (1.1) 
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Table II.1. Continued.  

Variable Index (Source) 
Grid Name 

Abbreviationa 
Variable Frequency in Four Selected 

Models for Each Burn Severity 

Mean POPDEN in 3 cell radius mnpopden3r 1 1 1 3 (1.7) 

Mean POPDEN in 9 cell radius mnpopden9r 0 1 0 1 (0.6) 

Mean POPDEN in 19 cell radius mnpopden19r 0 0 0 0 (0.0) 
Distance to POPDEN < 10, 
None/Sparse Rural Distance 
(SPRURDIS) sprurdist 2 1 1 4 (2.2) 
Distance to POPDEN 10 to <100, Low 
Rural Distance (LORURDIS) lorurdist 2 1 2 5 (2.8) 
Distance to POPDEN 100 to <200,  
Medium Rural Distance 
(MEDRURDIS) medrurdist 1 1 0 2 (1.1) 
Distance to POPDEN 200 to <300,  
High Rural Distance (HIRURDIS) hirurdist 1 0 0 1 (0.6) 
Distance to POPDEN 300 to <900, 
Low Urban Distance (LOURBDIS) lourbdist 0 2 0 2 (1.1) 
Distance to POPDEN 900 to <1,500, 
Medium Urban Distance 
(MEDURBDIS) medurbdist* 1 1 0 2 (1.1) 
Distance to POPDEN >= 1,500, High 
Urban Distance (HIURBDIS) hiurbdist 0 1 0 1 (0.6) 

Four Road Indices (roads of 1980 to 2010 from CIESIN and ITOS [2013]) 

Distance to Road (ROADDIST) roaddist* 0 1 0 1 (0.6) 
Road Density, km road per 3 km 
circular radius (ROADDEN3KR) roadden3kr 1 2 1 4 (2.2) 
Road Density, km road per 9 km 
circular radius (ROADDEN9KR) roadden9kr 2 0 2 4 (2.2) 
Road Density, km road per 19 km 
circular radius (ROADDEN19KR) roadden19kr 1 0 1 2 (1.1) 
Two Anthropogenic Land Cover Indices (for 2001 to 2005 from Tuanmu and Jetz [2014] and 
EarthEnv [2016]) 
Cultivated and Managed Vegetation 
Percent Cover per 1 km2 agric_lc* 4 4 4 12 (6.7) 
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Table II.1. Continued.  

Variable Index (Source) 
Grid Name 

Abbreviationa 
Variable Frequency in Four Selected 

Models for Each Burn Severity 
Urban/Built-up Percent Cover per 1 
km2 urban_lc 1 0 1 2 (1.1) 
Subtotal  17 17 14 48 (26.7) 
aAsterisks indicate 38 expert selected variables from previous studies (Table A.2). 
bTotal frequency of 15 variables times four models times three burn severities = 180 instances. 
cQuarters: winter- Jan, Feb, Mar; spring – Apr, May, Jun; summer – Jul, Aug, Sep; autumn – 
Oct, Nov, Dec. PREC = precipitation; TMAX = mean temperature of warmest month; TMIN = 
mean temperature of coldest month; TMAX_COLD = mean maximum temperature of coldest 
month; TMN_COLD = mean minimum temperature of coldest month. 
dFor additional sources of indices, see Table A.1. 
eIncorporates moisture correction factor of AET/PET × 10 (for details, see Appendix A, 
Methods, Wildfire Activity Models, Environmental Variables; Figure A.1) 

 

 

(Table II.1). To evaluate importance of different types of indices in wildfire activity models, 

indices were further divided into the eight subgroups (Table II.1). Parks et al. (2016) was 

followed in regarding climatic indices as proxies for potential vegetation, which simplified 

projection of vegetation under future climates. Parisien et al. (2012) found that omitting 

vegetation fuel percent cover from their MaxEnt wildfire activity models for the western US had 

negligible effect on model accuracy. Liu and Wimberly (2016), Dillon et al. (2011), and Parisien 

et al. (2012) were followed in including topographic and anthropogenic indices in addition to 

climatic indices in the wildfire activity models. The maximum absolute value of Spearman rank 

correlation among variables used in any given wildfire activity niche model was limited to 0.7 in 

order to reduce variable collinearity and improve model transferability (Dormann et al., 2013) 

(Figure A.2) (for additional information regarding the sources and calculations for indices, see 

Appendix A, Methods, Wildfire Activity Models, Environmental Variables). 
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Climate Scenarios 

The Hadley Global Environmental Model 2 – Earth System (HadGEM2-ES, or HE) 

General Circulation Model (GCM) (Jones et al., 2011) was chosen to simulate future climate 

scenarios for 2050 (average 2041–2060) and 2070 (average 2061–2080). Two CO2 

Representative Concentration Pathway (RCP) scenarios were chosen: RCP2.6 and RCP8.5, 

which represent the extremes of low and high concentrations in greenhouse gases, respectively. 

The 19 supplementary climate indices (suppclim) were calculated using one km resolution 

monthly gridded climate data for these scenarios available from WorldClim (2016). The monthly 

AET and PET climate indices layers needed to calculate the 19 AET-PET Indices were derived 

from future WorldClim (2017) layers according to methods of Zomer et al. (2007, 2008) and 

Trabucco and Zomer (2010). Topographic and anthropogenic indices were assumed constant 

over all climate scenarios (for additional details on climate scenarios, see Appendix A, Methods, 

Wildfire Activity Models, Climate Scenarios). 

Niche Models  

Wildfire activity niche models were developed for each of the three burn severity classes 

(i.e., low, moderate and high). Using top-selected niche models of each burn severity class, the 

current and future distributions of binary fire frequency classes were projected for the 1984–

2014 period: (1) ≤ 16.5 year mean fire interval (MFI, average number of years between fires), 

representing fire presence data; and (2) ≥ 31 years MFI, representing fire absence. The fire 

absence data represents “quasi-absence” data that is subject to stochasticity related to fire 

ignition events and some error of fire detection over the 31-year study period (e.g., Parisien and 

Moritz, 2009). The fire absence points were buffered to occur at least 20 km from fire presence 
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points in order to increase model sensitivity and minimize the percentage of true presences 

predicted as absences (e.g., Barbet-Massin et al., 2012).  

Niche models of several regression-based methods and parameterization complexities 

were developed for performance comparison using the feature subset ensembles developed from 

random subset feature selection (see Methods, Random Subset Feature Selection Algorithm). 

MaxEnt version 3.3.3 (Phillips et al., 2006) in R (R Core Team, 2018) dismo package (Hijmans 

et al., 2011) was used to develop presence-only niche models with various feature complexities: 

(1) linear features only, (2) linear and quadratic features with no interactions, (3) quadratic and 

forward and reverse hinge features (quadratic/hinge features), in which linear features were only 

used if hinge features were not used (models generally employed only hinge features), and (4) 

various levels of L1 regularization (various β regularization multiplication parameters from β1 to 

β40) with quadratic/hinge features (for details on analyses of β regularization parameter values, 

see Appendix A, Methods, Wildfire Activity Models, Niche Models, Model Parameters). In 

order to restrain potentially unnecessary MaxEnt model complexity, additional product and 

threshold features were not used. Presence/absence binomial logistic regression niche models 

were developed for GLM from the R dismo package and for Glmnet using the Glmnet R package 

(Friedman et al., 2010) with (1) linear and (2) orthogonalized linear/quadratic features. In order 

to simplify computations, only raw (non-orthogonalized) linear/quadratic feature Glmnet models 

were used when projecting to raster (performance did not differ between raw and orthogonalized 

Glmnet linear/quadratic models; Figure A.3). Model parameters and coefficients for final 

selected MaxEnt models were presented (Appendix B, Tables B.1-3), which is seldom done 

(Halvorsen 2013). 
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Model evaluation statistics, such as the True Skill Statistic (TSS) and Area under the 

Curve (AUC) (Fielding and Bell, 1997), were calculated with the R PresenceAbsence package 

(Freeman and Moisen, 2008) using fire presence/absence data (AUCpa). This approach to 

calculating AUC utilizes only the true fire absence data as absence data. In contrast, the default 

calculation of AUC carried out within the MaxEnt implementation of the R dismo package 

utilizes both random background data (AUCbg; Smith, 2013) and presence points (AUCbgp) as 

absence data. The corrected Akaike Information Criterion (AICc) for MaxEnt (Warren and 

Seifert, 2011) was calculated as a measure of model complexity and information content 

(Bozdogan, 1987). The typical calculation of AICc for MaxEnt, using the ENMeval R package 

(Muscarella et al., 2014), requires the time-consuming generation of a MaxEnt prediction raster. 

Consequently, an R script was developed to more rapidly calculate AICc for thousands of 

models using MaxEnt samples with data (SWD) mode predictions for background and training 

presence point data, representing background AICc, or AICcbg (for more details on calculation of 

AICcbg, see Appendix A, Methods, Wildfire Activity Models, Background Corrected Akaike 

Information Criterion). Values of AICc calculated using available methods for GLM and Glmnet 

models have different scales than either AICc or AICcbg calculated for MaxEnt models, making 

comparisons problematic. In order to facilitate an approximate comparison of AICc for these 

models, a linear calibration equation was derived under the assumption that AICcbg for MaxEnt 

β2 linear feature models was equivalent to AICc of GLM linear feature models using the same 

training data and numbers and types of variables (for further details see Appendix A, Methods, 

Wildfire Activity Models, Calibration of AICc Values between GLM, Glmnet and MaxEnt 

Models). All comparisons between niche modeling methods were made using the same training 

data and the same initial set of randomly generated variable subsets.   
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Top-selected models by RSFSA AUC ranking were calibrated using a random 2/3 of all 

data for training and 1/3 data for testing, selecting a threshold of maximum TSSpa (Liu et al., 

2013a) to yield a binary burned/unburned classification for the two mean fire intervals (fire 

presence or absence in 31 years). This same threshold was applied to wildfire activity models 

parameterized with variables of future climate scenarios. The top four selected binary wildfire 

activity models for each burn severity were combined by frequency consensus (cf., Porfirio et al., 

2014) to form feature subset ensembles. Different highly ranked variables in the selected niche 

models were compared across different climate scenarios in terms of their linear relationships 

with latitude across the study area (for additional details on model selection and variable 

rankings, see Appendix A, Methods, Wildfire Activity Models, Model and Variable Rankings) 

Contemporary Wildfire Deficit  

In contrast to the practice of Parks et al. (2015) for assessing wildfire surplus or deficit 

using wildfire activity modeling, areas with high human influence are included in training the 

models, which utilize additional anthropogenic and topographic variables. This allowed a 

contemporary wildfire surplus or deficit to be distinguished, which takes into account current 

anthropogenic influences. Relative differences between actual and projected burned areas are 

compared in order to estimate contemporary wildfire deficit and surplus for the ecoregions as 

defined by the Commission for Environmental Cooperation (CEC 2005). For each burn severity, 

a contemporary wildfire deficit/surplus rating map is developed through comparing the raster of 

historical fire presence with the model projected wildfire activity (for further details, see 

Appendix A, Methods, Wildfire Activity Models, Contemporary Wildfire Deficit Rating Maps).  
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Random Subset Feature Selection Algorithm  

The RSFSA was carried out in two stages: (1) the optimal feature subset size estimation 

stage, and (2) the variable subset selection stage, which includes statistical evaluation of the 

effectiveness of feature-selected versus random feature niche models (Figure II.3). Within each 

of these two stages were two phases employing differing feature selection criteria and search 

strategies: (1) the univariate filter phase, involving a sequential forward search strategy to build 

hundreds or thousands of random variable subsets of various sizes with the filter of an absolute 

value of Spearman’s rank correlation coefficient (|rs|) less than 0.7 (Dormann et al., 2013) 

between any variables of a subset, and (2) the subset wrapper phase, in which a random subset 

search strategy is utilized with wrappers of AUC or AICc to rank the performance of niche 

models developed from the randomly generated variable subsets with wrapper training and 

testing data. For evaluation of any feature selection algorithm, it is critical to use randomly 

partitioned final training and testing data (data used to evaluate performance of random versus 

feature selected niche models) which is held out from the wrapper training and testing data (data 

used for training, testing and ranking niche models with a test wrapper) in order to avoid 

selecting features performing better only for the model wrapper training and testing data (Kohavi 

and John, 1997). The final product of RSFSA is a feature subset ensemble niche model 

developed from top-ranked variable subsets of the selected size that perform better than random 

subsets (Figure II.3). Final RSFSA evaluation was replicated with 3 randomizations of wrapper 

training and testing and final training and testing data (Stracuzzi, 2007) to test the stability of the 

RSFSA to different sets of training data (Kalousis et al., 2007).  
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Figure II.3. Flowchart for random subset feature selection algorithm (RSFSA) to select 
environmental variable subsets for feature subset ensemble niche models (Tracy et al., 2018b). 
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The ensemble RSFSA is a hybrid filter-wrapper approach (c.f. Jović et al., 2015). The 

generation of random subsets of a given size and the ranking of these subsets by wrapper 

performance is incorporated in the modeling method as in Garcia et al. (2006). This RSFSA is 

novel in several ways, including (1) application of a correlation filter when building the random 

subsets, (2) estimating an optimal feature subset size, (3) using niche model AUC or AICc as 

wrappers for ranking subsets, and (4) selecting a feature subset ensemble model of top-selected 

subsets, rather than combining the variables from top-selected subsets. This RSFSA also differs 

from the random subset feature selection (RSFS) of Räsänen and Pohjalainen (2013), which 

ranks individual features (not feature subsets) by the wrapper performance of multiple random 

subsets in which they appear, pooling top ranked features into a single subset for subsequent 

modeling. The RSFSA was developed using R software that takes advantage of parallel 

processing in both the filter and wrapper phases to simultaneously generate and evaluate 

thousands of variable subsets for the different niche modeling algorithms (R code for RSFSA 

with MaxEnt, GLM and Glmnet, including Glmnet model raster prediction functions, available 

at https://github.com/jamesltracy/RSFSA_R). Alternative novel RSFSA variants were also 

developed and compared that use expert screened variables for MaxEnt quadratic/hinge (β2) low 

burn severity wildfire activity niche models (for details on RSFSA phases, stages, and variants, 

see Appendix A, Methods, Wildfire Activity Models, Random Subset Feature Selection 

Algorithm).  

The RSFSA-selected and random wildfire activity niche models were compared for three 

evaluation statistics: (1) higher accuracy as measured by testing AUC, AUCpa_finaltest; (2) 

relatively lower complexity and higher information content, as measured by lower AICcbg_final; 

and (3) lower overfitting of the training data, as measured by a lower difference between final 

https://github.com/jamesltracy/RSFSA_R
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training data, AUCpa_finaltrain, and final testing data AUCpa_finaltest, which yields AUCpa_diff_final 

(AUCtrain minus AUCtest; Warren and Seifert, 2011). Training AUC (AUCpa_finaltrain) was 

compared with testing AUC (AUCpa_finaltest) to evaluate underfitting among modeling methods. 

Relatively poor model accuracy for both the training data (AUCpa_finalrain) and testing data 

(AUCpa_finaltest) indicates a poorly fitted model (c.f. Harrell et al., 1996). The RSFSA allows the 

researcher flexibility in both stages to subjectively balance niche model underfitting, overfitting, 

and information content with the desired level of model complexity in terms of the selected 

numbers of environmental variables and derived parameters. 

Additional Model Assessment 

The post-RSFSA stage III involved final calibration of RSFSA-selected models from 

Stage II using all of the presence data divided into 2/3 training and 1/3 testing (described above 

in Methods, Niche Models) (Figure II.3). The potential influence of the number of variables in 

low burn severity wildfire activity models on projected burned area was evaluated within and 

beyond the background evaluation extent (e.g., Beaumont et al., 2005). From the RSFSA-

selected models, more conservative models were additionally selected in terms of projected 

burned area and map accuracy according to regional indices (described in Appendix A, Methods, 

Wildfire Activity Models, Calibration of AICc Values between GLM, Glmnet and MaxEnt 

Models) in order to better inform conservation management decisions (e.g., Schwartz, 2012). 

Statistical Tests 

 In order to allow for observed cases of unequal variance among wildfire activity model 

results, the Welch ANOVA was used to test whether (1) model evaluation statistics did not differ 

among RSFSA-selected models and random models, and (2) projected burned areas within 

ecoregions or larger areas did not differ between models for current and future climate scenarios. 
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Following a significant Welch ANOVA test, separate secondary paired tests were performed 

using a Welch t-test with the Holm correction to control for Type I error related to the number of 

paired comparisons for each set of tests. Following a significant Welch’s one-way ANVOVA 

test, pairwise multiple comparisons were conducted using the Games Howell (1976) pairwise 

multiple comparison test which also allows for unequal variance and sample sizes.  

Results  

Niche Modeling Methods and Feature Selection  

In estimating the optimal variable subset size (RSFSA Stage I), there were apparent 

trends of increased accuracy (high AUCpa_finaltest), lower complexity (low AICcbg_final), and higher 

overfitting (AUCpa_diff_final) as the number of variables per subset increased from three to 25 for 

wildfire activity models. These trends hold for all three burn severity models as well as for all 

types of niche modeling methods, including various parameterizations of MaxEnt, GLM, and 

Glmnet models (Figures II.4-5, A.5-8). For all burn severities, MaxEnt quadratic/hinge models 

using β regularization multipliers of one, two or three (β1, β2, β3) and GLM and Glmnet 

linear/quadratic models tended to exhibit higher training and testing AUC, which indicated lower 

underfitting, and lower AICcbg (i.e., greater information content). However, these models also 

displayed greater overfitting than simpler models as revealed by higher AUCdiff (Figures II.4, 

A.6-8). GLM and Glmnet models of the same feature parameterization generally performed 

similarly for all evaluation statistics (Figures II.4, A.5-7). An exception was the poor 

performance of some RSFSA-selected linear/quadratic GLM models for moderate and high burn 

severities with larger-sized variable subsets (Figures A.6-7).  
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Figure II.4. Low burn severity wildfire activity model evaluation statistics (mean ± SD) for MaxEnt, Glmnet, and GLM niche 
models: (A) AUCpa_finaltest, (B) AUCpa_finaltrain, (C) AICcbg_final/AICcbg_final_reg (approximated for GLM and Glmnet), and (D) 
AUCpa_diff_final (overfitting). Models developed from top ten random subset feature selection algorithm-selected variable subsets 
ranked by AUC. Variable subsets were selected from 250 randomly generated variable subsets of various sizes derived from 90 
variables (Tracy et al., 2018b). 
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Figure II.5. MaxEnt quadratic/hinge β2 wildfire activity model evaluation statistics (mean ± SD): (A-C) AUCpa_finaltest, (D-F) 
AICcbg_final, and (G-I) AUCpa_diff_final (overfitting). Models developed from top ten random subset feature selection algorithm-selected 
variable subsets ranked by AUC or AICc and models developed from ten random subsets. Variable subsets were selected from 250 
randomly generated variable subsets of various sizes derived from 90 variables for three large wildfire burn severities: low (A, D, 
G); moderate (B, E, H); and high (C, F, I) (Tracy et al., 2018b). 
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An increase in MaxEnt quadratic/hinge model β regularization values from zero (no 

regularization) to 40 (high regularization) (Figure A.8) produced a range in model performance 

similar to the various feature parameterization complexities of MaxEnt, GLM, and Glmnet  

models (Figures II.4, A.6-7). Increasing L1 regularization for MaxEnt quadratic/hinge models 

lowered testing and training AUC, raised AICcbg, and, below 12 variable subsets, lowered  

overfitting (AUCdiff). Only low burn severity MaxEnt quadratic/hinge models with β 

regularization values around five or less (β ≲ 5) achieved lower AICcbg than MaxEnt models 

with no L1 regularization (β0) (Figure A.8C). The RSFSA-selected variable subset models 

ranked by either AUCpa_wrappertest or AICcbg_wrapper  show improvement over random models for all 

of the niche modeling methods (Figures II.5, A.5). Generally, the sharpest visual changes in 

model evaluation statistics occurred over an increase in subset size from six to 15 variables. 

Consequently, six and 15-variable subsets were chosen for further evaluation in RSFSA Stage II.  

For RSFSA Stage II, replications were increased for 15-variable models with the best 

performance in AUC and AICcbg, the MaxEnt quadratic/hinge (β1, β2, β3) and GLM and Glmnet 

linear/quadratic models. Low burn severity MaxEnt quadratic/hinge models exhibited 

significantly lower underfitting as indicated by higher training and testing AUC, and lower AICc 

than the three training replicate sets of GLM and Glmnet linear/quadratic models (P < 0.05, 

Games Howell Pairwise Multiple Comparison Test, preceded by significant Welch’s one-way 

ANOVA test, P < 0.05; Figure A.9A-C). In contrast, the GLM and Glmnet linear/quadratic 

models performed significantly better in terms of lower overfitting (Figure A.9D). Among the 

low burn severity MaxEnt quadratic/hinge models, those of β1 and β2 performed significantly 

better in most training sets than β3 models in terms of lower underfitting (higher training and 

testing AUC) (Figure A.9A- B). In addition, the MaxEnt quadratic/hinge β2 models performed 
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better than β1 and β3 models in terms of lower AICcbg (Figure A.9C), and, for most training 

replicates, they usually had significantly lower overfitting than β1 models (Figure A.9D). 

Corresponding results for moderate and high burn severity models were generally similar, but 

not as consistent due to unstable results for RSFSA with linear/quadratic GLM models in some 

training replicates (Figures A.10-11; for details see Appendix A, Results, Niche Modeling 

Methods and Feature Selection). Overall, MaxEnt quadratic/hinge β2 models performed best in 

terms of lower underfitting and higher information content, and they were selected for further 

evaluation for wildfire activity niche models of all three burn severities. 

Comparison of six and 15-variables MaxEnt quadratic/hinge β2 models revealed 

significant trends for both higher accuracy and lower complexity for 15-variable models across 

all three training set replications when using the RSFSA AUCpa_wrappertest wrapper (P < 0.05; 

Welch t-test with Holm correction, preceded by significant Welch ANOVA test, P < 0.05; Figure 

A.12A-F). However, a little over half of these RSFSA replications across all burn severities 

showed a significant increasing trend for overfitting from six to 15 variable subsets (Figure 

A.12G-I). The projected burned areas (in mHa) were compared for RSFSA-selected six, ten and 

15-variable MaxEnt quadratic/hinge and 15-variable Glmnet linear quadratic wildfire activity 

binary models for low burn severity. No apparent differences and no relationships were found in 

the areas projected as burned either within or beyond the background evaluation extent (Figure 

A.13A-B). The 15-variable subset size was selected for MaxEnt quadratic/hinge β2 models for 

further evaluation with RSFSA in order to compare ranking using AUC versus AICcbg.  

In completing RSFSA Stage II evaluations, further comparisons were made of the efficiency of 

the AUCpa_wrappertest versus the AICcbg_wrapper for improving performance of the chosen 15-

variable MaxEnt quadratic/hinge β2 models. Significantly higher accuracy (AUCpa_finaltest) was 
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found for models selected with RSFSA wrappers of either AUCpa_wrappertest or AICcbg_wrapper 

compared to random models for all three replications of all three burn severities (P < 0.05; 

Welch t-test with Holm correction, preceded by significant Welch ANOVA test, P < 0.05; Figure 

II.6A-C). Consistently improved (lower) model complexity (AICcbg_final) was found for all three 

burn severities using the AUCpa_wrappertest wrapper but not the AICcbg_wrapper wrapper (Figure 

II.6D-F). The RSFSA-selected models from AICcbg_wrapper and AUCpa_wrappertest wrappers achieved 

significantly reduced overfitting compared to random models across all three replications for the 

low burn severity (Figure II.6G) and high burn severity models (Figure II.6I), respectively.  The 

RSFSA AUCpa_wrappertest wrapper method was chosen for greater consistency in optimizing 

AICcbg_final and used for selecting MaxEnt wildfire models for all three burn severities.  Attempts 

to obtain significantly lower overfitting for all three replicates for moderate burn severity models 

using 10, 12 and 17 variable subset sizes or combinations of wrappers (e.g, AUCpa_wrappertest and 

AICcbg_final) were also unsuccessful (results not shown). In consideration of the variability of 

burned areas projected for RSFSA selected 15-variable subset models (Figures A.13A, A.14), 

regional indices were employed to select the top four most conservative models in terms of 

burned area within the background evaluation extent (for details, see Appendix A, Methods, 

Wildfire Activity Models, Model and Variable Rankings). The RSFSA-selected 15-variable 

MaxEnt β2 quadratic/hinge models for all three burn severities actually employed 14 to 15 

environmental variables from which 81–103 derived features were used in the model equation 

(see Appendix B, Tables B.1-3, for derived features for each selected model provided in 

embedded MaxEnt lambdas pdf files).  

The use of an expert filter to narrow down the initial set of variables from 90 to 38 did 

not significantly improve performance of the RSFSA for MaxEnt quadratic/hinge β2 15-variable 
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Low Burn Severity MaxEnt Models Moderate Burn Severity MaxEnt Models High Burn Severity MaxEnt Models 

Figure II.6. MaxEnt quadratic/hinge β2 wildfire activity model evaluation statistics (mean ± SD) for three burn severities (low- A,D,F; 
moderate- B,E,H; and high-C,F,I): (A-C) AUCpa_finaltest, (D-F) AICcbg_final, and (G-I) AUCpa_diff_final (overfitting). Models developed from 
three replicates of 3,000 variable subsets of 15 of 90 variables (total 9,000 15-variable subsets) that were narrowed per replicate to: (1) 
300 (n) subsets selected randomly (Rand), (2) 250 (n) subsets ranked by AICcbg_wrapper with random subset feature selection algorithm 
(RSFSA) (AICc), and (3) 250 (n) subsets ranked by AUCpa_wrappertest with RSFSA (AUC). Means for AUC or AICc RSFSA-selected 
model statistics within a replicate with an asterisk are significantly more optimal (higher for AUCpa_finaltest and lower for AICcbg_final and 
AUCpa_diff_final) from that of random selected models (P < 0.05; Welch t-test with Holm correction, preceded by significant Welch 
ANOVA test, P < 0.05; models with asterisk and “▲” are significantly less optimal than random models) (Tracy et al., 2018b). 
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low burn severity wildfire activity models. Only models developed from random sets of 38 of 90 

variables and ranked with AUCpa_wrappertest (AUC38of90) consistently produced significant 

improvement over models developed from unranked random sets (Rand38of90) in all three 

evaluation statistics, including overfitting (AUCpa_diff_final) (Figure A.15). Improvements over 

random models for evaluation statistics of RSFSA selected models derived from 38 expert 

selected variables were generally similar to that seen in RSFSA-selected models from 38 random 

variables or the entire 90 variable set (Figure A.15).  

Selected Features for Wildfire Activity Models 

The top four RSFSA AUCpa_wrappertest wrapper-selected 15-variable MaxEnt 

quadratic/hinge β2 wildfire activity models for each of the three burn severities (12 models total) 

were quite varied in their composition of variables. Sixty of the 90 total variables were used at 

least once in the four RSFSA-selected models of each burn severity (Table II.1). Variables 

correlated above the rs threshold of 0.7 which were not allowed in the same model could 

sometimes appear in different RSFSA-selected models in the selected feature subset ensemble. 

For example, winter and spring quarter evapotranspiration are correlated at 0.96 (rs) over the 

background/presence points, and these two variables each appeared in two of the selected four 

low burn severity wildfire activity models.  

For top-selected models of all burn severities, three variables were shared among the top 

ten ranked variables by mean permutation importance and frequency of appearance (Table A.3): 

(1) slope (slope), with higher values more associated with more wildfire (Figures A.16F, A.17A, 

A.18A); (2) percent agricultural land cover (agric_lc), with higher values associated with less 

wildfire (Figures A.16D, A.17D, A.18D); and (3) precipitation in the summer quarter 

(prec_sumq), with higher values generally associated with more fire (Figure A.17F). In addition, 
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five of the top ten variables were shared among models of at least two burn severities: (1) mean 

temperature of the driest quarter (bio_9), (2) elevation (elev), (3) evapotranspiration ratio of the 

spring quarter (etrt_sprq), (4) actual evapotranspiration for the spring quarter (aett_spr), and (5) 

mean temperature of the wettest quarter (bio_8).  Among these eight commonly high ranked 

variables, five are climatic indices, two are topographic indices, and one is an anthropogenic 

index.  

There were some clear differences among the three burn severities in the top-ranked 

variables in the four RSFSA-selected models (Table A.3). For example, the three top ranked 

variables in low burn severity models were precipitation in the spring quarter (3/4 models), 

percent agricultural land cover (all four models), and mean temperature of the driest quarter 

(bio_9; 3/4 models). The three top-ranked variables in moderate burn severity models were slope 

(all four models), actual evapotranspiration for the spring quarter (3/4 models), and percent 

agricultural land cover (all four models). For high burn severity models, the three top ranked 

variables were slope (all four models), mean temperature of the wettest quarter (bio_8; 3/4 

models), and elevation (3/4 models) (for permutation importance and response curves for 

variables of the single top models, see Appendix A, Results, Selected Features for Wildfire 

Activity Models; Table A.4, Figures A.16-19). 

Projections for Wildfire Activity Models 

Current Climate 

The mean AUCpa_finaltest values ranged from 0.84 to 0.93 for RSFSA-selected current 

climate MaxEnt quadratic/hinge β2 wildfire activity models for the three MTBS burn severity 

classes (Figure II.6A-C). For at least 60% of the 46 Level III ecoregions within the background 

evaluation extent, the projected burned areas for all three burn severities were 5% greater than 
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  ≥ 50% more (severe contemporary wildfire 
deficit), or ● ≤ 5% more (weak or no deficit), 
BEE area projected as burned compared to 
actual burned area 
 

A B C 

E D 

▲ = significantly higher, or ▼ = significantly 
lower, future projected burned area in 
ecoregion compared to current projection 
 

Figure II.7. Low burn severity MaxEnt quadratic/hinge β2 wildfire activity feature subset ensemble models for large wildfires 
with mean fire interval of ≤ 16.5 yrs per 31 yrs. Models represent frequency consensus of four selected variable subset models 
of 15 of 90 variables (arrows of significant differences according to Welch t-test with Holm correction, P < 0.05, preceded by 
significant Welch ANOVA test, P < 0.05; Table A.5) (Tracy et al., 2018b). 
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▲ = significantly higher, or ▼ = significantly 
lower, future projected burned area in ecoregion 
compared to current projection 
 

  ≥ 50% more (severe contemporary wildfire 
deficit), or ● ≤ 5% more (weak or no deficit), BEE 
area projected as burned compared to actual 
burned area 
 

A B C 

E D 

Figure II.8. Moderate burn severity MaxEnt quadratic/hinge β2 wildfire activity feature subset ensemble models for large 
wildfires with mean fire interval of ≤ 16.5 yrs per 31 yrs. Models represent frequency consensus of four selected variable subset 
models of 15 of 90 variables (arrows of significant differences according to Welch t-test with Holm correction, P < 0.05, 
preceded by significant Welch ANOVA test, P < 0.05; Table A.6) (Tracy et al., 2018b). 
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  ≥ 50% more (severe contemporary wildfire 
deficit), or ● ≤ 5% more (weak or no deficit), BEE 
area projected as burned compared to actual 
burned area 
 

▲ = significantly higher, or ▼ = significantly 
lower, future projected burned area in ecoregion 
compared to current projection 
 

A B C 

E D 

Figure II.9. High burn severity MaxEnt quadratic/hinge β2 wildfire activity feature subset ensemble models for large wildfires 
with mean fire interval of ≤ 16.5 yrs per 31 yrs. Models represent frequency consensus of four selected variable subset models of 
15 of 90 variables (arrows of significant differences according to Welch t-test with Holm correction, P < 0.05, preceded by 
significant Welch ANOVA test, P < 0.05; Table A.7) (Tracy et al., 2018b). 
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the area actually burned (Figures II.7-9, Tables A.5-7). At least 25% of the Level III ecoregions 

for all three burn severities exhibited severe contemporary wildfire deficits, with projected 

burned areas greater than or equal to 50 percentage points higher than the actual area burned. In 

addition, these ecoregions also had at least 50% (usually much more) of their total area projected 

as burned. Very high contemporary wildfire deficit ratings were widespread in various 

ecoregions throughout the western US for all three burn severities (Figures A.20-22) (for further 

details, including zipped shapefiles for wildfire deficit rating maps for each burn severity, see 

Appendix A, Results, Current Climate). 

Future Climate  

There were generally more significant differences between current and future projected 

burned areas for low burn severity wildfire activity models in the 56 Level III ecoregions in 

comparison to models for moderate and high burn severities (Welch t-test with Holm correction, 

P < 0.05, preceded by significant Welch ANOVA test, P < 0.05; Figures II.7B–E, II.8B–E, 

II.9B–E; Tables A.5-7). Most of the projected future significant changes involved increases in 

burned area of ecoregions. These projected increases were in ecoregions that were generally 

above 35ºN, which is around the border between the Central Basin and Range (14) and Mojave 

Desert (13). In contrast, the fewer ecoregions with future projected significant decreases in large 

wildfires were generally below 35ºN (for further details, including relationships between 

important climate indices and latitude across the study area for climate scenarios of different 

burn severities, see Appendix A, Results, Future Climate Model Projections, and Figure A.23). 
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Discussion 

Niche Modeling Methods and Feature Selection 

Feature selection with RSFSA facilitates optimizing the performance of a variety of niche 

modeling methods in terms of both the number of variables employed and the features included 

in the variable subsets. No improvement in RSFSA-selected model performance was found when 

using an expert-based filter for the initial set of 90 variables. The feature selection ensembles 

generated through RSFSA facilitate comparison of niche modeling methods and niche models 

across different species, phenomena, or scenarios (e.g., climates). For example, feature subset 

ensembles based on RSFSA-selected models were utilized to identify statistical differences in 

projected burned areas across climate scenarios. In addition, feature subset ensembles allowed 

the use of highly correlated variables in different wildfire activity models, improving 

representation of model uncertainty, which is especially important for climate scenario models 

(Braunisch et al., 2013). 

The RSFSA-generated feature subset ensembles which facilitated comparison of niche 

modeling methods across a variety of subset sizes for different feature types (e.g., linear versus 

quadratic) and levels of L1 regularization (β1-β40; e.g., Warren and Seifert, 2011; Anderson and 

Gonzalez, 2011; Morales et al., 2017). Simpler linear or linear/quadratic MaxEnt, GLM and 

Glmnet models had lower overfitting (AUCdiff) than more complex quadratic/hinge MaxEnt 

models. However, these simpler models also had comparably higher underfitting (lower training 

and testing AUC) and lower information content (higher AICcbg). Model underfitting has been 

observed to more negatively affect performance of MaxEnt models than overfitting using 

simulation data with a variety of metrics (Warren and Seifert, 2011). Consequently, the reduction 

of model underfitting and increased information content was emphasized by choosing the 
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MaxEnt quadratic/hinge models over simpler Glmnet or GLM models for projecting wildfire 

activity. Other studies have found that MaxEnt models using all features and or just 

linear/quadratic features outperform linear/quadratic probit GLM (Thibaud et al., 2014) and 

logistic Glmnet (Dicko et al., 2014) models, respectively. However, Guillera-Arroita et al. (2014) 

found that logistic Glmnet linear/quadratic models outperformed MaxEnt quadratic/hinge models 

in terms of root-mean-squared error with simulated data. For moderate and high burn severities 

models developed from larger variable subsets, feature selection results were more stable for 

MaxEnt and Glmnet linear/quadratic models than for GLM linear/quadratic models. 

In agreement with Radosavljevic and Anderson (2014), a MaxEnt beta regularization 

multiplier value slightly above the default value of β1, namely β2, could reduce overfitting for 

MaxEnt models. In addition, the MaxEnt quadratic/hinge β2 models generally had lower AICcbg 

compared to both β1 and β3 models. A MaxEnt beta regularization value of around five or less 

(≲ β5) was necessary to see improvement in lower AICcbg than MaxEnt wildfire activity models 

without regularization (β0). As MaxEnt quadratic/hinge model L1 regularization is increased 

(from β1 to β40) over a broad range of variable subset sizes, model overfitting decreases (lower 

AUCdiff), but there is an increase in model underfitting (lower training and testing AUC) and 

decrease in model information content (higher AICcbg). Although the MaxEnt quadratic/hinge β2 

wildfire activity models had high numbers of derived features, MaxEnt software outputs of 

variable permutation importance and variable response curves allowed interpretation of the more 

important variables. The potential use of RSFSA to directly select derived MaxEnt variables, as 

Halvorsen et al. (2015, 2016) did using sequential feature selection, may facilitate further model 

optimization with lower numbers of parameters. MaxEnt quadratic/hinge β2 niche models are 
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potentially widely suitable for use in RSFSA with large sets of occurrence data and many 

environmental variables. 

The RSFSA-selected MaxEnt quadratic/hinge β2 models exhibited significantly lower 

underfitting (higher training and testing AUC), higher information content (lower AICc), and, 

sometimes, lower overfitting (AUCdiff) in comparison to models generated from random variable 

subsets. In contrast, increasing levels of embedded feature selection using L1 regularization 

(higher values of β) for RSFSA-selected MaxEnt quadratic/hinge models resulted in lower 

overfitting (lower AUCdiff), but greater underfitting (lower training and testing AUC) and lower 

information content (AICcbg). The combined use of RSFSA and L1 regularization can work 

together for improving the balance of overfitting, underfitting, and information content in niche 

models. The success of the RSFSA in reducing model underfitting and improving information 

content probably stems from an ability to identify variable combinations that are synergistic in 

terms of model relevancy among the thousands of screened models (Guyon and Elisseeff, 2003).  

The employed randomized search strategy has several advantages over the sequential 

search strategy (evaluation of individual variables in sequence), that has most often been 

employed in feature selection for niche modeling, especially with MaxEnt (e.g., Mouton et al., 

2009; Bradley et al., 2010; Lahoz-Monfort et al., 2010; Bellamy and Altringham, 2015; 

Halvorsen et al., 2015, 2016; Yost et al., 2008; Jueterbock et al., 2016; Zeng et al., 2016). The 

random subset selection search strategy can (1) better avoid entrapment in local minima 

(selecting the best feature subset at the moment) (Liu and Motoda, 1998; Jović et al., 2015), (2) 

better identify synergistic combinations of variables (Guyon and Elisseeff, 2003), and (3) take 

better advantage of parallel processing in evaluating several random variable subsets 

simultaneously (Garcia et al., 2006).  
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The tendency of niche models utilizing larger sets of variables to exhibit a higher AUCtest 

has been demonstrated previously (e.g., Synes and Osborne, 2011). Thus, a convergence in 

AUCtest values between random and RSFSA-selected models is expected as AUCtest values 

increase with growing variable subset size. Over a broad range of niche modeling methods of 

increasing variable subset sizes, there was a strong correlation between improved increasing 

values of AUCtest and improved decreasing values AICcbg. Zeng et al. (2016; their Figure 1) also 

observed a general decrease in AICc as the number of MaxEnt environmental variables 

increased.  

Similar to Beaumont (2005), there was no effect of variable subset sizes from six to 15 

variables on the projected area burned in MaxEnt models. There was also no correlation among 

projected burned areas within the background evaluation extent with the projected area burned in 

beyond the background evaluation extent. Therefore, the projected area burned within the 

background evaluation extent for current climate probably also has little to no relationship to the 

projected area burned across future climate scenarios either within or beyond the background 

evaluation extent. Accordingly, the choice of more conservative MaxEnt models in terms of 

current projected area burned within the background evaluation extent probably did not produce 

more conservative estimates for burned areas when extrapolating the models across space or 

time. 

Selected Features for Wildfire Activity Models 

Only about half of the top ranked variables across RSFSA-selected MaxEnt 

quadratic/hinge β2 models for all three burn severities were expert selected variables from 

previous studies (Table A.2). Consequently, screening a wider initial set of 90 variables allowed 

us to identify additional important variables for modeling wildfire activity, such as mean 
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temperature of the driest quarter (bio_9), mean temperature of the wettest quarter (bio_8), spring 

actual evapotranspiration (aett_sprq), and spring evapotranspiration ratio (etrt_sprq). For the top 

four RSFA-selected wildfire activity models for each burn severity, a generally higher proportion 

of climatic indices (42%) were utilized compared to topographic (31%) and anthropogenic (27%) 

indices (Table II.1). In contrast, Dillon et al. (2011) found that topographic variables, especially 

elevation and topographic position index with a 2 km radius, were generally more important than 

climate and weather variables for non-spatial high burn severity models developed with the 

random forests algorithm. Similar to this study, they found models performed better when 

including several categories of topographic, climate and weather variables together in contrast to 

using a single category of topographic variables.  

Within the climatic indices for the MaxEnt quadratic/hinge β2 wildfire activity models, 

there was a tendency for top RSFSA-selected models to include about equal percentages of 

Bioclim and AET-PET indices, indicating the importance of including both of these groups of 

indices in wildfire activity models. Although lower percentages of suppclim indices were used in 

the wildfire activity models compared to other climatic indices (Table II.1), some were among 

the top ranked indices, such as precipitation in the summer quarter (prec_sumq). Within the 

topographic indices, the geomorphologic indices ranked higher than the hydrogeomorphologic 

indices (Table A.3).  Three of the five variables used in the wildfire activity models of Parks et 

al. (2015) were included in this study: (1) annual actual evapotranspiration, (2) annual 

precipitation, and (3) annual climate water deficit (snow water equivalent and soil moisture were 

excluded). Two of these variables, total annual evapotranspiration and annual climate water 

deficit, appeared in some of the RSFSA-selected 15-variable MaxEnt quadratic/hinge β2 models 
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for low burn severity wildfires (Table II.1). In addition, precipitation in the summer quarter, 

closely related to annual precipitation, occurred in models for all three burn severities.   

Of the 17 anthropogenic indices, only agricultural land cover was among the top ten 

ranked variables for RSFSA-selected MaxEnt quadratic/hinge β2 wildfire activity models of all 

three burn severities, appearing in every model. Higher amounts of agricultural land cover were 

associated with lower probability of wildfire for all three burn severities. Reduced wildfire 

probability with higher agricultural land cover is probably related to reduced availability of 

woody vegetation as fuel. Several other studies have also found that anthropogenic indices, 

especially agricultural land cover, are of critical importance to modeling large scale wildfire 

activity (Kalabokidis et al., 2002, Liu and Wimberly, 2016; Robinne et al., 2016; Mann et al., 

2016). 

Projections for Wildfire Activity Models  

Current Climate 

Wildfire activity was projected at one km resolution over a larger area of western North 

America than has been done previously, employing a novel combination of different niche model 

types with the MTBS data used by Liu and Wimberly (2016) and Parks et al. (2016), and 

additional data from the MTBS and LANDFIRE databases. The AUCtest values of the wildfire 

models for the three burn severity classes were fairly high (above 0.84), even though severe 

contemporary wildfire deficits were projected for many ecoregions. Similar to Parks et al. 

(2015), there was a general trend of greater contemporary wildfire deficits projected among 

forested ecoregions. In addition, the proportion of ecoregions projected with severe 

contemporary wildfire deficits increased with increasing burn severity for the Northwestern 

Forested Mountains. The current climate multiclass burn severity category models of Parks et al. 
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(2016) also project greater high burn severity fires in these northwestern forested ecoregions. In 

contrast to projections for forested ecoregions, only a small proportion of non-forested Level I 

ecoregions with severe contemporary wildfire deficits was projected for the low and moderate 

burn severity categories. The severity of projected contemporary wildfire deficits in forested 

ecoregions for all burn severity categories were generally much greater than found for wildfire 

deficits in similarly defined forested ecoregions by Parks et al. (2015). The generally higher 

projected contemporary wildfire deficits in this study could be related to finer scale detection of 

variation in wildfire activity due to use of a higher spatial resolution (one km2) and additional 

variables, particularly agricultural land cover. The 1 km resolution contemporary wildfire deficit 

ratings map shapefiles were made available for all three burn severities for the western US that 

may assist land managers in identifying areas with greater long-term potential hazard for large 

wildfires (see shapefiles in Appendix A, Results, Current Climate). Many areas with little or no 

data on contemporary wildfire deficits (e.g., much of the East Texas Central Plains and 

Arizona/New Mexico Plateau ecoregions) may have had pre-Columbian mean fire return 

intervals greater than or equal to those seen in the recent historical 31-year 1984–2014 period 

used in this study, but land use/land cover change to cultivation, urbanization and heavy grazing 

has probably led to long term anthropogenic fire suppression. 

Future climate  

Future projections of increased low burn severity wildfires in several northern ecoregions 

may be associated with projected changes in three important bioclimatic indices: (1) higher mean 

temperatures of the driest quarter (bio_9), (2) decreases in mean precipitation during the summer 

quarter (prec_sumq) in the north (but not in the south), and (3) increases in mean precipitation 

during the spring quarter (prec_sprq) in the north (but not in the south). Potentially increased 
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primary productivity for northern ecoregions associated with projected increases in spring 

precipitation may favor larger areas of low burn severity wildfires. Projected increases in 

temperature for the driest quarter (bio_9) and decreases in summer precipitation (prec_sumq) in 

the north may favor wildfire ignition and propagation of low burn severity wildfires. Rogers et 

al. (2011) similarly projected future increased wildfire activity in the Pacific Northwest from 

increased summer droughts related to decreased summer precipitation and higher summer 

temperatures, and increased fuel loads related to higher winter precipitation. Projections of 

smaller areas of large low burn severity wildfires in some southern ecoregions may be related to 

projected reductions in rainfall (e.g., prec_sprq) at southern latitudes which could be associated 

with lower primary productivity (for further discussion of variable influence on climate 

projections, see Appendix A, Discussion, Projections for Wildfire Activity Models).  

These wildfire activity models do not attempt to incorporate projections of the complex 

long-term interactions between vegetation population dynamics and changes in extreme weather 

events, such as prolonged drought, that could greatly impact future landscape wildfire activity 

(McKenzie and Littell, 2017). In addition, there is considerable uncertainty in the accuracy of 

both the original MTBS burn severity classifications used in training models for this study 

(Kolden et al., 2015) and in the GCMs used for projecting future climate in western North 

America. For example, several GCMs project generally drier and warmer conditions in 

southwestern North America over this century (Swain and Hayhoe, 2015), such as was observed 

in projected reduced spring precipitation (prec_sprq) with the HadGEM2-ES GCM for 2070 

(Figure A.23B). However, Chylek et al. (2014) report that the historically cyclic influences of the 

Atlantic multi-decadal oscillation (AMO) and Pacific decadal oscillation (PDO) indices are 

poorly incorporated into GCMs. Furthermore, they maintain that projected AMO/PDO cycles 
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may lead to stable temperatures and increased precipitation over the next several decades in the 

southwestern US, which is in contrast to projections from GCMs. Caution should be used in the 

interpretation of the wildfire activity model projections in areas, such as central Mexico, that are 

far beyond the background evaluation extent of continental US training data. In spite of 

uncertainties, models from this study are in general agreement with several other recent studies 

projecting future increases in burned areas in western North America, especially for low and 

moderate burn severity wildfires (Parks et al., 2016; Liu and Wimberly, 2016).  

Conclusions 

Feature Selection for Niche Modeling  

A novel random subset feature selection algorithm was used to effectively screen a large 

number of variables to develop a feature subset ensemble of optimally-sized feature subsets that 

can increase performance for a variety of niche modeling methods.  The feature selection 

algorithm does not improve niche model performance over expert-selected models, but it 

facilitates identification of new relevant variables or variable combinations that can be useful in 

developing and interpreting the models. The algorithm is especially useful for identifying 

variables for modeling tasks about which little expert information is available. In addition, 

identification of alternative high performing models of different variable subsets by the feature 

selection algorithm is important in accounting for model uncertainty in comparisons across 

modeling methods or scenarios. The utilization of highly collinear variables in separate models 

of selected feature subset ensembles is especially valuable for reflecting model uncertainty. This 

feature selection algorithm affords the researcher flexibility in balancing the levels of niche 

model underfitting, overfitting, and information content and the number and complexity of 

model parameters. The combination of random subset feature selection with L1 regularization 
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via MaxEnt quadratic/hinge β2 models appears to be especially suitable for developing feature 

subset ensembles representing higher performance niche models when large sets of occurrence 

data and environmental variables are available, as is the case with wildfire activity.  

Further studies are needed to assess the performance of the random subset feature 

selection algorithm for improving niche models for species, and of other phenomena, and using 

differing niche modeling methods, such as BIOCLIM and random forests (c.f. Jović et al., 2015). 

The degree of spatial variability in feature-selected models versus random models for current and 

future climate scenarios should also be examined. Comparisons of the spatial variability of 

feature subset ensemble models from random subset feature selection should also be made with 

other types of model ensembles, such as training set ensembles and multi-algorithm ensembles 

(e.g., Zhang et al., 2015). Additional niche model evaluation statistics could also be investigated 

for use in feature selection, such as the Hosmer-Lemeshow goodness of fit statistic for logistic 

regression. Potential improvements in model transferability across space and time using various 

feature selection strategies can also be explored. 

Implications for Conservation  

Comparisons of historical and projected wildfire activity indicate that unnaturally low 

fire return intervals, amounting to severe contemporary wildfire deficits, are widespread in the 

western US, including in areas of conservation concern such as the Madrean Archilpelago 

ecoregion of southern Arizona and New Mexico (for zipped shapefiles of contemporary wildfire 

deficits, see Appendix A, Results, Current Climate). Where feasible, reduction of anthropogenic 

fire suppression, such as by limiting grazing and increasing prescribed or wildland fires, may be 

critical for maintaining the integrity of fire dependent western montane ecosystems (e.g., Noss et 

al., 2006). The projected reductions in fire frequency through climate change in southwestern 
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North America could further degrade natural fire regimes of fire dependent ecosystems, making 

long-term reduction of anthropogenic fire suppression even more imperative. In contrast, models 

in this study projected future increases in wildfire activity in forested ecoregions of northwestern 

North America. In these northwestern forests, it will be critical to remove excess fuel build-up, 

such as through prescribed burns, to prevent increased wildfire damage to human lives and 

property in and around these ecosystems.  
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CHAPTER III  

MODELING MONARCH FALL MIGRATION PATHWAYS AND                          

SPATIALLY IDENTIFYING POTENTIAL MIGRATORY HAZARDS                                 

FOR THE EASTERN MONARCH BUTTERFLY 

Synopsis 

Identifying migratory pathways is important for developing conservation priorities for 

declining migratory species. However, few studies have compared modeling approaches to 

evaluate their different contributions for understanding migration patterns. The contributions of 

MaxEnt ecological niche models and interpolative kernel density estimation models (KDEMs) 

are compared for identifying core migratory pathways for the eastern monarch butterfly (Danaus 

plexippus). These pathways are used to spatially delineate potential anthropogenic hazards within 

these pathways. The objectives include: (1) compare monarch fall migration pathways using 

KDEMs and MaxEnt, (2) characterize annual migration pathway variability, (3) identify core 

migratory pathways, and (4) spatially identify potential anthropogenic hazards along the core 

migratory pathways. Citizen scientist reports from Journey North of overnight roosts for eastern 

migratory monarchs from 2002–2016 were used to model the fall migration at 10 km spatial 

resolution with MaxEnt and KDEMs. Potential anthropogenic threats to the fall migration were 

spatially identified along the core migration routes. The KDEM migration pathways best 

represented directed movement patterns of monarchs towards overwintering locations. The 

MaxEnt models better coincided with nectar resource habitats of the Great Plains grasslands. The 

KDEMs varied annually in both width and location within the Central Flyway. Potential hazards 

spatially identified along the migration routes included monarch roadkill, areas of intensive 

agriculture, neonicotinoid contamination of nectar and honeydew food resources, and mosquito 
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spraying. MaxEnt and KDEM were complementary in modeling monarch migratory pathways. 

The spatially identified potential hazards can form the basis for future risk assessments.  

Introduction 

Many migratory species of conservation concern are declining worldwide (Hardesty-

Moore, 2018). Conservation strategies for these migratory species must take into account 

breeding, migratory stopover, and overwintering sites. Annual mortality for migrant species, 

such as birds, can be highest across migratory routes, especially in narrower portions of 

migratory pathways. Spatial models of migratory pathways are an important tool for identifying 

conservation priorities (Runge et al., 2014).  Common approaches for defining migratory 

pathways include kernel density estimation (KDE), and correlative ecological niche models, such 

as MaxEnt. These methods have not been thoroughly compared to evaluate their contributions to 

migratory pathway analyses. 

Kernel density estimation is a nonparametric spatial point pattern method for analyzing 

point intensity that is often used with telemetry data for assessing the frequency of utilization of 

an area in defining animal home ranges (Worton, 1989; Kie et al., 2010).  The KDE intensity 

surface has also been used to delineate migratory movement, particularly for birds, based on 

telemetry data of stopover locations for certain seasons (Rayner et al., 2017), months (Muzaffar 

et al., 2017), or over the entire migratory pathway (Gearin et al., 2017; Pierce et al., 2017; 

Wytinski and Bonter, 2018). Moore and Krementz (2017) used non-telemetry bird band return 

data with KDE to analyze migration origin and destination locations. The KDE does not appear 

to have been previously used in defining the entire migratory pathway with non-telemetry data as 

is done in this study. Correlative ecological niche models, particularly MaxEnt, have been used 

to model migratory pathways using the same types of telemetry data in conjunction with 
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environmental layers (e.g., Huff et al., 2012; Quillfeldt et al., 2013; Williams et al., 2017). 

Migratory niche models have also been incorporated into a larger framework for delineating 

migration routes, either as resistance layers in connectivity models for ungulates (Poor et al., 

2012; Bond et al., 2017), or as a refueling resource layer in individual-based models for birds 

(Smith and Deppe, 2008).  

The KDE intensity surface has also been used in developing interpolative KDE models 

(KDEMs) of species distributions (Pennay et al., 2011). For more detailed analyses of migration 

pathways with KDE that facilitate comparisons across years and with MaxEnt models, novel 

training set ensembles of migratory KDEMs were developed from normalized KDE surfaces, 

performing calibration and testing in the same manner as niche models. Interpolative KDEMs are 

restricted to projecting occurrence over an area limited by the radius of the selected KDE 

bandwidth around the training data points. In contrast, correlative niche models incorporate 

environmental data to create a predictive surface that can be extrapolated beyond the boundaries 

of the training data. While migratory KDEMs cannot directly incorporate environmental layers, 

they should be more sensitive to clustered point patterns related to organismal movement 

(endogenous autocorrelation) that have little or no relationship to the spatial distribution of 

environmental conditions (exogenous correlation) (c.f., Bahn and McGill, 2007). The KDEMs 

and MaxEnt are compared for analyzing migratory pathways for the eastern monarch butterfly 

(Danaus plexippus Linnaeus) (Nymphalidae: Danainae). 

The migratory phenomenon of eastern monarchs is in danger of disappearing (Brower et 

al., 2012). The migrant overwintering population has potentially declined as much as 80% over 

the past two decades (Vidal and Rendón-Salinas, 2014). Many studies have focused on habitat 

loss on the breeding grounds (Brower et al., 2012; Pleasants, 2017; Malcom, 2018) and at 
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overwintering sites (Brower et al., 2012; Vidal et al., 2014; Malcolm, 2018).  Thogmartin et al., 

(2017) modeled the impact of these factors on the population decline of monarchs, including 

climatic factors, disease, and agricultural insecticide use, and observed strong negative effects 

from all of these threats, particularly by glyphosate herbicide use. Mortality during the fall 

migration has also been suggested as a significant factor contributing to the decline in monarchs 

(e.g., Badgett and Davis, 2015; Ries et al., 2015; Inamine et al., 2016; Agrawal and Inamine, 

2018). However, few studies have focused on potential anthropogenic threats to the fall 

migration (but see McKenna et al., 2001 and below).  

The majority of the eastern monarch population migrates to Central Mexico for 

overwintering. Monarchs originating from summer breeding sites as far north as southern 

Canada migrate south to oyamel fir (Abies religiosa Kunth) forests in Central Mexico from 

August to November. These same individuals that successfully overwinter will migrate north the 

next spring to the southern United States. Subsequent generations reach the northern USA and 

southern Canada in June (Brower, 1995; Calvert and Wagner, 1999; Brower et al., 2006).  

Two main flyway routes have been described for the fall migration of the eastern monarch 

based on overnight roost sites: (1) the Central Flyway proceeding from Canada and the Midwest 

southwards, and bounded to the east by the Appalachian Mountains and to the west by the Rocky 

Mountains, excluding the coastal areas; and (2) the Eastern or Coastal Flyway proceeding from 

the northeastern US southwards, following the Atlantic and Gulf coasts (Calvert and Wagner, 

1999; Howard and Davis, 2009). Roosts consist of a few to several thousand monarchs 

aggregated within trees and shrubs. Overnight roosting behavior is almost exclusively associated 

with the monarch fall migration (Davis and Garland, 2004; Brower et al., 2006; Howard and 

Davis, 2009). Journey North (2017) maintains an extensive citizen science database of monarch 
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sightings, including fall migratory overnight roost locations since 2002. Models of the migratory 

pathways developed from these data will provide important information on yearly variation in 

migration routes, with important implications for spatially assessing conservation priorities and 

threats.  

A variety of potential anthropogenic hazards to adult fall migrating monarchs occur along 

the migratory routes. Potential threats include: (1) mortality due to collision with vehicles 

(McKenna et al., 2001) or other moving structures; (2) reduced nectar resources due to land 

cover/land use change, including increased herbicide use on agricultural lands (Brower et al., 

2006), (3) exposure to systemic neonicotinoid insecticides through feeding on flower nectar or 

other sugar sources near agriculture (Krischik et al., 2015); and (4) exposure to insecticides (e.g., 

resmethrin and permethrin) from mosquito control (Oberhauser et al., 2006; 2009). Further study 

is needed to spatially identify these potential anthropogenic hazards along the migration 

pathways, especially as the migration pathway narrows as it approaches the overwintering sites 

(Brower et al., 2006; Badgett and Davis, 2015). Climate change has also been proposed to 

threaten the eastern North American monarch population, including the fall migration (Malcolm, 

2018). For example, the migration route could be lengthened if the breeding range shifts farther 

north in warmer climates, and habitat suitability for fall nectar plant resources could be reduced 

by lower precipitation and higher temperatures. Spatially identifying the potential hazards along 

the migratory pathway is prerequisite to assessing exposure to hazards as part of any migratory 

risk assessment (e.g., Liechti et al., 2013). 

The goals of this study are to utilize KDEM and MaxEnt for defining the core fall 

migration pathways of the eastern monarch, and to identify potential migratory hazards along 

these pathways. The specific objectives are to (1) project and compare the eastern monarch fall 
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migratory pathways with the two approaches of MaxEnt and KDEM; (2) analyze annual 

variability in the migration pathways; (3) delineate core migratory pathways of the Central and 

Eastern/Coastal flyway divisions; and (4) spatially identify potential hazards to the fall migration 

as a foundation for planning future migratory risk assessments.  

Methods 

Study Site 

The Rocky Mountains and Sierra Madre Oriental was used to define the western boundary 

for the eastern monarch (Brower 1995; Figure III.1). The southern boundary in Florida follows the 

boundary of the spring breeding range as delimited by Oberhauser et al., (2017). The background 

evaluation extent for training and evaluation of monarch migration models is derived from a 500 

km buffer around a convex hull polygon formed using the 2002 to 2016 overnight roost records 

from Journey North (2017) (Figure III.1). This background evaluation extent encompasses most 

of the range of the eastern monarch migratory population. 

Overnight Roosting Records 

Journey North citizen scientist volunteers have been reporting their spring monarch 

observations to the program since 1997, and records of overnight roosts since 2002 (Journey 

North, 2017). Comparison of geocoordinates with the location descriptions in the comments of 

roosting records revealed that the spatial accuracy of the data was approximately ±5 km. 

Consequently, roosting locations were aggregated across a raster with spatial resolution of 10 

km2. This aggregation of roost locations also serves as a 10 km spatial filter for reducing sample 

bias and spatial autocorrelation among the data (Boria et al., 2014). A total of 2,803 roosting 

records from the 15 years of 2002–2016 were used in the study, ranging from 25 (2002) to 422 

(2015) records per year (Table C3.1). The 12 consecutive years from 2005 to 2016 were used 
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Figure III.1. Monarch overnight roosts from 2002 to 2016 (Journey North 2017), range 
of the monarch eastern migratory population, previous monarch flyway divisions, and 
background evaluation extent for model training and testing. 
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for annual models of migration, based on a minimum requirement of 100 records per year. Data 

were spatially thinned separately by year for annual models. For the purpose of developing 

presence-only migration pathway models, all Journey North roost records within the 10 km 

spatial filter were regarded as indicative of the presence of migratory roosting individuals within 

a given year, regardless of butterfly count data per roost.   

MaxEnt Migration Pathway Models 

An initial set of 80 environmental variables generalized to 10 km resolution were used in 

developing the MaxEnt niche models, including 57 climatic indices, 12 topographic indices, and 

11 land cover indices (Table C3.2). MaxEnt version 3.3.3 models (Phillips et al., 2006) were 

developed from monarch roost locations using the R-software (R Core Team, 2018) dismo 

package (Hijmans et al., 2011). About 10,000 pseudoabsence points were generated for model 

evaluation within the background evaluation extent. The pseudoabsences were buffered at 20 km 

from the presence points (e.g., Barbet-Massin et al., 2012). The R PresenceAbsence package 

(Freeman and Moisen, 2008) was used with presence and pseudoabsence points for calculating 

the pseudoabsence (psa) versions of the true skill statistic (TSSpsa) and area under the curve 

statistic (AUCpsa). In order to reduce MaxEnt model complexity and overfitting for improved 

model generalization (Jiménez-Valverde et al., 2008; Warren and Seifert, 2011), the MaxEnt 

beta regularization was adjusted from the default of one to two and only quadratic and hinge 

features were used (Tracy et al., 2018b). A random subset feature selection algorithm (RSFSA) 

was used to select 12 of 9,000 MaxEnt models using smaller subsets of the 80 variables that 

exhibited higher accuracy (AUCpsa), lower complexity, as measured by lower corrected Akaike 

information criterion (AICc), and lower overfitting, as measured by AUCpsa_diff (training AUCpsa 

minus test AUCpsa; Warren and Seifert, 2011) than other random subsets (Tracy et al., 2018b). 
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This study represents the first instance of applying RSFSA with pseudoabsence data as opposed 

to true absence data. The absolute value of the Spearman’s rank correlation coefficient (rs) 

among variables in variable subsets was limited to 0.7 (Dormann et al., 2013) and AUCpsa was 

used in selecting variable subset models. MaxEnt models using six of the 80 variables were 

considered as optimal (for additional details, see Supplementary material, Methods). The 12 final 

MaxEnt models were calibrated to binary presence/absence format using a threshold of 

maximum TSSpsa (Liu et al., 2013a), and they were combined using frequency consensus to form 

a feature subset ensemble (FSE). The AICc was calculated for the 12 models from the MaxEnt 

model raw version rasters and training presence point data using the ENMeval R package 

(Muscarella et al., 2014). The variables were jointly ranked for the top 12 MaxEnt models using 

a higher weighting of 0.6 for the model mean variable permutation importance (e.g., Halvorsen, 

2013) and a lower weighting of 0.4 for the frequency of variable appearance in the top 12 models 

(for details, see Appendix C, Methods).  

Kernel Density Estimation Model Migration Pathways 

The KDEs were developed at 10 km resolution using presence-only monarch roost 

locations with the ArcGIS (ESRI Inc., Redlands, California) Kernel Density tool (Geodesic 

method, points as values), which employs a quartic (biweight) kernel function. The North 

America Albers Equal Area Conic Projection (North American 1983 datum) was used as the 

required equal area projection for KDE. The optimal KDE bandwidth (smoothing parameter) 

was automatically calculated in ArcGIS by a spatial variant of Silverman’s Rule-of-Thumb that 

is robust to outliers. In order to compensate for higher numbers of observers in densely populated 

areas, monarch overnight roost locations at 10 km resolution were weighted by a grid of mean 

human population density per 1 km for the year 2000 (Center for International Earth Science 
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Information Network, CIESIN, 2005) (for details, see Supplementary material, Methods). The 

weighting process yielded index values from one (high human population, representing most 

points) to ten (low human population, representing few points) for each roosting record, 

constraining the influence of human population density. The KDE raster was then calculated and 

normalized from zero to one to create a raw KDEM surface of probability of occurrence. The 

final KDEM was created by restricting the boundaries of the raw KDEM to that of a calibrated 

binary presence/absence version using a threshold of maximum TSSpsa as was done for MaxEnt 

models. A KDEM without any adjustment for human population was also calculated for 

comparison. For calculation of AICc using the ENMeval R package, the raw KDEM was utilized 

(e.g., Graham et al., 2013), with values of zero changed to 0.000001 and all values recalculated 

to add to one within the background evaluation area (analogous to the MaxEnt raw values used 

with ENMeval R). This recalculated raw KDEM raster and associated model values for training 

presence points were then used in calculating AICc. Accuracy statistics of TSSpsa and AUCpsa 

were calculated for raw KDEMs in the same way as described above for MaxEnt. A total of three 

different KDEMs were derived from standard three-fold partitions of two-thirds training and 

one-third testing data using the 2002–2016 roost data. From the three training KDEMs, a training 

subset ensemble (TSE) was developed. From the TSE, a minimum consensus TSE model was 

derived representing the area encompassing at least one of the three training KDEMs. The 

minimum consensus TSE was used as a boundary for display of the average consensus of the 

continuous raster training KDEMs. The 100% consensus KDEM TSE boundary was also 

calculated for display (see Table C.4 for shapefile; R code and Arc python code for generating 

and analyzing KDEMs is available at https://github.com/jamesltracy/KDEMs).  

 

https://github.com/jamesltracy/KDEMs
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Comparison of MaxEnt and Kernel Density Estimation Model Migration Pathways 

Statistical comparisons of AUCpsa, AICc and AUCpsa_diff (overfitting) between the 12 

MaxEnt model feature subset ensemble and the three KDEM training set ensemble were performed 

using an R core implementation of the Welch t-test, which allowed for the case of unequal 

variance.  Models were also evaluated for ability to identify different regions of the migration 

pathways as a basis for further analyses described below. 

Annual Kernel Density Estimation Model Migration Pathways  

The same procedure described above to create three binary calibrated minimum 

frequency consensus TSEs of KDEMs was followed for modelling the annual fall migration 

routes for individual years from 2005 to 2016 and for all years combined from 2002 to 2016 for 

comparison. The means and standard deviations for the width and relative centroid shifts of 

annual KDEM migratory pathways were calculated for the northern (37-50°N latitude) and 

southern (27-37°N latitude) portions of the Central Flyway. The 37°N north-south boundary was 

based upon the approximate latitude where the migration pathway starts to narrow as it proceeds 

south along the Central Flyway. Low numbers of observations of annual roosts were not 

conducive to similar analyses for either the Eastern Flyway or areas south of 27°N latitude. 

Migration pathway width and centroid shift calculations were performed for the annual models 

and for the combined 2002-2016 model. Migratory pathway dimensional characteristics included 

(1) average pathway widths of the annual KDEMs (directly proportional to area), (2) the north to 

south shift of the centroid for the annual KDEMs from the 2002-2016 KDEM centroid, and (3) 

the east to west shift of the centroid for the annual KDEMs from the 2002-2016 KDEM centroid. 

Spearman correlation coefficients were calculated between annual average KDEM widths and 
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centroid shifts, and the area of overwintering colonies in Mexico (Vidal and Rendón-Salinas, 

2014; Monarch Watch, 2017).  

Flyways and Core Migratory Pathways 

Flyway division boundaries within the larger monarch eastern migratory population from 

Canada to Mexico were updated using the migration pathways identified by a minimum 

consensus ensemble of the combined 2002 to 2016 KDEM TSEs and individual roost records. 

Core fall migration routes, including core pathways through the narrower southern funnel 

portions, were also identified by generally following the boundaries of flyways and the 100% 

consensus boundary of the annual KDEM ensemble (see Table C.4 for shapefiles). 

Anthropogenic Fall Migration Hazards 

The literature was reviewed on non-climate change related anthropogenic lethal and 

sublethal hazards to monarchs and other beneficial insects, such as pollinators, and identified 

potential hazards for adult fall migrating monarchs (see Introduction). Hazards were then 

spatially identified, especially focusing on the important southern core migration pathways, by 

combining and analyzing a variety of spatial data obtained from citizen science databases, online 

GIS layers, publications, and other sources. Analyses included temporal matching of hazards 

with the monarch fall migration period (typically October to November in the South) (e.g., 

mosquito control) and identification of areas with potentially greater hazards (e.g., areas of high 

cultivated land cover or neonicotinoid use) (for sources, see Supplementary material, Methods; 

see Table C.4 for shapefiles).  
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Results  

MaxEnt Migration Pathways 

The random subset feature selection algorithm was effective in selecting 12 six-variable 

MaxEnt models with higher AUCpsa values than random models, ranging from 0.968 to 0.982 

(Figure C.1). A total of 42 out of 80 variables were used at least once in the 12 selected models 

(Tables C.2-3). The ten variables jointly ranked highest by MaxEnt model permutation 

importance and frequency of appearance in the 12 models were all climatic indices (Table C.3). 

Four of these top ten climate variables were Supplementary Climatic indices, four were Actual 

and Potential Evapotranspiration (AET-PET) indices, and two were Bioclim indices. The top 

three ranked variables were the Supplementary Climatic index of spring monthly minimum 

temperature, and two AET-PET indices of autumn mean monthly actual evapotranspiration, and 

total annual actual evapotranspiration. The eleven land cover indices generally had the lowest 

MaxEnt permutation importance and frequency of appearance in the twelve selected models 

(Tables C.2-3). 

The 100% consensus of the 12 calibrated MaxEnt models is mostly concentrated within the 

Central Flyway (Figure III.2A). A large portion of the MaxEnt 100% consensus boundary for the 

Central Flyway coincides with the grasslands of the Great Plains Level I ecoregion (Commission 

for Environmental Cooperation, CEC, 2005) (Figure III.2A). The MaxEnt 100% consensus 

boundary includes only northern portions of the Eastern Flyway. 

Kernel Density Estimation Model Migration Pathways 

The AUCpsa values for the three training KDEMs for the entire 15-year data set (2002–

2016) ranged from 0.995 to 0.998 (default KDE bandwidths ranged from 226 to 231 km). The 

KDEM 100% consensus boundary is mostly associated with the Central Flyway, but it includes 
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A B 

1 Temperate Plains 
2 South Central Semiarid Prairies 
3 Tamaulipas-Texas Semiarid Plain 
4 Texas-Louisiana Coastal Plain 
5 Mississippi Alluvial and Southeast USA Coastal Plains 
 

CEC Levels II and III Ecoregions 
6 Mixed Wood Plains 
7 Central USA Plains 
8 Ozark/Ouachita-Appalachian Forests 
9 Southeastern USA Plains 
10 Chihuahuan Desert (Level III) 

Figure III.2. Monarch fall migration pathway minimum calibration consensus of average consensus models for 2002–2016, 
including CEC (2005) ecoregions (including 100% consensus boundaries): (A) MaxEnt feature subset ensemble of 12 models 
developed from subsets of six of 80 variables by random subset feature selection for high AUCpsa; and (B) kernel density 
estimation model (KDEM) training set ensemble of three models developed by three-fold training data partition (see Table C.4 
for shapefiles; see Figures III.5A and III.6 for binary minimum consensus KDEM). 
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the northern portion of the Eastern Flyway as well as the coastal Eastern Flyway in Alabama and 

the Florida panhandle (Figure III.2B). The same Great Plains ecoregion coinciding with the 

MaxEnt 100% consensus boundary also overlaps much of the KDEM 100% consensus boundary 

in the Central Flyway (Figure III.2B). However, the eastern portion of the Chihuahuan Desert 

Level III ecoregion is also included in the KDEM 100% consensus boundary. In addition, the 

KDEM 100% consensus overlays with several Level I ecoregions that approach or encompass 

the overwintering sites in central Mexico. Much of the KDEM 100% consensus boundary for the 

Eastern Flyway is occupied by Level II coastal plains ecoregions (Figure III.2B). A lower 

projected density of roosting is apparent in forested Level II ecoregions of the Eastern Flyway. In 

comparison to KDEMs that did not account for human population density related observer bias 

(Figure III.3A), the KDEMs accounting for human population density appeared to project much 

reduced, but not eliminated, bias towards higher roost densities around metropolitan areas, such 

as Minneapolis/St Paul, Dallas/Fort Worth, and Austin/San Antonio (Figure III.3B). However, 

differences in the KDEM 100% consensus boundaries for the two models appear to be less 

pronounced (Figure III.3A-B). 

Comparison of MaxEnt and Kernel Density Estimation Model Migration Pathways 

The accuracy (AUCpsa) of the KDEM training set ensemble was significantly higher than 

that of the 12-model MaxEnt feature subset ensemble in projecting the monarch migration 

pathways (Figure III.4A). However, the model complexity (AICc) was significantly lower in the 

MaxEnt ensemble (Figure III.4B). No significant difference in model overfitting between MaxEnt 

and KDEM ensembles was found (Figure III.4C). The 100% consensus KDEM boundary better 

distinguished the migratory pathway through the western Chihuahuan Desert and Mexico where 

the MaxEnt 100% consensus boundary was mostly absent (Figure III.2). In addition, the                   
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Figure III.3. Monarch fall migration pathway minimum calibration of average consensus kernel density estimation model 
(KDEM) ensembles with 100% consensus boundaries of training set models (n = 3) for 2002-2016 without (A) and with (B) 
reduction of human observer bias using the monarch roost human population density index (Figure III.2B), and (C) annual 
models (n = 12) from 2005–2016, including the Central Funnel and Coastal Funnel core migration pathways (see Figure III.5 
for individual annual minimum consensus models). Metropolitan areas of Minneapolis/St Paul (1), Dallas/Fort Worth (2), and 
Austin/San Antonio (3) are identified in (A) (see Table C.4 for shapefiles). 
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B C A 

Migration Pathway Model 

MaxEnt 

Figure III.4. Evaluation statistics of MaxEnt niche model versus kernel density estimation model (KDEM) of monarch fall 
migration pathways (mean ± SD): (A) AUCpsa, (B) AICc, and (C) AUCpsa_diff (overfitting) (see Figure III.2 for models). Means 
with an asterisk for a statistic are significantly more optimal (higher for AUCpsa and lower for AICc and AUCpsa_diff) (P < 0.05; 
Welch t test). 
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100% consensus KDEM boundary incorporated larger portions of the Eastern Flyway. The KDEM 

approach was selected for further delineation of the Central and Eastern Flyway divisions and their 

core pathways, and for investigation of the annual variation in the migratory pathway of the Central 

Flyway. 

Annual Kernel Density Estimation Model Migration Pathways  

The migration pathways of annual KDEM training set consensus models varied 

considerably from year to year between 2005 to 2016 in the Central Flyway division (Figure 

III.5B-M). The annual average width of the modeled migration pathways varied as much as 662 

km in the northern portion and 392 km in the southern portion of the Central Flyway (Figure 

C.2A, D). The annual north to south shift of the centroids, compared to the 2002-2016 KDEM 

centroid (Figure III.4), varied as much as 143 km (between north and south extremes) in the 

northern area and 113 km in the southern area (Figure C.2B, E). The annual east to west centroid 

shift varied as much as 353 km in the northern area and 306 km in the southern area. The greatest 

observed annual centroid shift measured from the 2002-2016 KDEM centroid was an 

approximately 200 km westwards shift in the southern migratory pathway for 2015 (Figures 

III.5L, C.2F). With a single exception, no significant relationships were found between 

dimensional characteristics of the annual KDEMs and the areas of overwintering monarchs in 

Mexico for the same year (Figure C.3). The exception was a significant, but weak, correlation (rs 

= 0.48, R2 = 0.21; p = 0.0031) indicating the association of a western shift in the north centroid 

of the Central Flyway KDEM (Figure III.4) and a lower area of overwintering monarchs in 

Mexico (Figure C.3C).  
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Figure III.5. Monarch fall migration pathway kernel density estimation models (KDEMs) from (A) 2002–2016 combined data, 
and (B–M) for each year from 2005 to 2016. Models represent minimum frequency consensus training set ensemble of three 
binary calibrated models developed from a three-fold training data partition. 
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 Figure III.6. Central and Eastern flyway division boundaries for fall migration of the 
eastern monarch population, including migration pathway of minimum consensus kernel 
density estimation model (KDEM) (from Figure III.5A), and north (37-50ºN) and south 
(27-37ºN) centroids for the KDEM in the Central Flyway (see Table C.4 for shapefiles). 
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Flyways and Core Migratory Pathways 

Guided by the 100% consensus 2002-2016 KDEM, the boundary division between the 

Central Flyway and Eastern Flyway of Howard and Davis (2009) was extended to proceed 

southwest from Alabama to the border of eastern Texas (Figure III.6). Through Texas, the 

division boundary was continued by following a line bisecting the Central and Eastern (Coastal) 

Flyways, as identified by Calvert and Wagner (1999). The division boundary from the Texas 

border was extended towards the Monarch Butterfly Biosphere Reserve in Central Mexico by 

generally following the eastern boundary of roost records.  

The 100% consensus 2002-2016 KDEM outlines a fairly broad migration pathway 

extending from the Great Lakes region to northeastern Mexico, and it includes portions of the 

Eastern Flyway (Figure III.3B). In contrast, the 100% consensus annual KDEM encompasses a 

narrower pathway that is primarily restricted to the Central Flyway division, with the exception 

of the Texas-Louisiana Coastal Plain (Figure III.3C). The narrower 100% consensus annual 

KDEM was used to define the core migratory pathway and guide the delineation of southern core 

migratory pathway funnels for each of the two flyway divisions (Figure III.3C). The Central 

Funnel was defined along the 100% consensus annual KDEM in the Central Flyway from 

Oklahoma to the Mexican overwintering sites. The Coastal Funnel was defined within the 

Eastern Flyway from southern Louisiana along the coastal region of Texas to Northeast Mexico 

where it was merged with the Central Funnel (Figure III.3C). 

Anthropogenic Fall Migration Hazards 

Several potential anthropogenic hazards to fall migrating monarchs were spatially 

identified along the core migration pathways. Five monarch roadkill hotspots were identified along 

the Central Funnel in Texas (Journey North, 2017) and Mexico (Correo Real, 2015; Rogelio 
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Figure III.7. Potential anthropogenic hazards spatially identified along the monarch fall migratory pathways: (A) monarch 
roadkill hotspots; (B) high cultivation land cover per 1 square kilometer, and upper and middle 1/3 level uses of neonicotinoids 
(imidacloprid, clothianidin, and thiamethoxam) in 2014 by US county; (C) counties in US with potential mosquito adulticide 
ultra-low volume (ULV) spray treatments in October-November (see Table C.4 for shapefiles). 
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Carrerra, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico, personal communication), 

including two sites with ≥ 1 roadkill monarchs per meter (Figure III.7A). Large areas of high 

cultivated land cover with potentially reduced nectar resources were mainly located within the 

northern portion of the Central Flyway, particularly in the Midwest (Figure III.7B). Smaller areas 

of concentrated agricultural lands occur along the northern and northwestern portions of the 

Central Funnel. The areas of highest neonicotinoid use that could contaminate nectar resources 

generally corresponded with the areas of high cultivation (Figure III.7B). Southeastern US 

counties with potential mosquito adulticide ultra-low volume (ULV) treatments that can extend 

into October and November are mostly concentrated along the coastal areas of the lower Eastern 

Flyway, including the Coastal Funnel, with scattered occurrence in the Central Funnel (Figure 

III.7C).  

Discussion 

Comparison of MaxEnt and Kernel Density Estimation Models 

The combined analysis of spatially interpolative models, such as KDEMs, and niche 

models, such as MaxEnt, can be complementary in studying different aspects of migratory 

pathways. Similar to Bahn and McGill (2007), spatially interpolative models were found to 

perform with higher accuracy than niche models. Both the higher accuracy (AUCpsa) and 

complexity (AICc) of the KDEMs compared to MaxEnt models appears to be related to the 

sensitivity of the KDEMs to endogenous spatial patterns of migratory movement towards the 

overwintering sites (Figures III.2, 4). The KDEMs are probably also more sensitive to spatial 

patterns of observer bias from local human population densities, the effects of which were not 

completely removed. However, the boundaries of the KDEM migration pathways appears to be 

less influenced by this observer bias (Figure III.3A, B). Although the spatially interpolative 
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KDEMs might be expected to overfit the training data more than MaxEnt, there were no 

significant differences in model overfitting between KDEM and MaxEnt.  

The KDEMs best identified the migration pathway through southern portions of the Eastern 

Flyway around the Florida panhandle and the southern portion of the Central Flyway in Mexico 

(Figure III.2). The 100% consensus KDEM projection of the monarch fall migration pathway in 

Mexico includes several ecoregions either mostly or entirely absent from the 100% consensus 

MaxEnt models, such as eastern portions of the Chihuahuan Desert and the Temperate Sierras 

near the overwintering sites (Figure III.2B). These ecoregions in the southern portion of the 

Central Flyway do not necessarily reflect the favorable environmental conditions present over 

most of the flyway, contributing to their poor representation in the MaxEnt projections. The 

ability of KDEMs to detect the endogenous directed movement pattern of monarchs approaching 

the Mexican overwintering locations leads to better projection of the migration pathway over 

most of Mexico compared to modeling of environmental suitability by MaxEnt. The isolated 

portions of the Eastern Flyway identified by KDEM (but not MaxEnt) probably also represent 

environmental conditions very different from the more strongly represented Central Flyway. 

Reduced availability of roosting data from Mexico and the Eastern Flyway may have also 

hampered the MaxEnt model performance in these regions. Consequently, the 100% consensus 

KDEMs were utilized for representing the general (Figures III.2B, 3B) and core (Figure III.3C) 

fall migration pathways for the eastern migratory population of the monarch butterfly. In 

contrast, the MaxEnt migration models best emphasize the correlation of large portions of the 

Central Flyway with grassland ecoregions that may provide a more stable source of nectar for 

migrating monarchs than more forested ecoregions to the east. The migratory pathways appear to 
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follow suitable habitat only in certain areas, only partly supporting the suggestion by Dingle and 

Drake (2007) that migratory pathways should correlate with suitable habitat.  

Annual Kernel Density Estimation Model Migration Pathways  

No significant inter-annual variation was found in the location and width of the migration 

pathway within the Central Flyway division as defined by the annual KDEMs (Figure III.5). 

Calvert and Wagner (1999) also observed variation in width and location of the migration 

pathway of the Central Flyway in Texas from 1993-1995. Although the data were too sparse for 

a similar analysis of the Eastern Flyway, there is likely some inter-annual variation in this flyway 

as well. Inter-annual variation in migratory pathways has been observed in a variety of species 

(Griffioen and Clarke, 2002; Cheke and Tratalos, 2007; Dingle and Drake, 2007). Despite year-

to-year variation, a solid trend in species migratory pathways can usually be identified (Dingle 

and Drake, 2007). The 100% consensus annual KDEM (Figure III.3C) was the best 

representation of the narrower core migration pathway for most years through the Central 

Flyway division. The core pathway also includes a small portion of the Eastern Flyway division 

along the coastal prairie in Texas. 

A west to east shift in the centroid of the annual migration pathway in the northern Central 

Flyway (Figure III.6), from central Iowa towards northwestern Illinois, was weakly but 

significantly associated with a larger area of overwintering roosts in Mexico (Figure C.3C). Recent 

studies have indicated that the Upper Midwest from eastern Colorado to Indiana that encompasses 

the region of this shift represents the source for a large proportion of the overwintering population 

(Flockhart et al., 2017). A west to east shift in the densities of roosts for the northern migration 

pathway may indicate an increased source population of migrating monarchs to the east. Further 

investigation is needed to confirm the significance of the observed weak correlation between larger 
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overwintering areas and an eastern shift in the northern migration pathway through the Central 

Flyway. 

Flyways and Core Migratory Pathways 

The KDEMs indicate the Central Flyway as the primary route of the fall monarch migration 

(Figures III.2B, III.3B-C, III.6). Few sites with regular fall accumulations and roosting currently 

exist in the Eastern Flyway (Garland and Davis, 2002). Howard and Davis (2009) hypothesized 

that smaller roost sizes in the southern portion of the Eastern Flyway may result in roosts being 

less noticed, leading to fewer reports from this area. Further studies of regional variations in roost 

densities across the two flyways are needed, especially for the Coastal Funnel in Mexico where 

data are totally lacking. The southern narrower Central Funnel and Coastal Funnel pathways 

(Figure III.3C) can serve to focus further research into conservation planning for the fall monarch 

migration.  

Anthropogenic Fall Migration Hazards 

Of the potential anthropogenic hazards spatially identified along the fall migration 

pathways, roadkill is the best-known for its potential impact on monarchs. McKenna et al. (2001) 

estimated that as many as 500,000 monarchs were killed statewide in Illinois within the first week 

of September 1999. However, they did not report hotspots of high monarch roadkill, such as has 

been observed in the Central Funnel. Monarch roadkill during the fall migration through the 

Central Funnel region could be greater than in Illinois. Collisions with other structures, such as 

wind turbines, could also contribute to fall monarch mortality, but has not been studied (Journey 

North 2018a). Residue from dead insects is common on wind turbine blades and known to lower 

turbine performance (Corten and Veldcamp, 2001; Dalili et al., 2009). The presence of wind 

turbines in the core migration pathways (USFWS, 2018; USGS, 2018) requires confirmation as a 
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potential hazard for fall migrating monarchs. 

Potential habitat loss for nectar resources may be most severe where the highest 

concentrations of cultivated land cover are found in the Midwest and certain regions of the Central 

and Coastal funnels. These same areas have greater potential for nectar contamination with 

agricultural neonicotinoids. Risk of systemic pesticide contamination of monarch food resources 

may be greater during droughts and in arid areas, including much of the southern Central Funnel, 

where agricultural irrigation may provide attractive food resources, such as the nectar of field-

bordering wildflowers or pecan aphid honeydew (Journey North, 2018b; Charles Allen, Texas 

A&M AgriLife Extension Service, San Angelo, Texas, personal communication). Although 

Krischik et al. (2015) identified no acute lethal effects of neonicotinoid contamination of nectar 

resources on adult monarchs, further research is needed to evaluate chronic and sublethal effects, 

including from potentially synergistically toxic combinations of systemic fungicides and 

neonicotinoids (e.g., Tsvetkov et al., 2017). 

Adult mosquito control programs with ULV insecticide spraying are potentially active from 

October to November when monarchs migrate through much of the lower Eastern Flyway and 

Coastal Funnel, including some localized areas in the Central Funnel during the height of migration 

in October. Oberhauser et al. (2006) found high mortality among adult monarchs exposed to 

permethrin residues on plants treated with barrier hand sprayer treatments one day earlier. 

Mosquito truck ULV sprayer applications of resmethrin can also produce high mortality among 

adult monarchs caged within eight to 15 m downwind of the application (Oberhauser et al., 2009). 

Typical evening and night ULV treatments to reduce non-target impacts (Ginsberg et al., 2017) 

could still expose roosting monarchs, but vegetation cover can provide protection from direct 

contact with spray droplets (Peterson et al., 2016).  
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Implications for Conservation 

Conservation efforts are needed to support monarch fall migrations. It is critical to focus 

habitat conservation and restoration in areas with the largest impact (Oberhauser et al., 2017). 

The MaxEnt model supports the importance of conserving nectar resources found in grassland 

habitats of the Great Plains, including throughout the Central Funnel of Oklahoma, and Texas. 

Brower et al. (2015) suggested that nectar sources of Texas and North Mexico are likely crucial 

for the fall migration (also see Inamine et al., 2016). The potential for changes in land cover and 

land use across the Central Funnel to impact nectar resources needs further investigation. Spatial 

risk assessment is needed to determine the degree of exposure to the identified potential 

anthropogenic hazards along the monarch core fall migration pathways. The current tendency of 

the Central Funnel to shift as much as 200 km in some years, especially towards the West, 

should also be considered in assessing annual variations in exposure of monarchs to certain 

hazards. The identified core migration pathways and potential hazards can provide a focus for 

both monarch habitat enhancement and hazard reduction in continued efforts to preserve the 

unique phenomenon of the eastern monarch fall migration. 

Conclusion 

The fundamentally different approaches of interpolative spatial point pattern KDEMs and 

correlative ecological niche models, such as MaxEnt, can provide valuable complementary our 

perspectives on animal migration pathways. Several novel applications of spatially interpolative 

KDEMs were made for identifying broad spatial patterns of migratory movement, revealing their 

value for modeling movement through areas that may be of low environmental suitability. 

Minimum consensus annual training subset ensemble KDEMs are useful for investigating yearly 

variability in migratory movement patterns, which can then be correlated with population 
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indices. Total (100%) consensus annual KDEM ensembles are effective in delineating narrower 

core migration pathways over several years. Correlative niche models can reveal the most 

environmentally suitable habitats along the migratory pathway. The combination of these 

approaches can facilitate spatially identifying migratory hazards, migratory risk assessments, and 

conservation planning for declining migratory species. 

The benefits of utilizing the two migration modeling approaches were demonstrated in 

developing fall migration models for the eastern population of monarch butterflies. The KDEM 

was best suited in defining the entire fall migration pathway, including through arid scrubland 

habitat of probably low nectar plant suitability. The MaxEnt model best revealed the alignment 

of the migration pathway of the Central Flyway with nectar resources in the Great Plains 

grasslands. The overlap of the identified core monarch migration pathways with various potential 

anthropogenic hazards can help focus future conservation activities and risk assessments for the 

fall migration of the eastern North American population of monarchs (available shapefiles of 

core migration pathways and potential hazards are listed in Table C.4). The results of this study 

additionally affirm the high value of citizen science efforts, such as Journey North, in 

understanding the eastern monarch migration. Complementary approaches such as KDEMs and 

correlative niche modeling should be further explored for migration modeling of monarchs and 

other migratory animals of conservation concern. 
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CHAPTER IV  

SPATIAL RISK ASSESSMENT OF EASTERN MONARCH BUTTERFLY ROAD 

MORTALITY DURING AUTUMN MIGRATION WITHIN THE SOUTHERN CORRIDOR 

Synopsis 

Road mortality may contribute to the population decline of eastern monarch butterflies 

(Danaus plexippus L.). We estimated autumn monarch roadkill rates within the primary 

Oklahoma to Mexico southern migration corridor (i.e., Central Funnel). Dead monarchs were 

surveyed along Texas roadsides during four weeks of autumn migration in 2016 and 2017. 

Roadkill averaged 3.4 monarchs per 100 m transect, reaching 66 per 100 m in a roadkill hotspot 

in southwestern Texas. Extrapolations of Central Funnel roadkill based on survey data and road 

types ranged from 1.6 to 1.0 million in 2016 and 2017, respectively. Spatial distribution of 

roadkill across the Central Funnel was projected from Texas survey data using 30 m resolution 

MaxEnt niche models. Highest roadkill probability was linked to arid climate and low human 

population density. The latter variables may not be directly related to roadkill, but instead 

represent indirect correlates of increased densities of monarchs where the migration corridor 

narrows southwards. The higher roadkill projected in southwest Texas and Mexico by MaxEnt 

models agrees with previously reported monarch roadkill hotspots. MaxEnt-based 2016-2017 

projections for annual roadkill rates throughout the Central Funnel averaged 1.4 million. This 

figure compares closely to 1.3 million by simple extrapolation, and represents about 2% of the 

overwintering monarch population for these years. Combining hotspot data with other data 

across the Central Funnel increases annual roadkill estimates to about 5-8 million. Mitigation at 

roadkill hotspots in the Central Funnel could reduce monarch roadkill mortality during migration 

and contribute towards conservation efforts for the monarch butterfly. 



 

88 

 

Introduction 

Wildlife-vehicle collision is the most widely acknowledged impact of roads on wildlife, 

and can contribute to the decline of species of conservation concern (Tok et al., 2011; Visintin et 

al., 2016; Bennet, 2017), including globally declining pollinator insect species (Baxter-Gilbert et 

al., 2015). Roadkill can result in high mortality and lower abundance for species with large area 

requirements, pronounced migratory movements, small population sizes, and slow reproduction 

rates (Seiler and Helldin, 2006; Fahrig and Rytwinski, 2009). Wildlife-vehicle collisions are 

often spatially and temporally aggregated and substantial annual and inter-annual variation have 

been associated with environmental factors and traffic volume (Seiler and Helldin, 2006; Shilling 

and Waetjen, 2015). This tendency for high spatio-temporal variability in roadkill can be 

difficult to interpret based solely on the mapping of field survey data. Accordingly, there is a 

trend to use predictive spatial models to account for the variability in investigating the impacts of 

roads on wildlife mortality (Bennet, 2017). Typical roadkill niche models use a combination of 

environmental and anthropogenic variables, and are often restricted to small areas (Visintin et al., 

2016). Species distribution modeling has previously been used to project roadkill risk of 

mammals (Grilo et al., 2009; Roger and Ramp, 2009; Visintin et al., 2016, 2017) and owls 

(Gomes et al., 2009). Spatial models for insect roadkill have not yet been developed.  

Only five out of 215 roadkill studies (2%) between 2011 and 2015 were specifically 

focused on invertebrates (Bennet, 2017). Despite this taxonomic bias in the literature, insect 

roadkill may be a substantial threat to certain populations. Baxter-Gilbert et al. (2015) projected 

that hundreds of billions of pollinating insects are lost annually to roadkill across North America. 

Relatively few studies exist on butterfly road mortality, although researchers have suggested that 

butterflies are one of the most common insect orders killed by vehicles (McKenna et al., 2001; 
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Rao and Girish, 2007). Despite the high numbers of road-killed butterflies, the risk of Lepidopteran 

roadkill has been estimated as low to moderate (Baxter-Gilbert et al., 2015; Muñoz et al. 2015). 

Several studies have estimated butterfly roadkill numbers and examined contributing factors 

(Munguira and Thomas, 1992; McKenna et al., 2001; Ries et al., 2001; Rao and Girish, 2007; 

Skórka et al., 2013), but most of these studies concentrate on local, relatively sedentary butterfly 

populations and their utilization of roadside habitats rather than migratory butterflies. Migratory 

danaine butterflies (Nymphalidae: Danainae) appear to be especially susceptible to roadkill during 

migration, including the double-branded crow, Euploea sylvester (Fab.), in Taiwan (Her, 2008; 

Taiwan Environmental Protection Administration [EPA], 2010) and southern India (Santhosh and 

Basavarajappa, 2014), the common crow, Euploea core (Cramer), and the dark blue tiger, 

Tirumala septentrionis (Butler), in southern India (Santhosh and Basavarajappa, 2014), and the 

monarch butterfly, Danaus plexippus L., in the United States (McKenna et al., 2001) and Mexico 

(Correo Real, 2015). 

Significant population decline of the eastern migratory monarch butterfly has been 

observed at the overwintering sites in Central Mexico during the past two decades (Vidal and 

Rendón-Salinas, 2014; Thogmartin et al., 2017). Consequently, the persistence of the migratory 

phenomenon of the eastern population may be endangered (Brower et al., 2012). The long-

distance migration of monarchs is unique among butterflies. Mortality during the autumn 

migration (often referred to as fall migration) has been suggested as a contributing factor to the 

decline (Badgett and Davis, 2015; Ries et al., 2015; Inamine et al., 2016; Agrawal and Inamine, 

2018). Road mortality may significantly affect monarch survival during migration, especially 

where monarchs become highly concentrated as the migration narrows in Texas and northern 

Mexico (Badgett and Davis, 2015). Only McKenna et al. (2001) have previously evaluated 



 

90 

 

monarch butterfly roadkill. They reported monarchs as the second-most killed butterfly species 

during six weeks of autumn in Illinois (McKenna et al., 2001). They estimated that more than 

500,000 monarchs were killed statewide along interstate highways during one week in early 

September 1999. There are several unpublished citizen-science reports of locally high monarch 

roadkill occurrence in West Texas and northern Mexico during the autumn migration, with 

observed roadkill reaching 5.7 monarchs per meter near Monterrey, Mexico (Correo Real, 2015; 

Journey North, 2017). Incidences of high monarch road mortality in northern Mexico have led to 

the placement of road signs along portions of highways in Mexico to reduce speed in the 

presence of monarchs (Vanguardia, 2016). 

Monarch roadkill has yet to be quantified in relation to an overall population estimate. 

Seiler and Helldin (2006) point out that any sustained mortality factor, such as roadkill, can be 

especially damaging for species that are either approaching or are in an annual population 

decline, such as the monarch. The extent of monarch roadkill needs to be assessed to estimate its 

potential contribution to the species population decline and support conservation planning. Our 

main goal was to develop MaxEnt niche models for monarch road mortality during the autumn 

migration within the main migration pathway in Texas. The MaxEnt algorithm has been 

employed before to spatially investigate vehicle-animal collisions of birds and mammals (Ha and 

Shilling, 2017). The roadkill models are also projected throughout the Central Funnel, which is 

the identified main southern autumn migratory pathway within the Central Flyway for monarchs 

from Oklahoma to Mexico (Tracy et al., 2018a). This study includes the first analysis of monarch 

roadkill data outside of Illinois, and the first development of a spatial roadkill model for an 

insect. Our specific objectives were to (1) conduct monarch roadkill field surveys within the 

Central Funnel in Texas, (2) develop MaxEnt niche models for roadkill within the Texas survey 
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area, and project these models throughout the Central Funnel, (3) estimate monarch roadkill 

numbers within the survey area and the Central Funnel using both simple field survey-based and 

model-based extrapolation techniques, and (4) discuss the results in the context of monarch 

conservation and potential applications to other species of conservation concern.  

Methods 

Study Species 

The monarch autumn migration is uniquely accomplished by one generation. Adults 

begin migrating in late August to September from the summer breeding grounds, traveling to 

overwintering grounds in Central Mexico (Brower, 1995; Calvert and Wagner, 1999). Most 

migrants usually reach Oklahoma and North Texas in late September or early October (Calvert 

and Wagner, 1999; Monarch Watch, 2018a) and arrive at the overwintering grounds in 

November (Brower et al., 2006). There are two main migration routes, the Central Flyway and 

the Eastern or Coastal Flyway (Calvert and Wagner, 1999; Howard and Davis, 2009). The 

Central Flyway through the Great Plains is the most heavily traveled route (Howard and Davis, 

2009), which narrows into the Central Funnel from Oklahoma southwards (Tracy et al., 2018a).  

Autumn migrants fly during the day and stop at night and during inclement weather to 

nectar and colonially roost in trees and shrubs (Brower, 1996). These roosts may comprise a few 

to several thousand individuals and may last one to several days (Davis and Garland, 2004; 

Howard and Davis, 2009). In the morning, roosting monarchs either resume migration or search 

for nectar. These behaviors are influenced by wind patterns or lipid levels (Brower, 1996; Davis 

and Garland, 2004). During unfavorable northerly winds, monarchs may roost for several days 

(Schmidt-Koenig, 1985). Migrating monarchs are observed to nectar in a variety of locations, 

including in right-of-ways (Brower et al., 2006) where they may be vulnerable to vehicle 
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collisions. Brower et al. (2006) suggested that monarchs shift their behavior upon reaching Texas 

and spend more time nectaring to accumulate lipids for the winter and re-migration. Migrating 

monarchs regularly fly at high altitudes, around 300-500 m (Gibo and Pallett, 1979; Gibo, 1981; 

1986), but may fly close to the ground, especially when facing headwinds or during overcast 

weather (Gibo, 1986; Brower, 1996), exposing them to road mortality. Citizen science 

observations also include reports of low flying fall migrating monarchs over roadways (Correo 

Real, 2015).  

Monarch Roadkill Surveys and Simple Roadkill Extrapolation 

Monarch roadkill field surveys were conducted within the region of the main autumn 

migration through the Central Funnel in Texas (Figure IV.1). Four four-day surveys were 

conducted in each of the autumns of 2016 and 2017, between 10th October to 4th November and 

3-27 October, respectively. The survey area was divided into four north to south sections, with 

surveys timed to generally occur after the average peak migration (Journey, North 2017; 

Monarch Watch, 2018a) along each survey route to allow time for the accumulation of road-

killed monarchs. Surveyed road types included (1) highways, (2) primary roads, and (3) 

secondary roads. Each survey location comprised at least a single 100 m by one m transect along 

the grassy edge of one side of the roadway. To assess if the side of the road surveyed influenced 

the number of dead monarchs, additional transects were surveyed across multiple edges of single 

and divided-lane highways at some sites.  Transects were located using a handheld GPS device 

(accuracy up to ± 3m). Roadkill transects were spaced according to travel and survey time 

constraints at about 30 to 100 km intervals along the primarily east to west pre-planned survey 

routes, with additional surveys in 2016 in the southwestern portion of the study area where high 

monarch roadkill was found (Figure IV.1). All dead monarchs or parts of monarchs were 
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Figure IV.1. Monarch roadkill survey 100 m transects for autumn 2016 and 2017 
along three major road classes within the monarch Central Funnel in Texas. 
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collected to estimate the total number and sex of dead monarchs along the transects. A similar 

spring monarch roadkill survey was conducted in Texas during April to May of 2017 (Figure 

D.1; for details, see Appendix D, Spring 2017 Texas Monarch Roadkill Survey). The boundary 

of the background evaluation extent for the roadkill study was defined by a 10 km buffer around 

a convex hull polygon formed using un-thinned 2016 to 2017 monarch roadkill survey locations 

within the Central Funnel (Figure IV.1). Mean roadkill counts for the three road types were 

extrapolated over the background evaluation extent and Central Funnel in a manner similar to 

that of McKenna et al. (2001). We estimated roadkill separately within the Sonora-Sheffield 

roadkill hotspot area, which was defined as the 95 km section of Interstate Highway (IH) 10 

from Sonora to 24 km east of the Pecos River, including a portion of Texas state highway (SH) 

163 extending from 7.6 km south of Ozona to 5 km north of Ozona and a 2 km section of SH-

137 extending west from the junction with SH-163. 

Environmental Variables 

Thirty environmental variables were initially screened for use in the roadkill modeling 

(Table D.1, Figure D.2). These variables were selected for their value in previous roadkill niche 

models and for their use in characterizing the environment of the study area. The variables 

consisted of nine topographic indices (including four stream indices), eight land cover indices, 

six road indices, three human population indices, and four climatic indices. All indices were 

either calculated at 30.8 m spatial resolution or resampled with bilinear interpolation to the 30.8 

m resolution, to match the resolution of the base layer of one arc second Shuttle Radar 

Topography Mission (SRTM) digital elevation model (DEM) data obtained from USGS Earth 

Explorer (https://earthexplorer.usgs.gov/). The high spatial resolution of 30.8 m facilitated 
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modeling of roadkill along individual surveyed roadways over a broad area (see more details in 

Appendix D, Environmental Variables). 

Monarch Roadkill Models  

Preliminary MaxEnt model runs indicated that there was not enough data from 2017 to 

obtain good accuracy statistics with single year models. Consequently, 2016 and 2017 roadkill 

presence data were combined and spatially thinned to 2 km to reduce spatial autocorrelation. Ten 

thousand background points were randomly generated within the road mask evaluation area. 

Background/presence versions of the area under the curve statistic (AUCbgp) and true skill 

statistic (TSSbgp) were calculated using R software (R Core Team, 2018) and the 

PresenceAbsence package (Freeman and Moisen, 2008). In the same manner, the 

presence/absence version of AUC (AUCpa) and TSS (TSSpa) was calculated using transects with 

no observed monarch roadkill as absence data, although roadkill may have occurred in these 

absence locations as well. The MaxEnt beta regularization value was adjusted to two and only 

quadratic and hinge features were used to reduce model complexity and overfitting for 

improving model generalization (Jiménez-Valverde et al., 2008; Warren and Seifert, 2011; Tracy 

et al., 2018b).  

Roadway rasters served as a mask for analysis of environmental variables. The original 

set of 30 environmental variables was decreased to 20 variables. Nine variables were dropped 

which exhibited zero or negative testing gain of AUCbgp from a MaxEnt threefold jackknife run 

(Table D.1, Figure D.3). Traffic volume was also dropped because data were not readily 

available for Mexico. Traffic volume was utilized in preliminary niche models for the 

background evaluation extent. Preliminary runs indicated that no substantial gain in model 

performance was achieved with more than 10 of the 20 variables, and that employing fewer 
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variables (three) substantially increased undesired high spatial variability in roadkill among 

models. Consequently, final MaxEnt roadkill models were developed from ten random sets of 

ten of the 20 variables to represent model variability due to variable selection. The absolute 

Spearman rank correlation of variables within random variable sets was limited to less than 0.7 

using the multiple randomized sequential forward selection procedure within the random subset 

feature selection algorithm (RSFSA) of Tracy et al. (2018b; data were lacking to obtain 

improved model performance from us of the entire RSFSA). The final MaxEnt models were 

calibrated to binary presence/absence format using a threshold of maximum TSSpa (Liu et al., 

2013a), and combined using frequency consensus to form a feature subset ensemble. 

Presence/absence niche models were developed for monarch roadkill using linear and quadratic 

binomial logistic regression with the R Glmnet package (Friedman et al., 2010) for the same ten 

random sets of ten of 20 variables. These presence/absence models produced lower AUCbgp 

values and similar AUCpa values compared to MaxEnt models, and these models were not 

investigated further (results not shown).  

Results 

Monarch Roadkill Survey and Simple Roadkill Extrapolation 

A total 16.1 km of roadsides (161 100 m transects), 8.8 km in 2016 and 7.3 km was 

surveyed in 2017. Surveys revealed 581 dead monarchs in 59 locations (102 absence locations), 

for an average of 3.4 monarchs per transect. A total of 546 dead monarchs in 2016 and 35 in 

2017 were recorded. Of the 546 monarchs in 2016, 501 (92%) were located along or near 

Interstate 10 between Sonora and Sheffield (24 transects) (Figure IV.2). In addition, 466 (93%) 

of the dead monarchs occurred in 14 transects ranging from ten to 66 per 100 m (Figure D.4). 

Most of the transects with high numbers occurred along IH-10, but one high count (21/100 m)  
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Figure IV.2. Monarch roadkill autumn 2016 and 2017 survey results for 100 m transects 
along major road classes within the background evaluation extent in the monarch Central 
Funnel in Texas, including previously reported locations of high monarch roadkill. 
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occurred along Texas Highway 37, around four km north of IH-10 at Ozona (for survey count 

data, see Appendix D, Texas Monarch Roadkill Survey Data). A total of 257 monarchs were  

sexed in 2016-2017, of which ca. 38% were female (n=98). The portion of females was 41% in 

2016 (132 males, 91 females) and 21% in 2017 (27 males, 7 females). After the 2 km spatial 

thinning, the field survey data consisted of 151 transects (53 presence and 98 absence) and 249 

individual dead monarchs. These thinned data were used in all further analyses. Only two road-

killed male monarchs were found among 54 transects in the spring 2017 roadkill survey (Figure 

D.1). 

Southern edges of roadsides contained 43.8% (± 36%, n = 13) of the roadkill found in the 

northernmost edge for both single and divided-lane roads.  This relationship was used to estimate 

roadkill across all two or four edges per roadway when extrapolating roadkill per km (for details, 

see Appendix D, Texas Monarch Roadkill Survey Data and MaxEnt Roadkill Extrapolations). 

Estimated roadkill ranged from 6.15 to 645 monarchs per km depending on year, road type and 

location in relation to the hotspot area (Table IV.1). Estimated roadkill rates based on densities 

along different road types and separately analyzing the area defined as a hotspot, ranged from 

about 1.6 million to 1 million monarchs in 2016 and 2017, respectively. When hotspot data was 

merged with other data in calculating roadkill rates throughout the study area, the estimated 

roadkill in 2016 rose to over 8 million (Table IV.1). In 2016, about 49% of the roadkill within 

the Central Funnel was projected to occur within the Texas background evaluation extent, of 

which 5% was projected to occur in the Sonora-Sheffield hotspot area. In 2017, only about 0.3% 

of the roadkill within the Central Funnel was projected within the hotspot area, and the percent 

roadkill in the background area ranged from 31% when hotspot data was analyzed separately to 

48% when hotspot data was merged with other data (Table IV.1).  
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Table IV.1. Monarch butterfly roadkill estimates for 2016 to 2017 over the Sonora-Sheffield roadkill hotspot, background 
evaluation extent (BEE) and the Central Funnel (Fig. IV.1) extrapolated from the field data per road type. 

 Length (km) Roadkill per kma Monarch Road Mortalityb 

Road Type 

Sonora-
Sheffield 
Hotspot BEE 

Centra
l 

Funnel 

Sonora-
Sheffield 
Hotspot 

BEE/Central Funnel Hotspot Data Separated Hotspot Data Merged 
Hotspot 

Data 
Separated 

Hotspot 
Data 

Merged 

Sonora-
Sheffield 
Hotspot BEE 

Central 
Funnel BEE 

Central 
Funnel 

2016            
Highway 95 8,907 18,617 645.38 12.64 269.15 61,272 172,630 295,345 2,397,310 5,010,969 
Primary 0 11,878 25,918 - 10.75  10.75  -    127,636  278,498  127,636  278,498  

Secondary 28 17,705 38,169 442.56 25.79  85.32  12,312  468,135  995,804  1,510,687  3,256,740  
Total (% Over-
wintering Pop.)c       

73,584 
(0.09%) 

768,401 
(0.90%) 

1,569,647  
(1.82%) 

4,035,633  
(4.55%) 

8,546,208 
(9.17%)  

% Funnel Mortality       4.69% 48.95%  47.22%  

2017 
Highway 95 8,907 18,617 52.78  31.67   36.54  5,011  284,077  591,606  325,469  680,310  
Primary 0 11,878 25,918 -    8.32  8.32  -    98,857  215,702  98,857 215,702  

Secondary 28 17,705 38,169 -    6.15   6.15  -    108,936  234,845  108,936  234,845  
Total (% Over-
wintering Pop.)c       

5,011 
(0.01%) 

491,871 
(0.79%) 

1,042,154 
(1.67%) 

533,262 
(0.86%) 

1,130,858  
(1.81%) 

% Funnel Mortality       0.32% 31.34%  47.16%  
2016-2017 

Highway 95 8,907 18,617 584.96  18.58  208.67  55,536  219,3.2  396,772  1,858,631  3,884,998  
Primary 0 11,878 25,918 -    9.42  9.42  -    111,828   244,005  111,828  244,005  

Secondary 28 17,705 38,169 71.26  12.88  37.11  1,231  229,097  493,752  657,088  1,416,550  
Total (% Over-
wintering Pop.)c       

53,518  
(0.09%) 

561,227 
(0.91%)  

1,137,529 
(1.82%)  

2,627,547  
(4.10%) 

5,545,553 
(8.28%)  

% Funnel Mortality       3.66% 35.75%  30.75%  
aThe mean roadkill rates are calculated from data in the Central Funnel and incorporate estimates for all road edges (see Appendix D, Texas Monarch 
Roadkill Survey Data and MaxEnt Roadkill Extrapolations). 
bBased on multiplying length of road type by roadkill density per km for road type. 
cBased on 84.61 and 61.4 million monarchs overwintering in 2016 and 2017, respectively (Monarch Watch 2018b). Estimated from 21 million monarchs 
per hectares overwintering (Thogmartin et al. 2017). 
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Monarch Roadkill Model 

The feature subset ensemble of ten MaxEnt roadkill niche models provided excellent 

discrimination of roadkill presence locations from background locations within the background 

evaluation extent, with AUCbgp values ranging from 0.82 to 0.88 (0.86 ± 0.02, mean ± SD). The 

models provided marginally poor discrimination of roadkill presences from absences observed in 

the field, with AUCpa values ranging from 0.60 to 0.67 (0.64 ± 0.02, mean ± SD). Among the top 

eight variables with the highest permutation importance in the MaxEnt models (Table IV.2), 

were three human population density indices and two climatic indices. Other top ranked 

variables included elevation, road density over a three km radius, and percent cover of artificial 

surfaces within a 500 m radius. Traffic volume ranked third in permutation importance in 

preliminary models, but it was not available for Mexico, precluding its use in the final models. 

The MaxEnt response curves for population density indices all indicated that lower 

human population densities had higher association with monarch roadkill (Figure IV.3 A, E). 

The climatic indices indicated that roadkill was associated with more arid climates (Figure IV.3 

B, C). Lower road densities and lower percent cover of artificial surface were also associated 

with higher monarch roadkill (Figure IV.3 F, G). The response curve for traffic volume, which 

was not used in the final models, indicated that the highest roadkill was associated with lower 

traffic volume. The traffic volume response curve was very similar to that of percent cover of 

artificial surface (Figure IV.3 G, H), with which it was moderately correlated (rs = 0.58). 

The proportion of MaxEnt models projecting monarch roadkill generally increased from 

northeast to southwest within both the background evaluation extent and Central Funnel (Figure 

IV.4; see Appendix D, MaxEnt Roadkill Consensus Model for shapefile of MaxEnt  
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Table IV.2. MaxEnt model variable permutation importance for 19 variables used in ten 
random sets of ten of the 20 variables in monarch roadkill models. 

Variablea Abbreviation 
Permutation 
Importanceb, 
Mean ± SD  

Human population density per km in 9 km radius popden9kr 44.2 ± 3.8 (3) 
Autumn quarterly mean monthly AETT/PETH × 1000 etrt_autq 41.7 ± 23.3 (2) 
Annual mean monthly rainfall (P) (mm) prec_ann 36.4 ± 15.6 (4) 
Human population density per km in 3 km radius popden3kr 30.1 ± 0.0 (1) 
Elevation elev 27.9 ± 5.5 (4) 
Distance to urban areas ≥ 300 humans per km urbdist  27.1 ± 10.8 (4) 
Road density, km road per 3 km radius roadden3kr 19.6 ± 2.4 (2) 
Artificial surfaces artsur_500mr 13.4 ± 3.2 (3) 
Autumn quarterly mean monthly maximum 
temperature tmax_autq 10.5 ± 9.8 (3) 

Distance to highways hwydist 10.4 ± 2.5 (7) 
Latitude latitude 6.4 ± 4.3 (3) 
Grasslands grslnd_500mr 5.6 ± 3.4 (9) 
Autumn mean quarterly wind speed (m/second)  wndsp_autq 5.6 ± 5.4 (4) 
Distance to secondary roads secrddist 5.1 ± 2.9 (8) 
Shrublands shrub_500mr 4.5 ± 3.4 (9) 
Distance to primary roads primrddist 2.3 ± 3.0 (4) 
Road density, km road per 500 m radius  roadden500mr 2.2 ± 3.8 (5) 
Distance to High Flow Accumulation Areas (>60,000) strmhiflodist 1.2 ± 1.0 (5) 
Topographic Position Index (TPI), 3 km radius tpi3kr 1.0 ± 0.2 (5) 
Cultivated land cult_500mr 0.0 ± 0.0 (0)c 
a See Table D.1 for sources of variables. Variables ordered from highest to lowest mean 
permutation importance. 
b Permutation importance of the variable in the MaxEnt models, number of models in which 
the variable was used out of the 10 random models in parentheses.  
c Cultivated land layer was initially included in all 10 random models, but it was not 
included by MaxEnt in calculating any of the models. 
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Figure IV.3. MaxEnt variable response curves (logistic output probability of presence vs. 
variable) representative of the final ten models (A–G) and for a 30-variable model (H): 
(A) popden9kr, (B) etrt_autq, (C) prec_ann, (D) elev, (E) urbdist, (F) roadden3kr, (G) 
artsur_500mr, (H) traffic_vol (traffic volume for 2015) (see Table IV.2 for abbreviations 
and permutation importance).   
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Figure IV.4. MaxEnt frequency consensus for feature subset ensemble of ten models 
developed from random subsets of ten of 20 variables correlated less than 0.7 (see 
Appendix D, MaxEnt Roadkill Consensus Model for zipped shapefile of MaxEnt 
consensus model). 
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consensus model). The highest number of models projected roadkill within much of southwest 

Texas and Mexico in the Central Funnel. None of the MaxEnt models projected monarch 

roadkill over most of the northeastern Central Funnel, including the Dallas/Fort Worth metroplex 

and most of eastern Oklahoma. 

The average annual roadkill rates per km across each year and both years combined for 

each of the ten MaxEnt models were calculated based on lengths of each road type with 

predicted presence and location in relation to the hotspot (for details, see Appendix D, Texas 

Monarch Roadkill Survey Data and MaxEnt Roadkill Extrapolations). Extrapolating roadkill 

rates across the Central Funnel, an average of 1.3 ± 0.3 and 1.6 ± 0.4 million (mean ± SD) road-

killed monarchs were estimated for 2016 and 2017, respectively (Table D.2). Combining roadkill 

data across both years for the Central Funnel yielded annual roadkill rates of 1.2 ± 0.5 million 

with hotspot data considered separately, and 4.8 ± 1.0 million with hotspot data merged with 

other data (Table D.3). The mean projected percentage of road-killed monarchs in the Central 

Funnel that occurred within the background evaluation extent ranged from 54% to 50% in 2016 

and 2017, respectively (Table D.2).   

Discussion 

Monarch Roadkill Survey and Simple Roadkill Extrapolation 

In the 2016 autumn roadkill survey (but not 2017), high monarch roadkill was found 

along an area corresponding to the only two previous citizen-science (Figure IV.2). It is unclear 

why hotspots have occurred in this area. The high roadkill may be partly related to higher 

densities of migrating monarchs in more southern areas of the Central Funnel. In addition, local 

stochastic weather events probably influence the occurrence of roadkill hotspots, such as 
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unfavorable winds that may induce lower monarch flight patterns or extended roosting and 

nectaring behavior close to the ground in the vicinity of roadways.  

Observed monarch roadkill densities most likely represent accumulations of dead 

migrating monarchs over a period of one or two days to a few weeks during the main migration 

pulse through an area (Munguira and Thomas, 1992). Overall roadkill rates varied from 11 to 

646 dead monarchs per km depending on year, road type, and location within the Sonora-

Sheffield hotspot (Table IV.1). Previously reported general butterfly roadkill rates range from 

0.45 to 80 per km per day in North America, Asia, and Europe (Rao and Girish, 2007; De la 

Puente et al., 2008; Yamada et al., 2010; Skórka et al., 2013; Baxter-Gilbert et al., 2015), and 

those for monarchs range from 1.3 to 11.9 butterflies per km per week in Illinois (McKenna et 

al., 2001) to 115 butterflies per 20 m (575/100 m) along toll highway 40D southwest of 

Monterrey, Mexico in October 2015 (Correo Real, 2015). Several other independent October 

2015 surveys along a 27 km stretch of this same road yielded an average of 10 roadkill per 4 m 

(2.5 roadkill per m) which could extend to 2,500 roadkill per km (Correo Real, 2015; for data, 

see Appendix D, Correo Real Roadkill Report). Roadkill at this Monterrey hotspot could quickly 

add to over 67,500 dead monarchs per 27 km over one side of the road, and more detailed 

surveys are urgently needed along this and other hotspots in Mexico. The observed variation in 

monarch roadkill rates between the two years of this survey is common for roadkill studies 

(Seiler and Helldin, 2006). It is not clear how frequently roadkill hotspots occur in this region, 

and it is possible that one or both years represent an outlier.   

About 38% of the dead monarchs in the autumn field surveys were females, ranging from 

21% in 2017 to 41% in 2016. These figures generally match two separate citizen science 

observations on the percentage of female monarch roadkill in Mexico of 27% and 36% in 
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October 2015 (Correo Real, 2015) and are within the range reported from other roadkill studies ( 

(McKenna et al. 2001), as well as studies of sex ratios during migration (Borland et al., 2004) or 

on the overwintering grounds (Steffy 2015). Davis and Rendón-Salinas (2010) found a 

decreasing trend (~10%) in percent female monarchs at the Mexican overwintering sites from 

1976–2008 (but see Beall, 1946), which they suggested could reflect female biased mortality 

produced by the protozoan parasite Ophryocystis elektroscirrha.  

Estimates of monarch roadkill in this study are likely conservative given the narrow 

width of transects (1 m) and difficulty of observing dead monarchs or parts of monarchs in 

roadside vegetation. Roadkill estimates are expected to be conservative for a variety of reasons, 

such as other species modifying the distribution and abundance of dead butterflies (McKenna et 

al., 2001; Seiler and Helldin, 2006) or weather conditions influencing carcass persistance. 

Munguira and Thomas (1992) placed butterfly specimens on roadsides and found that only one 

of their 50 specimens disappeared during two weeks (daily loss rate of 0.15%), suggesting 

persistence may not be an issue, at least under some circumstances.  

Monarch Roadkill Models 

Roadkill Projections 

Most of the MaxEnt models projected monarch roadkill from the southwestern portion of 

the Central Funnel from West Texas to Mexico (Figure IV.4). The MaxEnt consensus projection 

agrees with all seven of the previously known citizen science reports of monarch roadkill 

hotspots in North America (Figure IV.4), including two hotspots in West Texas (Journey North, 

2017) and five hotspots in northern Mexico (Correo Real, 2015; Rogelio Carrerra, Universidad 

Autonoma de Nuevo Leon, Nuevo Leon, Mexico, personal communication).  



 

107 

 

MaxEnt-based roadkill estimates for monarch mortality ranged from 1.3 to 1.6 million 

throughout the Central Funnel for 2016 and 2017, respectively. These MaxEnt roadkill estimates 

were similar to the estimates based on simple roadkill extrapolation by road type when hotspot 

data was analyzed separately for the two years of field surveys (1.6 and 1 million). Most of the 

roadkill projected by MaxEnt models outside of the study area occurred in Mexico, indicating 

that more MaxEnt models are projecting roadkill along the sparser road network within the 

Central Funnel over northern and central Mexico, which is evident in the MaxEnt consensus 

model (Figure IV.4). As the autumn migration pathway narrows in the South, the migrating 

monarchs become more concentrated in the Central Funnel. This higher concentration may 

contribute to higher roadkill densities in the southern parts of the Central Funnel in Mexico, 

where most previous reports of monarch roadkill hotspots have originated (Figure IV.4). 

Although the models project some increased southward mortality risk, the extent of this risk in 

Mexico could be underestimated based on previous reports of roadkill hotspots. The 

extrapolations combining hotspot data with other roadkill data and projecting higher annual 

roadkill of around 5-8 million in the Central Funnel may be more realistic considering the 

probability of multiple roadkill hotspots in Mexico of higher density than seen in Texas. The 

MaxEnt models project little to no roadkill in the Northeastern part of the funnel area, including 

the Dallas/Fort Worth area and eastern Oklahoma. However, some roadkill likely does occur in 

this area, but possibly at a lower rate than in the more southern areas of the Central Funnel. 

Further research and field surveys are needed to verify roadkill rates outside of the survey area in 

the southern and northern parts of the Central Funnel. Additional data may allow effective use of 

roadkill density models, rather than presence only MaxEnt models used in this study. Roadkill 
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density models can better reveal regional roadkill patterns useful in refining projections, 

especially for northern Mexico where roadkill could be much higher than in Texas.  

Factors Affecting Roadkill 

MaxEnt projections of monarch roadkill within the Central Funnel were generally 

associated with more arid climate and less densely populated areas (Figure IV.3). These 

conditions generally describe those for the seven previous monarch roadkill hotspots reported 

from Texas and Mexico, with the possible exception of the roadkill hotspot in the vicinity of 

Monterrey, Mexico (Figure IV.4). This could be related to a variety of factors. For example, 

autumn migrating monarchs have been observed to spend additional time flying lower to the 

ground during the afternoon in desert areas, perhaps to seek shelter from the heat or find nectar 

(Journey North, 2018c). Monarchs may need to spend more time searching for nectar in arid 

environments, although this has not been evaluated. Finally, the increased roadkill rates may 

simply reflect the increased number of monarchs in more southern areas of the Central Funnel. 

This locality factor cannot be associated with most of the predictors, except latitude, but may be 

the most important explanation. Local climate, weather patterns, and geography affect monarch 

movement and behavior and are likely important contributors to road mortality. Wind patterns 

(direction, duration, and speed) may be more important than anthropogenic factors, but short-

term weather events could not incorporated in the models.  

Traffic volume has been noted as one of the most important variables in previous roadkill 

studies (Bennet, 2017). Traffic volume ranked high in importance in preliminary roadkill 

models, but model accuracy (AUC) was not significantly affected by its removal. Other variables 

that were correlated with traffic volume likely compensated for its absence, including human 

population density, artificial surface cover, distance to urban areas, and road density. In models 
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including traffic volume, the highest roadkill was associated with fairly low average annual daily 

traffic (AADT) values, similar to the study by McKenna et al. (2001). In general, higher roadkill 

has been associated with higher traffic volume due to increased probability of vehicle collisions 

(Seiler and Helldin, 2006; Skórka et al., 2013). Samways (1994) suggested that roads with high 

traffic volume serve as corridors for high butterfly mortality. In this study, low traffic volume, 

along with related anthropogenic variables, is correlated with locations of monarch roadkill 

hotspots, but may not be directly related to the road mortality. As the human population grows, 

traffic volume should increase in the lower traffic volume monarch roadkill hotspot areas, likely 

leading to higher roadkill rates (Bennet, 2017).  

Spatial and Temporal Variation 

The timing of our field surveys relative to peak migration may have varied among 

transect locations and years, which could have influenced our results. If peak migration occurred 

after our field surveys in one or both years, we may have underestimated roadkill numbers. For 

example, in 2017, the autumn migration was later than usual due to unusually hot summer 

(Agrawal and Inamine, 2018). Few other studies have identified roadkill hotspots for butterflies 

(but see Samways, 1994; Her, 2008). Monarch roadkill hotspots may vary from year to year and 

may be difficult to locate or may not occur in some years. These roadkill hotspots most likely 

result from unpredictable stochastic weather patterns, such as heavy winds occurring where 

clusters of migrating monarchs are crossing roadways.  

Much higher monarch road mortality was observed during the autumn migration than in 

the spring (Figure D.1), indicating that seasonality is a factor contributing to monarch roadkill 

rates. However, the monarch spring migration is more spatio-temporally dispersed making 

comparisons difficult. Temporal variability can occur between years, within the migration phase, 
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or even within a day. For example, monarch behavior, such as flying low in the mornings 

(McKenna et al., 2001), probably affects the risk of roadkill at different times of day. Temporal 

patterns affecting monarch roadkill should be investigated further. Other sampling methods may 

be effective in detecting additional roadkill hotspots, such as adaptive cluster sampling (ACS), 

which was developed for inventorying scattered and clustered phenomena (Thompson, 1990).  

More frequent samples in a given location can also be critical for detecting roadkill hotspots 

(Santos et al., 2015). 

Implications and Impacts in Relation to Monarch Conservation 

Autumn Migration Mortality 

Butterfly roadkill is a density independent mortality factor (Rodewald and Gehrt, 2014) 

with the incidence of roadkill being subject to high variability. Consequently, roadkill percentage 

of the migrating population is very unpredictable in any given year. The annual percentage of 

migrating monarchs subject to road mortality in the Central Funnel was conservatively estimated 

by dividing a roadkill estimate by the combined overwintering populations and roadkill estimate 

(overwintering cohort). The size of the overwintering populations is calculated by multiplying 

the hectares of roosting monarchs at the Mexican overwintering sites from Rendón-Salinas et al. 

(2018) by the value of 21.1 million monarchs per ha suggested by Thogmartin et al. (2017). 

Based on these amounts, the estimated annual roadkill rates from our MaxEnt models in the 

Central Funnel represent from 2.1 to 2.5% (1.3 to 1.6 million) of the overwintering cohort for 

2016 and 2017, respectively. Using the corresponding roadkill rates based on simple 

extrapolation separately for the two years, the monarch roadkill rates in the Central Funnel 

represent mortality of 1.8 and 1.7% (1.6 to 1.0 million) for 2016 and 2017, respectively. Merging 

hotspot data for simple extrapolation in 2016 yields a 9% roadkill rate (8.5 million) for the 
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overwintering cohort, which may better reflect missing roadkill hotspot data from Mexico. In 

contrast, the projection of 500,000 road-killed monarchs by McKenna et al. (2001) in Illinois 

during one week in 1999 represents only 0.26% of the overwintering cohort that year (191 

million, 9.05 ha), indicating potentially lower roadkill rates for areas north of the Central Funnel 

in some years.  

The actual monarch population decline within a given year can be much higher than the 

differences in overwintering cohort sizes from year to year, since it includes the unknown 

quantities of butterflies recruited, or not recruited due to habitat loss, during spring and summer 

breeding. Mortality at the Mexican overwintering sites due to occasional winter storms can 

produce very high mortality, estimated at around 75% in 2002 (Brower et al., 2004) and greater 

than 40% in 2016 (Brower et al., 2017). Average monarch overwintering mortality is around 

36% ± 21% (n = 7; range 4-55%) based on data from Ries et al. (2015; their Figure 24.7). 

Lowered recruitment due to loss of milkweed habitat has been identified as the primary factor in 

monarch population declines (Pleasants, 2017; Thogmartin et al., 2017), with losses of milkweed 

resources in Iowa estimated at 76% from 1999-2014 (Pleasants et al., 2017). Other studies place 

more importance on mortality during the fall migration in the decline of monarchs (Badgett and 

Davis, 2015; Inamine et al., 2016; Agrawal and Inamine, 2018). Consequently, it is complex to 

evaluate the relative importance of roadkill to other factors in the monarch population decline, 

but it is probably lower compared to the factors of milkweed habitat loss and overwintering 

mortality. Northward expansion of the monarch summer breeding range is anticipated with 

climate change (Batalden et al., 2007; Lemoine, 2015), making the southward autumn migration 

route even longer, increasing both exposure to traffic and associated road mortality (Badgett and 
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Davis, 2015). Monarch roadkill during autumn migration should be further evaluated in the 

context of other mortality factors along the migration path (Baxter-Gilbert, 2015).  

Brower et al. (2012) fitted an exponential decline curve to the estimated monarch 

overwintering populations in Mexico from 1994 to 2010 (P = 0.015, R2 = 0.336). Inclusion of six 

additional years of data through 2017 (Vidal and Rendón-Salinas, et al. 2014; Monarch Watch, 

2018b) increases the significance of fit for a standard geometric power curve (y = axbx; Figure 

IV.5) (P = 0.0009; adjusted R2 = 0.486; ZunZun.com, 2018). A concave exponential curve 

Figure IV.5. Annual monarch population in hectares in Mexican overwintering sites from 
1995 to 2018 (original data, black circles; Vidal and Rendón-Salinas et al., 2014; Monarch 
Watch, 2018b) with fitted geometric power curve, y = axbx (adjusted R2 = 0.49; P = 
0.00009; blue diamonds), and corresponding geometric population growth equation curve, 
Pt = Po(1 + r/n)nt, where Pt is the final hectares (2.11), Po is the initial hectares (11.79), t is 
the number of years (23), n is the number of sub-periods (1), and r is the population growth 
(or declination) rate (derived population declination of 7.21% per year; open red circles). 
Fourteen years to restore 6 ha of overwintering monarchs based on totally reversing the 
current decline to 7.21% growth per year (gold triangles). 
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represents the most serious form of species population decline, indicating constant proportional 

negative pressure on the population (Di Fonzo et al., 2013). A standard geometric population 

growth curve, fit to the modeled power curve, reveals a -7.21% annual population decline over 

the last 23 years of an overall 82% population reduction (for details, see Appendix D, Monarch 

Population Decline Curve). Continuance of this rate of decline would result in an average of 0.7 

ha of overwintering monarchs within the next 14 years (by 2033) (Fig. IV.5), greatly increasing 

the chance of extirpation of eastern migrating monarchs by an extreme winter storm mortality 

event. A total reversal of the 7.21% annual monarch decline over the next 14 years, coupled with 

an annual 7.21% population increase (net change 14.4%), is needed to restore the size of the 

overwintering population to current conservations goal of six hectares (Thogmartin et al., 2017). 

A 0.5% annual reduction in migrating monarch mortality through roadkill mitigation could 

significantly contribute to a reversal in the long-term 7.2% annual exponential decline in 

monarch populations (Figure IV.5). 

Roadkill Mitigation 

While some major factors in the monarch decline are difficult to reduce, such as 

overwintering mortality, the opportunity for reducing road mortality is possible through roadkill 

mitigation (see Rytwinski et al. [2016] for a recent review on mammal roadkill mitigation). A 

variety of roadkill mitigation measures have been implemented for danaine migratory butterflies. 

In Taiwan, a four-meter high net was placed along a 400 m section of bridge on National 

Freeway 3 to successfully induce spring migrating double-banded crow butterflies to fly over 

and above the traffic, reducing on site roadkill from around 2.5% to 0.5%. In addition, an outer 

traffic lane was closed when more than 500 butterflies per minute were crossing (Her, 2008; 

Taiwan EPA, 2010). In response to heavy autumn migratory monarch roadkill observed in 
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Coahuila state of Mexico, traffic signs were posted in 2015 limiting the maximum speed to 60 

km per hour (37 mph) in the presence of monarchs (Miranda, 2015). Police have been observed 

slowing traffic in Nuevo Leon state in Mexico to reduce monarch mortality along a highway 

south of Monterrey (Dr. Orley R. Taylor, personal communication). In view of the potential 

harm of roadkill to the recovery of monarch populations, additional research is needed to test and 

assess the effectiveness of these types of butterfly roadkill mitigation strategies for monarch 

roadkill hotspots in west Texas and Mexico.   

Conclusions 

This study represents a novel approach for projecting roadkill of a migratory insect 

through ecological niche modeling. Annual monarch roadkill rates during autumn migration 

varied substantially. There was close agreement between two methods of estimating monarch 

roadkill rates, simple extrapolation by road type and MaxEnt roadkill model projections. About 

1.25 million roadkill monarchs per year were projected during the autumn migration over the 

Central Funnel, which could represent 2% of the Mexican monarch overwintering population. 

MaxEnt model roadkill projections also aligned with several previously known monarch roadkill 

hotspots, which suggests MaxEnt models could be used to identify additional monarch roadkill 

within the Central Funnel. Roadkill rates may be higher for the Central Funnel in northern 

Mexico than in the Texas survey area, and should be further investigated. The spatial and 

temporal variability in monarch road mortality in the Central Funnel should be further 

investigated, including how local and short-term weather events, especially related to wind, 

influence monarch roadkill hotspots. With the new information on Central Funnel roadkill 

hotspots, conservation efforts could be implemented to mitigate monarch mortality at roadkill 

hotspots. Examples of mitigation efforts include reducing traffic speeds when large numbers of 
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monarchs are present (Miranda, 2015) or using netting over short sections of roadway to 

encourage flight above the level of traffic (Her, 2008). Reducing the 2% roadkill rate over the 

Central Funnel for the eastern monarch population is as an important step towards reversing the 

continuing decades long decline of this iconic butterfly. 
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CHAPTER V  

CONCLUSIONS 

A novel randomized ensemble hybrid feature selection algorithm, the RSFSA, was 

developed and demonstrated for applications in ecological niche modeling. The algorithm 

generated novel high performance ENM FSEs, facilitating data mining of important variables 

and providing a statistical basis for evaluating niche model performance across feature subset 

sizes, model parameters and algorithms, and environmental scenarios. The strict training and 

testing data randomization protocol developed for comparing RSFSA-selected and random 

ENMs provided a statistical basis for validation of the RSFSA. The RSFSA also selected ENMs 

developed from small subsets of a large pool of variables that performed comparable to ENMs 

developed using expert selected variables.  

The two basic components of the RSFSA are (1) the generation of thousands of random 

subsets of environmental variables of a given size that meet a maximum correlation threshold, 

typically |r| < 0.7 (correlation filter), using multiple random sequential forward selection, and (2) 

ranking these random feature subsets according to accuracy (AUC) or information content 

(AICc) (subset wrappers) derived from running the niche model algorithm (e.g., MaxEnt) for 

each of the thousands of random feature subsets from (1). The top ranked feature subsets 

represent an RSFSA-selected FSE. The selected FSE is then evaluated against an FSE of random 

subsets for improvement of AUC or AICc to verify the effectiveness of RSFSA using held out 

model training and testing data. The calculation of thousands of MaxEnt models for ranking by 

AUC and AICc with RSFSA is basically a brute-force approach to finding higher performance 

niche models that requires much computation time, but which is reduced by parallel processing. 

An advantage of the random subset search strategy of RSFSA is that subsets of variables are 
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evaluated as a group in niche models, allowing identification of potentially synergistic 

combinations of variables that can be missed using sequential selection algorithms that are 

typically used for niche models, which evaluate single variables at a time. 

The application of RSFSA or RSFSA components in improving ENM analyses was 

demonstrated for a variety of natural phenomena related to the landscape ecology of wildfires 

and monarch butterfly migration. The RSFSA-selected wildfire activity MaxEnt ENMs using 15 

of 90 variables had significantly improved model accuracy (AUC), information content (AICc), 

and, in some cases, lower overfitting (AUCdiff) compared to random models. The RSFSA results 

identified several important variables for modeling wildfire activity that had not been identified 

in previous studies. For example, of the 20 top ranked variables used in RSFSA selected low 

burn severity wildfire activity models, only nine were found important in previous studies 

modeling wildfire activity in the western US and Greece. Newly identified important variables 

included mean temperature of the driest quarter (bio_9), annual evapotranspiration ratio 

(etrt_ann), and spring quarter evapotranspiration ratio (etrt_sprq). Utilizing the MaxEnt FSEs 

produced by RSFA, ecoregions were identified with relatively high or low projected areas of 

burn compared to historical burned areas and maps of contemporary wildfire deficit were 

developed. Projected high wildfire deficits were widespread throughout western North America, 

emphasizing the need to carefully manage associated fuel load build up that could endanger 

anthropogenic assets and sensitive areas of high biodiversity, such as sky island habitats. The 

RSFSA-selected MaxEnt wildfire activity FSEs also revealed significant differences between 

projected burned areas in current and future climate scenarios for some ecoregions. For example, 

many northern ecoregions had significant future projected increases in burned areas for low burn 

severity wildfires. Projected future increases in burned areas in western North America are in 
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general agreement with recent previous studies (Parks et al., 2016; Liu and Wimberly, 2016), 

further highlighting the critical importance of managing already excessive fuel loads in many 

managed ecosystems. 

In spatial modeling of the monarch fall migration, a six of 80 variable FSE of RSFSA-

selected MaxEnt ENMs formed the basis of a novel detailed comparison with a TSE of spatial 

point pattern KDEMs. The KDEMs were found to have significantly higher accuracy than 

ENMs, but ENMs had higher information content (lower complexity). The ENMs best revealed 

the suitability of Great Plains grassland ecoregions for the monarch fall migration, which was 

probably associated with increased nectar resource availability. The KDEMs best reveal 

migratory pathways through less environmentally suitable areas of the Chihuahuan Desert in 

West Texas and northern Mexico. The ten most important variables identified for monarch 

migratory ENMs through RSFSA were all climatic indices, including spring monthly minimum 

temperature (tmn_sprq), autumn mean monthly evapotranspiration (aett_sprq), and total annual 

evapotranspiration (taett_tann). The RSFSA again proved useful in revealing the importance of 

less utilized or studied environmental variables for ENMs. For example, eight of the top ten 

ranked indices included four Supplementary Climatic indices and four AET-PET indices. These 

Supplementary and AET-PET indices are not nearly as often employed in ENMs as the 19 

BioClim indices (Bradie and Lueng, 2016). The KDEM migratory pathways were used to 

identify strong annual variability in the monarch fall migratory pathways and delineate the core 

Central and Coastal funnels of the southern Central and Eastern flyways, respectively. A number 

of important potential hazards along the fall migratory pathways were spatially identified, 

including road mortality, loss of nectar resources to land cover/land use change, exposure to 
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neonicotinoid contamination of nectar and honeydew food sources, and exposure to mosquito 

adulticides. 

Monarch road mortality MaxEnt ENMs were developed in the Central Funnel for 2016 to 

2017 using the MRSFS portion of the RSFSA to produce a random FSE of ten ENMs using ten 

of 20 variables. The eight top ranked variables by permutation importance in the ENMs included 

three human population indices, two climatic indices, elevation, road density over a 3 km radius, 

and percent cover of artificial surfaces over a 500 m radius. The importance of climate variables 

in roadkill niche models had not previously been identified. Arid, less populated areas from west 

Texas to northern Mexico were projected to have the highest roadkill probability by the MaxEnt 

ENM FSE. These same areas correspond with the locations of previously known monarch 

roadkill hotspots. The ENM FSE was used to estimate roadkill of about 1.25 ± 0.3 million 

monarchs per year across the Central Funnel, which agreed with simple extrapolation of roadkill 

according to road types. This Central Funnel roadkill estimate represents about 2-3% of the 

monarch overwintering population in Mexico for the study periods. Low rates of mortality can 

be very detrimental to species in decades long exponential population decline, such as the 

monarch. Results from this study are used to recommend assessing roadkill mitigation strategies 

in West Texas roadkill hotspots for their potential to reduce road mortality in support of monarch 

population recovery efforts. 

In addition to the above discussed applications for conservation related 

phenomenological ENMs in pyrogeography and entomology, a wide variety of biological fields 

can benefit from the data mining capabilities of RSFSA for ENMs, including species distribution 

ENMs important for studies in invasive species, global change, agriculture, forestry, biological 

control, conservation, and restoration. The RSFSA can also be can also be used to study how the 
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inclusion or omission of certain classes of indices, such as AET-PET indices, impacts 

performance of RSFSA-selected ENMs.  The RSFSA should be tested for the ability to filter out 

meaningless dummy variables, such as artist paintings (e.g., Fourcade et al., 2017), and improve 

spatial or temporal transferability of ENMs. The relative transferability of ENMs ranked using 

AUC calculated from randomly partitioned data versus AUC from spatially partitioned blocked 

data (Roberts et al., 2017) should be evaluated using RSFSA. Application of RSFSA with 

binomial (two-class) ENM algorithms other than MaxEnt, such as random forests and 

environmental envelope algorithms, should also be explored and compared with other feature 

selection strategies, such as sequential forward selection. In addition, RSFSA can be evaluated 

for improving performance of multinomial (multi-class) classifiers, such as the random forests or 

support vector machine algorithms used in image classification for remote sensing applications 

(e.g., Zhou et al., 2018). The hybrid RSFSA also has potential applications alongside other 

hybrid FSAs utilized in data mining for molecular bioinformatics with high dimensional omics 

data (e.g., Perez-Riverol et al., 2017). Potential applications of RSFSA extend beyond ENMs to 

other burgeoning fields utilizing hybrid FSAs for data mining, such as remote sensing image 

classification and molecular bioinformatics. The RSFSA should be compared with other hybrid 

FSAs for potential broad scope applications in data mining.
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APPENDIX A                                                                                                                             

(CHAPTER II)* 

Methods 

Fire Occurrence Data  

Fire occurrence data were in the form of separate 30 m resolution categorical rasters of 

wildland fire burn severity classes. Burn severity classification data from the LANDFIRE 

Disturbance database for 1999–2014 included some MTBS data and additional local agency 

derived data (LANDFIRE, 2016; Rollins, 2009). The combined MTBS and LANDFIRE data 

included four classes (Schwind, 2008) of large wildland fire burn severities: unburned, low, 

moderate, and high (e.g., Hamilton and Hann, 2015). Aggregation and resampling tools in 

ArcGIS ver. 10.3 (ESRI Inc., Redlands, California) were used to generalize the 30 m resolution 

MTBS and LANDFIRE rasters to ca. one km resolution before conversion to presence points. 

All burn severity presence, absence, and background point data were randomly thinned using R 

software to a maximum of 20,000 points per category to improve computational efficiency.  

In order to allow a more simplified and accurate binary fire frequency classification for each of 

the three burn severity classes, all fire frequency data were pooled into two classes: zero fires in 

31 years, and one or more fires over 31 years. The Mean Fire Interval (MFI; NWCG, 2016) was 

calculated for these two fire frequency classes over the western North America background 

evaluation extent as the 31-year period divided by the number of fire presences per one km cell 

plus one. This yields an MFI greater than 16.5 years for the no fire frequency absence class, 

 
 
* Modified with permission from Appendix A of Tracy JL, Trabucco A, Lawing AM, Giermakowski T, Tchakerian 
M, Drus GM, Coulson RN (2018) Random subset feature selection of ecological niche models for wildfire activity 
in western North America. Ecological Modelling 383:52-68. Copyright 2018 Ecological Modelling. 
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and an MFI less than or equal to 16.5 years for the presence class of one or more fires in 31 years 

(maximum MFI = 31/(1+1), or 16.5 years). 

The MTBS burn severity classes were originally derived from interpretations of the 

spectral index of the difference Normalized Burn Ratio (dNBR) from multitemporal Landsat 

satellite imagery in order to correlate with the ground based Composite Burn Index (CBI) rating 

system of Key and Benson (2006) (Eidenshink et al., 2007; Finco et al., 2012). Schwind (2008) 

provides summary descriptions of field characteristics for the main MTBS burn severity classes 

that were modeled. The Monitoring Trends in Burn Severity (MTBS) low burn severity class 

represents a large fire with slight alterations to most of the ecosystems, although some 

components may have severe damage. Most litter would be consumed with some change in duff 

and woody debris, and low vegetation may be significantly scorched, but recovery is generally 

fairly quick within a year or two. Saplings of western conifers can suffer up to 50% mortality and 

up to 25% mortality can occur in intermediate and large overstory trees. Fires of the MTBS high 

burn severity class encompass large areas with fairly consistent loss of all litter and a loss of 

almost all herbaceous cover and duff, exposing 50% of newly exposed mineral or rock. Recovery 

of herbaceous vegetation and shrubs is usually evident within a few years. In forests, there is 

deep charring and partial consumption of woody debris, and 75% mortality of overstory trees. 

Overstory tree damage is long lasting, and forest development may begin within one to three 

years but take several decades to complete. Fires of the MTBS moderate burn severity class have 

intermediate characteristics between the above described low and high severity classes (Schwind 

2008). 

The original 30 m resolution MTBS and LANDFIRE burn severity category rasters for 

each year over the coterminous United States were clipped using ArcGIS software to include 
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only the states of western North America in which MTBS considers 405 ha as a minimum fire 

size. Separate binary (1/0) rasters of low, moderate, and high wildland burn severity were 

derived from the clipped rasters, and aggregated by sum to 990 × 990 m cells (or 33 × 33 cells of 

30 m resolution to approach one km size) in the original Albers Equal Area Conic Projection of 

NAD83 datum. The resulting 990 × 990 m burn severity cells for each category were then 

categorized so that only cells having a value of greater than or equal to 544, representing at least 

50% of the original 1,089 component 30 × 30 m cells, were considered as burn “presence” cells 

for large wildland fires and assigned a value of “one”. Consequently, large wildland fire burn 

presence categories represent burn extents of about 49 to 98% (or 49 to 98 ha.) per year for each 

1km resolution raster cell, which approximates at least the area of a National Wildfire 

Coordinating Group (NWCG, 2016) Class D fire (100 to 299.9 acres, or 40 to 121 ha.). The 

resulting yearly burn category presence rasters were resampled to 1000 × 1000 m using nearest 

neighbor interpolation for categorical data. These yearly one km resolution burn severity 

category rasters were then projected to a Geographic Coordinate System of WGS84 datum, and 

resampled and aligned to match the one km resolution environmental data.  

For each year of overlap between MTBS and LANDIFIRE data (1999–2012), the 

occurrences for each burn severity category were combined in order to include MTBS data that 

was not included in the LANDFIRE data set. The aligned burn severity rasters for each class and 

year were then summed to yield a raster of fire presence frequency per 31 years at one km 

resolution. Preliminary investigations using 84 variables with a random forest multiclass 

classifier (Brieman, 2001; R caret package, Kuhn, 2008) provided poor discrimination among the 

spatial distributions of multiple fire frequency classes, such as one fire versus two fires per 31 
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years (results not shown). Consequently, single frequency classes of burn severity rasters were 

converted to point shapefiles for developing MaxEnt wildfire activity models. 

Wildfire Activity Models 

Environmental Variables 

Seasonal climatic indices are important variables in wildfire activity models (e.g., 

Kalabokidis et al., 2002; Dillon et al., 2011; Parisien and Mortiz, 2009; Littell and Gwozdz, 

2011; Liu and Wimberly, 2016). Consequently, novel hemispherically adjusted global quarterly 

seasonal climatic indices were calculated, such as mean monthly rainfall for the summer quarter 

(prec_sumq). Driscoll and Yee Fong (1992) suggested a moisture correction factor was needed 

for their continentality index. Therefore, a novel modified Driscoll and Yee Fong continentality 

index (cont_dfmo; Driscoll and Yee Fong, 1992) was calculated, which incorporates a moisture 

correction factor based on actual evapotranspiration divided by potential evapotranspiration 

(AET/PET) (Figure A.1). 

The 57 climatic indices are all based upon the one km resolution WorldClim global grids of 

monthly precipitation and the monthly mean, minimum and maximum temperatures of Hijmans 

et al. (2005). The climatic indices were divided into three subsets of 19 indices (Tables II.1, A.1). 

The first is the Bioclim indices provided by WorldClim (2017). The second is supplementary 

climatic (suppclim) indices that include 12 seasonal quarterly and three annual indices of 

precipitation (prec) and  minimum (tmin) and maximum (tmax) monthly temperatures, and four 

other bioclimatic indices (the first three of which are from Rivas-Martinez et al. 1999): (1) 

Rivas-Martinez (RM) ombrothermic index (ombro_index), (2) RM continentality index 

(cont_index), (3) RM thermicity index (therm_index), and (4) the Effective Warmth Index 

(ew_indx) of Chiu et al. (2012). The third group of climatic indices is the actual and potential 
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Figure A.1. (A) Global continentality versus absolute value of latitude (n = 56,606) with 
linear regression line (red);  distance from a given point to the line is the Driscoll Yee Fong 
continentality index, cont_df, for that point (corresponds to Figure 2 of Driscoll and Yee 
Fong, 1992); (B) Novel moisture correction factor (CORRM) based on third order cubic 
function of AET/PET ratio; when multiplied with cont_df yields modified cont_df 
(cont_dfmo); (C) cont_df for southeastern Utah with spurious maxima above five; (D) 
cont_dfmo for southeastern Utah with spurious maxima of five eliminated by CORRM (Tracy 
et al., 2018b). 

A B 

C D cont_df  
Contour by 5 

cont_dfmo  
Contour by 5 
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Table A.1. Sources for various climatic and geomorphologic indices (Table II.1) (Tracy et 
al., 2018b). 
Index Source 
Climatic Indices  
Effective Warmth Index (from mean monthly 
temperatures × 10 above 5ºC) Chiu et al., 2012 
Rivas-Martinez (RM) ombrothermic index (from 
monthly MTMP and P; Rivas-Martinez et al., 1999) Rivas-Martinez et al., 1999 
RM continentality index (TMAX – TMIN) × 10 (CONT) Rivas-Martinez et al., 1999 
Total annual reference evapotranspiration from 
Hargreaves model (PETH) (mm) Zomer et al.; 2007, 2008 
Thornwaite summer concentration thermal efficiency 
(summer PETH/annual PETH) × 1000 Thornwaite, 1948 
Willmott and Feddema climate moisture index (from 
total annual PETH and PREC) × 1000 Willmott and Feddema, 1992 
Total annual actual evapotranspiration from Thornwaite-
Mather water balance model (TMWBM) (AETT) (mm) Trabucco and Zomer, 2010 

Modified Continentality index of Driscoll-Yee Fong 
Driscoll-Yee Fong, 1992; 

This Study 
Climate water deficit (total annual PETH – TMAET) Stephenson, 1998 
Geomorphologic Indices  
Matonne’s Modified Dissection Coefficient (Dissection, 
DISS) Evans, 1972 
Topographic Position Index (TPI; = Slope Position 
Index, SPI) Guisan et al., 1999 
Elevation Relief Ratio (ERR, = Surface Relief Ratio, 
SRR) Pike and Wilson, 1971 
Compound Topographic Index (CTI, = Topographic 
Wetness Index, TWI) Moore et al., 1993 

Heat Load Index (HLI) McCune and Keon, 2002 

Integrated Moisture Index (IMI) Iverson et al., 1997 

Site Exposure Index (SEI)a Balice et al., 2000 

Slope Cosine Aspect Index (SCAI) Stage, 1976 
aThe sei is similar to the Solar Radiation Aspect Index of Roberts and Cooper (1989), 
which was used by Dillon et al. (2011). 
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evapotranspiration indices (AET-PET indices) which were derived from monthly Hargreaves 

potential evapotranspiration (PET, peth) and Thornwaite-Mather actual evapotranspiration (AET, 

aett) grids developed by Zomer et al. (2007, 2008) and Trabucco and Zomer (2010), 

respectively. The AET-PET indices include 12 quarterly (winter, spring, summer and autumn; 

staring with winter in northern hemisphere, January, February, and March) and three annual 

indices of AET, PET, and AET/PET (etrt), as well as four other indices: (1) the Thornwaite 

(1948) summer concentration of  thermal efficiency (tpeths_tpetha), (2) the climate water deficit 

(cwd_ann, AET – PET; Stephenson 1998), (3) the Willmott Feddema climate moisture index 

(im_index, Willmott and Feddema 1992), and (4) a novel modified version of the Driscoll and 

Yee Fong (1992) continentality index (cont_dfmo), which includes a new moisture correction 

factor derived from the annual AET/PET ratio (etrt_ann) (Table II.1).  

The Willmott Feddema climate moisture index (im_index; Willmott and Feddema, 1992), is 

calculated using total annual precipitation (tprec_ann) and total annual potential 

evapotranspiration (tpeth_ann) from the following conditional formulae: if prec_ann ≥ 

tpeth_ann, then im_index = 1 – (tpeth_ann/tprec_ann); if both prec_ann and tpeth_ann are zero, 

then im_index = 0; if tprec_ann < tpeth_ann, then im_index = (tprec_ann/tpeth_ann) – 1.  

The continentality index of Driscoll and Yee Fong (1992), cont_df, is calculated as the 

residual (or difference) between the annual temperature range (Rivas-Martinez (RM) 

continentality index, not multiplied by 10; cont_index) and the predicted value of cont_indx 

based on a least squares linear regression relationship with the absolute value of latitude (Figure 

A.1A). Driscoll and Yee Fong (1992) suggested accounting for moisture effects in order to 

eliminate spurious maxima in cont_df around the value of five in the southwestern US near 

southeastern Utah (their Figure 3). A novel moisture correction factor (CORRM) was created to 
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multiply with cont_df and yield modified cont_df, or cont_dfmo, such that cont_dfmo = cont_df × 

CORRM. The value of CORRM is calculated by the following third order cubic function of the 

Actual Evapotranspiration/Potential Evapotranspiration ratio (AET/PET, etrt_ann, floating point, 

ranging from zero to one) that reduces cont_df by a maximum of 50% at zero AET/PET, with the 

reduction sharply reduced to 25% at 0.2 AET/PET, and gradually reducing to 1% at 0.7 

AET/PET: CORRM = 0.49918 + 1.56849(AET/PET) - 1.63364(AET/PET)2 + 0.56502(AET/PET)3 

(Figure A.1B). This correction factor effectively eliminates in cont_dfmo the spurious maxima of 

five seen for cont_df in southwestern Utah (Figure A.1C-D).  Additional spurious maxima in the 

Taklimakan Desert of northwestern China are also eliminated by cont_dfmo (not shown).  

All 24 of the quarterly seasonal suppclim (12) and AET-PET (12) indices are 

hemispherically adjusted, in that the quarterly indices for the southern hemisphere are calculated 

from monthly indices that were phase shifted by six months with respect to those for the northern 

hemisphere. This hemispheric adjustment especially facilitates representation of more temperate 

seasonal climates across hemispheres. However, hemispherical adjustment produces artefactual 

differences in quarterly seasonal climates on either side of the equator within the Equatorial Zone 

between 10ºN and 10ºS latitudes, making these 24 seasonal indices unsuitable for modeling of 

phenomena or species in this region.  

The sixteen topographic indices are divided into two subsets derived from the 15 arc 

second resolution HydroSHEDS elevation data (Lehner et al., 2008): (1) 12 geomorphologic 

indices based on the HydroSHEDs Digital Elevation Model (DEM) raster, and (2) four 

hydrogeomorphologic indices based upon distances to a HydroSHEDs river network line 

shapefile including maximum flow accumulations per stream reach (Table II.1). The 

Geomorphometry and Gradient Metrics Toolbox for ArcGIS was utilized in calculating the ten 
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geomorphologic indices other than elevation and slope (Evans et al., 2014). All calculations with 

topographic data were conducted in Albers equal-area conic projection (NAD 83 datum) and the 

results were converted to non-projected geographic WGS 84 datum to match the climate 

variables, and resampled to one km. The hydrogeomorphologic indices represent distances to all 

streams (strmdist), and distances to three generalized stream flow classes based on the relative 

maximum flow accumulation according to the number of 15 arc second cells per reach. These 

stream flow accumulation categories were designed to each contain about one third of 301 

occurrence points for the riparian obligate federally endangered Southwestern Willow Flycatcher 

(Empidonax traillii extimus) in southwestern North America: (1) low, from 100 to 5,000 cells 

(strmloflodist); (2) medium, from 5,000 to 60,000 cells (strmmdflodist); and (3) high, greater 

than 60,000 cells (strmhiflodist) (Table II.1).  

The 17 anthropogenic indices are divided into three subsets: (1) human population 

indices based upon 30 arc second resolution grid cells of population density per square kilometer 

(CIESIN 2016, water/no value set to zero); (2) road indices derived from a Global Roads Layer 

shapefile for 1980 to 2010 (CIESIN and ITOS, 2013); and (3) anthropogenic land cover indices 

obtained from the Global 1-km Consensus Land Cover data set (Tuanmu and Jetz, 2014). For 

human population indices, focal statistics of year 2000 mean population densities were 

calculated from the using specified circular window neighborhoods (Table II.1). For the purposes 

of this study, high urban population density values were defined as greater than or equal to 1,500 

people per square kilometer, and the minimum low urban population density was set at 300 

people per square kilometer (Dijkstra and Poelman, 2014). Starting with these values, seven 

classes of population density per one square kilometer were defined: (1) none to sparse rural, less 

than 10, (2) low rural, 10 to less than 100, (3) medium rural, 100 to less than 200, (4) high rural, 
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200 to less than 300, (5) low urban, 300 to less than 900, (6) medium urban, 900 to less than 

1,500, and (7) high urban, greater than or equal to 1,500 (Table II.1). These seven classes were 

then used to calculate Euclidean distances to varying population densities. For road indices, 

global road data from 1980 to 2010 (CIESIN and ITOS, 2013) was used to calculate distance to 

road and road density (km road length per square km) for specified circular windows at 15 arc 

second resolution in Albers Equal Area Projection, which was then converted to non-projected 

WGS 84 datum and resampled to one km resolution to match the WorldClim data. 

Anthropogenic land cover indices for the 2001–2005 period were obtained directly from 

EarthEnv (2016) website in the form of Global one-km Consensus Land Cover percent cover for 

one km2 for two classes: (1) cultivated and managed vegetation (their Class 7), agricultural land 

cover (agric_lc), and (2) urban/built-up (their Class 9), urban land cover (urban_lc). The Global 

1-km Consensus Land Cover variables of various vegetation types were not included since 

individual changes in cover of these vegetation types were not projected over time for future 

climate models, but climate variables were used as a proxy for current and future potential 

vegetation. All gridded indices were resampled and/or shifted as necessary to match the 30 arc 

second (1 km) resolution and grid alignment of the unprojected WorldClim data of WGS84 

datum. Climatic variables rasters, other than Bioclim indices (already integer), were rounded to 

the nearest significant digit and converted to integer, sometimes following multiplication by 10, 

100, or 1,000 in order to preserve significant digits. All non-climatic indices were integer 

normalized from zero to 10,000 (10K normalization; normalization of climatic grids was not 

done since it would interfere with range comparability across temporal climate scenarios).  

 

 



 

165 

 

Climate Scenarios 

Hind casts of the HE GCM model generally perform well compared to other GCMs for 

southwestern North America (Sheffield et al., 2013; Langford et al., 2014). For each of the four 

future climate scenarios (2050 HE-RCP2.6, 2050 HE-RCP8.5, 2070 HE-RCP2.6, and 2070 HE-

RCP8.5), 19 Bioclim indices from WorldClim (2017) were downloaded. Worldclim makes 

available GCM projections from the CMIP5 collection downscaled at very high resolution (i.e., 

one km) using a Delta method statistical approach.  

Niche Models  

Model Parameters 

Both MaxEnt and Glmnet models utilize built-in feature selection with lasso L1 

regularization (ridge regression L2 regularization, also available in Glmnet, was not employed). 

MaxEnt models were compared that employed the default beta regularization value of one (β1; 

standard lasso L1 regularization for MaxEnt) with zero (β0; no regularization) and seven higher 

values from two to 40 (β2–β40) providing progressively more stringent L1 regularization to 

reduce the number of parameters. Higher beta regularization values can potentially reduce model 

complexity and overfitting for improved model generalization (Jiménez‐Valverde et al., 2008; 

Warren and Seifert, 2011). For individual models, the number of used environmental variables 

and the numbers and parameters of derived variables was recorded for each environmental 

variable. For MaxEnt models, this required utilizing the MaxEnt output lambdas file (Wilson, 

2009; Elith et al., 2011; Halvorsen, 2013). Halvorsen (2013) noted that details on MaxEnt model 

parameters are very rarely provided in publications, and the MaxEnt lambdas files with all 

parameters and derived variables for final selected MaxEnt wildfire activity models are here 

provided (see Appendix B, Tables B.1-3). 
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Background Corrected Akaike Information Criterion 

An R script was developed to more rapidly calculate AICc for MaxEnt using the same 

formula for calculating AICc from raster data with the ENMeval R package (Muscarella et al., 

2014). However, instead of requiring the time-consuming generation of a MaxEnt prediction 

raster required for ENMeval to calculate AICc, the background AICc, AICcbg, was calculated 

much more rapidly using MaxEnt samples with data (SWD) mode point RAW predictions for 

background and training point data (which all sum to one). Values of AICcbg were compared to 

AICc values calculated for the same MaxEnt models using the ENMeval package, and AICcbg 

was closely proportional to AICc (adjusted R2 = 0.90), making it suitable for relative model 

comparisons (Figure A.2). In order to facilitate model ranking and statistical analysis, all models 

with AICcbg valued at infinity were omitted, and 0.001 was added to MaxEnt SWD point 

predictions of zero to eliminate uncommon aberrant extreme negative values of AICcbg. 

Calibration of AICc Values between GLM, Glmnet and MaxEnt Models 

In order to compare AICc values from GLM and Glmnet models to AICcbg values of 

MaxEnt models, a regression-based calibration to calculate AICcbg_reg for GLM and Glmnet 

models was performed. The calibration was based on the assumption that AICc is equivalent for 

linear GLM and linear MaxEnt models using the same variable subsets and training data. This 

assumption was supported by the combined observations that (1) the AUCpa_finaltest values for the 

linear MaxEnt and linear GLM models were nearly equivalent (R2 = 0.98; Figure A.4B), (2) 

there was a high correlation between AUCpa_finaltest and AICc (or AICcbg) among these models 

(R2 = 0.86 to 0.91; Figures A.4C-D), and (3) there was a high correlation between AICc of linear 

GLM and AICcbg of linear MaxEnt models (R2 = 0.96; Figure A.4E) (n = 250 per model 

method). For a given burn severity model, a linear relationship between AICc of GLM linear  
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Table A.2. Thirty-eight environmental predictor indices (30 arc second, one km resolution) of 
the 90 indices (Table II.1) used in this study that are closely related to indices found important 
in other studies modelling broad scale fire susceptibility in the western US and Greece (Tracy 
et al., 2018b). 

Variable 
Indexa 

Consensus 
Variable 

Importance  
(lower values 

more important)b Reference 
25 Climatic Indices  
bio_1 38 Kalabokidis et al., 2002 

bio_5 19 
Kalabokidis et al., 2002; Parisien and Mortiz, 2009; 
Littell and Gwozdz, 2011 

bio_10 36 Kalabokidis et al., 2002 
bio_14 28 Parisien and Mortiz, 2009 
bio_19 30 Liu and Wimberly, 2016 
tmin_ann 35 Kalabokidis et al., 2002 
tmin_sprq 26 Parisien and Mortiz, 2009 
tmin_sumq 23 Parisien and Mortiz, 2009; Dillon et al., 2011 
tmin_autq 31 Dillon et al., 2011 
tmax_ann 37 Kalabokidis et al., 2002 
tmax_winq 20 Parisien and Mortiz, 2009; Littell and Gwozdz, 2011 
tmax_sprq 25 Parisien and Mortiz, 2009 

tmax_sumq 16 
Kalabokidis et al., 2002; Dillon et al., 2011; Parisien and 
Mortiz, 2009; Littell and Gwozdz, 2011 

tmax_autq 27 Parisien and Mortiz, 2009 
prec_ann 17 Kalabokidis et al., 2002; Parks et al., 2015; 2016 
prec_winq  22 Parisien and Mortiz, 2009; Dillon et al., 2011 

prec_sprq 15 
Parisien and Mortiz, 2009; Dillon et al., 2011; Liu and 
Wimberly, 2016 

prec_sumq  14 
Kalabokidis et al., 2002; Dillon et al., 2011; Littell and 
Gwozdz, 2011; Abatzoglou and Kolden, 2013 

prec_autq  18 
Parisien and Mortiz, 2009; Dillon et al., 2011; Littell and 
Gwozdz, 2011 

peth_sprq 33 Abatzoglou and Kolden, 2013 
peth_sumq 24 Littell and Gwozdz, 2011; Abatzoglou and Kolden, 2013 
taett_tann 28 Parks et al., 2015 
aett_sprq 34 Littell and Gwozdz, 2011 
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Table A.2. Continued. 

Variable 
Indexa 

Consensus 
Variable 

Importance  
(lower values 

more important)b Reference 
aett_sumq 32 Littell and Gwozdz, 2011 
cwd_ann 21 Parks et al. 2015, 2016 
10 Topographic Indices   

elev 1 
Kalabokidis et al., 2002; Parisien and Mortiz, 2009; 
Dillon et al., 2011; Liu and Wimberly, 2016 

slope 2 
Kalabokidis et al., 2002; Dillon et al., 2011; Liu and 
Wimberly, 2016 

diss3kr 4 Dillon et al., 2011 
tpi3kr 3 Dillon et al., 2011 
err3kr 6 Dillon et al., 2011 
cti 9 Dillon et al., 2011 
hli 5 Dillon et al., 2011 
sei 8 Dillon et al., 2011  
scai 7 Dillon et al., 2011 
strmdist 10 Kalabokidis et al., 2002 
3 Anthropogenic Indices  
medurbdist 11 Kalabokidis et al., 2002; Liu and Wimberly, 2016 
roaddist 12 Kalabokidis et al., 2002; Liu and Wimberly, 2016 
agric_lc 13 Kalabokidis et al., 2002 
aSee Table II.1 for index abbreviations. Period of climate variables may be an approximate 
match such as nearest seasonal quarter to a single month or several months. Spatial and 
temporal resolutions of indices among study will vary. 
bApproximate rankings are based upon variable importance in various cited references, giving 
higher weight to studies comparing more variables (e.g., Parisien and Moritz, 2009, Dillon et 
al., 2011). 
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Table A.3. Ranking of variables (high to low) used in top four 15-variable MaxEnt wildfire activity models selected by random 
subset feature selection algorithm using joint criteria of (1) variable mean permutation importance in models where variable is 
present (0.6 weight), and (2) number of appearances in top four models (0.4 weight) (Tracy et al., 2018b).a 

Low Burn Severity Models 
(40 of 90 variables used  

in top 4 models)  

Moderate Burn Severity Models 
(36 of 90 variables used 

 in top 4 models) 

 High Burn Severity Models 
(41 of 90 variables used  

in top 4 models) 

Variable 

Permutation Importance,  
Mean ± SD (number of 

top four models)  Variable 

Permutation Importance,  
Mean ± SD (number of 

top four models) 

 

Variable 

Permutation Importance,  
Mean ± SD (number of 

top four models) 
prec_sumq* 25.1 ± 3.8 (3)  slope* 30.5 ± 3.1 (4)  slope* 27.1 ± 6.6 (4) 

agric_lc* 15.6 ± 3.5 (4)  aett_sprq* 18.3 ± 3.5 (3)  bio_8 18.7 ± 6.3 (3) 
bio_9 16.5 ± 6.2 (3)  agric_lc* 11.0 ± 0.7 (4)  elev* 14.8 ± 0.5 (3) 
elev* 9.4 ± 3 (3)  tpeth_ann 16.8 ± 3.1 (2)  agric_lc* 9.8 ± 2.6 (4) 

taett_tann* 14.5 ± 3.1 (2)  bio_9 15.6 ± 4.7 (2)  prec_winq* 26.9 ± 0 (1) 
slope* 7.0 ± 1.2 (3)  etrt_sprq 22.2 ± 0 (1)  aett_winq 23.7 ± 0 (1) 

prec_sprq* 17.7 ± 0 (1)  prec_sumq* 5.3 ± 1.6 (3)  bio_15 3.6 ± 3.2 (3) 
etrt_ann 17.1 ± 0 (1)  bio_1* 9.3 ± 4.8 (2)  prec_autq* 15.9 ± 0 (1) 
bio_14* 13.3 ± 0 (1)  cont_dfmo 7.6 ± 0.1 (2)  aett_sprq* 14.0 ± 0 (1) 
etrt_sprq 11.9 ± 0 (1)  bio_8 8.0 ± 0 (1)  prec_sumq* 2.3 ± 2.6 (2) 
sprurdist 3.9 ± 1.7 (2)  bio_17 2.0 ± 1.4 (2)  strmhiflodist 0.4 ± 0.2 (3) 
lorurdist 3.8 ± 3.2 (2)  strmmdflodist 0.6 ± 0 (3)  bio_7 8.0 ± 0 (1) 
ew_indx 2.9 ± 1.5 (2)  strmhiflodist 0.9 ± 0.7 (2)  lorurdist 0.7 ± 0.8 (2) 
aett_autq 7.7 ± 0 (1)  tpi9kr 0.8 ± 0.1 (2)  hli* 0.5 ± 0 (2) 
diss3kr* 0.9 ± 0.2 (2)  lourbdist 0.8 ± 0.2 (2)  roadden9kr 0.3 ± 0.2 (2) 

cont_index 0.5 ± 0 (2)  bio_7 0.4 ± 0.1 (2)  strmmdflodist 0.2 ± 0.1 (2) 
cwd_ann* 6.2 ± 0 (1)  roadden3kr 0.3 ± 0.1 (2)  etrt_sprq 6.2 ± 0 (1) 

roadden9kr 0.3 ± 0.3 (2)  sei* 0.0 ± 0.1 (3)  aett_autq 5.5 ± 0 (1) 
tpi19kr 0.3 ± 0.1 (2)  sprurdist 3.9 ± 0 (1)  peth_winq 4.2 ± 0 (1) 
scai* 0.2 ± 0 (2)  aett_winq 2.8 ± 0 (1)  tmin_autq* 3.8 ± 0 (1) 

peth_autq 4.0 ± 0 (1)  elev 2.6 ± 0 (1)  tpeths_tpetha 3.0 ± 0 (1) 
prec_winq* 3.9 ± 0 (1)  tpi19kr 2.1 ± 0 (1)  bio_4 3.0 ± 0 (1) 

bio_2 3.8 ± 0 (1)  popden 1.9 ± 0 (1)  sprurdist 2.1 ± 0 (1) 
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Table A.3. Continued.a 
Low Burn Severity Models 

(40 of 90 variables used  
in top 4 models)  

Moderate Burn Severity Models 
(36 of 90 variables used 

 in top 4 models) 

 High Burn Severity Models 
(41 of 90 variables used  

in top 4 models) 

Variable 

Permutation Importance,  
Mean ± SD (number of 

top four models)  Variable 

Permutation Importance,  
Mean ± SD (number of 

top four models) 

 

Variable 

Permutation Importance,  
Mean ± SD (number of 

top four models) 
cti* 3.2 ± 0 (1)  lorurdist 1.6 ± 0 (1)  bio_2 1.8 ± 0 (1) 

cont_dfmo 3.2 ± 0 (1)  medrurdist 1.5 ± 0 (1)  bio_9 1.8 ± 0 (1) 
medurbdist 3.1 ± 0 (1)  mnpopden3r 1.3 ± 0 (1)  peth_autq 1.7 ± 0 (1) 
tmax_autq* 2.8 ± 0 (1)  bio_2 1.3 ± 0 (1)  imi* 1.2 ± 0 (1) 
mnpopden3r 2.7 ± 0 (1)  diss3kr* 1.0 ± 0 (1)  bio_3 1.2 ± 0 (1) 

bio_19* 2.3 ± 0 (1)  medurbdist* 0.6 ± 0 (1)  cont_index 1.1 ± 0 (1) 
bio_8 1.8 ± 0 (1)  hiurbdist 0.6 ± 0 (1)  popden 1.1 ± 0 (1) 

roadden3kr 0.8 ± 0 (1)  roaddist* 0.5 ± 0 (1)  diss3kr* 1.0 ± 0 (1) 
medrurdist 0.5 ± 0 (1)  strmdist* 0.3 ± 0 (1)  sei* 0.8 ± 0 (1) 
hirurdist 0.5 ± 0 (1)  mnpopden9r 0.2 ± 0 (1)  etrt_sumq 0.8 ± 0 (1) 

bio_3 0.5 ± 0 (1)  hli* 0.1 ± 0 (1)  roadden19kr 0.7 ± 0 (1) 
urban_lc 0.5 ± 0 (1)  tpi3kr* 0.1 ± 0 (1)  mnpopden3r 0.5 ± 0 (1) 

strmhiflodist 0.5 ± 0 (1)  bio_3 0.0 ± 0 (1)  roadden3kr 0.5 ± 0 (1) 
err3kr* 0.5 ± 0 (1)     bio_14 0.5 ± 0 (1) 

strmloflodist 0.2 ± 0 (1)     urban_lc 0.3 ± 0 (1) 
imi* 0.1 ± 0 (1)     tpi3kr* 0.2 ± 0 (1) 

roadden19kr 0.0 ± 0 (1)     scai* 0.1 ± 0 (1) 
      peth_sumq* 0.0 ± 0 (1) 

aSee Table II.1 for variable abbreviations and sources of variables. Asterisks (*) indicate expert selected variables from previous 
studies (Table A.2). Variables ranked using multi multi-objective optimization ranking by weighted joint criteria with MCDM R 
package. See Figures A.16-19 for examples of response curves for top ranked variables by permutation importance in the single top 
selected MaxEnt wildfire activity model for each burn severity (Table A.4). Darker shading indicates variables among top 10 ranked 
variables for all three burn severities, and lighter shading indicates variables among top 10 ranked variables for two burn severities. 
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Table A.4. Permutation importance of 15 variables in top selected MaxEnt wildfire activity 
models for three burn severities using the random subset feature selection algorithm (Tracy et 
al., 2018b)a. 

Permutation Importance for MaxEnt Wildfire Activity Model Variables  
for Three Burn Severities (Variable – Permutation Importance) 

Low Moderate High 
   

bio_9 - 21.2 slope - 33.1 slope - 29 
prec_sprq - 17.8 aett_sprq - 18.4 aett_winq - 23.3 
etrt_sprq - 14.2 tpeth_ann - 16.3 elev - 15.9 
agric_lc - 12.6 agric_lc - 9.4 agric_lc - 9.2 
bio_14 - 12.2 cont_dfmo - 7.4 bio_8 - 7.1 

slope - 6.8 prec_sumq - 5.7 etrt_sprq - 6.5 
aett_autq - 5.3 sprurdist - 4 tmin_autq - 3.4 
peth_autq - 3.6 bio_2 - 1.4 bio_4 - 2.7 
sprurdist - 3.1 strmhiflodist - 1.3 sprurdist - 1 
lorurdist - 1.6 lourbdist - 0.9 roadden3kr - 0.6 

strmhiflodist - 0.6 strmmdflodist - 0.8 strmmdflodist - 0.4 
scai - 0.4 roadden3kr - 0.7 strmhiflodist - 0.4 

err3kr - 0.3 tpi9kr - 0.5 tpi3kr - 0.3 
cont_index - 0.2 bio_3 - 0.1 peth_sumq - 0.2 
roadden9kr - 0.1 sei - 0 lorurdist - 0.1 

aSee Table II.1 for variable abbreviations and Figures A.16-19 for response curves of selected 
variables. 
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 Figure A.2. Correlation heat map for 90 environmental variables (see Table II.1) using values derived from about 10,000 
background points used for low burn severity wildfire activity niche models (Tracy et al., 2018b). 
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Figure A.3. Low burn severity wildfire activity model evaluation statistics (mean ± SD) for 
various GLM and Glmnet models with (orthogonal; orth) and without (raw) 
orthogonalization of linear and quadratic features: (A) AUCpa_finaltest, (B) AICcfinal, (C) 
AUCpa_finaltrain. Models developed from top ten random subset feature selection algorithm-
selected variable subsets ranked by AUC. Variable subsets were selected from 250 randomly 
generated variable subsets of various sizes derived from 90 variables (Tracy et al., 2018b).  
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Figure A.4. (A) High burn severity MaxEnt quadratic/hinge β2 wildfire activity model AICc calculated using projected raster 
models by the ENMeval package versus AICcbg calculated using point model values for ten RSFSA selected models (AUC 
wrapper) and 10 random models. Models developed for eight-variable subsets out of 10,000 randomly generated subsets for high 
burn severity with fitted linear regression line (adj. R2 = 0.90, P < 0.001). (B-E) Relationships between AUCpa_finaltest, AICc 
(calculated for GLM using fit and null deviance values), and AICcbg for various low burn severity linear MaxEnt β2 and linear 
GLM wildfire activity niche models (n = 250 for each model method) developed with the same training data and the same random 
variable subsets ranging from three to 25 variables. (F) Linear relationship between AICcbg_wrapper for linear MaxEnt and 
AICcwrapper for linear GLM low burn severity wildfire activity models (n = 624) calculated using the same training data and 
random variable subsets ranging from three to 20 variables and using the same number of variables; used for predicting AICcbg_reg 
for GLM and Glmnet models for comparison with MaxEnt AICcbg (Tracy et al., 2018b). 
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GLM Binomial Linear Glmnet Binomial Linear/Quadratic GLM Binomial Linear/Quadratic 
Figure A.5. Low burn severity wildfire activity model evaluation statistics (mean ± SD) for various binomial logistic regression 
niche modelling methods: (A–C) AUCpa_finaltest, (D-F) AICcbg_final, and (G-I) AUCpa_diff_final (overfitting). Models developed from 
top ten random subset feature selection algorithm-selected variable subsets ranked by AUC or AICc and models developed from 
ten random subsets. Variable subsets were selected from 250 randomly generated variable subsets of various sizes derived from 90 
variables for three modelling methods: Glmnet binomial linear/quadratic (A, D, G); GLM binomial linear/quadratic (B, E, H); and 
GLM binomial linear (C, F, I) (Tracy et al., 2018b).  
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Figure A.6. Moderate burn severity wildfire activity model evaluation statistics (mean ± SD) for various MaxEnt, Glmnet, and 
GLM models:  AUCpa_finaltest (A), AUCpa_finaltrain (B), AICcbg_final (approximated for GLM and Glmnet) (C), and AUCpa_diff_final 
(overfitting; D). Models developed from top ten random subset feature selection algorithm-selected variable subsets ranked by 
AUC. Variable subsets were selected from 250 randomly generated variable subsets of various sizes derived from 90 variables. 
Aberrantly high AICcbg values of 13,285 for 25 variables per subset for linear/quadratic GLM model not shown (Tracy et al., 
2018b). 
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Figure A.7. High burn severity wildfire activity model evaluation statistics (mean ± SD) for various MaxEnt, Glmnet, and GLM 
models:  AUCpa_finaltest (A), AUCpa_finaltrain (B), AICcbg_final (approximated for GLM and Glmnet) (C), and AUCpa_diff_final (overfitting; 
D). Models developed from top ten random subset feature selection algorithm-selected variable subsets ranked by AUC. Variable 
subsets were selected from 250 randomly generated variable subsets of various sizes derived from 90 variables. Aberrantly high 
AICcbg values (≈10,000–11,000) above 12 variables per subset for linear/quadratic GLM model not shown (Tracy et al., 2018b). 
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Figure A.8. Low burn severity wildfire activity model evaluation statistics (mean ± SD) for various MaxEnt beta regularization 
multiplier (β) settings from none (0) to high (40) L1 regularization for quadratic/hinge models: (A) AUCpa_finaltest, (B) 
AUCpa_finaltrain, (C) AICcbg_final, (D) AUCpa_diff_final (overfitting). Models developed from top ten random subset feature selection 
algorithm-selected variable subsets ranked by AUC. Initial 250 randomly generated variable subsets each for various subset sizes 
were derived from 90 variables (Tracy et al., 2018b).  
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Figure A.9. Low burn severity wildfire activity niche model evaluation statistics (mean ± SD) fo+r various niche modelling 
methods (see legend) for 15 of 90 variable models: (A) AUCpa_finaltest, (B) AUCpa_finaltrain, (C) AICcbg_final, (D) AUCpa_diff_final 
(overfitting) (optimal higher for AUCpa_finaltest and AUCpa_finaltrain and lower for AICcbg_final and AUCpa_diff_final). Models developed 
from three replicates (Rep) of 3,000 variable subsets (total 9,000 subsets per variable subset size) that were narrowed per 
replicate to 250 (n) subsets filtered by AUCpa_filtertest with RSFSA (AUC). Means within a replicate with a different letter are 
significantly different (P < 0.05; Welch’s one-way ANOVA followed by Games Howell Pairwise Multiple Comparison Test) 
(Tracy et al., 2018b).  
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Figure A.10. Moderate burn severity wildfire activity niche model evaluation statistics (mean ± SD) for various niche modelling 
methods (see legend) for 15 of 90 variable models: (A) AUCpa_finaltest, (B) AUCpa_finaltrain, (C) AICcbg_final, (D) AUCpa_diff_final 
(overfitting) (optimal higher for AUCpa_finaltest and AUCpa_finaltrain and lower for AICcbg_final and AUCpa_diff_final). Models 
developed from three replicates (Rep) of 3,000 variable subsets (total 9,000 subsets per variable subset size) that were narrowed 
per replicate to 250 (n) subsets filtered by AUCpa_filtertest with RSFSA (AUC). Means within a replicate with a different letter are 
significantly different (P < 0.05; Welch’s one-way ANOVA followed by Games Howell Pairwise Multiple Comparison Test) 
(Tracy et al., 2018b).  
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Figure A.11. High burn severity wildfire activity niche model evaluation statistics (mean ± SD) for various niche modelling 
methods (see legend) for 15 of 90 variable models: (A) AUCpa_finaltest, (B) AUCpa_finaltrain, (C) AICcbg_final, (D) AUCpa_diff_final 
(overfitting) (optimal higher for AUCpa_finaltest and AUCpa_finaltrain and lower for AICcbg_final and AUCpa_diff_final). Models 
developed from three replicates (Rep) of 3,000 variable subsets (total 9,000 subsets per variable subset size) that were narrowed 
per replicate to 250 (n) subsets filtered by AUCpa_filtertest with RSFSA (AUC). Means within a replicate with a different letter are 
significantly different (P < 0.05; Welch’s one-way ANOVA followed by Games Howell Pairwise Multiple Comparison Test) 
(Tracy et al., 2018b).  
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Figure A.12. MaxEnt quadratic/hinge (β2) wildfire niche model evaluation statistics (mean ± SD) of AUCpa_finaltest (A–C), 
AICcbg_final (D-F), and AUCpa_diff_final (overfitting; G-I). Models developed from three replicates of 3,000 variable subsets of 6 or 15 
of 90 variables (total 9,000 subsets per variable subset size) that were narrowed per replicate to 250 (n) subsets filtered by 
AUCpa_filtertest with RSFSA (AUC). Means with an asterisk within a replicate are significantly more optimal (higher for 
AUCpa_finaltest and lower for AICcbg_final and AUCpa_diff_final) (P < 0.05; Welch t test) (Tracy et al., 2018b).  
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Figure A.13. (A) Area (mHa) of calibrated binary MaxEnt quadratic/hinge (β2) or Glmnet 
binomial linear/quadratic low burn severity wildfire activity model projections for top nine 
RSFSA AUC selected models within the background rvaluation extent (BEE) and area beyond 
the BEE. (B) Area (mHa) of calibrated binary MaxEnt low burn severity wildfire activity model 
projections within the BEE versus outside of the BEE for 27 MaxEnt models in chart (A) (nine 
per variable subset sizes 6, 10, and 15) (Tracy et al., 2018b). 
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models and AICcbg of MaxEnt linear models was fitted and used to approximate AICcbg_reg for 

GLM and Glmnet models (Figure A.4F).  

Model and Variable Rankings 

Using the final selected MaxEnt quadratic/hinge (β2) niche modeling method, thousands 

of wildfire activity models were ranked in performance by feature selection for each burn 

severity (see Methods, Random Subset Feature Selection), and the top 10 ranked models from 

each of three feature selection replications (n = 30), were projected and calibrated to binary 

presence/absence format.  

In order to select the most restrictive models in terms of current projected area burned 

within the background evaluation extent, the 30 selected models were then subjected to a 

combined ranking by three regional indices comparing the projected area of presence to the 

actual area of presence. The three regional indices compared the projected area of presence to the 

actual area of presence within a projected coordinate system of North American Datum 1983 

Equal Area Albers with units of meters: (1) the regional fraction index (RFI), which is the 

fraction of the actual wildfire presence area overlapped by the projected presence area; (2) the 

regional excess index (REI), which is the projected wildfire presence area that does not overlap 

the true presence area (including in Canada and Mexico) divided into the total area of actual 

presence area (restricted to the US), and (3) the regional bounding index (RBI), which is 

calculated as 1 – REI/RFI, representing the degree of confinement of the projected wildfire 

presence area to the actual presence area within the entire projected area (including Canada and 

Mexico). An RBI value approaching the highest value of 1, indicates that most of the projected 

presence area is within the actual presence area. An RBI value of zero indicates as much 

presence area is projected outside the actual presence area as inside the actual presence area. An 
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RBI value of less than zero indicates that more area is projected for presence outside the actual 

presence area than inside the presence area. A combined ranking of the regional indices with a 

Multi Multi-Objective Optimization Ratio Algorithm (plus Full Multiplicative Form, 

MMOORA) of Brauers and Zavadskas (2010) was implemented in the MCDM R package. For 

the MMOORA combined ranking of the top 30 wildfire models, equal weights were specified for 

each index, with maximization of RFI, minimization of REI, and maximization of RBI. The top 

four of 30 selected wildfire models as ranked by MMOORA will be more conservative in terms 

of projecting a smaller area as suitable for wildfires outside of the presence area (e.g., Figure 

A.14A–D) in comparison to the other 26 of the 30 selected models (e.g., Figure A.14E–H). 

The FSEs for both current and future models were used in statistical comparisons of 

projected changes in burned areas under current and future climates. The variables used in the 

top four selected wildfire activity models for each burn severity were jointly ranked using the 

MCDM R package (Ceballos Martín, 2016) with two criteria: (1) mean variable permutation 

importance (e.g., Halvorsen, 2013) for the models in which the variable appeared (weighted 

higher at 0.6); and (2) number of top four models in which variable appears (weighted lower at 

0.4).  

Contemporary Wildfire Deficit Rating Maps 

For each burn severity, a contemporary wildlife deficit or surplus rating map was 

developed by first using the ArcGIS Combine rasters tool to join the historical wildfire raster for 

a given burn severity (Figures II.2A-C; presence/absence values of 0 or 1) with the MaxEnt 

quadratic/hinge β2 frequency consensus feature subset ensemble raster for the burn severity 

(Figures II.7A, 8A, 9A; values of 1-4, from 1 = 1 model projecting fire and 4 = all four models 
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 Figure A.14. Low burn severity MaxEnt quadratic/hinge (β2) wildfire activity current climate models of 15 of 90 variables from 
30 of 9,000 models selected by AUCpa_filtertest: (A–D) top four of 30 selected by regional indices; (E–H) random four of 
remaining 16 of 30 (Tracy et al., 2018b). 
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Low Burn Severity MaxEnt 
Figure A.15. MaxEnt quadratic/hinge (β2) low burn severity 15-variable wildfire activity model evaluation statistics (mean ± 
SD) for AUCpa_finaltest (A), AICcbg_final (B), and AUCpa_diff_final (overfitting; C). Four varieties of random subset feature 
selection algorithm (RSFSA) models developed from 38 of 90 expert selected variables: (1) random variable subsets 
(correlation filter only; Rand38Exp); (2) subsets filtered by cumulative expert rank score of variables (see Table A.2; 
Rank38Exp); (3) subsets ranked by AICcbg_wrapper (AICc38Exp); and (4) subsets ranked by AUCpa_wrappertest (AUC38Exp). 
One variety of RSFSA initiated from three random sets of 38 of 90 variables and ranked by AUCpa_wrappertest (AUC38of90). 
Results from models for random, unranked sets of 38 of 90 variables provided for comparison (Rand38of90). Results for 
models developed from 90 total variables are also presented for comparison (Rand90, AICc90 and AUC90; Figure 6A,D,G). 
Means for RSFSA selected model statistics within a replicate group with an asterisk are significantly more optimal (higher 
for AUCpa_finaltest and lower for AICcbg_final and AUCpa_diff_final) from that of random selected models (Rand38of90 or Rand90) 
(see methods for sample sizes ranging from 250–351 models; P < 0.05; Welch t test with Holm correction, preceded by 
significant Welch ANOVA test, P < 0.05; models with asterisk and “▲” are significantly less optimal than random models) 
(Tracy et al., 2018b).  
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projecting fire). The ArcGIS Reclassification tool was then used to reclassify the combined raster 

according to the scheme below to indicate a value of contemporary wildfire deficit or surplus.  

Values of combined raster pixels were variously assigned as 1-10 and had to be checked 

against original raster values to determine the correct reclassification scheme. The reclassified 

raster was then converted to a polygon shapefile and values assigned a wildfire deficit or surplus 

rating (see Results, Current Climate, below for zipped shapefiles). 

 

 

 

Value of Historical 
1984-2014 Wildfire 

Raster 
(0- absent/1-present; 

Figures II.2A-C) 

Value of MaxEnt 
Quadratic/Hinge β2 

Frequency Consensus 
Feature Subset 

Ensemble Raster 
(Figures II.7A, 8A, 

9A)a 

Numeric 
Contemporary 

Wildfire Deficit or 
Surplus Ratingb 

Description 
of Contemporary 

Wildfire Deficit or 
Surplus Rating 

0 4 -4 Very High Deficit 
0 3 -3 High Deficit 
0 2 -2 Low Deficit 
0 1 -1 Very Low Deficit 
0 0 No Data No Data 
1 4 0 Balanced 
1 3 1 Very Low Surplus 
1 2 2 Low Surplus 
1 1 3 High Surplus 
1 0 4 Very High Surplus 

aValue represents the number of MaxEnt models agreeing on wildfire projection for 1 km2 
pixel (maximum of four). 
bReclassification of combined Historical Wildfire Raster and MaxEnt Quadratic/Hinge β2 
Frequency Consensus Feature Subset Ensemble Raster for a given burn severity.  
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Random Subset Feature Selection Algorithm 

Overview 

The random subset feature selection algorithm incorporates elements of the random sets 

feature selection method proposed by Garcia et al. (2006).  They utilized a type of randomized 

search strategy referred to here as random subset selection (RSS). Garcia et al. (2006) 

investigated the ability of RSS to increase efficiency of Support Vector Machines (SVM) 

classification for binary images of individual plankton. Their random sets feature selection 

method comprised (1) randomly generating a large number of feature subsets of a given size 

(e.g., 200 subsets of 10 out of 47 features), (2) using a wrapper criterion of SVM training time to 

rank the performance of the feature subsets, and (3) combining the features of the higher ranked 

feature subsets together for developing a final SVM model (e.g., combining top three ranked 

feature subsets of 10 features). Four substantive modifications were made to their random subset 

feature selection method in this RSFSA application for niche modeling: (1) employing a 

correlation filter to maintain maximum absolute correlation of 0.7 among features in randomly 

generated feature subsets; (2) selecting an approximate optimal feature subset size with the aid of 

three wrapper criteria, including AUCpa and AICcbg, (3) ranking feature subsets of the selected 

size by a wrapper criteria of either AUCpa or AICcbg; and (4) developing an ensemble of top 

models from top ranked feature subsets rather than combining features from top ranked subsets 

to develop a single model.  

Phases of Feature Selection Criteria 

The RSFSA is divided into two phases, each of which are carried out in two stages as 

described below (Figure II.3). 
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Univariate Filter Phase 

In the RSFSA univariate filter phase, the variable filter criterion is an absolute value of 

Spearman’s rank correlation coefficient (rs) of 0.7 or higher (Dormann et al., 2013), which is an 

unsupervised univariate correlation filter designed to exclude highly redundant variables. The 

correlation filter threshold was applied using a sequential forward selection search strategy to 

build a feature subset of a specified maximum number of variables by randomly adding one 

variable at a time to the set with the criterion that the absolute correlation between any two 

variables is less than 0.7. The process was repeated multiple times using a different randomized 

sequence of variables in order to develop multiple randomly generated variable subsets of the 

specified size. The multiple iteration of random sequential forward selection is here termed as 

multiple randomized sequential forward selection (MRSFS) (Figure II.3). The MRSFS was 

implemented quickly in parallel using the filter to generate thousands of variable subsets meeting 

the correlation criterion. Depending on the size of the initial variable set and the degree of 

correlation among variables, a percentage of the runs of the univariate filter phase MRSFS 

searches ended in failure to generate the specified size of variable subset (too many features in 

the random sequence are discarded for not meeting the correlation criterion with the previously 

selected features). Duplicate subsets were deleted and the desired number of variable subsets 

kept for the subset wrapper phase. 

Subset Wrapper Phase 

The subset wrapper phase of RSFSA required a different search strategy than sequential 

forward selection. Sequential forward selection with a wrapper criterion would be expensive in 

terms of the time required to run the classification algorithm for evaluating each individual 

variable in building each random feature subset. Consequently, for the subset wrapper phase, the 
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randomized search strategy of random subset selection (RSS) was used that was originally 

developed by Garcia et al. (2006) within the random sets feature selection method (Figure II.3). 

The random subset selection strategy essentially comprises the parallel calculation of niche 

model AUC or AICc wrappers from each individual random feature subset generated from the 

prior univariate filter phase. Point data sampled from environmental rasters, rather than rasters 

themselves, were used to more rapidly calculate thousands of niche models using samples with 

data mode for MaxEnt or data matrix fits for GLM and Glmnet. Subset wrapper criteria of either 

AUCpa_wrappertest or AICcbg_wrapper were used in ranking the niche models developed from the 

random feature subsets.  

The availability of final training and testing data withheld from an FSA that can be used 

in evaluation of FSA-selected models are critical for ensuring that selected models are not fitted 

to the wrapper phase training and/or testing data, which would produce inflated evaluation 

statistics (Kohavi and John, 1997; Guyon and Elisseeff, 2003; Kuhn and Johnson, 2013). 

Consequently, an important step in preparation for the RSFSA subset wrapper phase was the 

dividing of the presence/absence wildfire occurrence training data available for the niche models 

in half. One half of the data (50%) was randomly designated for niche model training and testing 

data within the RSFSA subset wrapper phase (producing wrapper training and testing statistics), 

and one half (50%) was randomly designated for final niche model training and testing data for 

final evaluation of the RSFSA-selected models (producing final training and testing statistics) 

(Figure II.3). The data were divided into 50% RSFSA training and 50% RSFSA validation since 

both the model training and validation stages require sufficient independent data to provide for 

2/3 training and 1/3 testing data. The two halves of wrapper training and testing data and final 

training and testing data were randomized for each of the three replications (Stracuzzi, 2007) in 
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order to evaluate the stability of the RSFSA to different sets of training data (Kalousis et al., 

2007).  

Stages of Feature Selection 

Optimal Feature Subset Size Estimation Stage 

Stage I of RSFSA involved a subjective estimation of at least two to three potentially 

optimal feature subset sizes based upon the three model evaluation statistics (Figure II.3). Mean 

evaluation statistics for ten RSFSA-selected and ten random selected wildfire activity niche 

models from 250 randomly generated models were plotted and visually compared for each 

variable subset size between three and 25 of the 90 variables. Preliminary investigations 

indicated that this range of variable numbers captured most of the range of variability in 

evaluations statistics for the niche models. The researcher can subjectively weigh the relative 

importance of higher accuracy and lower underfitting (higher test and train AUC), higher 

information content (lower AICcbg), and lower overfitting (lower AUCdiff) in comparing the 

performance of models developed with various feature subset sizes. 

Variable Subset Selection Stage 

Once several potentially optimal variable subset sizes were selected, RSFSA Stage II 

involved selecting the top performing variable subsets (Figure II.3). This stage requires increased 

replication in order to statistically verify the improvement of RSFSA-selected variable subset 

models versus random models in the three evaluation statistics. A set of 9,000 random feature 

subset niche models were generated for each of the selected subset sizes, and these were 

comprised of three training data set replications of 3,000 variable subset models each. Niche 

models for the three replications were processed through the RSFSA wrappers to obtain three 

sets each of 250 RSFSA selected models and 250 random models (correlation filter only). 
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Statistical comparisons were then made across subset sizes for RSFSA-selected models and 

between RSFSA selected versus random models for the three replications using different 

wrapper training and testing data.  

Feature Selection Including Expert Variable Screening 

The 90 total initial variables was reduced to 38 expert selected variables (Tables II.1, 

A.2) based on the usefulness of similar variables in previous large-scale modeling efforts for 

wildfire activity (e.g., Kalabokidis et al., 2002; Parks et al., 2015, 2016). These 38 expert 

selected variables were input into each of four RSFSA variants using different ranking criteria to 

select 15-variable subset wildfire activity models. Three replicates were generated of from 1,120 

to 1,135 variable subsets of 15 of 38 expert screened variables out of 90 variables (total 3,360 to 

3,405 15-variable subsets) that were narrowed per replicate to: (1) 300 (n) subsets randomly 

selected and filtered by correlation threshold only (Rand38Exp); (2) 351 (n) subsets filtered by 

expert ranking (Rank38Exp); (3) 250 (n) subsets ranked by AICcbg_wrapper (AICc38Exp); and (4) 

250 (n) subsets ranked by AUCpa_wrappertest (AUC38Exp). Three replicates were also included of 

250 (n) subsets developed from random sets of 38 of 90 variables and ranked using 

AUCpa_wrappertest (AUC38of90). Evaluation statistics of models selected by these five RSFSA 

variants were then compared to those of three replicates of 300 (n) models made from random 

sets of 38 of 90 variables (Rand38of90; correlation filter only).  

Results 

Niche Modeling Methods and Feature Selection  

With a few exceptions, performance results were generally similar among moderate and 

high burn severity wildfire activity models for the top performing methods of MaxEnt 

quadratic/hinge (β1, β2, β3) and GLM and Glmnet linear/quadratic (Figures A10-11).  Moderate 
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burn severity MaxEnt quadratic/hinge models exhibited significantly lower underfitting as 

indicated by higher training and testing AUC than the three training replicate sets of GLM and 

Glmnet linear/quadratic models (P < 0.05, Games Howell Pairwise Multiple Comparison Test, 

preceded by significant Welch’s one-way ANOVA test, P < 0.05; Figure A.10A-B). The β1 and 

β2 moderate burn severity MaxEnt quadratic/hinge models had lower underfitting that β3 

models, with β1 models performing better than β2 models across most training replicates. The 

moderate burn severity β2 and β3 MaxEnt quadratic/hinge models had significantly lower 

AICcbg than β1 MaxEnt quadratic/hinge and GLM and Glmnet linear/quadratic models. Feature 

selection yielded unstable performance in AICcbg among moderate burn severity GLM 

linear/quadratic models in training replicate 2. There was much inconsistency in model method 

performance in overfitting across the training replicates, but GLM and Glmnet linear/quadratic 

models and β3 MaxEnt quadratic/hinge models generally performed best (Figure A.10).  

In contrast to the above performance results for moderate burn severity modeling 

methods, high burn severity β1 MaxEnt quadratic/hinge models consistently outperformed β2 

MaxEnt quadratic/hinge models in terms of underfitting for all training replicates. However, high 

burn severity β1 MaxEnt models consistently outperformed β2 models in regards to overfitting. 

Unstable results in high burn severity GLM quadrtic/hinge models in performance of both 

AUCpa_finaltest and AICcbg were seen in training replicates 2 and 3 (Figures A10-11).  

Calculations of both AICc and AICcbg were verified to increase when increasing numbers 

of model parameters are arbitrarily specified for a given MaxEnt model (Figure A.24). In 

addition, as the total number of environmental variables increased for MaxEnt models, the 

number of derived variables increased (Figure A.25A). The MaxEnt algorithm limited the degree 

of increase in the total number of derived variables as the number of environmental variables 
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Figure A.16. Low burn severity MaxEnt quadratic/hinge (β2) wildfire activity model variable response curves for top six of 15 
variables in permutation importance for top ranked RSFSA selected model (one of four consensus models in Figure 7A): (A) mean 
temperature of the driest quarter (bio_9), (B) precipitation in the spring quarter (prec_sprq), (C) AET/PET ratio for the spring 
quarter (etrt_sprq), (D) agricultural land cover (agric_lc), (E) precipitation of the driest month (bio_14), and (F) slope (slope). The 
curves represent logistic prediction changes as each environmental variable is varied while the other variables are kept at their 
average sample value (see Table A.4 for permutation importance and other variables) (Tracy et al., 2018b). 
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Figure A.17. Moderate burn severity MaxEnt quadratic/hinge (β2) wildfire activity model variable response curves for top six of 15 
variables in permutation importance for top ranked RSFSA selected model (one of four consensus models in Figure 7A): (A) slope 
(slope), (B) AET for the spring quarter (aett_sprq), (C) total annual PET (tpeth_ann), (D) agricultural land cover (agric_lc), (E) 
Driscoll Fong modified continentality index (cont_dfmo), and (F) precipitation for the summer quarter (prec_sumq). The curves 
represent logistic prediction changes as each environmental variable is varied while the other variables are kept at their average 
sample value (see Table A.4 for permutation importance and other variables) (Tracy et al., 2018b). 
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Figure A.18. High burn severity MaxEnt quadratic/hinge (β2) wildfire activity model variable response curves for top six of 15 
variables in permutation importance for top ranked RSFSA selected model (one of four consensus models in Figure 7A): (A) slope 
(slope), (B) AET in the spring quarter (aett_sprq), (C) elevation (elev), (D) agricultural land cover (agric_lc), (E) mean 
temperature of the wettest quarter (bio_8), and (F) evapotranspiration ratio of the spring quarter (etrt_sprq). The curves represent 
logistic prediction changes as each environmental variable is varied while the other variables are kept at their average sample value 
(see Table A.4 for permutation importance and other variables) (Tracy et al., 2018b). 
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Figure A.19. Variable response curves for low (A,D,G,J,M), moderate (B,E,H,K,N), and high (C,F,I,L,O) 
burn severity top ranked RSFSA-selected MaxEnt quadratic/hinge (β2) wildfire activity models (one of four 
consensus models in Figure 7A): (A) aett_autq, (B) aett_sprq, (C) aett_winq, (D–F) strmhiflodist, (G) 
peth_autq, (H–I) strmmdflodist, (J–L) sprurdist, (M,O) lorurdist, (N) lourbdist, (P) roadden9kr, (Q–R) 
roadden3kr (see Table II.1 for abbreviations and Table A.4 for permutation importance) (Tracy et al., 
2018b). 
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increased by incorporating lower numbers of derived variables per environmental variable 

(Figure A.25B).  

Selected Features for Wildfire Activity Models  

The permutation importance and variable response curves were examined from the 

MaxEnt output for the individual top random subset feature selection algorithm (RSFSA)-

selected 15-variable wildfire model from each of the three burn severities (Table A.5, Figures 

A.16-19). The top five variables in permutation importance for the top low burn severity wildfire 

model were (1) mean temperature of the driest quarter (bio_9) with an intermediate high value 

sharply more prone to fire, (2) precipitation in the spring quarter (prec_sprq), with a sigmoidal 

positive association with fire, (3) AET/PET ratio for the spring quarter (etrt_sprq), with a 

graduated intermediate positive association with fire, (4) percent agricultural land cover 

(agric_lc), negatively associated with fire, and (5) precipitation of the driest month (bio_14), 

negatively associated with fire (Figure A.16). Slope (slope) was ranked sixth in permutation 

importance for low burn severity fires with a sigmoid positive association (Figure A.16F).  

For the top moderate burn severity wildfire model, the top five variables by permutation 

importance were (1) slope, with a sigmoidal positive association with fire, (2) AET for the spring 

quarter (aett_sprq), with an intermediate value sharply more prone to fire followed by a gradual 

reduced association with fire at increasing values, (3) total annual PET (tpeth_ann), with an 

intermediate value sharply more associated with fire, (4) percent agricultural land cover 

(agric_lc) with a negative association with fire above a certain intermediate value, and (5) 

modified Driscoll-Fong continentality index (cont_dfmo) with an intermediate value sharply 

more prone to fire (Figure A.17).  
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The top five variables by permutation importance for the top high burn severity wildfire 

model were (1) slope, with a sigmoidal positive association with fire, (2) AET for the winter 

quarter (aett_winq), with a partial sigmoid positive response to fire, (3) elev, with a broad 

association with fire for intermediate values, (4) agric_lc, with a negative association with fire 

above a certain early intermediate value and (5) mean temperature of the wettest quarter (bio_8), 

with a negative association with fire above a certain early low value (Figure A.18). 

Higher seasonal AET in autumn (aett_autq) for low burn severity, spring for moderate 

burn severity (aett_sprq), and winter (aett_winq) for high burn severity, were all associated with 

higher wildfire probability, although there was more of a modal trend for aett_sprq (Figures 

A.19A-C). There was a trend towards higher fire probability with lower distance to high flow 

accumulation streams (strmhifldist) for all three burn severity models (Figure A.19D-E), but 

these variables were of low permutation importance in the models. In contrast, there was a trend 

towards lower fire probability with lower distance to medium flow accumulation streams 

(strmmdfldist) for both the moderate and high burn severities (Figure A.19H-I). A lower distance 

to none to sparse population density areas (sprurdist) was positively associated with wildfire 

probability for all three models of the three burn severities (Figure A.19J-K). At the same time, 

there was a slight trend towards higher fire probability at higher to low rural density areas 

(lorurdist) for both low and high burn severities (Figure A.19M, O), and higher fire probability 

at higher distances to low urban density areas (lourbdist) for the moderate burn severity (Figure 

A.19N). There was a trend toward higher wildfire probability with higher densities of roads 

within a 9 km (roadden9kr) and 3 km (roadden3kr) radii for low burn severity and moderate and 

high burn severities, respectively (Figure A.19P-R).  

 



 

201 

 

Table A.5. Areas of large low severity fires every 16.5 years or less by ecoregions for actual (1984–2014) and projected 
current and projected future burn areas (mHa) from MaxEnt wildfire activity models in background evaluation extent and 
(BEE) and model projection area (see Figures II.2A and 7) (Tracy et al., 2018b). 

Ecoregion Map No. - 
Ecoregion 

(Area for BEE and Model 
Projection Area) 

(Level I - Level III; CEC 
2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
Mediterranean California  

1 - California Coastal 
Sage, Chaparral, and Oak 
Woodlands (2.09, 4.355) 

0.170 
(0.081) 

1.027 (0.491;  
-0.283 ± 0.063) 

2.373 ± 0.610 
(0.545) 

1.826 ± 
0.788 

1.533 ± 
0.788 

1.856 ± 
0.756 

1.032 ± 
0.598 

2 - Southern and Baja 
California Pine-Oak 
Mountains (1.784, 1.992) 

0.164 
(0.092) 

1.563 (0.876;  
-0.784 ± 0.014)‡ 

1.666 ± 0.062  
(0.836) 

1.599 ± 
0.078 

1.566 ± 
0.103 

1.638 ± 
0.065 

1.414 ± 
0.175 

3- Central California 
Valley (4.593, 4.594) 

0.002 
(0.0004) 

0.793 (0.172;  
-0.161 ± 0.041) 

0.793 ± 0.186  
(0.173) 

0.478 ± 
0.239* 

0.311 ± 
0.228* 

0.484 ± 
0.212* 

0.135 ± 
0.161* 

Marine West Coast Forest      
4 - Coast Range (5.159, 
5.416) 

0.015 
(0.003) 

0.543 (0.105;  
-0.102 ± 0.064 

0.552 ± 0.337 
(0.102) 

0.959 ± 
0.507 

1.136 ± 
0.541 

0.920 ± 
0.510 

1.148 ± 
0.683 

5 - Willamette Valley 
(1.489, 1.489) 

0.0  
(0.0) 

0.0  
(0.0; 0.0)† 

0.000 ± 0.000 
(0.000) 

0.050 ± 
0.001 

0.094 ± 
0.056 

0.047 ± 
0.083 

0.100 ± 
0.036 

6 - Strait of Georgia/ 
Puget Lowland (1.583, 
3.552) 

0.0 
(0.0) 

0.0  
(0.0; 0.0)† 

0.004 ± 0.007 
(0.001) 

0.001 ± 
0.001 

0.004 ± 
0.007 

0.000 ± 
0.001 

0.029 ± 
0.057 

51 - Pacific and Nass 
Ranges (--, 10.918) -- -- 

1.046 ± 1.096 
(0.096) 

1.810 ± 
1.299 

1.630 ± 
0.899 

1.976 ± 
1.401 

2.827 ± 
0.849 

Northwestern Forested Mountains 
7 - North Cascades 3.041, 
3.68) 

0.010 
(0.003) 

0.443 (0.146;  
-0.122 ± 0.014) 

0.501 ± 0.063 
(0.136) 

0.830 ± 
0.097* 

1.153 ± 
0.199* 

0.836 ± 
0.105* 

1.391 ± 
0.332* 
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Table A.5. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
8 - Cascades (4.644, 
4.644) 

0.012 
(0.003) 

0.437 (0.094;  
-0.088 ± 0.083) 

0.437 ± 0.387 
(0.094) 

0.957 ± 
0.307 

1.369 ± 
0.253* 

1.041 ± 
0.307 

1.588 ± 
0.461* 

9 - Klamath Mountains 
(4.852, 4.852) 

0.054 
(0.011) 

3.395 (0.700;  
-0.663 ± 0.129)‡ 

3.395 ± 0.625 
(0.700) 

4.146 ± 
0.286 

4.360 ± 
0.162 

4.113 ± 
0.303 

4.305 ± 
0.168 

10 - Eastern Cascades 
Slopes and Foothills 
(5.619, 5.619) 

0.014 
(0.003) 

3.802 (0.677; 
 -0.656 ± 0.076)‡ 

3.802 ± 0.430 
(0.677) 

4.504 ± 
0.192 

4.843 ± 
0.132 

4.536 ± 
0.251 

4.945 ± 
0.015 

11 - Sierra Nevada 
(5.276, 5.276) 

0.028 
(0.005) 

2.571 (0.487;  
-0.457 ± 0.063) 

2.571 ± 0.335  
(0.487) 

3.159 ± 
0.299 

3.395 ± 
0.312 

3.143 ± 
0.196 

3.455 ± 
0.381 

17 - Middle Rockies 
(16.444, 16.444) 

0.033 
(0.002) 

0.735 (0.045; 
 -0.038 ± 0.030)† 

0.735 ± 0.487 
(0.045) 

3.099 ± 
0.447* 

4.528 ± 
0.803* 

2.375 ± 
0.463* 

7.412 ± 
2.015* 

18 -Idaho Batholith 
(6.029, 6.029) 

0.036 
(0.006) 

1.460 (0.242;  
-0.197 ± 0.022) 

1.460 ± 0.135 
(0.242) 

2.895 ± 
0.315* 

3.963 ± 
0.659* 

2.376 ± 
0.182* 

4.524 ± 
0.754* 

19 - Blue Mountains 
(7.092, 7.092) 

0.044 
(0.006) 

5.261 (0.742;  
-0.693 ± 0.072)‡ 

5.261 ± 0.512 
(0.742) 

6.284 ± 
0.327 

6.586 ± 
0.158* 

6.152 ± 
0.395 

6.738 ± 
0.051* 

21 - Columbia 
Mountains/North Rockies 
(8.198, 17.932) 

0.019 
(0.002) 

1.440 (0.176;  
-0.167 ± 0.042) 

1.615 ± 0.39 
(0.09) 

4.623 ± 
0.813* 

7.056 ± 
0.843* 

3.671 ± 
0.811* 

8.785 ± 
1.136* 

22 - Canadian Rockies 
(1.888, 10.496) 

0.016 
(0.009) 

0.010 (0.005; 
0.009 ± 0.009)† 

0.060 ± 0.065 
(0.006) 

0.440 ± 
0.300 

1.021 ± 
0.316* 

0.333 ± 
0.278 

2.038 ± 
0.339* 

32 - Southern Rockies 
(14.572, 14.572) 

0.035 
(0.002) 

0.664 (0.046;  
-0.04 ± 0.033)† 

0.664 ± 0.488 
(0.046) 

1.813 ± 
1.312 

2.1 ± 
2.232 

1.683 ± 
1.12 

3.486 ± 
3.412 
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Table A.5. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
33 - Colorado Plateaus 
(13.493, 13.493) 

0.044 
(0.003) 

3.234 (0.24;  
-0.234 ± 0.063) 

3.234 ± 0.853  
(0.24) 

5.086 ± 
2.534 

5.423 ± 
2.477 

4.726 ± 
2.365 

5.357 ± 
2.844 

34 - Wasatch and Uinta 
Mountains (4.569, 4.569) 

0.019 
(0.004) 

0.556 (0.122;  
-0.116 ± 0.114) 

0.556 ± 0.523 
(0.122) 

0.982 ± 
1.038 

1.031 ± 
1.047 

0.847 ± 
0.829 

1.302 ± 
1.305 

52 - Chilcotin Ranges 
and Fraser Plateau (--, 
10.506) -- -- 

0.171 ± 0.140 
(0.016) 

0.749 ± 
0.446 

2.224 ± 
1.298 

0.680 ± 
0.411 

4.403 ± 
1.998 

53 - Skeena-Omineca-
Central Canadian Rocky 
Mountains (--, 14.006) -- -- 

0.087 ± 0.162 
(0.006) 

0.178 ± 
0.22 

0.195 ± 
0.065 

0.214 ± 
0.258 

0.648 ± 
0.299 

North American Deserts 
12 - Sonoran Desert 
(11.697, 21.759) 

0.013 
(0.001) 

1.319 (0.113;  
-0.101 ± 0.014) 

2.777 ± 1.137 
(0.128) 

2.024 ± 
1.088 

1.348 ± 
0.748 

1.272 ± 
0.601 

0.729 ± 
0.426 

13 - Mojave Desert 
(12.960, 12.960) 

0.170 
(0.013) 

3.098 (0.239;  
-0.212 ± 0.022) 

3.098 ± 0.288 
(0.239) 

3.263 ± 
0.560 

2.626 ± 
0.559 

2.508 ± 
0.282 

1.496 ± 
0.448* 

14 - Central Basin and 
Range (30.998, 30.998) 

0.624 
(0.020) 

14.589 (0.471;  
-0.419 ± 0.025) 

14.589 ± 0.790 
(0.471) 

16.377 ± 
2.338 

16.409 ± 
2.216 

15.347 ± 
2.397 

14.516 ± 
1.863 

15 - Northern Basin and 
Range (14.218, 14.218) 

0.663 
(0.047) 

12.669 (0.891;  
-0.767 ± 0.006)‡ 

12.699 ± 0.085 
(0.891) 

13.368 ± 
0.154* 

13.525 ± 
0.218* 

13.198 ± 
0.196* 

13.562 ± 
0.126* 

16 - Snake River Plain 
(5.364, 5.364) 

0.162 
(0.030) 

3.432 (0.64;  
-0.435 ± 0.013) 

3.432 ± 0.068 
(0.64) 

3.676 ± 
0.058* 

3.670 ± 
0.072* 

3.603 ± 
0.025* 

3.519 ± 
0.354 

20 - Colombia Plateau 
(8.302, 8.381) 

0.085 
(0.010) 

5.67 (0.683;  
-0.606 ± 0.004)‡ 

5.725 ± 0.036 
(0.683) 

6.032 ± 
0.061* 

6.007 ± 
0.087* 

5.997 ± 
0.057* 

5.729 ± 
0.651 
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Table A.5. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
26 - Wyoming Basin 
(13.271, 13.271) 

0.039 
(0.003) 

0.619 (0.047;  
-0.039 ± 0.058)† 

0.618 ± 0.764 
(0.047) 

2.411 ± 
0.581* 

4.135 ± 
0.762* 

2.121 ± 
0.788 

7.527 ± 
2.257* 

35 - Arizona/New 
Mexico Plateau (15.010, 
15.010) 

0.013 
(0.001) 

2.582 (0.172;  
-0.165 ± 0.024) 

2.582 ± 0.036 
(0.172) 

3.391 ± 
0.607 

2.795 ± 
0.564 

3.134 ± 
0.662 

2.053 ± 
0.578 

38 - Chihuahuan Desert 
(16.215, 50.943) 

0.085 
(0.005) 

6.577 (0.406;  
-0.369 ± 0.104) 

14.664 ± 6.293 
(0.288) 

6.02 ± 
4.101 

6.2 ± 
4.564 

7.05 ± 
4.814 

7.65 ± 
5.143 

50 - Thompson-
Okanogan Plateau (--, 
5.264) -- -- 

0.584 ± 0.402 
(0.111) 

1.952 ± 
1.005 

2.988 ± 
1.189 

1.827 ± 
1.035 

3.735 ± 
1.197* 

Great Plains       
23 -Northwestern 
Glaciated Plains (17.496, 
40.561) 

0.003 
(0.0001) 

0.429 (0.024;  
-0.018 ± 0.021)† 

0.773 ± 0.277 
(0.019) 

4.676 ± 
1.023* 

5.616 ± 
1.350* 

4.455 ± 
0.935* 

10.422 ± 
2.095* 

24 - Aspen 
Parkland/Northern 
Glaciated Plains (8.093, 
30.764) 

0.0 
(0.0) 

0.0 (0.0;  
0.0 ± 0.0)† 

0.002 ± 0.003 
(0.0) 

0.02 ± 
0.029 

0.027 ± 
0.028 

0.016 ± 
0.021 

0.066 ± 
0.053 

25 - Northwest Great 
Plains (35.758, 35.758) 

0.236 
(0.007) 

3.141 (0.088;  
-0.067 82) 

3.141 ± 2.927 
(0.088) 

14.227 ± 
3.283* 

19.317 ± 
1.535* 

11.437 ± 
2.977* 

28.274 ± 
1.704* 

27 - Nebraska Sandhills 
(5.912, 5.912) 

0.0 
(0.0) 

1.244 (0.21;  
-0.191 ± 0.195) 

1.244 ± 1.153 
(0.21) 

1.721 ± 
0.998 

2.137 ± 
0.822 

2.036 ± 
1.297 

3.325 ± 
0.264 

28 - Western Corn Belt 
Plains (4.853, 13.889) 

0.003 
(0.001) 

0.324 (0.067;  
-0.066 ± 0.023) 

0.371 ± 0.14 
(0.027) 

0.367 ± 
0.134 

0.302 ± 
0.111 

0.408 ± 
0.03 

0.298 ± 
0.123 
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Table A.5. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
29 - Flint Hills (2.793, 
2.793) 

0.001 
(0.0003) 

2.649 (0.949;  
-0.514 ± 0.015)‡ 

2.649 ± 0.043 
(0.949) 

2.672 ± 
0.02 

2.155 ± 
0.4 

2.678 ± 
0.039 

1.93 ± 
0.548 

30 - Central Great Plains 
(27.493, 27.493) 

0.045 
(0.002) 

11.522 (0.419;  
-0.405 ± 0.048) 

11.522 ± 1.333 
(0.419) 

10.741 ± 
0.62 

6.933 ± 
2.702 

10.610 ± 
0.563 

6.652 ± 
2.368 

31 - High Plains (28.831, 
28.831) 

0.060 
(0.002) 

9.32 (0.323;  
-0.296 ± 0.051) 

9.32 ± 1.484 
(0.323) 

10.719 ± 
1.314 

10.21 ± 
2.218 

11.689 ± 
0.833 

9.8 ± 
2.715 

39 - Southwest 
Tablelands (19.886, 
19.886) 

0.119 
(0.006) 

14.157 (0.712;  
-0.66 ± 0.068)‡ 

14.157 ± 1.349 
(0.712) 

14.281 ± 
2.067 

10.858 ± 
3.501 

15.339 ± 
1.432 

7.46 ± 
4.092 

40 - Edwards Plateau 
(7.497, 7.497) 

0.079 
(0.011) 

5.856 (0.781;  
-0.745 ± 0.028)‡ 

5.856 ± 0.212 
(0.781) 

3.388 ± 
1.644 

2.321 ± 
1.361 

1.676 ± 
0.511* 

4.351 ± 
2.845 

41 - Cross Timbers 
(8.821, 8.821) 

0.037 
(0.004) 

5.102 (0.578;  
-0.520 ± 0.076)‡ 

5.102 ± 0.67 
(0.578) 

3.494 ± 
0.563* 

1.116 ± 
0.508* 

2.731 ± 
0.101* 

0.856 ± 
0.560* 

42 - Texas Blackland 
Prairies (4.338, 4.338) 

0.001 
(0.0) 

0.162 (0.037;  
-0.037 ± 0.027)† 

0.162 ± 0.118 
(0.037) 

0.126 ± 
0.032 

0.003 ± 
0.003 

0.124 ± 
0.242 

0.060 ± 
0.068 

45 - Western Gulf 
Coastal Plain (5.760, 
7.833) 

0.118 
(0.021) 

0.728 (0.126;  
-0.106 ± 0.019) 

1.298 ± 0.174 
(0.166) 

1.758 ± 
0.763 

0.755 ± 
0.636 

1.290 ± 
0.506 

0.927 ± 
0.689 

46 - South Texas Plains 
(5.347, 14.227) 

0.008 
(0.002) 

0.136 (0.025;  
-0.018 ± 0.012)† 

3.399 ± 1.172 
(0.239) 

4.333 ± 
2.269 

2.777 ± 
1.662 

3.346 ± 
1.653 

5.505 ± 
2.949 

Temperate Sierras       
36 - Arizona/New 
Mexico Mountains 
(10.878, 10.878) 

0.158 
(0.015) 

 
8.029 (0.738;  

-0.669 ± 0.038)‡ 
8.029 ± 0.415 

(0.738) 
8.261 ± 
0.385 

7.505 ± 
0.532 

8.356 ± 
0.356 

6.661 ± 
0.892 
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Table A.5. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
48 - Sierra Madre 
Occidental (--, 15.449) -- -- 

14.960 ± 0.913 
(0.968) 

14.348 ± 
2.127 

14.185 ± 
2.407 

14.281 ± 
2.234 

13.872 ± 
2.916 

Southern Semiarid Highlands  
37 - Madrean 
Archipelago (4.3, 7.48) 

0.096 
(0.022) 

3.328 (0.774;  
-0.694 ± 0.159)‡ 

5.876 ± 1.628 
(0.785) 

4.849 ± 
2.067 

3.78 ± 
1.877 

4.493 ± 
2.016 

2.991 ± 
1.73 

47 - Piedmonts and 
Plains (--, 13.003) -- -- 

8.125 ± 4.8 
(0.625) 

6.919 ± 
4.49 

6.177 ± 
4.063 

6.539 ± 
4.238 

5.751 ± 
3.808 

Eastern Temperate Forest 
43 - East Central Texas 
Plains (5.575, 5.575) 

0.004 
(0.001) 

0.185 (0.033;  
-0.033 ± 0.019)† 

0.185 ± 0.108 
(0.033) 

0.304 ± 
0.234 

0.047 ± 
0.052 

0.158 ± 
0.136 

0.383 ± 
0.43 

44 - South Central Plains 
(7.046, 10.199) 

0.08 
(0.011) 

1.270 (0.180;  
-0.169 ± 0.04) 

2.4 ± 0.279 
(0.235) 

0.626 ± 
0.234* 

0.077 ± 
0.058* 

0.749 ± 
0.845 

0.007 ± 
0.009* 

Tropical Dry Forests 
49 - Sinoloa and Sonora 
Hills and Canyons (--, 
8.026) -- -- 

6.878 ± 2.095 
(0.857) 

6.709 ± 
2.444 

6.614 ± 
2.614 

6.654 ± 
2.517 

6.303 ± 
3.068 

aBased on aggregation of 30 m 1984–2014 Monitoring Trends in Burn Severity (MTBS)/LANDFIRE rasters to one km 
rasters. 
† = Projected current burned area less than 5% higher than actual burned area for ecoregion within the BEE. Projected 
burned areas for other ecoregions are greater than or equal to 5% higher than observed, indicating potential fire deficits. 
‡ = Projected current burned area is greater than or equal to 50% higher than actual burned area for ecoregion with the BEE. 
* = Projected future burned area significantly different from projected current burned area for ecoregion in projected model 
area by Welch t test with Holm correction for four comparisons (P < 0.05) if preceded by significant Welch ANOVA test (P 
< 0.05). 
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Projections for Wildfire Activity Models 

Current Climate 

Low Burn Severity 

Four of the 12 Level III ecoregions projected to have severe contemporary wildfire 

deficits in the low burn severity category were in the southern portion of the Great Plains Level I 

ecoregion (Figure II.7A, Table A.5). Southwestern ecoregions (map numbers in parenthesis) 

with severe contemporary wildfire deficits include the Madrean Archipelago (37), Arizona/New 

Mexico Mountains (36), Southern, Baja California Pine Oak Mountains (2), and the Sierra 

Nevada (11). Northwestern ecoregions with severe contemporary wildfire deficits include three 

in the Northwestern Forested Mountains Level I ecoregion, and two in the North American 

Deserts Level I ecoregion (Figure II.7A).  Within the area outside of the background evaluation 

extent in Mexico, high percentages of the Sierra Madre Occidental (48; 97%), Sinoloa and 

Sonora Hills and Canyons (49; 86%), and Piedmonts and Plains (47; 63%) Level III ecoregions 

were projected as burned within 16.5 years or less. Very high contemporary wildfire deficits for 

low burn severity wildfires were widespread from central Texas west to eastern New Mexico, 

throughout the Arizona/New Mexico Mountains ecoregion, from the northern Great Basin and 

Range ecoregion north to the Columbia Plateau, and throughout coastal and northern California 

(Figure A.20; see Tracy et al. [2018b] Appendix A, section 3.3.1 for zipped shapefile). 

Moderate Burn Severity 

In comparison to the low burn severity wildfire activity model projections, the projected 

burned areas of 14 Level III ecoregions with severe contemporary wildfire deficits were mostly 

restricted to the western portion of the study area. An exception was the Edwards Plateau (40) in 

Texas (Figure II.8A, Table A.6). Seven of these Level III ecoregions are within the Northwestern 
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Figure A.20. Low burn severity contemporary wildfire deficit or surplus representing a combination of historical wildfire data 
(Figure II.2A) and degree of wildfire activity projected by MaxEnt quadratic/hinge (β2) wildfire activity feature subset 
ensemble models for large wildfires with mean fire interval of ≤ 16.5 yrs per 31 yrs (Figure II.7A) (Tracy et al., 2018b).  
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Table A.6. Areas of large moderate severity fires every 16.5 years or less by ecoregions for actual (1984–2014) and 
projected current and projected future burn areas (mHa) from MaxEnt wildfire activity models in background evaluation 
extent and (BEE) and model projection area (see Figures II.2B and 8) (Tracy et al., 2018b). 

Ecoregion Map No. - 
Ecoregion 

(Area for BEE and Model 
Projection Area) 

(Level I - Level III; CEC 
2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
Mediterranean California  

1 - California Coastal 
Sage, Chaparral, and Oak 
Woodlands (2.09, 4.355) 

0.436 
(0.209) 

1.215 (0.581;  
-0.5 ± 0.091)‡ 

2.838 ± 0.314 
(0.651) 

2.666 ± 
0.181 

2.44 ± 
0.155 

2.53 ± 
0.186 

1.885 ± 
0.212* 

2 - Southern and Baja 
California Pine-Oak 
Mountains (1.784, 1.992) 

0.138 
(0.077) 

1.724 (0.966;  
-0.889 ± 0.014)‡ 

1.892 ± 0.031  
(0.95) 

1.897 ± 
0.025 

1.878 ± 
0.023 

1.892 ± 
0.023 

1.826 ± 
0.014 

3- Central California 
Valley (4.593, 4.594) 

0.053 
(0.012) 

0.61 (0.133;  
-0.132 ± 0.006) 

0.61 ± 0.03  
(0.133) 

0.481 ± 
0.05* 

0.287 ± 
0.031 

0.454 ± 
0.051* 

0.138 ± 
0.034 

Marine West Coast Forest      
4 - Coast Range (5.159, 
5.416) 

0.001 
(0.0002) 

0.783 (0.152;  
-0.152 ± 0.222) 

0.806 ± 0.191 
(0.149) 

1.185 ± 
1.376 

1.416 ± 
1.38 

1.146 ± 
1.399 

1.66 ±  
1.569 

5 - Willamette Valley 
(1.489, 1.489) 

0.0  
(0.0) 

0.025 (0.017;  
-0.016 ± 0.02)† 

0.025 ± 0.029 
(0.017) 

0.072 ± 
0.082 

0.144 ± 
0.114 

0.084 ± 
0.099 

0.164 ± 
0.135 

6 - Strait of Georgia/ 
Puget Lowland (1.583, 
3.552) 

0.0 
(0.0) 

0.02 (0.01;  
-0.012 ± 0.025)† 

0.289 ± 0.577 
(0.081) 

0.312 ± 
0.607 

0.373 ± 
0.675 

0.316 ± 
0.622 

0.455 ± 
0.742 

51 - Pacific and Nass 
Ranges (--, 10.918) -- -- 

2.252 ± 4.143 
(0.206) 

3.371 ± 
4.424 

4.149 ± 
4.214 

3.317 ± 
4.511 

5.312 ± 
3.94 

Northwestern Forested Mountains 
7 - North Cascades 3.041, 
3.68) 

0.073 
(0.024) 

0.971 (0.319;  
-0.316 ± 0.28) 

1.133 ± 1.018 
(0.308) 

1.868 ± 
1.013 

2.416 ± 
0.802 

1.86 ± 
1.019 

2.739 ± 
0.722 
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Table A.6. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
8 - Cascades (4.644, 
4.644) 

0.029 
(0.006) 

0.882 (0.19;  
-0.187 ± 0.185) 

0.882 ± 0.861 
(0.19) 

1.737 ± 
0.796 

2.467 ± 
0.841 

1.797 ± 
0.847 

3.004 ± 
0.971 

9 - Klamath Mountains 
(4.852, 4.852) 

0.180 
(0.037) 

3.439 (0.709;  
-0.698 ± 0.168)‡ 

3.439 ± 0.817 
(0.709) 

4.239 ± 
0.217 

4.418 ± 
0.135 

4.197 ± 
0.247 

4.437 ± 
0.18 

10 - Eastern Cascades 
Slopes and Foothills 
(5.619, 5.619) 

0.118 
(0.021) 

3.495 (0.622; 
 -0.619 ± 0.088)‡ 

3.495 ± 0.495 
(0.622) 

4.333 ± 
0.191 

4.68 ± 
0.188* 

4.343 ± 
0.159 

4.828 ± 
0.2* 

11 - Sierra Nevada 
(5.276, 5.276) 

0.161 
(0.03) 

3.817 (0.723;  
-0.718 ± 0.062)‡ 

3.817 ± 0.326  
(0.723) 

4.516 ± 
0.455 

4.704 ± 
0.437 

4.51 ± 
0.416 

4.765 ± 
0.405 

17 - Middle Rockies 
(16.444, 16.444) 

0.105 
(0.006) 

4.226 (0.257; 
 -0.255 ± 0.034) 

4.226 ± 0.553 
(0.257) 

10.072 ± 
0.641* 

11.894 ± 
0.928* 

9.386 ± 
0.603* 

13.682 ± 
0.963* 

18 -Idaho Batholith 
(6.029, 6.029) 

0.270 
(0.045) 

3.193 (0.53;  
-0.524 ± 0.106)‡ 

3.193 ± 0.636 
(0.53) 

5.482 ± 
0.202* 

5.835 ± 
0.126* 

5.198 ± 
0.268* 

5.899 ± 
0.083* 

19 - Blue Mountains 
(7.092, 7.092) 

0.349 
(0.049) 

5.675 (0.8;  
-0.794 ± 0.093)‡ 

5.675 ± 0.66 
(0.8) 

6.646 ± 
0.085 

6.773 ± 
0.042 

6.613 ± 
0.094 

6.821 ± 
0.039 

21 - Columbia 
Mountains/North Rockies 
(8.198, 17.932) 

0.712 
(0.009) 

3.524 (0.43;  
-0.428 ± 0.149) 

4.203 ± 1.659 
(0.234) 

9.625 ± 
2.713 

11.892 ± 
3.102* 

8.912 ± 
3.027 

13.744 ± 
2.982* 

22 - Canadian Rockies 
(1.888, 10.496) 

0.027 
(0.014) 

0.236 (0.125;  
-0.116 ± 0.087) 

0.329 ± 0.226 
(0.031) 

2.155 ± 
1.378 

3.285 ± 
1.448 

1.894 ± 
1.263 

5.108 ± 
2.031 

32 - Southern Rockies 
(14.571, 14.571) 

0.087 
(0.006) 

5.621 (0.386;  
-0.383 ± 0.067) 

5.621 ± 0.97 
(0.386) 

9.252 ± 
1.791 

10.333 ± 
2.015* 

8.832 ± 
1.751 

11.419 ± 
2.031* 
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Table A.6. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
33 - Colorado Plateaus 
(13.493, 13.493) 

0.05 
(0.004) 

7.295 (0.541;  
-0.537 ± 0.039)‡ 

7.295 ± 0.526  
(0.541) 

8.421 ± 
1.131 

8.79 ± 
1.229 

7.968 ± 
1.178 

8.006 ± 
1.634 

34 - Wasatch and Uinta 
Mountains (4.569, 4.569) 

0.025 
(0.006) 

2.863 (0.627;  
-0.622 ± 0.103)‡ 

2.863 ± 0.471 
(0.627) 

3.614 ± 
0.512 

3.819 ± 
0.473 

3.527 ± 
0.525 

3.96 ± 
0.439 

52 - Chilcotin Ranges 
and Fraser Plateau (--, 
10.506) -- -- 

0.365 ± 0.529 
(0.035) 

1.638 ± 
1.293 

3.573 ± 
1.763 

1.572 ± 
1.348 

5.525 ± 
1.544* 

53 - Skeena-Omineca-
Central Canadian Rocky 
Mountains (--, 14.006) -- -- 

0.153 ± 0.294 
(0.011) 

1.244 ± 
1.725 

2.262 ± 
2.604 

1.355 ± 
1.899 

3.49 ± 
3.088 

North American Deserts 
12 - Sonoran Desert 
(11.697, 21.759) 

0.136 
(0.012) 

1.068 (0.091;  
-0.09 ± 0.028) 

1.271 ± 0.404 
(0.058) 

0.834 ± 
0.207 

0.549 ± 
0.153 

0.578 ± 
0.198 

0.237 ± 
0.087* 

13 - Mojave Desert 
(12.960, 12.960) 

0.354 
(0.027) 

4.246 (0.328;  
-0.314 ± 0.038) 

4.246 ± 0.497 
(0.328) 

4.008 ± 
0.443 

3.219 ± 
0.372 

3.19 ± 
0.422 

2.017 ± 
0.269* 

14 - Central Basin and 
Range (30.998, 30.998) 

1.589 
(0.051) 

16.462 (0.531;  
-0.511 ± 0.033)‡ 

16.462 ± 1.027 
(0.531) 

18.523 ± 
1.658 

19.35 ± 
2.069 

17.403 ± 
1.5 

18.522 ± 
2.815 

15 - Northern Basin and 
Range (14.218, 14.218) 

1.766 
(0.124) 

12.082 (0.85;  
-0.803 ± 0.029)‡ 

12.082 ± 0.408 
(0.85) 

12.77 ± 
0.301 

12.851 ± 
0.28 

12.796 ± 
0.329 

13.046 ± 
0.4 

16 - Snake River Plain 
(5.364, 5.364) 

1.096 
(0.204) 

2.668 (0.497;  
-0.467 ± 0.066) 

2.668 ± 0.354 
(0.497) 

3.006 ± 
0.376 

3.085 ± 
0.4 

2.979 ± 
0.423 

3.22 ± 
0.445 

20 - Colombia Plateau 
(8.302, 8.381) 

0.636 
(0.077) 

5.225 (0.629;  
-0.619 ± 0.045)‡ 

5.284 ± 0.383 
(0.630) 

5.771 ± 
0.201 

5.849 ± 
0.205 

5.749 ± 
0.197 

6.014 ± 
0.234 
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Table A.6. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
26 - Wyoming Basin 
(13.271, 13.271) 

0.099 
(0.007) 

4.152 (0.313;  
-0.31 ± 0.042) 

4.152 ± 0.558 
(0.313) 

6.203 ± 
1.249 

7.119 ± 
1.421 

6.182 ± 
1.145 

8.528 ± 
1.069* 

35 - Arizona/New 
Mexico Plateau (15.010, 
15.010) 

0.109 
(0.007) 

3.079 (0.205;  
-0.204 ± 0.049) 

3.079 ± 0.743 
(0.205) 

3.656 ± 
0.819 

3.329 ± 
0.921 

2.937 ± 
0.738 

2.357 ± 
0.869 

38 - Chihuahuan Desert 
(16.215, 50.943) 

0.589 
(0.036) 

0.9 (0.055;  
-0.050 ± 0.012)† 

3.553 ± 0.905 
(0.07) 

1.161 ± 
0.344* 

0.806 ± 
0.199* 

1.266 ± 
0.398* 

0.402 ± 
0.129* 

50 - Thompson-
Okanogan Plateau (--, 
5.264) -- -- 

1.2 ± 1.359 
(0.228) 

3.156 ± 
1.094 

4.242 ± 
0.74 

2.972 ± 
1.229 

4.74 ± 
0.443* 

Great Plains       
23 -Northwestern 
Glaciated Plains (17.496, 
40.561) 

0.116 
(0.007) 

0.557 (0.032;  
-0.032 ± 0.01)† 

0.722 ± 0.328 
(0.018) 

2.244 ± 
0.453* 

3.217 ± 
0.924* 

2.221 ± 
0.594* 

6.093 ± 
2.225 

24 - Aspen 
Parkland/Northern 
Glaciated Plains (8.093, 
30.764) 

0.0002 
(0.0004) 

0.0 (0.0;  
0.0 ± 0.0)† 

0.003 ± 0.004 
(0.0) 

0.011 ± 
0.014 

0.021 ± 
0.016 

0.009 ± 
0.012 

0.075 ± 
0.035 

25 - Northwest Great 
Plains (35.758, 35.758) 

0.749 
(0.021) 

7.642 (0.214;  
-0.207 ± 0.022) 

7.642 ± 0.787 
(0.214) 

14.116 ± 
3.261 

17.193 ± 
3.681* 

13.409 ± 
2.234* 

23.233 ± 
4.031* 

27 - Nebraska Sandhills 
(5.912, 5.912) 

0.118 
(0.02) 

0.255 (0.038;  
-0.038 ± 0.012)† 

0.255 ± 0.07 
(0.038) 

0.407 ± 
0.14 

0.521 ± 
0.156 

0.038 ± 
0.057 

1.343 ± 
0.5 

28 - Western Corn Belt 
Plains (4.853, 13.889) 

0.0 
(0.0) 0.002 (0.0004;  

0.003 ± 0.004 
(0.0002) 

0.003 ± 
0.004 

0.003 ± 
0.004 

0.003 ± 
0.004 

0.006 ± 
0.005 
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Table A.6. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
-0.0004 ± 
0.0007)† 

29 - Flint Hills (2.793, 
2.793) 

1.215 
(0.435) 

0.033 (0.012;  
-0.012 ± 0.018) 

0.033 ± 0.05 
(0.012) 

0.063 ± 
0.087 

0.031 ± 
0.036 

0.041 ± 
0.027 

0.025 ± 
0.032 

30 - Central Great Plains 
(27.493, 27.493) 

0.4 
(0.015) 

1.825 (0.066;  
-0.065 ± 0.027) 

1.825 ± 0.74 
(0.066) 

1.392 ± 
0.809 

0.969 ± 
0.504 

1.367 ± 
0.695 

0.942 ± 
0.559 

31 - High Plains (28.831, 
28.831) 

0.783 
(0.027) 

1.209 (0.042;  
-0.04 ± 005)† 

1.209 ± 0.138 
(0.04) 

2.447 ± 
1.106 

3.052 ± 
1.238 

2.335 ± 
0.855 

4.544 ± 
1.844 

39 - Southwest 
Tablelands (19.886, 
19.886) 

1.036 
(0.052) 

5.137 (0.258;  
-0.252 ± 0.047) 

5.137 ± 0.935 
(0.258) 

4.920 ± 
1.916 

3.744 ± 
1.772 

5.274 ± 
1.865 

2.173 ± 
1.541 

40 - Edwards Plateau 
(7.497, 7.497) 

0.27 
(0.036) 

4.703 (0.627;  
-0.617 ± 0.105)‡ 

4.703 ± 0.791 
(0.627) 

1.264 ± 
0.493* 

0.332 ± 
0.104* 

0.725 ± 
0.225* 

0.181 ± 
0.143* 

41 - Cross Timbers 
(8.821, 8.821) 

0.513 
(0.058) 

1.449 (0.164;  
-0.160 ± 0.049) 

1.449 ± 0.428 
(0.164) 

0.426 ± 
0.375* 

0.235 ± 
0.371* 

0.327 ± 
0.283* 

0.018 ± 
0.031* 

42 - Texas Blackland 
Prairies (4.338, 4.338) 

0.0 
(0.0) 

0.040 (0.009;  
-0.009 ± 0.007)† 

0.040 ± 0.030 
(0.009) 

0.001 ± 
0.002 

0.001 ± 
0.003 

0.0005 ± 
0.001 

0.0  
± 0.0 

45 - Western Gulf 
Coastal Plain (5.760, 
7.833) 

0.011 
(0.002) 

0.017 (0.003;  
-0.001 ± 0.003)† 

0.033 ± 0.033 
(0.004) 

0.052 ± 
0.079 

0.021 ± 
0.027 

0.034 ± 
0.054 

0.022 ±  
0.042 

46 - South Texas Plains 
(5.347, 14.227) 

0.038 
(0.007) 

0.113 (0.021;  
-0.02 ± 0.013)† 

0.996 ± 0.3 
(0.07) 

0.43 ± 
0.21 

0.239 ± 
0.1* 

0.378 ± 
0.164 

0.280 ± 
0.246* 

Temperate Sierras       
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Table A.6. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
36 - Arizona/New 
Mexico Mountains 
(10.878, 10.878) 

0.756 
(0.07) 

 
8.100 (0.745;  

-0.730 ± 0.059)‡ 
8.100 ± 0.642 

(0.745) 
8.06 ± 
0.694 

7.362 ± 
0.927 

7.590 ± 
0.724 

5.838 ± 
1.231 

48 - Sierra Madre 
Occidental (--, 15.449) -- -- 

13.441 ± 1.322 
(0.87) 

11.282 ± 
2.256 

10.141 ± 
2.605 

11.082 ± 
2.277 

7.382 ± 
2.831 

Southern Semiarid Highlands  
37 - Madrean 
Archipelago (4.3, 7.48) 

0.343 
(0.08) 

2.025 (0.471;  
-0.449 ± 0.09) 

3.633 ± 0.805 
(0.485) 

2.5 ± 
0.836 

1.525 ± 
0.564* 

2.008 ± 
0.745 

0.621 ± 
0.21* 

47 - Piedmonts and 
Plains (--, 13.003) -- -- 

1.704 ± 1.113 
(0.131) 

0.593 ± 
0.416 

0.359 ± 
0.577 

0.582 ± 
0.149 

0.106 ± 
1.113 

Eastern Temperate Forest 
43 - East Central Texas 
Plains (5.575, 5.575) 

0.003 
(0.0005) 

0.141 (0.025;  
-0.025 ± 0.009)† 

0.141 ± 0.049 
(0.025) 

0.004 ± 
0.003 

0.003 ± 
0.006 

0.001 ± 
0.002 

0.0 ±  
0.0 

44 - South Central Plains 
(7.046, 10.199) 

0.012 
(0.002) 

0.548 (0.078;  
-0.076 ± 0.063) 

0.882 ± 0.638 
(0.086) 

0.083 ± 
0.117 

0.005 ± 
0.008 

0.023 ± 
0.031 

0.0 ±  
0.0 

Tropical Dry Forests 
49 - Sinoloa and Sonora 
Hills and Canyons (--, 
8.026) -- -- 

1.747 ± 1.165 
(0.218) 

0.862 ± 
0.895 

0.573 ± 
0.732 

0.734 ± 
0.798 

0.248 ± 
0.358 

aBased on aggregation of 30 m 1984–2014 Monitoring Trends in Burn Severity (MTBS)/LANDFIRE rasters to one km 
rasters. 
† = Projected current burned area less than 5% higher than actual burned area for ecoregion within the BEE. Projected 
burned areas for other ecoregions are greater than or equal to 5% higher than observed, indicating potential fire deficits. 
‡ = Projected current burned area is greater than or equal to 50% higher than actual burned area for ecoregion with the BEE. 
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Table A.6. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4; ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
* = Projected future burned area significantly different from projected current burned area for ecoregion in projected model 
area by Welch t test with Holm correction for four comparisons (P < 0.05) if preceded by significant Welch ANOVA test (P 
< 0.05). 
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Forested Mountains Level I ecoregion. Also included are three Level III ecoregions of the North 

American Deserts, two ecoregions within the Mediterranean California Level I ecoregion, and 

the Arizona/New Mexico Mountains (36) (Figure II.8A). A high percentage (87%) of the Sierra 

Madre Occidental (48) in Mexico was projected as burned every 16.5 years or less. Very high 

contemporary wildfire deficits for moderate burn severity wildfires were similar to that of low 

burn severity wildfires, with the exception of much reduced deficits projected for parts of west 

Texas and New Mexico, such as in the High Plains and Southwest Tablelands ecoregions (Figure 

A.21; see Tracy et al. [2018b] Appendix A, section 3.3.1 for zipped shapefile). 

High Burn Severity 

Fourteen Level III ecoregions were projected with severe contemporary wildfire deficits 

(Figure II.9A, Table A.7). These include 12 of the 13 Level III ecoregions in the Northwestern 

Forested Mountain Level I ecoregion, the only exception being the Colorado Plateau (33). The 

two other Level III ecoregions include the Southern and Baja California Pine-Oak Mountains (2) 

and Central Basin and Range (14). Outside the background evaluation extent in western Canada, 

four Level III ecoregions have fairly high percentages of their area projected as burned every 

16.5 years or less, including the Thompson-Okanogan Plateau (50; 69%), Pacific and Nass 

Ranges (51; 56%), Chilcotin Ranges and Fraser Plateau (52; 45%), and Skeena-Omineca-Central 

Canadian Rocky Mountains (53; 33%). Outside of the background evaluation extent within 

Mexico, two Level III ecoregions have high percentages of area projected as burned, the Sierra 

Madre Occidental (48; 88%) and Sinoloa and Sonora Hills and Canyons (49; 44%).Very high 

contemporary wildfire deficits for high burn severity wildfires were generally restricted to the 

western portion of the study area in ecoregions similar to that of moderate burn severity deficits, 

with notable exceptions such as much higher deficits projected for the Southern Rockies,  
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Figure A.21. Moderate burn severity contemporary wildfire deficit or surplus representing a combination of historical wildfire 
data (Figure II.2B) and degree of wildfire activity projected by MaxEnt quadratic/hinge (β2) wildfire activity feature subset 
ensemble models for large wildfires with mean fire interval of ≤ 16.5 yrs per 31 yrs (Figure II.8A) (Tracy et al., 2018b).  
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Table A.7. Areas of large high severity fires every 16.5 years or less by ecoregions for actual (1984–2014) and projected 
current and projected future burn areas (mHa) from MaxEnt wildfire activity model in background evaluation extent and 
(BEE) and model projection area (see Figures II.2C and 9) (Tracy et al., 2018b). 

Ecoregion Map No. - 
Ecoregion 

(Area for BEE and Model 
Projection Area) 

(Level I - Level III; CEC 
2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4;  ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
Mediterranean California  

1 - California Coastal Sage, 
Chaparral, and Oak 
Woodlands (2.09, 4.355) 

0.189 
(0.091) 

0.83 (0.397;  
-0.307 ± 0.051) 

1.964 ± 0.211 
(0.451) 

2.408 ± 
0.199 

2.404 ± 
0.248 

2.135 ± 
0.264 

2.169 ± 
0.455 

2 - Southern and Baja 
California Pine-Oak 
Mountains (1.784, 1.992) 

0.217 
(0.122) 

1.665 (0.934;  
-0.812 ± 0.025)‡ 

1.797 ± 0.035  
(0.902) 

1.869 ± 
0.026 

1.878 ± 
0.021 

1.834 ± 
0.031 

1.868 ± 
0.038 

3- Central California 
Valley (4.593, 4.594) 

0.0005 
(0.0001) 

0.092 (0.02;  
-0.02 ± 0.01)†  

0.092 ± 0.051  
(0.02) 

0.186 ± 
0.122 

0.28 ± 
0.246 

0.153 ± 
0.085 

0.392 ± 
0.444 

Marine West Coast Forest      
4 - Coast Range (5.159, 
5.416) 

0.0003 
(0.00005) 

1.136 (0.22;  
-0.22 ± 0.066) 

1.153 ± 0.346 
(0.213) 

1.663 ± 
0.822 

1.911 ± 
1.026 

1.604 ± 
0.818 

2.079 ±  
1.241 

5 - Willamette Valley 
(1.489, 1.489) 

0.0  
(0.0) 

0.071 (0.048;  
-0.048 ± 0.056)† 

0.071 ± 0.084 
(0.048) 

0.128 ± 
0.108 

0.169 ± 
0.115 

0.124 ± 
0.102 

0.183 ± 
0.115 

6 - Strait of Georgia/ 
Puget Lowland (1.583, 
3.552) 

0.0 
(0.0) 

0.004 (0.002;  
-0.002 ± 0.002)† 

0.086 ± 0.093 
(0.024) 

0.268 ± 
0.252 

0.4 ± 
0.325 

0.191 ± 
0.201 

0.542 ± 
0.482 

51 - Pacific and Nass 
Ranges (--, 10.918) -- -- 

6.059 ± 2.071 
(0.555) 

6.58 ± 
2.312 

6.87 ± 
1.989 

6.654 ± 
2.305 

7.194 ± 
2.02 

Northwestern Forested Mountains 
7 - North Cascades 3.041, 
3.68) 

0.124 
(0.04) 

1.993 (0.655;  
-0.615 ± 0.132)‡ 

2.563 ± 0.436 
(0.696) 

2.764 ± 
0.463 

2.937 ± 
0.483 

2.731 ± 
0.428 

2.994 ± 
0.496 
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Table A.7. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4;  ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
8 - Cascades (4.644, 
4.644) 

0.028 
(0.006) 

2.664 (0.574;  
-0.568 ± 0.187)‡ 

2.664 ± 0.869 
(0.574) 

3.174 ± 
1.061 

3.52 ± 
1.131 

3.164 ± 
1.043 

3.546 ± 
1.07 

9 - Klamath Mountains 
(4.852, 4.852) 

0.154 
(0.032) 

4.284 (0.883;  
-0.851 ± 0.029)‡ 

4.284 ± 0.141 
(0.883) 

4.383 ± 
0.121 

4.423 ± 
0.125 

4.392 ± 
0.132 

4.466 ± 
0.074 

10 - Eastern Cascades 
Slopes and Foothills 
(5.619, 5.619) 

0.064 
(0.011) 

3.655 (0.651; 
 -0.639 ± 0.034)‡ 

3.655 ± 0.191 
(0.651) 

3.805 ± 
0.149 

3.881 ± 
0.2 

3.857 ± 
0.155 

3.992 ± 
0.342 

11 - Sierra Nevada (5.276, 
5.276) 

0.151 
(0.029) 

4.805 (0.911;  
-0.882 ± 0.021)‡ 

4.805 ± 0.109  
(0.911) 

4.887 ± 
0.083 

4.935 ± 
0.067 

4.885 ± 
0.081 

4.986 ± 
0.057 

17 - Middle Rockies 
(16.444, 16.444) 

0.382 
(0.023) 

10.973 (0.667; 
 -0.644 ± 0.031)‡ 

10.973 ± 
0.516 

(0.667) 
10.996 ± 

0.367 
10.803 ± 

0.213 
11.065 ± 

0.358 
10.719 ± 

0.69 
18 -Idaho Batholith 
(6.029, 6.029) 

0.419 
(0.069) 

5.837 (0.968;  
-0.899 ± 0.004)‡ 

5.837 ± 0.027 
(0.968) 

5.819 ± 
0.055 

5.788 ± 
0.099 

5.818 ± 
0.05 

5.788 ± 
0.135 

19 - Blue Mountains 
(7.092, 7.092) 

0.058 
(0.008) 

5.57 (0.785;  
-0.777 ± 0.045)‡ 

5.57 ± 0.32 
(0.785) 

5.734 ± 
0.291 

5.685 ± 
0.445 

5.749 ± 
0.298 

5.817 ± 
0.442 

21 - Columbia 
Mountains/North Rockies 
(8.198, 17.932) 

0.033 
(0.004) 

6.041 (0.737;  
-0.733 ± 0.067)‡ 

14.212 ± 
1.967 

(0.793) 
14.547 ± 

1.574 
14.727 ± 

1.475 
14.407 ± 

1.684 
14.797 ± 

1.512 
22 - Canadian Rockies 
(1.888, 10.496) 

0.122 
(0.065) 

1.812 (0.96;  
-0.895 ± 0.008)‡ 

7.246 ± 2.043 
(0.69) 

8.006 ± 
1.073 

8.733 ± 
0.56 

8.18 ± 
0.963 

8.844 ± 
0.569 

32 - Southern Rockies 
(14.571, 14.571) 

0.116 
(0.008) 

8.394 (0.613;  
-0.605 ± 0.094)‡ 

8.934 ± 1.371 
(0.613) 

8.951 ± 
0.884 

8.587 ± 
1.279 

8.982 ± 
0.944 

8.069 ± 
1.579 
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Table A.7. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4;  ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
33 - Colorado Plateaus 
(13.493, 13.493) 

0.04 
(0.003) 

3.688 (0.273;  
-0.27 ± 0.038) 

3.688 ± 0.519 
(0.273) 

3.391 ± 
1.019 

3.641 ± 
1.032 

3.175 ± 
0.928 

3.177 ± 
1.296 

34 - Wasatch and Uinta 
Mountains (4.569, 4.569) 

0.03 
(0.007) 

3.541 (0.775;  
-0.768 ± 0.048)‡ 

3.541 ± 0.218 
(0.775) 

3.558 ± 
0.155 

3.597 ± 
0.176 

3.486 ± 
0.174 

3.478 ± 
0.224 

52 - Chilcotin Ranges and 
Fraser Plateau (--, 10.506) -- -- 

4.761 ± 1.129 
(0.453) 

4.225 ± 
1.358 

3.994 ± 
1.35 

4.34 ± 
1.356 

3.963 ± 
1.293 

53 - Skeena-Omineca-
Central Canadian Rocky 
Mountains (--, 14.006) -- -- 

4.554 ± 3.33 
(0.325) 

5.324 ± 
2.703 

5.827 ± 
2.334 

5.386 ± 
2.593 

6.23 ± 
2.7 

North American Deserts 
12 - Sonoran Desert 
(11.697, 21.759) 

0.002 
(0.0002) 

0.404 (0.035;  
-0.034 ± 0.011)† 

0.68 ± 0.198 
(0.031) 

1.366 ± 
0.335 

1.062 ± 
0.33 

0.665 ± 
0.29 

0.861 ± 
0.745 

13 - Mojave Desert 
(12.960, 12.960) 

0.028 
(0.002) 

1.717 (0.133;  
-0.130 ± 0.011) 

1.717 ± 0.145 
(0.133) 

2.656 ± 
0.123* 

2.747 ± 
0.196* 

1.726 ± 
0.331 

2.777 ± 
0.796 

14 - Central Basin and 
Range (30.998, 30.998) 

0.117 
(0.004) 

9.171 (0.296;  
-0.292 ± 0.018) 

9.171 ± 0.546 
(0.2926) 

10.076 ± 
0.595 

10.662 ± 
1.134 

8.952 ± 
0.453 

10.158 ± 
2.055 

15 - Northern Basin and 
Range (14.218, 14.218) 

0.089 
(0.006) 

6.524 (0.459;  
-0.453 ± 0.05) 

6.524 ± 0.707 
(0.459) 

7.138 ± 
0.813 

7.232 ± 
1.375 

7.36 ± 
0.97 

7.593 ± 
1.836 

16 - Snake River Plain 
(5.364, 5.364) 

0.008 
(0.001) 

0.518 (0.097;  
-0.095 ± 0.014) 

0.518 ± 0.076 
(0.097) 

0.560 ± 
0.124 

0.595 ± 
0.212 

0.558 ± 
0.128 

0.825 ± 
0.61 

20 - Colombia Plateau 
(8.302, 8.381) 

0.013 
(0.002) 

1.161 (0.14;  
-0.138 ± 0.088) 

1.185 ± 0.753 
(0.141) 

1.439 ± 
0.787 

1.481 ± 
0.825 

1.402 ± 
0.784 

1.824 ± 
1.033 

26 - Wyoming Basin 
(13.271, 13.271) 

0.008 
(0.0006) 

1.47 (0.111;  
-0.11 ± 0.039) 

1.47 ± 0.515 
(0.112) 

1.347 ± 
0.160 

1.687 ± 
0.174 

1.449 ± 
0.124 

1.873 ± 
0.482 
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Table A.7. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4;  ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
35 - Arizona/New Mexico 
Plateau (15.010, 15.010) 

0.006 
(0.0004) 

1.009 (0.067;  
-0.067 ± 0.021) 

1.009 ± 0.313 
(0.067) 

1.456 ± 
0.366 

1.368 ± 
0.506 

0.775 ± 
0.643 

1.11 ± 
0.541 

38 - Chihuahuan Desert 
(16.215, 50.943) 

0.007 
(0.0004) 

0.0 (0.0;  
0.0 ± 0.0)† 

0.0 ± 0.0 
(0.0) 

0.0 ±  
0.0 

0.0 ±  
0.0 

0.0 ±  
0.0 

0.0 ±  
0.0 

50 - Thompson-Okanogan 
Plateau (--, 5.264) -- -- 

3.622 ± 0.705 
(0.688) 

3.634 ± 
0.961 

3.552 ± 
1.099 

3.562 ± 
0.947 

3.667 ± 
1.114 

Great Plains       
23 -Northwestern 
Glaciated Plains (17.496, 
40.561) 

0.0006 
(0.00003) 

0.098 (0.006;  
-0.006 ± 0.003)† 

0.116 ± 0.067 
(0.003) 

0.123 ± 
0.076 

0.101 ± 
0.057 

0.129 ± 
0.083 

0.119 ± 
0.069 

24 - Aspen 
Parkland/Northern 
Glaciated Plains (8.093, 
30.764) 

0.0 
(0.0) 

0.0 (0.0;  
0.0 ± 0.0)† 

0.012 ± 0.002 
(0.0004) 

0.013 ± 
0.004 

0.013 ± 
0.003 

0.014 ± 
0.003 

0.011 ± 
0.008 

25 - Northwest Great 
Plains (35.758, 35.758) 

0.029 
(0.0008) 

0.723 (0.020;  
-0.019 ± 0.009)† 

0.723 ± 0.332 
(0.02) 

0.638 ± 
0.144 

0.627 ± 
0.146 

0.649 ± 
0.161 

0.840 ± 
0.370 

27 - Nebraska Sandhills 
(5.912, 5.912) 

0.0 
(0.0) 

0.0 (0.0;  
-0.0 ± 0.0)† 

0.0 ± 0.0 
(0.0) 

0.0 ±  
0.0 

0.0001 ± 
0.0001 

0.0 ±  
0.0 

0.0004 ± 
0.0005 

28 - Western Corn Belt 
Plains (4.853, 13.889) 

0.0 
(0.0) 

0.002 (0.0004;  
-0.0004 ± 
0.0007)† 

0.003 ± 0.004 
(0.0002) 

0.003 ± 
0.004 

0.003 ± 
0.004 

0.003 ± 
0.004 

0.006 ± 
0.005 

29 - Flint Hills (2.793, 
2.793) 

0.0 
(0.0) 

0.0002 (0.0001;  
-0.0001 ± 
0.0001)† 

0.0002 ± 
0.0004 

(0.0001) 
0.0002 ± 
0.0005 

0.0001 ± 
0.0005 0.0 ± 0.0 0.0 ± 0.0 
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Table A.7. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4;  ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 

30 - Central Great Plains 
(27.493, 27.493) 

0.0 
(0.0) 

0.008 (0.0003;  
-0.0001 ± 
0.001)† 

0.008 ± 0.015 
(0.0003) 

0.002 ± 
0.003 

0.009 ± 
0.014 

0.003 ± 
0.005 

0.0004 ± 
0.0006 

31 - High Plains (28.831, 
28.831) 

0.002 
(0.00008) 

0.027 (0.001;  
-0.001 ± 0.001)† 

0.027 ± 0.031 
(0.001) 

0.028 ± 
0.029 

0.047 ± 
0.044 

0.035 ± 
0.036 

0.057 ± 
0.055 

39 - Southwest Tablelands 
(19.886, 19.886) 

0.005 
(0.0002) 

0.145 (0.007;  
-0.007 ± 0.004)† 

0.145 ± 0.073 
(0.007) 

0.075 ± 
0.019 

0.042 ± 
0.026 

0.109 ± 
0.044 

0.031 ± 
0.036 

40 - Edwards Plateau 
(7.497, 7.497) 

0.001 
(0.0001) 

0.043 (0.006;  
-0.006 ± 0.008)† 

0.043 ± 0.057 
(0.006) 

0.002 ± 
0.002 

0.001 ± 
0.001 

0.007 ± 
0.009 

0.015 ± 
0.021 

41 - Cross Timbers (8.821, 
8.821) 

0.004 
(0.0004) 

0.012 (0.001;  
-0.001 ± 0.003)† 

0.012 ± 0.023 
(0.001) 

0.008 ± 
0.009 

0.086 ± 
0.109 

0.003 ± 
0.003 

0.141 ± 
0.254 

42 - Texas Blackland 
Prairies (4.338, 4.338) 

0.0 
(0.0) 

0.0 (0.0;  
0.0 ± 0.0)† 

0.0 ± 0.0 
(0.0001) 

0.007 ± 
0.014 

0.12 ± 
0.218 

0.0 ±  
0.0 

0.125  
± 0.212 

45 - Western Gulf Coastal 
Plain (5.760, 7.833) 

0.002 
(0.0003) 

0.004 (0.0007;  
-0.0004 ± 
0.001)† 

0.005 ± 0.009 
(0.0006) 

0.011 ± 
0.012 

0.088 ± 
0.121 

0.019 ± 
0.031 

0.013 ±  
0.226 

46 - South Texas Plains 
(5.347, 14.227) 

0.0  
(0.0) 

0.0 (0.0;  
0.0 ± 0.0)† 

0.357 ± 0.162 
(0.025) 

0.345 ± 
0.177 

0.146 ± 
0.106 

0.306 ± 
0.165 

0.281 ± 
0.188 

Temperate Sierras       
36 - Arizona/New Mexico 
Mountains (10.878, 
10.878) 

0.186 
(0.017) 

 
5.663 (0.521;  

-0.503 ± 0.071)‡ 
5.663 ± 0.777 

(0.521) 
5.597 ± 
1.111 

4.855 ± 
1.562 

4.838 ± 
1.55 

3.503 ± 
2.305 

48 - Sierra Madre 
Occidental (--, 15.449) -- -- 

13.578 ± 1.69 
(0.879) 

12.623 ± 
2.656 

12.134 ± 
3.387 

12.509 ± 
2.853 

11.09 ± 
4.3 
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Table A.7. Continued. 
Ecoregion Map No. - 

Ecoregion 
(Area for BEE and Model 

Projection Area) 
(Level I - Level III; CEC 

2005) 

 Actual 
Current 
Area of 
Burn in 
BEE (% 
Ecoreg.)a 

Model Projected Current Area of 
Burn (n = 4; or ± SD) 

Model Projected Future Area of Burn  
(n = 4;  ± SD) BEE (% 

Ecoregion; % 
Actual minus % 

Projected) 

Model 
Projection 
Area (% 

Ecoregion) 
2050 2070 

RCP2.6 RCP8.5 RCP2.6 RCP8.5 
Southern Semiarid Highlands  

37 - Madrean Archipelago 
(4.3, 7.48) 

0.024 
(0.006) 

1.061 (0.247;  
-0.241 ± 0.099) 

2.457 ± 1.253 
(0.328) 

2.107 ± 
1.512 

1.581 ± 
1.315 

1.813 ± 
1.39 

1.157 ± 
1.052 

47 - Piedmonts and Plains 
(--, 13.003) -- -- 

3.021 ± 3.711 
(0.232) 

2.366 ± 
2.959 

2.15 ± 
2.569 

2.301 ± 
2.894 

1.981 ± 
2.34 

Eastern Temperate Forest 
43 - East Central Texas 
Plains (5.575, 5.575) 

0.001 
(0.0002) 

0.001 (0.0002;  
0.0001 ± 0.0004) 

0.001 ± 0.002 
(0.0002) 

0.052 ± 
0.065 

0.172 ± 
0.22 

0.006 ± 
0.007 

0.278 ±  
0.325 

44 - South Central Plains 
(7.046, 10.199) 

0.012 
(0.002) 

0.507 (0.072;  
-0.071 ± 0.074) 

1.108 ± 0.896 
(0.109) 

2.058 ± 
1.922 

3.121 ± 
3.559 

1.145 ± 
1.54 

3.448 ±  
3.98 

Tropical Dry Forests 
49 - Sinoloa and Sonora 
Hills and Canyons (--, 
8.026) -- -- 

3.541 ± 2.638 
(0.441) 

3.111 ± 
2.85 

2.874 ± 
2.77 

2.909 ± 
2.678 

2.469 ± 
2.513 

aBased on aggregation of 30 m 1984–2014 Monitoring Trends in Burn Severity (MTBS)/LANDFIRE rasters to one km 
rasters. 
† = Projected current burned area less than 5% higher than actual burned area for ecoregion within the BEE. Projected 
burned areas for other ecoregions are greater than or equal to 5% higher than observed, indicating potential fire deficits. 
‡ = Projected current burned area is greater than or equal to 50% higher than actual burned area for ecoregion with the BEE. 
* = Projected future burned area significantly different from projected current burned area for ecoregion in projected model 
area by Welch t test with Holm correction for four comparisons (P < 0.05) if preceded by significant Welch ANOVA test (P 
< 0.05). 
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 Figure A.22. High burn severity contemporary wildfire deficit or surplus representing a combination of historical wildfire data 
(Figure II.2C) and degree of wildfire activity projected by MaxEnt quadratic/hinge (β2) wildfire activity feature subset 
ensemble models for large wildfires with mean fire interval of ≤ 16.5 yrs per 31 yrs (Figure II.9A) (Tracy et al., 2018b).  
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Northern Basin and Range, and Blue Mountains ecoregions (Figure A.22; see Tracy et al. 

[2018b] Appendix A, section 3.3.1 for zipped shapefile). 

Future Climate Model Projections  

Low Burn Severity 

The wildfire activity models for 2050 and 2070 project a significant decrease in area of 

low burn severity wildfires in three to four Level III ecoregions, respectively. These ecoregions 

are generally south of 40ºN, which is around the southern border of the Wyoming Basin (26) 

(Figure II.7B–E, Table A.5). A significant increase in future burned area is projected for the 

northern half of western North America in nine to 13 Level III ecoregions for 2050 and 2070, 

respectively. Outside of the background evaluation extent, the Thompson-Okanogan Plateau (50) 

of western Canada is projected to have a significantly greater burned area in the 2070 RCP8.5 

scenario. The important variable of mean temperature of the driest quarter (bio_9) is consistently 

higher across all latitudes for 2070 RCP 8.5 compared to current climate. Precipitation in the 

summer quarter (prec_sumq) is generally lower for 2070 RCP 8.5 than current climate in higher 

latitudes above 40ºN, but higher in lower latitudes below 27ºN. However, precipitation in the 

spring quarter (prec_sprq) is generally lower for 2070 RCP 8.5 than current climate in lower 

latitudes below 42ºN and higher in the higher latitudes above 47ºN (Figure A.23A-C). 

Moderate Burn Severity 

Three to five northern Level III ecoregions are projected to have significant decreases in 

burned areas for the 2050 and 2070 RCP2.6 scenarios, respectively (Figure II.8B–D; Table A.6). 

In addition, seven to nine Level III ecoregions are projected to have significantly reduced burned 

areas in in the 2050 and 2070 RCP8.5 scenarios, respectively. None of the seven Level III 
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Figure A.23. Linear regressions (with R2 values) of background point values for top climatic indices for various climate scenarios 
by permutation importance versus latitude across western North America projection area for top ranking MaxEnt quadratic/hinge 
(β2) wildfire niche models of (A–C) low burn severity; (D–G) moderate burn severity; and (H–I) high burn severity (climate* = 
significant difference in climate responses for variable; climate x variable* = significant difference in slopes of variable response 
to climate; P < 0.05 ANOVA) (arrows indicate direction of peak values for wildfire suitability from variable response curves in 
Figures A.14-17; see Table II.1 for variable abbreviations and Table A.4 for permutation importance) (Tracy et al., 2018b). 
 

C A B 

D E F 

G H 

climate x climate x climate x 

climateclimate x climate x 

I 

climate x climate x climate* 



 

227 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.24. Value of AICc (A) or AICcbg (B) versus number of derived variables 
(parameters) artificially specified for a MaxEnt quadratic/hinge (β2) wildfire 
activity model of low burn severity developed from 15 of 90 selected by AUC 
using RSFSA. (C) AICc versus AICcbg for various numbers of parameters 
specified for same model (Tracy et al., 2018b).  

A 
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Figure A.25. MaxEnt quadratic/hinge (β2) low burn severity wildfire activity 
model characteristics for (A) the number of MaxEnt derived variables (mean ± 
SD), (B) the ratio of MaxEnt derived variables to environmental variables, and 
(C) AICcbg_final (mean ± SD; from Figure 5D). Models developed from top ten 
variable subsets selected by AUC or AICc using RSFSA and ten random subsets 
out of 250 randomly generated variable subsets of various sizes derived from 90 
variables (Tracy et al., 2018b). 

A 

C 

B 

Low Burn Severity MaxEnt Models 
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ecoregions outside of the background evaluation extent were projected to have significant 

differences in burned area for large moderate burn severity wildfires. The important variable of 

annual total potential evapotranspiration (tpeth_ann) is generally higher across all latitudes for 

2070 for both RCP values compared to current climate. However, actual evapotranspiration for 

the spring quarter (aett_sprq) for 2070 is only higher than current climate at latitudes above 

around 35ºN for both RCP values (Figure A.23D-G). 

High Burn Severity 

Only a single ecoregion, the Mojave Desert (13), was projected to significantly change in 

the area of high burn severity wildfires in a future climate scenario wildfire activity model. The 

burned area for the Mojave Desert was projected to increase in both of the 2050 scenarios for 

RCP2.6 and RCP8.5 (Figure II.9B–D; Table A.7). For example, the Panamint Mountains (sky 

island habitat) of Death Valley were projected to have high burn severity wildfires in both the 

current and future climate scenario wildfire models, but some future scenario models include 

additional burned areas southeast of the Panamint Mountains, such as the lower elevations of 

Galena Canyon and Warm Springs Canyon. There is little difference between important 

variables of mean temperature of the wettest quarter (bio_8) and actual evapotranspiration in the 

winter quarter (aett_winq) between 2050 RCP8.5 and current climate across all latitudes (Figure 

A.23H-I).  

Discussion 

Projections for Wildfire Activity Models  

Future Climate 

More northern ecoregions were projected with larger areas of moderate burn severity 

wildfires in future RCP8.5 compared to RCP2.6 scenarios. This difference may be related to 
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greater changes for RCP8.5 in two important variables: (1) higher AET in the spring quarter 

(aett_sprq) in the north, but not the south, and (2) higher total annual evapotranspiration 

(tpeth_ann) (Tables A.3-4, Figure A.23D–G). Higher spring AET may be related to increased 

primary productivity, and higher total annual evapotranspiration may be related to increased 

annual vegetation water stress, both of which may favor moderate severity wildfires in northern 

ecoregions. Future projections for decreased areas of moderate burn severity wildfires in 

southern ecoregions, may be associated with reduced AET in the spring quarter (aett_sprq) for 

the south leading to potentially lower primary productivity, which is again stronger for RCP8.5 

than RCP2.6 (Figure A.21E,G).   

The general lack in projected changes in burned areas for high burn severity wildfires 

may be related to the relatively small future departures from current values for the identified 

important variables, such as mean temperature of the wettest quarter (bio_8) and actual 

evapotranspiration in the winter quarter (aett_winq) (Tables A.3-4, Figure A.23H-I).  
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APPENDIX B                                                                                                                        

(CHAPTER II)* 

Parameters for Selected 15-Variable MaxEnt Wildfire Activity Models 

For each of the four top MaxEnt quadratic/hinge β2 models of each burn severity selected 

by the random feature subset selection algorithm, lists of the 15 environmental variables and 

embedded pdf files of the MaxEnt lambda files detailing the derived features and model 

parameters are provided (Tables B.1-3). The lambda text files are provided as output by MaxEnt 

version 3.3.3 software as a text file, such as “species.lambdas”. Four types of features are listed 

in each MaxEnt wildfire activity model lambda file (based on MaxEnt settings restricted to hinge 

and quadratic features): (1) raw or linear features  are indicated with no prefix or suffix around 

the variable name (linear features have coefficient of zero since not used in models when hinge 

features are used); (2) quadratic (2nd power) features are indicated with a suffix of “^2” after the 

variable name; (3) forward hinge features are signified by a prefix of “ ' ”  before the variable 

name; and (4) reverse hinge features are identified with a prefix of “ ` “ before the variable name. 

There can be several derived forward and reverse hinge features for a single environmental 

variable. See Wilson (2009) for further explanation of the numeric parameters of feature types 

and other details of MaxEnt version 3.3.3 lambdas files. Elith et al. (2011) and Halvorson (2013) 

provide further explanation of model parameters of derived feature types. Halvorsen (2013) 

emphasized the importance of detailed information on MaxEnt model parameters and noted that 

it is very rarely provided in publications. (See main References section for References).  

          

 
* Modified with permission from Appendix B of Tracy JL, Trabucco A, Lawing AM, Giermakowski T, Tchakerian 
M, Drus GM, Coulson RN (2018) Random subset feature selection of ecological niche models for wildfire activity 
in western North America. Ecological Modelling 383:52-68. Copyright 2018 Ecological Modelling 
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Table B.1.  Low burn severity MaxEnt quadratic/hinge β2 wildfire activity model 

environmental variables and associated derived features (Tracy et al., 2018b). 
Model Number (No. Derived Features)  

with 15 Environmental Variables and Lambdas Text File of Derived Featuresa 

Model 1 (103) Model 2 (101) Model 4 (94) Model 17 (96) 

agric_lc agric_lc agric_lc aett_autq 

bio_19 bio_9 bio_2 agric_lc 

bio_3 cont_index bio_8 bio_14 

cont_dfmo diss3kr bio_9 bio_9 

elev elev cti cont_index 

etrt_ann ew_indx diss3kr err3kr 

ew_indx medrurdist elev etrt_sprq 

hirurdist prec_sumq lorurdist lorurdist 

imi prec_winq medurbdist peth_autq 

mnpopden3r roadden9kr prec_sumq prec_sprq 

prec_sumq slope roadden19kr roadden9kr 

scai sprurdist roadden13kr scai 

slope strmloflodist taett_tann slope 

tpi19kr taett_tann tmax_autq sprurdist 

urban_lc tpeth_m_taett tpi19kr strmhiflodist 

LoBrn15VarModel1_l

ambdas.pdf

LoBrn15VarModel2_l

ambdas.pdf

LoBrn15VarModel4_l

ambdas.pdf

LoBrn15VarModel17_

lambdas.pdf

aFor abbreviations, see Table II.1. 
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Table B.2. Moderate burn severity MaxEnt quadratic/hinge β2 wildfire activity 

model environmental variables and associated derived features (Tracy et al., 2018b). 
Model Number (No. Derived Features)  

with 15 Environmental Variables and Lambdas Text File of Derived Featuresa 

Model 6 (89) Model 10 (90) Model 16 (85) Model 20 (81) 

aett_autq aett_sprq aett_sprq agric_lc 

agric_lc aett_winq agric_lc bio_1 

bio_17 agric_lc bio_2 bio_7 

bio_7 bio_1 bio_3 bio_9 

bio_8 bio_17 cont_dfmo cont_dfmo 

elev bio_9 lourbdist etrt_sprq 

hiurbdist diss3kr prec_sumq medrurdist 

lourbdist hli roadden3kr medurbdist 

mnpopden3r lorurdist sei mnpopden9r 

prec_sumq popden slope roaddist 

slope prec_sumq sprurdist sei (not used) 

strmhiflodist roadden3kr strmhiflodist slope 

strmmdflodist sei strmmdflodist strmmdflodist 

tpeth_ann slope tpeth_ann tpi3kr 

tpi19kr strmdist tpi9kr tpi9kr 

ModBrn15VarModel6

_lambdas.pdf

ModBrn15VarModel1

0_lambdas.pdf

ModBrn15VarModel1

6_lambdas.pdf

ModBrn15VarModel2

0_lambdas.pdf

aFor abbreviations, see Table II.1. 



237

Table B.3. High burn severity MaxEnt quadratic/hinge β2 wildfire activity model 

environmental variables and associated derived features (Tracy et al., 2018b). 
Model Number (No. Derived Features)  

with 15 Environmental Variables and Lambdas Text File of Derived Featuresa 

Model 2 (95) Model 5 (103) Model 18 (89) Model 21 (89) 

agric_lc aett_winq aett_sprq aett_sprq 

bio_15 agric_lc agric_lc agric_lc 

bio_2 bio_4 bio_14 bio_15 

bio_8 bio_8 bio_15 bio_3 

bio_9 elev bio_7 diss3kr 

cont_index etrt_sprq bio_8 elev 

elev lorurdist imi etrt_sumq 

hli peth_sumq (not used) mnpopden3r hli 

peth_autq roadden3kr peth_winq lorurdist 

popden (not used) slope peth_sumq prec_winq 

prec_autq sprurdist roadden19kr roadden9kr 

prec_sumq strmhiflodist sei scai 

roadden9kr strmmdflodist slope slope 

slope tmin_autq strmmdflodist strmhiflodist 

strmhiflodist tpi3kr urban_lc tpeths_tpetha 

HiBrn15VarModel2_la

mbdas.pdf

HiBrn15VarModel5_la

mbdas.pdf

HiBrn15VarModel18_l

ambdas.pdf

HiBrn15VarModel21_l

ambdas.pdf

aFor abbreviations, see Table II.1. 



APPENDIX C 

(CHAPTER III) 

Methods 

MaxEnt Migration Pathways 

The random subset feature selection algorithm (RSFSA; Tracy et al. 2018b) was utilized 

to identify six out of 80 variable subsets as optimal for maximizing accuracy (AUCpsa), 

minimizing complexity (AICc), and minimizing overfitting (AUCpsa_diff) in MaxEnt migration 

models (Figure C.1A-C). The top 250 of 3,000 six-variable MaxEnt models selected by AUCpsa 

exhibited significantly higher AUCpsa and lower AICc than 300 random MaxEnt models for all 

three training data set replications (Figure C.1 D,E). Significantly lower overfitting (AUCpsa_diff) 

was only evident for AUCpsa selected MaxEnt models in one replication (Figure C.1F). Out of 

9,000 randomly generated six-variable MaxEnt models the top 12 as ranked by AUCpsa were 

selected for inclusion in a feature subset ensemble model (Figure III.2A). Joint ranking of 

environmental variables employed in the top 12 selected models using weighted criteria (0.6 for 

mean variable permutation importance; 0.4 for frequency of variable appearance in top 12 

models) was performed with a Multi Multi-Objective Optimization Ratio Algorithm (plus Full 

Multiplicative Form, MMOORA) of Brauers and Zavadskas (2010), which is implemented in 

the MCDM R package (Ceballos Martín, 2016). 

Kernel Density Estimation Model Migration Pathways 

To calculate the monarch roost human population density index, the raw roost data was 

first converted to a 10 km resolution raster with values of one for roost presence and “no data”. 

This process produced one roost record per 10 km grid cell. The 5 km resolution human 

238 



239 

Table C.1. Eastern monarch fall overnight roost records from 2002-2016 (Journey North 
2017). 

Year Observations 
Earliest Day of 

Year 
Latest Day of 

Year Duration (Days) 
2002 25 239 309 70 
2003 103 215 321 106 
2004 70 214 314 100 
2005 189 227 305 78 
2006 173 223 360 137 
2007 269 217 360 143 
2008 136 222 312 90 
2009 160 228 311 83 
2010 336 223 315 92 
2011 185 314 314 91 
2012 138 312 312 76 
2013 109 242 317 75 
2014 245 236 340 104 
2015 422 227 339 115 
2016 243 234 335 121 
Total 2803 

Mean ± SD per 
Year 186.9 ± 103.4 238.2 ± 31.5 324.3 ± 18.1 98.7 ± 22.4 
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Table C.2. Eighty environmental predictor indices (10 km resolution) used in developing 12 
selected MaxEnt monarch overnight roost niche models with six of 80 variables. 

Variable Index (Source) 
Grid Name 

Abbreviation 

Variable Frequency in 
12 Selected Models  

(% of 72)a 
57 Climatic Indices (for 1960–1990 derived from WorldClim [2014] of Hijmans et al. [2005]) 
19 Bioclim Indices (WorldClim 2014) 
Annual mean temperature bio_1 0 (0.0) 
Mean diurnal range (mean of monthly TMAX – 
TMIN) bio_2 0 (0.0) 
Isothermality (bio_2/bio_7) (× 100) bio_3 0 (0.0) 
Temperature seasonality (standard deviation × 100) bio_4 0 (0.0) 
Maximum temperature of warmest month bio_5 0 (0.0) 
Minimum temperature of coldest month bio_6 0 (0.0) 
Temperature annual range (bio_5 – bio_6) bio_7 0 (0.0) 
Mean temperature of wettest quarter bio_8 0 (0.0) 
Mean temperature of driest quarter bio_9 0 (0.0) 
Mean temperature of warmest quarter bio_10 2 (2.8) 
Mean temperature of coldest quarter bio_11 0 (0.0) 
Annual precipitation bio_12 0 (0.0) 
Precipitation of wettest month bio_13 0 (0.0) 
Precipitation of driest month bio_14 0 (0.0) 
Precipitation seasonality (coefficient of variation) bio_15 6 (8.3) 
Precipitation of wettest quarter bio_16 1 (1.4) 
Precipitation of driest quarter bio_17 1 (1.4) 
Precipitation of warmest quarter bio_18 0 (0.0) 
Precipitation of coldest quarter bio_19 1 (1.4) 
Subtotal 11 (15.3) 
19 Supplementary Climatic (SuppClim) Indicesb,c 
Annual mean minimum temp. of coldest month 
(TMIN) tmin_ann 0 (0.0) 

Quarterly mean monthly minimum temperature (4) 

tmin_winq, 
tmin_sprq, 
tmin_sumq, 
tmin_autq 

0 (0.0) 
4 (5.6) 
0 (0.0) 
2 (2.8) 

Annual mean maximum temp. of warmest month 
(TMAX) tmax_ann 0 (0.0) 
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Table C.2. Continued. 

Variable Index (Source) 
Grid Name 

Abbreviation 

Variable Frequency in 
12 Selected Models  

(% of 72)a 

Annual mean monthly rainfall (P) (mm) prec_ann 0 (0.0) 

Quarterly mean monthly rainfall (50%) (4) 

prec_winq, 
prec_sprq, 
prec_sumq, 
prec_autq 

0 (0.0) 
4 (5.6) 
1 (1.4) 
0 (0.0) 

Effective Warmth Index (from mean monthly 
temperatures × 10 above 5ºC) ew_indx 1 (1.4) 
Rivas-Martinez (RM) ombrothermic index (from 
monthly MTMP and P) ombro_index 1 (1.4) 
RM continentality index (TMAX – TMIN) × 10 
(CONT) cont_index 0 (0.0) 
RM thermicity index (MTMP + TMX_COLD + 
TMN_COLD) × 10 therm_index 0 (0.0) 
Subtotal 15 (20.8) 
19 Actual and Potential Evapotranspiration (AET-PET) Indices (PET; Zomer et al. 2007; 
2008; AET; Trabucco and Zomer 2010)c 

Total annual reference evapotranspiration from 
Hargreaves model (PETH) (mm) tpeth_ann 0 (0.0) 

Quarterly mean monthly PETH (4) 

peth_winq, 
peth_sprq, 
peth_sumq, 
peth_autq 

0 (0.0) 
1 (1.4) 
1 (1.4) 
0 (0.0) 

Thornwaite summer concentration thermal 
efficiency (summer PETH/annual PETH) × 1000 tpeths_tpetha 0 (0.0) 
Willmott and Feddema climate moisture index (from 
total annual PETH and PREC) × 1000 im_index 0 (0.0) 
Total annual actual evapotranspiration from 
Thornwaite-Mather water balance model 
(TMWBM) (AETT) (mm) taett_tann 4 (5.6) 

Quarterly mean monthly AETT (4) 

aett_winq, 
aett_sprq, 
aett_sumq, 
aett_autq 

1 (1.4) 
2 (2.8) 
0 (0.0) 
4 (5.6) 

Total annual evapotranspiration ratio (AETT/PETH) 
× 10 etrt_ann 1 (1.4) 
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Table C.2. Continued. 

Variable Index (Source) 
Grid Name 

Abbreviation 

Variable Frequency in 
12 Selected Models  

(% of 72)a 

Quarterly mean monthly AETT/PETH (4) × 1000 

etrt_winq, 
etrt_sprq, 
etrt_sumq, 
etrt_autq 

0 (0.0) 
1 (1.4) 
0 (0.0) 
0 (0.0) 

Modified Driscoll-Yee Fong Continentality indexd cont_dfmo 4 (5.6) 
Climate water deficit (tpeth_ann – taett_tann) cwd_ann 2 (2.8) 
Subtotal 21 (29.2) 
12 Topographic Indices 
Eight Geomorphologic Indices (derived from 15 arc second resolution HydroSHEDs grids of 
Lehner et al. 2008; last six indices calculated using Geomorphometry and Gradient Metrics 
Toolbox for ArcGIS [Evans et al. 2014])c 
Elevation elev 0 (0.0) 
Slope slope 1 (1.4) 
Topographic Position Index (TPI), 19 km circular 
radius tpi19kr 1 (1.4) 
Compound Topographic Index (CTI) cti 1 (1.4) 
Heat Load Index (HLI) hli 0 (0.0) 
Integrated Moisture Index (IMI) imi 3 (4.2) 
Site Exposure Index (SEI) sei 1 (1.4) 
Slope Cosine Aspect Index (SCAI) scai 1 (1.4) 
Four Hydrogeomorphologic Indices (derived from 15 arc second resolution HydroSHEDs 
polyline river network shapefile of Lehner et al. 2008) 

Distance to Streams (STRMDIST) strmdist 0 (0.0) 
Distance to Low Flow Accumulation Areas (< 5,000 
cells; STRMLOFLODIST) strmloflodist 3 (4.2) 
Distance to Medium Flow Accumulation Areas 
(5,000–60,000 cells; STRMMDFLODIST) strmmdflodist 1 (1.4) 
Distance to High Flow Accumulation Areas 
(>60,000 cells; STRMHIFLODIST) strmhiflodist 3 (4.2) 
Subtotal 15 (20.8) 
11 Land Cover Indices (percent cover per 1 km2 for 2001 to 2005 from Tuanmu and Jetz 
[2014] and EarthEnv [2016]) 

Cultivated and Managed Vegetation agric_lc 1 (1.4) 
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Table C.2. Continued. 

Variable Index (Source) 
Grid Name 

Abbreviation 

Variable Frequency in 
12 Selected Models  

(% of 72)a 

Barren barren_lc 1 (1.4) 
Deciduous Broadleaf Trees decbrdtree_lc 1 (1.4) 
Evergreen Broadleaf Trees evgbrdtree_lc 1 (1.4) 
Regularly Flooded Vegetation floodveg_lc 1 (1.4) 
Herbaceous Vegetation herb_lc 1 (1.4) 
Mixed/Other Trees mixothtree_lc 1 (1.4) 
Evergreen/Deciduous Needleleaf Trees needletree_lc 1 (1.4) 
Shrubs shrub_lc 0 (0.0) 
Urban/Built-up urban_lc 1 (1.4) 
Open Water water_lc 1 (1.4) 
Subtotal 10 (13.9) 
aFrequency out of six variables times 12 models = 72 instances. 
bQuarters: winter – Jan, Feb, Mar; spring – Apr, May, Jun; summer – Jul, Aug, Sep; autumn – 
Oct, Nov, Dec. PREC = precipitation; TMAX = mean temperature of warmest month; TMIN = 
mean temperature of coldest month; TMAX_COLD = mean maximum temperature of coldest 
month; TMN_COLD = mean minimum temperature of coldest month. 
cFor additional sources of indices and details see Tracy et al. (2018). 
dIncorporates moisture correction factor of AET/PET × 10.  
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Table C.3. MaxEnt model variable permutation importance for 42 of 80 variables used in top 
12 six-variable monarch overnight roost models selected by random subset feature selection 
algorithm. 

Variablea 

MaxEnt Model Permutation 
Importance,  

Mean ± SD (number of top 12 models) 

Multi Multi-Objective 
Optimization Ranking by Mean 

Permutation Importance (0.6 
weight) and Number Appearances 

in Top 12 Models (0.4 weight)b 
tmin_sprq 54.8 ± 4.2 (4) 1 
aett_autq 36.3 ± 3.2 (4) 2 
taett_tann 25.3 ± 1.3 (4) 3 
prec_sprq 16.0 ± 1.5 (4) 4 
tmin_autq 47.6 ± 9.1 (2) 5 
bio_15 9.5 ± 7.2 (6) 6 
bio_10 36.9 ± 6.2 (2) 7 
cont_dfmo 10.0 ± 8.5 (4) 8 
aett_sprq 25.0 ± 4 (2) 9 
cwd_ann 14.8 ± 3.8 (2) 10 
ew_indx 54.0 ± 0 (1) 11 
aett_winq 35.8 ± 0 (1) 12 
ombro_index 31.7 ± 0 (1) 13 
tmax_sumq 31.0 ± 0 (1) 14 
etrt_ann 24.6 ± 0 (1) 15 
etrt_sprq 23.4 ± 0 (1) 16 
strmhiflodist 0.2 ± 0.1 (3) 17 
strmloflodist 0.2 ± 0.1 (3) 18 
imi 0.1 ± 0 (3) 19 
bio_19 19.0 ± 0 (1) 20 
bio_17 17.8 ± 0 (1) 21 
peth_sprq 15.6 ± 0 (1) 22 
tmax_sprq 14.3 ± 0 (1) 23 
bio_16 12.3 ± 0 (1) 24 
peth_sumq 12.1 ± 0 (1) 25 
prec_sumq 11.4 ± 0 (1) 26 
decbrdtree_lc 11.3 ± 0 (1) 27 
mixothtree_lc 4.3 ± 0 (1) 28 
needletree_lc 1.4 ± 0 (1) 29 
urban_lc 1.2 ± 0 (1) 30 
slope 1.1 ± 0 (1) 31 
agric_lc 0.7 ± 0 (1) 32 
scai 0.3 ± 0 (1) 33 
cti 0.1 ± 0 (1) 34 
evgbrdtree_lc 0.1 ± 0 (1) 35 
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Table C.3. Continued. 

Variablea 

MaxEnt Model Permutation 
Importance,  

Mean ± SD (number of top 12 models) 

Multi Multi-Objective 
Optimization Ranking by Mean 

Permutation Importance (0.6 
weight) and Number Appearances 

in Top 12 Models (0.4 weight)b 
barren_lc 0.1 ± 0 (1) 36 
herb_lc 0.1 ± 0 (1) 37 
water_lc 0.0 ± 0 (1) 38 
sei 0.0 ± 0 (1) 39 
strmmdflodist 0.0 ± 0 (1) 40 
floodveg_lc 0.0 ± 0 (1) 41 
tpi19kr 0.0 ± 0 (1) 42 
aSee Table C.2 for variable abbreviations and sources of variables. 
bVariables ranked using weighted joint criteria with MCDM R package. 
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Table C.4. Shapefiles of geographic information system (GIS) layers developed in eastern monarch butterfly fall migration study 
(see Chapter III, Methods for additional details and sources). 
GIS Layers (Source) Shapefilea

Monarch Flyways (This Study) 
Monarch Eastern Flyway (Fig. 6) MonarchEasternFlywayShapefile.zip 
Monarch Central Flyway (Fig. 6) MonarchCentralFlywayShapefile.zip 

MaxEnt and Kernel Density Estimation Model (KDEM) Migration Pathways from Monarch Roosts (Journey North 2017, This 
Study) 
Monarch Roost 2002-2016 MaxEnt Feature Subset 
Ensemble 100% Consensus Boundary (Fig. 2A) MonarchRoost2002_2016CombinedMaxEntConsensusShapefile.zip 
Monarch Roost 2002-2016 KDEM Training Set Ensemble 
100% Consensus Boundary (Figs. 2B, 3B) MonarchRoost2002_2016CombinedKDEMConsensusShapefile.zip 
Monarch Roost 2002-2016 KDEM Training Set Ensemble 
Binary Minimum Consensus Boundary (Figs. 5A,6) 

MonarchRoost2002_2016CombinedBinaryMinimumConsensusShap
efile.zip 

Monarch Roost 2005-2016 KDEM Annual Ensemble 
100% Consensus Boundary (Figs. 3C, 7B)  MonarchRoost2005_2016AnnualKDEMConsensusShapefile.zip 

Monarch Southern Core Migration Pathways (This Study) 
Monarch Central Funnel (Figs. 3C, 7) MonarchCentralFunnelShapefile.zip 
Monarch Coastal Funnel (Figs. 3C, 7) MonarchCoastalFunnelShapefile.zip 

Spatially Identified Potential Migratory Hazards (This Study) 
Monarch Roadkill Hotspots (Fig. 7A) MonarcRoadkillHotspotsShapefile.zip 
High Cultivated Land Cover (Areas with ≥ 90% 
Anthropogenic Cultivated or Urban Land Cover per 1 km, 
with at Least 70% Cultivated Land Cover (Fig. 7B) HighCultivatedLandCoverShapefile.zip 
2014 Neonicotinoid Use in US Counties (imidacloprid, 
clothianidin, and thiamethoxam) (Fig. 7B) NeonicotinoidUse2014USCountiesShapefile.zipi 
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Table C.4. Continued. 
GIS Layers (Source) Shapefilea

Texas and Louisiana Counties with Mosquito Control 
Districts (Fig. 7C) MosquitoControlDistrictsinTX_LACountiesShapefile.zip 
Southeastern US Counties with Ultra-Low Volume (ULV) 
Mosquito Control Treatments (Fig. 7C) MosquitoULVcontroinSE_USCountiesShapefile.zip 
Latest Fall ULV Spraying in Southeastern US Cities (Fig. 
7C) MosquitoULVSprayCitiesLateFallDatesShapefile.zip 
a Zipped shapefiles are available upon request from author and are to be made available in appendix of Kantola et al. (2018). 
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Figure C.1. MaxEnt migration model evaluation statistics (mean ± SD) of AUCpsa_finaltest (A,D), AICcbg_final (B,E), and AUCpsa_diff_final

(overfitting; C,F) for models developed from (A-C) top ten variable subsets selected by AUCpsa or AICc using random subset feature 
selection (RSFSA) and ten random subsets out of 250 randomly generated six-variable subsets of various sizes derived from 80 
variables; and (D-F) top 250 variable subsets out of 3,000 subsets per three training set replicates selected by AUCpsa or AICc using 
RSFSA and top 300 random generated six-variable subsets out of 3,000 subsets derived from 80 variables. Means for AUCpsa 
selected or AICc selected model statistics within a replicate with an asterisk are significantly more optimal (higher for AUCpsa_finaltest 
and lower for AICcbg_final and AUCpsa_diff_final) from that of random selected models (P < 0.05; Welch t test with Holm correction, 
preceded by significant Welch ANOVA test, P < 0.05) 

A D

B

C

E

F

MaxEnt Models MaxEnt Models 



population density grid (CIESIN, 2005) was aggregated to 10 km resolution to match the 

resolution of the occurrence data. A focal mean of population density was then calculated within 

30 by 30 km windows. The roost presence raster (values of one where present) was divided by 

the population density raster to yield a raw monarch roost by human population density index, 

with smaller numbers indicating higher populations. Values of the raw human population density 

index that were below one were changed to one, and values above ten were limited to ten, 

yielding a monarch roost human population density index raster. The raster was converted to a 

point shapefile with values ranging continuously from one in densely populated areas (most 

points) to 10 in sparsely populated areas. The KDE surface was then calculated based on this 

shapefile, with the index limits of one to ten constraining the maximum influence of human 

population density to a factor of 10. 

Anthropogenic Fall Migration Hazards 

Monarch roadkill hotspot points in Texas and Mexico were identified through citizen 

science reports from Journey North (2017), Correo Real (2015), and Rogelio Carrerra 

(Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico, personal communication). 

Potentially reduced nectar plant habitat availability was identified for polygon areas with ≥ 90% 

anthropogenic (cultivated or urban) land cover per 1 km, having at least 70% cultivated land 

cover (Tuanmu and Jetz, 2014; EarthEnv, 2016). Polygon layers for counties in the US with the 

potentially highest contamination of flower nectar food resources near field crops were identified 

from the top one third and middle third of counties in terms of total use of major neonicotinoids 

(imidacloprid, clothianidin, thiamethoxam) for the year 2014 (EPest-high method; US 

Geological Survey [USGS] 2018). Polygon layers were created of counties in Texas and 

Louisiana with organized mosquito control districts that potentially apply adulticides using ultra-
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low volume (ULV) truck sprays in October to November (Texas Mosquito Control Association, 

2018; Louisiana Mosquito Control Association, 2018). Polygon layers were also created for 

counties (including only cities within counties) with mosquito abatement programs potentially 

utilizing ULV adulticides in October to November within coastal states from Texas to Georgia 

from a variety of sources (Georgia Mosquito Control Association, 2018; Mississippi State 

Department of Health, 2018;  Florida Medical Entomology Laboratory, 2018), including 

examination of the most current mosquito control information that could be located for various 

city, county, and parish websites found through internet searches. Mosquito control websites 

were used to obtain the latest fall months for ULV spray mosquito treatments, including October 

in the Central Flyway (City of Dallas, 2017; City of Del Rio, 2018), November along the Texas 

Coast in the Eastern Flyway (League City, 2016), and December in Cameron Parish, Louisiana 

(Louisiana Mosquito Control Association, 2016).  

Results 

Annual Kernel Density Estimation Model Migration Pathways 

The average width of the kernel density estimation model (KDEM) migration pathway in 

the northern portion of the Central Flyway (37-50°N latitude, from northern Oklahoma border 

northwards) varied by 662 km, ranging from 694 km in 2013 to 1,356 km in 2007 (Figure C.2A). 

The average width of the KDEM migration pathway in the southern portion of the Central 

Flyway (27-37°N) varied by 392 km, ranging from 519 km in 2013 to 910 km in 2011 (Figure 

C.2D). The annual north to south shift from average for the northern portion of the KDEM 

migration pathway in the Central Flyway varied by 143 km, ranging from 73 km to the south in 

2015 to 70 km to the north in 2012 (Figure C.2B). The annual north to south shift from average 

for the southern portion of the KDEM migration pathway in the Central Flyway varied by 131 
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A B C 

Figure C.2. Monarch migration pathway characteristics for the Central Flyway from training set ensembles of kernel density 
estimation models (KDEMs) (n = 3) for 2002–2016 and annually from 2005 to 2016 for (A-C) northern area from 37 to 50°N 
and (D-F) southern area from 27 to 37°N. Includes (A,D) the average KDEM width and the shift of the KDEM centroid north 
or south (B,E) or east to west (C,F) compared to the 2002–2016 minimum frequency consensus KDEM. 

D E F 
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Year of Kernel Density Estimate Models (KDEMs) 
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A B C 

Figure C.3. Spearman rank correlation (rs) between annual 2005 to 2016 monarch overwintering population areas in Mexico 
and monarch migration pathway characteristics in the Central Flyway from training set ensembles of kernel density estimation 
models (KDEMs) (n = 3): (A-C) northern area from 37 to 50°N and (D-F) southern area from 27 to 37°N. Includes (A,D) the 
average KDEM width and the shift of KDEM centroid north or south (B,E) or east to west (C,F) compared to 2002–2016 
minimum frequency consensus KDEM (see Figure C.2 for original dimensional characteristics). 
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km, ranging from 111 km to the south in 2006 to 19 km to the north in 2007 (Figure C.2E). The 

annual east to west shift from average for the northern portion of the KDEM migration pathway 

in the Central Flyway varied by 353 km, ranging from 134 km to the west in 2016 to 220 km to 

the east in 2006 (Figure C.2C). The annual east to west shift from average for the southern 

portion of the KDEM migration pathway in the Central Flyway varied by 306 km, ranging from 

207 km to the west in 2015 to 99 km to the east in 2007 (Figure C.2F). 
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 APPENDIX D 

 (CHAPTER IV) 

Spring 2017 Texas Monarch Roadkill Survey  

Methods 

Monarch roadkill surveys were conducted from 12 April to 21 May, 2017 over much of 

the central-eastern portion of Texas approximately bounded by US highway 59 to the east, about 

29ºN to the south, about 101ºW to the west and US highway 287 to the north (Figure A.1). 

Surveys were conducted over four one-week periods progressing from south to north. Monarch 

roadkill counts were collected from one by 100 m transects along the edge of one side of the 

road following the described procedures for the fall 2016–2017 roadkill surveys.  

Results 

Monarch roadkill was detected within only two of the 54 transects, and both detections 

were single males (Figure A.1). One monarch roadkill was along Texas highway 7 east of Marlin 

on 28 April, and another was along US highway 380 west of Runaway Bay on 10 May.  

Texas Monarch Roadkill Survey Data  

Fall 2016–2017 Monarch Roadkill Survey Raw Data – Unthinned (Geographic; WGS84) 

Fall2016_2017Monarc
hRoadkillData.pdf  

Fall 2016–2017 monarch roadkill survey raw data – thinned to 2 km and shifted to roadway 

(North America Albers Equal Area Conic, NAD83) 

Fall2016_2017Monarc
hRoadkillThinned.pdf  
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Spring 2017 monarch roadkill survey raw data – unthinned (geographic; WGS84) 

Spring2017MonarchR
oadkillData.pdf  

Texas and Mexico Monarch Roadkill Data from Other Sources 

MonarchRoadkillOthe
rData.pdf

Texas Monarch Roadkill Survey Data and MaxEnt Roadkill Extrapolations 

Fall2016_2017Monarc
hRoadkillDataExtrapol 

MaxEnt Roadkill Consensus Model 

A zipped shapefile represents the MaxEnt frequency consensus of the feature subset 

ensemble of ten monarch roadkill models developed from random subsets of ten of 20 variables 

(Figure IV.4; MonarchCentralFunnelRoadkillMaxEnt10ModeFSEConsensusSumShapefile.zip; 

available from author and to be made available in appendix of published verions). 

Environmental Variables 

All environmental rasters were converted to and processed within the North American 

Albers Equal Area Conic projection (North American 1983 datum) to best preserve spatial 

relationships. The void-filled SRTM DEM was hydrologically processed before identifying 

streams with different levels of flow accumulation and calculating various topographic moisture 

indices. The percent cover of various Globeland30 land cover types (Chen et al., 2015) within a 
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500 m circular radius window size was calculated in ArcGIS (ESRI, Redlands, CA, USA). Road 

layers of the three major road types from 2017 were downloaded from Geofabrik 

(http://download.geofabrik.de/) and converted to rasters aligned with the DEM. Euclidean 

distances to urban areas, various road types, and stream layer flow accumulation categories were 

calculated in ArcGIS. 

Correo Real Roadkill Report 

The Correo Real (2015) Fall bulletin No. 15 from 8 November, 2015 is not available at 

the Correo Real (Royal Mail) Mexican monarch citizen science website, which only has 

publications since 2016 (http://correoreal.org.mx/noticias/). The original Spanish translation and 

a version with October 2015 Mexico roadkill reports roughly translated into English (in red) are 

embedded below. 

CorreoReal2015_Mex
icoRoadkillSpanish.pd

CorreoReal2015_Mex
icoRoadkillEnglishPart 

Monarch Population Decline Curve 

The initial and final modeled number of hectares in the modeled standard geometric 

power curve (Fig. 5) was used in a standard geometric population growth equation Pt = Po(1 + 

r/n)nt, where Pt is the final hectares (2.11), Po is the initial hectares (11.79), t is the number of 

years (23), n is the number of sub-periods (1), and r is the population growth (or declination) 

rate. Solving for r yields an average -7.21% population decline per year over the last 23 years, 

http://correoreal.org.mx/noticias/
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Table D.1. Thirty environmental predictor indices (30.8 m resolution) evaluated for developing 
monarch roadkill models. 
Variable Index Abbreviationa Source 
Six Road Indices (based on three major road types of highways, primary roads, and secondary 
roads) 

Road density, km road per 500 m circular 
radius  roadden500mr* 

Derived from 
OpenStreetMap 
(Geofabrik, 2017) 

Road density, km road per 3 km circular 
radius  roadden3kr* “ 
Distance to highways (motorways and trunks) hwydist* “ 
Distance to primary roads primrddist* “ 
Distance to secondary roads secrddist* “ 

Traffic volume for 2015 traffic_vol 

OpenStreetMap 
(Geofabrik, 2017) 
and Federal Highway 
Administration 
(2017) 

Three Human Population Density Indices 
Human population density per km in 3 km 
circular radius popden3kr* 

Derived from 
CIESIN (2016) 

Human population density per km in 9 km 
circular radius popden9kr* “ 
Distance to urban areas ≥ 300 humans per km urbdist* “ 
Nine Topographic Indices 
Elevation elev* NASA JPL (2013) 

Topographic Position Index (TPI), 500 m 
circular radiusb tpi500mr 

Derived from 1 arc 
second resolution 
SRTM elevation 
(NASA JPL, 2013) 

TPI, 3 km circular radiusb tpi3kr* “ 
Compound Topographic Index (CTI)b cti “ 

Distance to Streams (STRMDIST) strmdist “ 
Distance to Low Flow Accumulation Areas 
(100–5,000 cells; STRMLOFLODIST) strmloflodist “ 
Distance to Medium Flow Accumulation 
Areas (5,000–60,000 cells; 
STRMMDFLODIST) strmmdflodist “ 
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Table D.1. Continued. 

Variable Index Abbreviationa Source 

Latitude latitude* 
Derived using 
ArcGIS 

Eight Land Cover Indices (percent cover in 500 m radius window) 

Artificial surfaces artsur_500mr* 
Globeland30 (Chen et 
al., 2015) 

Barren lands bare_500mr “ 

Cultivated land cult_500mr* “ 

Forests forest_500mr “ 
Grasslands grslnd_500mr* “ 
Shrublands shrub_500mr* “ 
Water bodies water_500mr “ 
Wetland wetlnd_500mr “ 
Four Climatic Indicesc 

Autumn quarterly mean monthly maximum 
temperature tmax_autq* 

for 1960–1990 
derived from 
WorldClim (2017) of 
Hijmans et al. (2005) 

Annual mean monthly rainfall (P) (mm) prec_ann* “ 
Autumn quarterly mean monthly Actual 
Evapotranspiration/Potential 
Evapotranspiration × 1000 etrt_autq* “ 

Autumn mean quarterly wind speed 
(m/second)  wndsp_autq* 

for 1970–2000 
derived from 
WorldClim2 (2017) 
of Fick and Hijmans 
(2017) 

aAsterisks indicate 20 of 30 variables selected for developing final MaxEnt monarch roadkill 
niche models. 
bCalculated using Geomorphometry and Gradient Metrics Toolbox for ArcGIS (Evans et al., 
2014). 
cAutumn quarter includes October, November, and December.  
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Table D.2. Monarch butterfly roadkill estimates for separate 2016 and 2017 data over the Sonora-Sheffield roadkill 
hotspot, background evaluation extent (BEE) and the Central Funnel extrapolated from each 2016-2017 data MaxEnt 
roadkill model according to estimated roadkill per km for the length of predicted roadkill presence of each road type.a 

MaxEnt Model 
Number 

Hotspot Data Separated 
2016 2017 

Sonora-
Sheffield 
Hotspot BEE Funnel 

BEE as 
% Funnel 

Sonora-
Sheffield 
Hotspot BEE Funnel 

BEE as % 
Funnel 

1 63,117 544,753 1,551,614 35% 4,644 511,192 1,836,491 28% 
2 62,489 921,991 1,643,275 56% 4,644 1,035,782 1,931,566 54% 
3 63,100 995,924 1,723,338 58% 4,641 1,050,918 1,972,208 53% 
4 62,694 920,454 1,603,772 57% 4,644 1,048,271 1,902,672 55% 
5 62,962 362,150 795,855 46% 4,644 380,488 923,739 41% 
6 61,770 574,432 1,078,945 53% 4,650 637,490 1,277,795 50% 
7 63,052 1,001,916 1,557,014 64% 4,638 1,146,775 1,854,326 62% 
8 63,046 790,029 1,241,274 64% 4,644 912,455 1,459,983 62% 
9 63,053 625,162 1,218,973 51% 4,638 696,543 1,438,663 48% 
10 62,580 393,397 855,252 46% 4,638 412,760 991,107 42% 

Mean 62,786 713,021 1,326,931 53.04% 4,643 783,267 1,558,855 49.5% 
SD 424 244,184 337,027 8.96% 4 289,973 397,394 10.5% 

% Over-wintering 
Populationb 0.09% 0.86% 1.56% 0.01% 1.26% 2.48% 
% of Funnel 

Mortality 5.96% 54.33% 0.30% 50.25% 
a Based upon multiplying length of road type by roadkill density per km (presence only) for road type in each MaxEnt 
model. See section 4 for estimations of roadkill rates for each road type and the km of road type per MaxEnt model.  
bBased on 84.61 and 61.4 million monarchs overwintering in 2016 and 2017, respectively (Monarch Watch, 2018b). 
Overwintering estimates were averaged for the combined 2016-2017 data. The figure of 21.1 million monarchs per 
hectares overwintering was used in estimations (Thogmartin et al., 2017). 



Table D.3. Monarch butterfly roadkill estimates for combined 2016 and 2017 data over the Sonora-Sheffield roadkill 
hotspot, background evaluation extent (BEE) and the Central Funnel extrapolated from each 2016-2017 data MaxEnt 
roadkill model according to estimated roadkill per km for the length of predicted roadkill presence of each road type.a 

MaxEnt Model 
Number 

Hotspot Data Separated Hotspot Data Merged 
2016-2017 2016-2017 

Sonora-
Sheffield 
Hotspot BEE Funnel 

BEE as % 
Funnel BEE Funnel 

BEE as 
% Funnel 

1 72,331 546,899 1,417,915 39% 2,381,698 5,790,868 41% 
2 71,703 979,939 1,484,293 66% 5,490,391 5,791,553 95% 
3 72,309 1,022,358 1,499,601 68% 5,510,246 5,266,688 105% 
4 71,908 985,509 1,468,816 67% 5,533,646 5,918,898 93% 
5 72,176 396,537 753,275 53% 2,079,664 3,062,060 68% 
6 70,997 621,348 1,012,343 61% 3,451,465 4,259,790 81% 
7 72,255 1,072,235 1,440,533 74% 6,011,376 5,697,998 105% 
8 72,260 858,286 1,152,658 74% 4,678,765 4,255,994 110% 
9 72,256 674,753 1,129,339 60% 3,752,613 4,644,830 81% 
10 71,782 426,792 799,592 53% 2,244,533 3,249,800 69% 

Mean 71,997.63 758,465 1,215,836 61.6% 4,113,440 4,793,848 84.8% 
SD 419.59 256,087 288,294 11.1% 1,526,878 1,068,548 21.3% 

% Over-wintering 
Populationb 0.10% 1.03% 1.64% 5.33% 6.16% 

% of Funnel Mortality 5.92% 62.38% 85.81% 
a Based upon multiplying length of road type by roadkill density per km (presence only) for road type in each MaxEnt 
model. See section 4 for estimations of roadkill rates for each road type and the km of road type per MaxEnt model.  
bBased on average of 73 million monarchs overwintering from both 2016 (84.61 million) and 2017 (61.4 million) 
(Monarch Watch, 2018b). Overwintering estimates were averaged for the combined 2016-2017 data. The figure of 
21.1 million monarchs per hectares overwintering was used in estimations (Thogmartin et al., 2017). 
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Figure D.1. Monarch roadkill spring 2017 survey results for 100 m transects along major road 
classes within Texas. 
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Figure D.2. Representative important environmental variables (30 m resolution) for five types of indices in MaxEnt niche 
models of monarch fall migratory roadkill within the Central Funnel: (A) road index of kilometers of road per three km radius 
(roadden3kr); (A) human population index of population density within a 9 km radius (popden9kr); (C) topographic index of 
elevation (elev); (D) land cover index of percent cover of grasslands in a 500 m radius (grslnd_500mr); and (E) climatic index 
of autumn quarterly mean monthly actual evapotranspiration (AET)/potential evapotranspiration (PET) × 100 (see Table IV.2 
for variable importance). 
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Figure D.3. MaxEnt variable importance in jackknife analysis of test gain for 30 total 
environmental variables in monarch roadkill model (see Table D.1 for variable abbreviations).  
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Figure D.4. Frequency distribution of monarch roadkill counts (spatially thinned to 2 km) 
for 100 m transects for fall 2016 and 2017 along major road classes within the background 
evaluation extent of the monarch Central Funnel in Texas (Figures IV.1-2). 
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AETT_SPRQ, 0.0, 4.0, 140.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_14, 0.0, 0.0, 96.0
BIO_15, 0.0, 6.0, 103.0
BIO_7, 0.0, 131.0, 506.0
BIO_8, 0.0, -113.0, 332.0
IMI, 0.0, 9.0, 2070.0
MNPOPDEN3R, 0.0, 0.0, 1010.0
PETH_WINQ, 0.0, 9.0, 104.0
PREC_SUMQ, 0.0, 1.0, 150.0
ROADDEN19KR, 0.0, 0.0, 3783.0
SEI, 0.0, 1982.0, 8123.0
SLOPE, 0.0, 0.0, 6564.0
STRMMDFLODIST, 0.0, 0.0, 376.0
URBAN_LC, 0.0, 0.0, 10000.0
AETT_SPRQ^2, -0.4889151245810006, 16.0, 19600.0
AGRIC_LC^2, -3.0583818629437065, 0.0, 1.0E8
BIO_15^2, 0.3162155447520371, 36.0, 10609.0
BIO_7^2, 0.2208298237004442, 17161.0, 256036.0
BIO_8^2, -1.9648077297130655, 0.0, 110224.0
PETH_WINQ^2, 1.6413170990283068, 81.0, 10816.0
PREC_SUMQ^2, 0.41575382982028064, 1.0, 22500.0
SEI^2, -1.0385736680904296, 3928324.0, 6.5983129E7
SLOPE^2, 0.14484048086046547, 0.0, 4.3086096E7
`SLOPE, -0.14111314167833358, 0.0, 1268.5
`SLOPE, -0.16243196307327312, 0.0, 635.5
`SLOPE, -0.12369149436578449, 0.0, 1449.5
`AETT_SPRQ, -0.5937149540324901, 4.0, 46.5
`SLOPE, -0.4932300649028509, 0.0, 569.5
`AETT_SPRQ, -0.5834456116712096, 4.0, 45.5
'BIO_7, -0.25474759202083636, 414.5, 506.0
`ROADDEN19KR, 0.12543024199696742, 0.0, 4.5
`AETT_SPRQ, -0.36916731798798996, 4.0, 43.5
`BIO_8, 0.5839236672055051, -113.0, -41.5
`BIO_7, -0.134163575028442, 131.0, 264.5
'BIO_7, -0.4910182767848003, 413.5, 506.0
'BIO_15, 0.38511882692222055, 65.5, 103.0
`AETT_SPRQ, -0.1589568031917591, 4.0, 40.5
`MNPOPDEN3R, 0.4124874685798317, 0.0, 2.5
`URBAN_LC, 0.5290544961089635, 0.0, 50.0
'BIO_7, -1.541289840073543, 410.5, 506.0
`PETH_WINQ, -1.8717953087967534, 9.0, 15.5
`BIO_7, -1.5841464145876512, 131.0, 286.5
'BIO_8, -1.2305804639559375, 216.5, 332.0
'BIO_14, 1.1873191477237977, 55.5, 96.0
`STRMMDFLODIST, -0.08904442785756264, 0.0, 68.5
`BIO_15, -0.949125534467896, 6.0, 14.5
`BIO_8, 0.3172759682010501, -113.0, -46.5
`AETT_SPRQ, -0.6544437928377208, 4.0, 47.5
`AETT_SPRQ, 1.5114533875607117, 4.0, 13.5
`IMI, 0.2939081655756013, 9.0, 25.5
`PETH_WINQ, -0.15393651870500627, 9.0, 40.5
'AETT_SPRQ, -0.08646524670514286, 81.5, 140.0
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`BIO_15, 0.02365147083269782, 6.0, 33.5
`SLOPE, -0.04307313302666285, 0.0, 2012.0
`SLOPE, -0.07611745065391794, 0.0, 2006.5
'PREC_SUMQ, 0.3728863498313051, 61.5, 150.0
`BIO_8, 0.1076022802684263, -113.0, -43.5
`SLOPE, -0.05562254112384814, 0.0, 1982.5
`SLOPE, -0.13219118262890847, 0.0, 508.5
`SLOPE, -0.09732003966269165, 0.0, 1950.5
'PETH_WINQ, -1.2746023896153056, 76.5, 104.0
`AETT_SPRQ, -0.38761729424362973, 4.0, 60.5
`ROADDEN19KR, 0.012216792793092774, 0.0, 274.5
`IMI, 0.24858083385856, 9.0, 15.5
'AGRIC_LC, -0.30536018082132377, 1850.0, 10000.0
`SLOPE, -0.060202060826219844, 0.0, 521.5
`SLOPE, -0.06868919581584512, 0.0, 525.5
`SLOPE, -0.027834927098255385, 0.0, 1907.5
`SLOPE, -0.05258595407244198, 0.0, 526.5
`SLOPE, -0.07154110935973124, 0.0, 531.5
`SLOPE, -0.09038341216501307, 0.0, 1906.5
`BIO_15, 0.026848321297703863, 6.0, 35.5
`SLOPE, -0.04857180598058526, 0.0, 1935.5
`SLOPE, -0.06270051448511753, 0.0, 532.5
`SLOPE, -0.06349239324705817, 0.0, 535.5
'ROADDEN19KR, -0.01118082304387083, 598.5, 3783.0
`SLOPE, -0.09619701034835086, 0.0, 1435.5
`ROADDEN19KR, 0.07731508960495663, 0.0, 273.5
`BIO_8, 0.0268304933591593, -113.0, -44.5
`BIO_15, 0.044869759405645505, 6.0, 36.5
`SLOPE, -0.14412428614288353, 0.0, 1434.0
`STRMMDFLODIST, -0.025802347767291404, 0.0, 134.5
`IMI, 0.12863178874511141, 9.0, 57.5
'BIO_8, -0.09102251196778197, 178.5, 332.0
`AETT_SPRQ, -0.09382451063480181, 4.0, 48.5
'BIO_7, -0.13244842005282897, 415.5, 506.0
`SLOPE, -0.04952095973285557, 0.0, 537.5
`BIO_7, -1.022668550211564, 131.0, 261.5
`SLOPE, -0.013222850769971078, 0.0, 1432.5
`BIO_7, -0.04624972555109444, 131.0, 299.5
`ROADDEN19KR, 0.030250042716904825, 0.0, 3.5
`BIO_7, -0.29100517752828997, 131.0, 290.5
`IMI, 0.35170477847433546, 9.0, 56.5
`IMI, 0.07389743186180117, 9.0, 16.5
`BIO_15, 0.1007455927217693, 6.0, 37.5
`ROADDEN19KR, 0.018176701070396088, 0.0, 272.5
'BIO_14, 0.05569049006793101, 54.5, 96.0
`STRMMDFLODIST, -0.043787353909571745, 0.0, 138.5
`URBAN_LC, 0.09333165424545077, 0.0, 1650.0
`BIO_7, -0.1616466183024617, 131.0, 289.5
'ROADDEN19KR, -0.1882382082272893, 577.5, 3783.0
`AETT_SPRQ, -0.05863545499043465, 4.0, 38.5
'BIO_8, -0.04920543177623397, 212.5, 332.0
linearPredictorNormalizer, 2.31704168301245
densityNormalizer, 1442.1441360427023
numBackgroundPoints, 12855
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entropy, 8.684616709671594
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AETT_AUTQ, 0.0, 1.0, 73.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_15, 0.0, 6.0, 103.0
BIO_3, 0.0, 26.0, 65.0
DISS3KR, 0.0, 0.0, 10000.0
ELEV, 0.0, 96.0, 7387.0
ETRT_SUMQ, 0.0, 12.0, 897.0
HLI, 0.0, 2235.0, 8398.0
LORURDIST, 0.0, 0.0, 212.0
PREC_WINQ, 0.0, 4.0, 421.0
ROADDEN9KR, 0.0, 0.0, 3356.0
SCAI, 0.0, 0.0, 7993.0
SLOPE, 0.0, 0.0, 6564.0
STRMHIFLODIST, 0.0, 0.0, 789.0
TPETHS_TPETHA, 0.0, 307.0, 514.0
AETT_AUTQ^2, 3.3502349295710823, 1.0, 5329.0
AGRIC_LC^2, -1.572143802307261, 0.0, 1.0E8
BIO_15^2, 1.2466708668272677, 36.0, 10609.0
BIO_3^2, 0.646753576248593, 676.0, 4225.0
DISS3KR^2, 0.3396095177778611, 0.0, 1.0E8
ELEV^2, 0.2261689298341504, 9216.0, 5.4567769E7
ETRT_SUMQ^2, -0.10947529552444324, 144.0, 804609.0
HLI^2, -0.6723466255112673, 4995225.0, 7.0526404E7
LORURDIST^2, 0.6850460064499138, 0.0, 44944.0
PREC_WINQ^2, -2.6654840743703745, 16.0, 177241.0
SCAI^2, 0.09479835915895019, 0.0, 6.3888049E7
SLOPE^2, 0.4922280079577065, 0.0, 4.3086096E7
STRMHIFLODIST^2, -0.49618702342991533, 0.0, 622521.0
TPETHS_TPETHA^2, 0.9598162282246662, 94249.0, 264196.0
`SLOPE, -0.08424560701702428, 0.0, 1175.5
`SLOPE, -0.07653886728436451, 0.0, 1169.5
`PREC_WINQ, -0.7359051726685885, 4.0, 40.5
`SLOPE, -0.22379061872698924, 0.0, 644.5
`SLOPE, -0.17997562997141509, 0.0, 624.5
`ELEV, -0.4738911806478525, 96.0, 3062.0
`PREC_WINQ, -0.10479400412482721, 4.0, 33.5
`ELEV, -0.06375198600237357, 96.0, 2921.0
'ETRT_SUMQ, -0.9035726729107975, 579.5, 897.0
`PREC_WINQ, -0.7028039330417533, 4.0, 42.5
`LORURDIST, -0.401435848948999, 0.0, 0.5
'BIO_15, 0.6697854707968905, 65.5, 103.0
`ELEV, -0.5730645041821036, 96.0, 3144.0
'ELEV, -0.3785407512342674, 5374.0, 7387.0
'ETRT_SUMQ, -0.5863811690169275, 580.5, 897.0
`ROADDEN9KR, 0.007023869263713954, 0.0, 48.5
`LORURDIST, -0.12803325951577804, 0.0, 4.5
`BIO_15, -0.7637443491700879, 6.0, 13.5
`ELEV, -0.17922547348612278, 96.0, 3146.0
`PREC_WINQ, -0.9917490948274912, 4.0, 18.5
`LORURDIST, -0.09366813281776866, 0.0, 87.5
`DISS3KR, -0.4141342050292912, 0.0, 2481.5
'ELEV, -1.6985675730309235, 5302.0, 7387.0
`TPETHS_TPETHA, -0.8341795136205504, 307.0, 350.5
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`BIO_3, -0.31093879181265904, 26.0, 33.5
`SLOPE, -0.04857763456014994, 0.0, 2012.0
`ELEV, -0.1574633003269393, 96.0, 4133.0
'DISS3KR, -0.5508891490475887, 8916.0, 10000.0
`SLOPE, -0.05426806237238023, 0.0, 2008.0
`SLOPE, -0.10189639528793881, 0.0, 521.5
`SLOPE, -0.05865838380930776, 0.0, 2006.5
`ELEV, -0.13670878153466418, 96.0, 4010.5
'AGRIC_LC, -1.1140365884259937, 1850.0, 10000.0
'ROADDEN9KR, -1.0532551189806407, 466.5, 3356.0
`SLOPE, -0.08989953936085256, 0.0, 525.5
`SCAI, -0.14834340226381793, 0.0, 5488.5
'LORURDIST, -1.077462839054676, 131.5, 212.0
'ETRT_SUMQ, -0.06714330963574097, 591.5, 897.0
`SLOPE, -0.0676370397869965, 0.0, 532.5
`SLOPE, -0.10306944703671578, 0.0, 1906.5
`DISS3KR, -0.21212113486985557, 0.0, 1198.5
`AETT_AUTQ, 0.20790965204490644, 1.0, 6.5
'BIO_15, 0.10302723219606594, 66.5, 103.0
'TPETHS_TPETHA, -0.3912414294390789, 488.5, 514.0
`SLOPE, -0.06661907185216932, 0.0, 536.5
`SLOPE, -0.07533798136564764, 0.0, 1942.5
`SLOPE, -0.040270350059755065, 0.0, 1938.0
`STRMHIFLODIST, 0.034588635010798306, 0.0, 170.5
`SLOPE, -0.14960305042614933, 0.0, 537.5
`PREC_WINQ, -0.11083845297214256, 4.0, 43.5
`BIO_3, -0.3679772392828444, 26.0, 32.5
`BIO_15, 0.05171897862978169, 6.0, 35.5
'SCAI, -0.03922903458219986, 6238.5, 7993.0
`BIO_15, 0.05223269407278335, 6.0, 34.5
'ELEV, -0.13677008374493982, 4886.0, 7387.0
'SCAI, -0.30009812196049923, 6229.5, 7993.0
`SLOPE, -0.039947577119733894, 0.0, 543.5
`SLOPE, -0.05874779326035671, 0.0, 1434.0
`DISS3KR, -0.12346188016959123, 0.0, 1201.5
`ELEV, 0.08784903445096723, 96.0, 555.0
`SLOPE, -0.10948175469502712, 0.0, 1432.5
`PREC_WINQ, -0.19659202917377416, 4.0, 21.5
'TPETHS_TPETHA, -0.19793856321104697, 487.5, 514.0
`BIO_15, 0.07354783888193363, 6.0, 36.5
`SLOPE, -0.010765225586049917, 0.0, 1431.5
`SLOPE, -0.08142470338602444, 0.0, 569.5
`SLOPE, -0.06608061142845635, 0.0, 1420.5
'BIO_15, 0.051327965807807185, 67.5, 103.0
`ELEV, 0.1561815384037305, 96.0, 557.0
`SLOPE, -0.01895753978149666, 0.0, 1419.5
'ELEV, -0.11085190552628882, 4894.0, 7387.0
`PREC_WINQ, 0.2339696695724478, 4.0, 10.5
`ELEV, -0.023637287035587436, 96.0, 3092.0
`PREC_WINQ, -0.017300451951715, 4.0, 22.5
'SCAI, -0.15981921350937092, 6218.0, 7993.0
linearPredictorNormalizer, 1.8076763040010617
densityNormalizer, 1080.0243582632436
numBackgroundPoints, 12855







file:///F/Documents/FireFreqMS2017/HiBrn15VarModel21_lambdas.txt[9/7/2018 11:42:33 PM]


entropy, 8.656784099730878
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AGRIC_LC, 0.0, 0.0, 10000.0
BIO_15, 0.0, 6.0, 103.0
BIO_2, 0.0, 63.0, 211.0
BIO_8, 0.0, -113.0, 332.0
BIO_9, 0.0, -136.0, 329.0
CONT_INDEX, 0.0, 50.0, 359.0
ELEV, 0.0, 96.0, 7387.0
HLI, 0.0, 2235.0, 8398.0
PETH_AUTQ, 0.0, 14.0, 100.0
POPDEN, 0.0, 0.0, 467.0
PREC_AUTQ, 0.0, 4.0, 443.0
PREC_SUMQ, 0.0, 1.0, 150.0
ROADDEN9KR, 0.0, 0.0, 3356.0
SLOPE, 0.0, 0.0, 6564.0
STRMHIFLODIST, 0.0, 0.0, 789.0
AGRIC_LC^2, -1.8387195791769702, 0.0, 1.0E8
BIO_15^2, 0.5454041004756985, 36.0, 10609.0
BIO_8^2, -2.104662471252214, 0.0, 110224.0
BIO_9^2, 0.07430032109265215, 0.0, 108241.0
CONT_INDEX^2, -0.8467403682191987, 2500.0, 128881.0
ELEV^2, 0.09382205306471715, 9216.0, 5.4567769E7
HLI^2, -0.7024323397329729, 4995225.0, 7.0526404E7
PETH_AUTQ^2, 0.7516157059497759, 196.0, 10000.0
PREC_SUMQ^2, 2.434588734425473, 1.0, 22500.0
SLOPE^2, 0.33011821328902896, 0.0, 4.3086096E7
STRMHIFLODIST^2, -0.3644389047635307, 0.0, 622521.0
`SLOPE, -0.19475966080522433, 0.0, 1268.5
`PREC_AUTQ, -0.6485905593102512, 4.0, 36.5
`SLOPE, -0.1992225715542599, 0.0, 591.5
`ELEV, -0.47782803326713524, 96.0, 3077.0
'PREC_AUTQ, -0.7457160236974295, 179.5, 443.0
`POPDEN, 0.7571310797579776, 0.0, 0.5
'PREC_AUTQ, -1.9873287908200128, 177.5, 443.0
'ELEV, -0.4664826523155468, 5408.0, 7387.0
`BIO_8, 0.6038848983228408, -113.0, -51.5
`PREC_AUTQ, -0.4088428769853238, 4.0, 23.5
'BIO_8, -0.10127505232262109, 217.5, 332.0
'ELEV, -0.4554465093457025, 5385.5, 7387.0
`ROADDEN9KR, 0.022543972281230413, 0.0, 49.5
'CONT_INDEX, -0.021479689574289605, 255.5, 359.0
'BIO_8, -0.8230231120964592, 163.5, 332.0
`BIO_15, -0.27539624708115756, 6.0, 14.5
`ELEV, -0.26183828218904154, 96.0, 3127.0
'BIO_9, 0.741919990302208, 167.5, 329.0
`ROADDEN9KR, 0.053211699838033207, 0.0, 48.5
`ELEV, -0.28935739907462404, 96.0, 3146.0
`PREC_AUTQ, -0.5162911457783169, 4.0, 41.5
'ELEV, -1.0288183650407783, 5468.0, 7387.0
'BIO_2, -2.64498972343629, 177.5, 211.0
'PETH_AUTQ, 0.22602938688276955, 61.5, 100.0
`ELEV, -0.23516874716504588, 96.0, 3205.0
`BIO_2, -1.0086414174270641, 63.0, 109.5
`ELEV, 0.4424188672964748, 96.0, 557.0
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`ELEV, -0.11613581916522196, 96.0, 3203.0
`STRMHIFLODIST, 0.029365251626431284, 0.0, 175.5
`SLOPE, -0.11894620575585435, 0.0, 2008.0
'AGRIC_LC, -0.7490959838181459, 1950.0, 10000.0
'BIO_8, -0.5060781913876298, 223.5, 332.0
`BIO_2, -0.20714814847955879, 63.0, 152.5
`PREC_AUTQ, -0.4898569383928749, 4.0, 19.5
`BIO_15, -0.4075014385521334, 6.0, 12.5
'BIO_9, 1.3564258893244636, 247.5, 329.0
`BIO_9, -0.6429393012419745, -136.0, -73.5
'ROADDEN9KR, -0.6542999338648231, 405.5, 3356.0
'PREC_AUTQ, -0.5323882968151586, 178.5, 443.0
`SLOPE, -0.04823057424425303, 0.0, 1983.5
`SLOPE, -0.04985699580203638, 0.0, 1942.5
`SLOPE, -0.05310792639068919, 0.0, 1984.5
`ELEV, -0.08895408993201971, 96.0, 4007.0
'ELEV, -0.23854961455937693, 4847.0, 7387.0
`BIO_15, 0.033731909991064096, 6.0, 34.5
`SLOPE, -0.06791843371283392, 0.0, 531.5
`SLOPE, -0.03730305382343097, 0.0, 1943.5
`SLOPE, -0.03017983333437187, 0.0, 1938.0
`SLOPE, -0.05134598548513679, 0.0, 532.5
'BIO_15, 0.20643884457671002, 69.5, 103.0
'ELEV, -0.12359796094775284, 4567.0, 7387.0
`SLOPE, -0.0484404964543955, 0.0, 1907.5
`SLOPE, -0.027665386270611474, 0.0, 1935.5
`BIO_8, 0.20582550093538013, -113.0, -52.5
`STRMHIFLODIST, 0.04523117112715488, 0.0, 171.5
`SLOPE, -0.146326399240592, 0.0, 537.5
'ELEV, -0.2219123904497426, 4872.5, 7387.0
`SLOPE, -0.04282472025046426, 0.0, 1906.5
'ELEV, -0.4706402963843243, 4875.0, 7387.0
`ELEV, -0.08682165082936531, 96.0, 4010.5
`SLOPE, -0.05426323293305415, 0.0, 538.5
`SLOPE, -0.08748519462972688, 0.0, 542.5
'BIO_15, 0.21062561602716218, 70.5, 103.0
`CONT_INDEX, -0.20047568917950628, 50.0, 104.5
`SLOPE, -0.08866380002512604, 0.0, 570.5
`PREC_AUTQ, -0.22938835504924457, 4.0, 24.5
`SLOPE, -0.042114401554680644, 0.0, 576.5
`BIO_2, -0.24105841891612156, 63.0, 108.5
`ELEV, -0.04914455188887119, 96.0, 4009.0
`SLOPE, -0.045739793902331606, 0.0, 573.5
`STRMHIFLODIST, 0.02877363625984476, 0.0, 172.5
'CONT_INDEX, -0.22569362932873166, 269.5, 359.0
`SLOPE, -0.03272280129514224, 0.0, 1435.5
'BIO_15, 0.10104198608837364, 71.5, 103.0
`SLOPE, -0.049380429679659506, 0.0, 1434.0
`BIO_15, 0.024388571426749644, 6.0, 35.5
`STRMHIFLODIST, 0.015252725040870137, 0.0, 173.5
`SLOPE, -0.027999049857786108, 0.0, 1432.5
`SLOPE, -0.017288544120248116, 0.0, 1431.5
`SLOPE, -0.006415895514527464, 0.0, 1421.5
`SLOPE, -0.027523208188581658, 0.0, 577.5
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`SLOPE, -0.08520732364906165, 0.0, 1420.5
'ROADDEN9KR, -0.06496306480854526, 311.5, 3356.0
`SLOPE, -0.027084286115024375, 0.0, 1419.5
linearPredictorNormalizer, 1.4068360746485955
densityNormalizer, 1137.1711743677304
numBackgroundPoints, 12855
entropy, 8.63955433520286
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AETT_WINQ, 0.0, 4.0, 78.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_4, 0.0, 1821.0, 12546.0
BIO_8, 0.0, -113.0, 332.0
ELEV, 0.0, 96.0, 7387.0
ETRT_SPRQ, 0.0, 20.0, 1000.0
LORURDIST, 0.0, 0.0, 212.0
PETH_SUMQ, 0.0, 78.0, 228.0
ROADDEN3KR, 0.0, 0.0, 2510.0
SLOPE, 0.0, 0.0, 6564.0
SPRURDIST, 0.0, 0.0, 366.0
STRMHIFLODIST, 0.0, 0.0, 789.0
STRMMDFLODIST, 0.0, 0.0, 376.0
TMIN_AUTQ, 0.0, -143.0, 155.0
TPI3KR, 0.0, 1950.0, 7728.0
AETT_WINQ^2, 2.8990647409279675, 16.0, 6084.0
AGRIC_LC^2, -1.0210517347632524, 0.0, 1.0E8
BIO_4^2, -1.5351973612723833, 3316041.0, 1.57402116E8
BIO_8^2, -1.2799674524970697, 0.0, 110224.0
ETRT_SPRQ^2, -0.5826714344105702, 400.0, 1000000.0
SLOPE^2, 0.3335022032168794, 0.0, 4.3086096E7
STRMHIFLODIST^2, -0.41702626148651994, 0.0, 622521.0
TMIN_AUTQ^2, 1.2379522247115364, 0.0, 24025.0
TPI3KR^2, 0.7966215751981742, 3802500.0, 5.9721984E7
`SLOPE, -0.18586789695196598, 0.0, 1268.5
`SLOPE, -0.19355175501859745, 0.0, 634.5
`SLOPE, -0.12358112693916842, 0.0, 1441.5
`ETRT_SPRQ, -0.19004658745897118, 20.0, 366.5
`ELEV, -0.4507254367158364, 96.0, 3075.0
`ETRT_SPRQ, -0.35521414597674744, 20.0, 381.5
`ETRT_SPRQ, -0.4370011624122726, 20.0, 340.5
'ELEV, -0.040484109815565, 5410.0, 7387.0
'ETRT_SPRQ, -0.22405474268729655, 893.5, 1000.0
`ELEV, -0.35739709948833165, 96.0, 3071.5
`BIO_8, 0.3575485736702911, -113.0, -48.5
'ELEV, -0.5238018929477197, 5408.0, 7387.0
`ROADDEN3KR, 0.08111939065358108, 0.0, 572.5
'ETRT_SPRQ, -0.23042287053064836, 807.5, 1000.0
`AETT_WINQ, -0.19118377149730176, 4.0, 15.5
`ELEV, -0.126013527934875, 96.0, 3090.0
'ELEV, -1.439797075632529, 5379.0, 7387.0
`BIO_8, 0.15894751647038463, -113.0, -52.5
`ETRT_SPRQ, 2.66068523364938, 20.0, 72.5
`ELEV, -0.3061161591140834, 96.0, 3086.0
`SLOPE, -0.14259887468254162, 0.0, 2082.5
'TMIN_AUTQ, 0.3801631293104303, 20.5, 155.0
`ELEV, -0.24347751410992796, 96.0, 2921.0
`ETRT_SPRQ, -0.5041840657668202, 20.0, 316.5
`LORURDIST, -0.16484273249853784, 0.0, 87.5
'BIO_8, -1.0718896392627082, 223.5, 332.0
'TMIN_AUTQ, 0.49403601355894844, 44.5, 155.0
`BIO_4, -0.6710425582412366, 1821.0, 3831.0
`SLOPE, -0.07397688533618983, 0.0, 495.5
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`STRMMDFLODIST, -0.057583468431744673, 0.0, 99.5
'LORURDIST, -0.8241104042083138, 131.5, 212.0
`AETT_WINQ, -2.418614259292121, 4.0, 9.5
`ETRT_SPRQ, 1.9388441925232698, 20.0, 76.5
`SLOPE, -0.08774290294569735, 0.0, 2010.5
'AGRIC_LC, -1.1861119468705683, 1850.0, 10000.0
`STRMHIFLODIST, 0.03795457409589964, 0.0, 173.5
`TMIN_AUTQ, -0.998834235553231, -143.0, -123.5
`ELEV, -0.1135667536350531, 96.0, 2817.0
'ETRT_SPRQ, -0.4377001042340124, 950.5, 1000.0
`SPRURDIST, 2.1839926379038554, 0.0, 151.0
'ETRT_SPRQ, -0.05126203277466718, 793.5, 1000.0
'BIO_8, -0.8276751879333551, 216.5, 332.0
`SLOPE, -0.11733986050354629, 0.0, 509.5
`SLOPE, -0.048410328093255586, 0.0, 2008.0
`SLOPE, -0.08704575109474345, 0.0, 525.5
`SLOPE, -0.07615941390052508, 0.0, 1983.5
'ELEV, -0.13455005876435622, 4168.0, 7387.0
'TPI3KR, -0.6062162439348407, 6088.0, 7728.0
`AETT_WINQ, -0.5875692670469201, 4.0, 16.5
`BIO_8, 0.004366397901977936, -113.0, -44.5
`ELEV, -0.051345417274546896, 96.0, 2819.0
`ROADDEN3KR, 0.16875445726551452, 0.0, 1010.0
`ELEV, -0.11026795247949349, 96.0, 2812.0
`STRMHIFLODIST, 0.06799652042386772, 0.0, 170.5
`SLOPE, -0.054217114799647984, 0.0, 1943.5
`LORURDIST, -0.033570200570010894, 0.0, 4.5
`SLOPE, -0.15677498864706851, 0.0, 532.5
`BIO_8, 0.4340923422136905, -113.0, -86.5
'ETRT_SPRQ, -0.2897081803133302, 949.5, 1000.0
`ETRT_SPRQ, 0.44579310934114474, 20.0, 77.5
`BIO_4, -0.7928127932268348, 1821.0, 3855.5
`SLOPE, -0.07827540796607718, 0.0, 537.5
`SLOPE, -0.04291011014973313, 0.0, 1939.5
`TMIN_AUTQ, -0.2978911778824202, -143.0, -124.5
'ELEV, -0.09291625634917165, 4227.5, 7387.0
`ROADDEN3KR, 0.042149121750101146, 0.0, 1007.5
`STRMMDFLODIST, 0.11576819811720794, 0.0, 2.5
`SLOPE, -0.04165484961337301, 0.0, 1906.5
`SLOPE, -0.03167564932787518, 0.0, 538.5
`ROADDEN3KR, 0.06325687364168676, 0.0, 1013.5
`SLOPE, -0.03658898878905145, 0.0, 573.5
`ETRT_SPRQ, 0.4689228889379991, 20.0, 78.5
'ETRT_SPRQ, -0.21295120857526054, 948.5, 1000.0
'BIO_8, -0.30880606291999063, 217.5, 332.0
`BIO_8, 0.10916558342273514, -113.0, -47.5
`SLOPE, -0.1554405613709586, 0.0, 577.5
'TMIN_AUTQ, -0.09457131735437828, 86.5, 155.0
`STRMMDFLODIST, -0.03793036918097691, 0.0, 138.5
'ELEV, -0.08032825626178026, 4237.0, 7387.0
`SLOPE, -0.022960371150709192, 0.0, 1905.0
`AETT_WINQ, -0.1713744652824389, 4.0, 10.5
`ETRT_SPRQ, 0.20807169281944823, 20.0, 79.5
'BIO_4, -0.06720741234468847, 8221.5, 12546.0
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'ELEV, -0.04672892521947061, 4246.0, 7387.0
'ETRT_SPRQ, -0.05128919345374376, 806.5, 1000.0
'TPI3KR, -0.1522985152658619, 6074.0, 7728.0
`SLOPE, -0.015067736360893267, 0.0, 1435.5
'ETRT_SPRQ, -0.02691111369970891, 892.5, 1000.0
'ROADDEN3KR, -0.12987206255077458, 326.5, 2510.0
`ELEV, -0.018884354141378165, 96.0, 2815.0
`BIO_4, -0.0851438660490294, 1821.0, 3879.0
`STRMMDFLODIST, -0.007767063569717687, 0.0, 139.5
`ROADDEN3KR, 0.015696002588681323, 0.0, 1029.0
`SLOPE, -0.012769017625181478, 0.0, 576.5
linearPredictorNormalizer, 3.212583725209007
densityNormalizer, 1206.8865555086738
numBackgroundPoints, 12855
entropy, 8.627611728663133
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AETT_AUTQ, 0.0, 1.0, 72.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_14, 0.0, 0.0, 95.0
BIO_9, 0.0, -137.0, 326.0
CONT_INDEX, 0.0, 54.0, 359.0
ERR3KR, 0.0, 0.0, 9825.0
ETRT_SPRQ, 0.0, 20.0, 996.0
LORURDIST, 0.0, 0.0, 212.0
PETH_AUTQ, 0.0, 14.0, 98.0
PREC_SPRQ, 0.0, 1.0, 155.0
ROADDEN9KR, 0.0, 0.0, 2893.0
SCAI, 0.0, 0.0, 7853.0
SLOPE, 0.0, 0.0, 6783.0
SPRURDIST, 0.0, 0.0, 342.0
STRMHIFLODIST, 0.0, 0.0, 756.0
AETT_AUTQ^2, 1.9425415113290314, 1.0, 5184.0
AGRIC_LC^2, -1.213713765026034, 0.0, 1.0E8
BIO_14^2, -1.4302794618695904, 0.0, 9025.0
BIO_9^2, 0.6796732397044624, 0.0, 106276.0
ETRT_SPRQ^2, -1.032882229318456, 400.0, 992016.0
PETH_AUTQ^2, 0.5516324292274838, 196.0, 9604.0
PREC_SPRQ^2, 0.17643375811944384, 1.0, 24025.0
SLOPE^2, 0.2718923702380408, 0.0, 4.6009089E7
STRMHIFLODIST^2, -0.3948373804348129, 0.0, 571536.0
'AGRIC_LC, -1.469051180988271, 4650.0, 10000.0
`BIO_9, -0.8893337852323017, -137.0, 22.5
`BIO_9, -0.19912675959574233, -137.0, 21.5
'ETRT_SPRQ, -0.06927073489117852, 743.5, 996.0
`PREC_SPRQ, -0.6953568871343263, 1.0, 8.5
`ETRT_SPRQ, -0.44000973981893243, 20.0, 172.5
`SLOPE, -0.16538153155088162, 0.0, 131.5
`BIO_9, -0.3430227952475924, -137.0, 24.5
'PETH_AUTQ, -1.2539208366751546, 78.5, 98.0
`STRMHIFLODIST, 0.06116157693710885, 0.0, 171.5
`LORURDIST, -0.14576427256934718, 0.0, 15.5
`AGRIC_LC, -0.04744975483572544, 0.0, 350.0
'BIO_9, 0.4092205521609402, 140.5, 326.0
'ETRT_SPRQ, -0.30591665934470297, 729.5, 996.0
'PREC_SPRQ, 0.7080185203299229, 94.5, 155.0
`LORURDIST, -0.08916246039193369, 0.0, 16.5
'PREC_SPRQ, 0.8763784243079699, 93.5, 155.0
`BIO_14, 0.2067352828146981, 0.0, 45.5
`SLOPE, -0.32127959787833615, 0.0, 73.5
`PREC_SPRQ, -0.16865441812202767, 1.0, 21.5
'ETRT_SPRQ, -0.6448749284987458, 866.5, 996.0
'BIO_9, -0.06154686657980265, 243.5, 326.0
'PREC_SPRQ, 1.5384222690776972, 92.5, 155.0
'BIO_14, -0.8585630000861859, 20.5, 95.0
'AETT_AUTQ, 0.19913930409932704, 46.5, 72.0
`SLOPE, -0.14592318383096087, 0.0, 926.5
'BIO_9, 0.6913952197954715, 143.5, 326.0
`PREC_SPRQ, -0.86008003723628, 1.0, 24.5
'BIO_9, -2.2341382145982087, 239.5, 326.0
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`ROADDEN9KR, 0.036816683787255, 0.0, 169.5
'CONT_INDEX, 0.19241081829524212, 253.5, 359.0
`SLOPE, -0.1487597300047541, 0.0, 339.5
`ERR3KR, -0.20869639561480785, 0.0, 4151.5
`AETT_AUTQ, 0.17255513498387393, 1.0, 11.5
'PREC_SPRQ, 0.2896754617275166, 91.5, 155.0
'ETRT_SPRQ, -0.32697307120098074, 910.5, 996.0
`SPRURDIST, 1.0327708008828624, 0.0, 166.0
'BIO_14, -0.4271482451857839, 27.5, 95.0
'PETH_AUTQ, 0.11225774524825245, 49.5, 98.0
`SPRURDIST, 0.8571587662674791, 0.0, 161.5
`LORURDIST, -0.03835102055355897, 0.0, 33.5
'PETH_AUTQ, -1.0068093263262416, 77.5, 98.0
`ETRT_SPRQ, -0.5700087905383344, 20.0, 178.5
`BIO_14, 0.3344475151505309, 0.0, 47.5
'AETT_AUTQ, 0.6936193142439476, 14.5, 72.0
`SLOPE, -0.04485340484774968, 0.0, 1660.5
`SLOPE, -0.226330956261879, 0.0, 55.5
'AETT_AUTQ, 0.04991253455408153, 15.5, 72.0
`LORURDIST, -0.07335230203061607, 0.0, 37.5
`CONT_INDEX, -0.18502412805409543, 54.0, 157.5
`PREC_SPRQ, -0.45442138027627754, 1.0, 15.5
'ETRT_SPRQ, -0.786596504929173, 909.5, 996.0
`ETRT_SPRQ, -0.10111225629584979, 20.0, 357.5
`SLOPE, -0.04960328661310033, 0.0, 1318.5
`ERR3KR, -0.15283009979266693, 0.0, 4988.5
'BIO_9, -0.37833739409557676, 210.5, 326.0
'ETRT_SPRQ, -0.12773676481004276, 713.5, 996.0
'ETRT_SPRQ, -0.06353667215281517, 687.5, 996.0
`AETT_AUTQ, -0.14782272250988923, 1.0, 4.5
`SCAI, 0.1199883422681272, 0.0, 5366.5
`STRMHIFLODIST, 0.033766190380162556, 0.0, 170.5
`ERR3KR, -0.06244241556756788, 0.0, 2871.5
`AGRIC_LC, -0.07551043527557595, 0.0, 450.0
`BIO_14, 0.2795859859455777, 0.0, 51.5
'ETRT_SPRQ, -0.13995398841585294, 718.5, 996.0
`SLOPE, -0.029378355725843783, 0.0, 162.5
`SCAI, 0.19570874657450585, 0.0, 5367.5
`SLOPE, -0.08558797547839361, 0.0, 19.5
`SLOPE, -0.006961529386464912, 0.0, 933.5
`STRMHIFLODIST, -0.016826228306116103, 0.0, 2.5
`ETRT_SPRQ, -0.0823647397457294, 20.0, 367.5
'SCAI, -0.3720058365694491, 3777.5, 7853.0
'SCAI, 0.36912135544637165, 5664.5, 7853.0
`PETH_AUTQ, 0.048458883215595855, 14.0, 44.5
`ETRT_SPRQ, -0.15889311969989212, 20.0, 143.5
`PETH_AUTQ, 0.10604353120713528, 14.0, 45.5
'BIO_9, -0.1160522868202993, 225.5, 326.0
'ETRT_SPRQ, -0.2233878159581528, 867.5, 996.0
'AGRIC_LC, -0.3298173659958395, 4050.0, 10000.0
`ETRT_SPRQ, -0.15710350337262857, 20.0, 176.5
'BIO_9, -0.1903245246121025, 244.5, 326.0
'AGRIC_LC, -0.11662375950206304, 4250.0, 10000.0
`LORURDIST, -0.012609369840053534, 0.0, 43.5
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'ETRT_SPRQ, -0.02486229600000863, 719.5, 996.0
`ERR3KR, -0.017204675701525455, 0.0, 4986.5
`BIO_14, 0.024397954901360847, 0.0, 52.5
`ERR3KR, -0.014013060473400682, 0.0, 4968.5
linearPredictorNormalizer, 3.29153968497841
densityNormalizer, 3334.3223687567506
numBackgroundPoints, 14275
entropy, 9.303630254355102
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AGRIC_LC, 0.0, 0.0, 10000.0
BIO_19, 0.0, 10.0, 1447.0
BIO_3, 0.0, 26.0, 64.0
CONT_DFMO, 0.0, -188.0, 78.0
ELEV, 0.0, 96.0, 7442.0
ETRT_ANN, 0.0, 20.0, 934.0
EW_INDX, 0.0, -62.0, 2164.0
HIRURDIST, 0.0, 0.0, 286.0
IMI, 0.0, 8.0, 2962.0
MNPOPDEN3R, 0.0, 0.0, 850.0
PREC_SUMQ, 0.0, 1.0, 150.0
SCAI, 0.0, 0.0, 7853.0
SLOPE, 0.0, 0.0, 6783.0
TPI19KR, 0.0, 1328.0, 6647.0
URBAN_LC, 0.0, 0.0, 10000.0
AGRIC_LC^2, -1.2311277119247417, 0.0, 1.0E8
CONT_DFMO^2, -2.153078797458606, 0.0, 35344.0
ELEV^2, -0.7021231910935017, 9216.0, 5.5383364E7
ETRT_ANN^2, -1.415785178572709, 400.0, 872356.0
PREC_SUMQ^2, 3.2762357071220585, 1.0, 22500.0
SLOPE^2, 0.23003292494896593, 0.0, 4.6009089E7
'AGRIC_LC, -1.5385259854135933, 4650.0, 10000.0
`PREC_SUMQ, 0.3747567267695199, 1.0, 29.5
`ETRT_ANN, -0.03088650199341966, 20.0, 146.5
`MNPOPDEN3R, 0.23605133641842946, 0.0, 1.5
`BIO_19, -0.2753112331196852, 10.0, 76.5
`ETRT_ANN, -0.9057234025108222, 20.0, 147.5
`PREC_SUMQ, 0.018672791733104356, 1.0, 28.5
`SLOPE, -0.10494058371468701, 0.0, 110.5
`ETRT_ANN, -0.5880866157441039, 20.0, 171.5
'PREC_SUMQ, 0.31467593651155806, 68.5, 150.0
`URBAN_LC, 0.5820190566157107, 0.0, 50.0
`ELEV, -0.3693619918285804, 96.0, 746.0
'PREC_SUMQ, 0.04252072546532022, 49.5, 150.0
`ELEV, -0.3329338342184629, 96.0, 759.0
`MNPOPDEN3R, 0.05844712500245663, 0.0, 16.5
`SLOPE, -0.04604209998218693, 0.0, 1010.5
`EW_INDX, -0.023444326164104773, -62.0, 1019.5
'EW_INDX, -0.33601931604532514, 1365.5, 2164.0
`MNPOPDEN3R, 0.048618870336068265, 0.0, 19.5
`SLOPE, -0.09627150216237253, 0.0, 1000.5
`HIRURDIST, -0.10488009960492693, 0.0, 34.5
`ELEV, -0.0371135693964462, 96.0, 763.0
'ELEV, -0.21832692805703355, 3149.5, 7442.0
`ETRT_ANN, -0.2933207940689474, 20.0, 182.5
`SLOPE, -0.11790701401503621, 0.0, 1320.5
'PREC_SUMQ, 0.7507013265977002, 72.5, 150.0
'EW_INDX, -0.7861291259307454, 1366.5, 2164.0
'ELEV, -0.9393722694863643, 2995.0, 7442.0
`AGRIC_LC, -0.001777676613723118, 0.0, 350.0
'ETRT_ANN, -0.6954640595034305, 655.5, 934.0
'EW_INDX, 0.8674965720627884, 1817.0, 2164.0
`AGRIC_LC, -0.09391542197720754, 0.0, 450.0
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`IMI, 0.154229666762346, 8.0, 27.5
`TPI19KR, 0.09524923305560734, 1328.0, 2607.5
`HIRURDIST, -0.062277001163799146, 0.0, 66.5
`PREC_SUMQ, 0.1786592641074499, 1.0, 33.5
`ETRT_ANN, -0.7356051270777244, 20.0, 206.5
'CONT_DFMO, -0.027796019156070134, 14.5, 78.0
`EW_INDX, -0.12593883753303364, -62.0, 1056.5
`BIO_19, -0.33715920590309145, 10.0, 32.5
`ELEV, 0.4076975506576581, 96.0, 338.0
`SLOPE, -0.1200965684118764, 0.0, 55.5
'ELEV, -0.3157474919106837, 2916.0, 7442.0
`SLOPE, -0.07900248691623363, 0.0, 3120.0
`MNPOPDEN3R, 0.2759679448177981, 0.0, 115.0
'PREC_SUMQ, 0.4947268330440985, 74.5, 150.0
`SLOPE, -0.17561324544292498, 0.0, 56.5
'ELEV, -0.21862017188061877, 2904.5, 7442.0
'EW_INDX, -0.17307364349888577, 1359.5, 2164.0
`TPI19KR, 0.36719740043937116, 1328.0, 2663.0
'ETRT_ANN, -0.16474719225018775, 658.5, 934.0
`EW_INDX, -0.08713467760868943, -62.0, 1057.5
`HIRURDIST, -0.048149880826229896, 0.0, 39.5
`PREC_SUMQ, 0.04130771699932173, 1.0, 34.5
`ELEV, -0.08377464070118416, 96.0, 735.0
`MNPOPDEN3R, 0.12802972905855017, 0.0, 112.5
`BIO_3, -0.33192502228536824, 26.0, 32.5
`MNPOPDEN3R, 0.06830856560248352, 0.0, 2.5
`SLOPE, -0.019834799340723783, 0.0, 236.5
`EW_INDX, -0.1052969109647478, -62.0, 480.5
'ELEV, -0.28443943565990426, 4947.5, 7442.0
`PREC_SUMQ, 0.7171580575359425, 1.0, 37.5
`PREC_SUMQ, -0.24983609549034963, 1.0, 10.5
`ETRT_ANN, -0.20661733224022164, 20.0, 207.5
'AGRIC_LC, -0.16181549384675833, 4250.0, 10000.0
`SCAI, 0.07456210389709002, 0.0, 5386.5
`BIO_19, -0.09630985674504312, 10.0, 33.5
`MNPOPDEN3R, 0.1345156674266589, 0.0, 111.5
`IMI, 0.055440567072124115, 8.0, 90.5
'EW_INDX, -0.08608050120312968, 1351.5, 2164.0
`SLOPE, -0.18253681048744202, 0.0, 19.5
`SLOPE, -0.02937710407723525, 0.0, 237.5
'SCAI, 0.17562616080392807, 5681.5, 7853.0
`SCAI, 0.34574439111549066, 0.0, 5391.5
`SLOPE, -0.036864489495693986, 0.0, 158.5
`SCAI, -0.03265095823864417, 0.0, 2841.0
'AGRIC_LC, -0.4422079540903236, 3650.0, 10000.0
`TPI19KR, -0.2849906040908664, 1328.0, 3958.5
`TPI19KR, 0.31320601853682045, 1328.0, 2791.5
`SLOPE, -0.03690938905598243, 0.0, 919.5
`SLOPE, -0.20659586366774374, 0.0, 73.5
`BIO_3, -0.04954629164800714, 26.0, 41.5
'EW_INDX, -0.045985091299837626, 1349.5, 2164.0
`BIO_3, -0.023032977779592605, 26.0, 42.5
`ETRT_ANN, -0.10510969288831651, 20.0, 125.5
`TPI19KR, -0.12408001284552489, 1328.0, 3916.5
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`BIO_19, -0.021285208363159534, 10.0, 83.5
'AGRIC_LC, -0.20329415334423404, 4050.0, 10000.0
`TPI19KR, 0.10072888318334303, 1328.0, 2660.0
'EW_INDX, 0.1574123743443726, 1818.5, 2164.0
`SLOPE, -0.009211515940760513, 0.0, 1332.5
'EW_INDX, -0.0790809746202741, 1347.5, 2164.0
`SCAI, 0.10084347711392325, 0.0, 5385.5
'TPI19KR, -0.10266176949745942, 4330.5, 6647.0
'CONT_DFMO, -0.01584953018307581, -3.5, 78.0
'ETRT_ANN, -0.2451965773525462, 672.5, 934.0
'HIRURDIST, -0.03564435617182451, 92.5, 286.0
linearPredictorNormalizer, 3.0096044349559428
densityNormalizer, 1782.6995203814633
numBackgroundPoints, 14275
entropy, 9.298967179095436
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AGRIC_LC, 0.0, 0.0, 10000.0
BIO_9, 0.0, -137.0, 326.0
CONT_INDEX, 0.0, 54.0, 359.0
DISS3KR, 0.0, 0.0, 10000.0
ELEV, 0.0, 96.0, 7442.0
EW_INDX, 0.0, -62.0, 2164.0
MEDRURDIST, 0.0, 0.0, 271.0
PREC_SUMQ, 0.0, 1.0, 150.0
PREC_WINQ, 0.0, 3.0, 423.0
ROADDEN9KR, 0.0, 0.0, 2893.0
SLOPE, 0.0, 0.0, 6783.0
SPRURDIST, 0.0, 0.0, 342.0
STRMLOFLODIST, 0.0, 0.0, 131.0
TAETT_TANN, 0.0, 37.0, 1146.0
TPETH_M_TAETT, 0.0, 37.0, 1848.0
AGRIC_LC^2, -1.1510379305689584, 0.0, 1.0E8
CONT_INDEX^2, 0.10532396966696622, 2916.0, 128881.0
DISS3KR^2, 0.23976833075919055, 0.0, 1.0E8
ELEV^2, -0.40152443202578597, 9216.0, 5.5383364E7
PREC_SUMQ^2, 2.119619059470843, 1.0, 22500.0
SLOPE^2, 0.29557276243649483, 0.0, 4.6009089E7
TAETT_TANN^2, -0.18950468547378568, 1369.0, 1313316.0
'AGRIC_LC, -1.5722490942399359, 4650.0, 10000.0
`BIO_9, -0.4150213726035978, -137.0, 22.5
`PREC_SUMQ, 0.4364073092104478, 1.0, 29.5
`TPETH_M_TAETT, -0.8292855521505232, 37.0, 413.5
`TAETT_TANN, -1.4526037260738578, 37.0, 196.5
`SLOPE, -0.14439541261993802, 0.0, 120.5
'PREC_SUMQ, 1.8640423616324349, 71.5, 150.0
'EW_INDX, -0.5828274258349729, 1381.5, 2164.0
'ELEV, -0.12456661423738054, 3092.0, 7442.0
`ELEV, -0.3594741724757364, 96.0, 759.0
`DISS3KR, -0.02538928630024843, 0.0, 2431.5
`AGRIC_LC, -0.06141504977376701, 0.0, 350.0
`ROADDEN9KR, 0.08607732173911704, 0.0, 170.5
`ELEV, -0.3161314365731558, 96.0, 763.0
'ELEV, -0.4190004577584083, 3088.0, 7442.0
`SLOPE, -0.10504754462241553, 0.0, 925.5
'TPETH_M_TAETT, -0.500521537056394, 1235.5, 1848.0
`EW_INDX, -0.22305737319132457, -62.0, 479.5
`STRMLOFLODIST, -0.06771060943697786, 0.0, 10.5
`CONT_INDEX, -0.14454686573177286, 54.0, 156.5
`TAETT_TANN, -0.30827072717766313, 37.0, 258.5
'ELEV, -0.31775175752675716, 2969.5, 7442.0
`SLOPE, -0.048647648934044906, 0.0, 918.5
'PREC_WINQ, -0.1440124925943485, 45.5, 423.0
'PREC_SUMQ, 0.2704808150030228, 51.5, 150.0
`MEDRURDIST, -0.13576963885744858, 0.0, 32.5
`ELEV, -0.1538002327268907, 96.0, 769.0
`DISS3KR, -0.32451039589601705, 0.0, 2086.5
`TAETT_TANN, -0.45411507590551403, 37.0, 261.5
`PREC_WINQ, 0.41831082490652854, 3.0, 89.5
'BIO_9, 0.6309998283267146, 148.5, 326.0
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'BIO_9, -0.1588125087352508, 220.5, 326.0
'EW_INDX, 0.8344911108197978, 1825.5, 2164.0
`SPRURDIST, 1.954747466130858, 0.0, 161.5
`TPETH_M_TAETT, -0.05305576180344193, 37.0, 655.5
`TAETT_TANN, -0.22421532299182217, 37.0, 291.5
'TPETH_M_TAETT, -0.5849699533023032, 1218.5, 1848.0
`SLOPE, -0.08260212015214466, 0.0, 3050.0
`PREC_WINQ, 0.1207705760531663, 3.0, 92.5
'PREC_SUMQ, 0.022246430749737808, 55.5, 150.0
'ELEV, -0.24354597369055622, 2897.0, 7442.0
'ELEV, -0.2728141210947723, 2904.5, 7442.0
'AGRIC_LC, -0.20560287966523205, 2950.0, 10000.0
'MEDRURDIST, -0.16088862966886405, 148.5, 271.0
`TPETH_M_TAETT, -0.5258331410993741, 37.0, 248.5
`ELEV, 0.32961012382404975, 96.0, 338.0
`SLOPE, -0.305232261548649, 0.0, 56.5
'EW_INDX, -0.5120486147124859, 1365.5, 2164.0
`CONT_INDEX, -0.4237241914004232, 54.0, 145.5
`SLOPE, -0.04902868864728796, 0.0, 1332.5
`ROADDEN9KR, 0.0150079395752299, 0.0, 169.5
`TAETT_TANN, -0.205278509714351, 37.0, 279.5
`TPETH_M_TAETT, -0.14698437364929426, 37.0, 715.5
`TAETT_TANN, -0.18007283904565466, 37.0, 278.5
`BIO_9, -0.14748002120982684, -137.0, 56.5
`MEDRURDIST, -0.03945266118471298, 0.0, 106.5
`PREC_SUMQ, 0.7465424491192151, 1.0, 38.5
`BIO_9, -0.10702586618992689, -137.0, 57.5
`BIO_9, -0.14920586267479924, -137.0, 54.5
`AGRIC_LC, -0.05594862694294646, 0.0, 450.0
`DISS3KR, -0.06343641780285213, 0.0, 715.5
`SLOPE, -0.06306083701163041, 0.0, 335.5
`SLOPE, -0.06420689394573201, 0.0, 71.5
`PREC_WINQ, 0.05155764068089097, 3.0, 88.5
`SLOPE, -0.04629053188414481, 0.0, 162.5
`TPETH_M_TAETT, -0.21894314071497917, 37.0, 455.5
`SLOPE, -0.03520574393121504, 0.0, 161.5
`SPRURDIST, 0.0389931541729191, 0.0, 151.0
`TPETH_M_TAETT, -0.12890234609290963, 37.0, 459.5
`STRMLOFLODIST, 0.0176614198948829, 0.0, 0.5
'BIO_9, -0.36107670991334034, 241.5, 326.0
`BIO_9, -0.060218866979215184, -137.0, 53.5
'DISS3KR, -0.03408397856489873, 7383.5, 10000.0
`ELEV, -0.036313713671542215, 96.0, 728.0
'ELEV, -0.15683662341063098, 4918.0, 7442.0
`BIO_9, -0.08391312572941861, -137.0, 39.5
'MEDRURDIST, -0.048900576186418764, 144.5, 271.0
`TAETT_TANN, -0.25086494807700516, 37.0, 170.5
`TAETT_TANN, -0.44421084772336633, 37.0, 171.5
'PREC_WINQ, -0.12369195671748005, 176.5, 423.0
'AGRIC_LC, -0.5450945837520826, 4050.0, 10000.0
`BIO_9, -0.21724002199194536, -137.0, 38.5
`TPETH_M_TAETT, -0.17084944851845651, 37.0, 456.5
'DISS3KR, -0.04502370687919435, 7371.5, 10000.0
`TPETH_M_TAETT, -0.036051090601683586, 37.0, 716.5
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`SLOPE, -0.022555580995764983, 0.0, 158.5
`MEDRURDIST, -0.02668799312272179, 0.0, 4.5
`SLOPE, -0.02895738454738856, 0.0, 72.5
`DISS3KR, -0.017560125033971086, 0.0, 2061.5
'AGRIC_LC, -0.15042905578959698, 4250.0, 10000.0
`SLOPE, -0.01524632595338305, 0.0, 1322.5
'EW_INDX, 0.10735135970601231, 1818.5, 2164.0
'EW_INDX, -0.04260464575784513, 1364.5, 2164.0
'PREC_WINQ, -0.1081412212073177, 175.5, 423.0
linearPredictorNormalizer, 3.923157015809239
densityNormalizer, 2127.8531428976894
numBackgroundPoints, 14275
entropy, 9.288009355960169
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AGRIC_LC, 0.0, 0.0, 10000.0
BIO_2, 0.0, 76.0, 211.0
BIO_8, 0.0, -121.0, 332.0
BIO_9, 0.0, -137.0, 326.0
CTI, 0.0, 456.0, 7471.0
DISS3KR, 0.0, 0.0, 10000.0
ELEV, 0.0, 96.0, 7442.0
LORURDIST, 0.0, 0.0, 212.0
MEDURBDIST, 0.0, 0.0, 353.0
PREC_SUMQ, 0.0, 1.0, 150.0
ROADDEN19KR, 0.0, 0.0, 3331.0
ROADDEN3KR, 0.0, 0.0, 2292.0
TAETT_TANN, 0.0, 37.0, 1146.0
TMAX_AUTQ, 0.0, -20.0, 270.0
TPI19KR, 0.0, 1328.0, 6647.0
AGRIC_LC^2, -1.1033211606039812, 0.0, 1.0E8
BIO_8^2, -0.49526554259314337, 0.0, 110224.0
CTI^2, -1.260682547668702, 207936.0, 5.5815841E7
DISS3KR^2, 0.01673418127398772, 0.0, 1.0E8
ELEV^2, -1.1549695601710515, 9216.0, 5.5383364E7
LORURDIST^2, 0.2323230552240158, 0.0, 44944.0
MEDURBDIST^2, -1.1759628281718235, 0.0, 124609.0
PREC_SUMQ^2, 1.1780127490234809, 1.0, 22500.0
TAETT_TANN^2, -1.7619024542553106, 1369.0, 1313316.0
'AGRIC_LC, -1.8422118575757531, 4650.0, 10000.0
`BIO_9, -0.38506498017232754, -137.0, 22.5
`PREC_SUMQ, 0.5264333237034038, 1.0, 29.5
`TMAX_AUTQ, -0.18304945708216383, -20.0, 80.5
`TAETT_TANN, -1.346061141507448, 37.0, 196.5
`BIO_9, -0.3276900503185317, -137.0, 21.5
`LORURDIST, -0.043846727243291514, 0.0, 8.5
`TMAX_AUTQ, -0.6130618988686592, -20.0, 81.5
`ELEV, -0.35008625722148995, 96.0, 737.0
'PREC_SUMQ, 0.7941582707045367, 70.5, 150.0
`PREC_SUMQ, 0.07082377604221121, 1.0, 28.5
`AGRIC_LC, -0.055960960846057395, 0.0, 350.0
`DISS3KR, -0.27542268481955917, 0.0, 2117.5
`MEDURBDIST, -0.9156922147401126, 0.0, 3.5
`BIO_2, -0.12807104992255497, 76.0, 127.5
'PREC_SUMQ, 0.3994500358340574, 51.5, 150.0
`LORURDIST, -0.31135679094069496, 0.0, 0.5
'TMAX_AUTQ, -0.27496940439465584, 202.5, 270.0
`LORURDIST, -0.060131498990262884, 0.0, 30.5
'ELEV, -0.3633913034477273, 3149.5, 7442.0
'PREC_SUMQ, 0.7201718037210358, 50.5, 150.0
`LORURDIST, -0.08949068140604886, 0.0, 34.5
`TAETT_TANN, -0.8521602660945228, 37.0, 259.5
'ELEV, -0.401261455743999, 3238.5, 7442.0
`BIO_2, -1.0235631170598682, 76.0, 128.5
'PREC_SUMQ, 0.8647551597325135, 57.5, 150.0
'BIO_2, -0.62900900692876, 176.5, 211.0
`ROADDEN3KR, 0.026938059891239843, 0.0, 592.5
`TPI19KR, 0.292078072052247, 1328.0, 2660.0
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`LORURDIST, -0.05789100889193267, 0.0, 74.5
'TMAX_AUTQ, -0.5116333424878797, 201.5, 270.0
`PREC_SUMQ, -0.30378527465820804, 1.0, 7.5
`AGRIC_LC, -0.0922618793234093, 0.0, 450.0
'ELEV, -1.225680465181918, 4955.0, 7442.0
'BIO_9, 0.2793737291179228, 149.5, 326.0
'PREC_SUMQ, 0.41571468494137626, 48.5, 150.0
`LORURDIST, -0.04384610494730548, 0.0, 50.5
`DISS3KR, -0.20716669885035463, 0.0, 708.5
`ELEV, -0.30482748256552106, 96.0, 728.0
'TPI19KR, -0.3286328426019816, 4107.5, 6647.0
`BIO_9, -0.07922832885173314, -137.0, 53.5
'ROADDEN3KR, -0.3752270589726429, 432.5, 2292.0
`LORURDIST, -0.10080211245664498, 0.0, 77.5
'BIO_9, 0.139014053079486, 148.5, 326.0
`TAETT_TANN, -0.5751936815745271, 37.0, 169.5
'AGRIC_LC, -0.2343700391881064, 2950.0, 10000.0
`BIO_9, -0.05368945752875481, -137.0, 39.5
`TAETT_TANN, -0.296996828741594, 37.0, 258.5
`ELEV, 0.6954152483159158, 96.0, 334.5
`BIO_2, -0.27935442204614064, 76.0, 130.5
`TMAX_AUTQ, -0.1416215336414073, -20.0, 74.5
`BIO_9, 0.08482252181227071, -137.0, -63.5
`DISS3KR, -0.05390437342962674, 0.0, 2086.5
`CTI, 0.06586032489125991, 456.0, 3826.5
'BIO_9, -0.1994762437034258, 224.5, 326.0
`BIO_2, -0.22549760055647192, 76.0, 151.5
`LORURDIST, -0.026727609778428318, 0.0, 15.5
`TAETT_TANN, 0.02802831366259254, 37.0, 554.5
`LORURDIST, -0.07764494744645198, 0.0, 16.5
`ROADDEN19KR, 0.007808470242558511, 0.0, 113.5
'DISS3KR, -0.10118332972493484, 8793.0, 10000.0
`LORURDIST, -0.07133999283304784, 0.0, 3.5
'PREC_SUMQ, 0.1255411078796662, 49.5, 150.0
'ELEV, -0.08107273075229174, 2899.0, 7442.0
`TAETT_TANN, -0.1534585420336851, 37.0, 278.5
'TMAX_AUTQ, -0.10296189935468401, 200.5, 270.0
`TAETT_TANN, -0.36006584586311796, 37.0, 170.5
`ROADDEN3KR, 0.0924498758149877, 0.0, 1134.0
`TAETT_TANN, 0.04440030453291326, 37.0, 553.5
`ROADDEN3KR, 0.03905038216204505, 0.0, 1132.5
`PREC_SUMQ, 0.28028879354447517, 1.0, 38.5
'ELEV, -0.13046514286429708, 2904.5, 7442.0
'PREC_SUMQ, 0.07258572824694867, 73.5, 150.0
`TAETT_TANN, 0.056949694606961934, 37.0, 552.5
`TAETT_TANN, -0.3389521310416532, 37.0, 171.5
`ELEV, -0.11700178645753712, 96.0, 713.0
'ELEV, -0.03341832033648342, 2914.0, 7442.0
`BIO_9, -0.19576490644253378, -137.0, 38.5
'PREC_SUMQ, 0.053627195471919284, 72.5, 150.0
'AGRIC_LC, -0.47670485624238224, 4050.0, 10000.0
`TPI19KR, 0.2064469664366071, 1328.0, 2914.5
`TPI19KR, 0.15577769800614494, 1328.0, 2892.5
`MEDURBDIST, 0.010761418163048158, 0.0, 55.5
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'AGRIC_LC, -0.06563539838529112, 4250.0, 10000.0
`CTI, 0.011838811067519753, 456.0, 3843.5
linearPredictorNormalizer, 1.1267302504341414
densityNormalizer, 1937.0510275805395
numBackgroundPoints, 14275
entropy, 9.292213891158704
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AETT_SPRQ, 0.0, 4.0, 139.0
AETT_WINQ, 0.0, 3.0, 78.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_1, 0.0, -48.0, 239.0
BIO_17, 0.0, 0.0, 315.0
BIO_9, 0.0, -135.0, 318.0
DISS3KR, 0.0, 0.0, 10000.0
HLI, 0.0, 3159.0, 8280.0
LORURDIST, 0.0, 0.0, 215.0
POPDEN, 0.0, 0.0, 478.0
PREC_SUMQ, 0.0, 1.0, 149.0
ROADDEN3KR, 0.0, 0.0, 2182.0
SEI, 0.0, 2438.0, 8334.0
SLOPE, 0.0, 0.0, 6933.0
STRMDIST, 0.0, 0.0, 85.0
AETT_SPRQ^2, -3.1292437936673014, 16.0, 19321.0
AGRIC_LC^2, -0.39147456093274796, 0.0, 1.0E8
BIO_1^2, 1.8460143351718798, 0.0, 57121.0
BIO_9^2, 1.2861427680047162, 0.0, 101124.0
DISS3KR^2, 0.4187113622453274, 0.0, 1.0E8
LORURDIST^2, 0.2499584092077214, 0.0, 46225.0
SLOPE^2, 0.3911825938987741, 0.0, 4.8066489E7
`SLOPE, -0.0020889398362872002, 0.0, 542.5
`SLOPE, -0.20328625090229951, 0.0, 540.5
`SLOPE, -0.20068133351457104, 0.0, 538.5
'AGRIC_LC, -1.1911165505788337, 4350.0, 10000.0
`PREC_SUMQ, 0.4964330443359538, 1.0, 37.5
`SLOPE, -0.13526263676590813, 0.0, 539.5
`AETT_SPRQ, -1.5411778976140238, 4.0, 32.5
`POPDEN, 0.2909609292472363, 0.0, 0.5
`SLOPE, -0.3552397780758043, 0.0, 202.5
'AGRIC_LC, -1.7530608437780089, 4750.0, 10000.0
`BIO_9, -0.10266587925296815, -135.0, 71.5
`STRMDIST, -0.03593709314441603, 0.0, 6.5
`BIO_1, -0.06937120718041256, -48.0, 49.5
`AGRIC_LC, -0.08650368050714703, 0.0, 650.0
`POPDEN, 0.2664059322703025, 0.0, 1.5
`LORURDIST, -0.26783980971679977, 0.0, 5.5
`BIO_1, -0.48339906282696155, -48.0, 51.5
`AETT_SPRQ, -0.3676824291825062, 4.0, 38.5
'PREC_SUMQ, 0.6551928063415351, 56.5, 149.0
`POPDEN, 1.049579703866578, 0.0, 20.5
'BIO_1, -0.00467979459210207, 175.5, 239.0
`BIO_9, -0.7958918356040202, -135.0, -71.5
`AETT_SPRQ, -0.32646848830523734, 4.0, 40.5
`ROADDEN3KR, 0.04179003924171437, 0.0, 281.5
'AETT_SPRQ, 0.22159306804029089, 102.5, 139.0
`AETT_WINQ, -0.33552572969279676, 3.0, 9.5
`SLOPE, -0.1699189049910179, 0.0, 2069.5
'AETT_WINQ, 0.5060492717197594, 33.5, 78.0
`PREC_SUMQ, -0.696259799374594, 1.0, 6.5
'BIO_1, -1.343574926686214, 174.5, 239.0
`AETT_SPRQ, -0.7235199385151474, 4.0, 46.5
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`AETT_WINQ, 0.4320821205561822, 3.0, 15.5
`SLOPE, -0.14104947250285824, 0.0, 2104.5
`LORURDIST, -0.11015997600727298, 0.0, 91.5
`BIO_1, -2.0625278861602343, -48.0, 21.5
`AETT_WINQ, 0.315814530287316, 3.0, 16.5
'PREC_SUMQ, 0.6978804376984972, 58.5, 149.0
'AGRIC_LC, -0.5592674165118916, 2550.0, 10000.0
`SLOPE, -0.2539222262888545, 0.0, 132.5
`SLOPE, -0.0767461548488727, 0.0, 2034.5
'SEI, 0.1007751429655372, 5450.5, 8334.0
`BIO_17, -0.22552875122422977, 0.0, 52.5
`PREC_SUMQ, 0.07154529335490085, 1.0, 41.5
`BIO_9, -0.7830699625778669, -135.0, -70.5
`DISS3KR, -0.1605868058566975, 0.0, 2068.5
`LORURDIST, -0.0842454047880249, 0.0, 0.5
`STRMDIST, -0.14401731790885358, 0.0, 14.5
`BIO_9, -0.05417881063485349, -135.0, 66.5
'BIO_1, -1.7076234232586445, 172.5, 239.0
`POPDEN, 0.16309514775221, 0.0, 21.5
`DISS3KR, -0.10531114195175989, 0.0, 2283.5
`PREC_SUMQ, 0.1745521991756049, 1.0, 49.5
`BIO_9, -0.3264023173567452, -135.0, 67.5
`SLOPE, -0.05159020461302897, 0.0, 330.5
'BIO_9, -0.27864296460843013, 206.5, 318.0
`BIO_17, -0.007837102760923531, 0.0, 49.5
'AETT_WINQ, 0.5306062010385207, 45.5, 78.0
`BIO_17, -0.21675946485029265, 0.0, 66.5
`SLOPE, -0.018149367434630116, 0.0, 1881.5
`AETT_SPRQ, -0.3010776816024044, 4.0, 47.5
`HLI, 0.09845615307372647, 3159.0, 5910.5
`SLOPE, -0.07829137096213282, 0.0, 331.5
`AETT_SPRQ, -0.16190104194237143, 4.0, 41.5
`ROADDEN3KR, 0.020886492483391042, 0.0, 497.5
`BIO_9, -0.29843931016807546, -135.0, -65.5
`AETT_WINQ, -0.6486236591289677, 3.0, 10.5
`HLI, 0.27324445943832393, 3159.0, 5904.5
'SEI, 0.14561456693296929, 5432.5, 8334.0
`STRMDIST, -0.03502629739227441, 0.0, 11.5
`SLOPE, -0.0943954244195908, 0.0, 334.5
`STRMDIST, -0.017671089509282978, 0.0, 10.5
`ROADDEN3KR, 0.011469781127209935, 0.0, 491.5
`SLOPE, -0.07463490845081472, 0.0, 335.5
`AGRIC_LC, -0.03220579319433778, 0.0, 750.0
`AETT_SPRQ, -0.14802835507527673, 4.0, 48.5
'AETT_SPRQ, 0.3561984191444851, 101.5, 139.0
'BIO_9, -0.10688060263769864, 205.5, 318.0
`AETT_SPRQ, -0.2962332442394525, 4.0, 50.5
`STRMDIST, -0.030669702595905648, 0.0, 3.5
`AETT_SPRQ, -0.10711559172534553, 4.0, 51.5
`LORURDIST, -0.012213111671953231, 0.0, 14.5
`SLOPE, -0.00819663676144233, 0.0, 1792.0
`BIO_1, -0.03277762116680363, -48.0, 52.5
linearPredictorNormalizer, 3.12098906673386
densityNormalizer, 1361.0823505882358
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numBackgroundPoints, 13007
entropy, 9.01372772035456
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AETT_SPRQ, 0.0, 4.0, 139.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_2, 0.0, 74.0, 212.0
BIO_3, 0.0, 26.0, 64.0
CONT_DFMO, 0.0, -187.0, 77.0
LOURBDIST, 0.0, 0.0, 286.0
PREC_SUMQ, 0.0, 1.0, 149.0
ROADDEN3KR, 0.0, 0.0, 2182.0
SEI, 0.0, 2438.0, 8334.0
SLOPE, 0.0, 0.0, 6933.0
SPRURDIST, 0.0, 0.0, 360.0
STRMHIFLODIST, 0.0, 0.0, 762.0
STRMMDFLODIST, 0.0, 0.0, 235.0
TPETH_ANN, 0.0, 492.0, 1902.0
TPI9KR, 0.0, 1159.0, 6316.0
AETT_SPRQ^2, -1.386181480461359, 16.0, 19321.0
AGRIC_LC^2, -0.4030406285732219, 0.0, 1.0E8
BIO_2^2, -0.6157948627042145, 5476.0, 44944.0
CONT_DFMO^2, -3.149938206639408, 0.0, 34969.0
LOURBDIST^2, 0.6373444457521391, 0.0, 81796.0
SLOPE^2, 0.9639389639450577, 0.0, 4.8066489E7
STRMHIFLODIST^2, -0.5399190403610156, 0.0, 580644.0
STRMMDFLODIST^2, 0.8091974217260934, 0.0, 55225.0
TPETH_ANN^2, 1.9158296977009486, 242064.0, 3617604.0
TPI9KR^2, 0.6232258727699744, 1343281.0, 3.9891856E7
`SLOPE, -7.656951825276805E-4, 0.0, 555.5
`SLOPE, -0.002859904313184025, 0.0, 545.5
`SLOPE, -0.055877104501117804, 0.0, 544.5
`SLOPE, -0.1079848494036572, 0.0, 543.5
`SLOPE, -0.05215825488342422, 0.0, 542.5
`SLOPE, -0.05097658265657227, 0.0, 541.5
`SLOPE, -0.2931353783501075, 0.0, 540.5
'AGRIC_LC, -0.45548049073787855, 4350.0, 10000.0
`PREC_SUMQ, 0.13442609278175813, 1.0, 37.5
`PREC_SUMQ, 0.7214727000832076, 1.0, 36.5
`AETT_SPRQ, -0.6362115765286257, 4.0, 32.5
`SLOPE, -0.47372710134516577, 0.0, 334.5
`AETT_SPRQ, -0.48927819873176287, 4.0, 33.5
'AGRIC_LC, -2.077350257174424, 4750.0, 10000.0
`TPETH_ANN, -0.6913871791104593, 492.0, 1016.5
`AGRIC_LC, -0.016629213355903304, 0.0, 650.0
`AETT_SPRQ, -0.41745979504305986, 4.0, 38.5
`TPETH_ANN, -0.4822569487009449, 492.0, 1047.5
`AETT_SPRQ, -0.43738238750053654, 4.0, 39.5
'CONT_DFMO, -0.6683665741309078, 33.5, 77.0
`ROADDEN3KR, 0.0821305905239727, 0.0, 488.5
`TPETH_ANN, -0.24473832130472883, 492.0, 1053.5
'BIO_2, -0.35601858940608544, 175.5, 212.0
`SPRURDIST, 0.009762249958497574, 0.0, 134.0
`TPI9KR, -0.6383536390129083, 1159.0, 4023.5
`BIO_3, -0.0303367346247022, 26.0, 34.5
`STRMHIFLODIST, 0.05184997762351654, 0.0, 102.5
`SLOPE, -0.5019037227355923, 0.0, 132.5
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'CONT_DFMO, -0.3767209304805652, -2.5, 77.0
`AETT_SPRQ, -0.6652307417262066, 4.0, 47.5
`SLOPE, -0.12410290239525525, 0.0, 2019.5
`PREC_SUMQ, -0.4492189225062653, 1.0, 7.5
`PREC_SUMQ, 0.14418413581400727, 1.0, 35.5
`AGRIC_LC, -0.05056329751687217, 0.0, 750.0
'PREC_SUMQ, 0.5968049558323698, 57.5, 149.0
'AGRIC_LC, -0.5393387353582529, 2450.0, 10000.0
`STRMMDFLODIST, -0.19977805221003384, 0.0, 1.5
`AETT_SPRQ, -0.35534783707507983, 4.0, 50.5
'LOURBDIST, -0.09873451576458872, 198.5, 286.0
'STRMMDFLODIST, -0.4575373105815884, 154.5, 235.0
`SLOPE, -0.10393109224498435, 0.0, 1885.5
'TPETH_ANN, -1.5296398109618754, 1497.5, 1902.0
`SPRURDIST, 0.22614712390752365, 0.0, 166.0
`AETT_SPRQ, -0.27477157383756035, 4.0, 48.5
'STRMMDFLODIST, -0.23664680827818946, 153.5, 235.0
`TPETH_ANN, -0.21873804969028254, 492.0, 773.5
'STRMMDFLODIST, -0.23073535503028542, 152.5, 235.0
`SPRURDIST, 2.5196084228001085, 0.0, 187.5
`ROADDEN3KR, 0.016291704098074827, 0.0, 490.5
'TPETH_ANN, -0.5580981889304661, 1498.5, 1902.0
`TPETH_ANN, -0.7122762093055969, 492.0, 783.5
`AETT_SPRQ, -0.13086995137606475, 4.0, 41.5
`PREC_SUMQ, 0.03513039916299507, 1.0, 49.5
`PREC_SUMQ, -0.1422109121739469, 1.0, 8.5
'TPETH_ANN, -0.7544153697423646, 1499.5, 1902.0
`PREC_SUMQ, 0.039617621595496914, 1.0, 40.5
`SLOPE, -0.020485951535235036, 0.0, 1884.5
`SLOPE, -0.03179692848775228, 0.0, 194.5
`LOURBDIST, -0.10276021042594126, 0.0, 1.5
`SLOPE, -0.01691585929373791, 0.0, 1881.5
'TPI9KR, -0.10779900615485123, 4813.5, 6316.0
`ROADDEN3KR, 0.009821255548217557, 0.0, 491.5
`SLOPE, -0.060331205036522895, 0.0, 1794.5
'TPETH_ANN, -0.4804749782021215, 1502.5, 1902.0
`STRMHIFLODIST, 0.047741021470422786, 0.0, 47.5
'AETT_SPRQ, 0.1727940795230404, 105.5, 139.0
`SLOPE, -0.11737889758783943, 0.0, 1792.0
`SLOPE, -0.04836983253229636, 0.0, 1796.5
`SLOPE, -0.03228686857895142, 0.0, 335.5
`STRMHIFLODIST, 0.02829809653371284, 0.0, 62.5
'AGRIC_LC, -0.3113848003939765, 3850.0, 10000.0
'PREC_SUMQ, 0.3154821813815076, 58.5, 149.0
`ROADDEN3KR, 0.0033822514117972905, 0.0, 497.5
'SEI, 0.031029225521282025, 5560.5, 8334.0
'BIO_2, -0.037619008812055016, 176.5, 212.0
linearPredictorNormalizer, 4.497836879256139
densityNormalizer, 1337.5153027902936
numBackgroundPoints, 13007
entropy, 9.008241931267976
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AGRIC_LC, 0.0, 0.0, 10000.0
BIO_1, 0.0, -48.0, 239.0
BIO_7, 0.0, 138.0, 507.0
BIO_9, 0.0, -135.0, 318.0
CONT_DFMO, 0.0, -187.0, 77.0
ETRT_SPRQ, 0.0, 20.0, 1000.0
MEDRURDIST, 0.0, 0.0, 261.0
MEDURBDIST, 0.0, 0.0, 336.0
MNPOPDEN9R, 0.0, 0.0, 1468.0
ROADDIST, 0.0, 0.0, 355.0
SEI, 0.0, 2438.0, 8334.0
SLOPE, 0.0, 0.0, 6933.0
STRMMDFLODIST, 0.0, 0.0, 235.0
TPI3KR, 0.0, 1468.0, 7411.0
TPI9KR, 0.0, 1159.0, 6316.0
AGRIC_LC^2, -0.3907847382168342, 0.0, 1.0E8
BIO_1^2, 0.9273440326180671, 0.0, 57121.0
BIO_9^2, 1.83484954103766, 0.0, 101124.0
CONT_DFMO^2, -3.3709518040220265, 0.0, 34969.0
ETRT_SPRQ^2, -1.4155555947105285, 400.0, 1000000.0
MEDRURDIST^2, 0.8872578312502817, 0.0, 68121.0
MEDURBDIST^2, -0.654371580971759, 0.0, 112896.0
ROADDIST^2, 0.42634286705734753, 0.0, 126025.0
SLOPE^2, 1.1744690380952139, 0.0, 4.8066489E7
STRMMDFLODIST^2, 0.7787234292408544, 0.0, 55225.0
TPI3KR^2, 0.2390732456218788, 2155024.0, 5.4922921E7
TPI9KR^2, 0.13281502256757396, 1343281.0, 3.9891856E7
`SLOPE, -0.0017211401718495113, 0.0, 544.5
`SLOPE, -0.23382616077142626, 0.0, 541.5
`SLOPE, -0.2842215498128821, 0.0, 540.5
`SLOPE, -0.013204591440262344, 0.0, 538.5
'AGRIC_LC, -1.0195265569049514, 4350.0, 10000.0
`SLOPE, -0.15653436357934383, 0.0, 350.5
`ETRT_SPRQ, -0.39040426922117627, 20.0, 239.5
`ETRT_SPRQ, -0.3803159310410179, 20.0, 243.5
`CONT_DFMO, -0.1522184144853038, -187.0, -77.5
'AGRIC_LC, -1.2788530650912513, 4750.0, 10000.0
`ROADDIST, -0.5188272198180762, 0.0, 0.5
`ROADDIST, -0.0708577145338549, 0.0, 15.5
`ETRT_SPRQ, -0.25710475526845544, 20.0, 312.5
`MEDURBDIST, -0.9226518292397533, 0.0, 3.5
`BIO_9, -1.5072663936761508, -135.0, -70.5
`MEDRURDIST, -0.053593952726457714, 0.0, 10.5
`ETRT_SPRQ, -0.21271030571712857, 20.0, 319.5
`BIO_1, -0.3159469374305098, -48.0, 53.5
'BIO_1, -1.0861668695654836, 174.5, 239.0
`SLOPE, -0.11337645439071933, 0.0, 2037.5
`ETRT_SPRQ, -0.4134709919030156, 20.0, 320.5
'CONT_DFMO, -0.16920414845535148, 33.5, 77.0
`SLOPE, -0.25822201289547153, 0.0, 132.5
`STRMMDFLODIST, -0.21691923075532854, 0.0, 1.5
`MEDRURDIST, -0.008840257928239588, 0.0, 113.5
`SLOPE, -0.08068496309527282, 0.0, 2018.5
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`TPI9KR, -1.1148769367914309, 1159.0, 4023.5
'BIO_1, -0.7878951392847527, 173.5, 239.0
`AGRIC_LC, -0.025449851568775404, 0.0, 650.0
'AGRIC_LC, -0.46398599585640904, 2550.0, 10000.0
'STRMMDFLODIST, -0.45232836813043115, 154.5, 235.0
`SLOPE, -0.062347888063219815, 0.0, 1894.5
`SLOPE, -0.11855471475045863, 0.0, 189.5
`SLOPE, -0.04289434448571064, 0.0, 1886.5
'BIO_7, 0.003426426270301336, 386.5, 507.0
`BIO_7, 0.5350753476366674, 138.0, 302.5
`BIO_1, -1.2428313461411, -48.0, 21.5
`BIO_9, -0.985343485000652, -135.0, -65.5
`BIO_7, -0.45747338603408116, 138.0, 250.5
'STRMMDFLODIST, -0.4008605032143389, 153.5, 235.0
`AGRIC_LC, -0.022624016271557704, 0.0, 750.0
`MEDRURDIST, -0.18778762574847088, 0.0, 0.5
`ETRT_SPRQ, -0.21271394280277495, 20.0, 328.5
`ETRT_SPRQ, -0.1669011722711682, 20.0, 327.5
`MNPOPDEN9R, 0.04339148019278036, 0.0, 4.5
`SLOPE, -0.09396000034520854, 0.0, 194.5
`ETRT_SPRQ, -0.23401259285390727, 20.0, 330.5
'BIO_9, -0.27136262673765005, 206.5, 318.0
`BIO_9, -0.7020697898094634, -135.0, 66.5
`ETRT_SPRQ, -0.37797912612295514, 20.0, 329.5
`MEDRURDIST, -0.17832991388504224, 0.0, 21.5
`ETRT_SPRQ, -0.2909360345087195, 20.0, 148.5
`SLOPE, -0.06537362683681937, 0.0, 330.5
'BIO_9, -0.28219267254509817, 205.5, 318.0
`SLOPE, -0.07447400396946637, 0.0, 1881.5
`SLOPE, -0.02863157509242821, 0.0, 1796.5
`ETRT_SPRQ, -0.16462100501095805, 20.0, 374.5
'MEDRURDIST, -0.5249183966056712, 217.5, 261.0
'BIO_9, -0.7168489047852366, 204.5, 318.0
`BIO_1, -0.2500463389586025, -48.0, 22.5
`SLOPE, -0.13564082159652668, 0.0, 331.5
'BIO_7, 0.27834457221396075, 429.5, 507.0
'AGRIC_LC, -0.46932472557985727, 3850.0, 10000.0
`ETRT_SPRQ, -0.038690361114903156, 20.0, 401.5
`ETRT_SPRQ, -0.09124299495482703, 20.0, 156.5
'BIO_1, -0.5350953733505487, 172.5, 239.0
`SLOPE, -0.04870940340209499, 0.0, 334.5
`MEDRURDIST, -0.0426503853053678, 0.0, 15.5
`ETRT_SPRQ, -0.0631649054685174, 20.0, 200.5
linearPredictorNormalizer, 1.4804256569015328
densityNormalizer, 1205.88336244928
numBackgroundPoints, 13007
entropy, 9.00052135908811
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AETT_SPRQ, 0.0, 4.0, 139.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_17, 0.0, 0.0, 315.0
BIO_7, 0.0, 138.0, 507.0
BIO_8, 0.0, -125.0, 331.0
ELEV, 0.0, 77.0, 7526.0
HIURBDIST, 0.0, 0.0, 383.0
LOURBDIST, 0.0, 0.0, 286.0
MNPOPDEN3R, 0.0, 0.0, 955.0
PREC_SUMQ, 0.0, 1.0, 149.0
SLOPE, 0.0, 0.0, 6933.0
STRMHIFLODIST, 0.0, 0.0, 762.0
STRMMDFLODIST, 0.0, 0.0, 235.0
TPETH_ANN, 0.0, 492.0, 1902.0
TPI19KR, 0.0, 1065.0, 6311.0
AETT_SPRQ^2, -2.6806677264882146, 16.0, 19321.0
AGRIC_LC^2, -0.3756207918660113, 0.0, 1.0E8
BIO_17^2, 0.3339682430645868, 0.0, 99225.0
BIO_8^2, -1.4329182584017863, 0.0, 109561.0
HIURBDIST^2, -0.5519900283586471, 0.0, 146689.0
LOURBDIST^2, 0.5232277725992401, 0.0, 81796.0
SLOPE^2, 1.3376690871926784, 0.0, 4.8066489E7
STRMMDFLODIST^2, 0.8317924980340017, 0.0, 55225.0
TPETH_ANN^2, 2.7203172372873548, 242064.0, 3617604.0
`SLOPE, -0.021379206968880286, 0.0, 542.5
`SLOPE, -0.047508521440801026, 0.0, 541.5
`SLOPE, -0.27319266380065804, 0.0, 540.5
`SLOPE, -0.027128358223180975, 0.0, 538.5
'AGRIC_LC, -0.6135550316852887, 4350.0, 10000.0
`SLOPE, -0.1297848284466775, 0.0, 539.5
`PREC_SUMQ, 0.33801797571324255, 1.0, 36.5
`AETT_SPRQ, -1.1099028533512345, 4.0, 32.5
`AETT_SPRQ, -0.047596580142656685, 4.0, 31.5
`TPETH_ANN, -0.2832554732502204, 492.0, 1012.5
`SLOPE, -0.43293651254765464, 0.0, 331.5
'AGRIC_LC, -0.9873308177231885, 4750.0, 10000.0
`TPETH_ANN, -0.7407658080847627, 492.0, 1015.5
`MNPOPDEN3R, 0.23996398977807765, 0.0, 1.5
`TPETH_ANN, -0.6816309261757222, 492.0, 1018.5
`AGRIC_LC, -0.04367129100323198, 0.0, 650.0
`BIO_7, -0.6828338829132707, 138.0, 260.5
`AETT_SPRQ, -0.25768038448442665, 4.0, 38.5
'ELEV, -0.9595325582890101, 4604.0, 7526.0
`AETT_SPRQ, -0.32535487364712956, 4.0, 39.5
'PREC_SUMQ, 0.6783050473314208, 53.5, 149.0
`LOURBDIST, -0.8638484232356525, 0.0, 1.5
'ELEV, -0.5732191154212757, 4549.0, 7526.0
`BIO_8, 0.3750441556635114, -125.0, 3.5
`PREC_SUMQ, 0.3873653200439103, 1.0, 27.5
`AETT_SPRQ, -0.6251672583630004, 4.0, 42.5
`TPI19KR, -1.4383728490538015, 1065.0, 3718.5
`STRMHIFLODIST, 0.1598137262258572, 0.0, 45.5
'AGRIC_LC, -1.564806740943974, 3750.0, 10000.0
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'ELEV, -0.8459660647493125, 3712.0, 7526.0
`MNPOPDEN3R, 0.4026920003135703, 0.0, 139.5
'TPETH_ANN, -1.9555327549837622, 1509.5, 1902.0
`BIO_8, 0.12002448058913869, -125.0, -35.5
`SLOPE, -0.4862539493218394, 0.0, 132.5
'PREC_SUMQ, 0.724972161022758, 67.5, 149.0
`LOURBDIST, -0.01209034387541328, 0.0, 98.5
`SLOPE, -0.09753365061989268, 0.0, 2037.5
'STRMMDFLODIST, -0.5735994288041253, 153.5, 235.0
`HIURBDIST, 0.04565684505603274, 0.0, 217.5
`BIO_7, -1.4550570888898455, 138.0, 251.5
`SLOPE, -0.04839759073592064, 0.0, 2038.5
`BIO_17, -0.09517787186511378, 0.0, 70.5
`STRMMDFLODIST, -0.09281269406666476, 0.0, 1.5
`PREC_SUMQ, -0.41751397665077544, 1.0, 6.5
`AGRIC_LC, -0.030960253362303215, 0.0, 750.0
`BIO_17, -0.22305799561433892, 0.0, 69.5
`BIO_8, 0.2889424033380806, -125.0, -0.5
`STRMHIFLODIST, 0.017983456766986938, 0.0, 104.5
`TPETH_ANN, -0.26515155029676035, 492.0, 773.5
`TPI19KR, -0.20003757954725582, 1065.0, 3741.5
`BIO_17, -0.16494160214179732, 0.0, 68.5
`SLOPE, -0.05614936515107467, 0.0, 195.5
`TPI19KR, -0.1326638392420884, 1065.0, 3744.5
'AGRIC_LC, -0.11965460253709276, 2350.0, 10000.0
`AETT_SPRQ, -0.23198017219242692, 4.0, 48.5
'TPETH_ANN, -0.6837605101656486, 1496.5, 1902.0
'TPETH_ANN, -0.5986263303106648, 1497.5, 1902.0
'AETT_SPRQ, 0.17557409745758912, 102.5, 139.0
`BIO_17, -0.09708886073404936, 0.0, 67.5
`PREC_SUMQ, 0.0702143916121743, 1.0, 20.5
`SLOPE, -0.045136438063736205, 0.0, 2034.5
`SLOPE, -0.04200639308268361, 0.0, 202.5
`ELEV, -0.025421583470413928, 77.0, 1971.0
`SLOPE, -0.12052411746570452, 0.0, 2019.5
`AETT_SPRQ, -0.06202698003080996, 4.0, 47.5
`STRMHIFLODIST, 0.020010387608058913, 0.0, 191.5
'AGRIC_LC, -0.32921685768019415, 4850.0, 10000.0
`SLOPE, -0.08873959720584292, 0.0, 1886.5
`SLOPE, -0.018692506143954554, 0.0, 2033.5
'PREC_SUMQ, 0.11760685179678528, 57.5, 149.0
`SLOPE, -0.03856149892229567, 0.0, 334.5
`TPETH_ANN, -0.44496786801361665, 492.0, 783.5
'AETT_SPRQ, 0.5374348067198652, 101.5, 139.0
'STRMMDFLODIST, -0.2182110325252535, 152.5, 235.0
'BIO_8, 0.16473803758985178, 237.5, 331.0
`SLOPE, -0.04001059811574608, 0.0, 1881.5
`AETT_SPRQ, -0.5816549057901829, 4.0, 50.5
`LOURBDIST, -0.021594705558953133, 0.0, 32.5
`SLOPE, -0.014328710531070207, 0.0, 1877.5
'ELEV, -0.02381135583557945, 3339.0, 7526.0
linearPredictorNormalizer, 2.1232690305704067
densityNormalizer, 1157.8352806331113
numBackgroundPoints, 13007
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Reportes al Correo Real 
30 de Octubre, San Pedro Garza García, N.L. 


Envío mis reportes del día martes y jueves, ¡Han sido días super padres! con mucha 
actividad y muchas personas compartiendo sus impresiones e imágenes. 
¡Creo que se desencadeno una súper fiebre Monarca! 
 


Martes 27 de octubre del 2015 


Lugar: Monumento Natural “Cerro de La Silla” 


Con el fin de poder saciar mi curiosidad y también generar información sobre cómo se estaban 


viendo las Monarcas en el Cerro de La Silla, decidí ir a darme una vuelta por la localidad 


tradicional conocida como “Ruta al Teleférico” que se encuentra por la colonia “Bosques de la 


Pastora” en el municipio de Guadalupe. Les comparto aquí algo de lo que pude registrar: 


Al llegar al lugar se podría observar una gran cantidad de mariposas, además tuve la 


oportunidad de observar y registrar 2 especies más de plantas en las que he visto 


alimentándose a la Monarca. 







2 
 


 


Monarca alimentándose en planta que aún no identifico. 


 


Monarca alimentándose en un “Palo Verde” o “Hueso de 


Tigre” Esenbeckia berlandieri 


Jueves 29 de octubre del 2015 


Por la mañana tuve una oportunidad rápida de subir al área de la Meseta del Parque Ecológico 


Chipinque A.B.P. y encontrarme con un gran espectáculo, ya que al observar el cielo se podían 


apreciar cientos o miles de mariposas Monarcas (tal y como se aprecia en el video, mucho 


más impresionante en vivo). Hora: 9:10 a.m., Condiciones: Soleado, 26 ºC. 


Video: 


https://www.facebook.com/ParqueChipinque/videos/vb.153247111370285/112990368037128


5/?type=2&theater 


Biol. Jerónimo Chávez 


Parque Ecológico Chipinque 


 


30 de Octubre, Piedras Negras, Coahuila 



https://www.facebook.com/ParqueChipinque/videos/vb.153247111370285/1129903680371285/?type=2&theater

https://www.facebook.com/ParqueChipinque/videos/vb.153247111370285/1129903680371285/?type=2&theater
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Ayer fuimos al rancho "El Refugio" ubicado en el Ejido El Moral municipio de Piedras 
Negras donde me notificaron que habían visto cientos de Monarcas hace 15 y 10 días, 
lamentablemente por cuestiones de trabajo se me había complicado ir, sin embargo tuve la 
fortuna de encontrar las últimas dos viajeras! Agradezco la invitación de Waldo y Luis Terry 
propietarios del Rancho y fieles centinela del Río San Rodrigo. 


Por otra parte me permito enviarles una fotografía del 
Altar de Muertos de Floria (Mamá) quien siempre es 
recordada junto a sus siempre adoradas ¡Mariposas 
Monarcas! 
Saludos  
Wicho Durán 
 
Nota: 
La maestra Floria Estela Herrera de Durán fue durante 
14 años (1996-2009) una entusiasta participante y 
promotora del programa Correo Real. Cada año al final 
de la temporada de migración, mandaba un extenso 
informe con fotos, recortes de periódico, trabajos de 
sus alumnos de secundaria. Cuando venía a Saltillo a 
talleres o reuniones siempre era acompañada del 
pequeño Wicho, en cuyo corazón su mamá sembró el 
amor por las monarcas, Ahora ya adulto y 
profesionista, el Lic. Luis Alberto Durán, sigue 
participando en el programa en memoria de nuestra 
estimada compañera Floria. 
 


 
30 de Octubre, Saltillo, Coahuila 
Reportando el  avistamiento de Mariposa Monarca el 29/10/2015 pasando continuamente por 


el bosque de pino, en el Cerro de Los Elotes a 2700 msn, Sierra Hermosa, Municipio de 


Arteaga, alrededor de 20 por hora, desde las 9:00 hasta las 17:00 hora. 


Rafael H. Cárdenas 


ANP Sierra de Zapaliname 


 


30 de Octubre, Santa Catarina, N.L.  


Hay mucho que hacer para ayudar a las monarcas, sobre todo aquí en el parque donde 


pernoctan porque no hay flores. Yo sembré asclepias pero como están en el patio, un patio 


muy reducido, no llegan. Mi vecina tiene rosales y a veces veo que llegan ahí a libar, pero creo 


que los rosales no tienen néctar. Ella, mi vecina, puso una asclepia pero no sé qué pasó que 


ya no tiene flores ni hojas, con todo hoy vi una mariposa posada en la asclepia de mi vecina.  


Ana Isela Velázquez López  


 


30 de Octubre, Ensenada Baja California Norte 


29 Octubre (Estación de Monitoreo Arroyo Ensenada-Riviera) 


Condiciones climáticas: 15:00 Hrs, medio nublado, 23° C sensación térmica igual, Viento– 
NW  15 km/h,  50%,  1010 hpa 
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Una Monarca volando hacia el Sur 


30 Octubre (Estación Arroyo Ensenada-Riviera) 


Condiciones climáticas: 12:00h, despejado y soleado 27° C sensación térmica de 27° 
C, Viento NW 15km/h, 32%, humedad, 1011 hpa, 1msnm 


10 Monarcas  en vuelo, de las cuales tres 
presentan cortejo por más de 60 minutos, se 
posan por varios minutos en eucalipto, ligia y 
colorín  y vuelven a volar, a una altura de 3-5 m 
de alto, en orientación de los vientos y 
pegándoles con alas extendidas. Se observaron 
1 mariposas blancas y una amarilla en arroyo y 
dos parejas de patos Mallard y uno solitario y un 
pato no identificado.  Gran actividad reproductiva 
de las libélulas.  Creo que el verano en esta 
región se extendió. Aquí las fotos. Tuve mucha 
suerte y un Halcón posiblemente Peregrino. 


El hecho de encontrar estas tres mariposas en cortejo, vislumbra la posibilidad de que se 
queden en esta zona, hace falta ver si hay puesta de huevecillos y la presencia de orugas o 
capullos para lo cual estaremos al pendiente. Las condiciones climáticas son favorables. 
Saludos desde Ensenada 
Ing. José Luis Aguilar Rodríguez 
SEMARNAT-B.C. 


 
The reports that we would not like to receive 
October 31, Cuatro Ciénegas, Coahuila 
What hinders the route of the monarchs. Progress and irresponsibility. It is important that it is 
promoted in the places where you spend the night or eat, allusive advertisements. MONARCHS 
PRODUCING OXYGEN ... CARE. 
Prof. Daniel de Jesús Moreno González 
Butterflies run over on Highway 30 Monclova-Cuatro Ciénegas section, evidences taken 
by Prof. Daniel. 
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October 31, Saltillo, Coahuila 
Death on the Monterrey-Saltillo toll highway 
I enclose the photographs I took on my trip to Monterrey and this is seen daily during the 
migration season. 
Thank you very much, I hope it helps. 
Greetings. 
Ana Velia Rodríguez de Silva 


 
Butterflies collected in the stretch of gutter shown in this photo, approximately 20 meters 
They were a total of 115 complete butterflies (74 males and 41 females), plus another wing rest, which 
gives an average of 5.7 / meter. 


 


 
 
THANK YOU VELIA FOR YOUR CONTRIBUTION! 
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October 31, Saltillo Coahuila 


Yesterday I went to Monterrey to attend the Monarca festival, which organized the Chipinque 


Park for the third year. Traveling along the toll highway with Roberto Méndez, we were able to 


witness the death of monarchs along that road: The monarchs began to be seen when we 


entered the State of Nuevo Leon, this day the monarchs had a different behavior, perhaps due 


to the weather conditions that prevailed at that time, rain on the road part of the municipality of 


Ramos Arizpe, cloudy later, butterflies flew in circles on the highway and they headed farther 


north, perhaps to return to their shelters. We observed this phenomenon in several sections, 


we commented that it was in the canyons of the sierra, at 12:30 hours I started to register some 


critical points: Km. 68, PSV San Juan, Santa Barbara PIV, Km. 72-75, Km 81, Km 87 after the 


PSV San Ignacio, Km 90-91, entrance to the Jonuco Canyon (point with the highest number of 


Monarchs), before the braking ramp, 500m before the toll booth. 


After passing the house we stopped to take pictures and count dead butterflies along the ditch, 


we did several tests, walking and recording the corpses every 4 meters and found an average 


of 10 monarchs per stretch. We were also observing that nobody slows down in the presence 


of the monarchs and that each car collided with a butterfly (multiply by how many critical points 


each vehicle passes and how many cars pass by that highway). 


Taking advantage of being there, I collected 22 dead butterflies to use them as teaching 


material in workshops and talks with schools, today when going to save them, I remembered 


reading that in recent years there has been a change in the male-female ratio between these 


butterflies and more males are being born, I counted the ones that I had collected completely 


at random and the result was 6 females and 16 males. 


Total after this little investigation in the site of the events, we reached the end of the festival 


and lost an appointment with Ada Ita, for an interview in his program Haciendo-Eco, A thousand 


apologies. 


Rocío Treviño Ulloa 
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Fotos de Roberto Méndez.  


 
31 de Octubre, Saltillo, Coahuila 
Many butterflies monarchs on road 57 the stretch of the Dove - The wall. Low flight 
Cloudy day, 22 ° C 
Actually a lot of butterfliesIng. Francisco Mancilla 
 
31 de Octubre, Saltillo, Coahuila 
Sighting of approximately 60 monarchs in the downtown area of Saltillo. 
At 9:30 in the morning, flying towards the South, with SSO winds, 10 km / h, temperature 17º 
C, cloudy sky. Observation Time: 5 minutes, Observation place Abasolo Street and De la 
Fuente. I hope my observation will be useful. 
Olga Guadalupe Reyes 
 
31 de Octubre, Saltillo Coahuila 
Hay muchas monarcas en la col. Morelos, se ven espectaculares deslizándose por los cielos, 


es una gran experiencia. Día con nubes altas grises y viento del sur. 10:00 horas 


Verónica Trejo López 


 


31 de Octubre, Monterrey, N.L. 
El 26 de octubre en Cumbres 4 sector vimos pasar cientos de mariposas monarca, cielo 
despejado, se dirigían al sur este. 
Ruth Ibarra 
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1 de Noviembre, Garza García, N.L. 
¡Ayer sábado en la Sierra de Arteaga! 
Lorenzo J. de Rosenzweig 
FMCN 


 
 
El reporte completo 
El sábado 31 de octubre observamos un gran despliegue de MM, por todo el cañón de la 
Carbonera en Arteaga Coahuila, a las once de la mañana logramos contar un promedio de 24 
por minuto a la altura de la gasolinera Carbonera de la autopista México. En el recorrido por 
el cañón seguimos observando su vuelo hasta Piedra Blanca. 
A las 2 PM, ya de regreso observamos una gran cantidad (cientos) revoloteando 
frenéticamente en arboles de pino piñonero y nogal, esto nos llamó mucho la atención, 
bajamos del auto para tomar fotografías y observamos cómo estaban formando racimos al 
posarse en las ramas, el viento nos trajo las primeras gotas de una lluvia que en menos de 
quince minutos se dejó sentir en el punto donde nos encontrábamos. 
Es impactante que la mariposa monarca realiza esta acción para protegerse de la lluvia, 
formando sus racimos con una orientación en el árbol que sus ramas y hojas la protegían del 
ángulo por donde estaba cayendo la lluvia. 
Anexo unas fotos tomado por Lorenzo Rosenzweig, quien también estuvo presente para 
observar este espectáculo. 
Ing. Enrique Cisneros Tello 
FMCN 
 
2 de Noviembre, Guadalupe, N.L. 
Domingo 1 de noviembre de 9: 00 a 9:30 monarcas volando a 15 metros de altura  
Promedio de 15 por minuto, 20°C, cielo despejado.  
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A las 10:00 en Juárez N.L. en la colonia Jardines de La Silla 3 mariposa monarcas 
alimentándose en las flores de una buganvilia. 
 
2 de noviembre a las 12:15 una solitaria mariposa monarca volando a un metro de altura, 
por la colonia Paraíso en Guadalupe, N.L.  
Ing. Doroteo Aguilar Flores 
 
2 de Noviembre, Saltillo, Coahuila 


Cuando niña y según las costumbres el día 2 de noviembre llegaban los muertos a mi lugar de 


origen Huichapan Hidalgo, hoy veo la migración de la mariposa monarca conocida en mi 


pueblo como los muertos. Saltillo 12°C, soleado 25 mariposas por minuto en un lugar 


fijo, decenas de ellas engalanan el cielo de Lomas de Lourdes. 


Letty Rufino 


 


2 de Noviembre, Gómez Farías, Tamaulipas 


Reportando miles de monarcas pasando por el mirador coordenadas 0482230-2549070 


Día soleado, temperatura 21°C. Estuve monitoreando de 9:40am a 11:20 y me regresé a casa 


y siguen pasando saludos desde Gómez Farías 


Fernando Martínez 


 


2 de Noviembre, San Nicolás de los Garza 


Hace dos semanas fuimos al Cañón San Juan en límites de NL y Coahuila, y no vimos ninguna 
mariposa, pero la semana pasada entre semana, alcancé a ver en el trayecto al trabajo todos 
los días cientos de mariposas cruzando el Rio Santa Catarina rumbo a Chipinque. 
Esta fin de semana pasado fuimos a Rinconada, y ya empezamos a ver más mariposas por la 
zona, todavía no muchas como en otras ocasiones. 
Héctor Morón Ayala 
Club de Montañistas Hunzas 
 
2 de Noviembre, Santiago, N.L. 
Reporto que en el campamento Ecoaventura Santiago ubicado a 2 cuadras de carretera 
nacional y de la entrada al Pueblo Mágico de Santiago  este año solo hemos visto muy pocas 
mariposas monarca. 
Probablemente cambiaron de ruta pero el año pasado fue demasiada diferencia este año tal 
vez 10 cada minuto y esporádico no constante. Esto es empezando la última semana de 
octubre. 
Guillermo Canedo 
Ecoaventura Santiago 
 
3 de Noviembre, Saltillo, Coahuila 
En este árbol en Sacramento, el día 28 de octubre había docenas de mariposas, 
las fotos están horribles porque era muy tarde y la fotógrafa es muy mala. 
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¿Quién puede identificar a este árbol? 
 
Nota: Me han reportado muchas perchas, pero 
no han mencionado el nombre del árbol o 
arbusto donde están formados. 
 
 
 
 
 
 
 
 


 
Flores y frutos para ayudar a identificarlo 


 


 


 


 


 


 


 


 


 


Nunca las había visto alimentándose en los pinos salados. 
Las vi en Cuatrociénegas el día 28 de Octubre cerca de mediodía, eran docenas. 


  
Eglantina Canales Gutiérrez 


SEMA-Coahuila 
 


 


 


Ing. Rocío Treviño Ulloa 


Coordinadora Programa Correo Real 


Profauna A.C. 
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Reportes al Correo Real 
30 de Octubre, San Pedro Garza García, N.L. 


Envío mis reportes del día martes y jueves, ¡Han sido días super padres! con mucha 
actividad y muchas personas compartiendo sus impresiones e imágenes. 
¡Creo que se desencadeno una súper fiebre Monarca! 
 


Martes 27 de octubre del 2015 


Lugar: Monumento Natural “Cerro de La Silla” 


Con el fin de poder saciar mi curiosidad y también generar información sobre cómo se estaban 


viendo las Monarcas en el Cerro de La Silla, decidí ir a darme una vuelta por la localidad 


tradicional conocida como “Ruta al Teleférico” que se encuentra por la colonia “Bosques de la 


Pastora” en el municipio de Guadalupe. Les comparto aquí algo de lo que pude registrar: 


Al llegar al lugar se podría observar una gran cantidad de mariposas, además tuve la 


oportunidad de observar y registrar 2 especies más de plantas en las que he visto 


alimentándose a la Monarca. 







 


Monarca alimentándose en planta que aún no identifico. 


 


Monarca alimentándose en un “Palo Verde” o “Hueso de 


Tigre” Esenbeckia berlandieri 


Jueves 29 de octubre del 2015 


Por la mañana tuve una oportunidad rápida de subir al área de la Meseta del Parque Ecológico 


Chipinque A.B.P. y encontrarme con un gran espectáculo, ya que al observar el cielo se podían 


apreciar cientos o miles de mariposas Monarcas (tal y como se aprecia en el video, mucho 


más impresionante en vivo). Hora: 9:10 a.m., Condiciones: Soleado, 26 ºC. 


Video: 


https://www.facebook.com/ParqueChipinque/videos/vb.153247111370285/112990368037128


5/?type=2&theater 


Biol. Jerónimo Chávez 


Parque Ecológico Chipinque 


 


30 de Octubre, Piedras Negras, Coahuila 



https://www.facebook.com/ParqueChipinque/videos/vb.153247111370285/1129903680371285/?type=2&theater

https://www.facebook.com/ParqueChipinque/videos/vb.153247111370285/1129903680371285/?type=2&theater





Ayer fuimos al rancho "El Refugio" ubicado en el Ejido El Moral municipio de Piedras 
Negras donde me notificaron que habían visto cientos de Monarcas hace 15 y 10 días, 
lamentablemente por cuestiones de trabajo se me había complicado ir, sin embargo tuve la 
fortuna de encontrar las últimas dos viajeras! Agradezco la invitación de Waldo y Luis Terry 
propietarios del Rancho y fieles centinela del Río San Rodrigo. 


Por otra parte me permito enviarles una fotografía del 
Altar de Muertos de Floria (Mamá) quien siempre es 
recordada junto a sus siempre adoradas ¡Mariposas 
Monarcas! 
Saludos  
Wicho Durán 
 
Nota: 
La maestra Floria Estela Herrera de Durán fue durante 
14 años (1996-2009) una entusiasta participante y 
promotora del programa Correo Real. Cada año al final 
de la temporada de migración, mandaba un extenso 
informe con fotos, recortes de periódico, trabajos de 
sus alumnos de secundaria. Cuando venía a Saltillo a 
talleres o reuniones siempre era acompañada del 
pequeño Wicho, en cuyo corazón su mamá sembró el 
amor por las monarcas, Ahora ya adulto y 
profesionista, el Lic. Luis Alberto Durán, sigue 
participando en el programa en memoria de nuestra 
estimada compañera Floria. 
 


 
30 de Octubre, Saltillo, Coahuila 
Reportando el  avistamiento de Mariposa Monarca el 29/10/2015 pasando continuamente por 


el bosque de pino, en el Cerro de Los Elotes a 2700 msn, Sierra Hermosa, Municipio de 


Arteaga, alrededor de 20 por hora, desde las 9:00 hasta las 17:00 hora. 


Rafael H. Cárdenas 


ANP Sierra de Zapaliname 


 


30 de Octubre, Santa Catarina, N.L.  


Hay mucho que hacer para ayudar a las monarcas, sobre todo aquí en el parque donde 


pernoctan porque no hay flores. Yo sembré asclepias pero como están en el patio, un patio 


muy reducido, no llegan. Mi vecina tiene rosales y a veces veo que llegan ahí a libar, pero creo 


que los rosales no tienen néctar. Ella, mi vecina, puso una asclepia pero no sé qué pasó que 


ya no tiene flores ni hojas, con todo hoy vi una mariposa posada en la asclepia de mi vecina.  


Ana Isela Velázquez López  


 


30 de Octubre, Ensenada Baja California Norte 


29 Octubre (Estación de Monitoreo Arroyo Ensenada-Riviera) 


Condiciones climáticas: 15:00 Hrs, medio nublado, 23° C sensación térmica igual, Viento– 
NW  15 km/h,  50%,  1010 hpa 







Una Monarca volando hacia el Sur 


30 Octubre (Estación Arroyo Ensenada-Riviera) 


Condiciones climáticas: 12:00h, despejado y soleado 27° C sensación térmica de 27° 
C, Viento NW 15km/h, 32%, humedad, 1011 hpa, 1msnm 


10 Monarcas  en vuelo, de las cuales tres 
presentan cortejo por más de 60 minutos, se 
posan por varios minutos en eucalipto, ligia y 
colorín  y vuelven a volar, a una altura de 3-5 m 
de alto, en orientación de los vientos y 
pegándoles con alas extendidas. Se observaron 
1 mariposas blancas y una amarilla en arroyo y 
dos parejas de patos Mallard y uno solitario y un 
pato no identificado.  Gran actividad reproductiva 
de las libélulas.  Creo que el verano en esta 
región se extendió. Aquí las fotos. Tuve mucha 
suerte y un Halcón posiblemente Peregrino. 


El hecho de encontrar estas tres mariposas en cortejo, vislumbra la posibilidad de que se 
queden en esta zona, hace falta ver si hay puesta de huevecillos y la presencia de orugas o 
capullos para lo cual estaremos al pendiente. Las condiciones climáticas son favorables. 
Saludos desde Ensenada 
Ing. José Luis Aguilar Rodríguez 
SEMARNAT-B.C. 


 
Los reportes que no quisiéramos recibir 
31 de Octubre, Cuatro Ciénegas, Coahuila 
Lo que obstaculiza la ruta de las monarcas. El progreso y la irresponsabilidad. Es importante 
que se promueva en los sitios donde pernocta o se alimenta, anuncios alusivos. MONARCAS 
PRODUCIENDO OXIGENO...CUIDALAS. 
Prof. Daniel de Jesús Moreno González 
Mariposas atropelladas en la Carretera 30 tramo Monclova-Cuatro Ciénegas, evidencias 
tomadas por el Prof. Daniel. 


 
 







 
31 de Octubre, Saltillo, Coahuila 
Muerte en la autopista de cuota Monterrey- Saltillo 
Adjunto las fotografías que tome en mi viaje a Monterrey y esto se ve diariamente durante la 
temporada de migración. 
Muchas gracias, ojalá ayude en algo.  
Saludos.  
Ana Velia Rodríguez de Silva 


 
Mariposas recogidas en el tramo de cuneta que se muestra en esta foto, aproximadamente 20 metros 
Fueron un total de 115 mariposas completas (74 machos y 41 hembras), más otro resto de alas, lo que 
da un promedio de 5.7/metro.  


 


 
 
¡GRACIAS VELIA POR TU APORTACIÓN! 







 
31 de Octubre, Saltillo Coahuila 


Ayer que fui a Monterrey para asistir al festival de la Monarca que por tercer año organiza el 


Parque Chipinque, viajando por la autopista de cuota con Roberto Méndez pudimos ser 


testigos de la mortandad de monarcas por esa carretera: Las monarcas empezaron a verse 


cuando entramos al estado de Nuevo León, este día las monarcas tenían un comportamiento 


diferente, tal vez por las condiciones atmosféricas que prevalecían en ese momento, lluvia en 


la parte de carretera del municipio de Ramos Arizpe, nublados más adelante, las mariposas 


volaban en círculos sobre la autopista y se dirigían más hacia el norte, tal vez para volver a 


sus refugios. Este fenómeno lo observamos en varios tramos, comentábamos que era en los 


cañones de la sierra, a las 12:30 horas empecé a registrar algunos puntos críticos: Km. 68, 


PSV San Juan, PIV Santa Bárbara, Km. 72-75, Km 81, Km 87 después del PSV San Ignacio, 


Km 90-91, entrada al Cañón del Jonuco (punto con el mayor número de Monarcas), antes de 


la rampa de frenado, 500m antes de la caseta de cobro. 


Después pasar la caseta nos detuvimos para tomar fotografías y contar mariposas muertas a 


lo largo de la cuneta, hicimos varias pruebas, caminando y registrando los cadáveres cada 4 


metros y encontramos un promedio de 10 monarcas por tramo. También estuvimos 


observando que nadie baja la velocidad ante la presencia de las monarcas y que con cada 


carro chocaba una mariposa (multipliquen por cuantos puntos críticos pasa cada vehículo y 


cuantos carros pasan por esa autopista). 


Aprovechando estar ahí, recogí 22 mariposas muertas para utilizarlas como material didáctico 


en talleres y platicas con escuelas, hoy al irlas a guardar, me acordé de haber leído que en los 


últimos años ha habido un cambio en la proporción macho-hembra entre estas mariposas y 


están naciendo más machos, conté las que yo había recogido completamente al azar y el 


resultado fue 6 hembras y 16 machos. 


Total después de esta pequeña investigación en el sitio de los hechos, llegamos al final del 


festival y perdí una cita con Ada Ita, para una entrevista en su programa Haciendo-Eco, Mil 


disculpas. 


Rocío Treviño Ulloa 


 







 


 
Fotos de Roberto Méndez.  


 
31 de Octubre, Saltillo, Coahuila 
Muchas mariposas monarcas en carretera 57 el tramo de la Paloma - La muralla. Vuelo bajo 
Día nublado, 22° C 
En realidad mucha presencia de mariposas 
Ing. Francisco Mancilla 
 
31 de Octubre, Saltillo, Coahuila 
Avistamiento de aproximadamente 60 monarcas en la zona centro de Saltillo. 
A las 9:30 de la mañana, volando hacia el Sur, con vientos SSO, 10 km/h, temperatura 17º C, 
cielo medio nublado. Tiempo de Observación: 5 minutos, lugar de Observación Calle Abasolo 
y De la Fuente. Espero sea útil mi observación. 
Olga Guadalupe Reyes 
 
31 de Octubre, Saltillo Coahuila 
Hay muchas monarcas en la col. Morelos, se ven espectaculares deslizándose por los cielos, 


es una gran experiencia. Día con nubes altas grises y viento del sur. 10:00 horas 


Verónica Trejo López 


 


31 de Octubre, Monterrey, N.L. 
El 26 de octubre en Cumbres 4 sector vimos pasar cientos de mariposas monarca, cielo 
despejado, se dirigían al sur este. 
Ruth Ibarra 







 
1 de Noviembre, Garza García, N.L. 
¡Ayer sábado en la Sierra de Arteaga! 
Lorenzo J. de Rosenzweig 
FMCN 


 
 
El reporte completo 
El sábado 31 de octubre observamos un gran despliegue de MM, por todo el cañón de la 
Carbonera en Arteaga Coahuila, a las once de la mañana logramos contar un promedio de 24 
por minuto a la altura de la gasolinera Carbonera de la autopista México. En el recorrido por 
el cañón seguimos observando su vuelo hasta Piedra Blanca. 
A las 2 PM, ya de regreso observamos una gran cantidad (cientos) revoloteando 
frenéticamente en arboles de pino piñonero y nogal, esto nos llamó mucho la atención, 
bajamos del auto para tomar fotografías y observamos cómo estaban formando racimos al 
posarse en las ramas, el viento nos trajo las primeras gotas de una lluvia que en menos de 
quince minutos se dejó sentir en el punto donde nos encontrábamos. 
Es impactante que la mariposa monarca realiza esta acción para protegerse de la lluvia, 
formando sus racimos con una orientación en el árbol que sus ramas y hojas la protegían del 
ángulo por donde estaba cayendo la lluvia. 
Anexo unas fotos tomado por Lorenzo Rosenzweig, quien también estuvo presente para 
observar este espectáculo. 
Ing. Enrique Cisneros Tello 
FMCN 
 
2 de Noviembre, Guadalupe, N.L. 
Domingo 1 de noviembre de 9: 00 a 9:30 monarcas volando a 15 metros de altura  
Promedio de 15 por minuto, 20°C, cielo despejado.  







A las 10:00 en Juárez N.L. en la colonia Jardines de La Silla 3 mariposa monarcas 
alimentándose en las flores de una buganvilia. 
 
2 de noviembre a las 12:15 una solitaria mariposa monarca volando a un metro de altura, 
por la colonia Paraíso en Guadalupe, N.L.  
Ing. Doroteo Aguilar Flores 
 
2 de Noviembre, Saltillo, Coahuila 


Cuando niña y según las costumbres el día 2 de noviembre llegaban los muertos a mi lugar de 


origen Huichapan Hidalgo, hoy veo la migración de la mariposa monarca conocida en mi 


pueblo como los muertos. Saltillo 12°C, soleado 25 mariposas por minuto en un lugar 


fijo, decenas de ellas engalanan el cielo de Lomas de Lourdes. 


Letty Rufino 


 


2 de Noviembre, Gómez Farías, Tamaulipas 


Reportando miles de monarcas pasando por el mirador coordenadas 0482230-2549070 


Día soleado, temperatura 21°C. Estuve monitoreando de 9:40am a 11:20 y me regresé a casa 


y siguen pasando saludos desde Gómez Farías 


Fernando Martínez 


 


2 de Noviembre, San Nicolás de los Garza 


Hace dos semanas fuimos al Cañón San Juan en límites de NL y Coahuila, y no vimos ninguna 
mariposa, pero la semana pasada entre semana, alcancé a ver en el trayecto al trabajo todos 
los días cientos de mariposas cruzando el Rio Santa Catarina rumbo a Chipinque. 
Esta fin de semana pasado fuimos a Rinconada, y ya empezamos a ver más mariposas por la 
zona, todavía no muchas como en otras ocasiones. 
Héctor Morón Ayala 
Club de Montañistas Hunzas 
 
2 de Noviembre, Santiago, N.L. 
Reporto que en el campamento Ecoaventura Santiago ubicado a 2 cuadras de carretera 
nacional y de la entrada al Pueblo Mágico de Santiago  este año solo hemos visto muy pocas 
mariposas monarca. 
Probablemente cambiaron de ruta pero el año pasado fue demasiada diferencia este año tal 
vez 10 cada minuto y esporádico no constante. Esto es empezando la última semana de 
octubre. 
Guillermo Canedo 
Ecoaventura Santiago 
 
3 de Noviembre, Saltillo, Coahuila 
En este árbol en Sacramento, el día 28 de octubre había docenas de mariposas, 
las fotos están horribles porque era muy tarde y la fotógrafa es muy mala. 







 
¿Quién puede identificar a este árbol? 
 
Nota: Me han reportado muchas perchas, pero 
no han mencionado el nombre del árbol o 
arbusto donde están formados. 
 
 
 
 
 
 
 
 


 
Flores y frutos para ayudar a identificarlo 


 


 


 


 


 


 


 


 


 


Nunca las había visto alimentándose en los pinos salados. 
Las vi en Cuatrociénegas el día 28 de Octubre cerca de mediodía, eran docenas. 


  
Eglantina Canales Gutiérrez 


SEMA-Coahuila 
 


 


 


Ing. Rocío Treviño Ulloa 


Coordinadora Programa Correo Real 


Profauna A.C. 


 








Latitude Longitude Transect Date Roadkills Road Sex
31.90705 -102.22445 86 11/2/2016 1 I-20 West 1 male


32.86011 -102.06023 48 10/12/2017 0 TX 137 NA
31.97607 -102.05893 82 10/18/2017 0 I-20 NA
31.24334 -101.94353 84 10/18/2017 0 TX 349 NA
33.16697 -101.88874 45b 10/12/2017 0 US 380 NA
30.74119 -101.85058 28 10/20/2016 2 I-10 West 2 male
32.10739 -101.85006 85 11/2/2016 0 I-20 West NA


30.68365 -101.80742 86 10/19/2017 0 TX 349 NA
30.74532 -101.68573 54 10/25/2016 0 I-10 West NA
30.72907 -101.56142 52 10/25/2016 15 I-10 West NA
30.72868 -101.56141 53 10/25/2016 0 I-10 East NA


30.72089 -101.55647 89 10/19/2017 0 TX 290 NA
32.31780 -101.50764 50 10/12/2017 0 US 87 NA
30.95286 -101.46062 91 11/3/2016 0 US190 West NA
32.26379 -101.45916 84 11/2/2016 1 I-20 West 1 male
30.69242 -101.44717 51 10/25/2016 34 I-10 East NA
30.69281 -101.44675 95 11/4/2016 21 I-10 West 9 female, 12 male
30.69280 -101.44666 50 10/25/2016 57 I-10 West 18 female, 39 male
30.69003 -101.42364 94 11/4/2016 66 I-10 West 13 female, 9 male, 44 NA
29.72684 -101.37002 63 10/26/2016 2 US90 East NA
29.72698 -101.36994 62 10/26/2016 2 US90 West 2 male
30.68213 -101.30636 49 10/25/2016 9 I-10 West 4 female, 5 male
30.68213 -101.30631 96 11/4/2016 2 I-10 West 1 female, 1 male
30.68217 -101.30630 27 10/19/2016 47 I-10 West 18 female, 20 male, 9 NA


30.80533 -101.29295 98 10/20/2017 0 TX 137 NA
30.68676 -101.29207 30 10/20/2016 17 -10 East (Median) NA
30.68660 -101.29202 29 10/20/2016 8 I-10 East NA
30.68740 -101.29121 31 10/20/2016 46 I-10 West NA
30.68726 -101.29115 32 10/20/2016 3 10 West (Median) NA


30.69693 -101.23988 92 10/19/2017 0 I-10 NA
29.70538 -101.21824 61 10/26/2016 0 US90 East NA
29.70551 -101.21820 60 10/26/2016 4 US90 West 3 female, 1 male
30.75463 -101.20577 92 11/3/2016 21 SH137 South NA
30.64707 -101.20448 93 11/4/2016 6 SH137 South 2 female, 4 male
30.03604 -101.17532 58 10/26/2016 0 SH163 South NA


31.84258 -101.16277 79 10/18/2017 1 TX 158 female
30.57418 -101.16212 55 10/26/2016 0 SH163 South NA
30.89537 -101.16125 26 10/19/2016 1 SH163 South 1 male
29.96137 -101.14799 59 10/26/2016 6 SH163 South 2 female, 4 male
30.18462 -101.09487 57 10/26/2016 0 SH163 South NA
30.31783 -101.09022 56 10/26/2016 2 SH163 South 1 female, 1 male


30.91060 -101.07729 95 10/19/2017 0 US 190 NA
30.91057 -101.07717 90 11/3/2016 2 US190 West 1 female, 1 male
32.34634 -101.04675 83 11/2/2016 0 I-20 West NA


33.17781 -101.03200 44 10/12/2017 0 US 380 NA
29.46723 -101.01465 65 10/27/2016 0 US90 West NA
29.46702 -101.01462 64 10/27/2016 0 US90 East NA


30.67021 -100.99129 113 10/20/2017 2 US 377 1 male, 1 female







31.80582 -100.93437 87 11/3/2016 0 US87 South NA
30.65255 -100.92261 48 10/25/2016 14 I-10 West 3 female, 10 male, 1 NA


32.35565 -100.89828 53 10/12/2017 0 TX 163 NA
30.63022 -100.86205 100 10/20/2017 1 I-10 male
29.66892 -100.85522 114 10/25/2017 4 US 277 3 males, 1 female
30.62369 -100.84477 33 10/20/2016 52 I-10 East NA
30.62383 -100.84472 34 10/20/2016 42 -10 East (Median) NA
30.62354 -100.84369 36 10/20/2016 0 10 West (Median) NA
30.62367 -100.84366 35 10/20/2016 24 I-10 West NA


33.72108 -100.84134 24 10/6/2017 0 TX 70 NA
29.36857 -100.83353 117 10/25/2017 0 US 90 NA
34.01229 -100.80745 23 10/6/2017 0 US 62 NA
31.31294 -100.78668 25 10/19/2016 2 US 67 West 1 female, 1 male
29.39283 -100.72670 67 10/27/2016 0 US90 East NA
29.39311 -100.72568 68 10/27/2016 1 US90 West 1 female
29.38919 -100.70255 69 10/27/2016 0 US90 East NA
29.38915 -100.70174 70 10/27/2016 2 US90 West 2 male
30.85514 -100.67358 89 11/3/2016 1 US190 West 1 female
30.58643 -100.66629 47 10/25/2016 5 I-10 East 2 female, 3 male
30.58628 -100.66514 46 10/25/2016 10 I-10 West 2 female, 8 male
32.41481 -100.64150 82 11/2/2016 0 I-20 West NA


30.56684 -100.54531 101 10/20/2017 1 I-10 male
28.79366 -100.51936 122 10/25/2017 1 US 277 female
31.49393 -100.47425 75 10/18/2017 0 US 87 NA
31.35737 -100.43377 88 11/3/2016 0 US277 South NA
32.83161 -100.43170 9 10/12/2016 0 SH70 NA
29.29948 -100.38955 71 10/27/2016 0 US90 East NA
29.29963 -100.38947 72 10/27/2016 1 US90 West 1 female
33.21010 -100.37582 8 10/11/2016 0 US380 NA
32.37968 -100.36858 17 10/14/2016 1 SH70 South 1 female


33.20951 -100.34511 41 10/11/2017 0 US 380 NA
28.67202 -100.31862 123 10/26/2017 0 US 277 NA
34.08141 -100.29983 21 10/5/2017 0 US 62, US 83 NA
30.00439 -100.27914 112 10/24/2017 0 US 377 NA
30.44420 -100.22060 102 10/20/2017 2 I-10 2 males
33.56993 -100.20916 7 10/11/2016 0 SH114 NA
32.49029 -100.17220 81 11/2/2016 0 I-20 West NA
30.45919 -100.14832 45 10/24/2016 0 I-10 West NA


33.55917 -100.14020 25 10/6/2017 0 US 82 NA
34.39910 -100.12484 17 10/5/2017 1 US 287 male
31.62699 -100.09409 24 10/18/2016 2 US 67 West 1 female, 1 male


32.48146 -100.08246 57 10/13/2017 0 I-20 NA
29.24322 -100.08011 73 10/27/2016 0 US90 East NA


30.48314 -100.04803 103 10/20/2017 1 I-10  male
30.49481 -99.98853 37 10/20/2016 0 I-10 East NA
30.49522 -99.98744 38 10/20/2016 0 -10 East (Median) NA


28.61071 -99.93687 124 10/26/2017 1 US 277 male
30.52489 -99.83313 44 10/24/2016 1 I-10 West NA


29.25948 -99.77677 135 10/27/2017 0 US 83 NA







32.75092 -99.76707 10 10/12/2016 0 US180 East NA
29.46031 -99.76696 136 10/27/2017 0 US 83 NA
29.72285 -99.75554 138 10/27/2017 0 RR 337 NA
29.56832 -99.74677 137 10/27/2017 0 US 83 NA
32.49069 -99.73384 16 10/13/2016 1 I-20 West 1 male
32.49067 -99.73369 80 11/2/2016 0 I-10 West NA


31.23574 -99.72215 73 10/17/2017 0 US 87 NA
29.26917 -99.71280 74 10/27/2016 2 US90 East 1 female, 1 male
30.42413 -99.67922 39 10/21/2016 0 I-10 East NA


28.57425 -99.65414 125 10/26/2017 1 TX 85 male
33.17675 -99.57915 39 10/11/2017 0 US 380 NA
29.31618 -99.57198 134 10/26/2017 0 US 90 NA
30.30415 -99.55095 40 10/21/2016 0 I-10 East NA
30.30442 -99.55064 41 10/21/2016 0 I-10 West NA
32.40947 -99.46853 79 11/1/2016 0 I-20 West NA


28.60350 -99.46226 126 10/26/2017 0 TX 85 NA
33.61843 -99.45204 6 10/11/2016 0 SH114 NA


28.62010 -99.42884 127 10/26/2017 2 TX 85 2 males
29.77234 -99.41974 139 10/27/2017 0 FM 337 NA
30.17099 -99.41582 110 10/24/2017 0 TX 41 NA
29.31375 -99.41406 133 10/26/2017 5 US 90  4 males, 1 female
34.22161 -99.39919 15 10/5/2017 0 US 287 NA
33.61090 -99.39682 27 10/6/2017 0 US 82 NA
31.74364 -99.34250 23 10/18/2016 1 US 67 West 1 female


32.38707 -99.30968 30 10/13/2017 1 I-20 female
29.32530 -99.30136 132 10/26/2017 2 US 90 2 males
29.33693 -99.17654 131b 10/26/2017 0 US 90 NA
28.78622 -99.12844 128 10/26/2017 0 I-35 NA
29.73010 -99.10310 141 10/27/2017 0 TX 16 NA
30.30253 -99.05477 42 10/21/2016 0 US 290 East NA
32.76493 -99.04959 11 10/12/2016 0 US180 East NA
32.37485 -98.99133 15 10/13/2016 3 I-20 West 2 female, 1 male


31.26668 -98.96542 71 10/17/2017 1 US 190  female
32.13722 -98.96204 78 11/1/2016 0 US183 North NA


29.09784 -98.94578 129 10/26/2017 1 I-35  male
30.23400 -98.90550 107 10/24/2017 0 TX 16 NA
29.33860 -98.82194 131 10/26/2017 0 FM 471 NA
33.37298 -98.77844 5 10/11/2016 0 SH114 West NA


33.17599 -98.75103 37 10/11/2017 0 US 380 NA
29.79237 -98.67825 142 10/27/2017 0 TX 46 NA
33.95761 -98.61244 12 10/5/2017 0 US 287 NA
31.90922 -98.55924 22 10/18/2016 0 US 377 West NA
30.24606 -98.38738 43 10/21/2016 0 US 281 South NA
32.75338 -98.33727 12 10/12/2016 0 US180 East NA
31.84363 -98.32908 77 11/1/2016 0 SH36 North NA


29.77358 -98.29294 144 10/27/2017 1 TX 46 male
32.54949 -98.27690 14 10/13/2016 3 I-20 West NA


31.09803 -98.21127 70 10/17/2017 0 US 183 NA
31.28974 -98.17006 76 11/1/2016 0 US183 North NA


30.20299 -98.15250 106 10/24/2017 0 US 290 NA







31.05285 -98.09180 69 10/17/2017 4 US 190  4 males
33.18685 -98.07399 4 10/11/2016 0 US380 West NA


33.12882 -98.06740 35 10/11/2017 1 TX 199 male
29.81191 -98.00284 145 10/27/2017 0 I-35 NA
30.19653 -98.00170 105 10/24/2017 0 US 290 NA
31.97729 -97.88320 21 10/18/2016 0 SH6 west NA
30.75716 -97.87648 75 11/1/2016 2 US183 North 2 female


32.63439 -97.70520 33 10/10/2017 0 TX 171 NA
33.23153 -97.67038 3 10/10/2016 1 US380 West NA
30.76849 -97.62814 18 10/17/2016 0 I-35 North NA
32.72183 -97.57385 13 10/13/2016 0 I-20 East NA


31.06509 -97.57357 68 10/17/2017 0 US 190 NA
33.70455 -97.53794 10 10/4/2017 1 US 82 NA
33.23558 -97.25785 2 10/10/2016 0 US380 West NA
31.35638 -97.21834 19 10/17/2016 0 I-35 North NA


32.10234 -97.19838 31 10/10/2017 0 TX 171 NA
32.00072 -97.16931 20 10/17/2016 0 SH22 West NA


31.63153 -97.00367 28 10/10/2017 0 US 84 NA
33.21943 -96.83399 1 10/10/2016 0 US380 West NA


33.67123 -96.69688 8 10/4/2017 0 US 82, TX 289 NA
32.06279 -96.45208 29 10/10/2017 0 I-45 NA
33.00843 -96.10754 1 10/3/2017 0 TX 34 NA
33.59921 -95.94134 5 10/4/2017 0 US 82 NA
33.61457 -95.12079 3 10/4/2017 0 US 82 NA
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Road type BEE Funnel


Sonora-


Sheffield 


Hotspot BEE Funnel


Sonora-


Sheffield 


Hotspot


2016


Motorway and Trunks8,906.83      18,617.47  95 8,812                     18,523            645.38            


Primary 11,878.42    25,918.30  0 11,878                   25,918            -                   


Secondary 17,705.15    38,168.77  28 17,677                   38,141            442.56            


Total


Percent Overwintering Population


Percent of Funnel


2017


Motorway and Trunks8,906.83      18,617.47  95 8,812                     18,523            52.78              


Primary 11,878.42    25,918.30  0 11,878                   25,918            -                   


Secondary 17,705.15    38,168.77  28 17,705                   38,169            -                   


Total


Percent Overwintering Population


Percent of Funnel


2016-2017


Motorway and Trunks8,906.83      18,617.47  95 8,812                     18,523            584.96            


Primary 11,878.42    25,918.30  0 11,878                   25,918            -                   


Secondary 17,705.15    38,168.77  28 17,705                   38,169            71.26              


Total


Percent Overwintering Population


Percent of Funnel


Roadkill density per kmLength (Km)


NonHotspot







Hotspot Data 


Separated


Hotspot Data 


Merged


Sonora-


Sheffield 


Hotspot BEE Funnel BEE Funnel


12.64             269.15          61,272           172,630        295,345             2,397,310          5,010,969         


10.75             10.75             -                  127,636        278,498             127,636              278,498             


25.79             85.32             12,312           468,135        995,804             1,510,687          3,256,740         


73,584           768,401        1,569,647         4,035,633          8,546,208         


0.09% 0.90% 1.82% 4.55% 9.17%


4.69% 48.95% 47.22%


31.67             36.54             5,011             284,077        591,606             325,469              680,310             


8.32               8.32               -                  98,857          215,702             98,857                215,702             


6.15               6.15               -                  108,936        234,845             108,936              234,845             


5,011             491,871        1,042,154         533,262              1,130,858         


0.01% 0.79% 1.67% 0.86% 1.81%


0.32% 31.34% 47.16%


18.58             208.67          55,536           219,302        399,772             1,858,631          3,884,998         


9.41               9.41               -                  111,828        244,005             111,828              244,005             


12.88             37.11             1,982             230,097        493,752             657,088              1,416,550         


57,518           561,227        1,137,529         2,627,547          5,545,553         


0.09% 0.91% 1.82% 4.10% 8.28%


3.66% 35.75% 30.75%


Hotspot Data Merged


Roadkill mortalityRoadkill density per km


Hotspot Data SeparatedBEE/Funnel







Overwintering 


Population


84611000


61401000


73006000







Latitude Longitude Transect Date Roadkills AdjRoadkill Road


30.49481 -99.98853 37 10/20/2016 0 0 I-10 East


30.42413 -99.67922 39 10/21/2016 0 0 I-10 East


30.30415 -99.55095 40 10/21/2016 0 0 I-10 East


30.49522 -99.98744 38 10/20/2016 0 0 I-10 East (Median)


30.74119 -101.85058 28 10/20/2016 2 4.633643 I-10 West


30.30442 -99.55064 41 10/21/2016 0 0 I-10 West


30.45919 -100.14832 45 10/24/2016 0 0 I-10 West


30.52489 -99.83313 44 10/24/2016 1 2.316821 I-10 West


32.49067 -99.73369 80 11/2/2016 0 0 I-20 West


32.72183 -97.57385 13 10/13/2016 0 0 I-20 East


32.49069 -99.73384 16 10/13/2016 1 2.316821 I-20 West


32.37485 -98.99133 15 10/13/2016 3 6.950464 I-20 West


32.54949 -98.27690 14 10/13/2016 3 6.950464 I-20 West


32.40947 -99.46853 79 11/1/2016 0 0 I-20 West


31.90705 -102.22445 86 11/2/2016 1 2.316821 I-20 West


32.10739 -101.85006 85 11/2/2016 0 0 I-20 West


32.26379 -101.45916 84 11/2/2016 1 2.316821 I-20 West


32.34634 -101.04675 83 11/2/2016 0 0 I-20 West


32.41481 -100.64150 82 11/2/2016 0 0 I-20 West


32.49029 -100.17220 81 11/2/2016 0 0 I-20 West


30.76849 -97.62814 18 10/17/2016 0 0 I-35 North


31.35638 -97.21834 19 10/17/2016 0 0 I-35 North


Avg 0.545454545 1.263721


30.24606 -98.38738 43 10/21/2016 0 0 US 290 South


30.30253 -99.05477 42 10/21/2016 0 0 US 290 East


33.56993 -100.20916 7 10/11/2016 0 0 US82 West


33.61843 -99.45204 6 10/11/2016 0 0 US82 West


31.90922 -98.55924 22 10/18/2016 0 0 US 377 West


31.62699 -100.09409 24 10/18/2016 2 2.877881 US 67 West


31.74364 -99.34250 23 10/18/2016 1 1.43894 US 67 West


31.31294 -100.78668 25 10/19/2016 2 2.877881 US 67 West


32.75092 -99.76707 10 10/12/2016 0 0 US180 East


32.76493 -99.04959 11 10/12/2016 0 0 US180 East


32.75338 -98.33727 12 10/12/2016 0 0 US180 East


32.13722 -98.96204 78 11/1/2016 0 0 US183 North


31.28974 -98.17006 76 11/1/2016 0 0 US183 North


30.75716 -97.87648 75 11/1/2016 2 2.877881 US183 North


30.95286 -101.46062 91 11/3/2016 0 0 US190 West


30.91057 -101.07717 90 11/3/2016 2 2.877881 US190 West


30.85514 -100.67358 89 11/3/2016 1 1.43894 US190 West


31.35737 -100.43377 88 11/3/2016 0 0 US277 South


33.21010 -100.37582 8 10/11/2016 0 0 US380 


33.23153 -97.67038 3 10/10/2016 1 1.43894 US380 West


33.23558 -97.25785 2 10/10/2016 0 0 US380 West


33.21943 -96.83399 1 10/10/2016 0 0 US380 West


33.18685 -98.07399 4 10/11/2016 0 0 US380 West


31.80582 -100.93437 87 11/3/2016 0 0 US87 South


29.72698 -101.36994 62 10/26/2016 2 4 US90 West







29.72684 -101.37002 63 10/26/2016 2 . US90 East


29.70551 -101.21820 60 10/26/2016 4 4 US90 West


29.70538 -101.21824 61 10/26/2016 0 . US90 East


29.46723 -101.01465 65 10/27/2016 0 0 US90 West


29.46702 -101.01462 64 10/27/2016 0 . US90 East


29.39311 -100.72568 68 10/27/2016 1 1 US90 West


29.39283 -100.72670 67 10/27/2016 0 . US90 East


29.38915 -100.70174 70 10/27/2016 2 2 US90 West


29.38919 -100.70255 69 10/27/2016 0 . US90 East


29.29963 -100.38947 72 10/27/2016 1 1 US90 West


29.29948 -100.38955 71 10/27/2016 0 . US90 East


29.24322 -100.08011 73 10/27/2016 0 0 US90 East


29.26917 -99.71280 74 10/27/2016 2 6.556427 US90 East


Avg 0.657894737 1.074524


33.37298 -98.77844 5 10/11/2016 0 0 SH114 West


30.89537 -101.16125 26 10/19/2016 1 1.43894 SH163 South


30.03604 -101.17532 58 10/26/2016 0 0 SH163 South


30.57418 -101.16212 55 10/26/2016 0 0 SH163 South


29.96137 -101.14799 59 10/26/2016 6 19.66928 SH163 South


30.18462 -101.09487 57 10/26/2016 0 0 SH163 South


30.31783 -101.09022 56 10/26/2016 2 6.556427 SH163 South


32.00072 -97.16931 20 10/17/2016 0 0 SH22 West


31.84363 -98.32908 77 11/1/2016 0 0 SH36 North


31.97729 -97.88320 21 10/18/2016 0 0 SH6 west


32.83161 -100.43170 9 10/12/2016 0 0 SH70


32.37968 -100.36858 17 10/14/2016 1 3.278214 SH70 South


Avg 0.833333333 2.578572


Overall nonhotspot Average Avg 0.66658619 1.325658


30.68217 -101.30630 27 10/19/2016 47 108.8906 I-10 West


30.68740 -101.29121 31 10/20/2016 46 89.38252 I-10 West


30.68726 -101.29115 32 10/20/2016 3 . I-10 West (Median)


30.68676 -101.29207 30 10/20/2016 17 39.92397 I-10 East (Median)


30.68660 -101.29202 29 10/20/2016 8 . I-10 East


30.62383 -100.84472 34 10/20/2016 42 130.871 I-10 East (Median)


30.62369 -100.84477 33 10/20/2016 52 . I-10 East


30.62367 -100.84366 35 10/20/2016 24 45.06914 I-10 West


30.62354 -100.84369 36 10/20/2016 0 . I-10 West (Median)


30.74532 -101.68573 54 10/25/2016 0 0 I-10 West


30.72907 -101.56142 52 10/25/2016 15 28.16821 I-10 West


30.72868 -101.56141 53 10/25/2016 0 . I-10 East


30.69242 -101.44717 51 10/25/2016 34 108.8906 I-10 East


30.69280 -101.44666 50 10/25/2016 57 106.5738 I-10 West


30.68213 -101.30636 49 10/25/2016 9 15.83464 I-10 West







30.65255 -100.92261 48 10/25/2016 14 39.38596 I-10 West


30.58628 -100.66514 46 10/25/2016 10 23.77881 I-10 West


30.58643 -100.66629 47 10/25/2016 5 . I-10 East


30.69281 -101.44675 95 11/4/2016 21 108.8906 I-10 West


30.69003 -101.42364 94 11/4/2016 66 106.5738 I-10 West


30.68213 -101.30631 96 11/4/2016 2 15.83464 I-10 West


Avg 22.47619048 64.53788


30.75463 -101.20577 92 11/3/2016 21 68.84248 SH137 South


30.64707 -101.20448 93 11/4/2016 6 19.66928 SH163 South


Avg 13.5 44.25588


Overall Hotspot Average Avg 21.69565217 62.15177







Side PredomEW Sex Road Type


S Y NA Highways


S Y NA Highways


S H NA Highways


N Y NA Highways


N Y 2 male Highways


N Y NA Highways


N Y NA Highways


N Y NA Highways


N Y NA Highways


S Y NA Highways


N Y 1 male Highways


N Y 2 female, 1 male Highways


N Y NA Highways


N Y NA Highways


N Y 1 male Highways


N Y NA Highways


N Y 1 male Highways


N Y NA Highways


N Y NA Highways


N Y NA Highways


S N NA Highways


S N NA Highways


S Y NA Primary


S Y NA Primary


N Y NA Primary


N Y NA Primary


N H NA Primary


N Y 1 female, 1 male Primary


N Y 1 female Primary


N H 1 female, 1 male Primary


S Y NA Primary


S Y NA Primary


S H NA Primary


S N NA Primary


S N NA Primary


N N 2 female Primary


N N NA Primary


N Y 1 female, 1 male Primary


N Y 1 female Primary


N N NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


S H NA Primary


N H 2 male Primary







S H NA Primary


N Y 3 female, 1 male Primary


S Y NA Primary


N Y NA Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


N Y 2 male Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


S Y NA Primary


S H 1 female, 1 male Primary


N Y NA Secondary


N N 1 male Secondary


N H NA Secondary


S N NA Secondary


S N 2 female, 4 male Secondary


S H NA Secondary


S H 1 female, 1 male Secondary


N Y NA Secondary


N Y NA Secondary


N Y NA Secondary


S H NA Secondary


S H 1 female Secondary


N Y18 female, 20 male, 9 NA Primary


N Y NA Primary


S Y NA Primary


N Y NA Primary


S Y NA Primary


N Y NA Primary


S Y NA Primary


N Y NA Primary


S Y NA Primary


N Y NA Primary


N Y NA Primary


S Y NA Primary


S Y NA Primary


N Y 18 female, 39 male Primary


N Y 4 female, 5 male Primary







N Y3 female, 10 male, 1 NA Primary


N Y 2 female, 8 male Primary


S Y 2 female, 3 male Primary


N Y 9 female, 12 male Primary


N Y13 female, 9 male, 44 NA Primary


N Y 1 female, 1 male Primary


S Y NA Secondary


S N 2 female, 4 male Secondary







Latitude Longitude Transect Date Roadkills AdjRoadkill Road Side


30.56684 -100.54531 101 10/20/2017 1 5.278214 I-10 S


30.44420 -100.22060 102 10/20/2017 2 10.55643 I-10 S


30.48314 -100.04803 103 10/20/2017 1 5.278214 I-10 S


32.38707 -99.30968 30 10/13/2017 1 5.278214 I-20 S


32.48146 -100.08246 57 10/13/2017 0 0 I-20 S


31.97607 -102.05893 82 10/18/2017 0 0 I-20 N


28.78622 -99.12844 128 10/26/2017 0 0 I-35 S


29.09784 -98.94578 129 10/26/2017 1 5.278214 I-35 S


29.81191 -98.00284 145 10/27/2017 0 0 I-35 S


32.06279 -96.45208 29 10/10/2017 0 0 I-45 S


Average 0.6 3.166928


31.09803 -98.21127 70 10/17/2017 0 0 US 183 N


31.06509 -97.57357 68 10/17/2017 0 0 US 190 N


31.05285 -98.09180 69 10/17/2017 4 5.755762 US 190 N


31.26668 -98.96542 71 10/17/2017 1 1.43894 US 190 N


30.91060 -101.07729 95 10/19/2017 0 0 US 190 N


29.66892 -100.85522 114 10/25/2017 4 5.755762 US 277 N


28.79366 -100.51936 122 10/25/2017 1 3.278214 US 277 S


28.67202 -100.31862 123 10/26/2017 0 0 US 277 S


28.61071 -99.93687 124 10/26/2017 1 3.278214 US 277 S


33.95761 -98.61244 12 10/5/2017 0 0 US 287 N


34.22161 -99.39919 15 10/5/2017 0 0 US 287  N


34.39910 -100.12484 17 10/5/2017 1 1.43894 US 287 N


30.19653 -98.00170 105 10/24/2017 0 0 US 290 N


30.20299 -98.15250 106 10/24/2017 0 0 US 290 N


30.00439 -100.27914 112 10/24/2017 0 0 US 377 N


33.17599 -98.75103 37 10/11/2017 0 0 US 380 N


33.17675 -99.57915 39 10/11/2017 0 0 US 380 N


33.20951 -100.34511 41 10/11/2017 0 0 US 380 N


33.17781 -101.03200 44 10/12/2017 0 0 US 380 N


33.16697 -101.88874 45b 10/12/2017 0 0 US 380 N


34.01229 -100.80745 23 10/6/2017 0 0 US 62 N


34.08141 -100.29983 21 10/5/2017 0 0 US 62, US 83 N


33.59921 -95.94134 5 10/4/2017 0 0 US 82 N


33.70455 -97.53794 10 10/4/2017 1 1.43894 US 82 N


33.55917 -100.14020 25 10/6/2017 0 0 US 82 S


33.61090 -99.39682 27 10/6/2017 0 0 US 82 S


33.67123 -96.69688 8 10/4/2017 0 0 US 82, TX 289 N


29.25948 -99.77677 135 10/27/2017 0 0 US 83 N


29.46031 -99.76696 136 10/27/2017 0 0 US 83 N


29.56832 -99.74677 137 10/27/2017 0 0 US 83 N


31.63153 -97.00367 28 10/10/2017 0 0 US 84 S


32.31780 -101.50764 50 10/12/2017 0 0 US 87 S


31.23574 -99.72215 73 10/17/2017 0 0 US 87 N


31.49393 -100.47425 75 10/18/2017 0 0 US 87 N


29.36857 -100.83353 117 10/25/2017 0 0 US 90 S


29.32530 -99.30136 132 10/26/2017 2 2.877881 US 90 N


29.31375 -99.41406 133 10/26/2017 5 7.194702 US 90 N







29.31618 -99.57198 134 10/26/2017 0 0 US 90 N


29.33693 -99.17654 131b 10/26/2017 0 0 US 90 N


Average 0.512821 0.83224


32.86011 -102.06023 48 10/12/2017 0 0 TX 137 S


30.80533 -101.29295 98 10/20/2017 0 0 TX 137 N


31.84258 -101.16277 79 10/18/2017 1 1.43894 TX 158 N


30.23400 -98.90550 107 10/24/2017 0 0 TX 16 N


29.73010 -99.10310 141 10/27/2017 0 0 TX 16 N


32.35565 -100.89828 53 10/12/2017 0 0 TX 163 S


32.10234 -97.19838 31 10/10/2017 0 0 TX 171 N


32.63439 -97.70520 33 10/10/2017 0 0 TX 171 N


33.12882 -98.06740 35 10/11/2017 1 1.43894 TX 199 N


30.72089 -101.55647 89 10/19/2017 0 0 TX 290 S


33.00843 -96.10754 1 10/3/2017 0 0 TX 34 S


31.24334 -101.94353 84 10/18/2017 0 0 TX 349 S


30.68365 -101.80742 86 10/19/2017 0 0 TX 349 S


30.17099 -99.41582 110 10/24/2017 0 0 TX 41 N


29.79237 -98.67825 142 10/27/2017 0 0 TX 46 S


29.77358 -98.29294 144 10/27/2017 1 3.278214 TX 46 S


33.72108 -100.84134 24 10/6/2017 0 0 TX 70 S


28.57425 -99.65414 125 10/26/2017 1 1.43894 TX 85 N


28.60350 -99.46226 126 10/26/2017 0 0 TX 85 S


28.62010 -99.42884 127 10/26/2017 2 6.556427 TX 85 S


29.77234 -99.41974 139 10/27/2017 0 0 FM 337 S


29.33860 -98.82194 131 10/26/2017 0 0 FM 471 N


29.72285 -99.75554 138 10/27/2017 0 0 RR 337 S


Average 0.26087 0.615281


30.69693 -101.23988 92 10/19/2017 0 0 I-10 S


30.63022 -100.86205 100 10/20/2017 1 5.278214 I-10 S


30.67021 -100.99129 113 10/20/2017 2 10.55643 I-10 S


Average 1 5.278214


Outside Funnel


33.61457 -95.12079 3 10/4/2017 0 0 US 82







PredomEW Sex Road Type


Y male Highways


Y 2 males Highways


Y  male Highways


Y female Highways


Y NA Highways


Y NA Highways


N NA Highways


H  male Highways


H NA Highways


N NA Highways


H NA Primary


Y NA Primary


Y  4 males Primary


Y  female Primary


Y NA Primary


H 3 males, 1 female Primary


N female Primary


Y NA Primary


H male Primary


Y NA Primary


Y NA Primary


Y male Primary


Y NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


N NA Primary


Y NA Primary


H NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


H NA Primary


N NA Primary


N NA Primary


Y NA Primary


N NA Primary


Y NA Primary


H NA Primary


Y NA Primary


Y 2 males Primary


Y  4 males, 1 female Primary







Y NA Primary


Y NA Primary


H NA Secondary


Y NA Secondary


Y female Secondary


H NA Secondary


Y NA Secondary


H NA Secondary


H NA Secondary


Y NA Secondary


Y male Secondary


N NA Secondary


N NA Secondary


N NA Secondary


Y NA Secondary


Y NA Secondary


Y NA Secondary


Y male Secondary


N NA Secondary


Y male Secondary


Y NA Secondary


Y 2 males Secondary


Y NA Secondary


Y NA Secondary


Y NA Secondary


Y NA Highways


Y male Highways


Y 1 male, 1 female Highways


NA Primary







Latitude Longitude Transect Date Roadkills AdjRoadkill Road


30.49481 -99.98853 37 10/20/2016 0 0 I-10 East


30.42413 -99.67922 39 10/21/2016 0 0 I-10 East


30.30415 -99.55095 40 10/21/2016 0 0 I-10 East


30.49522 -99.98744 38 10/20/2016 0 0 I-10 East (Median)


30.74119 -101.85058 28 10/20/2016 2 4.633643 I-10 West


30.30442 -99.55064 41 10/21/2016 0 0 I-10 West


30.45919 -100.14832 45 10/24/2016 0 0 I-10 West


30.52489 -99.83313 44 10/24/2016 1 2.316821 I-10 West


32.49067 -99.73369 80 11/2/2016 0 0 I-20 West


32.72183 -97.57385 13 10/13/2016 0 0 I-20 East


32.49069 -99.73384 16 10/13/2016 1 2.316821 I-20 West


32.37485 -98.99133 15 10/13/2016 3 6.950464 I-20 West


32.54949 -98.27690 14 10/13/2016 3 6.950464 I-20 West


32.40947 -99.46853 79 11/1/2016 0 0 I-20 West


31.90705 -102.22445 86 11/2/2016 1 2.316821 I-20 West


32.10739 -101.85006 85 11/2/2016 0 0 I-20 West


32.26379 -101.45916 84 11/2/2016 1 2.316821 I-20 West


32.34634 -101.04675 83 11/2/2016 0 0 I-20 West


32.41481 -100.64150 82 11/2/2016 0 0 I-20 West


32.49029 -100.17220 81 11/2/2016 0 0 I-20 West


30.76849 -97.62814 18 10/17/2016 0 0 I-35 North


31.35638 -97.21834 19 10/17/2016 0 0 I-35 North


30.56684 -100.54531 101 10/20/2017 1 5.278214 I-10


30.44420 -100.22060 102 10/20/2017 2 10.55643 I-10


30.48314 -100.04803 103 10/20/2017 1 5.278214 I-10


32.38707 -99.30968 30 10/13/2017 1 5.278214 I-20


32.48146 -100.08246 57 10/13/2017 0 0 I-20


31.97607 -102.05893 82 10/18/2017 0 0 I-20


28.78622 -99.12844 128 10/26/2017 0 0 I-35


29.09784 -98.94578 129 10/26/2017 1 5.278214 I-35


29.81191 -98.00284 145 10/27/2017 0 0 I-35


32.06279 -96.45208 29 10/10/2017 0 0 I-45


Avg 0.5625 1.858473


30.24606 -98.38738 43 10/21/2016 0 0 US 290 South


30.30253 -99.05477 42 10/21/2016 0 0 US 290 East


33.56993 -100.20916 7 10/11/2016 0 0 US82 West


33.61843 -99.45204 6 10/11/2016 0 0 US82 West


31.90922 -98.55924 22 10/18/2016 0 0 US 377 West


31.62699 -100.09409 24 10/18/2016 2 2.877881 US 67 West


31.74364 -99.34250 23 10/18/2016 1 1.43894 US 67 West


31.31294 -100.78668 25 10/19/2016 2 2.877881 US 67 West


32.75092 -99.76707 10 10/12/2016 0 0 US180 East


32.76493 -99.04959 11 10/12/2016 0 0 US180 East


32.75338 -98.33727 12 10/12/2016 0 0 US180 East


32.13722 -98.96204 78 11/1/2016 0 0 US183 North


31.28974 -98.17006 76 11/1/2016 0 0 US183 North


30.75716 -97.87648 75 11/1/2016 2 2.877881 US183 North


30.95286 -101.46062 91 11/3/2016 0 0 US190 West







30.91057 -101.07717 90 11/3/2016 2 2.877881 US190 West


30.85514 -100.67358 89 11/3/2016 1 1.43894 US190 West


31.35737 -100.43377 88 11/3/2016 0 0 US277 South


33.21010 -100.37582 8 10/11/2016 0 0 US380 


33.23153 -97.67038 3 10/10/2016 1 1.43894 US380 West


33.23558 -97.25785 2 10/10/2016 0 0 US380 West


33.21943 -96.83399 1 10/10/2016 0 0 US380 West


33.18685 -98.07399 4 10/11/2016 0 0 US380 West


31.80582 -100.93437 87 11/3/2016 0 0 US87 South


29.72698 -101.36994 62 10/26/2016 2 4 US90 West


29.72684 -101.37002 63 10/26/2016 2 . US90 East


29.70551 -101.21820 60 10/26/2016 4 4 US90 West


29.70538 -101.21824 61 10/26/2016 0 . US90 East


29.46723 -101.01465 65 10/27/2016 0 0 US90 West


29.46702 -101.01462 64 10/27/2016 0 . US90 East


29.39311 -100.72568 68 10/27/2016 1 1 US90 West


29.39283 -100.72670 67 10/27/2016 0 . US90 East


29.38915 -100.70174 70 10/27/2016 2 2 US90 West


29.38919 -100.70255 69 10/27/2016 0 . US90 East


29.29963 -100.38947 72 10/27/2016 1 1 US90 West


29.29948 -100.38955 71 10/27/2016 0 . US90 East


29.24322 -100.08011 73 10/27/2016 0 0 US90 East


29.26917 -99.71280 74 10/27/2016 2 6.556427 US90 East


31.09803 -98.21127 70 10/17/2017 0 0 US 183


31.06509 -97.57357 68 10/17/2017 0 0 US 190


31.05285 -98.09180 69 10/17/2017 4 5.755762 US 190


31.26668 -98.96542 71 10/17/2017 1 1.43894 US 190


30.91060 -101.07729 95 10/19/2017 0 0 US 190


29.66892 -100.85522 114 10/25/2017 4 5.755762 US 277


28.79366 -100.51936 122 10/25/2017 1 3.278214 US 277


28.67202 -100.31862 123 10/26/2017 0 0 US 277


28.61071 -99.93687 124 10/26/2017 1 3.278214 US 277


33.95761 -98.61244 12 10/5/2017 0 0 US 287


34.22161 -99.39919 15 10/5/2017 0 0 US 287


34.39910 -100.12484 17 10/5/2017 1 1.43894 US 287


30.19653 -98.00170 105 10/24/2017 0 0 US 290


30.20299 -98.15250 106 10/24/2017 0 0 US 290


30.00439 -100.27914 112 10/24/2017 0 0 US 377


33.17599 -98.75103 37 10/11/2017 0 0 US 380


33.17675 -99.57915 39 10/11/2017 0 0 US 380


33.20951 -100.34511 41 10/11/2017 0 0 US 380


33.17781 -101.03200 44 10/12/2017 0 0 US 380


33.16697 -101.88874 45b 10/12/2017 0 0 US 380


34.01229 -100.80745 23 10/6/2017 0 0 US 62


34.08141 -100.29983 21 10/5/2017 0 0 US 62, US 83


33.59921 -95.94134 5 10/4/2017 0 0 US 82


33.70455 -97.53794 10 10/4/2017 1 1.43894 US 82


33.55917 -100.14020 25 10/6/2017 0 0 US 82


33.61090 -99.39682 27 10/6/2017 0 0 US 82


33.67123 -96.69688 8 10/4/2017 0 0 US 82, TX 289


29.25948 -99.77677 135 10/27/2017 0 0 US 83







29.46031 -99.76696 136 10/27/2017 0 0 US 83


29.56832 -99.74677 137 10/27/2017 0 0 US 83


31.63153 -97.00367 28 10/10/2017 0 0 US 84


32.31780 -101.50764 50 10/12/2017 0 0 US 87


31.23574 -99.72215 73 10/17/2017 0 0 US 87


31.49393 -100.47425 75 10/18/2017 0 0 US 87


29.36857 -100.83353 117 10/25/2017 0 0 US 90


29.32530 -99.30136 132 10/26/2017 2 2.877881 US 90


29.31375 -99.41406 133 10/26/2017 5 7.194702 US 90


29.31618 -99.57198 134 10/26/2017 0 0 US 90


29.33693 -99.17654 131b 10/26/2017 0 0 US 90


Avg 0.584415584 0.941438


33.37298 -98.77844 5 10/11/2016 0 0 SH114 West


30.89537 -101.16125 26 10/19/2016 1 1.43894 SH163 South


30.03604 -101.17532 58 10/26/2016 0 0 SH163 South


30.57418 -101.16212 55 10/26/2016 0 0 SH163 South


29.96137 -101.14799 59 10/26/2016 6 19.66928 SH163 South


30.18462 -101.09487 57 10/26/2016 0 0 SH163 South


30.31783 -101.09022 56 10/26/2016 2 6.556427 SH163 South


32.00072 -97.16931 20 10/17/2016 0 0 SH22 West


31.84363 -98.32908 77 11/1/2016 0 0 SH36 North


31.97729 -97.88320 21 10/18/2016 0 0 SH6 west


32.83161 -100.43170 9 10/12/2016 0 0 SH70


32.37968 -100.36858 17 10/14/2016 1 3.278214 SH70 South


32.86011 -102.06023 48 10/12/2017 0 0 TX 137


30.80533 -101.29295 98 10/20/2017 0 0 TX 137


31.84258 -101.16277 79 10/18/2017 1 1.43894 TX 158


30.23400 -98.90550 107 10/24/2017 0 0 TX 16


29.73010 -99.10310 141 10/27/2017 0 0 TX 16


32.35565 -100.89828 53 10/12/2017 0 0 TX 163


32.10234 -97.19838 31 10/10/2017 0 0 TX 171


32.63439 -97.70520 33 10/10/2017 0 0 TX 171


33.12882 -98.06740 35 10/11/2017 1 1.43894 TX 199


30.72089 -101.55647 89 10/19/2017 0 0 TX 290


33.00843 -96.10754 1 10/3/2017 0 0 TX 34


31.24334 -101.94353 84 10/18/2017 0 0 TX 349


30.68365 -101.80742 86 10/19/2017 0 0 TX 349


30.17099 -99.41582 110 10/24/2017 0 0 TX 41


29.79237 -98.67825 142 10/27/2017 0 0 TX 46


29.77358 -98.29294 144 10/27/2017 1 3.278214 TX 46


33.72108 -100.84134 24 10/6/2017 0 0 TX 70


28.57425 -99.65414 125 10/26/2017 1 1.43894 TX 85


28.60350 -99.46226 126 10/26/2017 0 0 TX 85


28.62010 -99.42884 127 10/26/2017 2 6.556427 TX 85


29.77234 -99.41974 139 10/27/2017 0 0 FM 337


29.33860 -98.82194 131 10/26/2017 0 0 FM 471


29.72285 -99.75554 138 10/27/2017 0 0 RR 337


Avg 0.457142857 1.288409







Overall nonhotspot Average Avg 0.625570376 1.183184


30.68217 -101.30630 27 10/19/2016 47 108.8906 I-10 West


30.68740 -101.29121 31 10/20/2016 46 89.38252 I-10 West


30.68726 -101.29115 32 10/20/2016 3 . I-10 West (Median)


30.68676 -101.29207 30 10/20/2016 17 39.92397 I-10 East (Median)


30.68660 -101.29202 29 10/20/2016 8 . I-10 East


30.62383 -100.84472 34 10/20/2016 42 130.871 I-10 East (Median)


30.62369 -100.84477 33 10/20/2016 52 . I-10 East


30.62367 -100.84366 35 10/20/2016 24 45.06914 I-10 West


30.62354 -100.84369 36 10/20/2016 0 . I-10 West (Median)


30.74532 -101.68573 54 10/25/2016 0 0 I-10 West


30.72907 -101.56142 52 10/25/2016 15 28.16821 I-10 West


30.72868 -101.56141 53 10/25/2016 0 . I-10 East


30.69242 -101.44717 51 10/25/2016 34 179.4593 I-10 East


30.69280 -101.44666 50 10/25/2016 57 132.0588 I-10 West


30.68213 -101.30636 49 10/25/2016 9 20.85139 I-10 West


30.65255 -100.92261 48 10/25/2016 14 32.4355 I-10 West


30.58628 -100.66514 46 10/25/2016 10 23.77881 I-10 West


30.58643 -100.66629 47 10/25/2016 5 . I-10 East


30.69281 -101.44675 95 11/4/2016 21 48.65325 I-10 West


30.69003 -101.42364 94 11/4/2016 66 152.9102 I-10 West


30.68213 -101.30631 96 11/4/2016 2 4.633643 I-10 West


30.69693 -101.23988 92 10/19/2017 0 0 I-10


30.63022 -100.86205 100 10/20/2017 1 5.278214 I-10


30.67021 -100.99129 113 10/20/2017 2 10.55643 I-10


Avg 19.79166667 58.49561


30.75463 -101.20577 92 11/3/2016 21 110.8425 SH137 South


30.64707 -101.20448 93 11/4/2016 6 31.66928 SH163 South


Avg 13.5 71.25588


Overall Hotspot Average Avg 21.69565217 69.38812







Side PredomEW Sex Road Type


S Y NA Highways


S Y NA Highways


S H NA Highways


N Y NA Highways


N Y 2 male Highways


N Y NA Highways


N Y NA Highways


N Y NA Highways


N Y NA Highways


S Y NA Highways


N Y 1 male Highways


N Y 2 female, 1 male Highways


N Y NA Highways


N Y NA Highways


N Y 1 male Highways


N Y NA Highways


N Y 1 male Highways


N Y NA Highways


N Y NA Highways


N Y NA Highways


S N NA Highways


S N NA Highways


S Y male Highways


S Y 2 males Highways


S Y  male Highways


S Y female Highways


S Y NA Highways


N Y NA Highways


S N NA Highways


S H  male Highways


S H NA Highways


S N NA Highways


S Y NA Primary


S Y NA Primary


N Y NA Primary


N Y NA Primary


N H NA Primary


N Y 1 female, 1 male Primary


N Y 1 female Primary


N H 1 female, 1 male Primary


S Y NA Primary


S Y NA Primary


S H NA Primary


S N NA Primary


S N NA Primary


N N 2 female Primary


N N NA Primary







N Y 1 female, 1 male Primary


N Y 1 female Primary


N N NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


S H NA Primary


N H 2 male Primary


S H NA Primary


N Y 3 female, 1 male Primary


S Y NA Primary


N Y NA Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


N Y 2 male Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


S Y NA Primary


S H 1 female, 1 male Primary


N H NA Primary


N Y NA Primary


N Y  4 males Primary


N Y  female Primary


N Y NA Primary


N H 3 males, 1 female Primary


S N female Primary


S Y NA Primary


S H male Primary


N Y NA Primary


 N Y NA Primary


N Y male Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N N NA Primary


N Y NA Primary


N H NA Primary


S Y NA Primary


S Y NA Primary


N Y NA Primary


N H NA Primary







N N NA Primary


N N NA Primary


S Y NA Primary


S N NA Primary


N Y NA Primary


N H NA Primary


S Y NA Primary


N Y 2 males Primary


N Y  4 males, 1 female Primary


N Y NA Primary


N Y NA Primary


N Y NA Secondary


N N 1 male Secondary


N H NA Secondary


S N NA Secondary


S N 2 female, 4 male Secondary


S H NA Secondary


S H 1 female, 1 male Secondary


N Y NA Secondary


N Y NA Secondary


N Y NA Secondary


S H NA Secondary


S H 1 female Secondary


S H NA Secondary


N Y NA Secondary


N Y female Secondary


N H NA Secondary


N Y NA Secondary


S H NA Secondary


N H NA Secondary


N Y NA Secondary


N Y male Secondary


S N NA Secondary


S N NA Secondary


S N NA Secondary


S Y NA Secondary


N Y NA Secondary


S Y NA Secondary


S Y male Secondary


S N NA Secondary


N Y male Secondary


S Y NA Secondary


S Y 2 males Secondary


S Y NA Secondary


N Y NA Secondary


S Y NA Secondary







N Y18 female, 20 male, 9 NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


N Y NA Highways


S Y NA Highways


S Y NA Highways


N Y 18 female, 39 male Highways


N Y 4 female, 5 male Highways


N Y3 female, 10 male, 1 NA Highways


N Y 2 female, 8 male Highways


S Y 2 female, 3 male Highways


N Y 9 female, 12 male Highways


N Y13 female, 9 male, 44 NA Highways


N Y 1 female, 1 male Highways


S Y NA Highways


S Y male Highways


S Y 1 male, 1 female Highways


S Y NA Secondary


S N 2 female, 4 male Secondary







Latitude Longitude Transect Date Roadkills AdjRoadkill Road


30.49481 -99.98853 37 10/20/2016 0 0 I-10 East


30.42413 -99.67922 39 10/21/2016 0 0 I-10 East


30.30415 -99.55095 40 10/21/2016 0 0 I-10 East


30.49522 -99.98744 38 10/20/2016 0 0 I-10 East (Median)


30.74119 -101.85058 28 10/20/2016 2 4.633643 I-10 West


30.30442 -99.55064 41 10/21/2016 0 0 I-10 West


30.45919 -100.14832 45 10/24/2016 0 0 I-10 West


30.52489 -99.83313 44 10/24/2016 1 2.316821 I-10 West


32.49067 -99.73369 80 11/2/2016 0 0 I-20 West


32.72183 -97.57385 13 10/13/2016 0 0 I-20 East


32.49069 -99.73384 16 10/13/2016 1 2.316821 I-20 West


32.37485 -98.99133 15 10/13/2016 3 6.950464 I-20 West


32.54949 -98.27690 14 10/13/2016 3 6.950464 I-20 West


32.40947 -99.46853 79 11/1/2016 0 0 I-20 West


31.90705 -102.22445 86 11/2/2016 1 2.316821 I-20 West


32.10739 -101.85006 85 11/2/2016 0 0 I-20 West


32.26379 -101.45916 84 11/2/2016 1 2.316821 I-20 West


32.34634 -101.04675 83 11/2/2016 0 0 I-20 West


32.41481 -100.64150 82 11/2/2016 0 0 I-20 West


32.49029 -100.17220 81 11/2/2016 0 0 I-20 West


30.76849 -97.62814 18 10/17/2016 0 0 I-35 North


31.35638 -97.21834 19 10/17/2016 0 0 I-35 North


30.68217 -101.30630 27 10/19/2016 47 108.8906 I-10 West


30.68740 -101.29121 31 10/20/2016 46 89.38252 I-10 West


30.68726 -101.29115 32 10/20/2016 3 . I-10 West (Median)


30.68676 -101.29207 30 10/20/2016 17 39.92397 I-10 East (Median)


30.68660 -101.29202 29 10/20/2016 8 . I-10 East


30.62383 -100.84472 34 10/20/2016 42 130.871 I-10 East (Median)


30.62369 -100.84477 33 10/20/2016 52 . I-10 East


30.62367 -100.84366 35 10/20/2016 24 45.06914 I-10 West


30.62354 -100.84369 36 10/20/2016 0 . I-10 West (Median)


30.74532 -101.68573 54 10/25/2016 0 0 I-10 West


30.72907 -101.56142 52 10/25/2016 15 28.16821 I-10 West


30.72868 -101.56141 53 10/25/2016 0 . I-10 East


30.69242 -101.44717 51 10/25/2016 34 108.8906 I-10 East


30.69280 -101.44666 50 10/25/2016 57 106.5738 I-10 West


30.68213 -101.30636 49 10/25/2016 9 15.83464 I-10 West


30.65255 -100.92261 48 10/25/2016 14 39.38596 I-10 West


30.58628 -100.66514 46 10/25/2016 10 23.77881 I-10 West


30.58643 -100.66629 47 10/25/2016 5 . I-10 East


30.69281 -101.44675 95 11/4/2016 21 108.8906 I-10 West


30.69003 -101.42364 94 11/4/2016 66 106.5738 I-10 West


30.68213 -101.30631 96 11/4/2016 2 15.83464 I-10 West


Avg 11.25581395 26.91541


30.24606 -98.38738 43 10/21/2016 0 0 US 290 South


30.30253 -99.05477 42 10/21/2016 0 0 US 290 East


33.56993 -100.20916 7 10/11/2016 0 0 US82 West


33.61843 -99.45204 6 10/11/2016 0 0 US82 West







31.90922 -98.55924 22 10/18/2016 0 0 US 377 West


31.62699 -100.09409 24 10/18/2016 2 2.877881 US 67 West


31.74364 -99.34250 23 10/18/2016 1 1.43894 US 67 West


31.31294 -100.78668 25 10/19/2016 2 2.877881 US 67 West


32.75092 -99.76707 10 10/12/2016 0 0 US180 East


32.76493 -99.04959 11 10/12/2016 0 0 US180 East


32.75338 -98.33727 12 10/12/2016 0 0 US180 East


32.13722 -98.96204 78 11/1/2016 0 0 US183 North


31.28974 -98.17006 76 11/1/2016 0 0 US183 North


30.75716 -97.87648 75 11/1/2016 2 2.877881 US183 North


30.95286 -101.46062 91 11/3/2016 0 0 US190 West


30.91057 -101.07717 90 11/3/2016 2 2.877881 US190 West


30.85514 -100.67358 89 11/3/2016 1 1.43894 US190 West


31.35737 -100.43377 88 11/3/2016 0 0 US277 South


33.21010 -100.37582 8 10/11/2016 0 0 US380 


33.23153 -97.67038 3 10/10/2016 1 1.43894 US380 West


33.23558 -97.25785 2 10/10/2016 0 0 US380 West


33.21943 -96.83399 1 10/10/2016 0 0 US380 West


33.18685 -98.07399 4 10/11/2016 0 0 US380 West


31.80582 -100.93437 87 11/3/2016 0 0 US87 South


29.72698 -101.36994 62 10/26/2016 2 4 US90 West


29.72684 -101.37002 63 10/26/2016 2 . US90 East


29.70551 -101.21820 60 10/26/2016 4 4 US90 West


29.70538 -101.21824 61 10/26/2016 0 . US90 East


29.46723 -101.01465 65 10/27/2016 0 0 US90 West


29.46702 -101.01462 64 10/27/2016 0 . US90 East


29.39311 -100.72568 68 10/27/2016 1 1 US90 West


29.39283 -100.72670 67 10/27/2016 0 . US90 East


29.38915 -100.70174 70 10/27/2016 2 2 US90 West


29.38919 -100.70255 69 10/27/2016 0 . US90 East


29.29963 -100.38947 72 10/27/2016 1 1 US90 West


29.29948 -100.38955 71 10/27/2016 0 . US90 East


29.24322 -100.08011 73 10/27/2016 0 0 US90 East


29.26917 -99.71280 74 10/27/2016 2 6.556427 US90 East


Avg 0.657894737 1.074524


33.37298 -98.77844 5 10/11/2016 0 0 SH114 West


30.89537 -101.16125 26 10/19/2016 1 1.43894 SH163 South


30.03604 -101.17532 58 10/26/2016 0 0 SH163 South


30.57418 -101.16212 55 10/26/2016 0 0 SH163 South


29.96137 -101.14799 59 10/26/2016 6 19.66928 SH163 South


30.18462 -101.09487 57 10/26/2016 0 0 SH163 South


30.31783 -101.09022 56 10/26/2016 2 6.556427 SH163 South


32.00072 -97.16931 20 10/17/2016 0 0 SH22 West


31.84363 -98.32908 77 11/1/2016 0 0 SH36 North


31.97729 -97.88320 21 10/18/2016 0 0 SH6 west


32.83161 -100.43170 9 10/12/2016 0 0 SH70


32.37968 -100.36858 17 10/14/2016 1 3.278214 SH70 South


30.75463 -101.20577 92 11/3/2016 21 68.84248 SH137 South


30.64707 -101.20448 93 11/4/2016 6 19.66928 SH163 South







Avg 2.642857143 8.532473







Side PredomEW Sex Road Type


S Y NA Highways


S Y NA Highways


S H NA Highways


N Y NA Highways


N Y 2 male Highways


N Y NA Highways


N Y NA Highways


N Y NA Highways


N Y NA Highways


S Y NA Highways


N Y 1 male Highways


N Y 2 female, 1 male Highways


N Y NA Highways


N Y NA Highways


N Y 1 male Highways


N Y NA Highways


N Y 1 male Highways


N Y NA Highways


N Y NA Highways


N Y NA Highways


S N NA Highways


S N NA Highways


N Y18 female, 20 male, 9 NA Primary


N Y NA Primary


S Y NA Primary


N Y NA Primary


S Y NA Primary


N Y NA Primary


S Y NA Primary


N Y NA Primary


S Y NA Primary


N Y NA Primary


N Y NA Primary


S Y NA Primary


S Y NA Primary


N Y 18 female, 39 male Primary


N Y 4 female, 5 male Primary


N Y3 female, 10 male, 1 NA Primary


N Y 2 female, 8 male Primary


S Y 2 female, 3 male Primary


N Y 9 female, 12 male Primary


N Y13 female, 9 male, 44 NA Primary


N Y 1 female, 1 male Primary


S Y NA Primary


S Y NA Primary


N Y NA Primary


N Y NA Primary







N H NA Primary


N Y 1 female, 1 male Primary


N Y 1 female Primary


N H 1 female, 1 male Primary


S Y NA Primary


S Y NA Primary


S H NA Primary


S N NA Primary


S N NA Primary


N N 2 female Primary


N N NA Primary


N Y 1 female, 1 male Primary


N Y 1 female Primary


N N NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


S H NA Primary


N H 2 male Primary


S H NA Primary


N Y 3 female, 1 male Primary


S Y NA Primary


N Y NA Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


N Y 2 male Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


S Y NA Primary


S H 1 female, 1 male Primary


N Y NA Secondary


N N 1 male Secondary


N H NA Secondary


S N NA Secondary


S N 2 female, 4 male Secondary


S H NA Secondary


S H 1 female, 1 male Secondary


N Y NA Secondary


N Y NA Secondary


N Y NA Secondary


S H NA Secondary


S H 1 female Secondary


S Y NA Secondary


S N 2 female, 4 male Secondary







Latitude Longitude Transect Date Roadkills AdjRoadkill Road Side


30.56684 -100.54531 101 10/20/2017 1 5.278214 I-10 S


30.44420 -100.22060 102 10/20/2017 2 10.55643 I-10 S


30.48314 -100.04803 103 10/20/2017 1 5.278214 I-10 S


32.38707 -99.30968 30 10/13/2017 1 5.278214 I-20 S


32.48146 -100.08246 57 10/13/2017 0 0 I-20 S


31.97607 -102.05893 82 10/18/2017 0 0 I-20 N


28.78622 -99.12844 128 10/26/2017 0 0 I-35 S


29.09784 -98.94578 129 10/26/2017 1 5.278214 I-35 S


29.81191 -98.00284 145 10/27/2017 0 0 I-35 S


32.06279 -96.45208 29 10/10/2017 0 0 I-45 S


30.69693 -101.23988 92 10/19/2017 0 0 I-10 S


30.63022 -100.86205 100 10/20/2017 1 5.278214 I-10 S


30.67021 -100.99129 113 10/20/2017 2 10.55643 I-10 S


Average 0.692308 3.654148


31.09803 -98.21127 70 10/17/2017 0 0 US 183 N


31.06509 -97.57357 68 10/17/2017 0 0 US 190 N


31.05285 -98.09180 69 10/17/2017 4 5.755762 US 190 N


31.26668 -98.96542 71 10/17/2017 1 1.43894 US 190 N


30.91060 -101.07729 95 10/19/2017 0 0 US 190 N


29.66892 -100.85522 114 10/25/2017 4 5.755762 US 277 N


28.79366 -100.51936 122 10/25/2017 1 3.278214 US 277 S


28.67202 -100.31862 123 10/26/2017 0 0 US 277 S


28.61071 -99.93687 124 10/26/2017 1 3.278214 US 277 S


33.95761 -98.61244 12 10/5/2017 0 0 US 287 N


34.22161 -99.39919 15 10/5/2017 0 0 US 287  N


34.39910 -100.12484 17 10/5/2017 1 1.43894 US 287 N


30.19653 -98.00170 105 10/24/2017 0 0 US 290 N


30.20299 -98.15250 106 10/24/2017 0 0 US 290 N


30.00439 -100.27914 112 10/24/2017 0 0 US 377 N


33.17599 -98.75103 37 10/11/2017 0 0 US 380 N


33.17675 -99.57915 39 10/11/2017 0 0 US 380 N


33.20951 -100.34511 41 10/11/2017 0 0 US 380 N


33.17781 -101.03200 44 10/12/2017 0 0 US 380 N


33.16697 -101.88874 45b 10/12/2017 0 0 US 380 N


34.01229 -100.80745 23 10/6/2017 0 0 US 62 N


34.08141 -100.29983 21 10/5/2017 0 0 US 62, US 83 N


33.59921 -95.94134 5 10/4/2017 0 0 US 82 N


33.70455 -97.53794 10 10/4/2017 1 1.43894 US 82 N


33.55917 -100.14020 25 10/6/2017 0 0 US 82 S


33.61090 -99.39682 27 10/6/2017 0 0 US 82 S


33.67123 -96.69688 8 10/4/2017 0 0 US 82, TX 289 N


29.25948 -99.77677 135 10/27/2017 0 0 US 83 N


29.46031 -99.76696 136 10/27/2017 0 0 US 83 N


29.56832 -99.74677 137 10/27/2017 0 0 US 83 N


31.63153 -97.00367 28 10/10/2017 0 0 US 84 S


32.31780 -101.50764 50 10/12/2017 0 0 US 87 S


31.23574 -99.72215 73 10/17/2017 0 0 US 87 N


31.49393 -100.47425 75 10/18/2017 0 0 US 87 N







29.36857 -100.83353 117 10/25/2017 0 0 US 90 S


29.32530 -99.30136 132 10/26/2017 2 2.877881 US 90 N


29.31375 -99.41406 133 10/26/2017 5 7.194702 US 90 N


29.31618 -99.57198 134 10/26/2017 0 0 US 90 N


29.33693 -99.17654 131b 10/26/2017 0 0 US 90 N


Average 0.512821 0.83224


32.86011 -102.06023 48 10/12/2017 0 0 TX 137 S


30.80533 -101.29295 98 10/20/2017 0 0 TX 137 N


31.84258 -101.16277 79 10/18/2017 1 1.43894 TX 158 N


30.23400 -98.90550 107 10/24/2017 0 0 TX 16 N


29.73010 -99.10310 141 10/27/2017 0 0 TX 16 N


32.35565 -100.89828 53 10/12/2017 0 0 TX 163 S


32.10234 -97.19838 31 10/10/2017 0 0 TX 171 N


32.63439 -97.70520 33 10/10/2017 0 0 TX 171 N


33.12882 -98.06740 35 10/11/2017 1 1.43894 TX 199 N


30.72089 -101.55647 89 10/19/2017 0 0 TX 290 S


33.00843 -96.10754 1 10/3/2017 0 0 TX 34 S


31.24334 -101.94353 84 10/18/2017 0 0 TX 349 S


30.68365 -101.80742 86 10/19/2017 0 0 TX 349 S


30.17099 -99.41582 110 10/24/2017 0 0 TX 41 N


29.79237 -98.67825 142 10/27/2017 0 0 TX 46 S


29.77358 -98.29294 144 10/27/2017 1 3.278214 TX 46 S


33.72108 -100.84134 24 10/6/2017 0 0 TX 70 S


28.57425 -99.65414 125 10/26/2017 1 1.43894 TX 85 N


28.60350 -99.46226 126 10/26/2017 0 0 TX 85 S


28.62010 -99.42884 127 10/26/2017 2 6.556427 TX 85 S


29.77234 -99.41974 139 10/27/2017 0 0 FM 337 S


29.33860 -98.82194 131 10/26/2017 0 0 FM 471 N


29.72285 -99.75554 138 10/27/2017 0 0 RR 337 S


Average 0.26087 0.615281


Outside Funnel


33.61457 -95.12079 3 10/4/2017 0 0 US 82







PredomEW Sex Road Type


Y male Highways


Y 2 males Highways


Y  male Highways


Y female Highways


Y NA Highways


Y NA Highways


N NA Highways


H  male Highways


H NA Highways


N NA Highways


Y NA Highways


Y male Highways


Y 1 male, 1 female Highways


H NA Primary


Y NA Primary


Y  4 males Primary


Y  female Primary


Y NA Primary


H 3 males, 1 female Primary


N female Primary


Y NA Primary


H male Primary


Y NA Primary


Y NA Primary


Y male Primary


Y NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


N NA Primary


Y NA Primary


H NA Primary


Y NA Primary


Y NA Primary


Y NA Primary


H NA Primary


N NA Primary


N NA Primary


Y NA Primary


N NA Primary


Y NA Primary


H NA Primary







Y NA Primary


Y 2 males Primary


Y  4 males, 1 female Primary


Y NA Primary


Y NA Primary


H NA Secondary


Y NA Secondary


Y female Secondary


H NA Secondary


Y NA Secondary


H NA Secondary


H NA Secondary


Y NA Secondary


Y male Secondary


N NA Secondary


N NA Secondary


N NA Secondary


Y NA Secondary


Y NA Secondary


Y NA Secondary


Y male Secondary


N NA Secondary


Y male Secondary


Y NA Secondary


Y 2 males Secondary


Y NA Secondary


Y NA Secondary


Y NA Secondary


NA Primary







Latitude Longitude Transect Date Roadkills AdjRoadkill Road


30.49481 -99.98853 37 10/20/2016 0 0 I-10 East


30.42413 -99.67922 39 10/21/2016 0 0 I-10 East


30.30415 -99.55095 40 10/21/2016 0 0 I-10 East


30.49522 -99.98744 38 10/20/2016 0 0 I-10 East (Median)


30.74119 -101.85058 28 10/20/2016 2 4.633643 I-10 West


30.30442 -99.55064 41 10/21/2016 0 0 I-10 West


30.45919 -100.14832 45 10/24/2016 0 0 I-10 West


30.52489 -99.83313 44 10/24/2016 1 2.316821 I-10 West


32.49067 -99.73369 80 11/2/2016 0 0 I-20 West


32.72183 -97.57385 13 10/13/2016 0 0 I-20 East


32.49069 -99.73384 16 10/13/2016 1 2.316821 I-20 West


32.37485 -98.99133 15 10/13/2016 3 6.950464 I-20 West


32.54949 -98.27690 14 10/13/2016 3 6.950464 I-20 West


32.40947 -99.46853 79 11/1/2016 0 0 I-20 West


31.90705 -102.22445 86 11/2/2016 1 2.316821 I-20 West


32.10739 -101.85006 85 11/2/2016 0 0 I-20 West


32.26379 -101.45916 84 11/2/2016 1 2.316821 I-20 West


32.34634 -101.04675 83 11/2/2016 0 0 I-20 West


32.41481 -100.64150 82 11/2/2016 0 0 I-20 West


32.49029 -100.17220 81 11/2/2016 0 0 I-20 West


30.76849 -97.62814 18 10/17/2016 0 0 I-35 North


31.35638 -97.21834 19 10/17/2016 0 0 I-35 North


30.68217 -101.30630 27 10/19/2016 47 108.8906 I-10 West


30.68740 -101.29121 31 10/20/2016 46 89.38252 I-10 West


30.68726 -101.29115 32 10/20/2016 3 . I-10 West (Median)


30.68676 -101.29207 30 10/20/2016 17 39.92397 I-10 East (Median)


30.68660 -101.29202 29 10/20/2016 8 . I-10 East


30.62383 -100.84472 34 10/20/2016 42 130.871 I-10 East (Median)


30.62369 -100.84477 33 10/20/2016 52 . I-10 East


30.62367 -100.84366 35 10/20/2016 24 45.06914 I-10 West


30.62354 -100.84369 36 10/20/2016 0 . I-10 West (Median)


30.74532 -101.68573 54 10/25/2016 0 0 I-10 West


30.72907 -101.56142 52 10/25/2016 15 28.16821 I-10 West


30.72868 -101.56141 53 10/25/2016 0 . I-10 East


30.69242 -101.44717 51 10/25/2016 34 108.8906 I-10 East


30.69280 -101.44666 50 10/25/2016 57 106.5738 I-10 West


30.68213 -101.30636 49 10/25/2016 9 15.83464 I-10 West


30.65255 -100.92261 48 10/25/2016 14 39.38596 I-10 West


30.58628 -100.66514 46 10/25/2016 10 23.77881 I-10 West


30.58643 -100.66629 47 10/25/2016 5 . I-10 East


30.69281 -101.44675 95 11/4/2016 21 108.8906 I-10 West


30.69003 -101.42364 94 11/4/2016 66 106.5738 I-10 West


30.68213 -101.30631 96 11/4/2016 2 15.83464 I-10 West


30.56684 -100.54531 101 10/20/2017 1 5.278214 I-10


30.44420 -100.22060 102 10/20/2017 2 10.55643 I-10


30.48314 -100.04803 103 10/20/2017 1 5.278214 I-10


32.38707 -99.30968 30 10/13/2017 1 5.278214 I-20


32.48146 -100.08246 57 10/13/2017 0 0 I-20


31.97607 -102.05893 82 10/18/2017 0 0 I-20


28.78622 -99.12844 128 10/26/2017 0 0 I-35







29.09784 -98.94578 129 10/26/2017 1 5.278214 I-35


29.81191 -98.00284 145 10/27/2017 0 0 I-35


32.06279 -96.45208 29 10/10/2017 0 0 I-45


30.69693 -101.23988 92 10/19/2017 0 0 I-10


30.63022 -100.86205 100 10/20/2017 1 5.278214 I-10


30.67021 -100.99129 113 10/20/2017 2 10.55643 I-10


Avg 8.803571429 20.86748


30.24606 -98.38738 43 10/21/2016 0 0 US 290 South


30.30253 -99.05477 42 10/21/2016 0 0 US 290 East


33.56993 -100.20916 7 10/11/2016 0 0 US82 West


33.61843 -99.45204 6 10/11/2016 0 0 US82 West


31.90922 -98.55924 22 10/18/2016 0 0 US 377 West


31.62699 -100.09409 24 10/18/2016 2 2.877881 US 67 West


31.74364 -99.34250 23 10/18/2016 1 1.43894 US 67 West


31.31294 -100.78668 25 10/19/2016 2 2.877881 US 67 West


32.75092 -99.76707 10 10/12/2016 0 0 US180 East


32.76493 -99.04959 11 10/12/2016 0 0 US180 East


32.75338 -98.33727 12 10/12/2016 0 0 US180 East


32.13722 -98.96204 78 11/1/2016 0 0 US183 North


31.28974 -98.17006 76 11/1/2016 0 0 US183 North


30.75716 -97.87648 75 11/1/2016 2 2.877881 US183 North


30.95286 -101.46062 91 11/3/2016 0 0 US190 West


30.91057 -101.07717 90 11/3/2016 2 2.877881 US190 West


30.85514 -100.67358 89 11/3/2016 1 1.43894 US190 West


31.35737 -100.43377 88 11/3/2016 0 0 US277 South


33.21010 -100.37582 8 10/11/2016 0 0 US380 


33.23153 -97.67038 3 10/10/2016 1 1.43894 US380 West


33.23558 -97.25785 2 10/10/2016 0 0 US380 West


33.21943 -96.83399 1 10/10/2016 0 0 US380 West


33.18685 -98.07399 4 10/11/2016 0 0 US380 West


31.80582 -100.93437 87 11/3/2016 0 0 US87 South


29.72698 -101.36994 62 10/26/2016 2 4 US90 West


29.72684 -101.37002 63 10/26/2016 2 . US90 East


29.70551 -101.21820 60 10/26/2016 4 4 US90 West


29.70538 -101.21824 61 10/26/2016 0 . US90 East


29.46723 -101.01465 65 10/27/2016 0 0 US90 West


29.46702 -101.01462 64 10/27/2016 0 . US90 East


29.39311 -100.72568 68 10/27/2016 1 1 US90 West


29.39283 -100.72670 67 10/27/2016 0 . US90 East


29.38915 -100.70174 70 10/27/2016 2 2 US90 West


29.38919 -100.70255 69 10/27/2016 0 . US90 East


29.29963 -100.38947 72 10/27/2016 1 1 US90 West


29.29948 -100.38955 71 10/27/2016 0 . US90 East


29.24322 -100.08011 73 10/27/2016 0 0 US90 East


29.26917 -99.71280 74 10/27/2016 2 6.556427 US90 East


31.09803 -98.21127 70 10/17/2017 0 0 US 183


31.06509 -97.57357 68 10/17/2017 0 0 US 190


31.05285 -98.09180 69 10/17/2017 4 5.755762 US 190


31.26668 -98.96542 71 10/17/2017 1 1.43894 US 190







30.91060 -101.07729 95 10/19/2017 0 0 US 190


29.66892 -100.85522 114 10/25/2017 4 5.755762 US 277


28.79366 -100.51936 122 10/25/2017 1 3.278214 US 277


28.67202 -100.31862 123 10/26/2017 0 0 US 277


28.61071 -99.93687 124 10/26/2017 1 3.278214 US 277


33.95761 -98.61244 12 10/5/2017 0 0 US 287


34.22161 -99.39919 15 10/5/2017 0 0 US 287


34.39910 -100.12484 17 10/5/2017 1 1.43894 US 287


30.19653 -98.00170 105 10/24/2017 0 0 US 290


30.20299 -98.15250 106 10/24/2017 0 0 US 290


30.00439 -100.27914 112 10/24/2017 0 0 US 377


33.17599 -98.75103 37 10/11/2017 0 0 US 380


33.17675 -99.57915 39 10/11/2017 0 0 US 380


33.20951 -100.34511 41 10/11/2017 0 0 US 380


33.17781 -101.03200 44 10/12/2017 0 0 US 380


33.16697 -101.88874 45b 10/12/2017 0 0 US 380


34.01229 -100.80745 23 10/6/2017 0 0 US 62


34.08141 -100.29983 21 10/5/2017 0 0 US 62, US 83


33.59921 -95.94134 5 10/4/2017 0 0 US 82


33.70455 -97.53794 10 10/4/2017 1 1.43894 US 82


33.55917 -100.14020 25 10/6/2017 0 0 US 82


33.61090 -99.39682 27 10/6/2017 0 0 US 82


33.67123 -96.69688 8 10/4/2017 0 0 US 82, TX 289


29.25948 -99.77677 135 10/27/2017 0 0 US 83


29.46031 -99.76696 136 10/27/2017 0 0 US 83


29.56832 -99.74677 137 10/27/2017 0 0 US 83


31.63153 -97.00367 28 10/10/2017 0 0 US 84


32.31780 -101.50764 50 10/12/2017 0 0 US 87


31.23574 -99.72215 73 10/17/2017 0 0 US 87


31.49393 -100.47425 75 10/18/2017 0 0 US 87


29.36857 -100.83353 117 10/25/2017 0 0 US 90


29.32530 -99.30136 132 10/26/2017 2 2.877881 US 90


29.31375 -99.41406 133 10/26/2017 5 7.194702 US 90


29.31618 -99.57198 134 10/26/2017 0 0 US 90


29.33693 -99.17654 131b 10/26/2017 0 0 US 90


Avg 0.584415584 0.941438


33.37298 -98.77844 5 10/11/2016 0 0 SH114 West


30.89537 -101.16125 26 10/19/2016 1 1.43894 SH163 South


30.03604 -101.17532 58 10/26/2016 0 0 SH163 South


30.57418 -101.16212 55 10/26/2016 0 0 SH163 South


29.96137 -101.14799 59 10/26/2016 6 19.66928 SH163 South


30.18462 -101.09487 57 10/26/2016 0 0 SH163 South


30.31783 -101.09022 56 10/26/2016 2 6.556427 SH163 South


32.00072 -97.16931 20 10/17/2016 0 0 SH22 West


31.84363 -98.32908 77 11/1/2016 0 0 SH36 North


31.97729 -97.88320 21 10/18/2016 0 0 SH6 west


32.83161 -100.43170 9 10/12/2016 0 0 SH70


32.37968 -100.36858 17 10/14/2016 1 3.278214 SH70 South


30.75463 -101.20577 92 11/3/2016 21 68.84248 SH137 South







30.64707 -101.20448 93 11/4/2016 6 19.66928 SH163 South


32.86011 -102.06023 48 10/12/2017 0 0 TX 137


30.80533 -101.29295 98 10/20/2017 0 0 TX 137


31.84258 -101.16277 79 10/18/2017 1 1.43894 TX 158


30.23400 -98.90550 107 10/24/2017 0 0 TX 16


29.73010 -99.10310 141 10/27/2017 0 0 TX 16


32.35565 -100.89828 53 10/12/2017 0 0 TX 163


32.10234 -97.19838 31 10/10/2017 0 0 TX 171


32.63439 -97.70520 33 10/10/2017 0 0 TX 171


33.12882 -98.06740 35 10/11/2017 1 1.43894 TX 199


30.72089 -101.55647 89 10/19/2017 0 0 TX 290


33.00843 -96.10754 1 10/3/2017 0 0 TX 34


31.24334 -101.94353 84 10/18/2017 0 0 TX 349


30.68365 -101.80742 86 10/19/2017 0 0 TX 349


30.17099 -99.41582 110 10/24/2017 0 0 TX 41


29.79237 -98.67825 142 10/27/2017 0 0 TX 46


29.77358 -98.29294 144 10/27/2017 1 3.278214 TX 46


33.72108 -100.84134 24 10/6/2017 0 0 TX 70


28.57425 -99.65414 125 10/26/2017 1 1.43894 TX 85


28.60350 -99.46226 126 10/26/2017 0 0 TX 85


28.62010 -99.42884 127 10/26/2017 2 6.556427 TX 85


29.77234 -99.41974 139 10/27/2017 0 0 FM 337


29.33860 -98.82194 131 10/26/2017 0 0 FM 471


29.72285 -99.75554 138 10/27/2017 0 0 RR 337


Avg 1.194444444 3.71128







Side PredomEW Sex Road Type


S Y NA Highways


S Y NA Highways


S H NA Highways


N Y NA Highways


N Y 2 male Highways


N Y NA Highways


N Y NA Highways


N Y NA Highways


N Y NA Highways


S Y NA Highways


N Y 1 male Highways


N Y 2 female, 1 male Highways


N Y NA Highways


N Y NA Highways


N Y 1 male Highways


N Y NA Highways


N Y 1 male Highways


N Y NA Highways


N Y NA Highways


N Y NA Highways


S N NA Highways


S N NA Highways


N Y18 female, 20 male, 9 NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


N Y NA Highways


S Y NA Highways


S Y NA Highways


N Y 18 female, 39 male Highways


N Y 4 female, 5 male Highways


N Y3 female, 10 male, 1 NA Highways


N Y 2 female, 8 male Highways


S Y 2 female, 3 male Highways


N Y 9 female, 12 male Highways


N Y13 female, 9 male, 44 NA Highways


N Y 1 female, 1 male Highways


S Y male Highways


S Y 2 males Highways


S Y  male Highways


S Y female Highways


S Y NA Highways


N Y NA Highways


S N NA Highways







S H  male Highways


S H NA Highways


S N NA Highways


S Y NA Highways


S Y male Highways


S Y 1 male, 1 female Highways


S Y NA Primary


S Y NA Primary


N Y NA Primary


N Y NA Primary


N H NA Primary


N Y 1 female, 1 male Primary


N Y 1 female Primary


N H 1 female, 1 male Primary


S Y NA Primary


S Y NA Primary


S H NA Primary


S N NA Primary


S N NA Primary


N N 2 female Primary


N N NA Primary


N Y 1 female, 1 male Primary


N Y 1 female Primary


N N NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


S H NA Primary


N H 2 male Primary


S H NA Primary


N Y 3 female, 1 male Primary


S Y NA Primary


N Y NA Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


N Y 2 male Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


S Y NA Primary


S H 1 female, 1 male Primary


N H NA Primary


N Y NA Primary


N Y  4 males Primary


N Y  female Primary







N Y NA Primary


N H 3 males, 1 female Primary


S N female Primary


S Y NA Primary


S H male Primary


N Y NA Primary


 N Y NA Primary


N Y male Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N Y NA Primary


N N NA Primary


N Y NA Primary


N H NA Primary


S Y NA Primary


S Y NA Primary


N Y NA Primary


N H NA Primary


N N NA Primary


N N NA Primary


S Y NA Primary


S N NA Primary


N Y NA Primary


N H NA Primary


S Y NA Primary


N Y 2 males Primary


N Y  4 males, 1 female Primary


N Y NA Primary


N Y NA Primary


N Y NA Secondary


N N 1 male Secondary


N H NA Secondary


S N NA Secondary


S N 2 female, 4 male Secondary


S H NA Secondary


S H 1 female, 1 male Secondary


N Y NA Secondary


N Y NA Secondary


N Y NA Secondary


S H NA Secondary


S H 1 female Secondary


S Y NA Secondary







S N 2 female, 4 male Secondary


S H NA Secondary


N Y NA Secondary


N Y female Secondary


N H NA Secondary


N Y NA Secondary


S H NA Secondary


N H NA Secondary


N Y NA Secondary


N Y male Secondary


S N NA Secondary


S N NA Secondary


S N NA Secondary


S Y NA Secondary


N Y NA Secondary


S Y NA Secondary


S Y male Secondary


S N NA Secondary


N Y male Secondary


S Y NA Secondary


S Y 2 males Secondary


S Y NA Secondary


N Y NA Secondary


S Y NA Secondary







Date Transects Highway Roadkills_WN Roadkills_WS Roadkills_EN Roadkills_ES


25-Oct-16 46/././47 IH-10 10 . . 5


20-Oct-16 35/36/34/33 IH-10 24 0 42 52


25-Oct-16 48/././. IH-10 14 . . .


20-Oct-16 31/32/30/29 IH-10 46 3 17 8


19-Oct-16 27/././. IH-10 47 . . .


25-Oct-16 49/././. IH-10 9 . . .


4-Nov-16 96/././. IH-10 2 . . .


4-Nov-16 66/././. IH-10 66 . . .


25-Oct-16 50/././51 IH-10 57 . . 34


4-Nov-16 95/././. IH-10 21 . . .


25-Oct-16 52/././53 IH-10 15 . . 0


20-Oct-16 41/./.40 IH-10 0 . . 0


22-Oct-16 38/././37 IH-10 0 0 . .


26-Oct-16 62/63 US-90 2 2 . .


26-Oct-16 60/61 US-90 4 0 . .


27-Oct-16 65/64 US-90 4 0 . .


27-Oct-16 68/67 US-90 1 0 . .


27-Oct-16 70/69 US-90 2 0 . .


27-Oct-16 72/71 US-90 1 0 . .


Total 56.0 miles from W Sonora to E Sheffield


Total 90.1 km


3.9 mi (6.27 km) from Ozona North to Tx Hwy 137 Transect


6.73 km from Ozona South to Tx Hwy 137 Transect







Note West Bound S%ofN East Bound S%ofN Other S%ofWN AllOther%N


0.5


0.04 1.238095238 3.916666667


0.065217391 0.470588235 0.608695652


Repeat close to Transect 27


Repeat close to Transect 27


0.596491228


Repeat close to Transect 50


0.0625


1


0.2


0.2


0.5


0.333333333


0.5


per 2 edges per 4 edges


Mean Adj % 0.438940417 2.26268116


SD 0.360128749 2.33908874


N 13 2







Year


Highway Secondary Highway Primary


2016 Hotspot Separated 740.78 442.56 39.72 26.45


2017 Hotspot Separated 49.17 0.00 63.34 36.06


2016-2017 Hotspot Separated 654.33 442.56 49.56 30.38


2016-2017 Hotspot Merged . . 397.28 30.38


Sonora-Sheffield Hotspot NonHotspot


Roadkills per Km (Presence Only)







Mean


SD


% Overwintering


% Funnel


2016-2017 - Hotspot Not Separated


Mean


SD


% Overwintering


% Funnel







Secondary


77.36 Year


28.30 2016 Highway Primary Secondary Sum


50.10 Model


121.46 1 4,945.10    3,546.65   2,546.84    11,038.59   


2 4,836.84    4,251.83   3,320.69    12,409.36   


3 3,360.43    4,331.03   4,387.82    12,079.28   


4 4,927.78    4,481.46   3,145.77    12,555.01   


5 2,431.01    1,344.34   1,002.42    4,777.77     


6 3,743.45    2,336.28   1,813.48    7,893.21     


7 5,099.67    5,116.42   3,430.18    13,646.28   


8 3,505.77    4,720.74   2,365.99    10,592.50   


9 3,944.30    2,637.75   2,005.49    8,587.54     


10 2,455.94    1,483.48   1,183.81    5,123.24     


Mean


SD


% Overwintering


% Funnel


2017


4,945.10    3,546.65   2,546.84    11,038.59   


4,836.84    4,251.83   3,320.69    12,409.36   


3,360.43    4,331.03   4,387.82    12,079.28   


4,927.78    4,481.46   3,145.77    12,555.01   


2,431.01    1,344.34   1,002.42    4,777.77     


3,743.45    2,336.28   1,813.48    7,893.21     


5,099.67    5,116.42   3,430.18    13,646.28   


3,505.77    4,720.74   2,365.99    10,592.50   


3,944.30    2,637.75   2,005.49    8,587.54     


2,455.94    1,483.48   1,183.81    5,123.24     


Mean


SD


% Overwintering


% Funnel


2016-2017


4,945.10    3,546.65   2,546.84    11,038.59   


4,836.84    4,251.83   3,320.69    12,409.36   


3,360.43    4,331.03   4,387.82    12,079.28   


4,927.78    4,481.46   3,145.77    12,555.01   


2,431.01    1,344.34   1,002.42    4,777.77     


3,743.45    2,336.28   1,813.48    7,893.21     


5,099.67    5,116.42   3,430.18    13,646.28   


NonHotspot Length (km)


BEE







3,505.77    4,720.74   2,365.99    10,592.50   


3,944.30    2,637.75   2,005.49    8,587.54     


2,455.94    1,483.48   1,183.81    5,123.24     


Mean


SD


% Overwintering


% Funnel


2016-2017 - Hotspot Not Separated


4,945.10    3,546.65   2,546.84    11,038.59   


4,836.84    4,251.83   3,320.69    12,409.36   


3,360.43    4,331.03   4,387.82    12,079.28   


4,927.78    4,481.46   3,145.77    12,555.01   


2,431.01    1,344.34   1,002.42    4,777.77     


3,743.45    2,336.28   1,813.48    7,893.21     


5,099.67    5,116.42   3,430.18    13,646.28   


3,505.77    4,720.74   2,365.99    10,592.50   


3,944.30    2,637.75   2,005.49    8,587.54     


2,455.94    1,483.48   1,183.81    5,123.24     


Mean


SD


% Overwintering


% Funnel







Total Highway Primary Secondary Sum Total Highway Secondary


11,106.49   10,614.23   9,866.45    10,491.07  30,971.75   31,123.01 94.43871 23.81031


12,479.46   10,225.56   11,111.19  11,456.63  32,793.39   32,939.46 94.43969 22.38857


12,197.13   8,307.92      11,786.15  13,238.91  33,332.98   33,546.03 94.39048 23.83198


12,624.26   10,783.58   10,864.99  10,741.47  32,390.03   32,554.82 94.43892 22.85277


4,825.44      5,854.28      5,215.96    4,756.94     15,827.18   15,934.46 94.43871 23.46039


7,954.58      8,152.33      6,826.84    6,698.41     21,677.58   21,794.73 94.56967 20.60204


13,691.24   10,373.84   11,744.20  10,043.04  32,161.07   32,276.34 94.32243 23.81031


10,692.54   7,510.55      10,602.38  7,821.92     25,934.85   26,137.06 94.43871 23.64908


8,630.84      8,683.58      7,823.30    7,881.60     24,388.48   24,498.25 94.32317 23.81031


5,174.33      6,137.95      5,308.58    5,351.63     16,798.15   16,916.18 94.32317 22.74114


11,106.49   10,614.23   9,866.45    10,491.07  30,971.75   31,123.01 94.43871 23.81031


12,479.46   10,225.56   11,111.19  11,456.63  32,793.39   32,939.46 94.43969 22.38857


12,197.13   8,307.92      11,786.15  13,238.91  33,332.98   33,546.03 94.39048 23.83198


12,624.26   10,783.58   10,864.99  10,741.47  32,390.03   32,554.82 94.43892 22.85277


4,825.44      5,854.28      5,215.96    4,756.94     15,827.18   15,934.46 94.43871 23.46039


7,954.58      8,152.33      6,826.84    6,698.41     21,677.58   21,794.73 94.56967 20.60204


13,691.24   10,373.84   11,744.20  10,043.04  32,161.07   32,276.34 94.32243 23.81031


10,692.54   7,510.55      10,602.38  7,821.92     25,934.85   26,137.06 94.43871 23.64908


8,630.84      8,683.58      7,823.30    7,881.60     24,388.48   24,498.25 94.32317 23.81031


5,174.33      6,137.95      5,308.58    5,351.63     16,798.15   16,916.18 94.32317 22.74114


11,106.49   10,614.23   9,866.45    10,491.07  30,971.75   31,123.01 94.43871 23.81031


12,479.46   10,225.56   11,111.19  11,456.63  32,793.39   32,939.46 94.43969 22.38857


12,197.13   8,307.92      11,786.15  13,238.91  33,332.98   33,546.03 94.39048 23.83198


12,624.26   10,783.58   10,864.99  10,741.47  32,390.03   32,554.82 94.43892 22.85277


4,825.44      5,854.28      5,215.96    4,756.94     15,827.18   15,934.46 94.43871 23.46039


7,954.58      8,152.33      6,826.84    6,698.41     21,677.58   21,794.73 94.56967 20.60204


13,691.24   10,373.84   11,744.20  10,043.04  32,161.07   32,276.34 94.32243 23.81031


Length (km)


BEE Funnel Sonora-Sheffield Hotspot







10,692.54   7,510.55      10,602.38  7,821.92     25,934.85   26,137.06 94.43871 23.64908


8,630.84      8,683.58      7,823.30    7,881.60     24,388.48   24,498.25 94.32317 23.81031


5,174.33      6,137.95      5,308.58    5,351.63     16,798.15   16,916.18 94.32317 22.74114


11,106.49   10,614.23   9,866.45    10,491.07  30,971.75   31,123.01 0 0


12,479.46   10,225.56   11,111.19  11,456.63  32,793.39   32,939.46 0 0


12,197.13   8,307.92      11,786.15  13,238.91  33,332.98   33,546.03 0 0


12,624.26   10,783.58   10,864.99  10,741.47  32,390.03   32,554.82 0 0


4,825.44      5,854.28      5,215.96    4,756.94     15,827.18   15,934.46 0 0


7,954.58      8,152.33      6,826.84    6,698.41     21,677.58   21,794.73 0 0


13,691.24   10,373.84   11,744.20  10,043.04  32,161.07   32,276.34 0 0


10,692.54   7,510.55      10,602.38  7,821.92     25,934.85   26,137.06 0 0


8,630.84      8,683.58      7,823.30    7,881.60     24,388.48   24,498.25 0 0


5,174.33      6,137.95      5,308.58    5,351.63     16,798.15   16,916.18 0 0







Sonora-


Sheffield 


Hotspot BEE


Sum Highway Primary Secondary Highway Primary Secondary


118.249 4,850.66 3,546.65 2,523.03 10,519.79 9,866.45 10,467.26 80,495 562,131


116.8283 12,385.02 4,251.83 3,298.30 10,131.12 11,111.19 11,434.24 79,867 939,369


118.2225 12,102.74 4,331.03 4,363.99 8,213.53 11,786.15 13,215.08 80,469 1,013,294


117.2917 12,529.82 4,481.46 3,122.92 10,689.14 10,864.99 10,718.61 80,072 937,832


117.8991 4,731.00 1,344.34 978.96 5,759.84 5,215.96 4,733.48 80,341 379,528


115.1717 7,860.01 2,336.28 1,792.88 8,057.76 6,826.84 6,677.81 79,173 591,834


118.1327 13,596.92 5,116.42 3,406.37 10,279.52 11,744.20 10,019.23 80,409 1,019,273


118.0878 10,598.10 4,720.74 2,342.34 7,416.11 10,602.38 7,798.27 80,424 807,408


118.1335 8,536.51 2,637.75 1,981.68 8,589.26 7,823.30 7,857.79 80,410 642,519


117.0643 5,080.01 1,483.48 1,161.07 6,043.63 5,308.58 5,328.89 79,937 410,754


80,160 730,394


415 244,182


0.09% 0.86%


5.96% 54.33%


118.249 4,850.66 3,546.65 2,523.03 10,519.79 9,866.45 10,467.26 4,644 511,192


116.8283 12,385.02 4,251.83 3,298.30 10,131.12 11,111.19 11,434.24 4,644 1,035,782


118.2225 12,102.74 4,331.03 4,363.99 8,213.53 11,786.15 13,215.08 4,641 1,050,918


117.2917 12,529.82 4,481.46 3,122.92 10,689.14 10,864.99 10,718.61 4,644 1,048,271


117.8991 4,731.00 1,344.34 978.96 5,759.84 5,215.96 4,733.48 4,644 380,488


115.1717 7,860.01 2,336.28 1,792.88 8,057.76 6,826.84 6,677.81 4,650 637,490


118.1327 13,596.92 5,116.42 3,406.37 10,279.52 11,744.20 10,019.23 4,638 1,146,775


118.0878 10,598.10 4,720.74 2,342.34 7,416.11 10,602.38 7,798.27 4,644 912,455


118.1335 8,536.51 2,637.75 1,981.68 8,589.26 7,823.30 7,857.79 4,638 696,543


117.0643 5,080.01 1,483.48 1,161.07 6,043.63 5,308.58 5,328.89 4,638 412,760


4,643 783,267


4 289,973


0.01% 1.26%


0.30% 50.25%


118.249 4,850.66 3,546.65 2,523.03 10,519.79 9,866.45 10,467.26 72,331 546,899


116.8283 12,385.02 4,251.83 3,298.30 10,131.12 11,111.19 11,434.24 71,703 979,939


118.2225 12,102.74 4,331.03 4,363.99 8,213.53 11,786.15 13,215.08 72,309 1,022,358


117.2917 12,529.82 4,481.46 3,122.92 10,689.14 10,864.99 10,718.61 71,908 985,509


117.8991 4,731.00 1,344.34 978.96 5,759.84 5,215.96 4,733.48 72,176 396,537


115.1717 7,860.01 2,336.28 1,792.88 8,057.76 6,826.84 6,677.81 70,997 621,348


118.1327 13,596.92 5,116.42 3,406.37 10,279.52 11,744.20 10,019.23 72,255 1,072,235


Random Ten of 20-Variable MaxEnt Models


NonHotspot Including Hotspot


Length (km)


Sonora-Sheffield Hotspot BEE Funnel


Road Mortality per Km







118.0878 10,598.10 4,720.74 2,342.34 7,416.11 10,602.38 7,798.27 72,260 858,286


118.1335 8,536.51 2,637.75 1,981.68 8,589.26 7,823.30 7,857.79 72,256 674,753


117.0643 5,080.01 1,483.48 1,161.07 6,043.63 5,308.58 5,328.89 71,782 426,792


71,997.63 758,465


419.59 256,087


0.10% 1.03%


5.92% 62.38%


0 4,945.10 3,546.65 2,546.84 10,614.23 9,866.45 10,491.07 0.00 2,381,698


0 12,479.46 4,251.83 3,320.69 10,225.56 11,111.19 11,456.63 0.00 5,490,391


0 12,197.13 4,331.03 4,387.82 8,307.92 11,786.15 13,238.91 0.00 5,510,246


0 12,624.26 4,481.46 3,145.77 10,783.58 10,864.99 10,741.47 0.00 5,533,646


0 4,825.44 1,344.34 1,002.42 5,854.28 5,215.96 4,756.94 0.00 2,079,664


0 7,954.58 2,336.28 1,813.48 8,152.33 6,826.84 6,698.41 0.00 3,451,465


0 13,691.24 5,116.42 3,430.18 10,373.84 11,744.20 10,043.04 0.00 6,011,376


0 10,692.54 4,720.74 2,365.99 7,510.55 10,602.38 7,821.92 0.00 4,678,765


0 8,630.84 2,637.75 2,005.49 8,683.58 7,823.30 7,881.60 0.00 3,752,613


0 5,174.33 1,483.48 1,183.81 6,137.95 5,308.58 5,351.63 0.00 2,244,533


0.00 4,113,440


0.00 1,526,878


0.00% 5.33%


0.00% 85.81%







BEE Funnel


Area (sq km) 273,983.31 796,974.32


Funnel


BEE as % 


Funnel


Overwintering 


Population


1,568,992 36%


1,660,654 57%


1,740,708 58%


1,621,150 58%


813,233 47%


1,096,347 54%


1,574,371 65%


1,258,653 64%


1,236,330 52%


872,609 47%


1,344,305 53.7% 84611000


337,026 8.8%


1.56%


1,836,491 28%


1,931,566 54%


1,972,208 53%


1,902,672 55%


923,739 41%


1,277,795 50%


1,854,326 62%


1,459,983 62%


1,438,663 48%


991,107 42%


1,558,855 49.5% 61401000


397,394 10.5%


2.48%


1,417,915 39%


1,484,293 66%


1,499,601 68%


1,468,816 67%


753,275 53%


1,012,343 61%


1,440,533 74%


Including Hotspot


Road Mortality per Km







1,152,658 74%


1,129,339 60%


799,592 53%


1,215,836 61.6% 73006000


288,294 11.1%


1.64%


5,790,868 41%


5,791,553 95%


5,266,688 105%


5,918,898 93%


3,062,060 68%


4,259,790 81%


5,697,998 105%


4,255,994 110%


4,644,830 81%


3,249,800 69%


4,793,848 84.8% 73006000


1,068,548 21.3%


6.16%







% BEE


34.38%







Latitude Longitude Transect Date Roadkills AdjRoadkill Road


30.74119 -101.85058 28 10/20/2016 2 4.633643 I-10 West


30.52489 -99.83313 44 10/24/2016 1 2.316821 I-10 West


32.49069 -99.73384 16 10/13/2016 1 2.316821 I-20 West


32.37485 -98.99133 15 10/13/2016 3 6.950464 I-20 West


32.54949 -98.27690 14 10/13/2016 3 6.950464 I-20 West


31.90705 -102.22445 86 11/2/2016 1 2.316821 I-20 West


32.26379 -101.45916 84 11/2/2016 1 2.316821 I-20 West


Overall nonhotspot Average Avg 1.714285714 3.971694


31.62699 -100.09409 24 10/18/2016 2 2.877881 US 67 West


31.74364 -99.34250 23 10/18/2016 1 1.43894 US 67 West


31.31294 -100.78668 25 10/19/2016 2 2.877881 US 67 West


30.75716 -97.87648 75 11/1/2016 2 2.877881 US183 North


30.91057 -101.07717 90 11/3/2016 2 2.877881 US190 West


30.85514 -100.67358 89 11/3/2016 1 1.43894 US190 West


33.23153 -97.67038 3 10/10/2016 1 1.43894 US380 West


29.72698 -101.36994 62 10/26/2016 2 4 US90 West


29.72684 -101.37002 63 10/26/2016 2 . US90 East


29.70551 -101.21820 60 10/26/2016 4 4 US90 West


29.70538 -101.21824 61 10/26/2016 0 . US90 East


29.39311 -100.72568 68 10/27/2016 1 1 US90 West


29.39283 -100.72670 67 10/27/2016 0 . US90 East


29.38915 -100.70174 70 10/27/2016 2 2 US90 West


29.38919 -100.70255 69 10/27/2016 0 . US90 East


29.29963 -100.38947 72 10/27/2016 1 1 US90 West


29.29948 -100.38955 71 10/27/2016 0 . US90 East


29.26917 -99.71280 74 10/27/2016 2 6.556427 US90 East


Overall nonhotspot Average Avg 1.388888889 2.644982


30.89537 -101.16125 26 10/19/2016 1 1.43894 SH163 South


29.96137 -101.14799 59 10/26/2016 6 19.66928 SH163 South


30.31783 -101.09022 56 10/26/2016 2 6.556427 SH163 South


32.37968 -100.36858 17 10/14/2016 1 3.278214 SH70 South


Overall Nonhotspot Average Avg 2.5 7.735716


30.68217 -101.30630 27 10/19/2016 47 108.8906 I-10 West


30.68740 -101.29121 31 10/20/2016 46 89.38252 I-10 West


30.68726 -101.29115 32 10/20/2016 3 . I-10 West (Median)


30.68676 -101.29207 30 10/20/2016 17 39.92397 I-10 East (Median)


30.68660 -101.29202 29 10/20/2016 8 . I-10 East


30.62383 -100.84472 34 10/20/2016 42 130.871 I-10 East (Median)


30.62369 -100.84477 33 10/20/2016 52 . I-10 East


30.62367 -100.84366 35 10/20/2016 24 45.06914 I-10 West


30.62354 -100.84369 36 10/20/2016 0 . I-10 West (Median)







30.72907 -101.56142 52 10/25/2016 15 28.16821 I-10 West


30.72868 -101.56141 53 10/25/2016 0 . I-10 East


30.69242 -101.44717 51 10/25/2016 34 179.4593 I-10 East


30.69280 -101.44666 50 10/25/2016 57 132.0588 I-10 West


30.68213 -101.30636 49 10/25/2016 9 20.85139 I-10 West


30.65255 -100.92261 48 10/25/2016 14 32.4355 I-10 West


30.58628 -100.66514 46 10/25/2016 10 23.77881 I-10 West


30.58643 -100.66629 47 10/25/2016 5 . I-10 East


30.69281 -101.44675 95 11/4/2016 21 48.65325 I-10 West


30.69003 -101.42364 94 11/4/2016 66 152.9102 I-10 West


30.68213 -101.30631 96 11/4/2016 2 4.633643 I-10 West


Overall Hotspot Average Avg 23.6 74.07759


30.75463 -101.20577 92 11/3/2016 21 68.84248 SH137 South


30.64707 -101.20448 93 11/4/2016 6 19.66928 SH163 South


Overall Hotspot Average Avg 13.5 44.25588







Side PredomEW Sex Road Type


N Y 2 male Highways


N Y NA Highways


N Y 1 male Highways


N Y 2 female, 1 male Highways


N Y NA Highways


N Y 1 male Highways


N Y 1 male Highways


N Y 1 female, 1 male Primary


N Y 1 female Primary


N H 1 female, 1 male Primary


N N 2 female Primary


N Y 1 female, 1 male Primary


N Y 1 female Primary


N Y NA Primary


N H 2 male Primary


S H NA Primary


N Y 3 female, 1 male Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


N Y 2 male Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


S H 1 female, 1 male Primary


N N 1 male Secondary


S N 2 female, 4 male Secondary


S H 1 female, 1 male Secondary


S H 1 female Secondary


N Y18 female, 20 male, 9 NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways







N Y NA Highways


S Y NA Highways


S Y NA Highways


N Y 18 female, 39 male Highways


N Y 4 female, 5 male Highways


N Y3 female, 10 male, 1 NA Highways


N Y 2 female, 8 male Highways


S Y 2 female, 3 male Highways


N Y 9 female, 12 male Highways


N Y13 female, 9 male, 44 NA Highways


N Y 1 female, 1 male Highways


S Y NA Secondary


S N 2 female, 4 male Secondary







Latitude Longitude Transect Date Roadkills AdjRoadkill Road Side


30.56684 -100.54531 101 10/20/2017 1 5.278214 I-10 S


30.44420 -100.22060 102 10/20/2017 2 10.55643 I-10 S


30.48314 -100.04803 103 10/20/2017 1 5.278214 I-10 S


32.38707 -99.30968 30 10/13/2017 1 5.278214 I-20 S


29.09784 -98.94578 129 10/26/2017 1 5.278214 I-35 S


Overall nonhotspot Average Avg 1.2 6.333856


31.05285 -98.09180 69 10/17/2017 4 5.755762 US 190 N


31.26668 -98.96542 71 10/17/2017 1 1.43894 US 190 N


29.66892 -100.85522 114 10/25/2017 4 5.755762 US 277 N


28.79366 -100.51936 122 10/25/2017 1 3.278214 US 277 S


28.61071 -99.93687 124 10/26/2017 1 3.278214 US 277 S


34.39910 -100.12484 17 10/5/2017 1 1.43894 US 287 N


33.70455 -97.53794 10 10/4/2017 1 1.43894 US 82 N


29.32530 -99.30136 132 10/26/2017 2 2.877881 US 90 N


29.31375 -99.41406 133 10/26/2017 5 7.194702 US 90 N


Overall nonhotspot Average Avg 2.222222 3.606373


31.84258 -101.16277 79 10/18/2017 1 1.43894 TX 158 N


33.12882 -98.06740 35 10/11/2017 1 1.43894 TX 199 N


29.77358 -98.29294 144 10/27/2017 1 3.278214 TX 46 S


28.57425 -99.65414 125 10/26/2017 1 1.43894 TX 85 N


28.62010 -99.42884 127 10/26/2017 2 6.556427 TX 85 S


Overall Hotspot Average Avg 1.2 2.830292


30.63022 -100.86205 100 10/20/2017 1 3.278214 I-10 S


30.67021 -100.99129 113 10/20/2017 2 6.556427 I-10 S


Overall Hotspot Average 1.5 4.91732


Outside Funnel


33.61457 -95.12079 3 10/4/2017 0 0 US 82







PredomEW Sex Road Type


Y male Highways


Y 2 males Highways


Y  male Highways


Y female Highways


H  male Highways


Y  4 males Primary


Y  female Primary


H 3 males, 1 female Primary


N female Primary


H male Primary


Y male Primary


H NA Primary


Y 2 males Primary


Y  4 males, 1 female Primary


Y female Secondary


Y male Secondary


Y male Secondary


Y male Secondary


Y 2 males Secondary


Y male Highways


Y 1 male, 1 female Highways


NA Primary







Latitude Longitude Transect Date Roadkills AdjRoadkill Road


30.74119 -101.85058 28 10/20/2016 2 4.633643 I-10 West


30.52489 -99.83313 44 10/24/2016 1 2.316821 I-10 West


32.49069 -99.73384 16 10/13/2016 1 2.316821 I-20 West


32.37485 -98.99133 15 10/13/2016 3 6.950464 I-20 West


32.54949 -98.27690 14 10/13/2016 3 6.950464 I-20 West


31.90705 -102.22445 86 11/2/2016 1 2.316821 I-20 West


32.26379 -101.45916 84 11/2/2016 1 2.316821 I-20 West


30.56684 -100.54531 101 10/20/2017 1 5.278214 I-10


30.44420 -100.22060 102 10/20/2017 2 10.55643 I-10


30.48314 -100.04803 103 10/20/2017 1 5.278214 I-10


32.38707 -99.30968 30 10/13/2017 1 5.278214 I-20


29.09784 -98.94578 129 10/26/2017 1 5.278214 I-35


Overall NonHotspot Average Avg 1.5 4.955928


31.62699 -100.09409 24 10/18/2016 2 2.877881 US 67 West


31.74364 -99.34250 23 10/18/2016 1 1.43894 US 67 West


31.31294 -100.78668 25 10/19/2016 2 2.877881 US 67 West


30.75716 -97.87648 75 11/1/2016 2 2.877881 US183 North


30.91057 -101.07717 90 11/3/2016 2 2.877881 US190 West


30.85514 -100.67358 89 11/3/2016 1 1.43894 US190 West


33.23153 -97.67038 3 10/10/2016 1 1.43894 US380 West


29.72698 -101.36994 62 10/26/2016 2 4 US90 West


29.72684 -101.37002 63 10/26/2016 2 . US90 East


29.70551 -101.21820 60 10/26/2016 4 4 US90 West


29.70538 -101.21824 61 10/26/2016 0 . US90 East


29.39311 -100.72568 68 10/27/2016 1 1 US90 West


29.39283 -100.72670 67 10/27/2016 0 . US90 East


29.38915 -100.70174 70 10/27/2016 2 2 US90 West


29.38919 -100.70255 69 10/27/2016 0 . US90 East


29.29963 -100.38947 72 10/27/2016 1 1 US90 West


29.29948 -100.38955 71 10/27/2016 0 . US90 East


29.26917 -99.71280 74 10/27/2016 2 6.556427 US90 East


31.05285 -98.09180 69 10/17/2017 4 5.755762 US 190


31.26668 -98.96542 71 10/17/2017 1 1.43894 US 190


29.66892 -100.85522 114 10/25/2017 4 5.755762 US 277


28.79366 -100.51936 122 10/25/2017 1 3.278214 US 277


28.61071 -99.93687 124 10/26/2017 1 3.278214 US 277


34.39910 -100.12484 17 10/5/2017 1 1.43894 US 287


33.70455 -97.53794 10 10/4/2017 1 1.43894 US 82


29.32530 -99.30136 132 10/26/2017 2 2.877881 US 90


29.31375 -99.41406 133 10/26/2017 5 7.194702 US 90


Overall NonHotspot Average Avg 1.666666667 3.038278


30.89537 -101.16125 26 10/19/2016 1 1.43894 SH163 South


29.96137 -101.14799 59 10/26/2016 6 19.66928 SH163 South


30.31783 -101.09022 56 10/26/2016 2 6.556427 SH163 South







32.37968 -100.36858 17 10/14/2016 1 3.278214 SH70 South


31.84258 -101.16277 79 10/18/2017 1 1.43894 TX 158


33.12882 -98.06740 35 10/11/2017 1 1.43894 TX 199


29.77358 -98.29294 144 10/27/2017 1 3.278214 TX 46


28.57425 -99.65414 125 10/26/2017 1 1.43894 TX 85


28.62010 -99.42884 127 10/26/2017 2 6.556427 TX 85


Overall  NonHotspot Average Avg 2.5 5.01048


30.68217 -101.30630 27 10/19/2016 47 108.8906 I-10 West


30.68740 -101.29121 31 10/20/2016 46 89.38252 I-10 West


30.68726 -101.29115 32 10/20/2016 3 . I-10 West (Median)


30.68676 -101.29207 30 10/20/2016 17 39.92397 I-10 East (Median)


30.68660 -101.29202 29 10/20/2016 8 . I-10 East


30.62383 -100.84472 34 10/20/2016 42 130.871 I-10 East (Median)


30.62369 -100.84477 33 10/20/2016 52 . I-10 East


30.62367 -100.84366 35 10/20/2016 24 45.06914 I-10 West


30.62354 -100.84369 36 10/20/2016 0 . I-10 West (Median)


30.72907 -101.56142 52 10/25/2016 15 28.16821 I-10 West


30.72868 -101.56141 53 10/25/2016 0 . I-10 East


30.69242 -101.44717 51 10/25/2016 34 179.4593 I-10 East


30.69280 -101.44666 50 10/25/2016 57 132.0588 I-10 West


30.68213 -101.30636 49 10/25/2016 9 20.85139 I-10 West


30.65255 -100.92261 48 10/25/2016 14 32.4355 I-10 West


30.58628 -100.66514 46 10/25/2016 10 23.77881 I-10 West


30.58643 -100.66629 47 10/25/2016 5 . I-10 East


30.69281 -101.44675 95 11/4/2016 21 48.65325 I-10 West


30.69003 -101.42364 94 11/4/2016 66 152.9102 I-10 West


30.68213 -101.30631 96 11/4/2016 2 4.633643 I-10 West


30.63022 -100.86205 100 10/20/2017 1 3.278214 I-10


30.67021 -100.99129 113 10/20/2017 2 6.556427 I-10


Overall Hotspot Average 21.59090909 65.43256


30.75463 -101.20577 92 11/3/2016 21 68.84248 SH137 South


30.64707 -101.20448 93 11/4/2016 6 19.66928 SH163 South


Overall Hotspot Average Avg 13.5 44.25588







Side PredomEW Sex Road Type


N Y 2 male Highways


N Y NA Highways


N Y 1 male Highways


N Y 2 female, 1 male Highways


N Y NA Highways


N Y 1 male Highways


N Y 1 male Highways


S Y male Highways


S Y 2 males Highways


S Y  male Highways


S Y female Highways


S H  male Highways


N Y 1 female, 1 male Primary


N Y 1 female Primary


N H 1 female, 1 male Primary


N N 2 female Primary


N Y 1 female, 1 male Primary


N Y 1 female Primary


N Y NA Primary


N H 2 male Primary


S H NA Primary


N Y 3 female, 1 male Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


N Y 2 male Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


S H 1 female, 1 male Primary


N Y  4 males Primary


N Y  female Primary


N H 3 males, 1 female Primary


S N female Primary


S H male Primary


N Y male Primary


N H NA Primary


N Y 2 males Primary


N Y  4 males, 1 female Primary


N N 1 male Secondary


S N 2 female, 4 male Secondary


S H 1 female, 1 male Secondary







S H 1 female Secondary


N Y female Secondary


N Y male Secondary


S Y male Secondary


N Y male Secondary


S Y 2 males Secondary


N Y18 female, 20 male, 9 NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


S Y NA Highways


N Y 18 female, 39 male Highways


N Y 4 female, 5 male Highways


N Y3 female, 10 male, 1 NA Highways


N Y 2 female, 8 male Highways


S Y 2 female, 3 male Highways


N Y 9 female, 12 male Highways


N Y13 female, 9 male, 44 NA Highways


N Y 1 female, 1 male Highways


S Y male Highways


S Y 1 male, 1 female Highways


S Y NA Secondary


S N 2 female, 4 male Secondary







Latitude Longitude Transect Date Roadkills AdjRoadkill Road


30.74119 -101.85058 28 10/20/2016 2 4.633643 I-10 West


30.52489 -99.83313 44 10/24/2016 1 2.316821 I-10 West


32.49069 -99.73384 16 10/13/2016 1 2.316821 I-20 West


32.37485 -98.99133 15 10/13/2016 3 6.950464 I-20 West


32.54949 -98.27690 14 10/13/2016 3 6.950464 I-20 West


31.90705 -102.22445 86 11/2/2016 1 2.316821 I-20 West


32.26379 -101.45916 84 11/2/2016 1 2.316821 I-20 West


30.68217 -101.30630 27 10/19/2016 47 108.8906 I-10 West


30.68740 -101.29121 31 10/20/2016 46 89.38252 I-10 West


30.68726 -101.29115 32 10/20/2016 3 . I-10 West (Median)


30.68676 -101.29207 30 10/20/2016 17 39.92397 I-10 East (Median)


30.68660 -101.29202 29 10/20/2016 8 . I-10 East


30.62383 -100.84472 34 10/20/2016 42 130.871 I-10 East (Median)


30.62369 -100.84477 33 10/20/2016 52 . I-10 East


30.62367 -100.84366 35 10/20/2016 24 45.06914 I-10 West


30.62354 -100.84369 36 10/20/2016 0 . I-10 West (Median)


30.72907 -101.56142 52 10/25/2016 15 28.16821 I-10 West


30.72868 -101.56141 53 10/25/2016 0 . I-10 East


30.69242 -101.44717 51 10/25/2016 34 179.4593 I-10 East


30.69280 -101.44666 50 10/25/2016 57 132.0588 I-10 West


30.68213 -101.30636 49 10/25/2016 9 20.85139 I-10 West


30.65255 -100.92261 48 10/25/2016 14 32.4355 I-10 West


30.58628 -100.66514 46 10/25/2016 10 23.77881 I-10 West


30.58643 -100.66629 47 10/25/2016 5 . I-10 East


30.69281 -101.44675 95 11/4/2016 21 48.65325 I-10 West


30.69003 -101.42364 94 11/4/2016 66 152.9102 I-10 West


30.68213 -101.30631 96 11/4/2016 2 4.633643 I-10 West


30.56684 -100.54531 101 10/20/2017 1 5.278214 I-10


30.44420 -100.22060 102 10/20/2017 2 10.55643 I-10


30.48314 -100.04803 103 10/20/2017 1 5.278214 I-10


32.38707 -99.30968 30 10/13/2017 1 5.278214 I-20


29.09784 -98.94578 129 10/26/2017 1 5.278214 I-35


30.63022 -100.86205 100 10/20/2017 1 5.278214 I-10


30.67021 -100.99129 113 10/20/2017 2 10.55643 I-10


Overall  Average Avg 14.5 39.72829


31.62699 -100.09409 24 10/18/2016 2 2.877881 US 67 West


31.74364 -99.34250 23 10/18/2016 1 1.43894 US 67 West


31.31294 -100.78668 25 10/19/2016 2 2.877881 US 67 West


30.75716 -97.87648 75 11/1/2016 2 2.877881 US183 North


30.91057 -101.07717 90 11/3/2016 2 2.877881 US190 West


30.85514 -100.67358 89 11/3/2016 1 1.43894 US190 West


33.23153 -97.67038 3 10/10/2016 1 1.43894 US380 West


29.72698 -101.36994 62 10/26/2016 2 4 US90 West


29.72684 -101.37002 63 10/26/2016 2 . US90 East


29.70551 -101.21820 60 10/26/2016 4 4 US90 West


29.70538 -101.21824 61 10/26/2016 0 . US90 East


29.39311 -100.72568 68 10/27/2016 1 1 US90 West







29.39283 -100.72670 67 10/27/2016 0 . US90 East


29.38915 -100.70174 70 10/27/2016 2 2 US90 West


29.38919 -100.70255 69 10/27/2016 0 . US90 East


29.29963 -100.38947 72 10/27/2016 1 1 US90 West


29.29948 -100.38955 71 10/27/2016 0 . US90 East


29.26917 -99.71280 74 10/27/2016 2 6.556427 US90 East


31.05285 -98.09180 69 10/17/2017 4 5.755762 US 190


31.26668 -98.96542 71 10/17/2017 1 1.43894 US 190


29.66892 -100.85522 114 10/25/2017 4 5.755762 US 277


28.79366 -100.51936 122 10/25/2017 1 3.278214 US 277


28.61071 -99.93687 124 10/26/2017 1 3.278214 US 277


34.39910 -100.12484 17 10/5/2017 1 1.43894 US 287


33.70455 -97.53794 10 10/4/2017 1 1.43894 US 82


29.32530 -99.30136 132 10/26/2017 2 2.877881 US 90


29.31375 -99.41406 133 10/26/2017 5 7.194702 US 90


Overall Average Avg 1.666666667 3.038278


30.89537 -101.16125 26 10/19/2016 1 1.43894 SH163 South


29.96137 -101.14799 59 10/26/2016 6 19.66928 SH163 South


30.31783 -101.09022 56 10/26/2016 2 6.556427 SH163 South


32.37968 -100.36858 17 10/14/2016 1 3.278214 SH70 South


30.75463 -101.20577 92 11/3/2016 21 68.84248 SH137 South


30.64707 -101.20448 93 11/4/2016 6 19.66928 SH163 South


31.84258 -101.16277 79 10/18/2017 1 1.43894 TX 158


33.12882 -98.06740 35 10/11/2017 1 1.43894 TX 199


29.77358 -98.29294 144 10/27/2017 1 3.278214 TX 46


28.57425 -99.65414 125 10/26/2017 1 1.43894 TX 85


28.62010 -99.42884 127 10/26/2017 2 6.556427 TX 85


Overall  Average Avg 2.5 12.14601







Side PredomEW Sex Road Type


N Y 2 male Highways


N Y NA Highways


N Y 1 male Highways


N Y 2 female, 1 male Highways


N Y NA Highways


N Y 1 male Highways


N Y 1 male Highways


N Y18 female, 20 male, 9 NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


N Y NA Highways


S Y NA Highways


S Y NA Highways


N Y 18 female, 39 male Highways


N Y 4 female, 5 male Highways


N Y3 female, 10 male, 1 NA Highways


N Y 2 female, 8 male Highways


S Y 2 female, 3 male Highways


N Y 9 female, 12 male Highways


N Y13 female, 9 male, 44 NA Highways


N Y 1 female, 1 male Highways


S Y male Highways


S Y 2 males Highways


S Y  male Highways


S Y female Highways


S H  male Highways


S Y male Highways


S Y 1 male, 1 female Highways


N Y 1 female, 1 male Primary


N Y 1 female Primary


N H 1 female, 1 male Primary


N N 2 female Primary


N Y 1 female, 1 male Primary


N Y 1 female Primary


N Y NA Primary


N H 2 male Primary


S H NA Primary


N Y 3 female, 1 male Primary


S Y NA Primary


N Y 1 female Primary







S Y NA Primary


N Y 2 male Primary


S Y NA Primary


N Y 1 female Primary


S Y NA Primary


S H 1 female, 1 male Primary


N Y  4 males Primary


N Y  female Primary


N H 3 males, 1 female Primary


S N female Primary


S H male Primary


N Y male Primary


N H NA Primary


N Y 2 males Primary


N Y  4 males, 1 female Primary


N N 1 male Secondary


S N 2 female, 4 male Secondary


S H 1 female, 1 male Secondary


S H 1 female Secondary


S Y NA Secondary


S N 2 female, 4 male Secondary


N Y female Secondary


N Y male Secondary


S Y male Secondary


N Y male Secondary


S Y 2 males Secondary








2016_2017
X Y Transect_ Date Roadkills Road Sex NearDist_


-148247.494 -792772.1047 3 2016-10-10 1 US380 West NA 13.514
-74032.1929 -795150.0369 1 2016-10-10 0 US380 West NA 1.6856


-111631.2242 -792864.7514 2 2016-10-10 0 US380 West NA 12.3694
-184177.0229 -797250.029 4 2016-10-11 0 US380 West NA 3.5858
-246083.6667 -773995.7048 5 2016-10-11 0 SH114 West NA 15.5526
-304675.2544 -743430.8901 6 2016-10-11 0 SH114 NA 3.3506
-371713.5044 -746386.9851 7 2016-10-11 0 SH114 NA 7.5059
-388355.7706 -787614.7712 8 2016-10-11 0 US380 NA 18.7931
-336482.8757 -843326.3263 10 2016-10-12 0 US180 East NA 5.8569
-272368.1719 -843974.8532 11 2016-10-12 0 US180 East NA 20.9859
-208796.5288 -847155.7236 12 2016-10-12 0 US180 East NA 9.1024
-395370.5055 -831374.9006 9 2016-10-12 0 SH70 NA 1.6403
-334707.777 -873683.565 16 2016-10-13 1 I-20 West 1 male 9.1654


-203973.9319 -870996.8104 14 2016-10-13 3 I-20 West NA 15.1179
-268597.3713 -889495.2702 15 2016-10-13 3 I-20 West 2 female, 1 male 3.461
-140666.0383 -852220.4104 13 2016-10-13 0 I-20 East NA 2.4522
-392164.6311 -884131.0453 17 2016-10-14 1 SH70 South 1 female 0.5828
-149408.9113 -1078679.853 18 2016-10-17 0 I-35 North NA 4.2125
-110930.6276 -1011202.165 19 2016-10-17 0 I-35 North NA 8.7149
-105546.5919 -936530.8646 20 2016-10-17 0 SH22 West NA 1.6472
-302700.6325 -961697.9397 23 2016-10-18 1 US 67 West 1 female 22.5133
-371311.2646 -972537.6048 24 2016-10-18 2 US 67 West 1 female, 1 male 16.0887
-170030.0567 -938227.4398 21 2016-10-18 0 SH6 west NA 14.8881
-231268.1777 -944681.8273 22 2016-10-18 0 US 377 West NA 2.1894
-472612.8579 -1052412.831 26 2016-10-19 1 SH163 South 1 male 9.7119
-435893.8784 -1005931.299 25 2016-10-19 2 US 67 West 1 female, 1 male 19.1223
-536770.0416 -1066543.133 28 2016-10-20 2 I-10 West 2 male 3.8888
-485953.9841 -1075861.477 29 2016-10-20 8 I-10 East NA 21.656
-445174.8285 -1085350.416 36 2016-10-20 0 I-10 West (MedNA 7.1212
-367273.5483 -1103869.929 37 2016-10-20 0 I-10 East NA 17.8982
-339106.7372 -1113175.311 39 2016-10-21 0 I-10 East NA 6.718
-327806.0498 -1127481.504 40 2016-10-21 0 I-10 East NA 2.8722
-282007.6927 -1129264.43 42 2016-10-21 0 US 290 East NA 19.0355
-220582.9238 -1137551.749 43 2016-10-21 0 US 281 South NA 6.9967
-352820.6615 -1100987.065 44 2016-10-24 1 I-10 West NA 6.505
-382127.9042 -1107350.341 45 2016-10-24 0 I-10 West NA 11.7419
-429094.7762 -1090445.985 47 2016-10-25 5 I-10 East 2 female, 3 male 0.3819
-452261.4638 -1081620.474 48 2016-10-25 14 I-10 West 3 female, 10 mal   13.7674
-510350.9512 -1069543.048 52 2016-10-25 15 I-10 West NA 3.0602
-500124.6747 -1074387.222 51 2016-10-25 34 I-10 East NA 4.5021
-510350.9512 -1069588.123 53 2016-10-25 0 I-10 East NA 4.7878
-521635.3927 -1067006.367 54 2016-10-25 0 I-10 West NA 15.8124
-469709.9276 -1119428.363 56 2016-10-26 2 SH163 South 1 female, 1 male 2.4257
-499356.8749 -1186066.305 62 2016-10-26 2 US90 West 2 male 5.1157
-485392.0208 -1189330.907 60 2016-10-26 4 US90 West 3 female, 1 male 5.6464
-477266.2794 -1160208.958 59 2016-10-26 6 SH163 South 2 female, 4 male 14.3281


-474712.85 -1089495.969 55 2016-10-26 0 SH163 South NA 10.8467
-470962.4107 -1134761.994 57 2016-10-26 0 SH163 South NA 2.0494
-479314.3032 -1151483.504 58 2016-10-26 0 SH163 South NA 13.1489
-485396.5621 -1189330.907 61 2016-10-26 0 US90 East NA 9.1098
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2016_2017
-441411.3994 -1227686.645 68 2016-10-27 1 US90 West 1 female 15.0303
-410539.562 -1239931.4 72 2016-10-27 1 US90 West 1 female 11.1467


-439199.6762 -1228242.525 70 2016-10-27 2 US90 West 2 male 4.3351
-347416.2701 -1246139.16 74 2016-10-27 2 US90 East 1 female, 1 male 1.4342
-467925.9973 -1217773.447 64 2016-10-27 0 US90 East NA 12.627
-441508.2025 -1227686.645 67 2016-10-27 0 US90 East NA 12.4185
-439260.0422 -1228229.837 69 2016-10-27 0 US90 East NA 15.0076
-410536.6912 -1239946.893 71 2016-10-27 0 US90 East NA 1.4079
-381893.1321 -1247698.334 73 2016-10-27 0 US90 East NA 11.874
-172252.2233 -1079564.456 75 2016-11-01 2 US183 North 2 female 30.7319
-197760.9508 -1017362.971 76 2016-11-01 0 US183 North NA 10.2086
-210661.4781 -952834.7378 77 2016-11-01 0 SH36 North NA 10.1134
-266844.5144 -917164.8935 78 2016-11-01 0 US183 North NA 13.9353
-311284.0531 -884011.4988 79 2016-11-01 0 I-20 West NA 2.8285
-490742.2774 -892521.7294 84 2016-11-02 1 I-20 West 1 male 22.4545
-562161.7421 -929611.2957 86 2016-11-02 1 I-20 West 1 male 20.1025
-334694.4292 -873683.565 80 2016-11-02 0 I-10 West NA 6.3128
-373981.1961 -872077.6887 81 2016-11-02 0 I-20 West NA 4.633
-416445.0992 -878902.663 82 2016-11-02 0 I-20 West NA 13.4327
-453195.4366 -884986.4636 83 2016-11-02 0 I-20 West NA 9.8838
-526958.7366 -908549.6103 85 2016-11-02 0 I-20 West NA 16.4492
-428233.3489 -1059378.455 89 2016-11-03 1 US190 West 1 female 0.4973
-464836.5212 -1051071.133 90 2016-11-03 2 US190 West 1 female, 1 male 1.3414
-477584.898 -1068445.175 92 2016-11-03 21 SH137 South NA 3.8898


-446378.0465 -948171.52 87 2016-11-03 0 US87 South NA 7.9652
-403560.1765 -1002352.596 88 2016-11-03 0 US277 South NA 2.2887
-499623.864 -1044246.159 91 2016-11-03 0 US190 West NA 10.1253


-478140.7782 -1080869.906 93 2016-11-04 6 SH137 South 2 female, 4 male 12.231
-497982.4604 -1074788.691 94 2016-11-04 66 I-10 West 13 female, 9 mal   6.2119


-9564.6001 -820036.6497 1 2017-10-03 0 TX 34 NA 9.0062
-135600.0617 -737832.6055 10 2017-10-04 1 US 82 NA 4.5493


5180.5506 -751235.4963 5 2017-10-04 0 US 82 NA 17.4593
-61474.2087 -742619.3522 8 2017-10-04 0 US 82, TX 289 NA 22.763
-360063.033 -650034.4065 17 2017-10-05 1 US 287 male 3.7583
-229506.66 -706270.9596 12 2017-10-05 0 US 287 NA 16.2019


-297493.0784 -673257.8485 15 2017-10-05 0 US 287 NA 9.6247
-377001.4529 -686417.5247 21 2017-10-05 0 US 62, US 83 NA 8.4789
-421891.018 -692343.0708 23 2017-10-06 0 US 62 NA 6.5121


-426598.3251 -726113.9851 24 2017-10-06 0 TX 70 NA 1.5308
-365682.2619 -747900.2147 25 2017-10-06 0 US 82 NA 0.578
-299838.4058 -744472.2864 27 2017-10-06 0 US 82 NA 12.0026
-91047.8351 -979516.9903 28 2017-10-10 0 US 84 NA 15.3026
-40786.5415 -929878.8968 29 2017-10-10 0 I-45 NA 14.5168


-108019.6223 -924701.0201 31 2017-10-10 0 TX 171 NA 0.3141
-152587.4587 -862195.3729 33 2017-10-10 0 TX 171 NA 7.9224
-183740.4154 -804022.3803 35 2017-10-11 1 TX 199 male 1.1553
-244322.4747 -797002.9711 37 2017-10-11 0 US 380 NA 15.186
-317834.8177 -794439.7455 39 2017-10-11 0 US 380 NA 4.183
-385635.3054 -787800.0646 41 2017-10-11 0 US 380 NA 10.0772
-446740.4893 -788479.4738 44 2017-10-12 0 US 380 NA 17.7841
-522789.5358 -785360.3679 45b 2017-10-12 0 US 380 NA 19.4724
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-540275.8386 -820028.5838 48 2017-10-12 0 TX 137 NA 0.2893
-494724.5394 -885983.166 50 2017-10-12 0 US 87 NA 6.5526
-439815.9224 -884595.597 53 2017-10-12 0 TX 163 NA 3.1454
-297122.0875 -887117.338 30 2017-10-13 1 I-20 female 5.3422
-365976.4944 -873457.9752 57 2017-10-13 0 I-20 NA 9.9276
-270292.7108 -1018088.904 71 2017-10-17 1 US 190 female 19.2323


-191225.54 -1044956.45 69 2017-10-17 4 US 190 4 males 9.0226
-143840.5655 -1044446.655 68 2017-10-17 0 US 190 NA 8.5369
-202022.6995 -1039470.853 70 2017-10-17 0 US 183 NA 0.5227
-339376.2866 -1019231.547 73 2017-10-17 0 US 87 NA 13.8461
-466787.7007 -942828.893 79 2017-10-18 1 TX 158 female 8.3228
-406493.989 -986371.9567 75 2017-10-18 0 US 87 NA 0.9921


-546721.7836 -922570.1457 82 2017-10-18 0 I-20 NA 4.5235
-541634.657 -1008015.761 84 2017-10-18 0 TX 349 NA 10.9359


-533222.5733 -1073429.872 86 2017-10-19 0 TX 349 NA 1.638
-481083.5545 -1074943.102 92 2017-10-19 0 I-10 NA 8.2555
-464847.3114 -1051071.133 95 2017-10-19 0 US 190 NA 2.7131
-446821.2003 -1084485.713 100 2017-10-20 1 I-10 male 0.0029
-418087.0488 -1093256.268 101 2017-10-20 1 I-10 male 8.4836
-372788.5564 -1104991.518 103 2017-10-20 1 I-10 male 6.5602
-388870.7485 -1108790.033 102 2017-10-20 2 I-10 2 males 3.4009
-458437.9112 -1079251.631 113 2017-10-20 2 US 377 1 male, 1 female 6.2885
-485251.4135 -1062157.856 98 2017-10-20 0 TX 137 NA 10.219
-185080.1684 -1144119.312 105 2017-10-24 0 US 290 NA 25.4894
-198996.2403 -1143042.739 106 2017-10-24 0 US 290 NA 7.9268
-268481.273 -1137607.117 107 2017-10-24 0 TX 16 NA 11.2299
-315893.622 -1143316.374 110 2017-10-24 0 TX 41 NA 11.9717


-396552.0666 -1159282.49 112 2017-10-24 0 US 377 NA 11.6793
-425424.8001 -1297482.563 122 2017-10-25 1 US 277 female 15.5801
-451859.9948 -1195330.76 114 2017-10-25 4 US 277 3 males, 1 femal 14.4429
-451620.7178 -1229971.93 117 2017-10-25 0 US 90 NA 13.4915
-371504.4148 -1320924.978 124 2017-10-26 1 US 277 male 8.1642
-345007.065 -1326200.98 125 2017-10-26 1 TX 85 male 24.4552


-276281.5206 -1268358.551 129 2017-10-26 1 I-35 male 4.5232
-323544.3011 -1321709.972 127 2017-10-26 2 TX 85 2 males 10.1363
-308707.0085 -1241120.418 132 2017-10-26 2 US 90 2 males 13.6627
-319288.8898 -1242077.767 133 2017-10-26 5 US 90 4 males, 1 femal 15.6156
-407192.9717 -1312242.209 123 2017-10-26 0 US 277 NA 80.5701
-326786.936 -1323500.257 126 2017-10-26 0 TX 85 NA 10.6855


-294589.0278 -1303626.065 128 2017-10-26 0 I-35 NA 6.9482
-263845.6061 -1241027.771 131 2017-10-26 0 FM 471 NA 3.4785
-297016.4597 -1240167.512 131b 2017-10-26 0 US 90 NA 21.6723
-334040.5042 -1241243.947 134 2017-10-26 0 US 90 NA 5.4922
-213183.9029 -1192264.719 144 2017-10-27 1 TX 46 male 1.7362
-353407.424 -1247049.807 135 2017-10-27 0 US 83 NA 47.5982


-351616.2543 -1223951.097 136 2017-10-27 0 US 83 NA 10.3753
-349238.3221 -1211594.308 137 2017-10-27 0 US 83 NA 7.5754
-288647.3736 -1195128.846 141 2017-10-27 0 TX 16 NA 1.2629
-248937.8047 -1189145.613 142 2017-10-27 0 TX 46 NA 12.6923
-186122.9951 -1188435.322 145 2017-10-27 0 I-35 NA 20.623
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2016_2017
kfldgkfldgkfldkfldkfldkfldkfldkfldroaRoa Year roadtype
3 0 1 0 2 0 1 0 2 1 2016 2
. 4 . 2 . 2 . 1 2 0 2016 2
. 1 . 2 . 4 . 1 2 0 2016 2
. 3 . 3 . 3 . 3 1 0 2016 1
. 1 . 1 . 3 . 1 1 0 2016 1
. 1 . 3 . 1 . 1 2 0 2016 2
. 3 . 3 . 1 . 3 2 0 2016 2
. 3 . 1 . 4 . 1 1 0 2016 1
. 3 . 1 . 1 . 3 1 0 2016 1
. 3 . 3 . 2 . 1 1 0 2016 1
. 3 . 1 . 2 . 3 1 0 2016 1
. 2 . 3 . 3 . 3 1 0 2016 1
2 0 1 0 3 0 3 0 3 1 2016 3
3 0 1 0 3 0 1 0 3 3 2016 3
3 0 3 0 4 0 3 0 3 3 2016 3
. 4 . 1 . 3 . 1 3 0 2016 3
1 0 1 0 1 0 4 0 1 1 2016 1
. 4 . 3 . 1 . 3 3 0 2016 4
. 2 . 2 . 3 . 4 4 0 2016 4
. 1 . 1 . 4 . 1 1 0 2016 1
4 0 2 0 2 0 1 0 2 1 2016 2
1 0 1 0 2 0 4 0 2 2 2016 2
. 2 . 3 . 1 . 4 1 0 2016 1
. 2 . 4 . 3 . 3 2 0 2016 2
1 0 1 0 3 0 2 0 4 1 2016 4
3 0 1 0 3 0 3 0 1 2 2016 1
1 0 3 0 1 0 3 0 3 2 2016 3
3 0 2 0 3 0 2 0 3 8 2016 3
. 1 . 4 . 3 . 2 3 0 2016 3
. 3 . 4 . 1 . 1 3 0 2016 3
. 2 . 1 . 1 . 4 3 0 2016 3
. 4 . 3 . 2 . 1 3 0 2016 3
. 2 . 3 . 3 . 1 2 0 2016 2
. 2 . 2 . 2 . 3 2 0 2016 2
3 0 1 0 1 0 1 0 3 1 2016 3
. 1 . 1 . 1 . 3 3 0 2016 3
1 0 3 0 1 0 4 0 3 5 2016 3
3 0 3 0 2 0 2 0 3 14 2016 3
1 0 1 0 1 0 3 0 3 15 2016 3
2 0 3 0 3 0 1 0 3 34 2016 3
. 1 . 3 . 3 . 2 3 0 2016 3
. 2 . 1 . 2 . 4 3 0 2016 3
4 0 4 0 2 0 3 0 4 2 2016 4
1 0 4 0 4 0 2 0 1 2 2016 1
4 0 1 0 4 0 1 0 1 4 2016 1
3 0 4 0 1 0 3 0 4 6 2016 4
. 2 . 1 . 1 . 3 4 0 2016 4
. 3 . 1 . 3 . 3 4 0 2016 4
. 3 . 3 . 3 . 3 4 0 2016 4
. 3 . 1 . 1 . 1 1 0 2016 1


Page 4







2016_2017
2 0 2 0 1 0 2 0 2 1 2016 2
3 0 1 0 2 0 3 0 2 1 2016 2
3 0 4 0 1 0 2 0 2 2 2016 2
3 0 2 0 4 0 1 0 2 2 2016 2
. 3 . 1 . 1 . 2 1 0 2016 1
. 4 . 1 . 2 . 2 2 0 2016 2
. 3 . 3 . 3 . 1 2 0 2016 2
. 3 . 1 . 2 . 1 2 0 2016 2
. 1 . 1 . 1 . 1 2 0 2016 2
1 0 1 0 1 0 3 0 2 2 2016 2
. 1 . 1 . 4 . 1 1 0 2016 1
. 2 . 3 . 1 . 4 1 0 2016 1
. 4 . 2 . 3 . 4 1 0 2016 1
. 3 . 3 . 3 . 1 3 0 2016 3
2 0 1 0 3 0 1 0 3 1 2016 3
3 0 3 0 4 0 1 0 3 1 2016 3
. 2 . 3 . 1 . 1 3 0 2016 3
. 4 . 1 . 3 . 4 3 0 2016 3
. 1 . 3 . 4 . 1 3 0 2016 3
. 3 . 1 . 1 . 1 3 0 2016 3
. 1 . 2 . 2 . 1 3 0 2016 3
4 0 2 0 3 0 2 0 1 1 2016 1
2 0 3 0 1 0 4 0 1 2 2016 1
1 0 4 0 1 0 1 0 4 21 2016 4
. 4 . 1 . 4 . 2 2 0 2016 2
. 3 . 3 . 4 . 3 2 0 2016 2
. 3 . 2 . 1 . 4 4 0 2016 4
1 0 1 0 4 0 2 0 4 6 2016 4
1 0 3 0 1 0 3 0 3 66 2016 3
. 3 . 4 . 1 . 3 1 0 2017 1
1 0 4 0 3 0 1 0 2 1 2017 2
. 4 . 4 . 4 . 2 2 0 2017 2
. 1 . 1 . 3 . 2 2 0 2017 2
2 0 3 0 3 0 1 0 2 1 2017 2
. 1 . 2 . 1 . 2 2 0 2017 2
. 3 . 3 . 3 . 3 2 0 2017 2
. 1 . 4 . 2 . 1 1 0 2017 1
. 3 . 2 . 2 . 4 1 0 2017 1
. 2 . 1 . 3 . 4 1 0 2017 1
. 3 . 4 . 3 . 3 2 0 2017 2
. 3 . 2 . 2 . 3 2 0 2017 2
. 1 . 3 . 3 . 1 1 0 2017 1
. 2 . 1 . 1 . 1 3 0 2017 3
. 4 . 3 . 1 . 3 4 0 2017 4
. 1 . 2 . 3 . 4 1 0 2017 1
3 0 3 0 4 0 3 0 2 1 2017 2
. 1 . 3 . 1 . 3 1 0 2017 1
. 1 . 2 . 4 . 1 1 0 2017 1
. 3 . 4 . 4 . 2 1 0 2017 1
. 4 . 2 . 3 . 2 1 0 2017 1
. 3 . 3 . 2 . 3 1 0 2017 1
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2016_2017
. 3 . 3 . 1 . 4 1 0 2017 1
. 3 . 3 . 1 . 3 2 0 2017 2
. 1 . 1 . 2 . 1 4 0 2017 4
3 0 4 0 1 0 3 0 3 1 2017 3
. 1 . 1 . 1 . 3 3 0 2017 3
1 0 3 0 3 0 2 0 1 1 2017 1
1 0 1 0 1 0 3 0 2 4 2017 2
. 1 . 1 . 3 . 3 3 0 2017 4
. 1 . 2 . 4 . 3 2 0 2017 2
. 2 . 1 . 3 . 2 2 0 2017 2
1 0 3 0 1 0 3 0 2 1 2017 2
. 1 . 4 . 1 . 1 2 0 2017 2
. 1 . 3 . 4 . 3 3 0 2017 3
. 4 . 3 . 1 . 2 4 0 2017 4
. 4 . 3 . 4 . 4 4 0 2017 4
. 1 . 2 . 4 . 1 3 0 2017 3
. 4 . 1 . 4 . 3 1 0 2017 1
1 0 2 0 1 0 3 0 3 1 2017 3
3 0 3 0 2 0 3 0 3 1 2017 3
2 0 2 0 3 0 3 0 3 1 2017 3
3 0 3 0 1 0 3 0 3 2 2017 3
1 0 2 0 3 0 4 0 3 2 2017 3
. 3 . 1 . 1 . 1 4 0 2017 4
. 1 . 4 . 1 . 4 2 0 2017 2
. 3 . 3 . 2 . 1 2 0 2017 2
. 1 . 3 . 4 . 3 1 0 2017 1
. 2 . 4 . 1 . 2 1 0 2017 1
. 4 . 4 . 2 . 3 1 0 2017 1
4 0 3 0 3 0 1 0 1 1 2017 1
1 0 3 0 1 0 4 0 2 4 2017 2
. 3 . 3 . 3 . 2 1 0 2017 1
3 0 1 0 3 0 1 0 1 1 2017 1
1 0 3 0 3 0 1 0 1 1 2017 1
4 0 3 0 3 0 3 0 3 1 2017 3
2 0 1 0 3 0 1 0 1 2 2017 1
2 0 2 0 4 0 1 0 2 2 2017 2
4 0 4 0 2 0 1 0 2 5 2017 2
. 3 . 2 . 3 . 3 1 0 2017 1
. 1 . 4 . 3 . 3 1 0 2017 1
. 2 . 3 . 4 . 1 3 0 2017 3
. 3 . 1 . 3 . 4 4 0 2017 4
. 1 . 3 . 3 . 2 2 0 2017 2
. 4 . 4 . 1 . 2 2 0 2017 2
3 0 4 0 3 0 1 0 1 1 2017 1
. 1 . 1 . 1 . 1 1 0 2017 1
. 1 . 3 . 3 . 2 1 0 2017 1
. 3 . 2 . 1 . 1 1 0 2017 1
. 3 . 4 . 1 . 4 4 0 2017 4
. 4 . 4 . 3 . 3 1 0 2017 1
. 2 . 4 . 2 . 1 3 0 2017 3
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AETT_SPRQ, 0.0, 4.0, 140.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_14, 0.0, 0.0, 96.0
BIO_15, 0.0, 6.0, 103.0
BIO_7, 0.0, 131.0, 506.0
BIO_8, 0.0, -113.0, 332.0
IMI, 0.0, 9.0, 2070.0
MNPOPDEN3R, 0.0, 0.0, 1010.0
PETH_WINQ, 0.0, 9.0, 104.0
PREC_SUMQ, 0.0, 1.0, 150.0
ROADDEN19KR, 0.0, 0.0, 3783.0
SEI, 0.0, 1982.0, 8123.0
SLOPE, 0.0, 0.0, 6564.0
STRMMDFLODIST, 0.0, 0.0, 376.0
URBAN_LC, 0.0, 0.0, 10000.0
AETT_SPRQ^2, -0.4889151245810006, 16.0, 19600.0
AGRIC_LC^2, -3.0583818629437065, 0.0, 1.0E8
BIO_15^2, 0.3162155447520371, 36.0, 10609.0
BIO_7^2, 0.2208298237004442, 17161.0, 256036.0
BIO_8^2, -1.9648077297130655, 0.0, 110224.0
PETH_WINQ^2, 1.6413170990283068, 81.0, 10816.0
PREC_SUMQ^2, 0.41575382982028064, 1.0, 22500.0
SEI^2, -1.0385736680904296, 3928324.0, 6.5983129E7
SLOPE^2, 0.14484048086046547, 0.0, 4.3086096E7
`SLOPE, -0.14111314167833358, 0.0, 1268.5
`SLOPE, -0.16243196307327312, 0.0, 635.5
`SLOPE, -0.12369149436578449, 0.0, 1449.5
`AETT_SPRQ, -0.5937149540324901, 4.0, 46.5
`SLOPE, -0.4932300649028509, 0.0, 569.5
`AETT_SPRQ, -0.5834456116712096, 4.0, 45.5
'BIO_7, -0.25474759202083636, 414.5, 506.0
`ROADDEN19KR, 0.12543024199696742, 0.0, 4.5
`AETT_SPRQ, -0.36916731798798996, 4.0, 43.5
`BIO_8, 0.5839236672055051, -113.0, -41.5
`BIO_7, -0.134163575028442, 131.0, 264.5
'BIO_7, -0.4910182767848003, 413.5, 506.0
'BIO_15, 0.38511882692222055, 65.5, 103.0
`AETT_SPRQ, -0.1589568031917591, 4.0, 40.5
`MNPOPDEN3R, 0.4124874685798317, 0.0, 2.5
`URBAN_LC, 0.5290544961089635, 0.0, 50.0
'BIO_7, -1.541289840073543, 410.5, 506.0
`PETH_WINQ, -1.8717953087967534, 9.0, 15.5
`BIO_7, -1.5841464145876512, 131.0, 286.5
'BIO_8, -1.2305804639559375, 216.5, 332.0
'BIO_14, 1.1873191477237977, 55.5, 96.0
`STRMMDFLODIST, -0.08904442785756264, 0.0, 68.5
`BIO_15, -0.949125534467896, 6.0, 14.5
`BIO_8, 0.3172759682010501, -113.0, -46.5
`AETT_SPRQ, -0.6544437928377208, 4.0, 47.5
`AETT_SPRQ, 1.5114533875607117, 4.0, 13.5
`IMI, 0.2939081655756013, 9.0, 25.5
`PETH_WINQ, -0.15393651870500627, 9.0, 40.5
'AETT_SPRQ, -0.08646524670514286, 81.5, 140.0
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`BIO_15, 0.02365147083269782, 6.0, 33.5
`SLOPE, -0.04307313302666285, 0.0, 2012.0
`SLOPE, -0.07611745065391794, 0.0, 2006.5
'PREC_SUMQ, 0.3728863498313051, 61.5, 150.0
`BIO_8, 0.1076022802684263, -113.0, -43.5
`SLOPE, -0.05562254112384814, 0.0, 1982.5
`SLOPE, -0.13219118262890847, 0.0, 508.5
`SLOPE, -0.09732003966269165, 0.0, 1950.5
'PETH_WINQ, -1.2746023896153056, 76.5, 104.0
`AETT_SPRQ, -0.38761729424362973, 4.0, 60.5
`ROADDEN19KR, 0.012216792793092774, 0.0, 274.5
`IMI, 0.24858083385856, 9.0, 15.5
'AGRIC_LC, -0.30536018082132377, 1850.0, 10000.0
`SLOPE, -0.060202060826219844, 0.0, 521.5
`SLOPE, -0.06868919581584512, 0.0, 525.5
`SLOPE, -0.027834927098255385, 0.0, 1907.5
`SLOPE, -0.05258595407244198, 0.0, 526.5
`SLOPE, -0.07154110935973124, 0.0, 531.5
`SLOPE, -0.09038341216501307, 0.0, 1906.5
`BIO_15, 0.026848321297703863, 6.0, 35.5
`SLOPE, -0.04857180598058526, 0.0, 1935.5
`SLOPE, -0.06270051448511753, 0.0, 532.5
`SLOPE, -0.06349239324705817, 0.0, 535.5
'ROADDEN19KR, -0.01118082304387083, 598.5, 3783.0
`SLOPE, -0.09619701034835086, 0.0, 1435.5
`ROADDEN19KR, 0.07731508960495663, 0.0, 273.5
`BIO_8, 0.0268304933591593, -113.0, -44.5
`BIO_15, 0.044869759405645505, 6.0, 36.5
`SLOPE, -0.14412428614288353, 0.0, 1434.0
`STRMMDFLODIST, -0.025802347767291404, 0.0, 134.5
`IMI, 0.12863178874511141, 9.0, 57.5
'BIO_8, -0.09102251196778197, 178.5, 332.0
`AETT_SPRQ, -0.09382451063480181, 4.0, 48.5
'BIO_7, -0.13244842005282897, 415.5, 506.0
`SLOPE, -0.04952095973285557, 0.0, 537.5
`BIO_7, -1.022668550211564, 131.0, 261.5
`SLOPE, -0.013222850769971078, 0.0, 1432.5
`BIO_7, -0.04624972555109444, 131.0, 299.5
`ROADDEN19KR, 0.030250042716904825, 0.0, 3.5
`BIO_7, -0.29100517752828997, 131.0, 290.5
`IMI, 0.35170477847433546, 9.0, 56.5
`IMI, 0.07389743186180117, 9.0, 16.5
`BIO_15, 0.1007455927217693, 6.0, 37.5
`ROADDEN19KR, 0.018176701070396088, 0.0, 272.5
'BIO_14, 0.05569049006793101, 54.5, 96.0
`STRMMDFLODIST, -0.043787353909571745, 0.0, 138.5
`URBAN_LC, 0.09333165424545077, 0.0, 1650.0
`BIO_7, -0.1616466183024617, 131.0, 289.5
'ROADDEN19KR, -0.1882382082272893, 577.5, 3783.0
`AETT_SPRQ, -0.05863545499043465, 4.0, 38.5
'BIO_8, -0.04920543177623397, 212.5, 332.0
linearPredictorNormalizer, 2.31704168301245
densityNormalizer, 1442.1441360427023
numBackgroundPoints, 12855
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entropy, 8.684616709671594





		Local Disk

		file:///F/Documents/FireFreqMS2017/HiBrn15VarModel18_lambdas.txt








file:///F/Documents/FireFreqMS2017/HiBrn15VarModel21_lambdas.txt[9/7/2018 11:42:33 PM]


AETT_AUTQ, 0.0, 1.0, 73.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_15, 0.0, 6.0, 103.0
BIO_3, 0.0, 26.0, 65.0
DISS3KR, 0.0, 0.0, 10000.0
ELEV, 0.0, 96.0, 7387.0
ETRT_SUMQ, 0.0, 12.0, 897.0
HLI, 0.0, 2235.0, 8398.0
LORURDIST, 0.0, 0.0, 212.0
PREC_WINQ, 0.0, 4.0, 421.0
ROADDEN9KR, 0.0, 0.0, 3356.0
SCAI, 0.0, 0.0, 7993.0
SLOPE, 0.0, 0.0, 6564.0
STRMHIFLODIST, 0.0, 0.0, 789.0
TPETHS_TPETHA, 0.0, 307.0, 514.0
AETT_AUTQ^2, 3.3502349295710823, 1.0, 5329.0
AGRIC_LC^2, -1.572143802307261, 0.0, 1.0E8
BIO_15^2, 1.2466708668272677, 36.0, 10609.0
BIO_3^2, 0.646753576248593, 676.0, 4225.0
DISS3KR^2, 0.3396095177778611, 0.0, 1.0E8
ELEV^2, 0.2261689298341504, 9216.0, 5.4567769E7
ETRT_SUMQ^2, -0.10947529552444324, 144.0, 804609.0
HLI^2, -0.6723466255112673, 4995225.0, 7.0526404E7
LORURDIST^2, 0.6850460064499138, 0.0, 44944.0
PREC_WINQ^2, -2.6654840743703745, 16.0, 177241.0
SCAI^2, 0.09479835915895019, 0.0, 6.3888049E7
SLOPE^2, 0.4922280079577065, 0.0, 4.3086096E7
STRMHIFLODIST^2, -0.49618702342991533, 0.0, 622521.0
TPETHS_TPETHA^2, 0.9598162282246662, 94249.0, 264196.0
`SLOPE, -0.08424560701702428, 0.0, 1175.5
`SLOPE, -0.07653886728436451, 0.0, 1169.5
`PREC_WINQ, -0.7359051726685885, 4.0, 40.5
`SLOPE, -0.22379061872698924, 0.0, 644.5
`SLOPE, -0.17997562997141509, 0.0, 624.5
`ELEV, -0.4738911806478525, 96.0, 3062.0
`PREC_WINQ, -0.10479400412482721, 4.0, 33.5
`ELEV, -0.06375198600237357, 96.0, 2921.0
'ETRT_SUMQ, -0.9035726729107975, 579.5, 897.0
`PREC_WINQ, -0.7028039330417533, 4.0, 42.5
`LORURDIST, -0.401435848948999, 0.0, 0.5
'BIO_15, 0.6697854707968905, 65.5, 103.0
`ELEV, -0.5730645041821036, 96.0, 3144.0
'ELEV, -0.3785407512342674, 5374.0, 7387.0
'ETRT_SUMQ, -0.5863811690169275, 580.5, 897.0
`ROADDEN9KR, 0.007023869263713954, 0.0, 48.5
`LORURDIST, -0.12803325951577804, 0.0, 4.5
`BIO_15, -0.7637443491700879, 6.0, 13.5
`ELEV, -0.17922547348612278, 96.0, 3146.0
`PREC_WINQ, -0.9917490948274912, 4.0, 18.5
`LORURDIST, -0.09366813281776866, 0.0, 87.5
`DISS3KR, -0.4141342050292912, 0.0, 2481.5
'ELEV, -1.6985675730309235, 5302.0, 7387.0
`TPETHS_TPETHA, -0.8341795136205504, 307.0, 350.5
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`BIO_3, -0.31093879181265904, 26.0, 33.5
`SLOPE, -0.04857763456014994, 0.0, 2012.0
`ELEV, -0.1574633003269393, 96.0, 4133.0
'DISS3KR, -0.5508891490475887, 8916.0, 10000.0
`SLOPE, -0.05426806237238023, 0.0, 2008.0
`SLOPE, -0.10189639528793881, 0.0, 521.5
`SLOPE, -0.05865838380930776, 0.0, 2006.5
`ELEV, -0.13670878153466418, 96.0, 4010.5
'AGRIC_LC, -1.1140365884259937, 1850.0, 10000.0
'ROADDEN9KR, -1.0532551189806407, 466.5, 3356.0
`SLOPE, -0.08989953936085256, 0.0, 525.5
`SCAI, -0.14834340226381793, 0.0, 5488.5
'LORURDIST, -1.077462839054676, 131.5, 212.0
'ETRT_SUMQ, -0.06714330963574097, 591.5, 897.0
`SLOPE, -0.0676370397869965, 0.0, 532.5
`SLOPE, -0.10306944703671578, 0.0, 1906.5
`DISS3KR, -0.21212113486985557, 0.0, 1198.5
`AETT_AUTQ, 0.20790965204490644, 1.0, 6.5
'BIO_15, 0.10302723219606594, 66.5, 103.0
'TPETHS_TPETHA, -0.3912414294390789, 488.5, 514.0
`SLOPE, -0.06661907185216932, 0.0, 536.5
`SLOPE, -0.07533798136564764, 0.0, 1942.5
`SLOPE, -0.040270350059755065, 0.0, 1938.0
`STRMHIFLODIST, 0.034588635010798306, 0.0, 170.5
`SLOPE, -0.14960305042614933, 0.0, 537.5
`PREC_WINQ, -0.11083845297214256, 4.0, 43.5
`BIO_3, -0.3679772392828444, 26.0, 32.5
`BIO_15, 0.05171897862978169, 6.0, 35.5
'SCAI, -0.03922903458219986, 6238.5, 7993.0
`BIO_15, 0.05223269407278335, 6.0, 34.5
'ELEV, -0.13677008374493982, 4886.0, 7387.0
'SCAI, -0.30009812196049923, 6229.5, 7993.0
`SLOPE, -0.039947577119733894, 0.0, 543.5
`SLOPE, -0.05874779326035671, 0.0, 1434.0
`DISS3KR, -0.12346188016959123, 0.0, 1201.5
`ELEV, 0.08784903445096723, 96.0, 555.0
`SLOPE, -0.10948175469502712, 0.0, 1432.5
`PREC_WINQ, -0.19659202917377416, 4.0, 21.5
'TPETHS_TPETHA, -0.19793856321104697, 487.5, 514.0
`BIO_15, 0.07354783888193363, 6.0, 36.5
`SLOPE, -0.010765225586049917, 0.0, 1431.5
`SLOPE, -0.08142470338602444, 0.0, 569.5
`SLOPE, -0.06608061142845635, 0.0, 1420.5
'BIO_15, 0.051327965807807185, 67.5, 103.0
`ELEV, 0.1561815384037305, 96.0, 557.0
`SLOPE, -0.01895753978149666, 0.0, 1419.5
'ELEV, -0.11085190552628882, 4894.0, 7387.0
`PREC_WINQ, 0.2339696695724478, 4.0, 10.5
`ELEV, -0.023637287035587436, 96.0, 3092.0
`PREC_WINQ, -0.017300451951715, 4.0, 22.5
'SCAI, -0.15981921350937092, 6218.0, 7993.0
linearPredictorNormalizer, 1.8076763040010617
densityNormalizer, 1080.0243582632436
numBackgroundPoints, 12855
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entropy, 8.656784099730878





		Local Disk

		file:///F/Documents/FireFreqMS2017/HiBrn15VarModel21_lambdas.txt
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AGRIC_LC, 0.0, 0.0, 10000.0
BIO_15, 0.0, 6.0, 103.0
BIO_2, 0.0, 63.0, 211.0
BIO_8, 0.0, -113.0, 332.0
BIO_9, 0.0, -136.0, 329.0
CONT_INDEX, 0.0, 50.0, 359.0
ELEV, 0.0, 96.0, 7387.0
HLI, 0.0, 2235.0, 8398.0
PETH_AUTQ, 0.0, 14.0, 100.0
POPDEN, 0.0, 0.0, 467.0
PREC_AUTQ, 0.0, 4.0, 443.0
PREC_SUMQ, 0.0, 1.0, 150.0
ROADDEN9KR, 0.0, 0.0, 3356.0
SLOPE, 0.0, 0.0, 6564.0
STRMHIFLODIST, 0.0, 0.0, 789.0
AGRIC_LC^2, -1.8387195791769702, 0.0, 1.0E8
BIO_15^2, 0.5454041004756985, 36.0, 10609.0
BIO_8^2, -2.104662471252214, 0.0, 110224.0
BIO_9^2, 0.07430032109265215, 0.0, 108241.0
CONT_INDEX^2, -0.8467403682191987, 2500.0, 128881.0
ELEV^2, 0.09382205306471715, 9216.0, 5.4567769E7
HLI^2, -0.7024323397329729, 4995225.0, 7.0526404E7
PETH_AUTQ^2, 0.7516157059497759, 196.0, 10000.0
PREC_SUMQ^2, 2.434588734425473, 1.0, 22500.0
SLOPE^2, 0.33011821328902896, 0.0, 4.3086096E7
STRMHIFLODIST^2, -0.3644389047635307, 0.0, 622521.0
`SLOPE, -0.19475966080522433, 0.0, 1268.5
`PREC_AUTQ, -0.6485905593102512, 4.0, 36.5
`SLOPE, -0.1992225715542599, 0.0, 591.5
`ELEV, -0.47782803326713524, 96.0, 3077.0
'PREC_AUTQ, -0.7457160236974295, 179.5, 443.0
`POPDEN, 0.7571310797579776, 0.0, 0.5
'PREC_AUTQ, -1.9873287908200128, 177.5, 443.0
'ELEV, -0.4664826523155468, 5408.0, 7387.0
`BIO_8, 0.6038848983228408, -113.0, -51.5
`PREC_AUTQ, -0.4088428769853238, 4.0, 23.5
'BIO_8, -0.10127505232262109, 217.5, 332.0
'ELEV, -0.4554465093457025, 5385.5, 7387.0
`ROADDEN9KR, 0.022543972281230413, 0.0, 49.5
'CONT_INDEX, -0.021479689574289605, 255.5, 359.0
'BIO_8, -0.8230231120964592, 163.5, 332.0
`BIO_15, -0.27539624708115756, 6.0, 14.5
`ELEV, -0.26183828218904154, 96.0, 3127.0
'BIO_9, 0.741919990302208, 167.5, 329.0
`ROADDEN9KR, 0.053211699838033207, 0.0, 48.5
`ELEV, -0.28935739907462404, 96.0, 3146.0
`PREC_AUTQ, -0.5162911457783169, 4.0, 41.5
'ELEV, -1.0288183650407783, 5468.0, 7387.0
'BIO_2, -2.64498972343629, 177.5, 211.0
'PETH_AUTQ, 0.22602938688276955, 61.5, 100.0
`ELEV, -0.23516874716504588, 96.0, 3205.0
`BIO_2, -1.0086414174270641, 63.0, 109.5
`ELEV, 0.4424188672964748, 96.0, 557.0
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`ELEV, -0.11613581916522196, 96.0, 3203.0
`STRMHIFLODIST, 0.029365251626431284, 0.0, 175.5
`SLOPE, -0.11894620575585435, 0.0, 2008.0
'AGRIC_LC, -0.7490959838181459, 1950.0, 10000.0
'BIO_8, -0.5060781913876298, 223.5, 332.0
`BIO_2, -0.20714814847955879, 63.0, 152.5
`PREC_AUTQ, -0.4898569383928749, 4.0, 19.5
`BIO_15, -0.4075014385521334, 6.0, 12.5
'BIO_9, 1.3564258893244636, 247.5, 329.0
`BIO_9, -0.6429393012419745, -136.0, -73.5
'ROADDEN9KR, -0.6542999338648231, 405.5, 3356.0
'PREC_AUTQ, -0.5323882968151586, 178.5, 443.0
`SLOPE, -0.04823057424425303, 0.0, 1983.5
`SLOPE, -0.04985699580203638, 0.0, 1942.5
`SLOPE, -0.05310792639068919, 0.0, 1984.5
`ELEV, -0.08895408993201971, 96.0, 4007.0
'ELEV, -0.23854961455937693, 4847.0, 7387.0
`BIO_15, 0.033731909991064096, 6.0, 34.5
`SLOPE, -0.06791843371283392, 0.0, 531.5
`SLOPE, -0.03730305382343097, 0.0, 1943.5
`SLOPE, -0.03017983333437187, 0.0, 1938.0
`SLOPE, -0.05134598548513679, 0.0, 532.5
'BIO_15, 0.20643884457671002, 69.5, 103.0
'ELEV, -0.12359796094775284, 4567.0, 7387.0
`SLOPE, -0.0484404964543955, 0.0, 1907.5
`SLOPE, -0.027665386270611474, 0.0, 1935.5
`BIO_8, 0.20582550093538013, -113.0, -52.5
`STRMHIFLODIST, 0.04523117112715488, 0.0, 171.5
`SLOPE, -0.146326399240592, 0.0, 537.5
'ELEV, -0.2219123904497426, 4872.5, 7387.0
`SLOPE, -0.04282472025046426, 0.0, 1906.5
'ELEV, -0.4706402963843243, 4875.0, 7387.0
`ELEV, -0.08682165082936531, 96.0, 4010.5
`SLOPE, -0.05426323293305415, 0.0, 538.5
`SLOPE, -0.08748519462972688, 0.0, 542.5
'BIO_15, 0.21062561602716218, 70.5, 103.0
`CONT_INDEX, -0.20047568917950628, 50.0, 104.5
`SLOPE, -0.08866380002512604, 0.0, 570.5
`PREC_AUTQ, -0.22938835504924457, 4.0, 24.5
`SLOPE, -0.042114401554680644, 0.0, 576.5
`BIO_2, -0.24105841891612156, 63.0, 108.5
`ELEV, -0.04914455188887119, 96.0, 4009.0
`SLOPE, -0.045739793902331606, 0.0, 573.5
`STRMHIFLODIST, 0.02877363625984476, 0.0, 172.5
'CONT_INDEX, -0.22569362932873166, 269.5, 359.0
`SLOPE, -0.03272280129514224, 0.0, 1435.5
'BIO_15, 0.10104198608837364, 71.5, 103.0
`SLOPE, -0.049380429679659506, 0.0, 1434.0
`BIO_15, 0.024388571426749644, 6.0, 35.5
`STRMHIFLODIST, 0.015252725040870137, 0.0, 173.5
`SLOPE, -0.027999049857786108, 0.0, 1432.5
`SLOPE, -0.017288544120248116, 0.0, 1431.5
`SLOPE, -0.006415895514527464, 0.0, 1421.5
`SLOPE, -0.027523208188581658, 0.0, 577.5
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`SLOPE, -0.08520732364906165, 0.0, 1420.5
'ROADDEN9KR, -0.06496306480854526, 311.5, 3356.0
`SLOPE, -0.027084286115024375, 0.0, 1419.5
linearPredictorNormalizer, 1.4068360746485955
densityNormalizer, 1137.1711743677304
numBackgroundPoints, 12855
entropy, 8.63955433520286
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AETT_WINQ, 0.0, 4.0, 78.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_4, 0.0, 1821.0, 12546.0
BIO_8, 0.0, -113.0, 332.0
ELEV, 0.0, 96.0, 7387.0
ETRT_SPRQ, 0.0, 20.0, 1000.0
LORURDIST, 0.0, 0.0, 212.0
PETH_SUMQ, 0.0, 78.0, 228.0
ROADDEN3KR, 0.0, 0.0, 2510.0
SLOPE, 0.0, 0.0, 6564.0
SPRURDIST, 0.0, 0.0, 366.0
STRMHIFLODIST, 0.0, 0.0, 789.0
STRMMDFLODIST, 0.0, 0.0, 376.0
TMIN_AUTQ, 0.0, -143.0, 155.0
TPI3KR, 0.0, 1950.0, 7728.0
AETT_WINQ^2, 2.8990647409279675, 16.0, 6084.0
AGRIC_LC^2, -1.0210517347632524, 0.0, 1.0E8
BIO_4^2, -1.5351973612723833, 3316041.0, 1.57402116E8
BIO_8^2, -1.2799674524970697, 0.0, 110224.0
ETRT_SPRQ^2, -0.5826714344105702, 400.0, 1000000.0
SLOPE^2, 0.3335022032168794, 0.0, 4.3086096E7
STRMHIFLODIST^2, -0.41702626148651994, 0.0, 622521.0
TMIN_AUTQ^2, 1.2379522247115364, 0.0, 24025.0
TPI3KR^2, 0.7966215751981742, 3802500.0, 5.9721984E7
`SLOPE, -0.18586789695196598, 0.0, 1268.5
`SLOPE, -0.19355175501859745, 0.0, 634.5
`SLOPE, -0.12358112693916842, 0.0, 1441.5
`ETRT_SPRQ, -0.19004658745897118, 20.0, 366.5
`ELEV, -0.4507254367158364, 96.0, 3075.0
`ETRT_SPRQ, -0.35521414597674744, 20.0, 381.5
`ETRT_SPRQ, -0.4370011624122726, 20.0, 340.5
'ELEV, -0.040484109815565, 5410.0, 7387.0
'ETRT_SPRQ, -0.22405474268729655, 893.5, 1000.0
`ELEV, -0.35739709948833165, 96.0, 3071.5
`BIO_8, 0.3575485736702911, -113.0, -48.5
'ELEV, -0.5238018929477197, 5408.0, 7387.0
`ROADDEN3KR, 0.08111939065358108, 0.0, 572.5
'ETRT_SPRQ, -0.23042287053064836, 807.5, 1000.0
`AETT_WINQ, -0.19118377149730176, 4.0, 15.5
`ELEV, -0.126013527934875, 96.0, 3090.0
'ELEV, -1.439797075632529, 5379.0, 7387.0
`BIO_8, 0.15894751647038463, -113.0, -52.5
`ETRT_SPRQ, 2.66068523364938, 20.0, 72.5
`ELEV, -0.3061161591140834, 96.0, 3086.0
`SLOPE, -0.14259887468254162, 0.0, 2082.5
'TMIN_AUTQ, 0.3801631293104303, 20.5, 155.0
`ELEV, -0.24347751410992796, 96.0, 2921.0
`ETRT_SPRQ, -0.5041840657668202, 20.0, 316.5
`LORURDIST, -0.16484273249853784, 0.0, 87.5
'BIO_8, -1.0718896392627082, 223.5, 332.0
'TMIN_AUTQ, 0.49403601355894844, 44.5, 155.0
`BIO_4, -0.6710425582412366, 1821.0, 3831.0
`SLOPE, -0.07397688533618983, 0.0, 495.5







file:///F/Documents/FireFreqMS2017/HiBrn15VarModel5_lambdas.txt[9/7/2018 11:41:20 PM]


`STRMMDFLODIST, -0.057583468431744673, 0.0, 99.5
'LORURDIST, -0.8241104042083138, 131.5, 212.0
`AETT_WINQ, -2.418614259292121, 4.0, 9.5
`ETRT_SPRQ, 1.9388441925232698, 20.0, 76.5
`SLOPE, -0.08774290294569735, 0.0, 2010.5
'AGRIC_LC, -1.1861119468705683, 1850.0, 10000.0
`STRMHIFLODIST, 0.03795457409589964, 0.0, 173.5
`TMIN_AUTQ, -0.998834235553231, -143.0, -123.5
`ELEV, -0.1135667536350531, 96.0, 2817.0
'ETRT_SPRQ, -0.4377001042340124, 950.5, 1000.0
`SPRURDIST, 2.1839926379038554, 0.0, 151.0
'ETRT_SPRQ, -0.05126203277466718, 793.5, 1000.0
'BIO_8, -0.8276751879333551, 216.5, 332.0
`SLOPE, -0.11733986050354629, 0.0, 509.5
`SLOPE, -0.048410328093255586, 0.0, 2008.0
`SLOPE, -0.08704575109474345, 0.0, 525.5
`SLOPE, -0.07615941390052508, 0.0, 1983.5
'ELEV, -0.13455005876435622, 4168.0, 7387.0
'TPI3KR, -0.6062162439348407, 6088.0, 7728.0
`AETT_WINQ, -0.5875692670469201, 4.0, 16.5
`BIO_8, 0.004366397901977936, -113.0, -44.5
`ELEV, -0.051345417274546896, 96.0, 2819.0
`ROADDEN3KR, 0.16875445726551452, 0.0, 1010.0
`ELEV, -0.11026795247949349, 96.0, 2812.0
`STRMHIFLODIST, 0.06799652042386772, 0.0, 170.5
`SLOPE, -0.054217114799647984, 0.0, 1943.5
`LORURDIST, -0.033570200570010894, 0.0, 4.5
`SLOPE, -0.15677498864706851, 0.0, 532.5
`BIO_8, 0.4340923422136905, -113.0, -86.5
'ETRT_SPRQ, -0.2897081803133302, 949.5, 1000.0
`ETRT_SPRQ, 0.44579310934114474, 20.0, 77.5
`BIO_4, -0.7928127932268348, 1821.0, 3855.5
`SLOPE, -0.07827540796607718, 0.0, 537.5
`SLOPE, -0.04291011014973313, 0.0, 1939.5
`TMIN_AUTQ, -0.2978911778824202, -143.0, -124.5
'ELEV, -0.09291625634917165, 4227.5, 7387.0
`ROADDEN3KR, 0.042149121750101146, 0.0, 1007.5
`STRMMDFLODIST, 0.11576819811720794, 0.0, 2.5
`SLOPE, -0.04165484961337301, 0.0, 1906.5
`SLOPE, -0.03167564932787518, 0.0, 538.5
`ROADDEN3KR, 0.06325687364168676, 0.0, 1013.5
`SLOPE, -0.03658898878905145, 0.0, 573.5
`ETRT_SPRQ, 0.4689228889379991, 20.0, 78.5
'ETRT_SPRQ, -0.21295120857526054, 948.5, 1000.0
'BIO_8, -0.30880606291999063, 217.5, 332.0
`BIO_8, 0.10916558342273514, -113.0, -47.5
`SLOPE, -0.1554405613709586, 0.0, 577.5
'TMIN_AUTQ, -0.09457131735437828, 86.5, 155.0
`STRMMDFLODIST, -0.03793036918097691, 0.0, 138.5
'ELEV, -0.08032825626178026, 4237.0, 7387.0
`SLOPE, -0.022960371150709192, 0.0, 1905.0
`AETT_WINQ, -0.1713744652824389, 4.0, 10.5
`ETRT_SPRQ, 0.20807169281944823, 20.0, 79.5
'BIO_4, -0.06720741234468847, 8221.5, 12546.0
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'ELEV, -0.04672892521947061, 4246.0, 7387.0
'ETRT_SPRQ, -0.05128919345374376, 806.5, 1000.0
'TPI3KR, -0.1522985152658619, 6074.0, 7728.0
`SLOPE, -0.015067736360893267, 0.0, 1435.5
'ETRT_SPRQ, -0.02691111369970891, 892.5, 1000.0
'ROADDEN3KR, -0.12987206255077458, 326.5, 2510.0
`ELEV, -0.018884354141378165, 96.0, 2815.0
`BIO_4, -0.0851438660490294, 1821.0, 3879.0
`STRMMDFLODIST, -0.007767063569717687, 0.0, 139.5
`ROADDEN3KR, 0.015696002588681323, 0.0, 1029.0
`SLOPE, -0.012769017625181478, 0.0, 576.5
linearPredictorNormalizer, 3.212583725209007
densityNormalizer, 1206.8865555086738
numBackgroundPoints, 12855
entropy, 8.627611728663133
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AETT_AUTQ, 0.0, 1.0, 72.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_14, 0.0, 0.0, 95.0
BIO_9, 0.0, -137.0, 326.0
CONT_INDEX, 0.0, 54.0, 359.0
ERR3KR, 0.0, 0.0, 9825.0
ETRT_SPRQ, 0.0, 20.0, 996.0
LORURDIST, 0.0, 0.0, 212.0
PETH_AUTQ, 0.0, 14.0, 98.0
PREC_SPRQ, 0.0, 1.0, 155.0
ROADDEN9KR, 0.0, 0.0, 2893.0
SCAI, 0.0, 0.0, 7853.0
SLOPE, 0.0, 0.0, 6783.0
SPRURDIST, 0.0, 0.0, 342.0
STRMHIFLODIST, 0.0, 0.0, 756.0
AETT_AUTQ^2, 1.9425415113290314, 1.0, 5184.0
AGRIC_LC^2, -1.213713765026034, 0.0, 1.0E8
BIO_14^2, -1.4302794618695904, 0.0, 9025.0
BIO_9^2, 0.6796732397044624, 0.0, 106276.0
ETRT_SPRQ^2, -1.032882229318456, 400.0, 992016.0
PETH_AUTQ^2, 0.5516324292274838, 196.0, 9604.0
PREC_SPRQ^2, 0.17643375811944384, 1.0, 24025.0
SLOPE^2, 0.2718923702380408, 0.0, 4.6009089E7
STRMHIFLODIST^2, -0.3948373804348129, 0.0, 571536.0
'AGRIC_LC, -1.469051180988271, 4650.0, 10000.0
`BIO_9, -0.8893337852323017, -137.0, 22.5
`BIO_9, -0.19912675959574233, -137.0, 21.5
'ETRT_SPRQ, -0.06927073489117852, 743.5, 996.0
`PREC_SPRQ, -0.6953568871343263, 1.0, 8.5
`ETRT_SPRQ, -0.44000973981893243, 20.0, 172.5
`SLOPE, -0.16538153155088162, 0.0, 131.5
`BIO_9, -0.3430227952475924, -137.0, 24.5
'PETH_AUTQ, -1.2539208366751546, 78.5, 98.0
`STRMHIFLODIST, 0.06116157693710885, 0.0, 171.5
`LORURDIST, -0.14576427256934718, 0.0, 15.5
`AGRIC_LC, -0.04744975483572544, 0.0, 350.0
'BIO_9, 0.4092205521609402, 140.5, 326.0
'ETRT_SPRQ, -0.30591665934470297, 729.5, 996.0
'PREC_SPRQ, 0.7080185203299229, 94.5, 155.0
`LORURDIST, -0.08916246039193369, 0.0, 16.5
'PREC_SPRQ, 0.8763784243079699, 93.5, 155.0
`BIO_14, 0.2067352828146981, 0.0, 45.5
`SLOPE, -0.32127959787833615, 0.0, 73.5
`PREC_SPRQ, -0.16865441812202767, 1.0, 21.5
'ETRT_SPRQ, -0.6448749284987458, 866.5, 996.0
'BIO_9, -0.06154686657980265, 243.5, 326.0
'PREC_SPRQ, 1.5384222690776972, 92.5, 155.0
'BIO_14, -0.8585630000861859, 20.5, 95.0
'AETT_AUTQ, 0.19913930409932704, 46.5, 72.0
`SLOPE, -0.14592318383096087, 0.0, 926.5
'BIO_9, 0.6913952197954715, 143.5, 326.0
`PREC_SPRQ, -0.86008003723628, 1.0, 24.5
'BIO_9, -2.2341382145982087, 239.5, 326.0
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`ROADDEN9KR, 0.036816683787255, 0.0, 169.5
'CONT_INDEX, 0.19241081829524212, 253.5, 359.0
`SLOPE, -0.1487597300047541, 0.0, 339.5
`ERR3KR, -0.20869639561480785, 0.0, 4151.5
`AETT_AUTQ, 0.17255513498387393, 1.0, 11.5
'PREC_SPRQ, 0.2896754617275166, 91.5, 155.0
'ETRT_SPRQ, -0.32697307120098074, 910.5, 996.0
`SPRURDIST, 1.0327708008828624, 0.0, 166.0
'BIO_14, -0.4271482451857839, 27.5, 95.0
'PETH_AUTQ, 0.11225774524825245, 49.5, 98.0
`SPRURDIST, 0.8571587662674791, 0.0, 161.5
`LORURDIST, -0.03835102055355897, 0.0, 33.5
'PETH_AUTQ, -1.0068093263262416, 77.5, 98.0
`ETRT_SPRQ, -0.5700087905383344, 20.0, 178.5
`BIO_14, 0.3344475151505309, 0.0, 47.5
'AETT_AUTQ, 0.6936193142439476, 14.5, 72.0
`SLOPE, -0.04485340484774968, 0.0, 1660.5
`SLOPE, -0.226330956261879, 0.0, 55.5
'AETT_AUTQ, 0.04991253455408153, 15.5, 72.0
`LORURDIST, -0.07335230203061607, 0.0, 37.5
`CONT_INDEX, -0.18502412805409543, 54.0, 157.5
`PREC_SPRQ, -0.45442138027627754, 1.0, 15.5
'ETRT_SPRQ, -0.786596504929173, 909.5, 996.0
`ETRT_SPRQ, -0.10111225629584979, 20.0, 357.5
`SLOPE, -0.04960328661310033, 0.0, 1318.5
`ERR3KR, -0.15283009979266693, 0.0, 4988.5
'BIO_9, -0.37833739409557676, 210.5, 326.0
'ETRT_SPRQ, -0.12773676481004276, 713.5, 996.0
'ETRT_SPRQ, -0.06353667215281517, 687.5, 996.0
`AETT_AUTQ, -0.14782272250988923, 1.0, 4.5
`SCAI, 0.1199883422681272, 0.0, 5366.5
`STRMHIFLODIST, 0.033766190380162556, 0.0, 170.5
`ERR3KR, -0.06244241556756788, 0.0, 2871.5
`AGRIC_LC, -0.07551043527557595, 0.0, 450.0
`BIO_14, 0.2795859859455777, 0.0, 51.5
'ETRT_SPRQ, -0.13995398841585294, 718.5, 996.0
`SLOPE, -0.029378355725843783, 0.0, 162.5
`SCAI, 0.19570874657450585, 0.0, 5367.5
`SLOPE, -0.08558797547839361, 0.0, 19.5
`SLOPE, -0.006961529386464912, 0.0, 933.5
`STRMHIFLODIST, -0.016826228306116103, 0.0, 2.5
`ETRT_SPRQ, -0.0823647397457294, 20.0, 367.5
'SCAI, -0.3720058365694491, 3777.5, 7853.0
'SCAI, 0.36912135544637165, 5664.5, 7853.0
`PETH_AUTQ, 0.048458883215595855, 14.0, 44.5
`ETRT_SPRQ, -0.15889311969989212, 20.0, 143.5
`PETH_AUTQ, 0.10604353120713528, 14.0, 45.5
'BIO_9, -0.1160522868202993, 225.5, 326.0
'ETRT_SPRQ, -0.2233878159581528, 867.5, 996.0
'AGRIC_LC, -0.3298173659958395, 4050.0, 10000.0
`ETRT_SPRQ, -0.15710350337262857, 20.0, 176.5
'BIO_9, -0.1903245246121025, 244.5, 326.0
'AGRIC_LC, -0.11662375950206304, 4250.0, 10000.0
`LORURDIST, -0.012609369840053534, 0.0, 43.5
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'ETRT_SPRQ, -0.02486229600000863, 719.5, 996.0
`ERR3KR, -0.017204675701525455, 0.0, 4986.5
`BIO_14, 0.024397954901360847, 0.0, 52.5
`ERR3KR, -0.014013060473400682, 0.0, 4968.5
linearPredictorNormalizer, 3.29153968497841
densityNormalizer, 3334.3223687567506
numBackgroundPoints, 14275
entropy, 9.303630254355102
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AGRIC_LC, 0.0, 0.0, 10000.0
BIO_19, 0.0, 10.0, 1447.0
BIO_3, 0.0, 26.0, 64.0
CONT_DFMO, 0.0, -188.0, 78.0
ELEV, 0.0, 96.0, 7442.0
ETRT_ANN, 0.0, 20.0, 934.0
EW_INDX, 0.0, -62.0, 2164.0
HIRURDIST, 0.0, 0.0, 286.0
IMI, 0.0, 8.0, 2962.0
MNPOPDEN3R, 0.0, 0.0, 850.0
PREC_SUMQ, 0.0, 1.0, 150.0
SCAI, 0.0, 0.0, 7853.0
SLOPE, 0.0, 0.0, 6783.0
TPI19KR, 0.0, 1328.0, 6647.0
URBAN_LC, 0.0, 0.0, 10000.0
AGRIC_LC^2, -1.2311277119247417, 0.0, 1.0E8
CONT_DFMO^2, -2.153078797458606, 0.0, 35344.0
ELEV^2, -0.7021231910935017, 9216.0, 5.5383364E7
ETRT_ANN^2, -1.415785178572709, 400.0, 872356.0
PREC_SUMQ^2, 3.2762357071220585, 1.0, 22500.0
SLOPE^2, 0.23003292494896593, 0.0, 4.6009089E7
'AGRIC_LC, -1.5385259854135933, 4650.0, 10000.0
`PREC_SUMQ, 0.3747567267695199, 1.0, 29.5
`ETRT_ANN, -0.03088650199341966, 20.0, 146.5
`MNPOPDEN3R, 0.23605133641842946, 0.0, 1.5
`BIO_19, -0.2753112331196852, 10.0, 76.5
`ETRT_ANN, -0.9057234025108222, 20.0, 147.5
`PREC_SUMQ, 0.018672791733104356, 1.0, 28.5
`SLOPE, -0.10494058371468701, 0.0, 110.5
`ETRT_ANN, -0.5880866157441039, 20.0, 171.5
'PREC_SUMQ, 0.31467593651155806, 68.5, 150.0
`URBAN_LC, 0.5820190566157107, 0.0, 50.0
`ELEV, -0.3693619918285804, 96.0, 746.0
'PREC_SUMQ, 0.04252072546532022, 49.5, 150.0
`ELEV, -0.3329338342184629, 96.0, 759.0
`MNPOPDEN3R, 0.05844712500245663, 0.0, 16.5
`SLOPE, -0.04604209998218693, 0.0, 1010.5
`EW_INDX, -0.023444326164104773, -62.0, 1019.5
'EW_INDX, -0.33601931604532514, 1365.5, 2164.0
`MNPOPDEN3R, 0.048618870336068265, 0.0, 19.5
`SLOPE, -0.09627150216237253, 0.0, 1000.5
`HIRURDIST, -0.10488009960492693, 0.0, 34.5
`ELEV, -0.0371135693964462, 96.0, 763.0
'ELEV, -0.21832692805703355, 3149.5, 7442.0
`ETRT_ANN, -0.2933207940689474, 20.0, 182.5
`SLOPE, -0.11790701401503621, 0.0, 1320.5
'PREC_SUMQ, 0.7507013265977002, 72.5, 150.0
'EW_INDX, -0.7861291259307454, 1366.5, 2164.0
'ELEV, -0.9393722694863643, 2995.0, 7442.0
`AGRIC_LC, -0.001777676613723118, 0.0, 350.0
'ETRT_ANN, -0.6954640595034305, 655.5, 934.0
'EW_INDX, 0.8674965720627884, 1817.0, 2164.0
`AGRIC_LC, -0.09391542197720754, 0.0, 450.0
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`IMI, 0.154229666762346, 8.0, 27.5
`TPI19KR, 0.09524923305560734, 1328.0, 2607.5
`HIRURDIST, -0.062277001163799146, 0.0, 66.5
`PREC_SUMQ, 0.1786592641074499, 1.0, 33.5
`ETRT_ANN, -0.7356051270777244, 20.0, 206.5
'CONT_DFMO, -0.027796019156070134, 14.5, 78.0
`EW_INDX, -0.12593883753303364, -62.0, 1056.5
`BIO_19, -0.33715920590309145, 10.0, 32.5
`ELEV, 0.4076975506576581, 96.0, 338.0
`SLOPE, -0.1200965684118764, 0.0, 55.5
'ELEV, -0.3157474919106837, 2916.0, 7442.0
`SLOPE, -0.07900248691623363, 0.0, 3120.0
`MNPOPDEN3R, 0.2759679448177981, 0.0, 115.0
'PREC_SUMQ, 0.4947268330440985, 74.5, 150.0
`SLOPE, -0.17561324544292498, 0.0, 56.5
'ELEV, -0.21862017188061877, 2904.5, 7442.0
'EW_INDX, -0.17307364349888577, 1359.5, 2164.0
`TPI19KR, 0.36719740043937116, 1328.0, 2663.0
'ETRT_ANN, -0.16474719225018775, 658.5, 934.0
`EW_INDX, -0.08713467760868943, -62.0, 1057.5
`HIRURDIST, -0.048149880826229896, 0.0, 39.5
`PREC_SUMQ, 0.04130771699932173, 1.0, 34.5
`ELEV, -0.08377464070118416, 96.0, 735.0
`MNPOPDEN3R, 0.12802972905855017, 0.0, 112.5
`BIO_3, -0.33192502228536824, 26.0, 32.5
`MNPOPDEN3R, 0.06830856560248352, 0.0, 2.5
`SLOPE, -0.019834799340723783, 0.0, 236.5
`EW_INDX, -0.1052969109647478, -62.0, 480.5
'ELEV, -0.28443943565990426, 4947.5, 7442.0
`PREC_SUMQ, 0.7171580575359425, 1.0, 37.5
`PREC_SUMQ, -0.24983609549034963, 1.0, 10.5
`ETRT_ANN, -0.20661733224022164, 20.0, 207.5
'AGRIC_LC, -0.16181549384675833, 4250.0, 10000.0
`SCAI, 0.07456210389709002, 0.0, 5386.5
`BIO_19, -0.09630985674504312, 10.0, 33.5
`MNPOPDEN3R, 0.1345156674266589, 0.0, 111.5
`IMI, 0.055440567072124115, 8.0, 90.5
'EW_INDX, -0.08608050120312968, 1351.5, 2164.0
`SLOPE, -0.18253681048744202, 0.0, 19.5
`SLOPE, -0.02937710407723525, 0.0, 237.5
'SCAI, 0.17562616080392807, 5681.5, 7853.0
`SCAI, 0.34574439111549066, 0.0, 5391.5
`SLOPE, -0.036864489495693986, 0.0, 158.5
`SCAI, -0.03265095823864417, 0.0, 2841.0
'AGRIC_LC, -0.4422079540903236, 3650.0, 10000.0
`TPI19KR, -0.2849906040908664, 1328.0, 3958.5
`TPI19KR, 0.31320601853682045, 1328.0, 2791.5
`SLOPE, -0.03690938905598243, 0.0, 919.5
`SLOPE, -0.20659586366774374, 0.0, 73.5
`BIO_3, -0.04954629164800714, 26.0, 41.5
'EW_INDX, -0.045985091299837626, 1349.5, 2164.0
`BIO_3, -0.023032977779592605, 26.0, 42.5
`ETRT_ANN, -0.10510969288831651, 20.0, 125.5
`TPI19KR, -0.12408001284552489, 1328.0, 3916.5







file:///F/Documents/FireFreqMS2017/LoBrn15VarModel1_lambdas.txt[9/7/2018 11:49:47 PM]


`BIO_19, -0.021285208363159534, 10.0, 83.5
'AGRIC_LC, -0.20329415334423404, 4050.0, 10000.0
`TPI19KR, 0.10072888318334303, 1328.0, 2660.0
'EW_INDX, 0.1574123743443726, 1818.5, 2164.0
`SLOPE, -0.009211515940760513, 0.0, 1332.5
'EW_INDX, -0.0790809746202741, 1347.5, 2164.0
`SCAI, 0.10084347711392325, 0.0, 5385.5
'TPI19KR, -0.10266176949745942, 4330.5, 6647.0
'CONT_DFMO, -0.01584953018307581, -3.5, 78.0
'ETRT_ANN, -0.2451965773525462, 672.5, 934.0
'HIRURDIST, -0.03564435617182451, 92.5, 286.0
linearPredictorNormalizer, 3.0096044349559428
densityNormalizer, 1782.6995203814633
numBackgroundPoints, 14275
entropy, 9.298967179095436
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AGRIC_LC, 0.0, 0.0, 10000.0
BIO_9, 0.0, -137.0, 326.0
CONT_INDEX, 0.0, 54.0, 359.0
DISS3KR, 0.0, 0.0, 10000.0
ELEV, 0.0, 96.0, 7442.0
EW_INDX, 0.0, -62.0, 2164.0
MEDRURDIST, 0.0, 0.0, 271.0
PREC_SUMQ, 0.0, 1.0, 150.0
PREC_WINQ, 0.0, 3.0, 423.0
ROADDEN9KR, 0.0, 0.0, 2893.0
SLOPE, 0.0, 0.0, 6783.0
SPRURDIST, 0.0, 0.0, 342.0
STRMLOFLODIST, 0.0, 0.0, 131.0
TAETT_TANN, 0.0, 37.0, 1146.0
TPETH_M_TAETT, 0.0, 37.0, 1848.0
AGRIC_LC^2, -1.1510379305689584, 0.0, 1.0E8
CONT_INDEX^2, 0.10532396966696622, 2916.0, 128881.0
DISS3KR^2, 0.23976833075919055, 0.0, 1.0E8
ELEV^2, -0.40152443202578597, 9216.0, 5.5383364E7
PREC_SUMQ^2, 2.119619059470843, 1.0, 22500.0
SLOPE^2, 0.29557276243649483, 0.0, 4.6009089E7
TAETT_TANN^2, -0.18950468547378568, 1369.0, 1313316.0
'AGRIC_LC, -1.5722490942399359, 4650.0, 10000.0
`BIO_9, -0.4150213726035978, -137.0, 22.5
`PREC_SUMQ, 0.4364073092104478, 1.0, 29.5
`TPETH_M_TAETT, -0.8292855521505232, 37.0, 413.5
`TAETT_TANN, -1.4526037260738578, 37.0, 196.5
`SLOPE, -0.14439541261993802, 0.0, 120.5
'PREC_SUMQ, 1.8640423616324349, 71.5, 150.0
'EW_INDX, -0.5828274258349729, 1381.5, 2164.0
'ELEV, -0.12456661423738054, 3092.0, 7442.0
`ELEV, -0.3594741724757364, 96.0, 759.0
`DISS3KR, -0.02538928630024843, 0.0, 2431.5
`AGRIC_LC, -0.06141504977376701, 0.0, 350.0
`ROADDEN9KR, 0.08607732173911704, 0.0, 170.5
`ELEV, -0.3161314365731558, 96.0, 763.0
'ELEV, -0.4190004577584083, 3088.0, 7442.0
`SLOPE, -0.10504754462241553, 0.0, 925.5
'TPETH_M_TAETT, -0.500521537056394, 1235.5, 1848.0
`EW_INDX, -0.22305737319132457, -62.0, 479.5
`STRMLOFLODIST, -0.06771060943697786, 0.0, 10.5
`CONT_INDEX, -0.14454686573177286, 54.0, 156.5
`TAETT_TANN, -0.30827072717766313, 37.0, 258.5
'ELEV, -0.31775175752675716, 2969.5, 7442.0
`SLOPE, -0.048647648934044906, 0.0, 918.5
'PREC_WINQ, -0.1440124925943485, 45.5, 423.0
'PREC_SUMQ, 0.2704808150030228, 51.5, 150.0
`MEDRURDIST, -0.13576963885744858, 0.0, 32.5
`ELEV, -0.1538002327268907, 96.0, 769.0
`DISS3KR, -0.32451039589601705, 0.0, 2086.5
`TAETT_TANN, -0.45411507590551403, 37.0, 261.5
`PREC_WINQ, 0.41831082490652854, 3.0, 89.5
'BIO_9, 0.6309998283267146, 148.5, 326.0
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'BIO_9, -0.1588125087352508, 220.5, 326.0
'EW_INDX, 0.8344911108197978, 1825.5, 2164.0
`SPRURDIST, 1.954747466130858, 0.0, 161.5
`TPETH_M_TAETT, -0.05305576180344193, 37.0, 655.5
`TAETT_TANN, -0.22421532299182217, 37.0, 291.5
'TPETH_M_TAETT, -0.5849699533023032, 1218.5, 1848.0
`SLOPE, -0.08260212015214466, 0.0, 3050.0
`PREC_WINQ, 0.1207705760531663, 3.0, 92.5
'PREC_SUMQ, 0.022246430749737808, 55.5, 150.0
'ELEV, -0.24354597369055622, 2897.0, 7442.0
'ELEV, -0.2728141210947723, 2904.5, 7442.0
'AGRIC_LC, -0.20560287966523205, 2950.0, 10000.0
'MEDRURDIST, -0.16088862966886405, 148.5, 271.0
`TPETH_M_TAETT, -0.5258331410993741, 37.0, 248.5
`ELEV, 0.32961012382404975, 96.0, 338.0
`SLOPE, -0.305232261548649, 0.0, 56.5
'EW_INDX, -0.5120486147124859, 1365.5, 2164.0
`CONT_INDEX, -0.4237241914004232, 54.0, 145.5
`SLOPE, -0.04902868864728796, 0.0, 1332.5
`ROADDEN9KR, 0.0150079395752299, 0.0, 169.5
`TAETT_TANN, -0.205278509714351, 37.0, 279.5
`TPETH_M_TAETT, -0.14698437364929426, 37.0, 715.5
`TAETT_TANN, -0.18007283904565466, 37.0, 278.5
`BIO_9, -0.14748002120982684, -137.0, 56.5
`MEDRURDIST, -0.03945266118471298, 0.0, 106.5
`PREC_SUMQ, 0.7465424491192151, 1.0, 38.5
`BIO_9, -0.10702586618992689, -137.0, 57.5
`BIO_9, -0.14920586267479924, -137.0, 54.5
`AGRIC_LC, -0.05594862694294646, 0.0, 450.0
`DISS3KR, -0.06343641780285213, 0.0, 715.5
`SLOPE, -0.06306083701163041, 0.0, 335.5
`SLOPE, -0.06420689394573201, 0.0, 71.5
`PREC_WINQ, 0.05155764068089097, 3.0, 88.5
`SLOPE, -0.04629053188414481, 0.0, 162.5
`TPETH_M_TAETT, -0.21894314071497917, 37.0, 455.5
`SLOPE, -0.03520574393121504, 0.0, 161.5
`SPRURDIST, 0.0389931541729191, 0.0, 151.0
`TPETH_M_TAETT, -0.12890234609290963, 37.0, 459.5
`STRMLOFLODIST, 0.0176614198948829, 0.0, 0.5
'BIO_9, -0.36107670991334034, 241.5, 326.0
`BIO_9, -0.060218866979215184, -137.0, 53.5
'DISS3KR, -0.03408397856489873, 7383.5, 10000.0
`ELEV, -0.036313713671542215, 96.0, 728.0
'ELEV, -0.15683662341063098, 4918.0, 7442.0
`BIO_9, -0.08391312572941861, -137.0, 39.5
'MEDRURDIST, -0.048900576186418764, 144.5, 271.0
`TAETT_TANN, -0.25086494807700516, 37.0, 170.5
`TAETT_TANN, -0.44421084772336633, 37.0, 171.5
'PREC_WINQ, -0.12369195671748005, 176.5, 423.0
'AGRIC_LC, -0.5450945837520826, 4050.0, 10000.0
`BIO_9, -0.21724002199194536, -137.0, 38.5
`TPETH_M_TAETT, -0.17084944851845651, 37.0, 456.5
'DISS3KR, -0.04502370687919435, 7371.5, 10000.0
`TPETH_M_TAETT, -0.036051090601683586, 37.0, 716.5
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`SLOPE, -0.022555580995764983, 0.0, 158.5
`MEDRURDIST, -0.02668799312272179, 0.0, 4.5
`SLOPE, -0.02895738454738856, 0.0, 72.5
`DISS3KR, -0.017560125033971086, 0.0, 2061.5
'AGRIC_LC, -0.15042905578959698, 4250.0, 10000.0
`SLOPE, -0.01524632595338305, 0.0, 1322.5
'EW_INDX, 0.10735135970601231, 1818.5, 2164.0
'EW_INDX, -0.04260464575784513, 1364.5, 2164.0
'PREC_WINQ, -0.1081412212073177, 175.5, 423.0
linearPredictorNormalizer, 3.923157015809239
densityNormalizer, 2127.8531428976894
numBackgroundPoints, 14275
entropy, 9.288009355960169
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AGRIC_LC, 0.0, 0.0, 10000.0
BIO_2, 0.0, 76.0, 211.0
BIO_8, 0.0, -121.0, 332.0
BIO_9, 0.0, -137.0, 326.0
CTI, 0.0, 456.0, 7471.0
DISS3KR, 0.0, 0.0, 10000.0
ELEV, 0.0, 96.0, 7442.0
LORURDIST, 0.0, 0.0, 212.0
MEDURBDIST, 0.0, 0.0, 353.0
PREC_SUMQ, 0.0, 1.0, 150.0
ROADDEN19KR, 0.0, 0.0, 3331.0
ROADDEN3KR, 0.0, 0.0, 2292.0
TAETT_TANN, 0.0, 37.0, 1146.0
TMAX_AUTQ, 0.0, -20.0, 270.0
TPI19KR, 0.0, 1328.0, 6647.0
AGRIC_LC^2, -1.1033211606039812, 0.0, 1.0E8
BIO_8^2, -0.49526554259314337, 0.0, 110224.0
CTI^2, -1.260682547668702, 207936.0, 5.5815841E7
DISS3KR^2, 0.01673418127398772, 0.0, 1.0E8
ELEV^2, -1.1549695601710515, 9216.0, 5.5383364E7
LORURDIST^2, 0.2323230552240158, 0.0, 44944.0
MEDURBDIST^2, -1.1759628281718235, 0.0, 124609.0
PREC_SUMQ^2, 1.1780127490234809, 1.0, 22500.0
TAETT_TANN^2, -1.7619024542553106, 1369.0, 1313316.0
'AGRIC_LC, -1.8422118575757531, 4650.0, 10000.0
`BIO_9, -0.38506498017232754, -137.0, 22.5
`PREC_SUMQ, 0.5264333237034038, 1.0, 29.5
`TMAX_AUTQ, -0.18304945708216383, -20.0, 80.5
`TAETT_TANN, -1.346061141507448, 37.0, 196.5
`BIO_9, -0.3276900503185317, -137.0, 21.5
`LORURDIST, -0.043846727243291514, 0.0, 8.5
`TMAX_AUTQ, -0.6130618988686592, -20.0, 81.5
`ELEV, -0.35008625722148995, 96.0, 737.0
'PREC_SUMQ, 0.7941582707045367, 70.5, 150.0
`PREC_SUMQ, 0.07082377604221121, 1.0, 28.5
`AGRIC_LC, -0.055960960846057395, 0.0, 350.0
`DISS3KR, -0.27542268481955917, 0.0, 2117.5
`MEDURBDIST, -0.9156922147401126, 0.0, 3.5
`BIO_2, -0.12807104992255497, 76.0, 127.5
'PREC_SUMQ, 0.3994500358340574, 51.5, 150.0
`LORURDIST, -0.31135679094069496, 0.0, 0.5
'TMAX_AUTQ, -0.27496940439465584, 202.5, 270.0
`LORURDIST, -0.060131498990262884, 0.0, 30.5
'ELEV, -0.3633913034477273, 3149.5, 7442.0
'PREC_SUMQ, 0.7201718037210358, 50.5, 150.0
`LORURDIST, -0.08949068140604886, 0.0, 34.5
`TAETT_TANN, -0.8521602660945228, 37.0, 259.5
'ELEV, -0.401261455743999, 3238.5, 7442.0
`BIO_2, -1.0235631170598682, 76.0, 128.5
'PREC_SUMQ, 0.8647551597325135, 57.5, 150.0
'BIO_2, -0.62900900692876, 176.5, 211.0
`ROADDEN3KR, 0.026938059891239843, 0.0, 592.5
`TPI19KR, 0.292078072052247, 1328.0, 2660.0
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`LORURDIST, -0.05789100889193267, 0.0, 74.5
'TMAX_AUTQ, -0.5116333424878797, 201.5, 270.0
`PREC_SUMQ, -0.30378527465820804, 1.0, 7.5
`AGRIC_LC, -0.0922618793234093, 0.0, 450.0
'ELEV, -1.225680465181918, 4955.0, 7442.0
'BIO_9, 0.2793737291179228, 149.5, 326.0
'PREC_SUMQ, 0.41571468494137626, 48.5, 150.0
`LORURDIST, -0.04384610494730548, 0.0, 50.5
`DISS3KR, -0.20716669885035463, 0.0, 708.5
`ELEV, -0.30482748256552106, 96.0, 728.0
'TPI19KR, -0.3286328426019816, 4107.5, 6647.0
`BIO_9, -0.07922832885173314, -137.0, 53.5
'ROADDEN3KR, -0.3752270589726429, 432.5, 2292.0
`LORURDIST, -0.10080211245664498, 0.0, 77.5
'BIO_9, 0.139014053079486, 148.5, 326.0
`TAETT_TANN, -0.5751936815745271, 37.0, 169.5
'AGRIC_LC, -0.2343700391881064, 2950.0, 10000.0
`BIO_9, -0.05368945752875481, -137.0, 39.5
`TAETT_TANN, -0.296996828741594, 37.0, 258.5
`ELEV, 0.6954152483159158, 96.0, 334.5
`BIO_2, -0.27935442204614064, 76.0, 130.5
`TMAX_AUTQ, -0.1416215336414073, -20.0, 74.5
`BIO_9, 0.08482252181227071, -137.0, -63.5
`DISS3KR, -0.05390437342962674, 0.0, 2086.5
`CTI, 0.06586032489125991, 456.0, 3826.5
'BIO_9, -0.1994762437034258, 224.5, 326.0
`BIO_2, -0.22549760055647192, 76.0, 151.5
`LORURDIST, -0.026727609778428318, 0.0, 15.5
`TAETT_TANN, 0.02802831366259254, 37.0, 554.5
`LORURDIST, -0.07764494744645198, 0.0, 16.5
`ROADDEN19KR, 0.007808470242558511, 0.0, 113.5
'DISS3KR, -0.10118332972493484, 8793.0, 10000.0
`LORURDIST, -0.07133999283304784, 0.0, 3.5
'PREC_SUMQ, 0.1255411078796662, 49.5, 150.0
'ELEV, -0.08107273075229174, 2899.0, 7442.0
`TAETT_TANN, -0.1534585420336851, 37.0, 278.5
'TMAX_AUTQ, -0.10296189935468401, 200.5, 270.0
`TAETT_TANN, -0.36006584586311796, 37.0, 170.5
`ROADDEN3KR, 0.0924498758149877, 0.0, 1134.0
`TAETT_TANN, 0.04440030453291326, 37.0, 553.5
`ROADDEN3KR, 0.03905038216204505, 0.0, 1132.5
`PREC_SUMQ, 0.28028879354447517, 1.0, 38.5
'ELEV, -0.13046514286429708, 2904.5, 7442.0
'PREC_SUMQ, 0.07258572824694867, 73.5, 150.0
`TAETT_TANN, 0.056949694606961934, 37.0, 552.5
`TAETT_TANN, -0.3389521310416532, 37.0, 171.5
`ELEV, -0.11700178645753712, 96.0, 713.0
'ELEV, -0.03341832033648342, 2914.0, 7442.0
`BIO_9, -0.19576490644253378, -137.0, 38.5
'PREC_SUMQ, 0.053627195471919284, 72.5, 150.0
'AGRIC_LC, -0.47670485624238224, 4050.0, 10000.0
`TPI19KR, 0.2064469664366071, 1328.0, 2914.5
`TPI19KR, 0.15577769800614494, 1328.0, 2892.5
`MEDURBDIST, 0.010761418163048158, 0.0, 55.5
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'AGRIC_LC, -0.06563539838529112, 4250.0, 10000.0
`CTI, 0.011838811067519753, 456.0, 3843.5
linearPredictorNormalizer, 1.1267302504341414
densityNormalizer, 1937.0510275805395
numBackgroundPoints, 14275
entropy, 9.292213891158704
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AETT_SPRQ, 0.0, 4.0, 139.0
AETT_WINQ, 0.0, 3.0, 78.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_1, 0.0, -48.0, 239.0
BIO_17, 0.0, 0.0, 315.0
BIO_9, 0.0, -135.0, 318.0
DISS3KR, 0.0, 0.0, 10000.0
HLI, 0.0, 3159.0, 8280.0
LORURDIST, 0.0, 0.0, 215.0
POPDEN, 0.0, 0.0, 478.0
PREC_SUMQ, 0.0, 1.0, 149.0
ROADDEN3KR, 0.0, 0.0, 2182.0
SEI, 0.0, 2438.0, 8334.0
SLOPE, 0.0, 0.0, 6933.0
STRMDIST, 0.0, 0.0, 85.0
AETT_SPRQ^2, -3.1292437936673014, 16.0, 19321.0
AGRIC_LC^2, -0.39147456093274796, 0.0, 1.0E8
BIO_1^2, 1.8460143351718798, 0.0, 57121.0
BIO_9^2, 1.2861427680047162, 0.0, 101124.0
DISS3KR^2, 0.4187113622453274, 0.0, 1.0E8
LORURDIST^2, 0.2499584092077214, 0.0, 46225.0
SLOPE^2, 0.3911825938987741, 0.0, 4.8066489E7
`SLOPE, -0.0020889398362872002, 0.0, 542.5
`SLOPE, -0.20328625090229951, 0.0, 540.5
`SLOPE, -0.20068133351457104, 0.0, 538.5
'AGRIC_LC, -1.1911165505788337, 4350.0, 10000.0
`PREC_SUMQ, 0.4964330443359538, 1.0, 37.5
`SLOPE, -0.13526263676590813, 0.0, 539.5
`AETT_SPRQ, -1.5411778976140238, 4.0, 32.5
`POPDEN, 0.2909609292472363, 0.0, 0.5
`SLOPE, -0.3552397780758043, 0.0, 202.5
'AGRIC_LC, -1.7530608437780089, 4750.0, 10000.0
`BIO_9, -0.10266587925296815, -135.0, 71.5
`STRMDIST, -0.03593709314441603, 0.0, 6.5
`BIO_1, -0.06937120718041256, -48.0, 49.5
`AGRIC_LC, -0.08650368050714703, 0.0, 650.0
`POPDEN, 0.2664059322703025, 0.0, 1.5
`LORURDIST, -0.26783980971679977, 0.0, 5.5
`BIO_1, -0.48339906282696155, -48.0, 51.5
`AETT_SPRQ, -0.3676824291825062, 4.0, 38.5
'PREC_SUMQ, 0.6551928063415351, 56.5, 149.0
`POPDEN, 1.049579703866578, 0.0, 20.5
'BIO_1, -0.00467979459210207, 175.5, 239.0
`BIO_9, -0.7958918356040202, -135.0, -71.5
`AETT_SPRQ, -0.32646848830523734, 4.0, 40.5
`ROADDEN3KR, 0.04179003924171437, 0.0, 281.5
'AETT_SPRQ, 0.22159306804029089, 102.5, 139.0
`AETT_WINQ, -0.33552572969279676, 3.0, 9.5
`SLOPE, -0.1699189049910179, 0.0, 2069.5
'AETT_WINQ, 0.5060492717197594, 33.5, 78.0
`PREC_SUMQ, -0.696259799374594, 1.0, 6.5
'BIO_1, -1.343574926686214, 174.5, 239.0
`AETT_SPRQ, -0.7235199385151474, 4.0, 46.5
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`AETT_WINQ, 0.4320821205561822, 3.0, 15.5
`SLOPE, -0.14104947250285824, 0.0, 2104.5
`LORURDIST, -0.11015997600727298, 0.0, 91.5
`BIO_1, -2.0625278861602343, -48.0, 21.5
`AETT_WINQ, 0.315814530287316, 3.0, 16.5
'PREC_SUMQ, 0.6978804376984972, 58.5, 149.0
'AGRIC_LC, -0.5592674165118916, 2550.0, 10000.0
`SLOPE, -0.2539222262888545, 0.0, 132.5
`SLOPE, -0.0767461548488727, 0.0, 2034.5
'SEI, 0.1007751429655372, 5450.5, 8334.0
`BIO_17, -0.22552875122422977, 0.0, 52.5
`PREC_SUMQ, 0.07154529335490085, 1.0, 41.5
`BIO_9, -0.7830699625778669, -135.0, -70.5
`DISS3KR, -0.1605868058566975, 0.0, 2068.5
`LORURDIST, -0.0842454047880249, 0.0, 0.5
`STRMDIST, -0.14401731790885358, 0.0, 14.5
`BIO_9, -0.05417881063485349, -135.0, 66.5
'BIO_1, -1.7076234232586445, 172.5, 239.0
`POPDEN, 0.16309514775221, 0.0, 21.5
`DISS3KR, -0.10531114195175989, 0.0, 2283.5
`PREC_SUMQ, 0.1745521991756049, 1.0, 49.5
`BIO_9, -0.3264023173567452, -135.0, 67.5
`SLOPE, -0.05159020461302897, 0.0, 330.5
'BIO_9, -0.27864296460843013, 206.5, 318.0
`BIO_17, -0.007837102760923531, 0.0, 49.5
'AETT_WINQ, 0.5306062010385207, 45.5, 78.0
`BIO_17, -0.21675946485029265, 0.0, 66.5
`SLOPE, -0.018149367434630116, 0.0, 1881.5
`AETT_SPRQ, -0.3010776816024044, 4.0, 47.5
`HLI, 0.09845615307372647, 3159.0, 5910.5
`SLOPE, -0.07829137096213282, 0.0, 331.5
`AETT_SPRQ, -0.16190104194237143, 4.0, 41.5
`ROADDEN3KR, 0.020886492483391042, 0.0, 497.5
`BIO_9, -0.29843931016807546, -135.0, -65.5
`AETT_WINQ, -0.6486236591289677, 3.0, 10.5
`HLI, 0.27324445943832393, 3159.0, 5904.5
'SEI, 0.14561456693296929, 5432.5, 8334.0
`STRMDIST, -0.03502629739227441, 0.0, 11.5
`SLOPE, -0.0943954244195908, 0.0, 334.5
`STRMDIST, -0.017671089509282978, 0.0, 10.5
`ROADDEN3KR, 0.011469781127209935, 0.0, 491.5
`SLOPE, -0.07463490845081472, 0.0, 335.5
`AGRIC_LC, -0.03220579319433778, 0.0, 750.0
`AETT_SPRQ, -0.14802835507527673, 4.0, 48.5
'AETT_SPRQ, 0.3561984191444851, 101.5, 139.0
'BIO_9, -0.10688060263769864, 205.5, 318.0
`AETT_SPRQ, -0.2962332442394525, 4.0, 50.5
`STRMDIST, -0.030669702595905648, 0.0, 3.5
`AETT_SPRQ, -0.10711559172534553, 4.0, 51.5
`LORURDIST, -0.012213111671953231, 0.0, 14.5
`SLOPE, -0.00819663676144233, 0.0, 1792.0
`BIO_1, -0.03277762116680363, -48.0, 52.5
linearPredictorNormalizer, 3.12098906673386
densityNormalizer, 1361.0823505882358
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numBackgroundPoints, 13007
entropy, 9.01372772035456
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AETT_SPRQ, 0.0, 4.0, 139.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_2, 0.0, 74.0, 212.0
BIO_3, 0.0, 26.0, 64.0
CONT_DFMO, 0.0, -187.0, 77.0
LOURBDIST, 0.0, 0.0, 286.0
PREC_SUMQ, 0.0, 1.0, 149.0
ROADDEN3KR, 0.0, 0.0, 2182.0
SEI, 0.0, 2438.0, 8334.0
SLOPE, 0.0, 0.0, 6933.0
SPRURDIST, 0.0, 0.0, 360.0
STRMHIFLODIST, 0.0, 0.0, 762.0
STRMMDFLODIST, 0.0, 0.0, 235.0
TPETH_ANN, 0.0, 492.0, 1902.0
TPI9KR, 0.0, 1159.0, 6316.0
AETT_SPRQ^2, -1.386181480461359, 16.0, 19321.0
AGRIC_LC^2, -0.4030406285732219, 0.0, 1.0E8
BIO_2^2, -0.6157948627042145, 5476.0, 44944.0
CONT_DFMO^2, -3.149938206639408, 0.0, 34969.0
LOURBDIST^2, 0.6373444457521391, 0.0, 81796.0
SLOPE^2, 0.9639389639450577, 0.0, 4.8066489E7
STRMHIFLODIST^2, -0.5399190403610156, 0.0, 580644.0
STRMMDFLODIST^2, 0.8091974217260934, 0.0, 55225.0
TPETH_ANN^2, 1.9158296977009486, 242064.0, 3617604.0
TPI9KR^2, 0.6232258727699744, 1343281.0, 3.9891856E7
`SLOPE, -7.656951825276805E-4, 0.0, 555.5
`SLOPE, -0.002859904313184025, 0.0, 545.5
`SLOPE, -0.055877104501117804, 0.0, 544.5
`SLOPE, -0.1079848494036572, 0.0, 543.5
`SLOPE, -0.05215825488342422, 0.0, 542.5
`SLOPE, -0.05097658265657227, 0.0, 541.5
`SLOPE, -0.2931353783501075, 0.0, 540.5
'AGRIC_LC, -0.45548049073787855, 4350.0, 10000.0
`PREC_SUMQ, 0.13442609278175813, 1.0, 37.5
`PREC_SUMQ, 0.7214727000832076, 1.0, 36.5
`AETT_SPRQ, -0.6362115765286257, 4.0, 32.5
`SLOPE, -0.47372710134516577, 0.0, 334.5
`AETT_SPRQ, -0.48927819873176287, 4.0, 33.5
'AGRIC_LC, -2.077350257174424, 4750.0, 10000.0
`TPETH_ANN, -0.6913871791104593, 492.0, 1016.5
`AGRIC_LC, -0.016629213355903304, 0.0, 650.0
`AETT_SPRQ, -0.41745979504305986, 4.0, 38.5
`TPETH_ANN, -0.4822569487009449, 492.0, 1047.5
`AETT_SPRQ, -0.43738238750053654, 4.0, 39.5
'CONT_DFMO, -0.6683665741309078, 33.5, 77.0
`ROADDEN3KR, 0.0821305905239727, 0.0, 488.5
`TPETH_ANN, -0.24473832130472883, 492.0, 1053.5
'BIO_2, -0.35601858940608544, 175.5, 212.0
`SPRURDIST, 0.009762249958497574, 0.0, 134.0
`TPI9KR, -0.6383536390129083, 1159.0, 4023.5
`BIO_3, -0.0303367346247022, 26.0, 34.5
`STRMHIFLODIST, 0.05184997762351654, 0.0, 102.5
`SLOPE, -0.5019037227355923, 0.0, 132.5
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'CONT_DFMO, -0.3767209304805652, -2.5, 77.0
`AETT_SPRQ, -0.6652307417262066, 4.0, 47.5
`SLOPE, -0.12410290239525525, 0.0, 2019.5
`PREC_SUMQ, -0.4492189225062653, 1.0, 7.5
`PREC_SUMQ, 0.14418413581400727, 1.0, 35.5
`AGRIC_LC, -0.05056329751687217, 0.0, 750.0
'PREC_SUMQ, 0.5968049558323698, 57.5, 149.0
'AGRIC_LC, -0.5393387353582529, 2450.0, 10000.0
`STRMMDFLODIST, -0.19977805221003384, 0.0, 1.5
`AETT_SPRQ, -0.35534783707507983, 4.0, 50.5
'LOURBDIST, -0.09873451576458872, 198.5, 286.0
'STRMMDFLODIST, -0.4575373105815884, 154.5, 235.0
`SLOPE, -0.10393109224498435, 0.0, 1885.5
'TPETH_ANN, -1.5296398109618754, 1497.5, 1902.0
`SPRURDIST, 0.22614712390752365, 0.0, 166.0
`AETT_SPRQ, -0.27477157383756035, 4.0, 48.5
'STRMMDFLODIST, -0.23664680827818946, 153.5, 235.0
`TPETH_ANN, -0.21873804969028254, 492.0, 773.5
'STRMMDFLODIST, -0.23073535503028542, 152.5, 235.0
`SPRURDIST, 2.5196084228001085, 0.0, 187.5
`ROADDEN3KR, 0.016291704098074827, 0.0, 490.5
'TPETH_ANN, -0.5580981889304661, 1498.5, 1902.0
`TPETH_ANN, -0.7122762093055969, 492.0, 783.5
`AETT_SPRQ, -0.13086995137606475, 4.0, 41.5
`PREC_SUMQ, 0.03513039916299507, 1.0, 49.5
`PREC_SUMQ, -0.1422109121739469, 1.0, 8.5
'TPETH_ANN, -0.7544153697423646, 1499.5, 1902.0
`PREC_SUMQ, 0.039617621595496914, 1.0, 40.5
`SLOPE, -0.020485951535235036, 0.0, 1884.5
`SLOPE, -0.03179692848775228, 0.0, 194.5
`LOURBDIST, -0.10276021042594126, 0.0, 1.5
`SLOPE, -0.01691585929373791, 0.0, 1881.5
'TPI9KR, -0.10779900615485123, 4813.5, 6316.0
`ROADDEN3KR, 0.009821255548217557, 0.0, 491.5
`SLOPE, -0.060331205036522895, 0.0, 1794.5
'TPETH_ANN, -0.4804749782021215, 1502.5, 1902.0
`STRMHIFLODIST, 0.047741021470422786, 0.0, 47.5
'AETT_SPRQ, 0.1727940795230404, 105.5, 139.0
`SLOPE, -0.11737889758783943, 0.0, 1792.0
`SLOPE, -0.04836983253229636, 0.0, 1796.5
`SLOPE, -0.03228686857895142, 0.0, 335.5
`STRMHIFLODIST, 0.02829809653371284, 0.0, 62.5
'AGRIC_LC, -0.3113848003939765, 3850.0, 10000.0
'PREC_SUMQ, 0.3154821813815076, 58.5, 149.0
`ROADDEN3KR, 0.0033822514117972905, 0.0, 497.5
'SEI, 0.031029225521282025, 5560.5, 8334.0
'BIO_2, -0.037619008812055016, 176.5, 212.0
linearPredictorNormalizer, 4.497836879256139
densityNormalizer, 1337.5153027902936
numBackgroundPoints, 13007
entropy, 9.008241931267976
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AGRIC_LC, 0.0, 0.0, 10000.0
BIO_1, 0.0, -48.0, 239.0
BIO_7, 0.0, 138.0, 507.0
BIO_9, 0.0, -135.0, 318.0
CONT_DFMO, 0.0, -187.0, 77.0
ETRT_SPRQ, 0.0, 20.0, 1000.0
MEDRURDIST, 0.0, 0.0, 261.0
MEDURBDIST, 0.0, 0.0, 336.0
MNPOPDEN9R, 0.0, 0.0, 1468.0
ROADDIST, 0.0, 0.0, 355.0
SEI, 0.0, 2438.0, 8334.0
SLOPE, 0.0, 0.0, 6933.0
STRMMDFLODIST, 0.0, 0.0, 235.0
TPI3KR, 0.0, 1468.0, 7411.0
TPI9KR, 0.0, 1159.0, 6316.0
AGRIC_LC^2, -0.3907847382168342, 0.0, 1.0E8
BIO_1^2, 0.9273440326180671, 0.0, 57121.0
BIO_9^2, 1.83484954103766, 0.0, 101124.0
CONT_DFMO^2, -3.3709518040220265, 0.0, 34969.0
ETRT_SPRQ^2, -1.4155555947105285, 400.0, 1000000.0
MEDRURDIST^2, 0.8872578312502817, 0.0, 68121.0
MEDURBDIST^2, -0.654371580971759, 0.0, 112896.0
ROADDIST^2, 0.42634286705734753, 0.0, 126025.0
SLOPE^2, 1.1744690380952139, 0.0, 4.8066489E7
STRMMDFLODIST^2, 0.7787234292408544, 0.0, 55225.0
TPI3KR^2, 0.2390732456218788, 2155024.0, 5.4922921E7
TPI9KR^2, 0.13281502256757396, 1343281.0, 3.9891856E7
`SLOPE, -0.0017211401718495113, 0.0, 544.5
`SLOPE, -0.23382616077142626, 0.0, 541.5
`SLOPE, -0.2842215498128821, 0.0, 540.5
`SLOPE, -0.013204591440262344, 0.0, 538.5
'AGRIC_LC, -1.0195265569049514, 4350.0, 10000.0
`SLOPE, -0.15653436357934383, 0.0, 350.5
`ETRT_SPRQ, -0.39040426922117627, 20.0, 239.5
`ETRT_SPRQ, -0.3803159310410179, 20.0, 243.5
`CONT_DFMO, -0.1522184144853038, -187.0, -77.5
'AGRIC_LC, -1.2788530650912513, 4750.0, 10000.0
`ROADDIST, -0.5188272198180762, 0.0, 0.5
`ROADDIST, -0.0708577145338549, 0.0, 15.5
`ETRT_SPRQ, -0.25710475526845544, 20.0, 312.5
`MEDURBDIST, -0.9226518292397533, 0.0, 3.5
`BIO_9, -1.5072663936761508, -135.0, -70.5
`MEDRURDIST, -0.053593952726457714, 0.0, 10.5
`ETRT_SPRQ, -0.21271030571712857, 20.0, 319.5
`BIO_1, -0.3159469374305098, -48.0, 53.5
'BIO_1, -1.0861668695654836, 174.5, 239.0
`SLOPE, -0.11337645439071933, 0.0, 2037.5
`ETRT_SPRQ, -0.4134709919030156, 20.0, 320.5
'CONT_DFMO, -0.16920414845535148, 33.5, 77.0
`SLOPE, -0.25822201289547153, 0.0, 132.5
`STRMMDFLODIST, -0.21691923075532854, 0.0, 1.5
`MEDRURDIST, -0.008840257928239588, 0.0, 113.5
`SLOPE, -0.08068496309527282, 0.0, 2018.5
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`TPI9KR, -1.1148769367914309, 1159.0, 4023.5
'BIO_1, -0.7878951392847527, 173.5, 239.0
`AGRIC_LC, -0.025449851568775404, 0.0, 650.0
'AGRIC_LC, -0.46398599585640904, 2550.0, 10000.0
'STRMMDFLODIST, -0.45232836813043115, 154.5, 235.0
`SLOPE, -0.062347888063219815, 0.0, 1894.5
`SLOPE, -0.11855471475045863, 0.0, 189.5
`SLOPE, -0.04289434448571064, 0.0, 1886.5
'BIO_7, 0.003426426270301336, 386.5, 507.0
`BIO_7, 0.5350753476366674, 138.0, 302.5
`BIO_1, -1.2428313461411, -48.0, 21.5
`BIO_9, -0.985343485000652, -135.0, -65.5
`BIO_7, -0.45747338603408116, 138.0, 250.5
'STRMMDFLODIST, -0.4008605032143389, 153.5, 235.0
`AGRIC_LC, -0.022624016271557704, 0.0, 750.0
`MEDRURDIST, -0.18778762574847088, 0.0, 0.5
`ETRT_SPRQ, -0.21271394280277495, 20.0, 328.5
`ETRT_SPRQ, -0.1669011722711682, 20.0, 327.5
`MNPOPDEN9R, 0.04339148019278036, 0.0, 4.5
`SLOPE, -0.09396000034520854, 0.0, 194.5
`ETRT_SPRQ, -0.23401259285390727, 20.0, 330.5
'BIO_9, -0.27136262673765005, 206.5, 318.0
`BIO_9, -0.7020697898094634, -135.0, 66.5
`ETRT_SPRQ, -0.37797912612295514, 20.0, 329.5
`MEDRURDIST, -0.17832991388504224, 0.0, 21.5
`ETRT_SPRQ, -0.2909360345087195, 20.0, 148.5
`SLOPE, -0.06537362683681937, 0.0, 330.5
'BIO_9, -0.28219267254509817, 205.5, 318.0
`SLOPE, -0.07447400396946637, 0.0, 1881.5
`SLOPE, -0.02863157509242821, 0.0, 1796.5
`ETRT_SPRQ, -0.16462100501095805, 20.0, 374.5
'MEDRURDIST, -0.5249183966056712, 217.5, 261.0
'BIO_9, -0.7168489047852366, 204.5, 318.0
`BIO_1, -0.2500463389586025, -48.0, 22.5
`SLOPE, -0.13564082159652668, 0.0, 331.5
'BIO_7, 0.27834457221396075, 429.5, 507.0
'AGRIC_LC, -0.46932472557985727, 3850.0, 10000.0
`ETRT_SPRQ, -0.038690361114903156, 20.0, 401.5
`ETRT_SPRQ, -0.09124299495482703, 20.0, 156.5
'BIO_1, -0.5350953733505487, 172.5, 239.0
`SLOPE, -0.04870940340209499, 0.0, 334.5
`MEDRURDIST, -0.0426503853053678, 0.0, 15.5
`ETRT_SPRQ, -0.0631649054685174, 20.0, 200.5
linearPredictorNormalizer, 1.4804256569015328
densityNormalizer, 1205.88336244928
numBackgroundPoints, 13007
entropy, 9.00052135908811
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AETT_SPRQ, 0.0, 4.0, 139.0
AGRIC_LC, 0.0, 0.0, 10000.0
BIO_17, 0.0, 0.0, 315.0
BIO_7, 0.0, 138.0, 507.0
BIO_8, 0.0, -125.0, 331.0
ELEV, 0.0, 77.0, 7526.0
HIURBDIST, 0.0, 0.0, 383.0
LOURBDIST, 0.0, 0.0, 286.0
MNPOPDEN3R, 0.0, 0.0, 955.0
PREC_SUMQ, 0.0, 1.0, 149.0
SLOPE, 0.0, 0.0, 6933.0
STRMHIFLODIST, 0.0, 0.0, 762.0
STRMMDFLODIST, 0.0, 0.0, 235.0
TPETH_ANN, 0.0, 492.0, 1902.0
TPI19KR, 0.0, 1065.0, 6311.0
AETT_SPRQ^2, -2.6806677264882146, 16.0, 19321.0
AGRIC_LC^2, -0.3756207918660113, 0.0, 1.0E8
BIO_17^2, 0.3339682430645868, 0.0, 99225.0
BIO_8^2, -1.4329182584017863, 0.0, 109561.0
HIURBDIST^2, -0.5519900283586471, 0.0, 146689.0
LOURBDIST^2, 0.5232277725992401, 0.0, 81796.0
SLOPE^2, 1.3376690871926784, 0.0, 4.8066489E7
STRMMDFLODIST^2, 0.8317924980340017, 0.0, 55225.0
TPETH_ANN^2, 2.7203172372873548, 242064.0, 3617604.0
`SLOPE, -0.021379206968880286, 0.0, 542.5
`SLOPE, -0.047508521440801026, 0.0, 541.5
`SLOPE, -0.27319266380065804, 0.0, 540.5
`SLOPE, -0.027128358223180975, 0.0, 538.5
'AGRIC_LC, -0.6135550316852887, 4350.0, 10000.0
`SLOPE, -0.1297848284466775, 0.0, 539.5
`PREC_SUMQ, 0.33801797571324255, 1.0, 36.5
`AETT_SPRQ, -1.1099028533512345, 4.0, 32.5
`AETT_SPRQ, -0.047596580142656685, 4.0, 31.5
`TPETH_ANN, -0.2832554732502204, 492.0, 1012.5
`SLOPE, -0.43293651254765464, 0.0, 331.5
'AGRIC_LC, -0.9873308177231885, 4750.0, 10000.0
`TPETH_ANN, -0.7407658080847627, 492.0, 1015.5
`MNPOPDEN3R, 0.23996398977807765, 0.0, 1.5
`TPETH_ANN, -0.6816309261757222, 492.0, 1018.5
`AGRIC_LC, -0.04367129100323198, 0.0, 650.0
`BIO_7, -0.6828338829132707, 138.0, 260.5
`AETT_SPRQ, -0.25768038448442665, 4.0, 38.5
'ELEV, -0.9595325582890101, 4604.0, 7526.0
`AETT_SPRQ, -0.32535487364712956, 4.0, 39.5
'PREC_SUMQ, 0.6783050473314208, 53.5, 149.0
`LOURBDIST, -0.8638484232356525, 0.0, 1.5
'ELEV, -0.5732191154212757, 4549.0, 7526.0
`BIO_8, 0.3750441556635114, -125.0, 3.5
`PREC_SUMQ, 0.3873653200439103, 1.0, 27.5
`AETT_SPRQ, -0.6251672583630004, 4.0, 42.5
`TPI19KR, -1.4383728490538015, 1065.0, 3718.5
`STRMHIFLODIST, 0.1598137262258572, 0.0, 45.5
'AGRIC_LC, -1.564806740943974, 3750.0, 10000.0
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'ELEV, -0.8459660647493125, 3712.0, 7526.0
`MNPOPDEN3R, 0.4026920003135703, 0.0, 139.5
'TPETH_ANN, -1.9555327549837622, 1509.5, 1902.0
`BIO_8, 0.12002448058913869, -125.0, -35.5
`SLOPE, -0.4862539493218394, 0.0, 132.5
'PREC_SUMQ, 0.724972161022758, 67.5, 149.0
`LOURBDIST, -0.01209034387541328, 0.0, 98.5
`SLOPE, -0.09753365061989268, 0.0, 2037.5
'STRMMDFLODIST, -0.5735994288041253, 153.5, 235.0
`HIURBDIST, 0.04565684505603274, 0.0, 217.5
`BIO_7, -1.4550570888898455, 138.0, 251.5
`SLOPE, -0.04839759073592064, 0.0, 2038.5
`BIO_17, -0.09517787186511378, 0.0, 70.5
`STRMMDFLODIST, -0.09281269406666476, 0.0, 1.5
`PREC_SUMQ, -0.41751397665077544, 1.0, 6.5
`AGRIC_LC, -0.030960253362303215, 0.0, 750.0
`BIO_17, -0.22305799561433892, 0.0, 69.5
`BIO_8, 0.2889424033380806, -125.0, -0.5
`STRMHIFLODIST, 0.017983456766986938, 0.0, 104.5
`TPETH_ANN, -0.26515155029676035, 492.0, 773.5
`TPI19KR, -0.20003757954725582, 1065.0, 3741.5
`BIO_17, -0.16494160214179732, 0.0, 68.5
`SLOPE, -0.05614936515107467, 0.0, 195.5
`TPI19KR, -0.1326638392420884, 1065.0, 3744.5
'AGRIC_LC, -0.11965460253709276, 2350.0, 10000.0
`AETT_SPRQ, -0.23198017219242692, 4.0, 48.5
'TPETH_ANN, -0.6837605101656486, 1496.5, 1902.0
'TPETH_ANN, -0.5986263303106648, 1497.5, 1902.0
'AETT_SPRQ, 0.17557409745758912, 102.5, 139.0
`BIO_17, -0.09708886073404936, 0.0, 67.5
`PREC_SUMQ, 0.0702143916121743, 1.0, 20.5
`SLOPE, -0.045136438063736205, 0.0, 2034.5
`SLOPE, -0.04200639308268361, 0.0, 202.5
`ELEV, -0.025421583470413928, 77.0, 1971.0
`SLOPE, -0.12052411746570452, 0.0, 2019.5
`AETT_SPRQ, -0.06202698003080996, 4.0, 47.5
`STRMHIFLODIST, 0.020010387608058913, 0.0, 191.5
'AGRIC_LC, -0.32921685768019415, 4850.0, 10000.0
`SLOPE, -0.08873959720584292, 0.0, 1886.5
`SLOPE, -0.018692506143954554, 0.0, 2033.5
'PREC_SUMQ, 0.11760685179678528, 57.5, 149.0
`SLOPE, -0.03856149892229567, 0.0, 334.5
`TPETH_ANN, -0.44496786801361665, 492.0, 783.5
'AETT_SPRQ, 0.5374348067198652, 101.5, 139.0
'STRMMDFLODIST, -0.2182110325252535, 152.5, 235.0
'BIO_8, 0.16473803758985178, 237.5, 331.0
`SLOPE, -0.04001059811574608, 0.0, 1881.5
`AETT_SPRQ, -0.5816549057901829, 4.0, 50.5
`LOURBDIST, -0.021594705558953133, 0.0, 32.5
`SLOPE, -0.014328710531070207, 0.0, 1877.5
'ELEV, -0.02381135583557945, 3339.0, 7526.0
linearPredictorNormalizer, 2.1232690305704067
densityNormalizer, 1157.8352806331113
numBackgroundPoints, 13007
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entropy, 9.003894405441452
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location lat long Road Source
Monterrey, SW 25.67806 -100.51111 Mexico 40DDr. Rogelio Carrerra, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico (2018)/Correo Rea       
Sheffield, E 30.73860 -101.65393 I-10 Journey North (2017): https://www.learner.org/jnorth/sightings/query_result.html?record_id=1445          
Ozona, NW 30.75386 -101.20320 TX 137; loc  Journey North (2017): https://www.learner.org/jnorth/sightings/query_result.html?record_id=1255  
Celemania, E 27.03486 -101.708019 Mexico 30 Dr. Rogelio Carrerra, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico (2018)/Correo Rea       
La Muralla 26.33888 -101.3693 Mexico 57 Dr. Rogelio Carrerra, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico (2018)- high mona  
Jaguey de Ferniza 25.23359 -101.03622 Mexico 57 Dr. Rogelio Carrerra, Universidad Autonoma de Nuevo Leon, Nuevo Leon, Mexico (2018)- high mona  







   647488 and Dr. Salvador Vitanza (2017) , USDA-APHIS-PPQ, Nogales, Arizona
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Latitude Longitude Transect Date Roadkills Road Sex
30.20046 -97.99006 1 4/12/2017 0 US 290W NA
30.22319 -98.72290 2 4/12/2017 0 US 290W NA
30.29388 -99.51473 4 4/12/2017 0 US 290W NA
30.47584 -100.09458 6 4/13/2017 0 I 10E NA
30.62853 -100.85634 7 4/13/2017 0 I 10W NA
30.63201 -101.19893 8 4/13/2017 0 TX 163 NA
30.33107 -100.64927 9 4/13/2017 0 US 277 S NA
29.24038 -100.17252 11 4/14/2017 0 US 90 W NA
29.04634 -99.43479 12 4/14/2017 0 TX 140 NA
29.00892 -98.75649 15 4/14/2017 0 TX 173 NA
29.01474 -98.04998 16 4/14/2017 0 US 181S NA
28.95012 -97.57696 20 4/15/2017 0 TX 72 NA
28.88086 -96.83519 23 4/15/2017 0 US 59 NA
29.25903 -96.16722 24 4/15/2017 0 US 59 NA
29.54018 -95.99047 25 4/16/2017 0 US 90Alt NA
29.79294 -96.65678 27 4/16/2017 0 TX 71 NA
30.09356 -97.26566 29 4/16/2017 0 TX 72 NA
30.57773 -97.36453 31 4/27/2017 0 US 79 NA
30.85618 -96.57299 33 4/27/2017 0 TX 6 NA
30.58991 -95.96686 35 4/27/2017 0 TX 30 NA
30.66792 -95.79979 36 4/27/2017 0 TX 301 NA
30.87986 -95.37828 39 4/28/2017 0 TX 19 NA
31.33168 -95.77988 41 4/28/2017 0 TX 7 NA
31.30028 -96.59857 45 4/28/2017 1 TX 7 1  male
31.24933 -97.50091 47 4/29/2017 0 TX 36 NA
31.48261 -98.24343 51 4/29/2017 0 US 84 NA
31.73226 -98.92336 52 4/29/2017 0 US 85 NA
31.78231 -99.72895 55 4/30/2017 0 US 67 NA
32.05528 -100.23153 61 4/30/2017 0 US 277 NA
32.41055 -99.48122 66 4/30/2017 0 I 20 NA
32.40358 -98.69805 74 5/1/2017 0 RR 2461 NA
32.04961 -98.08862 82 5/1/2017 0 US 281 NA
31.43322 -96.08988 86 5/8/2017 0 US 79 NA
31.87525 -95.46803 90 5/8/2017 0 US 79 NA
32.12856 -94.83101 92 5/9/2017 0 TX 571 NA
32.77048 -94.94428 93 5/9/2017 0 US 271 NA
33.16637 -95.37182 96 5/9/2017 0 I 30 NA
33.15581 -96.32263 100 5/10/2017 0 US 380 NA
33.25807 -97.15184 101 5/10/2017 0 Loop 288 NA
33.16994 -97.92676 104 5/10/2017 1 US 380 1 male
33.36812 -98.71182 108 5/11/2017 0 TX 114 NA
33.18246 -99.49021 109 5/11/2017 0 US 380 NA
32.75869 -99.56641 110 5/11/2017 0 US 180 NA
32.74685 -98.81966 112 5/12/2017 0 US 180 NA
32.74034 -98.10440 118 5/12/2017 0 US 281 NA
33.64954 -97.04656 150 5/18/2017 0 US 82 NA







33.61881 -96.38229 156 5/19/2017 0 US 82 NA
33.66284 -95.41555 161 5/19/2017 0 US 82 NA
33.50492 -94.60753 164 5/19/2017 0 US 82 NA
32.95040 -94.36918 166 5/20/2017 0 TX 8 NA
32.74786 -94.35516 167 5/20/2017 0 US 59 NA
32.05179 -94.37676 169 5/20/2017 0 TX 10 NA
31.48772 -94.72004 172 5/21/2017 0 US 59 NA
30.81416 -94.87298 175 5/21/2017 0 US 59 NA
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